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The Python Book delivers an essential introductory guide to learning Python for anyone  
who works with data but does not have experience in programming. The author, an  
experienced data scientist and Python programmer, shows readers how to use Python for 
data analysis, exploration, cleaning, and wrangling. Readers will learn what in the Python 
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The Python Book offers readers a thorough and comprehensive introduction to Python that 
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Instagram, Spotify, and more, Python promises to remain central to the programming  
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Containing a thorough discussion of Python programming topics like variables, equalities 
and comparisons, tuple and dictionary data types, while and for loops, and if statements, 
readers will also learn:

•  How to use highly useful Python programming libraries, including  
Pandas and Matplotlib

• How to write Python functions and classes

• How to write and use Python scripts

• To deal with different data types within Python

Perfect for statisticians, computer scientists, software programmers, and practitioners  
working in private industry and medicine, The Python Book will also be of interest to students  
in any of the aforementioned fields. As it assumes no programming experience or knowledge,  
the book is ideal for those who work with data and want to learn to use Python to enhance 
their work.

Rob Mastrodomenico, PhD, is a quant/statistician/data scientist with a focus on modelling 
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SQL Server. He has taught his Introduction to Python course numerous times at the Royal 
Statistical Society.
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Introduction

Welcome to The Python Book, over the following pages you will be given an insight into
the Python language. The genesis of this book has come from my experience of using and
more importantly teaching Python over the last 10 years. With my background as a Data
Scientist, I have used a number of different programming languages over the course of my
career and Python being the one that has stuck with me. Why Python? For me I enjoy
Python because its fast to develop with and covers many different application allowing me to
use Python for pretty much everything. However for you the reader, Python is a great choice
of language to learn as its easy to pick up and fast to get going with which means that for the
novice programmers they can feel like they are making progress. This book is not just for
complete novices, if you have some experience with Python, then this book is a great refer-
ence. The fact that you can pick up Python quickly means that many users skip the basics.
This book looks to cover all the basics giving you the building blocks to do great things with
the language. What this book is not intended to do is over complicating anything. Python
is beautiful in its simplicity and this book looks to stick to that approach. Concepts will be
explained in simple terms and examples will be used to show how to practically use the
introduced concepts.

Now having discussed what this book is intended to do, what is Python? Simply put
Python is a programming language, its general purpose meaning that it can do lots of things.
In this book, we will specialise in applying Python to data-driven applications, however
Python can be used for many other applications including AI, machine learning, web
development, to name just a few. The language itself is of high level and also interpreted
meaning that code need not be compiled before running. One of the big attractions to the
language is the simplicity of its syntax, which makes it great to learn and even better to
write code. Aside from the clear, easy to understand syntax, the language makes use of
indentation as an important tool to distinguish different elements of the code. Python is
an object-orientated language and we will demonstrate this in more detail throughout
this book. However, you can write Python code how you prefer be it object orientated,
functional or interactively. The best way to demonstrate Python is by doing, so let’s get
started but to do so we need to get Python installed.

The Python Book, First Edition. Rob Mastrodomenico.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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2

Getting Started

For the purposes of this book, we want you to install the Anaconda distribution of Python
that is available at https://www.anaconda.com. Here, you have distributions for Windows,
Mac, and Linux, which can be easily installed on your computer. Once you have the
Anaconda installed, you will have access to the Anaconda navigator as shown in
Figure 2.1.

Here, you get the following included by default:

● JupyterLab
● Notebook
● Qt Console
● Spyder

To follow the examples within this book you can use the Notebook or Qt Console.
The Notebook is an interactive web based editor as shown in Figure 2.2.

Here, you can type your code, run the command, and then see the result, which is a nice
way to work and is very popular. Here, we will show how we can define a variable x and
then just type x and run the command with the run button to show the result (Figure 2.3).

However for the purposes of the book we will use a console-based view that you can easily
obtain through the Qt Console. An example is shown in Figure 2.4.

Like with the notebook, we show the same example using Qt Console in Figure 2.5.
Within this book we will denote anything that is an input with >>> and with any output

having no arrows preceding it (Figure 2.6).
Another concept that the reader will need to be familiar with is the ability to navigate

using the terminal (linux systems including mac) or command prompt (windows). These
can be obtained through various approaches but simply using the search procedures with
the word terminal or command prompt will bring up the relevant screen. To navigate
through the file system you can use the command cd to change directory. This essentially
is like us clicking on a folder to see what is in it. Unlike using a file viewing interface
you cannot see what is in a given directory by default so to do so you need to use the
command ls. This command lists the files and directories within the current locations. Let’s
demonstrate with an example of navigating to a directory and then running a python file.

Aside from the Anaconda navigator we have over 250 open-source data science and
machine learning packages are automatically installed. You can also make use of the
conda installer to install over 7500 packages easily into Python. A full list of packages

The Python Book, First Edition. Rob Mastrodomenico.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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2 Getting Started 5

Figure 2.2 Jupyter Notebook.

Figure 2.3 Jupyter Notebook example.

Figure 2.4 Qt Console.
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Figure 2.5 Qt Console example.

Figure 2.6 Command line example.

that come with Anaconda is available for the relevant operating system from https://repo
.anaconda.com/pkgs/. Details on the using the conda installer is available from https://
docs.anaconda.com/anaconda/user-guide/tasks/install-packages/ however this is outside
the scope of this book. The last concept we will raise but not cover in detail is that of virtual
environments. This concept is where the user develops in an isolated Python environment
and adds packages as needed. It is a very popular approach to development however as
this book is aimed at beginners we use all packages included in the Anaconda installation.
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Packages and Builtin Functions

We have discussed packages without really describing what they are so let’s look at packages
and how it sits within the general setup of Python. As mentioned previously, Python is
object orientated which means that everything is an object, you’ll get to understand this in
practice, however there are a few important builtin functions which aren’t objects and they
are worth mentioning here as they will be used within the book. These builtin types will be
used throughout the book so keep an eye out for them. Below we show some useful ones,
for a full list refer to https://docs.python.org/3/library/functions.html.

● dir(): This function takes in an object and returns the _dir_() of that object giving us the
attributes of the object.
>>> name = 'Rob'

>>> dir(name)

['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__',

'__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__',

'__getnewargs__', '__gt__', '__hash__', '__init__', '__init_subclass__',

'__iter__', '__le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__',

'__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmod__',

'__rmul__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__',

'capitalize', 'casefold', 'center', 'count', 'encode', 'endswith',

'expandtabs', 'find', 'format', 'format_map', 'index', 'isalnum', 'isalpha',

'isascii', 'isdecimal', 'isdigit', 'isidentifier', 'islower', 'isnumeric',

'isprintable', 'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower',

'lstrip', 'maketrans', 'partition', 'replace', 'rfind', 'rindex', 'rjust',

'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith',

'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill']

● float(): Returns a floating point number from an integer of string
>>> x = '1'
>>> float(1)
1.0

● int(): Returns an integer from a float of string

>>> x = '1'
>>> int(1)
1

The Python Book, First Edition. Rob Mastrodomenico.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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● len(): Returns the length of an object

>>> name = 'Rob'
>>> len(name)
3
>>> x = [1, 2, 3, 4]
>>> len(x)
4

● list(): Creates a list from the argument given

>>> name = 'rob'
>>> list(name)
['r', 'o', 'b']

● max(): Gives the maximum value from the argument provided

>>> x = [1, 2, 3, 4]
>>> max(x)
4
>>> name = ['r', 'o', 'b']
>>> max(name)
'r'

● min(): Gives the minimum value from the argument provided

>>> x = [1, 2, 3, 4]
>>> min(x)
1
>>> name = ['r', 'o', 'b']
>>> min(name)
'b'

● print(): Prints the object to the text stream

>>> x = [1, 2, 3, 4]
>>> print(x)
[1, 2, 3, 4]

● round(): Rounds the number to a specified precision

>>> y = 1.387668
>>> round(y,2)
1.39

● str(): Converts the object to type string

>>> y = 1.387668
>>> str(y)
'1.387668'
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● type(): Returns the type of an object
>>> y = 1.387668
>>> type(y)
<class 'float'>

● abs(): Returns the absolute value of a numeric value passed in
>>> z = -0.657
>>> abs(z)
0.657

● help(): Gives access to the Python help system
>>> help(list)

Help on class list in module builtins:

class list(object)
| list(iterable=(), /)
|
| Built-in mutable sequence.
|
| If no argument is given, the constructor creates a new empty list.
| The argument must be an iterable if specified.
|
| Methods defined here:
|
| __add__(self, value, /)
| Return self+value.
|
| __contains__(self, key, /)
| Return key in self.
|
| __delitem__(self, key, /)
| Delete self[key].
|
| __eq__(self, value, /)
| Return self==value.

Now if you are unfamiliar with the Python the concepts used above they will be intro-
duced throughout this book.

Alongside these builtin functions Python also comes with a number of packages. These
packages perform specific tasks and are imported into our code. Python has a number of
packages that come as default however there are lots of third-party packages which we can
also use. In using the Anaconda distribution we get all the default packages as well as the
packages that are described previously. We will cover both default and third-party packages
throughout this book. To demonstrate this we will introduce how to import a package. The
package we are going to introduce is datetime which is part of the standard Python library.
What this means is it comes with the Python and is not developed by a third party. Now to
import the datetime package you just need to type the following:

>>> import datetime
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In doing this we now have access to everything within datetime and to see what date-
time contains we can run the built in function dir which as we showed earlier gives us the
attribute of the object.

>>> import datetime
>>> dir(datetime)
['MAXYEAR', 'MINYEAR', '__builtins__', '__cached__', '__doc__', '__file__',
'__loader__', '__name__', '__package__', '__spec__', 'date', 'datetime',
'datetime_CAPI', 'sys', 'time', 'timedelta', 'timezone', 'tzinfo']

Now if we want to see what these attributes are we use the dot syntax to access attributes
of the object. So to see what MINYEAR and MAXYEAR are we can do so as follows.

>>> import datetime
>>> datetime.MAXYEAR
9999
>>> datetime.MINYEAR
1

Now we can import specific parts of a package by using the from syntax as demonstrate
below.

>>> from datetime import date

So what this says is from the package datetime import the specific date attribute. This is
then the only aspect of datetime that we have access to. This is good practice to only import
what you need from a package. Now every time we want to use date we have to call date, in
this case its easy enough but you can also give the import an alias which can reduce your
code down.

>>> from datetime import date as d

That is the basics of importing packages, throughout this book we will import from
various packages as well as show how this same syntax can be used to import our own
code. Alongside builtin functions these are key concepts that we will use extensively within
this book.
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Data Types

The next concept of Python that we will introduce is data types and in this chapter we
will introduce a number of these and show how they behave when applied to some basic
operators. We first start by introducing integers which are a number without a decimal
point, written as follows:

>>> 1
1
>>> 2
2

A float is by definition a floating point number so we can write the previous as follows:

>>> 1.0
1.0
>>> 2.0
2.0

A string is simply something enclosed in either a double or single quote. So again we can
rewrite what we have seen as follows:

>>> "2.0"
'2.0'

Given the fact that we know how to define these variables, how can we check what they
are? Well, conveniently Python has a type method that will allow us to determine the type
of a variable. So we will rewrite what we have done and assign each instance to a variable
and then see what type Python thinks they are

>>> = 1
>>> type(x)
<class "int">
>>> y = 1.0
>>> type(y)
<class "float">
>>> z = "1.0"
>>> type(z)
<class "str">

The Python Book, First Edition. Rob Mastrodomenico.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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So now we can define the variables, the question is what can we do with them? Initially
we will consider the following operations:

● +
● −
● *
● /

These are commonly known as the mathematical operation: addition, subtraction,
multiplication, and division.

So let’s start with + now if we have two integers applying + is mathematical addition as
we will show

>>> x = 10
>>> y = 16
>>> x + y
26

Similarly if we do the same with two floats we get a similar result

>>> x = 10.0
>>> y = 16.0
>>> x + y
26.0

But what happens if we apply addition to a float and an integer, let’s see

>>> x = 10
>>> y = 16.0
>>> z = x + y
>>> z
26.0
>>> type(z)
<class "float">

What we see is that addition works on a float and an integer but it returns a float, so it’s
converting the integer into a float.

What if we use addition on a string? Well this is the interesting part, let’s run the same
example from before with x and y as string representations.

>>> x = "10"
>>> y = "16.0"
>>> z = x + y
>>> z
"1016.0"
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What has happened here? Well we have stuck together x and y, this is known as concate-
nation and is a very powerful tool in dealing with strings.

We considered the + operation with integers and floats but what will happen if we do the
+ operation with a string and say an integer

>>> x = "10"
>>> y = 16
>>> z = x + y
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: must be str, not float

What we see here is an error message saying we cannot concatenate a str and int object.
So Python in this instance wants to use the + operation as concatenation but due to the fact
it doesn’t have two strings it can’t do that and hence throws an error. In Python you cannot
mix a string and integer or string and float so we won’t consider operations between these
types for the rest of this section.

Let us now look at the − operation. First considering two integers we get the following:

>>> x = 10
>>> y = 16
>>> z = x - y
>>> z
-6

As you may have expected the − operation with two integers acts as mathematical sub-
traction. If we apply it to two floats, or to a mix of floats and integers it acts as subtraction.

What about for strings, can we apply − to two strings?

>>> x = "10"
>>> y = "16"
>>> z = x - y
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for -: 'str' and 'str'

Here we get another error but this time it is because the − operation doesn’t support
strings. What this means is that when you try to operate on two strings using this operation,
it doesn’t know what to do. The same is true for * and / operations on string. So, if we
are dealing with strings the only operation from this section that we can use is + which is
concatenation.

The next operation we will consider is * which is generally known as mathematical
multiplication to most. So considering its use on two integers we get the following:

>>> x = 10
>>> y = 16
>>> x * y
160
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As we can see its mathematical multiplication, the same is true when we run the same
on two floats. Let us see what happens when we mix floats and integers.

>>> x = 10
>>> y = 16.0
>>> x * y
160.0

As we can see it returns multiplication in float format, so like with addition and subtrac-
tion it converts integers to floats.

Next, we need to see how / operation works on integers and floats, so first we consider
the same types, so we will apply / on integers:

>>> x = 10
>>> y = 16
>>> x / y
0.625

There are other data types beyond these and the first we consider are complex numbers
which can be defined as follows

>>> x = 3+5j
>>> x
(3+5j)
>>> y = 5j
>>> y
5j
>>> z = -5j
>>> z
(-0-5j)

We can obtain the real and imaginary parts of our complex numbers as follows

>>> x.real
3.0
>>> x.imag
5.0
>>> y.real
0.0
>>> y.imag
5.0
>>> z.real
-0.0
>>> z.imag
-5.0
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We can also use the built-in function complex

>>> a = 3
>>> b = 5
>>> c = complex(a, b)
>>> c
(3+5j)
>>> c.real
3.0
>>> c.imag
5.0

In terms of operation we can use the standard operators shown earlier to complex num-
bers and the results are as follows

>>> x = 3+5j
>>> x
(3+5j)
>>> y = 5j
>>> y
5j
>>> z = -5j
>>> z
(-0-5j)
>>> x + y
(3+10j)
>>> x - y
(3+0j)
>>> x / y
(1-0.6j)
>>> x * y
(-25+15j)

We can also add, subtract, divide or multiply integers or floats to a complex numbers as
we show

10.2
(13.2+5j)
>>> x - 10
(-7+5j)
>>> x - 10.2
(-7.199999999999999+5j)
>>> x * 10
(30+50j)
>>> x
(3+5j)
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>>> x * 10.2
(30.599999999999998+51j)
>>> x * 10.2
(30.599999999999998+51j)
>>> x / 10
(0.3+0.5j)
>>> x / 10.2
(0.29411764705882354+0.4901960784313726j)

In adding or subtracting an integer or float with a complex we change only the real part
which is to be expected, however if we multiply or divide we apply that value across both
real and imaginary parts.

Next we look at boolean values in Python, these can be defined using True or False

>>> x = True
>>> x
True
>>> y = False
>>> y
False

Integers or floats can be converted into a boolean using the built-in function bool. This
treats any value as 0 or 0.0 as False and any other value to be True.

>>> x = bool(1)
>>> x
True
>>> y = bool(0.0)
>>> y
False
>>> z = bool(-10)
>>> z
True

Surprisingly we can use the operators in this chapter on boolean variables. The key to
note is that a value of True is evaluated as 1 and False as 0, so you can see examples of this
below.

>>> x = True
>>> y = False
>>> x + y
1
>>> x - y
1
>>> x * y
0
>>> x / y
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Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ZeroDivisionError: division by zero
>>> x = True
>>> y = True
>>> x + y
2
>>> x - y
0
>>> x + y
2
>>> x * y
1
>>> x / y
1.0
>>> x = False
>>> y = False
>>> x + y
0
>>> x - y
0
>>> x * y
0
>>> x / y
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero

In most cases the results are as expected considering that we are dealing with 1 or 0 in the
operation. However anytime that we divide by zero we get a ZeroDivisonError so be careful
with zero division.

We can also create byte, byte arrays and memory view objects with the following syntax.

>>> x = b"Hello World"
>>> x
b'Hello World'
>>> y = bytearray(6)
>>> y
bytearray(b'\x00\x00\x00\x00\x00\x00')
>>> z = memoryview(bytes(5))
>>> z
<memory at 0x7fdde6fea348>

We can concatenate byte strings together in the way we have shown with strings

>>> x = b"Hello World"
>>> x
b'Hello World'
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>>> y = b" My name is Rob"
>>> y
b' My name is Rob'
>>> x + y
b'Hello World My name is Rob'

What we have covered in this chapter is some of the data types in Python and how to
operate on them using standard mathematical methods. One thing to take from this is the
mechanism that Python uses to operate on objects and that is simply look for a method that
can take in the arguments that you pass into it.
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5

Operators

The previous chapter introduced data types and some basic operators but in this chapter we
build on this by introducing a number of key operators that are important to understand.
As shown in our introductory examples in the previous chapter, we can define a variable as
follows:

>>> x = 2 + 1
>>> x
3

Here, we are assigning the variable x with the result of 1 + 2 so x is 3. Now, if we wanted
to see if the value of x was equal to 3 we would use == which refers to equality.

>>> x = 2 + 1
>>> x == 3
True

We have shown how to test for equality but what about inequality. Well Python has that
sorted as well, instead of using == we use != which is not equals. Using the example from
before we get the following:

>>> x = 2 + 1
>>> x != 3
False

What we have here is the result of an equality statement like this being of type boolean
(True or False).

We can also test to see if something is greater or less than another element.

>>> x = 2 + 1
>>> x > 4
False
>>> x < 4
True
>>> x >= 4
False
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>>> x >= 3
True
>>> x <= 3
True

Here we have introduced the following tests which takes the value on the left against the
value on the right and tests for

● > for greater than
● < less than
● >= greater than or equal to
● <= less than or equal to

You can also test for equality using the statement is. Now it is not strictly the same as
using == which we demonstrate earlier. Essentially the difference is that it returns True if
the variables in question points to the same object whilst == returns True if the values are
equal. It is a very subtle difference so you need to be careful with it. A simpler explanation is
that == returns True if the variables being compared are equal, whereas is checks whether
they are the same. The below examples shows the dangers in using is

>>> a = 1
>>> a is 1
True
>>> a == 1
True
>>> a = []
>>> b = []
>>> a is b
False
>>> a == b
True

In the first instance a is assigned to be 1 and we say is a 1 and it is so we get True returned.
In the second instance we assign a and b to be empty list (we will cover what a list is later)
and we can see we return False with the is statement and True with the equals. The reason
behind this is that they are not the same lists so

>>> a is b
False

However, they are both lists so using the comparison statement == we return True as
they are both empty lists. If we assigned a as a list and b = a we would get the following:

>>> a = []
>>> b = a
>>> a is b
True
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The reason being is that b is the same as a so they are the same thing. As with == and
!= we have is not again the != is a test of equality between two variables whereas the Python
statement is not, is a test of identity. A good example of this is when you compare a variable
to the Python Null value denoted as None. Here, the preferred way to write it is

>>> a = 21
>>> a is not None
True

You can override the variable by assigning something to it like we did before

>>> x = 1
>>> x
1
>>> x = 10
>>> x
10

All pretty simple stuff. Now if we have three variables that we want to assign we can do
it as follows

>>> x = 1
>>> y = 2
>>> z = 3
>>> x
1
>>> y
2
>>> z
3

This is fine to do however it takes up a lot of space so instead you can write your assign-
ment as follows

>>> x, y, z = 1, 2, 3
>>> x
1
>>> y
2
>>> z
3

This just makes it easier to assign variables and makes your code shorter and hopefully
more readable. Obviously the naming convention I’ve used for the variables isn’t the best
and it makes for better code to give your variables meaningful names as it will help those
who have to go back and read your code.
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We have looked at assigning variables however what if we want to do something to the
variable like say add something to the value. Lets assume we have a variable profit and we
want to add 100.0 to it, then we could do it as follows

>>> profit = 1000.0
>>> profit
1000.0
>>> profit = profit + 100
>>> profit
1100.0

What we are doing here is assigning profit the initial value then assigning it its value plus
100. There is nothing wrong with what we did here however the more Pythonic way would
be to do this

>>> profit = 1000.0
>>> profit
1000.0
>>> profit += 100.0
>>> profit
1100.0

Similarly is we wanted to multiply the value by 20% we could do so as follows

>>> profit = 1000.0
>>> profit
1000.0
>>> profit *= 1.2
>>> profit
1200.0

As you would think we can do the same for division and subtraction

>>> profit
1000.0
>>> profit *= 1.2
>>> profit
1200.0
>>> profit = 1000.0
>>> profit
1000.0
>>> profit -= 1.2
>>> profit
998.8
>>> profit /= 2
>>> profit
499.4
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There are some other non typical operators that we can use in Python, the first one being
modulus which returns the remainder of integer division.

>>> x = 2
>>> y = 10
>>> x/y
0.2
>>> x % y
2

We can also perform exponentiation as follows

>>> x = 2
>>> y = 10
>>> y ** x
100

Python also gives us the operator for floor division which was how division was used in
Python 2 however it is now performed explicitly using the floor operator

>>> x = 2
>>> y = 10
>>> x/y
0.2
>>> x // y
0

Following on from what we showed earlier these operations can be performed using
the equals operator approach to assign back to the variable. So we can perform modulus,
exponentiation and floor operations as follows.

>>> x = 2
>>> y = 10
>>> x %= y
>>> x
2
>>> x = 2
>>> y = 10
>>> y **= x
>>> y
100
>>> x = 2
>>> y = 10
>>> x //= y
>>> x
0
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We can also chain together these types of operators as follows

>>> x = 2
>>> y = 10
>>> x < y
True
>>> z = 3
>>> a = 3
>>> b = 3
>>> a == b
True
>>> x < y and a == b
True
>>> x > y
False
>>> x > y and a == b
False
>>> a != b
False
>>> x > y and a != b
False

So we can combine our logic statements together to form more complex statements. This
will become useful later in the book when we apply these with other Python functionality.

This chapter has shown how we perform various operations on Python data types and
this will form the basis for lots of the logic that we apply throughout this book.
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6

Dates

In the previous chapters we covered some of the main data types in Python but one thing
that is quite important is dates. For anyone who has worked with dates they can be tricky
things, there are different ways to format them and they can be hard to manipulate, however
Python has you covered. If we want to create a datetime object we do so as follows (we earlier
showed how to import the datetime package):

>>> from datetime import datetime as dt
>>> d = dt(2017, 5, 17, 12, 10, 11)
>>> d
datetime.datetime(2017, 5, 17, 12, 10, 11)
>>> str(d)
"2017-05-17 12:10:11"

What we have done here is create a datetime by passing into dt the year, month, day, hour,
minute, second to give us a datetime object. If we want to see it in a more friendly way we
can type str around it and we get the string representation. Given we can define a date we
can operate on dates as follows:

>>> d1 = dt(2017, 5, 17, 12, 10, 11)
>>> d1
datetime.datetime(2017, 5, 17, 12, 10, 11)
>>> d2 = dt(2016, 4, 7, 1, 1, 1)
>>> d2
datetime.datetime(2016, 4, 7, 1, 1, 1)
>>> d1 - d2
datetime.timedelta(405, 40150)
>>> str(d1 - d2)
"405 days, 11:09:10"

Here, we have created two dates and then subtracted one from the other. What we get
back is a timedelta object and converting it to a string we can see that it represents the days
and time from the date subtraction. To understand timedelta we can import it just as we did
with datetime.

>>> from datetime import timedelta as td
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Now timedelta behaves a little different from datetime in that we do not pass in years
and months but instead days, hours, minutes, and seconds. If you think about it setting a
timedelta using years and months does not make much sense as they are not consistent
units of time. We can create a timedelta object of 1 day, 2 hours 10 minutes as follows.

>>> td(days=1, hours=2, minutes=10)
datetime.timedelta(1, 7800)
>>> change = td(days=1, hours=2, minutes=10)
>>> d1 = dt(2017, 5, 17, 12, 10, 11)
>>> d1 - change
datetime.datetime(2017, 5, 16, 10, 0, 11)
>>> str(d1 - change)
"2017-05-16 10:00:11"

What we then did with the timedelta is subtract it from the datetime and it returns the
datetime with the period in the timedelta subtracted from it. When this is shown as a
str we see we have retained the datetime format, so this makes it much easier to do date
subtraction, the same is true if we wanted to add to the datetime.

>>> str(d1)
"2017-05-17 12:10:11"
>>> d1 + change
datetime.datetime(2017, 5, 18, 14, 20, 11)
>>> str(d1 + change)
"2017-05-18 14:20:11"

If we just want to work with dates we can import date from datetime:

>>> from datetime import date as d
>>> d.today()
datetime.date(2017, 5, 17)
>>> str(d.today())
"2017-05-17"

So we imported in much the same way we did before, but let’s say we want the current
date we can use the method today to show the current date.

Taking the above we can apply what we have seen here to some examples. First let us
consider a date in time and how we can calculate how long ago it was. The date that we will
use is the 20 July 1969 which is the date that Neil Armstrong stepped on the moon. We can
work out how far back from the current date it is:

>>> import datetime as dt
>>> now_date = dt.datetime.now()
>>> now_date
datetime.datetime(2020, 3, 25, 9, 55, 17, 272032)
>>> moon_date = dt.datetime(1969, 7, 20)
>>> moon_date
datetime.datetime(1969, 7, 20, 0, 0)
>>> date_since_moon = now_date - moon_date
>>> date_since_moon
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datetime.timedelta(days=18511, seconds=35717, microseconds=272032)
>>> date_since_moon.days
18511
>>> date_since_moon.seconds
35717

What we have seen is we can subtract a datetime from a date and get back a resulting
timedelta that takes into account the different types.

Next, we can look at how far in the future a date is so we look at the date 2030-01-01
relative to now (at the time of print).

>>> import datetime as dt
>>> now_date = dt.date.today()
>>> now_date
datetime.date(2020, 3, 25)
>>> future_date = dt.date(2030, 1, 1)
>>> future_date
datetime.date(2030, 1, 1)
>>> distance = future_date - now_date
>>> distance
datetime.timedelta(days=3569)
>>> distance.days
3569

What we do here is set the date as today using the today method and then we can subtract
our future date which we set as a date giving us a timedelta object. As we have seen before
we can access the specific number of days between 2020-03-05 and 2030-01-01 as 3569 days.

In this chapter, we have introduced how we manipulate dates within Python but also
shown how packages including how we import them but also how we can access methods
and attributes within them.
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7

Lists

In this chapter we will cover lists, not the kind you write down your food shop but a really
important part of Python. Lists are the first of the storage types we consider from core
Python, the others being Tuples, Dictionaries, and Sets. Fundamentally lists allow us to
store things, let’s say we want to have a variable containing the numbers 1–10, we can store
them in a list as follows:

>>> numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> numbers
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

What we have here is a list of integers, we could do the same with a list of strings.

>>> numbers = ["1","2","3","4","5","6","7","8","9","10"]
>>> numbers
["1","2","3","4","5","6","7","8","9","10"]

The beauty with lists is that we could have a mixture of things in it, so it could look
like this:

>>> stuff = ["longing","rusted","furnace","daybreak",17,"Benign",9]
>>> stuff
["longing", "rusted", "furnace", "daybreak", 17, "Benign", 9]

We could even put variables in a list, so if we take the previous example we could have
replaced some of the entries with the variable equivalent

>>> x = "longing"
>>> y = 17
>>> stuff = [x,"rusted","furnace","daybreak",y,"Benign",9]
>>> stuff
["longing", "rusted", "furnace", "daybreak", 17, "Benign", 9]

We can even put lists in lists, like so

>>> first_names = ["Steve", "Peter", "Tony", "Natasha"]
>>> last_names = ["Rodgers", "Parker", "Stark", "Romanoff"]
>>> names = [first_names, last_names]
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>>> names
[["Steve", "Peter", "Tony", "Natasha"], ["Rodgers", "Parker",
"Stark", "Romanoff"]]

Basically lists are really powerful, however given you have put something in it you then
need to be able access it. Lists in Python are 0 indexed which means to access the first
element of the list you need to do the following:

>>> stuff = ["longing","rusted","furnace","daybreak",17,"Benign",9]
>>> stuff
["longing", "rusted", "furnace", "daybreak", 17, "Benign", 9]
>>> stuff[0]
"longing"

Similarly to get the second and fifth elements you would do the following:

>>> stuff[1]
"rusted"
>>> stuff[4]
17

If you’ve not worked with something that is zero indexed then it can be a tad annoying to
start off with but once you get the hang of it then it will just become second nature. We will
cover in more detail how to access lists later in the chapter.

The first method that we will consider is pop, this removes the last item of the list.

>>> stuff.pop()
9
>>> stuff
["longing", "rusted", "furnace", "daybreak", 17, "Benign"]

We can also specify the index position that we wish to pop from the list as follows:

>>> stuff.pop(4)
17
>>> stuff
["longing", "rusted", "furnace", "daybreak", "Benign"]

Note that what you return from the pop is the value you are popping, you do not need to
assign this back to the list you have changed your list permanently by doing this.

You may ask how useful that is but it leads nicely onto append which allows us to add an
element to the end of the list.

>>> stuff.append(9)
>>> stuff
["longing", "rusted", "furnace", "daybreak", 17, "Benign", 9]

There is another way to remove items from a list and that is by using the attribute remove.
So let’s say we wanted to remove 9 from the list we could use the following:

>>> stuff
["longing", "rusted", "furnace", "daybreak", 17, "Benign", 9]
>>> stuff.remove(9)
>>> stuff
["longing", "rusted", "furnace", "daybreak", 17, "Benign"]
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This could work on any element of the list, we would just need to specify the name of the
item we wanted to remove. It is worth noting that remove does not remove all instances,
only the initial instance of that value within the list.

In this case we will put the list back to its old ways by again using the append method.

>>> stuff.append(9)
>>> stuff
["longing", "rusted", "furnace", "daybreak", 17, "Benign", 9]

Next, we will show how to use count, here we pass in something we want to get the count
of in the list, to show this we will define a slightly more interesting list:

>>> count_list = [1,1,1,2,3,4,4,5,6,9,9,9]
>>> count_list.count(1)
3
>>> count_list.count(4)
2

We will now show how to use reverse which not surprisingly reverses the elements in a
list:

>>> count_list.reverse()
>>> count_list
[9, 9, 9, 6, 5, 4, 4, 3, 2, 1, 1, 1]

The last method we will show you is an interesting one, the sort method. Now on a list of
integers the way it works is as you would expect the following:

>>> count_list
[9, 9, 9, 6, 5, 4, 4, 3, 2, 1, 1, 1]
>>> count_list.sort()
>>> count_list
[1, 1, 1, 2, 3, 4, 4, 5, 6, 9, 9, 9]

But what if you did this with strings or a mix of data types, well we can see by using the
stuff list defined earlier:

>>> stuff
["longing", "rusted", "furnace", "daybreak", 17, "Benign", 9]
>>> stuff.sort()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: "<" not supported between instances of "int" and "str"

What happened here is Python doesn’t know how to support sorting integers and strings,
so we can only use the sort method on a list of numeric values.

That will do us in terms of looking at the attributes of a list, we will go back to how
we select items from a list. As you will remember, we introduced the concept of indexing
and selecting items in the list according to the index. We will take that a step further by
showing how negative indexes work. Simply put it works from the end of the list and works
backwards, so the last element of the list is −1 and the first is the negative value of the
length of the list. Now we can get the length of the list by using the function len as we will
demonstrate:
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>>> stuff = ["longing", "rusted", "furnace", "daybreak", 17, "Benign", 9]
>>> len(stuff)
7
>>> stuff[-1]
9
>>> stuff[-2]
"Benign"
>>> stuff[-len(stuff)]
"longing"

What have we done here? Initially we have shown the list to be what we defined earlier
then we have applied len to it and obtained the result 7. What this says is that the number of
elements in the list is 7. After that we used negative indexing to choose the last and second
last item and showed how we could get the first element using negative indexing.

Now choosing a single item from a list is cool and all but what if we want to select subsets
of the list. Well Python allows you to do this as well. Let us say we wanted to choose the
second and third elements and have the results in a list. We could do so using the approach
we showed so far as follows:

>>> x = stuff[1]
>>> y = stuff[2]
>>> new_stuff = [x, y]
>>> new_stuff
["rusted", "furnace"]

That is fine but it is pretty ugly, it would be much nicer to do it in a single line, and what
do you know you can do exactly that.

>>> stuff[1:3]
["rusted", "furnace"]

What you are saying is take from the element in index 1 in the list (which is the
second element as we are 0 indexed) and show up to but not including element in index 3
in the list. In a similar way you could select everything except the first element in a similar
way:

>>> stuff[1:]
["rusted", "furnace", "daybreak", 17, "Benign", 9]
>>> stuff
["longing", "rusted", "furnace", "daybreak", 17, "Benign", 9]

Note we have shown the list after taking what we wanted and it shows the full list. This is
because splicing the list (which is what we are doing) doesn’t change the list it just returns
the splice of our list. So if we want to use the splice we need to assign it to a variable as
follows:
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>>> new_stuff = stuff[1:]
>>> new_stuff
["rusted", "furnace", "daybreak", 17, "Benign", 9]

Splicing works using negative indexing as well. If we run the above code using −1 instead
of 1 we get the following:

>>> new_stuff = stuff[-1:]
>>> new_stuff
[9]

What we are doing here is staying we want everything from the −1 index to the end of
the list. Splicing works if we have the index after the colon. So again rewriting the previous
example with −1 after the colon gives us

>>> new_stuff = stuff[:-1]
>>> new_stuff
["longing", "rusted", "furnace", "daybreak", 17, "Benign"]

So its basically the opposite of what we did before as we take the everything from the start
of the list up to the −1 index position.

Let’s say we now want to select every second element of the list then we would have to
run the following:

>>> stuff
["longing", "rusted", "furnace", "daybreak", 17, "Benign", 9]
>>> stuff[1:8:2]
["rusted", "daybreak", "Benign"]

So here we are selecting everything between index 1 and 7 incrementing the index by 2
starting at the first position. Its pretty powerful stuff and gives us a lot of control over lists.

The next thing we consider is how to join lists together. Luckily we have covered concate-
nation earlier with strings and its very much the same for lists, lets demonstrate:

>>> stuff
["longing", "rusted", "furnace", "daybreak", 17, "Benign", 9]
>>> count_list
[1, 1, 1, 2, 3, 4, 4, 5, 6, 9, 9, 9]
>>> stuff + count_list
["longing", "rusted", "furnace", "daybreak", 17,
"Benign", 9, 1, 1, 1, 2, 3, 4, 4, 5, 6, 9, 9, 9]

By using the addition symbol we can concatenate two or more lists together in the same
way we would a string.

If we want to check if an element is in a list we can easily do so by using the Python
expression in argument.
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>>> stuff
["longing", "rusted", "furnace", "daybreak", 17, "Benign", 9]
>>> 9 in stuff
True

If the value is in we get back a boolean value True or False.
Similarly, we can use not in to see if a value is not in a list so repeating the previous

example we would get the following result:

>>> stuff
["longing", "rusted", "furnace", "daybreak", 17, "Benign", 9]
>>> 9 not in stuff
False

Let’s now consider the copy method. To demonstrate this we will create a list and then
assign it to a new list.

>>> stuff = ["longing", "rusted", "furnace", "daybreak", 17, "Benign", 9]
>>> stuff
['longing', 'rusted', 'furnace', 'daybreak', 17, 'Benign', 9]
>>> new_stuff = stuff
>>> new_stuff
['longing', 'rusted', 'furnace', 'daybreak', 17, 'Benign', 9]
>>> stuff.append(21)
>>> stuff
['longing', 'rusted', 'furnace', 'daybreak', 17, 'Benign', 9, 21]
>>> new_stuff
['longing', 'rusted', 'furnace', 'daybreak', 17, 'Benign', 9, 21]

As we can see when we create the second list new_stuff anything we do to stuff is reflected
in new_stuff. If we do not want to do this and want to take a copy of the list where they are
independent then we use the copy method. Taking the last example we can repeat using
the copy method.

>>> stuff = ["longing", "rusted", "furnace", "daybreak", 17, "Benign", 9]
>>> stuff
['longing', 'rusted', 'furnace', 'daybreak', 17, 'Benign', 9]
>>> new_stuff = stuff.copy()
>>> new_stuff
['longing', 'rusted', 'furnace', 'daybreak', 17, 'Benign', 9]
>>> stuff.append(21)
>>> stuff
['longing', 'rusted', 'furnace', 'daybreak', 17, 'Benign', 9, 21]
>>> new_stuff
['longing', 'rusted', 'furnace', 'daybreak', 17, 'Benign', 9]

The next method we will consider in this chapter is the clear method, simply put this
method clears the list of all its content.

>>> stuff = ["longing", "rusted", "furnace", "daybreak", 17, "Benign", 9]
>>> stuff.clear()
>>> stuff
[]



�

� �

�

7 Lists 35

The last method we will consider is not strictly a list method, its not even a list type, but
it used to be. Here we will look at a range object. Now in Python 2 you could create a range
using the following syntax

>>> x = range(7)
>>> x
[0, 1, 2, 3, 4, 5, 6]
>>> type(x)
<type 'list'>

Here range created a list of length 7 starting at 0. We can modify this by giving it a start
and end point as follows

>>> x = range(1,7)
>>> x
[1, 2, 3, 4, 5, 6]

So the list starts at 1 and ends at 6, which mimics what we have seen when using the colon
syntax to access a list earlier. We can take this a step further by adding the third argument

>>> x = range(1,7,2)
>>> x
[1, 3, 5]

This gives us a list of every other item starting at 1 ending at 6. We can think of the range
method having three arguments start, stop and step where stop is the only necessary argu-
ment needed. This method is very useful for creating on the fly lists, however in Python 3
this changed and range no longer created a list object but instead created a range object.
Let’s demonstrate this by using the previous example in Python 3.

>>> x = range(7)
>>> x
range(0, 7)
>>> type(x)
<class 'range'>

We can pass in a start and stop values as before.

>>> x = range(1,7)
>>> x
range(1, 7)

We can also add the step value.

>>> x = range(1,7,2)
>>> x
range(1, 7, 2)

We can access the elements of a range object in the same way we can a list by just passing
the index value
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>>> x = range(7)
>>> x[0]
0
>>> x[-1]
6
>>> x[3]
3

We can also splice up our range in the same manner as a list and access elements within it.

>>> x = range(7)
>>> x[1:]
range(1, 7)
>>> x[:-1]
range(0, 6)
>>> x[:-1][-1]
5
>>> x[3]
3
>>> x[:4:2]
range(0, 4, 2)

Unlike with a list we don’t have the variety of methods associated with them but we can
obtain the start, stop and step of the range object alongside the count and index.

>>> x = range(7)
>>> x = x[1:]
>>> x
range(1, 7)
>>> x.start
1
>>> x.stop
7
>>> x.step
1
>>> x.index(1)
0
>>> x.count(1)
1
>>> x = range(7)
>>> x = x[1:5:2]
>>> x
range(1, 5, 2)
>>> x.start
1
>>> x.stop
5
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>>> x.step
2
>>> x.index(3)
1
>>> x.count(3)
1

Range objects can be very useful for creating on the fly objects containing integers objects
and we will use these in some of the examples later on in this book. That covers lists and
gives us a good reference on how to create, access and operate on them, we will use lists
throughout the rest of the book.
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8

Tuples

The good thing about covering lists is that it then makes tuples much easier to cover.
Tuples are essentially lists. You access them in exactly the same way and many things we
covered in lists are relevant to tuples, the big difference is tuples can’t be modified. Why
would you want something that cannot be modified? Well its actually more useful than
you would think, it prevents you from accidentally changing something that you may rely
on in your code.

Let’s take the numbers list we defined at the start of the list section:

>>> numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> numbers
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

We can rewrite this as a tuple as follows:

>>> numbers = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
>>> numbers
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

Looks very similar doesn’t it! Now let’s try and access the first element of the tuple, again
we do it in the same way as we would do in a list

>>> numbers[0]
1

And to get the last number we would do

>>> numbers[-1]
10

We can splice the tuple just like we would a list, so if we wanted everything except the
last two values then we do it in exactly the same way we would do in a list

>>> numbers[:-2]
(1, 2, 3, 4, 5, 6, 7, 8)

So what is the point in tuples? Well let’s try and change the second element of the tuple
as we would if it were a list:
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>>> numbers[1] = 1
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

We cannot assign a new value to a defined tuple, well what can we do to a tuple? Here,
we consider two methods for the numbers tuple, namely count and index.

Count simply tells us how many of a value are present in the tuple. To demonstrate it,
we will define a new tuple as follows:

>>> new_numbers = (1, 2, 2, 2, 5, 5, 7, 9, 9, 10)
>>> new_numbers.count(2)
3

So we see that new_numbers contains three instances of the integer value 2.

>>> new_numbers = (1, 2, 2, 2, 5, 5, 7, 9, 9, 10)
>>> new_numbers.index(2)
1

For the index value we ask it what index the integer value 2 has in the tuple and here you
can see it returns 1 which is correct, however we also have 2 at index values 2 and 3 so care
needs to be taken with this method.

In this chapter we have introduced the brief but important concept of a tuple. Having
an object which you cannot modify is very useful and is used throughout various Python
packages.
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9

Dictionaries

When we say dictionary in Python, we aren’t speaking of the Oxford variety. Dictionaries
are used to contain data in a very specific way as they hold key value pairs. What do we
mean by key value pairs? For example, we could have a key as first name and a value as
Rob. We could also have a key as wins and the value as 21. The key to dictionaries (pun
intended) is that to access values we need to have a key associated with it. Let us start with
an example about personal details, we may have the following fields: first name, surname,
gender, favourite food. This could be written in the form of a dictionary as follows:

>>> dict_detail = {}
>>> dict_detail["first name"] = "Rob"
>>> dict_detail["surname"] = "Mastrodomenico"
>>> dict_detail["gender"] = "Male"
>>> dict_detail["favourite food"] = "Pizza"
>>> dict_detail
{"first name": "Rob", "favourite food": "Pizza",
"surname": "Mastrodomenico", "gender": "Male"}
>>>

Its important to note that the name of the dictionary is arbitrary, I used dict as I am not
very creative, I could easily have written it as follows:

>>> ham_sandwich = {}
>>> ham_sandwich["first name"] = "Rob"
>>> ham_sandwich["surname"] = "Mastrodomenico"
>>> ham_sandwich["gender"] = "Male"
>>> ham_sandwich["favourite food"] = "Pizza"
>>> ham_sandwich
{"first name": "Rob", "favourite food": "Pizza",
"surname": "Mastrodomenico", "gender": "Male"}
>>>

You could argue that the second one is funnier and I would agree, however the name
of your dictionary or variable should reflect what you are trying to do as someone will no
doubt have to read your code. The problem with us using dict is that dict is a builtin function
with Python that means it actually does something. Now, there is nothing to prevent you
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from using this, however if you override the builtin function dict with your dictionary dict,
then you cannot use that within the current environment.

>>> person_details = dict(first_name="Rob", surname="Mastrodomenico",
gender="Male", favourite_food="Pizza")
>>> person_details
{"gender": "Male", "first_name": "Rob", "surname": "Mastrodomenico",
"favourite_food": "Pizza"}

For you eagle eyed viewers you can see that I renamed favourite food to favourite_food.
The reason being is that Python interprets the space between the two words as two separate
entries and throws an error. So in the remainder of this section we will refer to favourite
food as favourite_food.

So recreating the person_details dictionary again we get the following:
>>> personal_details = {}

>>> personal_details["first name"] = "Rob"

>>> personal_details["surname"] = "Mastrodomenico"

>>> personal_details["gender"] = "Male"

>>> personal_details["favourite_food"] = "Pizza"

>>> personal_details

{"first name": "Rob", "favourite_food": "Pizza", "surname": "Mastrodomenico",

"gender": "Male"}

What we did here in the first line was create the dictionary using:

>>> personal_details = {}

In the subsequent lines we then assign key value pairs to the dictionary. We could have
done this in another way though.

>>> personal_details = {"first name": "Rob", "surname": "Mastrodomenico",

"gender": "Male", "favourite_food": "Pizza"}

>>> personal_details

{"first name": "Rob", "favourite_food": "Pizza", "surname": "Mastrodomenico",

"gender": "Male"}

Similarly we could have used the dict method with the above dictionary setup to achieve
the same outcome.

>>> personal_details = dict([("first name", "Rob"), ("surname", "Mastrodomenico"),

("gender", "Male"), ("favourite_food", "Pizza")])

>>> personal_details

{"first name": "Rob", "gender": "Male", "surname": "Mastrodomenico",

"favourite_food": "Pizza"}

Earlier we talked about error handling and we will briefly cover it now. Let’s say we try
to access a key in dictionary that doesn’t exist.

>>> personal_details = dict([("first name", "Rob"), ("surname", "Mastrodomenico"),

("gender", "Male"), ("favourite_food", "Pizza")])

>>> personal_details

{"first name": "Rob", "surname": "Mastrodomenico", "favourite_food": "Pizza",

"gender": "Male"}

>>> personal_details["age"]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

KeyError: "age"
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Let’s say we wanted to allow us to try and access a key that doesn’t exist and instead of
throwing us an error we want to deal with it in a more sophisticated way. To do this we can
handle the exception (or error) that Python shows back. Now looking back at the error we
can see very specifically that Python throws us a KeyError. Now if we can handle that then
we can do something a bit better with it.
>>> personal_details = dict([("first name", "Rob"), ("surname", "Mastrodomenico"),

("gender", "Male"), ("favourite_food", "Pizza")])

>>> personal_details

{"first name": "Rob", "surname": "Mastrodomenico", "favourite_food": "Pizza",

"gender": "Male"}

>>> try:

... age = personal_details["age"]

... except KeyError:

... age = None

...

>>> age

>>>

What we have done here is we used a try except statement. What this does is try the code
we want to run and if doesn’t work, then it deals with the error. In this case, it tries to access
the key age and assigns it to the variable age and if an error is thrown and it is a KeyError,
then it assigns the value to None, which is the Python null value. So, what we see now is that
as opposed to throwing an error, it deals with the fact that the key can’t be found in a much
better way. Whilst try excepts method can be really useful, they can be very dangerous as
you don’t need to specify the error so we could rewrite it as follows:
>>> personal_details = dict([("first name", "Rob"), ("surname", "Mastrodomenico"),

("gender", "Male"), ("favourite_food", "Pizza")])

>>> personal_details

{"first name": "Rob", "surname": "Mastrodomenico", "favourite_food": "Pizza",

"gender": "Male"}

>>> try:

... age = personal_details["age"]

... except:

... age = None

...

>>> age

>>>

Try excepts are useful however it would be better if we had a method that let us try and
get a key and if it didn’t exist not throw an error. Fortunately enough we have a get method
that we can use to get the value from a dictionary by passing a key.
>>> personal_details = dict([("first name", "Rob"), ("surname", "Mastrodomenico"),

("gender", "Male"), ("favourite_food", "Pizza")])

>>> personal_details

{'first name': 'Rob', 'surname': 'Mastrodomenico', 'gender': 'Male', 'favourite_food':

'Pizza'}

>>> personal_details.get('gender')

'Male'

>>> personal_details.get('age')

When we covered lists we looked at the pop method and we have something similar for
dictionaries
>>> personal_details = dict([("first name", "Rob"), ("surname", "Mastrodomenico"),

("gender", "Male"), ("favourite_food", "Pizza")])
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>>> personal_details

{'first name': 'Rob', 'surname': 'Mastrodomenico', 'gender': 'Male', 'favourite_food':

'Pizza'}

>>> personal_details.pop('gender')

'Male'

>>> personal_details

{'first name': 'Rob', 'surname': 'Mastrodomenico', 'favourite_food': 'Pizza'}

>>> personal_details.popitem()

('favourite_food', 'Pizza')

>>> personal_details

{'first name': 'Rob', 'surname': 'Mastrodomenico'}

In the first example we used pop with the key that we wanted to remove and in doing so
this removed the specific key and value from the dictionary. The second approach used the
popitem method which just pops off the last key value pair in the dictionary.

Another way to remove items is to use the del method where we pass the dictionary name
and key combination to remove that key value pair from the dictionary.

>>> personal_details = dict([("first name", "Rob"), ("surname", "Mastrodomenico"),

("gender", "Male"), ("favourite_food", "Pizza")])

>>> personal_details

{'first name': 'Rob', 'surname': 'Mastrodomenico', 'gender': 'Male', 'favourite_food':

'Pizza'}

>>> del personal_details['gender']

>>> personal_details

{'first name': 'Rob', 'surname': 'Mastrodomenico', 'favourite_food': 'Pizza'}

Earlier we mentioned how if we assign one list to another the changes are reflected. The
same is true for dictionaries

>>> personal_details = dict([("first name", "Rob"), ("surname", "Mastrodomenico"),

("gender", "Male"), ("favourite_food", "Pizza")])

>>> personal_details

{'first name': 'Rob', 'surname': 'Mastrodomenico', 'gender': 'Male', 'favourite_food':

'Pizza'}

>>> his_details = personal_details

>>> his_details

{'first name': 'Rob', 'surname': 'Mastrodomenico', 'gender': 'Male', 'favourite_food':

'Pizza'}

>>> personal_details['age'] = 24

>>> personal_details

{'first name': 'Rob', 'surname': 'Mastrodomenico', 'gender': 'Male', 'favourite_food':

'Pizza', 'age': 24}

>>> his_details

{'first name': 'Rob', 'surname': 'Mastrodomenico', 'gender': 'Male', 'favourite_food':

'Pizza', 'age': 24}

If we want to take a copy of a dictionary and independently make changes to it we can
use the copy method in a similar way that we did with lists.

>>> personal_details = dict([("first name", "Rob"), ("surname", "Mastrodomenico"),

("gender", "Male"), ("favourite_food", "Pizza")])

>>> personal_details

{'first name': 'Rob', 'surname': 'Mastrodomenico', 'gender': 'Male', 'favourite_food':

'Pizza'}
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>>> his_details = personal_details.copy()

>>> his_details

{'first name': 'Rob', 'surname': 'Mastrodomenico', 'gender': 'Male', 'favourite_food':

'Pizza'}

>>> personal_details['age'] = 24

>>> personal_details

{'first name': 'Rob', 'surname': 'Mastrodomenico', 'gender': 'Male', 'favourite_food':

'Pizza', 'age': 24}

>>> his_details

{'first name': 'Rob', 'surname': 'Mastrodomenico', 'gender': 'Male', 'favourite_food':

'Pizza'}

We also have the ability to clear out all contents of dictionary using the clear method

>>> personal_details = dict([("first name", "Rob"), ("surname", "Mastrodomenico"),

("gender", "Male"), ("favourite_food", "Pizza")])

>>> personal_details

{'first name': 'Rob', 'surname': 'Mastrodomenico', 'gender': 'Male', 'favourite_food':

'Pizza'}

>>> personal_details.clear()

>>> personal_details

{}

Earlier in the chapter we looked at approaches to create dictionaries however if we want
to create a set of keys with the same value we can do using the fromkeys method.

>>> x = ('key1', 'key2', 'key3')
>>> y = 0
>>> res = dict.fromkeys(x, y)
>>> res
{'key1': 0, 'key2': 0, 'key3': 0}

We have thus far accessed values from dictionaries using the keys, however we can access
all keys and values from a dictionary using the following methods

>>> personal_details = dict([("first name", "Rob"), ("surname", "Mastrodomenico"),

("gender", "Male"), ("favourite_food", "Pizza")])

>>> personal_details

{'first name': 'Rob', 'surname': 'Mastrodomenico', 'gender': 'Male', 'favourite_food':

'Pizza'}

>>> personal_details.items()

dict_items([('first name', 'Rob'), ('surname', 'Mastrodomenico'), ('gender', 'Male'),

('favourite_food', 'Pizza')])

>>> personal_details.keys()

dict_keys(['first name', 'surname', 'gender', 'favourite_food'])

>>> personal_details.values()

dict_values(['Rob', 'Mastrodomenico', 'Male', 'Pizza'])

The objects that we return can be iterated over and this is covered later when we introduce
loops however if you want to access them like we would a list we can cast them as such and
access the relevant index positions.

>>> personal_details = dict([("first name", "Rob"), ("surname", "Mastrodomenico"),

("gender", "Male"), ("favourite_food", "Pizza")])

>>> personal_details



�

� �

�

46 9 Dictionaries

{'first name': 'Rob', 'surname': 'Mastrodomenico', 'gender': 'Male', 'favourite_food':

'Pizza'}

>>> personal_details.items()

dict_items([('first name', 'Rob'), ('surname', 'Mastrodomenico'), ('gender', 'Male'),

('favourite_food', 'Pizza')])

>>> list(personal_details.items())[0]

('first name', 'Rob')

>>> personal_details.keys()

dict_keys(['first name', 'surname', 'gender', 'favourite_food'])

>>> list(personal_details.keys())[-1]

'favourite_food'

>>> personal_details.values()

dict_values(['Rob', 'Mastrodomenico', 'Male', 'Pizza'])

>>> list(personal_details.values())[:-1]

['Rob', 'Mastrodomenico', 'Male']

That gives summary of dictionary methods and what you can do with them, compared to
lists and tuples these types of objects can be very powerful and flexible container. We will
return to these throughout the book as they form a key concept in Python.
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Sets

In this chapter, we cover the last object for data collection and that is set. Perhaps the best
use for sets is that they cannot contain duplicate values so can be useful for storing unique
values. They are also unordered and cannot be changed. Let’s start by creating a set.

>>> names = {'Tony','Peter','Natasha','Wanda'}
>>> names
{'Peter', 'Tony', 'Wanda', 'Natasha'}

Here, we use the curly brackets as we did with a dictionary, however now we have no
key value pairs and the content resembles that of a list of tuple. We are not constrained by
having strings in it, let’s add some integers to our set.

>>> names = {'Tony','Peter','Natasha','Wanda', 1, 2, 3}
>>> names
{1, 2, 3, 'Wanda', 'Peter', 'Tony', 'Natasha'}

Here, we can see that the ordering of the set doesn’t resemble what we put into it.
We can also create a set using the set builtin function as covered earlier.

>>> names = set(('Tony','Peter','Natasha','Wanda', 1, 2, 3))
>>> names
{1, 2, 3, 'Wanda', 'Peter', 'Tony', 'Natasha'}
>>> names = set(['Tony','Peter','Natasha','Wanda', 1, 2, 3])
>>> names
{1, 2, 3, 'Natasha', 'Peter', 'Tony', 'Wanda'}

We can create a set from a string but we need to be aware of how the curly brackets and
set builtin work

>>> names = {'Wanda'}
>>> names
{'Wanda'}
>>> names = set('Wanda')
>>> names
{'n', 'a', 'W', 'd'}
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What happens is that when you pass in a string using the curly brackets you retain the
full string in but when passed in using set the string is split into the individual characters.
Again note when the characters are split there is no ordering to them.

Next, we try and add a list to the set but we raise a type error as the list cannot be added.

>>> my_set = {'Tony','Wanda', 1, 2, ['hello','world']}
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

The same is true for dictionaries and sets as we show below:

>>> my_set = {'Tony','Wanda', 1, 2, {'key':'value'}}
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'dict'
>>> my_set = {'Tony','Wanda', 1, 2, {1,2,3}}
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'set'

However, if we include a tuple in the set we get the following:

>>> my_set = {'Tony','Wanda', 1, 2, (1,2,3)}
>>> my_set
{'Wanda', 1, 2, 'Tony', (1, 2, 3)}

The reason we can include the tuple over the dictionary, list and set is that the tuple
cannot be changed so is supported in a set.

We can see if the value is in the set by using the following syntax:

>>> 'Tony' in names
True
>>> 'Steve' in names
False

An item could be added to the set by using the add method:

>>> names.add('Steve')
>>> names
{1, 2, 3, 'Steve', 'Wanda', 'Peter', 'Tony', 'Natasha'}
>>> names.add('Tony')
>>> names
{1, 2, 3, 'Steve', 'Wanda', 'Peter', 'Tony', 'Natasha'}

Note here when we add in Tony again to the set we don’t get duplicate values of Tony in
the set, but Steve gets added in as it was not present. That aspect of not having duplicate
values within the set is useful if we want to have a unique representation of values where
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we could have duplicates. For example, you could imagine a long list with lots of repeated
values and you just want the unique values within it as we show below:

>>> days = ['Monday', 'Monday', 'Tuesday', 'Wednesday',
'Sunday', 'Sunday']

>>> days_set = set(days)
>>> days_set
{'Monday', 'Wednesday', 'Sunday', 'Tuesday'}

Now, the example is fairly trivial as we can see all content within the list but you can
imagine examples within a big dataset where you may want a similar representation.

This is useful for a single set but we also have the ability to operate on multiple sets.
The next example looks to obtain the unique value between two sets.

>>> names = {'Tony','Peter','Natasha','Wanda'}
>>> names
{'Wanda', 'Natasha', 'Peter', 'Tony'}
>>> more_names = {'Steve', 'Peter', 'Carol', 'Wanda'}
>>> more_names
{'Wanda', 'Peter', 'Steve', 'Carol'}
>>> names | more_names
{'Wanda', 'Peter', 'Tony', 'Carol', 'Steve', 'Natasha'}

Here, we use the | operator and get the values that are in the names set OR the
more_names set so any shared values are included only once. The same can be achieved
using the set method union.

>>> names = {'Tony','Peter','Natasha','Wanda'}
>>> names
{'Wanda', 'Natasha', 'Peter', 'Tony'}
>>> more_names = {'Steve', 'Peter', 'Carol', 'Wanda'}
>>> more_names
{'Wanda', 'Peter', 'Steve', 'Carol'}
>>> names.union(more_names)
{'Wanda', 'Peter', 'Tony', 'Carol', 'Steve', 'Natasha'}

Now, while the results are the same we didn’t need to pass a set in the union method,
we could rewrite passing a list into the union and get the same results.

>>> names = {'Tony','Peter','Natasha','Wanda'}
>>> names
{'Wanda', 'Natasha', 'Peter', 'Tony'}
>>> more_names = ['Steve', 'Peter', 'Carol', 'Wanda']
>>> more_names
['Steve', 'Peter', 'Carol', 'Wanda']
>>> names.union(more_names)
{'Wanda', 'Peter', 'Tony', 'Carol', 'Steve', 'Natasha'}

So, we can achieve the same result as the list is converted into a set. If we used the | oper-
ator with the list, then we see an error.
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>>> names = {'Tony','Peter','Natasha','Wanda'}
>>> names
{'Wanda', 'Natasha', 'Peter', 'Tony'}
>>> more_names = ['Steve', 'Peter', 'Carol', 'Wanda']
>>> more_names
['Steve', 'Peter', 'Carol', 'Wanda']
>>> names | more_names
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for |: 'set' and 'list'

We can extend the union example by passing more items into the union method, for
example, if we have two sets that we want to take the union with our existing set we would
do as follows:
>>> names = {'Tony','Peter','Natasha','Wanda'}

>>> names

{'Wanda', 'Natasha', 'Peter', 'Tony'}

>>> more_names = {'Steve', 'Peter', 'Carol', 'Wanda'}

>>> more_names

{'Steve', 'Peter', 'Carol', 'Wanda'}

>>> even_more_names = {'Tony', 'Jonny', 'Sue', 'Wade'}

>>> even_more_names

{'Tony', 'Jonny', 'Sue', 'Wade'}

>>> names | more_names | even_more_names

{'Wanda', 'Sue', 'Wade', 'Carol', 'Peter', 'Tony', 'Jonny', 'Steve', 'Natasha'}

>>> names.union(more_names, even_more_names)

{'Wanda', 'Sue', 'Wade', 'Peter', 'Tony', 'Carol', 'Jonny', 'Steve', 'Natasha'}

Now, if the values were lists and not sets, then we can still use the union method as shown
below:
>>> names = {'Tony','Peter','Natasha','Wanda'}

>>> names

{'Wanda', 'Natasha', 'Peter', 'Tony'}

>>> more_names = ['Steve', 'Peter', 'Carol', 'Wanda']

>>> more_names

['Steve', 'Peter', 'Carol', 'Wanda']

>>> even_more_names = ['Tony', 'Jonny', 'Sue', 'Wade']

>>> even_more_names

['Tony', 'Jonny', 'Sue', 'Wade']

>>> names.union(more_names, even_more_names)

{'Wanda', 'Sue', 'Wade', 'Peter', 'Tony', 'Carol', 'Jonny', 'Steve', 'Natasha'}

These examples so far have looked the union between two or more sets, what if we want
to look at values that are in all sets, or not in any sets, luckily Python has us covered.

Now where we used union and the | operator if we want to find out what values are in all
sets we use the intersection method or the & operator.

>>> names = {'Tony','Peter','Natasha','Wanda'}
>>> names
{'Wanda', 'Natasha', 'Peter', 'Tony'}
>>> more_names = {'Steve', 'Peter', 'Carol', 'Wanda'}
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>>> more_names
{'Wanda', 'Peter', 'Steve', 'Carol'}
>>> names & more_names
{'Wanda', 'Peter'}
>>> names.intersection(more_names)
{'Wanda', 'Peter'}

As we saw with the union method and | operator, we can include more than two sets.

>>> names = {'Tony','Peter','Natasha','Wanda'}
>>> names
{'Wanda', 'Natasha', 'Peter', 'Tony'}
>>> more_names = {'Steve', 'Peter', 'Carol', 'Wanda'}
>>> more_names
['Steve', 'Peter', 'Carol', 'Wanda']
>>> even_more_names = {'Peter', 'Jonny', 'Sue', 'Wade'}
>>> even_more_names
['Peter, 'Jonny', 'Sue', 'Wade']
>>> names & more_names & even_more_names
{'Peter'}
>>> names.intersection(more_names, even_more_names)
{'Peter'}

And similarly as shown with the union method we can add non-sets into the intersection
method.

>>> names = {'Tony','Peter','Natasha','Wanda'}
>>> names
{'Wanda', 'Natasha', 'Peter', 'Tony'}
>>> more_names = ['Steve', 'Peter', 'Carol', 'Wanda']
>>> more_names
['Steve', 'Peter', 'Carol', 'Wanda']
>>> even_more_names = ['Peter', 'Jonny', 'Sue', 'Wade']
>>> even_more_names
['Peter, 'Jonny', 'Sue', 'Wade']
>>> names.intersection(more_names, even_more_names)
{'Peter'}

If we want to look at the differences between two or more sets, then we can use the differ-
ence method or the − operator. Again the rules that we have seen before are consistent here
in that we can only do comparison using the − operator on sets whereas for the difference
method we can handle non-sets passed in.

>>> names = {'Tony','Peter','Natasha','Wanda'}
>>> names
{'Wanda', 'Natasha', 'Peter', 'Tony'}
>>> more_names = {'Steve', 'Peter', 'Carol', 'Wanda'}
>>> more_names
{'Wanda', 'Peter', 'Steve', 'Carol'}
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>>> names - more_names
{'Natasha', 'Tony'}
>>> names.difference(more_names)
{'Natasha', 'Tony'}
>>> even_more_names = {'Peter', 'Jonny', 'Sue', 'Wade'}
>>> even_more_names
{'Peter, 'Jonny', 'Sue', 'Wade'}
>>> names - more_names - even_more_names
{'Natasha', 'Tony'}
>>> names.difference(more_names, even_more_names)
{'Natasha', 'Tony'}
>>> more_names = ['Steve', 'Peter', 'Carol', 'Wanda']
>>> more_names
['Steve', 'Peter', 'Carol', 'Wanda']
>>> even_more_names = ['Peter', 'Jonny', 'Sue', 'Wade']
>>> even_more_names
['Peter, 'Jonny', 'Sue', 'Wade']
>>> names.difference(more_names, even_more_names)
{'Natasha', 'Tony'}

The manner in which difference is applied for more than one comparison is to work left
to right so we first look at the difference between names and more_names and then look at
the difference between this result and even_more_names.

Another set comparison that we can perform is using the symmetric_difference method
or the ^ operator. What this does is return back the elements that are in either set but not
in both, so its like the or method but doesn’t include any common values. We demonstrate
as follows:
>>> names = {'Tony','Peter','Natasha','Wanda'}
>>> names
{'Wanda', 'Natasha', 'Peter', 'Tony'}
>>> more_names = {'Steve', 'Peter', 'Carol', 'Wanda'}
>>> more_names
{'Wanda', 'Peter', 'Steve', 'Carol'}
>>> names ^ more_names
{'Carol', 'Tony', 'Steve', 'Natasha'}
>>> names.symmetric_difference(more_names)
{'Carol', 'Tony', 'Steve', 'Natasha'}
>>> even_more_names = {'Peter', 'Jonny', 'Sue', 'Wade'}
>>> even_more_names
{'Peter, 'Jonny', 'Sue', 'Wade'}
>>> names ^ more_names ^ even_more_names
{'Sue', 'Wade', 'Carol', 'Peter', 'Jonny', 'Tony', 'Steve', 'Natasha'}
>>> names.symmetric_difference(more_names, even_more_names)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: symmetric_difference() takes exactly one argument (2 given)

Unlike with previous methods symmetric_difference doesn’t allow more than one set,
however it still allows us to pass in a non-set as shown below:
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>>> names = {'Tony','Peter','Natasha','Wanda'}
>>> names
{'Wanda', 'Natasha', 'Peter', 'Tony'}
>>> more_names = ['Steve', 'Peter', 'Carol', 'Wanda']
>>> more_names
['Wanda', 'Peter', 'Steve', 'Carol']
>>> names.symmetric_difference(more_names)
{'Carol', 'Tony', 'Steve', 'Natasha'}

We can also see if a set has any elements in common by using the isdisjoint method.

>>> names = {'Tony','Peter','Natasha','Wanda'}
>>> names
{'Wanda', 'Natasha', 'Peter', 'Tony'}
>>> more_names = {'Steve', 'Bruce', 'Carol', 'Wanda'}
>>> more_names
{'Wanda', 'Peter', 'Steve', 'Carol'}
>>> names.isdisjoint(more_names)
False
>>> more_names = {'Steve', 'Bruce', 'Carol', 'Sue'}
>>> more_names
{'Sue', 'Bruce', 'Steve', 'Carol'}
>>> names.isdisjoint(more_names)
True

For any readers interested in set theory, there are a couple of other set methods:

● issubset
● issuperset

but we will leave it up to the reader to discover the wonders of them.
Now aside from these methods which have allowed us to compare sets there are a number

of other methods that can be applied to sets, some of which we have covered in the previous
chapters so we will briefly demonstrate them.

>>> names = {'Steve', 'Wanda', 'Peter', 'Tony', 'Natasha'}
>>> names
{'Wanda', 'Peter', 'Tony', 'Steve', 'Natasha'}
>>> names.pop()
'Wanda'

As before pop removes an item from the set.
We can also remove an item from the set explicitly using the remove method:

>>> names = {'Steve', 'Wanda', 'Peter', 'Tony', 'Natasha'}
>>> names
{'Wanda', 'Peter', 'Tony', 'Steve', 'Natasha'}
>>> names.remove('Tony')
>>> names
{'Wanda', 'Peter', 'Steve', 'Natasha'}
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Now the problem with the above is that if we try and remove something from the set that
isn’t in there, then we get a key error. Another way to remove something from the set that
allows for a value not to be in the set is the discard method which is demonstrated below:

>>> names = {'Steve', 'Wanda', 'Peter', 'Tony', 'Natasha'}
>>> names
{'Wanda', 'Peter', 'Tony', 'Steve', 'Natasha'}
>>> names.remove('Sue')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyError: 'Sue'
>>> names.discard('Sue')
>>> names
{'Wanda', 'Peter', 'Tony', 'Steve', 'Natasha'}
>>> names.discard('Peter')
>>> names
{'Wanda', 'Tony', 'Steve', 'Natasha'}

We can also clear the set by using the clear method which gives us an empty set.

>>> names = {'Steve', 'Wanda', 'Peter', 'Tony', 'Natasha'}
>>> names.clear()
>>> names
set()

Given we can remove items from a set similar to how we can add to it, the first method
we cover that does this is the add method:

>>> names = {'Steve', 'Wanda', 'Peter', 'Tony', 'Natasha'}
>>> names
{'Wanda', 'Peter', 'Tony', 'Steve', 'Natasha'}
>>> names.add('Bruce')
>>> names
{'Wanda', 'Peter', 'Tony', 'Steve', 'Bruce', 'Natasha'}
>>> names.add('Peter')
>>> names
{'Wanda', 'Peter', 'Tony', 'Steve', 'Bruce', 'Natasha'}

Now the add method adds values one at a time but we can utilise some methods which
are similar in nature to those that looked at comparison on the sets and allow us to modify
a set, the first of these we will show is the update method:

>>> names = {'Tony','Peter','Natasha','Wanda'}
>>> names
{'Wanda', 'Natasha', 'Peter', 'Tony'}
>>> more_names = {'Steve', 'Peter', 'Carol', 'Wanda'}
>>> more_names
{'Steve', 'Peter', 'Carol', 'Wanda'}
>>> names | more_names
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{'Carol', 'Peter', 'Steve', 'Natasha', 'Wanda', 'Tony'}
>>> names
{'Tony', 'Peter', 'Wanda', 'Natasha'}
>>> more_names
{'Carol', 'Peter', 'Steve', 'Wanda'}
>>> names.update(more_names)
>>> names
{'Carol', 'Peter', 'Steve', 'Natasha', 'Wanda', 'Tony'}

You can see the return value using the | operator applied to two sets is the same as the
update value. The big difference here is that when you use the | operator you don’t change
either of the sets, however using the update method changes the set that you have used the
method for so in this case the names set is now the result of names | more_names.

>>> names = {'Tony','Peter','Natasha','Wanda'}
>>> names
{'Wanda', 'Natasha', 'Peter', 'Tony'}
>>> more_names = {'Steve', 'Peter', 'Carol', 'Wanda'}
>>> more_names
{'Steve', 'Peter', 'Carol', 'Wanda'}
>>> names & more_names
{'Peter', 'Wanda'}
>>> names
{'Tony', 'Peter', 'Wanda', 'Natasha'}
>>> more_names
{'Carol', 'Peter', 'Steve', 'Wanda'}
>>> names.intersection_update(more_names)
>>> names
{'Peter', 'Wanda'}

Like with the update method the intersection_update applies the & operation but
assigns the result back to the set that its applied to. The same is true for the symmet-
ric_difference:update which gives the same result as ̂ and difference:update which gives
the difference between two sets.

The last concept that we look at in this chapter is the concept of the frozen set. The frozen
set is what the tuple is to a list in that it cannot be altered:
>>> frozen_names = frozenset({'Tony','Peter','Natasha','Wanda'})
>>> frozen_names
frozenset({'Tony', 'Peter', 'Wanda', 'Natasha'})
>>> frozen_names = frozenset(['Tony','Peter','Natasha','Wanda'])
>>> frozen_names
frozenset({'Tony', 'Peter', 'Wanda', 'Natasha'})
>>> frozen_names = frozenset(('Tony','Peter','Natasha','Wanda'))
>>> frozen_names
frozenset({'Tony', 'Peter', 'Wanda', 'Natasha'})
>>> frozen_names = frozenset('Tony')
>>> frozen_names
frozenset({'T', 'y', 'n', 'o'})
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>>> dir(frozen_names)
['__and__', '__class__', '__contains__', '__delattr__', '__dir__',
'__doc__', '__eq__', '__format__', '__ge__', '__getattribute__',
'__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__',
'__le__', '__len__', '__lt__', '__ne__', '__new__', '__or__', '__rand__',
'__reduce__', '__reduce_ex__', '__repr__', '__ror__', '__rsub__', '__rxor__',
'__setattr__', '__sizeof__', '__str__', '__sub__', '__subclasshook__',
'__xor__', 'copy', 'difference', 'intersection', 'isdisjoint', 'issubset',
'issuperset', 'symmetric_difference', 'union']

We use frozenset around a set, list, tuple, or string to give us our set but looking at the
methods available you can see that the ones which change the set are not available to a
frozen set, however the methods that allow us to compare sets are still available. This con-
cludes this chapter and gives us an introduction into sets and how they can be used within
Python.
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11

Loops, if, Else, and While

This chapter is now going to cover the following important aspects of programming namely
loops, if, else, and while statements. These statements are the key components of program-
ming and allow us to operate on our objects. We have covered aspects of logic earlier when
we considered comparison and equality and that is key when we look at if statements which
is the first aspect we will consider here. The key to an if statement is that we need a statement
that returns a true or false value. So let’s consider the following statement:

>>> x = 1
>>> x == 1
True

Now, the first line is an assignment and the second is comparison and its with the second
line that we can introduce an if statement:

>>> x == 1
True
>>> if x == 1:
... x = x + 1
...
>>> x
2

What we have done here is test the return value of the statement and if its true then
we increment the variable x by 1. That is the essence of an if statement, we test to see if the
return of a logic statement is true and if it is we do something within that statement. We can
extend the example by introducing the concept of an else statement. Essentially given the
if statement tests if a statement is true the else deals with if the statement is false.

>>> x = 2
>>> x == 1
False
>>> if x == 1:
... x = x + 1
... else:

The Python Book, First Edition. Rob Mastrodomenico.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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... x = x - 1

...
>>> x
1

Now what we have done is assign x the variable 2 and then test if x is equal to 1 which
returns False. We then set an if else statement where if the value is equal to 1 we add one
to x and if not we subtract one from the value x. As we can see the value isn’t equal to one
so we enter the else aspect of the loop and decrement the value of x by 1.

Logic like this is really useful to allow us to make decisions in our code based on what
a variable may or may not be. However, the if else loop only allows us to make a decision
based on a single true or false condition. If we require more control, then we can use the
elif statement alongside an if else statement. Let’s improve on our example from before and
introduce the concept of elif.

>>> x = 2
>>> x == 1
False
>>> x == 2
True
>>> if x == 1:
... x = x + 1
... elif x == 2:
... x = x * x
... else:
... x = x - 1
...
>>> x
4

Here, we have set the variable x equal to 2 and then show the logic statements that we
plan to use. In the first if statement we test if x is equal to 1, it isn’t so we then enter the elif
statement and see if x is equal to 2, it is so we then run the command in the statement and
x is shown to be 2. We can expand the statement further with more elif statements so we
can check for a variety of things. It is important to note that if one of the conditions on the
if or elif is met we then exit the statement and continue through our code. So as soon as a
condition is seen we exit the statement. Therefore, when thinking about using if statements
you need to understand the context you are using them in.

If we have a fixed set of outcomes that we want to work with then an if elif statement
like we showed before would work well. We next show an example where using an if elif
statement doesn’t quite work:

>>> home_score = 4
>>> away_score = 0
>>> if home_score > away_score:
... result = "Home win"
... elif home_score < away_score:
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... result = "Away Win"

... elif home_score == away_score:

... result = "Draw"

... elif home_score > (away_score + 1):

... result = "Home win by more than 1 goal"

... elif (home_score + 1) < away_score:

... result = "Away win by more than 1 goal"

... else:

... result = "Unknown result"

...
>>> result
"Home win"

On the face of this you may think that this is a really good bit of code, however it isn’t.
The problem is we want to test if the win for either side is a win or a win by more than 1
goal. What happens here is the condition for a home win is met before we test for the win
by more than one (which would also return a true result). So using an if statement as we do
here doesn’t work, instead we need to use a nested if statement.

>>> home_score = 4
>>> away_score = 0
>>> if home_score > away_score:
... if home_score > (away_score + 1):
... result = "Home win by more than 1 goal"
... else:
... result = "Home win"
... elif home_score < away_score:
... if (home_score + 1) < away_score:
... result = "Away win by more than 1 goal"
... else:
... result = "Away win"
... elif home_score == away_score:
... result = "Draw"
... else:
... result = "Unknown result"
...
>>> result
"Home win by more than 1 goal"

We can see that we get the desired result. The point that this raises is that if statements
can be very powerful but at the same time mistakes can be made if they are not thoroughly
thought out. We next look to consider loops.

In earlier sections we have covered list (Chapter 7), tuples (Chapter 8), and dictionaries
(Chapter 9) which are all important containers for values in Python. We showed how we
can access and manipulate them. However, we concentrated on single instances of these
objects whereas in reality this isn’t the case. What you might expect is to have a collection
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of data which each may be contained in a list, tuple, or dictionary and you want to access it
and perform some kind of operation on it. Let’s create some data that allows us to do so.

>>> people = []
>>> person = ["Tony", "Stark",48]
>>> people.append(person)
>>> person = ["Steve","Rodgers",102]
>>> people.append(person)
>>> person = ["Stephen", "Strange",42]
>>> people.append(person)
>>> person = ["Natasha","Romanof",36]
>>> people.append(person)
>>> person = ["Peter","Parker",16]
>>> people.append(person)
>>> people
[["Tony", "Stark", 48], ["Steve", "Rodgers", 102],

["Stephen", "Strange", 42],
["Natasha", "Romanof", 36], ["Peter", "Parker", 16]]

What we have done here is setup a list of lists. Now if we want to access element 3 of the
first list we can do so as follows:

>>> people
[["Tony", "Stark", 48], ["Steve", "Rodgers", 102],

["Stephen", "Strange", 42],
["Natasha", "Romanof", 36], ["Peter", "Parker", 16]]
>>> people[0][2]
45

So we access the first element of the outer list which returns us a list and then we access
the value 3 of that list through the index 2. Now if we wanted to see everyones age we could
write the following:

>>> people[0][2]
48
>>> people[1][2]
102
>>> people[2][2]
42
>>> people[3][2]
36
>>> people[4][2]
16

This is fairly tedious for five people, imagine if we had hundreds or thousands of people.
To avoid writing the same code again and again we can use a loop to access the ages of
everyone in the list. Now to make it more interesting let’s work out the average age of the
people in the list.
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>>> total_age = 0.0
>>> for p in people:
... age = p[2]
... total_age += age
...
>>> total_age
244.0
>>> average_age = total_age / len(people)
>>> average_age
48.8

What we have done here is introduce the concept of a loop, alongside a few other things.
Now, we initially setup a variable to contain the total age and set this to zero. The theory
here is that we will increment the value by everyones age within the loop. Next, we enter
the for loop. The syntax says for p in person, and what this means is that we iterate over
all the elements in people and assign whatever it is to the variable p. The name p is totally
arbitrary, we could rewrite the loop as follows:

>>> total_age = 0.0
>>> for huge_massive_robot in people:
... age = huge_massive_robot[2]
... total_age += age

The name isn’t technically import, although this is pretty bad naming convention.
The point is that when you write your loops you don’t always have to use p. The loop then
one by one access all the elements of the list people, where each element is a list and the
indented code within the loop does something to the that element. What we do within
the loop is assign the third value of the list to the variable age and then add that value to
the total age variable which we initially set to be zero. This bit of code is shorthand for the
following:

>>> age = people[0][2]
>>> total_age += age
>>> age = people[1][2]
>>> total_age += age
>>> age = people[2][2]
>>> total_age += age
>>> age = people[3][2]
>>> total_age += age
>>> age = people[4][2]
>>> total_age += age
>>> total_age
244.0

So we can see its a big reduction in amount of code written, which is a good thing. After
that we divide the total age by the number of elements in the list which we get by using len.
This then gives us the average for the list of lists, pretty cool.
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That is the basics of for loops applied to lists, the key thing to remember is that you are
iterating through the list, essentially going over every element of the list. Now as we dis-
cussed before the elements of the lists don’t always have to be of the same type so care is
needed when using loops as the logic applied to one element may not hold for all elements
of the loop. Everything we have shown here for lists also apply to tuples so you could write
the same type of loop on a tuple, however you can’t set it up in the way we did earlier as
that won’t work.

One neat thing we can do with lists and loops is something known as list comprehension.
Now if the problem we had is that we wanted to create a list with the squared ages of our
people then we could write a loop as follows:

>>> squared_ages = []
>>> for p in people:
... squared_age = p[2] * p[2]
... squared_ages.append(squared_age)
...
>>> squared_ages
[2304, 10404, 1764, 1089, 256]

That all looks fine, but we could write it in one line as follows:

>>> squared_ages = [p[2] * p[2] for p in people]
>>> squared_ages
[2304, 10404, 1764, 1089, 256]

Looks cool doesn’t it! Which one is better, well they both do the same, some may say
using list comprehension is more Pythonic but you could argue its harder to read than
the standard for loop example. It is really down to personal preference and what you like
doing more.

Next, we will look at how to loop over dictionaries which behave differently to lists and
tuples. Now if we have a list of dictionaries we can loop across the list and access the dictio-
nary similarly to how we accessed the list within a list in the previous example. However,
if we just have a dictionary we can loop over it in the following way:
>>> person = {"first_name":"Steve", "last_name":"Rodgers", "age":102}
>>> person_list = []
>>> for p in person:
... person_list.append(p)
...
>>> person_list
["first_name", "last_name", "age"]

The way the loop behaves in this case is very different to what we have seen before with
lists. The p in person is key of the dictionary not the key and value of the dictionary, so in
putting the p in a list we get the keys of the dictionary. If we want the values from the person
dictionary we need to do it in the following way:
>>> person = {"first_name":"Steve", "last_name":"Rodgers", "age":102}
>>> person_list = []
>>> for p in person:
... value = person[p]
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... person_list.append(value)

...
>>> person_list
["Steve", "Rodgers", 102]

The only difference here is that we access the value from the dictionary that uses the key
obtained from the loop.

Next, we consider how loops work on strings, which is again different to what we have
seen before. We can loop over a string in the same way that we would a list.

>>> name = "Rob Mastrodomenico"
>>> name_list = []
>>> for n in name:
... name_list.append(n)
...
...
>>> name_list
["R", "o", "b", " ", "M", "a", "s", "t", "r", "o", "d", "o",
"m", "e", "n", "i", "c", "o"]

So, when we loop over a list we access each individual element of the string, so appending
it to the list we see an entry for each letter in the name.

The last concept we will consider in this section is while loops, these are loops that
continue whilst some logic is true. We will demonstrate as follows:

>>> score = 0
>>> while score < 4:
... score
... score += 1
...
0
1
2
3

What have we done here? Well initially we set a variable called score and set it equal to
zero. Then we have said while score is less than four complete the code within the while
loop. As for other logic considered here we need to use the colon after we have set the
condition. What we see is that the output from this is that we show the values of score
while score is less than four. Once it is completed we then leave the loop. Its much like a for
loop, however while a for loop will work for loop will iterate over something a while loop
doesn’t and just continues until a condition is met which allows it to leave the loop. With
a loop like this you need to be careful that the condition is met else it can stay in the loop
forever!

Let’s put all this together into a single example where we want to simulate a lottery draw.
For those not familiar with lotteries we have a fixed number of balls that we randomly select
to give a set of numbers. You win the lottery if you have the numbers selected. Now the
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example we will show will involve us generating six balls and a bonus ball. To generate the
random balls we will use the following code:

>>> from random import randint
>>> ball = randint(min, max)

In this example we will use the min and max numbers to be 1 and 59, now using randint
we can generate a random number between 1 and 59 inclusive.

>>> from random import randint
>>> min = 1
>>> max = 59
>>> ball = randint(min, max)
>>> ball
15

The key here is that we can generate a random integer but its not always unique, meaning
we could get the same number out again so we need to have a way to ensure we don’t get
the same number out again. Now, there is not always one way to do something in Python
so we will go through two different approaches to doing this, the first one is as follows:

>>> from random import randint
>>> min = 1
>>> max = 59
>>> result_list = []
>>> for i in range(7):
... ball = randint(min, max)
... while ball in result_list:
... ball = randint(min, max)
... result_list.append(ball)
...
>>> result_list
[15, 19, 34, 12, 20, 31, 36]

Here, we have created a list to store the values that we want to append the results to.
We then loop over a range object:

>>> range(7)
range(0, 7)

This essentially creates a range object that we could loop over and we have 7 as the value
due to the fact we want to generate 7 numbers. We then generate a ball randomly and using
a while loop if the ball isn’t in the list we append it to the result list and this then gives us
our 7 random numbers to simulate a lottery draw including the bonus ball.

We could however do this slightly differently and not need the range object as follows:

>>> from random import randint
>>> min = 1
>>> max = 59
>>> result_list = []
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>>> while len(result_list)<7:
... ball = randint(min, max)
... if ball not in result_list:
... result_list.append(ball)
...
>>> result_list
[41, 48, 47, 55, 18, 15, 43]

So here we use the while loop to continue until the result_list has all the number of balls
in so we can reduce the number of lines of code to achieve the same thing.

As you can see we have introduced the concepts of for, if, else, and while and shown how
we can apply these to solve a problems and link them back to the concepts that we have
covered so far.
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12

Strings

Python is good at many things, I may be biased but I believe it’s true, however one thing
that its particularly good at is dealing with strings and string manipulation. This chapter
will expand what we already know about strings showing how powerful Python is at dealing
with them. So let’s begin with looking at what a string is:

>>> name = "rob"
>>> name
"rob"
>>> name = "rob"
>>> name
"rob"
>>> name = """rob"""
>>> name
"rob"
>>> name = '''rob'''
>>> name
"rob"

In the above example it doesn’t matter which way you create the string and it is all the
same but there are a few examples where you need to create a string differently. This pri-
marily revolves around the use of single and double quotes. Now, if you put a single quote
in a string separated by single quotes you get the following:

>>> single_quote_string = 'string with a ' single quote'
File "<stdin>", line 1

single_quote_string = 'string with a ' single quote'
^

SyntaxError: invalid syntax

To include a single quote in a string separated by single quotes you need to use an escape
sequence. An escape sequence is basically the character with a backslash before it, so if
we write the previous string with an escape sequence it looks like the following:

>>> single_quote_string = 'string with a \' single quote'
>>> single_quote_string
"string with a ' single quote"

The Python Book, First Edition. Rob Mastrodomenico.
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You might say why use single quotes around a string with single quotes and you would
be right, we could write the previous example as follows with double quotes:

>>> single_quote_string = 'string with a \' single quote'
>>> single_quote_string
"string with a ' single quote"

We can get away with not using escape sequences if we use triple quotes. So we can rewrite
the previous using triple quotes as follows:

>>> single_quote_string = """string with a ' single quote"""
>>> single_quote_string
"string with a ' single quote"

The same would hold for a double quote, however if we have the double quote at the end
of the string we encounter a problem.

>>> double_quote_string = """string with a double quote on the end""""
File "<stdin>", line 1
double_quote_string = """string with a double quote on the end""""

^
SyntaxError: EOL while scanning string literal

To get around this problem you would need to use an escape sequence on the double
quote as shown below:
>>> double_quote_string = """string with a double quote on the end\""""
>>> double_quote_string
'string with a double quote on the end"'

Another benefit to triple quoted strings is that you can write strings over multiple lines.

>>> on_two_lines = """A quote on
... two lines"""
>>> on_two_lines
'A quote on \n\t\t\t\ttwo lines'

The string contains the line return denoted by backlash n and three tabs denoted by back-
slash t. If we were to try this with single quotation then we end up with the following:

>>> on_two_lines = "A quote on
File "<stdin>", line 1

on_two_lines = "A quote on
^

SyntaxError: EOL while scanning string literal

We have touched briefly on escape sequences and although we have not covered all of
them (you can search them out yourselves) an interesting issue comes up and that is what
do we do if we use an escape sequence in our string. So, for example, typing backslash n
gives us a carriage return in our string. But what if we want forward slash n in our string,
we can use what is called a raw string:

>>> raw_string = r"This has a \n in it"
>>> raw_string
"This has a \\n in it"
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This is the same as writing

>>> not_raw_string = "This has a \\n in it"
>>> not_raw_string
"This has a \\n in it"

In both examples when we show the content of the string it has an extra forward slash
but when it is printed this disappears. And yes if you wanted an extra slash in there just use
three slashes.

>>> not_raw_string = "This has a \\\n in it"
>>> not_raw_string
"This has a \\\n in it"

So given you have a string what can you do with it? You can access it in much the same
way as you did when we covered lists earlier on. So if we want the 3rd element of a string
we do so as follows:

>>> name = "Rob Mastrodomenico"
>>> name[2]
"b"

Remember from before the value in position 3 is indexed at 2 as strings like lists are 0
indexed. We can similarly take the values in positions 5–8.

>>> name = "Rob Mastrodomenico"
>>> name[4:8]
"Mast"

We can also work backwards and get the last three elements.

>>> name = "Rob Mastrodomenico"
>>> name[-3:]
"ico"

Or we can get everything but the last three elements.

>>> name = "Rob Mastrodomenico"
>>> name[:-3]
"Rob Mastrodomen"

We can apply much of the logic shown earlier to strings. So if we want to know if a string
contains a character or combination of characters we can do so by seeing if the characters
are in the string.

>>> name = "Rob Mastrodomenico"
>>> "ico" in name
True
>>> "z" in name
False
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We can create custom strings using variables that we may have in our code. This is gener-
ally referred to as string formatting, so if we want to put a variable into our string we need
only define the position in the string using curly brackets and then using the format method
with the arguments passed in they get assigned to the appropriate positions.

>>> first_name = "Rob"
>>> last_name = "Mastrodomenico"
>>> name = "First name: {}, Last name: {}".format(first_name, last_name)
>>> name
"First name: Rob, Last name: Mastrodomenico"

In this example it doesn’t seem to have any benefit as we could have easily define the
whole string as we did before. However, consider the case where the names are changing.
We could be looping over a list of names or a file or names and at each iteration of the loop
we want to show what the name is.

We can also give the positions in the curly brackets to where we want the variables
assigned, so we could write the following:
>>> first_name = "Rob"
>>> last_name = "Mastrodomenico"
>>> name = "First name: {1}, Last name: {0}".format(first_name, last_name)
>>> name
"First name: Mastrodomenico, Last name: Rob"

That is wrong but you get the point. We can also define each value as a variable and pass
that variable name in the curly brackets.
>>> first_name = "Rob"

>>> last_name = "Mastrodomenico"

>>> name = "First name: {f}, Last name: {l}".format(f=first_name, l=last_name)

>>> name

"First name: Rob, Last name: Mastrodomenico"

The first string method we will consider is how to convert a string to all uppercase letters
and then all lowercase letters.

>>> name = "Rob Mastrodomenico"
>>> name
"Rob Mastrodomenico"
>>> name.lower()
"rob mastrodomenico"
>>> name.upper()
"ROB MASTRODOMENICO"
>>> name
"Rob Mastrodomenico"

We see using the lower and upper methods we create versions of the initial string in upper-
case and lowercase, however we don’t change the string itself. Why is this useful? You may
want to check if certain characters in a string and may want to do it in a specific case so by
changing the string to the correct case you can.

Next, we consider the split method which unsurprisingly can be used to split up strings.
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>>> name = "Rob Mastrodomenico"
>>> name
"Rob Mastrodomenico"
>>> name.split(" ")
["Rob", "Mastrodomenico"]
>>> first_name, last_name = name.split(" ")
>>> first_name
"Rob"
>>> last_name
"Mastrodomenico"

Again while this example may seem trivial but it can be very useful as you can split on
any character within a string so, for example, a comma separated string which you may find
in a csv file can be split into the variables it contains:

>>> match_details = "Manchester United,Arsenal,2,0"
>>> match_details
"Manchester United,Arsenal,2,0"
>>> match_details.split(",")
["Manchester United", "Arsenal", "2", "0"]
>>> home_team, away_team = match_details.split(",")[0:2]
>>> home_team
"Manchester United"
>>> away_team
"Arsenal"
>>> home_goals, away_goals = match_details.split(",")[2:4]
>>> home_goals
"2"
>>> away_goals
"0"

So from that one line we can get out all the information it contains.
Another useful method to apply to a string is replace, again it does what it says on the tin.

>>> match_details = "Manchester United,Arsenal,2,0"
>>> match_details
"Manchester United,Arsenal,2,0"
>>> match_details.replace(",",":")
"Manchester United:Arsenal:2:0"

Here, we replace all the commas with colons, again it can come in very handy if say, for
example, you want to change the separator in the string like we just did.

There is another string method that looks on the face of it like a list method, namely join.

>>> details = ['Manchester United', 'Arsenal', '2', '0']
>>> match_details = ','.join(details)
>>> match_details
'Manchester United,Arsenal,2,0'
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Here, we apply the join method on the string containing just the comma and it then
creates a string of the values in the list separated by the string that we applied the method on.
This is a very useful method when it comes to creating strings from lists separated by a
common value.

The last thing we shall consider is a Python builtin function that can be applied to strings
and that is len. We earlier saw it applied to lists to get the length of them and it does the same
with regards to strings, however now it tells us how many characters the string contains:

>>> match_details = "Manchester United,Arsenal,2,0"
>>> match_details
"Manchester United,Arsenal,2,0"
>>> len(match_details)
29

In this chapter, we have taken a deep dive into strings and what we can do with them and
shown the level of flexibility and power Python gives us when we have a variable of type
string or if we want to create our own.
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13

Regular Expressions

An extension to dealing with strings is the concept of regular expressions. The broad concept
is that we can do advanced searches beyond the simple ones.

>>> text = "Hello in this is string"
>>> 'Hello' in text
True

To do this, we will use the package re from the standard Python library and as opposed
to going through all the specifics let’s just jump in with some examples.

The first example looks at finding all the characters a to m within the string Rob
Mastrodomenico. Now to do this we pass a string containing a-m within list parenthesis
and pass this into the findall method with the string of interest which has been called
name. The result from this is a list containing all the characters in a-m which appear in the
string.

>>> import re
>>> name = 'Rob Mastrodomenico'
>>> x = re.findall("[a-m]", name)
>>> x
['b', 'a', 'd', 'm', 'e', 'i', 'c']

Next, we see how we can find the integer values 0–9 within a sequence. We can do this
in two ways; the first is by mimicking what we used in the previous example with the list
convention but also by using d which gives us all values that are between 0 and 9. Both
return a list of values that occur within the string. Now in the first example we can see that
we get back each value but what if the value was repeated? In the next example, we see that
repeated values are returned in the list as we had two instances of three within the string.

>>> import re
>>> txt = 'Find all numerical values like 1, 2, 3'
>>> x = re.findall("\d", txt)
>>> x
['1', '2', '3']
>>> x = re.findall("[0-9]", txt)

The Python Book, First Edition. Rob Mastrodomenico.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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>>> x
['1', '2', '3']
>>> txt = 'Find all numerical values like 1, 2, 3, 3'
>>> x = re.findall("[0-9]", txt)
>>> x
['1', '2', '3', '3']
>>> x = re.findall("\d", txt)
>>> x
['1', '2', '3', '3']

This approach to finding if a value or values are present in the string and giving us all
the values is useful but we can do more and look for specific patterns. In this next example,
we use the standard text hello world and look for a specific pattern. We can pass the string
“he..o” into the findall method and what this does is search for a sequence which starts
with ho and has any two characters and is followed by an o, which fits nicely with the word
hello. So in passing this in we get back the list containing the string hello. We can expand
on this by changing the string to “hello helpo hesoo” in doing so we see that all these words
are passed back from the findall. In using a different example like this, we can see how this
could be applied across a bigger piece of text to see all the words that match this sequence.

>>> import re
>>> txt = "hello world"
>>> x = re.findall("he..o", txt)
>>> x
['hello']
>>> txt = "hello helpo hesoo"
>>> x = re.findall("he..o", txt)
>>> x
['hello', 'helpo', 'hesoo']

Next, we look at how to search specifically on the start of the string. To do so you use the
ŝymbol prefixed to the string of interest, in this case we look for a string that starts with
the string start. What the result of this gives is a list containing the word that is found so in
the first example we get back the list containing the string start and in the second example
we get an empty list.

>>> import re
>>> txt ='starts at the end'
>>> x = re.findall("^start", txt)
>>> x
['start']
>>> txt ='ends at the start'
>>> x = re.findall("^start", txt)
>>> x
[]

We can achieve the same thing for looking at the last word in the string by using ending
the searched string with the $ sign. In this example, we show what we get when searching
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for the last part of a given string and in a similar way to previous example we return a list
containing that string if it does exist and an empty list if it doesn’t.

>>> import re
>>> txt = 'the last word is end'
>>> x = re.findall("end$", txt)
>>> x
['end']
>>> txt = 'the last word is end sometimes'
>>> x = re.findall("end$", txt)
>>> x
[]

The last two examples look at finding something specific at the start or end of a given
string, in the next example we look at all instances of a given string with another string.
What we are looking to do here is find the occurrences of ai followed by 0 or more x values.
So the first example shows that there are four instances of the string ai within the string
when we search for aix. As in the previous examples if we don’t have any instances then we
get returned an empty string.

>>> import re
>>> txt = "The rain in Spain falls mainly in the plain!"
>>> x = re.findall("aix*", txt)
>>> x
['ai', 'ai', 'ai', 'ai']
>>> txt = 'This isnt like the other'
>>> x = re.findall("aix*", txt)
>>> x
[]

Expanding on the previous example you can find the number of instances of the string
ai followed by one or more x by adding the + symbol. Applying that to the same string as
before gives us the result of an empty string as we don’t have aix within it.

>>> import re
>>> txt = "The rain in Spain falls mainly in the plain!"
>>> x = re.findall("aix+", txt)
>>> x
[]

If we are after a specified number of characters that we want to see we can use curly
brackets containing the number of instances we are interested in. So in the next example
we want to find moo within the string so we can do it as mo2 or moo, with each returning
a string containing the character we have searched for.

>>> import re
>>> txt = 'The cow said moo'
>>> x = re.findall("mo{2}", txt)
>>> x
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['moo']
>>> x = re.findall("moo", txt)
>>> x
['moo']

If we want to find one or another value we can do so by using the | symbol between
the two strings that we are interested in searching for. In the example that we show we are
looking for the strings avengers or heroes in our string. As we have the string Avengers with
a capitalised A we only have an exact match on heroes. The second example uses Avengers
with a capital A and therefore as that is exactly matched within the string we get back a list
containing both strings. The last example shows what happens if we have multiple instances
of one of the words that we are searching for giving us the number of instances in the order
that we see them.

>>> import re
>>> txt = "The Avengers are earths mightiest heroes"
>>> x = re.findall("avengers|heroes", txt)
>>> x
['heroes']
>>> x = re.findall("Avengers|heroes", txt)
>>> x
['Avengers', 'heroes']
>>> txt = "The Avengers are earths mightiest heroes go Avengers"
>>> x = re.findall("Avengers|heroes", txt)
>>> x
['Avengers', 'heroes', 'Avengers']

We can also use special sequences like the one below which returns the whitespace in a
given string:

>>> txt = "Is there whitespace"
>>> x = re.findall("\s", txt)
>>> x
[' ', ' ']

There are other special sequences that we can use, they are listed as follows:

● \A: This matches if the characters defined are at the beginning of the string "\AIt"
● \b: This matches if the characters defined are at the beginning or at the end of a word
"\bain" r"ain\b"

● \B Returns a match where the specified characters are present, but NOT at the beginning
(or at the end) of a word (the "r" in the beginning is making sure that the string is being
treated as a "raw string") r"\Bain" r"ain\B"

● \d Returns a match where the string contains digits (numbers from 0-9) "\d"
● \D Returns a match where the string DOES NOT contain digits "\D"
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● \s Returns a match where the string contains a white space character "\s"
● \S Returns a match where the string DOES NOT contain a white space character "\S"
● \w Returns a match where the string contains any word characters (characters from a

to Z, digits from 0-9, and the underscore _ character) "\w"
● \W Returns a match where the string DOES NOT contain any word characters "\W"
● \Z Returns a match if the specified characters are at the end of the string

Next, we use the split method.

>>> import re
>>> txt = "The rain in Spain"
>>> x = re.split("\s", txt)
>>> x
['The', 'rain', 'in', 'Spain']

Expanding on this we can specify the number of times we want the split to be done by
using the maxsplit argument. The below examples set the value to 1, 2, and 3. In each
example, we see that the number of splits increases, so setting the value to 1 provides us
with a list containing the results of a single split. As this increases we get more and more
splits included.

>>> import re
>>> txt = "The rain in Spain"
>>> x = re.split("\s", txt, maxsplit=1)
>>> x
>>> x = re.split("\s", txt, maxsplit=2)
>>> x
['The', 'rain', 'in Spain']
>>> x = re.split("\s", txt, maxsplit=3)
>>> x
['The', 'rain', 'in', 'Spain']

The next method we demonstrate is the submethod which behaves in a similar way to
replace on a string. In the below example we replace the white space with the value 9:

>>> import re
>>> txt = "The rain in Spain"
>>> x = re.sub("\s", "9", txt)
>>> x
'The9rain9in9Spain'

As with the previous example of split we have an extra argument that can be used here
namely count, and again we apply it with values 1, 2, and 3. The result of this is the number
of values that are replaced in the string with 1 giving only the first space being replaced by
9, 2 giving the first 2 spaces being replaced and so on.
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>>> import re
>>> txt = "The rain in Spain"
>>> x = re.sub("\s", "9", txt, 1)
>>> x
'The9rain in Spain'
>>> x = re.sub("\s", "9", txt, 2)
>>> x
'The9rain9in Spain'
>>> x = re.sub("\s", "9", txt, 3)
>>> x
'The9rain9in9Spain'

The last example that we look at is using the span method from a search result. Here, if
we search for a set of characters in

>>> import re
>>> txt = "The rain in Spain"
>>> x = re.search("ai", txt)
>>> x.span()
(5, 7)

That is the last of the examples relating to regular expressions and that gives a good
introduction into using the re packages and how powerful this can be when we want to
do complex searching of strings.
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14

Dealing with Files

Thus far we have gone through what you can do with Python and the examples given have
revolved around simple examples. In reality we want to work on data of some kind and as
such we need to get it into Python. Now, we can obtain our data from a variety of sources
such as databases, web API’s but a common way to obtain data is through a good old fash-
ioned file. So in this section, we will use a lot of what we have learnt so far to deal with
reading data from and writing to files.

Python can read files pretty easily from the standard library. Its just a case of specifying
where the file is and then creating a stream to that location. Let’s demonstrate by having a
file located in /Path/to/file/test.csv. This is the full path to the comma separated file test.csv.

>>> file_name = "/Path/to/file/test.csv"
>>> f = open(file_name,"r")
>>> f
<open file "/Path/to/file/test.csv", mode "r" at 0x1007e6270>

What we have done here is define a string file_name containing the name of the file and
then used the open command with the arguments of file_name and ‘r’ which is the mode
to read the file in and in this case it refers to read. We have assigned the return of this to the
variable f which is a stream to the file. Now to read in the data from the file we simply run:

>>> data = f.read()

What we get back is the data in a single index list, which isn’t that useful. In text files
what you find is that lines are separated by a line return which means that we could apply
the split method which will split what it reads into new elements of the list every time it
sees a line return. Its easier to demonstrate this by an example on a string:

>>> names = "steve\ntony\nbruce\n"
>>> names
"steve\ntony\nbruce\n"
>>> names.split("\n")
["steve", "tony", "bruce", ""]

So we can get our data into a readable format. The same theory works with reading data
from a file where the lines are separated in the same way.

>>> data = f.read().split("\n")

The Python Book, First Edition. Rob Mastrodomenico.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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With a comma separated file we have each item on a given line separated by a comma.
So to get each item we need to split again based on a comma. To do that we need to do the
following:

>>> names = "steve,rodgers\ntony,stark\nbruce,banner\n"
>>> names
"steve,rodgers\ntony,stark\nbruce,banner\n"
>>> names = names.split("\n")
>>> names
["steve,rodgers", "tony,stark", "bruce,banner", ""]
>>> for n in names:
... row = n.split(",")
... row
...
["steve", "rodgers"]
["tony", "stark"]
["bruce", "banner"]
[""]

Initially we split the string on the character \n to create a list containing three items.
We then loop over the list and for each item in the list we split on the character comma
to create a list containing first and last name. We can do this in a single line as opposed to
looping the names list as follows:

>>> names = "steve,rodgers\ntony,stark\nbruce,banner\n"
>>> names
"steve,rodgers\ntony,stark\nbruce,banner\n"
>>> names = names.split("\n")
>>> names
["steve,rodgers", "tony,stark", "bruce,banner", ""]
>>> names = [n.split(",") for n in names]
>>> names
[["steve", "rodgers"], ["tony", "stark"], ["bruce", "banner"], [""]]

So in a single line we can achieve what we did in the loop, here you can see we have
basically moved the loop into a one liner. From both lines we can see that we get an empty
list at the end of both implementations. What is happening here is that at the last line return
when we split on the line return we get an empty string after it. So with any file where we
separate on \n we need to make sure to account for the empty string, the way we can do this
is refer back to the pop method we introduced earlier:

>>> names
[["steve", "rodgers"], ["tony", "stark"], ["bruce", "banner"], [""]]
>>> names.pop()
[""]
>>> names
[["steve", "rodgers"], ["tony", "stark"], ["bruce", "banner"]]
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Now, we are able to read files. The next thing to cover is how to write to files. It works in
much the same way as for reading from files in that we first need to define the file name
and open a stream to write to file.

>>> file_name = "output.csv"
>>> f = open(file_name, "w")
>>> f
<_io.TextIOWrapper name="output.csv" mode="w" encoding="UTF-8">

This opens a stream under where your terminal window is open in write mode. To phys-
ically write something to a file you need to define something you want to be in the file.

>>> out_str = "something to go in the file\n"
>>> f.write(out_str)
28
>>> f.close()

What we have done is create a string that we want to be in our file and then using the
streams method write we have written the string to file. One thing we missed from the first
example when we read from file is that we forgot to close the file stream. Here, we see in
the last line that we do this using the close method. Now, Python will generally tidy things
like this when you quit Python or when your written program ends, however its good prac-
tice to include this in your code.

Next, we will consider how to append to a file. Now this is very similar to writing to a
file however when we open a file in write mode we would override any existing file with
the same name. With append we would keep the existing file and then add whatever we
wanted to the end of it. The way we do this is very similar to what we have seen before, we
just use the append option when opening the file, so to append to our output.csv we need
to write the following:

>>> file_name = "output.csv"
>>> f = open(file_name, "a")
>>> f
<_io.TextIOWrapper name="output.csv" mode="a" encoding="UTF-8">

Let’s expand on this example by applying reading and writing to a bigger example. What
we are going to do is import a dataset from sklean which is a package:

>>> from sklearn.datasets import load_boston
>>> boston = load_boston()

Now here we load up a dictionary object containing a dataset and relevant details that we
want to work on. Here, we want to take the data and feature_name keys from this dictionary
and write to a csv file.

>>> feature_names = boston['feature_names'][::2]
>>> list(feature_names)
['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS',
'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT']
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To make things a little more difficult we will take every other column and not include the
last two values.

>>> headers = list(feature_names)[::2][:-2]
>>> headers
['CRIM', 'NOX']

This will give us the values that we want to put into out file. So the next thing we will do
is open up the file and write the headers to the file.

>>> file_name = "boston_output.csv"
>>> fo = open(file_name, "w")
>>> fo.write(','.join(headers) + '\n')
23

Here, we can see the output of 23 referring to the 23 characters that we wrote to the file.
What we want to do next is write the relevant data referring to the headers to the file.

>>> boston_data = boston['data']
>>> for bd in boston_data:
... row_dict = dict(zip(feature_names, bd))
... val_list = []
... for h in headers:
... val = row_dict[h]
... val_list.append(str(val))
... out_str = ','.join(val_list)
... fo.write(out_str + '\n')

What we have done here is assign the data to boston_data and then loop over it. Each ele-
ment of data can then be zipped with the feature_names to create a dictionary. The reason
for doing this is to allow us to select the relevant values to write to file. To do this we loop
over the headers and access the dictionary value using the key of the header. These values
are then appended to a list and the join method is applied in much the same way we did for
the headers to write each line to the file.

>>> fo.close()

Lastly, we need to close the file, technically if we don’t do this then Python will do it for
us, however its good practice to do so.

We can then read the file in and loop over the contents using the following code:

>>> fo.close()

So, here we have created the file to output and have written the headers to it, note the 23
denotes the number of characters written to the file. Next, we will loop across the data and
write it line by line to the file making sure to select the columns that we want

>>> file_name = "boston_output.csv"
>>> f = open(file_name, "r")
>>> data = f.read().split('\n')
>>> data.pop()
>>> for d in data:
... print(d)
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That is really about it when it comes to reading, writing, and appending to files. Its impor-
tant to note that what we have shown only works for single sheet data files.

14.1 Excel

A more common type of file that you might want to open in Python is a spreadsheet like file
containing sheets of data. This could be in the form of an xls or xlsx file. Luckily Python has
a library for us called openpyxl which allows us to write the data to an excel file and read it
back in as we will demonstrate.

>>> from sklearn.datasets import load_boston
>>> boston = load_boston()
>>> feature_names = boston['feature_names'][::2]
>>> list(feature_names)
['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS',
'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT']
>>> headers = list(feature_names)[::2][:-2]
>>> headers
['CRIM', 'NOX']

Next, we want to read this data into a sheet of an excel sheet.

>>> from openpyxl import Workbook
>>> wb = Workbook()
>>> sheet1 = wb.create_sheet('boston_data', 0)

What we do here is import the relevant package and then create a Workbook. For this
Workbook we then create a sheet to write to and call it boston_data and insert it into position
0 which is the first position of the spreadsheet.

>>> i = 1
>>> for h in headers:
... sheet1.cell(1, i, h)
... i += 1

Next, we write the headers to our sheet, note we want to insert the values into the first
row so we set a counter i to 1 to start at the first column and then increment it to insert
subsequent values into the relevant columns. Here, we use the cell method where we pass
in row, column, and value, and here the row is fixed at 1.

>>> j = 2
>>> boston_data = boston['data'][0:5]
>>> for bd in boston_data:
... k = 1
... row_dict = dict(zip(feature_names, bd))
... for h in headers:
... val = row_dict[h]
... sheet1.cell(j, k, val)
... k += 1
... j += 1
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Next, we look to write the first five rows of the data to the file so to do so we use the same
cell method, however now we need to increment rows and columns to deal with the fact
we have multiple rows. So to do so counters are setup outside the loop for the row and inside
the loop for the column. This is because we need to reset the columns for every row as we
want to go back to column 1, hence the k value needs to change to 1 every time we finish
writing a row.

>>> wb.save('boston.xlsx')

Lastly, to save the data we just use the save method on the workbook and pass in the name
of the file we want to save.

To read the data back in is a relatively simple process.

>>> from openpyxl import load_workbook
>>> wb = load_workbook('boston.xlsx')
>>> wb
<openpyxl.workbook.workbook.Workbook object at 0x7fe91d880b00>

We can see what worksheets we have through the worksheet method.

>>> wb.worksheets
[<Worksheet "boston_data">, <Worksheet "Sheet">]
>>> sheet = wb['boston_data']
>>> sheet
<Worksheet "boston_data">

We can then access the specific sheet using dictionary notation treating the sheet name
as the key. To get the values we use row and column indexes:

>>> sheet[1][0].value
'CRIM'
>>> sheet[1][1].value
'NOX'

Note that our columns are zero indexed despite us writing to column 1 in the code to
write to file but we can get the specific value by getting the value attribute.

14.2 JSON

JSON stands for JavaScript Object Notation and it has become very popular as a data
type and is widely used. It’s described as a lightweight data-interchange format. But what
actually does that mean, well it’s really a text format to store data that is easy, visually, for
us to read and write, and also easy for the computers to parse and generate.
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For a Python user, JSON will appear to be a mixture of lists and dictionaries in that you
can have collections of key value pairs like in a dictionary but also have data stored in a
manner like a list. Let’s take the example that we have used previously and create a json
representation of the data.

>>> from sklearn.datasets import load_boston
>>> boston = load_boston()
>>> feature_names = boston['feature_names'][::2]
>>> list(feature_names)
['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS',
'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT']
>>> headers = list(feature_names)[::2][:-2]
>>> boston_data = boston['data'][0:5]

So, what we have done above is what has been done previously, however here we differ
by selecting only the first five elements of the data which will allow us to show the data in
json representation.

>>> json_list = []
>>> for bd in boston_data:
... row_dict = dict(zip(feature_names, bd))
... val_dict = {}
... for h in headers:
... val = row_dict[h]
... val_dict[h] = val
... json_list.append(val_dict)
>>> print(json_list)
[{'CRIM': 0.00632, 'NOX': 2.31}, {'CRIM': 0.02731, 'NOX': 7.07},
{'CRIM': 0.02729, 'NOX': 7.07}, {'CRIM': 0.03237, 'NOX': 2.18},
{'CRIM': 0.06905, 'NOX': 2.18}]

The next set of code gets the data into a format to export to json. As mentioned before
we can achieve this via a combination of dictionaries and lists. So, initially we create a list
to put every row of our data into. A row can be represented as a dictionary which in this
case is simply a key value pair for two of the feature names which have been assigned to
the headers. What we end up with is a list of dictionaries which we will look to export
as json.

>>> import json
>>> file_name = "boston.json"
>>> with open(file_name, "w") as write_file:
... json.dump(json_list, write_file, indent=4)

To create the json output we can use the json package and the dump method passing in
the list and an open file as the arguments.
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[
{

"CRIM": 0.00632,
"NOX": 2.31

},
{

"CRIM": 0.02731,
"NOX": 7.07

},
{

"CRIM": 0.02729,
"NOX": 7.07

},
{

"CRIM": 0.03237,
"NOX": 2.18

},
{

"CRIM": 0.06905,
"NOX": 2.18

}
]

The next part we need to cover is how to read the json file back into Python, luckily this
is easily achieved using the json library.

>>> import json
>>> file_name = "boston_output.json"
>>> with open(file_name, "r") as read_file:
... data = json.load(read_file)
...
>>> data
[{'CRIM': 0.00632, 'NOX': 2.31}, {'CRIM': 0.02731, 'NOX': 7.07},
{'CRIM': 0.02729, 'NOX': 7.07}, {'CRIM': 0.03237, 'NOX': 2.18},
{'CRIM': 0.06905, 'NOX': 2.18}]
>>> type(data)
<class 'list'>

As we did with writing to file we just use the load method with the open file mode read
which assigns the values in the file to the data object which is of type list.

14.3 XML

XML stands for Extensible Markup Language and much like JSON it is a way to store data
that is easy visually for us to read and write but at the same time easy for computers to parse
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and generate. Unlike JSON it doesn’t have a natural link to Python data types and so needs a
bit more of an introduction into its types and how it works. Let’s explain using the example
below.

<?xml version="1.0"?>
<catalog>

<book id="bk101">
<author>Rob, Mastrodomenico</author>
<title>The Python book</title>
<genre>Computer</genre>
<price>Whatever</price>
<publish_date>Whenever</publish_date>
<description>Stuff to help you master Python</description>

</book>
<book id="bk102">

<author>Rob, Mastrodomenico</author>
<title>The Python book 2</title>
<genre>Computer</genre>
<price>More than the last one</price>
<publish_date>Maybe never</publish_date>
<description>Its like the first one but better</description>

</book>
</catalog>

Now let’s deconstruct the above example:

<?xml version="1.0"?>

The first line is the xml declaration and it could have simply been written as follows:

<?xml?>

If we had some specific encoding to use in the xml file we could rewrite it as follows:

<?xml version="1.0" encoding="utf-8"?>

Next, we have the following:

<catalog>
</catalog>

The catalog to catalog are the root elements of the XML and are the start and end of the
content. The name used is arbitrary and in this case, just reflects the data we have. You will
notice the use of a / on the closing content, this is common between the opening and closing
elements.

Next, we add in a further level down as follows:

<book id="bk101">
</book>

Here, we have defined a book using the opening book and closing book and unlike at the
root level we have attached data to this level with the addition of the id=bk101. This is the
high level book data, to add more specific data about the book we can do so as follows:
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<book id="bk101">
<author>Rob, Mastrodomenico</author>
<title>The Python book</title>
<genre>Computer</genre>
<price>Whatever</price>
<publish_date>Whenever</publish_date>
<description>Stuff to help you master Python</description>

</book>

Under the book level, we have added variables for author, title, genre, price, publish_date,
and description. As before you can see that the definition of each variable has an opening
and closing using the terminology introduced earlier.

Lastly, to add another book you would do so as follows:

<book id="bk102">
<author>Rob, Mastrodomenico</author>
<title>The Python book 2</title>
<genre>Computer</genre>
<price>More than the last one</price>
<publish_date>Maybe never</publish_date>
<description>Its like the first one but better</description>

</book>

We can create another book under our initial book in much the same way as we did before.
The way we distinguish each book is by using its own id.

What we have shown here is how we can build interesting data structures using XML.
The next question to address is how can we create and parse XML objects. To do this we
use lxml which is a Python library that allows the user to take advantage of the C libraries
libxml2 and libxslt. These are very fast XML processing libraries that are easily accessible
through Python.

As we have done earlier in the chapter, we will use the same example and show how you
can create XML from it.

>>> from sklearn.datasets import load_boston
>>> boston = load_boston()
>>> feature_names = boston['feature_names'][::2]
>>> list(feature_names)
['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS',
'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT']
>>> headers = list(feature_names)[::2][:-2]
>>> boston_data = boston['data'][0:5]

The full code to write the data to xml is as follows:

>>> from lxml import etree
>>> root = etree.Element("root")
>>> for bd in boston_data:
... row_dict = dict(zip(feature_names, bd))
... row = etree.SubElement(root, "row")
... for h in headers:
... child = etree.SubElement(row, h)
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... val = row_dict[h]

... child.text = str(val)
>>> et = etree.ElementTree(root)
>>> et.write('boston.xml', pretty_print=True)

Breaking this down we first import lxml and then create the root of our xml document.

>>> from lxml import etree
>>> root = etree.Element("root")

Next, we have to loop over the data in a similar way that we have done before to put the
data into our xml.

>>> for bd in boston_data:
... row_dict = dict(zip(feature_names, bd))
... row = etree.SubElement(root, "row")
... for h in headers:
... child = etree.SubElement(row, h)
... val = row_dict[h]
... child.text = str(val)

The mechanism of looping the data is no different to what we have seen and we create
the same row_dict and loop the headers to get the values, however the difference is in how
we setup the xml and where we write to. For each iteration across the boston_data we create
another row called row under the root using the SubElement method assigning root as
the parent. Then for every value we obtain from looping the headers we create another
SubElement this time with parent row and having the name of the header. We assign the
value for this by setting the text attribute to be that value. This then gives us the format
of data.

>>> et = etree.ElementTree(root)
>>> et.write('boston.xml', pretty_print=True)

The last part is to write the data to file so we can make use of the write method by passing
the root of the document through ElementTree. Note that we set the pretty_print to be True,
which gives the following file:

<root>
<row>

<CRIM>0.00632</CRIM>
<NOX>2.31</NOX>

</row>
<row>

<CRIM>0.02731</CRIM>
<NOX>7.07</NOX>

</row>
<row>

<CRIM>0.02729</CRIM>
<NOX>7.07</NOX>

</row>
<row>
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<CRIM>0.03237</CRIM>
<NOX>2.18</NOX>

</row>
<row>

<CRIM>0.06905</CRIM>
<NOX>2.18</NOX>

</row>
</root>

Now, we will show how you can read an XML file in using lxml in Python using the
example below.

>>> from lxml import objectify
>>> xml = objectify.parse(open('boston.xml'))
>>> root = xml.getroot()
>>> children = root.getchildren()
>>> print(children)
[<Element row at 0x7fc64c57e548>, <Element row at 0x7fc64c57e748>,
<Element row at 0x7fc64c587248>, <Element row at 0x7fc64c587288>,
<Element row at 0x7fc64c5872c8>]
>>> for c in children:
... print(c['CRIM'])
... print(c['NOX'])

So, what we have done here is to import objectify from lxml, which will be used to read
in the XML.

>>> xml = objectify.parse(open(file_name))

Here, we are reading in the XML file and parsing it using the parse method of objectify.
This gives us an XML object which we can then use to try and parse out the information.
Next, we look to get the root of the document using:

>>> root = xml.getroot()

Having obtained the root we look to get the children of this which represents the next
level down which are the rows.

>>> children = root.getchildren()

Now, to access the values we can loop through the children as that object is simply a list.
In doing so we can obtain and print the values as follows:

>>> for c in children:
... print(c['CRIM'])
... print(c['NOX'])

These refer to the values in the dataset which we created.
This chapter has covered some important concepts relating to files and how to read from

and write to them using Python. We have covered a number of different file types and given
practical examples of how these work. We will show later in the book other approaches to
reading and writing to file but these somewhat low level approaches are very important
when we want to have a high level of control when it comes to manipulating the data and
are a great tool to have in your arsenal.
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15

Functions and Classes

In this chapter, we are going to introduce the concepts of functions and classes and how
these concepts can be introduced into the way you code in Python. Thus far in this book
everything has been shown as blocks of code. These blocks of code may be just snippets to
demonstrate a specific concept or longer sections to demonstrate how to perform a task.
When you come to practically write your code you can write it in the manner that you have
seen within this book and that is perfectly acceptable. However, if you want to group code
together or reuse it then functions and classes are a great thing to use.

Let’s start with functions, these are very useful for code that you want to reuse or if you
have repeated code, then a function can help you. Functions also allow you to run code
with arguments which gives you the ability to have the behaviour of the function dictated
by the variables you pass to it. Let’s demonstrate how to setup a function by using the lottery
example from before. Now to familiarise ourselves with the code we looked to generate the
results of a lottery draw using elements of code that we had used up to that point of the
book. The results look as follows:

>>> from random import randint
>>> min = 1
>>> max = 59
>>> result_list = []
>>> while len(result_list)<7:
... ball = randint(min, max)
... if ball not in result_list:
... result_list.append(ball)
...
>>> result_list
[41, 48, 47, 55, 18, 15, 43]

Now, we can cast this a function called lottery as follows:

>>> from random import randint
>>> def lottery():
... min = 1
... max = 59
... result_list = []

The Python Book, First Edition. Rob Mastrodomenico.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.



�

� �

�

92 15 Functions and Classes

... while len(result_list)<7:

... ball = randint(min, max)

... if ball not in result_list:

... result_list.append(ball)

... return result_list

...

What we have done here is define a function called lottery. This is done by using the
command def followed by the name that you want to give the function. We then use two
round brackets to denote the arguments that we want to pass to the function. Here, we have
nothing within the brackets which means that we pass no argument into the function. Note
that following the round brackets we use a colon in the same way we have for if, else, for,
and while statements and in the same way as we do with these statements we indent the
code one level from where the function was defined. From this point onwards the code used
is exactly the same as we have seen in the lottery example. The main difference comes at
the end in that we use the statement return with the return_list variable. What this does is
return back what the variable return list after the code within the function has been run.
In this instance we get back the list of lottery numbers that are generated. To run the above
function we just do the following:

>>> results = lottery()
>>> results
[29, 42, 26, 37, 30, 8, 43]

If we consider what the function is doing we generate balls using the randint function.
What if we didn’t want numbers being 1–59 and instead want 1–49. We could just alter
the code to have 49 instead of 59 but actually wouldn’t it make sense for us to have argu-
ments representing these max and min values. We can make that change relatively easily
by rewriting the previous function as follows:

>>> from random import randint
>>> def lottery(min, max):
... result_list = []
... while len(result_list)<7:
... ball = randint(min, max)
... if ball not in result_list:
... result_list.append(ball)
... return result_list
...

What we have done here is to have the min and max as variables we pass into the function.
Despite the values being the minimum and maximum we can call them what we want to.
We have just denoted them as min and max, however they could be x and y, and its just a
question of referencing these in the appropriate place within the code. So here the values
min and max are used only in the randint function to give us back the random ball. We can
demonstrate how we would use this below.
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>>> results = lottery(1, 49)
>>> results
[10, 48, 19, 46, 40, 42, 49]

In the previous example, we have passed in the minimum and maximum values we want
to use in the function, however we may want them to have a default value such as 1 and
59 as in the original example. We can do that by just setting the values we pass into the
function to have defaults, this is done as follows:

>>> from random import randint
>>> def lottery(min=1, max=59):
... result_list = []
... while len(result_list)<7:
... ball = randint(min, max)
... if ball not in result_list:
... result_list.append(ball)
... return result_list
...

Here, we have given the min a default of 1 and max default as 59 by using the equals to
set the values. This then gives us the flexibility to call the function as follows:

>>> lottery()
[12, 15, 31, 30, 57, 17, 22]
>>> lottery(1,49)
[11, 13, 30, 47, 31, 2, 19]
>>> lottery(max=49)
[34, 36, 26, 18, 13, 11, 46]

By passing nothing into the lottery function the min and max are set to the defaults 1 and
59. In the second example, we pass two values in the first getting assigned to the min and
the second to the max. The last example of calling the lottery example sets the max value
by passing it as an argument. What we can see is that by using arguments can give us a lot
of flexibility when it comes to using functions.

If we look in more detail at the lottery example we can modify the example to be more
flexible. The code we have used so far allows us to generate exactly 7 balls in our draw,
however we may want to have more or less. To do this lets pass one more variable into the
function definition namely draw length and we do so as follows:

>>> from random import randint
>>> def lottery(min=1, max=59, draw_length=7):
... result_list = []
... while len(result_list)<draw_length:
... ball = randint(min, max)
... if ball not in result_list:
... result_list.append(ball)
... return result_list
...
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We can apply our modified lottery example as follows:

>>> lottery()
[32, 23, 17, 6, 31, 4, 19]
>>> lottery(1,49,6)
[41, 46, 44, 47, 18, 24]
>>> lottery(max=49,draw_length=6)
[1, 15, 19, 26, 23, 29]

This works exactly the same way as seen before but every time we have called it we have
passed in the exact arguments that are required what would happen if we passed in different
values.

>>> lottery('1','49','6')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in lottery

TypeError: '<' not supported between instances of 'int' and 'str'

Here, we see that the function returns an error as it cannot support the types that are
passed in so it would make sense to allow the function to determine if it can deal with the
arguments passed in. We need to specify the values be integers as both the min and max
need to be integers as randint generates integers, similarly the draw length can only be
integers as it relates to the length of a list. We can rewrite the function as follows:

>>> def lottery(min=1, max=59, draw_length=7):
... if type(min)!=int:
... print('min must be int')
... return None
... if type(max)!=int:
... print('max must be int')
... return None
... if type(draw_length)!=int:
... print('draw_length must be int')
... return None
... result_list = []
... while len(result_list)<draw_length:
... ball = randint(min, max)
... if ball not in result_list:
... result_list.append(ball)
... return result_list
...

What we have done here is use the type built in function to check if the value passed
in for each variable is an integer. Note that this is done one by one so that an informative
message can be sent back as to why the error occurred and what the problem was. To see
this in action we only need to run the following:
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>>> lottery('1','49','6')
min must be int

We see here that the function returned the message 'min must be an int, however we
know that we would also have a problem with max and draw length which were passed
in as strings but should also be an integer. We can expand upon the logic above by using
a combination of if and else statements to determine which combination of variables are
passed in with an invalid type.

>>> def lottery(min=1, max=59, draw_length=7):
... min_val = True
... max_val = True
... draw_length_val= True
...
... if type(min) != int:
... min_val = False
... if type(max) != int:
... max_val = False
... if type(draw_length) != int:
... draw_length_val = False
...
... if min_val is False:
... if max_val is False:
... if draw_length_val is False:
... print('min, max, draw_length need to be integer')
... return
... else:
... print('min and max need to be integer')
... return
... else:
... if draw_length_val is False:
... print('min and draw_length need to be integer')
... return
... else:
... print('min needs to be integer')
... return
... else:
... if max_val is False:
... if draw_length_val is False:
... print('max and draw_length need to be integer')
... return
... else:
... print('max need to be integer')
... return
... else:
... if draw_length_val is False:
... print('draw_length needs to be integer')
... return
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... else:

... pass

...

... result_list = []

... while len(result_list)<draw_length:

... ball = randint(min, max)

... if ball not in result_list:

... result_list.append(ball)

... return result_list

...

What we have added here is variables that are set to True for each of the values that
we pass in as arguments. We set these to be False if the value is not an integer and use
a combination of if else statements to determine which combination are of the right type
and print an informative message about what variables are not correct. Note that we don’t
return anything when values are not all correct and the return type is None.

>>> lottery(1,'2',3)
max need to be integer
>>> lottery('1',2,3)
min needs to be integer
>>> lottery('1','2',3)
min and max need to be integer
>>> lottery('1',2,'3')
min and draw_length need to be integer
>>> lottery('1','2','3')
min, max, draw_length need to be integer
>>> res = lottery(1,'2','3')
max and draw_length need to be integer
>>> res is None
True

Having introduced functions we will move onto classes within Python. Classes can be
very powerful objects which allow us to bundle together lots of functions and variables.
When we talk about functions and variables when related to a class we call them methods
and attributes. We will demonstrate this by creating a simple class:

>>> class MyClass:
... x = 10
...
>>> mc = MyClass()
>>> mc.x
10

What we have done here is create a class called my class by using the class definer. Within
the class we have set a variable x to be equal to 10. We can then create an instance of MyClass
and access the x variable using the dot syntax. Let us expand on this by creating a lottery
example based on the function before.
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>>> class Lottery:
... def __init__(self, min=1, max=59, draw_length=7):
... self.min = min
... self.max = max
... self.draw_length = draw_length
...
... def lottery(self):
... min_val = True
... max_val = True
... draw_length_val= True
...
... if type(self.min) != int:
... min_val = False
... if type(self.max) != int:
... max_val = False
... if type(self.draw_length) != int:
... draw_length_val = False
...
... if min_val is False:
... if max_val is False:
... if draw_length_val is False:
... print('min, max, draw_length need to be integer')
... return
... else:
... print('min and max need to be integer')
... return
... else:
... if draw_length_val is False:
... print('min and draw_length need to be integer')
... return
... else:
... print('min needs to be integer')
... return
... else:
... if max_val is False:
... if draw_length_val is False:
... print('max and draw_length need to be integer')
... return
... else:
... print('max need to be integer')
... return
... else:
... if draw_length_val is False:
... print('draw_length needs to be integer')
... return
... else:
... pass
...
... result_list = []
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... while len(result_list)<self.draw_length:

... ball = randint(self.min, self.max)

... if ball not in result_list:

... result_list.append(ball)

... return result_list

In this code, we define the class in the way we did before and call it Lottery. Next, we
create an init method using __init__ this initialiser is called when we define the class so
we can pass in arguments from here that can be used within the class. Note that we can use
the standard defaults but these are then assigned to the class by using the self-dot syntax
which allows that value to be part of class and then allowed to be used anywhere within the
class. We can create the class in the following example:

>>> l = Lottery()
>>> l.lottery()

>>> l = Lottery(1,49,6)
>>> l.lottery()

>>> l = Lottery(draw_length=8)
>>> l.lottery()

You may think this isn’t very different to what we did with the function, however we can
change up our code to take advantage of how classes work to simplify how we deal with
variables not being of the right type.

>>> class Lottery:
... def __init__(self, min=1, max=59, draw_length=7):
... self.min = min
... self.max = max
... self.draw_length = draw_length
... self.valid_data = True
... if type(self.min) != int:
... print('min value needs to be of type int')
... self.valid_data = False
... if type(self.max) != int:
... print('max value needs to be of type int')
... self.valid_data = False
... if type(self.draw_length) != int:
... print('draw_length value needs to be of type int')
... self.valid_data = False
...
... def lottery(self):
... if self.valid_data:
... min_val = True
... max_val = True
... draw_length_val= True
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... result_list = []

... while len(result_list)<self.draw_length:

... ball = randint(self.min, self.max)

... if ball not in result_list:

... result_list.append(ball)

... return result_list

What we have done here is move a lot of the complex logic around checking each types
from the lottery function into the initialiser which means we can print what needs changing
and also set the valid data attribute. Only if the valid data returns True can we run the
lottery function. By using a class we have a lot more flexibility within it to make use of
attributes and set logic that can affect what other methods do. Used correctly they can be a
very powerful tool.

In the previous example, we have shown how to write functions and classes but as with
the rest of the book we have done so in the interactive shell, however a more practical way
to create a file with the content in. To do so is quite simple: you just simply write the exact
same code into any blank file and save it with the suffix .py.

While in theory you can use any editor to write code in, you should use an integrated
development environment (IDE). With the Anaconda installation of Python you get Spyder
included, which is a great Python IDE. There are many more available with many free to use
so once you get used to writing code in files you can choose which one is more suitable for
you. For now, we will demonstrate how to develop within Spyder. Upon starting up you will
be presented with a screen which will look something like the one shown in Figure 15.1.

The two windows we are most concerned with here are the editor and the console. In the
editor window, we would type code as we have throughout the book but we would be able
to save code to a physical file. You may ask why we would want to do this but it allows us to

Figure 15.1 Spyder IDE.
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Figure 15.2 Run file in Spyder.

have saved code be it a set of Python commands, functions, classes, or any combination. In
having saved the code, we can re-run anything that we have written in Python very simply
and using an IDE like Spyder gives us the option to run code that we have. So here by
clicking the run command we would execute all code within a file. You can also see we
have a console available to us, this allows the testing of commands and also allow you to
access the variables within a script that you may have run. We will demonstrate this with a
very simple example (Figure 15.2).

Here, we have written a very simple script called test.py where we define a variable x to
be 1 and print it. By clicking the run file arrow in the toolbar we can run this script which
is displayed on line 1 of the console as run file with the name of the file. Here, you can see
the result of the run prints 1.0 to the screen however within the console we can access the
x variable that we defined within the file.

Adding your code to files is great if you want to easily and quickly run a set of commands
on demand and means you can create an archive and potentially version code that you
have. What you can also do is share code with others and yourself. Let’s demonstrate via an
example, if we take the lottery function we defined at the start of the chapter and put this
in a file called lottery.py we are then able to use this by importing it into Python. We have
covered how to import packages in earlier chapters and importing your own Python file is
no different. When importing your own file it is important to understand how Python does
an import. To do so we import the package sys and look at the sys.path list.

>>> import sys
>>> sys.path
['',
'/Users/rob/anaconda3/lib/python37.zip',
'/Users/rob/anaconda3/lib/python3.7',
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'/Users/rob/anaconda3/lib/python3.7/lib-dynload',
'/Users/rob/anaconda3/lib/python3.7/site-packages',
'/Users/rob/anaconda3/lib/python3.7/site-packages/aeosa']

The sys.path list contains locations where Python can search for, so if we were looking to
import our lottery file we can do so if it is present at one of the locations in sys.path. Note
that the first entry is the current location you are in. We can also append a new location to
this list if we require. Now, we can import the contents of the lottery.py file by just running
the following code:

>>> from lottery import *

This then gives us access to everything within the file and we could then just run our
lottery function by calling it. We could also import using other approaches used earlier to
import a package. This concept of importing our own code allows the coder to be flexible in
how code is structured and also reduce repeatability by having key code written once and
shared when needed. We could import our class into another file and run the code from
there. If we create a file called import_lottery.py in the same directory as the lottery.py we
can run the Lottery class as follows:

from lottery import *
l = Lottery()
l.lottery()

It’s as easy as that to share the code with other files. This makes it really easy to move
sharable code into its own functions or classes and share it with other files very easily.
Having both the console and an editor is important as sometime you want to work interac-
tively to understand what you need to do but overall its much more efficient to have files
with your code in.
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16

Pandas

Previously we have looked at concepts and packages from the standard Python library, and
now in this chapter we will look at a third-party package and one that is very relevant
within the Python eco-system. Pandas is a package that is used for data analysis and data
manipulation. It’s used in a variety of packages and therefore understanding of it and its
concepts is a crucial tool for a Python programmer to learn. In this chapter, we will intro-
duce the package pandas from the basics up to some more advanced techniques. However,
before we get started with pandas, we will briefly cover numpy arrays which alongside dic-
tionaries and lists are concepts that should be understood to allow us to cover pandas.

16.1 Numpy Arrays

Numpy comes as part of the Anaconda distribution and is a key component in the scientific
libraries within Python. It is very fast and underpins many other packages within Python.
We concentrate on one specific aspect of it, numpy arrays. However, if you are interested
in any of the machine learning libraries within Python, then numpy is certainly something
worth exploring further.

We can import it as follows.

>>> import numpy as np

Why np? Its the standard convention used in the documentation, however you do not
have to use that convention but we will. In this chapter, we won’t cover everything to do with
numpy but instead only introduce a few concepts and the first one we will do is introduce
an array. An array in numpy is much like a list in Python. If we want to create an array of
integers 0–10 we can do so as follows:

>>> number_array = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
>>> number_array
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

The Python Book, First Edition. Rob Mastrodomenico.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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It looks like we passed a list into the method array and that is basically what we did as we
can define the same array as follows:

>>> number_list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> number_array = np.array(number_list)
>>> number_array
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

You may be thinking it looks like a list and we can use a list to create it, why is it different
from a list. Very early on we looked at lists and operations on lists and we saw that using
the common mathematical operators either didn’t work or worked in an unexpected way.
We will now cover these again and compare them to what happens when using an array in
numpy. We will begin by looking at addition:

>>> number_list + number_list
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> number_array + number_array
array([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20])

So, what we see is that with a list we have concatenation of two lists which is what we
have seen before, however using an array we add together the two arrays and return a single
array where the result is the element wise addition. Next, let’s consider what happens when
we use the mathematical subtraction symbol.

>>> number_list - number_list
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for -: "list" and "list"
>>> number_array - number_array
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Here, we see that for two lists an error is thrown as it doesn’t know how to use the operand
on two lists. However, for two arrays it behaves how we might expect it to and subtracts
element wise from the first array the value in the second. What happens if we look at the
multiplication symbol * applied to two arrays and lists?

>>> number_list * number_list
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: can't multiply sequence by non-int of type "list"
>>> number_array * number_array
array([ 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100])

Again, we see that this operand doesn’t work on two lists but the arrays provide elemen-
twise multiplication. Now for completion we will look at the division operand on both lists
and arrays.

>>> number_list / number_list
Traceback (most recent call last):
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File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for /: "list" and "list"
>>> number_array / number_array
__main__:1: RuntimeWarning: invalid value encountered in true_divide
array([ nan, 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])

Unsurprisingly, we see that this doesn’t work on lists but on the arrays it performs ele-
mentwise division of the values in the first array by those in the second. Note that we get
a warning for division by zero but ultimately it allows element by element division. This is
great if we want to perform some mathematical operation on two lists which we cannot do
and can be much faster. For the examples we have covered so far we can achieve the same
thing using lists in Python in one line via list comprehension. So the three examples that
didn’t work here can be rewritten in as follows:

>>> number_list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> subtraction_list = [nl - nl for nl in number_list]
>>> subtraction_list
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
>>> multiplication_list = [nl * nl for nl in number_list]
>>> multiplication_list
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
>>> division_list = [nl / nl for nl in number_list]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero

We can see that subtraction and multiplication can be done using list comprehension but
division cannot be done as we get a problem with division by zero. Now, it should be noted
that we have simply worked with operations on the same list which makes it easy to rewrite,
however if we had two distinct lists we cannot use list comprehension and to rewrite using
loops becomes more difficult. Let’s demonstrate this by creating two random integer arrays.
So in numpy, we can do this by using the random choice functionality as follows:

>>> import numpy as np
>>> np.random.choice(10,10)
array([7, 5, 3, 2, 0, 4, 6, 1, 6, 8])

Here, we generated an array of length 10 containing random numbers between 0 and 9.
Now if we extend this example to 1 million random numbers and generate two arrays we
can multiply them together as follows:

>>> x = np.random.choice(100, 1000000)
>>> x
array([11, 58, 13, ..., 11, 93, 27])
>>> y = np.random.choice(100, 1000000)
>>> y
array([49, 24, 11, ..., 34, 32, 15])
>>> result = x * y
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>>> result
array([ 539, 1392, 143, ..., 374, 2976, 405])

What we have just done is complete 1 million multiplications instantly, if you try this
using loops you would be waiting quite a bit longer than an instance! We have seen how
powerful numpy arrays are but how do we access elements of them. Luckily we can access
elements as we did for lists. We will give some examples below applied to the result array
from the previous example:

>>> result[10]
2232
>>> result[10:20]
array([2232, 7140, 574, 1764, 0, 90, 632, 9207, 2520, 170])
>>> result[:-1]
array([ 539, 1392, 143, ..., 665, 374, 2976])
>>> result[-3:-1]
array([ 374, 2976])

You can see that we access elements in much the same we did for lists.
Now having introduced the concept of an array alongside everything else means we can

start looking at Pandas starting with Series.

16.2 Series

We can import pandas as follows.

>>> import pandas as pd

Like before with numpy we use the alias pd which is the general convention used in the
documentation for the package.

The first thing that we will cover here is the concept of a Series, we shall demonstrate this
first by an example.

>>> import pandas as pd
>>> point_dict = {"Bulgaria": 45, "Romania": 43, "Israel": 30,

"Denmark": 42}
>>> point_series = pd.Series(point_dict)
>>> point_series
Bulgaria 45
Romania 43
Israel 30
Denmark 42
dtype: int64

We created a dictionary containing the keys of country names and the median age of citi-
zens (source worldomometers.info) in that country and passes then in to the Series method
to create point series. We can access the elements of the series as follows:
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>>> point_series[0]
45
>>> point_series[1:3]
Romania 43
Israel 30
dtype: int64
>>> point_series[-1]
42
>>> point_series[:-1]
Bulgaria 45
Romania 43
Israel 30
dtype: int64
>>> point_series[[1,3]]
Romania 43
Denmark 42
dtype: int64

You can see we can access the first element as if it was a list using the position of the value
we want. We can also use the colon separated positional values as well as negative indices
which we have covered earlier. There is a different way we can access elements of the series
and that is by passing a list of the positions we want from the series. So if we want the first
and third elements we have the values 0 and 2 in the list.

We have just accessed the values of the dict that we passed in to create the series but what
about the keys and what use do they have in the series? What we will now show is that the
series can also be accessed like it was a dictionary:

>>> point_series.index
Index(['Bulgaria', 'Romania', 'Israel', 'Denmark'], dtype='object')
>>> point_series['Bulgaria']
45

We see the series has an index which is the key of the dictionary and we can access the
values using the dictionary access approach we have seen earlier. Now, when we covered
dictionaries earlier we saw that we could try and access a value from a key that isn’t in the
dictionary and it would throw an exception which is the same for the series.

>>> point_series["England"]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/Users/rob/anaconda/lib/python2.7/site-packages/pandas/core/series.py",

line 601, in __getitem__

result = self.index.get_value(self, key)

File "/Users/rob/anaconda/lib/python2.7/site-packages/pandas/indexes/base.py",

line 2183, in get_value

raise e1

KeyError: "England"

>>> point_series.get("England")
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Here, we have shown what happens but you can see we have used the method get to try
and access the value for the index England. As opposed to throwing an exception it just
returns None.

Given we can now access elements of a series we will now show how you can operate on
it. Given the series is based on the concept of an array in numpy you can do much of what
you would in numpy to the series. So, now we will create series of random numbers and
show how we can operate on them.

>>> import numpy as np
>>> np.random.rand(10)
array([ 0.97886013, 0.18080097, 0.84464838, 0.13603242, 0.23835642,

0.69567161, 0.64771013, 0.67115685, 0.73923655, 0.22755168])

Here, we have used numpy’s random methods to generate an array of 10 random numbers
between 0 and 1. This can be assigned to a series relatively easily.

>>> import numpy as np
>>> import pandas as pd
>>> random_series = pd.Series(np.random.rand(10))
>>> random_series
0 0.173617
1 0.778444
2 0.700113
3 0.170871
4 0.846544
5 0.157117
6 0.420151
7 0.960854
8 0.759314
9 0.841746
dtype: float64

We can operate on this in much the same way as we do with a numpy array.

>>> import numpy as np
>>> import pandas as pd
>>> random_series_one = pd.Series(np.random.rand(10))
>>> random_series_two = pd.Series(np.random.rand(10))
>>> random_series_one + random_series_two
0 1.178019
1 0.940846
2 0.609092
3 0.888857
4 1.014994
5 0.531090
6 0.486204
7 0.793577
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8 1.177649
9 0.661979
dtype: float64
>>> random_series_one - random_series_two
0 -0.410520
1 -0.757653
2 -0.412827
3 -0.154943
4 -0.465986
5 -0.372245
6 -0.245580
7 0.692818
8 -0.633033
9 -0.028016
dtype: float64
>>> random_series_one / random_series_two
0 0.483148
1 0.107856
2 0.192055
3 0.703117
4 0.370706
5 0.175844
6 0.328819
7 14.752071
8 0.300779
9 0.918792
dtype: float64
>>> random_series_one * random_series_two
0 0.304801
1 0.077789
2 0.050142
3 0.191515
4 0.203267
5 0.035873
6 0.044021
7 0.037442
8 0.246531
9 0.109358
dtype: float64

Now that all looks the same as we have seen for arrays earlier, however one key difference
is that we can operate on splices of the series.

>>> random_series_one[1:] * random_series_two[:-1]
0 NaN
1 0.077789



�

� �

�

110 16 Pandas

2 0.050142
3 0.191515
4 0.203267
5 0.035873
6 0.044021
7 0.037442
8 0.246531
9 NaN
dtype: float64

What we see is that the multiplication is done on the elements of the series by index.
So where we don’t have an index for both series we get an NaN shown.

We earlier defined a series by using a dictionary but we can define a series using a list or
array as follows:

>>> pd.Series([1,2,3,4,5,6])
0 1
1 2
2 3
3 4
4 5
5 6
dtype: int64
>>> pd.Series(np.array([1,2,3,4,5,6]))
0 1
1 2
2 3
3 4
4 5
5 6
dtype: int64

As you can see the index is defined automatically by pandas, however if we want a specific
index we can define one as follows:

>>> pd.Series([1, 2, 3, 4, 5, 6], index=["a", "b", "c", "d", "e", "f"])
a 1
b 2
c 3
d 4
e 5
f 6
dtype: int64

So, here we pass an optional list to the index variable and this gets defined as the index
for the series. It must be noted that the length of the index list must match that of the list
or array that we want to make a series.
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16.3 DataFrames

Having looked at series, we will now turn our attention to data frames which are arguably
the most popular aspect of pandas and are certainly what I use the most. They are essentially
an object that carries data in column and row format, so for many they will mimic what is
held in a spreadsheet or for others the content of a database table.

We will start off by looking at how we create a DataFrame and like with a series there are
many ways we can do it.

>>> countries = ["United Kingdom","France","Germany","Spain",
"Italy"]

>>> median_age = [40,42,46,45,47]
>>> country_dict = {"name": countries, "median_age": median_age}
>>> country_df = pd.DataFrame(country_dict)
>>> country_df

name median_age
0 United Kingdom 40
1 France 42
2 Germany 46
3 Spain 45
4 Italy 47

What we have done above is begin by setting up two lists, one containing names and
another containing values. These are then put into a dictionary with keys name and value.
This dictionary is then passed into the DataFrame method of pandas and what we get back is
a DataFrame object with column names of name and values. We can see here that the index
is automatically defined as 0–4 to correspond with the number of elements in each list.

>>> countries = pd.Series( ["United Kingdom","France",
"Germany","Spain","Italy"])

>>> median_age = pd.Series([40,42,46,45,47])
>>> country_dict = {"name": countries, "median_age": median_age}
>>> country_df = pd.DataFrame(country_dict)
>>> country_df

name median_age
0 United Kingdom 40
1 France 42
2 Germany 46
3 Spain 45
4 Italy 47

We can do the same using a dictionary of Series again assigning the Series to a dictionary
and passing it into the DataFrame method. The same would happen if we used numpy
arrays.

Next, we create a DataFrame using a list of tuples where the data is now country name,
median age and density of the country.
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>>> data = [("United Kingdom", 40, 281), ("France", 42, 119),
("Italy", 46, 206)]

>>> data_df = pd.DataFrame(data)
>>> data_df

0 1 2
0 United Kingdom 40 281
1 France 42 119
2 Italy 46 206

Here, we have created a list of tuples and we then pass those into the DataFrame method
and it returns a three column by three row data frame. Unlike before we not only have auto
assigned index values but we also have auto assigned column names which aren’t the most
useful, however we will later show how to assign both. The same applies here for a list of
lists, list of series, or a list or arrays. It also works for a list of dictionaries, however the
behaviour is slightly different.

>>> data = [{"country": "United Kingdom", "median_age":40, "density": 281},
{"country": "France", "median_age": 42, "density": 119},
{"country":"Italy", "median_age": 46, "density":206}]

>>> data_df = pd.DataFrame(data)
>>> data_df

country density median_age
0 United Kingdom 281 40
1 France 119 42
2 Italy 206 46

When the list of dictionaries is passed in we get the same DataFrame, however now we
have column names from the dictionary. On the face of it everything seems like it works
the same as for lists of lists, however if we change some of the keys we get some different
behaviour.

>>> data = [{"country": "United Kingdom", "median_age":40, "density": 281},
{"country": "France", "median_age": 42, "density": 119},
{"country":"Italy", "median": 46, "density":206}]

>>> data_df = pd.DataFrame(data)
>>> data_df

country density median median_age
0 United Kingdom 281 NaN 40.0
1 France 119 NaN 42.0
2 Italy 206 46.0 NaN

What we see here is that as every dictionary doesn’t have all the same keys pandas fills
in the missing values with NaN. Next, we will look at how to access elements of the data
frame.

>>> data = [{"country": "United Kingdom", "median_age":40, "density": 281},
{"country": "France", "median_age": 42, "density": 119},
{"country":"Italy", "median_age": 46, "density":206}]

>>> data_df = pd.DataFrame(data)
>>> data_df
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country density median_age
0 United Kingdom 281 40
1 France 119 42
2 Italy 206 46
>>> data_df['country']
0 United Kingdom
1 France
2 Italy
Name: country, dtype: object
>>> data_df["country"][0]
'United Kingdom'
>>> data_df["country"][0:2]
0 United Kingdom
1 France
Name: country, dtype: object

We have done quite a lot here. The first thing is that we have defined the data frame based
on the list of dictionaries as we showed previously. We then accessed all the elements of the
column country by passing the name of the column as the key of the data frame. We next
showed how we could access the first element of that by adding the index of the value we
wanted. This is an important distinction as we aren’t asking for the first element, we are
instead asking for the value of the column with index value 0. Lastly, we select the rows of
the country with index 0 and 1 in the usual way we would for a list, but again we are asking
for specific index rows.
>>> data_df["country"][-1]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/Users/rob/anaconda/lib/python2.7/site-packages/pandas/core/series.py",

line 601, in __getitem__

result = self.index.get_value(self, key)

File "/Users/rob/anaconda/lib/python2.7/site-packages/pandas/indexes/base.py"

, line 2169, in get_value

tz=getattr(series.dtype, 'tz', None))

File "pandas/index.pyx", line 105, in pandas.index.IndexEngine.get_value

(pandas/index.c:3567)

File "pandas/index.pyx", line 113, in pandas.index.IndexEngine.get_value

(pandas/index.c:3250)

File "pandas/index.pyx", line 161, in pandas.index.IndexEngine.get_loc

(pandas/index.c:4289)

File "pandas/src/hashtable_class_helper.pxi", line 404, in

pandas.hashtable.Int64HashTable.get_item (pandas/hashtable.c:8555)

File "pandas/src/hashtable_class_helper.pxi", line 410, in

pandas.hashtable.Int64HashTable.get_item (pandas/hashtable.c:8499)

KeyError: -1

Here, we asked for the last value of the column country as we would with a list, however
it threw an error because there is no index −1 in the index for the data frame. So we can’t
treat the data frame as we would a list and we need to have an understanding of the index.
For any data frame we can find out the index and columns as follows:

>>> data_df.index
RangeIndex(start=0, stop=3, step=1)
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>>> data_df.columns
Index(['country', 'density', 'median_age'], dtype='object')

Here, it shows the index starting at 0 and stopping at 3 with the step used each time, it
also shows the columns as a list of each name. We can change the index of a data frame as
follows:

>>> data_df.index = ["a","b","c"]
>>> data_df

country density median_age
a United Kingdom 281 40
b France 119 42
c Italy 206 46

Now if we want to access the first element of the country column we do so as follows:

>>> data_df["country"]["a"]
'United Kingdom'

Similarly if we want to change the column names of a data frame we do so as follows:

>>> data_df.columns = ["country_name","density","median_age"]
>>> data_df

country_name density median_age
a United Kingdom 281 40
b France 119 42
c Italy 206 46

Given we have changed the index to strings, the question is how do we access the nth
row if we don’t know what the index is. Luckily there is a method of data frames called iloc
which allow us to access the nth row by just passing in the number of the row that we want.
It works as follows:

>>> data_df.iloc[0]
country_name United Kingdom
density 281
median_age 40
Name: a, dtype: object
>>> data_df.iloc[0:1]

country_name density median_age
a United Kingdom 281 40
>>> data_df.iloc[0:2]

country_name density median_age
a United Kingdom 281 40
b France 119 42
>>> data_df.iloc[-1]
country_name Italy
density 206
median_age 46
Name: c, dtype: object
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We can see we can access rows from the data frame as if it was a list, which is cool.
Now that we have a grasp of DataFrames we will cover how to add to one. Let’s say we

want to add a column of all ones to our DataFrames we can do so as follows:

>>> data_df["ones"] =1
>>> data_df

country_name density median_age ones
a United Kingdom 281 40 1
b France 119 42 1
c Italy 206 46 1

We can then delete a column in a couple of ways:

>>> del data_df["ones"]
>>> data_df

country_name density median_age
a United Kingdom 281 40
b France 119 42
c Italy 206 46
>>> data_df["ones"] =1
>>> data_df

country_name density median_age ones
a United Kingdom 281 40 1
b France 119 42 1
c Italy 206 46 1
>>> data_df.pop("ones")
a 1
b 1
c 1
Name: ones, dtype: int64
>>> data_df

country_name density median_age
a United Kingdom 281 40
b France 119 42
c Italy 206 46

Here, we first used the del method to delete the ones column, we then added it again and
then used the pop method to remove the column. Note that when we use the del method
we simply delete from the DataFrame but using the pop method we return the column we
have popped as well as removing it from the DataFrame.

>>> data_df["ones"] = 1
>>> data_df["new_ones"] = data_df["ones"][1:2]
>>> data_df

country_name density median_age ones new_ones
a United Kingdom 281 40 1 NaN
b France 119 42 1 1.0
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c Italy 206 46 1 NaN
>>> del data_df["ones"]
>>> del data_df["new_ones"]

What we see here is that when we use a partial column to form a new one pandas knows
to fill in the gaps with the NaN value. There is another approach where we can insert a
column and put it in a specific position:

>>> data_df.insert(1, "twos", 2)
>>> data_df

country_name twos density median_age
a United Kingdom 2 281 40
b France 2 119 42
c Italy 2 206 46
>>> del data_df["twos"]

Here, we create a column containing the integer value 2 and puts it into position 1
(remember position 0 is the first position) under the title twos. This gives us full control of
how we add to the data frame.

So, now we have a grasp of what a DataFrame is we can start doing some cool things to
it. Let’s say we want to take all data where the value is less than 20.

>>> data_df['density']<200
a False
b True
c False
Name: density, dtype: bool
>>> data_df[data_df['density']<200]

country_name density median_age
b France 119 42

What we have done here is test the values in data_df values column to see which ones are
less than 20. This concept is a pretty key, we test every element in the column to see which
ones are less than 20 and return a boolean column to show which ones meet the criteria.
We can then pass this into the square brackets around a DataFrame and it returns the values
where the condition is true. We can do this on multiple boolean statements where anything
true across all the statements is returned, this is shown below.

>>> data_df[data_df['density']<250]
country_name density median_age

b France 119 42
c Italy 206 46
>>> data_df["median_age"] > 42
a False
b False
c True
Name: median_age, dtype: bool
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>>> data_df[(data_df['density']<250)
& (data_df["median_age"]>42)]

country_name density median_age
c Italy 206 46

It is important to note that the DataFrame isn’t changed in this instance it stays the same.
To use the DataFrame that is returned from such an operation you need to assign it to a
variable to use later.

>>> (data_df['density']<250) & (data_df["median_age"]>42)
a False
b False
c True
dtype: bool
>>> data_df['test'] = (data_df['density']<250)

& (data_df["median_age"]>42)
>>> data_df

country_name density median_age test
a United Kingdom 281 40 False
b France 119 42 False
c Italy 206 46 True
>>> del data_df['test']

Here, we have used the same test as used in the previous example and assigned it to a
column which is now part of the DataFrame. We could do the same thing if we wanted to
create another column that uses the data in data frame.

>>> data_df["density"].sum()

606

>>> data_df['density_proportion'] = data_df['density']/data_df['density'].sum()

>>> data_df

country_name density median_age test density_proportion

a United Kingdom 281 40 False 0.463696

b France 119 42 False 0.196370

c Italy 206 46 True 0.339934

Here, we have divided all values in the value column with the sum of all the values in the
column which we can see is 606 to give us a new column of data. We can also perform stan-
dard mathematical operations to a column. Below we use the numpy exponential function
to exponentiate every element of the column:

>>> import numpy as np
>>> np.exp(data_df["density"])
a 1.088302e+122
b 4.797813e+51
c 2.915166e+89
Name: density, dtype: float64
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We can also loop across a data frame as we have seen before with lists.

>>> for df in data_df:
... df
...
'country_name'
'density'
'median_age'
'density_proportion'

This isn’t exactly what we thought we would get as it only loops across the column names,
we really want to get into the meat of the data frame to that we have to introduce the concept
of transpose.

>>> data_df.T
a b c

country_name United Kingdom France Italy
density 281 119 206
median_age 40 42 46
density_proportion 0.463696 0.19637 0.339934

What we have done here is turn the DataFrame the other way so now the columns are
the index. To loop over it we use the method iteritems method.

>>> for df in data_df.T.iteritems():
... df
...
('a', country_name United Kingdom
density 281
median_age 40
density_proportion 0.463696
Name: a, dtype: object)
('b', country_name France
density 119
median_age 42
density_proportion 0.19637
Name: b, dtype: object)
('c', country_name Italy
density 206
median_age 46
density_proportion 0.339934
Name: c, dtype: object)

What we see here is that when we use the iteritems method over the data frame and at
each instance of the loop it returns a two element tuple. The first element is the index and
the second the values in the row stored in a series. The better way to access it would be to
assign each element to a variable allowing us to have better access to each part.
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>>> for ind, row in data_df.T.iteritems():
... ind
... row['country_name']
...
'a'
'United Kingdom'
'b'
'France'
'c'
'Italy'

We assign the first element of the tuple to the variable ind and the series of the row in
the variable row. Then we access the country column of that row and show it here with the
index. Also we can avoid using the transpose of the data frame by directly accessing the row
via the iterrows method.

>>> for ind, row in data_df.iterrows():
... ind
... row
...
'a'
country_name United Kingdom
density 281
median_age 40
density_proportion 0.463696
Name: a, dtype: object
'b'
country_name France
density 119
median_age 42
density_proportion 0.19637
Name: b, dtype: object
'c'
country_name Italy
density 206
median_age 46
density_proportion 0.339934
Name: c, dtype: object

We have looked at how to add columns to a data frame but now we will look at how to
add rows. The way we will consider is using the append method on data frames. We do so
as follows:

>>> data = [{"country": "United Kingdom", "median_age":40, "density": 281},
{"country": "France", "median_age": 42, "density": 119},
{"country":"Italy", "median_age": 46, "density":206}]

>>> data_df = pd.DataFrame(data)
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>>> data_df
country density median_age

0 United Kingdom 281 40
1 France 119 42
2 Italy 206 46
>>> new_row = [{"country": "Iceland", "median_age": 37, "density": 3}]
>>> new_row_data_df = pd.DataFrame(new_row)
>>> new_row_data_df

country density median_age
0 Iceland 3 37
>>> data_df.append(new_row_data_df)

country density median_age
0 United Kingdom 281 40
1 France 119 42
2 Italy 206 46
0 Iceland 3 37
>>> data_df

country density median_age
0 United Kingdom 281 40
1 France 119 42
2 Italy 206 46

So we setup the initial data as we have done earlier but here make a fresh copy of the origi-
nal data. We then setup a DataFrame of the new row and pass that into the append method
of the original data frame. What we then see is the DataFrame containing the new row
however it has an index of zero which we already had in the original DataFrame. We also
see that when we call the DataFrame after this operation it no longer has the new row.
If we look at the index problem we can resolve this by using the argument ignore_index as
follows:

>>> data_df.append(new_row_data_df, ignore_index=True)
country density median_age

0 United Kingdom 281 40
1 France 119 42
2 Italy 206 46
3 Iceland 3 37
>>> data_df

country density median_age
0 United Kingdom 281 40
1 France 119 42
2 Italy 206 46

So that is sorted but what about the fact that the new row hasn’t become part of the data
frame. Well to get that to work we need to assign the data frame to a new variable as the
append method doesn’t change the original DataFrame. We could re-assign the data frame
to the same name data_df, however we would lose the memory of what we have done so
we could assign it to a new variable.

>>> new_data_df = data_df.append(new_row_data_df, ignore_index=True)
>>> new_data_df
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country density median_age
0 United Kingdom 281 40
1 France 119 42
2 Italy 206 46
3 Iceland 3 37

16.4 Merge, Join, and Concatenation

Initially, we will consider the concept of concatenating DataFrames. The manner in which
we can do this is to create a list of DataFrames and pass them into the pd.concat method.
These DataFrames will build on what we have looked at in the previous chapter by using
the following country data:

● density
● median age
● population (millions)
● population change (%)

>>> df1 = pd.DataFrame({"density": [119, 206, 240, 94],
... "median_age": [42, 47, 46, 45],
... "population": [65, 60, 83, 46],
... "population_change": [0.22, -0.15, 0.32, 0.04]},
... index=['France', 'Italy', 'Germany', 'Spain'])
>>> df2 = pd.DataFrame({"density": [153, 464, 36, 25],
... "median_age": [38, 28, 38, 33],
... "population": [1439, 1380, 331, 212],
... "population_change": [0.39, 0.99, 0.59, 0.72]},
... index=['China', 'India', 'USA', 'Brazil'])
>>> df3 = pd.DataFrame({"density": [9, 66, 347, 103],
... "median_age": [40, 29, 48, 25],
... "population": [145, 128, 126, 102],
... "population_change": [0.04, 1.06, -0.30, 1.94]},
... index=['Russia', 'Mexico', 'Japan', 'Egypt'])
>>> frames = [df1, df2, df3]
>>> result = pd.concat(frames)
>>> result

density median_age population population_change
France 119 42 65 0.22
Italy 206 47 60 -0.15
Germany 240 46 83 0.32
Spain 94 45 46 0.04
China 153 38 1439 0.39
India 464 28 1380 0.99
USA 36 38 331 0.59
Brazil 25 33 212 0.72
Russia 9 40 145 0.04
Mexico 66 29 128 1.06
Japan 347 48 126 -0.30
Egypt 103 25 102 1.94
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What we did was to create a list of DataFrames and then by passing them into the
pd.concat method we get the result shown which is DataFrame with columns density,
median_age, population, population_change and rows indexed with country names. But
what if we did not have the index values as shown in the example:
>>> df1 = pd.DataFrame({"density": [119, 206, 240, 94],

... "median_age": [42, 47, 46, 45],

... "population": [65, 60, 83, 46],

... "population_change": [0.22, -0.15, 0.32, 0.04],

... "country_name": ['France', 'Italy', 'Germany', 'Spain']})

>>> df2 = pd.DataFrame({"density": [153, 464, 36, 25],

... "median_age": [38, 28, 38, 33],

... "population": [1439, 1380, 331, 212],

... "population_change": [0.39, 0.99, 0.59, 0.72],

... "country_name": ['China', 'India', 'USA', 'Brazil']})

>>> df3 = pd.DataFrame({"density": [9, 66, 347, 103],

... "median_age": [40, 29, 48, 25],

... "population": [145, 128, 126, 102],

... "population_change": [0.04, 1.06, -0.30, 1.94],

... "country_name": ['Russia', 'Mexico', 'Japan', 'Egypt']})

>>> frames = [df1, df2, df3]

>>> result = pd.concat(frames)

>>> result

density median_age population population_change country_name

0 119 42 65 0.22 France

1 206 47 60 -0.15 Italy

2 240 46 83 0.32 Germany

3 94 45 46 0.04 Spain

0 153 38 1439 0.39 China

1 464 28 1380 0.99 India

2 36 38 331 0.59 USA

3 25 33 212 0.72 Brazil

0 9 40 145 0.04 Russia

1 66 29 128 1.06 Mexico

2 347 48 126 -0.30 Japan

3 103 25 102 1.94 Egypt

Here, we see that the index is retained for each DataFrame which when created all have
the index 0, 1, 2, 3. To have an index 0–11 we need to use the ignore_index argument and
set it to True.

>>> result = pd.concat(frames, ignore_index=True)
>>> result

density median_age population population_change country_name
0 119 42 65 0.22 France
1 206 47 60 -0.15 Italy
2 240 46 83 0.32 Germany
3 94 45 46 0.04 Spain
4 153 38 1439 0.39 China
5 464 28 1380 0.99 India
6 36 38 331 0.59 USA
7 25 33 212 0.72 Brazil
8 9 40 145 0.04 Russia
9 66 29 128 1.06 Mexico
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10 347 48 126 -0.30 Japan
11 103 25 102 1.94 Egypt

We can expand on this example by creating a list of DataFrames as we did previously and
concat them together but now we use the argument keys and set it to a list containing region
one, region two, and region three.
>>> df1 = pd.DataFrame({"density": [119, 206, 240, 94],

... "median_age": [42, 47, 46, 45],

... "population": [65, 60, 83, 46],

... "population_change": [0.22, -0.15, 0.32, 0.04],

... "country_name": ['France', 'Italy', 'Germany', 'Spain']})

>>> df2 = pd.DataFrame({"density": [153, 464, 36, 25],

... "median_age": [38, 28, 38, 33],

... "population": [1439, 1380, 331, 212],

... "population_change": [0.39, 0.99, 0.59, 0.72],

... "country_name": ['China', 'India', 'USA', 'Brazil']})

>>> df3 = pd.DataFrame({"density": [9, 66, 347, 103],

... "median_age": [40, 29, 48, 25],

... "population": [145, 128, 126, 102],

... "population_change": [0.04, 1.06, -0.30, 1.94],

... "country_name": ['Russia', 'Mexico', 'Japan', 'Egypt']})

>>> frames = [df1, df2, df3]

>>> result = pd.concat(frames, keys=["region_one", "region_two", "region_three"])

>>> result

density median_age population population_change country_name

region_one 0 119 42 65 0.22 France

1 206 47 60 -0.15 Italy

2 240 46 83 0.32 Germany

3 94 45 46 0.04 Spain

region_two 0 153 38 1439 0.39 China

1 464 28 1380 0.99 India

2 36 38 331 0.59 USA

3 25 33 212 0.72 Brazil

region_three 0 9 40 145 0.04 Russia

1 66 29 128 1.06 Mexico

2 347 48 126 -0.30 Japan

3 103 25 102 1.94 Egypt

>>> result.loc['region_two']

density median_age population population_change country_name

0 153 38 1439 0.39 China

1 464 28 1380 0.99 India

2 36 38 331 0.59 USA

3 25 33 212 0.72 Brazil

In running the code what we see is that passing the keys in means we have what appears
to be another level of the DataFrame away from our index in the previous example which
allows us to select the one of the DataFrames used in the concat. If we look at the index of
the result we get the following:

>>> result.index
MultiIndex(levels=[['region_one', 'region_two', 'region_three'],

[0, 1, 2, 3]],
codes=[[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2],

[0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]])
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This is commonly referred to a multilevel index as the name would suggest and what
it does is tell us what the index value each element has. So the levels are [“region_one”,
“region_two”, “region_three”] and [0, 1, 2, 3], which are denoted in levels. The index for
each row is then determined using the label which has two lists of eight elements with
the first one having values 0, 1, 2 which corresponds to region one, region two and region
three whilst the second has values 0, 1, 2, 3 which refer to the levels 0, 1, 2, 3. We could
name these levels by using the optional name argument.
>>> result = pd.concat(frames, keys=["region_one", "region_two",

"region_three"], names = ["region","item"])

>>> result

density median_age population population_change country_name

region item

region_one 0 119 42 65 0.22 France

1 206 47 60 -0.15 Italy

2 240 46 83 0.32 Germany

3 94 45 46 0.04 Spain

region_two 0 153 38 1439 0.39 China

1 464 28 1380 0.99 India

2 36 38 331 0.59 USA

3 25 33 212 0.72 Brazil

region_three 0 9 40 145 0.04 Russia

1 66 29 128 1.06 Mexico

2 347 48 126 -0.30 Japan

3 103 25 102 1.94 Egypt

In the previous example we used concat to concatenate the DataFrames together how-
ever there are other ways to use it which we will demonstrate now by concatenating urban
population percentage from France, Italy, Argentina, and Thailand to our initial
DataFrame.
>>> df1 = pd.DataFrame({"density": [119, 206, 240, 94],

... "median_age": [42, 47, 46, 45],

... "population": [65, 60, 83, 46],

... "population_change": [0.22, -0.15, 0.32, 0.04]},

... index=['France', 'Italy', 'Germany', 'Spain'])

>>> df4 = pd.DataFrame({"urban_population": [82, 69, 93, 51]},

... index=['France', 'Italy', 'Argentina', 'Thailand'])

>>> result = pd.concat([df1, df4], axis=1, sort=False)

>>> result

density median_age population population_change urban_population

France 119.0 42.0 65.0 0.22 82.0

Italy 206.0 47.0 60.0 -0.15 69.0

Germany 240.0 46.0 83.0 0.32 NaN

Spain 94.0 45.0 46.0 0.04 NaN

Argentina NaN NaN NaN NaN 93.0

Thailand NaN NaN NaN NaN 51.0

Here, we have used concat with a list of DataFrames as we have done before but now we
pass in the argument axis = 1. Now the axis argument says we concatenate on the columns,
here 0 is index and 1 is columns. So, we see commonality in the index with France and Italy
so we can add the extra column on and fill the values that are not common with NaN. Here,
we have set the sort to be False which means we keep the order as if the two were joined
one below the other. If we set the value to be True we get the following:
>>> result = pd.concat([df1, df4], axis=1, sort=True)

>>> result
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density median_age population population_change urban_population

Argentina NaN NaN NaN NaN 93.0

France 119.0 42.0 65.0 0.22 82.0

Germany 240.0 46.0 83.0 0.32 NaN

Italy 206.0 47.0 60.0 -0.15 69.0

Spain 94.0 45.0 46.0 0.04 NaN

Thailand NaN NaN NaN NaN 51.0

We can see that with sort set to True we get the values sorted by index order. Below we
can also see what happens if we run the same query with the axis set to 0.

>>> result = pd.concat([df1, df4], axis=0, sort=False)

>>> result

density median_age population population_change urban_population

France 119.0 42.0 65.0 0.22 NaN

Italy 206.0 47.0 60.0 -0.15 NaN

Germany 240.0 46.0 83.0 0.32 NaN

Spain 94.0 45.0 46.0 0.04 NaN

France NaN NaN NaN NaN 82.0

Italy NaN NaN NaN NaN 69.0

Argentina NaN NaN NaN NaN 93.0

Thailand NaN NaN NaN NaN 51.0

What we do is just concatenate the DataFrames one below each other with duplication
of the index for France and Italy.

Concat also has an extra argument join that we will now explore and set the value to join.

>>> df1 = pd.DataFrame({"density": [119, 206, 240, 94],

... "median_age": [42, 47, 46, 45],

... "population": [65, 60, 83, 46],

... "population_change": [0.22, -0.15, 0.32, 0.04]},

... index=['France', 'Italy', 'Germany', 'Spain'])

>>> df4 = pd.DataFrame({"urban_population": [82, 69, 93, 51]},

... index=['France', 'Italy', 'Argentina', 'Thailand'])

>>> result = pd.concat([df1, df4], axis=1, join="inner")

>>> result

density median_age population population_change urban_population

France 119 42 65 0.22 82

Italy 206 47 60 -0.15 69

As you can see we only have two rows returned which if you look back at the example
before are the only two rows where the two DataFrames have values in columns. The inner
join is similar to that of a database join which we will cover later in the course however here
we don’t specify a key to use it on.

Next, we add argument join_axes and set it to df1.index.

>>> df1 = pd.DataFrame({"density": [119, 206, 240, 94],

... "median_age": [42, 47, 46, 45],

... "population": [65, 60, 83, 46],

... "population_change": [0.22, -0.15, 0.32, 0.04]},

... index=['France', 'Italy', 'Germany', 'Spain'])

>>> df4 = pd.DataFrame({"urban_population": [82, 69, 93, 51]},

... index=['France', 'Italy', 'Argentina', 'Thailand'])

>>> result = pd.concat([df1, df4], axis=1, join_axes=[df1.index])

>>> result
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density median_age population population_change urban_population

France 119 42 65 0.22 82.0

Italy 206 47 60 -0.15 69.0

Germany 240 46 83 0.32 NaN

Spain 94 45 46 0.04 NaN

What we see is that all we get back only the values for in the index in df1 and show all
the columns from the axis 1 argument. By default the join_axes are set to False.

Next, we will ignore the index by using the following arguments:
>>> df1 = pd.DataFrame({"density": [119, 206, 240, 94],

... "median_age": [42, 47, 46, 45],

... "population": [65, 60, 83, 46],

... "population_change": [0.22, -0.15, 0.32, 0.04]},

... index=['France', 'Italy', 'Germany', 'Spain'])

>>> df4 = pd.DataFrame({"urban_population": [82, 69, 93, 51]},

... index=['France', 'Italy', 'Argentina', 'Thailand'])

>>> result = pd.concat([df1, df4], ignore_index=True, sort=True)

>>> result

density median_age population population_change urban_population

0 119.0 42.0 65.0 0.22 NaN

1 206.0 47.0 60.0 -0.15 NaN

2 240.0 46.0 83.0 0.32 NaN

3 94.0 45.0 46.0 0.04 NaN

4 NaN NaN NaN NaN 82.0

5 NaN NaN NaN NaN 69.0

6 NaN NaN NaN NaN 93.0

7 NaN NaN NaN NaN 51.0

Here, we see the result has lost index values from df1 and df2 and retained all the infor-
mation filling the missing values with NaN.

We can achieve the same thing using the append method directly on a DataFrame.
>>> df1 = pd.DataFrame({"density": [119, 206, 240, 94],

... "median_age": [42, 47, 46, 45],

... "population": [65, 60, 83, 46],

... "population_change": [0.22, -0.15, 0.32, 0.04]},

... index=['France', 'Italy', 'Germany', 'Spain'])

>>> df4 = pd.DataFrame({"urban_population": [82, 69, 93, 51]},

... index=['France', 'Italy', 'Argentina', 'Thailand'])

>>> result = df1.append(df4, ignore_index=True, sort=True)

>>> result

density median_age population population_change urban_population

0 119.0 42.0 65.0 0.22 NaN

1 206.0 47.0 60.0 -0.15 NaN

2 240.0 46.0 83.0 0.32 NaN

3 94.0 45.0 46.0 0.04 NaN

4 NaN NaN NaN NaN 82.0

5 NaN NaN NaN NaN 69.0

6 NaN NaN NaN NaN 93.0

7 NaN NaN NaN NaN 51.0

The concat method is not only valid for DataFrames but can also work on Series.
>>> df1 = pd.DataFrame({"density": [119, 206, 240, 94],

... "median_age": [42, 47, 46, 45],
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... "population": [65, 60, 83, 46],

... "population_change": [0.22, -0.15, 0.32, 0.04]},

... index=['France', 'Italy', 'Germany', 'Spain'])

>>> s1 = pd.Series([82, 69, 93, 51],

... index=['France', 'Italy', 'Germany', 'Spain'],

... name="urban_population")

>>> s1

France 82

Italy 69

Germany 93

Spain 51

Name: urban_population, dtype: int64

>>> result = pd.concat([df1, s1], axis=1)

>>> result

density median_age population population_change urban_population

France 119 42 65 0.22 82

Italy 206 47 60 -0.15 69

Germany 240 46 83 0.32 93

Spain 94 45 46 0.04 51

What is worth noting is that we give the series a name and then that is set to be the name
of the column when the two are concatenated together. We could also pass in multiple series
in the list and we will add a second series with world share percentage.

>>> df1 = pd.DataFrame({"density": [119, 206, 240, 94],
... "median_age": [42, 47, 46, 45],
... "population": [65, 60, 83, 46],
... "population_change": [0.22, -0.15, 0.32, 0.04]},
... index=['France', 'Italy', 'Germany', 'Spain'])
>>> s1 = pd.Series([82, 69, 93, 51],
... index=['France', 'Italy', 'Germany', 'Spain'],
... name="urban_population")
>>> s2 = pd.Series([0.84, 0.78, 1.07, 0.60],
... index=['France', 'Italy', 'Germany', 'Spain'],
... name="world_share")
>>> s2
France 0.84
Italy 0.78
Germany 1.07
Spain 0.60
Name: world_share, dtype: float64
>>> result = pd.concat([df1, s1, s2], axis=1)
>>> result

density median_age ... urban_population world_share
France 119 42 ... 82 0.84
Italy 206 47 ... 69 0.78
Germany 240 46 ... 93 1.07
Spain 94 45 ... 51 0.60

[4 rows x 6 columns]

Next, we pass in series as a list to create a DataFrame and by specifying keys we can
rename the columns.
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>>> s1 = pd.Series([82, 69, 93, 51],
... index=['France', 'Italy', 'Germany', 'Spain'],
... name="urban_population")
>>> s2 = pd.Series([0.84, 0.78, 1.07, 0.60],
... index=['France', 'Italy', 'Germany', 'Spain'],
... name="world_share")
>>> pd.concat([s1, s2], axis=1, keys=["urban_population","world_share"])

urban_population world_share
France 82 0.84
Italy 69 0.78
Germany 93 1.07
Spain 51 0.60

Next, we take our three DataFrames from before and assign them to a dictionary each
with a key. The dictionary is then passed into concat.

>>> df1 = pd.DataFrame({"density": [119, 206, 240, 94],
... "median_age": [42, 47, 46, 45],
... "population": [65, 60, 83, 46],
... "population_change": [0.22, -0.15, 0.32, 0.04]},
... index=['France', 'Italy', 'Germany', 'Spain'])
>>> df2 = pd.DataFrame({"density": [153, 464, 36, 25],
... "median_age": [38, 28, 38, 33],
... "population": [1439, 1380, 331, 212],
... "population_change": [0.39, 0.99, 0.59, 0.72]},
... index=['China', 'India', 'USA', 'Brazil'])
>>> df3 = pd.DataFrame({"density": [9, 66, 347, 103],
... "median_age": [40, 29, 48, 25],
... "population": [145, 128, 126, 102],
... "population_change": [0.04, 1.06, -0.30, 1.94]},
... index=['Russia', 'Mexico', 'Japan', 'Egypt'])
>>> pieces = {"region_one": df1, "region_two": df2, "region_three": df3}
>>> result = pd.concat(pieces)
>>> result

density median_age population population_change
region_one France 119 42 65 0.22

Italy 206 47 60 -0.15
Germany 240 46 83 0.32
Spain 94 45 46 0.04

region_three Russia 9 40 145 0.04
Mexico 66 29 128 1.06
Japan 347 48 126 -0.30
Egypt 103 25 102 1.94

region_two China 153 38 1439 0.39
India 464 28 1380 0.99
USA 36 38 331 0.59
Brazil 25 33 212 0.72

In using a dictionary we automatically create a DataFrame with a multilevel index where
the first level is the key of the dictionary and the second level the index of the DataFrame.
We next do exactly the same but here pass in an optional keys list.
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>>> df1 = pd.DataFrame({"density": [119, 206, 240, 94],
... "median_age": [42, 47, 46, 45],
... "population": [65, 60, 83, 46],
... "population_change": [0.22, -0.15, 0.32, 0.04]},
... index=['France', 'Italy', 'Germany', 'Spain'])
>>> df2 = pd.DataFrame({"density": [153, 464, 36, 25],
... "median_age": [38, 28, 38, 33],
... "population": [1439, 1380, 331, 212],
... "population_change": [0.39, 0.99, 0.59, 0.72]},
... index=['China', 'India', 'USA', 'Brazil'])
>>> df3 = pd.DataFrame({"density": [9, 66, 347, 103],
... "median_age": [40, 29, 48, 25],
... "population": [145, 128, 126, 102],
... "population_change": [0.04, 1.06, -0.30, 1.94]},
... index=['Russia', 'Mexico', 'Japan', 'Egypt'])
>>> pieces = {"region_one": df1, "region_two": df2, "region_three": df3}
>>> result = pd.concat(pieces, keys=["region_two", "region_three"])
>>> result

density median_age population population_change
region_two China 153 38 1439 0.39

India 464 28 1380 0.99
USA 36 38 331 0.59
Brazil 25 33 212 0.72

region_three Russia 9 40 145 0.04
Mexico 66 29 128 1.06
Japan 347 48 126 -0.30
Egypt 103 25 102 1.94

Having looked at the concat and append methods we now consider how pandas deals
with database styles merging this is all done via the merge method. We will explain the
specifics around each join type by example, however it is worth explaining the basics of
database joins. So when we speak of database style joins we mean the mechanism to join
together tables via common values. The way in which the tables will look will depend on
the type of join with us showing examples for inner, outer, right, and left joins.

We will develop the example of country data to combine DataFrames that contain data
relating to common countries and now add in the data for the countries relating to the
percentage world share.
>>> left = pd.DataFrame({"density": [119, 206, 240, 94],

... "median_age": [42, 47, 46, 45],

... "population": [65, 60, 83, 46],

... "population_change": [0.22, -0.15, 0.32, 0.04],

... "country": ['France', 'Italy', 'Germany', 'Spain']})

>>> right = pd.DataFrame({"world_share": [0.84, 0.78, 1.07, 0.60],

... "country": ['France', 'Italy', 'Germany', 'Spain']})

>>> result = pd.merge(left, right, on="country")

>>> result

density median_age population population_change country world_share

0 119 42 65 0.22 France 0.84

1 206 47 60 -0.15 Italy 0.78

2 240 46 83 0.32 Germany 1.07

3 94 45 46 0.04 Spain 0.60
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In this example, we join two DataFrames on a common key which in this case is the
country name. The result is a DataFrame with only one country column where both left
and right are merged.

In the next example, we look at the merge method with a left and right DataFrame but
this time will have two keys to join on which will be passed in as a list to the on argument.
This allows us to join on multiple values being the same.
>>> left = pd.DataFrame({"density": [119, 206, 240, 94],

... "median_age": [42, 47, 46, 45],

... "population": [65, 60, 83, 46],

... "population_change": [0.22, -0.15, 0.32, 0.04],

... "country": ['France', 'Italy', 'Germany', 'Spain']})

>>> right = pd.DataFrame({"world_share": [0.84, 0.78, 1.07, 0.60],

... "population": [65, 60, 85, 46],

... "country": ['France', 'Italy', 'Germany', 'Spain']})

>>> result = pd.merge(left, right, on=["country", "population"])

>>> result

density median_age population population_change country world_share

0 119 42 65 0.22 France 0.84

1 206 47 60 -0.15 Italy 0.78

2 94 45 46 0.04 Spain 0.60

Here, we have joined on country and population and the resulting DataFrame is where
both DataFrames share the same country and population. So we lose one row of data from
each DataFrame where we do not share the population and country on both.

Next, we run the same code with an added argument which is how equal to left.
>>> left = pd.DataFrame({"density": [119, 206, 240, 94],

... "median_age": [42, 47, 46, 45],

... "population": [65, 60, 83, 46],

... "population_change": [0.22, -0.15, 0.32, 0.04],

... "country": ['France', 'Italy', 'Germany', 'Spain']})

>>> right = pd.DataFrame({"world_share": [0.84, 0.78, 1.07, 0.60],

... "population": [65, 60, 85, 46],

... "country": ['France', 'Italy', 'Germany', 'Spain']})

>>> result = pd.merge(left, right, how="left", on=["country", "population"])

>>> result

density median_age population population_change country world_share

0 119 42 65 0.22 France 0.84

1 206 47 60 -0.15 Italy 0.78

2 240 46 83 0.32 Germany NaN

3 94 45 46 0.04 Spain 0.60

The result of this is what is known as a left join. So we retain all the information of the
left DataFrame and only the elements from the right DataFrame with the same keys as the
left one. In this case we retain all information from the left DataFrame.

Next we consider a right join using the same example as before.
>>> left = pd.DataFrame({"density": [119, 206, 240, 94],

... "median_age": [42, 47, 46, 45],

... "population": [65, 60, 83, 46],

... "population_change": [0.22, -0.15, 0.32, 0.04],

... "country": ['France', 'Italy', 'Germany', 'Spain']})

>>> right = pd.DataFrame({"world_share": [0.84, 0.78, 1.07, 0.60],

... "population": [65, 60, 85, 46],

... "country": ['France', 'Italy', 'Germany', 'Spain']})
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>>> result = pd.merge(left, right, how="right", on=["country", "population"])

>>> result

density median_age population population_change country world_share

0 119.0 42.0 65 0.22 France 0.84

1 206.0 47.0 60 -0.15 Italy 0.78

2 94.0 45.0 46 0.04 Spain 0.60

3 NaN NaN 85 NaN Germany 1.07

Essentially this does the same as the left join, however its now the left DataFrame that is
joined onto the right one which is the reverse of what we saw with the left join.

The next join to consider is the outer join and again for completeness we use the previous
example to show how it works.

>>> left = pd.DataFrame({"density": [119, 206, 240, 94],

... "median_age": [42, 47, 46, 45],

... "population": [65, 60, 83, 46],

... "population_change": [0.22, -0.15, 0.32, 0.04],

... "country": ['France', 'Italy', 'Germany', 'Spain']})

>>> right = pd.DataFrame({"world_share": [0.84, 0.78, 1.07, 0.60],

... "population": [65, 60, 85, 46],

... "country": ['France', 'Italy', 'Germany', 'Spain']})

>>> result = pd.merge(left, right, how="outer", on=["country", "population"])

>>> result

density median_age population population_change country world_share

0 119.0 42.0 65 0.22 France 0.84

1 206.0 47.0 60 -0.15 Italy 0.78

2 240.0 46.0 83 0.32 Germany NaN

3 94.0 45.0 46 0.04 Spain 0.60

4 NaN NaN 85 NaN Germany 1.07

With the outer join its a combination of both the left and right joins so we have more rows
than are in each DataFrame as the join of left and right give different results so we need all
of these in the outer join result.

The last how option we consider is the inner join.

>>> left = pd.DataFrame({"density": [119, 206, 240, 94],

... "median_age": [42, 47, 46, 45],

... "population": [65, 60, 83, 46],

... "population_change": [0.22, -0.15, 0.32, 0.04],

... "country": ['France', 'Italy', 'Germany', 'Spain']})

>>> right = pd.DataFrame({"world_share": [0.84, 0.78, 1.07, 0.60],

... "population": [65, 60, 85, 46],

... "country": ['France', 'Italy', 'Germany', 'Spain']})

>>> result = pd.merge(left, right, how="inner", on=["country", "population"])

>>> result

density median_age population population_change country world_share

0 119 42 65 0.22 France 0.84

1 206 47 60 -0.15 Italy 0.78

2 94 45 46 0.04 Spain 0.60

This join gives only the result where we have commonality on both the left and right
DataFrame. This is also the default when we pass no how argument:

>>> result = pd.merge(left, right, on=["country", "population"])
>>> result
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density median_age population population_change country world_share
0 119 42 65 0.22 France 0.84
1 206 47 60 -0.15 Italy 0.78
2 94 45 46 0.04 Spain 0.60

Next, we join two DataFrames with columns population and country but we join only on
country using an outer join.
>>> left = pd.DataFrame({"population": [65, 60, 83, 46],

... "country": ['France', 'Italy', 'Germany', 'Spain']})

>>> right = pd.DataFrame({"population": [65, 60, 85, 46],

... "country": ['France', 'Italy', 'Germany', 'Spain']})

>>> result = pd.merge(left, right, on="country", how="outer")

>>> result

population_x country population_y

0 65 France 65

1 60 Italy 60

2 83 Germany 85

3 46 Spain 46

What we see here is that if the columns are the same and not used in the join the names get
changed. Here, we now have population_x and population_y which could be problematic
if you are assuming to operate on the column population. This makes sense as we need a
way to distinguish the two and pandas takes care of it for us.

Next, we do a merge using the indicator option set to True. Here, we have two DataFrames
with only a single column to merge on which is country and we want to do an outer join:
>>> left = pd.DataFrame({"population": [65, 60, 83, 46],

... "country": ['France', 'Italy', 'Germany', 'Spain']})

>>> right = pd.DataFrame({"population": [65, 60, 85, 46],

... "country": ['France', 'Italy', 'Germany', 'Spain']})

>>> result = pd.merge(left, right, on="country", how="outer", indicator=True)

>>> result

population_x country population_y _merge

0 65 France 65 both

1 60 Italy 60 both

2 83 Germany 85 both

3 46 Spain 46 both

What the result shows is how the join is done index by index position so this could be left,
right, or both. Here, we see that the join from one to the other is done on both.

The merge method is a pandas method to take account of two DataFrames, however we
can use a DataFrames join method to join one onto another.

>>> left = pd.DataFrame({"density": [119, 206, 240, 94],
... "median_age": [42, 47, 46, 45],
... "population": [65, 60, 83, 46],
... "population_change": [0.22, -0.15, 0.32, 0.04]},
... index= ['France', 'Italy', 'Germany', 'Spain'])
>>> right = pd.DataFrame({"world_share": [0.84, 0.78, 1.07, 0.60]},
... index = ['France', 'Italy', 'Germany',

'United Kingdom'])
>>> result = left.join(right)
>>> result
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density median_age population population_change world_share
France 119 42 65 0.22 0.84
Italy 206 47 60 -0.15 0.78
Germany 240 46 83 0.32 1.07
Spain 94 45 46 0.04 NaN

What we see is that the left DataFrame is retained and we join the right one where the
keys in right match the keys in left. Like with the merge we have the option how to join
the DataFrames so we can specify that like we have seen earlier. Using the same example
previously we can show this.
>>> left = pd.DataFrame({"density": [119, 206, 240, 94],

... "median_age": [42, 47, 46, 45],

... "population": [65, 60, 83, 46],

... "population_change": [0.22, -0.15, 0.32, 0.04]},

... index= ['France', 'Italy', 'Germany', 'Spain'])

>>> right = pd.DataFrame({"world_share": [0.84, 0.78, 1.07, 0.60]},

... index = ['France', 'Italy', 'Germany',

'United Kingdom'])

>>> result = left.join(right, how="outer")

>>> result

density median_age population population_change world_share

France 119.0 42.0 65.0 0.22 0.84

Germany 240.0 46.0 83.0 0.32 1.07

Italy 206.0 47.0 60.0 -0.15 0.78

Spain 94.0 45.0 46.0 0.04 NaN

United Kingdom NaN NaN NaN NaN 0.60

In using the outer join we retain all the information from both DataFrames as we have
seen when using a merge and where there are not values in one of the DataFrames they are
filled in using NaN. Using the same example with an inner join show the following results:
>>> left = pd.DataFrame({"density": [119, 206, 240, 94],
... "median_age": [42, 47, 46, 45],
... "population": [65, 60, 83, 46],
... "population_change": [0.22, -0.15, 0.32, 0.04]},
... index= ['France', 'Italy', 'Germany', 'Spain'])
>>> right = pd.DataFrame({"world_share": [0.84, 0.78, 1.07, 0.60]},
... index = ['France', 'Italy', 'Germany',

'United Kingdom'])
>>> result = left.join(right, how="inner")
>>> result

density median_age population population_change world_share
France 119 42 65 0.22 0.84
Italy 206 47 60 -0.15 0.78
Germany 240 46 83 0.32 1.07

As expected the inner join just retains where the DataFrames have common data which
here is for index France, Italy, and Germany.

We can achieve the same result without using a how if we pass in some different argu-
ments to the merge method. These arguments are left_index and right_index here in setting
them to True. We are getting the same behaviour as for the join method with how set to
inner.
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>>> left = pd.DataFrame({"density": [119, 206, 240, 94],
... "median_age": [42, 47, 46, 45],
... "population": [65, 60, 83, 46],
... "population_change": [0.22, -0.15, 0.32, 0.04]},
... index= ['France', 'Italy', 'Germany', 'Spain'])
>>> right = pd.DataFrame({"world_share": [0.84, 0.78, 1.07, 0.60]},
... index = ['France', 'Italy', 'Germany',

'United Kingdom'])
>>> result = pd.merge(left, right, left_index=True, right_index=True,)
>>> result

density median_age population population_change world_share
France 119 42 65 0.22 0.84
Italy 206 47 60 -0.15 0.78
Germany 240 46 83 0.32 1.07

Next, we use the argument ‘on’ with the join method when applied to the left DataFrame.
>>> left = pd.DataFrame({"density": [119, 206, 240, 94],

... "median_age": [42, 47, 46, 45],

... "population": [65, 60, 83, 46],

... "population_change": [0.22, -0.15, 0.32, 0.04],

... "country": ['France', 'Italy', 'Germany', 'Spain']})

>>> right = pd.DataFrame({"world_share": [0.84, 0.78, 1.07, 0.60]},

... index = ['France', 'Italy', 'Germany',

'United Kingdom'])

>>> left

density median_age population population_change country

0 119 42 65 0.22 France

1 206 47 60 -0.15 Italy

2 240 46 83 0.32 Germany

3 94 45 46 0.04 Spain

>>> right

world_share

France 0.84

Italy 0.78

Germany 1.07

United Kingdom 0.60

>>> result = left.join(right, on="country")

>>> result

density median_age population population_change country world_share

0 119 42 65 0.22 France 0.84

1 206 47 60 -0.15 Italy 0.78

2 240 46 83 0.32 Germany 1.07

3 94 45 46 0.04 Spain NaN

In specifying the on column which is country we join the index of right on this column
and we see that we now have a DataFrame indexed by the first DataFrame. This type of
approach is what you may see when using databases and you want to join on the id of the
column on the respective value in another table. This example can be extended to mul-
tiple values in the on argument however to do this you would require multilevel indexes
which will be covered later in the book. We can remove any NaN values by adding the how
argument and setting it to inner doing an inner join as shown below.
>>> left = pd.DataFrame({"density": [119, 206, 240, 94],

... "median_age": [42, 47, 46, 45],
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... "population": [65, 60, 83, 46],

... "population_change": [0.22, -0.15, 0.32, 0.04],

... "country": ['France', 'Italy', 'Germany', 'Spain']})

>>> right = pd.DataFrame({"world_share": [0.84, 0.78, 1.07, 0.60]},

... index = ['France', 'Italy', 'Germany',

'United Kingdom'])

>>> result = left.join(right, on="country", how="inner")

>>> result

density median_age population population_change country world_share

0 119 42 65 0.22 France 0.84

1 206 47 60 -0.15 Italy 0.78

2 240 46 83 0.32 Germany 1.07

The next thing we will consider is the important concept of missing data. We all hope to
work with perfect datasets but the reality is we generally won’t and having the ability to
work with missing or bad data is an important one. Luckily pandas offers some great tools
for dealing with this and we begin by showing how to identify where we have NaN in our
dataset.
>>> left = pd.DataFrame({"density": [119, 206, 240, 94],

"median_age": [42, 47, 46, 45],

"population": [65, 60, 83, 46],

"population_change": [0.22, -0.15, 0.32, 0.04],

"country": ['France', 'Italy', 'Germany', 'Spain']})

>>> right = pd.DataFrame({"world_share": [0.84, 0.78, 1.07, 0.60],

"population": [65, 60, 85, 46],

"country": ['France', 'Italy', 'Germany', 'Spain']})

>>> result = pd.merge(left, right, how="outer", on=["country", "population"])

>>> result

density median_age population population_change country world_share

0 119.0 42.0 65 0.22 France 0.84

1 206.0 47.0 60 -0.15 Italy 0.78

2 240.0 46.0 83 0.32 Germany NaN

3 94.0 45.0 46 0.04 Spain 0.60

4 NaN NaN 85 NaN Germany 1.07

>>> pd.isna(result['density'])

0 False

1 False

2 False

3 False

4 True

Name: density, dtype: bool

>>> result['median_age'].notna()

0 True

1 True

2 True

3 True

4 False

Name: median_age, dtype: bool

>>> result.isna()

density median_age population population_change country world_share

0 False False False False False False

1 False False False False False False

2 False False False False False True

3 False False False False False False

4 True True False True False False
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Here, we have taken the DataFrames we have seen before and created a result DataFrame
using the merge method with how set to outer. What this has done is given us a DataFrame
with NaN values and we can now demonstrate how you can find where these values
are within your DataFrame. We first consider the pandas isna method on a column of
the DataFrame which tests each element to see what is and what isn’t NaN. To achieve
the same thing we can use the notna() method on a column or all of our DataFrame, or
we could use isna() method which does the opposite of notna(). This makes it very easy to
determine what is and what isn’t NaN in our DataFrame.
>>> left = pd.DataFrame({"density": [119, 206, 240, 94],

"median_age": [42, 47, 46, 45],

"population": [65, 60, 83, 46],

"population_change": [0.22, -0.15, 0.32, 0.04],

"country": ['France', 'Italy', 'Germany', 'Spain']})

>>> right = pd.DataFrame({"world_share": [0.84, 0.78, 1.07, 0.60],

"population": [65, 60, 85, 46],

"country": ['France', 'Italy', 'Germany', 'Spain']})

>>> result = pd.merge(left, right, how="outer", on=["country", "population"])

>>> result

density median_age population population_change country world_share

0 119.0 42.0 65 0.22 France 0.84

1 206.0 47.0 60 -0.15 Italy 0.78

2 240.0 46.0 83 0.32 Germany NaN

3 94.0 45.0 46 0.04 Spain 0.60

4 NaN NaN 85 NaN Germany 1.07

>>> result['density'].dropna()

0 119.0

1 206.0

2 240.0

3 94.0

Name: density, dtype: float64

>>> result.dropna()

density median_age population population_change country world_share

0 119.0 42.0 65 0.22 France 0.84

1 206.0 47.0 60 -0.15 Italy 0.78

3 94.0 45.0 46 0.04 Spain 0.60

>>> result[result['density'].notna()]

density median_age population population_change country world_share

0 119.0 42.0 65 0.22 France 0.84

1 206.0 47.0 60 -0.15 Italy 0.78

2 240.0 46.0 83 0.32 Germany NaN

3 94.0 45.0 46 0.04 Spain 0.60

Taking the example one step further we can drop values from a column of the whole
DataFrame by using the dropna method. For the column we only drop the one value that
is NaN, however across the whole DataFrame we remove any row that has NaN in it. This
may not be ideal and instead we may want to remove the row where one column has NaN
and we can do that by passing and columns notna to the whole DataFrame.

16.5 DataFrame Methods

Now in the next example we will show some of the methods we can apply to a DataFrame.
Earlier we demonstrated the sum method, however pandas has lots more to offer and we
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will look at some of the more common mathematical ones. Here, we import the package
seaborn and load the iris dataset that comes with it giving us the data in a DataFrame.

>>> import seaborn as sns
>>> iris = sns.load_dataset('iris')
>>> iris.head()

sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa
>>> iris.tail()

sepal_length sepal_width petal_length petal_width species
145 6.7 3.0 5.2 2.3 virginica
146 6.3 2.5 5.0 1.9 virginica
147 6.5 3.0 5.2 2.0 virginica
148 6.2 3.4 5.4 2.3 virginica
149 5.9 3.0 5.1 1.8 virginica
>>> iris.head(10)

sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa
5 5.4 3.9 1.7 0.4 setosa
6 4.6 3.4 1.4 0.3 setosa
7 5.0 3.4 1.5 0.2 setosa
8 4.4 2.9 1.4 0.2 setosa
9 4.9 3.1 1.5 0.1 setosa
>>> iris.columns
Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width',

'species'],
dtype='object')

Following importing the package and the iris data we can access the top of the DataFrame
by using head which by default gives us the top five rows, we can use the tail method to get
the bottom five rows. We can get a defined number of rows by just passing the number
into the head or tail method and if we want just the columns back we can use the columns
method.

Having imported and accessed the data we now demonstrate some methods which we
can apply.

>>> iris.count()
sepal_length 150
sepal_width 150
petal_length 150
petal_width 150
species 150
dtype: int64
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>>> iris.count().sepal_length
150
>>> iris['sepal_length'].count()
150
>>> len(iris)
150

We can apply count to both the DataFrame and the column. When applied to the
DataFrame we return the length of each column. We can also get the specific column
length by either using the column name on the end of the count method or by accessing
the column and then applying the count method. If you want the number of rows in the
DataFrame as a whole you can use the len method on DataFrame.

>>> iris.corr()
sepal_length sepal_width petal_length petal_width

sepal_length 1.000000 -0.117570 0.871754 0.817941
sepal_width -0.117570 1.000000 -0.428440 -0.366126
petal_length 0.871754 -0.428440 1.000000 0.962865
petal_width 0.817941 -0.366126 0.962865 1.000000
>>> iris.corr()['petal_length']
sepal_length 0.871754
sepal_width -0.428440
petal_length 1.000000
petal_width 0.962865
Name: petal_length, dtype: float64
>>> iris.corr()['petal_length']['sepal_length']
0.8717537758865828
>>> iris.cov()

sepal_length sepal_width petal_length petal_width
sepal_length 0.685694 -0.042434 1.274315 0.516271
sepal_width -0.042434 0.189979 -0.329656 -0.121639
petal_length 1.274315 -0.329656 3.116278 1.295609
petal_width 0.516271 -0.121639 1.295609 0.581006
>>> iris.cov()['sepal_length']
sepal_length 0.685694
sepal_width -0.042434
petal_length 1.274315
petal_width 0.516271
Name: sepal_length, dtype: float64
>>> iris.cov()['sepal_length']['sepal_width']
-0.04243400447427296

The corr method applied to the DataFrame gives us the correlation between each variable
and we can limit that to one columns correlation with all others by passing the column
name or get the correlation between two columns by passing both column names. You can
also see the same applies with the cov method which calculates the covariance between
variables.
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>>> iris.cumsum().head()
sepal_length sepal_width ... petal_width species

0 5.1 3.5 ... 0.2 setosa
1 10 6.5 ... 0.4 setosasetosa
2 14.7 9.7 ... 0.6 setosasetosasetosa
3 19.3 12.8 ... 0.8 setosasetosasetosasetosa
4 24.3 16.4 ... 1 setosasetosasetosasetosasetosa
>>> iris.columns
Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width',
... 'species'], dtype='object')
>>> iris.cumsum()[['sepal_length', 'sepal_width', 'petal_length',
... 'petal_width']].tail()

sepal_length sepal_width petal_length petal_width
145 851.6 446.7 543 171.9
146 857.9 449.2 548 173.8
147 864.4 452.2 553.2 175.8
148 870.6 455.6 558.6 178.1
149 876.5 458.6 563.7 179.9

Next, we consider the cumsum method. This provides the cumulative sum as the columns
ascend. Now for those columns of numeric type the value ascends as expected with the cur-
rent value added to the previous value and so on to create an increasing value. The difference
comes when we consider a character-based column. The cumulative value here is just the
concatenation of the values together with the results looking very strange. To make things
easier to read we can restrict what we show for the return of the method by specifying a list
of the columns to show and as you can see we can even chain the tail command on the end.

>>> iris.describe()
sepal_length sepal_width petal_length petal_width

count 150.000000 150.000000 150.000000 150.000000
mean 5.843333 3.057333 3.758000 1.199333
std 0.828066 0.435866 1.765298 0.762238
min 4.300000 2.000000 1.000000 0.100000
25\% 5.100000 2.800000 1.600000 0.300000
50\% 5.800000 3.000000 4.350000 1.300000
75\% 6.400000 3.300000 5.100000 1.800000
max 7.900000 4.400000 6.900000 2.500000
>>> iris.sepal_length.describe()
count 150.000000
mean 5.843333
std 0.828066
min 4.300000
25\% 5.100000
50\% 5.800000
75\% 6.400000
max 7.900000
Name: sepal_length, dtype: float64
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Above we use the describe method which gives us a number of values namely the
count, mean, standard deviation, minimum, maximum and the 25, 50, and 75 percentiles.
This method only works on columns with the type to calculate the values so we not the
column species is not included. We can also use this on individual columns, the manner
in which we have done this in the example is not to use the square bracket method to
accessing a column but instead the dot approach where we can use dot and the column
name to access the value and then chain the describe method on the end.

>>> iris.max()
sepal_length 7.9
sepal_width 4.4
petal_length 6.9
petal_width 2.5
species virginica
dtype: object
>>> iris.sepal_length.max()
7.9

Next, we consider the max value. Here, when applied to the entire DataFrame we get the
max of every column where a maximum value can be obtained. We also show that we can
apply the method on a column in the same manner as we showed in the previous example.

>>> iris.sepal_width.mean()
3.057333333333334
>>> iris.mean(0)
sepal_length 5.843333
sepal_width 3.057333
petal_length 3.758000
petal_width 1.199333
dtype: float64
>>> iris.mean(1).head()
0 2.550
1 2.375
2 2.350
3 2.350
4 2.550
dtype: float64
>>> iris.mean(1).tail()
145 4.300
146 3.925
147 4.175
148 4.325
149 3.950
dtype: float64

The next method we look at is the mean which is a common calculation that you may
want to make and as before we can apply it on an individual column and we have done so
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here using the dot syntax. We then apply the mean method but now pass in a 0 or 1 refer-
ring to whether we want to apply across columns or rows. There are a number of different
methods that you can apply to a DataFrame and a list of some of the more useful ones is
given below.

● median: returns the arithmetic median
● min: returns the minimum value
● max: returns the maximum value
● mode: returns the most frequent number
● std: returns the standard deviation
● sum: returns the arithmetic sum
● var: returns the variance

These are demonstrated as follows:

>>> import seaborn as sns
>>> iris = sns.load_dataset('iris')
>>> iris.sepal_length.median()
5.8
>>> iris.sepal_length.min()
4.3
>>> iris.sepal_length.mode()
0 5.0
dtype: float64
>>> iris.sepal_length.max()
7.9
>>> iris.sepal_length.std()
0.8280661279778629
>>> iris.sepal_length.sum()
876.5
>>> iris.sepal_length.var()
0.6856935123042505

16.6 Missing Data

We next consider methods we can apply across the DataFrame and how missing data is
dealt with. Here, we set the DataFrame up in the way we have done so far in the section
and introduce some NaN entries into the DataFrame.

>>> data = pd.DataFrame({"A": [1, 2.1, np.nan, 4.7, 5.6, 6.8],
... "B": [.25, np.nan, np.nan, 4, 12.2, 14.4]})
>>> data

A B
0 1.0 0.25
1 2.1 NaN
2 NaN NaN
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3 4.7 4.00
4 5.6 12.20
5 6.8 14.40
>>> data.dropna(axis=0)
>>> data.dropna(axis=1)
>>> data.where(pd.notna(data), data.mean(), axis="columns")
>>> data.fillna(data.mean()["B":"C"])
>>> data.fillna(data.mean())
>>> data_2.fillna(method="pad")
>>> data_2.fillna(method="bfill")
>>> data.interpolate()

A B
0 1.0 0.25
1 2.1 1.50
2 3.4 2.75
3 4.7 4.00
4 5.6 12.20
5 6.8 14.40
>>> data.interpolate(method="barycentric")

A B
0 1.00 0.250
1 2.10 -7.660
2 3.53 -4.515
3 4.70 4.000
4 5.60 12.200
5 6.80 14.400
>>> data.interpolate(method="pchip")

A B
0 1.00000 0.250000
1 2.10000 0.672808
2 3.43454 1.928950
3 4.70000 4.000000
4 5.60000 12.200000
5 6.80000 14.400000
>>> data.interpolate(method="akima")

A B
0 1.000000 0.250000
1 2.100000 -0.873316
2 3.406667 0.320034
3 4.700000 4.000000
4 5.600000 12.200000
5 6.800000 14.400000
>>> data.interpolate(method="spline", order=2)

A B
0 1.000000 0.250000
1 2.100000 -0.428598
2 3.404545 1.206900
3 4.700000 4.000000
4 5.600000 12.200000
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5 6.800000 14.400000
>>> data.interpolate(method="polynomial", order=2)

A B
0 1.000000 0.250000
1 2.100000 -2.703846
2 3.451351 -1.453846
3 4.700000 4.000000
4 5.600000 12.200000
5 6.800000 14.400000

So interpolate has a number of methods that you can use to interpolate between the
NaN’s. The default, which is executed with no argument is linear and what it does is ignore
the index and treats the values as equally spaced and looks to linearly fill between the val-
ues. The remaining methods are all taken from scipy interpolate with a brief description
given below.

● barycentric: Constructs a polynomial that passes through a given set of points.
● pchip: PCHIP one-dimensional monotonic cubic interpolation
● akima: Fit piecewise cubic polynomials, given vectors x and y
● spline: Spline data interpolator where we can pass the order of the spline
● polynomial: Polynomial data interpolator where we can pass the order of the polynomial

For more information please refer to the scipy documentation.
Next, we will consider interpolate on a series and show some of the optional arguments

that we can pass.

>>> ser = pd.Series([np.nan, np.nan, 5, np.nan, np.nan, np.nan,
13, np.nan])

>>> ser
0 NaN
1 NaN
2 5.0
3 NaN
4 NaN
5 NaN
6 13.0
7 NaN
dtype: float64
>>> ser.interpolate()
0 NaN
1 NaN
2 5.0
3 7.0
4 9.0
5 11.0
6 13.0
7 13.0
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dtype: float64
>>> ser.interpolate(limit=1)
0 NaN
1 NaN
2 5.0
3 7.0
4 NaN
5 NaN
6 13.0
7 13.0
dtype: float64
>>> ser.interpolate(limit=1, limit_direction="backward")
0 NaN
1 5.0
2 5.0
3 NaN
4 NaN
5 11.0
6 13.0
7 NaN
dtype: float64
>>> ser.interpolate(limit=1, limit_direction="both")
0 NaN
1 5.0
2 5.0
3 7.0
4 NaN
5 11.0
6 13.0
7 13.0
dtype: float64
>>> ser.interpolate(limit_direction="both")
0 5.0
1 5.0
2 5.0
3 7.0
4 9.0
5 11.0
6 13.0
7 13.0
dtype: float64
>>> ser.interpolate(limit_direction="both", limit_area="inside",

limit=1)
0 NaN
1 NaN
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2 5.0
3 7.0
4 NaN
5 11.0
6 13.0
7 NaN
dtype: float64
>>> ser.interpolate(limit_direction="backward",

limit_area="outside")
0 5.0
1 5.0
2 5.0
3 NaN
4 NaN
5 NaN
6 13.0
7 NaN
dtype: float64
>>> ser.interpolate(limit_direction="both",

limit_area="outside")
0 5.0
1 5.0
2 5.0
3 NaN
4 NaN
5 NaN
6 13.0
7 13.0
dtype: float64

Initially we interpolate using the default method which is linear, and for the rest of the
example we use the default method and vary the optional arguments. Next, we pass the limit
option and set it to 1 which says we can only interpolate one past any value so we still have
NaN data in the Series. We next keep limit set to 1 and add another argument limit direction
and set it to backward. What this does is only interpolate one value next to an existing value
but unlike before does it going backwards. We extend this in the next example by setting the
limit direction to be both which interpolates both forwards and backwards for one value.
We next remove the limit one and keep limit direction to be both and see that all values are
interpolated. We next introduce the limit area option which has two options (aside from the
default None) these are inside and outside. When set to inside NaN’s are only filled when
they are surrounded by valid values and when set to outside it only fills outside valid values.
Here, we show examples using each of these alongside limit direction and limit.

Next, we introduce the replace method.

>>> import seaborn as sns
>>> iris = sns.load_dataset('iris')
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>>> iris.sepal_length.unique()
array([5.1, 4.9, 4.7, 4.6, 5. , 5.4, 4.4, 4.8, 4.3, 5.8, 5.7, 5.2, 5.5,

4.5, 5.3, 7. , 6.4, 6.9, 6.5, 6.3, 6.6, 5.9, 6. , 6.1, 5.6, 6.7,
6.2, 6.8, 7.1, 7.6, 7.3, 7.2, 7.7, 7.4, 7.9])

>>> iris.sepal_width.unique()
array([3.5, 3. , 3.2, 3.1, 3.6, 3.9, 3.4, 2.9, 3.7, 4. , 4.4, 3.8, 3.3,

4.1, 4.2, 2.3, 2.8, 2.4, 2.7, 2. , 2.2, 2.5, 2.6])
>>> iris.petal_length.unique()
array([1.4, 1.3, 1.5, 1.7, 1.6, 1.1, 1.2, 1. , 1.9, 4.7, 4.5, 4.9, 4. ,

4.6, 3.3, 3.9, 3.5, 4.2, 3.6, 4.4, 4.1, 4.8, 4.3, 5. , 3.8, 3.7,
5.1, 3. , 6. , 5.9, 5.6, 5.8, 6.6, 6.3, 6.1, 5.3, 5.5, 6.7, 6.9,
5.7, 6.4, 5.4, 5.2])

>>> iris.petal_width.unique()
array([0.2, 0.4, 0.3, 0.1, 0.5, 0.6, 1.4, 1.5, 1.3, 1.6, 1. , 1.1, 1.8,

1.2, 1.7, 2.5, 1.9, 2.1, 2.2, 2. , 2.4, 2.3])
>>> iris.replace(2.3, 2).head()

sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa
>>> iris.species.unique()
array(['setosa', 'versicolor', 'virginica'], dtype=object)
>>> iris.replace(['setosa', 'versicolor', 'virginica'],

['set', 'ver', 'vir']).head()
sepal_length sepal_width petal_length petal_width species

0 5.1 3.5 1.4 0.2 set
1 4.9 3.0 1.4 0.2 set
2 4.7 3.2 1.3 0.2 set
3 4.6 3.1 1.5 0.2 set
4 5.0 3.6 1.4 0.2 set
>>> iris.replace(['setosa', 'versicolor', 'virginica'],

['set', 'ver', 'vir'])
... ['species'].unique()
array(['set', 'ver', 'vir'], dtype=object)

16.7 Grouping

Next, we introduce the concept of grouping the data via the groupby method. Grouping
data is a very powerful tool as we are able to create and operate on groups of data all at
once.

>>> import seaborn as sns
>>> iris = sns.load_dataset('iris')
>>> groupby = iris.groupby('species')
>>> groupby.sum()
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sepal_length sepal_width petal_length petal_width
species
setosa 250.3 171.4 73.1 12.3
versicolor 296.8 138.5 213.0 66.3
virginica 329.4 148.7 277.6 101.3
>>> groupby.mean()

sepal_length sepal_width petal_length petal_width
species
setosa 5.006 3.428 1.462 0.246
versicolor 5.936 2.770 4.260 1.326
virginica 6.588 2.974 5.552 2.026

Above we see the groupby applied to the iris dataset where we look to group the data
based on the column species. This then allows us to apply methods to the groupby object
and we show the results of the sum and mean method applied to this. What this is doing is
applying this method to all the distinct types in species by all the columns in the dataset.

We next demonstrate how to loop over a group. Here, we set the DataFrame up as seen
previously but now we loop over the group and in looping over it print the name of the
group and what is in that group. This gives us a good visualisation of what a groupby does
to the data.

>>> groupby = iris.groupby('species')
>>> for name, group in groupby:
... print(name)
... print(group.head())
...
setosa

sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa
versicolor

sepal_length sepal_width petal_length petal_width species
50 7.0 3.2 4.7 1.4 versicolor
51 6.4 3.2 4.5 1.5 versicolor
52 6.9 3.1 4.9 1.5 versicolor
53 5.5 2.3 4.0 1.3 versicolor
54 6.5 2.8 4.6 1.5 versicolor
virginica

sepal_length sepal_width petal_length petal_width species
100 6.3 3.3 6.0 2.5 virginica
101 5.8 2.7 5.1 1.9 virginica
102 7.1 3.0 5.9 2.1 virginica
103 6.3 2.9 5.6 1.8 virginica
104 6.5 3.0 5.8 2.2 virginica

Next, we introduce the aggregate method applied to a groupby. We set the data up in the
same way as seen earlier and then apply the aggregate method of the groupby object and
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inside it pass what we want to use for this aggregation. In the example we show we have
used the np.sum method which will be applied to the group.

>>> grouped = iris.groupby('species')
>>> grouped.aggregate(np.sum)

B
A
1 6
2 9
3 13

We can extend the previous example by introducing the as_index argument. Here, we
use the same DataFrame from the previous examples and groupby species with as_index
set to False. What this does is create a group on species but retain species in the output as
its column with the value we want to group by. In this case, we apply the sum to the group
and so all other columns are summed within the group.

>>> iris.groupby('species', as_index=False).sum()
species sepal_length sepal_width petal_length petal_width

0 setosa 250.3 171.4 73.1 12.3
1 versicolor 296.8 138.5 213.0 66.3
2 virginica 329.4 148.7 277.6 101.3

There are also methods that we can apply to a groupby object which can be useful.

>>> grouped = iris.groupby('species')
>>> grouped.size()
species
setosa 50
versicolor 50
virginica 50
dtype: int64
>>> grouped['sepal_length'].describe()

count mean std min 25% 50% 75% max
species
setosa 50.0 5.006 0.352490 4.3 4.800 5.0 5.2 5.8
versicolor 50.0 5.936 0.516171 4.9 5.600 5.9 6.3 7.0
virginica 50.0 6.588 0.635880 4.9 6.225 6.5 6.9 7.9

We can also apply different methods to the group and in this example we show multiple
ways to apply the numpy methods sum, mean, and std to our grouped data. So we create
the same DataFrame and group as in the last examples. What we can then do is use the
agg method with the arguments being a list of methods to be applied and what we see is
that each method is applied on the group of data. Lastly, here we can even apply a lambda
function to the groupby.

>>> grouped = iris.groupby('species')
>>> grouped['sepal_length'].agg([np.sum, np.mean, np.std])
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sum mean std
species
setosa 250.3 5.006 0.352490
versicolor 296.8 5.936 0.516171
virginica 329.4 6.588 0.635880
>>> grouped.agg({lambda x: np.std(x, ddof=1)})

sepal_length sepal_width petal_length petal_width
<lambda> <lambda> <lambda> <lambda>

species
setosa 0.352490 0.379064 0.173664 0.105386
versicolor 0.516171 0.313798 0.469911 0.197753
virginica 0.635880 0.322497 0.551895 0.274650

What we next show is that you can get the largest and smallest values with a group by
using the nlargest and nsmallest methods. Here, the integer value you pass in gives you the
number of values returned. What you see is that we get the largest and smallest per group.

>>> grouped = iris.groupby('species')
>>> grouped['sepal_length'].nlargest(3)
species
setosa 14 5.8

15 5.7
18 5.7

versicolor 50 7.0
52 6.9
76 6.8

virginica 131 7.9
117 7.7
118 7.7

Name: sepal_length, dtype: float64
>>> grouped['petal_length'].nsmallest(4)
species
setosa 22 1.0

13 1.1
14 1.2
35 1.2

versicolor 98 3.0
57 3.3
93 3.3
60 3.5

virginica 106 4.5
126 4.8
138 4.8
121 4.9

Name: petal_length, dtype: float64



�

� �

�

150 16 Pandas

Our next example introduces the apply method which can be very useful. Here, we set
the data up in the manner seen before and groupby column species. We can then use the
apply method on the group to apply whatever we pass through it to the groupby. It should
be noted we can also use the apply method on DataFrames and Series. Here we see we have
applied a custom function to the groupby.

>>> grouped = iris.groupby('species')
>>> def f(group):
... return pd.DataFrame({"original" : group,

"demeaned" : group - group.mean()})
>>> grouped['petal_length'].apply(f).head()

original demeaned
0 1.4 -0.062
1 1.4 -0.062
2 1.3 -0.162
3 1.5 0.038
4 1.4 -0.062

In the next example, we introduce a nice pandas method called qcut. This cuts the data
into equal sized buckets based on the arguments passed in. Here, we apply the qcut on the
data which is the column sepal length of the iris dataset by the list of values 0, 0.25, 0.5,
0.75, and 1. We assign the cut to the variable factor and when passed into the groupby the
mean method gives the average on each bucket showing what the min and max values in
the buckets are.

>>> factor = pd.qcut(iris['sepal_length'], [0, 0.25, 0.5, 0.75, 1.0])

>>> factor.head()

0 (4.2989999999999995, 5.1]

1 (4.2989999999999995, 5.1]

2 (4.2989999999999995, 5.1]

3 (4.2989999999999995, 5.1]

4 (4.2989999999999995, 5.1]

Name: sepal_length, dtype: category

Categories (4, interval[float64]): [(4.2989999999999995, 5.1]

< (5.1, 5.8] < (5.8, 6.4] < (6.4, 7.9]]

>>> iris.groupby(factor).mean()

sepal_length sepal_width petal_length petal_width

sepal_length

(4.2989999999999995, 5.1] 4.856098 3.175610 1.707317 0.353659

(5.1, 5.8] 5.558974 3.089744 3.256410 0.989744

(5.8, 6.4] 6.188571 2.868571 4.908571 1.682857

(6.4, 7.9] 6.971429 3.071429 5.568571 1.940000

So far we have considered grouping on single columns, however we could also group on
multiple columns. However, the iris dataset isn’t best setup to allow us to do this so we
instead load the tips dataset. The tips dataset contains the following columns:

● total_bill
● tip
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● sex
● smoker
● day
● time
● size

Given some of the columns only have limited responses it makes it ideal to do a group by
multiple columns so next we group by sex and smoker.

>>> tips = sns.load_dataset('tips')
>>> tips.head()

total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
>>> grouped = tips.groupby(['sex', 'smoker'])
>>> grouped.sum()

total_bill tip size
sex smoker
Male Yes 1337.07 183.07 150

No 1919.75 302.00 263
Female Yes 593.27 96.74 74

No 977.68 149.77 140
>>> grouped = tips.groupby(['sex', 'smoker', 'time'])
>>> grouped.mean()

total_bill tip size
sex smoker time
Male Yes Lunch 17.374615 2.790769 2.153846

Dinner 23.642553 3.123191 2.595745
No Lunch 18.486500 2.941500 2.500000

Dinner 20.130130 3.158052 2.766234
Female Yes Lunch 17.431000 2.891000 2.300000

Dinner 18.215652 2.949130 2.217391
No Lunch 15.902400 2.459600 2.520000

Dinner 20.004138 3.044138 2.655172

Here, we see that when we group by two or three variables we increase the number of
values that are returned by creating more combinations within the groups.

A similar approach to groupby is pivot table which is a common amongst spreadsheet
users. The concept is to take a combination of variables and group the data by it, which can
seem similar to groupby. The difference is you can extend upon this to create some more
complicated groupings of your dataset, we will demonstrate these by example.

>>> tips = sns.load_dataset('tips')
>>> tips.head()
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total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
>>> pd.pivot_table(tips,index=["sex"])

size tip total_bill
sex
Male 2.630573 3.089618 20.744076
Female 2.459770 2.833448 18.056897
>>> pd.pivot_table(tips,index=["sex","smoker","day"])

size tip total_bill
sex smoker day
Male Yes Thur 2.300000 3.058000 19.171000

Fri 2.125000 2.741250 20.452500
Sat 2.629630 2.879259 21.837778
Sun 2.600000 3.521333 26.141333

No Thur 2.500000 2.941500 18.486500
Fri 2.000000 2.500000 17.475000
Sat 2.656250 3.256563 19.929063
Sun 2.883721 3.115349 20.403256

Female Yes Thur 2.428571 2.990000 19.218571
Fri 2.000000 2.682857 12.654286
Sat 2.200000 2.868667 20.266667
Sun 2.500000 3.500000 16.540000

No Thur 2.480000 2.459600 16.014400
Fri 2.500000 3.125000 19.365000
Sat 2.307692 2.724615 19.003846
Sun 3.071429 3.329286 20.824286

>>> pd.pivot_table(tips,index=["sex","smoker","day"],
values=['tip'])

tip
sex smoker day
Male Yes Thur 3.058000

Fri 2.741250
Sat 2.879259
Sun 3.521333

No Thur 2.941500
Fri 2.500000
Sat 3.256563
Sun 3.115349

Female Yes Thur 2.990000
Fri 2.682857
Sat 2.868667
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Sun 3.500000
No Thur 2.459600

Fri 3.125000
Sat 2.724615
Sun 3.329286

In the above code we use the tips as the dataset in each example and set a variety of index
values starting at just sex and extending to sex and smoker and then with the combination
of sex, smoker and day. In each example when we pivot the data by default we end up with
the average of the index across all of the variables where we can take an average, so only
numerical variables. We don’t necessarily need to show all available variables as we have
seen by passing the values argument as a list of columns we want to include.

>>> import numpy as np
>>> pd.pivot_table(tips,index=["sex","smoker","day"],
.... values=['tip'],aggfunc=[np.mean,len])

mean len
tip tip

sex smoker day
Male Yes Thur 3.058000 10.0

Fri 2.741250 8.0
Sat 2.879259 27.0
Sun 3.521333 15.0

No Thur 2.941500 20.0
Fri 2.500000 2.0
Sat 3.256563 32.0
Sun 3.115349 43.0

Female Yes Thur 2.990000 7.0
Fri 2.682857 7.0
Sat 2.868667 15.0
Sun 3.500000 4.0

No Thur 2.459600 25.0
Fri 3.125000 2.0
Sat 2.724615 13.0
Sun 3.329286 14.0

As a default when we use the pivot table command we get the average of the variables,
however we can control what we get back by passing the aggfunc argument which takes
a list of functions we want to apply to the data. Note here that we pass the numpy mean
function as well as the len from the standard Python library.

>>> pd.pivot_table(tips,index=["sex","smoker"],values=["tip"],
... columns=["day"],aggfunc=[np.mean])

mean
tip
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day Thur Fri Sat Sun
sex smoker
Male Yes 3.0580 2.741250 2.879259 3.521333

No 2.9415 2.500000 3.256563 3.115349
Female Yes 2.9900 2.682857 2.868667 3.500000

No 2.4596 3.125000 2.724615 3.329286
>>> pd.pivot_table(tips,index=["sex","smoker"],values=["tip"],
... columns=["day"],aggfunc=[np.mean],margins=True)

mean
tip

day Thur Fri Sat Sun All
sex smoker
Male Yes 3.058000 2.741250 2.879259 3.521333 3.051167

No 2.941500 2.500000 3.256563 3.115349 3.113402
Female Yes 2.990000 2.682857 2.868667 3.500000 2.931515

No 2.459600 3.125000 2.724615 3.329286 2.773519
All 2.771452 2.734737 2.993103 3.255132 2.998279

We can expand on this example by adding in the margins variable which then gives us
the totals associated with the rows and columns.

16.8 Reading in Files with Pandas

The examples in the chapter have used the datasets from Seaborn and while this is useful,
pandas has a lot of methods to allow you to read in external files. If we relate this back to
earlier in the book where we read and manipulated data within Python we can see that
these methods are a lot easier to use. They also allow us to write back to file. To show how
this works we will take one of the existing datasets that we have been using and write to a
csv and read that back in:

>>> tips.head()
total_bill tip sex smoker day time size

0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
>>> tips.to_csv('myfile.csv', index=False)
>>> data = pd.read_csv('myfile.csv')
>>> data.head()

total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
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3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4

What we have done is use the to_csv method that the tips DataFrame has and write the
data into a file called ‘myfile.csv’, note this will live in the directory where this is being
run from, as well as the file name the index argument is set to False which prevents the
DataFrame index being written to the file with the other columns. Now, to read this back in
we use the read_csv method from pandas and this takes the csv file and creates a DataFrame
with the contents of this file. These methods are extremely useful as we do not have to
worry about the process of writing to file or reading from file. Alongside read_csv we have
other read methods for different file types and here are some of the more useful ones, for a
complete list consult the pandas documentation:

● read_excel: reads in xls, xlsx, xlsm, xlsb, odf, ods and odt file types
● read_json: reads a valid json string

If we take the examples in previous chapters we created the following json and excel files
called boston.json and boston.xlsx. We can read these into DataFrames using the following
code:

>>> file_name = '/path/to/boston.json'
>>> data = pd.read_json(file_name)
>>> data.head()

CRIM NOX
0 0.00632 2.31
1 0.02731 7.07
2 0.02729 7.07
3 0.03237 2.18
4 0.06905 2.18
>>> file_name = '/path/to/boston.xlsx'
>>> data = pd.read_excel(file_name)
>>> data.head()

CRIM NOX
0 0.00632 2.31
1 0.02731 7.07
2 0.02729 7.07
3 0.03237 2.18
4 0.06905 2.18

As you can see these methods provide very simple ways to load data from these common
formats into DataFrames. There is also a read_table method which we can use for general
delimited files. The read methods also support operations like querying databases or even
reading html but that is beyond the scope of this book but well worth a look.

The to methods of the DataFrames are pretty similar with support for many different
formats and a selection given as follows:

● to_dict
● to_json
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● to_html
● to_latex
● to_string

These are all demonstrated as follows:

>>> import seaborn as sns
>>> tips = sns.load_dataset('tips')
>>> tips.head().to_json()
'{"total_bill":{"0":16.99,"1":10.34,"2":21.01,"3":23.68,"4":24.59},
"tip":{"0":1.01,"1":1.66,"2":3.5,"3":3.31,"4":3.61},
"sex":{"0":"Female","1":"Male","2":"Male","3":"Male","4":"Female"},
"smoker":{"0":"No","1":"No","2":"No","3":"No","4":"No"},
"day":{"0":"Sun","1":"Sun","2":"Sun","3":"Sun","4":"Sun"},
"time":{"0":"Dinner","1":"Dinner","2":"Dinner","3":"Dinner","4":"Dinner"},
"size":{"0":2,"1":3,"2":3,"3":2,"4":4}}'
>>> tips.head().to_dict()
{'total_bill': {0: 16.99, 1: 10.34, 2: 21.01, 3: 23.68, 4: 24.59},
'tip': {0: 1.01, 1: 1.66, 2: 3.5, 3: 3.31, 4: 3.61},
'sex': {0: 'Female', 1: 'Male', 2: 'Male', 3: 'Male', 4: 'Female'},
'smoker': {0: 'No', 1: 'No', 2: 'No', 3: 'No', 4: 'No'},
'day': {0: 'Sun', 1: 'Sun', 2: 'Sun', 3: 'Sun', 4: 'Sun'},
'time': {0: 'Dinner', 1: 'Dinner', 2: 'Dinner', 3: 'Dinner', 4: 'Dinner'},
'size': {0: 2, 1: 3, 2: 3, 3: 2, 4: 4}}
>>> tips.head().to_html()
'<table border="1" class="dataframe">\n <thead>\n
<tr style="text-align: right;">\n <th></th>\n
<th>total_bill</th>\n <th>tip</th>\n <th>sex</th>\n
<th>smoker</th>\n <th>day</th>\n <th>time</th>\n
<th>size</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n
<th>0</th>\n <td>16.99</td>\n <td>1.01</td>\n
<td>Female</td>\n <td>No</td>\n <td>Sun</td>\n
<td>Dinner</td>\n <td>2</td>\n </tr>\n <tr>\n
<th>1</th>\n <td>10.34</td>\n <td>1.66</td>\n
<td>Male</td>\n <td>No</td>\n <td>Sun</td>\n
<td>Dinner</td>\n <td>3</td>\n </tr>\n <tr>\n
<th>2</th>\n <td>21.01</td>\n <td>3.50</td>\n
<td>Male</td>\n <td>No</td>\n <td>Sun</td>\n
<td>Dinner</td>\n <td>3</td>\n </tr>\n <tr>\n
<th>3</th>\n <td>23.68</td>\n <td>3.31</td>\n
<td>Male</td>\n <td>No</td>\n <td>Sun</td>\n
<td>Dinner</td>\n <td>2</td>\n </tr>\n <tr>\n
<th>4</th>\n <td>24.59</td>\n <td>3.61</td>\n
<td>Female</td>\n <td>No</td>\n <td>Sun</td>\n
<td>Dinner</td>\n <td>4</td>\n </tr>\n </tbody>\n</table>'
>>> tips.head().to_latex()
'\\begin{tabular}{lrrllllr}\n\\toprule\n{} & total\\_bill & tip &
sex & smoker & day & time & size \\\\\n\\midrule\n0 & 16.99 &
1.01 & Female & No & Sun & Dinner & 2 \\\\\n1 & 10.34 &
1.66 & Male & No & Sun & Dinner & 3 \\\\\n2 & 21.01 &
3.50 & Male & No & Sun & Dinner & 3 \\\\\n3 & 23.68 &



�

� �

�

16.8 Reading in Files with Pandas 157

3.31 & Male & No & Sun & Dinner & 2 \\\\\n4 & 24.59 &
3.61 & Female & No & Sun & Dinner & 4 \\\\\n\\bottomrule\n

\\end{tabular}\n'
>>> tips.head().to_string()
' total_bill tip sex smoker day time size\n0 16.99
1.01 Female No Sun Dinner 2\n1 10.34 1.66 Male
No Sun Dinner 3\n2 21.01 3.50 Male No Sun Dinner
3\n3 23.68 3.31 Male No Sun Dinner 2\n4
24.59 3.61 Female No Sun Dinner 4'

We can also use some of these methods to write the data directly to file in the format with
some examples below:

>>> import seaborn as sns
>>> tips = sns.load_dataset('tips')
>>> tips.head().to_json('tips.json')
>>> tips.to_html('tips.html')
>>> tips.to_latex('tips.latex')
>>> tips.to_latex('tips.tex')

These methods are really useful and for correctly formatted data are a very convenient
way to read data into pandas and also export it from pandas.

What we have seen in this chapter is the advanced methods of pandas and how we can
do complex data analysis. We have shown how pandas allows us to manipulate data as if it
were in a database allows us to join, merge, group, and pivot the data in a variety of ways.
We have also covered some of the built in methods that pandas has and shown how we
can deal with missing data. The examples that we have covered have been rather simple
in nature but pandas is powerful enough to deal with large datasets and that makes it an
extremely powerful Python package. It is also worth noting that pandas plays well with
many other Python packages meaning a mastery of it is essential for a Python programmer.
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17

Plotting

Plotting is a key component when looking to work with data, and Python has a number
of plotting libraries. In this chapter, we cover plotting in great detail starting with creating
basic plots directly from Pandas DataFrames to getting more control using matplotlib all
the way through to using Seaborn. The chapter is fully example driven with code snippets
alongside the graphics they produce. The aim of including both is to give you the ability
to see what the code produces but also act as a reference for when you want to produce
graphs. The examples are based on datasets that come from with Python with many being
taken from the documentation with the idea of giving them greater explanation to help you
understand what is happening. The packages that we will look to use in this chapter are
imported below.

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> import pandas as pd
>>> import matplotlib
>>> import seaborn as sns

17.1 Pandas

Initially, we will look at plotting methods on Series and DataFrame objects in pandas. One
of the great things about pandas is that we have inbuilt plotting methods that we can call
and produce plots from. This allows very fast visual presentation of datasets that we want
to analyse.

>>> iris = sns.load_dataset('iris')
>>> iris.sepal_length.plot()
<matplotlib.axes._subplots.AxesSubplot object at 0x113e62290>
>>> plt.show()

>>> iris.sepal_length.plot()
<matplotlib.axes._subplots.AxesSubplot object at 0x113e62290>
>>> plt.savefig('/path/to/file/file_name.pdf')

The Python Book, First Edition. Rob Mastrodomenico.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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Figure 17.1 Line plot of sepal length.

The previous code snippets and associated plot show how we can produce a simple line
plot of a Series. The two examples use plt.show() and plt.savefig() to show how to either
show the graph or save the graph, with the graph shown in Figure 17.1 In the event of
saving a graph, we need to supply the file path and name to where we want the plot to save.

>>> plt.clf()
>>> iris.sepal_length.hist()
<matplotlib.axes._subplots.AxesSubplot object at 0x1147cd9d0>

In the Figure 17.2, we use the method hist method of the series in the same way we used
the plot method in the previous example. It should be noted that plt.clf() was used as the
first line of code with the reason behind this to clear the figure meaning we do not see the
previous plot when we plot the new image.

>>> plt.clf()
>>> iris.sepal_length.plot.box()
<matplotlib.axes._subplots.AxesSubplot object at 0x1a1f1a0b00>

>>> plt.clf()
>>> iris.sepal_length.plot.density()
<matplotlib.axes._subplots.AxesSubplot object at 0x1a1f6b7a58>
>>> plt.show()

The next two snippets show how we can create a box plot and a density as shown in
Figures 17.3 and 17.4. In these examples, we use plot method of the series to give us access
to the plot that we want to create. This is slightly different from what we have used before,
and looking at the plot method, we can see the types of plots that we can create.
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Figure 17.2 Histogram of sepal length.
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Figure 17.3 Boxplot of sepal length.

>>> dir(iris.sepal_length.plot)

['__bytes__', '__call__', '__class__', '__delattr__', '__dict__', '__dir__',

'__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__',

'__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__',

'__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__',

'__sizeof__', '__str__', '__subclasshook__', '__unicode__', '__weakref__',

'_accessors', '_constructor', '_deprecations', '_dir_additions', '_dir_deletions',

'_reset_cache', 'area', 'bar', 'barh', 'box', 'density', 'hist', 'kde', 'line', 'pie']

Here we see that alongside box and density, we also have the following types of plots.
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Figure 17.4 Density plot of sepal length.

0
0

1

2

3

4

5

6

7

8

20 40 60 80 100 120 140

Figure 17.5 Area plot of sepal length.

● area as shown in Figure 17.5
● hist as shown in Figure 17.6
● kde as shown in Figure 17.7
● line as shown in Figure 17.8

It is worth noting that some of these types we have already covered as we can directly plot
a line using plot and a histogram using hist. But we will show examples of each of these.

Thus far we have looked at plots on series which will apply to columns of data frames
however we can also do plots on DataFrames as a whole. As opposed to working on a single
column of the iris DataFrame, we now work on the DataFrame as a whole.
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Figure 17.6 Histogram of sepal length.
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Figure 17.7 KDE of sepal length.

>>> plt.clf()
>>> iris.plot.box()
<matplotlib.axes._subplots.AxesSubplot object at 0x1a1b1d1a58>

The first plot that we will consider is the box plot as shown in Figure 17.9. When applied
to the DataFrame as a whole, we can see that we have box plots for each of the variables
where a box plot can be created. Pandas also labels up the variables from the DataFrame
names so out of the box you get a robust plot of all the data.
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Figure 17.8 Line plot of sepal length.
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Figure 17.9 Box plot of iris data.

>>> plt.clf()
>>> iris.plot.density()
<matplotlib.axes._subplots.AxesSubplot object at 0x1a1f6b3f60>
>>> plt.show()

>>> plt.clf()
>>> iris.plot.line()
<matplotlib.axes._subplots.AxesSubplot object at 0x1a1f166668>
>>> plt.show()
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Figure 17.10 Density plot on iris data.

Next we will show a density and line plot, as shown in Figures 17.10 and 17.11 of the
DataFrame and like with the box plot example we get a line for each variable where we can
get one. In the same way, we have labels for each box we get a legend for the lines indicating
what each colour refers to.

>>> plt.clf()
>>> iris.plot.scatter(x='sepal_length', y='sepal_width')
<matplotlib.axes._subplots.AxesSubplot object at 0x1a1f146a58>
>>> plt.show()
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Figure 17.11 Line plot on iris data.
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Figure 17.12 Scatter plot on pandas data frame.

In the last built-in plot, we shall consider a scatter plot on the DataFrame as shown in
Figure 17.2. Unlike the plots we have considered so far, a scatter plot requires an x and y vari-
able as its plotting x against y. So, we pass in the specific column name from the DataFrame
and the method can pick up the data that it needs to giving us the scatter of sepal length
against sepal width.

As before we have a number of other plot types that we can apply to the DataFrame,
these are

● area as shown in Figure 17.13
● line as shown in Figure 17.14
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Figure 17.13 Area plot of iris DataFrame.
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Figure 17.14 Histogram of iris DataFrame.
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Figure 17.15 KDE of iris DataFrame.

● hist as shown in Figure 17.14
● kde as shown in Figure 17.15

Examples of these are shown below, with all being produced using iris.plot method as
shown before.

There were a couple of plots that we did not include in the previous examples namely
bar, barh, and pie (examples of a pie and barh plot are given in Figures 17.16 and 17.17).
The reason being these plots require the data to be in the format suitable for the plot so we
need data that has been manipulated to be in that form. Thus far all other plots have been
directly on the DataFrame but here we will group the tips DataFrame to get in a format that
we can use.
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Figure 17.17 Barh plot of tips data by day.

>>> grouped = tips.groupby(['sex', 'smoker'])
>>> grouped.sum()
>>> data.plot.pie(y='size')

>>> grouped = tips.groupby(['sex', 'smoker'])
>>> grouped.sum()
>>> data.plot.bar()
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17.2 Matplotlib

So here we have shown a number of plots that you can easily generate with pandas and
matplotlib; next, we will look at how we can customise them.

>>> fig = plt.figure()
>>> plt.plot(iris.sepal_length, '-')
[<matplotlib.lines.Line2D object at 0x1a1ed400b8>]
>>> plt.plot(iris.petal_length, '--')
[<matplotlib.lines.Line2D object at 0x1a1ed408d0>]
>>> fig.savefig('iris_plot.pdf')

Now in the above code, we use a different approach to creating our plot (Figure 17.18)
using one which is more common from a matplotlib point of view. Here we setup a figure
and plot lines on them using the plot method. In this example, we specify the line type by
using an extra argument to determine if the line is solid or partially solid. Lastly, we save
the plot using the savefig method, we can find what filetypes are supported by running the
following command.

>>> fig.canvas.get_supported_filetypes()
{'ps': 'Postscript', 'eps': 'Encapsulated Postscript',
'pdf': 'Portable Document Format',
'pgf': 'PGF code for LaTeX',
'png': 'Portable Network Graphics',
'raw': 'Raw RGBA bitmap',
'rgba': 'Raw RGBA bitmap',
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Figure 17.18 Iris plot.
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'svg': 'Scalable Vector Graphics',
'svgz': 'Scalable Vector Graphics',
'jpg': 'Joint Photographic Experts Group',
'jpeg': 'Joint Photographic Experts Group',
'tif': 'Tagged Image File Format',
'tiff': 'Tagged Image File Format'}

The next example we look at is a panel plot as shown in Figure 17.19. This is where we
have two plots on one figure as opposed to plotting two lines on one plot.

>>> plt.clf()
>>> plt.figure()
<Figure size 640x480 with 0 Axes>
>>> plt.subplot(2, 1, 1)
<matplotlib.axes._subplots.AxesSubplot object at 0x1a1f6e0358>
>>> plt.plot(iris.sepal_length)
[<matplotlib.lines.Line2D object at 0x1a1b0b1e48>]
>>> plt.subplot(2, 1, 2)
<matplotlib.axes._subplots.AxesSubplot object at 0x1a1b0b1cc0>
>>> plt.plot(iris.petal_length)
[<matplotlib.lines.Line2D object at 0x1a1b1e7438>]

The first thing we do is create the figure in the usual way and we then use the subplot
method to create two panels. The arguments for the subplot method is

● Number of rows
● Number of columns
● Index
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Figure 17.19 Panel plot example one.
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Figure 17.20 Panel plot example two.

So in this example, we have two rows with one column and initially we plot on index one
the line of sepal length.

Next, we plot the line of petal length in the second panel and we now have an example of
a panel plot as shown in Figure 17.20.

>>> plt.clf()
>>> fig, ax = plt.subplots(2)
>>> ax[0].plot(iris.sepal_length)
[<matplotlib.lines.Line2D object at 0x1a1c35e9e8>]
>>> ax[1].plot(iris.petal_length)
[<matplotlib.lines.Line2D object at 0x1a1f693358>]

We can achieve the same thing using the subplots method directly specifying we want
two subplots and using the ax variable to control what goes into each subplot. Here we can
use the plot method directly to plot sepal length in the first subplot and petal length in the
second.

Next, we will look at how the plots look. In matplotlib, we can control the styling of the
plot and by running the below command you get a list as follows

>>> plt.style.available
['seaborn-dark', 'seaborn-darkgrid', 'seaborn-ticks',
'fivethirtyeight', 'seaborn-whitegrid', 'classic',
'_classic_test', 'fast', 'seaborn-talk',
'seaborn-dark-palette', 'seaborn-bright',
'seaborn-pastel', 'grayscale', 'seaborn-notebook',
'ggplot', 'seaborn-colorblind', 'seaborn-muted',
'seaborn', 'Solarize_Light2', 'seaborn-paper',
'bmh', 'tableau-colorblind10', 'seaborn-white',
'dark_background', 'seaborn-poster', 'seaborn-deep']
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To get a more detailed view of how these differ please refer to the documentation https://
matplotlib.org/3.1.1/gallery/style_sheets/style_sheets_reference.html where there are
images relating to the specific types. What is important to note is that we can alter how a
plot looks by just using a different style sheet.

>>> plt.clf()
>>> plt.style.use('seaborn-whitegrid')
>>> fig = plt.figure()
>>> ax = plt.axes()
>>> plt.plot(tips.tip, color='blue')
[<matplotlib.lines.Line2D object at 0x1a1b0562e8>]
>>> plt.plot(tips.tip+5, color='g')
[<matplotlib.lines.Line2D object at 0x1a1b056240>]
>>> plt.plot(tips.tip+10, color='0.75')
[<matplotlib.lines.Line2D object at 0x1a1b056748>]
>>> plt.plot(tips.tip+15, color='#FFDD44')
[<matplotlib.lines.Line2D object at 0x1a1b056a20>]
>>> plt.plot(tips.tip+20, color=(1.0,0.2,0.3))
[<matplotlib.lines.Line2D object at 0x1a1b056f98>]
>>> plt.plot(tips.tip+25, color='chartreuse')
[<matplotlib.lines.Line2D object at 0x1a1b07c5c0>]

Here we import the seaborn whitegrid style to use in this example and we setup the figure
and axes. Next, we plot the same tips line but in each instance we add 5 to each value so
we can see the difference between each of the lines. Now for each line we use, a differ-
ent approach to give it a colour. The first line using the colour argument set as blue and
we can use the colour as a name. The second line uses the colour set as a single letter
where in this case g refers to green. For the third line, we use the grayscale value between
0 and 1. The forth line shows how we can use hex codes to pass in the colour. The fifth
line shows how you use the RGB tuple where each value can be between 0 and 1 with the
first referring to red the second to green and third to blue. The result of this is shown in
Figure 17.21.

Next, we consider different line types that we can use within matplotlib where we use the
linestyle argument to pass in different types of lines as shown in Figure 17.22.

>>> plt.clf()
>>> plt.style.use('fivethirtyeight')
>>> fig = plt.figure()
>>> ax = plt.axes()
>>> plt.plot(tips.tip, linestyle='solid')
[<matplotlib.lines.Line2D object at 0x1a1f69bf98>]
>>> plt.plot(tips.tip + 5, linestyle='dashed')
[<matplotlib.lines.Line2D object at 0x1a1f6bf438>]
>>> plt.plot(tips.tip + 10, linestyle='dashdot')
[<matplotlib.lines.Line2D object at 0x1a1f6bf7b8>]
>>> plt.plot(tips.tip + 15, linestyle='dotted');
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Figure 17.21 Plot with custom line colour.
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Figure 17.22 Plot with custom linetype.

[<matplotlib.lines.Line2D object at 0x1a1f6bfb38>]
>>> plt.plot(tips.tip + 20, linestyle='-')
[<matplotlib.lines.Line2D object at 0x1a1f69bfd0>]
>>> plt.plot(tips.tip + 25, linestyle='--')
[<matplotlib.lines.Line2D object at 0x1a1f6bfe48>]
>>> plt.plot(tips.tip + 30, linestyle='-.')
[<matplotlib.lines.Line2D object at 0x1a1c352748>]
>>> plt.plot(tips.tip + 35, linestyle=':')
[<matplotlib.lines.Line2D object at 0x1a1f6c3978>]
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Figure 17.23 Plot with custom colour linetype.

We can also combine linestyle and colour into one argument to give different coloured
lines on our plots. To do this, we use the short linestyle combined with the single letter
colours the result of which is shown in Figure 17.23.

>>> plt.clf()
>>> plt.style.use('ggplot')
>>> fig = plt.figure()
>>> ax = plt.axes()
>>> plt.plot(tips.tip, '-g') # solid green
[<matplotlib.lines.Line2D object at 0x1a1b087940>]
>>> plt.plot(tips.tip + 5, '--c') # dashed cyan
[<matplotlib.lines.Line2D object at 0x1a1b0876a0>]
>>> plt.plot(tips.tip + 10, '-.k') # dashdot black
[<matplotlib.lines.Line2D object at 0x1a1b087668>]
>>> plt.plot(tips.tip + 15, ':r') # dotted red
[<matplotlib.lines.Line2D object at 0x1a1b045908>]

In the next examples, we will look at how we change the limits and add some labelling
to plots, we begin by looking at setting the limits for the plot.

>>> fig = plt.figure()
>>> plt.plot(tips.tip)
[<matplotlib.lines.Line2D object at 0x1a20f81160>]
>>> plt.xlim(50, 200)
(50, 200)
>>> plt.ylim(0, 10)
(0, 10)

>>> fig = plt.figure()
>>> plt.plot(tips.tip)
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>>> plt.xlim(200, 50)
>>> plt.ylim(10, 0)

In the first example shown in Figure 17.24, we plot the tip from the tips dataset and here
we customise the x limits and y limits using xlim and ylim methods. To use these methods,
you simply put in the start and end value where you want the axis to start and end with us
using 50 to 200 for the x axis and 0 to 10 for the y axis.

In Figure 17.25, we reverse the axis by simply using 200 to 50 and 10 to 0 for the x axis
and the y axis respectively.
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Figure 17.24 Plot with limits altered.
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Figure 17.25 Plot with reverse limits.
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>>> fig = plt.figure()
>>> plt.plot(tips.tip)
[<matplotlib.lines.Line2D object at 0x1a21149518>]
>>> plt.title("Tips from the seaborn tips dataset")
Text(0.5, 1.0, 'Tips from the seaborn tips dataset')
>>> plt.xlabel("Indiviual")
Text(0.5, 0, 'Indiviual')
>>> plt.ylabel("Tip (£)")
Text(0, 0.5, 'Tip (£)')

>>> fig = plt.figure()
>>> plt.plot(tips.tip, '-g', label='tip')
>>> plt.plot(tips.total_bill, '-b', label='total bill')
>>> plt.axis('equal')
>>> plt.legend()

In the first example, shown in Figure 17.26, we label the plot to display titles and axis
names by using the methods title, xlabel, and ylabel, which populate the plot title, x axis,
and y axis, respectively. We can also add a legend to the plot (shown in Figure 17.27) using
the legend method. In using this we add the label variable to the plot where we specify the
name we want to be shown in the legend.

We next consider some special plots showcasing what we can do beyond standard plots
within matplotlib.
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Figure 17.26 Plot with labels.
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Figure 17.27 Plot with legend.

>>> fig = plt.figure()
>>> rng = np.random.RandomState(0)
>>> for marker in ['o', '.', ',', 'x', '+', 'v', '^', '<', '>',

's', 'd']:
... plt.plot(rng.rand(5), rng.rand(5), marker,

label="marker='{0}'".format(marker))
...
[<matplotlib.lines.Line2D object at 0x1a211880b8>]
[<matplotlib.lines.Line2D object at 0x1a211888d0>]
[<matplotlib.lines.Line2D object at 0x1a21188d30>]
[<matplotlib.lines.Line2D object at 0x1a20fe1860>]
[<matplotlib.lines.Line2D object at 0x1a21064160>]
[<matplotlib.lines.Line2D object at 0x1a210640f0>]
[<matplotlib.lines.Line2D object at 0x1a21064128>]
[<matplotlib.lines.Line2D object at 0x1a20ff9f98>]
[<matplotlib.lines.Line2D object at 0x1a210bfb00>]
[<matplotlib.lines.Line2D object at 0x1a20765cf8>]
[<matplotlib.lines.Line2D object at 0x1a2118f240>]
>>> plt.legend(numpoints=1)
<matplotlib.legend.Legend object at 0x1a2119c4a8>
>>> plt.xlim(0, 1.8)
(0, 1.8)

In this first example shown in Figure 17.28, we show how to use a different markers on
a plot. To do so we use the numpy RandomState to generate arrays of random numbers.
We then loop over the list of markers that we want to plot and generate a five value random
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Figure 17.28 Scatter plots with different markers.

array to plot all of these values and add a legend to show what each point in our code refers
to what on the plot.

>>> fig = plt.figure()
>>> rng = np.random.RandomState(0)
>>> x = rng.randn(100)
>>> y = rng.randn(100)
>>> colors = rng.rand(100)
>>> sizes = 1000 * rng.rand(100)
>>> plt.scatter(x, y, c=colors, s=sizes, alpha=0.3, cmap='viridis')
<matplotlib.collections.PathCollection object at 0x1a22ae5c88>
>>> plt.colorbar()
<matplotlib.colorbar.Colorbar object at 0x1a2115beb8>

The next plot Figure 17.29 that we create is a scatter plot where each element has a colour
and size associated with it. To do this, we create a figure in the normal way and again use
RandomState to allow us to generate random numbers. In this case, we calculate the x and
y coordinates for the scatter plot by generating 100 random numbers. We next generate
another 100 random numbers to determine the colours. Lastly, we generate the size of the
scatter by multiplying another 100 random numbers by 1000 to make the ball size varied
enough so that we can see them. These then get passed into the scatter method setting
the c value to be the colours array and s to be the sizes array. We use the alpha argument
to set how opaque the plots are. The last argument that we set is the cmap value which
sets the colour map that we want to use. Once we have plotted the scatter, we can add
the colour bar to show what the colours refer to relative to the random numbers from the
colour array.
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Figure 17.29 Scatter plot with different sizes.

17.3 Seaborn

Having covered direct plotting from pandas objects and how we can use matplotlib to create
and customise plots, we next move onto Seaborn which is the natural progression as its built
using matplotlib and is highly coupled with pandas DataFrames. In Seaborns own words,
the functionality that it offers is as follows.

● A dataset-oriented application programming interface (API) for examining relationships
between multiple variables.

● Specialised support for using categorical variables to show observations or aggregate
statistics.

● Options for visualising univariate or bivariate distributions and for comparing them
between subsets of data.

● Automatic estimation and plotting of linear regression models for different kinds depen-
dent variables.

● Convenient views onto the overall structure of complex datasets.
● High-level abstractions for structuring multi-plot grids that let you easily build complex

visualisations.
● Concise control over matplotlib figure styling with several built-in themes.
● Tools for choosing colour palettes that faithfully reveal patterns in your data.

What does this mean? In simple terms what Seaborn offers is some out of the box
plots which look great and work well with DataFrames but can be configured to a high
level.
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The best way to show this is through example so let us dive in and get started

>>> import matplotlib.pyplot as plt
>>> import seaborn as sns
>>> sns.set(style="darkgrid")
>>> tips = sns.load_dataset("tips")
>>> tips.columns
Index(['total_bill', 'tip', 'sex', 'smoker', 'day', 'time',

'size'], dtype='object')
>>> sns.relplot(x="total_bill", y="tip", data=tips)

The above code loads up the tips dataset in a manner similar to what we have done pre-
viously in the book. We then use the replot method and pass in the name of the DataFrame
as the argument to the data option and set x and y to the column names from the
DataFrame.

The result of this is a scatter plot of the x and y variables shown in Figure 17.30. Now
we can extend this by adding a third dimension. In this case, we want to plot the same
scatter plot but now segment the data by whether they are a smoker or not. To do this
we use the hue option and pass in the name smoker which relates to the column within the
DataFrame. Note here the values of smoker are yes and no which mimics what we see in
the plot
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Figure 17.30 Scatter using replot in seaborn.
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>>> tips.head()
total_bill tip sex smoker day time size

0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
>>> tips.smoker.unique()
[No, Yes]
Categories (2, object): [No, Yes]
>>> sns.relplot(x="total_bill", y="tip", hue="smoker", data=tips);

The plot Figure 17.31 conveniently colours the values related to whether they are a
smoker or not however we can extend this by adding the variable style and setting it to
smoker which will now change what is plotted for each category in smoker, which in this
case is yes or no, this is shown in Figure 17.32.

>>> sns.relplot(x="total_bill", y="tip", hue="smoker",
style="smoker", data=tips);

The hue value previously was a categorical variable which makes sense when applying
but what happens if your hue value is a numeric value? To demonstrate this, we change
the hue value to use the size variable in the dataset. Initially we used the dot syntax to
obtain the unique value but we get an error and this is due to the fact that dot size on
any DataFrame brings back the actual size of the DataFrame which is rows multiplied by
columns. So to obtain the unique values we use the square bracket notation. The size value
is then passed into the hue to give us a scatter plot using a numeric hue.
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Figure 17.31 Scatter plot using replot in seaborn with a third variable.
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Figure 17.32 Scatter plot using replot in seaborn with a third variable and styling.

>>> tips.dtypes
total_bill float64
tip float64
sex category
smoker category
day category
time category
size int64
dtype: object
>>> tips.head()

total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
>>> tips.size.unique()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: 'numpy.int64' object has no attribute 'unique'
>>> tips.size
1708
>>> len(tips)*len(tips.columns)
1708
>>> tips['size'].unique()
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Figure 17.33 Scatter plot using replot in seaborn with hue on size.

array([2, 3, 4, 1, 6, 5])
>>> sns.relplot(x="total_bill", y="tip", hue="size", data=tips);

What we see in the Figure 17.33 is that the size colours get darker as the value increases
and seaborn casts the value to a float and uses a sequential palette taking care of this for you.

Having shown how to apply a third variable using hue we can also use the size option.
As in the previous example, we will use the size variable as the input to size and what this
does is change the size of the point based on this third variable, this is shown in Figure 17.34.

>>> sns.relplot(x="total_bill", y="tip", size="size", data=tips);

We can expand upon the previous example by using the sizes variable this can be in the
form of list, dictionary, or tuple. In the event of a categorical variable, a dictionary would
contain the levels with the relevant values so for the smoker variable we could pass a dic-
tionary as follows.

>>> tips.smoker.unique()
[No, Yes]
Categories (2, object): [No, Yes]
>>> sizes_dict = {'No': 100, 'Yes': 200}
>>> sns.relplot(x="total_bill", y="tip", size="smoker",

sizes=sizes_dict, data=tips)

We can do the same with a list replacing the dictionary

>>> sns.relplot(x="total_bill", y="tip", size="smoker",
sizes=[100,200], data=tips)
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Figure 17.34 Scatter plot using replot in seaborn with a third variable using the size command.

If the size used is numeric, we can pass a tuple with the min and max values which is
then applied across the different numeric values to give appropriate sizes of each point, this
is shown in Figure 17.35.

>>> sns.relplot(x="total_bill", y="tip", size="size",
sizes=(15, 200), data=tips);

Next, we will look at line plots in seaborn. Initially we will setup a DataFrame using two
methods in numpy. The first is arange which creates a list of ascending integer values from
0 to n − 1, which we demonstrate below.

>>> np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

We then also generate a set of random numbers using the randn method of random and
them apply the cumsum method to cumulatively sum these.

>>> np.random.randn(10)
array([ 0.75458636, 0.97439336, 0.60599301, -0.43901759, -2.09960322,

-0.98797121, 0.49168321, -0.67410672, 0.31230068, 0.30193896])
>>> np.random.randn(10).cumsum()
array([ 0.90373977, 1.33607406, -0.14939861, -0.02879636, -0.72357103,

-0.17421058, -0.64378907, 0.19505236, 0.10861358, -1.86160312])

Note the values in the two examples will not add up as everytime we generate a set of
random numbers we get a different value as they do not have memory. We could have cast
the first value to a variable as follows and you can see the effect of cumsum.
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Figure 17.35 Scatter plot using replot in seaborn with different size of points.

>>> x = np.random.randn(10)
>>> print(x)
array([-0.66468216, -0.64194921, 0.4189947, -1.76462566, 0.60687855,

-1.46429832, -0.01150336, 1.97159021, 0.93025079, -0.47068112])
>>> x.cumsum()
array([-0.66468216, -1.30663136, -0.88763666, -2.65226232, -2.04538377,

-3.5096821, -3.52118546, -1.54959525, -0.61934447, -1.09002559])

Using the above we can create a DataFrame with some random values as our value col-
umn. To plot the data, we can use the lineplot or with replot setting the kind to be line as is
shown below with the resulting graph in Figure 17.36.

>>> import numpy as np
>>> import pandas as pd
>>> import matplotlib.pyplot as plt
>>> import seaborn as sns
>>> sns.set(style="darkgrid")
>>> df = pd.DataFrame(dict(time=np.arange(500),

value=np.random.randn(500).cumsum()))
>>> df.head()

time value
0 0 -1.189914
1 1 -1.744486
2 2 -2.182634
3 3 -2.321100
4 4 -0.503165
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Figure 17.36 Line plot in Seaborn using replot.

>>> g = sns.relplot(x="time", y="value", kind="line", data=df)
>>> g.fig.autofmt_xdate()

Next, we look at the fmri dataset and how we can use replot to produce a line plot of
timepoint by signal. Looking at the dataset, we can see for each timepoint we have multiple
measurements.

>>> fmri = sns.load_dataset("fmri")
>>> fmri[fmri['timepoint']==18].head()

subject timepoint event region signal
0 s13 18 stim parietal -0.017552
2 s12 18 stim parietal -0.081033
3 s11 18 stim parietal -0.046134
4 s10 18 stim parietal -0.037970
5 s9 18 stim parietal -0.103513
>>> fmri.groupby('timepoint').count()['signal']
timepoint
0 56
1 56
2 56
3 56
4 56
5 56
6 56
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7 56
8 56
9 56
10 56
11 56
12 56
13 56
14 56
15 56
16 56
17 56
18 56

So for each timepoint, we have 56 values; now passing these values into replot aggregates
over the data with the line representing the mean of that timepoint and a 95% confidence
interval around that point, this is shown in Figure 17.37.

>>> sns.relplot(x="timepoint", y="signal", kind="line", data=fmri);

We can repress the confidence interval by passing the ci to be None as shown in
Figure 17.38.

>>> sns.relplot(x="timepoint", y="signal", ci=None,
kind="line", data=fmri);
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Figure 17.37 Line plot in replot with mean and confidence interval.
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Figure 17.38 Line plot in replot with mean and no confidence interval.

We can change what the interval around the mean by passing sd to it which then calcu-
lates the standard deviation around the mean which is given in Figure 17.39.

>>> sns.relplot(x="timepoint", y="signal", kind="line",
ci="sd", data=fmri);

Like we saw before with the scatterplot, we can use the hue to pass in a third variable to
group our data by, in the below code we choose the event variable which splits our data in
two as shown in Figure 17.40.

>>> fmri.head()
subject timepoint event region signal

0 s13 18 stim parietal -0.017552
1 s5 14 stim parietal -0.080883
2 s12 18 stim parietal -0.081033
3 s11 18 stim parietal -0.046134
4 s10 18 stim parietal -0.037970
>>> fmri.event.unique()
array(['stim', 'cue'], dtype=object)
>>> sns.relplot(x="timepoint", y="signal", hue="event",

kind="line", data=fmri);

We can expand on the previous example by setting the hue to be region and the style to be
event. In doing so we have the different colours representing the regions and the line type



�

� �

�

17.3 Seaborn 189

timepoint

si
gn

al

0.0

–0.10

–0.05

0.00

0.05

0.10

0.15

0.20

0.25

2.5 5.0 7.5 10.0 12.5 15.0 17.5

Figure 17.39 Line plot in replot with mean and standard deviation.
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Figure 17.40 Line plot in replot with hue applied.
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Figure 17.41 Line plot in replot with hue and style applied.

representing the event. This allows us to represent more variables in the line plot as shown
in Figure 17.41.

>>> fmri.region.unique()
array(['parietal', 'frontal'], dtype=object)
>>> sns.relplot(x="timepoint", y="signal", hue="region", style="event",

kind="line", data=fmri);

Let us change the example and use a different dataset. Here we load in the dots dataset.

>>> dots = sns.load_dataset("dots").query("align == 'dots'")
>>> dots.head()

align choice time coherence firing_rate
0 dots T1 -80 0.0 33.189967
1 dots T1 -80 3.2 31.691726
2 dots T1 -80 6.4 34.279840
3 dots T1 -80 12.8 32.631874
4 dots T1 -80 25.6 35.060487
>>> dots.tail()

align choice time coherence firing_rate
389 dots T2 680 3.2 37.806267
390 dots T2 700 0.0 43.464959
391 dots T2 700 3.2 38.994559
392 dots T2 720 0.0 41.987121
393 dots T2 720 3.2 41.716057
>>> dots.coherence.unique()
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Figure 17.42 Line plot in replot with hue and style applied on the dots dataset.

array([ 0., 3.2, 6.4, 12.8, 25.6, 51.2])
>>> dots.choice.unique()
array(['T1', 'T2'], dtype=object)
>>>sns.relplot(x="time", y="firing_rate",

hue="coherence", style="choice",
kind="line", data=dots);

In the plot shown in Figure 17.42, we use time and firing rate as our x and y variables,
we then use the coherence and choice variables to provide the hue and the styling. Using
both hue and style allows us to combine colour and style at each x and y combination. So in
essence we can display four variables on one plot. It should be noted that the makeup of this
dataset is particularly suited to doing this as we have six unique values for coherence and
two for choice resulting in 12 lines. When considering using this type of plot, it is important
to make sure that your dataset is suitable and that the plot is a better representation of the
data, as opposed to something that visually offers little.

So far we have considered single plots but what if we want to compare the relationship
between multiple variables on the same plot. Let us look at the tips dataset and the rela-
tionship between total bill and tip

>>> import numpy as np
>>> import pandas as pd
>>> import matplotlib.pyplot as plt
>>> import seaborn as sns
>>> sns.set(style="darkgrid")
>>> tips = sns.load_dataset("tips")
>>> tips.head()



�

� �

�

192 17 Plotting

total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
>>> tips.time.unique()
[Dinner, Lunch]
Categories (2, object): [Dinner, Lunch]
>>> tips.smoker.unique()
[No, Yes]
Categories (2, object): [No, Yes]
>>> sns.relplot(x="total_bill", y="tip", hue="smoker",

col="time", data=tips);

In this example, we have looked at the relationship between total bill and tip which has
been covered before. Now looking at other variables within the dataset that we could use
time and smoker to drill further into the relationship between total bill and tips. Setting the
hue to be smoker breaks our data into those who are and who are not a smoker; however,
we can expand on this further by using the col argument. In this case, we set col to time,
which like with smoker contains only two categories, and results in our initial plot by hue
being replicated on the variable passed through col. This is useful in showing us the rela-
tionship side by side and is shown in Figure 17.43.

We can expand upon the previous example by producing a multi plot using rows and
columns. Here we load the fmri dataset from seaborn.

>>> fmri = sns.load_dataset("fmri")
>>> fmri.head()

subject timepoint event region signal
0 s13 18 stim parietal -0.017552
1 s5 14 stim parietal -0.080883

total_bill

time = Lunch time = Dinner

smoker
Yes
No

10
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tip
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Figure 17.43 Multi scatter plot on tips data.
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2 s12 18 stim parietal -0.081033
3 s11 18 stim parietal -0.046134
4 s10 18 stim parietal -0.037970
>>> fmri.dtypes
subject object
timepoint int64
event object
region object
signal float64
dtype: object
>>> fmri.event.unique()
array(['stim', 'cue'], dtype=object)
>>> fmri.region.unique()
array(['parietal', 'frontal'], dtype=object)
>>> fmri.subject.unique()
array(['s13', 's5', 's12', 's11', 's10', 's9', 's8', 's7',

's6', 's4', 's3', 's2', 's1', 's0'], dtype=object)
>>> sns.relplot(x="timepoint", y="signal", hue="subject",

col="region", row="event", height=3,
kind="line", estimator=None, data=fmri);

As usual we examine the dataset using head; however, in this example we use the dtypes
method to display the types of each column. What this shows is that timepoint and signal
are of types int64 and float64 respectively which make them ideal candidates as our x and
y variable. Looking at the other variables, we see that both event and region have only two
distinct values and the subject has 14 different values. So in putting together our plot subject
is best suited to be the hue, and we can use event and region to be set as the row and col
variables. In the code, we set the col as region and row as event. The result of this is that the
headers for our 2 by 2 plot contains the distinct combinations of the variables as shown in
Figure 17.44.

Now this plot is fine however you could argue that having 14 variables in the hue makes
it hard to distinguish what’s going on. We can quite easily reduce this down by looking at
selecting a subset of data as shown in Figure 17.45.

>>> fmri['subject'].isin(['s0','s1','s2']).head()
0 False
1 False
2 False
3 False
4 False
Name: subject, dtype: bool
>>> fmri_red = fmri[fmri['subject'].isin(['s0','s1','s2'])]
>>> sns.relplot(x="timepoint", y="signal", hue="subject",

col="region", row="event", height=3,
kind="line", estimator=None, data=fmri_red);
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Figure 17.44 Multi line plot with rows and columns using fmri dataset.

If we only want to look at one variable passed through col, we can set a col_wrap which
will have a max number of plots side by side. In this case, setting the value to 5 wraps the
plots to 5 per line giving three rows to fit our 14 different subjects. This gives us the effect
of setting rows and columns using just a single variable as shown in Figure 17.46.

>>> sns.relplot(x="timepoint", y="signal", hue="event", style="event",
col="subject", col_wrap=5,
height=3, aspect=.75, linewidth=2.5,
kind="line", data=fmri.query("region == 'frontal'"));

We next consider plotting categorical data and start by looking at using the catplot method
with the tips dataset.

>>> tips = sns.load_dataset("tips")
>>> tips.head()

total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
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Figure 17.45 Multi line plot with rows and columns using reduced fmri dataset.

>>> tips.dtypes
total_bill float64
tip float64
sex category
smoker category
day category
time category
size int64
dtype: object
>>> tips['day'].unique()
[Sun, Sat, Thur, Fri]
Categories (4, object): [Sun, Sat, Thur, Fri]
>>> sns.catplot(x="day", y="total_bill", data=tips);

The code shown loads the seaborn dataset tips and we look at its content using the head
and dtypes methods. What we see is that there are some options for categorical data and
we look at the individual values of the day column which unsurprisingly contain some of
the week of the year names (albeit abbreviated). It is also worth noting that the type of this
column is category. We can then plot the values of the total bill split by the day of the week
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Figure 17.47 Catplot of day against total bill from the tips dataset.

which is in the form of points grouped by the day and also coloured to distinguish them
with the resulting plot shown in Figure 17.47.

Now if we consider the data, we can see some shared values

>>> tips[tips['day']=='Thur'].sort_values(by='total_bill').head(20)
total_bill tip sex smoker day time size

149 7.51 2.00 Male No Thur Lunch 2
195 7.56 1.44 Male No Thur Lunch 2
145 8.35 1.50 Female No Thur Lunch 2
135 8.51 1.25 Female No Thur Lunch 2
126 8.52 1.48 Male No Thur Lunch 2
148 9.78 1.73 Male No Thur Lunch 2
82 10.07 1.83 Female No Thur Lunch 1
136 10.33 2.00 Female No Thur Lunch 2
196 10.34 2.00 Male Yes Thur Lunch 2
117 10.65 1.50 Female No Thur Lunch 2
132 11.17 1.50 Female No Thur Lunch 2
128 11.38 2.00 Female No Thur Lunch 2
120 11.69 2.31 Male No Thur Lunch 2
147 11.87 1.63 Female No Thur Lunch 2
133 12.26 2.00 Female No Thur Lunch 2
118 12.43 1.80 Female No Thur Lunch 2
124 12.48 2.52 Female No Thur Lunch 2
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201 12.74 2.01 Female Yes Thur Lunch 2
202 13.00 2.00 Female Yes Thur Lunch 2
198 13.00 2.00 Female Yes Thur Lunch 2

So we can see that we have a shared value on Thursday for the total bill value of 13.00.
In the previous plot, our scatter does not take account of that so we need a way to deal
with this. Luckily, we have a setting that can be applied to change this. By passing the kind
variable and setting it to swarm applies an algorithm to prevent the overlapping of the vari-
ables and this gives us a better representation of the distribution as shown in Figure 17.48.
It should be noted that the default value of kind is strip which gives the plot shown in the
previous example.

>>> sns.catplot(x="day", y="total_bill", kind="swarm", data=tips);

Previously we had shown how we could add a hue to a plot to group it by that value and the
same is true when we produce a catplot. Looking through the variable list, we can see that
sex is another categorical variable that would work well passed to the hue. The difference
that we see between this and the last plot is that the colour is now driven by the hue which
is to be expected as our other categorical variable is passed through the x variable. This is
shown in Figure 17.49.

>>> tips.dtypes
total_bill float64
tip float64

Figure 17.48 Catplot of day against total bill from the tips dataset with kind set to swarm.
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Figure 17.49 Catplot of day against total bill from the tips dataset with kind set to swarm with
hue set to sex.

sex category
smoker category
day category
time category
size int64
dtype: object
>>> tips['sex'].unique()
[Female, Male]
Categories (2, object): [Female, Male]
>>> sns.catplot(x="day", y="total_bill", hue="sex",

kind="swarm", data=tips);

So far we have dealt with categorical variables in the form of text data like sex or day, but
what if the category could be numerical. In this next example, we will set the x value to be
size which is an integer and what we see is that the value is treated as a category in a similar
way to what we have seen in the previous example. In the code, you will also see that we
have introduced a new DataFrame method query which works by passing a query to apply
on the DataFrame in the form of a string. So here we have passed in the query size != 3 so
what we are saying is that we want to get the data where size is not equal to 3. This could also
have been written using Boolean series where we would look for tips[tips[‘size’]!=3]. What
should be noted is that catplot will order the x value appropriately based on the numerical
values as shown in Figure 17.50.
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Figure 17.50 Catplot of size against total bill.

>>> sns.catplot(x="size", y="total_bill", kind="swarm",
data=tips.query("size != 3"));

The question of ordering a numerical value is relatively simple as you would expect
seaborn to order it using the ascending numerical value, but for a categorical variable,
it is not quite as straight forward. If we take the example of plotting smoker against tip
how do we control the ordering of the smoker values which are yes and no. To do this we
can use the order argument and set it to be how we want the responses to be shown as
demonstrated in Figure 17.51.

>>> tips.smoker.unique()
[No, Yes]
Categories (2, object): [No, Yes]
>>> sns.catplot(x="smoker", y="tip", order=["No", "Yes"],

data=tips);

We can change the example by using the x axis as total bill and setting the y axis to be
the categorical variable day to invert the plot with the swarm being horizontal as opposed
to vertical. In this example, we also apply the hue and swarm which shows we can achieve
the same result horizontally or vertically as shown in Figure 17.52.

>>> sns.catplot(x="total_bill", y="day", hue="time",
kind="swarm", data=tips);
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Figure 17.51 Catplot of smoker against tip using order argument.

Figure 17.52 Catplot of total bill against day with swarm and hue of time.
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The previous examples have all looked at scatterplots but we can produce different plots
by changing what we pass as the kind argument. The first such example that will be shown
is how we produce a box plot of our data. To do this, we specify the kind to be box and that
will move us from the default of a scatter plot to a box plot representation of the data. In the
example below, we set the y axis to be the total bill and the x axis to be day.

>>> sns.catplot(x="day", y="total_bill", kind="box", data=tips);

The result of this is a standard box plot but what we see is that data outside of the whiskers
are shown as data points on the plot so every point of data is represented on it as shown in
Figure 17.53.

As we have shown earlier with the scatterplot example, we can add a hue to our data
which then gives us multiple box plots per category using the colour to distinguish the
levels of the hue, which we demonstrate in Figure 17.54.

>>> sns.catplot(x="day", y="total_bill", hue="smoker",
kind="box", data=tips);

The next type of plot we consider is a boxen plot, this is produced where the kind argu-
ment is set to boxen. The example below uses the diamond dataset and plots the variable
colour against price. This plot is similar to the box plot except for the fact that the data is
grouped beyond the quartiles that a box plot shows as shown in Figure 17.55. In doing this
we can get a better picture of the distribution of the data given the larger number of groups.

Figure 17.53 Boxplot using catplot.
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Figure 17.54 Boxplot using catplot with a hue.

Figure 17.55 Boxen plot using catplot.
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>>> diamonds.head()
carat cut color clarity depth table price x y z

0 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43
1 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31
2 0.23 Good E VS1 56.9 65.0 327 4.05 4.07 2.31
3 0.29 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63
4 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75
>>> diamonds.dtypes
carat float64
cut object
color object
clarity object
depth float64
table float64
price int64
x float64
y float64
z float64
dtype: object
>>> diamonds.color.unique()
array(['E', 'I', 'J', 'H', 'F', 'G', 'D'], dtype=object)
>>> sns.catplot(x="color", y="price", kind="boxen",

data=diamonds.sort_values("color"));

The previous example of the boxen plot allowed us to get a better picture of the distri-
bution with more groups than a box plot; however, our next example allows us to get the
overview given by the box plot whilst also displaying the information of a box plot. To do
this, we set the kind to violin which gives us a violin plot. In our example, we use the com-
mon total bill and day values that we have used previously; we apply a hue to the data
using the variable time which has the unique values of Dinner and Lunch. The plot calcu-
lates the kernel density estimate (KDE) with the box plot representation of the data inside
it. The KDE aspect of this plot is something that we will go into more detail. A KDE looks
to represent the data in much the same way as histogram summarising the distribution.
For a histogram, we would look to set the bin numbers to determine how the plot would
look, now we cannot do this for the KDE aspect of the violin plot instead we have to set a
smoothing parameter. In the example given, you can see that this is set to 0.15, this is in
contrast to the default value 1. The choice of this parameter is key to how your plot looks as
over smoothing may remove aspects of the dataset. The other argument that we pass here
which we have not seen before is the cut parameter. This is much more straightforward as
it determines where we extend the plot when used with the smoothing value. In this case,
we set the value to 0 which means we truncate at the end of the data.

In the example, we can see that we do not have data points for each combination of day
and time; therefore, for Thursday and Friday, we have two violins and for Saturday and
Sunday we only have the one. Another interesting consequence is how a single data point
is dealt with as we have only one for Thursday Dinner. In this case, we have a single line at
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Figure 17.56 Violin plot using catplot.

the point 18.78 representing that total bill value. If we did not want this, we could remove
it from the data before plotting it. The result of this is shown in Figure 17.56.

>>> tips.head()
total_bill tip sex smoker day time size

0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
>>> tips.time.unique()
[Dinner, Lunch]
Categories (2, object): [Dinner, Lunch]
>>> tips.groupby(by=['day', 'time']).count()

total_bill tip sex smoker size
day time
Thur Lunch 61.0 61.0 61.0 61.0 61.0

Dinner 1.0 1.0 1.0 1.0 1.0
Fri Lunch 7.0 7.0 7.0 7.0 7.0

Dinner 12.0 12.0 12.0 12.0 12.0
Sat Lunch NaN NaN NaN NaN NaN

Dinner 87.0 87.0 87.0 87.0 87.0
Sun Lunch NaN NaN NaN NaN NaN

Dinner 76.0 76.0 76.0 76.0 76.0
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>>> thursday = tips[(tips['day']=='Thur')]
>>> thursday.head()

total_bill tip sex smoker day time size
77 27.20 4.00 Male No Thur Lunch 4
78 22.76 3.00 Male No Thur Lunch 2
79 17.29 2.71 Male No Thur Lunch 2
80 19.44 3.00 Male Yes Thur Lunch 2
81 16.66 3.40 Male No Thur Lunch 2
>>> thursday[thursday['time']=='Dinner']

total_bill tip sex smoker day time size
243 18.78 3.0 Female No Thur Dinner 2
>>> sns.catplot(x="total_bill", y="day", hue="time",

kind="violin", bw_adjust=.15, cut=0,
data=tips);

An interesting variation of this is to set the split value to True which when applied with
a hue shows both sets of values in the same violin. So in this example, we have one violin
per day as opposed to two that we might expect when we normally use hue. In doing this,
our box plot is done on the data as a whole with the split on the violin so you can compare
the overall distribution to the distribution of each category of the hue. This example is also
good to compare the effect of the smoothing parameter which is set to the default here
compared to the adjustment applied in the previous example. The resulting plot is shown
in Figure 17.57.

Figure 17.57 Violin plot using catplot using a split on the hue.



�

� �

�

17.3 Seaborn 207

>>> sns.catplot(x="day", y="total_bill", hue="sex",
kind="violin", split=True, data=tips);

Next we look at how we can capture variability within our dataset over categorical data
using a bar plot. To achieve this, we pass bar as the argument to kind which produces a bar
plot based on our x and y variables which are survived and sex with the hue class as shown
in Figure 17.58. The default operation that the bar plot applies to the data is the mean and
as such if we have multiple observations a confidence interval is bootstrapped from the data
and shown as a vertical line at the top of the bar.

>>> import seaborn as sns
>>> import matplotlib.pyplot as plt
>>> sns.set(style="ticks", color_codes=True)
>>> tips = sns.load_dataset("tips")
>>> titanic = sns.load_dataset("titanic")
>>> titanic.head()

survived pclass sex age ... deck embark_town alive alone
0 0 3 male 22.0 ... NaN Southampton no False
1 1 1 female 38.0 ... C Cherbourg yes False
2 1 3 female 26.0 ... NaN Southampton yes True
3 1 1 female 35.0 ... C Southampton yes False
4 0 3 male 35.0 ... NaN Southampton no True
[5 rows x 15 columns]
>>> titanic.dtypes
survived int64
pclass int64
sex object

Male Female

Figure 17.58 Bar plot using catplot.
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age float64
sibsp int64
parch int64
fare float64
embarked object
class category
who object
adult_male bool
deck category
embark_town object
alive object
alone bool
dtype: object
>>> sns.catplot(x="sex", y="survived", hue="class", kind="bar",

data=titanic);

If we are interested in the frequency and not the mean, we can pass count to the kind
argument which gives us a countplot as shown in Figure 17.59. Here we have not passed an
x value and instead use the hue argument to group by class with the y value set to deck. What
happens here is that as we are looking to obtain the counts of the deck variable grouped by
class which means the output is the count per grouping which then becomes the x axis.

>>> sns.catplot(y="deck", hue="class", kind="count",
palette="pastel", edgecolor=".6",
data=titanic);

The examples we have looked at so far have concentrated on relationships between vari-
ables that are explicitly passed to be plot. If we take the example of the iris dataset, we can

Figure 17.59 Count plot using catplot.
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Figure 17.60 Boxplot of iris data.

be much more loose and pass the data to the method to get it applied across the dataset.
In this example, the data is of type float for four of the five columns and passing this into
the catplot with the type set as box results in box plots for these four variables of type float.
So we can use seaborn to be more exploratory when producing plots of our datasets as shown
in Figure 17.60. It should also be noted that we achieved the horizontal box plots by passing
the orient argument set to h.

>>> iris = sns.load_dataset("iris")
>>> iris.head()

sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa
>>> iris.dtypes
sepal_length float64
sepal_width float64
petal_length float64
petal_width float64
species object
dtype: object
>>> sns.catplot(data=iris, orient="h", kind="box");
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Figure 17.61 Multiple plots with col in catplot.

Having shown how to apply hue on catplot, we can also use the col argument to create
multiple plots. This is demonstrated using the tips dataset and plotting a swarm plot of day
against total bill with the hue being smoker, but to extend this we add the col as time which
gives us two plots one for time set to Lunch and one for time set to Dinner. This is shown
in Figure 17.61.

>>> sns.catplot(x="day", y="total_bill", hue="smoker",
col="time", aspect=.6,
kind="swarm", data=tips);

Next, we look at plotting a single set of data as opposed to one value against another.
We call this a univariate distribution, and for this type of data, we may want to use a his-
togram. To demonstrate this, we can simply generate some random data and then pass this
into distplot to give us a histogram with a KDE fit to our data as shown in Figure 17.62.

>>> import numpy as np
>>> import pandas as pd
>>> import seaborn as sns
>>> import matplotlib.pyplot as plt
>>> from scipy import stats
>>> sns.set(color_codes=True)
>>> x = np.random.normal(size=100)
>>> sns.distplot(x);

We can customise the histogram and next we look to remove the KDE by setting the kde
option to False and add a rugplot by setting the rug option to True as shown in Figure 17.63.
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Figure 17.62 Histogram with KDE.
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Figure 17.63 Histogram with ruglplot.

A rugplot shows every single value of data as lines along the x axis giving us a representation
of the data.

>>> sns.distplot(x, kde=False, rug=True);

The previous histogram bin values have been the default values that distplot have used
with the dataset. If we want to specify the number of bins to use, we can just set the bin argu-
ment to the value that we want and the plot will divide into the number of bins requested
as shown in Figure 17.64.

>>> x = np.random.normal(size=100)
>>> x[0:10]
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Figure 17.64 Histogram with bins option set.

array([-0.4087231, 0.6615343, -1.57704264, 0.56074442, 0.75721634,
-0.18845652, 1.89587154, -0.8917129, -0.48700585, -0.69029233])

>>> sns.distplot(x, bins=20, kde=False, rug=True);

Now having covered scatterplots and histograms, we now look at method which plots
both; by using the jointplot method, we get a scatterplot of x against y as well as the
histograms for each variable in the x and y axis. In our example, we create two random
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Figure 17.65 Joint plot.
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variables and put these into a DataFrame. This DataFrame is then passed in as the data
argument and we set x and y arguments to refer to the columns in our DataFrame with the
resultant plot shown in Figure 17.65.

>>> x = np.random.normal(size=100)
>>> y = np.random.normal(size=100)
>>> df = pd.DataFrame({'x':x, 'y': y})
>>> df.head()

x y
0 -0.926842 0.927292
1 1.402616 0.056310
2 -1.101788 -1.164577
3 -0.068730 0.469220
4 0.708112 1.861127
>>> sns.jointplot(x="x", y="y", data=df);

Figure 17.66 Pairplot example using iris data.
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The last plot that we will consider in this chapter is the pairplot. In the example shown,
we simply pass in the iris DataFrame and the result is a plot which shows every value plotted
against every other one as a scatter plot with the distribution of each variable given as a
histogram where the x and y names are the same as shown in Figure 17.66. Note in the
example we have categorical data within the iris DataFrame yet the pairplot ignores this
column.

>>> iris = sns.load_dataset("iris")
>>> iris.head()

sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa
>>> sns.pairplot(iris);

In this chapter, we have looked at plotting in Python and seen how we can produce simple
easy to use through to very complicated customisable plots. What this hopefully demon-
strates is the power of Python when it comes to producing plots. The examples shown
should act as a reference for you to refer back to and give you a document of some of what
can be achieved in Python.
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18

APIs in Python

In this chapter, we will cover how to deal with APIs (application programming interfaces)
using Python. To do this we are going to cover both how to create and access an API and
build examples to do both. Before we get to writing any code we need to cover what an API
is and why its useful. An API is a mechanism that allows communication between soft-
ware applications and in this case will cover communication between an application and
a web user. The uses of APIs have become increasingly popular allowing users to access
data or communicate with services. They give a unified approach to doing so and therefore
have become an important aspect to become familiar with, understanding how to commu-
nicate with.

We begin by creating our own API to do this. We are going to use the Python packages
flask as well as the package flask-restful. To see if you have the packages you can try and
import them.

>>> from flask import *
>>> from flask_restful import *

Now, flask comes by default with the Anaconda distribution of Python but you may
not have flask_restful, if that is the case you will need to install it. To do so go to
https://anaconda.org/conda-forge/flask-restful to find something like the one shown in
Figure 18.1.

Now, while this book has intended to be self-contained and not rely on many things out-
side the Anaconda distribution of Python, the url around things like the Anaconda website
and subsequent links within it may change. If at the time of reading this is the case, then
you just need to search the package list of Anaconda to get this. You could also do a simple
search of conda flask restful using your favourite search engine and you should find the
relevant web pages. You can then install flask-restful from the command line using one of
the conda commands given.

With all the packages installed we can then look to create our very first API, to do so we
will work within the confines of a script, so create a file called my_flask_api.py and add the
following in the file.

from flask import Flask
from flask_restful import Resource, Api

The Python Book, First Edition. Rob Mastrodomenico.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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Figure 18.1 Example of flask-restful download page.

app = Flask(__name__)
api = Api(app)

class HelloWorld(Resource):
def get(self):

return {'hello': 'world'}

api.add_resource(HelloWorld, '/')

if __name__ == '__main__':
app.run(debug=True)

Let’s first run this and then explain what is going on. To do so open up a terminal or
command prompt and change directory to where your file is living.

Once there run the command Python my_flask_api.py and you will see something as
shown in Figure 18.2.

What this is doing is starting up your API and you are now running it locally on machine.
This means that it is accessible by you on your machine but not available on the world
wide web. To demonstrate this if we open up a web browser we can go to the ip address
http://127.0.0.1:5000/ then we see what is shown in Figure 18.3.
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Figure 18.2 Display of terminal window upon starting up API.

Figure 18.3 Display of API from browser.

How has this all happened? Let’s go back and look at the original code.

from flask import Flask
from flask_restful import Resource, Api

app = Flask(__name__)
api = Api(app)

We initially import the relevant objects from both flask and flask_restful, and using this
we create a flask app using the Flask method with the name of the current module passed in
via __name__. This gives us an app object, and we can then create an api object by passing
the app into the API method. This is our setup stage, next we want to add an endpoint to it.

class HelloWorld(Resource):
def get(self):

return {'hello': 'world'}

api.add_resource(HelloWorld, '/')

In this code snippet, we create a class named HelloWorld using the argument of Resource.
Within this class we create a method called get, which simply returns the dictionary of hello
with the key world.

if __name__ == '__main__':
app.run(debug=True)
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Lastly, show the code that is executed to start the api up. In relation to the app object we
use its run method with the argument of debug set as True. This makes the api available
locally for the user. This block of code does raise an interesting line of code, namely,

if __name__ == '__main__'

This is common place within Python but many use it without understanding it, and we
will attempt to resolve that now. Using an if statement with the == between two variables is
pretty straightforward but what do __name__ and ’__main__’ mean? As shown when the
Flask object was created, we used the __name__ variable which gives us the name of the
current module. But how does this work, we will show by an example creating two files that
each call the __name__ variable to show how it behaves. Let us call our first file file_one.py,
we put the following code in there:

out_str = 'file one __name__ is {}'.format(__name__)
print(out_str)

If we run this code, then we see the output:

file one __name__ is __main__

Now, we create file_two.py and put in the following code:

out_str = 'file two __name__ is {}'.format(__name__)
print(out_str)

If we run this code, then we see the output:

file two __name__ is __main__

All sounds sensible but if we now import file_two.py into file_one.py as follows:

from file_two import *
out_str = 'file two __name__ is {}'.format(__name__)
print(out_str)

We get the following output:

file two __name__ is file_two
file one __name__ is __main__

What does this mean in relation to the original code snippet?

if __name__ == '__main__'

Essentially in having that bit of code, it means that if we run the code from the script that
it is in, then we can execute what lives within the if statement.

So we have our API running on http://127.0.0.1:5000/ if we maintain the persistence of
the script my_flask_api.py. So, keep that running in the same window you had it going in
before. Now if we want to programmatically get the data from our own API, we need to use
the requests package and access the data. If we work in the console we can interactively
access the API running on our own machine using the following code:
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>>> import requests
>>> data = requests.get('http://127.0.0.1:5000/')
>>> data
<Response [200]>
>>> type(data)
<class 'requests.models.Response'>

Now, if you refer back to the window where you are running your API from, you
will notice that a get request was made to the endpoint / at the time you ran the
requests.get method with the url as the argument. You’ll notice that the data variable from
the requests.get doesn’t give us the json data that we saw from the website but instead
gave us a response of 200. If we use the dir method around the data object, then we see the
following:
>>> dir(data)

['__attrs__', '__bool__', '__class__', '__delattr__', '__dict__', '__dir__',

'__doc__', '__enter__', '__eq__', '__exit__', '__format__', '__ge__',

'__getattribute__', '__getstate__', '__gt__', '__hash__', '__init__',

'__init_subclass__', '__iter__', '__le__', '__lt__', '__module__',

'__ne__', '__new__', '__nonzero__', '__reduce__', '__reduce_ex__',

'__repr__', '__setattr__', '__setstate__', '__sizeof__', '__str__',

'__subclasshook__', '__weakref__', '_content', '_content_consumed',

'_next', 'apparent_encoding', 'close', 'connection', 'content', 'cookies',

'elapsed', 'encoding', 'headers', 'history', 'is_permanent_redirect',

'is_redirect', 'iter_content', 'iter_lines', 'json', 'links', 'next', 'ok',

'raise_for_status', 'raw', 'reason', 'request', 'status_code', 'text', 'url']

>>> data.json()

{'hello': 'world'}

>>> data.status_code

200

>>> data.reason

'OK'

>>> data.text

'{\n "hello": "world"\n}\n'

>>> data.url

'http://127.0.0.1:5000/'

So, here we can see the methods and attributes of the data object and we look at a few of
these. The json method of the object unsurprisingly gives the json that we saw from the end-
point via the web browser. The status_code attribute returns the status of the web request
that we made here 200,which is a successful request. We will not cover all status codes
within this book, however if you are interested then they are easily accessible online. Along-
side a status code we also have a reason, here we would expect an informative message
to alongside our status code. The text representation of what is returned is also available
alongside the url we used. What is clear is that we get a lot of information back from our
request.

Now this is a good first example, but it only demonstrates the get request and actually
the information isn’t that useful as we only get back some simple json. What we will do
next is create an API that allows us to get, post, and delete information from a small movie
database that we will add to the code. The full code is shown below and as usual we will
step through it line by line:
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from flask import Flask
from flask_restful import reqparse, abort, Api, Resource

app = Flask(__name__)
api = Api(app)

film_dict = {
'1': {'Name': 'Avengers: Infinity War', 'Year': 2018, 'Month': 'March'},
'2': {'Name': 'Ant Man and the Wasp', 'Year': 2018, 'Month': 'August'},

}

def abort_if_todo_doesnt_exist(film_id):
if film_id not in film_dict:

abort(404, message="Film {} doesn't exist".format(film_id))

parser = reqparse.RequestParser()
parser.add_argument('name')
parser.add_argument('year')
parser.add_argument('month')

class Films(Resource):
def get(self, film_id):

abort_if_todo_doesnt_exist(film_id)
return film_dict[film_id]

def delete(self, film_id):
abort_if_todo_doesnt_exist(film_id)
del film_dict[film_id]
return '', 204

def put(self, film_id):
args = parser.parse_args()
task = {'Name': args['name'],

'Year': args['year'],
'Month': args['month']}

film_dict[film_id] = task
return task, 201

class FilmDict(Resource):
def get(self):

return film_dict

api.add_resource(FilmDict, '/films')
api.add_resource(Films, '/films/<film_id>')

if __name__ == '__main__':
app.run(debug=True)
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The imports that we use within this API are as follows:

from flask import Flask
from flask_restful import reqparse, abort, Api, Resource

This is similar to what we used in the hello world example. However, now there are
two more imports from flask_restful, namely reqparse and abort. Reqparse is an argument
parser that we can make use of to process arguments sent with the web request to the API
as shown below:

parser = reqparse.RequestParser()
parser.add_argument('name')
parser.add_argument('year')
parser.add_argument('month')

Here, we create a RequestParser and then add arguments, name, year, and month, which
we will pass when we need to add a film. Adding this doesn’t allow us to get the arguments,
to do this we need to parse them out and later in the code we have the following snippet of
code:

args = parser.parse_args()

What this does is parse the arguments from the RequestParser and then store them in a
dictionary.

The abort import is used in a custom function that we use to send an appropriate message
if the film_id doesn’t exist.

def abort_if_film_doesnt_exist(film_id):
if film_id not in film_dict:

abort(404, message="Film {} doesn't exist".format(film_id))

Here, we pass the film_id as an argument and if the id doesn’t exist in the dictionary then
a 404 is given with a custom message relating to the film that doesn’t exist. We use this
function in a number of places within the code as we will show.

Next, we consider the two classes that are in the code namely Films and FilmDict.
The first of these looks as follows:

class Films(Resource):
def get(self, film_id):

abort_if_film_doesnt_exist(film_id)
return film_dict[film_id]

def delete(self, film_id):
abort_if_film_doesnt_exist(film_id)
del film_dict[film_id]
return '', 204

def put(self, film_id):
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args = parser.parse_args()
task = {'Name': args['name'],

'Year': args['year'],
'Month': args['month']}

film_dict[film_id] = task
return task, 201

This class defines get, delete, and put methods which do, as you would think, what it says
on the tin and gets a film, deletes a film, and puts a film in our dictionary. Notice that in
the get and delete methods, we use our abort_if_film_doesnt_exist function to first check
if the film exists and sends the appropriate error message and status code. Note that we
could have done it in each method but if we ended up with 20 different methods that would
be lots of repeated code. The actual nuts and bolts of what this code does is pretty straight
forward and uses dictionary methods covered within this book. Note that for the delete and
put methods we return a status code alongside an empty string for the delete method or the
task for the put method.

class FilmDict(Resource):
def get(self):

return film_dict

The next class only has a single get method and returns our entire database of films, but
why have this as a separate class? This is because we add this to a separate url as shown in
the following code snippet:

api.add_resource(FilmDict, '/films')
api.add_resource(Films, '/films/<film_id>')

Now, the FilmsDict class be accessed at the films url, if we want to get, delete, or put a
film based on an id and we do so via the /films/¡film_id

?

.

if __name__ == '__main__':
app.run(debug=True)

And as before we run the app in debug mode. To get this running we change directory
to where the code lives and run the script at which time we will have the API available on
http://127.0.0.1:5000/ so if we navigate to http://127.0.0.1:5000/films which shows us the
list as shown in Figure 18.4.

We can pass an id of a film that exists and get the result shown in Figure 18.5.

Figure 18.4 Display of API from browser getting all films.
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Figure 18.5 Display of API from browser getting film id 1.

Figure 18.6 Display of API from browser getting film id 3.

If we enter the id for a film that isn’t already in our database we get the message shown
in Figure 18.6.

Now, if we want to use the API to add or delete films we can do so using the requests
library. So, let’s show some code examples.

>>> import requests
>>> r = requests.get('http://127.0.0.1:5000/films')
>>> r.json()
{'1': {'Name': 'Avengers: Infinity War', 'Year': 2018, 'Month': 'March'},
'2': {'Name': 'Ant Man and the Wasp', 'Year': 2018, 'Month': 'August'}}
>>> r = requests.get('http://127.0.0.1:5000/films/1')
>>> r.json()
{'Name': 'Avengers: Infinity War', 'Year': 2018, 'Month': 'March'}

So, we can call the same urls that we did before from the browser using requests. Now,
let’s show how to add and delete using the api.

>>> r = requests.delete('http://127.0.0.1:5000/films/1')
>>> r.text
''
>>> r.status_code
204

To delete a film based on the id, we use the delete method and pass in the url and note
that the text and status code match that mentioned within the API code. Now, to add that
record back in we can use the put method.

>>> r = requests.get('http://127.0.0.1:5000/films')
>>> r.json()
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{'2': {'Name': 'Ant Man and the Wasp', 'Year': 2018, 'Month': 'August'}}
>>> r = requests.put('http://127.0.0.1:5000/films/1',
... data={'name': 'Avengers: Infinity War',
... 'year': 2018,
... 'month': 'March'})
>>> r.json()
{'Name': 'Avengers: Infinity War', 'Year': '2018', 'Month': 'March'}
>>> r.status_code
201
>>> r = requests.get('http://127.0.0.1:5000/films')
>>> r.json()
{'2': {'Name': 'Ant Man and the Wasp', 'Year': 2018, 'Month': 'August'},
'1': {'Name': 'Avengers: Infinity War', 'Year': '2018', 'Month': 'March'}}

Now, we can see that we had only the film with id 2 available so using the put method
with the same arguments as the reqparser means we can use the data argument to populate
id 1. In sending the put request we get back the data in the form it has been added with
the variable names matching what we have in the API. Lastly, we check that it was added
correctly by calling the http://127.0.0.1:5000/films and getting all the films we have, which
shows the film with id 1 was added back in.

So far our API has been public but what if we want to secure it in some way? To do so we
need some authentication on our API, and below we discuss some of the options available
to us.

Basic Authentication Mentioned above is the definition of basic authentication (Basic
Auth) which is a server asking for a username and a password (e.g. to a personal social
media account) to allow access to private data (though there are potential security risks to
be aware of if this data is not encrypted as it is transferred). Basic Auth is performed over
HTTP and is encrypted using SSL to protect the username and password being transmitted.
Note that Basic Auth can be done without SSL but sensitive data will be transmitted over
HTTP unencrypted which is an extreme security risk. Basic Auth is a simple authentication
technique which makes coding it into scripts a relatively straightforward process. However,
since it relies on the use of a username and password to access the API and manage the
account associated with it, this is not ideal. It is like you lending your car keys to your friend
and the keys can open everything in your house and workplace as well. Put differently, if
you give your social media usernames and passwords out to scripts, those scripts will end
up having a far greater access to your personal social media accounts than you might like!

API Key Authentication API key authentication is a technique that overcomes the
weakness of Basic Auth by requiring the API to be accessed with a unique key. The key
is usually a long series of letters and numbers that is completely separate from the user’s
login details (e.g. username and password). As such, API keys can be intentionally limited
for security reasons, so that they provide access only to the bits of data and services users
we need, rather than granting access to everything.

OAuth Token OAuth is a prevailing standard that applications can use to provide client
applications with secure access that operates using the principles of API key authentication.
OAuth authorises devices, APIs, servers and applications with access tokens rather than
credentials. When OAuth is used to authenticate a connection to a server an authentication
request is sent from the client application (in the present case, a Python script that we build)
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to an authentication server. It is the authentication server that generates the OAuth token.
The token is returned to the client application over HTTPS, which then passes it to the API
server. You may have come across websites or apps that ask you to login with your Google,
Facebook, or Twitter account. In these cases Google, Facebook, or Twitter are acting as an
authentication server. Note that an authentication server doesn’t need to be a third-party
server, but will generally be a different server to the one providing data.

In the last example of this chapter, we will create an API that uses basic authentication
to authenticate a web request. The full code is shown as follows:

from flask import Flask
from flask_restful import Resource, Api
from flask_httpauth import HTTPBasicAuth

app = Flask(__name__)
api = Api(app)
auth = HTTPBasicAuth()

USER_DATA = {
"admin": "atCh_5K}?g"

}

@auth.verify_password
def verify(username, password):

if not (username and password):
return False

return USER_DATA.get(username) == password

class HelloWorld(Resource):
@auth.login_required
def get(self):

return {"Hello": "World"}

api.add_resource(HelloWorld, '/hello_world')

if __name__ == '__main__':
app.run(debug=True)

Now much of this code is similar to what we have seen before, so we will just go over the
new elements of which there are two.

from flask import Flask
from flask_restful import Resource, Api
from flask_httpauth import HTTPBasicAuth
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app = Flask(__name__)
api = Api(app)
auth = HTTPBasicAuth()

USER_DATA = {
"admin": "atCh_5K}?g"

}

In the above block of code we add in the HTTPBasicAuth from flask_httpauth, you may
need to install this package so refer back to earlier in the book where we showed you where
to find the command for a specific package. With this imported we create a HTTPBasi-
cAuth() object and assign it to auth. We then create a dictionary containing user data which
has a username and password as key and value.

@auth.verify_password
def verify(username, password):

if not (username and password):
return False

return USER_DATA.get(username) == password

class HelloWorld(Resource):
@auth.login_required
def get(self):

return {"Hello": "World"}

Next, we create a verify function which takes the username and password as arguments
and returns True if the value of the dictionary call using the username gives the password
we have. Note that we use get method of the dictionary so we don’t get a key error.
This is decorated this with the auth verify_password. We can then use the decorator
auth.login_required on our get method that means we must be logged in to get the return
of the HelloWorld class. The resource is added to the endpoint /hello_world and we run
the API in the way we have done in the previous examples.

With the API running we can then attempt to access the endpoint http://127.0.0.1:5000/
hello_world using the requests library.

>>> r = requests.get('http://127.0.0.1:5000/hello_world')
>>> r.status_code
401
>>> r = requests.get('http://127.0.0.1:5000/hello_world',

auth=('admin', 'atCh_5K}?g'))
>>> r.status_code
200
>>> r.json()
{'Hello': 'World'}
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In the first example, we use the standard get method and get back the status code of
401 which refers to us being unauthorised. So to become authorised in the second example
we pass a tuple of username and password to the auth argument and we get access to the
endpoint and see we get back the expected json response.

In this chapter, we have covered API’s how to create then and how to access them. All
examples have been run locally on our machine however Python is a great tool for produc-
tion quality APIs. The examples relating to how to access APIs are particularly useful for
those wishing to work with different data sources as APIs are common place as a solution to
allow users to interact with. While requests are great for interfacing directly with APIs you
may find packages that wrap up some of the complexity associated with providers APIs.



�

� �

�



�

� �

�

229

19

Web Scraping in Python

The last chapter of the book covers the concept of web scraping. This is the programmatic
process of obtaining information from a web page. To do this we need to get up to speed on
a number of things:

● html
● obtaining a webpage
● getting information from the webpage

To do this we will create our own website using Python that we will scrape with our
own code.

19.1 An Introduction to HTML

HTML stands for Hyper Text Markup Language and is the standard markup language for
creating web pages. It is essentially the language that makes up what you see on the internet.
An HTML file tells a web browser how to display the text, images, and other content on a
webpage. The purpose of HTML is to describe how the content is structured and not how
it will be styled, and rendered within a web browser. To render the page you need to use a
cascading style sheet (CSS) and an HTML page can link to a CSS file to get information on
colours, fonts, and other information relating to the rendering of the page.

HTML is a markup language, so in creating HTML content you are embedding the text
to be displayed alongside how the text should be displayed. The way this is done is by using
HTML tags which can contain name-value pairs which are known as attributes. Informa-
tion within a tag is known as an HTML element. Well-formed HTML should have an open
and a close tags, and before you start a new tag you should close off your old tag.

Now, that we have described what HTML is we will give some examples of how you create
elements within it and show how to put together a page. Let’s start by looking at some tags.
It is important to remember that when we open a tag we close it with a / (forward slash).
Let’s demonstrate with a header tag.

Header

This is how we define a header

<h>This is how we define a header</h>

The Python Book, First Edition. Rob Mastrodomenico.
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Here, we see that to open the tag we have

<h1>

and to close it we have

</h1>

Paragraph

Next, we show how to tag a paragraph:

<p>This is how we define a paragraph</p>

Define

Here, we show how to define a tag, which is how we have embedded a hyperlink:

<a href='https://www.google.com">This is how we define a link</a>

Table

The next HTML tag is for a table which is a bit more complex than what we have covered
before.

<table>
<tr>

<th>Name</th>
<th>Year</th>
<th>Month</th>

</tr>
<tr>

<td>Avengers: Infinity War</td>
<td>2018</td>
<td>March</td>

</tr>
<tr>

<td>Ant Man and the Wasp</td>
<td>2018</td>
<td>August</td>

</tr>
</table>

So the first thing we need to define for a table is the table tag:

<table></table>
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Next, we need to define the rows in the table using the table row tag this is denoted using:

<tr></tr>

Here, we have three rows defined.
In each row we need to have some data so you’ll see we use

<th>

and

<td>

tags. The

<th>

tags refer to the table header and

<td>

the table data. So here we have the headers being Name, Year, and Month and then the next
two rows are the table data.

Thead and Tbody

There are two other tags that we can add to this table and that is the thead and tbody tag.
Within a table these can separate out the head and body of the table. They are used as
follows:

<table>
<thead>

<tr>
<th>Name</th>
<th>Year</th>
<th>Month</th>

</tr>
</thead>
<tbody>

<tr>
<td>Avengers: Infinity War</td>
<td>2018</td>
<td>March</td>

</tr>
<tr>

<td>Ant Man and the Wasp</td>
<td>2018</td>
<td>August</td>

</tr>
</tbody>
</table>
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Div

The last tag we will introduce is a div tag. This is a tag that defines a section in the html.
So linking back to the previous table example we can put a div tag around it. In putting html
within a div we can apply the format to the whole section covered by it.

<div>
<table>
<thead>

<tr>
<th>Name</th>
<th>Year</th>
<th>Month</th>

</tr>
</thead>
<tbody>

<tr>
<td>Avengers: Infinity War</td>
<td>2018</td>
<td>March</td>

</tr>
<tr>

<td>Ant Man and the Wasp</td>
<td>2018</td>
<td>August</td>

</tr>
</tbody>
</table>
</div>

HTML Attributes

Having defined lots of the tags, we will now discuss the attributes of these tags. Attributes
provide us with additional information about the elements. We will show how these relate
back to the tags we defined earlier. Let’s begin by showing an example of an attribute applied
to an

<a>

tag.

<a href='https://www.google.com">This is how we define a link</a>

Here, the href is the attribute and it specifies what the url is.
We could also add a title to a tag which would result in the value being displayed as a

tooltip (when you hover over it).

<p title="It will show when you hover over the text">
This is how we define a paragraph.</p>
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Id and Classes

Having introduced attributes, we will now look at two important ones which can help us
locate elements within html, these are the id and class attributes. An id element is unique
to that html element whereas a class can be used in multiple elements. Let’s demonstrate
this by looking at three headers with associated information.

<!-- A unique element -->
<h1 id='myHeader'>MCU Films</h1>

<!-- Multiple similar elements -->
<h2 class='film'>Avengers: Infinity War</h2>
<p>Can Earth's mightiest heroes protect us from the threat

of Thanos?</p>

<h2 class='film'>Ant Man and the Wasp</h2>
<p>Following the events of Civil War will Scott Lang don the

Ant Man suit again?</p>

<h2 class='film">Captain Marvel</h2>
<p>Plot Unknown.</p>

Here, we have one header with an id attribute. This unique attribute specifically identifies
that header. The remaining headers all have the same class film which has been applied to
each one. This is only intended as a brief introduction to html so while this will help us in
the remainder of the chapter it is not a comprehensive exploration of all things html so if
you are interested there are lots of resources online which cover html.

19.2 Web Scraping

Having introduced html and how it works, we now move onto how we obtain that data
using Python. When we think of web scraping, we generally think of the process of getting
and processing data from a website. Actually this can be broken down into two distinct
processes: web crawling and web scraping.

● Web crawling is the process of getting data from one or more urls which can be obtained
by traversing through a websites html. For example say a website has a front page with
lots of links to other pages and you want to get all the information from all the links,
you would traverse through all the links programmatically and then visit all the relevant
pages and store them.

● Web scraping is the process of getting the information from the page in question so in the
previous part you would have to scrape the page to get the links that you want to traverse.
When you scrape the page you would programmatically get the information from the
page and when you have that you would be able to store or process the data.
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Given scraping plays an important part in the whole process the combination of crawling
and scraping will be referred to as web scraping. In scraping a page there is no code of
conduct that you sign up to. However, as soon as you try to get data from a website there
are some things to note that are important.

● Check if you are allowed to get and use data from a given website: While you may think
that any data on the website is fair game, it is not always the case. Check the website’s
terms of use as while they may not be able to stop you obtaining the data via web scraping
they may have something to say that if they see the data used in any research so be careful.
The issues around legality of getting data from the web are really important and if you are
in any doubt please get legal advice. The examples used in this book will involve creating
our own web page locally and getting the data from it so we are covered.

● Check if there is a fair usage policy: Some websites are happy for you to scrape the data as
long as you do it in an appropriate way. What do we mean by that? Well, every time you
make a call to a website you are providing traffic to that site. By doing this via a computer
you can send a lot of traffic to a site very quickly and this can be problematic to the site.
If you are seen to do this your IP address can be blocked from the site which would mean
you wouldn’t be able to access the site in question. So what you need to consider is how
often you plan to run code to hit certain websites and what is appropriate and necessary
for you and whether the site will allow you to do. For code that does a call to a single url,
it is just about how often you run it, however, if you wrote a code that crawled across lots
of urls and brought back the data from them, then you would need to ensure that your
code is running at an appropriate speed. To do this you would need to consider adding
time delays to what you do to ensure that you are not sending excessive traffic to the site.

● Robots.txt: Again, linked to the above points, if you go to the websites url/robots.txt you
will get information on what web crawlers can and can’t do. If present, then it’s expected
that this is read to understand what can and can’t be scrapped. If there is no robots.txt,
then there is no specific instruction on how the site can be crawled. However, don’t
assume you can scrape everything on the site.

Ultimately you need to take care when scraping a website and if they have an application
programming interface (API) available then you should be using that. If you are unsure
please get the appropriate advice. Before you can start crawling the site and scraping the
data you need to understand the page. Python cannot just get you the data you want, instead
you need to tell it how to find the data you are after. So you need to understand how the
html works and where to look.

To inspect the page you have a couple of options.

Through a Web Browser

You can use the tools of the web browser to inspect what HTML refers to what elements of
the page. The manner in which you can inspect is specific to the browser itself. Ultimately,
it involves you selecting the element of the page and inspecting the corresponding HTML
and then it showing what the html refers to that element. Different browsers have different
ways of inspecting the pages they show so refer to the documentation around the specific
browser that you are using.
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Saving the Page and Physically Searching

You can physically save the page and then search for the name or value of certain text and
in the same way determine what html refers to that element. Ultimately what you are trying
to do is learn what html refers to what values in the website. This isn’t an exact science due
to the fact html can be written in different ways. The key is understanding the definitions
of html and how they fit together and then use this to understand what you need to access
in the html. With any piece of code you need to plan ahead and with parsing html you need
to develop a plan for how you want to get the data from the html.

So going back to what we mentioned at the start, we described web scraping and web
crawling. Web crawling is the process of actually accessing the data from a url or multiple
urls. To do this we need a mechanism to do this, luckily making a web request can be in
the same way we accessed an API endpoint in the Chapter 18 so we will use the requests
library. This will be demonstrated later in the chapter where we setup our own webpage.

Having a mechanism to get the data is great but we also need to process what we get
back so we need a Python library that can do this. Python has many options and this book
isn’t intended to be a review of the best packages for processing html as the landscape is
constantly changing. Instead we will cover one specific parser namely BeautifulSoup.

BeautifulSoup

BeautifulSoup is not only an html parser but can also parse xml by using the lxml library
which we covered earlier in the book. The way that BeautifulSoup works is that it takes
advantage of other parsers. So, to run BeautifulSoup you would:

>>> from bs4 import BeautifulSoup
>>> BeautifulSoup(content_to_be_parsed, "parser_name")

Here content_to_be_parsed is the content from the site which could have been obtained
using requests as shown before and the ‘parser name’ is the name of the parser to use. The
four examples of these parsers are:

● html.parser: This is the default Python html parser. It has decent speed and is lenient in
how it accepts html as of 3.2.2.

● lxml: This is built upon the lxml Python library which is built upon the C version. It’s very
fast and very lenient.

● lxml-xml or xml: Again built upon lxml so similar to above. However, this is the only xml
parser you can use with BeautifulSoup. So, while we introduced how to parse XML with
lxml, you could also do the same in BeautifulSoup.

● htmllib5: This is built upon the Python html5lib and is very slow, however, it’s very lenient
and it parses the page in the same way a web browser does to create valid html5.

Now, for the rest of this section we will concentrate on using the html.parser. So to create
soup we can do as follows:

>>> import requests
>>> from bs4 import BeautifulSoup
>>> url = "some_url"
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>>> r = requests.get(url)
>>> response_text = r.text
>>> soup = BeautifulSoup(response_text, "html.parser")

Now, this will have transformed the html into a format where we can access elements
within it. What we will show now are the methods available to us.

>>> text = '<b class="boldest">This is bold</b>'
>>> soup = BeautifulSoup(text,"html.parser")
>>> soup
<b class="boldest">This is bold</b>

Now we can access this tag as follows:

>>> tag = soup.b
>>> tag
<b class="boldest">This is bold</b>

Now, if we had multiple b tags using soup.b would only return the first one.

>>> text = """<b class="boldest">This is bold</b>
<b class="boldest">This also is bold</b>"""
>>> soup = BeautifulSoup(text ,"html.parser")
>>> tag = soup.b
>>> tag
<b class="boldest">This is bold</b>

So, we won’t get all the b tags back only the first one. The tag itself has a name which can
be accessed as follows:

>>> tag.name
b

The tag also has a dictionary of attributes which are accessed as follows:

>>> tag.attrs
{"class": ["boldest"]}
>>> tag["class"]
["boldest"]

Now, let’s have a look in a more complicated example. If we look at something like a table
we can parse it as follows:

>>> text = """ <table>
... <tr>
... <th>Name</th>
... <th>Year</th>
... <th>Month</th>
... </tr>
... <tr>
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... <td>Avengers: Infinity War</td>

... <td>2018</td>

... <td>March</td>

... </tr>

... <tr>

... <td>Ant Man and the Wasp</td>

... <td>2018</td>

... <td>August</td>

... </tr>

... </table>"""
>>> text
' <table>\n <tr>\n <th>Name</th>\n <th>Year</th> \n <th>Month</th>\n
</tr>\n <tr>\n <td>Avengers: Infinity War</td>\n <td>2018</td> \n
<td>March</td>\n </tr>\n <tr>\n <td>Ant Man and the Wasp</td>\n
<td>2018</td> \n <td>August</td>\n </tr>\n</table>'
>>> soup = BeautifulSoup(text, "html.parser")
>>> soup
<table>

<tr>
<th>Name</th>
<th>Year</th>
<th>Month</th>
</tr>
<tr>
<td>Avengers: Infinity War</td>
<td>2018</td>
<td>March</td>
</tr>
<tr>
<td>Ant Man and the Wasp</td>
<td>2018</td>
<td>August</td>
</tr>
</table>

Now, we can access elements of the table by just traversing down the tree structure of
the html.

>>> soup.table
<table>
<tr>
<th>Name</th>
<th>Year</th>
<th>Month</th>
</tr>
<tr>
<td>Avengers: Infinity War</td>
<td>2018</td>
<td>March</td>
</tr>
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<tr>
<td>Ant Man and the Wasp</td>
<td>2018</td>
<td>August</td>
</tr>
</table>
>>> soup.table.tr
<tr>
<th>Name</th>
<th>Year</th>
<th>Month</th>
</tr>
>>> soup.table.tr.th
<th>Name</th>

Now, in each example we get the first instance of the tag that we are looking for. Assume
we want to find all tr tags within the table we can do so as follows using the findAll method.

>>> soup.find_all("tr")
[<tr>
<th>Name</th>
<th>Year</th>
<th>Month</th>
</tr>, <tr>
<td>Avengers: Infinity War</td>
<td>2018</td>
<td>March</td>
</tr>, <tr>
<td>Ant Man and the Wasp</td>
<td>2018</td>
<td>August</td>
</tr>]

So, here we get back a list of all the tr tags. Similarly, we can get back the list of td tags
using the same method.

>>> tags = soup.find_all("td")
>>> tags
[<td>Avengers: Infinity War</td>, <td>2018</td>, <td>March</td>,
<td>Ant Man and the Wasp</td>, <td>2018</td>, <td>August</td>]

So with regards to getting data out if we look back and consider our original table, we can
use the find all method to get all the tr tags and then loop over these and get the td tags.

>>> table_rows = soup.find_all("tr")
>>> table_rows
[<tr>
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<th>Name</th>
<th>Year</th>
<th>Month</th>
</tr>, <tr>
<td>Avengers: Infinity War</td>
<td>2018</td>
<td>March</td>
</tr>, <tr>
<td>Ant Man and the Wasp</td>
<td>2018</td>
<td>August</td>
</tr>]
>>> headers = []
>>> content = []
>>> for tr in table_rows:
... header_tags = tr.find_all("th")
... if len(header_tags) > 0:
... for ht in header_tags:
... headers.append(ht.text)
... else:
... row = []
... row_tags = tr.find_all("td")
... for rt in row_tags:
... row.append(rt.text)
... content.append(row)
...
>>> headers
['Name', 'Year', 'Month']
>>> content
[['Avengers: Infinity War', '2018', 'March'],
['Ant Man and the Wasp', '2018', 'August']]

What we are doing here is looping over the high level tr tags to get every row and then
looking for the th tags and if we find them, we know its the table header and if not we get the
td tags and associate both with the appropriate list namely headers or content. The impor-
tant thing to note here is that we know the structure of the data as we will have inspected
the html so we build the parsing solution knowing what we will get.

So, we have introduced the find_all method in a single table. But if we had two tables and
the table we wanted had a specific id we could use the find method as follows:

>>> text = """<table id="unique_table">
... <tr><th>Name</th><th>Year</th><th>Month</th></tr><tr>
... <td>Avengers: Infinity War</td><td>2018</td>" \
... "<td>March</td></tr><tr>
... <td>Ant Man and the Wasp</td><td>2018
... </td><td>August</td></tr>\n</table>" \
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... "<table id="second_table">

... <tr><th>Name</th><th>Year</th><th>Month</th></tr><tr>

... <td>Avengers: End Game</td><td>2019</td>" \

... "<td>April</td></tr>

... <tr><td>Spider-man: Far from home</td>

... <td>2019</td><td>June</td></tr>\n</table>

... <table id="other_table"><tr><th>Name</th>"""
>>> soup = BeautifulSoup(text, "html.parser")
>>> soup
<table id="unique_table">
<tr><th>Name</th><th>Year</th><th>Month</th></tr><tr>
<td>Avengers: Infinity War</td><td>2018</td>" "<td>March</td></tr><tr>
<td>Ant Man and the Wasp</td><td>2018

</td><td>August</td></tr>
</table>" "<table id="second_table">
<tr><th>Name</th><th>Year</th><th>Month</th></tr><tr>
<td>Avengers: End Game</td><td>2019</td>" "<td>April</td></tr>
<tr><td>Spider-man: Far from home</td>
<td>2019</td><td>June</td></tr>
</table>
<table id="other_table"><tr><th>Name</th></tr></table>
>>> table = soup.find("table", id="second_table")
>>> table
<table id="second_table">
<tr><th>Name</th><th>Year</th><th>Month</th></tr><tr>
<td>Avengers: End Game</td><td>2019</td>" "<td>April</td></tr>
<tr><td>Spider-man: Far from home</td>
<td>2019</td><td>June</td></tr>
</table>

And we can get the data from this table in a similar way as before but again we can take
advantage of the find method to find the text in the specific element.

>>> table_rows = table.find_all("tr")
>>> table_rows
[<tr><th>Name</th><th>Year</th><th>Month</th></tr>, <tr>
<td>Avengers: End Game</td><td>2019</td>" "
<td>April</td></tr>, <tr><td>Spider-man: Far from home</td>
<td>2019</td><td>June</td></tr>]
>>> headers = []
>>> content = []
>>> for tr in table_rows:
... header_tags = tr.find_all("th")
... if len(header_tags) > 0:
... for ht in header_tags:
... headers.append(ht.text)
... else:
... row = []
... row_tags = tr.find_all("td")
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... for rt in row_tags:

... row.append(rt.text)

... content.append(row)

...
>>> headers
['Name', 'Year', 'Month']
>>> content
[['Avengers: End Game', '2019', 'April'],
['Spider-man: Far from home', '2019', 'June']]

This shows that when we have multiple tables we can obtain the information from a
specific one, this is really dependent on the table having an id attribute which made the
process much easier.

So, we now know how to process html, and the next stage is to grab data from a website
and then parse that data using Python. To do this we will build our own website locally
which we will grab data from and parse the results. Given we have covered the libraries to
get and process the data how do we go about creating a website?

As in the Chapter 18, we will use the package Flask to create a simple website that we
can run locally and then scrape the data from. Let’s just get started and write a hello world
example to show how it will work. Here, we will create a file called my_flask_website.py
and put the following code in it:

from flask import Flask
app = Flask(__name__)

@app.route('/')
def hello_world():

return 'Hello World'

if __name__ == '__main__':
app.run()

Now, if you think back to the Chapter 18 what we have here is a reduced down version
of what we used to create our API. We import Flask from the flask package and then cre-
ate ourselves an app. Unlike with the API where we created a class we simply define a
hello_world function which returns the string Hello World.

@app.route('/')
def hello_world():

return 'Hello World'

Again we use the syntax:

if __name__ == '__main__':
app.run(debug=True)

to run our application. As with the API we built if we open a terminal or command prompt
and move to the location of the file and run the code using Python my_flask_website.py
then we will get a web page as shown in Figure 19.1.



�

� �

�

242 19 Web Scraping in Python

Figure 19.1 Display of website from terminal.

Figure 19.2 Display of website from browser.

If we then go to the address on a web browser we will see a web page as shown in
Figure 19.2.

Now, one part of the code that we didn’t cover was the use of @app.route this is an
example of a decorator. In this is an example its purpose is to bind a location to a function.
So when we apply the following:

@app.route('/')
def hello_world():

return 'Hello World'

What we are doing is mapping any call of http://127.0.0.1:5000/ to the function
hello_world so when that url is called the hello_world function is executed and the results
displayed. This is a specific use of a decorator in general decorators are functions that can
take functions as an argument. The best way to explain is by demonstration so we could
decorate the hello_world function with a decorator that make a string all lowercase.

def make_uppercase(function):
def wrapper():

func = function()
lowecase = func.lower()
return lowercase

return wrapper

What this function does is take in another function as an argument and then run the
wrapper function in the return statement. The function wrapper then runs the function
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Figure 19.3 Display of website from with lowercase decorator applied.

that is passed in to make_uppercase and take the output from it and make it lowercase and
return that value. Let’s demonstrate with one example (Figure 19.3).

from flask import Flask
app = Flask(__name__)

def make_lowercase(function):
def wrapper():

func = function()
lowercase = func.lower()
return lowercase

return wrapper

@app.route('/')
@make_lowercase
def hello_world():

return 'Hello World'

if __name__ == '__main__':
app.run()

We have our website up and running, so let’s programmatically get the data from it. To do
this we can use requests in the same way we did in the API chapter to obtain a get request.

>>> import requests
>>>
>>> r = requests.get('http://127.0.0.1:5000/')
>>> r.text
'Hello World'

Notice that this time we looked at the text attribute as opposed to the json method and
that is because the content of our website is not json. This is all well and good but its not
much of a challenge to process the data mainly because its not in html format (Figure 19.4).
We can change that pretty easily by just modifying the code in our flask application so let’s
change the output hello world as follows:



�

� �

�

244 19 Web Scraping in Python

Figure 19.4 Display of website from browser with html.

from flask import Flask
app = Flask(__name__)

@app.route('/')
def hello_world():

return '<h>Hello World</h>'

if __name__ == '__main__':
app.run()

With our flask application running we can see the following on the web browser:
It looks pretty similar to what we saw before, so what has changed? If we run the code to

get the data from the webpage we get the following:

>>> import requests
>>>
>>> r = requests.get('http://127.0.0.1:5000/')
>>> r.text
'<h>Hello World</h>'

You can now see that instead of just the text representation, we have some html around
that with the h tags.

Let’s modify the code once more and change the h tags to h1 tags, so our flask application
now looks like so

from flask import Flask
app = Flask(__name__)

@app.route('/')
def hello_world():

return '<h1>Hello World</h1>'

if __name__ == '__main__':
app.run()

With our flask application running we can see the following on the web browser:
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Figure 19.5 Display of website from browser with h1 hello world.

Again running the same requests code on this website bring back the h1 tags (Figure 19.5).

>>> import requests
>>>
>>> r = requests.get('http://127.0.0.1:5000/')
>>> r.text
'<h1>Hello World</h1>'

So now we have our website running lets add something a little harder to parse and create
a table that we can look to programmatically obtain. To do this we will add a new route to
the flask application and look to add a html table. To do this we will make use of some
existing data from the seaborn package namely the tips data.

>>> import seaborn as sns

>>> tips = sns.load_dataset("tips")

>>> tips.head().to_html()

'<table border="1" class="dataframe">\n <thead>\n

<tr style="text-align: right;">\n

<th></th>\n <th>total_bill</th>\n <th>tip</th>\n <th>sex</th>\n

<th>smoker</th>\n <th>day</th>\n <th>time</th>\n <th>size</th>\n

</tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>16.99</td>\n

<td>1.01</td>\n <td>Female</td>\n <td>No</td>\n <td>Sun</td>\n

<td>Dinner</td>\n <td>2</td>\n </tr>\n <tr>\n <th>1</th>\n

<td>10.34</td>\n <td>1.66</td>\n <td>Male</td>\n <td>No</td>\n

<td>Sun</td>\n <td>Dinner</td>\n <td>3</td>\n </tr>\n <tr>\n

<th>2</th>\n <td>21.01</td>\n <td>3.50</td>\n <td>Male</td>\n

<td>No</td>\n <td>Sun</td>\n <td>Dinner</td>\n <td>3</td>\n

</tr>\n <tr>\n <th>3</th>\n <td>23.68</td>\n <td>3.31</td>\n

<td>Male</td>\n <td>No</td>\n <td>Sun</td>\n <td>Dinner</td>\n

<td>2</td>\n </tr>\n <tr>\n <th>4</th>\n <td>24.59</td>\n

<td>3.61</td>\n <td>Female</td>\n <td>No</td>\n <td>Sun</td>\n

<td>Dinner</td>\n <td>4</td>\n </tr>\n </tbody>\n</table>'

Now, we have imported the tips dataset and we can make use of the to_html method
from pandas, which takes the DataFrame and give us back html that we could put on our
website. If we look back to our previous table example, we might want to add an id to the
table to allow us to access the table and we can do that using to_html by passing in the
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table_id argument and setting it to the name that we want our table to have. So, let’s apply
it by setting the name to be tips.

>>> import seaborn as sns
>>> tips = sns.load_dataset("tips")
>>> tips.head().to_html(table_id='tips')
'<table border="1" class="dataframe" id="tips">\n <thead>\n
<tr style="text-align: right;">\n <th></th>\n
<th>total_bill</th>\n <th>tip</th>\n <th>sex</th>\n
<th>smoker</th>\n <th>day</th>\n <th>time</th>\n
<th>size</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n
<th>0</th>\n <td>16.99</td>\n <td>1.01</td>\n
<td>Female</td>\n <td>No</td>\n <td>Sun</td>\n
<td>Dinner</td>\n <td>2</td>\n </tr>\n <tr>\n
<th>1</th>\n <td>10.34</td>\n <td>1.66</td>\n
<td>Male</td>\n <td>No</td>\n <td>Sun</td>\n
<td>Dinner</td>\n <td>3</td>\n </tr>\n <tr>\n
<th>2</th>\n <td>21.01</td>\n <td>3.50</td>\n
<td>Male</td>\n <td>No</td>\n <td>Sun</td>\n
<td>Dinner</td>\n <td>3</td>\n </tr>\n <tr>\n
<th>3</th>\n <td>23.68</td>\n <td>3.31</td>\n
<td>Male</td>\n <td>No</td>\n <td>Sun</td>\n
<td>Dinner</td>\n <td>2</td>\n </tr>\n
<tr>\n <th>4</th>\n <td>24.59</td>\n
<td>3.61</td>\n <td>Female</td>\n <td>No</td>\n
<td>Sun</td>\n <td>Dinner</td>\n <td>4</td>\n
</tr>\n </tbody>\n</table>'

So, we can now see we have added the id attribute with the name tips. Our next step is to
add this to our website and we can alter the code as follows to do so:

from flask import Flask
import seaborn as sns
app = Flask(__name__)

tips = sns.load_dataset("tips")

@app.route('/')
def hello_world():

return '<h1>Hello World</h1>'

@app.route('/table')
def table_view():

return tips.head(20).to_html(table_id='tips')

if __name__ == '__main__':
app.run(debug=True)
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Figure 19.6 Display of website from browser showing a table.

Now, the difference here is that we have added the imports for seaborn and then imported
the tips dataset. To display this we then create another function called table_view and in it
return 20 rows of the DataFrame and convert it to html with the id of tips. A decorator then
defines the route of this to be /table which means when we go to the http://127.0.0.1:5000/
table we will see the result of this function. Let’s do that and go to the url and see what is
shown (Figure 19.6).

Now, we can see the table but it doesn’t look great, we can customise this using some of
the options that come with pandas. First, we will remove the index from the table as you
normally wouldn’t see this on a website. Next, we will centre the table headings and we will
also make the borders more prominent. So our flask application is now modified to this.

from flask import Flask
import seaborn as sns
app = Flask(__name__)

tips = sns.load_dataset("tips")

@app.route('/')
def hello_world():

return '<h1>Hello World</h1>'

@app.route('/table')
def table_view():

return tips.head(20).to_html(table_id='tips', border=6,
index=False, justify='center')



�

� �

�

248 19 Web Scraping in Python

Figure 19.7 Display of website from browser showing a table with customisation.

if __name__ == '__main__':
app.run(debug=True)

The browser view now looks like the one shown in Figure 19.7.
If we use some of what we covered earlier, we can add a title and some information about

the website in a paragraph. To do that we can use the h1 and p tags to create a header
and paragraph, respectively, and to show that everything belongs together let’s put this all
within a div tag so it resembles what you might find on a production web page. The flask
application now looks like the following:

from flask import Flask

import seaborn as sns

app = Flask(__name__)

tips = sns.load_dataset("tips")

@app.route('/')

def hello_world():

return '<h1>Hello World</h1>'

@app.route('/table')

def table_view():

html = '<div><h1>Table of tips data</h1>' + \

'<p>This table contains data from the seaborn tips dataset</p>' + \

tips.head(20).to_html(table_id='tips', border=6,

index=False, justify='center')

+ '</div>'

return html

if __name__ == '__main__':

app.run(debug=True)
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Figure 19.8 Display of website from browser showing a table with header and paragraph.

Our webpage now looks as the one shown in Figure 19.8.
Ok so now we have a website we want to scrape it so let’s use requests to get the html that

we will look to obtain.

>>> import requests

>>>

>>> r = requests.get('http://127.0.0.1:5000/table')

>>> r.text

'<div><h1>Table of tips data</h1><p>This table contains data from the seaborn

tips dataset</p><table border="6" class="dataframe" id="tips">\n <thead>\n

<tr style="text-align: center;">\n <th>total_bill</th>\n <th>tip</th>\n

<th>sex</th>\n <th>smoker</th>\n <th>day</th>\n <th>time</th>\n

<th>size</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <td>16.99</td>\n

<td>1.01</td>\n <td>Female</td>\n <td>No</td>\n <td>Sun</td>\n

<td>Dinner</td>\n <td>2</td>\n </tr>\n <tr>\n <td>10.34</td>\n

<td>1.66</td>\n <td>Male</td>\n <td>No</td>\n <td>Sun</td>\n

<td>Dinner</td>\n <td>3</td>\n </tr>\n <tr>\n <td>21.01</td>\n

<td>3.50</td>\n <td>Male</td>\n <td>No</td>\n <td>Sun</td>\n

<td>Dinner</td>\n <td>3</td>\n </tr>\n <tr>\n <td>23.68</td>\n

<td>3.31</td>\n <td>Male</td>\n <td>No</td>\n <td>Sun</td>\n

<td>Dinner</td>\n <td>2</td>\n </tr>\n <tr>\n <td>24.59</td>\n

<td>3.61</td>\n <td>Female</td>\n <td>No</td>\n <td>Sun</td>\n

<td>Dinner</td>\n <td>4</td>\n </tr>\n <tr>\n <td>25.29</td>\n

<td>4.71</td>\n <td>Male</td>\n <td>No</td>\n <td>Sun</td>\n

<td>Dinner</td>\n <td>4</td>\n </tr>\n <tr>\n <td>8.77</td>\n

<td>2.00</td>\n <td>Male</td>\n <td>No</td>\n <td>Sun</td>\n

<td>Dinner</td>\n <td>2</td>\n </tr>\n <tr>\n <td>26.88</td>\n

<td>3.12</td>\n <td>Male</td>\n <td>No</td>\n <td>Sun</td>\n

<td>Dinner</td>\n <td>4</td>\n </tr>\n <tr>\n <td>15.04</td>\n
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<td>1.96</td>\n <td>Male</td>\n <td>No</td>\n <td>Sun</td>\n

<td>Dinner</td>\n <td>2</td>\n </tr>\n <tr>\n <td>14.78</td>\n

<td>3.23</td>\n <td>Male</td>\n <td>No</td>\n <td>Sun</td>\n

<td>Dinner</td>\n <td>2</td>\n </tr>\n <tr>\n <td>10.27</td>\n

<td>1.71</td>\n <td>Male</td>\n <td>No</td>\n <td>Sun</td>\n

<td>Dinner</td>\n <td>2</td>\n </tr>\n <tr>\n <td>35.26</td>\n

<td>5.00</td>\n <td>Female</td>\n <td>No</td>\n <td>Sun</td>\n

<td>Dinner</td>\n <td>4</td>\n </tr>\n <tr>\n <td>15.42</td>\n

<td>1.57</td>\n <td>Male</td>\n <td>No</td>\n <td>Sun</td>\n

<td>Dinner</td>\n <td>2</td>\n </tr>\n <tr>\n <td>18.43</td>\n

<td>3.00</td>\n <td>Male</td>\n <td>No</td>\n <td>Sun</td>\n

<td>Dinner</td>\n <td>4</td>\n </tr>\n <tr>\n <td>14.83</td>\n

<td>3.02</td>\n <td>Female</td>\n <td>No</td>\n <td>Sun</td>\n

<td>Dinner</td>\n <td>2</td>\n </tr>\n <tr>\n <td>21.58</td>\n

<td>3.92</td>\n <td>Male</td>\n <td>No</td>\n <td>Sun</td>\n

<td>Dinner</td>\n <td>2</td>\n </tr>\n <tr>\n <td>10.33</td>\n

<td>1.67</td>\n <td>Female</td>\n <td>No</td>\n <td>Sun</td>\n

<td>Dinner</td>\n <td>3</td>\n </tr>\n <tr>\n <td>16.29</td>\n

<td>3.71</td>\n <td>Male</td>\n <td>No</td>\n <td>Sun</td>\n

<td>Dinner</td>\n <td>3</td>\n </tr>\n <tr>\n <td>16.97</td>\n

<td>3.50</td>\n <td>Female</td>\n <td>No</td>\n <td>Sun</td>\n

<td>Dinner</td>\n <td>3</td>\n </tr>\n <tr>\n <td>20.65</td>\n

<td>3.35</td>\n <td>Male</td>\n <td>No</td>\n <td>Sat</td>\n

<td>Dinner</td>\n <td>3</td>\n </tr>\n </tbody>\n</table></div>'

So, we can see that it was relatively straight forward to get the data but unlike with our
static table example before the data from the webpage is more than just table data. The next
step is to pass this into BeautifulSoup to parse the html.

>>> soup = BeautifulSoup(r.text, "html.parser")
>>> soup.find('table',id='tips')
<table border="6" class="dataframe" id="tips">
<thead>
<tr style="text-align: center;">
<th>total_bill</th>
<th>tip</th>
<th>sex</th>
<th>smoker</th>
<th>day</th>
<th>time</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.99</td>
<td>1.01</td>
<td>Female</td>
<td>No</td>
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<td>Sun</td>
<td>Dinner</td>
<td>2</td>
</tr>
<tr>
<td>10.34</td>
<td>1.66</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>3</td>
</tr>
<tr>
<td>16.97</td>
<td>3.50</td>
<td>Female</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>3</td>
</tr>
<tr>
<td>20.65</td>
<td>3.35</td>
<td>Male</td>
<td>No</td>
<td>Sat</td>
<td>Dinner</td>
<td>3</td>
</tr>
</tbody>
</table>

In using the table id we can go directly to the table within the html and we then have
access to all the rows within it just like before. Note that we have only shown a subset of
this data as we have 20 rows. Now, if we want to parse the data from the html we can use
something like we used on the dummy data.

>>> table = soup.find('table',id='tips')
>>> table_rows = table.find_all("tr")
>>> table_rows[0:3]
[<tr style="text-align: center;">
<th>total_bill</th>
<th>tip</th>
<th>sex</th>
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<th>smoker</th>
<th>day</th>
<th>time</th>
<th>size</th>
</tr>, <tr>
<td>16.99</td>
<td>1.01</td>
<td>Female</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>2</td>
</tr>, <tr>
<td>10.34</td>
<td>1.66</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>3</td>
</tr>]
>>> headers = []
>>> content = []
>>> for tr in table_rows:
... header_tags = tr.find_all("th")
... if len(header_tags) > 0:
... for ht in header_tags:
... headers.append(ht.text)
... else:
... row = []
... row_tags = tr.find_all("td")
... for rt in row_tags:
... row.append(rt.text)
... content.append(row)
...
>>> headers
['total_bill', 'tip', 'sex', 'smoker', 'day', 'time', 'size']
>>> content
[['16.99', '1.01', 'Female', 'No', 'Sun', 'Dinner', '2'],
['10.34', '1.66', 'Male', 'No', 'Sun', 'Dinner', '3'],
['21.01', '3.50', 'Male', 'No', 'Sun', 'Dinner', '3'],
['23.68', '3.31', 'Male', 'No', 'Sun', 'Dinner', '2'],
['24.59', '3.61', 'Female', 'No', 'Sun', 'Dinner', '4'],
['25.29', '4.71', 'Male', 'No', 'Sun', 'Dinner', '4'],
['8.77', '2.00', 'Male', 'No', 'Sun', 'Dinner', '2'],
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['26.88', '3.12', 'Male', 'No', 'Sun', 'Dinner', '4'],
['15.04', '1.96', 'Male', 'No', 'Sun', 'Dinner', '2'],
['14.78', '3.23', 'Male', 'No', 'Sun', 'Dinner', '2'],
['10.27', '1.71', 'Male', 'No', 'Sun', 'Dinner', '2'],
['35.26', '5.00', 'Female', 'No', 'Sun', 'Dinner', '4'],
['15.42', '1.57', 'Male', 'No', 'Sun', 'Dinner', '2'],
['18.43', '3.00', 'Male', 'No', 'Sun', 'Dinner', '4'],
['14.83', '3.02', 'Female', 'No', 'Sun', 'Dinner', '2'],
['21.58', '3.92', 'Male', 'No', 'Sun', 'Dinner', '2'],
['10.33', '1.67', 'Female', 'No', 'Sun', 'Dinner', '3'],
['16.29', '3.71', 'Male', 'No', 'Sun', 'Dinner', '3'],
['16.97', '3.50', 'Female', 'No', 'Sun', 'Dinner', '3'],
['20.65', '3.35', 'Male', 'No', 'Sat', 'Dinner', '3']]

As we can see we have now pulled the data from the html and got it into two separate lists
bit to go a step further we can put it back into a DataFrame pretty simply by using what we
have covered earlier in the book.

>>> data = pd.DataFrame(content)
>>> data

0 1 2 3 4 5 6
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
5 25.29 4.71 Male No Sun Dinner 4
6 8.77 2.00 Male No Sun Dinner 2
7 26.88 3.12 Male No Sun Dinner 4
8 15.04 1.96 Male No Sun Dinner 2
9 14.78 3.23 Male No Sun Dinner 2
10 10.27 1.71 Male No Sun Dinner 2
11 35.26 5.00 Female No Sun Dinner 4
12 15.42 1.57 Male No Sun Dinner 2
13 18.43 3.00 Male No Sun Dinner 4
14 14.83 3.02 Female No Sun Dinner 2
15 21.58 3.92 Male No Sun Dinner 2
16 10.33 1.67 Female No Sun Dinner 3
17 16.29 3.71 Male No Sun Dinner 3
18 16.97 3.50 Female No Sun Dinner 3
19 20.65 3.35 Male No Sat Dinner 3
>>> data.columns = headers
>>> data

total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
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2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
5 25.29 4.71 Male No Sun Dinner 4
6 8.77 2.00 Male No Sun Dinner 2
7 26.88 3.12 Male No Sun Dinner 4
8 15.04 1.96 Male No Sun Dinner 2
9 14.78 3.23 Male No Sun Dinner 2
10 10.27 1.71 Male No Sun Dinner 2
11 35.26 5.00 Female No Sun Dinner 4
12 15.42 1.57 Male No Sun Dinner 2
13 18.43 3.00 Male No Sun Dinner 4
14 14.83 3.02 Female No Sun Dinner 2
15 21.58 3.92 Male No Sun Dinner 2
16 10.33 1.67 Female No Sun Dinner 3
17 16.29 3.71 Male No Sun Dinner 3
18 16.97 3.50 Female No Sun Dinner 3
19 20.65 3.35 Male No Sat Dinner 3

Now, we have gone full circle and used a DataFrame to populate a table within our website
and then scraped that data and converted it back into a DataFrame.

This chapter has covered a lot of content from introducing html to parsing it out to build-
ing our own website and scraping from there. The examples have been focussed on table
data but they can be applied to any data we find within html. When it comes to web scraping
Python is a powerful and popular choice to interact and obtain data from the web.
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Conclusion

This book has given you an introduction into Python covering all the basics right up to some
complex examples. However, there is much more that could have been covered and much
more for you the reader to learn. Python has many more packages and changes are always
being made, so its important to keep up to date with the trends within the language. From a
development point of view, we have kept things simple working in the shell or writing basic
scripts, however Python can be so much more than an exploratory language. Python can be
used in a production environment and given its adoption by many big tech firms it works
very well with a lot of cloud computing solutions and is an excellent choice for everything
from web applications to machine learning. This book is a gateway to give you the tools to
follow your own Python journey and with a community as big as Pythons there is always
something to learn as well as new things to be aware of. Good luck!

The Python Book, First Edition. Rob Mastrodomenico.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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aggregate method 147
akima 143
Anaconda distribution of Python 215
Anaconda installation of Python 99
Anaconda navigator 3, 4
APIs see application programming interfaces

(APIs)
append method 31, 119, 126
application programming interfaces (APIs)

179, 215–227
abort 221
basic authentication in 224
from browser 217, 222, 223
delete method in 223
dir method 219
Flask method 217
flask-restful download page 215, 216
key authentication 224
OAuth token 224–225
put method on 224
RequestParser 221
requests.get method 219
single get method 222
terminal window 217

apply method 150
as_index argument 148
attributes 229, 232

b
barh plot 168
bar plot 207

barycentric 143
Basic Auth 224
BeautifulSoup 235–254

findAll method 238
find method 239, 240
htmllib5 235
html.parser 235
lxml Python library 235
lxml-xml 235

Boolean series 199
boolean value 16, 34
boston.json 155
boston.xlsx 155
boxen plot 202–204
builtin functions 7–10, 47
built-in plot 166
byte arrays 17

c
cascading style sheet (CSS) 229
catplot method 194, 197–201
cell method, in excel 83
classes 96–101
concatenation 13, 121–136
confidence interval 187
corr method 138
count plot 208
cov method 138
cumsum method 139, 184
custom colour linetype, plot with 174
custom line colour, plot with 173
custom linetype, plot with 173

The Python Book, First Edition. Rob Mastrodomenico.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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corr method to 138
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len method on 138
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dates 25–27
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dictionaries 41–46, 62, 128, 222
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copy method in 44
del method 44
dict method in 41–42
fromkeys method 45
popitem method 44
pop method 43

dict method 41–42
dir method 219
discard method, in sets 54
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dtypes method 193

e
ElementTree 89
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else statement 57, 58
equals operator approach 23
excel 83–84
Extensible Markup Language (XML) 86–90

f
files 79

excel 83–84
JSON 84–86
with pandas 154–157
XML 86–90
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Flask method 217
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g
groupby method 146, 147
grouping 146–154

h
hello_world function 241, 242
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with bins option set 212
of iris DataFrame 167
with KDE 211
with ruglplot 211
of sepal length 161, 163

HTML (Hyper Text Markup Language)
229–233

attributes 232
define 230
div tag 232
header 229–230
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table 230–231
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website from browser with 244

htmllib5 235
html.parser 235
HTTPBasicAuth 226
Hyper Text Markup Language (HTML). see
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i
if statement 57, 59
iloc 114
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integrated development environment (IDE)
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intersection method 50
iris data 164, 165

boxplot of 209
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line plot on 165
pairplot 213

iris DataFrame
area plot of 166
histogram of 167
KDE of 167

iris.plot method 167, 169
isdisjoint method 53
isna() method 136
issubset 53
issuperset 53
iteritems method 118
iterrows method 119

j
JavaScript Object Notation (JSON) 84–86,

219, 243
join method 71–72, 121–136
jointplot method 212
JSON (JavaScript Object Notation) 84–86,

219, 243
Jupyter Notebook 5

k
kernel density estimate (KDE) 204, 210, 211
KeyError 43

l
left join 130
legend method 176
len method 138
linear regression models 179
line plot, in Seaborn 186

hue and style applied 190, 191
hue applied 189
mean and confidence interval 187
mean and no confidence interval 188
mean and standard deviation 189

list comprehension 62
lists 29–37, 60

append method 31
boolean value 34
clear method 34
copy method 34
of integers 29

pop method 30
range object 35–37
sort method 31
stuff list 31

loops 45, 54, 58, 59, 61–63
lottery function 91–93, 99–101
lxml Python library 235
lxml-xml 235

m
matplotlib 169–179

custom colour linetype, plot with 174
custom line colour, plot with 173
custom linetype, plot with 173
iris plot 169
labels, plot with 176
legend, plot with 177
limits altered, plot with 175
panel plot 169, 170
reverse limits, plot with 175
scatter plots with different markers 178
scatter plot with different sizes 179

maxsplit argument 77
mean 140–141, 187–189, 188
merge method 121–136
missing data, in pandas 141–146
multilevel index 124, 128
multiple plots with col 210
multi line plot 194–196
multi scatter plot 192
myfile.csv 155

n
nested if statement 59
nlargest method 149
Notebook 3
notna() method 136
np.sum method 148
nsmallest method 149
numpy arrays 103–106

o
OAuth token 224–225
openpyxl 83
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operators 19–24
equals operator approach 23
floor operator 23

optional name argument 124

p
packages 7–10

datetime 9, 10
pairplot 213
pandas 103–157

concatenation 121–136
DataFrame method 111–121, 136–141
grouping 146–154
join method 121–136
merge method 121–136
missing data 141–146
numpy arrays 103–106
qcut 150
reading in files with 154–157
scatter plot on, data frame 166
series 106–110

panel plot 169, 170, 171
parse method 90
pchip 143
pivot table 151, 152
plotting 159

matplotlib 169–179
pandas 159–168
Seaborn 179–214

polynomial data 143
popitem method 44
pop method 30, 43, 80, 115
Python null value 21, 43

q
qcut 150
Qt Console 3, 5, 6

r
randn method 184
RandomState 177, 178
range object 35–37
raw string 68
read_csv method 155
read_table method 155

regular expressions 73–78
span method 78
split method 77
submethod 77

replot method 180
RequestParser 221
requests.get method 219
right join 130
robots.txt 234
ruglplot 211

s
savefig method 169
scatter plots

with different markers 178
with different sizes 179
on pandas data frame 166
replot in seaborn 180–185

Seaborn 159
bar plot 207
boxplot 202–203, 209
catplot 197–201
count plot 208
joint plot 212
line plot in 186–191
multi line plot 194–196
multiple plots with col 210
multi scatter plot on 192
pairplot 213
scatter plot in 180–185
violin plot 205, 206

sepal length
area plot of 162
boxplot of 161
density plot of 162
histogram of 161, 163
KDE of 163
line plot of 160, 164

series 106–110
sets 47

add method 48, 54
clear method for 54
dictionaries and 48
discard method in 54
frozen set 55–56
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intersection method 50
isdisjoint method 53
issubset 53
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remove method in 53
string 47–48
symmetric_difference method 52
tuple in 48
in union method 49–51

single get method 222
sort method 31
span method 78
spline data 143
split method 77
Spyder IDE 99

run file in 100
square bracket method 140
standard deviation 189
streams method 81
string file_name 79
string formatting 70
strings 13, 25, 47–48, 67, 72, 74–75

definition of 11
double quotes in 68
format method 70
join method in 71–72
raw string 68
single quote in 67
split method in 70–71
triple quotes in 68

SubElement method 89
submethod 77
subplot method 170, 171
sum method 136
symmetric_difference method 52
sys.path list 100–101

t
timedelta object 25–27
to_csv method 155
to_html method 245
tuples 39–40, 48, 112

count 40
index value 40

u
union method 49–51

v
variable, definition of 12
violin plot 205, 206

w
web crawling 233, 235
web scraping 229

definition of 233
HTML 229–233
saving the page and physically searching

235
through web browser 234

while loops 63, 65
worksheet method 84

x
xlim methods 175
XML (Extensible Markup Language)

86–90

y
ylim methods 175

z
ZeroDivisonError 17
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