
SOFTW
ARE A

R
C

H
ITE

C
T

BELL

SOFTWARE
ARCHITECT

MICHAEL BELLCover Design: Wiley
Cover Image: Courtesy of Michael Bell

www.wiley.com

$40.00 USA/$48.00 CAN

COMPUTERS/Software Development/
Systems Analysis & Design

A strategic state-of-the-art software architecture
manual for all skill levels

In Software Architect, veteran enterprise and solution architect Michael Bell delivers a hands-on
playbook of best practices for aspiring and practicing software architects, seeking to improve their
software design, integration, communication, presentation, and knowledge acquisition skills. He
explores the career enablement, career planning, self-training, and self-improvement topics you’ll need
to increase your ability to offer powerful and effective business and technological solutions.

In the book, you’ll learn how to help companies promote business and technological innovation and
transformation by implementing modern and first-class software design, deployment, integration,
and operations.

Software Architect also includes:

• A modern software architect’s toolbox that includes best practices for multi-dimensional
software design and integration in an enterprise quantum computing ecosystem

• A breakdown of the various types of software architects, as well as useful self-assessments
for aspiring and practicing professionals

• Skill acquisition strategies for software architects along with strategic approaches to ace
software architecture interviews

An indispensable manual for aspiring-to-be architects, software architects-in-training, and practicing
software architects, Software Architect is an essential read for anyone hoping to improve their ability to
deliver robust business and technical solutions to enterprises everywhere.

MICHAEL BELL is an enterprise and solution architect with hands-on experience in business and
software architecture modeling. He has consulted for organizations including J.P. Morgan Chase,
Citibank, Bank One, UBS-Paine Webber, American Express, AIG, and the US government. He is the
best-selling author of software architecture books, and he offers a variety of enterprise integration
solutions for back-end and customer-facing systems.

21 mm 187 x 235 mm

SOFTW
ARE A

R
C

H
ITE

C
T

BELL

SOFTWARE
ARCHITECT

MICHAEL BELLCover Design: Wiley
Cover Image: Courtesy of Michael Bell

www.wiley.com

$40.00 USA/$48.00 CAN

COMPUTERS/Software Development/
Systems Analysis & Design

A strategic state-of-the-art software architecture
manual for all skill levels

In Software Architect, veteran enterprise and solution architect Michael Bell delivers a hands-on
playbook of best practices for aspiring and practicing software architects, seeking to improve their
software design, integration, communication, presentation, and knowledge acquisition skills. He
explores the career enablement, career planning, self-training, and self-improvement topics you’ll need
to increase your ability to offer powerful and effective business and technological solutions.

In the book, you’ll learn how to help companies promote business and technological innovation and
transformation by implementing modern and first-class software design, deployment, integration,
and operations.

Software Architect also includes:

• A modern software architect’s toolbox that includes best practices for multi-dimensional
software design and integration in an enterprise quantum computing ecosystem

• A breakdown of the various types of software architects, as well as useful self-assessments
for aspiring and practicing professionals

• Skill acquisition strategies for software architects along with strategic approaches to ace
software architecture interviews

An indispensable manual for aspiring-to-be architects, software architects-in-training, and practicing
software architects, Software Architect is an essential read for anyone hoping to improve their ability to
deliver robust business and technical solutions to enterprises everywhere.

MICHAEL BELL is an enterprise and solution architect with hands-on experience in business and
software architecture modeling. He has consulted for organizations including J.P. Morgan Chase,
Citibank, Bank One, UBS-Paine Webber, American Express, AIG, and the US government. He is the
best-selling author of software architecture books, and he offers a variety of enterprise integration
solutions for back-end and customer-facing systems.

22.5 mm 187 x 235 mm

SOFTW
ARE A

R
C

H
ITE

C
T

BELL

SOFTWARE
ARCHITECT

MICHAEL BELLCover Design: Wiley
Cover Image: Courtesy of Michael Bell

www.wiley.com

$40.00 USA/$48.00 CAN

COMPUTERS/Software Development/
Systems Analysis & Design

A strategic state-of-the-art software architecture
manual for all skill levels

In Software Architect, veteran enterprise and solution architect Michael Bell delivers a hands-on
playbook of best practices for aspiring and practicing software architects, seeking to improve their
software design, integration, communication, presentation, and knowledge acquisition skills. He
explores the career enablement, career planning, self-training, and self-improvement topics you’ll need
to increase your ability to offer powerful and effective business and technological solutions.

In the book, you’ll learn how to help companies promote business and technological innovation and
transformation by implementing modern and first-class software design, deployment, integration,
and operations.

Software Architect also includes:

• A modern software architect’s toolbox that includes best practices for multi-dimensional
software design and integration in an enterprise quantum computing ecosystem

• A breakdown of the various types of software architects, as well as useful self-assessments
for aspiring and practicing professionals

• Skill acquisition strategies for software architects along with strategic approaches to ace
software architecture interviews

An indispensable manual for aspiring-to-be architects, software architects-in-training, and practicing
software architects, Software Architect is an essential read for anyone hoping to improve their ability to
deliver robust business and technical solutions to enterprises everywhere.

MICHAEL BELL is an enterprise and solution architect with hands-on experience in business and
software architecture modeling. He has consulted for organizations including J.P. Morgan Chase,
Citibank, Bank One, UBS-Paine Webber, American Express, AIG, and the US government. He is the
best-selling author of software architecture books, and he offers a variety of enterprise integration
solutions for back-end and customer-facing systems.

0.8125 in 7.375 x 9.25 in

Software Architect

Bell820970_ffirs.indd 1 13-02-2023 18:03:12

Bell820970_ffirs.indd 2 13-02-2023 18:03:12

Software Architect
Michael Bell

Bell820970_ffirs.indd 3 13-02-2023 18:03:13

Copyright © 2023 by John Wiley & Sons. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada and the United Kingdom.

ISBN: 978- 1- 119- 82097- 0
ISBN: 978- 1- 119- 82098- 7 (ebk.)
ISBN: 978- 1- 119- 82099- 4 (ebk.)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107
or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authori-
zation through payment of the appropriate per- copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive,
Danvers, MA 01923, (978) 750- 8400, fax (978) 750- 4470, or on the web at www.copyright.com. Requests to the Pub-
lisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748- 6011, fax (201) 748- 6008, or online at www.wiley.com/go/permission.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates in the United States and other countries and may not be used without written permission. All other trade-
marks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor
mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing
this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of
this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No
warranty may be created or extended by sales representatives or written sales materials. The advice and strategies con-
tained herein may not be suitable for your situation. You should consult with a professional where appropriate. Nei-
ther the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not
limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed
in this work may have changed or disappeared between when this work was written and when it is read. Neither the
publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited
to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care
Department within the United States at (800) 762- 2974, outside the United States at (317) 572- 3993 or fax (317) 572- 4002.

If you believe you’ve found a mistake in this book, please bring it to our attention by emailing our reader support team
at wileysupport@wiley.com with the subject line “Possible Book Errata Submission.”

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be avail-
able in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Control Number: 2022951780

Cover image: Courtesy of Michael Bell
Cover design: Wiley

Bell820970_ffirs.indd 4 13-02-2023 18:03:13

v

Michael Bell is an American novelist, artist, producer, and enterprise solution
architect, chiefly recognized for developing the Incremental Software Architecture
methodology (ISAM), Service- Oriented Modeling Framework (SOMF), Cloud
Computing Modeling Notation (CCMN), and the Multidimensional Software
Architecture Construction (MSAC). His innovative research and publications in
the fields of software architecture, service- oriented architecture, microservices,
artificial intelligence (AI), cloud computing, and big data are recognized interna-
tionally for their contribution to the software design and development commu-
nities. He has consulted for organizations including J.P. Morgan Chase, Citibank,
Bank One, UBS- Paine Webber, American Express, AIG, and the U.S. government.
He is the best- selling author of software architecture books, and he offers a variety
of enterprise integration solutions for back- end and customer- facing systems.

About the Author

Bell820970_ffirs.indd 5 13-02-2023 18:03:13

Bell820970_ffirs.indd 6 13-02-2023 18:03:13

vii

Paul C. Martello is a technical writer with more than 18 years of experience in
IT. Before becoming a technical writer, he held roles ranging from elementary and
business teacher in New York to history teacher for Fairfax County Public Schools
in Virginia. In 2005, Paul was selected to participate in the Relief International
Schools Online Teacher Exchange in Bangladesh, integrating technology in
schools. He loves watching his favorite football team, the Buffalo Bills, traveling,
and spending time with his family in Bristow, Virginia.

About the Contributing Editors

Noreen O’Brien has spent the better part of her life writing, editing, and cre-
ating through various mediums. From her start as a reporter to the freelance
editing work she does today, she has been instrumental in the production of
a multitude of papers, dissertations, and documents. She lives in Richmond,
Virginia, with her son, Liam.

Monica Gagnier is an experienced editor who has worked with Michael Bell
on previous books. A graduate of Syracuse University’s S.I. Newhouse School
of Public Communications, Gagnier is a seasoned financial journalist who has
worked at such publications as BusinessWeek (now Bloomberg Businessweek),
the New York Post, and the Albuquerque Journal. She lives in Santa Fe, N.M.

About the Technical Editor

Bell820970_ffirs.indd 7 13-02-2023 18:03:13

Bell820970_ffirs.indd 8 13-02-2023 18:03:13

ix

Contents at a Glance

Introduction xxiii

Part 1 Software Architect Capability Model 1

Chapter 1 Software Architect Capability Model 3

Part 2 Software Architecture Career Planning 29

Chapter 2 Types of Software Architects 31

Chapter 3 Career Planning for Software Architects: A Winning Strategy 73

Chapter 4 Self- Assessment for Software Architects 117

Part 3 Software Architecture Toolbox 149

Chapter 5 Employing Innate Talents to Provide Potent
Organizational Solutions 151

Chapter 6 Software Architecture Environment Construction 173

Chapter 7 Structural Construction of Software Implementations
in Multidimensional Environments 223

Part 4 Software Architecture Interview Preparations 285

Chapter 8 Preparing for a Software Architecture Interview: A Winning
Strategy 287

Chapter 9 An Outline for Software Architecture Job
Interview Questions 337

Index 369

Bell820970_ftoc01.indd 9Bell820970_ftoc01.indd 9 08-02-2023 19:24:0408-02-2023 19:24:04

Bell820970_ftoc01.indd 10Bell820970_ftoc01.indd 10 08-02-2023 19:24:0408-02-2023 19:24:04

xi

Contents

Introduction xxiii

Part 1 Software Architect Capability Model 1

Chapter 1 Software Architect Capability Model 3
Software Architect Capability Model: Benefits 4

How Should Organizations Utilize the Software
Architect Capability Model? 4

Why Create a Personal Software Architect Capability Model? 5
Rudimentary Guiding Principles 6
Software Architect Capability Model Creation Process 6

Requirements Drive Architecture Solutions 7
Requirements Issued by Problem and Solution Domain Entities 7

How Do the Problem and Solution Domains Collaborate? 7
Important Facts to Remember 9

Create a Software Architect Capability Model in Five Steps 9
Step 1: Provide Requirements and Specifications 10

Business Requirements 10
Technical Specifications 11
Ensure Clear Requirements 11

Step 2: Identify Software Architecture Practices 12
Establish Architecture Practices 12

Step 3: Establish Software Architecture Disciplines 13
Apply Architecture Disciplines to Architecture Practices 14

Applying Disciplines to the Application Architecture Practice 14
Applying Disciplines for the Data Architecture Practice 16

Step 4: Add Software Architecture Deliverables 17
About Software Architecture Deliverables 17
Add the Deliverables Section 18

Bell820970_ftoc.indd 11Bell820970_ftoc.indd 11 09-02-2023 19:11:3709-02-2023 19:11:37

Step 5: Quantify Skill Competencies 21
Quantifying Architecture Skills 22

Measuring the Application Architect Skill Levels 22
Measuring Data Architect Skill Levels 24

Skill Competency Patterns for Architects 25
How Can Organizations Utilize the Skill

Competency Pattern? 26
How an Individual Can Utilize the Skill

Competency Pattern 27
Interview Questions 28

Part 2 Software Architecture Career Planning 29

Chapter 2 Types of Software Architects 31
Business Needs for Technological Solutions 32

Business Needs for Software Architecture: Strategic
Collaboration 32

How Does Software Architecture Respond to
Business Needs? 33

Business Needs for Software Architecture: Technological
Mediation 33

How Could Technological Mediation Efforts Be Utilized? 34
Business Needs for Software Architecture: Technological

Implementation 34
How Does the Implementation of Software Products Meet

Business Needs? 34
Organizational Leading Software Architect Levels 35

Ranking Leading Software Architects 35
Collaboration Hierarchy of Leading Software Architects 36
Level I: Enterprise Architect Responsibilities 38

Enterprise Architect Summary of Responsibilities 38
Enterprise Architect Responsibility Table 39

Level II: Solution Architect Responsibilities 40
Solution Architect Summary of Responsibilities 41
Solution Architect Responsibility Table 42

Level III: Application Architect Responsibilities 44
Application Architect Summary of Responsibilities 44
Application Architect Responsibilities Table 46

Comparing Responsibilities of Leading Software Architects 48
Types of Domain Software Architects 49

Data Architect 49
Data Architect Summary of Responsibilities 50
Data Architect Responsibilities Table 51

Cloud Architect 51
Cloud Architect Summary of Responsibilities 54
Cloud Architect Responsibilities Table 55

Security Architect 57
Security Architect Summary of Responsibilities 58
Security Architect Responsibilities Table 60

xii Contents

Bell820970_ftoc.indd 12Bell820970_ftoc.indd 12 09-02-2023 19:11:3709-02-2023 19:11:37

Business Architect 62
Business Architect Summary of Responsibilities 62
Business Architect Responsibilities Table 63

Collaboration Between Leading Software Architects
and Domain Software Architects 65

Use Case I: Collaboration Between an Application
Architect and a Data Architect 66

Application Architect and Data Architect Collaboration
Table 66

Use Case II: Solution Architect and Security Architect 68
Solution Architect and Security Architect Collaboration

Table 68
Use Case III: Business Architect and Enterprise Architect

Collaboration 70
Business Architect and Enterprise Architect

Collaboration Table 70

Chapter 3 Career Planning for Software Architects: A Winning Strategy 73
Software Architecture Career Planning Process 74

Career Planning Step 1: Conduct Self- Discovery 75
Discovery of Technological and Social Talents 75
Career Planning Self- Discovery Subjects 76

Career Planning Step 2: Pursue Research 76
Formal Education, Training, and Certification 77
Employment Opportunities and Interviews 77
Subjects of Research 77

Career Planning Step 3: Devise an Approach 78
Setting Software Architecture Career Goals 78
Setting Software Architecture Career Milestones 80
Decision- Making 81
Action Planning 82

Career Planning Step 4: Plan Career Execution 85
Use Case I: A Software Architecture Career

Execution Plan with Alternative Tasks 85
Use Case II: Optimized Software Architecture

Execution Plan 88
Self- Discovery Process: The Six Ws 89

The “Why” 90
The “Who” 91
The “What” 92

Self- Discovery Questions for Software Architecture
Candidates 93

Self- Discovery Queries for Software Architects 93
The “Where” 94
The “When” 95
The “How” 96

“How” Self- Queries for Software Architecture Applicants 97
“How” Self- Questions for Practicing Software Architects 97

 Contents xiii

Bell820970_ftoc.indd 13Bell820970_ftoc.indd 13 09-02-2023 19:11:3709-02-2023 19:11:37

xiv Contents

Carving a Software Architecture Career Path 98
The 4D Software Architecture Career Perspectives 99
Social- Driven Career Perspective 100

Social- Driven Career Chart 100
Carve Out a Social- Driven Career Chart 101

Social- Driven Career Path 102
Create a Social- Driven Career Path 102

Technology- Driven Career Perspective 103
Technology- Driven Career Chart 104
Create a Technology- Driven Career Chart 105

Technical- Driven Career Path 106
Develop a Technical- Driven Career Path 106

Leadership- Driven Career Perspective 107
Leadership- Driven Career Chart 108
Create a Leadership- Driven Career Chart 109

Leadership- Driven Career Path 110
Develop a Leadership- Driven Career Path 110

Strategy- Driven Career Perspective 112
Strategy- Driven Career Chart 112
Create a Strategy- Driven Career Chart 114

Strategy- Driven Career Path 114
Develop a Strategy- Driven Career Path 115

Chapter 4 Self- Assessment for Software Architects 117
Social Intelligence 118

Teamwork 118
Partnership 119
Self- consciousness 119
Communication 120
Networking 120
Soft Skills 120
Trust Building 121
Learning from Others 121
Negotiation 122
Self- presentation 122
Teleworking 123
Fellowship 123
Self- sufficiency 124
Handling Customer Relationships 124
Social Intelligence Skill Assessment 124

Software Architecture Practice 126
Software Architecture Strategy 126
Software Architecture Vision 127
Software Architecture Role 127
System Integration 128
Interoperability 128

Bell820970_ftoc.indd 14Bell820970_ftoc.indd 14 09-02-2023 19:11:3709-02-2023 19:11:37

 Contents xv

Software Reuse 129
Distributed Architecture Model 129
Federated Architecture Model 129
Architecture Styles 130
Architecture and Design Patterns 130
Componentization 130
Software Architecture Frameworks 131
Software Development 131
Software Architecture Practice Skill Assessment 132

Leadership 133
Managing Time 134
Decision- Making 134
Problem-solving 134
Diversity, Equity, and Inclusion 135
Responsibility and Accountability 135
Hiring Preferences 136
Creative Thinking 136
Critical Thinking 136
Being Proactive 137
Establishment of Trust 137
Administrative Duties 138
Coaching and Training 138
Team Building 139
Resolving Conflicts 139
Assessment of Leadership Competencies 140

Strategy 141
Software Architecture Strategy 142
Strategic Thinking 142
Problem Identification 142
Problem-solving 143
Abstraction 143
Generalization 144
Visualization 144
Software Design Approaches 145
Simplification 145
Analytical Capabilities 145
Influencing 146
Promoting Culture 146
Strategy Execution Plan 147
Assessment of Strategic Competencies 147

Part 3 Software Architecture Toolbox 149

Chapter 5 Employing Innate Talents to Provide Potent
Organizational Solutions 151

Innate Skills Promote Software Architecture Effectiveness 152
Remember: Survival, Survival, Survival 152
Consequences of Failing to Invoke Innate Talents 153

Bell820970_ftoc.indd 15Bell820970_ftoc.indd 15 09-02-2023 19:11:3709-02-2023 19:11:37

xvi Contents

Employ Chief Innate Talents to Become an Effective
Software Architect 154

The Power of Creativity 154
The Benefits of Unleashing Software Architecture Creativity 155
Unleash the Power of Software Architecture Creativity 155

The Potency of Imagination 157
The Benefits of Harnessing Imagination 158
Unleash the Power of Imagination 159

Software Design Aesthetic 162
Technical Proficiency and Aesthetic Talents Drive Software

Design 162
The Chief Contribution of Design Aesthetic Talents to Software

Architecture 163
Curiosity Attributes 167

The Contribution of Curiosity to Software Architecture 167
The Influencing Facets of Curiosity on Software Architecture

Practices 168

Chapter 6 Software Architecture Environment Construction 173
Benefits of the Software Architecture Environment

Construction Discipline 174
Must Haves: Problem Statements and Requirements 174

Never Start a Software Design Project Without
Understanding the Problems 175

Never Start a Software Design Project Without Requirements 176
Software Architecture Structures 176

Micro Level: Multidimensional Structures of Software
Implementations 176

Macro Level: 3D Software Architecture Environment
Structure 177

Software Architecture Environment: Driven by an
Uncontrolled Quantum Landscape Behavior 178

Software Architecture Environment: An Intelligent
Topological Space 179

Deformation Aspects of a Multidimensional Software
Architecture Environment 181

Entanglement Effects in a Software Architecture Environment 182
Software Architecture Environment Forces Drive Software

Behavior 183
Probability Assessment of Software Operations and Behavior 184
Software Architecture Environment Positive and Negative

Forces 184
Software Architecture Environment Gravitational Forces 185

The Impetus for Granting Software Architecture
Gravitational Powers to Software Implementations 186

Software Architecture Gravitational Force Intensity 187

Bell820970_ftoc.indd 16Bell820970_ftoc.indd 16 09-02-2023 19:11:3709-02-2023 19:11:37

 Contents xvii

The Cost of Unbalanced Software Architecture
Environment Gravitational Forces 187

Competing Software Architecture Environment Forces 188
Software Architecture Environment: A Survival Game

Space 188
Maintaining a Pragmatic Balance Between Competing

Software Architecture Forces 189
Mitigating the Competing Forces Challenge 190

Software Architecture Environment Harmonizing and
Disharmonizing Forces 190

Chief Properties of Harmonizing Forces in a Software
Architecture Environment 191

Chief Properties of Disharmonizing Forces in a Software
Architecture Environment 193

Genetic Encoding of a Software Architecture Environment 194
Difficulties of Restructuring a Software Architecture

Environment 194
Encoding a Software Architecture Environment 195

Influences on Social, Behavioral, and Business Goals 195
Software Architecture Environment Construction Life Cycle 196

Software Architecture Environment Construction Process 197
Creating a Software Architecture Environment Construction

Balance Table 197
Software Architecture Environment Construction Design

Activities 199
Use Case I: Software Architecture Environment Composition

and Decomposition Design Activities 201
Design- Time vs. Runtime Environment Composition and

Decomposition Design Activities 201
Composition and Decomposition Design Methods 202
Composition and Decomposition Process Outline 203

Use Case II: Software Architecture Environment Integration
and Disintegration Design Activities 204

When to Apply Integration and Disintegration Design
Activities 205

Integration and Disintegration Design Methods 205
Integration and Disintegration Process Outline 206

Use Case III: Software Architecture Environment
Centralization and Decentralization Design Activities 208

When to Employ the Software Environment Centralization
and Decentralization Design Activities 208

Centralization and Decentralization Design Methods 209
Software Architecture Environment Centralization and

Decentralization Process Outline 210
Use Case IV: Software Architecture Environment Elasticity

and Inelasticity Design Activities 211

Bell820970_ftoc.indd 17Bell820970_ftoc.indd 17 09-02-2023 19:11:3709-02-2023 19:11:37

xviii Contents

When to Employ Elasticity and Inelasticity Design
Activities 212

Elasticity and Inelasticity Design Methods 213
Software Architecture Elasticity and Inelasticity Design

Process Outline 214
Use Case V: Software Architecture Environment

Synchronization and Desynchronization Design Activities 215
When to Employ Environment Synchronization and

Desynchronization Design Activities 216
Environment Synchronization and Desynchronization

Design Methods 216
Software Architecture Environment Synchronization and

Desynchronization Design Process Outline 218
Construction Laws of a Software Architecture Environment 219
Best Practices for Software Architecture Environment

Construction 220

Chapter 7 Structural Construction of Software Implementations
in Multidimensional Environments 223
Software Architecture Solids: Rudimentary Geometrical

Design Structures 224
Atomic Solid 225
Composite Solid 227
Monolithic Solid 228
Interface Solid 229
Pipe Solid 230

Inclusive Utilization of Pipe Solids 231
Exclusive Utilization of Pipe Solids 232
Internal Utilization of Pipe Solids 233

Data Solid 234
Software Architecture Solids’ Attribute Summary 236

Software Architecture Dimensional Model 237
Software Architecture: Zero Dimension 238
Software Architecture: One Dimension 239
Software Architecture: Two Dimensions 240

What Impacts the Length and Width Dimensions of a
2D Software Structure? 241

Software Architecture: Three Dimensions 242
Volumes of 3D Software Structures 242
Increase in Software Architecture Level of Specificity in a

3D Computing World 243
Software Population Sustainability in an Architecture

Environment Space: A Capacity Planning Challenge 245
Comparative Perspectives in a Software Architecture

Space 246
3D Software Structures in a Software Architecture

Computing Space 247

Bell820970_ftoc.indd 18Bell820970_ftoc.indd 18 09-02-2023 19:11:3709-02-2023 19:11:37

 Contents xix

The Impetus for Establishing a 3D Software Architecture
Space 247

Chief Features of Software Architecture Computing Space 249
Influences of Software Structures on Software Architecture

Computing Space 250
Relative Positions in a 3D Software Architecture

Computing Space 250
Coordinate Axes: Skeleton of a Software Architecture

Computing Space 251
Software Architecture Computing Space Logical

Coordinate System 252
Cardinal and Intercardinal Physical Directions in Software

Architecture Computing Space 253
Applying Cardinal and Intercardinal Directions to Software

Architecture Computing Space 254
Marrying a Logical Coordinate System with Cardinal and

Intercardinal Physical Directions System 255
Leveraging the Z- Axis to Create Floors in a Software

Architecture Computing Space 256
Distribution Styles of 3D Software Implementations in an

Architecture Computing Space 257
Federated Distribution Style 258
Flooring Distribution Style 260
Symmetrical and Asymmetrical Distribution Styles 261

Symmetrical Distribution Style 261
Asymmetrical Distribution Style 263

Construction Life Cycle of Software Implementations 264
Software Construction Process 265

Creating a Software Construction Balance Table 265
Software Construction Design Activities 266

Use Case I: Thicken and Contract Design Activities 267
When to Apply Thicken and Contract Design Activities 268
Thicken and Contract Design Methods 269
Software Structure Thickening and Contracting Process

Outline 270
Use Case II: Lengthen and Shorten Design Activities 272

When to Apply the Lengthen and Shorten Design
Activities 273

Lengthen and Shorten Design Methods 273
Software Structure Lengthening and Shortening Process

Outline 275
Use Case III: Layer and Delayer Design Activities 277

When to Apply Layer and Delayer Design Activities 277
Layer and Delayer Design Methods 278
Layer and Delayer Process Outline 279

Bell820970_ftoc.indd 19Bell820970_ftoc.indd 19 09-02-2023 19:11:3709-02-2023 19:11:37

xx Contents

Governing Laws for Software Construction in a 3D
Computing World 281

Best Practices for Constructing Software Implementations 282

Part 4 Software Architecture Interview Preparations 285

Chapter 8 Preparing for a Software Architecture Interview: A Winning
Strategy 287
Software Architecture Job Interview Strategy 288

Preparing a Job Interview Defense Plan 288
Preparing a Job Interview Attack Plan 289
Software Architecture Job Interview Preparation Model 290

Software Architecture Job Interview Defense Plan 291
Study and Analyze the Job Description 291

Start with Identifying the Scope of the Software
Architecture Job Requirements 292

Dive Deep into the Software Architect Job Description 293
Start with Analyzing the Summary Portion of the Job

Requirements 294
Create a Findings Table Version I for the Job Description 295
Next, Analyze the Responsibilities Portion of the Job

Requirements 296
Then, Update the Findings Table Version II of the Job

Description 296
Last, Analyze the Software Architect Skills Portion of

the Job Requirements 297
Do Not Forget to Update the Findings Table of the Job

Description 298
Create a Software Architect Skill Competency Model for

the Job Description 299
Skill Competency Model’s Requirements and Practices 300
Skill Competency Model’s Disciplines 301
Design Discipline’s Deliverables 301
Cybersecurity Discipline Deliverables 301
Products Selection and Evaluation Discipline’s Deliverables 302
SDLC Discipline’s Deliverables 302
The Competency Part of the Skill Competency Model 303
Discover the Personal Knowledge Gap Before

Attending a Job Interview 303
Assess Whether the Next Software Architecture Job Is a

Strategic Career Move 304
Conduct a Software Architecture Mock Interview 305

Prepare a Software Architecture Interview Cheat Sheet 306
Prepare for Possible Software Architecture Interview

Questions 307
Software Architecture Job Interview Attack Plan 308

Study the Hiring Organization’s Business 309
Start by Finding Information About the Hiring

Organization 309

Bell820970_ftoc.indd 20Bell820970_ftoc.indd 20 09-02-2023 19:11:3709-02-2023 19:11:37

 Contents xxi

Leveraging Business Knowledge During an Interview 311
Understand the Business Model 312
Get Familiar with the Hiring Company’s Culture 314
Conduct a Quick SWOT Analysis 315

Understand the Hiring Organization’s Technology 316
Technological Information Sources 316
Discover the Environment’s Technology Stack 318
Learn About the Development Technology Stack 319
Study the Applications 320
Identify Specific IT Projects 321
Demonstrate Enterprise Architecture Knowledge of the

Hiring Organization 321
Adopt Software Architecture Lingo 323

Use Design Patterns Vocabulary 323
Use the Software Architecture Guidelines Lingo

to Communicate Solutions 324
Remember Software Architecture Tools 328

Classification of Software Architecture Tools 329
Especially Prepare for Architecture Visualization Tools

Questions 332
Get Familiar with Software Architecture Analysis and

Evaluation Methods 333
Be Aware of Early Architecture Evaluation Methods 334
Be Aware of Late Architecture Evaluation Methods 335

Talk About Software Architecture Analysis Standards 335

Chapter 9 An Outline for Software Architecture Job
Interview Questions 337
Behavioral Questions 338

Communication 339
Interpersonal Relationships 340
Software Architecture Leadership 340

Skill Assessment Questions 341
Software Architecture Attributes Questions 342
Software Architecture LifeCycle Questions 343
Software Architecture Concepts Questions 346

Design Building Blocks Concepts 347
Employ Design Building Blocks Concepts to

Depict Solutions 347
Prepare for the “How to Design” Interview Questions 348

Software Architecture Environment Concepts 349
Business Concepts 351
Consumer Concepts 352

Architecture Style, Architecture Pattern, and Design
Pattern Questions 353

Architecture Patterns vs. Design Patterns 353
Understand Architecture Styles 355

Bell820970_ftoc.indd 21Bell820970_ftoc.indd 21 09-02-2023 19:11:3709-02-2023 19:11:37

xxii Contents

Remember Contextual Hierarchy of Patterns 355
Why Interviewers Ask Architecture and Design Pattern

Questions 356
Prepare for Architecture and Design Pattern Questions 357

Problem-solving and decision- making Questions 358
Embrace the Software Architecture Problem- Solving

and Decision- Making Process 358
Identifying Business Problems 358
Attend to the Problem- Solving and Decision- Making Process 359
Prepare for Problem- Solving and Decision- Making Questions 360

Data- Related Questions 360
Focus on Data Aspects Related to Software Architecture 361
More Data- Related Interview Questions 361

Production Environment Questions 362
Characteristics of Software Architecture Environment

Hosted in Production 363
Production Environment-Related Questions 364

Software Architecture Framework Questions 365
Focus on Array of Framework Contributions 365
Software Architecture Framework Questions 367

Index 369

Bell820970_ftoc.indd 22Bell820970_ftoc.indd 22 09-02-2023 19:11:3709-02-2023 19:11:37

xxiii

Introduction: Software Architect,
Who Are You?

As a software architect you’ve embarked on a career journey in an unchart-
ered and unpredictable territory with no guarantee of successful technological
solutions. You are employed as a software architect to participate in a corporate
business, technological, and social experiment whose chief thrust is to manu-
facture software products deployed to virtual environments. It’s also arduous
to foretell the business performance quality and stability after deploying and
integrating software implementations in computing ecosystems.

By no means is this a bleak portrayal of a software architecture career. On
the contrary, the uncertainty of your contribution to enterprise solutions only
opens the doors to business development and transformation opportunities,
technological modernization, and career improvement and growth. Further-
more, your hard work and dedication can be achieved through the power of
creativity, imagination, and persistence. Once you are resolved to pursue a soft-
ware architecture career, or are already a devoted practitioner, you’re destined
for a highly successful journey.

The following sections draw a picture of an ideal software architect whose
capability to solve organizational problems is beyond imagination. This profile
represents a well- rounded software architect with close-to-perfect professional
talents that organizations would most certainly employ if the need existed.
However, do not fret or be discouraged. We strive to possess these outlined
qualities to make a difference in people’s lives by promoting business culture,
strategies, mission, and vision.

Figure I.1 illustrates the ideal software architect’s attributes: career- oriented,
innate traits- driven, strategy- driven, culture promoter, integration- driven,
leadership- oriented, solution- driven, domain- driven, and social- driven.

So, ideal software architect, who are you?

Bell820970_fintro.indd 23Bell820970_fintro.indd 23 10-02-2023 17:13:0610-02-2023 17:13:06

xxiv Introduction: Software Architect, Who Are You?

You Promote Institutional Culture

You’re hired as a software architect to inspire change, stir up enthusiasm for
innovation, stimulate new ideas, affect organizational strategies, combat business
and technological stagnation, and make a big difference in people’s lives.

Become an Agent of Cultural Transformation
You are offered a key position to participate in transforming the old into the
new. The former refers to outdated business concepts, traditional ways of doing
business, archaic methods of developing software products, and waning tech-
nological solutions. The “new,” on the other hand, pertains to modern technol-
ogies, creative and practical applications and systems, innovative end- to- end
software architecture methodologies and life cycles, and partnerships that
promote organizational dialogue to secure the business.

By partaking in such ambitious organizational metamorphosis, you’re the
de facto institutional agent of cultural transformation. You are actively engaged in
a social and technological experiment that touches lives and instills change in
people’s behavior. This multifaceted cultural change manifests in how people
communicate, interface with applications and systems, form relationships and
partnerships, run their daily lives, and manage their careers.

So, how do software architects promote organizational culture? The arsenal
of tools and utilities employed to impact the environment profoundly is vast.

Figure I.1: An Ideal Software Architect Profile

Bell820970_fintro.indd 24Bell820970_fintro.indd 24 10-02-2023 17:13:0610-02-2023 17:13:06

 Introduction: Software Architect, Who Are You? xxv

Furthermore, the sky is the limit for technological evolution and innovation.
The business and technological solutions you’re being asked to provide drive
the establishment of organizational policies, best practices, and standards. These
rules and procedures you’re advocating for promote institutional norms of
behavior, foster business alliances, and forge new codes of cultural conduct.

Contribute, Do Not Follow
However, the cultural change that you’re promoting does not touch only indi-
viduals. You are employed to harness the power of your talents and creativity
to form a new generation of ideas and find shared values reinforced by mem-
bers of your organization inspired by your innovative visions. In reality, you
are a benefactor at heart, not a follower. Any organizational solution you offer
contributes to the institutional knowledge base and the collective memory of
your followers, who are ultimately employed to solve enterprise problems.

Further Reading
Although the topic of promoting organizational culture is discussed throughout
the book, refer to these chapters to learn about the specific methods that soft-
ware architects can leverage to impact institutional culture:

 ■ Chapter 3, “Career Planning for Software Architects: A Winning Strategy”
depicts four career- driven perspectives that can impact organizational
culture: social- driven, technology- driven, management- driven, and
strategy- driven.

 ■ Chapter 4, “Self- Assessment for Software Architects” offers a self- scoring
questionnaire that contains queries about promoting organizational culture
methods.

You’re an Astute Strategist

Your strategic mindset is the key to the success of your software architecture
career. No matter which software architecture scope of solutions you pursue,
application or enterprise level, focus on the big picture. You’re a generalist by
nature. Never rush into details to develop effective solutions. Having a bird’s-
eye view is what makes you an all- around type of person.

You’re also a gifted tactician who incessantly occupies your mind with long-
term and sustainable solutions to remediate business problems. The prospect
of business prosperity and technological continuity motivates you to carve out
complicated schedules, road maps, and product development timetables.

Bell820970_fintro.indd 25Bell820970_fintro.indd 25 10-02-2023 17:13:0610-02-2023 17:13:06

xxvi Introduction: Software Architect, Who Are You?

No matter the magnitude of your work, your strategic outlook is driven by a
thorough study of business and technological events that occur on the ground.
Then, by connecting the dots, you deliver superior software architecture artifacts.
In this context, connecting the dots pertains to aggregating and utilizing all pos-
sible organizational resources, such as subject- matter experts, data, utilities, and
facilities, to derive the best possible software and environment implementations.

Adopt an Effective Outside- In Strategy to Deliver Synthesized
Software Architecture Solutions
You’re an outside- in software architecture strategist attuned to market and
industry trends, quality of organizational services, and, most important, cus-
tomer imperatives. In addition, you are acquainted with advanced product
development life- cycle methodologies and often follow business market devel-
opments and innovations, valuable knowledge that drives your methodological
approach to meeting client requirements. Satisfying these imperatives begins
with an effective business discovery and analysis process that leads to software
architecture solutions.

Do not be constrained by existing technological limitations. If current organi-
zational technologies tend to narrow the scope of your vision, you must drive
change, modernization, and initiatives aligned with your software architecture
vision and mission. Furthermore, you drive business and technological trans-
formation through creativity, curiosity, and modernity synthesis. Finally, never
deprive yourself of the freedom of imagination when proposing innovative
software architecture implementations.

Align Software Architecture Strategies
with Organizational Imperatives
As an astute software architecture strategist, you know that your technological
vision and mission must align with business strategies. Remember, you’re not
operating in a vacuum. Your software architecture solutions, therefore, ought
to promote business agendas, foster business growth, and ensure business sta-
bility and continuity.

However, aligning software architecture strategies with business vision and
mission would not promote satisfactory technological solutions. Business coop-
eration and coordination are indeed primary and compulsory goals for software
architects. Their duties, however, must go beyond business imperatives. There
are accessorial software architecture strategy alignment necessities to drive a
comprehensive enterprise technological balance.

Thus, software architecture strategies must also be aligned with existing
deployment environments, supporting infrastructure, development platforms,

Bell820970_fintro.indd 26Bell820970_fintro.indd 26 10-02-2023 17:13:0610-02-2023 17:13:06

 Introduction: Software Architect, Who Are You? xxvii

data and message exchange mechanisms, architecture styles, design patterns,
and integration patterns. Again, promote transformation initiatives to satisfy
software architecture vision and mission if software architecture strategies
cannot align with existing technologies and environments.

Figure I.2 illustrates a software architecture strategy alignment priority example
chart that outlines alignment opportunities with business, technologies, envi-
ronment, and infrastructure.

Further Reading
The topic of software architecture strategy alignment with business strategy,
vision, and mission to propel technological initiatives across the organization
is discussed largely in Chapter 2, “Types of Software Architects.” It introduces
three business needs for software architecture to foster organizational transfor-
mation and modernization: strategic collaboration, technological mediation,
and technological implementation

You’re a Gifted Leader

You’re a leader, not necessarily a manager. You possess noteworthy interper-
sonal traits. You’re a person of integrity who instills trust in your co- workers,
managers, corporate executives, and partners. You promote institutional social
harmony to foster consensus on software architecture strategies, technologies,
best practices, standards, and policies. You’re trusting and trustworthy because
you have a positive perspective of humankind.

Your natural leadership traits inspire followers. These devoted fans respect
your perspectives and are committed to collaborating with you on software
architecture projects and business initiatives. As a gifted technological leader and
team player, you prefer to collaborate with others. You encourage diversity of

Figure I.2: Software Architecture Alignment Priorities

Bell820970_fintro.indd 27Bell820970_fintro.indd 27 10-02-2023 17:13:0710-02-2023 17:13:07

xxviii Introduction: Software Architect, Who Are You?

ideas and solutions by fostering the collective creativity of enthusiastic technol-
ogists. You never impose your views on others— in contrast, you’re an advisor,
a mentor who offers viable guidance to those who seek professional direction.

 T I P Remember, you’re a leader. You’re not a manager or administrator who signs
timesheets and reprimands staff for wrongdoing.

Tolerate Errors and Stay Open to Technological Experiences
Your innate problem- solving and decision- making skills paint a realistic view
of your organization’s business and technological contribution. In other words,
nothing is perfect! You understand the difficulties and constraints of any pro-
posed software architecture solution. And you’re aware of the impact your
technical recommendations have on your organization. You’re wise to under-
stand that ill- designed applications and systems can cause operational chaos,
disrupt business continuity, negatively impact productivity, and harm your
company’s bottom line.

With all these potential risks to the enterprise, you’re still a natural optimist
and idealist, a risk-taker willing to surrender short- term gains in favor of stra-
tegic long- term technological success. These traits define a person who tolerates
design errors, software implementation mishaps, and software deployment and
integration flaws. In reality, you’re not afraid of failure. In your mind, the design
experiment journey you’re willing to embark on can only promote successful
technological modernization.

Build a Circle of Trustful Followers by Uplifting Their Spirits
As a software architect, you must inspire others and galvanize positive energy
among your co- workers and work teams. You’re here to foster creativity— the
failure of imagination is not an option. You are here to usher intelligent followers
who trust your software architecture judgment and good taste, and who are not
afraid of making design mistakes or expressing silly opinions.

 T I P Remember, you’re an experimentalist whose leadership traits galvanize enthu-
siasm for collaborative teamwork to offer superb technological solutions for sustaining
and accelerating business success.

Further Reading
Take the self- evaluation questionnaire provided in Chapter 4, “Self- Assessment for
Software Architects,” to find out if you possess the proper software architecture

Bell820970_fintro.indd 28Bell820970_fintro.indd 28 10-02-2023 17:13:0710-02-2023 17:13:07

 Introduction: Software Architect, Who Are You? xxix

leadership talents that can galvanize enthusiasm for business innovation and
technological modernization.

You’re an Instrumental Solution Provider

At heart, you are a solution provider. Deep inside you, there is a veiled desire to
mitigate risks, resolve social conflicts, and provide guidance to tackle organiza-
tional challenges. You always rise to the occasion to remediate business shortfalls.
Furthermore, you go the extra mile to seek pragmatic technological solutions.

Promote Business Growth Through Modern
Technological Solutions
You are committed to implementing potent strategic foundations for sustain-
able and viable business growth through technological modernization. You’re
a risk-taker and venture to support business transformation by leveraging the
best- of- breed technical capabilities. Furthermore, you believe that technology
is not just a mechanical mean for implementing temporary solutions or for
offering Band- Aid remedies that do not withstand time. Simply put, you’re a
solution provider with technological, strategic agendas that tolerate occasional
failures to achieve novel goals.

Provide Solutions Within the Boundaries of Your Software
Architecture Expertise
As a software architect, you focus on design solutions— software- oriented
remedies, not hardware. This is because you understand the boundaries of your
occupation. You’re aware that the solutions you provide are within the mar-
gins of software architecture practices— the field in which you excel. You may
collaborate with co- workers specializing in physical infrastructure, hardware
servers, and network devices. However, your chief responsibility is to design
applications, services, systems, and deployment environments within your
software architecture expertise.

Know the boundaries of your responsibilities. Be aware of your software
architecture level of contribution. You’re wise to understand that the reach of your
technical solutions depends on the boundaries of your position. Namely, the job
you’re holding as a software architect has restricted outreaching responsibilities.
This is not because you cannot accomplish tasks beyond your job description. It’s
simply due to the software architecture duties you’re commissioned to pursue.

Bell820970_fintro.indd 29Bell820970_fintro.indd 29 10-02-2023 17:13:0710-02-2023 17:13:07

xxx Introduction: Software Architect, Who Are You?

Understand the Scope of Your Technological Solutions
So, what would be the scope of your technological solutions?

Nowadays, common organizational practice calls for founding a hierarchical
structure of software architecture roles. They are established to address three
different levels of solutions. Affiliated with the top layer of a pyramid, enterprise
software architects and their technological solutions must meet enterprise-
level business imperatives. Then, solutions architects are related to the second
layer, just beneath the enterprise architects’ level. They are commissioned not
only to promote enterprise software architecture strategies, but also to oversee
application- level design initiatives. Finally, application architecture roles are the
nucleus of any organizational software design initiative. They are positioned
at the very bottom of the structural employment hierarchy, assigned to offer
solutions for the narrowest range of problems. Figure I.3 illustrates the hier-
archical structure of software architecture roles and their solution scope and
dependencies within an enterprise.

Further Reading
To learn more about how to scope technological solutions and set boundaries
for your professional expertise visit these two chapters:

 ■ Chapter 1, “Software Architect Capability Model,” discusses a method to
help scoping technological solutions and setting boundaries to a professional
occupation by creating a capability model with five driving sections:

Figure I.3: Software Architecture Roles And Their Organizational Solution Scope

Bell820970_fintro.indd 30Bell820970_fintro.indd 30 10-02-2023 17:13:0710-02-2023 17:13:07

 Introduction: Software Architect, Who Are You? xxxi

specifications, architecture practices, architecture disciplines, architecture
deliverables, and quantification of skill competencies.

 ■ Chapter 2, “Types of Software Architects,” elaborates on two types of
software architect roles: leading software architects and domain software
architects. Each of these roles are commissioned to focus on specific solu-
tion scopes.

You’re an Integrator Par Excellence

Integration duties are the bedrock foundation of your occupation. It’s an inte-
gral part of your professional daily practice. No matter what level of software
architecture contribution to the enterprise you provide, you’re well aware that
integration is a compulsory responsibility that you cannot avoid. It’s a software
design capability you possess, leverage, and exhibit to satisfy a broad range of
business and technological imperatives. Furthermore, integration is a technolog-
ical, social, and business competence you consistently demonstrate to provide
large- scale business remedies. And it’s a software architecture aptitude you
employ to aggregate solutions mutually provided by a community of software
implementations.

Connect the Dots
You’re dubbed a “software integrator” because every design scheme you devise
proves effective partnerships and communications between software implemen-
tations. Any design blueprint you provide presents logical views of interaction
and collaboration between applications, services, and systems. And it’s starkly
apparent that any software architecture environment you design maintains a
pragmatic alliance between distributed software assets.

You do not take the term connecting the dots lightly in regard to software
integration. Namely, you do not sneeze at opportunities to utilize diverse sources
of information, combine people’s ideas, and aggregate technological fountains
of knowledge to devise powerful software architecture integration solutions. In
essence, you’re wise to connect the dots to foster software reuse and optimize
the redundancy of business functionality.

Integrate Software in a Three- Dimensional Software
Architecture Environment
As a software architect, you’re keenly aware that integration is not only about
connecting the dots and not merely about enabling software entities to talk to

Bell820970_fintro.indd 31Bell820970_fintro.indd 31 10-02-2023 17:13:0710-02-2023 17:13:07

xxxii Introduction: Software Architect, Who Are You?

each other and exchange information. Indeed, these are vital software architecture
tasks that ensure business continuity, ensuing viable organizational solutions.

However, you’re also mindful that software implementations do not operate in
a vacuum and are deployed to a topological, geometrical, and three- dimensional
landscape that offers them adequate architectural conditions to survive in. In
Chapter 6, “Software Architecture Environment Construction,” and Chapter 7,
“Structural Construction of Software Implementations in Multidimensional
Environments,” this ecosystem is labeled the software architecture environment.
As illustrated in Figure I.4, this landscape constantly undergoes structural
deformation due to the behavior of the hosted software entities.

Mitigate Risks in a Quantum Software Architecture Ecosystem
Your design outcomes consistently demonstrate a compromise between radical
software architecture solutions. These negotiated solutions between extreme
design approaches contribute vastly to the mitigation of the risks of an unpre-
dictable deployment environment that can negatively impact business execution.
Also, you’re compelled to adhere to integration best practices, standards, and
policies to foster a balanced software architecture environment. Your instru-
mental integration talents promote a sensible environment balance to minimize
the erratic behavior of software. And your surpassing software integration
capabilities alleviate the risks of business interruptions.

Figure I.4: Structural Deformation Of A Software Architecture Environment

Bell820970_fintro.indd 32Bell820970_fintro.indd 32 10-02-2023 17:13:0810-02-2023 17:13:08

 Introduction: Software Architect, Who Are You? xxxiii

Further Reading
The book’s Part 3, “Software Architecture Toolbox,” represents the
Multidimensional Software Architecture Construction (MSAC) methodology.
This design approach offers use cases, best practices, and construction laws for
software implementations and their affiliated environments:

 ■ Chapter 6, “Software Architecture Environment Construction,” is all about
integration of software in a multidimensional software architecture envi-
ronment hosted in production.

 ■ Chapter 7, “Structural Construction of Software Implementations in
Multidimensional Environments,” represent the 3D structural composi-
tion of software entities that are deployed and integrated in a software
architecture space.

You’re Domain- Driven

You’re well prepared to tackle business and technological problems by employ-
ing your software architecture talents. There is nothing that can swerve your
focus from fulfilling your goals. Furthermore, your uncompromising devotion
to offering effective and sustainable software architecture solutions is immeasur-
able to your organization. Your steadfast resolve to tackle business challenges is
attributed to your laser- beam focus on critical problems while avoiding personal
agendas and evading trivial issues.

Simply put, the secret of your unwavering commitment to providing best- of-
breed software architecture solutions is rooted in your ability to concentrate on
what matters. More specifically, your solutions align with corporate business
and technological strategies; software architecture vision and mission; leader-
ship directives; and institutional best practices, standards, and policies.

 T I P In a nutshell, you’re a domain- driven software architect familiar with the
business environment, the industry, the customers, and the supporting technology.

Align the Orbit of Your Software Architecture Solutions
with Organizational Domains
The alignment of software architecture solutions with business imperatives
characteristically yields robust technological solutions. In this context, business
imperatives refers to different types of requirements. As a pragmatic software
architect you can tailor technological solutions to specific business needs. More

Bell820970_fintro.indd 33Bell820970_fintro.indd 33 10-02-2023 17:13:0810-02-2023 17:13:08

xxxiv Introduction: Software Architect, Who Are You?

explicitly, your solutions to business problems may be affiliated with a specific
business sector, business industry, business product, business portfolio, line
of business, or business division. These particular business domains drive the
technical remedies you propose.

However, business needs do not always drive the domain alignment pro-
cess. Equally significant is the alignment of software architecture strategies with
business strategies. The chief reason is that business strategies are the empirical
driving forces in the enterprise. Therefore, technological solutions should foster
and support long- term business plans, business models, business vision and
mission, and business policies.

Moreover, from a domain alignment perspective, you’re most certainly aware
that the existing technological capabilities of your organization (such as infra-
structure, platforms, and networks) must support software architecture solu-
tions. In some cases, the existing technological capacity may not be advanced
enough to deliver your proposed design. Therefore, promote technological
modernization and transformation initiatives to improve the alignment with
your architectural vision and mission.

Delineate the Scope of Your Software Architecture Solutions
Your devotion to providing software architecture solutions to specific orga-
nizational imperatives accelerates time- to- market and ensures business and
technological continuity. Pinpointing the sources of business obstacles, devising
feasible solutions, and mitigating domain- related issues are prescriptions for
software architecture success.

 T I P By accomplishing this, you’re essentially accredited as a domain- driven software
architect who is business- driven, strategy- driven, technology- driven, solution- driven,
and leadership- driven. Leverage these capabilities to respond to business and techno-
logical necessities.

Again, aligning your technological solutions with organizational domains pro-
motes pragmatic software architecture. Therefore, it’s highly advisable to create
a solution- focused domain diagram similar to the one shown in Figure I.5. Such
a depiction will demonstrate the various opportunities for software architecture
success. Focus on your organizational domains that require attention. Leverage
your leadership talents to focus on particular business and technological prob-
lems. Finally, focus only on domain challenges that require solutions.

Bell820970_fintro.indd 34Bell820970_fintro.indd 34 10-02-2023 17:13:0810-02-2023 17:13:08

 Introduction: Software Architect, Who Are You? xxxv

Further Reading
As a domain- driven software architect whose duty is to deliver a balanced soft-
ware architecture, focus on the software architecture construction life cycles,
governing laws, and best practices covered in Chapter 6, “Software Architecture
Environment Construction” and Chapter 7, “Structural Construction of Software
Implementations in Multidimensional Environments.”

Furthermore, to foster a software architecture environment equilibrium,
employ your domain- driven design skills to meet business, strategy, technology,
solution, and leadership imperatives.

You’re Socially Driven

As a software architect, you’re mindful that social collaboration and partner-
ship with co- workers, industry alliances, customers, and stakeholders yields
compelling technological solutions. Technical solutions have never been suc-
cessful without teamwork and cooperation with subject- matter experts (SMEs).
Individuals promoting personal agendas can never deliver substantial software
architecture strategies.

In conclusion, software architects should fulfill their duties through the power
of social intelligence. Moreover, architects who snub social skills to better accom-
plish the tasks they were hired for often find that their software architecture
solutions ultimately fail to live up to organizational expectations. Simply put,

Figure I.5: Domain- Driven Software Architecture Solution Scope

Bell820970_fintro.indd 35Bell820970_fintro.indd 35 10-02-2023 17:13:0910-02-2023 17:13:09

xxxvi Introduction: Software Architect, Who Are You?

the respectful and productive interrelationship between technologists and
business leaders always demonstrates social capabilities that deliver perceptive
technological solutions.

Leverage the Contribution of Social Intelligence to Your
Software Architecture Career
In this context, social intelligence pertains to your ability to understand yourself,
your needs, and your limitations. However, it’s not only about your impera-
tives or boundaries. This self- acumen is about the capability to know others,
the aptitude to understand the environment, and the faculty to develop trustful
and sustainable partnerships in the workplace.

Have a look at the chief social intelligence tokens presented in Figure I.6.
These represent software architecture social intelligence capabilities leveraged
to drive powerful business and technology transformation solutions: agility,
adaptability, and awareness.

Awareness is a unique social talent that can be leveraged to cope with complex
social, business, and technological changes and challenges thrown your way.
The term adaptability stands for versatility— an attribute that describes a skillful
person with multiple talents for tackling organizational problems. Moreover,
agility is a personal quality of a software architect who knows how to negotiate
and compromise on technological solutions, resolve social conflicts, and collab-
orate with others in good faith.

Follow a Simple Process to Leverage Your Software
Architecture Social Intelligence Skills
Your social intelligence skills can be instrumental in establishing working- related
partnerships and alliances. To build a coalition of supporters and collaborators,
consider these simple roadmap milestones: search, connect, integrate, and cooperate.

Figure I.6: Software Architecture Social Intelligence Pillars

Bell820970_fintro.indd 36Bell820970_fintro.indd 36 10-02-2023 17:13:0910-02-2023 17:13:09

 Introduction: Software Architect, Who Are You? xxxvii

At the onset of this exertion, begin searching for candidates who understand
your language and objectives and are willing to work together to achieve soft-
ware architecture goals. While these individuals are typically found in close
vicinities, such as in your organization, others can be spotted on social media
and at technological conferences.

Once potential social partners are found, devote your time to connecting,
raising their interest, and spurring enthusiasm for contributing to the organi-
zation and industry. Then share your knowledge. Learn from others. Interface
and cooperate on strategies. And always remember: you’re not alone!

Further Reading
The topic of software architecture social intelligence skills is covered chiefly in
these two chapters:

 ■ Chapter 4, “Self- Assessment for Software Architects,” includes queries to
evaluate an individual’s communication, collaboration, and partnership
formation skills required to promote software architecture strategies and
contribute to technological transformation and innovation.

 ■ Chapter 9, “An Outline for Software Architecture Job Interview Questions,”
introduces potential interview behavioral questions, preparing candidates
to demonstrate communication, interpersonal relationship, and leadership
capabilities.

You’re Career- Driven

It’s critical to carve out a long- term plan, a strategy that reflects your talents
and capabilities. Equally important, stay attuned to your individual preferences,
such as the types of duties that you’d like to fulfill and contribute to a specific
sector and industry. However, focusing merely on your career agenda or pro-
moting individual interests would never contribute to solving organizational
problems or boosting your software architecture performance.

Remember that your preliminary duty is to collaborate with co- workers and
partners to support business objectives— a vision greater than your aspirations.
In software architecture, there is nothing nobler than teaming up with stake-
holders to promote organizational culture, influence the outcome of business
transformation, and accelerate technological modernization.

Carve Out a Software Architecture Career Strategy
A software architecture career strategy is a long- term plan that spells out
incremental steps to achieving professional milestones and goals. Each milestone

Bell820970_fintro.indd 37Bell820970_fintro.indd 37 10-02-2023 17:13:0910-02-2023 17:13:09

xxxviii Introduction: Software Architect, Who Are You?

is an important landmark, a checkpoint for evaluating your professional progress
and achievements. A career milestone can also mark a turning point, perhaps
a change in direction or adjustment to your software architecture employment
strategy.

The software architecture career strategy’s goal should not be considered
your last professional occupation. On the contrary, in a long- term career time
span, there may be multiple goals to pursue. Again, each milestone assessment
should determine the next career step to conquer.

Moreover, a software architecture career strategy ought to be realistic. And
professional development in the field must be gradual and feasible. The journey
to achieving career goals should be devoted to knowledge acquisition, self-
improvement, and delivering best- of- class software products and the architecture
of their hosting environments.

Knowledge acquisition refers to the incremental learning and practice of soft-
ware architecture disciplines during career employment. Specifically, business
and technical knowledge are acquired through years of hard work, research,
and studies. Self- improvement is related to the knowledge acquisition process.
But it is affiliated chiefly with self- motivation and the individual appetite for
improving software architecture capabilities.

 T I P Bottom line: a software architecture career strategy encompasses a gradual and
self- challenging agenda that should be reevaluated at every milestone.

Software Architecture Career Strategy Perspectives
Throughout the years, the software architecture field has grown immensely in
scope. Professionals choose to focus on different architectural practices and dis-
ciplines. Some individuals pursue the leadership and governance route, while
others focus merely on the technological aspects of software architecture roles.
As illustrated in Figure I.7, this book centers on four chief software architecture
career planning perspectives: social, technology, strategy, and leadership.

Social- Driven Career Perspective Consider this employment avenue if
you seek to promote your professional objectives by forming productive
alliances with collaborating partners and executives to provide business
and technological solutions.

Technology- Driven Career Perspective If you focus merely on your technical
skills, pursue this career path by applying software architecture capabilities
and experience to provide business and technological solutions.

Leadership- Driven Career Perspective Choose this career path if you pos-
sess management skills and seek to focus on promoting enterprise culture,

Bell820970_fintro.indd 38Bell820970_fintro.indd 38 10-02-2023 17:13:0910-02-2023 17:13:09

 Introduction: Software Architect, Who Are You? xxxix

steering technological transformation, and establishing institutional best
practices, standards, and policies.

Strategy- Driven Career Perspective This role is for you if you look to
influence enterprise business and technological evolution, foster digital
transformation, develop organization-wide road maps, and align business
strategies with software architecture strategies.

Further Reading
A well- planned career path is a roadmap for a successful software architecture
journey. But a career strategy is not the only ingredient for a flourishing occu-
pation. Knowledge acquisition and carving out a winning strategy for software
architecture interviews can indeed yield a lifetime of prosperous employment.

 ■ Chapter 3, “Career Planning for Software Architects: A Winning Strategy,”
depicts the four career- driven perspectives that can impact organizational
culture: social, technology, management, and strategy.

 ■ Chapter 8, “Preparing for a Software Architecture Interview: A Winning
Strategy,” introduces a job interview preparation model that includes two
different strategies to consider: interview defense and attack plans.

 ■ Chapter 9, “An Outline for Software Architecture Job Interview Questions,”
presents potential software architecture questions that can increase the
odds of acing an interview. They are grouped into ten different categories,
such as technical, behavioral, social, problem- solving and decision- making,
software architecture life cycle, and more.

You Trust Your Innate Talents

You undoubtedly bring a slew of talents instrumental in providing effective
software architecture solutions to organizational problems. Moreover, you know

Figure I.7: Software Architecture Career Strategy Perspectives

Bell820970_fintro.indd 39Bell820970_fintro.indd 39 10-02-2023 17:13:1010-02-2023 17:13:10

xl Introduction: Software Architect, Who Are You?

that these personal traits successfully contribute to your employment duties.
You may have wondered if these individual aptitudes were with you at birth,
or perhaps you’ve learned them on the job.

Numerous scientific studies submit that the talents you have been carrying
since birth are recognized as innate traits— skills not necessarily learned through
experience. These are affiliated with primal instincts— natural survival abilities
such as endurance, social bonding, adaptability, enthusiasm, and more. We
often employ them to endure economic hardships, social challenges, or natural
calamities.

However, there is no indication that these survival abilities cannot be learned
and honed during a lifetime, career journey, or professional training. And it
has become evident that combining innate talents with on- the- job experiences
improves the ability of software architects to deliver pragmatic and potent
solutions. For example, software architecture capabilities to construct powerful
applications and systems typically depend on professional traits such as bal-
anced decision- making, effective problem- solving, and good taste.

Employ Innate Traits to Advance Business
and Technological Missions
It is no secret that tempestuous organizational issues often challenge software
architects. Some are affiliated with the struggle to advance software architecture
roadmaps, visions, missions, and strategies. Fostering and maintaining tech-
nological leadership is another difficulty that software architects wrestle with.
Facing stiff resistance to business change or technological modernization ini-
tiatives is another predicament that must be tackled.

Employ your communication, patience, and self- discipline capacities to alle-
viate unnecessary conflicts. Respect the diversity of ideas, concepts, and solu-
tions your co- workers, managers, and partners propose. Consider their diverse
approaches to solving software development and integration problems. Most
importantly, stay tuned with the four innate talents that can enhance your
decision- making capabilities (as illustrated in Figure I.8): creativity, imagination,
software design aesthetic, and curiosity.

Avoid Self- Induced Software Architecture Blindness
Ignoring your innate skills when you need them the most promotes business
stagnation, delays technological standardization, and stalls applications and sys-
tems modernization. There is nothing riskier to business development than the
underutilization of fundamental innate skills, such as creativity and imagination.

Creativity and imagination are all about the enablement of business oppor-
tunities. They are the bedrock of every software architecture implementation

Bell820970_fintro.indd 40Bell820970_fintro.indd 40 10-02-2023 17:13:1010-02-2023 17:13:10

 Introduction: Software Architect, Who Are You? xli

that allows the business to flourish and win the competition. On the other hand,
curiosity is an essential innate gift that galvanizes research and studies and
ultimately encourages perfection. Finally, the design aesthetic is an innate skill
that entices consumers to buy goods, acquire services, and look forward to the
next line of innovative products.

 T I P Do not engage in self-induced software architecture blindness by overlooking
your innate traits.

Further Reading
Refer to Chapter 5, “Employing Innate Talents to Provide Potent Organizational
Solutions,” to learn more about the chief innate gifts that software architects
should leverage to mitigate enterprise challenges and successfully promote soft-
ware architecture agendas. This chapter also elaborates on a variety of methods
to boost software architecture creativity, imagination, good design taste and
aesthetics, and curiosity.

Figure I.8: Four Leading Innate Talents

Bell820970_fintro.indd 41Bell820970_fintro.indd 41 10-02-2023 17:13:1010-02-2023 17:13:10

Bell820970_fintro.indd 42Bell820970_fintro.indd 42 10-02-2023 17:13:1010-02-2023 17:13:10

Software Architect Capability
Model

In This Part

Chapter 1: Software Architect Capability Model

Par t

1

Bell820970_p01.indd 1Bell820970_p01.indd 1 08-02-2023 19:24:2808-02-2023 19:24:28

Bell820970_p01.indd 2Bell820970_p01.indd 2 08-02-2023 19:24:2808-02-2023 19:24:28

CHAP TE R

3

1

Many information technology (IT) and business professionals often fail to pro-
vide clear answers to these three fundamental questions: What do software
architects do? What artifacts1 do they deliver? How should architecture skills
be assessed, quantified, and vetted?

At a first glance, these sound like easy queries to address. The conventional
notion that a software architect fulfills the same duties as a building or landscape
architect is utterly incorrect. There is no parallel between these two occupations,
because they exercise different practices in distinct fields of expertise. Further-
more, they are commissioned to achieve dissimilar goals.

A software architect is required to perform a vast number of activities, typi-
cally handled by more than one professional. So, is it possible to deduce from
these tasks what architects actually do or what they deliver?

In the context of this chapter, the simplest answer we offer to such challeng-
ing questions is this:

A software architect does what a specific organization needs— nothing more!

Software Architect Capability
Model

1 Software architecture artifacts are various deliverables produced during a product develop-
ment life cycle. They describe the internal and external architecture of software. They typically
include strategy documents, technical specifications, design blueprints, data models, security
models, deployment and integration charts and diagrams, best practices and standards
documents, and more.

Bell820970_c01.indd 3 08-02-2023 18:51:41

4 Part 1 ■ Software Architect Capability Model

This assertion is deliberately too broad. This concept affirms, however, that
a software architect must respond to business and technological requirements of
a particular organization. In other words, architecture tasks and deliverables
vary from one institution to another. Moreover, while working for different lines
of business, architects seldom tackle the same challenges, nor do they always
provide solutions for similar problems.

This chapter, therefore, offers a simple architect capability model with
step- by- step instructions— assisting individuals and organizations to answer
these three important questions:

Occupation What does a software architect do?

Deliverables What should a software architect deliver to provide potent
organizational solutions?

Capabilities How should software architecture talents be vetted, assessed,
and quantified to ensure successful facilitation of enterprise projects?

Software Architect Capability Model: Benefits

The software architect capability model can be leveraged by organizations and
individuals to promote business and personal professional agendas. When
it comes to fostering enterprise business strategies and missions, the offered
architect capability model will provide limitless opportunities for business
growth. The model will become a potent platform for project improvement and
a tool for recruiting exceptional architecture talents, subsequently minimizing
enterprise expenditure.

Individuals who aspire to become software architects will find the capability
model a powerful tool for career change and professional promotion. For those
already actively pursuing the architecture practice, the model can boost their
aptitude to provide robust remedies for organizational challenges.

How Should Organizations Utilize the Software Architect
Capability Model?
Onboarding IT personnel is utterly costly. Not only does the interviewing pro-
cess consume human resources, but also candidate vetting typically puts strain
on employees whose daily schedules get disrupted. But the chief challenge is
even harder: many organizations do not utilize any methods to evaluate candi-
dates’ skill sets. Moreover, there is no benchmark or assessment methodology
in place to quantify interviewees’ knowledge of and capability to perform the
jobs they are applying for.

Furthermore, to a large extent there is no industry- wide model that organiza-
tions can leverage to ensure that a software architect talent will indeed contribute

Bell820970_c01.indd 4 08-02-2023 18:51:41

 Chapter 1 ■ Software Architect Capability Model 5

to a specific enterprise project. Put differently, there is no method in place to
map a software architect’s capability to facilitate enterprise imperatives. The
consequences of screening failures are typically dire: allocated budgets evap-
orate quickly, and returns on investment never materialize. Another concern
to contemplate is dwindling or inadequate institutional technical knowledge.
This can hinder the fulfillment of organizational strategy, vision, and mission.

To address these enterprise concerns, consider the following list. It summa-
rizes the organizational benefits when constructing software architect capa-
bility models.

Hiring process Improving the vetting mechanisms of candidates to enable
hiring the best possible talent in the marketplace

Project management Delivering powerful business solutions by assigning
adequate architecture skills to a project or any other enterprise initiative

Organizational knowledge base Maintaining a robust organizational
knowledge pool by retaining the most experienced workforce

Why Create a Personal Software Architect Capability Model?
It’s not just enterprise managers who are hiring who should figure out how
software architects ought to promote organizational business goals and strat-
egies. Architects, too, should individually be motivated to ascertain what their
personal contributions should be to an organization or an industry.

By creating a personal software architect capability model, individuals will
be able to assess their competence strengths and weaknesses in the space of
software architecture. Then they can further leverage the model’s findings to
augment their knowledge for the purpose of honing the craft of their occupation.

Another compelling reason for creating an individual architect capability
model rests upon the fact that useful organizational solutions are always deliv-
ered by software architects who are fully aware of their professional capabilities.

The list that follows, then, reflects the notion that personal goals should be
intertwined with organizational imperatives— neither could survive without the other.

Ascertaining personal knowledge gap Revealing what additional skills a
software architect would need to become more instrumental when providing
solutions to organizational problems

Preparing for job interviews Constructing a personal architect capability
model would divulge what type of technical and/or business skills are
necessary to obtain certain architecture positions

Planning for career opportunities and job promotion Assisting with
establishing a sound career path for pursuing higher- level positions in
organizations

Bell820970_c01.indd 5 08-02-2023 18:51:41

6 Part 1 ■ Software Architect Capability Model

Rudimentary Guiding Principles
While constructing the software architect capability model, as guided in this
chapter, either for personal or enterprise needs, adhere to these essential principles:

It’s all about the “what” and the “how.” As mentioned in the introduc-
tion of this chapter, an architect capability model addresses these simple
questions: What do software architects do? What do they deliver? How should
their skills be vetted and assessed?

It’s all about delivering solutions. Software architects are hired to provide
solutions to organizational problems.

It’s all about teamwork. Architects do not operate in a vacuum, nor are
they employed to pursue their personal agendas without benefiting the
enterprise’s strategies and vision. They must collaborate with business
and IT professionals to deliver potent remedies for arising organizational
challenges.

Software Architect Capability Model Creation Process
The list that follows summarizes the process for creating a software architect
capability model. For each of the items in the list, a corresponding section in
this chapter meticulously discusses the building block of every step of the way.

Step 1: Provide requirements and specifications. This section offers
insight about the necessary requirements and the role they play in driving
architecture solutions.

Step 2: Identify software architecture practices. This section elaborates
on the practices segment of the capability model. It conveys how vital
architecture occupations are for meeting business requirements and technical
specifications.

Step 3: Establish software architecture disciplines. The architecture disci-
plines portion of the capability model defines areas of knowledge, fields of
expertise, and specialties that a software architect must possess to provide
effective solutions for business and technological imperatives.

Step 4: Add software architecture deliverables. The deliverables segment
of the capability model identifies the required architecture artifacts asso-
ciated with each discipline.

Step 5: Quantify skill competencies. This part of the capability model
depicts an architect’s level of aptitude to deliver valuable artifacts for a
project or any other enterprise initiative.

Bell820970_c01.indd 6 08-02-2023 18:51:41

 Chapter 1 ■ Software Architect Capability Model 7

Requirements Drive Architecture Solutions

Deeply rooted in almost every product development life- cycle methodology,
requirements are being delivered in response to organizational imperatives.
Some requirements aim to fulfill business vision, mission, strategies, and even
marketing endeavors. Others are designed to address business challenges related
to market competition and survival.

The software design work that an architect provides has a staunch correlation
to particular problems that requirements seek to address. Therefore, architects
must meet requirements to provide tangible organizational solutions.

A software architect capability model must be driven by requirements. Without
requirements, solutions could not be provided. Lack of solutions, consequently, may
expose a business to inordinate risks.

The sections that follow, therefore, address three fundamental questions:

Events What are the chief events that trigger the issuance of requirements?

Entities What are the organizational entities chartered to deliver requirements?

Requirements What type of requirements are necessary for constructing
useful architect capability models?

Requirements Issued by Problem and Solution
Domain Entities
In almost every corporation there are two different subject- matter expert (SME)
groups, responsible for addressing internal and external organizational chal-
lenges and unforeseen events that can hamper business operations.

Problem domain Typically affiliated with the business unit, performing
a variety of tasks, such as risk analysis, business analysis, product
management, business requirements, business strategy, business architecture,
marketing, etc.

Solution domain Characteristically a part of an IT organization that employs
architects, developers, technical writers, operation personnel, cybersecurity
experts, and others

How Do the Problem and Solution Domains Collaborate?

There are innumerable business adversities that an organization must tackle—
for example, loss of revenue, increased market competition, or marketing chal-
lenges. The problem domain group (the business), therefore, must confront these
issues by pursuing appropriate actions. In many cases, the business advocates
the construction of innovative applications and the launch of new projects.

Bell820970_c01.indd 7 08-02-2023 18:51:41

8 Part 1 ■ Software Architect Capability Model

So, how do business (problem domain) and IT organization (solution domain)
collaborate in such cases to provide viable solutions? Figure 1.1 depicts an
example of cooperation between these two domains.

The problem domain carves out business requirements to address one or
more of the following issues:

Threats Internal or external threats to the business, such as security attacks
and industrial espionage of trade secrets

Motivation Motivations to promote the business, such as growing market
competition

Opportunities Business opportunities to gain market share, such as spon-
soring new products and acquiring companies

Others Other incentives

Then the solution domain responds to the business requirements by tasking
IT professionals with two chief deliverables:

 ■ Issuing technical specifications, also known as technical requirements

 ■ Driving technical specifications and tangible solutions, such as designing,
coding, testing, deployment, and integration, to address the business
problems

It must be noted that the scenario in Figure 1.1 is for demonstration purposes.
It is an example that may not apply to all organizations. The business group

Figure 1.1: Problem and Solution Domains

Bell820970_c01.indd 8 08-02-2023 18:51:42

 Chapter 1 ■ Software Architect Capability Model 9

that issues business requirements is not always the prime mover for launching
projects in the enterprise.

In other words, requirements for new projects may also be delivered by IT
personnel concerned with different issues. These may include security attacks,
performance degradation, insufficient computing capacity, or even technolog-
ical innovation initiatives.

Recall that other divisions or departments not affiliated with the problem or
solution domains may also issue requirements for a variety of projects.

Important Facts to Remember
The following list summarizes the chief takeaways of this section:

Software architects Architects are commissioned to provide software solu-
tions, and therefore they are chiefly affiliated with the solution domain
unit of an organization.

Business requirements These types of requirements are characteristically
provided by problem domain professionals— in many organizations by
the business department.

Technical requirements Also known as technical specifications, these types
of requirements are delivered by the solution domain (IT personnel).

Project requirements issued by IT There are instances when the solution
domain provides requirements for technical projects.

Other requirements Other divisions or departments within the enterprise
may also be able to issue requirements for specific projects.

Scope of requirements The architect capability model requirements could
support small- scale projects or large organizational initiatives.

Create a Software Architect Capability Model
in Five Steps

The sections that follow elaborate on the construction process of the software
architect capability model, as illustrated in Figure 1.2. The following list iden-
tifies five steps that summarize chief activities to create an efficient skill com-
petency model:

Step 1: Provide requirements and specifications. We start creating the
model from the requirements section. It includes the business requirements
and technical specifications, issued by the problem and solution domain
organizational entities, respectively.

Bell820970_c01.indd 9 08-02-2023 18:51:42

10 Part 1 ■ Software Architect Capability Model

Step 2: Identify software architecture practices. The next step is all about
establishing the software architecture practices. They are driven by business
requirements and technical specifications.

Step 3: Establish software architecture disciplines. Under each practice
we then add the corresponding disciplines.

Step 4: Add software architecture deliverables. Then architecture deliv-
erables are added to interrelated disciplines.

Step 5: Quantify skill competencies. Last, the skill competency section is
created to specify the expertise level of each architect.

Step 1: Provide Requirements and Specifications

As indicated at the beginning of the section “Requirements Drive Architecture
Deliverables,” we must start with requirements to build the software architect
capability model.

Before moving on, remember there is no need to be consumed by detailed
requirements; they should be depicted in broad strokes. They must be abbre-
viated to simplify the capability model construction process. In addition, it’s
always a good practice to abridge the capability model rather than creating a
complex and unmanageable one.

Business Requirements
As illustrated in Figure 1.3, under the problem domain section on the left side,
the business requirements statement is simple and to the point. This example
captures a business initiative that must be implemented: constructing a retire-
ment planning application. Create a similar one that applies to a specific envi-
ronment. It must be concise and easy to understand.

So, what might be behind the requirement statement shown in the figure?
Requirement managers would probably expand on the implementation details
of the retirement application. Perhaps such requirements could be laid out on
umpteen pages. They may elaborate on myriad features and capabilities, such
as user interfaces, instructions, retirement literature, retirement calculators,
menus, pages, business rules, storage, and more.

Figure 1.2: Software Architect Capability Model Creation Process

Bell820970_c01.indd 10 08-02-2023 18:51:42

 Chapter 1 ■ Software Architect Capability Model 11

Technical Specifications
Now, let’s take a look at the solution domain, apparent on the right side of
Figure 1.3. Here the technical specifications dominate the section. Again, in a
software architect capability model there is no need to specify what the technical
implementation details are. As shown, a short statement is enough.

A longer version of the technical specifications shown might depict imple-
mentation mechanisms, technologies, and requirements for the retirement
application and its commercial off- the- shelf products. Moreover, the technical
specifications might include development tools and platforms, languages, scripts,
storage facilities, application and integration patterns, deployment methods,
configuration management, and much more.

Ensure Clear Requirements
If the software architect capability model is constructed for a project, for example,
then managers are typically those who determine which talents are needed to
carry out the software design duties. But such a decision, obviously, should not
take place before understanding the requirements.

The peril would be that unclear requirements would most likely render confusing or
ambiguous software architecture solutions.

To avoid requirements misinterpretation, in many cases, business and/or
technical analysts come to aid— serving as liaisons between the organizational
problem and solution domain groups. It is the duty of analysts, therefore, to
construe the requirements, ensuring they are digestible and understood by
managers and architects.

Figure 1.3: Example of Software Architect Capability Model Requirements

Bell820970_c01.indd 11 08-02-2023 18:51:42

12 Part 1 ■ Software Architect Capability Model

But if the software architect capability model is created for personal use,
simply ensure that the requirements are short and easy to understand. By doing
so, you eliminate the need for requirements interpretation.

Step 2: Identify Software Architecture Practices

Now that the problem and solution domains section is founded along with its
issued requirements (similar to the example in Figure 1.3), it’s time to establish
the software architecture practice portion of the capability model.

The easiest way to understand what a practice is to ask random people what
do they do for living. For example, doctors undoubtedly would say that they
practice medicine. Correspondingly, attorneys certainly would claim that they
practice law. In a similar fashion, yogis who deeply understand the science of
body and mind would say delightedly that they practice yoga. And so on, and
so on. So, medicine, law, and yoga are certainly different kinds of practices.

Now it’s clear that a practice is something that one is professionally engaged
in. It’s about what a person does for a living. It’s about the duties of one’s live-
lihood. We then accordingly conclude that a software architect is an occupation
that one pursues.

At this point comes the question that should be answered when constructing
a software architect capability model: which software architecture practices are
required to meet the given requirements and technical specifications?

Obviously, the answer is always subjective, because it depends on which
software architecture practices would best provide the solutions to solve the
organizational problems. And these decisions typically vary from one institu-
tion to another.

Establish Architecture Practices
Now we’re ready to follow the example illustrated in Figure 1.4. It depicts
two architecture practices: application architecture and data architecture. The
rationale behind such a determination is based on the notion that these selected
practices will offer the best solutions for the indicated requirement: constructing
a retirement planning application.

This requirement insinuates that the scope of such a project will be limited to
an application- level implementation— not a larger scope, such as system level.
An application architect will then be the best candidate to facilitate the design
and development efforts. Additionally, as discussed in Chapter 2, “Types of
Software Architects,” application architect tasks are confined to a narrower
scope of an overall organizational solution.

Bell820970_c01.indd 12 08-02-2023 18:51:42

 Chapter 1 ■ Software Architect Capability Model 13

To elucidate the term limited scope, consider this example: a web portal that
hosts retirement planning business functionality may also include reverse
mortgage calculators and investment portfolio management for retirees. Con-
sequently, the retirement planning application may be only a small part of
enterprise financial offerings.

But even for such a narrow solution scope, an application architect practice
calls for delivering a wide range of design artifacts. These typically include (but
are not limited to) architecture blueprints— diagrams and documents depicting
different application design perspectives.

By contrast, a data architect is characteristically employed to deliver different
types of design artifacts. These may include data models, database schemas,
table layouts, and more. Depending on how the data is designed, data architects
may also insert triggers and store procedures to further manipulate the data at
runtime or on different schedules.

Remember, now we’re merely being asked to establish which software
architecture practices will facilitate the construction of the retirement planning
application. At the present time there is no need to specify the deliverables or
the architecture activities required for the capability model. These will be deter-
mined later in the sections that follow.

Step 3: Establish Software Architecture Disciplines

So far, we have identified the business requirements and technical specifica-
tions. Then software architecture practices were added to the capability model.

Figure 1.4: Architecture Practices

Bell820970_c01.indd 13 08-02-2023 18:51:42

14 Part 1 ■ Software Architect Capability Model

These practices were established in our model as application architecture and
data architecture. And now we are about to assign architecture disciplines for
each of these practices.

So, what is a discipline? Simply put, a discipline is a specialty, a field of exper-
tise, a subject area of knowledge. For example, a doctor who practices medicine
is a subject matter expert (SME) in a branch of medical knowledge. Neurology,
psychiatry, and pediatrics are only a few of the numerous fields of medical
expertise. These areas of particular knowledge reveal what kinds of services a
medical practitioner offers.

We therefore draw this analogy between medical and software architecture
disciplines to convey that every practitioner, in any industry, must possess proper
skills to provide valuable services. This assertion certainly applies to software archi-
tects. There is little doubt that an adroit architect would be proficient enough
in providing practical solutions to certain enterprise problems.

But now there is a challenge: how would we ascertain which architecture
talents, as good as they might be, can provide the best solutions for a particular
project? The answer is that there should be a vetting process to ensure that an
architect indeed masters the proper disciplines to facilitate a specific development
initiative. Simply put, when assessing an architect’s competency, architecture disci-
plines then become job prerequisites.

Apply Architecture Disciplines to Architecture Practices
Presently we are back at the same key question raised at the onset of this chapter:
what do software architects do? The answer argued that not only may archi-
tects possess different skill sets, but even projects require different architecture
talents. Therefore, it was impossible to provide a conclusive response. But now
we’ve arrived at a point where we can revise this fundamental query. So, let’s
ask a more specific one: in what fields do architects practice, and what disciplines
do they master? The sections that follow not only answer this question but also
explain how to associate architecture disciplines with architecture practices.

To figure that out, let’s follow the same logic demonstrated in the example in
Figure 1.5. As is apparent, the business requirements and technical specifications
defined earlier were driving the establishment of the application architecture
and data architecture practices. Next, we’re about to apply disciplines to these
specific practices.

Applying Disciplines to the Application Architecture Practice

Even with the narrow solution scope of an application an architect is commissioned
to deliver design artifacts prior to the development process. On one hand, an
architect must fulfill business requirements and technical specifications and,
on the other, adhere to design best practices. Generally, a common architect

Bell820970_c01.indd 14 08-02-2023 18:51:43

 Chapter 1 ■ Software Architect Capability Model 15

responsibility is to break down an application into modules, components, and
services. Another duty that many architects provide is to technically mentor
and guide development teams.

But in the context of the business requirements presented, the architect ought
to focus only on the task at hand: constructing a retirement planning applica-
tion. This example shows the three disciplines that are applied to the specific
application architecture practice: application modeling, application integration,
and technical facilitation.

You may wonder why the project manager opted for these particular architecture
disciplines and not others. Keep in mind that every organization’s software
development life cycle calls for different disciplines when building products.
Furthermore, it depends on how each production environment is laid out and
what the integration requirements are for the specific organization.

Remember, disciplines typically vary in each organization even for the same appli-
cation architecture practice.

The following list summarizes the disciplines shown in Figure 1.5 for the
application architecture practice:

Figure 1.5: Architecture Disciplines

Bell820970_c01.indd 15 08-02-2023 18:51:43

16 Part 1 ■ Software Architect Capability Model

Application modeling This is the discipline of delivering design artifacts,
visually or textually, specifying application structure, modules, compo-
nents, objects, and services using an artificial modeling language.

Application integration This is the art of forming logical and physical rela-
tionships between application components, such as services and modules,
to execute business functionality and technical processes.

Technical facilitation Also known as technical management, this is the
duty of mentoring and guiding software development teams to deliver
tangible solutions, such as applications, components, and services to be
deployed to production.

Applying Disciplines for the Data Architecture Practice

In contrast, the data architecture practice is affiliated with different types of
expertise— namely, architecture disciplines. These skills are leveraged to tackle
a wide range of application storage requirements. Moreover, putting applica-
tion transaction information into repositories is a common industry standard.

But disciplines formulated for a data architecture practice may vary from one
organization to another. The same goes for projects. Not all enterprise projects
require the same data architecture expertise. Therefore, when defining disci-
plines for a data architecture practice, stay attuned to the requirements. By the
same token, follow specific organizational technical standards before adding
data architecture talents to a development initiative. These standards may call
for different data architecture skills.

Find in Figure 1.5 the three disciplines related to the data architecture prac-
tice. The areas of expertise in this example are required to handle the storage
business requirements and technical specifications for the retirement planning
application. Consider the following data architecture disciplines:

Data modeling Using their modeling skills, data architects deliver a diver-
sity of design artifacts, such as conceptual, logical, and physical schemas.
These blueprints will facilitate the construction of the retirement planning
database.

Data aggregation This architecture discipline facilitates the collection of
retirement rules and regulation data from distributed data sources across
the organization. The retirement planning application then will be able to
leverage this information for its retirement calculators.

Data management Once the retiree’s data is stored in the application repos-
itory, the data management discipline becomes handy to establish a data
recovery strategy, devise backup mechanisms, and even maintain data
integrity.

Bell820970_c01.indd 16 08-02-2023 18:51:43

 Chapter 1 ■ Software Architect Capability Model 17

Step 4: Add Software Architecture Deliverables

Time to work on the next piece of the puzzle: the deliverables section of the
software architect capability model.

There are countless deliverables expected from each software architect during
the development life cycle. It’s also widely known that deliverables are expected
not only at the conclusion of any enterprise initiative or project. An architect
may also be chartered to provide design artifacts at a project’s milestones.

So, how should these deliverables be manifested in our software architect
capability model? The most logical placement for deliverables would be under
the various architecture disciplines defined so far.

About Software Architecture Deliverables
But what are software architecture deliverables? Deliverables are the work of
every practitioner in any field of expertise. In other words:

Deliverables are renderings of software architecture discipline activities, devised to
foster organizational solutions and facilitate development goals.

For example, a software architect who is adept in the application modeling
discipline would more likely be required to produce conceptual, logical, and
physical design models. Similarly, a security architect who is skillful in the
security modeling discipline may be asked to deliver best practices for imple-
menting security policies.

Then who would be on the deliverables’ receiving end? Remember that a
deliverable must have a target audience and must facilitate stakeholders who
participate in the product development life cycle. These individuals may be man-
agers, developers, engineers, database architects, operation personnel, and more.

So, what type of deliverables should we expect from software architects? As
anticipated, the answers to these questions are subjective because there is no
industry- wide standard to support every single organization on the market.
Companies typically develop their own sets of architecture deliverables, derived
from business models, business requirements, technical imperatives, and other
necessities.

Moreover, there are recognized bodies of knowledge, organizations, and
publications that offer architecture life- cycle guidance and frameworks,2 which
also recommend and classify deliverables for projects. But in the context of

2 For architecture life- cycle guidance and framework examples, refer to the Open Group
Architecture Framework (TOGAF) at www.opengroup.org/togaf and to the Architecture
Development Method (ADM) at www.opengroup.org/public/arch/p2/p2_
intro.htm.

Bell820970_c01.indd 17 08-02-2023 18:51:43

18 Part 1 ■ Software Architect Capability Model

constructing a software architect capability model, it is crucial to adhere to
deliverables requirements devised by specific organizational best practices.

If a capability model is developed for personal use, here is some all- purpose
guidance for adding deliverables to the software architect capability model:

Leverage experience. Remember what the architecture deliverables were
for previous projects.

Conduct research. If the personal experience is not rich enough, read arti-
cles, books, and case studies.

Consult professionals. Ask co- workers, software architects, managers,
and analysts.

Add the Deliverables Section
Let’s take a look at the example in Figure 1.6 to understand how the software
architecture deliverables section is linked to the requirements, practices, and,
finally, disciplines. To accomplish this, we simply start from the top:

1. The requirements section for the retirement planning application leads
down the path to the architecture practices.

2. From there, the track downward meets the architecture disciplines section.

3. Finally, as is apparent, we find three deliverables for each of these
disciplines.

The list that follows elaborates on the application architect deliverables affil-
iated with their three corresponding disciplines, as illustrated in Figure 1.6:

1. Application Modeling Discipline

a. Conceptual Architecture Model. This is typically an application decom-
position diagram depicting components and services and their
relationships.

b. Logical Architecture Model. An architect delivers a presentation of
message flows, interfaces, and dependencies of application components,
modules, and services.

c. Physical Architecture Model. This pertains to diagrams illustrating
the application’s component deployment scheme in production, such
as servers, network configuration, and routers.

2. Application Integration Discipline

a. Message Flow Diagrams. These are illustrations depicting interactions
and message exchanges between the application and other distributed
entities in a production environment. The entities may be services,
middleware, and remote data sources.

Bell820970_c01.indd 18 08-02-2023 18:51:43

 Chapter 1 ■ Software Architect Capability Model 19

b. Network Topology Maps. These pertain to physical or logical place-
ment of network components in a deployment environment. The logical
presentation shows network connections between nodes, each of which
typically represents a device. The physical topology map illustrates
links between actual network devices, such as switches, routers, hubs,
and modems.

c. Application Dependency Model. When integrating an application
with other entities in production, a dependency model3 reveals which
peer applications, services, servers, and network resources it depends
on. This model is also used to assess the complexity of the architecture
of an application landscape.

Figure 1.6: Software Architecture Deliverables Section

3 Software architects’ common practice is to employ application discovery and dependency
mapping (ADDM) tools to map dependencies between applications and production environ-
ment entities, such as distributed software implementations and infrastructure.

Bell820970_c01.indd 19 08-02-2023 18:51:44

20 Part 1 ■ Software Architect Capability Model

3. Technical Facilitation Discipline

a. Technical Training. This provides training and guidance for a wide
array of technologies utilized during the development life cycle.

b. Best Practices and Policies. Every design, development, deployment,
and maintenance in production efforts requires organizational best
practices and policies to guide professionals with the implementation
and application delivery process.

c. Performance and Capacity Model. Adhering to the nonfunctional4
requirements (NFR), the architect delivers a performance document
specifying application response- time thresholds.5 The capacity portion
of this model indicates the required computing resource consumption6
for the application.

Similarly, the corresponding data architecture’s discipline deliverables, as
shown in Figure 1.6, are as follows:

1. Data Modeling Discipline

a. Conceptual Data Schema. The conceptual data schema represents data
concepts and their associations to each other. These concepts represent
chief application domains,7 such as user, retiree, retirement plan, sav-
ings account, and retirement investment portfolio. Such abstractions
will serve as building blocks for data table structures and outlines.

b. Logical Data Schema. This artifact indicates the structure of informa-
tion to be persisted in a data storage. The term structure pertains to
database tables and columns, primary and foreign keys, indices, trig-
gers, store procedures, database objects, and more.

c. Physical Data Schema. This deliverable depicts the physical aspects
that enable data persistence. It elaborates on how the data should be
presented to the user and stored in databases. In addition, this physical
perspective provides guidance for database deployment and configura-
tion, data integration, ensuring computer capacity for data storage,
and more.

4 Nonfunctional requirements are specifications that describe the operational attributes and
behavior of an application or system. These characteristics may include requirements such as
maintainability, scalability, reusability, durability, data integrity, and fault tolerance.
5 Performance thresholds are the maximum acceptable variances for specific metrics you can
use to assess an individual project or group of projects, such as a portfolio. They are the
upper- limit parameter values you can set for performance, earned value, and index
calculations.
6 Computing resource consumption refers to application and system utilization of deployment
environment resources, such as memory, disk space, network bandwidth, and capacity of data.
7 Application domains chiefly pertain to business applications and services.

Bell820970_c01.indd 20 08-02-2023 18:51:44

 Chapter 1 ■ Software Architect Capability Model 21

2. Data Aggregation Discipline

a. Data Source Discovery. This delivery specifies a list of data sources,
third- party information providers, and repositories that the application
utilizes to provide retirement planning services.

b. Data Collection Model. This delivery specifies the method and when
the data should be collected. The collection method pertains to network
protocols, security, and interface mechanisms to ensure data integrity
and acceptable transmission rates.

c. Data Interoperability Model. The application architect is also chartered
to ensure compatibility between the data sets collected from different
data sources. This model typically specifies mechanisms for data format
conversions, data filtering, and data cleansing to standardize data
structures and models during transactions and message exchange.

3. Data Management Discipline

a. Data Monitoring. This discipline is about employing monitoring tools
to observe information exchange between the application and its envi-
ronment entities, such as data repositories, consuming applications,
and users. The chief reasons are to detect performance and data integrity
issues and breaches to data security.

b. Data Security Model. This deliverable identifies the security controls8
that should be established to maintain data integrity and prevent inter-
nal or external attacks.

c. Data Backup and Recovery Model. The application architect is respon-
sible for guaranteeing maximum data availability. Simply put, this
model elaborates on the mechanisms to replicate, store, archive, and
recover data when needed.

Step 5: Quantify Skill Competencies

The last portion of the architect capability model is the skill competency section.
The intention here is to evaluate the capability of an architect to deliver effectual
solutions by delivering pragmatic artifacts. Put differently, this section proposes
to specify the required expertise level of architects before they are recruited for
any development initiative.

8 Security control is defined by the National Institute of Standards and Technology (NIST) as “A
safeguard or countermeasure prescribed for an information system or an organization designed
to protect the confidentiality, integrity, and availability of its information and to meet a set
of defined security requirements” (csrc.nist.gov/glossary/term/security_
control).

Bell820970_c01.indd 21 08-02-2023 18:51:44

22 Part 1 ■ Software Architect Capability Model

In some cases, however, this skill evaluation method could also take place
during an ongoing architecture engagement. The aim is to weigh in on the
performance level of architects to discover the quality of their provided solutions.

This skill measurement exercise may be pursued because of these three chief
reasons:

Self- assessment If the software architect capability model is constructed
for personal use, the skill competency section will reveal the aptitude level
of an individual to deliver effective solutions for certain projects or even
wider development initiatives.

Architecture skill vetting The skill competency section will assist an organi-
zation in hiring the best possible software architecture talents for a project
or any other broad scope initiative.

Assessing quality of solutions Architecture solutions should always be
evaluated during and after projects or organizational initiatives. There-
fore, we assert that architects’ performance is directly tied to the quality
of their deliverables.

Quantifying Architecture Skills
As illustrated in Figure 1.7, the capability of architects to provide effective
deliverables can be measured by grading their competency on a scale from 0
to 100. Moreover, this talent scoring method can provide better architecture
fitness assessment to understand the architects’ ability to accomplish tasks for
the corresponding architecture disciplines.

Measuring the Application Architect Skill Levels

Consider Table 1.1. It’s created for identifying the skill levels of the application
architect in the context of the business requirements and technical specifica-
tions. This table corresponds to the illustration in Figure 1.7 for the purpose of
simplifying the information. The table demonstrates the correlation between
the architecture disciplines, deliverables, and competency levels.

Table 1.1: Application Architect Competency Example

DISCIPLINE DELIVERABLE COMPETENCY LEVEL %

Application Modeling Conceptual Architecture
Model

100

Logical Architecture Model 100

Physical Architecture Model 100

Bell820970_c01.indd 22 08-02-2023 18:51:44

 Chapter 1 ■ Software Architect Capability Model 23

As shown in the table, the application modeling discipline calls for three
deliverables: conceptual architecture model, logical architecture model, and
physical architecture model. Note that the competency level column indicates
that the skill level required for an architect to deliver these artifacts is 100 per-
cent. This measurement could also be used for assessing the competency level
of an architect to provide solutions during an ongoing project or any organi-
zational initiative.

Figure 1.7: Architect Skill Competency

DISCIPLINE DELIVERABLE COMPETENCY LEVEL %

Application Integration Message Flow Diagrams 100

Network Topology Maps 70

Application Dependency
Model

85

Technical Facilitation Technical Training 90

Best Practices and Policies 100

Performance and Capacity
Model

80

Bell820970_c01.indd 23 08-02-2023 18:51:44

24 Part 1 ■ Software Architect Capability Model

Furthermore, the competency levels for the application integration discipline
show different scale levels for each of the corresponding deliverables, and simi-
larly different skill competency measurements are indicated for the deliverables
affiliated with the technical facilitation discipline.

Measuring Data Architect Skill Levels

In the same fashion, consider Table 1.2. It’s provided here for depicting the skill
level of the data architect related to the requirements and specifications. This
table corresponds to the illustration in Figure 1.7. Moreover, the table demon-
strates the association between the architecture disciplines, deliverables, and
competency levels.

Consider, for example, the competency levels indicated for the data modeling
discipline’s deliverables:

 ■ Conceptual data schema: 100 percent

 ■ Logical data schema: 100 percent

 ■ Physical data schema: 100 percent

This architect’s professional capability assessment method can also be applied
during an ongoing project.

Moreover, the same goes for the data aggregation discipline— note the com-
petency levels indicated for the corresponding deliverables— and for the deliv-
erables related to the data management discipline.

Table 1.2: Data Architect Competency Example

DISCIPLINE DELIVERABLE COMPETENCY LEVEL %

Data Modeling Conceptual Data Schema 100

Logical Data Schema 100

Physical Data Shema 100

Data Aggregation Data Source Discovery 100

Data Collection Model 70

Data Interoperability Model 85

Data Management Data Monitoring 90

Data Security Model 100

Data Backup and Recovery
Model

80

Bell820970_c01.indd 24 08-02-2023 18:51:44

 Chapter 1 ■ Software Architect Capability Model 25

Skill Competency Patterns for Architects
The discussion about being able to assess or quantify an architect’s capability
to provide solutions leads to the skill competency pattern idea discussed in this
section. In this context, therefore, the term pattern pertains to a graphical repre-
sentation of an architect’s ability to solve organizational challenges.

The pattern concept is not so much about the quantification of skill compe-
tency levels. It’s about visual representations of architects’ capabilities to deliver
artifacts for projects. Such visual representations are typically easier to compare
to each other and as a result discover gaps in knowledge and aptitude. Then
later, you can draw quick conclusions about collective or individual efforts to
provide solutions.

To understand better what a competency pattern is, let’s take a look at the
example in Figure 1.8. For the sake of simplicity, only the application architecture
practice and its related disciplines, deliverables, and skill competency scale are
presented.

Figure 1.8: Creating a Skill Competency Pattern

Bell820970_c01.indd 25 08-02-2023 18:51:45

26 Part 1 ■ Software Architect Capability Model

As is apparent, the pattern is shown in the competency section on the bottom
of this illustration. This pattern obviously signifies the architect’s capability to
deliver several artifacts for three software architecture disciplines: application
modeling, application integration, and technical facilitation. Note that the dis-
cussed pattern still adheres to the skill competency measurements. The only
difference is that the bars were united to show area patterns.

The sections that follow elaborate on the different ways individuals and orga-
nizations can utilize the competency pattern to fulfill different goals.

How Can Organizations Utilize the Skill Competency Pattern?

One of the most compelling reasons for utilizing the skill competency pattern
is when architecture solutions are required for a project. Such an initiative, for
example, may call for migrating legacy applications to the cloud. Apparently, the
scope of such work may require a couple of architecture talents. The example in
Figure 1.9 depicts the skill competency pattern of these architects: application
architect 1 and application architect 2.

Just by visually assessing the architects’ combined skill levels, it may become
clear that their collective architecture capabilities might not meet the cloud
migration project requirements. The skill competency pattern then can assist

Figure 1.9: Comparing Architecture Skill Competencies

Bell820970_c01.indd 26 08-02-2023 18:51:45

 Chapter 1 ■ Software Architect Capability Model 27

management to visually assess their combined architect capability to provide
solutions. Proper measures should then be taken if concerns arise. Filling in the
knowledge gap by training or adding more architecture talents to the project will
certainly boost the capability of the team to deliver effective artifacts.

The skill competency pattern, therefore, is a valuable tool for organizations
to ascertain the capacity of architects to deliver effective solutions. Here is the
summary of the benefits:

Discovering individual contribution Assessing and quantifying the capacity
of an architect to contribute to a common enterprise effort

Comparing skill levels Comparing the competency levels of architects
assigned to the same project

Revealing the collective competency gap Discovering gaps in the knowledge
and capabilities of architects who participate in the same project

How an Individual Can Utilize the Skill Competency Pattern

When it comes to an individual’s usage of the skill competency pattern, the
promise of benefiting from it is limitless. Here are several examples:

The competency level of an ambitious and hard- working architect character-
istically increases as time goes by. This proficiency progress can be reflected in
the skill competency pattern created at each career milestone. In other words,
an architect would be able to monitor the personal competency level progress,
draw conclusions, and take proper measures to address career challenges when
needed. The individual pattern would then become a personal visual represen-
tation tool to trace professional accomplishments.

An individual skill competency pattern can also be compared to other patterns
that belong to co- worker architects, for example, who perform similar duties. If
after such comparison gaps in skill levels are found, individuals would likely
be motivated to augment their knowledge.

Moreover, it’s possible to create a skill competency pattern for a job require-
ment if there is intimate knowledge available about the required skills. In this
case, an individual skill competency pattern could be compared to the job com-
petency pattern to reveal if there is a good match.

Consider these benefits of the individual skill competency pattern:

Tracing career progress By comparing personal skill competency patterns
assessed at different career checkpoints, an individual can monitor personal
growth in architecture capabilities.

Industry comparisons Individuals can assess architecture skill capabilities
against common market job requirements.

Preparing for interviews It’s never a bad idea to show up for an interview
with an individual skill competency pattern to demonstrate strengths in
particular disciplines.

Bell820970_c01.indd 27 08-02-2023 18:51:45

28 Part 1 ■ Software Architect Capability Model

Interview Questions

Interviewers will always ask questions about the role of an architect in the
enterprise. These types of questions are never taken off the table. Prepare for
the hardest queries and hope for the best outcomes. Therefore, the interview
questions presented in the list that follows should be rigorously studied and
researched until satisfactory answers are obtained. Furthermore, before an inter-
view, use all means to acquire vast knowledge affiliated with seven fundamental
questions about the architecture life cycle9 and deliverables:

 ■ Why do business requirements and technical specifications drive architecture
deliverables?

 ■ What is an architecture practice?

 ■ What is an architecture discipline?

 ■ How are architecture disciplines correlated to architecture practices?

 ■ What are architecture deliverables?

 ■ How should architecture deliverables be associated with architecture
disciplines?

 ■ How can architecture skills be assessed?

It’s common to struggle with strategic questions, such as architecture roles
and solutions. Therefore, remember to provide examples with each answer. Do
not confuse an interviewer with complex or blurred definitions. State the facts
clearly and keep the answers as short as possible.

And again— be prepared!

9 The architecture life cycle depicts the activities and goals that software architects ought to
fulfill during the software development life cycle. Refer to the software architecture life- cycle
questions in Chapter 9, “An Outline for Software Architecture Job Interview Questions.”

Bell820970_c01.indd 28 08-02-2023 18:51:45

Software Architecture Career
Planning

In This Part

Chapter 2: Types of Software Architects
Chapter 3: Career Planning for Software Architects: A Winning Strategy
Chapter 4: Self- Assessment for Software Architects

Par t

2

Bell820970_p02.indd 29Bell820970_p02.indd 29 08-02-2023 19:24:4308-02-2023 19:24:43

Bell820970_p02.indd 30Bell820970_p02.indd 30 08-02-2023 19:24:4308-02-2023 19:24:43

CHAP TE R

31

2

It’s not unusual to run across software architects who collectively possess
diverse capabilities in different fields of expertise. The gain in their technolog-
ical knowledge is attributed to the paths they chose to ultimately pursue before
their software architecture careers. Some emerged from software development.
For others, software architecture has been their all- time goal while serving years
as software engineers in operations. And various individuals have been main-
taining applications and systems in production since immediately after college.

Because of these diverse experiences, organizations often establish classes
of architects, ranking them based on their potential contributions and talents.
It’s not a secret that this categorization is frequently administrative, with the
purpose of determining payroll ranks, compensation, and benefits. The common
industry practice of establishing levels of architecture roles within an enterprise,
nevertheless, must go far beyond bureaucratic purposes. Astute executives
understand this notion. Their chief purpose is to align software architecture
talents with organizational strategy and vision. This can promote business
growth and goals immensely.

In contrast to the common industry practice that advocates ranking archi-
tects, the software architect capability model (discussed in Chapter 1, “Software
Architect Capability Model”) proposes to match architecture talents with business
strategies, project requirements, and other technological needs. Furthermore, the

Types of Software Architects

Bell820970_c02.indd 31Bell820970_c02.indd 31 10-02-2023 17:14:0610-02-2023 17:14:06

32 Part 2 ■ Software Architecture Career Planning

architect capability model answers three fundamental questions about software
architecture practices and disciplines:

 ■ What do software architects do?

 ■ What artifacts do they deliver?

 ■ How should architecture skills be assessed, quantified, and vetted?

Business Needs for Technological Solutions

The effort to categorize architecture roles in the enterprise emanates from business
imperatives. Put differently, the business typically drives the need for technolog-
ical solutions. Software architects, therefore, should provide adequate remedies
to address organizational problems.

So, what are these business needs that must be tackled by software architects?
Figure 2.1 answers this question. It illustrates the three levels of business imper-
atives that require technological solutions: strategy, mediation, and implementation.

Business Needs for Software Architecture:
Strategic Collaboration
Every business must recognize that it would be impossible to apply effective
remedies to its problems without proper collaboration with the technological
arm of the organization. Neither entity could exist without the other. For that
reason, the coordination between business initiatives and software architecture

Figure 2.1: Business Imperatives

Bell820970_c02.indd 32Bell820970_c02.indd 32 10-02-2023 17:14:0710-02-2023 17:14:07

 Chapter 2 ■ Types of Software Architects 33

projects is vital. Consequently, only strategic collaboration between the two
entities can yield business progress and advance technological development.

 CO N C E P T The rule of thumb suggests that an enterprise architecture strategy
must be aligned with business strategy. And the former should propel technological
undertaking across the organization, such as application and system development.

How Does Software Architecture Respond to Business Needs?

Figure 2.1 illustrates the idea that business imperatives require strategic soft-
ware architecture cooperation. So how can organizational software architecture
practices promote business strategies?

Alignment of strategies: Align software architecture strategies with business
strategies, vision, and mission. To be able to provide technological lead-
ership in an organization, architecture strategic efforts must be aligned
with business processes and then translated into technical capabilities.

Frameworks: Foster compliance with software architecture frameworks. The
transformation of business processes into software implementations also
requires the adoption of software architecture frameworks to promote
development policies, best practices, and standards.

Integration: Oversee integration of organizational assets in production
environments. Once the software implementation is successfully com-
pleted, architecture efforts should focus on integration of applications
and systems in production.

Business Needs for Software Architecture:
Technological Mediation
Business and software architecture strategic goals typically fail without a technical
mediator. The term technical mediator refers to a “middleman” who on one hand
understands business objectives and, on the other, is capable of promoting soft-
ware architecture best practices, policies, and standards.

Furthermore, the technical mediator is commissioned to perform additional
duties that are no less important. These may include translating business require-
ments into technical specifications, assisting with integration of applications
and systems, and providing software design blueprints.

 CO N C E P T Business and software architecture strategic goals call for technical
mediation to formulate tangible solutions that are ultimately deployed to production.

Bell820970_c02.indd 33Bell820970_c02.indd 33 10-02-2023 17:14:0710-02-2023 17:14:07

34 Part 2 ■ Software Architecture Career Planning

How Could Technological Mediation Efforts Be Utilized?

As stated, business and software architecture imperatives typically utilize
technical mediation services to facilitate the development and integration of
business products to production. So, what are the actual duties of such a technical
mediator? Take a look again at Figure 2.1 that illustrates three common industry
mediation responsibilities frequently performed to promote business and tech-
nological goals.

Liaison Tightens the relationship between business leads and software
architects to facilitate technological solutions

Technical management Offers technical guidance and supervision for soft-
ware development activities

Concept design Provides software architecture blueprints to drive tech-
nological solutions

Business Needs for Software Architecture:
Technological Implementation
The development of applications and systems tends to consume enormous
budgets and human resources. Therefore, there is nothing more anticipated by
the business organization than to obtain production- ready software products.
This is the ultimate goal of every business unit that sponsors technological
implementations. Moreover, without tangible and timely delivered applications
and/or systems, business products cannot be offered to potential consumers.
And without customers, organizations are doomed to fail.

How Does the Implementation of Software Products Meet Business Needs?

The business need for technological implementations is typically carried out
by project managers, team leads, and software developers who are attuned to
business requirements. As illustrated in Figure 2.1, the list that follows reiterates
these chief software construction activities:

Development The software development life cycle (SDLC) is mostly driven by
software architecture artifacts that propel the creation of business products.

Componentization The decomposition of business functionalities is a
software design best practice that renders manageable and maintainable
components and services to avoid tightly coupled implementations.

Testing Functional and nonfunctional testing is a common industry practice
to ensure operational continuity of applications and systems in production.

Bell820970_c02.indd 34Bell820970_c02.indd 34 10-02-2023 17:14:0710-02-2023 17:14:07

 Chapter 2 ■ Types of Software Architects 35

Organizational Leading Software Architect Levels

In the last few decades, a considerable number of technical occupations have
sprung up from the general practice of software architecture. Application
architecture, enterprise architecture, data architecture, and solution architecture,
for example, are branches of software architecture.

 CO N C E P T In other words, software architecture is a principal term that encom-
passes software design duties during the SDLC.

Various organizations have established corresponding software architecture
roles, commissioned to carry out these software design obligations. By way of
illustration, an application architect is able to handle application architecture
duties. In the same fashion, an enterprise architect would certainly be able to
provide enterprise architecture strategies and integration solutions. Again, they
are all considered software architects who provide solutions to business prob-
lems in their unique areas of expertise.

But merely founding organizational software architecture roles would not
entirely meet the mission to address business problems. Namely, the pursuit of
technological solutions to tackle business imperatives would require a diver-
sity of software architects who possess different competency levels of software
design. They must also collaborate to provide effective solutions. Their software
architecture capabilities then should be mapped to the business and techno-
logical needs that are discussed in the previous section: strategic, mediation,
and implementation.

So how do organizations rank the software architecture talents to meet these
particular business and technological needs? The sections that follow discuss
the levels and roles of software architects required to provide solutions predi-
cated upon their capabilities.

Ranking Leading Software Architects
Enterprise architects, solution architects, and application architects are the most
common leading architecture roles that organizations hire. These combined
architectural talents are referred to as “the first line of technological defense,”
since they are employed to provide effective solutions for existing business
challenges. Clearly, their chief charter is not only to promote and shield the
business but also to lessen enterprise operation vulnerabilities when it comes
to ill- designed applications and systems.

As illustrated in Figure 2.2, each of these three leading roles is ranked at a
different organizational architect level.

Bell820970_c02.indd 35Bell820970_c02.indd 35 10-02-2023 17:14:0710-02-2023 17:14:07

36 Part 2 ■ Software Architecture Career Planning

Architect role level I: Enterprise architect Commissioned to provide tech-
nological strategies that adhere to business vision and mission

Architect role level II: Solution architect Employed to help promote
enterprise architecture strategies and provide software design blueprints
to address business problems

Architect role level III: Application architect Responsible for application-
level design and development activities

As is apparent in Figure 2.2 this illustration, each of these leading software
architect levels is assigned to satisfy one of the three business and technological
needs: strategic, mediation, and implementation.

Consider Table 2.1. It summarizes in a tabular format the ideas that are illus-
trated in Figure 2.2. This table can be used for architecture role ranking in the
enterprise to present a simple outline of responsibilities that correspond to each
software architect type. These three architect levels are discussed in detail in
the sections that follow.

Collaboration Hierarchy of Leading Software Architects
There is always a hierarchical layer structure when it comes to the collaboration
between the leading software architecture roles in an organization. This concept
is illustrated in Figure 2.3.

Enterprise architecture layer Enterprise architects typically devise techno-
logical strategies, promote software architecture frameworks, and devise

Table 2.1: Levels of Organizational Leading Software Architects and Their Responsibilities

ARCHITECT
LEVEL

ARCHITECTURE
TYPE ROLE

CHIEF
RESPONSIBILITIES SATISFYING

I Enterprise
architect

Strategic Strategy alignment Business
requirements

Frameworks

Integration

II Solution
architect

Mediation Liaison Business
requirements
and technical
specifications

Technical
management

Concept design

III Application
architect

Implementation Development Business
requirements

Componentization

Testing

Bell820970_c02.indd 36Bell820970_c02.indd 36 10-02-2023 17:14:0710-02-2023 17:14:07

 Chapter 2 ■ Types of Software Architects 37

integration schemes. Their duties most certainly affect solution architecture
and application architecture duties.

Solution architecture layer As is apparent, solution architects are located on
the next tier in the collaboration hierarchy. Their charter is not only about
promoting enterprise architecture strategies but also about facilitating the
application development process.

Application architecture layer Application architects, for one thing, are
obliged to comply with enterprise architecture strategies and also to adhere
to the solution architects’ design blueprints.

Figure 2.2: Leading Software Architect Levels

Figure 2.3: Collaboration Hierarchy of Leading Software Architects

Bell820970_c02.indd 37Bell820970_c02.indd 37 10-02-2023 17:14:0710-02-2023 17:14:07

38 Part 2 ■ Software Architecture Career Planning

Level I: Enterprise Architect Responsibilities
As one of the chief key players in an organization, an enterprise architect pro-
vides holistic solutions to meet demanding business needs. To accomplish this,
the enterprise architect must possess broad technological horizons and superb
social skills. This role also calls for effective communication capabilities to obtain
firm-wide consensus for mitigating pressing business issues. Often strategic
challenges, these organizational hurdles must be addressed in a timely manner
to maintain the business’s competitive edge. Technological modernization, tech-
nological standardization, software design best practices and standards, and
even expenditure reduction are examples of issues that an enterprise architect
must often grapple with.

Enterprise Architect Summary of Responsibilities

Consider the enterprise architect’s responsibilities in the examples shown here:

Alignment of business and information technology (IT) strategies Trans-
mutes business vision, mission, processes, and requirements into enterprise
architecture strategies to render tangible software executables.

Software architecture frameworks Embraces common industry software
architecture frameworks to establish enterprise- wide best practices, stan-
dards, and policies.

Technological standardization Promotes technological standardization to
reduce organizational cost of ownership.

Software reuse Advocates application and system reuse across multiple
lines of business to accelerate time to market.

Architecture repeatable solutions Formulates enterprise repeatable solutions
for common business challenges by employing proper architecture styles.

Problem abstraction and generalization Abstracts and generalizes fine-
grained business problems to drive holistic software architecture remedies.

Communication Encourages communication across the enterprise to estab-
lish technological common language and architecture lexicon.

Technological modernization Promotes software architecture concepts to
organizational key players to garner support for technological modernization.

End-state architecture Devises organizational end state software architecture
that architects and developers must adhere to.

Technological roadmap Establishes technological roadmaps with milestones
and goals for development and integration of applications and systems.

Bell820970_c02.indd 38Bell820970_c02.indd 38 10-02-2023 17:14:0710-02-2023 17:14:07

 Chapter 2 ■ Types of Software Architects 39

Engagement of solution architects Engages solution architects to provide
tangible and detailed implementations to meet business requirements
(the next section elaborates on the responsibilities of solution architects).

Integration In charge of integration of organizational concepts and ideas.
Responsible for integration of technological solutions. Accountable for
conceptual, logical, and physical integration of applications and systems
in production.

Architectural styles Demonstrates superb leadership and decision- making
capabilities by devising enterprise architecture styles.

Enterprise Architect Responsibility Table

Table 2.2 shows the three chief aspects of the enterprise architecture roles: col-
laboration, benefits, and beneficiaries. This implies that enterprise architects do
not operate in a vacuum. They must form partnerships with business and IT
representatives and ought to understand the benefits of their contribution to
their organization and which lines of business or technological groups would
benefit the most from their tasks.

Table 2.2: Enterprise Architect Responsibility Table

RESPONSIBILITY
COLLABORATES
WITH CONTRIBUTES TO

CHIEF
ORGANIZATION
BENEFICIARIES

Alignment of
business and IT
strategies

Business
representatives,
business architects

Focus on business
and IT agendas and
goals

Business and IT

Software
architecture
frameworks

Project managers,
software architects,
developers

Software
development and
integration best
practices, standards,
and policies

SDLC management
and teams

Technological
standardization

Executives,
managers, software
architects

Time to market,
expenditure
reduction

Business and IT

Software reuse Software architects
and developers

Time to market,
expenditure
reduction

Business and IT

Architecture
repeatable
solutions

Software architects Software reuse,
time to market,
budget
optimization, return
on investment

Business and IT

Continues

Bell820970_c02.indd 39Bell820970_c02.indd 39 10-02-2023 17:14:0810-02-2023 17:14:08

40 Part 2 ■ Software Architecture Career Planning

Level II: Solution Architect Responsibilities
As illustrated in Figure 2.3, a solution architect (depicted in the middle layer)
fulfills the software architecture mediation role in the enterprise. This occupa-
tion is all about brokering, aligning, organizing, facilitating, coordinating, and

RESPONSIBILITY
COLLABORATES
WITH CONTRIBUTES TO

CHIEF
ORGANIZATION
BENEFICIARIES

Problem abstraction
and generalization

Software architects
and developers

Software reuse Software
development
community

Communication Business
representatives,
development
community

Dissemination of
critical business and
IT information,
security awareness,
technical training

Business and IT

Technological
modernization

IT organization Business efficiency,
asset security,
workplace
productivity

Business and IT

End- state
architecture

Project managers,
software architects,
and developers

Enterprise
architecture
reference
architecture
blueprints

IT

Technological
roadmap

Members of the IT
organization

Establishment of
technological
milestones and
goals

IT

Engagement of
solution architects

Solution architects Augmentation of
enterprise
architecture tasks

Business and IT

Integration IT and operation
organizations

Simplification and
enhancement of
enterprise
architecture

Business and IT

Architecture styles IT and operation
organizations

Standardization of
architecture and
design patterns

IT

Table 2.2 (continued)

Bell820970_c02.indd 40Bell820970_c02.indd 40 10-02-2023 17:14:0810-02-2023 17:14:08

 Chapter 2 ■ Types of Software Architects 41

marshaling technological solutions. Typically referred to as the “technolog-
ical middleman,” the solution architect is the one who must devise tangible1
solutions to business problems that must be identified and validated by an
enterprise architect.

Moreover, serving as a technical liaison between enterprise architects and
application architects, the solution architect ought to interpret enterprise tech-
nological concepts into design blueprints. This software architecture interpre-
tation, expressed by design deliverables, is vital to application architects since
design artifacts are in essence the language of choice for software developers.

A solution architect must be goal- oriented and possess a breadth of knowledge
about the organization’s lines of business and its corresponding business
processes. This practice is also about aligning palpable software architecture
solutions to satisfy business requirements that are not always easily understood
by development teams.

To actualize the software architecture integration concepts devised by the
enterprise architects, solution architects must be well- versed in architecture styles,
architecture patterns, and design patterns. (Read more about styles and patterns
in Chapter 9, “An Outline for Software Architecture Job Interview Questions.”)

Solution Architect Summary of Responsibilities

The list that follows summarizes the solution architect’s responsibilities and
courses of action to tackle business and technological problems in the enterprise:

Software architecture vision and mission Helps promote software architecture
vision and mission devised by enterprise architects.

Transformation of architecture concepts Transforms enterprise architecture
concepts into technological solutions.

Design blueprints Provides design blueprints for the software development
and operations teams.

Interpretation of business requirements Interprets business requirements
into technical specifications.

Communication of solutions Communicates software architecture solu-
tions to project stakeholders to garner organizational agreement with
technological directions.

Technical management Provides technical consultation and management
services to development teams.

1 “Tangible solutions” implies that the solution architect is required to provide concrete
remedies that are beyond the conceptual phase of the software development life cycle.

Bell820970_c02.indd 41Bell820970_c02.indd 41 10-02-2023 17:14:0810-02-2023 17:14:08

42 Part 2 ■ Software Architecture Career Planning

Integration Takes part in integration efforts of business products in
production.

Innovation Promotes technological innovation and advances modern soft-
ware architecture approaches.

Risk and feasibility assessments Conducts software architecture risk and
feasibility assessments for current and future application and system
implementations.

Coordination of technical activities Coordinates technical activities between
development and operation teams. This includes deployment, change
management, and configurations of assets in production environments.
In addition, the solution architect brings together technical teams to dis-
cuss a wider range of solutions that pertain to software implementations.

Production facilitation Offers maintenance assistance for applications and
systems in production. This includes facilitation of operations related
to monitoring, security, capacity planning, performance, and disaster
recovery (DR).

Product evaluation and selection Drives the selection and evaluation
process for commercial off- the- shelf products that are candidates for
technological adoption.

Solution Architect Responsibility Table

Table 2.3 summarizes the array of duties solutions architects are employed to
pursue. This table identifies the potential partners that they typically collaborate
with, the chief benefits of the solution architects’ tasks, and the organizational
entities that benefit the most from solution architecture activities.

Table 2.3: Solution Architect Responsibility Table

RESPONSIBILITY
COLLABORATES
WITH CONTRIBUTES TO

CHIEF
ORGANIZATION
BENEFICIARIES

Promote software
architecture vision
and mission

Enterprise
architects

Establishment of
software
architecture
milestones and
goals

IT

Transformation of
architecture
concepts

Enterprise
architects

Technological
solutions

IT

Design blueprints Application
architects,
developers,
operations

Facilitation of the
SDLC

IT

Bell820970_c02.indd 42Bell820970_c02.indd 42 10-02-2023 17:14:0810-02-2023 17:14:08

 Chapter 2 ■ Types of Software Architects 43

RESPONSIBILITY
COLLABORATES
WITH CONTRIBUTES TO

CHIEF
ORGANIZATION
BENEFICIARIES

Interpretation of
business
requirements

Business
representatives,
enterprise
architects,
application
architects

Simplification of the
SDLC

Business and IT

Communication of
solutions

Business
representatives, IT
representatives

Organizational
technological
consensus

Business and IT

Technical
management

Development teams Software
development
productivity

Software
development teams

Integration Development
teams, operation
teams

Quality of services
in production

Business and IT

Innovation Solution architects,
application
architects,
developers

Technological
modernization

Business and IT

Risk and feasibility
assessments

Business
management, IT
management

Business and
operation
continuity

Business and IT

Coordination of
technical activities

Enterprise
architects,
application
architects,
development
teams, operations
teams

Partnership
between architects,
developers, and
operations during
the SDLC

IT

Production
facilitation

Operations team Software
architecture
consistency2 in
production

IT

Product evaluation
and selection

IT representatives Shorten the
software
development curve,
time to market

Business and IT

2 Software architecture consistency pertains to the verification process, during which an
analysis is conducted to assess if a software implementation adheres to design artifact blue-
prints and devised architecture best practices, policies, and standards.

Bell820970_c02.indd 43Bell820970_c02.indd 43 10-02-2023 17:14:0810-02-2023 17:14:08

44 Part 2 ■ Software Architecture Career Planning

Level III: Application Architect Responsibilities
Typically confined to a single implementation framework, such as an applica-
tion or services, the application architect devotes time to translating business
processes into fine- grained components, programming modules, and layers. This
describes the effort, therefore, is dedicated to decomposing software into con-
cerns to promote loosely coupled implementations. The term concerns pertains
to common application parts, such as business logic, data handling, message
exchange and marshaling, and user interfaces (UIs).

Furthermore, software architects typically advocate breaking down applica-
tions into smaller segments of functionality, adhering to software architecture
industry best practices. This architecture decomposition contributes to applica-
tion and services performance, agility, maintainability, scalability, elasticity, and
other traits required to maintain software reliance and durability in production.

 CO N C E P T Recall that decomposition of an application, as discussed thus far,
forms loosely coupled architecture to avoid monolithic software implementations that
are not nimble enough to be reused and effectively maintained in production.

To promote such an industry best practice, application architects provide
design blueprints. These design artifacts are in essence the language of com-
munication that describes the loosely coupled structural composition of an
end- state architecture to the development teams. Subsequently, the software
construction team must then adhere to the software architecture principles
devised by the application architects.

In addition, application architects must demonstrate technological leadership
and offer expertise in the software development field. They must be well- versed
in application integration and deployment. They must understand production
environments, networking, and infrastructure. They must know how to inte-
grate applications with middleware. They must be familiar with programming
frameworks. And they must be engaged in product selection and evaluation to
boost enterprise technological modernization.

Application Architect Summary of Responsibilities

Consider the variety of the application architect’s responsibilities in the list
that follows:

Application- level design Provides application- level design blueprints to
the development teams.

Development scope Scopes the software development efforts to a particular
domain, project, application, system, or business initiative.

Bell820970_c02.indd 44Bell820970_c02.indd 44 10-02-2023 17:14:0810-02-2023 17:14:08

 Chapter 2 ■ Types of Software Architects 45

Programming frameworks Promotes programming frameworks that are
embraced by enterprise architects and solution architects. These specific
frameworks devise software development best practices, standards, and
policies.

Application decomposition Responsible for application decomposition
efforts to break down applications into programming modules, compo-
nents, layers, and tiers.

Development guidance Facilitates, guides, and often leads the software
development process. These efforts may include the supervision of source
code construction, debugging, and adoption of programming tools.

Application interfaces Designs and publishes application interfaces for
the community of software consumers.

Integration of components Devises integration of application components.

Testing Facilitates functional and nonfunctional testing activities in pre-
production and production environments. Often provides testing scripts
for quality assurance teams.

Prototyping Supervises prototyping of programming algorithms and solu-
tion approaches to prove application viability in production.

Documentation support Creates and updates application design artifacts
during and after the software development phase.

Production facilitation Collaborates with operation teams to deploy, inte-
grate,3 configure, and monitor applications in production environments.

Source code integration Responsible for integration of programming mod-
ules developed by various team members to maintain source code integrity.

Selection and evaluation of development platforms Leads the selection
and evaluation of application development platforms.

Source code review Conducts periodic source code reviews to ensure
programming quality and source code integrity.

Architecture verification Leads software architecture verification sessions to
guarantee the compliance of source code with application design, solution
architecture blueprints, and enterprise architecture strategies.

Application capacity planning Responsible for capacity planning efforts to
ensure compliance with nonfunctional requirements that tackle adequate
computing resource consumption. Data, central processing unit (CPU),
network bandwidth, and memory utilization are typically the chief con-
cerns identified in capacity planning documents.

Defect tracking Maintains an authoritative list of software defects.

3 Assists with continuous integration (CI) and continuous deployment activities (CD).

Bell820970_c02.indd 45Bell820970_c02.indd 45 10-02-2023 17:14:0810-02-2023 17:14:08

46 Part 2 ■ Software Architecture Career Planning

Application Architect Responsibilities Table

Table 2.4 summarizes the primary duties of architects who are assigned to facil-
itate the SDLC. The table identifies the parties with whom their collaboration
is necessary, the chief benefits, and the intended beneficiaries.

Table 2.4: Application Architect Responsibilities

RESPONSIBILITY
COLLABORATES
WITH CONTRIBUTES TO

CHIEF
ORGANIZATION
BENEFICIARIES

Application- level
design

Solution architects,
software developers

Alignment of
business
requirements with
technological
solutions,
establishment of
software
development road-
maps, promotion of
best practices and
standards

IT

Scopes software
development
efforts

Solution architects,
software
development teams

Streamlining and
optimization of
software
development
efforts

Development teams

Promotes
programming
frameworks

Enterprise
architects, solution
architects,
development teams

Development of
best practices,
standards, and
policies

Development teams

Application
decomposition

Solution architects,
development teams

Adherence to
organizational
software
architecture best
practices,
compliance with
non- functional
requirements

IT

Development
guidance

Development teams SDLC Development teams

Designs application
interfaces

Solution architects,
development
teams, operation
teams

Promotion of
production
environment
interoperability

IT

Bell820970_c02.indd 46Bell820970_c02.indd 46 10-02-2023 17:14:0810-02-2023 17:14:08

 Chapter 2 ■ Types of Software Architects 47

RESPONSIBILITY
COLLABORATES
WITH CONTRIBUTES TO

CHIEF
ORGANIZATION
BENEFICIARIES

Integration of
application
components

Development teams Improvement of
application
component reuse

Development teams

Application testing Development
teams, operation
teams

Quality of services
enhancement

Business and IT

Prototyping Development teams Feasibility of
technological
concepts and
solutions

Development teams

Development
guidance

Development teams SDLC IT

Documentation
support

Solution architects,
development teams

Documentation of
software solutions,
development of
organizational
technical
knowledge base

IT

Production
facilitation

Operation teams Business and
technical continuity

Business and IT

Source code
integration

Development teams Source code
integrity

IT

Development
platforms selection
and evaluation

Development teams Standardization of
software
development
process, tools,
utilities, and
languages

IT

Source code review Development teams Adherence to
software
development best
practices, standards,
and policies

IT

Architecture
verification

Enterprise
architects, solution
architects,
development teams

Alignment of
enterprise
architecture,
solution
architecture, and
application
architecture
strategies

Business and IT

Continues

Bell820970_c02.indd 47Bell820970_c02.indd 47 10-02-2023 17:14:0810-02-2023 17:14:08

48 Part 2 ■ Software Architecture Career Planning

Comparing Responsibilities of Leading Software Architects
This section introduces a comparison between the three leading organizational
software architects. Table 2.5 shows the key differences between these principal
architecture practitioners: enterprise architect, solution architect, and application
architect. The three columns in the table drive this comparison. They answer
the questions that follow:

Driven strategies Which strategy drives each software architecture role?
For example, an organizational business strategy drives the enterprise
architecture practice.

Scope of responsibility What is the range of responsibilities for each software
architecture role? The application architect role, for instance, is chartered
to design software solutions that execute business processes.

Design scale What is the design boundary for each software architect? The
solution architect, in particular, is commissioned to provide enterprise-
level and application- level design blueprints.

Table 2.5: Types of Enterprise Leading Architects

ARCHITECT
LEVEL TYPE

DRIVEN
STRATEGIES

SCOPE OF
RESPONSIBILITY

DESIGN
SCALE

I Enterprise
architect

Business
strategy,
enterprise
architecture
strategy

Enterprise level Coarse- grained

II Solution
architect

Technological
solution
strategy

Enterprise and
Application levels

Coarse- grained
and
fine- grained

III Application
architect

Business
service
strategy

Business process
level

Fine- grained

RESPONSIBILITY
COLLABORATES
WITH CONTRIBUTES TO

CHIEF
ORGANIZATION
BENEFICIARIES

Application
capacity planning

Development
teams, operation
teams

Adequate
computing
resources for
application
operations

Business and IT

Defect tracking Development teams Quality of
application and
services

Business and IT

Table 2.4 (continued)

Bell820970_c02.indd 48Bell820970_c02.indd 48 10-02-2023 17:14:0810-02-2023 17:14:08

 Chapter 2 ■ Types of Software Architects 49

Types of Domain Software Architects

In this day and age, the leading software architecture roles discussed thus far
(enterprise architect, solution architect, and application architect) are the most
desired talents that organizations tend to hire. Business transformation and
technological evolution, however, call for a shift in current hiring goals and
practices. This change requires additional software architecture talents to aug-
ment the technical capabilities of the leading software architecture roles.

The rapid changes in technology, for example, require domain experts in cloud
computing. Progress in software security methodologies and mechanisms
demands advanced cybersecurity talents. And the adoption of modern data-
bases asks for cutting- edge data modeling skills.

Currently, the leading software architects are incapable of providing solutions
for the ever- expanding business and technological requirements. Otherwise
stated, leading software architecture practices must include additional exper-
tise to meet growing business imperatives. And this in itself calls for bringing
aboard a different type of software architect—called a domain software architect.

The sections that follow introduce examples of domain software architects who
are employed to supplement the capabilities of the leading software architecture
roles discussed thus far.

Data Architect
Data governance and management are organizational imperatives that require
unique data architecture skills. Data governance is all about embracing data-
related frameworks that promote best practices, standards, and policies for
information sharing and exchange across an organization or even beyond the
boundaries of a single enterprise. Furthermore, the driving principles of data
governance are related to the identity and utilization of data within an orga-
nization. By contrast, data management addresses the operational and con-
sumption methods affiliated with data utilization, storage, security, recovery,
aggregation, and more.

Data governance imperatives typically answer the “what” and “where” type
of questions as indicated in the list that follows”

Data analysis The ability to discover, understand, and classify institutional
data. This answers the question, “What type of data do we own?”

Data discovery The capability to physically locate organizational data. Data
discovery responds to the question, “Where is our data located?”

Data repurposing The capacity to repurpose the data for a variety of
information- sharing activities. Information repurposing typically answers
the question, “For what purposes can we reutilize our data?”

Bell820970_c02.indd 49Bell820970_c02.indd 49 10-02-2023 17:14:0810-02-2023 17:14:08

50 Part 2 ■ Software Architecture Career Planning

Data management, on the other hand, answers the fundamental “how” type
of questions. Note the examples in the list that follows:

Data access The mechanisms that enable secure and effective access to
information. How should data be accessed in the most secure manner?

Data storage The technologies that facilitate storage of data. How should
data be deposited in various data storage facilities?

Data collection, aggregation, and integration The techniques that enable
data collection and aggregation. How should data be discovered, retrieved,
and gathered from various data sources?

Data utilization The methods by which data is consumed. How should
institutional data be utilized?

Data security The means by which data is protected to foster privacy. How
should an organization secure information and promote data integrity?

Data recovery and availability The approaches that ensure data- sharing
continuity. How should an organization ensure timely recovery from data
server outages?

Data Architect Summary of Responsibilities

Note the examples of the data architect responsibilities outlined in the follow-
ing list:

Data strategy Leads the establishment of an organizational data strategy
to provide support for data governance and management as elaborated
on so far.

Data analysis Evaluates whether existing organizational data and its uti-
lization satisfy business requirements that call for improvement to data
quality, security, integrity, and other vital institutional imperatives.

Data modeling Delivers data models that include conceptual, logical, and
physical design artifacts. These data architecture blueprints devise struc-
tural and contextual composition of information.

Data governance Promotes data- related frameworks that devise best prac-
tices, standards, and policies for data sharing, exchange, distribution, and
information flow across an organization.

Data management Offers methods and solutions to address common organi-
zational data operational challenges such as data access, data distribution,
data security, data aggregation, and data integration.

Data migration Introduces methods, roadmap, goals, and milestones for
data migration initiatives.

Bell820970_c02.indd 50Bell820970_c02.indd 50 10-02-2023 17:14:0810-02-2023 17:14:08

 Chapter 2 ■ Types of Software Architects 51

Business intelligence Data architects should promote data analytics and
related reporting tasks by recommending the utilization of data ware-
houses that host references to historical data.

Data security Data privacy, protection against attacks on data vulnerabil-
ities, and data integrity are among the chief security concerns that data
architects must address. In addition, data architecture must employ secu-
rity platforms and detective monitoring utilities to reduce security risks.

Data integration Employs data integration patterns to address application
and system needs for data sources. These patterns offer data architecture
solutions that are supported by message exchange brokers, such as data
hubs, data access layers, data aggregators, data collectors, mining plat-
forms, API gateways, and a variety of other middleware products.

Capacity planning Devises capacity planning for data utilization to ensure
adequate computing resources for data storage and network bandwidth.

Data acquisition Recommends acquisition of data to fill in the information-
sharing capability gap of an organization.

Nonfunctional requirements Provides nonfunctional requirements to accom-
modate data operations needs in production. These particular imperatives
are associated with performance of information exchange, availability,
reliability, scalability, redundancy, integrity, recovery, and more.

Data archiving and redundancy Introduces data backup, availability, DR,
and archiving mechanisms to ensure business continuity and flawless
distribution of information across an enterprise.

Data Architect Responsibilities Table

Table 2.6 shows the data architects’ chief tasks, their potential partners, major
contributions of their activities, and chief beneficiaries of their tasks.

Cloud Architect
A cloud architect is at the forefront of organizational modernization efforts.
Technological innovation calls for a fundamental diversion from the old ways
of conducting business. On the ground, this change manifests in the physical
migration of enterprise applications and systems to the cloud.

But it’s not only about the relocation of products from one place to another.
Now, more than ever, enterprise information is stored, shared, and manipu-
lated in a virtual environment hidden and protected from users. This cloud

Bell820970_c02.indd 51Bell820970_c02.indd 51 10-02-2023 17:14:0810-02-2023 17:14:08

52 Part 2 ■ Software Architecture Career Planning

Table 2.6: Data Architect Responsibilities

RESPONSIBILITY
COLLABORATES
WITH CONTRIBUTES TO

CHIEF
ORGANIZATION
BENEFICIARIES

Carves out
organizational data
strategy

Business
representatives,
enterprise
architects, solution
architects,
application
architects, software
developers

Organizational data
governance and
management tasks

Business and IT

Data analysis Business
representatives,
enterprise
architects, solution
architects,
application
architects, business
analysts, software
developers

Data quality,
security, and
integrity to satisfy
business
requirements

Business and IT

Data modeling Application
architects, software
developers, solution
architects

Data design
represented in three
views: conceptual,
logical, and physical

IT

Data governance Enterprise
architects, solution
architects,
application
architects, software
developers,
operation teams

Adoption of data
frameworks to
promote best
practices, standards,
and policies

IT

Data administration Enterprise
architects, solution
architects,
application
architects,
operation teams,
software developers

Data solutions to
address chief
organizational
concerns such as
data access,
security, and
integration

IT

Data migration Business
representatives,
enterprise
architects, solution
architects,
application
architects,
operation teams,
software developers

Methods and
roadmaps for data
migration

Business and IT

Bell820970_c02.indd 52Bell820970_c02.indd 52 10-02-2023 17:14:0810-02-2023 17:14:08

 Chapter 2 ■ Types of Software Architects 53

RESPONSIBILITY
COLLABORATES
WITH CONTRIBUTES TO

CHIEF
ORGANIZATION
BENEFICIARIES

Business
intelligence

Business
representatives,
enterprise
architects

Data analytics and
utilization of
historical data

Business

Data security Business
representatives,
solution architects,
application
architects, software
developers

Data privacy, data
integrity, data
quality

Business and IT

Data Integration Enterprise architect,
solution architect,
application
architect,
development
teams, operation
teams

Adoption of data
architecture
patterns to enable
efficient
applications and
systems integration

IT

Capacity planning Operation teams,
application
architects

Optimize data
utilization

Operations

Data acquisition Business
representatives,
enterprise
architects, solutions
architects,
application
architects

Data acquisition
initiatives to fill in
the information-
sharing capability
gap

Business and IT

Provides data-
driven non-
functional
requirements

Business
representatives,
enterprise
architects, solution
architects,
application
architects, software
developers,
operation teams

Performance of data
exchange, data
availability, data
reliability, data
recovery, data
security, data
integrity

Business and IT

Data archiving and
redundancy

Business
representatives,
enterprise
architects, solution
architects,
operation teams

Data availability, DR,
analytics

Business and IT

Bell820970_c02.indd 53Bell820970_c02.indd 53 10-02-2023 17:14:0810-02-2023 17:14:08

54 Part 2 ■ Software Architecture Career Planning

migration brings changes to employees’ communication styles and social behavior,
management practices and direction, and modification to work environments.

In the midst of it all, cloud architects have their hands full with business and
technological initiatives that are vital to the existence of their organizations. The
mission is vast. And the social, business, and technological challenges pile up
as time goes by. There is no limit to the variety of problems that must be solved.
Cloud architects are commissioned not only to provide cloud migration and
adoption strategies; they need to embrace best practices, standards, and policies
for cloud operations and security as well.

Cloud Architect Summary of Responsibilities

Consider the examples of a cloud architect’s responsibilities in the list that follows:

Cloud solutions Provides solutions to meet business goals by employing
cloud computing technologies.

Cultural change Leads cultural transformation for cloud adoption in the
enterprise.

Cloud architecture Devises organizational end- state architecture to address
distribution of cloud services across various geographical locations, increase
software architecture elasticity and scalability, and advance integration
strategies.

Cloud migration strategy Devises strategies and methodologies for migrating
organizational assets from on- premises4 to cloud ecosystems. This tech-
nological innovation is enabled by native cloud services.

Cloud adoption strategy Embraces a cloud adoption framework that offers
best practices, standards, and policies to facilitate and expedite smooth
technological transformation.

Cloud operating model5 Develops an organizational cloud operating model
to support the cloud migration and adoption strategies and facilitate the
shift in technological innovation.

Cloud governance framework Advocates standards, best practices, and
policies for service development, configuration, integration, operations,
monitoring, and other aspects of cloud- related infrastructure maintenance.

4 On- premise refers to a computing environment that is not located in a virtual cloud.

Bell820970_c02.indd 54Bell820970_c02.indd 54 10-02-2023 17:14:0810-02-2023 17:14:08

 Chapter 2 ■ Types of Software Architects 55

Cloud cost management Provides expenditure estimates and recom-
mends cost optimization for cloud service operations and maintenance
of infrastructure.

Cloud service evaluation and selection Oversees the evaluation and selec-
tion of cloud development platforms, deployment and maintenance tools,
and infrastructure products.

Cloud capacity planning Delivers cloud capacity plans to ensure adequate
computing resources for applications and systems. Capacity planning for
the cloud can assist cloud architects in optimizing cloud environments.

Testing Supervises cloud resource utilization testing by employing native
cloud services to assess applications and systems performance, data
architecture elasticity, computing resource utilization for data storage,
memory, CPU, and network bandwidth.

Cloud-related on- premise services Running cloud technologies on- premises
(typically cloud agents that are installed externally to cloud space) is
another field of expertise that a cloud architect should be familiar with.
For example, such cloud utilities can provide a variety of services, such
as on- premise performance metric collection, data migration, and data
transformation.

Cloud security and compliance Fosters organizational policies to facilitate
automated cloud security detection of threats and vulnerabilities and
verification of security compliance with policies to maintain privacy and
integrity of data in the cloud.

Cloud Architect Responsibilities Table

Table 2.7 identifies the chief responsibilities, partnerships, contribution, and
beneficiaries of a cloud architect. Note that this talent is employed to collab-
orate with business and IT organizations and chartered to support organiza-
tional strategies and technological transformation. The chief responsibilities
are affiliated with strategies that facilitate application, system, and data
migration to the cloud.

5 A “cloud operating model” is a strategy that includes best practices, standards, and policies
that not only drives the migration of legacy systems to cloud computing but also establishes a
business and technological framework pertaining to service operations cost and efficiency.

Bell820970_c02.indd 55Bell820970_c02.indd 55 10-02-2023 17:14:0910-02-2023 17:14:09

56 Part 2 ■ Software Architecture Career Planning

Table 2.7: Cloud Architect Responsibilities

RESPONSIBILITIES
COLLABORATES
WITH CONTRIBUTES TO

CHIEF
ORGANIZATION
BENEFICIARIES

Provides cloud
solutions

Business
representatives,
enterprise
architects, solution
architects,
development
teams, operation
teams

Utilization of cloud
services to
accelerate
technological
modernization

Business and IT

Leads cultural
change

Business and IT
representatives

Organizational
cloud adoption

Business and IT

Devises cloud end-
state architecture

Business and IT
representatives

Distribution of
cloud services,
software
architecture
elasticity and
scalability

Business and IT

Leads cloud
migration strategy

Business and IT
representatives

Technological
innovation

Business and IT

Cloud adoption
strategy

Enterprise
architects, solution
architects,
software
developers,
operation teams

Cloud adoption
framework to
promote best
practices, standards,
and policies for
technological
transformation

IT

Develops cloud
operating model

IT Cloud migration
and adoption
strategies to
facilitate
technological
transformation

IT

Adopts a cloud
governance
framework

Enterprise
architects, solution
architects,
application
architects, software
development
teams, operation
teams

Best practices,
standards, and
policies for cloud
service
development,
integration, and
monitoring

IT

Bell820970_c02.indd 56Bell820970_c02.indd 56 10-02-2023 17:14:0910-02-2023 17:14:09

 Chapter 2 ■ Types of Software Architects 57

Security Architect
One of the most critical disciplines of the software architecture practice is driven
by the need to secure applications, systems, and information. That is, security
management and governance policies ensure business continuity, shield organi-
zational assets (software and hardware) from malicious attacks, and contribute
immensely to workplace productivity.

RESPONSIBILITIES
COLLABORATES
WITH CONTRIBUTES TO

CHIEF
ORGANIZATION
BENEFICIARIES

Manages cloud
costs

Business
representatives, IT

Cost optimization of
cloud service
operations

Business and IT

Evaluates and
selects cloud
services

Enterprise
architects, solution
architects,
application
architects,
development
teams, operation
teams

Evaluation and
selection of cloud
products and
services

IT

Delivers cloud
capacity planning

Operation teams Optimization of
computing
resources in cloud
environments

Business and IT

Testing Operation teams Assessment of
adequate cloud
computing
resources for
applications and
systems

Business and IT

Supports cloud-
related on- premise
services

Operation teams Execution of cloud
services that
facilitate data
migration from on-
premise (noncloud)
environments

Operation teams

Detects cloud
security threats and
verifies compliance
with enterprise
policies

Operation teams Maintain privacy
and integrity of
data in the cloud

Operation teams

Bell820970_c02.indd 57Bell820970_c02.indd 57 10-02-2023 17:14:0910-02-2023 17:14:09

58 Part 2 ■ Software Architecture Career Planning

Every security architect ought to be fully aware that the protection of organi-
zational data is led by the three traditional principles of security controls known
as confidentiality, integrity, and availability— in short, the CIA triad.6 These are the
paramount goals of every security implementation in the enterprise:

Confidentiality Organizational pursuit that ensures data privacy

Integrity Refers to maintaining data quality and reliability by shielding it
from unauthorized access that could damage its authenticity

Availability The capability of organizational applications and systems to
continuously authorize access to organizational data

But information protection is not the only concern of an organization. What
about the harmful attacks on networks, hardware, and applications? What
about the damaging consequences of attacks on infrastructure in production?
To tackle a wide range of vulnerabilities, therefore, a security architect must
understand the organizational technology and its driving business imperatives.
The architect must also embrace security frameworks that offer security best
practices, standards, and policies to safeguard business products and the tech-
nological platforms that empower them.

Security Architect Summary of Responsibilities

Consider the following list that presents examples of the security architect’s
responsibilities:

Security architecture Employs frameworks that offer security principles,
best practices, standards, policies, patterns, and methodologies to support
organizational data confidentiality, integrity, and availability. The Health
Insurance Portability and Accountability Act (HIPAA),7 National Institute
of Standards and Technology (NIST), 8 and International Organization for
Standardization (ISO) 27001 and 27002,9 are examples of such cybersecu-
rity frameworks.

Security strategy alignment Aligns organizational security strategies with
technological strategies.

6 www.f5.com/labs/articles/education/what- is- the- cia- triad
7 HIPAA is an American framework that mandates that institutions develop security control
mechanisms to protect the privacy of electronic health records.
8 NIST is the U.S. national standard devised to foster cybersecurity standards to protect
infrastructure and organizational assets. It mandates that public and private sectors adhere to
cybersecurity regulations, develop policies to assess security threats, and apply cybersecurity
controls.
9 ISO 27001 and 27002 are international certifications for evaluating cybersecurity policies and
controls across business and technological institutions.

Bell820970_c02.indd 58Bell820970_c02.indd 58 10-02-2023 17:14:0910-02-2023 17:14:09

 Chapter 2 ■ Types of Software Architects 59

Malware analysis and prevention Recommends tools, security platforms,
and security controls to protect organizational software and hardware
assets. Attacks on these assets are typically inflicted by malicious software
(malware), such as ransomware, adware, worms, spyware, trojan viruses,
and other types of viruses.

Security risk management Develops security risk detection, analysis, and
prevention protocols to prevent the exploitation of software and hardware
vulnerabilities by internal and external attacks.

Penetration testing and risk assessment Manages penetration testing, a
simulated security attack on organizational applications and systems to
discover their vulnerabilities. This activity typically renders risk assessment
documents distributed to development and operation teams.

Threat prevention It’s the security architect’s duty to reinforce their organi-
zation’s defense against cyberattacks by founding security best practices,
standards, and policies.

Security awareness Launches security awareness training programs to
instill awareness about the risks of cybersecurity attacks.

Identity and access management (IAM) Promotes security frameworks
that offer technologies and policies used for controlling user access to
vital enterprise data.

Incident management Leads discovery and analysis activities devised to
repair damages caused by internal and external cybersecurity attacks.
In addition, security architects ought to recommend technologies and
approaches designed to prevent such harmful occurrences in the future.

Public key infrastructure (PKI) Devises processes and policies to manage
organizational digital certificates. These measures pertain to creating,
encrypting, storing, and distributing public key certificates.

Security controls10 Security architects should lead the application of secu-
rity controls to safeguard organizational assets from threats designed to
exploit vulnerabilities of data, processes, and hardware.

System development life cycle Offers guidance and best practices to enforce
security controls during software product development, deployment, instal-
lation, integration, and operations. The controls are typically applied to
a variety of organizational assets, such as applications, systems, network
devices, firewalls, and servers.

10 https://purplesec.us/security-controls

Bell820970_c02.indd 59Bell820970_c02.indd 59 10-02-2023 17:14:0910-02-2023 17:14:09

60 Part 2 ■ Software Architecture Career Planning

Security audits A security architect leads reviews of software and hardware
assets to ensure that the organization complies with cybersecurity pol-
icies and regulations and that the processes and data are shielded from
security attacks.

Cybercrime investigations Conducts cybercrime investigations to assess
the severity of an attack and collects forensic data from the affected orga-
nizational assets to determine the intention of the perpetrators.

Security Architect Responsibilities Table

As stated, the chief focus of the security architect is to protect organizational
data from security attacks. But applying security measures must be a collabo-
rative effort that characteristically includes the three leading architecture roles:
enterprise architect, solution architect, and application architect. Obviously,
when it comes to applying security controls, the operation teams are involved
to enable access to infrastructure and network environments.

Table 2.8 identifies the responsibilities, partnerships, contribution, and ben-
eficiaries of the security architect tasks and goals.

Table 2.8: Security Architect Responsibilities

RESPONSIBILITIES
COLLABORATE
WITH CONTRIBUTES TO

CHIEF
ORGANIZATION
BENEFICIARIES

Employs security
architecture

Enterprise
architects, solution
architects,
application
architects,
development
teams, operation
teams

Adoption of security
frameworks to
support data
confidentiality, data
integrity, and data
availability

IT

Security strategy
alignment

Enterprise
architects, solution
architects,
application
architects

Alignment of
security strategy
with technological
strategy

IT

Malware analysis
and prevention

Enterprise
architects, solution
architects,
application
architects,
operation teams

Protection of
organizational assets
against malware

IT

Bell820970_c02.indd 60Bell820970_c02.indd 60 10-02-2023 17:14:0910-02-2023 17:14:09

 Chapter 2 ■ Types of Software Architects 61

RESPONSIBILITIES
COLLABORATE
WITH CONTRIBUTES TO

CHIEF
ORGANIZATION
BENEFICIARIES

Security risk
management

IT representatives Prevention of
internal and external
security attacks

IT

Penetration testing
and risk assessment

Development
teams, operation
teams

Discovery of
organizational asset
vulnerabilities

IT

Threat prevention Operation teams Reinforcement of
defense against
cyberattacks

IT

Launches security
awareness training
programs

Enterprise- wide
audience

Organizational
awareness about
cybersecurity attacks

Business and IT

IAM Operation teams Control user access
privilege to vital
enterprise data

Business and IT

Incident
management

Operation teams Mending damages
caused by internal
and external
cybersecurity attacks

Business and IT

Manages PKI IT representatives Management of
organizational digital
certificates

IT

Security controls Operation teams Protection of
applications and
systems from
security threats

IT

Facilitates SDLC Solution architects,
application
architects,
development
teams, operation
teams

Protection of
organizational assets
by applying security
controls during the
SDLC

IT

Security audits Operation teams Verification of
organizational
compliance with
security policies and
regulations

IT

Cybercrime
investigations

Operation teams Damage assessment
of security attacks

IT

Bell820970_c02.indd 61Bell820970_c02.indd 61 10-02-2023 17:14:0910-02-2023 17:14:09

62 Part 2 ■ Software Architecture Career Planning

Business Architect
Business architects are typically commissioned to assimilate, interpret, and
simplify business strategies. Their duties encompass a wide range of responsi-
bilities that chiefly call for bridging the strategies devised by business leaders
and enterprise architects. Claiming that a business architect’s role also involves
software architecture tasks would be moderately true. In most cases it depends on
how an organization perceives such an occupation. Some firms charter business
architects to be actively involved in software development efforts. Others con-
sider business architecture an instrumental practice employed to lead business
modeling11 activities and even oversee the creation of business requirements.

On the business decision- making front, business architects play a pragmatic
role in assessing the feasibility of business investments in software products.
They are also commissioned to prioritize business solutions and ensure that
organizations stay focused on their vital imperatives. Moreover, business archi-
tects often advise executives to avoid trivial projects with projected negligible
returns on investment. Weeding out impractical business solutions typically
contributes to the optimization of budgets and the reduction of enterprise
expenditure. By pursuing these activities, business architects in essence provide
valuable business investment models to safeguard against frivolous waste and
promote organizational goals.

So how do business architects provide vital value to the software architecture
practice? Their interpretation of business strategies ultimately manifests an
immense contribution to enterprise architecture solutions. Without clear business
direction and mission, enterprise architects would not be able to deliver techno-
logical strategies. Without clarification of business solutions, enterprise archi-
tects would not be able to pursue the integration of applications and systems
in production. And without business requirements, enterprise architects would
not be able to offer potent end- state architectures. All of these are the substantial
contributions of business architects to software architecture strategies.

Business Architect Summary of Responsibilities

The list that follows represents examples of the business architect’s duties:

Business strategies Simplifies business strategies to the level that enterprise
architects can understand business vision and mission

Business strategy assessment Leads analyses to assess the feasibility of
business strategies and their overall contribution to organizational solutions

11 Business modeling is a business architecture discipline, devised to promote business
strategies, vision, mission, and goals.

Bell820970_c02.indd 62Bell820970_c02.indd 62 10-02-2023 17:14:0910-02-2023 17:14:09

 Chapter 2 ■ Types of Software Architects 63

Strategy success measurement Measures the success of business strategies
by utilizing business evaluation scorecards12

Business solutions Interprets business solutions to simplify complex business
missions and facilitates the foundation of the enterprise architecture roadmap

Business capability assessment Assesses the business capabilities to pro-
vide effective remedies for organizational problems

Business investment model13 Devises business investment models to pro-
mote business vision and goals

Strategy alignment Contributes to the alignment of business and enterprise
architecture strategies to avoid uncoordinated agendas and influence
technological goals

Strategy alignment verification Ensures that business and enterprise architecture
strategies are aligned to guarantee that technological initiatives ultimately
meet business imperatives

Business opportunities Identifies investment opportunities to promote
enterprise commerce goals and contribute to business growth

Business knowledge Disseminates business knowledge across an organi-
zation to reduce operational silos and foster better collaboration between
lines of business

Business process management (BPM) Leads business process modeling
activities that render workflows of business functions to simplify complex
enterprise activities (see https://bpm.com/)

Business risk assessment Provides periodic business risk assessments to
alert executives about looming perils to organizational performance and
earnings

Business and IT partnership Develops business and IT collaboration plans
and serves as an equal partner on software architecture projects

Business solution orchestration Plans, coordinates, and orchestrates business
solutions by collaborating with influential decision- makers to deliver
valuable and practical business requirements

Business Architect Responsibilities Table

The responsibilities of business architects call for collaborating with business
executives, managers, and analysts to promote organizational strategies. Once

12 The balanced scorecard (BSC), for example, is a performance reporting card that organiza-
tions employ to assess business progress and improve performance.
13 Business investment model is commonly devised by business architects to strengthen
business strategies, promote economic growth, and foster fiscal discipline.

Bell820970_c02.indd 63Bell820970_c02.indd 63 10-02-2023 17:14:0910-02-2023 17:14:09

64 Part 2 ■ Software Architecture Career Planning

the strategies are finalized, business architects must collaborate with enterprise
architects to influence software architecture strategies and direction. And this
partnership will obviously impact technological investments and transformation.
Table 2.9 reflects this notion. As is apparent, business architects are required
not only to streamline business expenditure, they are also engaged to influence
business investment strategies.

Table 2.9: Business Architect Responsibilities

RESPONSIBILITIES
COLLABORATES
WITH CONTRIBUTES TO

CHIEF
ORGANIZATION
BENEFICIARIES

Interprets business
strategies

Enterprise
architects

Better understanding
of business vision and
mission

IT

Business strategy
assessment

Business
representatives

Assessment of business
strategies to promote
organizational
solutions

Business and IT

Strategy success
measurement

Business
representatives

Feasibility assessment
of business strategy

Business

Interprets business
solutions

Enterprise architect Simplification of
complex business
missions to help found
effective enterprise
architecture roadmaps

IT

Business capability
assessment

Business
representatives

Evaluation of business
ability to provide
solutions for enterprise
problems

Business

Devises business
investment models

Business
representatives

Establishment of
approaches and
processes to foster
business growth
through prudent
investments

Business

Contributes to the
alignment of
business and
enterprise
architecture
strategies

Business
representatives,
enterprise
architects

Influence the direction
of software
architecture strategies

Business and IT

Business and
enterprise
strategies
alignment
verification

Business
representatives,
enterprise
architects

Assurance that
technological
initiatives satisfy
business needs

Business and IT

Bell820970_c02.indd 64Bell820970_c02.indd 64 10-02-2023 17:14:0910-02-2023 17:14:09

 Chapter 2 ■ Types of Software Architects 65

Collaboration Between Leading Software Architects
and Domain Software Architects

Software architects never work in a vacuum without collaborating with peer archi-
tects. In fact, software development projects often require combined architecture
skills to deliver solutions for complex business problems. Today’s common
recruiting practices, therefore, call for utilizing diverse talents to augment organi-
zational software architecture knowledge. For example, an application architect
who possesses strong software design skills may be lacking in cybersecurity
knowledge. Similarly, an enterprise architect may need the assistance of a data
architect to help design an organizational data hub.

RESPONSIBILITIES
COLLABORATES
WITH CONTRIBUTES TO

CHIEF
ORGANIZATION
BENEFICIARIES

Discovers business
opportunities

Business
representatives

Identification of
pragmatic business
opportunities to
maximize return on
investment

Business

Promotes business
knowledge

Business and IT
representatives

Reduce silos and
encourage
collaboration between
lines of business

Business and IT

Business process
modeling

Business
representatives

Discovery and
documentation of
business processes to
reduce investment
redundancy, increase
asset reuse, and
minimize expenditure

Business

Business risk
assessment

Business
representatives

Mechanisms to alert
executives about risks
to business
performance

Business

Supports business
and IT partnership

Business
representatives,
enterprise
architects, solution
architects

Coordination of
business and IT
activities to meet
organizational goals

Business and IT

Business solution
orchestration

Business
representatives

Coordination of the
delivery of feasible
business requirements

Business

Bell820970_c02.indd 65Bell820970_c02.indd 65 10-02-2023 17:14:0910-02-2023 17:14:09

66 Part 2 ■ Software Architecture Career Planning

The idea of engaging complementary software architecture talents to tackle
complex business problems is picking up steam among program and project
managers. This rationale propels the need for utilizing combined software
design skills to facilitate the development life cycle from its inception through
the testing, deployment, configuration, and integration phases.

The sections that follow then introduce common industry use case examples,
illustrating the necessity for combining the forces of lead software architects and
domain software architects. Before moving on, though, it would be beneficial to
revisit Chapter 1, “Software Architect Capability Model.” Chapter 1 is all about
discovering the gaps in the knowledge and capabilities of software architects or
architecture teams in order to offer effective solutions to business challenges. By
discovering the gaps in talent, project managers may be compelled to augment
software architecture expertise.

Use Case I: Collaboration Between an Application Architect
and a Data Architect
A common partnership comes into play when an application architect is in
need of a data architect. This happens not only because an application architect
may lack data modeling skills, but also a project’s time constraints may call for
additional talent to help shorten the software development curve. Other con-
siderations may be attributed to the well- known “separation of concerns” best
practice, which requires breaking down an application into distinct program-
ming modules that typically call for different design skillsets.

For example, this logical decomposition may render three modules: business
logic, data, and UI. Developing each of these modules typically requires different
types of software architects. A data architect would certainly be commissioned
to design the data module. In the same fashion, a UI developer would undoubt-
edly be assigned to build the application’s front end. And so on. . ..

The need for data design skills then calls for close collaboration between an
application architect and a data architect. This partnership is essential to the
success of application software development projects.

Application Architect and Data Architect Collaboration Table

Table 2.10 shows the vital support that a data architect offers the application
development team. This partnership and cooperation on chief application
development life- cycle activities is characteristically driven by the application
architect.

Bell820970_c02.indd 66Bell820970_c02.indd 66 10-02-2023 17:14:0910-02-2023 17:14:09

 Chapter 2 ■ Types of Software Architects 67

Table 2.10: Application Architect and Data Architect Collaboration

APPLICATION
ARCHITECT TASK DATA ARCHITECT TASK

MUTUAL
RESPONSIBILITIES

Embraces industry software
development frameworks

Adopts industry data
architecture frameworks

Promote application
development and data
modeling frameworks that
offer corresponding best
practices, standards, and
policies

Scopes the software
development efforts

Focuses on specific
application data
architecture tasks

Integrate application
development efforts with
data architecture
deliverables

Decomposes an application
into programming modules,
components, layers, and
tiers

Develops data concepts,
identifies data entities and
their attributes, and
discovers relationships
between these entities

Identify data architecture
needs for application
modules, components,
layers, and tiers

Orchestrates and guides
software development
efforts

Provides data architecture
support for application
business functionality

Collaborate during the
SDLC to accommodate the
needs for utilization of data

Provides architecture
blueprints for integrating
application components

Ensures that the data
scheme satisfies the data
consumption requirements
of application components

Ensure that the integration
of application components
drive proper data
distribution

Validates the compliance of
the programming source
code with application
architecture blueprints

Verifies if the programming
source code complies with
the data architecture, best
practices, standards, and
policies

Confirm if the data
architecture satisfies the
needs of the application
architecture

Facilitates application
functional and
nonfunctional testing

Conducts data integrity and
security testing for
transactions between
applications and their
consumers

Guarantee business
continuity in production

Supports application
deployment, configuration,
integration, security, and
monitoring in production

Supports production
operations associated with
data distribution,
integration, security,
monitoring, and
management of data
sources

Monitor and facilitate the
integration of applications
with data sources in
production

Bell820970_c02.indd 67Bell820970_c02.indd 67 10-02-2023 17:14:0910-02-2023 17:14:09

68 Part 2 ■ Software Architecture Career Planning

But the full collaboration between an application architect and data architect
is not always needed. In many circumstances, data architects may operate
independently to accommodate the needs for data protection, storage, for-
matting, and distribution across an organization. And these independent
data architecture duties may take place despite the close partnership with an
application architect.

Use Case II: Solution Architect and Security Architect
Collaboration between a solution architect and a security architect is common.
This partnership is driven by the critical need for security frameworks that
offer best practices, standards, and policies to facilitate solution architecture
tasks. Note that in addition to security architecture talents, solution architects
may also require data architects, infrastructure architects, and cloud architects
to accomplish business and technological tasks.

Furthermore, on one hand, security architects are chartered to facilitate
enterprise architecture imperatives, and on the other, they also needed to meet
application- level requirements. Simply put, they are being asked to provide
solutions on both levels: the enterprise level and the application level. Therefore,
since solution architects act as mediators between these two levels, their partner-
ship with security architects is valuable to all levels of organizational projects.

Solution Architect and Security Architect Collaboration Table

Time to inspect Table 2.11. It seems that this partnership is driven by solution
architecture requirements. However, there is not always a direct correlation
be tween solution architecture and security architecture implementations. In
other words, security architects must not necessarily react to solution architecture
activities. In fact, in most circumstances security architecture frameworks are
adopted by the solutions architects themselves to shield organizational assets
from internal and external attacks. And these solution architecture activities
may take place without direct interaction with security architects.

The heart of the matter is that solution architects must apply security architec-
tures to technological implementations. Consequently, the mutual responsibility
of solution architects and security architects is to verify if security controls are
indeed effective measures of protection.

Bell820970_c02.indd 68Bell820970_c02.indd 68 10-02-2023 17:14:0910-02-2023 17:14:09

 Chapter 2 ■ Types of Software Architects 69

Table 2.11: Solution Architect and Security Architect Collaboration

SOLUTION ARCHITECT
TASK

SECURITY ARCHITECT
TASK

MUTUAL
RESPONSIBILITIES

Promotes enterprise
software architecture vision
and mission

Embraces organizational
security architecture
frameworks to support
enterprise software
architecture strategies

Ensure that security
architecture is aligned with
enterprise architecture
vision and mission

Fosters organizational
technological innovation

Contributes security
architecture perspectives to
strengthen and safeguard
technological modernization

Identify and protect
security vulnerabilities with
the adoption of advanced
technologies

Transforms enterprise
architecture concepts into
technological solutions

Identifies opportunities to
boost the security of
technological solutions

Apply security architecture
standards, best practices,
and policies to
organizational
technological solutions

Interprets business
requirements into technical
specifications

Augments technical
specifications with security
policies

Verify if technical
specifications include
security controls

Provides design blueprints
for enterprise- level and
application- level
architectures

Devises security
architectures for enterprise
and application
implementations

Embed security
architecture in application-
level and enterprise- level
design blueprints

Mentors and guides
software development
teams

Conducts security awareness
training to protect
processes, data, and
hardware

Adopt software
development and security
frameworks to facilitate the
system development and
operation life cycle

Devises integration schemes
for business products in
production

Applies security architecture
implementations and
controls to product
integration efforts in
production

Ensure that application and
system integration patterns
comply with security
policies

Coordinates collaboration
activities between
development and operation
teams

Raises the awareness of
potential malicious attacks
against organizational assets
during the collaboration
activities between software
development and operation
teams

Conduct security risk
assessment to discover
application and system
vulnerabilities in
production

Supports applications and
systems operations in
production. These activities
may include deployment,
configuration, integration,
and performance
monitoring

Establishes security
architecture standards and
policies for production
operations

Assure that production
operations adhere to
security policies and
standards

Bell820970_c02.indd 69Bell820970_c02.indd 69 10-02-2023 17:14:0910-02-2023 17:14:09

70 Part 2 ■ Software Architecture Career Planning

Use Case III: Business Architect and Enterprise
Architect Collaboration
Bridging the gap between the business and IT organizations calls for architecture
talents that on one hand understand organizational strategies and on the other
are well- versed in technology. Both sides of the aisle, for that matter— business
architects and enterprise architects— are commissioned to maintain strong com-
munication and to collaboratively offer tangible solutions to business problems.
This partnership must endure the conflicts of departmental or personal agendas.
Put differently, business architects and enterprise architects must work together
to promote a joint technological strategy.

Business Architect and Enterprise Architect Collaboration Table

This collaboration use case example is shown in Table 2.12. As depicted, the
business architect is chartered not only to drive vital business initiatives but is
also required to influence technological deliverables. This table compares the
individual tasks of the business architect with the enterprise architect. Ultimately,
both must be equally responsible for the outcome of their collaboration. The
mutual responsibilities column represents this idea.

Table 2.12: Business Architect and Enterprise Architect Collaboration

BUSINESS ARCHITECT
TASK

ENTERPRISE ARCHITECT
TASK

MUTUAL
RESPONSIBILITIES

Contributes to business
strategies, vision, and
mission

Drives technological
strategies, vision, and
mission

Verify the alignment of
business and technology
strategies

Devises business
investment models

Offers roadmap for
organizational
technological innovation
initiatives

Promote business solutions
by optimizing business and
technological expenditure

Locates business
opportunities

Conducts research and
development activities to
foster technological
modernization

Support enterprise- wide
technological innovation
initiatives to promote
business goals

Identifies business problem
domains

Explores potential
technological solutions to
address business problems

Propose technological
solutions that are driven by
business imperatives

Conducts business risk
assessments

Delivers technical risk
assessments that may affect
the performance of
applications and systems

Assess business
performance and continuity
in production

Bell820970_c02.indd 70Bell820970_c02.indd 70 10-02-2023 17:14:0910-02-2023 17:14:09

 Chapter 2 ■ Types of Software Architects 71

BUSINESS ARCHITECT
TASK

ENTERPRISE ARCHITECT
TASK

MUTUAL
RESPONSIBILITIES

Delivers business
requirements

Drives enterprise- wide
technical specifications

Assure that technological
specifications meet
business requirements

Interprets business
solutions

Devises technological
solutions

Validate the compliance of
technological solutions with
business solutions

Contributes to
organizational business
knowledgebase

Contributes to
organizational technical
knowledgebase

Support firm- wide
educational and training
activities to increase
business and technical
knowledge

Bell820970_c02.indd 71Bell820970_c02.indd 71 10-02-2023 17:14:0910-02-2023 17:14:09

Bell820970_c02.indd 72Bell820970_c02.indd 72 10-02-2023 17:14:0910-02-2023 17:14:09

CHAP TE R

73

3

There is nothing more important than a career strategy that outlines personal
milestones and goals. There is nothing more consequential than a career path
that illustrates a coherent road map to fulfill professional objectives. And there
is nothing more essential than a pragmatic approach to promote professional
growth. These are cardinal prerequisites that every aspiring, beginning, or
experienced software architect must be cognizant of. Without a meticulous
career plan, business and information technology (IT) professionals are prone
to embark on muddled journeys that yield negligible outcomes.

It’s impossible to carve out a successful career strategy without a self- discovery
process. Although we tend to recognize our strengths and weaknesses to a
certain extent, when it comes to assessing our competencies to fulfill business
or IT duties, we may discover uncharted traits that can be employed to provide
potent solutions to business and technological challenges. The self- discovery
process is not only about assessing technical capabilities. It’s about finding a
better match between our personal preferences and career goals.

So now our work is cut out for us. Let’s roll up our sleeves and prepare to
ponder new career choices. Plan a meaningful professional journey that galva-
nizes workplace collaborations and partnerships. Devise a career path that is
fused with exciting employment opportunities. And never be afraid to ask hard
questions that most likely will bring clarity to a promised future.

Career Planning for Software
Architects: A Winning Strategy

Bell820970_c03.indd 73Bell820970_c03.indd 73 10-02-2023 17:13:4310-02-2023 17:13:43

74 Part 2 ■ Software Architecture Career Planning

 CO N C E P T And just before we start, consider this: there is nothing wrong about
being naïve, silly, and inexperienced at the outset or during a career journey. Meet
professional goals by using imagination—Not even the sky is the limit.

Software Architecture Career Planning Process

A long- lasting professional career must be driven by a plan— often referred
to as a career strategy. And every career development plan must be steered by
milestones and goals. Aspiring, beginning, and even experienced software archi-
tects who do not make the effort to carve out a personal career strategy may
flub job interviews, miss promotion opportunities, and introduce unnecessary
confusion to their career journey.

Bear in mind that a software architecture career strategy may run its course
because of unforeseen business and technological trends. Industry changes typ-
ically impact organizational hiring priorities, budgets, and even the scope and
types of projects. Therefore, when a career strategy turns out to be irrelevant,
the time comes to revamp the career road map and reset goals. Put differently,
a career plan must be periodically updated to reflect business and technolog-
ical evolutions.

When either carving out a new software architecture career plan or updating an
existing one, follow a step- by- step process that defines clear and tangible goals.

 CO N C E P T The career planning process must take a pragmatic approach. It should
be driven by realistic milestones and goals to circumvent an unachievable career
road map.

As illustrated in Figure 3.1, the sections that follow elaborate on the career
planning process, which consists of four steps.

1. Conduct self- discovery. Reveal personal traits and technological capabili-
ties that can be employed to provide solutions to organizational challenges.

2. Pursue research. Identify particular industries, companies, business mod-
els, and lines of business that personal traits and technological capabilities
can contribute the most to.

3. Devise an approach. Employ a method to facilitate a successful software
architecture career.

4. Plan career execution. Devise a plan to effectively execute the software
architecture career plan.

Bell820970_c03.indd 74Bell820970_c03.indd 74 10-02-2023 17:13:4310-02-2023 17:13:43

 Chapter 3 ■ Career Planning for Software Architects: A Winning Strategy 75

Career Planning Step 1: Conduct Self- Discovery
The career development process calls for self- discovery activities that shed light
on an individual’s ability to fulfill software architecture duties. A big part of
the discovery exercise is to find out if an aspiring, beginning, or experienced
software architect possesses adequate qualifications to tackle business and
technological challenges. The discovery process then must focus on at least two
chief self- discovery perspectives: technological and social. Note that Chapter 4,
“Self- Assessment for Software Architects,” includes additional perspectives.

Discovery of Technological and Social Talents

From a technological viewpoint, the discovery efforts should center on revealing
professional talents associated with software architecture practices. Among
other technical aptitudes, these discovered skills may include the ability to
embrace frameworks, master software modeling, provide design blueprints,
utilize architecture styles, employ integration patterns, and offer security models.

By contrast, the self- discovery of social skills may consist of a wide range of
communication capabilities. These typically include the ability to explain com-
plex design schemes to managers and collaborating teams, persuade executives
and sponsors to allocate software development budgets, encourage teamwork,
and foster business and IT partnerships.

 CO N C E P T To enhance technological and social skills, pursue a continuous self-
improvement effort. It must take place before applying for any software architecture
job. This educational task should be a vital part of any career planning.

Figure 3.1: Career Planning Process

Bell820970_c03.indd 75Bell820970_c03.indd 75 10-02-2023 17:13:4310-02-2023 17:13:43

76 Part 2 ■ Software Architecture Career Planning

Along with the technological and social self- discovery process, aspiring or
even seasoned software architects ought to consider their preferences, interests,
personal career goals, and even their moral values. These personal traits and
occupation vision should be a vital part of career planning.

Career Planning Self- Discovery Subjects

Table 3.1 summarizes the chief subjects that should be explored. They should
be the initial part of the career planning initiative. As I mentioned earlier, the
self- assessment questionnaire provided in Chapter 4 is designed to discover
and evaluate personal traits, technical skills, and social skills.

Career Planning Step 2: Pursue Research
One of the most common career planning activities calls for identifying soft-
ware architecture niche markets. A software architecture niche market refers to
a specific business and/or technical field that an individual can favorably
contribute to. This would be a field where novice and experienced software
architects could find a great deal of success by offering effective business and
technological solutions.

A software architecture niche market could also be viewed as a particular
industry that employs unique software products to execute specific business
activities. Moreover, since a niche market could also pertain to a distinct type
of business model or line of business, career planning research activities should
identify which companies are affiliated with a certain industry and software
products.

Table 3.1: Career Planning Self- Discovery

DISCOVERY SUBJECT
PERSONAL TRAITS AND CAPABILITIES EXAMPLES TO
EXPLORE

Technological capabilities Embrace architecture frameworks, software modeling, deliver
design blueprints, employ architecture styles, use integration
patterns, devise security models

Social capabilities Explain complex architecture, encourage teamwork, foster IT
and business partnerships

Personal traits Behavior strengths and weaknesses, moral values, individual
commitment to pursue career goals

Personal preferences Career preferences, personal goals, dreams, ambitions

Bell820970_c03.indd 76Bell820970_c03.indd 76 10-02-2023 17:13:4310-02-2023 17:13:43

 Chapter 3 ■ Career Planning for Software Architects: A Winning Strategy 77

 CO N C E P T Put differently, a software architecture niche market is an industry
segment that software architects understand and are able to offer effective solu-
tions to business and technological challenges. In essence, searching for a software
architecture niche market is about the alignment of personal traits and technical spe-
cialties with particular lines of business.

Formal Education, Training, and Certification

To adequately prepare for a career journey in software architecture, formal edu-
cation, such as earning a computer science degree, should be considered. But
this is not mandatory, since experience in the computer field could be considered
by employers as a substitute for a college degree. Other educational avenues
might be more appropriate for some. For example, pursuing continuing educa-
tion training or taking certification exams would be steps in the right direction.
The planning process, therefore, calls for exploring these formal education and
training options for formulating a successful career path.

Employment Opportunities and Interviews

The career planning research effort should also spur individuals to explore
employment opportunities with hiring organizations. Again, this effort should
center on companies in the software architecture niche market. For instance,
home equity loans, boat mortgages, car parts, and even email marketing firms
may fall under the niche market category. While searching for such companies,
a good idea would be to identify their customers and the demand for their prod-
ucts and services. From a software architecture perspective, this would also shed
light on the type of applications and systems the hiring organizations are using.

Finally, software architecture niche market companies tend to seek talents that
are capable of providing technological solutions in their product lines. Thus,
the interviews they conduct are typically affiliated with specific industries and
lines of business. Applicants then should be prepared to answer questions that
are affiliated with these particular niche markets.

Subjects of Research

Table 3.2 identifies the chief items to explore for carving out an effective career
strategy. The shown examples depict areas of study and investigation. This
research could be expanded to include subjects that are affiliated with employment
compensation and benefits. Additional subjects could include companies’ loca-
tions and their remote work policies.

Bell820970_c03.indd 77Bell820970_c03.indd 77 10-02-2023 17:13:4310-02-2023 17:13:43

78 Part 2 ■ Software Architecture Career Planning

Career Planning Step 3: Devise an Approach
Here is where the strategy is carved out during the career planning effort. The
strategy spells out the approach and the main tasks to facilitate the successful
fruition of a software architecture career. An unplanned and ill-conceived soft-
ware architecture career may veer off the track to achieving professional goals.
But this is not the only impediment. During a lifelong career journey, time must
be wisely spent to avoid delays in career growth or pursuing unintended occu-
pations that are not in line with personal preferences.

Every career plan should include the four key steps to formulate a firm approach
for pursuing a software architecture career. These are explained in the sections
that follow:

 ■ “Setting Software Architecture Career Goals”

 ■ “Setting Software Architecture Career Milestones”

 ■ “Decision- Making”

 ■ “Action Planning”

Setting Software Architecture Career Goals

The eventual achievement of a career goal signifies a major turning point in every
professional journey. Therefore, a software architecture career strategy cannot
survive if personal goals are not set. Without clear goals, a career plan won’t be
practical. To establish a feasible plan, attend to these career goal characteristics:

Pragmatic Avoid setting unrealistic career goals that are impossible to
fulfill. Goals must be aligned with personal preferences and software
architecture capabilities.

Table 3.2: Subjects of Research for Career Planning Process

RESEARCH SUBJECT EXAMPLES

Niche market Market needs, industry, products

Formal education, training,
and certification

Computer science degree, professional certifications and
training, continuing education, software architecture boot
camps

Hiring companies Company culture, technologies, business imperatives,
required talents, products, services, lines of business,
employee compensation and benefits

Consumers Consumer segmentation, consumer service demand,
consumer demographic, consumer service requirements

Interviews Type of interview questions and potential queries

Bell820970_c03.indd 78Bell820970_c03.indd 78 10-02-2023 17:13:4310-02-2023 17:13:43

 Chapter 3 ■ Career Planning for Software Architects: A Winning Strategy 79

Quantifiable The journey to achieving career goals must be measurable
and traceable to monitor professional progress.

Explicit A career goal must be clear and unambiguous to avoid confu-
sion and misinterpretation. This would set the focus on specific personal
preferences.

Well- timed Ensure that a timetable for achieving a goal is not unrealistic.

 CO N C E P T Note that career goals are subject to change and may be revised in
future career stages to reflect professional growth and earned achievements.

To establish effective career goals, craft a list similar to Table 3.3. Enterprise
architect is the target occupation in this example. Note that the preferred duties
for this goal are affiliated with common industry enterprise architecture roles
and deliverables. In this example, banking is the chosen industry, and New York
City is the favorite workplace.

It is common for aspiring and experienced software architects to set mul-
tiple career goals in their career plan. Therefore, the goal-setting table can be
expanded to include additional target occupations along with preferred duties,
industries, and workplaces.

Table 3.3: Software Architecture Career Goals Setting

TARGET
OCCUPATION/
GOAL PREFERRED DUTIES

PREFERRED
INDUSTRY

PREFERRED
WORKPLACE

M
y

Ca
re

er
 G

oa
l

Enterprise
architect

Support technological
modernization

Banking New York City

Embrace common
industry software
architecture
frameworks to establish
enterprise- wide best
practices, standards,
and policies

Devise firm- wide end-
state architecture

Promote technological
standardization to
reduce organizational
cost of ownership

Add here more software architecture career goals.

Bell820970_c03.indd 79Bell820970_c03.indd 79 10-02-2023 17:13:4310-02-2023 17:13:43

80 Part 2 ■ Software Architecture Career Planning

Setting Software Architecture Career Milestones

Unlike a career goal that signifies a decisive achievement in a professional
journey, a milestone serves as a checkpoint to measure skill improvement and
occupational progress. In the context of a software architecture career, a milestone
not only denotes the proper time to ponder one’s technological achievements,
it is also a good time to prepare for the next career step.

 CO N C E P T Remember, each career milestone provides a good opportunity to eval-
uate if an individual’s software architecture capabilities are up to snuff.

When reaching a software architecture career milestone, it’s time to ask these
questions:

Career trajectory Am I on the right trajectory to achieving my personal
preferences and professional goals?

Satisfaction Am I satisfied with my professional achievements so far?

Adequate solutions Have I provided adequate software architecture solu-
tions to meet critical business requirements?

Career improvement Is there anything else I can do to improve my software
architecture knowledge and performance to be able to provide superior
technical solutions to business problems?

Career goal Have I achieved my chief career goal?

Craft a list of milestones as shown in Table 3.4. In this example, there are two
planned milestones to meet: 1) becoming an application software architect, and
2) serving an organization as a solution software architect. Preferred milestone
duties, industries, and workplaces are indicated for each. Also specified is the
timeframe for achieving each milestone: one year to fulfill the application soft-
ware architect position and four years until the solution software architect job
is realized.

Note that this example shows two milestones, each of which targets a dif-
ferent software architecture occupation. Multiple milestones, however, could
be planned for a single occupation. It all depends on the career path that an
individual chooses.

Bell820970_c03.indd 80Bell820970_c03.indd 80 10-02-2023 17:13:4310-02-2023 17:13:43

 Chapter 3 ■ Career Planning for Software Architects: A Winning Strategy 81

Decision- Making

Hasty career decisions never pay off. It’s certainly not a good idea to pursue
random employment opportunities without pondering the negative consequences.

Table 3.4: Software Architecture Career Milestones Stetting

MILESTONE
TO
ACCOMPLISH

TARGET
OCCUPATION
MILESTONE

PREFERRED
MILESTONE
DUTIES

PREFERRED
MILESTONE
INDUSTRY

PREFERRED
MILESTONE
WORKPLACE

In 1 year Application
software
architect

Promote
programming
frameworks that
are embraced by
enterprise
architects and
solution architects

Insurance New Jersey

Provide
application- level
design blueprints
to the
development
teams

Facilitate, guide,
and often
participate in the
software
development
process

In 4 years Solution
software
architect

Provide design
blueprints

Insurance Remote work

Take part in
integration efforts
of business
products in
production

Provide technical
management
services to
development
teams

Add here more software architecture career milestones.

Bell820970_c03.indd 81Bell820970_c03.indd 81 10-02-2023 17:13:4310-02-2023 17:13:43

82 Part 2 ■ Software Architecture Career Planning

Unvetted job propositions that may pay higher wages characteristically hinder
career progress and only introduce disruptions to attaining professional objec-
tives. Therefore, do not rush. Carve out a solid career plan that ultimately meets
personal strategy goals.

So, what are the career decision- making steps that should be followed? What
is unique about the software architecture decision- making process? And why is
career decision- making so critical when planning future employment?

Decision- making activities must focus on career choices that individuals
strive to accomplish. In other words, the decision- making process is about
selecting the right career path after gathering enough information about var-
ious occupational options. This task in itself is not an easy one because there
are endless opportunities to choose from, some of which are truly appealing.

 CO N C E P T The rule of thumb suggests that the best career choice is also the most
practical one. And the most feasible is the one that is aligned with an individual’s soft-
ware architecture capabilities.

Software architecture career decisions are driven by choices that are made
because of professional preferences, technical capabilities, and software
architecture talents. Only when all these traits are brought into consideration
does the right decision become clear.

Finally, consider the decision- making activities of software architecture career
planning:

Gather career path choices. Compile a list of software architecture career
path choices. The “Carving a Software Architecture Career Path” section
in this chapter elaborates on various career path options.

Study the choices. Carefully analyze all career path choices that are on
the table.

Choose the best career path. The best career path is the one that aligns with
professional preferences, technical and social capabilities, and personal
career goals.

Analyze the feasibility of the chosen career path. Consider the alterna-
tives. Analyze the practicality of the chosen career path. And answer the
questions, “Is it practical? Does it comply with personal professional
preferences?”

Action Planning

The execution of a software architecture career plan must be driven by a solid
scheme that ultimately meets predefined goals. In addition, the action plan should

Bell820970_c03.indd 82Bell820970_c03.indd 82 10-02-2023 17:13:4310-02-2023 17:13:43

 Chapter 3 ■ Career Planning for Software Architects: A Winning Strategy 83

be guided by a compelling approach— as outlined in the previous section. So why
is such an execution plan needed? A professional career is typically prone to
failure if an action plan is absent. The same outcome may apply to a plan that’s
not well thought out or meticulously outlined. In the case of a career failure,
the stakes might be high and the results irreparable. Waste of valuable time,
compensation reduction, and professional demotions may be some of the harsh
consequences for disregarding the significance of a career strategy.

When mulling over the activities that should be incorporated in a software
architecture career action plan, consider including rudimentary tasks that can
promote the fulfillment of professional goals. Remember, though, that these tasks
ought to be achievable and practical. The action plan must never comprise futile
activities that result in negligible career outcomes. Tasks are beneficial if they
bring about tangible results. Hiring a career coach, joining a software architecture
social media group, acquiring a laptop, and even purchasing a business suit are
examples that typically contribute to employment efforts.

The Impediments to Completing an Action Plan’s Tasks

Be aware that an action plan is merely a plain list of tentative tasks, some of
which may never be executed. They are specified, though, just in case time and
circumstances allow. When the time arrives to execute the action plan, we may
find out that some tasks cannot be accomplished. All in all, the obstacles to the
action plan could be infinite. In most cases, the chief impediment to the plan is
due to underestimating the duration of the tasks.

 CO N C E P T Generally, career action plans are always subject to change because of
unexpected hindering events or even execution time constraints. Consequently, the
planned tasks may never be implemented.

Create an Action Plan Table

With this prior knowledge, create an action plan as shown in Table 3.5. Focus on
the four columns: Target Occupation/Goal, Task, Task Specification, and Estimated
Task Duration. In this case, the target occupation— security architect— is the
eventual professional goal. Obviously, the tasks ought to be related to the occu-
pation. It is also important to specify the estimated timeframe for completing
each task. If the duration is unknown, then provide an execution time range.

Bell820970_c03.indd 83Bell820970_c03.indd 83 10-02-2023 17:13:4410-02-2023 17:13:44

84 Part 2 ■ Software Architecture Career Planning

Table 3.5: Software Architecture Career Action Plan

TARGET
OCCUPATION/
GOAL TASK TASK SPECIFICATION

ESTIMATED TASK
DURATION

Security
architect

Certification Acquire cybersecurity
certification

10–25 weeks

On- site
conferences

Attend cybersecurity
conferences

5–10 days

Social networking Pursue social networking
to learn more about the
cybersecurity industry

Constant effort

Study Study publications, such as
books and journals about
new cybersecurity
penetration testing and
risk assessment
technologies

2–6 months

Self- assessment Use self- assessment tools
to discover and verify
cybersecurity skills

3 weeks

Learning Learn about cybersecurity
frameworks

10–20 days

Training Take security awareness
training

3 days

Contacts Update contact
information for friends,
co- workers, and recruiters

Constant effort

Resume Prepare a compelling
resume that demonstrates
cybersecurity experience
and knowledge

2–5 weeks

Employment
searching tools

Discover employment
search tools to find
available cybersecurity
jobs

Constant effort

Employment
opportunities

Search for potential
employers who seek
cybersecurity talents

Constant effort

Interviews Prepare for cybersecurity
interviews

At least 2 weeks
before an interview

Add here more action plans.

Bell820970_c03.indd 84Bell820970_c03.indd 84 10-02-2023 17:13:4410-02-2023 17:13:44

 Chapter 3 ■ Career Planning for Software Architects: A Winning Strategy 85

Career Planning Step 4: Plan Career Execution
There is a substantial difference between action planning and execution planning.
As elaborated in the previous section, there is no guarantee that an action plan
will be fully executed. On that account, the rule of thumb suggests that there
are no safe action plans— all are subject to change since myriad things may go
awry during their execution.

The execution plan that’s proposed here, therefore, should include alternative
tasks just in case anything goes wrong. Moreover, the plan must consist of
contingency activities to fall back on. It should include a backup strategy. It
should include “what if” conditional statements to deal with the unknown and
to address unforeseen events that can easily derail a career path.

 CO N C E P T Recall that the better we plan for random career impediments, the
better we’re prepared for dodging them. Therefore, an execution plan must be flexible
enough to adjust to changes in the software architecture field, attuned to trends in
business and technology, and in harmony with industry transformations.

To carve out an efficient and realistic execution plan to alleviate fulfillment
and timetable risks, consider the proposition of the two use cases that follow:

 ■ “Use Case I: A Software Architecture Career Execution Plan with
Alternative Tasks”

 ■ “Use Case II: Optimized Software Architecture Execution Plan”

Use Case I: A Software Architecture Career Execution Plan
with Alternative Tasks

Since it’s difficult to circumvent negative impacts on almost any career execu-
tion plan, let’s examine options that can mitigate risks. Namely, never assume
that all tasks assigned to a career action plan (as shown in Table 3.5) are going
to be fulfilled. Therefore, come up with alternatives that can replace the original
ones. Or devise a different task that may take a shorter time to accomplish. Or
just avoid setting tasks that are impossible to carry out.

First, Create a Base for an Execution Plan

To create a realistic career execution plan, start with the career action plan
example as described in the section “Action Planning.” Simply copy Table 3.5.
This will be the base for the career execution plan that is discussed here.

 CO N C E P T Remember that every action plan must be driven by a predefined goal.
This obviously must apply to the execution plan as well.

Bell820970_c03.indd 85Bell820970_c03.indd 85 10-02-2023 17:13:4410-02-2023 17:13:44

86 Part 2 ■ Software Architecture Career Planning

Table 3.6: Software Architecture Career Execution Plan with Alternative Tasks

TARGET
OCCUPATION/
GOAL TASK TASK SPECIFICATION

ESTIMATED
TASK
DURATION

Security
architect

Certification Acquire cybersecurity
certification

10–25 weeks

On- Site
Conferences

Attend cybersecurity conferences 5–10 days

Complete this task instead:

Virtual
Conferences

Participate in virtual
cybersecurity conferences

2–5 days

Social networking Pursue social networking to
learn more about the
cybersecurity industry

Constant
effort

First understand the predefined goal. In our case, the target occupation is
security architect. Then understand the related tasks to be accomplished. Next,
note that the Estimated Task Duration column specifies the projected time for
completion. Now the time has come to refine the execution plan. Ask these
rudimentary questions before fine- tuning the plan:

Realistic plan Is the overall execution plan realistic when it comes to achiev-
ing the specified goal?

Understandable tasks Do the tasks make sense? Are they understandable?
Defined well? Clear?

Promoting goals Do the all the tasks promote goal achievement?

Practical tasks Are all tasks practical?

Pragmatic task durations Are the estimated task durations pragmatic? Can
the tasks be accomplished within the specified timeframe?

Second, Tweak the Base Execution Plan

Now, let’s tweak the execution plan if any of the provided answers calls for
modification. Table 3.6 shows the changes to the plan. The modifications to the
tasks are displayed in gray.

First replacement The On- Site Conferences task was deleted and replaced
with the Virtual Conferences task.

Second replacement The Self- Study task was deleted and replaced with
the Cybersecurity boot camps task.

Bell820970_c03.indd 86Bell820970_c03.indd 86 10-02-2023 17:13:4410-02-2023 17:13:44

 Chapter 3 ■ Career Planning for Software Architects: A Winning Strategy 87

TARGET
OCCUPATION/
GOAL TASK TASK SPECIFICATION

ESTIMATED
TASK
DURATION

Study Study publications, such as books
and journals, about new
cybersecurity penetration testing
and risk assessment technologies

2–6 months

Complete this task instead:

Cybersecurity Boot
camps

Take cybersecurity boot camps
to focus on current penetration
testing and risk assessment
technologies

2–3 weeks

Self- assessment Use self- assessment tools to
discover and verify cybersecurity
skills

3 weeks

Learning Learn about cybersecurity
frameworks

10–20 days

Training Take security awareness training 3 days

Contacts Update contact information for
friends, co- workers, and
recruiters

Constant
effort

Resume Prepare a compelling resume
that demonstrates cybersecurity
experience and knowledge

2–5 weeks

Employment
Searching Tools

Discover employment searching
tools to find available
cybersecurity jobs

Constant
effort

Employment
Opportunities

Search for potential employers
who seek cybersecurity talents

Constant
effort

Interviews Prepare for cybersecurity
interviews

At least
2 weeks
before each
interview

Add here more action plans

To make the execution plan more realistic, the deleted tasks were replaced
with their alternative tasks. To be more specific, the changes to the execution
plan were made to shorten the estimated task durations for two chief reasons:

 ■ The estimated duration for the On- Site Conferences task would have taken
longer than necessary (5–10 days) and required physical attendance at
conference facilities. For these reasons it was replaced with the Virtual

Bell820970_c03.indd 87Bell820970_c03.indd 87 10-02-2023 17:13:4410-02-2023 17:13:44

88 Part 2 ■ Software Architecture Career Planning

Conferences task (2–5 days duration) that would be conducted on the
Internet.

 ■ The estimated study task’s duration is between 2–6 months. For practical
reasons it was replaced with the Cybersecurity Boot Camp task, with only
2–3 weeks estimated duration.

Use Case II: Optimized Software Architecture Execution Plan

Unlike Use Case 1 (presented in the previous section), Use Case 2 is all about
shortening the goal achievement time range. There are a few pragmatic reasons
for doing this, especially when it comes to veteran software architects.

Experience Experienced software architects who aspire to become security
architects typically need shorter preparation time.

Prior studies They may also be able to ace interviews with limited training
and self-study.

Conferences They may already have attended cybersecurity training and
conferences.

Resume The estimated time for honing their résumé and preparing for
interviews may be shorter.

To reflect these reasons, Table 3.7 shows these eliminated tasks (shown in
gray): On- Site Conferences, Study, Learning, and Training. In addition, for
the same pragmatic reasons, the estimated task duration for the resume is not
completely eliminated, but shortened from 2–5 weeks to 1 week.

Table 3.7: Optimized Software Architecture Career Execution Plan

TARGET
OCCUPATION/
GOAL TASK TASK SPECIFICATION

ESTIMATED
TASK DURATION

Security
architect

Certification Acquire cybersecurity
certification

10–25 weeks

On- Site
Conferences

Attend cybersecurity
conferences

5–10 days

Social networking Pursue social networking
to learn more about the
cybersecurity industry

Constant effort

Study Study publications, such as
books and journals, about
new cybersecurity
penetration testing and risk
assessment technologies

2–6 months

Self- assessment Use self- assessment tools
to discover and verify
cybersecurity skills

3 weeks

Bell820970_c03.indd 88Bell820970_c03.indd 88 10-02-2023 17:13:4410-02-2023 17:13:44

 Chapter 3 ■ Career Planning for Software Architects: A Winning Strategy 89

Self- Discovery Process: The Six Ws

One of the most challenging efforts when planning a career is self- discovery. The
term self- discovery is all about being able to look in the mirror and face the very
fundamental, and at times daunting, questions that every professional should
ask before embarking on or while pursuing a software architecture occupation.
This discovery process may seem uncomfortable to those who attempt to be in
touch with their feelings, desires, aspirations, and dreams. But there is nothing
more satisfying than facing reality and then finding out that the self- discovery
process was indeed worth pursuing.

TARGET
OCCUPATION/
GOAL TASK TASK SPECIFICATION

ESTIMATED
TASK DURATION

Learning Learn about cybersecurity
frameworks

10–20 days

Training Take security awareness
training

3 days

Contacts Update contact
information of friends,
co- workers, and recruiters

Constant effort

Resume Prepare a compelling
resume that demonstrates
cybersecurity experience
and knowledge

2–5 weeks

Estimated task duration is adjusted to 1 week:

Resume Prepare a compelling
resume that demonstrates
cybersecurity experience
and knowledge

1 week

Employment
Searching Tools

Discover employment
searching tools to find
available cybersecurity
jobs

Constant effort

Employment
Opportunities

Search for potential
employers who seek
cybersecurity talents

Constant effort

Interviews Prepare for cybersecurity
interviews

At least 2 weeks
before an interview

Add here more action plans.

Bell820970_c03.indd 89Bell820970_c03.indd 89 10-02-2023 17:13:4410-02-2023 17:13:44

90 Part 2 ■ Software Architecture Career Planning

Here are some queries that typically cross aspiring software architects’ minds:
“Are my technical and social capabilities suited for a software architecture
career?” “Am I good enough?” “Will I be able to pull it off?” “What if I fail. . .?”
“Who should I consult?” “What will I need to prepare?”

For those who have already been working in the field, these reflective ques-
tions are common: “Am I an effective software architect?” “Am I fulfilling the
goals that I set for myself before embarking on current career?” “What is the
contribution of my work to the organization?” “What would be my next step
to progress in the field?”

The self- discovery process, however, should not preclude applicants from
consulting friends, family, or co- workers about their future endeavors. Getting
advice from veteran software architects is another way of discovering the hur-
dles that one may experience during a professional journey.

So which questions should candidates ask themselves to discover if a career
in software architecture is suitable for them? Should these questions be about
the skills that they must possess? Should these questions be about their com-
munication competence? Should they be about the ability to provide effective
solutions? Should the questions be about their decision- making capabilities?

Clearly, the number of questions to be asked is infinite. Software architecture
candidates should therefore employ a personal guiding strategy called the
Six Ws. As elaborated in the sections that follow, the strategy encompasses six
categories of questions employed to discover personal aptitudes, character,
behavior, and the ability to provide feasible solutions under the weight of
growing business demands and technical challenges.

The “Why”
The “why” questions must be related to prior knowledge about the software
architecture practice. There must be something about it that a candidate finds
compelling, exciting, and fascinating. And the answer should not be “because
it’s cool.” Nor should it be associated with the prospects of hefty earnings. True,
experienced software architects are typically well paid. But the motivation ought
to be more than income. It must be about the intangible rewards, the dedica-
tion, and the daily persistence needed to enact organizational positive change.

 CO N C E P T A candidate should be motivated by the opportunity to promote orga-
nizational software architecture best practices, standards, and policies. Candidates’
decisions to pursue such a career should be driven by the opportunity to foster techno-
logical innovation, propel enterprise transformation, and drive business growth.

Bell820970_c03.indd 90Bell820970_c03.indd 90 10-02-2023 17:13:4410-02-2023 17:13:44

 Chapter 3 ■ Career Planning for Software Architects: A Winning Strategy 91

The “why” question is not easy to answer because it demands research,
industry studies, and high motivation to uncover the reasons for becoming a
software architect. But persistence pays off. Taking the time to understand the
software architecture field and then being comfortable with personal strategic
decisions may be a lengthy endeavor. Many applicants typically worry about
making imprudent career decisions, asking themselves if software architecture
is the right field for them. This self- discovery process can take a while.

If the answer to the “why” self-question is unsatisfying to some, that should
not be a reason to give up. There is no excuse for throwing in the towel so early
in the game. Surrendering to failure even before rationalizing the reasons to
pursue the software architect career is not encouraged. The efforts to discover
the chief motivations must go on.

Therefore, attempt to answer the queries that follow. And persist in the self-
discovery process with utmost determination.

Career Why is a software architect career what I really want?

Practice Why is the software architecture practice so compelling to me?

Investing Why should I be investing my time in improving my software
architecture skills?

Quitting Why do some of my co- workers quit their jobs as software architects?

Accomplishing Why does the software architecture occupation prove so
difficult for some to accomplish?

Politics Why do software architects often engage in office politics rather
than focusing on their own duties?

Software development Why do software architects not develop software
as often as they would like to?

Software architecture and software design Why is software architecture
analogous with software design?

The “Who”
Only a handful of professionals tend to flourish in the software architecture
industry without the helping hands of others. We must be thankful to those gen-
erous individuals who are willing to help with career planning and development.
They typically endow us with knowledge and experience that is immensely
important to our self- discovery and decision- making process. They stand by us
when we need to learn more about the software industry, when we hesitate to
make bold career moves, when we are unsure about our software architecture
career planning, and when we are uncertain about our ability to provide solu-
tions to business problems.

Bell820970_c03.indd 91Bell820970_c03.indd 91 10-02-2023 17:13:4410-02-2023 17:13:44

92 Part 2 ■ Software Architecture Career Planning

 CO N C E P T The only way to accelerate our search for viable first- hand software
architecture information is to network with others.

Networking means that we must reach out to people who possess undocu-
mented knowledge about the industry, the policies, the best practices, and the
standards. Networking also means that we maintain a respectful dialogue with
professionals who can boost our confidence in ourselves. Networking is a part
of what we need to do to advance our careers in this industry. Networking is a
big part of what experienced software architects must do to achieve professional
milestones and goals.

But we must also contribute to this dialogue despite our lack of knowledge
or hesitation to pursue new career avenues. So how do we give back? How
do we strengthen the dialogue with career enablers whose help we seek? The
simplest answers to these questions must be driven by the belief that everyone
brings talents to the table even if they are limited in scope.

Finally, when seeking to advance in the software architecture industry, find
useful facilitators such as co- workers, mentors and trainers, or even IT recruiters.
Without the benevolent gestures of these individuals, our career may stall.

Consider the number of the “who” self- discovery questions that aspiring,
beginning, or even experienced software architects ought to ask when planning
a career road map.

Self- identity Who is best suited for a software architecture job? Can I do
it? Do I have the right qualifications to become a software architect? To
answer these questions, take the software architect self- assessment that is
offered in Chapter 4, “Self-Assessment for Software Architects.”

Career enablers Who should I seek help from to promote my software
architecture career?

Collaboration Who are the people with whom I should collaborate to pro-
mote my career?

Architecture organization managers Who is in charge on an architecture
organization?

Interviewers Who are the typical software architecture interviewers? Dis-
cover their backgrounds and technical strengths.

Duties Who can shed light on software architecture duties?

The “What”
“What actually is a software architect?” and “What do architects do?” and “What
is Software architecture practices and diciplines are discussed in chapter 1,
“Software Architect Capability Model?” are general questions that applicants

Bell820970_c03.indd 92Bell820970_c03.indd 92 10-02-2023 17:13:4410-02-2023 17:13:44

 Chapter 3 ■ Career Planning for Software Architects: A Winning Strategy 93

must ask to become familiar with the job they are applying for. These questions
could also pertain to experienced software architects who are in the process
of discovering new avenues for professional advancement. Growing business
demands and technological challenges propel these veteran architects to redis-
cover the contribution of software architecture to the enterprise.

On a more personal level, the self- discovery aspect of the “what” questions
are affiliated with the duties that one will be asked to perform. In other words,
common queries are “What will I be required to deliver as a software architect?”
and “What would then be my daily schedule?” For experienced architects
the more applicable questions could be, “What would be my new software
architecture duties in the face of business transformation?” and “What type of
deliverables will I be required to submit for technological innovation projects?”

Self- Discovery Questions for Software Architecture Candidates

Consider the self- discovery questions that apply to software architecture
applicants:

Software architecture What is software architecture?

Industry standards What are the typical responsibilities of software archi-
tects? Are there any industry standards for architecture roles and duties?

Occupation What would be my duties as a beginning software architect?

Practices What is a software architecture practice?

Disciplines What is a software architecture discipline?

Architect type What kind of a software architect would I like to be?

Pursuing What do I need to do to become a software architect?

Required skills What are the required skills for succeeding in the field of
software architecture?

Skills What are my qualifications to become a software architect?

Design capabilities What are my software design capabilities? (Refer to
Chapter 1, “Software Architect Capability Model,” to learn how to assess
personal skill competencies.)

Deliverables What will I be required to deliver as a novice software architect?

Daily schedule What will be my daily schedule as a beginning software
architect?

Self- Discovery Queries for Software Architects

The next set of the self- discovery queries are provided for software architects
who seek to advance their career and enhance professional performance.

Bell820970_c03.indd 93Bell820970_c03.indd 93 10-02-2023 17:13:4410-02-2023 17:13:44

94 Part 2 ■ Software Architecture Career Planning

Solution architect What are the steps for becoming a solution architect after
a few years of performing application architecture duties?

Enterprise architect skills What technical skills must enterprise architects
possess?

Enterprise architect duties What do enterprise architects actually do?

Technological modernization My organization has decided to embark on
technological modernization efforts. What would be my responsibility
as an enterprise architect to foster the enterprise’s ongoing technological
transformation?

Consumer- centric strategy Our business strategy calls for constructing
consumer- centric driven applications. What architecture styles should I
recommend to foster my organizational strategy?

Cloud transition What software architecture best practices, standards,
and policies should I embrace to promote our organization’s transition
to the cloud?

Next career move After a few years of practicing software architecture, what
would be my next career move? Should I stay in the same field?

Software architecture managers What do software architecture managers do?

The “Where”
The “where” self- discovery type of questions pertain to locations. In this con-
text, the term locations does not necessarily refer to a geographical region or
continent— although it could. Some of the questions refer to the virtual meaning
of the term, which, for example, may reveal the candidate’s industry prefer-
ences, technological environments, and perhaps lines of business. “Which line
of business would benefit the most from my software architecture talents?”
or “In which industry can my skills make a greater impact on technological
decisions?” are some of the key questions that applicants ought to answer before
making a career move.

 CO N C E P T Recall that the answers to the “where” self- discovery questions must be
predicated on the specific business and technological skills of the software architecture
applicants.

For example, the question, “Will my business knowledge be valuable to the
organization’s credit card line of business?” pertains to one’s capability to pro-
vide solutions to a particular line of business. Furthermore, “Are my current
skills suitable enough to be engaged effectively in a cloud migration initiative
for the banking division?” is visibly a self- discovery query that is affiliated
with cloud architecture technical abilities to contribute to a specific financial

Bell820970_c03.indd 94Bell820970_c03.indd 94 10-02-2023 17:13:4410-02-2023 17:13:44

 Chapter 3 ■ Career Planning for Software Architects: A Winning Strategy 95

institution. The same principle applies to applicants who prefer to work for
particular industries, such as automobile, wireless, and construction.

As indicated, geographic locations, such as cities, countries, and continents,
should not be ruled out when attempting to answer the “where” self- discovery
questions. It’s well known that some cities or regions predominately support tech-
nological development environments and innovation centers. Other geographical
locations are more affiliated with certain industries, such as agriculture, semi-
conductor, and tourism. These geographical locations may affect applicants’
preferences when it comes to career planning and even work relocation.

Consider the examples of questions that pertain to the “where” self- discovery
questions:

Line of business To which line of business will my software architecture
skills contribute the most?

Industry Which industries are the most appealing to me?

Geographical location In which city, region, or continent would I like to
live and work from?

Work relocation If I were offered a software architecture job, would I agree
to relocate to my new workplace?

Technological environment To which technological environment will my soft-
ware architecture skills contribute the most? Cloud ecosystem? Integration
environment in production? Data warehouse environment?

Office location Where is my preferred work environment? Home office?
Corporate offices? Client sites? Small office with a few co- workers, large
work environment, or in an office with no co- workers?

The “When”
The “when” type of self- discovery questions refer to the right time during a
career to resign from the current occupation and move on to a different one.
Many applicants, and even veteran software architects, struggle with decisions
about their career moves. They typically grapple with career changes and life-
altering determinations.

 CO N C E P T Those who lack the tenacity to make timely and bold career moves
characteristically fail to obtain fulfilling employment opportunities.

Career moves are never easy. And nothing can make applicants, or already
practicing software architects, comfortable enough about embarking on new
professional endeavors. If there’s any consolation, it’s common to feel uneasy
about changing workplaces, meeting new co- workers, or being assigned to
new projects.

Bell820970_c03.indd 95Bell820970_c03.indd 95 10-02-2023 17:13:4410-02-2023 17:13:44

96 Part 2 ■ Software Architecture Career Planning

 CO N C E P T One of the most challenging tasks is to ensure that the new career
move is about moving up the professional ladder.

But nothing is guaranteed in this fast- paced business world. In some cases,
the next career move turns out to be disappointing— not as it was perceived or
planned. Mustering the courage, though, to take career- changing risks despite
a potential setback may pay off in the long run. Simply put, learning from
mistakes and circumventing them in the future is the chief benefit of failed or
lackluster career moves.

Do not rush, though. Before even contemplating a move, ask these pivotal
questions: “Am I ready?” “Am I prepared?” “Have I considered the risks?”
“Have I fulfilled my current milestone?” “Have I exhausted the prospects to
advance in my current occupation?” These questions are all about the “when.”
And nothing is more important than timing.

To summarize this discussion, consider the chief “when” self- discovery type
of questions that must be addressed before investing time and resources during
a professional career journey:

Readiness Am I ready to make a career move now?

Timing If not now, when would be the right time?

Pre- training Would it be wiser to take software architecture training that
can prepare me better for moving to the next career milestone?

Preparations When would be the best time to start preparing for a career move?

Resume updating When should I start updating my resume?

Availability When should I let recruiters know that I’m available for my
next career move?

The “How”
The “how” self- discovery question pertains to the manner by which one achieves
the desired career goals. Obviously, there is no prescribed method to meeting
the software architecture professional objectives. The road to success is always
challenging since the pace of business transformation and technological evo-
lution is rapid and utterly demanding. But despite unforeseen hurdles, appli-
cants and currently practicing software architects ought to adopt a road map
for achieving success. In other words, there must a step- by- step program with
milestones, tasks, and an accomplishment ladder to promote personal goals.

 CO N C E P T Simply put, the “how” self- discovery queries focus on how to become a
software architect who is able to provide viable business solutions. And for those who
are already practicing the art of software design, these types of questions center on
how to grow and succeed in the field.

Bell820970_c03.indd 96Bell820970_c03.indd 96 10-02-2023 17:13:4410-02-2023 17:13:44

 Chapter 3 ■ Career Planning for Software Architects: A Winning Strategy 97

Furthermore, to carve out a software architecture road map for success, one
must plan achievable milestones and goals. The purpose should be, therefore,
to plan attainable and feasible steps that clearly answer the “how” questions
(refer to the “Career Planning” section to learn about action planning and career
execution).

“How” Self- Queries for Software Architecture Applicants

The “how” self- questions are never easy to answer. And there is no need to
panic about the planning and undertaking efforts for becoming a prosperous
software architect. It’s all about dedicating the time and taking the appropriate
measures that can change someone’s course of life. Applicants, therefore, must
recognize that an effective personal strategy with “chewable” goals can make
a big difference between success and failure.

Moreover, there is no limit to what one can do to advance a personal career.
These efforts may include engaging a personal software architecture career
coach who will help usher in an exciting occupation that may last years or
decades. In addition, finding a helpful community that can shed light on soft-
ware architecture duties and responsibilities would contribute immensely to
achieving professional goals.

On the quest for career opportunities, keep in mind these “how” questions.
When the time comes, attempt to answer them as the career road map becomes
clearer.

Acing a software architecture interview How to ace a software architecture
interview? Elaborate on an effective approach to beating the competition.

Successful software architect How does a software architect meet business
requirements? Provide a business problem and explain how to solve it by
employing technological means.

Personal road map How to plan a personal career road map for becoming
a software architect?

Practical road map How to structure a practical career road map with archival
milestones and goals?

Software architecture career coach How to find the right software architecture
career coach?

Software architecture communities How to find communities that share
useful information about the software architecture industry?

“How” Self- Questions for Practicing Software Architects

The questions that follow are presented for those who are currently pursuing the
art of software architecture and have already participated in providing techno-
logical solutions. These queries identify challenges that software architects meet

Bell820970_c03.indd 97Bell820970_c03.indd 97 10-02-2023 17:13:4410-02-2023 17:13:44

98 Part 2 ■ Software Architecture Career Planning

while serving their duties as solution providers. The term solution providers in
this context refers not only to technologists chartered to fully understand orga-
nizational problems but to those capable of satisfying business requirements.
Moreover, only with fruitful collaboration with co- workers and executives are
software architects able to accomplish their technological vision and mission.

Business requirements How to analyze business requirements when asked
to provide software architecture solutions?

Software architecture frameworks How does an effective software architect
facilitate technological solutions by promoting architecture frameworks?

Impact time- to- market How do software architecture frameworks impact the
acceleration of time- to- market and organizational expenditure reduction?

End- state architecture How to devise an organizational end- state architecture
road map that meets the demands of business transformation?

Obtaining architecture vision support How to persuade executives, man-
agers, and peers to buy into software architecture visions? Describe the
approach for accomplishing it.

Communicating architecture solutions How to effectively communicate a
proposed software architecture solution?

Technological transformation How to plan and execute an organizational
technological transformation such a cloud migration? Provide a road map
to facilitate such technological evolution.

Carving a Software Architecture Career Path

A software architecture career does not progress in a straight line. Career goals
and professional success can never be smoothly achieved without encoun-
tering challenges such as business trends and technological transformations.
Furthermore, there will always be changes on the horizon that will impact the
way business is conducted and the manner in which technological solutions
are offered. Consequently, these shifts impact hiring demands and employment
opportunities.

When a career is launched, expect to be challenged by winding roads, constant
hurdles, and endless speedbumps. And nothing seems to be straightforward
when trying to survive in uncharted territories. But this experience should not
deter anyone from conquering what appears to be the impossible. Professional
career journeys are not easy. This is what makes them so interesting and exciting,
though. Do not fret! Carve out a software architecture career path to achieve
personal and professional goals. Be determined and take chances.

Bell820970_c03.indd 98Bell820970_c03.indd 98 10-02-2023 17:13:4410-02-2023 17:13:44

 Chapter 3 ■ Career Planning for Software Architects: A Winning Strategy 99

These challenges call for devising a professional career path, a map that
visually presents individual moves from one milestone to another. It must have
a beginning and should focus on goals. In essence, the road map should be
followed to achieve professional and technological objectives. It’s an itinerary
that illustrates work experiences and occupations in a sequential order. It also
depicts personal preferences and software architecture capabilities to provide
practical solutions to organizational problems.

The 4D Software Architecture Career Perspectives
Every aspiring, beginning, or experienced software architect has different career
objectives. Some lean toward supervisory positions in the software industry.
Several envision a more technical role in IT. And a few would like to be involved in
promoting organizational culture by fostering enterprise strategies. Consequently,
before making the next employment move, be aware that career goals can be
pursued in different ways and influenced by diverse agendas. When it comes
to making career decisions, professional competencies and personal preferences
drive most employment decisions.

As illustrated in Figure 3.2, we focus here on four different career perspectives:
social- driven, technology- driven, management- driven, and strategy- driven. Each
of these views represents a unique approach to achieving professional goals.
Employ them to carve out a realistic career path. But before even determining
which career perspective to embrace, make sure that the questions presented
in the section “Self- Discovery Process: The Six Ws” have been answered. The
answers to these queries can shed light on personal preferences and career
objectives.

The sections that follow elaborate on the four software architecture career
perspectives, each with their respective career charts and paths. These views

Figure 3.2: The 4- D Software Architecture Career Perspectives

Bell820970_c03.indd 99Bell820970_c03.indd 99 10-02-2023 17:13:4510-02-2023 17:13:45

100 Part 2 ■ Software Architecture Career Planning

can be employed to carve out a career path that coincides with personal pref-
erences, employment goals, and individual professional missions. Note that
it’s common to be drawn to more than one career perspective. And therefore,
there is nothing wrong about carving out multiple career paths. For example,
an individual may be interested in exploring the management and technical
career development views. Both of these perspectives can add immense value
to the career strategy since the view is not confined to only one perspective.

Social- Driven Career Perspective
This career view centers on the social skills and preferences of those who seek to
promote their professional objectives by forming robust partnerships in their workplace.
The term social- driven career perspective refers to personal traits and abilities that
can foster collaboration with co- workers, managers, and organizational execu-
tives. But these alliances can even go beyond a company’s boundaries. It also
involves forming and strengthening relationships with members of technology
communities and their influencers in the software industry.

 CO N C E P T The benefits of pursuing a career driven by social incentives are vast. By
and large this career strategy tends to foster workplace communication, accelerate pro-
ductivity, and open the door for new employment opportunities.

Social- Driven Career Chart

Figure 3.3 shows an example of a social- driven career chart where various IT
roles are located. The architect occupations are noted by rectangles. The oval
shapes are dedicated to other IT professions, such as software developer, systems
administrator, business analyst, and software engineer. The circle represents
the college graduate.

Each position on the chart is measured by the scale of four social preferences
and personal traits.

Collaborative Depicts the ability to work together, cooperate, and team up
to provide technological solutions for business challenges

Sociable Refers to one who inclines to form companionship with others to
promote business and technological goals

Self- sufficient Pertains to one who is able to perform individual duties
without the assistance of others

Introverted Refers to an individual whose occupation does not benefit from
social interaction with others

Bell820970_c03.indd 100Bell820970_c03.indd 100 10-02-2023 17:13:4510-02-2023 17:13:45

 Chapter 3 ■ Career Planning for Software Architects: A Winning Strategy 101

Note that on this social- driven career chart, for example, an enterprise architect
role ought to be both highly collaborative and highly sociable. This is because
the corresponding role is located on the top- left corner of the social- driven career
chart. In contrast, a security architect, shown on the far- right corner of the chart,
is known to be notably both self- sufficient and introverted.

Carve Out a Social- Driven Career Chart

When planning a career driven by social motivations, do not be confined to the
example shown in Figure 3.3. And do not hesitate to place on the chart a variety
of other occupations, even if some may not reflect personal objectives. Attend
to these simple chart-carving principles.

Collaborative- driven A collaborative- driven type of occupation should be
located at or near the top of the career chart.

Social- driven A social- driven occupation should be positioned on or near
the left side of the chart.

Figure 3.3: Social- Driven Career Chart

Bell820970_c03.indd 101Bell820970_c03.indd 101 10-02-2023 17:13:4510-02-2023 17:13:45

102 Part 2 ■ Software Architecture Career Planning

Self-sufficient-driven A self- sufficient form of an occupation should be
located at or closer to the bottom of the chart.

Introverted- driven An introverted- driven type of occupation should be set
on or near the right section of the chart.

Social- Driven Career Path
Time to carve out a social- driven career path that reflects personal preferences
and talents. Since the creation of this professional road map is motivated by
individual choices, there are no strict rules or policies to adhere to. Remember,
however, that for carving out an effective social- driven career path, the prelim-
inary requirements still exist.

Self- discovery Pursue the self- discovery study, as elaborated on in the “Six
Ws” section. Focus on the self- discovery questions that are related to the
social aspect of the career path.

Career planning Follow the career planning process as described in section
“Career Planning Process” and focus on the activities that are related to
the social aspect of the career planning.

Risks Understand the perils and pitfalls of neglecting to embrace a solid
career plan.

Preferences and goals Stick to the personal preferences and professional
goals that can be promoted by social interaction and collaboration.

Obstacles Avoid U- turns and hurdles that can slow career progress. And
ponder how social competencies can alleviate the impact of obstacles.

Create a Social- Driven Career Path

Figure 3.4 illustrates an example of a social- driven career path. It’s created
to depict a road map that begins at a software developer level. As shown, an
individual who sets this career path aspires to become an enterprise architect.
Clearly, this definitive professional occupation is also the ultimate career goal. But
there are no shortcuts when it comes to achieving the career objective. Unless it’s
an exception, the path to the goal typically must meet intermediate milestones.

As illustrated in Figure 3.4, there are two occupational milestones to be suc-
cessfully fulfilled before becoming an enterprise architect: application architect
and solution architect. Obviously, the career path indicates that without achiev-
ing these milestones, the software developer would never be able to accomplish
the goal of becoming an enterprise architect.

Bell820970_c03.indd 102Bell820970_c03.indd 102 10-02-2023 17:13:4510-02-2023 17:13:45

 Chapter 3 ■ Career Planning for Software Architects: A Winning Strategy 103

When planning a professional road map akin to the example that’s illustrated
in Figure 3.4, it would be helpful to create a career path catalog, a simple list, or
a table of milestones and goals to be achieved. Table 3.8 demonstrates this task.
It was created to reflect the depicted social- driven career path in Figure 3.4. In
addition, find the individual traits and professional preferences of the software
developer in the table’s “Driving Social Career Preference” column.

Technology- Driven Career Perspective
The technological perspective of every software architecture role is the essence of
this profession. Software architects must understand and be capable of devising

Figure 3.4: Software Development to Enterprise Architecture Career Path

Table 3.8: Software Development to Enterprise Architecture Career Path

CAREER PATH MILESTONE/STATE
DRIVING SOCIAL CAREER
PREFERENCE

Current position Software developer Collaborative, introverted

Milestone Application architect Sociable, collaborative

Milestone Solution architect Sociable, collaborative

Goal Enterprise architect Sociable, collaborative

Bell820970_c03.indd 103Bell820970_c03.indd 103 10-02-2023 17:13:4610-02-2023 17:13:46

104 Part 2 ■ Software Architecture Career Planning

solutions by employing technical knowledge. Individual experience is impor-
tant. But companies also hire beginners, expecting them to learn and progress
in their chosen profession. However, employing individuals who do not possess
the least bit of technical talent typically turns out to be a budget miscalculation.

 CO N C E P T The technology- driven career perspective, thus, should be utilized
to assess technological competencies and shed light on an individual’s analytical
capabilities.

In this context, the term analytical relates to a combination of talents, taste, and
judgment. These include personal traits such as being able to provide techno-
logical solutions by employing systematic approaches, logical decision- making,
and investigative proficiencies.

Technology- Driven Career Chart

The technology- driven chart shown in Figure 3.5 illustrates a map of personal
preferences and capabilities that could lend themselves to the fulfillment of
technical duties. Although the chart clearly embeds a wide range of IT and
management roles, the focus should be on software architecture technical capa-
bilities and personal preferences. Positioning each occupation on the chart reveals
the four technological scales affiliated with each career perspective.

Nontechnical Measures the personal preference of an individual to carry
out an IT position that does not necessarily require in- depth technical skills

Analytical Pertains to an individual’s analytical skills, thorough logical
thinking, and science- driven problem- solving approaches that can pro-
mote potent technological solutions

Technical Bears on the ability to offer business solutions and foster techno-
logical modernization by applying frameworks and industrial expertise

Nonanalytical Reflects an individual’s preference to take on an IT duty
that does not necessarily require analytical skills

Note that in this technical- driven career chart, for example, the cloud architect,
security architect, and software developer ought to be exceedingly analytical,
and obviously technical, to effectively perform their duties. Conversely, the
program manager, product manager, and chief architect do not need to pos-
sess deep technical skills or even superior analytical talents. In essence, they
assume leadership, management, and executive duties. And their occupations
call for different types of skills. Refer to the section “Leadership- Driven Career
Perspective” that follows to learn more about the necessary leadership talents.

Bell820970_c03.indd 104Bell820970_c03.indd 104 10-02-2023 17:13:4610-02-2023 17:13:46

 Chapter 3 ■ Career Planning for Software Architects: A Winning Strategy 105

Create a Technology- Driven Career Chart

As depicted in Figure 3.5, the technical- driven career chart example applies to
capabilities and preferences that illustrate personal contributions to business
solutions. Remember, when creating the career chart, focus chiefly on technical
proficiencies. And do not be confined to the illustrated example. Additional
occupations can be added to expand the technical- driven career view.

Consider this general guidance for locating the related occupations on the
technical- driven career chart:

Non- technical- driven An occupation is positioned at or near the top of the
career chart to indicate a professional preference.

Analytical- driven Position the corresponding job at or near the left side
of the chart.

Technical- driven A technical- driven IT or business occupation should be
placed at or near the bottom of the career chart.

Non- analytical driven This career preference should be sited on or close
to the section of the chart on the right.

Figure 3.5: Technical- Driven Career Chart

Bell820970_c03.indd 105Bell820970_c03.indd 105 10-02-2023 17:13:4610-02-2023 17:13:46

106 Part 2 ■ Software Architecture Career Planning

Technical- Driven Career Path
Before creating a technical- driven career path, attend to these simple tenets.
Remember to focus on personal choices and priorities that noticeably reflect
technological skills. Do not stay confined to any industry norm or standard.
Just focus on aspirations, dreams, and needs.

Attend to preliminary requirements for creating a technical- driven career path.

Self- discovery Pursue the self- discovery study to uncover the technical
skills required to accomplish the corresponding occupation that’s placed
on the career path (guidance is in the self- discovery section called “Self-
Discovery Process: The Six Ws”).

Career planning Follow the career planning process (as described in the
section called “Software Architecture Career Planning Process”) to carve
out a career strategy that’s based on technical choices and expertise.

Risks Note the risks associated with the lack of the technical aspects of the
career planning process.

Preferences and goals Emphasize personal milestones and goals when
weighing in on technical career decision- making.

Obstacles Dodge potential hindrances to technical career achievements.

Develop a Technical- Driven Career Path

Take a moment to view Figure 3.6, which represents a technical- driven career
path. It illustrates a professional journey that commences at the software engi-
neering level. As is apparent, the chief architect role is the identified goal in this
career path. As with all life aspirations, fulfilling a goal that is located on top
of the “food chain” is not an easy endeavor. It’s nothing short of an arduous
and complex voyage. It’s also an outstanding achievement that only the most
talented and lucky ones happen to fulfill. But recall, nothing is unachievable!

Figure 3.6 also depicts the planned milestones on the way to achieving the
ultimate goal. The agenda of this career path includes three milestones: solution
architect, enterprise architect, and chief architect (which is also the goal). Fur-
thermore, according to the plan, not only must these milestones be successfully
pursued, the individual who started on this professional journey ought to be
well on the road to conquering the top architecture position in the enterprise.
Consequently, the milestones should serve as evaluation checkpoints to mea-
sure intermediate achievements. These intermediate career assessments call
for taking time to measure the effectiveness and contribution of an individual
to enterprise projects.

Bell820970_c03.indd 106Bell820970_c03.indd 106 10-02-2023 17:13:4610-02-2023 17:13:46

 Chapter 3 ■ Career Planning for Software Architects: A Winning Strategy 107

A technical- driven career path, akin to the example that’s illustrated in
Figure 3.6, should also be accompanied by a table that summarizes the path to
success. Create a career path similar to Table 3.9. Moreover, insert individual
traits and professional preferences in the table’s “Driving Social Career
Preference” column.

Leadership- Driven Career Perspective
The leadership- driven career perspective is advised for those who plan to climb
the professional management ladder within the organization. Moreover, this
career view offers another window of opportunity for individuals who possess

Figure 3.6: Software Engineering to Chief Architecture Career Path

Table 3.9: From Software Engineer to Chief Architect Career Path

CAREER PATH MILESTONE/STATE
DRIVING SOCIAL CAREER
PREFERENCE

Current position Software engineer Technical

Milestone Solution architect Technical, analytical

Milestone Enterprise architect analytically-focused

Goal Chief architect Nontechnical

Bell820970_c03.indd 107Bell820970_c03.indd 107 10-02-2023 17:13:4710-02-2023 17:13:47

108 Part 2 ■ Software Architecture Career Planning

natural management skills. These special talents tend to promote enterprise
culture, steer technological transformation, and establish company standards
and policies. But is everyone fit to be a leader?

There is no doubt that achieving a management role is an impressive career land-
mark. Leadership roles, though, are not recommended for everyone. Managing
IT projects or directing business initiatives are among the most challenging roles
in an organization. It’s not only about governing and guiding professional staff;
it’s also about planning and being responsible and accountable for enterprise
initiatives.

 CO N C E P T Although leaders are often referred to as managers, this section is
named “Leadership- driven Career Perspective” to emphasize the difference between
management and leadership. Leaders influence followers. In contrast, managers are
given enterprise authority to govern, rule, and exercise power of control.

Leadership- Driven Career Chart

The chart in Figure 3.7 mirrors professional career preferences and personal
aspirations that an individual has in mind. Despite the fact that the leadership-
driven chart encompasses positions that may not entirely reflect one’s ultimate
goals, the rule of thumb calls for extending the range of employment oppor-
tunities. That is to say, there is nothing wrong about placing milestones on the
career chart that may be considered worth pursuing in the long term. But in
this regard, draw more attention to goals that are chiefly related to software
architecture occupations.

Consider the four leadership- driven scales that are reflected in this career
chart and attempt to relate to one or more of them:

Decision- maker One who holds governing, administrative, and supervisory
authority to promote the business and oversee technological initiatives

Leader A socially respected figure who influences followers to impact vital
decision- making and organizational problem- solving processes

Problem- solver Provides effective solutions to business and technological
challenges by applying professional expertise

Team player One who collaborates with management and co- workers to
promote successful business and IT initiatives

Bear in mind that according to the example in the career chart (Figure 3.7),
most of people in the software architect roles are considered leaders and problem-
solvers. These are the enterprise, solution, and application architects. They are
classified as leaders because of their duties to provide technical solutions and
spearhead vital enterprise initiatives. Conversely, those in the top management
positions, such as the enterprise architect, IT director, and product manager,
are mostly employed to make prudent decisions for promoting the business.

Bell820970_c03.indd 108Bell820970_c03.indd 108 10-02-2023 17:13:4710-02-2023 17:13:47

 Chapter 3 ■ Career Planning for Software Architects: A Winning Strategy 109

Create a Leadership- Driven Career Chart

Once again, just as with the other career perspectives discussed thus far, create a
chart for the leadership- driven career that reflects the ambition and enthusiasm
to lead. But the chart should center primarily on the talents to provide powerful
solutions for business problems. Furthermore, a systematic approach to placing
occupations on the chart is strongly encouraged. Avoid setting random mile-
stones, dodge aiming at unachievable or unrealistic goals, and create a realistic
leadership- driven career chart.

With the emphasis on the software architecture professional field, the list
that follows provides guidance for placing IT and business positions on the
leadership- driven career chart:

Decision- maker This position is located at or adjacent to the top of the
career chart to show an occupational inclination.

Leader Place the related milestone at or near the left side of the chart.

Problem- solver A leadership- driven occupation should be set at or about
the bottom of the chart.

Team player This career preference should be situated on or close to the
right portion of the chart.

Figure 3.7: Leadership- Driven Career Chart

Bell820970_c03.indd 109Bell820970_c03.indd 109 10-02-2023 17:13:4710-02-2023 17:13:47

110 Part 2 ■ Software Architecture Career Planning

Leadership- Driven Career Path
Without proper career planning, it would be difficult to envision a path to a
leadership role. It’s always challenging, though, to draw a road map with the
understanding that it may never materialize. But remember, a career path is only
a proposition, a scheme that reflects a wide range of personal drives. Therefore,
think about a career path as an intangible road map, a virtual window of oppor-
tunities that may never be granted to any of us. Despite the uncertainty, there
is no defense against neglecting to craft a plan that provides a hypothetical
trajectory that can be followed, achieved, and conquered.

As discussed in the other career perspectives so far, consider these important
prerequisites that will assist with creating a software architecture career path
propelled by leadership preferences:

Self- discovery Discover personal talents that justify IT leadership positions
(guidance is in the self- discovery section called “Career Planning Step 1:
Conduct Self- Discovery”).

Career planning Pursue the career planning process as elaborated on in the
section called “Software Architecture Career Planning Process.” This will
assist with formulating a leadership- focused career strategy.

Risks Be aware of the pitfalls caused by the absence of a solid career path
that could shed light on fulfilling leadership roles within the organization.

Preferences and goals Highlight the various milestones to achieving soft-
ware architecture goals.

Obstacles Avoid career round- trips. Stay on course and focus on the planned
leadership goals.

Develop a Leadership- Driven Career Path

Figure 3.8 depicts a leadership- driven career path that begins at the data
architecture position, moving on to serve as an application architect, and then
becoming a team leader. The next milestone is assuming the project manager
role, just before ascending to the program management level— the ultimate goal.

It seems that assuming a team lead position after serving as an applica-
tion architect would be a miscalculated career move. But the strategy to gain
management experience by shifting the direction to a leadership role justifies
this professional journey. This is a common occurrence with many IT profes-
sionals because the preference is to gain technical experience at the outset of the
career path before reaching the executive levels. In fact, many executives claim
that they started their careers as software developers and then progressed to
fulfill IT director levels.

Bell820970_c03.indd 110Bell820970_c03.indd 110 10-02-2023 17:13:4710-02-2023 17:13:47

 Chapter 3 ■ Career Planning for Software Architects: A Winning Strategy 111

Table 3.10 outlines the chief milestones that the data architect ought to achieve.
This is the same career path that is illustrated in Figure 3.8: application architect,
team leader, project manager, and program manager. The latter is also the even-
tual goal. Keep in mind that leadership- driven career paths of this kind typi-
cally tend to be long because of the vast experience needed for management
positions. Unforeseen impediments to a career path never fail to arise, and a
complex and lengthy career path is typically doomed to fail. For that reason,
avoid planning a career path with stacks of milestones. Plan a concise career
strategy. Stay practical. Stay focused!

Figure 3.8: Data Architecture to Program Management Career Path

Table 3.10: From Data Architecture to Program Management Career Path

CAREER PATH MILESTONE/STATE DRIVING CAREER PREFERENCE

Current position Data architect Problem- solver, team player

Milestone Application architect Problem- solver, leader

Milestone Team leader Decision- maker, leader

Milestone Project manager Decision- maker, leader

Goal Program manager Decision- maker, leader

Bell820970_c03.indd 111Bell820970_c03.indd 111 10-02-2023 17:13:4810-02-2023 17:13:48

112 Part 2 ■ Software Architecture Career Planning

Strategy- Driven Career Perspective
The strategy- driven career perspective is another window of opportunity for
software architects who seek strategy roles in an organization. Simply put, strat-
egists are hired to influence enterprise business and technological evolution.
These occupations are about promoting architecture standards, best practices,
and policies. Enterprise strategists are also commissioned to standardize technol-
ogies across the organization. Some of their tasks include issuing a wide range
of rules and directives to tackle distribution of data across lines of business.
Other policies are devised to address interoperability challenges.

Strategy roles are another form of occupation created to promote organiza-
tional culture. Promoting a company’s culture refers to the behavioral changes
that strategists devise to promote the business. These cultural modifications may
include the ways consumers use applications, the method by which information
is shared, the mechanisms used to maintain systems, and so many more.

 CO N C E P T With today’s large scale of enterprise issues, organizations, more than
ever, are seeking to employ strategy talents that are able to generalize business and
technological problems for the purpose of providing broad- scale enterprise solutions.

Strategy- Driven Career Chart

The strategy- driven career chart represented in Figure 3.9 includes two types
of occupations, strategists and improvisers. Both collaborate on devising rem-
edies for a wide range of business and technological challenges. On one hand,
the strategists in this career chart are chartered to seek long- term, overarching,
and holistic solutions for organizational imperatives. On the other hand, the
improvisers are inclined to address a narrow scope of issues. When they work
together, strategists and improvisers are capable of ensuring business continuity
and technological stability.

In many circumstances, software architects demonstrate the capability to devise
long- term solutions for recurring organizational problems. They accomplish
this by employing architecture frameworks that offer best practices, standards,
and policies. Moreover, software architects are idea- thinkers who are able to
abstract and generalize private instances with the aim of formulating wide-
scale solutions. The design blueprints they provide typically include patterns
of solutions that can be applied to meet a large variety of business requirements
and technical specifications.

Bell820970_c03.indd 112Bell820970_c03.indd 112 10-02-2023 17:13:4810-02-2023 17:13:48

 Chapter 3 ■ Career Planning for Software Architects: A Winning Strategy 113

The personal and professional skills and preferences of the roles that are
presented in the strategy- driven career chart are measured by applying these
four unique scales:

Strategist A leader whose sole responsibility is to devise long- term and over-
arching plans to achieve feasible firm-wide goals by employing methodical
approaches

Generalist One whose broad expertise is leveraged to offer remedies for
business and technological problems by conceptualizing holistic solutions

Improviser A professional who is able to offer immediate solutions, typi-
cally short term, for business and technological for burning business and
technological problems

Specialist An expert in a particular field who offers a narrow scope of solu-
tions to a small scale of problems

From a strategic point of view, note that the software architecture occupations
located on the career chart (in Figure 3.9) are mostly considered strategists and
generalists. These roles include the chief architect, enterprise architect, business
architect, solution architect, and data architect. Moreover, the cloud architect

Figure 3.9: Strategy- Driven Career Chart

Bell820970_c03.indd 113Bell820970_c03.indd 113 10-02-2023 17:13:4810-02-2023 17:13:48

114 Part 2 ■ Software Architecture Career Planning

and the security architect are perceived as strategists too, but they are also
recognized as specialists, providing services in a particular field of expertise.

The specialists and improvisers— not considered strategists or generalists—
are the professionals who typically offer short- term solutions. As is apparent,
these include the software engineer, technical support, system administrator,
and operation engineer.

Create a Strategy- Driven Career Chart

Remember that the strategy- driven career chart, as per the other career per-
spectives discussed so far, should assess the software architect’s capabilities to
provide solutions. When it comes to viewing the big picture of a career journey,
the placements on the career chart should also mirror personal preferences or
occupations to be explored. Recall that there is no limit on the number of mile-
stones and goals that one can place on the strategy- driven career chart. But the
more crowded the career chart is, the less pragmatic it will be when planning
an occupation road map.

The list that follows then offers guidance for creating a strategy- driven
career chart:

Strategy- driven This is a role that should be located at or close to the
top of the career chart to show an occupational preference and reflect a
particular talent.

Generalist Site this expert’s job at or in close proximity to the left side of
the chart.

Improvisation- driven The roles of solution providers who offer quick and
typically short- term solutions should be positioned at or near the bottom
of the chart.

Specialist The occupations of domain experts with particular areas of
expertise should be placed on or adjacent to the right side of the chart.

Strategy- Driven Career Path
A strategy- driven career path, like any other type of road map, cannot be planned
without prior study and exploration. In other words, research is required to dis-
cover character traits and capabilities to effectively fulfill strategy duties for the
enterprise. Moreover, no matter what type of strategy role one is aiming at, self-
discovery (see section titled “Career Planning Step 1: Conduct Self- Discovery”) and
self- assessment (Chapter 4) can contribute immensely to career decision- making.

If the career priority is to progressively grow in the field of software architecture
and the emphasis is on attaining strategy jobs, then each millstone on the road
to achieving the ultimate goal must be thoroughly planned. For example, no

Bell820970_c03.indd 114Bell820970_c03.indd 114 10-02-2023 17:13:4810-02-2023 17:13:48

 Chapter 3 ■ Career Planning for Software Architects: A Winning Strategy 115

one should expect that the path from a software developer position to an IT
strategy role can materialize overnight. The road to the definitive goal is typ-
ically long. And the better we plan, the greater is the chance to succeed in the
software industry.

Before taking on the task of developing a strategy- driven career path, con-
sider this vital checklist. This summarizes a number of items to be aware of:

Self- discovery Answer the six “W” questions from earlier in this chapter
before embarking on a software architecture career journey. Find out if the
self- discovery unveils traits proper for the pursuit of strategy occupations.

Career planning Take the time to study the career planning process (in the
section called “Software Architecture Career Planning Process”) to develop
a software architecture strategy career road map.

Risks Consider the consequences when failing to embrace a career plan
driven by personal and professional preferences. A strategy role in the
enterprise first requires a career strategy.

Preferences and goals Goal- oriented professionals tend to fulfill occupa-
tion aspirations. They are also motivated by personal preferences. Never
compromise on professional goals. Stay on course. Focus on organiza-
tional strategy roles only if personal traits seem to suit the corresponding
occupation’s duties.

Obstacles There is nothing to prevent any talented professional from being
offered a strategy job. However, ensure that the career path is indeed
optimized to smoothly carry out professional goals without being bogged
down by trivial employment opportunities.

Develop a Strategy- Driven Career Path

Figure 3.10 represents an example of a strategy- driven career path. It com-
mences at the operation engineering level and aims to attain an IT strategist
role. Although the goal seems farfetched, remember that there is nothing that’s
impossible to achieve if an adequate career plan is available. True, plans are
always subject to change, but without them, the road to career success would
be muddled and utterly confusing.

There is something intriguing about the career path example in Figure 3.10.
The individual who plans this employment strategy has in mind to climb the
leadership ladder— favoring strategic occupations and moving away from a job
that focuses on a narrower expertise level. Indeed, this is a steep road to climb,
but the career strategy is clear and sound. Moreover, the strategy- driven career
path shown in Figure 3.10 includes midway milestone roles that do not seem
to fall in this individual’s comfort zone. These are the infrastructure architect,
the enterprise architect, and the goal itself— IT strategist.

Bell820970_c03.indd 115Bell820970_c03.indd 115 10-02-2023 17:13:4810-02-2023 17:13:48

116 Part 2 ■ Software Architecture Career Planning

Review Table 3.11, which echoes Figure 3.10. Create a similar one that reflects
personal choices and professional milestones and goals. There is nothing to fret
about: the steps to achieving the ultimate objectives are not carved in stone.
These can always be revised to reflect career challenges. There is no overnight
success, especially when the goal is to become an influential strategist for the
enterprise. No matter what kind of strategy role is in mind, plan a feasible career
path, a pragmatic strategy that facilitates professional growth.

 CO N C E P T And once again, there is nothing wrong about being naïve, silly, and
inexperienced at the outset of or during a career journey. Always meet success by using
imagination. The sky is not even the limit.

Figure 3.10: From Operation Engineering to IT Strategy Career Path

Table 3.11: From Operation Engineering to IT Strategy Career Path

CAREER PATH MILESTONE/STATE
DRIVING CAREER
PREFERENCE

Current position Operation engineer Specialist, improviser

Milestone Infrastructure architect Strategist, generalist

Milestone Enterprise architect Strategist, generalist

Goal IT strategist Strategist, generalist

Bell820970_c03.indd 116Bell820970_c03.indd 116 10-02-2023 17:13:4910-02-2023 17:13:49

CHAP TE R

117

4

The software architecture self- assessment introduces rudimentary questions that
can unveil the level of competencies an individual possesses to fulfill a software
architecture role. By no means, however, are they intended to resemble inter-
view questions. Nor will the earned scores for the selected answers necessarily
reflect the overall knowledge of an individual who seeks a software architect
position. Instead, these questions are designed to illuminate the chief areas
of focus, interest, and fundamental concepts that software architects ought to
understand; standards and best practices that should be ingrained in every soft-
ware architect’s mind; and areas to enhance should the scores be disappointing.

The self- assessment scoring system consists of four categories, each of which
focuses on an assortment of different software architecture skills.

Social intelligence This includes the communication, collaboration, and
partnership formation skills needed to promote software architecture
strategies and lead technological transformation and innovation.

Software architecture practice This category includes best practices, stan-
dards, concepts, and general understanding of the software architecture
practice.

Self- Assessment for Software
Architects

Bell820970_c04.indd 117 08-02-2023 18:52:30

118 Part 2 ■ Software Architecture Career Planning

Leadership This category includes talents required to lead technological
change, promote software architecture vision, foster organizational culture,
and facilitate the software development life cycle.

Strategy This group of queries can uncover an individual’s capability to
offer long- term technological plans, foster overarching solutions to business
challenges, and introduce a potent end- state software architecture.

Social Intelligence

Social intelligence is a valuable skill employed for promoting software architecture
agendas and visions. This talent encompasses communication and presentation
capabilities that software architects ought to master. Without the abilities to
connect, partner, and collaborate with business and information technology (IT)
stakeholders, business initiatives are more likely to be doomed. Furthermore,
constructive and tactful communication with decision- makers can galvanize
support for business transformation and technological modernization.

Social networking, self- awareness, self- motivation, empathy, negotiation,
communication, collaboration, and soft skills are only a few aspects that propel
the questions presented in the sections that follow. Select only one answer in
each of the 13 social intelligence categories. To complete the assessment, tally
the scores as indicated in the section “Social Intelligence Skill Assessment.”

Teamwork
The term teamwork refers to a group of professionals who collaboratively tackle
business problems by employing their individual talents to fulfill software
architecture goals and offer effective organizational solutions.

Question: What is the value that you see in software architecture teamwork?

A. Not important at all. Developers and architects do not need to collaborate
on anything because software architects are running the show.

B. Somewhat important. Software architects are natural leaders, and they
do not always need to collaborate on application and/or systems design
with anyone else.

C. Software architecture is a practice that calls for teamwork. This collabora-
tion should include a wide range of stakeholders, such as developers, team
leaders, managers, production operation engineers, and executives.

D. It depends on what type of software architecture deliverables are required.
If the mission is to deliver an enterprise technological solution, then col-
laboration is needed. For a small- scale project, there is no need for teamwork.

Bell820970_c04.indd 118 08-02-2023 18:52:30

 Chapter 4 ■ Self- Assessment for Software Architects 119

Partnership
Partnership pertains to relationships formed between two or more professionals
or organizations who work together to achieve common goals. In the con-
text of software architecture, these alliances are typically established to foster
technological change and collaborate on construction of business products to
meet business imperatives. Moreover, partners not only share joint responsi-
bilities, but they’re also liable for the negative consequences of their collective
decision- making.

Question: Is it necessary to form partnerships with business and IT profes-
sionals when providing a software architecture solution to a business problem?

A. Partnerships only impede technological decision- making and the imple-
mentation of architectural solutions.

B. To a certain extent, partnerships can add value to a business solution, but
they are not always necessary.

C. Partnerships should be established only with consumers of applications
and systems. The software architecture life cycle does not require forming
internal partnerships in the company to promote technological solutions.

D. There is no question that establishing partnerships with business and IT
personnel, consumers, and even with software industry community mem-
bers adds great value to software architecture solutions.

Self- consciousness
In social terms, self- consciousness is defined as self- awareness. It’s a conscious
knowledge of one’s character, attributes, capabilities, motives, and ambitions.
It’s also about understanding the environment in which an individual operates
and communicates with others.

Question: How does your self- awareness affect relationships with team
members?

A. The more I understand myself, the better I’m attuned to the concerns and
needs of my co workers, managers, and customers.

B. Self- awareness does not have much effect on the rapport with my co workers.

C. Self- awareness is just a term in psychology and should not be applied to
relationships in my workplace.

D. High self- awareness is a mandatory trait that software architects must
possess to be able to promote their designs and solutions.

Bell820970_c04.indd 119 08-02-2023 18:52:30

120 Part 2 ■ Software Architecture Career Planning

Communication
In the IT world, the capability to use proper vocabulary for imparting concepts,
ideas, and information is the crux of effective communication. Communication
is not only about verbal competencies. It also relates to effective writing, pre-
sentations, or behaviors to facilitate the transmission of technological strategies,
vision, and mission.

Question: What methods would you employ to effectively communicate
technological solutions to business stakeholders, the software development
community, IT managers, and enterprise executives?

A. I always describe the problem and then the solution even if no one under-
stands my vision.

B. When I describe a remedy for a business challenge, I strive to simplify
complex software architecture solutions. I always give visual examples
and urge people to ask questions and challenge my solutions.

C. There is no need to embrace any communication method because no one
in the organization understands what software architecture is.

D. My communication method calls for developing questionnaires, given to
a wide range of professionals, for the purpose of collecting software archi-
tecture solutions and implementation ideas.

Networking
For numerous reasons, networking refers to the efforts of interacting with subject-
matter experts to establish professional contacts and develop social relation-
ships. Effective networking can be achieved by a variety of means, such as using
computer applications or attending trainings, conferences, and conventions.

Question: Do you prefer in- person over online networking to achieve personal
career goals?

A. Both are equally important to my professional career.

B. I prefer online networking because I do not have time to meet people face
to face.

C. I prefer in- person networking because personal acquaintances and inter-
actions are more reliable.

D. I do not understand why networking of any kind can promote my profes-
sional ambitions.

Soft Skills
Soft skills are personal attributes that enable an individual to interact harmo-
niously with professionals. Character traits and interpersonal talents typically

Bell820970_c04.indd 120 08-02-2023 18:52:30

 Chapter 4 ■ Self- Assessment for Software Architects 121

influence how well one can communicate and collaborate with coworkers and
management.

Question: What are your interpersonal skills that contribute the most to har-
monious interaction with business and IT personnel?

A. Listening, empathy, conflict avoidance and resolution, flexibility, adaptabil-
ity, and work ethic.

B. Listening to others is my greatest soft skill.

C. Soft skills are hard to learn, and it’s questionable if they really help with
interoffice communication.

D. Interpersonal skills typically do not resolve work conflicts.

Trust Building
Trust building is a process of establishing relationships that are based on the
social principles of mutual respect, confidence, and reliance.

Question: Do trust building and transparency promote the quality of tech-
nological solutions?

A. The quality of software solutions has nothing to do with trust building
skills. Applications and systems quality is always driven by smart software
design and a dedicated workforce.

B. Trust building and interpersonal transparency skills can promote produc-
tive partnerships within an organization. Cooperation with subject- matter
experts typically results in high- quality software architecture solutions.

C. The quality of technological solutions partially depends on developing
relationships and trust-building traits. Successful software implementa-
tions are mostly the outcome of astute management and superb software
architecture skills.

D. Trust building and transparency in a workplace foster good relationships
with co workers and managers. It’s impossible, however, to assess how this
bond affects the quality of the software.

Learning from Others
This social intelligence category demonstrates one’s ability to gain knowledge
from business and IT associates by listening, corresponding, and exchanging
information.

Question: Is learning from peers and managers a valuable trait that can pro-
mote effective software architecture solutions?

A. Learning from others only adds to personal knowledge that can enhance
technological solutions.

Bell820970_c04.indd 121 08-02-2023 18:52:30

122 Part 2 ■ Software Architecture Career Planning

B. It depends on whom the knowledge is obtained from. Not everyone can
contribute valuable wisdom and industry insights.

C. Learning should be pursued only by reading and attending training.

D. Learning from others is a long venture, a continuous effort to obtain
knowledge that is not always useful.

Negotiation
Negotiation is a strategic effort to seek compromise and reach agreements by
conducting dialogue and employing persuasion tactics to resolve conflicts and
misunderstandings.

Question: How would you use your negotiation skills to advance a software
architecture vision?

A. Nothing is negotiable about my software architecture vision because not
everyone understands technology as well as I do.

B. During the negotiation phase, I typically do not give up completely on
my software architecture vision. Some technological solutions are not
negotiable.

C. To advance my software architecture vision, I’d adhere to these principles:
1) Use persuasion tactics— explain the advantages of the architecture
solution; 2) Compromise on technological solutions; 3) Understand oppos-
ing positions and concerns; 4) Be a good listener and consider others’
concerns and feelings; 5) Exercise patience and control emotions; 6) Establish
fruitful relationships with the other side; 7) Strive for a win- win outcome;
8) Plan a negotiation exit strategy if compromise has not been achieved.

D. During negotiations I typically give more than what I take to please the
other side. Usually, this negotiation approach saves time and improves
relationships with others.

Self- presentation
Self- presentation or self- branding is affiliated with actions or behavior of an
individual aimed at exhibiting a favorable image to be perceived by others.

Question: How can one’s effective self- presentation influence business and
technical decision- making?

A. Personal branding of software architecture leaders never contributes to
business and technological solutions.

Bell820970_c04.indd 122 08-02-2023 18:52:30

 Chapter 4 ■ Self- Assessment for Software Architects 123

B. The self- presentation of technology leaders always affects decision- making
in an organization.

C. Self- presentation has limited influence on partnerships and relationships
in an organization.

D. Self- presentation is only one component of personal behavior that can
affect organizational decision- making.

Teleworking
Teleworking, also known as remote work, refers to a flexible work arrangement
that enables employees to perform their duties from an approved work site,
such as a home office.

Question: Is remote work your preferred work arrangement?

A. Unlike work in an office, remote work never gets done, communication
between team members is often poor, and managers are unable to control
their employees.

B. I support employees who prefer to work from home.

C. I do not see any value in working in a corporate office.

D. Teleworking is necessary for employees who can provide proper justification.

Fellowship
Affiliation and belonging to business and technological communities and
professional associations whose members share common interests is called
fellowship.

Question: Can fellowship with technology communities contribute to the
success of business products and software development?

A. Not always. It depends on the type of technical information these com-
munities share.

B. I support joining online communities to learn more about advanced soft-
ware architecture technologies as a means of enhancing applications and
systems performance, integration, and operations.

C. Technology communities never contribute to the success of application
and system implementations.

D. Technology communities that are sponsored by vendors are typically
about marketing and promotion of their products.

Bell820970_c04.indd 123 08-02-2023 18:52:30

124 Part 2 ■ Software Architecture Career Planning

Self- sufficiency
Professionals who perform their work duties without the aid of others are rec-
ognized as being self- sufficient.

Question: Would you apply for a position that calls for independent work
and self- sufficiency?

A. I never feel the need to ask co workers and managers for help on any pro-
fessional matters.

B. Companies promote employee self- sufficiency to save time on interaction
and communication with others.

C. Self- sufficiency demonstrates a high level of maturity. This especially
applies to the capability of being responsible and accountable for assigned
tasks and projects.

D. The term self- sufficiency does not contradict collaboration, partnership,
communication, and information sharing.

Handling Customer Relationships
Relationships with co workers, managers, and executives are typically different
from affiliation with customers. This social intelligence category calls for special
talents and communication capabilities to meet clients’ requirements and satisfy
their business imperatives.

Question: How important are relationships with customers to the successful
implementation and integration of applications and systems?

A. It’s important to create working partnerships with customers, understand
their requirements, and consider their suggestions. But their contribution
to development of business products is very limited in scope.

B. Customers typically do not understand technology, and there is no need
to involve them in software design decisions and implementations.

C. Customers are a vital part of the software architecture life cycle, and their
relationships with the software development community always shape
business products.

D. Software architects should collaborate with customers only when their
requirements are unclear.

Social Intelligence Skill Assessment
Each of the presented social intelligence skill assessment category questions
calls for selecting only one answer that resonates most with an individual. It’s

Bell820970_c04.indd 124 08-02-2023 18:52:30

 Chapter 4 ■ Self- Assessment for Software Architects 125

advisable to print out Table 4.1 and then record the earned score in the “My
Score” column.

Based on the earned point tally, the three competency ranges defined in the
following list should indicate if an individual possesses adequate social intel-
ligence skills to handle software architecture roles:

55–81 points Above average score that shows an individual’s capability
to employ social intelligence to promote software architecture strategies,
vision, and mission.

28–54 points An average social intelligence score that calls for self-
improvement, training, and studies.

1–27 points Below average score that requires major improvement to social
intelligence skills. It’s recommended to take training classes and even hire
a personal coach to strengthen social and communication skills.

Table 4.1: Social Intelligence Skill Assessment Table

CATEGORY ANSWER POINTS EARNED MY SCORE

Teamwork C 4

Partnership B 1

D 4

Self- consciousness A 4

D 4

Communication B 4

D 2

Networking A 4

B 1

C 2

Soft Skills A 4

B 1

Trust Building B 4

C 1

D 2

Learning from
Others

A 4

Negotiation C 4

Self- presentation B 3

D 4

Continues

Bell820970_c04.indd 125 08-02-2023 18:52:30

126 Part 2 ■ Software Architecture Career Planning

Software Architecture Practice

The questions in this section are provided to assess the general capabilities to fulfill
the role of software architect. They are designed to test the understanding and
familiarity with software architecture best practices and standards. Moreover, the
queries include topics such as software architecture strategy, vision, roles, system
integration, interoperability, reuse, and distributed and federated architecture
models. These are fundamental questions that every software architect ought
to understand before embarking on a software design career.

Select only one answer in each of the 13 software architecture practice cate-
gories. Then tally the scores for the answers as guided in the section “Software
Architecture Practice Skill Assessment.”

Software Architecture Strategy
A software architecture strategy is driven by business imperatives. The strategy
ought to be aligned with a business strategy and meet business requirements. Its
chief components are the roadmap for technological implementations, architecture
frameworks, and an execution plan for fulfilling business objectives.

Question: How useful is a firm- wide software architecture strategy?

A. It’s imperative to carve out a software architecture strategy only because
every institution must have one.

CATEGORY ANSWER POINTS EARNED MY SCORE

Teleworking B 2

D 4

Fellowship A 2

B 4

D 1

Self- sufficiency C 4

D 3

Handling Customer
Relationships

C 4

Maximum Points to
Earn

81

My Score Point 0

Table 4.1 (continued)

Bell820970_c04.indd 126 08-02-2023 18:52:30

 Chapter 4 ■ Self- Assessment for Software Architects 127

B. An enterprise- level software architecture strategy is not needed. Instead,
every line of business should have a proprietary strategy that satisfies its
own business needs.

C. A firm- wide software architecture strategy only increases a company’s
overhead. As an alternative, an organization should promote software
architecture best practices, standards, and policies.

D. An enterprise- wide software architecture strategy is useful as long as
its vision and mission are embraced by executives, managers, development
teams, and operations personnel.

Software Architecture Vision
A software architecture vision delineates technological capabilities designed to
address business imperatives and fulfill organizational goals. The vision also
identifies approaches for achieving these objectives and proposes an overarching
end- state architecture.

Question: Why should an organization carve out a software architecture vision?

A. To define technological goals that will satisfy business imperatives.

B. To identify technological capabilities and propose software implementa-
tions to meet business requirements.

C. To map out technological objectives to meet business goals.

D. There is no need for an organizational software architecture vision.

Software Architecture Role
Software architects are solution providers and decision- makers who are
commissioned to align technological strategies with business imperatives. Their
solutions are devised to ensure business continuity and facilitate technological
transformation and modernization.

Question: Why do organizations hire software architects?

A. Software architects promote corporate civility and encourage teamwork
to tackle social problems within the organization.

B. Software architects are employed to promote organizational culture and
encourage adherence to architecture frameworks.

C. There are no particularly good reasons to employ software architects.
Most organizations hire software architects to technically manage devel-
opment teams.

D. Software architects are employed to lead technological initiatives by dem-
onstrating leadership, creativity, and expertise in the field of computer
science.

Bell820970_c04.indd 127 08-02-2023 18:52:30

128 Part 2 ■ Software Architecture Career Planning

System Integration
Linking software implementations, such as services, applications, and systems
is the process of system integration. This effort enables coordinated message
exchange and data sharing in a distributed environment to boost computing
resources, avoid operational redundancy, and promote functionality reuse.

Question: How do software architects achieve efficient system integration?

A. By merging a number of business applications into a single monolithic
implementation to reduce network traffic and save servers.

B. The integration of organizational assets is more successful in cloud com-
puting environments because of native cloud services.

C. Efficient system integration can be achieved by employing a variety of
technologies, network devices, platforms, and infrastructure. These may
include middleware products, gateways, application programming inter-
faces (APIs), connectors, and remote procedure calls.

D. Most system integration efforts are inefficient, and therefore businesses
never benefit from bringing together distributed systems.

Interoperability
Interoperability refers to an architecture attribute that enables heterogeneous
computer systems and production environments to communicate with each
other and share information.

Question: How do software architects promote business and technological
interoperability?

A. Promoting interoperability is not the role of software architects. Instead,
they must master the art of software design and deliver useful architecture
blueprints.

B. There is no need to promote business and technological interoperability
because it’s merely a concept that never materializes.

C. Software architects typically enable business and technological inter-
operability by devising proper system integration patterns, adopting
powerful middleware platforms, and using robust infrastructure.

D. Interoperability is promoted by embracing software architecture
frameworks.

Bell820970_c04.indd 128 08-02-2023 18:52:30

 Chapter 4 ■ Self- Assessment for Software Architects 129

Software Reuse
Software reuse is an architecture best practice that calls for utilizing existing
software rather than developing new implementations.

Question: Why do software architects foster software reuse?

A. Reduces redundancy of business and technical functionality.

B. Increases productivity and minimizes software development cost.

C. Increases maintenance and operation efficiency of software implementa-
tions in production.

D. Accelerates time to market.

Distributed Architecture Model
The distributed architecture model is all about the disbursement of autonomous
software implementations deployed to different environments and maintaining
communication over networks to offer business and/or technological solutions.

Question: Why do enterprise architects often embrace the distributed
architecture model?

A. Architects shy away from the distributed architecture model because it
raises concerns about data synchronization.

B. The distributed architecture model offers technological stability because
it promotes high cohesion.

C. The model eliminates the need for a centralized architecture scheme.

D. The implementation of the distributed architecture model increases
scalability, enhances security, alleviates single point of failure risks, elevates
data and process redundancy, and ensures business continuity.

Federated Architecture Model
Federated architecture is a pattern in enterprise architecture that strengthens
interoperability capabilities to enable information sharing between large eco-
systems and institutions, such as production environments, lines of business,
and organizations.

Question: What is the benefit of devising a federated architecture model?

A. There is no justification for devising a federated architecture environment
because it typically increases message exchange volume.

B. Federated architecture promotes the development of loosely coupled
applications and systems.

Bell820970_c04.indd 129 08-02-2023 18:52:31

130 Part 2 ■ Software Architecture Career Planning

C. Architects embrace the federated architecture model to enable business
and technical interoperability between computer systems.

D. To establish a decentralized computing environment, alleviate application
dependencies, and increase the performance of business functionality.

Architecture Styles
An architecture style describes a structural implementation and integration
of an environment and the systems that encompass architecture patterns and
design patterns.

Question: Provide an example of an architecture style.

A. Layered architecture.

B. Monolithic architecture.

C. Service- oriented architecture.

D. API gateway.

Architecture and Design Patterns
Architecture patterns and design patterns are employed to devise reusable
solutions to business and technological problems. Both are employed to address
repeatable challenges, standardize organizational technologies, increase pro-
ductivity, and accelerate the software development life cycle.

Question: What is the difference between architecture patterns and design
patterns?

A. An architecture pattern is devised to address a broader business problem
than a design pattern is.

B. There is not much difference between these types of patterns.

C. Design patterns are subsets of architecture patterns.

D. Architecture patterns represent solutions for enterprise- level challenges,
and design patterns provide solutions on smaller scales.

Componentization
Componentization is a design process that calls for breaking down a software
implementation, such as an application, into smaller parts, namely, components.
Each of these components consists of related functions that provide partial solu-
tions to business or technical problems.

Bell820970_c04.indd 130 08-02-2023 18:52:31

 Chapter 4 ■ Self- Assessment for Software Architects 131

Question: Why is one of the most critical duties of a software architect to
devise componentization of software implementations?

A. To achieve high cohesion of software implementation.

B. To increase software reuse, performance, maintainability, and reduce
implementation complexity.

C. To shorten the software development life cycle.

D. Componentization of software implementation is not necessary because
it renders tightly coupled applications.

Software Architecture Frameworks
A software architecture framework offers guidance and governance for the
software development life cycle. The framework typically includes standards,
best practices, and policies for software implementations, deployment, config-
uration, integration, and maintenance.

Question: What is the difference between architecture standards, best prac-
tices, and policies?

A. They are all the same.

B. Unlike policies, best practices are standards that are the same.

C. Standards represent technical consensus for building applications and
systems. Best practices are about the “how” to build business products.
And policies are not a part of an architecture framework.

D. Standards are accepted industry norms. Best practices are recommended
procedures. And policies are rules for implementation.

Software Development
Software development is the process of constructing software implementations
such as applications and systems.

Question: Should software architects develop source code?

A. Software architects should focus on application and system design,
deployment, integration, configuration, and maintenance in production.
Therefore, the rule of thumb suggests that they should not engage in
programming.

B. In addition to their design duties, software architects must be part of
development teams because of their superb programming talents.

C. In essence, all members of any software development team are architects.

D. Software architects are not required to possess software development skills.

Bell820970_c04.indd 131 08-02-2023 18:52:31

132 Part 2 ■ Software Architecture Career Planning

Software Architecture Practice Skill Assessment
Table 4.2 consists of four columns: Category, Answer, Points Earned, and My
Score. The corresponding answers to each question in a category carry points.
Add up the earned points and place them in the corresponding My Score column.

Based on the earned point tally, the three competency ranges defined in the
following list should indicate if an individual possesses satisfactory software
architecture practice skills:

67–99 points This score range indicates that an individual possesses ade-
quate skills to provide software architecture services.

34–66 points This score range calls for training and self- study to improve
the software architecture practice skills.

1–33 points This score range necessitates major improvement to software
architecture practice talents. Pursue professional networking to learn more
about software architecture disciplines and take architecture training to
broaden professional knowledge.

Table 4.2: Software Architecture Practice Skill Assessment Table

CATEGORY ANSWER POINTS EARNED MY SCORE

Software
Architecture
Strategy

D 4

Software
Architecture Vision

A 4

B 4

C 4

Software Architect
Role

B 1

D 4

System Integration B 1

C 4

Interoperability C 4

D 1

Software Reuse A 4

B 4

C 4

D 4

Distributed
Architecture Model

B 1

C 2

D 4

Bell820970_c04.indd 132 08-02-2023 18:52:31

 Chapter 4 ■ Self- Assessment for Software Architects 133

Leadership

The answers to the questions in this section can shed light on an individual’s capa-
bilities to demonstrate technological leadership in the software architecture field.
Leadership competencies are necessary for promoting software architecture strat-
egies and contribute to decision- making that eventually impacts the foundation
of enterprise performance. Leadership also comes into play during project
management and technical facilitation.

The various question categories provided in the sections that follow are driven
by important leadership skills, such as time management, decision- making,
problem-solving, creative thinking, team building, and conflict resolution.

To self- assess leadership capabilities, only one answer should be selected in
each of the 14 leadership categories. The total score for the selected answers
can be revealed after following the instructions in the section “Assessment of
Leadership Competencies.”

CATEGORY ANSWER POINTS EARNED MY SCORE

Federated
Architecture Model

B 2

C 3

D 4

Architecture Styles A 4

B 4

C 4

Architecture and
Design Patterns

A 4

C 2

D 1

Componentization A 2

B 4

C 1

Software
Architecture
Frameworks

D 4

Software
Development

A 4

D 2

Maximum Points to
Earn

99

My Score Point 0

Bell820970_c04.indd 133 08-02-2023 18:52:31

134 Part 2 ■ Software Architecture Career Planning

Managing Time
One of the most important leadership skills that can boost workplace produc-
tivity is proper time management. Administrating time effectively is the result
of setting software architecture priorities, identifying milestones, and rigorously
executing plans to fulfill goals.

Question: What are the chief technological benefits of effective time
management?

A. Improves the quality of applications and systems.

B. Increases teamwork’s efficiency and productivity to fulfill software archi-
tecture goals.

C. Delivers business products on time.

D. Controls software architecture and development budgets.

Decision- Making
Astute leaders make decisions only after they analyze and understand the
choices they individually learned about or that were presented to them by
subject- matter experts. Therefore, the act of decision- making is merely about
selecting the most effective option to resolve a complex organizational problem.

Question: What is your decision- making approach?

A. The best approach is to delegate this task to someone whose duty it is to
make decisions.

B. 1) Understand the problem; 2) Devise a number of solutions to address
the challenge; 3) Select the most practical remedy from the collection of
possible solutions; 4) Introduce the solution for further vetting by
stakeholders.

C. I have not adopted any decision- making method.

D. My decision- making approach is to offer solutions that on one hand mini-
mize organizational expenditure and on the other increase work produc-
tivity. I typically make decisions that are practical and garner support
from business and IT professionals. Without their support a decision could
not be made.

Problem-solving
Problem-solving is a strategic venture that consists of a number of critical tasks
that ultimately render a solution to a problem or a number of challenges. Problem

Bell820970_c04.indd 134 08-02-2023 18:52:31

 Chapter 4 ■ Self- Assessment for Software Architects 135

identification, problem analysis, root- cause analysis, proposition of solutions,
and final decision- making are the chief tasks of the problem- solving process.

Question: What leadership skills do you possess that demonstrate problem-
solving capabilities?

A. I use creativity, team building and collaboration, and analytical skills.

B. I’m a good listener and my communication skills are excellent.

C. I tend to solve problems effectively because of my outstanding technical
skills and vast experience in technology.

D. Generally, leaders are not commissioned to solve problems. They are
required to supervise projects.

Diversity, Equity, and Inclusion
Diversity stands for the structural composition of a workplace that recognizes
individual preferences and differences, such as ages, beliefs, ideologies, and
ethnicities. The term inclusion promotes tolerance and civility toward staff with
diverse backgrounds by involving them in vital business and technological ini-
tiatives. And equity pertains to justice and fairness in how they are regarded
and treated.

Question: How do you encourage diversity and inclusion in your workplace?

A. I denounce any form of discrimination and inequality.

B. I promote an inclusive organizational culture that does not leave anyone
behind despite their backgrounds and beliefs.

C. I strongly support interaction between individuals with different ideas,
concepts, and education credentials.

D. It’s not my job to encourage diversity, equity, and inclusion.

Responsibility and Accountability
A person who is assigned to a duty is responsible for its progress and satisfac-
tory completion. An accountable party, however, refers to an individual who
owns the duty’s outcome and the impact of its deliverables.

Question: Can leaders be responsible without being accountable for their
own work?

A. Leaders must always be responsible and accountable for their work.

B. Leaders are always responsible for their work. Their superiors, however,
should be the ones who are accountable for the work.

Bell820970_c04.indd 135 08-02-2023 18:52:31

136 Part 2 ■ Software Architecture Career Planning

C. No one should be accountable for others’ work.

D. In essence, there is not a big difference between responsibility and
accountability. Responsible people must be accountable for any work that
they do.

Hiring Preferences
The screening of candidate software architects is driven by the preferences of
the hiring companies and managers. This vetting process calls for assessing
applicants’ skills, breadth of knowledge, experience, character, and motivation.

Question: What are the most important traits that an aspiring or practicing
software architect must possess?

A. Must be highly experienced, astute, nonconfrontational, a team player,
and adhere to organizational software architecture best practices, stand-
ards, and policies.

B. Strategist, solution provider, creative, out- of- the- box thinker, self- sufficient,
individualist.

C. Very technical, does not have to be a team player or sociable.

D. Beginner who understands the fundamental software architecture disci-
plines and is willing to learn on the job.

Creative Thinking
Creative thinkers typically offer imaginative and innovative solutions to address
business and technological challenges. One of their main responsibilities is to
foster solutions that simplify the complexity of business processes, data, and
architecture.

Question: What creative thinking attributes do you possess?

A. Problem-solving, ability to think out of the box.

B. Open-minded, analytical thinker, risk-taker.

C. Good listener, innovative thinker, imaginative.

D. Willing to learn from others, consider others’ ideas and solutions, non-
judgmental, communicative.

Critical Thinking
Critical thinkers are in the business of analyzing, assessing, and scrutinizing
design concepts, software development project ideas, and implementations to
provide strategic and technical solutions.

Bell820970_c04.indd 136 08-02-2023 18:52:31

 Chapter 4 ■ Self- Assessment for Software Architects 137

Question: How can critical thinking be utilized to enhance leadership’s
decision- making?

A. Critical thinkers are objective realists who utilize their logical judgment
and reasoning skills to devise effective software architecture solutions.

B. Good decision- making has nothing to do with critical thinking.

C. Critical thinkers tend to test technical concepts and hypotheses to under-
stand enterprise problems and make better solution decisions.

D. Critical thinkers use their analytical skills to provide best- of- class solutions.

Being Proactive
In the context of the software architecture practice, being proactive means to
avoid procrastination, assess operational risks, and take initiatives to avert
business loss or technological mishap.

Question: Give an example of a leader who’s being proactive by employing
technologies.

A. Launching a data disaster recovery project to prevent future loss of
information.

B. Training staff to protect private information and prevent cybersecurity
threats.

C. I have no idea because our top- level executives do not like it when people
are proactive. They always expect you to promptly respond to recurring
challenges rather than take initiatives to prevent them.

D. Devising a proactive health management plan to help staff improve
their lifestyle.

Establishment of Trust
The establishment of trustful relationships between co workers and management
is achieved if leaders can foster mutual respect, encourage civil communication,
and increase the sense of personal reliability.

Question: How important is trust building to the success of your leader-
ship role?

A. I focus merely on the technical aspects of my software architecture role.
Therefore, trust building is not the most important part of my job.

B. For software architects trust building is a waste of time.

Bell820970_c04.indd 137 08-02-2023 18:52:31

138 Part 2 ■ Software Architecture Career Planning

C. Since software architects are considered technical leaders, trust building
is a critical trait that can facilitate the promotion of architecture vision and
mission.

D. Not everyone must be engaged in trust building; it all depends on the
leadership level. Only high- level executives must build trust with their
subordinates.

Administrative Duties
Administrative work characteristically includes tasks that are not directly or
necessarily affiliated with software architecture or technical leadership. These
activities may pertain to budgeting, assessment of employee performance, and
signing timesheets.

Question: What percentage of administrative work is acceptable to you?

A. 90 percent

B. 60 percent

C. 40 percent

D. 10 percent

Coaching and Training
Coaching is the act of assisting staff to achieve their personal and professional
objectives, not only by illuminating the opportunities in the workplace but by
teaching them how to focus on individual strategies and meticulously fulfill
predefined goals.

Training bears a different structure of gaining personal knowledge. This
form of study can be accomplished by attending training classes, taking online
courses, and pursuing certification studies.

Question: Do you consider staff coaching or training an important part of a
leadership role?

A. Coaching and training should be a part of every software architect’s duty.

B. Not everyone possesses coaching and training skills. Therefore, these
tasks should be given to professional instructors.

C. Coaching is definitely a part of a leadership role. Training should be con-
ducted by professionals whose job is to instruct and mentor.

D. Effective coaching can help professionals achieve their career goals and
ultimately promotes effective organizational solutions.

Bell820970_c04.indd 138 08-02-2023 18:52:31

 Chapter 4 ■ Self- Assessment for Software Architects 139

Team Building
Leaders employ their team building talents to promote collaboration on pro-
jects, encourage exchange of ideas, and support mutual efforts that result in
fulfillment of objectives.

Question: Why is team building vital for the delivery of high- quality soft-
ware products?

A. The encouragement of team bonding and positive communication typi-
cally renders the best breed of software applications because of positive
and productive collaboration.

B. Software design is a collaborative discipline that requires the participation
of highly qualified professionals. Building a team that can work together
as a whole is the top responsibility of a leader who understands that the
quality of applications and systems is driven by a team’s professional
capabilities.

C. Team building is not a task that leaders must take on.

D. Team building is not vital for producing high- quality software imple-
mentations. One person alone can deliver superb business products without
the need of a collaborative team.

Resolving Conflicts
Conflict resolution is a leadership talent that brings people together even if they
possess different opinions. No matter how radical the disputes over business,
technical, or social issues are, conflicts can be resolved by seeking a compromise
that is acceptable to all parties.

Question: What would be the method that you recommend to resolve con-
flicts about a technology solution?

A. There are always two sides to a conflict, especially when there are heated
debates about technology solutions. My approach is to identify the source
of the conflict and then formulate an agreement that’s acceptable to
every party.

B. I support a written agreement that specifies what everyone is willing to
compromise on. Then I keep my eyes open to check if the agreement is
executed correctly.

C. There is no need for leaders to resolve conflicts because of two reasons:
1) There are many of them; 2) Professional staff typically do not have any
disagreements.

D. There are not so many conflicts between staff who work for strong leaders.

Bell820970_c04.indd 139 08-02-2023 18:52:31

140 Part 2 ■ Software Architecture Career Planning

Assessment of Leadership Competencies
Table 4.3 includes four columns to use for answer scoring: Category, Answer,
Points Earned, and My Score. Every answer found in the Answer column carries
the corresponding score in the Points Earned column. The My Score column
then should indicate the points that are related to the chosen answer. Based on
the tally of the earned points, consider these competency ranges:

72–107 points The leadership competencies assessment denotes that an
individual earned enough points demonstrating the proper capabilities to
fill an organizational leadership role in the space of software architecture.

37–71 points This average points range calls for further studies and continuing
education to enhance the individual’s leadership skills.

1–36 points Based on this assessment, it is suggested that an individual should
broaden related leadership skills by pursuing training and self- studies.

Table 4.3: Leadership Competencies Assessment Table

CATEGORY ANSWER POINTS EARNED MY SCORE

Managing Time B 4

C 3

D 3

Decision- Making B 4

D 1

Problem-Solving A 4

C 1

Diversity, Equity,
and Inclusion

A 3

B 4

C 2

Accountability and
Responsibility

A 4

Hiring Preferences A 4

B 4

D 4

Creative Thinking A 4

B 4

C 4

D 4

Bell820970_c04.indd 140 08-02-2023 18:52:31

 Chapter 4 ■ Self- Assessment for Software Architects 141

Strategy

Software architects who are chartered to draw up long- term technological strat-
egies, offer design solutions, provide architecture blueprints, and facilitate the
software development life cycle must demonstrate strategic thinking aptitude.
The answers to the queries in this section, therefore, are designed to assess the
level of the strategic skills an individual possesses. The questions that follow
in this category thus focus on talents required to lead technological initiatives,
such as architecture strategy, strategic thinking, generalization, problem-solving,
and software design approaches.

An individual’s strategic skills can be evaluated by selecting a single answer
in each of the 13 strategic competencies categories. The score tally can be
revealed after following the guidance in the section “Assessment of Strategic
Competencies.”

CATEGORY ANSWER POINTS EARNED MY SCORE

Critical Thinking A 4

C 4

D 2

Being Proactive A 4

B 4

Establishment of
Trust

C 4

Administrative
Duties

D 4

Coaching and
Training

A 1

B 1

C 2

D 4

Team Building A 3

B 4

Resolving Conflicts A 4

B 2

Maximum Points to
Earn

107

My Score Points 0

Bell820970_c04.indd 141 08-02-2023 18:52:31

142 Part 2 ■ Software Architecture Career Planning

Software Architecture Strategy
Driven by business imperatives, a software architecture strategy offers a long-
term plan for advancing technological transformation and innovation. This
mission underscores the necessity to enhance business capabilities and reenforce
organizational competitive edge.

Question: What are the components of a software architecture strategy?

A. A strategy execution roadmap, software architecture execution plan, and
software architecture frameworks.

B. A software architecture framework that devises best practices, standards,
and policies.

C. A human resources department’s list of employees.

D. An organizational chart.

Strategic Thinking
Strategic thinking is all about the capability to employ analytic skills to reveal
enterprise vulnerabilities and develop long- term plans for shielding the business
from internal and external threats.

Question: What traits make a good strategy thinker?

A. Resistance to change and technological conservativism.

B. The capability to define long- term goals, plan technological transitioning
roadmaps, and provide enterprise technological strategies.

C. Carving out a career path and setting career goals.

D. Forward- thinking and conducting risk assessments to prevent the nega-
tive impact of technological disasters.

Problem Identification
Problem identification is pursued for discovering and understanding in depth a
business or technical problem that needs to be rectified. This effort also requires
a root- cause analysis of the problem to grasp the severity of the challenge.

Question: For what purpose must business problems be identified?

A. An effective software architecture solution cannot be devised if a business
problem has not been identified or is unclear.

B. Business problems are the impetus for employing technological remedies.
Therefore, they must be identified at the outset of every product develop-
ment life cycle.

Bell820970_c04.indd 142 08-02-2023 18:52:31

 Chapter 4 ■ Self- Assessment for Software Architects 143

C. Every software development initiative must be driven by business require-
ments. And requirements cannot be delivered if business problems have
not been identified.

D. It’s not the strategist’s duty to identify business problems. Analysts are
the ones responsible for identifying the challenges.

Problem-solving
Problem-solving is a strategic venture that consists of a number of critical tasks
that ultimately render a solution to a problem or a number of challenges. Problem
identification, problem analysis, root- cause analysis, proposition of solutions,
and final decision- making are the chief tasks of the problem- solving process.

Question: Should strategists be commissioned to solve enterprise business
and technological challenges?

A. Organizations should not employ strategists to solve business or techno-
logical problems since they are not technical enough to lead software
development.

B. Only developers can solve business problems because their job is to con-
struct applications and systems.

C. Strategists should take part in solving corporate challenges because they
possess unique talents to identify problems and offer overarching solutions.

D. Enterprise and business challenges can never be rectified by anyone.

Abstraction
The abstraction process is employed to blend particular problem character-
istics and facts for rendering universal ideas and concepts. The chief use of this
practice contributes to the construction of business products and the software
development life cycle.

Question: Why do strategists tend to employ the abstraction process?

A. To break down concepts into more granular ideas.

B. Abstraction is actually the same as specification.

C. Strategists abstract specific problem instances to understand why busi-
nesses fail to perform and identify the reasons for organizational revenue
decline.

D. To identify the properties of particular problems to recommend standard
technologies.

Bell820970_c04.indd 143 08-02-2023 18:52:31

144 Part 2 ■ Software Architecture Career Planning

Generalization
In the business world, generalization practices are used to encourage utilization
and reuse of existing organizational assets. The term assets refers to any prop-
erty that the enterprise owns, such as servers, applications, systems, network
devices, and infrastructure components.

Question: Which of these answers specify the most compelling reasons for
employing the principles of generalization?

A. Generalization is employed by strategists to discover reusable business
and technical functions, accelerate software development efforts, reduce
cost of ownership, and optimize application and system maintenance
expenditure.

B. Strategists employ generalization to abstract small- scale problems for
offering overarching organizational solutions.

C. Strategists never employ generalization. They are chartered to deliver
technical specifications and focus on providing limited-scale solutions.

D. Strategists use the principles of generalization to foster technological
standardization, optimizing the cost of the software development life
cycle, and minimizing redundancy of business functionality.

Visualization
One of the most potent methods that strategists use to promote their goals is
visualizing their visions. This is achieved by conveying ideas and solutions
not only by using descriptive language but also by creating mental images that
draw clear pictures in other people’s minds.

Question: How do technological strategists use the power of visualization
to promote software architecture visions?

A. Strategists use the power of visualization to vividly present their vision
with analogies, anecdotes, and use cases to depict palpable and practical
business and technological solutions.

B. Strategists use graphic presentations, such as diagrams, storyboards,
charts, and illustrations to depict a coherent vision for end- state
architectures.

C. Technological strategists hire graphic designers to produce slideshows
that demonstrate a clear vision for software implementations.

D. It’s impossible to visualize a solution before understanding business and
technical requirements.

Bell820970_c04.indd 144 08-02-2023 18:52:31

 Chapter 4 ■ Self- Assessment for Software Architects 145

Software Design Approaches
Organizations typically adopt software design methods that drive development
of services, applications, and systems. These approaches ultimately affect the
manner in which software is implemented. In today’s market there are a number
of prevailing strategies that focus on different design styles, such as structural,
functional, object- oriented, bottom- up, and top- down.

Question: What is the difference between the bottom- up and the top- down
software design strategy?

A. They are actually the same but named differently.

B. The bottom- up design strategy starts from business requirements. The
top- down begins with technical specifications.

C. The bottom- up strategy calls for building the software from the smallest
components and then deriving the larger components. The top- down
starts with the larger components and renders the smaller ones.

D. They are different: the bottom- up is managed by developers, while the
top- down is governed by managers.

Simplification
The simplification process that strategists are often engaged in refers to deci-
phering intricate business requirements and transforming them into tangible
technological solutions. Simply put, they ought to present a coherent and easy-
to-understand long- term vision in the most digestible manner possible.

Question: Give an example of what strategists typically simplify to provide
potent solutions.

A. Design blueprints and technical specifications.

B. Source code.

C. Concepts and ideas that drive tangible software implementations.

D. Business problems.

Analytical Capabilities
The capability to efficiently analyze business problems, understand the root
causes of organizational challenges, and employ critical and creative thinking
to draw up comprehensive business and technological solutions is a vital trait
that strategists must possess.

Question: Give an example of how business risks can be averted by using
strong analytical capabilities.

Bell820970_c04.indd 145 08-02-2023 18:52:31

146 Part 2 ■ Software Architecture Career Planning

A. Assess risks to business continuity and offer remedies to avoid production
environment failures.

B. Evaluate, select, and adopt off- the- shelf middleware products.

C. It’s not mandatory for strategists to have strong analytical traits.

D. Devise artificial intelligence solutions to provide medical prognoses.

Influencing
Strategists rely on their capability to influence business and IT stakeholders
to obtain their support and foster advocacy for long- term technological plans
and projects.

Question: How can the power of strategic influence be employed to impact
organizational decision- making when it comes to technological solutions?

A. Influential strategists can contribute to enterprise architecture directions
and strategies by motivating and incentivizing their followers to embrace
business and technological visions.

B. Strategists never influence organizational decision- making.

C. Influencing is all about affecting the decisions to develop business products
and transform enterprise technologies.

D. It’s not the strategist’s job to influence anything.

Promoting Culture
Organizational culture affects human behavior and code of conduct, moral
values, product development methodologies, business processes, and practices
that are critical to advancing business missions.

Question: How does a strategist promote organizational culture?

A. Cultures cannot be promoted. They evolve with time. No one has control over
how people behave, respect each other, use software, or communicate.

B. Enterprise culture must be enforced— not promoted.

C. A strategist promotes enterprise culture by aligning business strategies
with technological strategies.

D. Culture can be promoted by embracing best practices, standards, and
policies to shape organizational strategies and business product development.

Bell820970_c04.indd 146 08-02-2023 18:52:31

 Chapter 4 ■ Self- Assessment for Software Architects 147

Strategy Execution Plan
A strategy execution plan answers the critical question, “How can a carved-out
strategy can be implemented?”

Question: What does a strategy execution plan consist of?

A. A strategy implementation roadmap with milestones and goals.

B. Policies and best practices for software development.

C. There is no effective way to execute a strategy because strategies never
propel any implementation of business products.

D. Providing a strategy execution plan is counterproductive because no one
adheres to enterprise strategies anyway.

Assessment of Strategic Competencies
Table 4.4 lays out four columns: Category, Answer, Points Earned, and My Score.
The points for each answer are shown in the Points Earned column.

Based on the earned point tally, the three competency ranges defined in the
following list should indicate if an individual possesses satisfactory software
architecture strategic skills.

49–72 points This point range shows that one possesses passable software
architecture strategic talents.

25–48 points This point range indicates that there is a need for further
training to enhance the software architecture strategic capabilities.

1–24 points If the earned points are anywhere within this range, significant
improvements to software architecture strategic skills are required. Indi-
viduals are encouraged to pursue self- studies and take related training to
improve the strategic capabilities affiliated with the software architecture
practice.

Table 4.4: Strategic Competencies Assessment Table

CATEGORY ANSWER POINTS EARNED MY SCORE

Software
Architecture
Strategy

A 4

B 2

Strategic Thinking B 4

D 1

Continues

Bell820970_c04.indd 147 08-02-2023 18:52:31

148 Part 2 ■ Software Architecture Career Planning

CATEGORY ANSWER POINTS EARNED MY SCORE

Problem
Identification

A 4

B 4

Problem-Solving C 4

Abstraction A 4

B 4

D 4

Generalization A 4

B 2

D 2

Visualization B 4

Software Design
Strategy

C 4

Simplification A 2

C 4

Analytical
Capabilities

A

Influencing A 3

C 4

Promoting Culture D 4

Strategy Execution
Plan

A 4

Maximum Points
to Earn

72

My Score Point
Total

0

Table 4.4 (continued)

Bell820970_c04.indd 148 08-02-2023 18:52:31

Software Architecture Toolbox

In This Part

Chapter 5: Employing Innate Talents to Provide Potent Organizational
Solutions

Chapter 6: Software Architecture Environment Construction
Chapter 7: Structural Construction of Software Implementations in Multi-

Dimensional Environments

Par t

3

Bell820970_p03.indd 149Bell820970_p03.indd 149 08-02-2023 19:24:5208-02-2023 19:24:52

Bell820970_p03.indd 150Bell820970_p03.indd 150 08-02-2023 19:24:5208-02-2023 19:24:52

CHAP TE R

151

5

Humans have employed the power of life study and experience to promote
culture and advance social communication. This compound knowledge has
enhanced our lifestyle and introduced novel technologies that have broken
educational barriers.

But the notion that humans’ social, economic, and technological achievements
have been merely propelled by experience and incessant study is implausible.
There is substantial evidence that we carry innate talents since birth— skills
not necessarily learned through experience. Some of these natural abilities are
affiliated with primal instincts, such as survival, endurance, security, and social
bonding.

Clearly, the ongoing participation in life activities characteristically renders
accumulation of information and accelerates the learning of skills. But life expe-
rience is not the only factor that contributes to the survival of human beings.
Humanity has also withstood hardships and overcome calamities by applying
innate skills. It has become evident, though, that the combination of the two— life
experiences and inherent innate capabilities— is frequently utilized to enhance
decision- making and to provide potent strategies to avoid threats to existence.

There is no indication suggesting that innate gifts cannot be learned during
a lifetime. Adaptability, enthusiasm, curiosity, creativity, and self- discipline are

Employing Innate Talents
to Provide Potent Organizational

Solutions

Bell820970_c05.indd 151 08-02-2023 18:52:40

152 Part 3 ■ Software Architecture Toolbox

known to be genetic traits that can also be developed and enhanced through
life experiences because of survival necessities.

 CO N C E P T Bottom line: everything can be learned, every talent can be honed, and
every competency can be subject to improvement.

Innate Skills Promote Software
Architecture Effectiveness

Because of the harsh survival game in the corporate world, software archi-
tects must bring not only professional expertise to the table. This would not be
enough to excel in the software architecture field; nor would it substantially
contribute to organizational technological superiority. Therefore, to boost soft-
ware architecture capabilities, innate competencies should be recruited to render
effective and potent business and technological solutions. The most prominent
innate skills that can promote software architecture effectiveness are good
judgment, communication, social involvement, design taste, logical inference,
creativity, intuition, imagination, and curiosity.

 CO N C E P T Although innate skills are deemed as genetically imprinted knowledge,
there is no limit to the traits a software architect can improve, study, develop, and
acquire. Don’t despair. Never lose hope.

Remember: Survival, Survival, Survival
Surviving in the turbulent corporate world is one of the greatest challenges that
a software architect must grapple with. The struggle to maintain technological
leadership, to galvanize support for architecture vision, to tolerate ignorance,
and to advance software architecture agendas are only a few survival difficulties
that software architects typically face.

Moreover, there are limitless occasions to fail when it comes to corporate
survival: there are no limits to corporate subsistence problems that eventually
put a strain on technological progress; there are no limits to social and com-
munication issues that hamper collaboration, partnerships, and teamwork; and
there are no limits to the slew of leadership problems that can only diminish
support for software development projects.

Therefore, these technological, social, communication, and leadership hard-
ships only emphasize the need for innate talents that must be employed to
address business and technological risks.

Bell820970_c05.indd 152 08-02-2023 18:52:40

 Chapter 5 ■ Employing Innate Talents to Provide Potent Organizational Solutions 153

 CO N C E P T Software architects must recognize that the impediment to technolog-
ical progress originates from unfitting individual agendas, priorities, and preferences.
To tackle these problems, they must unleash the innate power of creativity to provide
viable solutions. They must take proactive measures to dodge business calamities. And
to be able to survive in the corporate world, they ought to adapt a situational aware-
ness strategy that reduces the chance of failure.

Consequences of Failing to Invoke Innate Talents
It takes only one adverse incident to put strain on a network, an infrastructure,
or an entire production environment. The list of business and technological
impediments is long. These obstacles may be caused by a broad range of issues,
such as software glitches, inadequate system scalability, or even failing software
architecture strategy. Slow system- response time or accelerated consumption
of computing resources (such as memory, disk, and network bandwidth) are
only a few signs of a malfunctioning production ecosystem.

A devastating epidemic, war, terrorist attack, decapitating cybersecurity
strike, and civil unrest are also a few examples of causes that can disrupt system
operations and halt business transactions.

A well- architected production environment can successfully respond to these
obstacles and avoid substantial disruptions to critical business operations.
Moreover, the inability of architecture leadership to effectively address any of
these challenges exposes critical software architecture capability weaknesses that
typically prolong technological disarray, which is hard to reverse.

Therefore, software architects ought to invoke their innate traits, such as
curiosity, analytical skills, problem- solving capabilities, or decision- making
talents to prevent self- induced blindness. The term blindness refers to incapacity
to understand business imperatives, assess business and technological risks, or
analyze the feasibility of applications and systems in production environments.

Self- induced social blindness is another symptom of ignoring innate skills. This
ignorance typically relates to software architects who neglect to communicate
effectively with business stakeholders and refuse to collaborate with IT partners.

Software architects who focus on trivial problems, promote unimportant
agendas, and underutilize their innate talents fail to fulfill strategic organiza-
tional goals. Consequently, organizations tend to abolish their positions because
they fail to demonstrate business or technological value. Similarly, architecture
organizations cease to exist if they fail to provide effective remedies to business
problems. And management is displaced if it does not show strong leadership.

 CO N C E P T Unutilized innate talents can result in ineffective leadership, failure of
imagination, and procrastination that delays preventive measures to promptly address
looming risks. These deficiencies only introduce grave consequences to business and
technical operations.

Bell820970_c05.indd 153 08-02-2023 18:52:41

154 Part 3 ■ Software Architecture Toolbox

Employ Chief Innate Talents to Become an Effective
Software Architect

The innate talents discussed in the sections that follow are possible to learn
and develop throughout a professional career. Bottom line: there is nothing
that can’t be honed, studied, and practiced. Be aware that there are umpteen
training aids, classes, and literature that can improve the innate skills that are
desperately needed to provide potent organizational solutions.

Inadequate imagination, for example, could hinder the capabilities to provide
effective design blueprints to solve business challenges. In the same fashion,
creativity is another talent that is extremely valuable for accomplishing soft-
ware architecture missions. Underutilized similar innate traits typically yield
ineffective, mediocre, and in many cases impractical organizational solutions.

The four sections that follow introduce the most necessary innate talents that
a software architect must possess. Again, these skills can be developed and
improved during a career life span.

 ■ The power of creativity

 ■ The potency of imagination

 ■ Software design aesthetic

 ■ Curiosity attributes

The Power of Creativity

It’s hard to imagine a successful technological environment chartered to offer
solutions to remediate business challenges that does not promote creative thinking.
A technological culture must then promote innovation by galvanizing staff to
devise new ideas, propose alternatives to existing solutions, and open a dia-
logue for generating new possibilities.

An organization’s culture that is bogged down by conservative ideas and
that expects the “right” approach to solve enterprise problems typically shows
signs of technological stagnation. And technological stagnation is a byproduct
of cultural conformity that in many cases promotes fear that suppresses cre-
ativity. On the contrary, successful businesses acknowledge that there are no
“right” answers to organizational problems, that multicultural and diverse
dialogue only propel technological innovation, and that the best solutions to
business risks do not stem from ideologies that censor or curb the appetite and
enthusiasm for change.

Bell820970_c05.indd 154 08-02-2023 18:52:41

 Chapter 5 ■ Employing Innate Talents to Provide Potent Organizational Solutions 155

The Benefits of Unleashing Software Architecture Creativity
Software architects ought to be working in a work environment that is willing to
bear the costs and risks of technological experiments, accepts the consequences
of implementation errors, and agrees to shoulder the consequences of deploy-
ing ill- designed applications to production. Obviously, these risks should be
addressed in a timely manner to carry on business operations.

In essence, software architects typically thrive under leadership that recog-
nizes the benefits of creativity and keenly acknowledges that instant success is
improbable. Executives who are tolerant of software architecture failure in the
interest of promoting design innovation characteristically benefit from effective
technological modernization.

Software architects who stifle creativity because of the fear of failure typically
promote technological development inertia. Fear of failure endangers creative
thinking. Fear of failure provokes procrastination that gives rise to technolog-
ical modernization paralysis. Fear of failure strengthens conformity to old ideas
that never contribute to business innovation.

Unleash the Power of Software Architecture Creativity
Table 5.1 offers methods to enhance creativity when providing solutions to
organizational challenges. It’s the software architects’ responsibility not only
to diversify solutions to facilitate business growth but also to continuously
develop creativity traits during their career.

Table 5.1: Guidance to Boost Software Architecture Creativity

CREATIVITY ENHANCERS EXPLANATION

Consider a diversity of software
architecture solution
alternatives

Devise a number of solutions to solve a business or
technological challenge. These choices enable the
selection of the best design approach and increase the
rate of software development success.

Experiment to increase the
chance of software architecture
success

Obviously, experiments can be pursued in preproduction
environments. But there is no guarantee that these
solutions would work in production. Despite the risk of
ill- designed implementations, experiments typically
increase the odds of software architecture success and
enhance the learning experience.

Demonstrate social flexibility
when providing software
architecture solutions

Communicate with stakeholders, get advice from co-
workers, and listen to others’ concerns to learn more
about their particular business and technological
challenges and imperatives.

Continues

Bell820970_c05.indd 155 08-02-2023 18:52:41

156 Part 3 ■ Software Architecture Toolbox

CREATIVITY ENHANCERS EXPLANATION

Never say “no” before analyzing
new ideas

Do not reject offhand any concept or idea proposed to
resolve business or technical issues. Stay open even to
the most improbable and unfeasible ideas. Employ
analytical talents to explore opportunities rather than
filter them.

Explore business growth
opportunities and possibilities

Business growth should be one of the leading drivers
when proposing software design solutions. Keep in mind
that creative and effective technological solutions tend
to increase business opportunities and exceed
consumers’ expectations.

Do not reemploy failed or
outmoded technological
solutions

Be attentive to environment evolution and technological
trends. Shy away from proposing software architecture
solutions that have failed or were popular for legacy
implementations. Be attuned to industry developments
and never stop learning about advanced solutions.

Always ask the “why,” “what,”
“when,” and “where” questions
to promote creative solutions
and generate more ideas

Ask a variety of questions to explore creative
opportunities. For example: Why is this solution needed?
What is its business contribution? What is the problem
domain that the solution intends to solve? Why now?
When will the solution be deployed to production?

Apply many usages to a single
software implementation

There is not much sense in designing a software solution
that cannot be used for multiple purposes. For example,
an enterprise middleware solution can provide a myriad
of functions, such as business orchestration, message
routing, security enforcement, and more.

Combine ideas and concepts to
create powerful software
architecture solutions

Synthesizing multiple ideas and concepts typically
renders multifaceted software architecture solutions that
provide potent remedies to organizational problems.

Break conservative barriers:
Instigate change

Promote business and technological change: devise new
software design and development approaches,
methodologies, technologies, applications, systems, and
services.

Diversify architecture
investments to reduce business
risks

Support organizational investments in a wide range of
software architecture projects, products, platforms,
infrastructure, and production environments to enhance
business capabilities.

Combine sources to facilitate a
creative software architecture
solution

Any design solution should combine multiple sources of
data, protocols, interfaces, design and development
tools, deployment platforms, and more.

Repurpose software
implementations

Design software that can be used to offer different
solutions for different problems.

Table 5.1 (continued)

Bell820970_c05.indd 156 08-02-2023 18:52:41

 Chapter 5 ■ Employing Innate Talents to Provide Potent Organizational Solutions 157

The Potency of Imagination

One of the most powerful traits that propels technological innovation and
business development is imagination. The faculty of envisioning a different
world, or an alternate reality; the ability to visualize images that do not exist;
and the capability to form new ideas or concepts that are not perceived by the
senses can play pivotal roles in organizational transformation.

Moreover, in its purest form, imagination renders mental constructs (intan-
gible ideas and concepts) that over time can be transformed into concrete
software implementations. Consequently, software architects who are able to
effectively mobilize the power of imagination are characteristically capable of
devising groundbreaking design of applications, systems, and environments
that immensely promote the business.

But what does imagination entail? What type of capabilities or personal
characteristics do imaginative software architects possess? They are typically

CREATIVITY ENHANCERS EXPLANATION

Reuse implementations Avoid functionality redundancy by utilizing existing
software rather than building or acquiring new products.

Invent software that has never
existed before

There is no limit to software invention and innovation.
Keep the ideas emerging to enhance production
environments. Software is not just source code. It should
be perceived as the embodiment of creativity, as a
vehicle for growing the business.

Use convergent and divergent
thinking to boost software
architecture creativity

In the context of software architecture, convergent
thinking is about centering on an accurately defined
solution to a problem. In contrast, divergent thinking is a
creative approach to solve a problem by devising
multiple solutions to a single business or technological
challenge. Use both convergent and divergent thinking
to increase software architecture creativity.

Come up with alternative
solutions to legacy
implementations

Technological trends call for replacing legacy
implementations with advanced software architecture
solutions.

Unleash the power of
imagination

Imagination boosts creativity. Software architects who
can harness the power of their imagination possess the
capability to visualize and/or conceptualize innovative
software implementations and environments (the next
section outlines the benefits of imagination).

Expand technological
knowledge to increase
software architecture creativity

Enhanced technical, business, and social knowledge
always improve software architecture solutions.

Bell820970_c05.indd 157 08-02-2023 18:52:41

158 Part 3 ■ Software Architecture Toolbox

motivated, curious, and out- of- the- box thinkers; they are able to create new
realities and promote business and technological change; and they are dis-
posed to originating different worlds. Otherwise stated, imaginative software
architects are capable of providing unique software solutions that can make
a big impact on organizational culture, consumer behavior, and the way the
enterprise does business.

Imagination must render software design that embodies the principles of aes-
thetics, such as beauty, completeness, balance, and good taste. Namely, software
architecture is not only driven by science— it’s also a branch of art that must be
expansive enough to drive consumer satisfaction and promote business. Aes-
thetics innate skills are discussed in the section, “Design Aesthetic.”

The Benefits of Harnessing Imagination
To provide creative software design solutions, an imaginative software architect
is commonly engaged in an experimental and to some extent risk- taking process
that ultimately may contribute to technological innovation. In other words, the
power of imagination facilitates original design solutions that result in cutting-
edge applications and systems.

But imagination not only facilitates superior design solutions; it can also benefit
astute software architecture decision- making when it comes to development,
deployment, and integration of products in production. This may entail the
establishment of innovative software delivery and deployment approaches;
employment of creative software integration and federation patterns; or adop-
tion of advanced infrastructure and security platforms.

In addition, imagination can be employed to foster fruitful professional part-
nerships with business and IT stakeholders despite disagreements between
the collaborating parties. It’s all about unleashing the imagination to better
negotiate and compromise on disputed strategies. Therefore, harnessing the
power of imagination to embrace interorganizational social relationships is vital
to promoting software architecture visions. Without such alliances, software
architects are typically unable to establish meaningful policies, best practices,
and standards vital to organizational culture.

Conservative concepts and habits always impede imagination. Software
architects who resist change and are protective of archaic technologies may
drag down organizational progress. The lack of software architecture imag-
ination, therefore, yields mediocre business products that never fully satisfy
clients. The absence of imagination is noticeable in malfunctioning production
environments where services and applications are not integrated properly. And
average business performance is typically due to the dearth of software design
and technological ideas.

Bell820970_c05.indd 158 08-02-2023 18:52:41

 Chapter 5 ■ Employing Innate Talents to Provide Potent Organizational Solutions 159

Unleash the Power of Imagination
One of the most intriguing processes that takes place during the product
development life cycle is the origination of concepts and ideas that are largely
driven by imagination. Obviously, this conceptual process leads to tangible soft-
ware executables, such as services, applications, and systems that are deployed
later to production. Simply put, imagination generates concepts and ideas that
in time become reality. And without the thrust of imagination, business and
technological solutions tend not to fully satisfy organizational imperatives.

This discussion emphasizes the need for unleashing the power of imagina-
tion to be able to propose state- of- the- art design blueprints. Without harnessing
the might of imagination, for example, software integration may not entirely
utilize advanced infrastructure capabilities. Moreover, the lack of imagination
characteristically contributes to vulnerabilities of software products that are
vulnerable to cybersecurity attacks.

Imagination is an innate talent that can be developed, honed, and enhanced
during a career. And there is nothing that can stop a software architect from
amplifying and stimulating the inner strength of imagination. Table 5.2 intro-
duces drivers that unleash the power of imagination to effectively meet business
and technological requirements.

Table 5.2: Chief Software Architecture Imagination Boosters

IMAGINATION DRIVER EXPLANATION

Be playful but take things
seriously

Playfulness is a mental state that brings joy and satisfaction to
software architects while fulfilling their duties. This state also
promotes the creation of ideas that can break down
technological barriers. But being playful does not mean
brushing aside software design milestones and goals.

Do not filter out bold
ideas and concepts

Accept a diversity of software architecture ideas and
innovative implementations. Embrace technological
possibilities rather than attempting to narrow the array of
audacious solutions.

Avoid stereotyping and
prejudgment

Be open- minded. Do not fall prey to unconscious biases,
preconceived notions, and unproved opinions about
technologies and software architecture approaches. Assess
first their feasibility and actual contribution to business
imperatives.

Become a daydreamer Daydreaming is a mental state that stimulates mind
wandering and thoughts about personal hopes and wishes.
These are aspirations and fantasies about fulfilling
hypothetical goals that do not exist in reality. Software
architects should recognize the power of daydreaming that
contributes to the establishment of groundbreaking
applications and systems.

Continues

Bell820970_c05.indd 159 08-02-2023 18:52:41

160 Part 3 ■ Software Architecture Toolbox

IMAGINATION DRIVER EXPLANATION

Trust intuition Learn to trust your gut feelings when it comes to negotiating
solutions and establishing partnerships with business
stakeholders, vendors, and consumers.

Develop an appetite for
experiences

Every software architecture project or initiative should be
regarded as an exciting experience in pursuit of a business
solution. Strive for technological experiences that can help
hone software architecture capabilities.

Be rebellious and
conservative in the face of
change

Rebellion promotes business and technological change.
Conversely, a conservative approach to managing change
instills practicality and order during organizational
transformation

Be flexible To successfully promote software architecture agendas, be
flexible. Compromise on software design goals. Negotiate
wisely with stakeholders and IT partners on business and
technical requirements. Fulfill your dreams by being flexible.

Claim personal space and
time to work
independently, but at the
same time collaborate
with others

Imaginative software design and integration solutions are
typically created in isolation. In contrast, to be able to
effectively rise to business and technological challenges,
collaboration with partners is highly recommended.
Therefore, there is nothing wrong with being extroverted and
introverted at the very same time.

Take risks Accept risk- taking as a part of every software design and
architecture implementation.

Generalize solutions but
be thorough

Address a wide range of organizational challenges by
providing a broad scope of technological remedies. At the
same time, adopt systematic approaches and do not overlook
software design and implementation details.

Ambition, passion, and
enthusiasm are
imagination boosters

Ambition, passion, and enthusiasm boost imagination to
extreme limits because they motivate software architects to
provide creative and potent software solutions.

Ask challenging questions Imagination flourishes when asking the hard questions about
design solutions, such as practicality of applications and
systems, business value, cost of ownership, and the price of
implementation maintainability.

Shake up the status quo Do not always accept traditional or archaic software
architecture approaches and design solutions. Support
technological transformation; employ innovative software
architecture styles and design patterns; and devise advanced
software development best practices.

Reject habits Embrace new experiences by rejecting old habits. Be willing
to rethink software architecture strategies and solutions.

Table 5.2 (continued)

Bell820970_c05.indd 160 08-02-2023 18:52:41

 Chapter 5 ■ Employing Innate Talents to Provide Potent Organizational Solutions 161

IMAGINATION DRIVER EXPLANATION

Focus on storytelling Employ storytelling skills to promote ideas and projects:
develop user and business stories to facilitate the
development of software implementations; come up with use
cases to assess feasibility of applications and systems.

Battle resistance to
innovation and
transformation

Pick the right organizational battles and fight resistance to
business and technological change.

Use procrastination as a
strategic device

Developing new ideas, concepts, vision, and strategies for
software architecture should not be considered
procrastination.

Learn how to connect the
dots

Imaginative, astute, and advanced software designs tend to
connect the dots of multiple sources of information and data.
These may include multiple strategies, design approaches,
visions, business processes, and best practices and standards.

Understand success
patterns and models

Always copy success patterns and models to minimize
expenditure and accelerate time to market. Utilize the power
of creativity to borrow successful concepts and software
design.

Naivete is only a plus Frequently, courageous or audacious business solutions are
driven by naivete.

Be spontaneous and also
deliberate

Support spontaneous software architecture ideas that spur
ingenious business products. But also stay on track with
project milestones and goals.

Employ reasoning but do
not abandon emotional
involvement with projects

Software architecture duties call for analytical talents to
provide solutions. But this process should not only include
logical reasoning. Therefore, all software architecture offerings
should involve emotional aspects that can balance the
outcome of software development projects.

Be a nonconformist Do not conform to old ideas, outdated concepts, and archaic
software architecture dogmas if business and technical
requirements call for innovative applications and systems.

Be courageous enough to
fail

The fear to experiment with advanced software architecture
ideas and implementations inhibits technological change.

Utilize imagination to
devise applications,
systems, and
environments that do not
exist

The introduction of software implementations that are not
currently available to consumers is a sign of software
architecture maturity.

Continues

Bell820970_c05.indd 161 08-02-2023 18:52:41

162 Part 3 ■ Software Architecture Toolbox

Software Design Aesthetic

Innate artistic skills encompass a large number of visual and nonvisual self-
expressions that we use to convey feelings and depict humans’ conditions.
We rely on our senses to view the world in the way we choose; make aesthetic
decisions to improve our lifestyle; and better communicate with friends, family,
and coworkers. These unique talents help us to promote ideas, present our-
selves to the outside world, and even advance our careers. The artistic means
to illustrate our thoughts and feelings by creating new realities that are indeed
limitless. And the flair for inventing things that do not exist is indeed ingenious.

Employing artistic talents, no matter in which field or occupation, is affili-
ated with the science of aesthetics. Architects characteristically use these innate
expressive skills to generate ideas, develop concepts, and create software imple-
mentations that do not exist. Moreover, the development process of modern
applications and systems calls for sensitivity to colors, shapes, structures, and
space. But software construction is not only about the creation of visual forma-
tions. Building trailblazing business products must also involve the senses of
sound, smell, taste, and touch to enrich the consumer experience.

Technical Proficiency and Aesthetic Talents Drive
Software Design
To be able to offer practical design blueprints for developers, integrators, and
operations personnel, software architects must demonstrate solid technical
knowledge. Technical aptitude is then clearly a necessary skill employed to
devise applications and systems, to promote technological innovation, and to
foster software architecture strategies.

However, software architects who are driven only by their technical capabil-
ities without employing aesthetic talents typically produce mediocre products.
Merely satisfying business imperatives is not enough. The converse is also

IMAGINATION DRIVER EXPLANATION

Unleash the imagination
power that embodies all
human senses

Software architecture duties call for the involvement of all
human senses to promote exceptional software
implementations.

Use the potency of the
imagination to build
aesthetic software
applications and systems

Software architecture is not only about providing adequate
technological solutions; it’s also about involving artistic,
tasteful, and aesthetic software design skills to meet users’
visual satisfaction.

Table 5.2 (continued)

Bell820970_c05.indd 162 08-02-2023 18:52:41

 Chapter 5 ■ Employing Innate Talents to Provide Potent Organizational Solutions 163

true: software architects who are primarily driven by their artistic talents are
incapable of devising compelling and effective software architecture solutions.

The best business products on the market are those that have been architected
by brilliant minds. These software implementations are not only innovative; they
make sense, they are tasteful, they are easy to use, they perform well, they are
intuitive, they please the eye, and they are simply beautiful. The rule of thumb
then suggests that to achieve this ideal, the marriage of the two— aesthetic and
technical proficiency— is essential for delivering potent business and techno-
logical solutions.

The Chief Contribution of Design Aesthetic Talents
to Software Architecture
Throughout the history of computing, it has become clear that aesthetic talents
contribute to software design solutions that exceed expectations and provide
enormous business value. To understand why these aesthetic traits typically
yield software products beyond the call of duty, it’s necessary to recognize what
they actually entail. Is it only about the ability to create impressive graphical
user interfaces? Are these talents only about using striking color schemes and
astounding images to embellish web pages? Are they only about embedding
pretty buttons, drop- down boxes, and checkboxes?

Design aesthetic skills are not only about the visual presentation of applica-
tions or systems. They reach beyond the simplistic notion of what is perceived
as beautiful or elegant. It’s not always about what the naked eye observes. So,
what are software design aesthetic talents all about?

In a general sense, these unique skills represent the personal wisdom of a
software architect who understands software concepts, software structures and
composition, software behavior, software relationship, information flow, and
design patterns. But it’s not only about understanding.

 CO N C E P T It’s about the ability to arrange software components in certain hier-
archies, compositions, distributed formations, and patterns; the capability to position
the software across production environments; the knack to orchestrate and schedule
business transactions between software components; and the ability to establish com-
munication between applications and systems.

When employing design aesthetic skills, an architect’s job is then to strike
the balance between the possible and the probable— the feasible and what
cannot be accomplished— including all that pertains to design attributes such
as timing, rhythm, synchronization, quantities, qualities, variety, dimension,
and proportions.

Bell820970_c05.indd 163 08-02-2023 18:52:41

164 Part 3 ■ Software Architecture Toolbox

Consider Table 5.3, which includes proposed areas of study and improvement
to facilitate the delivery of effective business and technological solutions. More-
over, the items in this list accentuate the vital abilities that software architects
ought to be aware of and possess.

It’s never too late to develop such proficiencies. Persistence always pays off.

Table 5.3: Aesthetic Aspects of Software Design

DESIGN AESTHETIC ASPECTS EXPLANATION

Aesthetic patterns These patterns are predefined sets of aesthetic
solutions that software architects can reapply when
devising design solutions. The patterns promote
architecture balance between software granularity
levels, footprint, response time, taste, rhythm, appeal,
composition, presentation, and more. In other words,
the term balance refers to the state of software
equilibrium between the too fast and too slow, the too
big and too small, the too complex and too simple, etc.

Transaction progress and timing During the design process, the software architect’s
ability to assess the performance of information
exchange between software assets is an aesthetic skill.

Design evolution Akin to an artist who paints a picture, a software
architect should be aware that software design is an
ongoing process, during which layers, tiers, and
processes are being added gradually over time.

Design agility The capability to visualize and design a nimble
application whose behavior, structure, and presentation
are able to support business or technological change.

Balance of design good taste Design good taste is about the aspects that drive the
development of applications and systems. Good taste in
this context refers to discerning judgment about
software usage, feasibility, business value, performance,
presentation, and quality of information. It’s all about
the balance between too much or too little, too slow or
too fast, too colorful or too conservative.

Good eye for design decisions The capability to recognize good software design
qualities and understand the contribution of
technologies to a solution is a design aesthetic trait that
ought to be developed during a professional career.

Design intuition The ability to picture software design solutions without
reasoning or prior analysis and experience.

Bell820970_c05.indd 164 08-02-2023 18:52:41

 Chapter 5 ■ Employing Innate Talents to Provide Potent Organizational Solutions 165

DESIGN AESTHETIC ASPECTS EXPLANATION

Design appeal Software architects ought to understand consumers’
needs, habits, behaviors, and preferences when
designing applications and systems. Therefore, design
aesthetic talents typically drive software architecture
decisions that refer to client interaction, application
performance, intuitive user interfaces, presentation of
multimedia, and satisfactory content.

Distance and geography Distance and geography are terms used to depict the
manner by which software implementations, such as
applications, are being distributed in a production
environment. Software can also be dispersed across
regions, countries, and even continents. Software
architects ought to envision these distributions by
devising proper design patterns. They should then
utilize their design aesthetic skills when they are
required to strike the balance between practical and
unreasonable software distribution.

Design proportions Design proportions pertain to the association between
two or more software implementations, such as services
and applications. This relationship is about the aesthetic
comparisons of software structures, patterns, shapes,
granularity, size, footprint, qualities, and attributes.

Design aesthetic perspectives The ability to picture software from different points of
view is a powerful design aesthetic trait. These
perspectives enable architects to conceive software
products from different angles, such as presentation
(shapes, colors, fonts, images, etc.), functionality, appeal,
usage, software structures, and software components.
The ability to provide design blueprints that depict how
these perspectives work together is an art in itself.

Hierarchies Architects utilize aesthetic skills to devise software
hierarchical formations, such as layered structures,
parent and child component dependencies, and data
categories and subcategories. These formations are
depicted along with their attributes, behavior, or
functionality in design blueprints.

Relationships Being able to visualize sensible relationships and
interfaces between software assets without rendering a
complex architecture ecosystem is a design aesthetic
skill that addresses challenges such as redundancy of
message exchange or duplicate functionality.

Continues

Bell820970_c05.indd 165 08-02-2023 18:52:41

166 Part 3 ■ Software Architecture Toolbox

DESIGN AESTHETIC ASPECTS EXPLANATION

Layers and tiers Software design aesthetic skills enable architects to
visualize and arrange software modules or components
in layers. This talent is also employed to design
architecture that supports tiers in which applications
and systems are distributed in a production
environment or dispersed over different geographical
locations.

Innovative software structures
and distributed formations

Layers and tiers are traditional software architecture
structures and distributed formations. Nowadays, to
meet demanding business requirements, it’s common
for software architects to be called upon to devise
software design that depicts innovative structures and
formations. Creativity, imagination, and design
aesthetic talents are the chief drivers that promote
state- of- the- art software implementations.

Abstractions In essence, ideas and concepts are abstractions that
must materialize into tangible solutions. Aesthetic
talents then must drive this process from its inception
by making design decisions about software structures,
behavior, functionality, and presentation.

Architecture dimensions Architecture dimensions visualize three fundamental
views of software: height, depth, and length (refer to
Chapter 7 Structural Construction of Software
Implementations in Multidimensional Environments for
the discussion about 3 D software design).

Software behavior Some of the most important aspects of software
behavior are about interaction with consumers, data
processing, presentation of information, and
communication with other software implementations.
The ability to visualize and orchestrate software behavior
is an important aesthetic skill that can render potent
solutions.

Data and information flow Data flows on a network in many visual patterns, such
as star, tree, bus, and ring. To design such traffic flows,
software architects must not only possess technical
talents, but also aesthetic skills to drive architecture
simplicity, optimize performance, and increase
efficiency of transactions.

Connect the design dots Most of the design aesthetic skills must be driven by
sources of organizational and industry information that
can contribute to effective architecture solutions. This
vital data typically comes from business requirements,
business and software architecture strategies,
consumers’ needs, and technological capabilities.

Table 5.3 (continued)

Bell820970_c05.indd 166 08-02-2023 18:52:41

 Chapter 5 ■ Employing Innate Talents to Provide Potent Organizational Solutions 167

Curiosity Attributes

Curiosity is an innate quality, often driven by an inquisitive appetite for gath-
ering information about unfamiliar events and facts. This study and observation
process is naturally prompted to rationalize the unknown, out of the ordinary, or
unconventional. Moreover, curiosity is not always triggered because of survival
concerns or affiliated anxieties. It’s also set off to restore lucid reasoning and
logical thinking to avoid confusion, uncertainty, and chaos.

Curiosity increases the motivation to study, examine, explore, and question
the environment, conditions, and evolution of obscure subjects or unclear cir-
cumstances. Furthermore, curiosity qualities drive the necessity for knowledge
acquisition. Curiosity also fosters cultural, social, and technological development.
Without such an innate attribute, individual and social progression would not
make significant headway. Without curiosity drivers, business and technological
goals would be difficult to fulfill and stagnation would be the current state of
affairs without the craving for exploration, adventure, and change.

Curiosity is a multifaceted innate attribute that not only drives the need for
examination of occurring events or facts. Curiosity is also about the desire to
understand individual, social, cultural, and technological behaviors. This may
include comprehending evolution and the growth of entities, such as commu-
nities, businesses, living environments, and social landscapes. The ability to trace
progression and understand behavioral trends is attributed to humans’ curiosity.

The Contribution of Curiosity to Software Architecture
Curiosity drives the situational awareness of business and technological trends.
Simply put, studying and monitoring the evolution of business and technological
transformation are attributed to the drive of professional curiosity. Moreover,

DESIGN AESTHETIC ASPECTS EXPLANATION

Design composition Composition is one of the most important aspects that
shape artistic work, such as paintings, drawings, and
sculpture. Design composition is an aesthetic skill that
enables software architects to visualize abstractions.
Design and integration patterns, for example, are
visualizations of software structures and dependencies
that are visible in production.

Software elasticity Architects should possess the ability to envision and
design software formations and functionality that can
be scaled, contracted, or expanded in response to
fluctuations in consumer demand, market trends,
business transformation, or technical evolution.

Bell820970_c05.indd 167 08-02-2023 18:52:41

168 Part 3 ■ Software Architecture Toolbox

the capability to mitigate business and technological risks, protect organiza-
tions from business threats, save production environments from applications
and system failure, and offer effective software architecture strategies are all
the outcomes of meticulous studies and incessant observation.

Curiosity drives the necessity for personal knowledge acquisition. Gaining
information is indeed a potent power that contributes to operational balance
of applications and systems in production. The term operational balance refers to
smooth execution of business transactions. It pertains to software design that
strengthens business continuity and is related to efficient integration of software
services that satisfy consumers’ imperatives.

 CO N C E P T Software architecture decision- making that is not based on systematic
knowledge acquisition characteristically contributes to an unbalanced production
environment.

The arsenal of vehicles employed by organizational leaders to promote culture
that ultimately influences behavioral change of staff and consumers is vast. Soft-
ware architects, too, have the clout to foster change by devising frameworks that
focus on best practices, standards, and policies. These frameworks offer design
principles, software development standards, and deployment and integration
best practices of applications and systems in production.

 CO N C E P T Curiosity is the agent of organizational culture promotion and
behavioral change. Curiosity drives business transformation and technological inno-
vation. Curiosity contributes to the software architecture industry, computer science,
software development methodologies, and enterprise strategies.

The Influencing Facets of Curiosity on Software
Architecture Practices
Without the influence of curiosity on software architecture, technological stag-
nation would more likely dominate the progress, evolution, and development of
enterprise business. The curiosity inducing aspects, such as the urge to explore,
examine, diagnose, and infer galvanize technologists to devise new ideas and
concepts that lead to innovative software implementations. So, can humans’
innate curiosity attributes be further developed to. . .

 ■ Maximize creativity and imagination?

 ■ Accelerate studies?

 ■ Modernize software design approaches?

 ■ Improve the ways newly acquired knowledge is applied to provide potent
business and technological solutions?

Bell820970_c05.indd 168 08-02-2023 18:52:41

 Chapter 5 ■ Employing Innate Talents to Provide Potent Organizational Solutions 169

The answer to these questions is a resounding “yes.” There is nothing that
cannot be learned, honed, or practiced. The primary challenge, however, is to
increase the awareness that curiosity is a fundamental contributor to the duties
of software architects. Therefore, they must be continuously informed. They
must communicate with others to gain knowledge. They must be socially active
to understand business challenges. They must keep track of new technologies.
And they must understand how to employ their discoveries for the benefit of
organizations.

Table 5.4 summarizes the chief aspects that software architects ought to be
aware of when fulfilling their software design duties.

Table 5.4: Influencing Aspects of Curiosity

CURIOSITY ASPECT EXPLANATION

Types of curiosity These are intellectual, social, personal, and collective
curiosity types that refer to organizational governance,
business, and technological aspects. These types
render discovery of enterprise conflicts,
implementation errors, ill- designed applications and
systems, and more.

Desire to know Desire for information to accelerate business and
technological progress.

Inquisitive interest and thinking Exploring organizational challenges, people’s
concerns, technical problems, and business
impediments.

Knowledge acquisition Continuous appetite for gathering business and
technical knowledge to be employed for software
architecture problem-solving and decision- making.

Learning process Embrace learning methods to increase exposure to
information that can contribute to understanding of
production environments and operations.

Learning by listening to others Learning about concerns and ideas from consumers,
business, IT stakeholders, and peers.

Types of knowledge There is no limit to the types of knowledge software
architects ought to gain. This may include information
about business organizations, leveraged technology,
industry trends, organizational governance problems
and solutions, and business imperatives.

Source of knowledge The sources of information gathering may include
books, articles, white papers, press releases, social
media, videos, news, conferences, magazines, and
more.

Continues

Bell820970_c05.indd 169 08-02-2023 18:52:41

170 Part 3 ■ Software Architecture Toolbox

CURIOSITY ASPECT EXPLANATION

Application of knowledge Acquiring knowledge just for the sake of hoarding
information is not a practical practice. Software
architects must adopt methods for applying
knowledge to solve organizational problems. These
approaches may include action plans and long- term or
short- term objectives to apply the acquired
knowledge.

Observation Stay tuned to business problems and events,
performance of applications and systems, technical
incidents, business transformation, evolution of
technologies, and more.

Exploratory behavior Adopt a fact- finding and investigative behavior to
understand the challenges that software design is
facing when providing architecture solutions. For
example, explore behavior of business and IT partners
to understand how they operate. Examine applications
and systems behaviors in production. Study how
software architecture affects organizational change,
culture, and behavior of consumers.

Personal development Curiosity contributes not only to organizational
development and progress; it can also enhance
professional experiences and careers.

Investigatory responses to events Business problems, technological challenges,
consumer demands, and market trends typically
trigger investigatory responses that lead to powerful
business and technical solutions.

Questions driven by curiosity Always ask challenging questions to learn about
business problems, technical difficulties,
malfunctioning software, ill- designed systems, and
more.

Curiosity range The range of curiosity is boundless. Never stop
examining unfamiliar occurrences, facts, and behaviors
of business and technical aspects. The exploratory
effort should cover software architecture application
levels up to the enterprise level.

Business and technological
situational awareness

Keep track of events that will require software
architecture response: development, evolution, and
progression of events, ideas, implementations, and
strategize how to respond to them.

Risk mitigation The power of software architects’ inquisitive behavior
can help mitigate business and technological risks.

Table 5.4 (continued)

Bell820970_c05.indd 170 08-02-2023 18:52:41

 Chapter 5 ■ Employing Innate Talents to Provide Potent Organizational Solutions 171

CURIOSITY ASPECT EXPLANATION

Desire for change Curiosity is the agent of change. Find opportunities to
promote and advocate business and technological
change and transformation based on individual
experience and knowledge.

Elicit ideas and concepts Curiosity elicits ideas and concepts that play vital roles
in providing potent software architecture solutions.

Bell820970_c05.indd 171 08-02-2023 18:52:41

Bell820970_c05.indd 172 08-02-2023 18:52:41

CHAP TE R

173

6

Software architects ought to broaden the scope of their responsibilities beyond
application- level design. Their duties must also tackle the challenges that soft-
ware is facing in a software architecture environment1 deployed to a production
ecosystem. In addition, consider requiring architects to monitor and control the
impact of software behavior on a production landscape at large.

To accomplish these duties, employ the presented software architecture envi-
ronment construction discipline, a field of expertise devised to offer business
and technological integration solutions to address enterprise challenges. This
discipline provides design methods, guidance, best practices, and governing
laws to promote a balanced software architecture environment.

 CO N C E P T Recall that the software architecture environment construction is a dis-
cipline devised to foster effective integration of applications and systems in a software
architecture environment hosted in production.

Software Architecture
Environment Construction

1 Not including hardware, a software architecture environment consists of software implemen-
tations, such as applications, services, or systems that software architects are commissioned to
design, test, integrate, and control in production.

Bell820970_c06.indd 173 2/13/2023 2:48:04 PM

174 Part 3 ■ Software Architecture Toolbox

Benefits of the Software Architecture Environment
Construction Discipline

The chief objective of the environment construction discipline is to equip soft-
ware architects with design capabilities that will promote a balanced software
architecture environment in production. Ultimately, this equilibrium, a sought-
after goal, will contribute to business stability and continuity. To achieve this,
the environment construction discipline calls for design activities that focus on
a software architecture perspective and yet remain cognizant of the operational
constraints in a hosting production environment.

Moreover, the emphasis here is on the behaviors of software implementations
and their influences on the runtime environment to fulfill its state of equilibrium.
The state of balance of a software architecture environment in production refers
to a variety of conditions that enable software implementations to operate
efficiently and without major disruptions. For example, a lack of computing
resources may fail applications and keep systems from accomplishing their
tasks. Absence of architecture elasticity is another reason for performance deg-
radation of software products.

The sections that follow answer the fundamental questions that refer to the
environment construction discipline. Note that these queries pertain to the task
of designing a software architecture environment that is hosted by a produc-
tion ecosystem:

 ■ How do you construct a software architecture environment in production,
and what is the devised environment construction life cycle?

 ■ What should software architects focus on when deploying and integrating
software implementations in production?

 ■ How do you establish a balanced software architecture environment that
maintains business and technological continuity?

 ■ What are the influences of software behaviors on a production ecosystem?

 ■ What are the governing laws of software architecture environment
construction?

 ■ What are the best practices guiding the software architecture environment
construction?

Must Haves: Problem Statements and Requirements

When it comes to software design practices, there is nothing more essential
than requirements. Therefore, software architects should not pursue a design
effort without clear requirements. Any attempt to provide software architecture

Bell820970_c06.indd 174 2/13/2023 2:48:04 PM

 Chapter 6 ■ Software Architecture Environment Construction 175

blueprints predicated on arbitrary emails, verbal communications, or specu-
lations about business or technical imperatives will, more likely, bring about
financial and technological failure.

 CO N C E P T There is no defense against launching a software development project
without understanding business imperatives, problems, and requirements. There is no
defense against adopting commercial off- the- shelf (COTS) software products without
understanding associated business and technological problems. There is no defense
against allocating human resources and budgets for constructing applications and sys-
tems without defining milestones and goals.

This assertion seems logical and agreeable to most technologists. Nonetheless,
some software architects tend to launch design projects that are not driven by
an institutional product development life cycle that calls for problem analysis
and requirements. The consequences of such irresponsible undertakings are
typically grave. Uncontrolled budgets, unanticipated expenditure, and loss
of revenue are only a few of the risks that a business might be forced to bear.

Never Start a Software Design Project Without Understanding
the Problems
There are typically two types of problems that software architects are called
upon to provide solutions for: business and technological. There is no limit to
the array of business problems that an organization can be challenged with.
Some of these problems are affiliated with the loss of market share, harsh com-
petition, lack of effective business products, and even the failure to execute
business strategies.

Moreover, software architects are chartered to offer solutions due to technical
challenges. Some of these problems are related to malfunctioning applications
and systems, lack of computing resources, improper software integration, and
the inability to comply with software architecture strategies.

Never devise software design solutions in the absence of business or technical
problem descriptions. A corresponding problem narrative document character-
istically answers the following questions:

Problem definitions What are the problems?

Reasons What are the reasons for the problems that occur?

Criticality Do the challenges introduce substantial risk to the enterprise?
How critical are the problems?

Prioritization Which problems ought to be resolved first?

Bell820970_c06.indd 175 2/13/2023 2:48:04 PM

176 Part 3 ■ Software Architecture Toolbox

Never Start a Software Design Project Without Requirements
The same guidance should be applied to a lack of business or technical require-
ments. Embarking on a software design effort in the absence of requirements is a
shot in the dark— a wild goose chase that accomplishes nothing. Consequently,
design blueprints that are not based on requirements fail to demonstrate business
value. Software implementations based on these blueprints do not meet business
imperatives and are ultimately stripped away from production.

Furthermore, business requirements should provide the justification for
designing, developing, or acquiring applications or systems. For example, if a
banking firm cannot successfully compete in its industry because it lacks retire-
ment accounts, then the requirements must drive the corresponding software
architecture and development initiatives.

In the same manner, if an organization experiences technological challenges,
technical requirements must be issued before any software design effort begins.
For instance, lack of computing resources, performance degradation, and inad-
equate security policies would require technical specifications before software
architecture solutions are provided.

Software Architecture Structures

There are two types of software architecture structures that represent differing
levels of implementation: micro level and macro level. The former is associated
with a building block, a skeleton that represents the underpinning formation
of a software implementation. The latter can be visualized as the fabric of a
software architecture environment, in which software products communicate
with each other to provide broader business and technical solutions.

The sections that follow elaborate on these two different software architecture
structure levels:

Micro level Software implementation level structures

Macro level Software architecture environment structures

Micro Level: Multidimensional Structures
of Software Implementations
At the micro level, a structure denotes a supporting frame of a software imple-
mentation, such as an application, a service, middleware, or a data repository.
In this context, the term structure is analogous to a house’s framing, assembled
to provide the construction with structure. This framing is typically made of
steel, concrete, and wood.

Bell820970_c06.indd 176 2/13/2023 2:48:04 PM

 Chapter 6 ■ Software Architecture Environment Construction 177

In the software architecture world, a micro- level software structure is designed
to hold together all the components of a software implementation. Generally, it
supports programming logic that executes business or technical processes. These
operations are referred to as software behavior. Message exchange, information
sharing, business transactions, computing resource consumption, and data
persistence are examples of software behavior that drive business or technical
solutions. Again, such software behavior is always reinforced by a software
structure.

Figure 6.1 illustrates the micro- level software structure concept. It depicts a
structure, a building block that internally supports the construction of an appli-
cation. This structure holds together programming logic that executes business
processes, user interface procedures, data persistence operations, and message
exchange routines.

Note that Chapter 7 depicts the micro- level software structures as multidi-
mensional formations: zero dimension, one dimension, two dimensions, and
three dimensions. These geometrical building blocks can be used to support
any programming logic, processes, services, or data.

Macro Level: 3D Software Architecture Environment Structure
A software architecture environment structure is a 3D geometrical and topological
fabric that hosts all deployed software implementations, such as applications,
services, and systems. Moreover, this software architecture environment structure
must be able to support the integration, interaction, and collaboration between
its supported software implementations. To learn more about its topological and
artificial intelligence (AI) capabilities, refer to the section “Software Architecture
Environment: An Intelligent Topological Space.”

Figure 6.1: Micro- Level Supporting Software Structure Example

Bell820970_c06.indd 177 2/13/2023 2:48:04 PM

178 Part 3 ■ Software Architecture Toolbox

Figure 6.2 depicts this notion. It illustrates a 3D software architecture envi-
ronment with deployed software entities. This environment is supported by a
geometrical structure— a fabric that enables the integration between software
implementations.

Again, the integration of a software architecture environment is then facil-
itated by a geometrical and topological structure that is designed to enable
communication and relationships between software products and promote
collaboration of software products to provide business and technological
solutions.

 CO N C E P T Recall that a software architecture environment structure is the 3D
fabric that maintains a web of relationships between software implementations to
foster collaborative solutions. The role of a software architect is then to construct bal-
anced software architecture environments in production by leveraging the geometrical
and topological attributes of their supporting structures.

Software Architecture Environment: Driven by
an Uncontrolled Quantum Landscape Behavior

One of the most volatile technological landscapes is a software architecture envi-
ronment that is hosted in a production ecosystem, in which stability and business

Figure 6.2: Software Architecture Environment Structure

Bell820970_c06.indd 178 2/13/2023 2:48:06 PM

 Chapter 6 ■ Software Architecture Environment Construction 179

continuity is never guaranteed. Not only are the behaviors of applications and
systems unpredictable2, but also the root cause of failure is often undetectable.

Moreover, the erratic nature of a software architecture environment is typ-
ically due to a growing number of evolutionary factors. Possibilities include
technological modernization, continuous deployments, continuous integration,
and even reoccurring modifications to software architecture.

In addition, malfunctioning or underperforming software implementations
do not occur only by virtue of technological transformation. Gaps in architecture
strategies, absence of effective methodologies to handle accelerating deploy-
ment pace, operational neglect, and management oversight are only a few of
the reasons for deteriorating software architecture environments.

At the current time, there are, unfortunately, no effective approaches to
remediating these shortcomings. Trial- and- error attempts to address business
growth only add fuel to the fire. Speculative software architecture only exac-
erbates the already strained state of applications and systems. And a lack of
professional and trained human resources further imperils the delivery of high-
quality services to consumers.

Obviously, the expansion of software architecture environments is a sign of
business and technological maturity. But as time goes by, the amassed techno-
logical stacks only add to architecture complexity, making it increasingly harder
to maintain. Therefore, there is a vital imperative for addressing the growing
deficiencies and limitations of a deployment site.

 CO N C E P T There is also an essential need for minimizing unpredictable quantum
software behavior in a software architecture environment.

Software Architecture Environment: An Intelligent
Topological Space

The most intriguing aspects of a software architecture environment are the under-
pinning drivers that make software implementations work. That is, this environment
that is supported by its geometrical structure enables applications and systems to
exchange messages, disseminate information to consumers, distribute data across
geographical boundaries, and more. These chief capabilities have been developed
since the inception of computer science. To better understand the governing laws
that propel such business and technical operations in a software architecture envi-
ronment, it is important to study its driving qualities and attributes.

2 System unpredicability draws an analogy between Heisenberg’s uncertainty principle and
production system behavior uncertainty: David Lindley, Uncertainty: Einstein, Heisenberg,
Bohr, and the Struggle for the Soul of Science, Anchor Publishing, February 12, 2008.

Bell820970_c06.indd 179 2/13/2023 2:48:06 PM

180 Part 3 ■ Software Architecture Toolbox

One of the most powerful properties of a software architecture environment
is the ability to treat software products as intelligent entities that can learn
consumers’ behaviors and work together to provide meaningful business or
technical solutions. In other words, the software architecture environment regards
software implementations as artificially intelligent decision- makers without
the intervention of humans. This is certainly a unique and powerful topological
property that a software architecture environment in production possesses.

Moreover, the ability to form social relationships that render integrated com-
munities of software implementations is another topological property that drives
operations in a software architecture environment. In other words, the ability
to enable such social communication and AI behavior of software products
is regarded as the ingenious topological property of a software architecture
environment.

So, what are the factors that contribute to these software architecture envi-
ronment topological properties?

 ■ Traditional physical infrastructure that the hosting production landscape
offers, such as servers and networking hardware

 ■ Recent scientific research and developments that promote the utilization
of AI hardware– based systems3

 ■ Software architecture environment attributes granted at design- time by
software architects

Software architects ought to leverage the power of design to boost the opera-
tional intelligence of a software architecture environment; employ the topological
properties of the run- time environment to promote business growth; enable smart
and efficient business transactions; and facilitate potent integration of software
assets to enhance interactions between applications, services, and systems.

Refer to section “Software Architecture Environment Forces Drive Software
Behavior” to learn how environmental forces can affect the operations of software
implementations. In addition, the section “Software Architecture Environment
Construction Life Cycle” offers design tools and methods to employ these envi-
ronmental forces to balance a software architecture landscape.

Again, it’s the software architects’ duty to leverage these topological attributes
when devising software integration design schemes. It’s their responsibility to
efficiently use the software architecture environment forces to promote a bal-
anced architecture.

 CO N C E P T A topological space is an integrated software architecture multidimen-
sional environment driven by its topological attributes.

3 AI hardware–based systems examples: https://research.ibm.com/blog/why- we-
need- analog- AI- hardware or https://ieeexplore.ieee.org/stamp/stamp
.jsp?tp=&arnumber=9057570

Bell820970_c06.indd 180 2/13/2023 2:48:06 PM

 Chapter 6 ■ Software Architecture Environment Construction 181

Deformation Aspects of a Multidimensional Software
Architecture Environment

A software architecture environment continuously changes because of myriad
reasons. Some of these reasons are related to business evolution and technolog-
ical transformation and innovation. Others are related to ongoing maintenance
and updates, such as continuous deployment (CD) and continuous integration
(CI). Interactions between software implementations, consumption of computing
resources, data growth, transaction volumes, and software behavior also impact
a software architecture environment.

 CO N C E P T The 3D software architecture environment constantly deforms when
responding to these environmental changes or activities. When this deformation hap-
pens, the software architecture environment’s dimensions and topology are modified
as it reacts to business demands, technological imperatives, and software operations.

Improper integration, for example, that relies exceedingly on a centralized
architecture style also impacts the dimensions of a software architecture envi-
ronment. Furthermore, numerous other reasons cause a software architecture
environment to buckle under the pressure of forces that operate in its space.
Refer to the section “Software Architecture Environment Forces Drive Software
Behavior” to learn more about software architecture attributes that impact a
software architecture environment. Figure 6.3 illustrates a software architecture
environment, depicted as a multidimensional geometrical formation that encom-
passes software products. The impact of these software implementations on the
environment is noticeable by the dents they imprint on its foundations.

Figure 6.3: Software Architecture Environment Topological Space

Bell820970_c06.indd 181 2/13/2023 2:48:06 PM

182 Part 3 ■ Software Architecture Toolbox

Entanglement Effects in a Software
Architecture Environment

Once applications, services, systems, or other software implementations are
deployed to a software architecture environment, they begin to influence its
topological space. As depicted in Figure 6.3, the dents that these software assets
form in deployment go far beyond the influences of a confined and close vicinity.
Not only does the deployed software consume the typically scarce supply of
computing resources, but it can also put extreme strain on message exchange
and information sharing with its peers. These runtime operation flaws are typ-
ically due to an unfit design of software integration and a correlation between
autonomous software entities.

Message exchange, data distribution, and information sharing always affect
interfacing software parties. It is critical to monitor these bidirectional influences
carefully to understand integration consequences. Furthermore, no matter how
far apart these software products are located from each other, they are constantly
entangled in a virtual or physical relationship that influence their behaviors. Figure 6.4
represents a schematic depiction of the relationship between software entities
in a software architecture environment.

However, the entanglement effect does not necessarily occur between soft-
ware products that maintain tight (linked or physical) relationships. In other
words, software entities that are not integrated or depend on each other can

Figure 6.4: Schematic Relationship of Software Entities in a Software Architecture Environment

Bell820970_c06.indd 182 2/13/2023 2:48:07 PM

 Chapter 6 ■ Software Architecture Environment Construction 183

still be affected by the community of software products deployed to a software
architecture environment.

Why does such an entanglement effect occur even when software entities do
not associate directly? The reasons are affiliated chiefly with ill- designed software
architecture computing space. Software integration and configuration failures,
lack of intelligent deployment and monitoring utilities, improper architecture
elasticity, and inadequate computing resources are only a few examples that
negatively impact the equilibrium of software architecture environments. These
environment design blunders only exacerbate the harsh competition of software
implementaitons in the runtime landscape.

 CO N C E P T The inability to assess and mitigate the operational constraints in a
software architecture environment as a whole is costly to organizations. Moreover,
failure to evaluate the consequences of an ill- designed software architecture environ-
ment can introduce an irreversible business and technological calamity.

Software Architecture Environment Forces Drive
Software Behavior

Software design principles and approaches typically generate the forces that can
affect a runtime landscape of a software architecture environment. Arrangement
of software formations, integration patterns, and information exchange schemes
are only a few of the architecture aspects that produce these forces. So, what
are these forces? How are they being generated? How do they impact software
operations? What type of forces should a software architect be cognizant of?
How should a software architect employ these forces to deliver solutions?

 CO N C E P T In simple terms, a software architecture force is an energy, power,
pressure, wave, thrust, or drive generated by software runtime performance and
behavior that can immensely affect operations in a software architecture environment.

Software architecture forces manifest themselves during message exchange,
business transactions, consumption of computing resources, and other software
runtime activities. These operations generate environmental pressures that can
affect application performance, information sharing, data persistence, and more.

This section introduces four types of forces that dominate a software architecture
environment. Software architects can leverage these forces to provide effective
business and technological solutions.

Bell820970_c06.indd 183 2/13/2023 2:48:07 PM

184 Part 3 ■ Software Architecture Toolbox

Gravitational forces A software architecture power granted to a centralized
software implementation, such as a hub or middleware, to serve reusable
services to consumers

Competing forces A force that is employed by a software implementation
to survive and compete against other products in a software architecture
environment

Harmonizing forces A force granted to software to control and coordinate
operations in a software architecture environment

Disharmonizing forces A force that does not promote environment har-
monization in a software architecture environment

Finally, the strength of a software architecture force chiefly depends on orga-
nizational architecture best practices, standards, and policies. Architecture styles,
architecture patterns, and design patterns also tend to influence the immensity
of forces in a software architecture environment (refer to Chapter 9, “An Outline
for Software Architecture Job Interview Questions,“ which discusses the differ-
ences between these styles and patterns). Moreover, the intensity of a software
architecture force is measurable. For instance, data and message consumption
can be calculable. Application and system response time can also be quantifiable.
Network bandwidth utilization is another metric that can be assessed.

Probability Assessment of Software Operations and Behavior
As indicated, a software architecture force can be measured— just as applica-
tion response time can be quantifiable. But this performance assessment can
occur only after the software has been deployed to a software architecture
environment. Any predictive models rendered by tools (currently being used
by information technology [IT] organizations) merely illustrate probable outcomes
of software behavior.

 CO N C E P T These predictive modeling tools are driven by probability algorithms
that cannot precisely foresee how a software implementation might operate and
behave in a software architecture environment. And they are also unable to predict
the quantum behavior of a computing space. Moreover, these modeling tools do not
have the capacity to anticipate how a software architecture force will influence the
topological space of a software architecture landscape.

Software Architecture Environment Positive and
Negative Forces
Positive and negative forces may exist in the software architecture environ-
ment. The former is designed to balance a software architecture. The term

Bell820970_c06.indd 184 2/13/2023 2:48:07 PM

 Chapter 6 ■ Software Architecture Environment Construction 185

balanced architecture depicts an environment in which applications, systems,
and other software structures operate as designed. Namely, these software
implementations do not cause severe outages, interrupt message exchange,
or negatively impact the communication with their peers (refer to the section
“Maintaining a Pragmatic Balance Between Competing Software Architecture
Forces,” which offers practical guidance for addressing the impact of negative
software architecture forces).

Unfortunately, negative software architecture forces are in abundance. In
fact, runtime environments are challenged constantly by negative energies that
hamper the continuity of operations. For instance, the battle between applications
to grab network bandwidth is a specific force generated because of improper
employment of integration patterns. Similarly, a middleware platform may be
under extreme pressure due to overwhelming transaction volumes.

 CO N C E P T In this context, the ultimate objective of a software architect is to
unleash positive environmental forces to promote business and technological solu-
tions. In the absence of these unlocked energies, applications and systems would not
be able to operate. And a software architecture environment would be incapable of
promoting enterprise goals and strategies.

Software Architecture Environment Gravitational Forces
A software architecture gravitational force is a privileged power granted by
design to a centralized software implementation, enabling it to integrate and
connect distributed software products in a software architecture environment.
The chief duty of this centralized implementation is to share information and
exchange messages with its consuming applications, services, and systems.
Therefore, an architecture style that relies on centralized software to exchange
messages with its dependent consumers introduces gravitational forces in a
runtime landscape.

A centralized software implementation, such as a message hub or middleware
that serves consuming applications in a software architecture environment,
possesses the properties of a software architecture gravitational force. Middle-
ware is a message intercepting hub that features the quality of a gravitational
force because it maintains a one- to- many type of association with its related
consumers, such as applications and services. The well- known hub- and- spoke
architecture pattern represents this concept. In this context, the hub is a mes-
sage broker that resembles middleware functionality, designed to connect and
integrate distributed software products.

But middleware alone does not embody the properties of a software architecture
gravitational force. An enterprise- level application, such as employee benefits
or customer contact information, also represents a gravitational force because

Bell820970_c06.indd 185 2/13/2023 2:48:07 PM

186 Part 3 ■ Software Architecture Toolbox

of its close- fitting associations with related consumers, which depend on its
exclusive services.

 CO N C E P T To sum up, centralized software implementations, such as message-
oriented middleware (MOM), message hubs, message interceptors, message mediators,
software intermediaries, gateways, central applications, and even load balancers pos-
sess the properties of a software architecture gravitational force. These implementa-
tions, typically employed by architects, integrate and connect distributed software
products.

Figure 6.5 illustrates a schematic representation of two software hubs, pre-
sented by large spheres shown on opposite sides of the software architecture
environment. They are surrounded by five linked dependent consumers
(software implementations). This depiction shows how a topological space is
affected by the gravitational forces of the central software hubs. As is apparent,
the dent that the hubs imprint on the software architecture environment
geometry deforms the entire runtime landscape. In other words, the illus-
tration visualizes how central software entities may affect operations in a
deployment environment.

The Impetus for Granting Software Architecture Gravitational Powers
to Software Implementations

The centralization notion of software architecture grows out of design necessity,
driven by best practices devised to promote software reuse, elimination of soft-
ware redundancy, reduction of duplicate business processes, and more. For
example, the term design necessity may also pertain to technical requirements

Figure 6.5: Impact Representation by Centralized Software Hubs on a Software Architecture
Environment

Bell820970_c06.indd 186 2/13/2023 2:48:08 PM

 Chapter 6 ■ Software Architecture Environment Construction 187

that call for isolation or protection of organizational software assets, such as data
or applications, from direct consumers’ access. To address this design necessity,
software architects typically employ centralized message interceptor hubs, such
as message- oriented middleware (MOM) platforms, data access brokers, and
gateways. In essence, by positioning any of these software intermediaries in
central deployment locations they are granted gravitational powers.

Typically, management of a central software hub reduces runtime mainte-
nance costs— but not without challenges. Consider these runtime difficulties:
a hub may buckle under the pressure of overwhelming consumer demand for
data. Moreover, inadequate supporting infrastructure to sustain hub operations
may yield software performance degradation. These misfortunes are generally
affiliated with a lack of computing capacity, ineffective software deployment
and integration, and other software architecture deficiencies.

Software Architecture Gravitational Force Intensity

The strength of a software architecture gravitational force depends on the fol-
lowing key factors that software architects should be aware of:

 ■ The more consuming applications and services utilize a centralized soft-
ware hub’s offering, the stronger its gravitational force.

 ■ The strength of a software architecture’s gravitational force is proportional
to the size of data that its consumers demand. The higher the demand,
the stronger the gravitational force of a centralized software hub.

The Cost of Unbalanced Software Architecture Environment
Gravitational Forces

A centralized software hub, granted an excessive software architecture gravitational
force, typically causes operation disruptions to business processes in a software
architecture environment. Put differently, an extremely intense gravitational
force is regarded as unbalanced. And it must be controlled and optimized
to preserve the environment’s equilibrium. In this context, the term environ-
ment equilibrium refers to a runtime landscape in which software architecture
gravitational forces do not overwhelm the operating landscape. Namely, the
community of software implementations is not being negatively affected by a
centralized architecture style.

 CO N C E P T The dents imprinted by centralized software hubs on a software
architecture environment’s geometrical formation may impact many operational
aspects, such as computing capacity consumption and performance.

Bell820970_c06.indd 187 2/13/2023 2:48:08 PM

188 Part 3 ■ Software Architecture Toolbox

The consequences of an unbalanced software architecture that unleashes
extreme gravitational forces are grave and are discussed in more detail in the
sections that follow in the coming pages.

 ■ A centralized software entity that possesses an uncontrolled gravitational
force tends to grab technological attention from issues with higher priority.

 ■ The cost of maintaining software products with high- intensity gravitational
forces outweigh its technological benefits.

 ■ Software implementations with extreme gravitational forces contribute
to software architecture complexity that is hard to manage.

Competing Software Architecture Environment Forces
To survive in a software architecture environment, applications and systems
must be given satisfactory conditions to operate successfully. The term satisfac-
tory conditions alludes to a myriad of technical requirements that enable software
implementations to provide efficient solutions without being involuntarily
interrupted, suppressed, impeded, or halted.

Computing resources is one of the leading environment conditions that must
meet the operational requirements of a software product. For example, the lack
of network bandwidth capacity or shortage of data storage introduces challenges
to the execution of business and technical processes.

But the absence of adequate computing resources is only a single item in
a long list of necessary conditions required by software implementations to
operate at their fullest capacity. Suitable software scalability, efficient integration,
architecture elasticity, disaster recovery, high availability, and adequate software
configurations are also some of the most vital compulsory conditions that must
be satisfied to optimize the operations of software products.

 CO N C E P T As it becomes apparent, the community of software products must
always survive in an environment in which the rising demands for computing resources
and architecture excellence can strengthen their endurance capacity.

Software Architecture Environment: A Survival Game Space

There are concealed or noticeable survival contexts that take place between
various software implementations in a software architecture environment.
Evidently, not all software products possess the same capability to survive and
thrive in a runtime landscape. Some are well- designed and given the technical
conditions to expand their operations. They are nimble enough to withstand high
transaction volumes. They are scaled properly to evade server outages. They
are seldom interrupted. And the data that they aggregate is rarely lost. These
software implementations are typically winning the environment survival game.

Bell820970_c06.indd 188 2/13/2023 2:48:08 PM

 Chapter 6 ■ Software Architecture Environment Construction 189

In contrast, software entities that are ill- designed tend to fail. They suffer
performance degradation. They are slow to respond to consumers’ requests.
They are unable to recover after cybersecurity attacks. And they are highly sus-
ceptible to extreme fluctuation in data transmission volumes. These software
entities are typically losing the environment survival game.

These two, the well-designed and the ill- designed software products, are not
given an equal opportunity to survive in a software architecture environment.
In other words, they are not assigned equal software architecture capabilities
to compete in a runtime landscape. The software products with stronger com-
peting powers can grab more computing resources to endure the competition,
while the weaker ones typically succumb to resource starvation. Moreover, the
stronger ones can leverage their superb design capabilities, while the losers do
not possess adequate architecture powers.

 CO N C E P T In an ill- designed software architecture environment, there is typically
a finite quantity of computing resources. In this constrained runtime ecosystem, the
harsh competition for survival is won only by superior software products that over-
come the inferior ones because of the inequality in software architecture capabilities.
From another perspective, applying here the game theory rule to a deficient design
of a software architecture environment: the total gains are always equivalent to the
overall losses in computing resources. So the net change in the sum of computing
resources or architecture capabilities is always zero.

Maintaining a Pragmatic Balance Between Competing Software
Architecture Forces

Among other design tasks, architects should impart competing forces to software
products so they can endure the harsh survival competition in the software
architecture environment. Consequently, the chief objective should be to maintain
an optimal balance between the capabilities of software entities so they can attain
the technical environment conditions for their proportional operational needs.

In other words, according to the operational requirements of each software
product, it must be ensured that they possess adequate computing forces to
safeguard their survival. This implies that not all software implementations
call for the same level of architecture capabilities to withstand the challenging
rivalry. For instance, some may necessitate more computing resources than their
peers. Others may process higher volumes of data. And a few are designed to
provide a smaller scale of solutions to business problems.

Architects must be cognizant of the disproportional service levels of software
products. Therefore, a pragmatic design approach would be to carefully study
the corresponding business requirements and technical specifications. Then
correspondingly allocate to these software entities the architecture capabilities
related to the criticality of their implementations and environment imperatives.

Bell820970_c06.indd 189 2/13/2023 2:48:08 PM

190 Part 3 ■ Software Architecture Toolbox

Mitigating the Competing Forces Challenge

To further secure the durability of software in a software architecture environ-
ment and mitigate the competing forces challenge, there are two critical aspects
that must be addressed by software architects.

Business development Responding to incremental business growth

Agile architecture Enabling software architecture environment elasticity

The former must be given significant priority since business applications
must be capable of broadening their solution scope for growing organizational
problems. Strictly speaking, business products typically consume more of the
software architecture environment’s topological space and computing resources
when business processes are added to them, when more programming modules
are deployed, when additional services augment current business capabilities,
and when more application layers amass on top of the old ones. Therefore,
when enabling business growth, the intensity of competing forces is lessened,
and as a result, software architecture balance is achieved.

Expanding software architecture capabilities is an additional aspect that architects
must pay attention to when tackling the competing forces of software implemen-
tations. Boosting the technical abilities of a software implementation is affiliated
with its ability to dynamically respond to the increase or decrease in business
demands and satisfy related consumers. This trait is dubbed architecture elasticity.

The questions that follow are affiliated with decisions to enable architecture
elasticity for software products:

 ■ Are software implementations scaled enough to handle the upsurge in
information sharing volumes?

 ■ Are they adequately loosely coupled to improve software reuse?

 ■ Do the employed integration patterns indeed promote a balanced
architecture to reduce the competition for computing and environmental
resources?

 ■ Is the software architecture environment ready to accommodate the survival
needs of software implementations?

Software Architecture Environment Harmonizing and
Disharmonizing Forces
Deployed software products are designed to provide organizational solutions
to problems by collaborating. This is one of the most vital goals of software
architecture. Proper deployment and integration of software implementations
are the decisive factors that promote harmonization in production. The term
harmonization then refers to the relationship between software products that do

Bell820970_c06.indd 190 2/13/2023 2:48:08 PM

 Chapter 6 ■ Software Architecture Environment Construction 191

not introduce conflicts of operations in a runtime ecosystem. By comparison,
competing software forces, as described in the previous section, represent an
example of conflicting powers that battle against each other to survive in a
software architecture environment.

 CO N C E P T A harmonized software architecture environment consists of imple-
mentations designed to promote synergetic solutions without canceling each other’s
powers. Therefore, the role of a software architect is to devise a solid and balanced eco-
system that ensures continuity of operations.

In contrast, disharmonizing software architecture forces are those that dis-
turb the orderly execution of business transactions, powers that negatively
impact the performance of applications, energies that do not promote software
interoperability, and more. The list of software architecture forces that burden
a runtime ecosystem is indeed limitless. Accordingly, software architects must
assess the impact of the disharmonizing forces to reduce conflicts of powers in
a software architecture environment.

Chief Properties of Harmonizing Forces in a Software
Architecture Environment

Software architecture is not only about designing internal applications or sys-
tems. A substantial part of the design devises an environment in which software
implementations coexist, work together, and share information to offer viable
solutions. Every force in that environment must contribute its share, participate,
and obey the general rules of proper integration. Once a software product breaks
these rules and deviates from the collective responsibility to collaborate with
its peers, the software architecture environment cannot offer effective solutions
to business challenges.

Message exchange coordination, scheduling, and prioritization are chief
properties of software implementations designed to promote harmonization
in production. These software entities possess the forces to orchestrate, mon-
itor, and control interactions between applications, services, and systems. For
example, an enterprise service bus is typically employed not only to connect
and integrate scattered applications in production, but also to coordinate, pri-
oritize, and schedule the interchanges of a message. Without these software
design characteristics, chaos typically dominates every aspect of a software
architecture environment.

Table 6.1 identifies the leading attributes of software implementations designed
to coordinate operations in a runtime environment. Some of the listed attributes
are affiliated with software forces commissioned to aggregate and distribute
data to consumers. The other design characteristics are all about the enablement
of environment interoperability.

Bell820970_c06.indd 191 2/13/2023 2:48:08 PM

192 Part 3 ■ Software Architecture Toolbox

Table 6.1: Properties of Chief Harmonizing Software Architecture Environment Forces

DESIGN
PROPERTY FUNCTIONALITY

Prioritization Prioritization of critical business and technical processes based on
their criticality levels.

Orchestration Coordination of message exchange between service producers and
consumers.

Choreography Messages follow predefined routes to exchange data without being
controlled by central orchestration forces (such as message hubs).

Message
synchronization4

Coordination of events or processes that must take place at the same
time.

Message brokering Message interception is a design property devised to isolate and
protect data repositories and applications from consumers’ direct
access.

Collaboration
enablement

Promotion of proper integration, interaction, and partnership
between software products.

Application of
security controls

Security controls are applied to lessen software vulnerabilities and
interrupt environment harmonization by disrupting cybersecurity attacks.

Data aggregation Aggregation and mining of data to serve applications.

Data accessibility Permitting access to data by application programming interfaces
(API), interfaces, and adapters.

Software
reusability

Facilitating reuse and eliminating redundancy of software products,
services, and processes.

Service
centralization

Devising architecture styles that center on software hubs that intercept
messages and exchange data with related consumers.

Integrating data
source

Combining information from scattered data sources and repositories.

Integration of
technologies

Compounding technologies to strengthen business and technical
solutions.

Parallelism Running asynchronous processes to enable simultaneous service
operations.

Elasticity Applying architecture capabilities to meet changing demands of
business requirements and software implementations.

Contract-driven Information sharing and data exchange to comply with service- level
agreements.

Interoperability
enablement

Enabling autonomous software implementations and heterogenous
environments to communicate and exchange information with each
other.

4 Unlike message synchronization, environment synchronization (discussed in section “Use
Case V: Software Architecture Environment Synchronization and Desynchronization Design
Activities”) refers to harmonization of a software architecture environment as a whole.

Bell820970_c06.indd 192 2/13/2023 2:48:08 PM

 Chapter 6 ■ Software Architecture Environment Construction 193

Chief Properties of Disharmonizing Forces in a Software
Architecture Environment

Lack of software architecture strategies and failure to control orderly operations
in a software architecture environment contribute to a disharmonized runtime eco-
system. This operational landscape characteristically contains negative software
architecture forces manifested by the execution of software implementations
that induce topological chaos.

When a production environment is thrown into such disarray, negative forces
shoulder the blame for disruption to business processes and degradation in
performance that result in failure to execute business transactions. Such eco-
system breakdown tends to limit software architecture elasticity and expansion
of its capabilities. Furthermore, distressed environments like this typically do not
respond effectively to trends in volumes of message exchange and information
sharing.

Unbalanced architecture that is driven by tactical necessities tends to dis-
harmonize a software architecture environment. The term tactical necessities
means that the software design approaches are not based on strategic planning.
And when an unplanned production landscape is unbridled, it tends to falter.
Furthermore, as Table 6.2 shows, extreme design measures that drive software
implementations are the chief culprits of a chaotic runtime environment. For
example, radical software distribution or excessive software federation that
span remote geographical territories generally disharmonizes the operations
in a software architecture landscape.

Similarly, redundancy of applications and systems that tend to execute dupli-
cated functions are major contributors to business ambiguity and instability of
runtime environments. Lack of technical interoperability between heteroge-
neous systems is also a key factor that disharmonizes a software architecture
environment.

Table 6.2: Properties of Disharmonizing Software Architecture Environment Forces

DESIGN PROPERTY ENVIRONMENT IMPACT

Extreme isolation Software products are isolated because they do not offer
adequate interfaces or adapters to communicate with
their consumers.

Radical software distribution Software implementations distributed to extremely
remote geographical locations with no control
mechanisms to ensure data integrity and acceptable
performance rates.

Excessive software federation Excessive federation of software products that lack fitting
technical or business interoperability capabilities.

Continues

Bell820970_c06.indd 193 2/13/2023 2:48:08 PM

194 Part 3 ■ Software Architecture Toolbox

Genetic Encoding of a Software Architecture
Environment

It’s hard to conceive that many organizations cannot reconstruct a software
architecture environment once a disaster has struck. To put it differently, an
organization must reassemble a runtime ecosystem when it’s beyond repair
because of a natural or technological calamity. Cybersecurity attacks, flooding,
fire, and unrecoverable outages are types of catastrophes that can halt the oper-
ations of applications and systems for long durations.

True, most software architecture environments support disaster recovery (DR)
facilities to provide operational redundancy in case of large- scale operational
failures or breakdowns. But DR facilities typically do not provide full- scale
recovery services to restore the original version of a runtime ecosystem. Nor
do they replace business or technical operations for the long run.

Difficulties of Restructuring a Software Architecture Environment

The inability to precisely duplicate the original settings of an out- of- commission
runtime environment introduces major challenges to an organization that cannot
afford extended downtimes. The term original setting does not refer to recon-
structing images of single servers or network configurations. It pertains to

DESIGN PROPERTY ENVIRONMENT IMPACT

Redundancy and duplication Redundancy of software implementations and duplication
of business functionalities that compromise software reuse.

Decentralization Decentralized software architecture with minimal control
on coordinated information exchange.

Extreme data distribution Distribution of information across large geographical
locations with no emphasis on maintaining authoritative
data sources.

Monolithic structure Tight coupling of software products that limit architecture
agility and reuse.

Asynchronous operations Serial execution style of software operations that are
performed one at a time and only when the running one
completes its process.

Low availability An environment that does not employ redundancy
mechanisms to avoid outages of environment operations.

Technological incompatibility A production environment that does not support
standard technologies to enable effective integration and
collaboration between software products.

Table 6.2 (continued)

Bell820970_c06.indd 194 2/13/2023 2:48:08 PM

 Chapter 6 ■ Software Architecture Environment Construction 195

reassembling a software architecture environment driven by architecture strategies,
design models, integration patterns, and architecture styles.

Although there are tools driven by programming and script languages to
facilitate the restoration of a runtime environment, the difficulty of fully recon-
structing it remains. Therefore, there is a need to encode a software architecture
environment by capturing its holistic design attributes. And in due time, these
properties can be restored. Otherwise stated, the reconstruction should include
the fundamental software architecture characteristics that applications, systems,
and data originally possessed.

Encoding a Software Architecture Environment

Nowadays, the motivation to encode a software architecture environment is
more compelling than ever. This is because of the architecture complexity that
dominates the runtime environment. To safeguard this intricate design, the envi-
ronment topology space ought to be encoded and stored externally— not in the
environment itself. Simply put, the genetic information of a runtime landscape
should be deposited at a remote and safe location that can be retrieved later if
reconstruction is needed.

The encoded information of a software architecture environment should
resemble a three- dimensional image reproduced from its topology space. This
information should render its encompassed components, such as software
products, system configuration, integration patterns, architecture styles, appli-
cation relationships, data, and more. In essence, the encoded information should
resemble a hologram5 that represents the genetic code of a software architecture
environment ecosystem, in which processes and data are designed to provide
business and technical solutions.

 CO N C E P T This hologram should represent the authoritative genetic code of a
software architecture environment. To reconstruct the original environment settings,
the hologram should be decoded to reveal its topology dimensions.

Influences on Social, Behavioral, and Business Goals

The interminable transformation of a software architecture environment has
immense implications on the social behavior of computer users. The alteration
to this runtime ecosystem involves modifications to user interfaces, integration

5 The hologram idea is modeled after Gerard ’t Hooft’s (arxiv.org/pdf/gr- qc/9310026
.pdf) and Leonard Susskind’s (arxiv.org/pdf/hep- th/9409089.pdf) research.

Bell820970_c06.indd 195 2/13/2023 2:48:08 PM

196 Part 3 ■ Software Architecture Toolbox

patterns, the relationship between software products, infrastructure, data struc-
tures, security models, protocols, and more.

Such technological evolution influences how users handle communications
with their co- workers, clients, and vendors. These changes even affect the
way in which users handle information retrieval and data sharing. Software
architecture is clearly the epicenter of every environment transformation that
ultimately affects the behavior of applications, services, and systems. In light
of these influences, user training and the adoption period of evolving technol-
ogies are required.

Moreover, business operations and goals can be hampered if the transfor-
mation of a software architecture environment is not gradual. This peril also
applies to radical and instant software design changes. The rule of thumb then
suggests that long- term planning, namely strategies, should mitigate the risks
to business continuity.

Software Architecture Environment Construction
Life Cycle

The environment construction process is effective if a software architect pursues
multiple iterations to achieve an optimal software architecture construction. The
term optimal software architecture construction delineates an architecture solution
characterized by design attributes that are not radical.

For example, maintaining an equilibrium between a tightly coupled and loosely
coupled software architecture manifests a balanced software design. Moreover, on
the one hand, an excessively tightly coupled design produces software that is
typically not nimble enough to enable rapid change and easy maintenance. On
the other, an extremely loosely coupled design renders software that is hard to
manage, monitor, and support in a software architecture environment. There-
fore, an optimal software architecture requires applying the most advantageous
composition between these two radical architecture decision choices.

 CO N C E P T The environment construction life cycle calls for iterative design activ-
ities to attain an optimal software architecture composition. This design process is
required to tackle challenging organizational problems in pursuit of effective software
integration solutions.

To visualize the software architecture construction life- cycle idea, inspect
Figure 6.6. It illustrates an example of circular life- cycle design activities that
ultimately render a balance between two radical environment design attrib-
utes: excessively tightly coupled and extremely loosely coupled. Note that in
this context, the design attributes tightly coupled and loosely coupled refer to a

Bell820970_c06.indd 196 2/13/2023 2:48:08 PM

 Chapter 6 ■ Software Architecture Environment Construction 197

software architecture environment as a whole—not to a particular instance of
an application or system.

Once this equilibrium and a middle ground design style have been achieved,
the environment construction process concludes. The section that follows dis-
cusses various design activities used to achieve a balanced software architecture
environment.

Software Architecture Environment Construction Process
As discussed in the previous section, the example in Figure 6.6 represents two
radical solutions: excessively tightly coupled and extremely loosely coupled
software design. This example highlights the need for a universal method to
facilitate the formation of a balanced software architecture that would mitigate
extreme design approaches. Therefore, any iterative environment construction
process should be driven by gradual design to achieve a software architecture
environment equilibrium.

 CO N C E P T Recall that software architecture environment construction must be
driven by pragmatic design approaches to promote a software architecture balance.
Such architecture symmetry should be maintained and safeguarded during the prod-
uct design, development, deployment, and integration life cycle.

Creating a Software Architecture Environment Construction
Balance Table

Before starting the software architecture environment construction process,
it’s highly advisable to create a list that identifies the properties that should be
balanced and presented in a design blueprint. Consider the example depicted
in Table 6.3. The information in the Design Attribute I and Design Attribute II
columns represent two extreme design attributes that ought to be balanced. To
populate these columns, study the project’s technical specifications to gather the

Figure 6.6: Software Architecture Environment Construction Life- Cycle Example

Bell820970_c06.indd 197 2/13/2023 2:48:09 PM

198 Part 3 ■ Software Architecture Toolbox

corresponding attributes and document them in a similar construction balance
table. Moreover, the Software Design Activities column provides guides for
achieving such equilibrium.

Table 6.3: Software Architecture Construction Balance Example

DESIGN
ATTRIBUTE I DESIGN ATTRIBUTE II SOFTWARE DESIGN ACTIVITIES

Tightly coupled Loosely coupled Find the golden mean between two
extreme design coupling attributes in a
software architecture environment.

Fine- grained
software
components

Coarse- grained software
components

Maintain a software architecture
environment symmetry between coarse-
grained and fine- grained software
components used for a solution.

Extremely layered Flat On one hand, avoid devising solutions
overly deep formations. On the other,
shy away from flat structures if the
design requires a layered software
architecture environment.

Too federated Isolated Offer a middle ground software design
that avoids unmanageable federated
architecture but also does not support
isolation of software implementations
that hinder reuse and information
sharing between production
environments.

Tightly secured Lightly secured Circumvent software design that
introduces tightly secured environments
to avoid operation challenges. Yet, devise
a reasonable amount of security controls
to protect vulnerable implementations.

Tightly integrated
environment

Loosely integrated
environment

Shun software design that overemploys
an excessive amount of integration
facilities, such as interfaces, adapters,
middleware, and gateways. Conversely,
foster software reuse and information
sharing by avoiding a loosely integrated
software architecture environment.

Too many
relationships

Too few relationships Avoid unnecessary or redundant
relationships between software
products. But devise software
architecture solutions that establish a
reasonable amount of relationship
between applications and systems to
promote efficient data exchange.

Bell820970_c06.indd 198 2/13/2023 2:48:09 PM

 Chapter 6 ■ Software Architecture Environment Construction 199

Furthermore, design properties are not common in every blueprint that
software architects deliver. Every deployment environment is different, every
system necessitates distinct architecture styles, and every application is driven by
unique design patterns. Therefore, balanced design solutions should be driven
by a meticulous analysis of the environments and the software implementations
that operate in the software architecture environment.

Software Architecture Environment Construction Design Activities

It’d be impossible to fulfill an optimal software architecture environment construction
without a repetitive design process that satisfies the needs of an integrated
business or technological solution. Simply put, a successful software architecture
environment is a product of repetitive successions of design activities and archi-
tectural compromises. Furthermore, this iterative design process is employed
to shape a software architecture environment. At the same time, however, soft-
ware architects may also find it necessary to manipulate software structures,
as is apparent in the list of design activities that follows and in the subsequent
use cases. Refer to Chapter 7 to learn more about the structural construction of
software implementations.

During this environment construction exercise, software architects can utilize
10 design activities to manipulate a software architecture landscape, as illus-
trated in Figure 6.7.

Composition This activity is devised to consolidate, unify, augment, and
aggregate software architectures to increase the solution scope of business
and technological solutions.

Decomposition This activity is utilized to break down a software architecture
environment into subarchitectures to optimize business and technological
architecture solution scope, functionalities, and capabilities.

Integration This activity is employed to form a relationship between deployed
software assets, foster software reuse, and distribute and federate software
implementations in software architecture environments.

Figure 6.7: Design Activities

Bell820970_c06.indd 199 2/13/2023 2:48:09 PM

200 Part 3 ■ Software Architecture Toolbox

Disintegration This activity is utilized to promote software architecture
complexity reduction, consolidate software assets, reduce the distribution
scope of software implementations, and unify software products.

Centralization This design activity grants software architecture gravitational
forces to software implementations. It also promotes reduction of software
functionality redundancy, standardization of technologies, and consoli-
dation of software intermediaries.

Decentralization This is employed to reduce the intensity of architecture
gravitational forces, promote architecture loose coupling, and foster optimal
distribution and federation of software implementations.

Elasticity This is leveraged to establish a nimble software design , provide
adequate computing resources, improve software reuse and performance,
and enhance software architecture agility to minimize the competing forces
in a software architecture environment.

Inelasticity This is used to fine- tune software architecture elasticity, opti-
mize the consumption of computing resources, and reduce unnecessary
clustering and scalability mechanisms.

Synchronization This is utilized to enhance software architecture environ-
ment harmony and efficiently coordinate, choreograph, and orchestrate
operations in a runtime landscape.

Desynchronization This design activity is utilized to fine- tune the control
of operations and transactions in a software architecture environment. It
also can be used to loosen organizational policies that put strain on soft-
ware and environment performance in production.

The use cases that follow elaborate on these design activities that drive the
software architecture environment construction life cycle:

Use Case I Software architecture environment composition and decompo-
sition design activities

Use Case II Software architecture environment integration and disintegra-
tion design activities

Use Case III Software architecture environment centralization and decen-
tralization design activities

Use Case IV Software architecture environment elasticity and inelasticity
design activities

Use Case V Software architecture environment synchronization and desyn-
chronization design activities

Bell820970_c06.indd 200 2/13/2023 2:48:09 PM

 Chapter 6 ■ Software Architecture Environment Construction 201

Use Case I: Software Architecture Environment Composition
and Decomposition Design Activities
The most common environment construction tasks are the composition and
decomposition design activities, during which software architects shape soft-
ware architecture capabilities and business and technological solution scopes.
Although this use case calls for the manipulation of software structures, the
emphasis here is on the influence of software on its hosting software architecture
environment. More specifically, the focus of this exercise is more on the dis-
tribution and federation of software architectures and less on modifications
of internal software structures. The bottom line is that it’s all about software
architecture environment composition and decomposition.

To learn about the design activities that focus on manipulation of individual
software structures, refer to Chapter 7.

The environment composition is about the arrangement and manipulation of
software architectures in unique formations to broaden, optimize, or consolidate
the scope of business or technological solutions for a wider array of problems.
At its core, it’s about combining software entities, augmenting and unifying
architecture capabilities, and leveraging the environment hosting abilities to
provide adequate computing power. This design activity employs four chief
methods to achieve these software architecture goals: unification, augmentation,
consolidation, and aggregation.

By comparison, the decomposition design approaches are employed to break
down software architectures into subarchitectures. They are devised to trim
down or completely remove software capabilities or architecture properties.
These design activities ultimately render subsets of distributed architectures,
business, or technical solutions across software architecture environments. The
decomposition design activities offer four major methods of fulfilling these
objectives: separation, detachment, decompiling, and insulation.

Both design activities are largely discussed in the section “Composition and
Decomposition Design Methods.”

Design- Time vs. Runtime Environment Composition and Decomposition
Design Activities

Unfortunately, in many cases, the composition and decomposition of software
architecture take place way after the software development process has been
completed. In other words, organizations tend to remodel software formations
and modify the architecture in a runtime environment— a post- design under-
taking that may conflict with organizational architecture strategies.

Therefore, the appropriate time for performing composition and decomposi-
tion is during design time— not runtime. This is because the cost of design time
is lower than applying changes to a live software architecture environment.

Bell820970_c06.indd 201 2/13/2023 2:48:09 PM

202 Part 3 ■ Software Architecture Toolbox

Moreover, composition and decomposition during design time merely render
blueprints with no risks to a runtime ecosystem. In contrast, the efforts of mod-
ifying the software architecture environment and its implementations typically
introduce risks to business continuity, integration, and data integrity.

Composition and Decomposition Design Methods

There are umpteen approaches for implementing composition and decompo-
sition design activities. The rule of thumb advocates that the design activities
for reshaping a software architecture environment and its implementations
ought to be driven by methodological approaches. The methods for achieving
practical modifications to software and its hosting environment depend on
how architects choose to alter architecture attributes, such as reuse, coupling,
decoupling, distribution, federation, and more.

For example, if the objective is to promote software reuse, architects typically apply
architecture decomposition design activities that ultimately render sub- architectures
that can provide solutions to a wider range of consumers. The same idea applies to
technical requirements that call for breaking down monolithic software architecture
styles. In this case, the decomposition design activity can be leveraged to reduce
the inefficiency of tightly coupled architectures. Then again, if the goal is to elim-
inate software redundancy, the composition design activities can help to combine
software architectures and unify their capabilities, functionalities, and attributes.

Table 6.4 introduces the chief approaches for carrying out the composition and
decomposition design activities employed to manipulate software architecture
that would ultimately impact the software architecture ecosystem. The changes
to this environment should be accompanied by meticulous analysis and proof
of concepts to justify such technical transformation.

Table 6.4: Methods for Software Architecture Environment Composition and Decomposition
Design Activities

DESIGN
ACTIVITY METHOD TASK

Composition Unifying Creating a unified software architecture by combining
two or more software architectures, merging their
attributes and functionalities, and increasing the
overall architecture solution scope

Augmenting Gluing together two or more software architectures to
leverage their mutual capabilities without changing or
merging their attributes or functionalities

Consolidating Consolidating software architectures by removing
redundant business or technical capabilities

Aggregating Broadening the business and technical solution scope
of an existing software architecture by leveraging and
aggregating the capabilities of other software
architectures through interfaces only

Bell820970_c06.indd 202 2/13/2023 2:48:09 PM

 Chapter 6 ■ Software Architecture Environment Construction 203

Composition and Decomposition Process Outline

Figure 6.8 represents an example of three design states (A, B, and C) that are the
outcomes of software environment composition and decomposition activities.

State A: Deficient design Depicts monolithic architecture, a tightly cou-
pled design formation that tackles a broad scope of business or technical
problems. Note that monolithic architectures are typically subject to design
decomposition to boost software reuse.

State B: Optimal design Titled “Optimal Software Architecture Construction,”
state B is a result of a design decomposition activity that is performed on
design state A or design composition activity on state C.

State C: Deficient design An extremely decomposed software architecture
environment that introduces only maintenance costs and operational
challenges. State C is a result of two design decomposition activities on
states A and B.

DESIGN
ACTIVITY METHOD TASK

Decomposition Separating Breaking down a software architecture into
independent subarchitectures by establishing unique
attributes and functionality for each separated
sub- architecture

Detaching Unstitching two or more attached software
architectures without changing any of their attributes

Decoupling Increasing the autonomous state of a software
architecture by lessening their dependencies on each
other by reducing interfaces and data exchange

Insulating Isolating of a software architecture by reducing its
architecture capability and solution scope

Figure 6.8: Composition and Decomposition Design Activities Example

Bell820970_c06.indd 203 2/13/2023 2:48:09 PM

204 Part 3 ■ Software Architecture Toolbox

As shown in Figure 6.8, two directions drive the architecture environment
decomposition and composition activities. No matter from which direction
these design activities begin, state B represents the optimal software architecture
construction.

A, B, C direction Illustrates a two- step software architecture environment
decomposition

C, B, A direction Depicts a two- step software architecture environment
composition

Use Case II: Software Architecture Environment Integration
and Disintegration Design Activities
The integration of software is always driven by business and technological
imperatives that call for improving information sharing, reuse, performance,
and efficiency of applications and systems. To achieve these goals, an orga-
nization ought to develop integration strategies, devising how the dots are
connected in a runtime ecosystem. The phrase connecting the dots refers to soft-
ware architecture practices that enable cost- effective dissemination and sharing
of information across the enterprise. Also, it is about providing the best possible
technical solutions to efficiently link and distribute software assets in a software
architecture environment.

But integration is not only about connecting the dots or establishing a rela-
tionship between distributed business services. It is also about the reduction
of software redundancy and scaling down technologies to address architecture
environment complexity.

 CO N C E P T Effective integration should institute a balanced deployment environ-
ment driven by symmetrical software architecture.

In achieving a symmetrical software architecture environment, design activ-
ities must focus on forming an equilibrium between “too much integration” and
“too little integration.” For example, integration should not render a myriad of
relationships and interfaces between systems. Or, integration should not man-
ufacture a distributed software environment that is arduous to manage. The
bottom line is that any extreme design attributes must be optimized to avoid
business or technological calamity.

This discussion brings us to the conclusion that a software architect should
be engaged in mitigation design activities to promote architecture symmetry.
To accomplish this, we propose two design tools: integration and disintegration.
The former should be employed to connect the dots. The latter can be used to
optimize the relationship between software implementations and even moderate
the distribution and federation scheme of applications and systems.

Bell820970_c06.indd 204 2/13/2023 2:48:09 PM

 Chapter 6 ■ Software Architecture Environment Construction 205

When to Apply Integration and Disintegration Design Activities

Architects’ hands are always full during the development life cycle of a software
product. They are required to fulfill multiple activities to promote architecture
strategies during that period. First, they must respond to business requirements
by translating them into technical specifications. Next, they are commissioned to
provide design blueprints and perfect them throughout the software development
phase. Finally, they are charted to provide architecture guidance during the
deployment, integration, and maintenance of software implementations in a
runtime ecosystem. The bottom line is that software architects are employed
to usher in all phases of the product development life cycle.

To effectively integrate software into runtime environments, the integration
and disintegration design activities must begin at the inception phase of the
business product development life cycle. In other words, the integration and
disintegration design activities ought to be employed as early as possible to
allow time for proof of concepts and validation of the design blueprints. The
integration and disintegration design activities should not stop there. They must
also persist through deployment, integration, and maintenance of software
products in a software architecture environment— namely, during runtime. This
would also be the time to validate architecture integration strategies against the
real- time performance of deployed software assets.

Integration and Disintegration Design Methods

One of the most important aspects to ponder when working on the design of
software integration is the objectives we aim to fulfill. Ask questions such as
the following:

 ■ What is the goal?

 ■ Does the design solution satisfy the business or technical requirements?

 ■ What are the proper integration and disintegration design methods to
utilize?

 ■ What integration patterns can promote the most effective solutions while
meeting the software architecture environment constraints?

Table 6.5 includes tangible approaches to facilitate the fulfillment of soft-
ware architecture integration goals. The four design approaches for software
integration, shown in the Method column, foster fundamental best practices that
software architects ought to be knowledgeable about: establishment of software
relationships, reuse, distribution and federation, interoperability, and binding
(founding contracts between software implementations). Moreover, the Task
column identifies the design integration activities that ought to be performed.

Bell820970_c06.indd 205 2/13/2023 2:48:09 PM

206 Part 3 ■ Software Architecture Toolbox

In contrast, the methods for pursuing software disintegration design activ-
ities address different challenges that architects must tackle: optimization of
software relationships, optimization of information workloads, distribution and
federation scope reduction, and relaxation of software binding. These design
approaches promote optimization of architecture environment complexity
and the scaling back of software distribution and federation to strengthen the
delivery of solutions.

Integration and Disintegration Process Outline

Integration and disintegration design activities yield the best possible results
when the process is bidirectional. In other words, to achieve an optimal software

Table 6.5: Integration and Disintegration Design Methods

DESIGN
ACTIVITY METHOD TASK

Integration Establishment
of software
relationships

Forming a one- to- one, many- to- many,
one- to- many, or many- to- one relationship
between software implementations

Reuse Enabling access to information and
processes by providing connectivity
mechanisms, such as APIs, adapters, and
connectors

Distribution and
federation

Expending the scope of software
architecture to include other
organizational entities, such as lines of
business and geographical locations

Promotion of
interoperability

Enabling heterogenous environments to
communicate and exchange data

Binding Establishing exclusive contracts between
software assets

Disintegration Optimization of
software
relationships

Removing or consolidating unnecessary
software relationships, interfaces, adapters,
gateways, middleware, or other
intermediaries

Optimization of
information
workloads

Reducing data workloads and transaction
volumes

Distribution and
federation
scope reduction

Reducing the range of software
distribution and federation across
organizations and geographical locations

Relaxation of
software
binding

Decreasing the number of contracts
between software implementations across
a software architecture environment

Bell820970_c06.indd 206 2/13/2023 2:48:10 PM

 Chapter 6 ■ Software Architecture Environment Construction 207

architecture environment construction, one ought to pursue repetitive integration
and disintegration design activities. Consequently, the final design state is a
manifestation of a symmetric software architecture landscape that grants pro-
duction environment stability and strengthens business continuity.

Figure 6.9 represents such an iterative process, during which three design
states are formed (A, B, and C) due to the employment of the integration and
disintegration tools.

State A: Deficient design This illustrates an excessively integrated mesh
environment with point- to- point relationships between software struc-
tures. This configuration introduces architecture complexity that is hard
to maintain and manage and poses risks to business operations.

State B: Optimal design This optimal software architecture environment
construction state is attained by the disintegration design activity on state
A or integration on state C.

State C: Deficient design This is an inferior design that illustrates weak
integration between software structures in a software architecture envi-
ronment. This style of configuration typically compromises software reuse
and information sharing.

Figure 6.9 depicts two design activities directions that can be repeated until
an optimal software architecture environment construction is fulfilled. This
design integration and disintegration life cycle is vital for achieving symmetry
between two radical architecture options, which is reflected in state A and state
C. Follow these two design directions that illustrate the transition between the
three design states:

A, B, C direction Depicts a two- step architecture disintegration activity

C, B, A direction Shows a two- step architecture integration activity

Figure 6.9: Integration and Disintegration Design Activities Example

Bell820970_c06.indd 207 2/13/2023 2:48:10 PM

208 Part 3 ■ Software Architecture Toolbox

Use Case III: Software Architecture Environment
Centralization and Decentralization Design Activities
The centralization and decentralization design activities influence the arrange-
ment of software assets in a software architecture ecosystem. Simply put, the
term arrangement is all about the manner by which software implementations,
such as applications, services, systems, and related infrastructure, are distrib-
uted in a multidimensional computing space. In the context of the centralization
and decentralization design activities, the distribution style of software assets
refers to how tight or loose the relationships are between consumers and their
affiliated services.

In a centralized software architecture environment, consumers exchange mes-
sages with their service providers or applications through software hubs, such
as middleware, gateways, data access points, or central service providers. The
gravitational force of such hubs is determined by the number of their linked
consumers (refer to discussion in the section “Software Architecture Gravitational
Forces” about the influences of software architecture gravitational forces).

Software architects ought to be aware that the magnitude of consumers around
a central hub determine the intensity of its gravitational force in a computing
environment— the more consumers utilize a hub, the more powerful is its
gravitational force.

And vice versa: a decentralized software architecture environment pertains
to a distribution style in which central hubs do not possess strong gravitational
forces. That is, these hubs do not intercept a large number of messages, nor are
they linked to an excessive tally of consumers.

 CO N C E P T The bottom line is that architects can employ the centralize and decen-
tralize design activities for the purpose of fine- tuning the gravitational forces of soft-
ware entities to balance a software architecture environment.

When to Employ the Software Environment Centralization and
Decentralization Design Activities

The centralization or decentralization of software is hardly ever the focus on
the business departments or divisions, . Their attention is devoted to business
strategies, business requirements, and business architecture. Thus, it’s incon-
ceivable that any business unit in an enterprise would attempt to dictate the
employment of architectural styles, architectural patterns, or design patterns.

Also, business managers, analysts, or business architects wouldn’t have much
influence on software integration pattern decisions in runtime environments.
These decisions are made mostly by the IT organizations that shoulder the respon-
sibility for design, development, testing, deployment, and integration efforts.

Bell820970_c06.indd 208 2/13/2023 2:48:10 PM

 Chapter 6 ■ Software Architecture Environment Construction 209

When it comes to balancing a software architecture environment, the cen-
tralization and decentralization designing efforts should take place as early
as possible during the development life cycle. Therefore, the planning and
designing stages are the most productive and effective time frames in which
devise a suitable balanced architecture.

Applying changes to existing software integration, however, is costly and
may be disruptive to operations in a production environment. This is because
architecture modifications to symbiotic software assets in a software architecture
ecosystem would require extensive analysis and testing efforts to ensure business
continuity. The perils to business are equally high when attempting to tilt the
balance in favor of the centralized or decentralized architecture styles during
the software development phase.

Centralization and Decentralization Design Methods

Consider Table 6.6, which elaborates on the chief design procedures employed
to balance a software architecture environment. The Design Activity column
includes the centralization and decentralization tools; the Method column lists
four approaches for each design activity, and the Task column offers corresponding
software design approaches.

As shown, the centralization tool introduces four methods of software envi-
ronment design: consumer grouping, software reuse, consolidation of software
intermediaries, and increasing software gravity forces. These environment
construction approaches promote the centralization of software products by
leveraging software intermediaries, such as hubs or middleware.

In contrast, the decentralization design tool includes four chief approaches:
federation, increasing deployments of software intermediaries, decreasing
software gravitational forces, and extending software distribution scope. These
environment design methods are devised to promote the distribution and fed-
eration of software assets across an organization or geographical locations.

Table 6.6: Centralization and Decentralization Design Methods

DESIGN
ACTIVITY METHOD TASK

Centralization Consumer grouping Grouping consumers by their service
interests

Software reuse Promoting reuse of software by eliminating
functionality redundancy and fostering
consolidation of service providers

Consolidation of
software intermediaries

Reduction of software hubs in a software
architecture environment

Increasing software
gravity forces

Increasing consumer access to software
hubs

Continues

Bell820970_c06.indd 209 2/13/2023 2:48:10 PM

210 Part 3 ■ Software Architecture Toolbox

Software Architecture Environment Centralization and Decentralization
Process Outline

Figure 6.10 demonstrates the three design phases that employ the centraliza-
tion and decentralization design activities. This design life cycle depicts three
software architectures environment states: A, B, and C. No matter from which
state a software architect chooses to use the design tools, the ultimate goal is to
achieve a balanced software architecture for a particular environment. In this
context, the term ultimate refers to a design symmetry that achieves balance
between a centralized and decentralized distributed runtime landscape.

State A: Deficient design This design stage demonstrates a radical central-
ized software architecture environment with extreme gravitational force
that can influence large sections of a production landscape. As apparent
in the center, a software hub offers multiple interfaces to its potential con-
sumers. In addition, this state results from the centralization design activities
that are applied to state A and then state B. A highly centralized software
architecture environment typically comes with perils to performance and
response time. This is because of the potential high volume of transactions
that the software hub must process.

State B: Optimal design Note that state B refers to an optimal software
architecture environment construction. It demonstrates a design equilibrium
that it’s achieved between the two radical states: A and C. In other words,
to obtain such architectural construction balance, a software architect
ought to choose between states A and C. In contrast, state B represents a
design compromise between these two extreme distribution styles that
are modified by the centralization and decentralization design activities.

State C: Deficient design This is considered as another deficient design
scheme that resulted from the repeating decentralization design activities,
starting at stage A and continuing through stage B. State C, therefore,

DESIGN
ACTIVITY METHOD TASK

Decentralization Federation Transforming a centralized architecture to a
federated distribution style

Increasing deployments
of software
intermediaries

Extending the number of software
intermediaries in a software architecture
ecosystem

Decreasing software
gravitational forces

Reducing the number of consumers for
existing software hubs

Extending software
distribution scope

Extending the reach of business services to
remote geographical locations

Table 6.6 (continued)

Bell820970_c06.indd 210 2/13/2023 2:48:10 PM

 Chapter 6 ■ Software Architecture Environment Construction 211

does not possess a strong gravitational force. It also depicts an imprac-
tical architecture construction since it does not promote reuse, nor does
it foster consolidation of software functionality.

Moreover, Figure 6.10 depicts examples of the centralization and decen-
tralization design activities that a software architect may employ during the
software design life cycle. This design process is illustrated in states A, B, and
C. Consequently, dependencies between software assets may be altered, the
intensity of gravitational forces may be modified, and the integration scheme
of a software architecture environment may be changed.

Consider the two possible centralization and decentralization design direc-
tions as illustrated in Figure 6.10:

A, B, C direction Depicts two software design decentralization steps

C, B, A direction Illustrates a two- step software centralization design activities

Use Case IV: Software Architecture Environment Elasticity and
Inelasticity Design Activities
As discussed in the section “Competing Software Architecture Environment
Forces,” elasticity is one of the most decisive attributes that impacts the survival
of software in its deployed environment. This assertion implies that not only
must a software implementation be nimble enough to withstand the competi-
tion game in production, but the environment itself must offer adequate con-
ditions to accommodate the imperatives of applications, services, systems, and
infrastructure.

 N OT E Software architects, be aware that it’s not only design decisions and
approaches that must empower software to thrive in the cutthroat endurance chal-
lenges of a production ecosystem. The hosting environment ought to be agile enough
to promote business growth and technological transformation as well.

Figure 6.10: Centralization and Decentralization Life- Cycle Design Activities Example

Bell820970_c06.indd 211 2/13/2023 2:48:10 PM

212 Part 3 ■ Software Architecture Toolbox

Furthermore, elasticity and inelasticity refer to vital architecture attributes
that software architects must always be cognizant of. So, what are the condi-
tions that foster software and its hosting environment agility? Nimbleness, in
this context, can be achieved by allocating to the environment adequate and
incremental computing resources (such as network bandwidth, memory, and
disk space) so software can operate at its full capacity. But the on- demand supply
of computing resources is only a single ingredient, among others, that ensures
production stability. Proper configuration, integration, scalability, clustering,
high availability, disaster recovery, load balancing, and architecture styles and
patterns are more than a few operational conditions that can boost elasticity to
ensure robust business performance.

 N OT E Architects should leverage the elasticity and inelasticity design tools to
balance a software architecture environment, minimize the negative impact of com-
peting forces in production, and boost the survival rate of software implementations in
a challenging deployment ecosystem.

When to Employ Elasticity and Inelasticity Design Activities

Software and environment architecture elasticity is known to be achieved chiefly
during product deployment, configuration, and integration in production. But
nothing should stop software architects from also devising elasticity mechanisms
during the planning, design, development, and testing stages. Therefore, the rule
of thumb suggests that elasticity should be incrementally realized throughout
the product development life cycle.

As mentioned in the previous section, elasticity is enabled by umpteen soft-
ware and environment architecture features that typically contribute to a nimble
software architecture landscape. Again, these traits include scalability, clus-
tering, and even incremental and adequate supply of computing resources.
Architecture agility concerns, therefore, should meet the specific requirements
of every single stage of the life cycle.

For example, during the design phase, agility is characteristically affiliated
with software clustering, instances, scalability, and architecture patterns. Then
again, during the product deployment, configuration, and integration stages,
message load balancing, failover, and high availability contribute to operation
nimbleness and stability. In conclusion, during each software life- cycle stage
architects should ensure that agility is the forefront of their concerns.

During all phases of a product life cycle, agility testing should be conducted
to understand how durable a software implementation is. The hosting envi-
ronment fitness should also be examined to ensure that it can sustain the data
workload, transactions, and information exchange.

Bell820970_c06.indd 212 2/13/2023 2:48:10 PM

 Chapter 6 ■ Software Architecture Environment Construction 213

Elasticity and Inelasticity Design Methods

Note that Table 6.7 includes only a limited number of methods that refer to the
elasticity and inelasticity software design activities. But with such an abbrevi-
ated set of design methods, software architects will still be easily able to deduce
the usage of these design tools. As shown, the Design Activity column iden-
tifies the two activities. Next to each activity, find the related four listed design
approaches under the Method column. The Task column introduces the task
that is related to each design method.

As shown in Table 6.7, the elasticity design activity can be driven by each of the
four software design methods: boosting scalability, increasing clustering capabilities,
adding load balancing and failover technologies, and enhancing high- availability
capabilities. These design approaches are devised to increase software and envi-
ronment elasticity capabilities. In other words, by boosting the nimbleness char-
acteristics of a software implementation and its hosting environment, software
products will be able to withstand the harsh competition in a production landscape.

To limit the elasticity level of a software or its related environment, and to
fine- tune an architecture balance, four design methods are proposed: limiting
high- availability capabilities, reducing clusters, reducing load balancing and
failover mechanisms, and reducing scalability. Note that these design approaches
are devised merely to consolidate or eliminate unnecessary elasticity mecha-
nisms to simplify architecture complexity. And they are not provided to reduce
software or environment performance capabilities.

Table 6.7: Chief Elasticity and Inelasticity Design Methods

DESIGN
ACTIVITY METHOD TASK

Elasticity Boosting scalability Increase software horizontal and vertical
scaling instances

Increasing clustering
capabilities

Add more computers or nodes to run
software’s parallel tasks

Adding load balancing
and failover technologies

Raise the number of load balancer and
failover devices

Enhancing high-
availability capabilities

Expand environment high- availability sites

Inelasticity Limiting high- availability
capabilities

Reduce environment high- availability sites

Reducing clusters Optimize the number of computers or nodes
to decrease software’s parallel tasks

Reducing load balancing
and failover mechanisms

Limit the number of load balancer and
failover devices

Reducing scalability Decrease the number of software horizontal
and vertical scaling instances

Bell820970_c06.indd 213 2/13/2023 2:48:10 PM

214 Part 3 ■ Software Architecture Toolbox

Software Architecture Elasticity and Inelasticity Design Process Outline

Figure 6.11 depicts the elasticity and inelasticity design activities and their related
states: A, B, and C. There is no particular direction that a software architect pur-
sues. Note that this schematic presentation of software design does not imply
that there should be only three architecture states.

In the real world, the design process may be accompanied by analyses and
architecture evaluation tasks. Then again, the upshot ought to be a balanced
software architecture environment— an optimal scheme that ultimately stems
from repeatable elasticity and inelasticity design activities. And in due course,
the optimal software architecture must be an outcome of good judgment and
sensible design decisions.

State A: Deficient design There is no defense against a design scheme that
calls for implementing excessive elasticity mechanisms as is apparent in
state A. Avoid such radical elasticity solutions. In addition, software or
environment elasticity should not be promoted by employing extreme
scalability gears. Nor should a software implementation, for example, be
deployed to a large cluster of servers or nodes to boost its nimbleness if
there is no justification for pursuing such technical solution. Not limited
to these elasticity facilitators, this train of thought should be adopted to
promote a balanced software architecture environment.

State B: Optimal design This optimal software architecture construction
denotes that a software entity is nimble enough to effectively compete
and survive in a computing environment. To achieve such architecture
equilibrium, the elasticity design activity has been applied on state C. The
inelasticity design tool is employed to reduce the elasticity level of state
A. Obviously, state B represents a design compromise between two rad-
ical choices: A and C.

State C: Deficient design This design state depicts a rigid and inflexible
environment that most likely would introduce perils to business operations.
The architecture seems unscaled, and the single software implementation
instance would not be able to withstand production ecosystem message
workload pressures. Such software and environment design is utterly
impractical. Software architects, therefore, should employ the elasticity
design tool to rectify the potential risks associated with the apparent lack
of agility.

Figure 6.11 depicts examples of the elasticity and inelasticity design tools
that should be employed to achieve an environment equilibrium. The process
for obtaining such balance is illustrated in states A, B, and C. This schematic
life- cycle depiction shows two design directions.

Bell820970_c06.indd 214 2/13/2023 2:48:10 PM

 Chapter 6 ■ Software Architecture Environment Construction 215

A, B, C direction Demonstrates the inelasticity design activity on states A
and B that render state C

C, B, A direction Depicts the employment of the elasticity design activity
on states C and B that render state A

Use Case V: Software Architecture Environment
Synchronization and Desynchronization Design Activities
As you may recall, the centralization and decentralization design activities,
discussed in Use Case III, are chiefly about the distribution and arrangement
of software assets in a software architecture environment. By contrast, the envi-
ronment synchronization and desynchronization activities discussed here are
leveraged to control the harmony level of operations in the same deployment
landscape.

The term harmony level of operations then refers to the manner by which mes-
sages and data are being exchanged, controlled, managed, and disseminated
on a computer network to promote a balanced software architecture. To learn
more about this topic, refer to sections “Chief Properties of Harmonizing Forces
in Production” and “Chief Properties of Disharmonizing Forces in Production.”

To promote or demote the harmony of operations in a software architecture
ecosystem, employ the environment synchronization and desynchronization design
activities. By doing this, software architects can fine- tune the level of interactions,
collaborations, partnerships, and information sharing in a runtime environ-
ment. The bottom line is that too much of a good thing is never good— namely,
excessive harmony measures do not necessarily promote a balanced software
architecture.

For instance, orchestration and choreography are architecture capabilities
that promote harmony. However, excessive orchestration or choreography
mechanisms that are employed to control messages may hinder performance of

Figure 6.11: Elasticity and Inelasticity Life- Cycle Design Activities Example

Bell820970_c06.indd 215 2/13/2023 2:48:11 PM

216 Part 3 ■ Software Architecture Toolbox

business transactions. By the same token, superfluous enablement of software
or environment elasticity does not inevitably foster environment harmoniza-
tion. Moreover, extreme isolation of software, excessive software federation, or
radical environment decentralization are disharmonizing forces that more fre-
quently hamper applications and systems response time and introduce business
continuity challenges.

 N OT E Software architects: make use of the environment synchronization and
desynchronization design activities to fine- tune the software architecture harmoniza-
tion forces in a runtime ecosystem. By doing this, the balance of operations in a com-
puting environment promotes only business and technological stability.

When to Employ Environment Synchronization and Desynchronization
Design Activities

There are many design concerns that must be addressed in a software architecture
environment, especially with message exchange and data sharing coordination
and orchestration challenges. There are numerous consumers and service pro-
viders that trade critical information on a network. And there are a myriad of
partnerships that are formed dynamically without human intervention. These
umpteen interaction activities call for carving out communication strategies to
foster stability in an error- prone runtime environment.

But communication strategies alone could not fully tackle architecture com-
plexity levels. Therefore, to adequately prepare for the impact of a high volume
of data transfer and the distribution of information in production, there is a need
for devoting significant attention to behavior of software during each product
development life- cycle stage. In this context, the term behavior is affiliated with
how software responds to data requests, how it interacts with peer service
providers, and how consumers trade information in a computing landscape.

Consequently, tackling environment harmonization ought to be one of the most
overriding tasks during each product development life- cycle stage. Simply put,
the synchronization and desynchronization design activities should be pursued
during the planning, designing, development, testing, deployment, and integration
phases. Although synchronization and desynchronization are typically invisible
software architecture properties, testing time should be devoted to promote envi-
ronment harmonization and operation stability.

Environment Synchronization and Desynchronization Design Methods

The environment synchronization and desynchronization design tools, listed
in the Design Activity column of Table 6.8, can be used to control the harmoni-
zation level in a computing environment. In addition, these two activities are

Bell820970_c06.indd 216 2/13/2023 2:48:11 PM

 Chapter 6 ■ Software Architecture Environment Construction 217

accompanied by corresponding design methods (listed in the Method column).
The Task column elaborates on how to apply these methods to achieve the
desired harmonization level in a software architecture landscape. Note that this
table includes an abbreviated list of software environment design approaches
for the environment synchronization and desynchronization design activities.
Software architects, therefore, may consider augmenting this list with additional
methods and tasks that are related to specific organizational concerns.

To enhance environment synchronization of operations, such as message
exchange, information sharing, or distribution of data, consider these four
methods: message harmonization, process parallelism, centralization, and
contract- driven partnerships. This prevailing environment synchronization
concept calls for enhancing the operational harmony level by setting message
control mechanisms, coordinating interactions between software assets, and
centralizing message orchestration and choreography capabilities.

By comparison, the environment desynchronization design activity in Table 6.8
lists four methods that can be used to reduce software dependencies and fine-
tune an environment that overcontrols message exchange, coordination, and
prioritization. To achieve these software architecture environment desynchro-
nization effects, employ the listed design activity methods: decentralization,
defederation, software isolation, and long- range software distribution.

Table 6.8: Chief Synchronization and Desynchronization Design Methods

DESIGN ACTIVITY METHOD TASK

Environment
Synchronization

Message
harmonization

Apply message coordination and control
mechanisms, such as message orchestration,
choreography, message synchronization, and
prioritization.

Process parallelism Coordinate and prioritize the execution of
parallel processes.

Centralization Recommend software architecture styles and
patterns that promote reliance on central
hubs.

Contract- driven
partnerships

Focus on contract- driven implementations
that promote data exchange harmonization.

Environment
Desynchronization

Decentralization Reduce central software hubs and software
intermediaries.

Federation Advocate federation of processes and data
across organizational boundaries.

Software isolation Devise mechanisms to isolate and protect
software.

Long- range
software
distribution

Distribute software implementations to
remote geographical locations without
message control mechanisms.

Bell820970_c06.indd 217 2/13/2023 2:48:11 PM

218 Part 3 ■ Software Architecture Toolbox

Software Architecture Environment Synchronization and
Desynchronization Design Process Outline

Figure 6.12 represents three design phases that take place during the software
and environment architecture life cycle. This design process spans stages A, B,
and C. Moreover, state B depicts an optimal software architecture construction— a
compromised design solution favorable to states A and C. And it represents
a balanced environment obtained after employing the synchronization and
desynchronization design activities.

State A: Deficient design This design state depicts a “highly harmonized”
software architecture environment, formed by repeatedly employing the
environment synchronization design tool on states C and then B. Recall
that applying unnecessary and excessive environment synchronization
mechanisms to promote environment harmonization would only introduce
needless controls over messages, more likely raise software architecture
complexity, and in many cases hamper software performance.

State B: Optimal design This optimal software architecture construction is
obtained by using the environment desynchronization and environment
synchronization tools on states A and B, respectively. Remember that in
the real world, there are no specific rules, guidance, or design sequences to
achieve the ultimate software architecture environment equilibrium. In fact,
the achievement of an optimal software architecture construction depends
chiefly on good judgment and experience in the software design field.

State C: Deficient design This state represents a deficient design because it
lacks environment harmonization forces to balance a software architecture
environment. It resulted from the repeating environment desynchroniza-
tion activities that operated on states A and then B. And it’s considered a
radical software solution with no environment-balancing forces.

Figure 6.12: Environment Synchronization and Desynchronization Life Cycle Design
Activities Example

Bell820970_c06.indd 218 2/13/2023 2:48:11 PM

 Chapter 6 ■ Software Architecture Environment Construction 219

As stated previously in this section, no particular design process order is
required to perform the iterative sequence of environment synchronization and
environment desynchronization activities. Note, however, that Figure 6.12 is
merely a schematic software architecture construction life cycle that illustrates
two possible directions.

A, B, C direction The Desynchronization design activities start at stage A,
which renders stage B, and the latter results in stage C.

C, B, A direction Stage C is the starting point for the synchronization design
activities, then B, and finally A.

Construction Laws of a Software Architecture
Environment

It’d be impossible to ignore the interdependencies between a software architecture
environment and production ecosystem. The governing laws of chance and
probability are a constant battle for software architects who strive to stabilize
a software architecture environment. That is, flawless operations in a runtime
landscape are never guaranteed— not even by superb software architecture
strategies— nor by employing superior technologies. Therefore, a potent approach
to mitigating unpredictable environment performance is to employ balanced
software design.

The chief laws of a software architecture environment construction reflect
these assertions. Software architects ought to be aware that design blueprints
never assure runtime stability, nor do they guarantee flawless business execution.

Production environment is an uncontrolled quantum ecosystem Techno-
logical stability and business continuity are never guaranteed in a software
architecture environment.

Inseparability Software implementations are inseparable from any integrated
software architecture environment.

Entanglement Software implementations, whether integrated, separated,
or isolated, always directly or indirectly affect each other.

Social behavior Changes to software architecture environment typically
impact users’ social behaviors.

Information preservation Nothing can guarantee data safety and integrity
in a software architecture environment, even when software architecture
redundancy mechanisms are employed to avert data persistence and
transformation loss.

Bell820970_c06.indd 219 2/13/2023 2:48:11 PM

220 Part 3 ■ Software Architecture Toolbox

Software architecture gravitational forces Architecture forces granted to
software implementations tend to deform software architecture environ-
ment topology spaces and thus impact runtime operations in production
ecosystems.

Competing software architecture forces The stern competition for com-
puting resources in a software architecture environment is won by software
products that are driven by superior design.

The zero- sum game In an ill- designed software architecture environment,
the total computing resource gains are always equivalent to the total
losses of software implementations. Therefore, the net change in the sum
of computing resources or architecture capabilities is always zero in such
an inefficient software architecture ecosystem.

Intense gravitational force Extreme gravitational powers assigned to a
software implementation manifest in an unbalanced software architecture
environment.

Harmonized software architecture Deployed software products that do not
introduce conflicts of operations promote a balanced software architecture
environment.

Best Practices for Software Architecture
Environment Construction

The best practices laid out in Table 6.9 are devised to balance a software architecture
environment. This guidance calls for leveraging the power of the gravitational,
competing, harmonizing, and disharmonizing software architecture environment
forces. To accomplish this, expand your institutional business and technolog-
ical knowledge; understand the enterprise problems and imperatives; study
meticulously the organizational production environments; and learn about the
various architectures that make up the deployment landscapes.

Moreover, pay attention to design approaches that are offered in section
“Software Architecture Environment Construction Life Cycle.” Leverage these
methods to achieve an environment equilibrium by applying integration and
applications, services, and systems behavior balance in a software architecture
ecosystem.

Bell820970_c06.indd 220 2/13/2023 2:48:11 PM

 Chapter 6 ■ Software Architecture Environment Construction 221

Table 6.9: Software Architecture Environment Construction Best Practices

BEST PRACTICE
SOFTWARE DESIGN
TASK EXAMPLES

Software behavior
control in a software
architecture
environment

Grant balanced forces to
software implementations
to promote state of
equilibrium in production.

The four chief software architecture
forces discussed in section “Software
Architecture Environment Forces
Drive Software Behavior” are
gravitational, competing,
harmonizing, and disharmonizing.

Consolidation of
software architecture
gravitational forces

Reduce redundancy of
gravitation forces to
promote architecture
balance and foster
software reuse.

Consolidate hubs, brokers, gateways,
data access layers, message
interceptors, message orchestrators,
and centralized applications.

Extreme intensity of
software architecture
gravitational forces

Assess and monitor the
workload volumes of
gravitational forces to
preserve computing
resources in production.

Reduction in data exchange
workload and the number of
consumers can level off the
gravitational power of message hubs
and introduce environment stability.

Starvation for
computing resources

Mitigate competition for
computing resources in a
software architecture
environment by devising
effective capacity
planning strategies.

Allocate sufficient computing
resources, such as network
bandwidth for software
implementations, to reduce the
impact of the survival game in a
software architecture environment.

Information
preservation

Utilize redundancy
mechanisms to minimize
breaches to data integrity
and information loss.

Redundancy mechanisms may
include high- availability
environments, DR environments,
backup facilities, data
synchronization with clustering,
server scalability, and automatic
failover.

Software
architecture
environment
elasticity

Devise nimble design to
promote business growth
and increase software
architecture technological
capabilities.

Automate the scalability of software
products and the expansion of
computing resource capacity to
satisfy the growing demands of
business requirements. This may
include an increase of network
bandwidth, data storage, and
memory.

Software
architecture
environment
harmonizing forces

Foster software
architecture balance by
employing harmonizing
forces in a software
architecture environment.

Harmonizing forces in a software
architecture environment possess
unique capabilities, such as
orchestration, choreography,
prioritization, and message
synchronization.

Continues

Bell820970_c06.indd 221 2/13/2023 2:48:11 PM

222 Part 3 ■ Software Architecture Toolbox

BEST PRACTICE
SOFTWARE DESIGN
TASK EXAMPLES

Software
architecture
environment
disharmonizing
forces

Reduce disharmonizing
forces to promote
software architecture
balance

Disharmonizing forces are propelled
by extreme software distribution,
excessive architecture federation,
redundancy and duplication of
functionality, and more.

Genetic encoding of
software architecture
environment

Develop approaches and
organizational standards
for encoding a holistic
view of a software
architecture ecosystem for
reconstruction purposes.

Encoding mechanisms may include
3D holograms, metadata ontology,
taxonomies, and preservation of
environment integration properties,
such as cataloging of interfaces and
software products’ relationships.

Impact on users’
social behavior

Lessen extreme impact on
users’ social behaviors by
planning and conducting
gradual technological
transformation.

Gradual technological
transformation may be promoted by
measured adoption of advanced
middleware products, applications,
and systems.

Table 6.9 (continued)

Bell820970_c06.indd 222 2/13/2023 2:48:11 PM

CHAP TE R

223

7

Throughout the past several decades of software development and architecture,
software products do not seem to operate in a flatland.1 Specifically, they do not
survive in a predominately flat landscape without substantial elevation variations.

On the contrary, now more than ever, we understand that the prevailing prop-
erties of a production environment are affiliated with space, volume, shapes,
and software implementation placement. Moreover, this geometrical and mul-
tidimensional run- time ecosystem is saturated with integrated, distributed, and
federated software entities positioned in relative reference points. A superior
navigation system is then needed to locate these software implementations in
such multidimensional computing space.

Software products, too, possess multidimensional properties. Their spatial
dimensions, such as width, length, and height, require an effective software
construction process that considers their geometrical attributes. This design
life cycle must also guarantee that software better adapts to its corresponding
multidimensional architecture computing space. It also ought to ensure that
applications, services, and systems can sustain the high pressure of transactions
and effectively compete for computing resources.

Structural Construction
of Software Implementations

in Multidimensional
Environments

1 Published in 1884, the term flatland was first mentioned in the novella Flatland: A Romance of
Many Dimensions by Edwin Abbott. The two- dimensional fictional world is depicted in the book
as a square.

Bell820970_c07.indd 223 2/10/2023 2:54:19 PM

224 Part 3 ■ Software Architecture Toolbox

This chapter introduces a construction life cycle that centers on designing
three- dimensional software implementations to tackle the challenges they face
in a geometrical ecosystem. This architecture process is devised to ensure tech-
nological stability and business continuity.

The following topics are covered in this chapter:

 ■ Software architecture solids: rudimentary geometrical design structures

 ■ Software architecture dimensional model

 ■ Software architecture computing space

 ■ Distribution styles of software implementations in an architecture com-
puting space

 ■ Construction life cycle of software implementations

 ■ Governing laws for software construction in a three- dimensional com-
puting world

 ■ Best practices for constructing software implementations

Software Architecture Solids: Rudimentary Geometrical
Design Structures

The fundamental difference between programming logic and software structures is
that the former is affiliated with business and technical functionality executed by
computing processes; it simply lacks a supporting framework to hold together
software implementations. The latter offers vital skeletons and rudimentary
building blocks that hold together the operations of programming logic. Moreover,
programming logic and software structures are interdependent. They cannot
survive without each other, and it would be impossible to execute business or
technical processes without the supporting attributes of software structures.

 CO N C E P T A software structure supports, reinforces, and contains programming
logic and software processes.

This section introduces software architecture solids, which are elementary
formations for software architect awareness. These basic software structures can
be used to construct any software implementation or product, such as applica-
tions, services, or systems. The rule of thumb then suggests beginning the soft-
ware building process with software architecture solids rather than employing
complex structures that may be arduous to support.

 CO N C E P T With these software architecture geometric solids, begin the process
slowly. Simplify and maintain technological cohesiveness to demonstrate clear strategy
when providing software solutions.

Bell820970_c07.indd 224 2/10/2023 2:54:19 PM

 Chapter 7 ■ Structural Construction of Software Implementations 225

As depicted in Figure 7.1, the following sections introduce six primary soft-
ware structures:

Atomic Solid A fine- grained, small footprint and unbreakable software
structure

Composite Solid A software structure that contains atomic and composite
structures

Monolithic Solid Nonmodular, coarse- grained, typically large- footprint
software structure that is difficult to decompose

Interface Solid A basic structural utility employed to facilitate the inbound
and outbound exchange of information

Pipe Solid A structure that enables the communication between software
implementations

Data Solid A structure that supports information persistence, processing,
delivery, and exchange

Atomic Solid
An atomic solid is the most fundamental software building block designed to
offer a narrow solution scope. It is a fine- grained, unbreakable geometric structure
that holds together programming logic designed to execute business or technical
processes. These processes are execution units, such as routines, procedures,
methods, or algorithms. Figure 7.2 illustrates this concept. It depicts an atomic
structure that reinforces the existence of four different software processes.

Figure 7.1: Software Architecture Solids

Bell820970_c07.indd 225 2/10/2023 2:54:20 PM

226 Part 3 ■ Software Architecture Toolbox

The atomic solid is unbreakable because it is impossible to break it down
into smaller structures. It is impractical to chop up an already small formation
designed to tackle a narrow range of problems. In addition, decomposing an
atomic formation would most likely reduce the business value of its corresponding
software implementations. A microservice’s structure, for example, is atomic
since it supports a limited number of processes. It is not only a microservice;
any small software footprint, for that matter, is sustained by an atomic structure.

Furthermore, limited software capabilities supported by an atomic building
block are not always self- sufficient. Specifically, the processes braced by such
a tiny structure must augment their ability to provide satisfactory solutions by
collaborating with other components. For instance, a microservice that offers
login services may need to integrate with its peer services that identify users’
credentials.

Software architects ought to be aware that an atomic structure is a solid
building foundation that does not encompass substructures. In contrast, soft-
ware reinforced by nested structures is categorized as composite (discussed
in the next section) because of its internal hierarchal formations. Moreover, a
composite structure typically offers a broader solution scope than an atomic
structure because of its layered anatomy.

 CO N C E P T At the onset of every software design endeavor, draw upon atomic
structures to construct software implementations, such as services, applications, and
systems. This practice involves employing atomic solids to circumvent or mitigate soft-
ware architecture complexity. Again, start designing software with simple building
blocks rather than introducing complex structures at the inception of the software
development life cycle.

Figure 7.2: Atomic Software Structure

Bell820970_c07.indd 226 2/10/2023 2:54:20 PM

 Chapter 7 ■ Structural Construction of Software Implementations 227

Composite Solid
A composite solid is a more complex software structure. It supports a wider
range of processes to provide a larger scope of business and technical solutions.
Furthermore, a composite structure is devised to aggregate atomic, composite,
monolithic, and/or data software structures. Although it is not hard to com-
prehend this concept, such a hierarchical structure may introduce an intricated
design formation that’s difficult to implement, deploy, integrate, and maintain.

Figure 7.3 represents a schematic layout of a composite software structure
that aggregates two atomic substructures and a single composite substructure.

Moreover, a composite structure maintains a hierarchical relationship with its
corresponding child substructures. If this does not seem complicated enough,
imagine a composite software structure that contains inner substructures, each
of which encompasses its internal substructures. Furthermore, since there are
no limits on substructure inclusion, a convoluted composite structure is not
only hard to maintain in production but introduces collaboration challenges
regarding software integration in a runtime environment as well.

Figure 7.4 illustrates a more complex composite software structure that incor-
porates two atomic substructures, two data substructures, and a composite
software substructure. The latter encompasses its own two atomic software
substructures, a monolithic substructure, and two data substructures.

 CO N C E P T Composite structures do not offer compelling business value. Intricate
compound structures like these are never easy to decompose because their internal
substructures are interdependent. They are byproducts of unplanned technological
evolution not promoted by solid software architecture strategies.

Figure 7.3: Simplified Composite Software Structure

Bell820970_c07.indd 227 2/10/2023 2:54:21 PM

228 Part 3 ■ Software Architecture Toolbox

Monolithic Solid
A monolithic formation does not resemble the characteristics of any other soft-
ware structure discussed thus far. Every makeup of a monolithic formation is
unique. Their internal compositions are different because they are byproducts
of organic technological developments that are not driven by design best prac-
tices and standards. In this context, organic refers to the unplanned evolution
of software structures that keep morphing and growing without any software
design strategy.

Although monolithic solids do not necessarily possess any distinguishable
internal composition patterns, they are viewed as unbreakable software struc-
tures. These tightly coupled formations typically support symbiotic business
processes, technical functionality, and data that are difficult or impossible to
separate. They are not composed of software modules to boost source code
reuse and ease programming maintenance. These design deficiencies indicate
monolithic solids as legacy structures with limited integration and distribution
capabilities.

However, monolithic structures are not outmoded just yet. Some organizations
still support these formations with no end in sight. Their budgets are not allo-
cated to lessen the business dependency on tightly coupled and bulky software
implementations that devolve on monolithic structures. In some instances, such
formations even survive generations of technological modernization efforts.
Ironically, they keep growing and expanding as if there are no other innovative
choices to consider.

Figure 7.4: Complex Composite Software Structure

Bell820970_c07.indd 228 2/10/2023 2:54:21 PM

 Chapter 7 ■ Structural Construction of Software Implementations 229

 CO N C E P T Architects should reduce design dependency on ubiquitous monolithic
structures by fostering modular software construction and prioritizing budgets to miti-
gate performance risks that monolithic formation introduces to software architecture
environments.

Interface Solid
The interface solid is an essential structural utility that facilitates outbound and
inbound data exchange. This information trade is performed between software
processes braced by their corresponding structures.

Figure 7.5 depicts this notion. Each of the two atomic structures, A and B,
support corresponding software processes: the former comprises four and the
latter two. Enabling information exchange involves each structure utilizing its
own interface. Furthermore, a pipe solid must be positioned between these two
interfaces to transmit data (refer to the following section “Pipe Solid”).

 CO N C E P T Each structure must utilize at least one interface to establish a relation-
ship between software formations, and a pipe solid must be positioned between two
interfaces to funnel data.

Few software products utilize a single interface when communicating with each
other. Specifically, a software product may use multiple interfaces to exchange
information with several software implementations. Figure 7.6 illustrates this
idea. The composite software structure uses four interfaces for data exchange

Figure 7.5: Two Interface Solids

Bell820970_c07.indd 229 2/10/2023 2:54:21 PM

230 Part 3 ■ Software Architecture Toolbox

with three atomic structures: 1, 2, and 3. The latter is the only formation that
utilizes two interfaces to communicate with the composite software structure.

Pipe Solid
A pipe solid represents the logical means of structural connectivity between soft-
ware implementations. In this respect, it is regarded as a communication channel
designed to facilitate the transmission and dissemination of information in a
software architecture ecosystem. It also represents a topological route through
which data flows from a service provider to a consumer on a network. In addition,
a pipe denotes and establishes a relationship between software entities.

From a software design perspective, pipe solids are employed to depict soft-
ware integration, business transactions, and message exchange schemes in a
runtime environment. Without such correspondence and interaction capacity
between deployed software, architects will not be able to offer design blueprints.
Therefore, developers will be incapable of delivering executables. The bottom
line is that business requirements and objectives will not be met.

The contribution of a pipe solid is evident when the discussion revolves
around the logical integration of software products, services, and systems. The
benefits of employing pipes to disseminate information are equally clear. How-
ever, what is the significance of connecting software structures with pipes? Why
should one describe the relationship between software structures by linking

Figure 7.6: Multiple Interface Solids

Bell820970_c07.indd 230 2/10/2023 2:54:22 PM

 Chapter 7 ■ Structural Construction of Software Implementations 231

them with pipes? The answers to these questions are discussed in the three
sections that follow.

Inclusive Utilization of Pipe Solids

Refer to Figure 7.7, which illustrates the relationship between two software struc-
tures: composite structures A and B. The former contains three substructures:
atomic substructure A.1, atomic substructure A.2, and composite substructure
A.3. On the far right, the composite structure B encompasses two substructures:
atomic substructure B.1 and atomic substructure B.2. The inclusive association
between these composite structures (A and B) is established by two interfaces
and a connecting pipe. This pipe is a funneling mechanism for distributing
information and sharing between all substructures in the two composite for-
mations, A and B.

The scenario in Figure 7.7 demonstrates the utilization of a pipe solid to form
an inclusive relationship between the two composite structures (A and B) with
disregard to the internal composition of either of them. The design significance gener-
alizes the relationship between the two composite structures (A and B) without
delving too deep into their internal construction. Simply put, there is no clear
indication of the specific relationships between the contained substructures in
each of these composite formations.

 CO N C E P T Employ pipe solids to depict an inclusive relationship between struc-
tures to describe an integration strategy in lieu of depicting details of software associa-
tions between their substructures.

Figure 7.7: Inclusive Employment of a Pipe Solid

Bell820970_c07.indd 231 2/10/2023 2:54:23 PM

232 Part 3 ■ Software Architecture Toolbox

Exclusive Utilization of Pipe Solids

Use the exclusive utilization of pipe solids to describe explicit interaction, rela-
tionship, links, and information exchange between software structures and/
or substructures.

 CO N C E P T Software architects can use pipe solids to author technical specifica-
tions rather than general design solutions.

Figure 7.8 illustrates this idea by depicting the exclusive relationship
between two software formations: composite structure A and composite
structure B. The former encompasses composite substructure A.1, which con-
tains three substructures: atomic substructure A.1.1, atomic substructure A.1.2,
and atomic substructure A.1.3. Composite structure B, on the other hand, com-
prises two substructures: atomic substructure B.1 and atomic substructure B.2.

As shown in Table 7.1, there are two established relationships: between atomic
substructures A.1.2 and B.1, and between A.1.3 and B.2. These exclusive associ-
ations identify the integration and message routing between the internal sub-
structures. This Table 7.1, the Exclusive Structure Relationship table, simplifies
the view of these associations. It also specifies the message routing direction
between the substructures: a relationship between atomic substructures A.1.2
and B.1 and information exchange between atomic substructures A.1.3 and B.2.

Figure 7.8: Exclusive Employment of Pipe Solids

Bell820970_c07.indd 232 2/10/2023 2:54:24 PM

 Chapter 7 ■ Structural Construction of Software Implementations 233

Internal Utilization of Pipe Solids

Internal utilization of pipe solids depicts the inner communication between
software substructures. To better understand this idea, refer to Figure 7.9, which
illustrates the internal message exchange in composite structure A, which contains
three substructures: composite A.1, atomic A.2, and atomic A.3. Furthermore,
composite substructure A.1 encompasses its internal atomic substructures: A.1.1,
A.1.2, A.1.3, and A.1.4.

Refer to Figure 7.9 to create a software structure association list similar to
Table 7.2. It shows the structure relationships in the containment/substructure
column. The relationship column identifies the association depicted by the pipe

Table 7.1: Exclusive Structure Relationship

STRUCTURE
CONTAINMENT/
SUBSTRUCTURES RELATIONSHIP

Composite A Composite A.1

Composite A.1 Atomic A.1.1

Atomic A.1.2 Atomic B.1

Atomic A.1.3 Atomic B.2

Composite B Atomic B.1 Atomic A.1.2

Atomic B.2 Atomic A.1.3

Figure 7.9: Internal Employment of Pipe Solids

Bell820970_c07.indd 233 2/10/2023 2:54:24 PM

234 Part 3 ■ Software Architecture Toolbox

solid between two substructures, and the relationship type column denotes the
type of association these substructures maintain.

For example, the table indicates composite substructure A.1, contained in
composite structure A. The former also maintains a relationship with atomic
substructure A.2. Their relationship is defined as inclusive because A.2 main-
tains relationship with all substructures in A1.

 CO N C E P T The associations between substructures within an encompassing soft-
ware structure can take two forms of relationship: inclusive and exclusive.

Data Solid
A data solid is a structure that supports the foundation of information processing,
delivery, and exchange. As illustrated in Figure 7.10, it is the rudimentary
formation that packs data in certain formats for manipulation. Furthermore,
it hosts software processes that perform reading, retrieval, editing, deletion,
replacement, and information creation. Moreover, the data solid is not neces-
sarily a repository’s structure. It can also be conceptualized as a data broker
structure to shield databases from direct access to consumers and deemed as
any encapsulated digitized or analog data source.

 CO N C E P T To summarize, a data solid is a software structure designed to offer two
chief functionalities. It containerizes arranged data in certain formats and braces soft-
ware processes that offer data services to consumers.

Table 7.2: Internal Structure Relationship

STRUCTURE
CONTAINMENT/
SUBSTRUCTURE RELATIONSHIP

RELATIONSHIP
TYPE

Composite A Composite A.1 Atomic A.2 Inclusive

Atomic A.2 Composite A.1 Inclusive

Atomic A.3 Atomic A.1.4 Exclusive

Composite A.1 Atomic A.1.1 Atomic A.1.3 Exclusive

Atomic A.1.2 No relationship

Atomic A.1.3 Atomic A.1.4 Exclusive

Atomic A.1.4 Atomic A.3

Atomic A.1.3

Exclusive

Exclusive

Bell820970_c07.indd 234 2/10/2023 2:54:24 PM

 Chapter 7 ■ Structural Construction of Software Implementations 235

Recall that a data solid is a structure, not the data itself. This formation is
essentially an information organizer with various compartments for data formats
available for specific consumers’ needs. Data formats are the static or dynamic
composition of information loaded in memory or saved to storage devices. For
example, a data solid may accommodate formats such as arrays, stacks, linked
lists, or queues.

Again, a data solid is merely the skeleton, the frame that holds all these
information formats together and enables access to information through adapters
and pipe solids. Just like with every other software structure discussed thus far,
data solids can be integrated with their peer formations in the same fashion.
Figure 7.11 illustrates a data solid utilization scenario in which three software
structures, one composite and two atomic formations, make use of its structural
capabilities.

In real life, data solids are found in abundance. They provide structural
support for creating, reading, updating, and deleting (CRUD) operations across
every software architecture environment. They grant access and information
processing rights to tabular and/or nontabular data.2 Furthermore, they con-
stitute the building blocks of any data warehouse in production.

Figure 7.10: Data Solid Structure

2 Tabular data format refers to the structural arrangement of data in rows and columns. In
contrast, nontabular data format pertains to unstructured composition of data that is stored in a
repository.

Bell820970_c07.indd 235 2/10/2023 2:54:24 PM

236 Part 3 ■ Software Architecture Toolbox

 CO N C E P T Most important, no information can be exchanged, served, manipu-
lated, or distributed without the structural support of data solids.

Software Architecture Solids’ Attribute Summary
Consider Table 7.3; it outlines the properties of the six design solids: atomic,
composite, monolithic, interface, pipe, and data. Each column in the table spec-
ifies the affiliation of properties with a software solid.

Self- Sufficient A structure that hosts software processes that do not wholly
depend on other peer processes

Divisible Refers to the feasibility aspect of decomposing a software structure

Distributable A structure with the proper attributes for being distributed
in a computing environment

Encompassing A software structure that embeds substructures

Modular A structure that supports reusable software processes or contains
substructures that can be decomposed

Figure 7.11: Integration of a Data Solid

Bell820970_c07.indd 236 2/10/2023 2:54:25 PM

 Chapter 7 ■ Structural Construction of Software Implementations 237

Software Architecture Dimensional Model

The fundamental necessity to illustrate space occupancy by each structure in a
runtime ecosystem is the reason for depicting software dimensions. The software
construction process calls for viewing a software implementation or a product
from different dimensions. Architects, therefore, ought to provide blueprints
that depict software structures in their single or multidimensional formations.
The prevailing question that comes to mind now is what types of dimensions
an architect can utilize to describe a software structure’s geometry.

To answer this query, refer to Figure 7.12. It illustrates four types of software
architecture dimensions that can be employed to depict structure sizes in a soft-
ware architecture’s space: zero dimensions, one dimension, two dimensions,
and three dimensions. In addition, note the marking of the four coordinate lines,
named software architecture axes:

L: Length

W: Width

H: Height

The sections that follow elaborate on these software architecture dimensions:

Zero Dimensions A point, illustrated as a dot, possessing no geometrical
length, width, or height properties.

One Dimension The length of a software structure depicted by a straight
or curved line that runs between two points. A series of connected lines
(polyline) also illustrates one- dimensional software.

Table 7.3: Software Architecture Solids Summary of Attributes

SOFTWARE
SOLID

SELF-
SUFFICIENT DIVISIBLE

DISTRI-
BUTABLE ENCOMPASSING MODULAR

Atomic Not always No Yes No Not always

Composite Not always Not always Yes Yes Yes

Monolithic Yes No Not always No No

Interface No No N/A No N/A

Data N/A Yes Yes Yes Yes

Pipe N/A No N/A N/A N/A

Bell820970_c07.indd 237 2/10/2023 2:54:25 PM

238 Part 3 ■ Software Architecture Toolbox

Two Dimensions The length and width of a software structure (polygon)
that illustrate a flat region in a software architecture environment.

Three Dimensions Represents the length, width, and height of a software
structure (polyhedron).

Software Architecture: Zero Dimension
The zero dimension of a software structure signifies a point in a software
architecture space. In this environment, a point can be used to mark a position
in a deployment landscape, specify a software implementation’s geographical
location, or denote a node on a network that a software product is affiliated with.

Although a point does not possess any geometrical properties related to struc-
tural software size (such as length, width, or height), it facilitates the mapping
of software assets in production. Specifically, software implementations can be
found at zero- dimensional points by leveraging a coordinate system. The sec-
tion “Chief Features of Software Architecture Computing Space” discusses in
detail coordinates in a software architecture environment space.

Furthermore, zero- dimensional points can be connected to illustrate relation-
ships between software products and even depict message flows in a software
architecture space. This topic is primarily discussed in the section “Software
Architecture: Two Dimensions”.

Figure 7.13 illustrates this concept. As shown, the white dots represent the
zero- dimension points of software structures. Note that these points can be
located anywhere in a software architecture computing space.

Figure 7.12: Software Architecture Dimensions

Bell820970_c07.indd 238 2/10/2023 2:54:25 PM

 Chapter 7 ■ Structural Construction of Software Implementations 239

Software Architecture: One Dimension
Only the length between software structures is visible in the one- dimensional
(1 D) software world to illustrate their relationships. Simply put, this dimension
illustrates the associations without depicting the software structures themselves.
Accomplishing this requires straight or curved lines connecting the points (zero-
dimension dots) in a software architecture space. For example, in Figure 7.14,
point A and point B are linked by a line, and each point serves as a reference
point for a software structure that is invisible in this illustration.

Figure 7.13: Zero- Dimensional Points in a Software Architecture Space

Figure 7.14: One Dimension in a Software Architecture Space

Bell820970_c07.indd 239 2/10/2023 2:54:27 PM

240 Part 3 ■ Software Architecture Toolbox

Furthermore, the 1D software architecture world not only illustrates business
or technical relationships between software structures. It also identifies a variety
of software capabilities and features, such as these:

Information Flow Process flow, data flow, information sharing, message
exchange, and workload direction between organizational software assets

Communication Correspondence and collaboration between software
implementations

Deployment Ranges Regional and geographical distances between soft-
ware deployments

Remember, in this 1D realm, the lines that connect points in a software
architecture space also signify the distances between deployed software struc-
tures. The distances between these entities characteristically affect software
performance and application response time. These operation influences are
important aspects that should be considered when devising distribution, fed-
eration, and software integration.

Software Architecture: Two Dimensions
In the two- dimensional (2D) software architecture, a flatland world, software
structures are depicted merely by their two dimensions: length and width. This
view, depicted in Figure 7.15, represents only a single face of a software struc-
ture, disregarding its height. An illustration of a 2D structure does not divulge
the entire space it would have occupied in a three- dimensional architecture
ecosystem. However, in this flatland, the 2D software structure, measured by
length and width values, provides helpful clues to the provincial real estate
area that it requires for its operations.

Figure 7.15: Two Dimensions of Software Architecture

Bell820970_c07.indd 240 2/10/2023 2:54:27 PM

 Chapter 7 ■ Structural Construction of Software Implementations 241

 CO N C E P T In a flatland software architecture world, the height of a hosted soft-
ware structure is unspecified. Therefore, its hierarchical layers are invisible.

What Impacts the Length and Width Dimensions of a 2D
Software Structure?

Table 7.4 depicts the aspects that impact the length and width of a software
structure. As shown (in the “structure dimension” and the corresponding “influ-
encing architecture factors” columns), scalability, consumers, interfaces, and
computing resource consumption affect the length of a structure. However,
granularity, modularity, and structural and source code complexity levels impact
software structure widths. Finally, the metric column specifies how to compute
a 2D software structure’s length and width values.

Table 7.4: Examples of Influencing Factors on the Two Dimensions of Software Structures

STRUCTURE
DIMENSION

INFLUENCING
ARCHITECTURE
FACTORS METRIC

Length Scalability The number of instances of a software structure
influences its length (i.e., horizontal scaling).

Consumers A software structure length is affected by the
tally of the consumers that are served by its
embedded software processes.

Interfaces The number of interfaces that a software
structure supports affects its length’s value.

Computing
resource
consumption

The demand for computing resources by
software implementation, such as memory, disk
space, or network bandwidth, impacts the
length of its supporting structure.

Width Granularity The number of processes, services, methods, and
routines that a software structure supports
defines its width.

Modularity The number of programming modules that a
software structure braces impacts its width.

Structural
complexity level

The width value of a software structure is
affected by the number of substructures that it
encompasses.

Source code
complexity level3

Source code complexity level impacts the width
of a software architecture structure.

3 IEEE Transactions on Software Engineering, Volume: SE- 2, Issue: 4, December 1976

Bell820970_c07.indd 241 2/10/2023 2:54:27 PM

242 Part 3 ■ Software Architecture Toolbox

The influencing architecture factors on software structure lengths and width
may vary among organizations. For example, not all organizations would consider
horizontal scaling as an influencing factor on the length of a software structure.
Other factors, though, may be considered. Therefore, consider the table 7.4 an
example that can be modified to reflect enterprise best practices and standards
regarding specificity levels that should be illustrated in design models.

Software Architecture: Three Dimensions
As illustrated in Figure 7.16, the three dimensions of a software structure are
length, width, and height. In this 3D software architecture world, a software
structure appears like any other planet object. Namely, in addition to the length
and width, we observe its height— commonly considered as the elevation of
an object— that characteristically increases the level of software architecture
specificity. Specifically, it enables architects to describe software attributes in
design blueprints thoroughly. Moreover, schematically, the length is the longest
side of a software structure, its width seems shorter, and its height emerges as
a vertical dimension.

Volumes of 3D Software Structures

In this three- dimensional (3D) world, software architects can specify the volume
of a software structure. The term volume refers to the amount of space a software
structure fills in a software architecture environment. In simple terms, every 3D

Figure 7.16: Three Dimensions of a Software Structure

Bell820970_c07.indd 242 2/10/2023 2:54:27 PM

 Chapter 7 ■ Structural Construction of Software Implementations 243

software geometrical formation occupies the necessary space it needs to serve
its affiliated consumers.

In the 3D computing world, volumes of software structures are calculated not
only to visualize their size but also to be able to assess their operational needs
for survival in a geometrical runtime environment. Operational needs pertain
to various technical and architectural accommodations, such as elasticity, scal-
ability, computing resources, high availability, and redundancy. Therefore, the
volumes of software structures can provide metrics for these requirements.

Moreover, just like we would determine the volume of a simple formation,
such as a living room, cube, brick, or shoe box, we would also be able to ascer-
tain the volume of a software structure. For example, to determine the volume
of a rectangular jewelry box, one would need to multiply its length by its width
by its height.

 CO N C E P T Keep volume calculations of software structures as simple as possible
to avoid unnecessary composition complexity.

Increase in Software Architecture Level of Specificity in a 3D
Computing World

The level of software architecture specificity is raised again with the 3D view
of software. Here we are not only commissioned to identify the influencing
architecture attributes on the length and width of a software structure (as dis-
cussed in the earlier section “Software Architecture: Two Dimensions”), we are
also adding the height— a third dimension necessary to illustrate its altitude.
The height of a software structure can be used to depict its elevation above any
reference point, such as its base (length and width) or any point in a software
architecture space. Moreover, the height of a software structure is a vital metric
that can help to calculate its volume (magnitude), especially when comparing
it to other structures.

As mentioned, in this multidimensional world, the length, width, and height
depict the size of software structure in a software architecture space. These
metrics identify the magnitude of a structure and its volume. Observe the
influencing factor examples in Table 7.5 to understand this concept better. Note
that the length and width dimensions have been established earlier in section
“Software Architecture: Two Dimensions.” Here we add the height— the third
structure dimension— along with its influencing architecture factors and metrics.

Bell820970_c07.indd 243 2/10/2023 2:54:27 PM

244 Part 3 ■ Software Architecture Toolbox

Table 7.5: Examples of Influencing Factors on the Three Dimensions of Software Structures

STRUCTURE
DIMENSION

INFLUENCING
ARCHITECTURE
FACTORS METRIC

Length Scalability The number of instances of a software structure
influences its length (i.e., horizontal scaling).

Consumers A software structure’s length is affected by the
tally of the consumers who are served by its
embedded software processes.

Interfaces The number of interfaces that a software structure
supports affects its length’s value.

Computing
resource
consumption

The demand for computing resources by software
implementation, such as memory, disk space, or
network bandwidth, impacts the length of its
supporting structure.

Width Granularity The number of processes, services, methods, and
routines that a software structure supports defines
its width.

Modularity The number of programming modules that a
software structure braces impacts its width.

Structural
complexity level

The width value of a software structure is affected
by the number of substructures that it
encompasses.

Source code
complexity level

Source code complexity level impacts the width of
a software architecture structure.

Height Software
architecture layers

The number of layers affects the height dimension
of a software structure (i.e., presentation,
application, business, persistence, and database
layers).

Technology stack
(solution stack)

The number of technologies developers use to
construct software implementations affects the
height of its supporting structure (i.e.,
programming languages, script languages,
libraries, Web application frameworks, databases,
data sources, web servers).

Software
architecture
environments
stack

The height of a software structure is influenced by
the number of environments or infrastructures
that its supported programming logic is
compatible with (i.e., operating systems, clouds,
data lakes, protocols, networks, virtualization,
containers).

Business or
technical
capability stack

Braced by its structure, the number of business
and/or technical capabilities a software
implementation offers (i.e., analytics, brokering,
aggregation, interoperability, mobility, user
interfaces).

Bell820970_c07.indd 244 2/10/2023 2:54:27 PM

 Chapter 7 ■ Structural Construction of Software Implementations 245

As apparent in Table 7.5, the height dimension is influenced by four architecture
characteristics or factors: software architecture layers, technology stack, software
architecture environments stack, and business or technical capability stack. In
essence, these layers depict hierarchical structure formations affiliated with
the technologies, capabilities, and environments of the supported programing
logic and processes. Furthermore, as discussed in the previous section, these
influences on a software structure’s dimensions are examples that can be used
or replaced by other organizational architecture attributes or factors.

The height dimension of a software structure is one of the most useful metrics
used to identify how compartmentalized a software implementation is. Specif-
ically, the hierarchical layers of software technologies and capabilities would
typically show to which extent software is componentized. This architecture
attribute contributes to software reuse and the loose- coupling properties of
software design. In addition, the height metric indicates how isolated its sup-
ported software components are.

Software Population Sustainability in an Architecture Environment Space:
A Capacity Planning Challenge

Too often, organizations fail to assess the fitness of their production environ-
ments. The term fitness is related to companies’ continuous capability to sustain
the operational pressures of the hosted software products. And in this context
operational pressures mean that every deployed software implementation typ-
ically burdens production uniquely.

For example, some software implementations strain the environment by pur-
suing a high volume of business transactions, while others necessitate extreme
network bandwidth. Some serve an overwhelming crowd of consumers, while
others demand advanced technologies to promote potent business continuity.
So, with these collective operational challenges, the chief question that comes
to mind is about the sustainability of a software population in a runtime eco-
system. Specifically, do organizations tend to control the population growth of
deployed software?

What if these firms neglect to monitor and restrict the number of software
implementations in an already strained deployment space? What if they do
not employ control mechanisms to address extreme workloads of business
processes? What if the overall geometrical volumes of the deployed software
products overrun the computing space of a runtime environment? Finally, what
is the sustainability level of a software architecture space?

Currently, there are no industry mechanisms to assess and understand the
impact of the software population density on a production environment. Without
proper monitoring mechanisms to mitigate the risks of a growing software
population, the implications could be vast, and the consequences might even be

Bell820970_c07.indd 245 2/10/2023 2:54:27 PM

246 Part 3 ■ Software Architecture Toolbox

dire. Furthermore, organically grown deployment environments that typically
do not attend to software architecture strategies tend to disregard the impact
of an expanding software community.

The uncontrolled increase in the software population only challenges the
deployment, integration, and operations of software implementations. This state
of affairs only introduces production chaos that’s hard to manage. Furthermore,
the architecture complexity level of the runtime environment only rises. There-
fore, tackling the software population density issue in a software architecture
environment should become a top priority when carving out a deployment and
integration strategy. The chief mission would then be to formulate best practices
to promote the software occupancy balance in production.

 CO N C E P T Consider that all software structures’ collective 3D geometrical volumes
should not exceed the boundaries of a software architecture environment space.

Comparative Perspectives in a Software Architecture Space

Software implementations provide different ranges of solutions to business or
technical problems. However, while some may execute many processes, others
may offer limited functionality. In design terms, this implies that software
implementations are affiliated with different levels of granularity.

For example, a monolithic implementation is known to be coarse- grained
because it typically bundles many services and data. A microservice, on the
other hand, is considered to be fine- grained because of the narrow scope of its
operations.

So, should a runtime environment include software implementations at an
approximate level of granularity? Or should the granularity levels of software
not even be taken into account when deploying and integrating software? These
questions represent dilemmas software architects typically grapple with when
designing business products and hosting environments.

The rule suggests that a balanced software architecture ecosystem should not
contain software implementations at extreme levels of granularity. Not only can
such a configuration increase operational maintenance costs, but it would also
be impractical to invest efforts in integrating software that does not equally
scale in size, magnitude, and dimension. Acclimatize to the notion of compara-
tive perspective to achieve such ecosystem parity.

 CO N C E P T The term comparative perspective is all about the ability to compare
the 3D geometrical volumes of software structures to promote effective software
architecture equilibrium.

Bell820970_c07.indd 246 2/10/2023 2:54:27 PM

 Chapter 7 ■ Structural Construction of Software Implementations 247

Again, an unbalanced software architecture space typically includes software
implementations with exceedingly different granularity levels. This condition
only increases architecture integration complexity, introduces software mainte-
nance challenges, and raises the cost of their ownership. To mitigate such risks,
consider integrating equal size software structures in production.

3D Software Structures in a Software Architecture
Computing Space

Our ambition to view or understand an environment with higher dimensions,
such as four or even beyond, introduces an intellectual challenge that is diffi-
cult to parse. Humans are trapped in a 3D space in which all objects possess
three units of measurement: length, width, and height. However, despite our
inability to live in a higher- dimensional world, we can still visualize a fourth-
dimension ecosystem only when reflected as a three- dimension environment.
Nevertheless, this reflection is typically represented on a flat computer screen
representing a 2D display.

Despite the increasing number of movies and TV programs that depict
higher dimensions than our natural 3D environment, viewers are being chal-
lenged to digest these fictional worlds that no one has ever physically visited.
The movie Interstellar, for instance, brilliantly illustrates a mind- bending five-
dimensional world in which the main character can view different points in
time and perspective.

This section presents the software architecture computing space as a 3D eco-
system in which software structure volumes occupy individual spaces. Some
structures comprise substructures that support programming logic. Others
are fine- grained software formations, unbreakable constructs that merely host
processes.

The software population in the 3D architecture space form collaborative
and coordinated relationships to carry out transactions and share information.
The structures are laid out in different styles to provide effective business and
technological solutions to fulfill this mission. The term styles pertains to the
arrangement and distribution of software in software architecture (refer to the
section “Distribution Styles of Software Implementations in an Architecture
Computing Space,” which discusses software structure distribution styles).

The Impetus for Establishing a 3D Software
Architecture Space
There is a dependency between geometrical software structures and their host-
ing 3D computing ecosystem. On the one hand, the impetus for devising a 3D

Bell820970_c07.indd 247 2/10/2023 2:54:28 PM

248 Part 3 ■ Software Architecture Toolbox

software architecture space is accommodating the hosted 3D software structures
and their related programming logic and processes. On the other hand, the 3D
software structures’ magnitude, volumes, and operations drive the requirements
to shape a 3D software architecture space.

Consider the most common technological conditions necessary for supporting
3D software structures in a software architecture ecosystem:

Allocation of Computing Resources Adequate computing resources to
support the volumes of 3D software structures

Accommodation of Space Satisfactory software architecture space to accom-
modate granularity levels of 3D software structures

Sustainment of Operations Suitable software architecture ecosystem capa-
bility to sustain the operations (such as message exchange, business trans-
actions, and information sharing) of a 3D software community

Control of Software Population Density Mechanisms to control software
population density to avoid overrunning a 3D software architecture space
capacity

Positioning of Software A coordinate system to locate the relative posi-
tioning of 3D software structures in a 3D software architecture space

Allocation of Software Architecture Space Space allocation control system
to guarantee the following: optimal utilization of software architecture
space, and avoiding overlapping occupancy of 3D software structures in
a 3D software architecture space

Balancing Software Architecture Automated continuous deployment (CD)
and continuous integration (CI) processes driven by comparative analysis
to promote a balanced software architecture. The analysis should priori-
tize the deployment of comparable volumes of 3D software structures to
a software architecture environment

Increasing Specificity of Software Design A 3D geometrical space to increase
the specificity of software design, such as software layering, structure
volumes, capacity, space requirements, and more

Promoting Software Architecture Symmetry Equally distributed software
structures across a 3D software architecture computing space to fully
leverage computing resources and data sharing capabilities in various
deployment regions

While these environment essentials are vital to the survival of software struc-
tures, they can equally impact the hosting software architecture space. There-
fore, this bidirectional dependency calls for establishing a balanced architecture
driven by technological reconciliation, meaning give and take. For example,

Bell820970_c07.indd 248 2/10/2023 2:54:28 PM

 Chapter 7 ■ Structural Construction of Software Implementations 249

on the one hand, the 3D ecosystem should be able to sustain the density of a
software population. On the other, each software should be given equal oppor-
tunities to provide business and technical services without being constrained
by the architectural space they are deployed to.

Chief Features of Software Architecture Computing Space
A software architecture space is a demarcated 3D technological ecosystem, a
geometrical topology that hosts 3D software structures and their corresponding
business or technical functionality. Figure 7.17 illustrates a schematic software
architecture computing space and 3D software structures. Note the software
structures that occupy space in the 3D hosting environment.

A1: Atomic structure

A2: Atomic structure

A3: Atomic structure

M: Monolithic structure

C: Composite structure

Figure 7.17: 3D Software Structures in a 3D Software Architecture Computing Space

Bell820970_c07.indd 249 2/10/2023 2:54:28 PM

250 Part 3 ■ Software Architecture Toolbox

Influences of Software Structures on Software Architecture
Computing Space

An architectural computing space undergoes continuous deformation attrib-
uted to the behavior of the hosted software structures and their related software
implementations. The term continuous deformation refers to the response of the
computing space to the impact of software implementations. Gravitational, com-
peting, and harmonizing software forces are examples of factors that influence
the software architecture computing space as a whole (as discussed in Chapter 6,
“Software Architecture Environment Construction”). Consumption of com-
puting resources is another factor that may affect the software architecture
space in its entirety.

The reaction of the software architecture computing space to these software
behavioral events is rooted in the architecture properties that being assigned
during design time by software architects. Software architecture elasticity for
example, is a design property that enables the expansion and contraction of
an architectural computing space. This continuous deformation can also occur
due to the dynamic allocation of computing resources, such as the increase of
data storage, memory, network bandwidth, and more.

 CO N C E P T The notion that architecture elasticity has no boundaries is utterly mis-
leading. Although a software architecture computing space can react effectively to
the demands of software operations, the 3D architecture space can still buckle under
extreme software forces (refer to the discussion about software forces in Chapter 6).

Relative Positions in a 3D Software Architecture Computing Space

There are no limits to where software implementations can be deployed.
Organizations may disburse them to various geographical locations, such as
regions or continents. In addition, they may be federated across an enterprise.
Furthermore, they may also be distributed to mobile devices, desktops, or virtual
environments. Because of such a wide range of software propagation, the chief
challenge is to identify the relative positioning of software implementations in
any environment. The term relative positioning pertains to a point in space where
software can be found. Finally, in any 3D software architecture world, the relative
position of software is determined relative to its reference point, called its origin.

 CO N C E P T A point in the 3D world is merely a pointer to a software location in a
deployment space. However, since a relative point represents a zero- dimensional dot in
space, it can also be used to aim at granular software constructs, such as components,
services, and processes.

Figure 7.18 depicts a 3D software architecture computing space with relative
positions represented by points (shown as white dots). Note that each point in

Bell820970_c07.indd 250 2/10/2023 2:54:28 PM

 Chapter 7 ■ Structural Construction of Software Implementations 251

this geometrical space has no length, width, or height (refer to the discussion in
the section “Software Architecture: Zero Dimension”). Their corresponding refer-
ence point, the origin (a dark dot), appears in the center of the computing space.

Coordinate Axes: Skeleton of a Software Architecture Computing Space

Direction, navigation, orientation, location, positioning, and volume are fundamental
terminology vital to finding software assets in a computing environment. This
lingo depicts the logical positioning of software in a runtime 3D space. Simply
put, this logical addressability system identifies the space a software struc-
ture and its affiliated programming logic and processes occupy in a software
architecture computing ecosystem.

Locating software in the logical world requires a skeleton in a software
architecture computing space, as depicted in Figure 7.19. The skeleton con-
tains three coordinate axes: X, Y, and Z. They meet at the origin (point O), the
converging point at which the axes cross each other. Finally, the x- and y- axes
are depicted as horizontal lines, and the z- axis points upward.

Figure 7.18: Points and Their Corresponding Origin in Software Architecture Computing Space

Bell820970_c07.indd 251 2/10/2023 2:54:29 PM

252 Part 3 ■ Software Architecture Toolbox

Software Architecture Computing Space Logical Coordinate System

A software architecture logical coordinate system uses three values (named
numerical coordinates) to identify the locations of points or positions of software
geometrical elements in a 3D software architecture computing space. Figure 7.20
illustrates a schematic presentation of a composite software structure in such
an orientation system. The coordinate axis lines X, Y, and Z depict the skeleton
of the system. As apparent, they go through a common point, the origin (O). As
indicated by their arrows, each axis points in a different direction. Furthermore,
the white demarcation bullets on each of them denote numerical units. And
each white bullet represents one numerical coordinate value..

The numerical coordinate values for the software structure are shown in
Figure 7.20. Generally, these three values can be associated with any of the
structure’s dimension length, width, or height. In this illustration, however,
the coordinate lines X, Y, and Z represent these three dimensions of software
structure with their corresponding values:

X (width) = 2

Y (length) = 4

Z (height) = 3

Figure 7.19: Three Axes of the 3D Software Architecture Computing Space

Bell820970_c07.indd 252 2/10/2023 2:54:29 PM

 Chapter 7 ■ Structural Construction of Software Implementations 253

Moreover, not only do the values reveal the logical location of software in a
software architecture computing space, but they also depict its size and help
quantify its volume. Recall that the value of a 3D software structure’s volume can
be obtained by multiplying its numerical coordinates, X, Y, and Z. In Figure 7.20,
this value amounts to (in any cubic metric system) 24 (2 × 4 × 3 = 24).

Cardinal and Intercardinal Physical Directions in Software Architecture
Computing Space

As elaborated in the previous section, a software architecture logical coordinate
system contributes to locating software assets in a given computing space. As
shown, the numeric coordinate values (X, Y, and Z) indeed point to the 3D logical
addressable locations in a software architecture environment. These coordinates,
however, do not disclose the physical positions of software implementations in
a runtime environment. They are merely used for spatial orientation, not for
software’s physical or geographical positioning.

Figure 7.20: Software Architecture Computing Space Coordinate System

Bell820970_c07.indd 253 2/10/2023 2:54:30 PM

254 Part 3 ■ Software Architecture Toolbox

The software architecture cardinal physical direction system then tackles this
issue. This proposition is based on the four compass directions— north, east,
south, and west (represented by their abbreviations: N, E, S, and W). Further-
more, as with every geographical navigation device, every physical point in
a given environment can be located relative to the north. Nevertheless, this
physical cardinal direction system may not be detailed enough. A more gran-
ular orientation approach is then needed.

The intercardinal physical direction navigation system, thus, would be more
appropriate for some organizations. Simply put, the intermediate direction points,
northeast, southeast, southwest, and northwest (NE, SE, SW, and NW), can
better assist in depicting software assets in a physical environment. Figure 7.21
illustrates the intercardinal direction navigation system. Again, the north is the
reference point for the other intercardinal points.

Applying Cardinal and Intercardinal Directions to Software Architecture
Computing Space

If necessary, a cardinal and intercardinal physical direction system can be
shown in an illustration depicting a software architecture computing space
(see Figure 7.22). Note that the physical direction system is at the bottom of the
software architecture computing space.

Figure 7.21: Cardinal and Intercardinal Directions in a Software Architecture Computing Space

Bell820970_c07.indd 254 2/10/2023 2:54:30 PM

 Chapter 7 ■ Structural Construction of Software Implementations 255

Marrying a Logical Coordinate System with Cardinal and Intercardinal
Physical Directions System

Figure 7.23 represents a diagrammatic approach to marrying these two navigation
systems (logical and physical). On the one hand, the logical coordinate system
(shown with the x- , y- , and z- axes) is used to locate software implementations
in a 3D space without any physical reference. On the other hand, the cardinal
and intercardinal physical direction system panel is pasted on the bottom of
the software architecture computing space.

Figure 7.23 illustrates an example of combining these two orientation systems.
The x- axis (of the logical navigation system) corresponds to two possible cardinal
physical directions: north and south. The y- axis (of the logical navigation system)
conforms to the east and west cardinal physical directions. This configuration
is not carved in stone, and there are no rules for aligning these two navigation
systems. They can be aligned as it suits the need for software design.

Figure 7.22: Applying an Intercardinal Directions System to a Software Architecture
Computing Space

Bell820970_c07.indd 255 2/10/2023 2:54:31 PM

256 Part 3 ■ Software Architecture Toolbox

Leveraging the Z- Axis to Create Floors in a Software Architecture
Computing Space

We know that a logical coordinate system supports the 3D software architecture
computing space, a navigation skeleton that includes the three axis lines: X, Y,
and Z. In this 3D computing world, the z- axis represents its height. It can be
used to horizontally slice a computing space into logical layers (floors).

Figure 7.24 illustrates this idea. It depicts a software architecture computing
space sliced horizontally (in the middle of the z- axis) into two floors. The top
contains a composite and two atomic software structures, and three atomic and
composite software structures are featured on the bottom floor.

Software assets can be categorized into different layers in an integrated com-
puting environment. Each layer represents a floor in the 3D computing space.
Consider Table 7.6. The layer category column represents the group of floors
listed under the floor column. For example, the layer category software deploy-
ment includes the business, utilities, middleware, and data floors (layers).

Figure 7.23: Combining the Software Architecture Coordinate System with the Cardinal and
Intercardinal Directions Panel

Table 7.6: Layering a Software Architecture Computing Space Example

LAYER CATEGORY FLOOR

Software deployment Business

Utilities

Middleware

Data

Bell820970_c07.indd 256 2/10/2023 2:54:32 PM

 Chapter 7 ■ Structural Construction of Software Implementations 257

Distribution Styles of 3D Software Implementations
in an Architecture Computing Space

In a 3D computing space, software entities are distributed to either side of or
on each coordinate line X, Y, and Z and positioned at particular points in space.
This deployment scheme is driven by business, technical, social, financial, and
other imperatives. Moreover, a software architecture computing space not driven
by strategies (organically grown environments) typically spins out of control
due to the arbitrary and unplanned distributions of software products in an
unmanaged runtime ecosystem. Consequently, the implications are detrimental
to the business and the production environment management.

Figure 7.24: Two Floors in a Software Architecture Computing Space

LAYER CATEGORY FLOOR

Criticality of software asset Critical

Medium

Low

Line of business Auto insurance

Home insurance

Life insurance

Bell820970_c07.indd 257 2/10/2023 2:54:32 PM

258 Part 3 ■ Software Architecture Toolbox

The presented software distribution styles introduce opportunities to advance
effective communication and information sharing between organizations, com-
puter systems, and applications. In addition, they are devised to foster a balanced
software architecture environment.

The following styles are discussed in detail in the sections that follow:

Federated Distribution Style Discusses a generic software distribution style
and the relationship between software entities in a 3D computing space

Flooring Distribution Style Elaborates on positioning software implemen-
tations on different layers in a computing space

Symmetrical Distribution Style Devised to promote a balanced software
architecture space in a 3D ecosystem

Asymmetrical Distribution Style Illustrates an unbalanced 3D computing
space and how to avoid it

Federated Distribution Style
The concept of federation refers to architecture capabilities that enable dispersed
organizations, lines of business, and any other distributed environment to share
information and exchange transactions. This idea is easy to comprehend because
reuse and redundancy reduction of data and software are simple best practices
that most enterprises have adopted. Specifically, architecture federation promotes
business and technological interoperability, enabling heterogenous environments
to trade information. The chief benefit is clear since different business models
drive these environments and incompatible technologies in many cases.

Figure 7.25 illustrates a 3D software architecture computing space in which
software structures are distributed across regions, pointed to by their cardinal
and intercardinal directions. Note the deployment locations of the software
structures in relationship to their orientation:

Atomic A3: north

Composite C: northeast

Monolithic M: southeast

Atomic A1: west

Atomic A2: northwest

Furthermore, Figure 7.26 depicts a federated environment that demonstrates
relationships between connected software entities (by connecting lines). Soft-
ware architects should investigate the feasibility of such links and verify if they
are practical and on equal footing.

Bell820970_c07.indd 258 2/10/2023 2:54:32 PM

 Chapter 7 ■ Structural Construction of Software Implementations 259

 CO N C E P T The “equal footing” best practice calls for a verification process to ascer-
tain if the connections between the federated software entities are based on their
comparable criticality and granularity levels, volume, and other business and technical
considerations.

Figure 7.25: Three- Dimension Federation Style

Figure 7.26: Federated Relationship Style in a 3D Computing Space

Bell820970_c07.indd 259 2/10/2023 2:54:33 PM

260 Part 3 ■ Software Architecture Toolbox

Flooring Distribution Style
The flooring distribution style illustrates an arrangement of software entities
in a 3D computing space. The impetus for layering a software architecture eco-
system was initially discussed in the section “Leveraging the Z-Axis to Create
Floors in a Software Architecture Computing Space.” The discussion accentuated
the need for categorizing software by positioning it on different layer levels.
Figure 7.27 demonstrates such an arrangement. It illustrates three floors in a
3D computing ecosystem.

The positioning of the software entities, as shown in Figure 7.27, clearly dis-
plays a compartmentalized 3D ecosystem. This specific categorization is driven
by the type of the deployed software structures: the top floor contains two
composite software structures, C1 and C2; the middle floor accommodates all
atomic software structures, A1, A2, and A3; and the bottom floor is dedicated
to the two monolithic formations, M1 and M2. Such layering is consistent with
the requirement to keep software sizes, volumes, and granularity comparable
on each floor.

Other organizational considerations may also drive this software classification
method. As mentioned, the flooring of a 3D space can separate software entities
by their business and technical criticality. In other instances, each layer con-
tains different business lines, financial considerations, types of applications,
and so forth.

The flooring distribution style can also foster the establishment of layers in
a software structure that resides in a 3D space. Simply put, this style can assist

Figure 7.27: Flooring Distribution Style

Bell820970_c07.indd 260 2/10/2023 2:54:33 PM

 Chapter 7 ■ Structural Construction of Software Implementations 261

software architects in compartmentalizing a particular software into different
points of concern by promoting software isolation and modular design.

To better understand this concept, let’s look at the example in Figure 7.28.
Note that the three floors subdivide a composite structure into three layers:
presentation, application, and data.

Symmetrical and Asymmetrical Distribution Styles
In essence, the absence of organizational best practices to promote a balanced
software architecture in a computing space pertains to a 3D computing space that
maintains a symmetrical software distribution scheme. In this context, “balance”
calls for effective software architecture that guarantees business and technical
continuity. A balanced architecture, for example, calls for sensible integration of
software assets with comparable volumes and granularity levels and requires
proper allocation of computing resources in a multidimensional ecosystem.

Symmetrical Distribution Style

In a symmetrical software architecture computing environment (as shown in
Figure 7.29), software entities are distributed equally on either side of the 3D
coordinate lines: X, Y, and Z.

This arrangement resembles a mirrored space in which software structures
possess similar volumes and granularity levels and are equally spaced from
each other. A completely symmetrical distribution would be hard to achieve
because of business or technological constraints in production. Note that this
guidance calls for sensible distribution to avoid a section in space that hosts a
high- density software population that typically consumes computing resources
that are hard to satisfy.

Figure 7.28: Layering a Software Structure in a 3D Computing Space

Bell820970_c07.indd 261 2/10/2023 2:54:34 PM

262 Part 3 ■ Software Architecture Toolbox

In the symmetrical distribution style example illustrated in Figure 7.29,

 ■ The composite software structures C1, C2, C3, and C4 are positioned on
the positive values of the X-coordinate line.

 ■ The C5, C6, C7, and C8 composite software structures are deployed along
the negative numbers of the X-coordinate line.

 ■ This symmetrical distribution style is also preserved along the Y-coordinate
when C2, C4, C6, and C8 are positioned on the y- axis positive values, the
composite services C1, C3, C5, and C7 deploy to the negative y- axis values.

 ■ The same symmetrical arrangement applies to the composite software
structures on both sizes of the z- axis. Note that C1, C2, C5, and C6 are
deployed on the positive values of the Z-coordinate and C3, C4, C7, and
C8 are located on the negative Z’s values.

Consider the summary of software distribution guidelines that follow, devised
to promote software architecture balanced in a 3D ecosystem:

Software Density All regions in a 3D software architecture environment
should be equally populated by software implementations.

Computing Resources Evenly assign computing resources to all locations
in a 3D computing space where the software population is equally spaced.

Figure 7.29: Symmetrical Distribution Style

Bell820970_c07.indd 262 2/10/2023 2:54:35 PM

 Chapter 7 ■ Structural Construction of Software Implementations 263

Spacing Evenly space software entities in a computing ecosystem.

Information Sharing Distribute data, messages, and transaction workload
volumes in a software architecture runtime environment equally.

Asymmetrical Distribution Style

An asymmetrical distribution is formed when a software population is spread
unequally across the x- , y- , and z- axes. Table 7.7 describes visible and invisible
distribution attributes that negatively impact the equilibrium of a computing
environment.

Figure 7.30 shows an example of an asymmetrical software distribution style.
Note the uneven positioning of the software structures in the three- dimensional
software architecture computing space. Atomic software structures A1, A2, and
A3 are deployed alongside the negative values of the coordinate line Y and the
positive values of X. In addition, the C2 and C3 composite software structures

Table 7.7: Software Architecture Balance Tipping Factors

VISIBILITY FACTOR EXPLANATION

Visible Software
population

Ineffective containment of software population growth
in a specific region of a computing space

Software
structure
volumes

Distribution of incomparable software structure
volumes

Spacing Unequal spacing between software entities in a
software architecture ecosystem

Software
infrastructure

Saturation of software infrastructure platforms, such as
middleware, at specific points in a 3D ecosystem

Monitoring and
security

Height concentration of monitoring and security
facilities that occupy certain regions in a runtime
environment

Repositories Repositories that are centered in specific locations in an
architecture computing environment

Software
layering

An architecture that promotes excessive software
layering

Invisible Transaction
volumes

A high volume of transactions executed in certain areas
in the 3D computing space

Computing
resources

Extreme and uneven consumption levels of computing
resources in different parts of a software architecture
environment computing

Software
relationship

An integration scheme that supports excessive
relationships in selected parts of a runtime ecosystem

Bell820970_c07.indd 263 2/10/2023 2:54:35 PM

264 Part 3 ■ Software Architecture Toolbox

are located along the negative values of Y and simultaneously deployed beside
the negative values of X. The C1 composite software structure is the only entity
that occupies space adjacent to the positive values of X and Y.

 CO N C E P T An asymmetrical distribution style does not always represent an
extremely unbalanced software architecture computing space. It depends on to which
extent the overall deployment of software entities can tip the balance of a runtime
environment.

Construction Life Cycle of Software Implementations

Software construction in a 3D computing world is driven by an iterative process,
during which architects utilize tools and employ methods to achieve design
equilibrium. And there is no limit to the number of iterations that can be pur-
sued to achieve an optimal software construction. The term design equilibrium
refers to a compromised architecture scheme that avoids radical business or
technical solution choices.

As discussed in the sections that follow, software architects should seek a
middle ground between two or more radical design solutions. For example,

Figure 7.30: Asymmetrical Distribution Style

Bell820970_c07.indd 264 2/10/2023 2:54:36 PM

 Chapter 7 ■ Structural Construction of Software Implementations 265

during the construction life cycle, architects may be called to opt for a design
compromise between a software structure that contains too many or too few
layers. Therefore, this determination should be driven by meticulous analysis
and repetitive design cycles to achieve optimal software construction.

However, the challenges are even greater in a software architecture computing
space, a 3D ecosystem. Namely, to achieve a balanced architecture in such a
geometrical topology, the three axes— x, y, and z— that support the coordinate
system must drive the software design. In the sections that follow, the x- axis is
affiliated with the width of a software structure, y is related to its length, and z
is associated with its height. Therefore, any manipulation of a software struc-
ture should be guided by these axes.

 CO N C E P T The software construction life cycle requires iterative design activities
in a 3D software architecture computing space. The ultimate goal of the design process
is to promote an environment equilibrium by attaining optimal software formations
that effectively interlock with each other.

Software Construction Process
The software construction process first calls for a pragmatic and gradual approach
to understanding the nature of software structures in a 3D computing environ-
ment. Then, pursue an explorational design life cycle using powerful tools to
build effective and feasible software structures.

To accomplish this, complete the following steps:

1. Create a construction balance table. Creating a software construction
balance table involves developing a construction equilibrium list. Creating
this allows one to understand enterprise strategies about best- practice
design for formulating a balanced software architecture.

2. Study the software construction design tools. Become familiar with these
tools and study their unique contribution to creating, altering, and opti-
mizing software formations. This topic is discussed in section “Software
Construction Design Activities.”

Creating a Software Construction Balance Table

Before beginning the software construction life- cycle process, a list of design
attributes can assist software architects in assessing the boundaries between
extreme solutions. To better understand this idea, glance at Table 7.8, which
exemplifies the range between two design propositions. the “Design Attribute
I” and “Design Attribute II” columns represent radical design properties that
should be balanced, with the “Software Design Activities” column offering best
practices for achieving such equilibrium.

Bell820970_c07.indd 265 2/10/2023 2:54:36 PM

266 Part 3 ■ Software Architecture Toolbox

Software Construction Design Activities

The six unique design activities illustrated in Figure 7.31 ultimately drive the
creation of optimal software construction. Note that these design tools are used
to manipulate software structures hosted in a 3D software architecture computing
space. Furthermore, every design activity should comply with the X-, Y-, and Z-
coordinate directions. Specifically, as indicated previously in the introduction of

Table 7.8: Software Construction Balance Examples Table

DESIGN ATTRIBUTE I DESIGN ATTRIBUTE II SOFTWARE DESIGN ACTIVITIES

Impractical software
distribution symmetry

Asymmetric software
distribution

Find the golden mean between two
extreme software entity distribution
design symmetries.

Exceedingly
coarse- grained

Highly fine- grained Circumvent design solutions that
promote extreme granularity levels of
software structures (refers to the
width of a software volume, as
discussed in the section “Use Case I:
Thicken and Contract Design
Activities”).

Radically layered Extremely flat Seek a construction balance between
an extremely flat or radically layered
software structure (refer to the
discussion in the section “Use Case III:
Layer and Delayer Design Activities”).

Immense software
structure volume

Excessively slight
software structure
volume

Foster a compromised software
design that disfavors extremely large
or excessively small software
structure volumes.

Random deployment
of software structure
volumes

Incomparable software
structure volumes

Promote a balanced software
architecture in a computing space
that calls for hosting comparable
software structure volumes.

An unreasonably
scaled software entity

Deficiently scaled
software entity

Shun software design that disregards
proper scalability and availability of
software entities (discussed mainly in
the section “Use Case II: Lengthen and
Shorten Design Activities”).

Overly thick software
structure

Disproportionately thin
software structure

Maintain a well- adjusted software
design that sidesteps extremely thin
or overly thick software structures
(pertains to the width of a software
volume as discussed in the section
“Use Case I: Thicken and Contract
Design Activities”).

Bell820970_c07.indd 266 2/10/2023 2:54:36 PM

 Chapter 7 ■ Structural Construction of Software Implementations 267

this section, the x- axis is affiliated with changes to a software structure’s width,
the y is related to its length, and the z to its height.

Thicken A design activity tool provided to solidify the width of a software
structure (to be applied on the X-coordinate line)

Contract Employed to optimize or reduce the width of a software structure
(applies to the x- axis values)

Lengthen Extends the range of software services and increases their avail-
ability to consumers by applying scaling mechanisms. This design activity
refers to the modification of a software structure along the Y-coordinate

Shorten Limits the range of software offerings and reduces its scalability
and availability (pertains to the y- axis values)

Layer Employed to add layers to a software structure (relates to the z- axis line)

Delayer Used to reduce, eliminate, and deprecate layers of software struc-
ture (applies to the Z-coordinate line)

The sections that follow discuss in detail these software design activities that
promote a balanced software architecture computing space:

Use Case I: Thicken and contract design activities

Use Case II: Lengthen and shorten design activities

Use Case III: Layer and delayer design activities

Use Case I: Thicken and Contract Design Activities
The thicken and contract design tools are all about manipulating the depth
of a software structure in a 3D software architecture computing space. In this

Figure 7.31: Software Construction Design Activities

Bell820970_c07.indd 267 2/10/2023 2:54:37 PM

268 Part 3 ■ Software Architecture Toolbox

respect, depth is an attribute or quality primarily affiliated with a property of
a software formation, such as width, range, breadth, magnitude, or thickness.

As discussed in the section “Software Architecture: Three Dimensions,” the
width of a software structure is influenced by the chief factors: granularity,
modularity, structural complexity level, and source code complexity level.
In a nutshell, the thickness of a software structure depends on the number of
processes it possesses, the number of programming modules it supports, and
the design complexity levels of its corresponding software implementation.

Furthermore, the thickened design tool can be employed to widen a software
entity’s solution scope or to add processes to satisfy additional business or tech-
nological requirements. In contrast, the contracting activity achieves the opposite
results: the breadth of its services would inevitably narrow when extracting
functionality from a software structure or reducing its design complexity.

Finally, the thicken and contract design activities should be used to apply
changes to the width of a software structure. Remember that in the 3D computing
world, these modifications should be visible on the X-coordinate line values
(as we choose to relate the thickness of a structure to the x- axis). The higher the
X-coordinate values, the thicker the software formation, and vice versa.

 CO N C E P T Software architects ought to offer design solutions to promote bal-
anced design regarding the width dimension of software structures. Namely, the
balance between radically thick and fragile software formations must be sought to
maintain an equilibrium of operations in the software architecture computing space.

When to Apply Thicken and Contract Design Activities

It is a common industry practice to apply software modifications throughout
the development life cycle; this includes design, development, testing, deploy-
ment, integration, and operations. The most impactful software design changes
typically occur early in product development. Specifically, adding or removing
business or technical functionality during design time is the least costly effort.
The later we augment software with additional processes and modules, the
more we increase design complexity and maintenance expenditure.

The most challenging instances are when business and technical require-
ments call for changes later during the product life cycle. For example, there
are instances when the business seeks to add functions, services, and product
offerings. Marketing efforts can also necessitate additions to software products
while they already operate in a runtime environment. In these cases, software
architects are called to devise design modifications without hampering business
and technical continuity.

Bell820970_c07.indd 268 2/10/2023 2:54:37 PM

 Chapter 7 ■ Structural Construction of Software Implementations 269

Therefore, based on practical experience, minor thickening or contracting design
activities on software structures should occur after the software construction
phase is completed to minimize the risks to business operations. And in contrast,
major modifications to software deployed, integrated, and already operating in
production can disrupt the software architecture environment balance.

Thicken and Contract Design Methods

Consider Table 7.9, which elaborates on the chief design procedures employed
to balance a software architecture environment. The “Design Activity” column
includes the thicken and contract tools, the “Method” column lists four approaches
for each design activity, and the “Task” column offers corresponding software
design approaches.

Table 7.9: Thicken and Contract Design Methods

DESIGN
ACTIVITY METHOD TASK

Thicken Augmentation Expanding software solution capabilities
by adding more processes, services, and
functionality to increase its granularity level

Modularity Migrating or adding programming modules
into an existing software structure to simplify
architecture and source code complexity,
increase software reuse, and reduce
maintenance cost

Reinforcement Combining fine- grained software structures
into composite formations to promote software
architecture balance when it comes to
comparable volumes of software structures

Consolidation Merging two or more software structures
(atomic, composite, or monolithic) into a single
one to minimize redundancy of operations

Contract Scope reduction Reducing the solution scope of software by
extracting or migrating out some of its services

Architecture
restructuring

Optimizing the composition of a software
structure by removing related programming
modules and reducing its granularity

Deprecation Retiring unused or dated software services and
functionality

Elimination Removing redundant software functionality or
programming modules

Bell820970_c07.indd 269 2/10/2023 2:54:37 PM

270 Part 3 ■ Software Architecture Toolbox

As shown, the thicken tool introduces four methods of software design: aug-
mentation, modularity, reinforcement, and consolidation. These approaches
can widen a software entity’s solution scope, thereby affecting its structure’s
composition. Specifically, by adding more functions, services, and program-
ming modules to the overall implementation, the supporting software structure
expands accordingly.

In contrast, the contract design tool reduces the software implementation’s
solution range. There are four chief approaches to tackling this goal: scope
reduction, architecture restructuring, deprecation, and elimination. These methods
narrow the width of a software structure by removing its affiliated processes,
programming logic, modules, and services. Finally, the architecture restructur-
ing approach can be employed to streamline the design of a software structure
and its related software implementation.

Software Structure Thickening and Contracting Process Outline

Figure 7.32 depicts the employment of the thicken and contract design activities.
This example presents three design states: A, B, and C. As shown, by pursuing
the presented design life cycle, the volume of the composite software structure
is altered, and, evidently, its width shrinks and expands. Recall that this process
affects the X-coordinate line values corresponding to the composite software
structure’s width in the context of a 3D software architecture computing world.

State A: Deficient Design This design shows a composite software structure
containing six composite and nine atomic substructures. This state results
from the thickened design activity applied to state C and then B. A highly
populated and coarse- grained software formation calls for narrowing its
width by extracting its underlying functionality and services.

State B: Optimal Design This state is presented as an optimal software
construction state after applying the contract design activity on design
state A and using the thicken tool on state C. As a result of the life- cycle
process, state B is now regarded as a balanced design of the composite soft-
ware structure that includes four composite and two atomic substructures.

State C: Deficient Design This state is the outcome of the contract design
activities applied to state A and then B. It is considered an impractical
design solution since the composite software structure contains a single
atomic substructure. Therefore, a fined- grained implementation does not
always justify constructing a composite structure.

In addition, Figure 7.32 depicts the thickening and contract design activ-
ities that take place throughout the software construction life cycle. Here, the
composite structure undergoes apparent modifications that result in each design
state (A, B, and C). The ultimate goal of this exercise is to promote an optimal
design balance as illustrated in design state B and can be achieved by iteration:
pursuing design cycles until equilibrium has been achieved.

Bell820970_c07.indd 270 2/10/2023 2:54:37 PM

 Chapter 7 ■ Structural Construction of Software Implementations 271

Fi
gu

re
 7

.3
2:

 T
hi

ck
en

 a
nd

 C
on

tr
ac

t L
ife

 C
yc

le
 D

es
ig

n
Ac

tiv
iti

es
 E

xa
m

pl
e

Bell820970_c07.indd 271 2/10/2023 2:54:37 PM

272 Part 3 ■ Software Architecture Toolbox

Consider the two possible directions, as illustrated in Figure 7.32:

A, B, C direction: Depicts a two- step design contracting activity

C, B, A direction: Shows a two- step software structure thickening activity

Use Case II: Lengthen and Shorten Design Activities
To manipulate the span in the space of a software structure, employ the lengthen
and shorten design activities. In a software architecture computing space, the
length of a software formation depends on several chief influencing factors:
scalability level, size of consumers’ community, number of interfaces, and con-
sumption metrics of computing resources (refer to the discussion in the section
“What Impacts the Length and Width Dimensions of a 2D Software Structure?”).
In summary, the influencing elements that determine the length of a software
structure are related to its deployed number of instances and its capability to
serve its population of its corresponding consumers.

To extend the volume of a software structure, utilize the lengthen design tool.
This implies that its related software implementation must be able to extend its
service range. In other words, the power of programming logic and processes
must be increased to be able to serve a larger number of consuming applica-
tions, systems, and users. To accomplish this, architectural solutions should be
devised to improve software scalability and enhance its availability. There are
a variety of technologies that can boost software accessibility and performance.

For example, horizonal scaling (scaling out) is a common mechanism to
accommodate high volumes of message exchange. Adding additional com-
puting space, nodes, or machines is typically a practical solution to increase
software availability. Software clustering is another method for enabling high
transaction volumes. This configuration pertains to software distribution to a
group of servers that collaborate to reduce response time and avoid outages.

 CO N C E P T The demand for computing resources would only grow with the
increase of software architecture capabilities, such as applying scalability mecha-
nisms, adding interfaces, and expanding services to additional consumers; this would
lengthen the volume of a software structure. In contrast, to shorten the length of a
software structure, limit the reach of services to additional consumers and scale down
architecture capabilities.

Bell820970_c07.indd 272 2/10/2023 2:54:37 PM

 Chapter 7 ■ Structural Construction of Software Implementations 273

Recall that the lengthened and shortened design activities should be applied
to a software structure on the y- axis line in a 3D software architecture computing
space. The higher the Y-coordinate values, the longer the structure. The opposite
applies when shortening the structure.

When to Apply the Lengthen and Shorten Design Activities

Lengthening or shortening a software structure width may occur during all
product planning, construction, deployment, and operations life- cycle phases.
The solutions proposed during design time are conceptual or logical, not tan-
gible or physical. And since manipulating a software structure is pursued only
on paper, the cost would be minimal. However, the cost of changing a proposed
architecture scheme climbs with time during the software development pro-
cess and typically doubles or triples when the modifications are made during
software deployment, integration, and maintenance.

As stated, the alteration to the length of a software structure is extremely pricy
while it operates in production; this is due to new efforts calling for software
architecture restructuring, reconfiguration, and reintegration. In addition, chang-
ing software formations in a runtime ecosystem may also require data migration,
security mechanisms enhancement, and redeployment of monitoring utilities.

New business imperatives and renewed business strategies typically call
for changes to software products after they have already been deployed to a
software architecture computing space. Business requirements are then issued
to reach new consumers, engage new customers, and establish partnerships
with vendors. This transformation always impacts the 3D length of software
structures. The only way to avoid the high cost of software modification is to
apply gradual technological changes rather than initiating large- scale projects.

Lengthen and Shorten Design Methods

Table 7.10 lists approaches employed to manipulate the length of a software
structure in a 3D computing space (the Y-coordinate line values indicate the
length of the structure). Moreover, the lengthening and shortening tools are
listed under the “Design Activity” column. The “Method” column specifies
the approaches that each activity can pursue. Under the “Task” column, find
a short description outlining the actual process that should be taken for each
design approach.

Bell820970_c07.indd 273 2/10/2023 2:54:37 PM

274 Part 3 ■ Software Architecture Toolbox

The lengthen activity shows four methods for software design: software
scaling, interfacing, extending service range, and resource consumption. These
design approaches, which impact a software structure’s length, do not necessarily
focus on adding functionality, processes, or services to a software entity. They
are merely devised to extend the service range to reach more consumers, part-
ners, vendors, applications, and systems. Accomplishing this requires software
scalability, high availability enhancement, and boosted computing resources.

Conversely, the shortened design tool that can be used to scale down software
outreach for consumers proposes four approaches: software descaling, minimizing
relationships, reducing software consumption, and decreasing service range.
These methods shorten the length of a software structure in a 3D architecture
computing space. Moreover, the shortened design activity should be used to
fine- tune a software structure to promote equilibrium in a runtime ecosystem
when deploying comparable volumes (this topic is discussed in section “What
Impacts the Length and Width Dimensions of a 2D Software Structure?”).

Table 7.10: Lengthen and Shorten Design Methods

DESIGN ACTIVITY METHOD TASK

Lengthen Software scaling Increasing instances of the software to
improve its high- availability capabilities
and performance

Interfacing Improving software reuse by adding
interfaces and adapters to engage
additional consumers

Extending service
range

Extending the reach of services to
broaden the consumer base

Resource consumption Boosting computing resources to
accommodate higher demand for
transaction volumes

Shorten Software descaling Optimizing or scaling back the number
of software instances

Minimizing
relationship

Minimizing interactions, links, and
communication between software
entities, consumers, vendors, and
partners

Decreasing resource
consumption

Optimizing computing resource
consumption

Decreasing service
range

Reducing the number of consuming
applications, systems, and customers

Bell820970_c07.indd 274 2/10/2023 2:54:38 PM

 Chapter 7 ■ Structural Construction of Software Implementations 275

Software Structure Lengthening and Shortening Process Outline

Figure 7.33 shows the utilization of the lengthening and shortening design tools.
It illustrates a design process life cycle that spans three states: A, B, and C. In
state C, there is only one composite formation. In design state A, the composite
software has five instances; three are shown in state B. The latter is regarded
as an optimal design obtained after the life- cycle iterative process. Remember
that the values on the y- axis line indicate the length of a software structure.

State A: Deficient Design A highly scaled composite software that spans
five instances. This state results from applying the lengthened design
activity to state C and then B. Software architects may consider pursuing
more design iterations to avoid radical implementations. In certain envi-
ronments, such extreme scalability may not be necessary.

State B: Optimal Design An optimal software design showing three
composite service instances. The state results from a compromise between
the two radical design solutions apparent in states A and C. Therefore, to
obtain a balanced design, the lengthening design activity is performed
on state C, and the shortened tool is used to reduce the number of its
instances shown in state A.

State C: Deficient Design The outcome of the shortened design activities
performed on state B; shows a single instance of a composite service. In
many cases, such a lack of software scalability and availability mechanisms
call for instantiating more instances to accommodate the high volume
of transactions and maintain business continuity. In this respect, state
C represents a radical solution that should be refined or architecturally
restructured to increase its length.

Furthermore, Figure 7.33 emphasizes the need for pursuing design life- cycle
iterations to obtain optimal software construction. The composite software
structure is altered using the lengthened or shortened design tools in this use
case. Again, the eventual objective of such a process is to foster an ideal design
equilibrium, as is depicted in design state B. These activities result in the three
apparent states, A, B, and C.

Consider these two possible directions, as illustrated in Figure 7.33:

A, B, C direction: Illustrates a two- step design shortening activity

C, B, A direction: Depicts a two- step design lengthening activity

Bell820970_c07.indd 275 2/10/2023 2:54:38 PM

276 Part 3 ■ Software Architecture Toolbox

Fi
gu

re
 7

.3
3:

 L
en

gt
he

n
an

d
Sh

or
te

n
Li

fe
- C

yc
le

 D
es

ig
n

Ac
tiv

iti
es

 E
xa

m
pl

e

Bell820970_c07.indd 276 2/10/2023 2:54:38 PM

 Chapter 7 ■ Structural Construction of Software Implementations 277

Use Case III: Layer and Delayer Design Activities
The layer and delayer design tools can be utilized in a 3D architecture com-
puting world to form or shape hierarchical software structures. Either of these
design activities applies changes to the height of the software structure on the
Z-coordinate line. Moreover, amassing software entities on top of each other
is the art of layering. In contrast, delayering refers to removing layers from an
existing software structure.

These activities are not only used to isolate, hide, eliminate, or protect processes
and programming logic. They are also leveraged to separate or extract concerns.
The activity of separating concerns refers to the task of breaking down software
implementations into modules, each of which represents a solution in a specific
area of expertise or knowledge. Some modules may be extracted if they do not
significantly contribute to the business or technical solutions.

A conventional hierarchical software structure typically comprises three
layers: the presentation layer, the application layer, and the data layer. These
layers typically include routines and interfaces to exchange and persist data,
process business logic, communicate with consumers, and pursue other vital
functions. All structural hierarchy layers must work together to provide effec-
tive solutions. Each layer should communicate with its child, parent, or sibling
to exchange information.

 CO N C E P T Recall that piling up layers on top of layers, or removing ones, in an
arbitrary fashion will never produce feasible outcomes. Therefore, the layer and delayer
design activities must be accompanied by an analysis process driven by rational
architecture decisions about the placement or exclusion of software layers.

So, what specifically is the recommended usage for the layer and delayer
design tools? A broad array of design solutions can utilize the layered instrument.
A software architect can employ it to add business functions or even technical
procedures to an existing software structure. These may include programming
modules embedded in layers, such as the presentation layer, persistence layer,
data access layer, or data source layer. Conversely, the delayer design tool can
be employed to detach these software layers from an existing software structure.

The correlation between layer and delayer design activities is easy to explain:
extracting elements from a software formation is the opposite of adding them.
By way of illustration, removing a layer from a hierarchical software structure
is precisely the opposite of adding it back.

When to Apply Layer and Delayer Design Activities

Employing the layer and delayer design activities during the design- time phase
is highly advised. However, when an architect intends to fine- tune a software
structure and not drastically change it, the layer and delayer design activities
can be applied during the software development phase.

Bell820970_c07.indd 277 2/10/2023 2:54:38 PM

278 Part 3 ■ Software Architecture Toolbox

But, what about utilizing the layer and delayer design tools during deploy-
ment, configuration, and integration in a software architecture environment?
Software structures typically don’t drastically change in a runtime ecosystem.
Yet, there are instances when architects would recommend layering or delayer-
ing a software structure even when it’s deployed in production. It is a prevalent
practice to make small changes to structures even after they have been tested,
approved, and deployed. For example, adding services, subtracting program-
ming modules, adding business processes, or adding more components to a
structure— all in the name of fine- tuning performance and quality of services.

Layer and Delayer Design Methods

Software architects must have specific objectives in mind before making use
of the layer and delayer design tools. They ought to be cognizant of the con-
sequences when employing these design approaches because the attributes
and functionality of a software implementation, such as an application, can be
altered if its supporting structure is modified.

Table 7.11 displays the various layer and delayer design activity methods and
tasks. Each layer and delayer activity introduces four methods, supporting how
software architects can fulfill their goals.

Table 7.11: Layer and Delayer Design Methods

DESIGN ACTIVITY METHOD TASK

Layer Stacking Increasing the solution scope of software by
stacking additional layers on top of its
existing structure to include more modules
and components

Insertion Augmenting software capabilities by
inserting layers in an existing layered
software structure

Reinforcement Reinforcing a software structure by adding
to its base layers to support the layers above
(such as the data layer)

Replacement Adding a layer of a software structure to
substitute for an existing one that has been
deprecated or removed

Delayer Unstacking Reducing the height of a software structure
by restructuring its composition

Unification Unifying redundant layers in software
structures

Deprecation Retiring unused legacy layers from a
software structure

Elimination Removing a layer from a software structure

Bell820970_c07.indd 278 2/10/2023 2:54:38 PM

 Chapter 7 ■ Structural Construction of Software Implementations 279

The layered activity introduces four design methods: stacking, insertion, rein-
forcement, and replacement. These are employed to augment, add, or replace
existing layers of a software structure. In this context, the layer activity is used to
increase, refine, enhance, or strengthen the operations of software implementation.

Conversely, the delayer design activity is chiefly about reducing layers of a
software structure. Table 7.11 lists these four approaches: unstacking, unification,
deprecation, and elimination. These design methods justify the removal of layers
for different reasons, such as eliminating or consolidating redundant layers.

Layer and Delayer Process Outline

Figure 7.34 illustrates an example of three layering and delayering design activ-
ities, each yielding three distinct states (A, B, and C). During this design life
cycle, each state manifests the result of the layer and delayer activities.

State A: Deficient Design Exhibits a hierarchical software structure that
comprises eight layers: Data, data source, persistence, business, appli-
cation, control, presentation, and user interface. Such a highly stocked
structure only increases architecture complexity and introduces operation
maintenance challenges in production. This state is the outcome of the
layer design activity applied to state C and then B.

State B: Optimal Design Recognized as an optimal software architecture
construction that includes data, persistence, application, and presentation
layers. This design state reflects a balanced design achieved by the delayer
design activities performed on state A, or layer activities on state C.

State C: Deficient Design A radical design state that depicts a flat soft-
ware structure that consists of data and application layers. The design
demonstrates weak conceptual design that limits consumer reusability
and software modularity. This state is the outcome of the delayer design
activities that are applied on state A and then B.

Figure 7.34 also illustrates two design activity directions. The transition be tween
each design state is driven by layer or delayer activities. In the context of the
shown design life cycle, software architects may choose to deliver a solution
that starts from any design state, then continue to refine the architecture until
an optimal software construction has been achieved.

Consider these two possible directions illustrated in Figure 7.34:

A, B, C direction: Shows a two- step design delayering activity

C, B, A direction: Illustrates a two- step layering activity

Bell820970_c07.indd 279 2/10/2023 2:54:38 PM

280 Part 3 ■ Software Architecture Toolbox

Fi
gu

re
 7

.3
4:

 L
ay

er
 a

nd
 D

el
ay

er
 D

es
ig

n
Ac

tiv
iti

es
 E

xa
m

pl
e

Bell820970_c07.indd 280 2/10/2023 2:54:40 PM

 Chapter 7 ■ Structural Construction of Software Implementations 281

Governing Laws for Software Construction in a 3D
Computing World

The governing laws for software construction in a 3D architecture ecosystem
set the boundaries for design activities. They identify the attributes of a host-
ing runtime geometrical space, define the structural properties of a software
formation, and outline the impact of the construction life cycle on software
implementations.

Software Architecture Solids Software solids are the most rudimentary
computing structures, a type of skeleton employed to support business
and technical processes.

Structure Geometrical Formation A software structure is a geometrical
formation established by its width, length, and height dimensions; it
occupies space in a software architecture computing topology.

Software Structural Support Every software implementation, such as
programming logic, business, or technical processes, is supported by a
3D software structure.

Software Architecture Space Coordinate System The 3D software com-
puting environment possesses a coordinate system skeleton based on
three axes: x, y, and z.

Software Structure Dimensions A software structure possesses up to four
geometrical properties: zero, one, two, and three dimensions.

Collective Occupancy of Software Structures The collective volumes of
deployed 3D software structures may exceed the geometrical boundaries
of their hosting architecture computing environment.

Software Construction Life Cycle The construction is an iterative design
process to create and/or manipulate structures that ultimately impact
software behavior.

Software Construction Designing Activities Software construction is about
making, shaping, or manipulating software structure styles and patterns
by employing designing tools.

Architecture Symmetry Software architecture symmetry always promotes
software reuse, consolidation of assets, deployment of comparative soft-
ware structure volumes, and equal distribution of software products and
data across a 3D computing space.

Software Architecture Elasticity There are limits to architecture elasticity
in a 3D world.

Bell820970_c07.indd 281 2/10/2023 2:54:40 PM

282 Part 3 ■ Software Architecture Toolbox

Best Practices for Constructing
Software Implementations

The list that follows outlines 16 best practices for constructing software imple-
mentations. They accentuate building, manipulating, and optimizing software
structures in a 3D software architecture computing space. These best practices
also address software distribution aspects that promote a balanced software
architecture:

Software Construction Elements Start a construction process by employing
software architecture solids.

Composite Software Construction Do not overpopulate a composite soft-
ware structure with substructures. Conversely, there is no justification
for developing, deploying, and integrating a composite structure that
encompasses a single substructure.

Software Architecture Computing Space One of the chief software
construction goals is to integrate and distribute 3D software structures
in a 3D software architecture computing space.

Software Architecture Symmetry To achieve architecture symmetry, dis-
tribute software entities equally to all regions of a software architecture
computing space.

Volumes of Software Structures Deploy comparable volumes of software
structures to a 3D computing space.

Software Granularity Deploy software with comparable granularity levels
to a 3D software architecture computing space.

Population Density Do not overpopulate a software architecture computing
space with software products. Carve out capacity planning strategies to
determine the adequate population density that a particular computing
space can sustain.

Collective Software Structure Volumes The collective geometrical volumes
of all deployed software structures should not exceed the boundaries of
a software architecture computing space.

Software Architecture Elasticity Architecture elasticity is not limitless in
a 3D computing space.

Computing Space Logical Coordinate System Use the computing space
coordinate system to specify the logical positioning of software imple-
mentations in a 3D computing space.

Bell820970_c07.indd 282 2/10/2023 2:54:40 PM

 Chapter 7 ■ Structural Construction of Software Implementations 283

Cardinal and Intercardinal Physical Direction System Use the cardinal
and intercardinal direction system to specify the physical positioning of
software products in a software architecture computing space.

Combination of Space Navigation Systems Combine the computing space
logical coordinate system with the physical cardinal and intercardinal
direction system.

Flooring Leverage the z- axis to establish layers in a 3D software architecture
computing space.

Equal footing Verify if the relationships created between federated software
implementations are based on their granularity level, business or technical
criticality, volume, and other architecture attributes that are considered
vital to software design.

Software Construction Balance Table Develop a balance table containing
organizational best practices and guiding principles to drive a balanced
design for software architecture.

Software Construction Tools To create, manipulate, or optimize a software
structure, employ the six software design tools: thicken, contract, lengthen,
shorten, layer, and delayer.

Bell820970_c07.indd 283 2/10/2023 2:54:40 PM

Bell820970_c07.indd 284 2/10/2023 2:54:40 PM

Software Architecture Interview
Preparations

In This Part

Chapter 8: Preparing for a Software Architecture Interview: A Winning
Strategy

Chapter 9: An Outline for Software Architecture Job Interview Questions

Par t

4

Bell820970_p04.indd 285Bell820970_p04.indd 285 09-02-2023 15:16:4809-02-2023 15:16:48

Bell820970_p04.indd 286Bell820970_p04.indd 286 09-02-2023 15:16:4809-02-2023 15:16:48

CHAP TE R

287

8

It’s never a clever idea to show up for a software architecture job interview
unprepared. The chance to ace the interview without performing due diligence is
near zero. Not only is a considerable amount of time wasted on a failed attempt
to get a desired position, but also the candidate’s reputation could be damaged.

 N OT E Therefore, never attend an interview before carving out a coherent strategy
that will increase the odds of receiving a job offer. Never settle for less!

Interviewers and interviewees typically understand the undocumented job
interview survival rule: at the end of the day, it’s a zero- sum game. Simply put,
only one candidate will be offered a single software architecture position, the
others will be rejected. Nevertheless, flubbing an interview is not the end of
the world. There are umpteen software architecture positions on the market.
There is no defense, however, against being sloppy or not preparing adequately.

The term preparation pertains here to meticulous research and study con-
ducted before a job interview in a field of expertise. The software architecture
practice, in particular, covers a broad range of disciplines in which a candidate
must demonstrate mastery. By showing up to an interview without laying the
proper groundwork, a candidate might fail miserably.

So, how should one prepare ahead of an upcoming software architecture
interview? There is no limit on the range of queries thrown at a candidate who

Preparing for a Software
Architecture Interview: A Winning

Strategy

Bell820970_c08.indd 287 13-02-2023 18:03:21

288 Part 4 ■ Software Architecture Interview Preparations

is already under daunting pressure. The answer to this question brings us to a
simple idea: carve out an interview strategy that could yield a lucrative job offer.

The sections that follow discuss a winning strategy and tactical approaches
that must be mastered before attending a software architecture job interview.

Software Architecture Job Interview Strategy

The software architecture job interview strategy should include two different
plans: defense and attack. These devices introduce approaches to help applicants
overcome eight common challenges both before and during the interview, as
indicated in the list that follows:

Attend to the job requirements. Do not get sidetracked: always focus on the
job requirements that are part of the job description. These vital require-
ments must drive the preparations for the job interview.

Tackle surprise. Handle unexpected interview circumstances or difficult
questions.

Demonstrate knowledge. Provide professional, relevant, and satisfactory
answers.

Make leadership capabilities clear. Prove interpersonal and management
skills.

Think strategically. Show strategic and technological leadership.

Communicate self- confidence. Withstand interview pressures.

Focus on substance. Avoid trivial topics of discussion.

Be proactive. Take charge on interview communication.

Let’s explore now the defense and attack plans of the software architecture
job interview strategy.

Preparing a Job Interview Defense Plan
The defense plan should simply shield a candidate against the failure to answer
basic software architecture questions. The term basic implies that an architect
must demonstrate rudimentary architecture knowledge to build instant trust
with interviewers.

For example, elementary knowledge in the field of software architecture may
pertain to design patterns, the software development life cycle, best practices,
development and testing tools, design approaches, and others (refer to Chapter 9,
“An Outline for Software Architecture Job Interview Questions,” for the
architecture questions model). Without the job candidate demonstrating such
basic architecture knowledge, an interviewer would be able to quickly discover
the interviewee’s competency gap. This would definitely end the interview
more quickly than expected.

Bell820970_c08.indd 288 13-02-2023 18:03:22

 Chapter 8 ■ Preparing for a Software Architecture Interview: A Winning Strategy 289

Obviously, it’s not hard to grasp the idea that attending a software architecture
job interview requires proper preparation to boost a candidate’s confidence.
Consequently, the defense plan portion of the job interview strategy should
consist of research and study to supplement candidates’ base knowledge before an
interview. If there is any lack of understanding of what enterprise integration
patterns1 are, for example, then buy books, search the topic on the Internet, ask
peers, and even undertake adequate training.

Finally, filling in the personal knowledge gap should be pursued only after
studying the corresponding job requirements outlined in every job description.
These prerequisites are always published before any job interview.

Preparing a Job Interview Attack Plan
The other part of the interview strategy is the attack plan. It should encourage
applicants to arm themselves with an arsenal of comprehensive knowledge
about anticipated interview topics. This valuable information could supple-
ment answers to the presented questions— demonstrating wide- ranging and
exceptional knowledge in the field of software architecture. Furthermore, the
attack plan could lessen an interviewer’s appetite for launching a new round of
challenging queries. An attack plan could also send a clear signal that the can-
didate is prepared, knowledgeable, and motivated to face interview challenges.

Strategically, the goal of an interviewee would then be to take the reins of
control over interview communication to avert painful setbacks. This implies
that a candidate should come forward with impressive knowledge, perhaps
food for thought for the interviewers. For example, if a query calls for defining
the term SOLID,2 it would be probably sufficient to specify in broad strokes
that the term represents principles to foster software flexibility, simplicity, and
maintainability.

But with a wise attack plan, an interviewee would be able to achieve more. It
would propel a candidate to demonstrate additional knowledge of the topic in
question. For example, in addition to a brief introduction to SOLID, a candidate
could also raise the bar by naming its principles: open- closed principle, inter-
face segregation principle, single- responsibility principle, Liskov substitution
principle, and dependency inversion principle.

Last, avoid lengthy and overwhelming answers. Do not feed an inter-
viewer trivial information that is not related to the question at hand. Testing

1 Recommended enterprise integration patterns material: www.enterprise
integrationpatterns.com/
2 Watch this video about SOLID tenets: www.youtube.com/watch?v=A6ZqNQdJPjc

Bell820970_c08.indd 289 13-02-2023 18:03:22

290 Part 4 ■ Software Architecture Interview Preparations

an interviewer’s patience is a grave mistake that is typically hard to repair.
The attack plan, therefore, must add value to interview discussions rather than
jeopardize the prospects for getting hired.

Software Architecture Job Interview Preparation Model
Prior to a looming job interview there is nothing more important than to pre-
pare for it in a meticulous fashion. This process must follow a tidy method, a
step- by- step study to handle the forthcoming interview challenge. Hence, the
proposed interview strategy model offers a study and research approach that
would not only broaden an applicant’s software architecture knowledge base,
but also introduce the proper tools to familiarize candidates with the hiring
organization. It simply implies that supplementing the architecture knowledge
would not be enough. The study process should also include a deep dive into
the business model, services, and industry of the recruiting institution.

There are other preparations that must be pursued before an interview. Some
are affiliated with adopting an effective communication approach to convey clear
ideas and demonstrate soft skills.3 Others are related to developing a software
architecture lingo to present coherent concepts and methodologies.

All in all, the interview strategy model presented in Table 8.1 encompasses a
checklist for success. Treat these items as tasks to accomplish prior to an inter-
view. Take as much time as possible to rehearse likely interview scenarios.

 N OT E Unleash the power of the strategic defense plans when needed and launch
the attack plans to beat the competition.

Table 8.1: Software Architecture Job Interview Preparation Model

PLAN TYPE AREA OF RESEARCH AND STUDY

Defense Study and analyze the job description.

Create a software architect skill competency model for the job description.

Assess whether the next software architecture job is a strategic career
move.

Conduct software architecture mock interviews.

Attack Study the hiring organization’s business.

Understand the hiring organization’s technology.

Adopt a software architecture lingo.

Remember software architecture tools.

Get familiar with software architecture analysis and evaluation methods.

Talk about software architecture analysis standards.

3 An individual’s social interaction and communication skills that enable one to interact and
collaborate effectively with others.

Bell820970_c08.indd 290 13-02-2023 18:03:22

 Chapter 8 ■ Preparing for a Software Architecture Interview: A Winning Strategy 291

The sections that follow bring light to the software architecture job interview
preparation model. They elaborate on the contribution of the defense and attack
plans to a candidate’s job interview.

Software Architecture Job Interview Defense Plan

One of the aims of every software architecture job interview defense plan is to
fully prepare applicants to provide satisfactory answers to the hiring organiza-
tion’s rudimentary screening questions. These basic queries are always presented
at the onset of a job interview. Without successfully mastering this interview
stage, an applicant is doomed to failure.

But the software architecture job interview defense plan is not only about
preparing for basic interview queries. The crux of this plan is to assist appli-
cants in discovering any gaps in architecture knowledge that they need to fill
in. Compensating for a lack of software architecture experience calls for study,
research, and an understanding of what the job requirements are all about. As
a result, this meticulous analysis uncovers a range of software architecture pro-
ficiencies that must be honed to perform well in a technical interview.

To carve out a potent defense plan, follow this simple process:

1. Study and analyze the software architect job description.

2. Understand its underpinning job requirements.

3. Construct a software architect skill competency model for the job description.

4. Discover the gap in software architecture knowledge.

5. Conduct a software architecture mock interview and score the quality of
the preparation efforts.

From here, the hard work begins.

Study and Analyze the Job Description
Studying job requirements before an interview simply means doing the home-
work. Without inspecting, understanding, and analyzing job descriptions there
is not even a slight chance of getting hired. Despite the accuracy or detail level
of the requirements, preparations are exceedingly encouraged. Do not take this
issue lightly because every step of career growth is highly dependent on job
opportunities.

 N OT E Opportunities are not awarded to applicants without job interviews.

Bell820970_c08.indd 291 13-02-2023 18:03:22

292 Part 4 ■ Software Architecture Interview Preparations

Start with Identifying the Scope of the Software Architecture
Job Requirements

A software architecture job interview is one of the most challenging stages in the
hiring process. It’s difficult because nowadays a growing number of organizations
prefer applicants who demonstrate broad technological knowledge. Frequently,
the candidates must prove their capability of mastering numerous disciplines
that span most phases of the product development life cycle. Consequently,
many job requirements indicate that a candidate must possess not only vertical
but also horizontal knowledge.

The term vertical knowledge relates to a narrow scope of expertise. For example,
an application testing architect whose responsibilities include functional and
nonfunctional performance assessment is confined to a specific discipline. This
architect, however, may possess deep knowledge about capacity planning tools
and platforms. But the expertise purview of the testing architect is still narrow.
In contrast, horizontal knowledge pertains to broader technological skills that
may span multiple software architecture disciplines, such as integration, cloud
migration, cybersecurity, and even database design.

Another example that explains the difference between the vertical and
horizontal knowledge scopes is the common comparison between the duties
of an application architect and an enterprise architect. The deliverables of an
application architect typically focus on a narrow solution scope. These artifacts
may include software modeling diagrams for a specific application, database
design, or even an application user’s guide. But job requirements for an enterprise
software architect characteristically call for a broader range of knowledge. These
may include skills such as middleware integration, data aggregation, and the
ability to devise interoperability strategies for an enterprise environment.

 N OT E Architecture talents with combined horizontal and vertical knowledge are
hard to come by. But more important, job requirements that fail to specify the scope of
architecture expertise are typically confusing and unfeasible.

Consider these recommendations:

Knowledge scope No applicant should consider a job proposition if its
requirements fail to indicate the scope of software architecture expertise
and duties.

Generic or unclear requirements Shy away from an opportunity if its job
requirements are unclear or too generic.

Architecture skill verification Applicants should verify job skill require-
ments match the scope of their architecture knowledge and capabilities.

Practicality Be aware of whether the vertical and horizontal architecture
skills required by an organization are typically impractical.

Bell820970_c08.indd 292 13-02-2023 18:03:22

 Chapter 8 ■ Preparing for a Software Architecture Interview: A Winning Strategy 293

Dive Deep into the Software Architect Job Description

After discovering the software architect’s scope of duties in the job requirements,
as explained in the previous section, the time has come to explore if the position
is a good fit for the applicant. To accomplish this, let’s begin with a detailed
analysis to shed light on what type of talents the hiring organization is actually
seeking to employ. Furthermore, the job requirements may also give us some
hints about the specific expertise that a candidate must possess.

Before moving to the detailed analysis of the job requirements, review first
the “Software Architect Job Description” sidebar, an example that contains
three parts.

Summary The job description synopsis typically includes the justification
for hiring a software architect. But this information may not always be
readily apparent. An applicant’s analysis task would then be to under-
stand the organization’s business imperatives, organizational initiatives,
or planned or ongoing projects. A summary portion of a job description
may also indicate what type of architecture talent is needed.

Responsibilities The responsibilities part is related to the chief deliverables
that the software architect will be required to fulfill.

Skills The skills portion of the job description identifies the desired areas
of expertise of the software architect.

SOFTWARE ARCHITECT JOB DESCRIPTION

Summary

Our home loan division currently is seeking an experienced application architect for
our new cloud- based borrower portal. The selected candidate will be in charge of appli-
cation design tasks for our home loan portal project. In addition, technical leadership
will be required to provide guidance and practical direction to the development teams.
This is an excellent career opportunity for a motivated individual with an impressive
architectural design talent and outstanding interpersonal skills.

Responsibilities

 ■ Provide technological leadership and mentorship to guide our
development teams

 ■ Oversee application cybersecurity to ensure data integrity

 ■ Conduct commercial off- the- shelf (COTS) product selection and evaluation and
deliver related product technical requirements, product evaluation documents,
and product installation manuals to promote state- of- the- art technological
capabilities

Bell820970_c08.indd 293 13-02-2023 18:03:22

294 Part 4 ■ Software Architecture Interview Preparations

Skills

 ■ Master’s degree in computer science or computer engineering

 ■ Experience of seven or more years in application design and the capability to
deliver conceptual, logical, and physical architectural models

 ■ Proven knowledge of cybersecurity and the ability to devise application
vulnerability models, security controls best practices, and penetration testing
guidance

 ■ Excellent knowledge of the software development life cycle (SDLC) and vast
experience in delivering design verification checklists, testing requirements,
and application integration models

To sum up, by asking these rudimentary questions, attempt to understand
what the job requirements actually entail:

Justification Why is the hiring organization seeking to employ a software
architect?

Software architect type What type of a software architect are they looking
for? Data architect? Security architect? Integration architect? Application
architect? Enterprise architect?

Business necessity What is the business imperative that compels the orga-
nization to hire an architect?

Deliverables If employed, what will the software architect be asked to
deliver?

Expertise What kind of architecture expertise is the recruiting organization
looking for?

Start with Analyzing the Summary Portion of the Job Requirements

So, what should a software architect applicant discover in the job description
summary portion? Three simple pieces of information ought to be revealed.

Project Attempt to understand the hiring organization’s motivation for
employing a software architect. This company’s incentive may be driven
by projects or by other, larger, business initiatives.

Type of Software Architect Next, find out what kind of a software architect
the recruiting company is seeking to bring on board, such as a data architect,
a cybersecurity architect, or a cloud architect.

Software Architecture Expertise Discover the areas of knowledge, fields
of expertise, specialties, or architecture disciplines the software architect

Bell820970_c08.indd 294 13-02-2023 18:03:22

 Chapter 8 ■ Preparing for a Software Architecture Interview: A Winning Strategy 295

applicant must possess. For example, a cybersecurity architect may be
required to perform vulnerability and penetration testing, conduct risk
analyses, and accomplish security assessments.

Consequently, as shown underlined in the “Job Description’s Summary Seg-
ment” sidebar, our analysis rendered these three findings:

Type of Software Architect Application architect

Expertise/Architecture Discipline Application design

Project Home loan portal

JOB DESCRIPTION’S SUMMARY SEGMENT

Summary

Our home loan division is currently seeking an experienced application architect for our
new cloud- based borrower portal. The selected candidate will be in charge of applica-
tion design tasks for our home loan portal project. In addition, technical leadership will
be required to provide guidance and practical direction to the development teams.
This is an excellent career opportunity for a motivated individual with an impressive
architectural design talent and outstanding interpersonal skills.

Create a Findings Table Version I for the Job Description

Now create a table akin to Table 8.2. Let’s start here with the information discov-
ered in the job description summary portion that was analyzed in the previous
section. Fill in the table with this information:

 ■ In the very top row of the of the table, type Application Architect.

 ■ In the Project column, insert Home Loan Portal.

 ■ In the Expertise/Architecture Discipline column, type Application design.

Table 8.2: Job Description Analysis Findings Version 1

APPLICATION ARCHITECT

Project Expertise/Architecture
Discipline

Deliverables

Home Loan Portal Application design

Bell820970_c08.indd 295 13-02-2023 18:03:22

296 Part 4 ■ Software Architecture Interview Preparations

Next, Analyze the Responsibilities Portion of the Job Requirements

Let’s ask the same question again: what might a software architect applicant
possibly discover in the responsibilities part of the job description? Devote
attention to these possible findings:

Software architecture deliverables Software architects are typically required
to provide a wide range of design artifacts, issue development guidance
documents, devise best practices, and provide other deliverables.

Software architecture expertise The recruiting companies employ software
architecture talents with specific domain knowledge, fields of expertise,
specialties, or architecture disciplines to provide solutions to organizational
problems. These skills, for example, may include cloud security, big data4
design, and application integration.

Subsequently, our analysis rendered these findings, as shown underlined in
the “Job Description’s Responsibilities Segment” sidebar:

 ■ Expertise/Architecture Discipline: cybersecurity

 ■ Expertise/Architecture Discipline: COTS product selection and evaluation

 ■ Deliverable: product technical requirements

 ■ Deliverable: product evaluation documents

 ■ Deliverable: product installation manuals

JOB DESCRIPTION’S RESPONSIBILITIES SEGMENT

 ■ Provide technological leadership and mentorship to guide our
development teams

 ■ Oversee application cybersecurity to ensure data integrity

 ■ Conduct COTS product selection and evaluation and deliver related product
technical requirements, product evaluation documents, and product installation
manuals to promote state- of- the- art technological capabilities

Then, Update the Findings Table Version II of the Job Description

Recall that the findings table version I has already been created (see Table 8.2).
The task at hand then is to update this table with the information discovered
in the Responsibilities portion of the job description. We rename the table “Job
Description Analysis Findings Version 2.” Note that all updates are highlighted.

4 Big data is a computing environment that includes substantial volumes of structured and
unstructured information that it’s impossible to process, manage, and manipulate with the
traditional software data tools and platforms. Advanced technologies have been developed to
benefit from big data environments.

Bell820970_c08.indd 296 13-02-2023 18:03:22

 Chapter 8 ■ Preparing for a Software Architecture Interview: A Winning Strategy 297

Follow this quick guidance:

 ■ To the “Expertise/Architecture Discipline” column, add the value
cybersecurity.

 ■ Add another value to the “Expertise/Architecture Discipline” column:
COTS product selection and evaluation.

 ■ In the column named “Deliverables,” insert these deliverables for the
“COTS product selection and evaluation” is an expertise / architecture
discipline. The deliverable for this discipline is “product technical require-
ments, product evaluation documents, and product installation manuals”.

Last, Analyze the Software Architect Skills Portion of the
Job Requirements

We conclude here our software architecture job description analysis with the
inspection of the skills segment. This portion is depicted in the “Job Description’s
Skills Segment” sidebar.

It’s common to find in this segment a mix of key words and key phrases
that might be valuable to the analysis process. But the most important ones are
related to software architecture expertise that the hiring organization may be
interested in. In addition, more software architecture deliverables are likely to
be unveiled.

Our analysis of the skills portion of the job description resulted in these findings:

1. Expertise/Architecture Discipline: application design

2. Deliverables: architectural models

3. Expertise/Architecture Discipline: cybersecurity

4. Deliverable: application vulnerability models

Table 8.3: Job Description Analysis Findings Version 2

APPLICATION ARCHITECT

Project Expertise/Architecture
Discipline

Deliverables

Home Loan Portal Application design

Cybersecurity

COTS product selection and
evaluation

Product technical
requirements, product
evaluation documents,
product installation
manuals

Bell820970_c08.indd 297 13-02-2023 18:03:22

298 Part 4 ■ Software Architecture Interview Preparations

5. Deliverable: security controls best practices

6. Deliverable: penetration testing guidance

7. Expertise/Architecture Discipline: software development life cycle (SDLC)

8. Deliverable: design verification checklists

9. Deliverable: testing requirements

10. Deliverable: application integration models

JOB DESCRIPTION’S SKILLS SEGMENT

Skills

 ■ Master’s degree in computer science or computer engineering

 ■ Experience of seven or more years in application design and the capability to
deliver conceptual, logical, and physical architectural models

 ■ Proven knowledge of cybersecurity and the ability to devise application
vulnerability models, security controls best practices, and penetration testing
guidance

 ■ Excellent knowledge of the software development life cycle (SDLC) and vast
experience in delivering design verification checklists, testing requirements,
and application integration models

Do Not Forget to Update the Findings Table of the Job Description

This will be the third update to the job description analysis findings table ver-
sion III. Here, the software architect applicant should add the key words and
key phrases discovered in the skills segment. To realize these additions, take a
look at Table 8.4. Note that all updates to the table are highlighted.

To accomplish this, follow these quick instructions:

 ■ Add software development life cycle (SDLC) to the “Expertise/Architecture
Discipline” column.

 ■ Insert architectural models in the “Deliverables” for the “application
design” entry in the “Expertise/Architecture Discipline” column

 ■ Insert these deliverables in the “Deliverables” column for the “cyberse-
curity” entry in the “Expertise/Architecture Discipline” column: appli-
cation vulnerability models, security controls, penetration testing
guidance.

Bell820970_c08.indd 298 13-02-2023 18:03:22

 Chapter 8 ■ Preparing for a Software Architecture Interview: A Winning Strategy 299

 ■ Insert these deliverables in the “Deliverables” column for the software
development life cycle (SDLC) entry in the “Expertise/Architecture Discipline”
column verification checklists, testing requirements, and application
integration models.

Note that there is no need to add application design or cybersecurity as an
expertise because they have been added previously.

Create a Software Architect Skill Competency Model for the
Job Description
Table 8.4, completed in the previous section, was designed to collect vital
information from the job requirements published by the hiring organization.
In essence, the table represents an abbreviated software architect skill com-
petency model that was largely discussed in Chapter 1, “Software Architect
Capability Model.”

Now we have all the needed information for creating a full version of the
skill competency model for the job description. This process is going to be easy
to accomplish. Ambitious applicants would find it utterly useful. By doing this,
software architecture candidates will better understand what architecture talents
an organization is seeking to employ. Moreover, finding out any personal shortfall
in knowledge would encourage applicants to better prepare for an interview.

Time to review the full version of the skill competency model for the job
description depicted in Figure 8.1. Again, we have populated this model with
all the information collected from Table 8.4. The sections that follow depict its
breakdown.

Table 8.4: Job Description Analysis Findings Version 3

APPLICATION ARCHITECT

Project Expertise/Architecture
Discipline

Deliverables

Home Loan Portal Application design Architectural models

Cybersecurity Application vulnerability models,
security controls best practices,
penetration testing guidance

 COTS product selection and
evaluation

Product technical requirements,
product evaluation documents,
product installation manuals

Software development life
cycle (SDLC)

Design verification checklists,
testing requirements, application
integration models

Bell820970_c08.indd 299 13-02-2023 18:03:22

300 Part 4 ■ Software Architecture Interview Preparations

Skill Competency Model’s Requirements and Practices

Presented in Figure 8.1, the top of our software architect skill competency model
presents two sections:

Requirements Shown are two types of requirements: Home Loan Portal
Business Requirements and Home Loan Technical Specifications. Both
refer to the project name entered in Table 8.4.

Practices Discovered in the job description, the architect type was revealed
as a software architect. Therefore, the practice in this model is named
software architecture.

Requirements

Application Architecture

Design Cybersecurity SDLCProduct Selection
& Evaluation

Co
nc

ep
tu

al
 a

rc
hi

te
ct

ur
e

m
od

el

Lo
gi

ca
l a

rc
hi

te
ct

ur
e

m
od

el

Ph
ys

ic
al

 a
rc

hi
te

ct
ur

e
m

od
el

Ap
pl

ic
at

io
n

vu
ln

er
ab

ili
ty

 m
od

el

Cy
be

rs
ec

ur
ity

 c
on

tro
ls

 b
es

t p
ra

ct
ic

es

Pe
ne

tra
tio

n
te

st
in

g
gu

id
an

ce

Pr
od

uc
t t

ec
hn

ic
al

 re
qu

ire
m

en
ts

Pr
od

uc
t e

va
lu

at
io

n
do

cu
m

en
ts

Pr
od

uc
t I

ns
ta

lla
tio

n
m

an
ua

ls

De
si

gn
 v

er
ifi

ca
tio

n
ch

ec
kl

is
ts

Te
st

in
g

re
qu

ire
m

en
ts

Ap
pl

ic
at

io
n

in
te

gr
at

io
n

m
od

el
s

Home Loan Portal
Business Requirements

Home Loan Portal
Technical Specifications

100
90
80
70
60
50
40
30
20
10

Co
m
pe
te
nc
y

De
liv
er
ab
le
s

Di
sc
ip
lin

es
Pr
ac
tic
es

Figure 8.1: Skill Competency Model for Job Requirements

Bell820970_c08.indd 300 13-02-2023 18:03:24

 Chapter 8 ■ Preparing for a Software Architecture Interview: A Winning Strategy 301

Skill Competency Model’s Disciplines

As apparent in Figure 8.1, the areas of expertise— namely, the architecture
disciplines— that the applicant architect must possess are shown as design,
cybersecurity, products selection and evaluation, and SDLC. Right beneath, find the
corresponding deliverables for each discipline as elaborated on in the sections
that follow.

Design Discipline’s Deliverables

According to the job description, there are software design artifacts that the
employed application architect will be required to deliver. These deliverables
are captured in the software architect skill competency model illustrated in
Figure 8.1.

Conceptual architecture model Diagrams specifying the overarching decom-
position of an application components and their internal and external
relationship with other software implementations

Logical architecture model Charts that typically depict software behavior,
message exchange, interaction, and data flow between internal applica-
tion components and external software entities

Physical architecture model This deliverable refers to the deployment
scheme of an application in a related production environment. It may
include physical components, such as servers, network topology specifi-
cations, routers, and gateways.

Cybersecurity Discipline Deliverables

Cybersecurity is another field of expertise that a software architect candidate
must possess consistent with the job requirements. These are the expected deliv-
erables shown in the skill competency model:

Application vulnerability model This deliverable refers to features (security
controls) that protect the confidentiality, integrity, and availability of an
application. The vulnerability model may include data encryption mecha-
nisms, application access control methods, potential threat handling, and
authentication and authorization policies.

Security Controls Best Practices The application architect candidate with
cybersecurity expertise will be required to deliver security controls to guide
IT professionals about how to mitigate risks to systems and applications.
The guidance may include methods, plans, actions, solutions, and tech-
niques. Some of these solutions may include the installation of security
monitoring and surveillance platforms, firewalls, and anti- malware software.

Bell820970_c08.indd 301 13-02-2023 18:03:24

302 Part 4 ■ Software Architecture Interview Preparations

Penetration Testing Guidance This cybersecurity deliverable pertains to
documents guiding IT professionals to simulate cyber- attacks against
applications and systems to discover their operational vulnerabilities.

Products Selection and Evaluation Discipline’s Deliverables

If an application calls for using products that are unavailable in the organiza-
tion’s software library, architects may choose to utilize COTS products5 to com-
pensate for the absence of functionality. As recalled, the job description calls for
candidates’ capabilities to provide these deliverables:

Product technical requirements Before selecting an off- the- shelf product,
the technical requirements must outline its chief features, such as func-
tionality, attributes, performance, integration capabilities, and anticipated
computing resources.

Product evaluation documents During the product selection process, the
architect is required to provide an assessment document. This would not
only depict a comparison between similar products on the market but
also justify the ultimate selection.

Product installation manuals Every adopted third- party product must
come with manuals that include environment compatibility requirements,
installation procedures, and other technical guidance to ease integration.
An application architect must then verify that such manuals indeed exist
and are updated with the current product’s features.

SDLC Discipline’s Deliverables

The software development life cycle calls for software architects to technically
guide and supervise the development teams. The application architect candi-
date, therefore, will be commissioned to contribute these deliverables:

Design verification checklists Every software development life cycle should
include verification sessions to confirm that the source code complies with
the design specifications. For this deliverable, the architect signs off on a
design verification checklist that certifies the implementation.

Application testing requirements Implementation testing is mandatory to
ensure compliance with functional and nonfunctional requirements.6 To

5 Commercial off- the-shelf (COTS) products are packaged and ready- to- use software implemen-
tations, such as applications, services, or middleware acquired by organizations to avoid
in- house software development efforts.
6 The term functional pertains to business processes and user interface activities. Nonfunctional
requirements are about application performance, interface respond time, computing resource
capacity, and more.

Bell820970_c08.indd 302 13-02-2023 18:03:24

 Chapter 8 ■ Preparing for a Software Architecture Interview: A Winning Strategy 303

prepare for the testing, the software architect candidate will be commissioned
to provide proper requirements. These documents will outline testing
methods, procedures, milestones, and goals.

Application integration verification Most applications typically integrate
with repositories and data sources, peer applications, and middleware.
Thus, this deliverable is an official signoff on the integration aspects of
an application.

The Competency Part of the Skill Competency Model

The last segment of the skill competency model shown in Figure 8.1 is labeled
“Competency.” This section is all about quantifying the necessary skills that
an applicant must possess for certain architecture disciplines and their related
deliverables. But how would such a competency scale be determined if the
required skill level is not specified in the job requirements?

When creating a skill competency model for job requirements, a software
architect candidate should rely on personal experience. If there is an absence
of knowledge, the applicant should conduct research to complete the skill com-
petency section. Furthermore, even speculation could help to roughly assess
the required skill levels for certain disciplines and corresponding deliverables.

For example, as illustrated in Figure 8.1, the skill competency levels for the
three deliverables of software design discipline are 100 percent. This deduc-
tion is based on an assumption that an application architect must possess the
highest possible capability level to be able to provide conceptual, logical, and
physical architecture models. Note that the same skill competency measurement
method applies to the cybersecurity, product selection and evaluation, and
SDLC deliverables.

Discover the Personal Knowledge Gap Before Attending a Job Interview

Now that the skill competency model for the job description is completed,
applicants should be able to discover any areas of expertise they lack. Simply
put, before attending the interview, the applicant is encouraged to understand
what gaps in knowledge should be filled.

To uncover any lack of architecture knowledge, an applicant should simply
follow these easy steps:

1. Personal skill competency model. Create a personal skill competency
model as devised in Chapter 1.

2. Personal skill competency pattern. Create a skill competency pattern for
the individual skill competency model as instructed in Chapter 1.

Bell820970_c08.indd 303 13-02-2023 18:03:24

304 Part 4 ■ Software Architecture Interview Preparations

3. Job requirements skill competency pattern. Create a skill competency
pattern for the job requirement skill competency model.

4. Pattern comparison. Compare the two skill competency patterns to uncover
the knowledge gap for each architecture discipline and its associated
deliverables.

Figure 8.2 demonstrates the outcome of this process. The illustration shows
the two skill competency model patterns. The personal pattern is displayed
on top, and the job requirements pattern is shown on the bottom. This visual
comparison clearly reveals lack of software architecture knowledge and the
capability to provide solutions in all four disciplines (software design, cyber-
security, products selection, SDLC) and their related deliverables.

Assess Whether the Next Software Architecture Job Is
a Strategic Career Move
Applicants are always being challenged to determine whether a software architect
occupation depicted in a job description is a good match for the next step in

100
90
80
70
60
50
40
30
20
10

90
100

80
70
60
50
40
30
20
10

Design Cybersecurity Product Selection
& Evaluation SDLC

Deliverables Deliverables Deliverables Deliverables

De
liv

er
ab

le
s

Di
sc

ip
lin

es
Jo

b
re

qu
ire

m
en

ts
 s

ki
ll

co
m

pe
te

nc
y

pa
tte

rn

Pe
rs

on
al

 s
ki

ll
co

m
pe

te
nc

y
pa

tte
rn

Figure 8.2: Skill Competency Model Patterns

Bell820970_c08.indd 304 13-02-2023 18:03:24

 Chapter 8 ■ Preparing for a Software Architecture Interview: A Winning Strategy 305

their career. Not all job requirements descriptions are detailed enough to convey
what the exact talents are that the hiring organization is seeking to hire.

The rule of thumb suggests, however, that an applicant should be utterly
practical before applying for software architecture work. The term practical
implies that every job move must be a strategic endeavor— not a tactical venture.
Underemployment,7 for example, typically slows down career progress. This
may result in steep income losses and, most dangerous, cessation of software
architecture skill development.

Consider these, “warnings and recommendations” before applying for a
software architecture job:

Alignment A job description must be aligned with a candidate’s career
strategy— not the other way around.

Underemployment Be patient. Never choose underemployment if the
current market offers better career opportunities for software architects.

Compensation Only accept fair compensation. Do not settle for undercut
wages. Compare the software architecture job offer with salary information
provided by market research salary survey companies.

Hasty career decisions Job descriptions do not always reflect the actual
work challenges. Never make hasty job moves, therefore, before meticu-
lously studying the job requirements.

Mixed bag of IT practices Be practical. Do not apply for a software architect
position that also involves other unrelated IT practices, such as source
code development, desktop support, and network maintenance tasks.

Conduct a Software Architecture Mock Interview
A good job interview defense plan should include a mock interview. The term
mock interview refers to preparation activities that not only increase software
architecture applicants’ confidence in their ability to handle unexpected circum-
stances that induce pressure. This groundwork should also enable applicants to
focus on effective and persuasive answers to interviewers’ queries.

Showing up for a software architecture job interview without having a clear
and defined agenda for expressing ideas and elaborating on technological
strategies would most certainly result in a failure. Candidates must prepare
talking points— predefined topics for conversation— to smooth the interaction
with interviewers; to demonstrate technological leadership; to come across as
a subject- matter expert (SME) in the field of software architecture; and to be

7 Pertains to a job that is beneath one’s skill level, with a compensation offer that is below what
this individual should earn

Bell820970_c08.indd 305 13-02-2023 18:03:24

306 Part 4 ■ Software Architecture Interview Preparations

able to take charge of the interview. Bottom line: it’s all about proving superb
and authentic architecture practice expertise.

The sections that follow introduce simple mechanisms to conduct useful
software architecture mock interviews.

Prepare a Software Architecture Interview Cheat Sheet

It would be impossible for software architecture applicants to cheat on a technical
job interview if they show up unprepared. In just a few minutes it would become
apparent that they had not done all the necessary due diligence to formulate a
presentation strategy. So, the cheat sheet is actually not a cheating mechanism
to compensate for preparing the essential homework. It’s simply a compiled
list of discussion points, deduced from a job description, to be able to provide
fitting answers to queries.

Table 8.5 exemplifies software architecture notes that applicants should com-
pile according to the job they’re applying for.

Table 8.5: Cheat Sheet Notes Examples

NOTE CONTEXT
WHEN SHOULD BE
USED EXAMPLES

Complex concept
simplification

Keywords and key
phrases to simplify
complex software
architecture concepts or
elaborate on approaches
and principles

Tightly coupled implementation,
environment interoperability, asset
federation, data access layer, data
aggregation, interface segregation
principle (ISP8)

Software
architecture
implementation
mechanisms

Keywords, key phrases,
and terms that will help
explain architecture and
software development
implementations

Single sign- on (SSO9), message
orchestration, service discovery and
binding, service registration, software
as a service (SaaS), microservices,
Representational State Transfer
(RESTful) application programming
interface (API)10

Software
architecture
environments

Depicting deployment
and integration
technological
environments

Public cloud, hybrid cloud, data
warehouse, server farm, virtual servers,
disaster recovery, and high- availability
sites

8 The ISP is a SOLID principle that not only promotes the reduction or optimization of interface
redundancy, but also advocates to eliminate unutilized methods.
9 Organizations employ a single sign- on (SSO) authentication mechanism that enables
consumers to use multiple applications and systems with a single set of security credentials.
10 The RESTful API is a commonly used programming interfaces to connect software
components that operate on a network in a client- server architecture ecosystem.

Bell820970_c08.indd 306 13-02-2023 18:03:24

 Chapter 8 ■ Preparing for a Software Architecture Interview: A Winning Strategy 307

Prepare for Possible Software Architecture Interview Questions

Chapter 9 is fully dedicated to the topic of software architecture questions. It
offers a number of query categories that candidates will likely encounter during
a job interview. This categorization approach would help carve out a potent
strategy to simplify difficult topics of discussion. Applicants would then be able
to prove technological leadership by generalizing the answers and talking more
about architectural solutions to address a wide array of problems. This idea goes
hand in hand with what a software architect should actually be doing for living.

 N OT E Generalize specific problems to effectively provide overarching solutions.

Therefore, attend to Chapter 9’s recommendations. Understand the provided
question. Learn how to respond effectively to challenging software architecture
interview questions.

And then, start the rehearsal.

The Software Architecture Mock Interview

The word rehearsal pertains to the simple concept of conducting a software
architecture mock interview. This simulation idea calls for setting up a quiet
place resembling a small interview office. Then:

 ■ Answer the toughest questions possible by simplifying complex software
architecture concepts.

 ■ This exercise should be driven by the presented query categories in Chapter 9.

 ■ Recall that each category obviously contains an array of context related
questions.

 ■ Stay calm and answer these queries methodically.

 ■ Avoid jumping from one topic to another. Stay persistent!

 ■ Long answers should be avoided.

 ■ Accentuate strategies, approaches, principles, standards, best practices,
policies, and development life- cycle aspects.

 ■ Generalize answers, and, only when asked, drill down into the details,
such as technologies, source code of applications and services, and data-
base structures.

NOTE CONTEXT
WHEN SHOULD BE
USED EXAMPLES

Software
architecture
integration

Providing examples of
integration facilities,
middleware, and
infrastructure

Data transformer, language translator,
data merger, message hub, gateway,
data migration, enterprise service bus

Bell820970_c08.indd 307 13-02-2023 18:03:24

308 Part 4 ■ Software Architecture Interview Preparations

 ■ Employ the power of exchanging ideas with interviewers. Turn answers
into engaging technological discussions.

 ■ Raising problems is an insufficient interview strategy. Always demonstrate
technological leadership by introducing software architecture solutions.

And Then, What After the Software Architecture Mock Interview?

When the show is over, restart a new mock interview. Again, and again, ask the
hardest questions. Never skip over challenging queries. Push yourself to the
limit. With each self- challenging interview iteration evaluate your answers. Score
them. The self- scoring should give a clear indication if an applicant is indeed
ready to put on the best suit and wear the shiniest shoes found in the closet.

 N OT E If there is a need for conducting extra research, then, again—pursue it. But
never accept the feeling of dissatisfaction; never settle for a self- score of less than
100 percent.

Software Architecture Job Interview Attack Plan

An attack plan is a strategy that enables applicants to demonstrate outstanding
software architecture knowledge and technological leadership during a job
interview. To carve out such an emphatic plan, applicants ought to conduct
thorough research and studies to elevate their proficiency levels beyond those
that are called for by the job requirements.

To score even more points during an interview, applicants must be familiar
with the hiring organization’s business model, technologies, projects, and vision
and strategy. Moreover, substantial insight into the company’s technological
challenges and solutions would only increase applicants’ ability to communi-
cate persuasive software architecture solutions.

A job interview attack plan is even more powerful when applicants use the
software architecture lingo to communicate ideas, strategies, and implementa-
tions. The vocabulary includes a wide array of language- specific technical termi-
nology, such as design patterns, best practices, principles, and policies. Through the
power of this winning approach, interviewers will be assured that an applicant
is indeed fluent in software architecture jargon. And to a large extent, it affirms
the applicant’s vast experience with devising potent software architecture solu-
tions to mitigate organizational issues.

Before diving deep into the details of the software architecture job interview
attack plan discussed in the sections that follow, consider its fundamental
building blocks:

Business view Learn everything possible about the business of the hiring
organization.

Bell820970_c08.indd 308 13-02-2023 18:03:24

 Chapter 8 ■ Preparing for a Software Architecture Interview: A Winning Strategy 309

Technology view Understand the hiring organization’s technology and
production environments.

Lingo Learn how to communicate in the software architecture language.

Tools Use software architecture tools examples to depict solutions.

Analysis and evaluation Be ready to answer questions about software
architecture analysis and evaluation methods.

Quality Use software architecture analysis standards to discuss architecture
quality topics.

Study the Hiring Organization’s Business
One of the most powerful interview attack plan approaches is to demonstrate
deep knowledge of the hiring organization’s business. Applicants may wonder
why it’s so necessary to acquire this information. Undeniably, learning about
the business may sound as if it’s a tedious task and even time- consuming. But
the benefits may turn out to be utterly effective.

Equipped with this vital business information, an applicant may prevail over other
candidates by gaining the confidence of the interviewers. There is nothing more per-
suasive than demonstrating familiarity with the business model, culture, sources of
income, clients, competitors, the background—and even the history—of the company.

In addition to meticulously studying the business, the candidate should also
explore how the hiring organization employs software architecture to promote
its vision and strategy. The sections that follow, then, focus on both business
and technological aspects.

Start by Finding Information About the Hiring Organization

This pivotal data about the recruiting company typically reveals analytical
insights and commercial information instrumental to understanding the
business. Fortunately, there is an abundance of data sources offered by numerous
information providers that specialize in an in- depth analysis of companies’ data.

The type of business- related material that an applicant can find on websites,
in libraries, and in databases could shed light on organizational structures and
management. This data is characteristically associated with type of industries,
annual revenue, number of employees, financial statements, credit reports, and
even business activities.

A software architect applicant, therefore, should query as many research
resources as possible to obtain valuable business information before an inter-
view. Such a wealth of business domain knowledge and understanding could
demonstrate the candidate’s ability to provide valuable solutions to organiza-
tional challenges.

Bell820970_c08.indd 309 13-02-2023 18:03:24

310 Part 4 ■ Software Architecture Interview Preparations

Review Table 8.6. It includes a number of leading institutions that offer business
data repositories for commercial and research purposes. One way of accessing
these databases is from public or university libraries.

Table 8.6: Business Information Providers Examples11

INFORMATION
PROVIDER LINK

OFFERED BUSINESS
INFORMATION

Reference USA/
Reference Solutions

www.nypl.org/
collections/
articles- databases/
reference- usa

dataverse.harvard.edu/
dataset.xhtml?persistent
Id=hdl:1902.1/22281

Basic information on
more than 25 million
companies and
270 million consumers

Job listings

Mergent Intellect www.nypl.org/
collections/
articles- databases/
mergent- intellect

libguides.colostate
.edu/c.php?g=481949&
p=3295824

Directory database with
information about
100 million businesses

Data about 6,000 U.S.
public companies

200 million residents and
local businesses

D&B Hoover’s www.nypl.org/
collections/articles-
databases/hoovers

www.dnb.com/products/
marketing- sales/dnb-
hoovers/dnb- hoovers-
free- trial.html

www.dnb.com/marketing/
media/dnb- hoovers- free-
 trial.html

43,000 directory entries
for private and public
companies

Data for 600 industries

D&B www.dnb.com/about- us/
data- cloud.html

www.dnb.com/solutions/
analytics.html

D&B cloud data offers
comprehensive business
data and analytical
insights

More than 300 million
business records

375 million data records

11 Adapted from The New York Public Library/www.nypl.org/collections/
nypl-recommendations/guides/company-research. Last accessed November
30, 2022.

Bell820970_c08.indd 310 13-02-2023 18:03:24

 Chapter 8 ■ Preparing for a Software Architecture Interview: A Winning Strategy 311

Leveraging Business Knowledge During an Interview

So how should business knowledge be leveraged during an interview? Successful
responses to software architecture questions should embed examples that bear
a resemblance to the hiring institution’s business model, culture, size, revenue,
and even industry.

What then would be a software architect candidate’s convincing answer to an
interview question about addressing production environments’ communication
and information sharing challenges? In this case, a winning interview strategy
would be to tackle this query by using business knowledge acquired about the hiring
organization. For example, if its business is based on the restaurant franchise
model, then the candidate’s most satisfying answer would depict the approach
by which applications across the different franchise regions exchange data.

INFORMATION
PROVIDER LINK

OFFERED BUSINESS
INFORMATION

Standard and Poor’s
Capital IQ

www.nypl.org/
collections/
articles- databases/
standard- and- poors-
 net- advantage

www.spglobal.com/
marketintelligence/en/
solutions/sp- capital- iq-
platform

Companies’ financial
information

Corporation records

Stock reports

Plunkett Research
Online

www.nypl.org/
collections/articles-
databases/plunkett-
 research- online

Market research reports

Analytics reports for
500 industries

Benchmark reports that
include 3,800
corporations

Business Insights:
Essentials

www.nypl.org/
collections/
articles- databases/
business- insights-
essentials

www.gale.com/c/
business- insights-
essentials

Company profiles

Industry profiles

Product and brands data

Financial reports

Library of Congress guides.loc.gov/
company- research

Business reference
services

Bell820970_c08.indd 311 13-02-2023 18:03:25

312 Part 4 ■ Software Architecture Interview Preparations

An interviewer would be further impressed to hear more details about the
deployment of the business applications across the dispersed production envi-
ronments. A candidate then may include technical specifications for protocols,
middleware, and infrastructure that enable the applications to talk to each other.

Recall that the driving strategy for answering technical questions should rely heavily
on the candidate’s business knowledge of the hiring organization.

Understand the Business Model

Vital business information that a software architect candidate should obtain
before an interview is the business model of the hiring organization. A business
model typically includes strategic aspects that a company must embrace to
withstand harsh market competition.

By understanding the recruiting organization’s business model, a software
architect candidate could learn about the company’s vision, strategy, structure,
and lines of business. This information could shed light on the specific technology
in place to promote the business. It also reveals what types of applications are
in use and the method by which they are deployed locally or remotely.

To establish a solid business model and survival plan, enterprise executives
must define the model components as shown in Table 8.7. In addition, it depicts
the correlation between these components and the technologies that a candidate
can use for conjecture.

Table 8.7: Company Business Model and Software Architecture Candidate’s Discovery

BUSINESS
MODEL
COMPONENT EXPLANATION

CANDIDATE’S
DISCOVERY

CANDIDATE’S
TECHNOLOGICAL
INTEREST

Offerings Type of services
and products
the company
provides to its
client base

Type of data the
company utilizes to
promote services.

Data examples:
Insurance, equity
trading, banking,
healthcare records

Data formats, data
source providers, data
protocols

Data exchange
protocol examples:
HL7,12 ACORD XML,13

FIX14

12 Health Level Seven (HL7) is a messaging protocol standard that enables clinical applications
to exchange data.
13 The Association for Cooperative Operations Research and Development (ACORD), a
nonprofit organization that operates in the insurance industry, established electronic data
exchange standards (supported by Extensible Markup Language, XML) to be used between
collaborating companies and consumers.
14 The financial information exchange (FIX) is an international data exchange protocol
employed for securities transactions.

Bell820970_c08.indd 312 13-02-2023 18:03:25

 Chapter 8 ■ Preparing for a Software Architecture Interview: A Winning Strategy 313

15 The North American Industry Classification System (NAICS) is a U.S. federal statistics
classification system used to group corporations based on their business affiliations and
operations.
16 A business category that identifies common business products or services
17 Market research typically offers customer segmentation data that identifies consumers’ social
interests, product consumption habits, and more.
18 Simple Object Access Protocol (SOAP) is a structured message exchange protocol for web
services, used for sharing data on computer networks.
19 Representational State Transfer (REST) is an application programming interface (API)
employed to exchange data between consumers and web services.

BUSINESS
MODEL
COMPONENT EXPLANATION

CANDIDATE’S
DISCOVERY

CANDIDATE’S
TECHNOLOGICAL
INTEREST

Industry15 and
sector16

Industry and
sector
classification

Company’s primary
business
engagements

Sector examples:
Financial, energy,
healthcare

Industry examples:
Banking, insurance,
air transportation,
accommodation

Type of systems and
applications
supporting the
company’s industry
and sector

Examples: Trading
system, banking portal,
healthcare, home
insurance application

Customers Customer
segmentation17

Targets clients by
learning about their
geographic locations,
demographics (age,
income, gender),
social preferences
(entertainment,
travel, etc.,), and
product
consumption habits
and history

User experience
technologies,
applications, and
customer interface
mechanisms

Examples: Web, social
media platforms, cloud
community, online
stores, consumer
portals

Business process The means by
which services
are provided to
clients

Type of systems,
applications, or
technologies
employed to deliver
business services

Service- oriented
architecture (SOA),
microservices, Business
process modeling
(BPM), business
orchestration, service
lookup, SOAP,18 REST19

Implementation
examples: Web
applications, software
as a service (SaaS),
desktop applications

Continues

Bell820970_c08.indd 313 13-02-2023 18:03:25

314 Part 4 ■ Software Architecture Interview Preparations

Get Familiar with the Hiring Company’s Culture

Before attending an interview, software architecture applicants might want
to get a glimpse of the hiring organization’s culture. The term culture refers
to company’s business code of conduct, rules of behavior, believes, and
policies.

BUSINESS
MODEL
COMPONENT EXPLANATION

CANDIDATE’S
DISCOVERY

CANDIDATE’S
TECHNOLOGICAL
INTEREST

Structure Geographical
(regions, states,
continents, etc.)
distribution of
company’s
workforce and
lines of business

Deployment of
company’s
applications across
geographical
locations

Integration patterns,
message- oriented
middleware (MOM20),
interoperability model

Policies Company’s
business
practices and
policies
employed to
provide quality
services

Company’s
applications
maintaining
government and
industrywide
regulations for
conducting business

Examples: Sarbanes-
Oxley,21 employment
and labor law,22 anti-
trust law23

Integration of COTS or
modifiable off- the shelf
(MOTS24) products with
company’s production
environment

Infrastructure Supporting
technologies

Company’s chief
production
environment
technologies

Cloud, middleware,
messaging model,
security model,
network protocols,
infrastructure as a
service (IaaS)

Table 8.7 (continued)

20 Infrastructure (software or hardware) deployed to a production environment to support
message exchange between distributed applications, services, and systems
21 The Sarbanes- Oxley Act (section 404) requires public institutions to provide annual assess-
ments of internal control over their financial status.
22 State and federal laws that govern the employment of employees and contractors anti-
trust law
23 U.S. federal laws established to govern business conduct to promote fair competition
24 An off- the- self product that enables companies to modify its source code and configuration to
meet business and technical requirements

Bell820970_c08.indd 314 13-02-2023 18:03:25

 Chapter 8 ■ Preparing for a Software Architecture Interview: A Winning Strategy 315

Studying the company’s culture, however, would not necessarily reveal much
about how software architecture practices promote the business. But acquiring
such knowledge may shed light on the company’s social attributes, such as
internal communication between employees. Other cultural aspects are related
to interaction with the outside world. This pertains to applications and systems
used to interface with company’s vendors and clients.

The most important cultural facet for software architecture applicants to
discern is if the hiring company’s approach to addressing business challenges
is by leveraging technology. Case in point, technology- driven solutions are
being adopted by institutions that typically promote automation over human
intervention in business processes. This organizational determination is aligned
with proactive technological initiatives designed to avert business calamities
before they hit the shore. Therefore, such cultural preferences may shed light
on the company’s commitment to invest in their IT organization. As a result,
this investment would certainly support software architecture projects.

So, what specifically should a software architect applicant learn about the
hiring organization’s culture? Whether the company is

 ■ willing to invest in technology to promote business initiatives

 ■ committed to sponsor IT projects

 ■ dedicated to investing in IT professionals’ careers

Conduct a Quick SWOT Analysis

Applicants who are eager to learn more about the hiring organization’s oper-
ations, potential business perils, avenues for growth, and competition should
conduct the well- known business analysis named SWOT (stands for strengths,
weaknesses, opportunities, threats).

This exercise is typically a strategic endeavor. It enables executives, business
analysts, research personnel, and others to learn about the positioning of the
company in the market. The term positioning applies to the company’s capability
to withstand industry and operational challenges.

Once conducted, the SWOT analysis offers four different business perspectives.

Strengths Reveals the company’s advantage over its competitors in terms
of technology, investment resources, quality of services, dedicated and
trained staff, and more

Weaknesses Uncovers the company’s disadvantage in relationship to other
organizations because of shortfalls in strategy and business execution

Bell820970_c08.indd 315 13-02-2023 18:03:25

316 Part 4 ■ Software Architecture Interview Preparations

Opportunities An analytic view that divulges the company’s prospects for
growth, client acquisition, and operations expansion

Threats Depicts business perils that may result in loss of revenue and
mounting risks to survival

The upshot of the SWOT analysis becomes handy when the aim is to learn
about current market conditions and identify competitors in the same sector
and/or industry. Getting to know the clients is another advantage that should
not be overlooked.

This analysis, though, should prompt software architecture candidates to focus
more on a different perspective. Here, we’re required to observe the SWOT’s
technological view by asking these questions:

 ■ What technologies does the company possess to maintain its advantages
over the competition?

 ■ Why does the company fail to adopt a potent technological strategy, leav-
ing it at a disadvantage against some of its competitors?

 ■ How could technological superiority empower the company to grow?

 ■ How could a leading technological capability diminish business threats?

Understand the Hiring Organization’s Technology
Software architecture applicants should be familiar with the hiring organization’s
technology. Generally speaking, the term technology encompasses numerous
practices, disciplines, processes, techniques, and methodologies that are affili-
ated with computer science. These technological aspects are the underpinning
factors that support the business. In other words, nowadays, without technology
no institution can survive and prosper.

In the quest to understand how the hiring organization utilizes technology
to promote its business strategy, applicants may face two obstacles: typically,
there is not much time to prepare for a job interview, and there is not much
information about technology that can be easily scooped out from an abbre-
viated job description. At this point, therefore, the applicants’ obligation is to
look at alternative sources of information to fill in the gaps in the knowledge
needed for a successful interview attack plan.

Technological Information Sources

Since time is of the essence, the quickest way to obtain information about the
hiring organization’s technology and architecture is by searching the Internet

Bell820970_c08.indd 316 13-02-2023 18:03:25

 Chapter 8 ■ Preparing for a Software Architecture Interview: A Winning Strategy 317

or even visiting the library. A great deal of knowledge can be drawn from a
company’s public press releases, in which it typically announces its project
accomplishments. For example, applicants may be able to learn about success-
ful data migration to the cloud. In other press releases, companies may reveal
their partnerships with data source providers and others and may even give
clues about the type of data they consume.

An abundance of a company’s technological information also can be found in
technology reviews and innovation and scientific magazines. Applicants could
subscribe online to this professional literature and receive periodic technology
coverage. Furthermore, specific information for software architects could be
acquired from software development magazines, software development news,25
software architecture journals, cybersecurity26 magazines, and network com-
puting27 publications. Some of these sources even offer free subscriptions.

Another way of learning about the hiring organization’s technology is to
search for its virtual trade shows28 online or visit trade shows in person. Many
organizations are motivated to participate in trade shows because of the oppor-
tunity to present their offerings directly to potential customers and address
arising questions. Applicants could also leverage the opportunity to acquire
information at trade shows and learn more about the company’s products,
services, and supporting technologies.

Finally, there are many other sources of information on the Internet that a
software architecture candidate could use to learn about companies’ technol-
ogies. Follow them on social media, subscribe to their email newsletters, listen
to videos posted by their executives, and watch their online training.

The list that follows provides only a partial list of information sources from
which a candidate may learn about the technologies of the hiring institutions:

Libraries City libraries, university libraries

News platforms Press releases, software development news, electronic
newsletters

Magazines and publications Innovation publications, technology reviews,
scientific magazines, software development magazines, software architecture
journals, cybersecurity magazines, and network computing publications

Trade shows and conferences Virtual and in- person trade shows, confer-
ences, convention centers

25 sdtimes.com and www.eweek.com or t3technologyhub.com/fidelity- adds-
new- self- service- capabilities- in- its- open- architecture- digital-
store- integration- xchange
26 www.scmagazine.com/
27 www.networkcomputing.com
28 www.vfairs.com/solutions/virtual- trade- shows

Bell820970_c08.indd 317 13-02-2023 18:03:25

318 Part 4 ■ Software Architecture Interview Preparations

Training and education Virtual training, training facilities, podcasts, sem-
inars, continuing education classes, undergraduate and graduate studies

Social media and information exchange platforms Marketing platforms,
photo and video- sharing platforms, chat and messaging applications,
friends and family communication platforms

Never miss an opportunity to gather more information about the driving
technology of the hiring institution. So, what type of information should an
applicant search for? The sections that follow provide software architecture
principal points that applicants should focus on.

Discover the Environment’s Technology Stack

Demonstrating knowledge about the recruiting organization’s technological
environment during a job interview would certainly impress interviewers and
even add extra points to an applicant’s evaluation. The term technological envi-
ronment pertains to the landscape in which the organization deploys its systems
and applications— namely, the production environment.

There is so much to know about an organization’s technological ecosystem
and its empowering infrastructure. The information about the components of
such an operation production environment is not easy to obtain. But candidates
could employ some common sense to figure out what type of technology such
a business would require to execute its strategy.

For example, a hiring organization that provides data analytics services for the
auto industry to its clients would more likely base its production environment
on large data repository capabilities, such as big data technologies. Furthermore,
direct access to data could breach security policies. In this case, architecture best
practices typically call for middleware products to manage safe data access.

Other than middleware and repositories, many information- providing organi-
zations also employ cloud architecture. This technology capitalizes on computer
resource elasticity29 to accommodate enough computing capacity to address
future growth of data and client base.

A software architecture applicant should then study the technological envi-
ronment of the hiring organization by using similar discovery points, as shown
in Table 8.8. It lists the chief technology components that an applicant ought to
explore before a job interview.

29 Cloud elasticity pertains to the capability of a cloud environment to automatically provide
growing computing resources to demanding applications, services, and systems.

Bell820970_c08.indd 318 13-02-2023 18:03:25

 Chapter 8 ■ Preparing for a Software Architecture Interview: A Winning Strategy 319

Learn About the Development Technology Stack

Application- level and even enterprise- level software architecture applicants
should be knowledgeable about the hiring organization’s development tech-
nology stack in advance of a job interview. This should include a list of the
technologies— also known as technology stacks— employed to construct and
operate applications and services in production. More specifically, the technology
stack should encompass a list of servers, languages, databases, and operating
systems that developers leverage for software development.

As a part of the preparation for an impending job interview, construct a
development technology list, comparable to the example shown in Table 8.9. It
depicts two frequently used development stacks for web development: LAMP
(Linux, Apache, MySQL, PHP) and MEAN (MongoDB, Express.js, Angular, Node.
js). The former is typically adopted for developing dynamic websites and web
applications. The latter, on the other hand, is more suited for building applica-
tions with one language only. In this respect, a single programming language is
used for developing both the server- side and client- side application modules.

Table 8.8: Environment Technology Stack Discovery

TECHNOLOGY STACK EXAMPLES

Cloud computing Amazon Web Services (AWS), Microsoft Azure, Google
Cloud

Language platforms Python, Java, C++, PHP

Operating systems Linux, Windows

Middleware Data access layer, message orchestrator, service
discovery, data aggregator, service bus

Data repositories MySQL, MongoDB, Hadoop

Frameworks Flask, Ruby on Rails, Swift, Django, Objective- C

Servers NGINX, Apache

DevOps30 tools Jenkins, Chef, Git, Puppet, Ansible

Container platforms Docker, Kubernetes

Communication and collaboration Slack, Microsoft Teams

Monitoring AppDynamics, Splunk

IT ticketing ServiceNow

30 DevOps refers to best practices, standards, and policies chiefly related to IT operations. The
driving DevOps concerns are affiliated with the continuous delivery and continuous integra-
tion of applications and systems.

Bell820970_c08.indd 319 13-02-2023 18:03:25

320 Part 4 ■ Software Architecture Interview Preparations

 N OT E Software architecture applicants: build a technology stack based on the
knowledge acquired about the hiring organization’s production systems.

Study the Applications

When it comes to understanding the supporting technology of a hiring orga-
nization, there is always a compelling correlation between the related industry
and the type of applications supporting its business. Accordingly, common sense
suggests that a banking institution typically supports banking applications. This
wide range of related banking implementations may include applications for
business loans, bill pay, money transfers, and account statements.

In the same fashion, it would be reasonable to assume that an asset management
firm would more likely operate numerous applications related to the investment
industry. These implementations may include portfolio management, trading,
and market data applications.

Organize the discovery of business implementations by creating a simple
list of the hiring institution’s industry and its related applications. Follow the
structure shown in Table 8.10. In this respect, the listed applications support
the insurance process and its related product life cycle.

Table 8.9: Industry Common Development Technology Stacks

STACK NAME TECHNOLOGY TYPE

LAMP Linux Operating system

Apache Web server

MySQL Database

PHP Programming language

MEAN MongoDB Database

Express.js Server- side web application framework

Angular Client- side application framework

Node.js Server- side environment

Table 8.10: Hiring Institution’s Industry-Related Applications

INDUSTRY RELATED APPLICATIONS

Insurance Customer questionnaire

Insurance customer profiling

Underwriting

Claims processing

Insurance pricing

Credit analysis

Bell820970_c08.indd 320 13-02-2023 18:03:25

 Chapter 8 ■ Preparing for a Software Architecture Interview: A Winning Strategy 321

Identify Specific IT Projects

Recruiting companies often post job descriptions that include some hints about
ongoing or imminent business and technological initiatives. Doing this does
not mean that the hiring institution intends to employ software architects for
a short period of time. Nor does the organization intend to bring applicants
on board for a narrow- scoped project. In most cases, the aim of the job posting
is to attract software architecture talents who are familiar with the recruiting
company’s specific industry, line of products, and services.

For example, a job description may indicate that the hiring organization is
seeking to employ software architects to design an insurance client portal. This
requirement typically calls for a long development life cycle budgeted by large
business investments.

In other instances, organizations may not reveal the specific business intent
behind hiring software architects. Instead, their job descriptions may indi-
cate that the positions require skills and experience for a particular product or
environment. This may include, for instance, software architecture talents who
specialize in a particular document management system, cloud architecture, or
middleware product.

As a part of the preparation for a job interview, software architecture appli-
cants should gather as much information as possible about the hiring institu-
tion’s current and imminent projects or initiatives. Here are the chief directives:

 ■ Understand the scope of the software architecture work

 ■ Become familiar with the specific lines of business

 ■ Learn about the business strategy and vision

 ■ Study the hiring organization’s sector and industry

Demonstrate Enterprise Architecture Knowledge of the
Hiring Organization

An effective job interview plan of attack would be to demonstrate substan-
tial knowledge about the hiring organization’s enterprise architecture, even if
the applicant is applying for an application or solution architecture position.
Although this information is not always included in a job description, software
architecture applicants should be motivated enough to study the architectural
landscape by searching other sources of information. To accomplish this, circle
back to the section “Technological Information Services” presented previously
in this chapter to search for and explore the architectural environments of
specific companies.

Once this information has been unearthed, software architecture applicants
should narrow their study to only a few aspects of the hiring organization’s
architectural environment. The focus of this exercise should not be dedicated
mostly to the functional requirements of the deployed applications. The term

Bell820970_c08.indd 321 13-02-2023 18:03:25

322 Part 4 ■ Software Architecture Interview Preparations

functional requirements chiefly refers to business processes and services. Here,
software architecture applicants should direct the bulk of their attention to the
organization-empowering infrastructure in production and, most important, to
understanding how the enterprise architecture is devised to provide solutions
on an organizational level.

To understand how the technological environment delivers tangible solu-
tions for the hiring institution, decompose the enterprise architecture into the
fundamental elements, which are shown in Table 8.11. When pursuing this, list
the driving architecture components in the “Architecture Elements” column.
Then, describe in the “Function” column what each element contributes to the
enterprise deployment environment. Lastly, list in the “Mechanisms/Capabil-
ities” column the infrastructure (software or hardware) solutions employed by
the hiring organization. This column could include, for instance, COTS prod-
ucts, software or hardware development concepts, or any other technology that
facilitates architecture solutions.

Table 8.11: Enterprise Architecture Environment Decomposition Example

ARCHITECTURE
ELEMENTS FUNCTION MECHANISMS/CAPABILITIES

Message- oriented
middleware (MOM)

Infrastructure (software or
hardware) supporting
message exchange between
service providers and
consumers

Enterprise service bus (ESB),
message bus, message
queueing, message broker

Asset integration Infrastructure (software or
hardware) mechanisms
deployed to link assets in
production

Customer data integration
(CDI), workflow automation,
service discovery, service
binding, service orchestration

Interoperability Infrastructure (software or
hardware) that enables
seamless communication
between heterogeneous
computing environments

Message gateway, message
hub, message routing, data
transformation, message
transformation

Data management Data persistence, routing,
filtering, and conversion
capabilities

Data repositories, data
warehouse, data access layer,
data hub, data abstraction
layer, data transformation,
CRUD31

Architecture styles,
Architecture patterns,
design patterns

Design solutions, akin to
templates, that can be applied
to solving repeatable
problems

Integration patterns, messaging
patterns, data management
patterns, message bus pattern,
data access pattern

31 CRUD: Create, Read, Write, Delete

Bell820970_c08.indd 322 13-02-2023 18:03:25

 Chapter 8 ■ Preparing for a Software Architecture Interview: A Winning Strategy 323

Adopt Software Architecture Lingo
Many practitioners, such as brain surgeons, airline pilots, and family physicians
use a professional vocabulary to communicate and exchange information about
discipline procedures, daily activities, and information. Similar in concept, a
unique jargon with an inimitable lexicon has been developed by software archi-
tects. This language of technological terminology enables the software architecture
community to describe design concepts, ideas, and software implementations
that otherwise would be hard to express in plain language.

More than we might assume, astute interviewers are attentive to the lingo
the software architect candidate uses to convey strategies and concepts. There-
fore, prepare for a job interview by memorizing and practicing the software
architecture vocabulary. Speaking this inherited language fluently would affirm
candidates’ experience in the field and the ability to understand architecture-
specific terminologies.

Recall that the software architecture lingo includes countless key words,
phrases, and expressions that would be impractical to cover in this book. An
applicant, however, should prepare for an impending job interview with a
number of flashcards related to specific job requirements. If a recruiting orga-
nization, for example, is seeking to hire a talent with vast experience in design
patterns, then the flashcards should include related architecture vocabulary.
The jargon in this case may contain architecture patterns used to describe a
software implementation scheme, such as façade,32 controller,33 and hub and spokes
distribution model.34

The sections that follow offer examples for software architecture lingo grouped
by a number of language interests, such as best practices, principles, ideas,
implementation patterns, concepts, and processes. Again, based on the provided
examples, software architecture candidates should prepare their own vocabu-
lary to use during an interview.

Use Design Patterns Vocabulary

Design patterns have contributed immensely to the software architecture lingo’s
terminology. By using this vocabulary, software architects can describe technolog-
ical solutions, depict deployment environments, and offer templates for rectifying
future problems with no special need for submitting lengthy documentation.

32 A façade is a front-end interface that conceals or shelters complex structural architecture or
source code.
33 A controller is a software implementation that manages the flow of data and messages
between consumers and software components.
34 The hub and spoke distribution model refers to the centralization of message exchange
controlled by a hub that communicates with related consumers.

Bell820970_c08.indd 323 13-02-2023 18:03:25

324 Part 4 ■ Software Architecture Interview Preparations

Interviewers typically expect short and to-the-point answers, rather than
lengthy descriptions of software architecture solutions. When responding to
their queries, using software architecture lingo could simplify complex design
concepts that an applicant might be required to communicate.

To illustrate this concept, imagine that an applicant is being asked to describe
an architecture style that uses a central connection point to link and integrate
applications. A prudent answer would then satisfy this query by using an
architecture lingo that describes such a message mediation design scheme. The
star topology or hub and spoke architecture style would be the correct vocab-
ulary to use for illustrating this environment. In such a configuration, the hub
would signify the central point of message integration, while the spokes are the
message routes that connect the applications.

Before attending an interview, read the job description carefully. Then prepare
software architecture vocabulary that may be used for answering interviewers’
questions. Review Table 8.12 and construct a similar one for listing the the lingo’s
key words and the potential talking points to use during the job interview.

Use the Software Architecture Guidelines Lingo to Communicate Solutions

Software architecture best practices, principles, standards, and policies are all guide-
lines that facilitate product development life- cycle tasks and milestones. They
promote the development, deployment, and maintenance of organizational assets,
such as applications, services, and systems. Furthermore, these guidelines foster
the strategy and direction of enterprise projects and initiatives. Without them, a
transition to new business phases and the adoption of advanced technologies
may render organizational chaos that would be arduous to overcome.

 N OT E During a job interview, adopt this software architecture lingo. Talk about
software architecture best practices, principles, standards, and policies when there is a
need to elaborate on approaches, strategies, and software design directions.

Table 8.12: Design Patterns Vocabulary

VOCABULARY TALKING POINTS

Façade Provides a central interface to an application or service

Front Controller A central service that handles all consumer requests for a
website

Proxy A software intermediary that controls access to a target
application or service

Model- View- Controller (MVC) Defines the interaction between three components: the
model (manages application data), the view (renders
presentation of the model), and the controller (interacts
with the user and manipulates the model)

Bell820970_c08.indd 324 13-02-2023 18:03:25

 Chapter 8 ■ Preparing for a Software Architecture Interview: A Winning Strategy 325

Give Architecture Principle Examples to Explain Impact
on Software Development

The term software architecture principles refers to a set of decision- making design
rules, typically affecting application development and their operating environ-
ments. For example, separation of concerns is a well- known design principle that
guides developers to avoid the construction of tightly coupled applications (also
known as the low cohesion effect). Differently put, this principle characteristically
advocates separating the application’s business logic from its user interface,
infrastructure, or any other related functionality. The separation of these com-
ponents typically allows easier source code maintenance, reuse, and testing.

The principle of least knowledge (recognized as Law of Demeter, LoD) is
another example of a decision- making design rule that promotes implementation
loose coupling and protection. This rule calls for a software component to hide
most of its private data without sharing it with other unrelated components.

Give Software Architecture Best Practice Examples to Demonstrate
Problem- Solving Skills

Most institutions devise best practices to reduce expenditure, boost quality
of services, and accelerate time to market. Generally speaking, these business
imperatives call for establishing problem- solving processes. Once adopted, they
render the best solutions possible for an organization. Simply put, best practices
are formulated by the enterprise as the most suitable approaches and processes
for “doing things” to tackle organizational problems— in other words, best
practices are all about the “how.”

In the same way, software architecture best practices are founded to provide
implementation guidance for product design and development, software acquisi-
tion, deployment, integration, and operations. One of the most common software
architecture best practices is buy versus build analysis. This practice implies that
an IT organization should determine how to meet business requirements: should
the company acquire software or build in-house products? Design verification
best practices are formulated to guide software architects on how to confirm that
the programming source code adheres to architecture blueprints and models.

Furthermore, when it comes to the quality of business products, best practices
typically offer general guidance that can improve the excellence of applications,
services, and systems. Knowledge of how to conduct source code reviews during
milestones of the software development life cycle is one example of how best practices
can improve applications, services and systems. Application and system testing are
related to other best practices, devised to guide developers and analysts on how
to ensure operation stability in production.

Bell820970_c08.indd 325 13-02-2023 18:03:25

326 Part 4 ■ Software Architecture Interview Preparations

The following questions summarize the need for organizational best practices
to promote solid software architecture environments:

 ■ How should software be designed?

 ■ How should software architecture be tested?

 ■ How should applications be integrated in production?

 ■ How should applications utilize messaging infrastructure capabilities in
production?

 ■ How should enterprise architecture patterns be employed to enable envi-
ronment interoperability?

Give Software Architecture Standards Examples to Demonstrate Technological
Standardization Capabilities

There are vast number of standards that pertain to almost any software architecture
practice and discipline. There is also no shortage of literatures, research, and
publications that provide guidance for software design, development, deploy-
ment, and integration. Furthermore, many organizations, especially nonprofit
institutions, embark on the mission to train, educate, and guide professionals who
seek to advance their careers in the computer field. In addition, these companies
pledge to standardize technologies, methodologies, disciplines, and practices
across the software architecture industry. Their mission is then to promote the
industry’s common language and expand the market’s vocabulary.

Consider the list of architecture standards examples in Table 8.13.

Table 8.13: Software Architecture Standard Examples

ORIGINATING ORGANIZATION STANDARD

ISO/IEC/IEEE: ieeexplore.ieee.org/
document/6129467

Standard 42010:2011: Architecture
terminology, concepts, frameworks, and
definitions

The Open Group: www.opengroup.org/
togaf

The Open Group Architecture Framework
(TOGAF): Governance and development of
enterprise architecture

The Open Group/Archimate: www
.opengroup.org/archimate-
forum/archimate- overview

Enterprise architecture visualization and
documentation

Department of Defense (DoD): dodcio
.defense.gov/library/
dod- architecture- framework/

DoD Architecture Framework (DODAF):
viewpoints for the development of
architectures and architecture artifacts

Bell820970_c08.indd 326 13-02-2023 18:03:25

 Chapter 8 ■ Preparing for a Software Architecture Interview: A Winning Strategy 327

 N OT E Software architecture standards and frameworks drive the architecture and
software development life cycle. Therefore, remember to accompany answers to inter-
viewers’ questions with a couple of standards to increase credibility and demonstrate
deep understanding of the software architecture industry.

Give Software Architecture Policies Examples to Demonstrate Pragmatic
Software Design Approaches

Enterprise management often devises pragmatic protocols and codes of implemen-
tation and behavior for addressing organizational challenges. Software architects
then must comply with institutional business and technological policies to pro-
mote business continuity in production.

Consider the policy examples in the following list:

 ■ Software architects must be responsible and accountable for the design
and deployment of software products to production.

 ■ No copies of an authoritative data source should be deployed to production.

 ■ Software implementation must be accompanied by system design docu-
ments (SDDs) and operation manuals.

 ■ Before embarking on a software development project, business require-
ments and technical specifications must be presented to construction teams.

 ■ The business and IT organizations must apply safeguards mechanisms
to protect the confidentiality of personally identifiable information (PII).

 ■ All corporate data must be protected and backed up in a secure location.

 ■ Business requirements must indicate the acceptable recovery time of a
system after it has been halted (known as recovery time objective, RTO).

Moreover, when it comes to software architecture governance, policies focus
on the responsibilities and roles of software architects. These guidelines define
their authority, accountability, and scope of operation to institutionalize software
products and provide tangible solutions to organizational problems. Policies also
formulate software architecture management structures and hierarchies intended
to respond effectively to business requirements.

Use Software Architecture Guidelines Lingo

It’s always helpful to generate a lingo table for software architecture guidelines
before attending an interview. It should include best practices, principles, and
policies that could help an applicant to respond eloquently to interviewers’
questions. These queries may be about development processes, design solu-
tions, problem- solving standards, and more.

Bell820970_c08.indd 327 13-02-2023 18:03:25

328 Part 4 ■ Software Architecture Interview Preparations

Table 8.14 provides examples that applicants could follow to build their own
lists based on the job descriptions for the positions they apply for.

Remember Software Architecture Tools
The utilization and the contribution of software architecture tools are often
important topics of discussion during a job interview. Frequently, applicants
are asked to name a number of tools, utilities, and platforms employed during
the architecture life cycle. It would be almost impossible to perform well in a
software architecture interview if such knowledge were absent. It’s an appli-
cant’s responsibility, therefore, to be prepared for these questions, not only by
reviewing past project notes, but also by conducting appropriate research.

The space of architecture tools is vast. And there is a myriad of tools on the
market addressing different phases of the product development life cycle. These
phases include the disciplines of business architecture, architecture strategy,
architecture visualization, software modeling, business analysis, architecture
validation and evaluation, software deployment and integration, and produc-
tion operations.

Moreover, software architecture tools are designed for different architecture
levels. The term level refers to the target architecture range, such as application
architecture or enterprise architecture.35 Application architecture tools that focus
on a narrower solution purview may not be suited for enterprise- level utilization.

Table 8.14: Software Architecture Guidelines Lingo

GUIDELINE TYPE GUIDELINE EXPLANATION

Principle Separation of
concerns

A design principle that promotes
implementation loose coupling by
advocating decomposition of capabilities

Best practice Buy versus build
analysis

A software architecture best practice that
calls for IT management to determine if
software acquisition outweighs the benefits
of in- house development efforts

Policy Role and
responsibilities

Policy that defines the role and
responsibilities of software architects in the
organization

Standard Software modeling A software design standard that enables
software architects to visualize and describe
software implementations

35 Enterprise architecture tools examples: www.gartner.com/reviews/market/
enterprise- architecture- tools

Bell820970_c08.indd 328 13-02-2023 18:03:25

 Chapter 8 ■ Preparing for a Software Architecture Interview: A Winning Strategy 329

Classification of Software Architecture Tools

To demonstrate technological superiority and capabilities to provide organiza-
tional solutions, software architecture candidates must be familiar with tools
that facilitate the product development life cycle. Not only is it important to
bring forth tool features during interview discussions, it also is vital to under-
stand which category the tools are affiliated with.

Before an upcoming job interview, prepare an architecture tools list that is
related to the job description. For instance, if the hiring organization is seeking
to employ a software architect who possesses modeling and diagraming skills,
then, accordingly, the table should include an architecture visualization category.

Table 8.15 lists only a few examples of tool categories. Applicants should not
only indicate the tools’ features and capabilities, but also list actual tools that
are affiliated with the “Category” column.

Consider the following list of software architecture tool categories:

Business domain This category includes tools promoting organizational
strategy and vision. It groups a variety of tools facilitating a large number
of business activities, such as business analysis, digital transformation,
business architecture, risk analysis, and business value proposition analysis.

Architecture visualization This segment is related to diagramming,
architecture modeling, and software simulation.

Architecture strategy To lead an organizational architecture direction and
address software design decisions, this category tackles a number of
crucial technological strategies. Examples include migration of assets,
software modernization and transformation, architecture analysis, and
architecture evaluation.

Architecture discovery Prior to any technological initiatives, software
architects ought to discover the production environment, application
dependencies, and network topology.

DevOps and DevSecOps36 This is another software architecture key cate-
gory that focuses on operations’ processes— often named pipelines. These
production operation activities include security controls, monitoring,
continuous integration (CI), and continuous deployment (CD) of imple-
mentations to production.

Repositories This category includes a diversity of tools and platforms that
offer document management, source code versioning and repositories,
knowledge sharing, and metadata management.

36 DevOps is a collection of agile software development and production operation practices.
DevSecOps, on the other hand, pertain to common industry security practices added to the
existing DevOps operation practices.

Bell820970_c08.indd 329 13-02-2023 18:03:25

330 Part 4 ■ Software Architecture Interview Preparations

Table 8.15: Architecture Tools Category, Features, and Capabilities

TOOL CATEGORY TOOL FEATURES TOOL CAPABILITIES

Business domain Business concepts
management

Establishing ideas and concepts for
products and launching business
initiatives

Business analysis Identifying business problems, providing
business solutions, assessing business
progress and evolution, monitoring
business changes, providing business
requirements

Digital transformation Facilitating business process automation,
promoting business innovation, fostering
business agility and efficiency

Application portfolio
management

Aligning business and IT vision and
strategies, managing application
inventories, cultivating asset reuse

Business risk analysis Identifying business perils and providing
solution alternatives

Business
transformation

Promoting business growth, tracing
business evolution and change

Business architecture Discovering and tracing business
problems and needs, defining business
strategies, founding business goals,
providing business solutions, performing
business process modeling

Business value
proposition analysis

Tracking return on business investments,
realizing business value proposition

Architecture
visualization

Diagramming Providing visual presentations of technical
solutions

Modeling Designing software solutions

Simulation Analyzing software behavior in mock-up
environments

Bell820970_c08.indd 330 13-02-2023 18:03:25

 Chapter 8 ■ Preparing for a Software Architecture Interview: A Winning Strategy 331

TOOL CATEGORY TOOL FEATURES TOOL CAPABILITIES

Architecture
strategy

Architecture
conceptualization

Promoting technological innovation
through establishment of ideas and
concepts

Technological
modernization and
transformation

Promoting technological change by
adopting advanced development
methods, facilities, and devices

System
interoperability

Enabling information exchange between
technological heterogenous environments

System integration Linking organizational applications,
systems, and data to deliver joint
technological implementations

Architecture analysis Performing architecture evaluation and
validation adhering to technological best
practices, assessing architecture feasibility,
performing technical gap analyses

Asset migration Planning and facilitating the migration of
organizational assets from legacy
environments to next- generation
environments

System security Forming security best practices and
facilitating security controls

Architecture
verification

Confirming implementation adherence
with architectural models

Architecture
discovery

Application discovery Siting the deployment of organizational
applications in production

Network topology
discovery

Studying the structural composition of a
network, ascertaining topographical links
of nodes on a network

Application
dependency mapping

Identifying the dependency and
relationship between deployed
applications

Continues

Bell820970_c08.indd 331 13-02-2023 18:03:26

332 Part 4 ■ Software Architecture Interview Preparations

Especially Prepare for Architecture Visualization Tools Questions

One of the most common topics of discussion during job interviews is about
the arsenal of tools that software architects employ to communicate end- state
design solutions. Moreover, applicants are often asked to name some tools and
explain how they are being utilized.

Fortunately, the market is saturated with architecture visualization tools and
platforms37 with capabilities for creating design charts, graphs, and illustrations.
But merely mentioning them during an interview would not be enough. Proper
preparations, therefore, should include a list of design diagrams that might be

TOOL CATEGORY TOOL FEATURES TOOL CAPABILITIES

DevOps and
DevSecOps

Pipeline automation Automating continuous deployment (CD)
and continuous integration (CI)

Capacity planning and
performance analysis

Monitoring implementations in
production environments, creating
performance dashboards, performing
current and predictive computing capacity
modeling

Cybersecurity tools
and platforms

Applying security controls, monitoring,
vulnerability and penetration testing

Repositories Architecture
knowledge sharing
repository

Sharing information about architecture
implementation methods, design
solutions, utilization of tools and platforms

Source code
repository and version
control

Enhancing source code integrity, enabling
source code sharing, fostering
implementation reuse

Document
management

Data indexing, cataloging, storing, version
tracking

Meta data
management

Analyzing, understanding, evaluating,
facilitating the discovery and
management of data

Data management Data modeling, data sharing mechanisms,
data protection technologies, data
integrity approaches, data access
techniques

Table 8-15 (continued)

37 Examples of architecture visualization tools and platforms: www.gartner.com/
reviews/market/enterprise- architecture- tools

Bell820970_c08.indd 332 13-02-2023 18:03:26

 Chapter 8 ■ Preparing for a Software Architecture Interview: A Winning Strategy 333

beneficial to discuss when appropriate, as shown in Table 8.16. The “Design
Perspective” column identifies three architecture views, each of which repre-
sents the related diagrams and the benefits of their utilization.

Get Familiar with Software Architecture Analysis and
Evaluation Methods
In simple terms, architecture evaluation38,39 is an analysis task that renders conclu-
sions about how well the design meets business or technical requirements. This

Table 8.16: Design Diagrams Example

DESIGN
PERSPECTIVE DIAGRAM WHAT IS IT BENEFITS

Conceptual Reference
architecture

A typical enterprise-
level architecture
environment
abstraction with
interacting
functions and/or
components that
collectively provide
solutions

Promotes environment
interoperability, fosters
software reuse,
introduces
organizational design
vocabulary to improve
stakeholders’
communications

Logical Component
diagram

Depiction of
system- level or
application- level
linked elements and
their relationship to
provide business or
technical solutions

Offers a common
language between
various project
stakeholders,
introduces design
intent and solution
roadmap

Activity diagram A flowchart
containing data
flows, processes,
and activities

Shows an overarching
step- by- step path to a
solution, assists
developers with
visualizing algorithms
and program
procedures

Physical Deployment
diagram

A physical
deployment of
implementation
elements to testing
and production
environments

Visualizes a runtime
environment with
implementation
elements on a network

38 Architecture evaluation tools or platforms are typically based on scenario development
driven by simulations that include algorithms with mathematical modeling, and experience-
based reasoning.
39 P. Shanmugapriya and R. M. Suresh, “Software Architecture Evaluation Methods - A Survey,”
International Journal of Computer Applications (0975–8887), Volume 49, No.16, July 2012.

Bell820970_c08.indd 333 13-02-2023 18:03:26

334 Part 4 ■ Software Architecture Interview Preparations

examination focuses on studying software architecture properties, architecture
styles, and design patterns. Moreover, the analysis discovery process is devised to
ensure software quality, implementation stability, and compliance with functional
and nonfunctional requirements.40 Although this assessment is not as popular
as the design visualization practice discussed in the previous section, a growing
number of institutions have been making inroads into establishing such a process.

The architecture assessment may take place during any time of the applica-
tion or system life cycle. To avoid unnecessary development expenditure, the
early architecture evaluation takes place at the onset of a product life span—
even before the design phase. On the other hand, the late architecture evalua-
tion occurs after the product has been installed in production to determine if a
design is effective enough.

Be Aware of Early Architecture Evaluation Methods

Popular early evaluation approaches are the Scenario- based methods,41 as
shown in Table 8.17. These approaches are devised to uncover issues in software
architecture from different viewpoints, such as those of business stakeholders,
users, and partners.

Table 8.17: Early Architecture Evaluation Methods Examples

METHOD GOAL

Scenario- based Software Architecture
Analysis Method (SAAM42)

1) Count the number of components affected
by a scenario, 2) Test functionality of
components, 3) Examine scenario results, 4)
Estimate architecture remediation cost.

Architecture- Level Modifiability Analysis
(ALMA43)

1) Predict software architecture maintenance
cost, 2) Conduct failure and risk assessment for
software architecture.

SAAM for Complex Scenarios (SAAMCS44) 1) Determine if the software architecture is too
complex to implement, 2) Increase
architecture simplicity and flexibility.

40 P. Shanmugapriya and R. M. Suresh, “Software Architecture Evaluation Methods - A Survey,”
International Journal of Computer Applications, (0975–8887), Volume 49, No.16, July 2012.
41 M. A. Babar and I. Gorton, “Comparison of Scenario- Based Software Architecture Evaluation
Methods,” Asia- Pacific Software Engineering Conference, pp. 584–585, 2004
42 R. Kazman, G. Abowd, and M. Webb, “SAAM: A Method for Analyzing the Properties of
Software Architectures,” 16th International Conference on Software Engineering, pp. 81–90, 1994
43P. Bengtsson, N. Lassing, J. Bosch, and H. V. Vliet, “Architecture- Level Modifiability
Analysis,” Journal of Systems and Software, vol. 69, 2004.
44 N. Lassing, D. Rijsenbrij, and H. v. Vliet, “On Software Architecture Analysis of Flexibility,”
Complexity of Changes: Size Isn’t Everything, 2nd Nordic Software Architecture
Workshop, 1999

Bell820970_c08.indd 334 13-02-2023 18:03:26

 Chapter 8 ■ Preparing for a Software Architecture Interview: A Winning Strategy 335

The scenario invocation process is about testing the execution of software
components that may include important algorithms, processes, procedures,
modules, or services. Modification to the software architecture then would be
required if a scenario fails to perform. In this case, the architecture remediation
cost should be communicated to the business sponsors.

Be Aware of Late Architecture Evaluation Methods

One of the most common failures in production is caused by ill- designed sys-
tems. Performance degradation, for example, may occur by deploying tightly
coupled implementations, evading nonfunctional requirements, or employing
improper architectural patterns. Clearly, it’s not only performance problems that
should be investigated in production and testing environments. Architects tend
to conduct late latency architecture evaluations to rectify other design issues.
These problems may be affiliated with lack of database capacity or even inad-
equate network bandwidth.

Consider the approaches in Table 8.18. These are devised to address performance,
adherence to nonfunctional requirements, and compliance with design principles.

Talk About Software Architecture Analysis Standards
During a job interview, applicants are often given software architecture anal-
ysis questions. These queries characteristically require deep knowledge in
architecture quality standards, approaches, and models. Most of these industry

Table 8.18: Late Architecture Evaluation Methods Examples

METHOD GOAL

Tvedt, et al.45 Improving system performance by ensuring architecture adherence to
functional and nonfunctional requirements

Murphy, et al.46 Validating the compliance of implementation source code to design
artifacts

Lindvall, et al.47 Assessing software maintainability by confirming its compliance with
component- based design principles

45 R.T. Tvedt, M. Lindvall, and P. Costa, A Process for Software Architecture Evaluation Using
Metrics, 27th Annual NASA Goddard/IEEE, pp. 191–196, 2002
46 G. C. Murphy, D. Notkin, and K. Sullivan, Software Reflexion Models: Bridging The Gap
Between Source And High- Level Models, 3rd ACM SIGSOFT symposium on Foundations of
Software Engineering, pp. 18–28, 1995.
47 M. Lindvall, R. T. Tvedt, and P. Costa, An Empirically Based Process For Software
Architecture Evaluation, Empirical Software Engineering 8(1): 83Y108, 2003

Bell820970_c08.indd 335 13-02-2023 18:03:26

336 Part 4 ■ Software Architecture Interview Preparations

norms call for validating that the design and implementation indeed comply
with the functional and nonfunctional requirements.

But the software architecture analysis process is not only about the imple-
mentation itself. It also calls for examining whether an architecture is suitable to
operate in certain production environments with the allocated infrastructure and
computing capacity. The analysis discipline then entails a 360- degree study of the
deployment landscape to ensure business continuity and operational stability.

To give satisfactory answers to software architecture analysis questions,
applicants should study the international standards for systems and software
quality. Table 8.19 provides an abbreviated list as a base for applicants to expand
their studies.

Table 8.19: Systems and Software Quality Standards Examples

STANDARD FOCUS REQUIREMENTS

ISO/IEC 25010:201148 Systems and software
quality model

Functional suitability, performance
efficiency, compatibility, usability,
reliability, security, maintainability,
portability

Consortium for IT
Software Quality
(CISQ49)

Evaluating and
benchmarking IT
software

Reliability, security, performance
efficiency, maintainability

ISO/IEC 25023:201650 Measurement of
system and software
product quality

External measure of system and
software quality, internal measure of
software quality

48 www.iso.org/obp/ui/#iso:std:iso- iec:25010:ed- 1:v1:en
49 www.it- cisq.org/standards/code- quality- standards/
50 www.iso.org/obp/ui/#iso:std:iso- iec:25023:ed- 1:v1:en

Bell820970_c08.indd 336 13-02-2023 18:03:26

CHAP TE R

337

9

Preparing for potential software architecture questions increases the odds of
acing an interview. Never attend an interview without compiling a list of queries
that could help you focus on specific software architecture topics. This approach
falls under the interview defensive strategy concept covered in Chapter 8,
“Preparing for a Software Architecture Interview: A Winning Strategy.”

The more questions an applicant can anticipate before an interview, the better
the chances of standing out among the competition. To accomplish this, first
carefully study the job description and understand the business and technolog-
ical imperatives of the hiring organization before speculating on the questions
an interviewer might ask.

The purpose of this chapter is to provide a framework for possible interview
questions in different categories, as shown in the list that follows. A software
architecture candidate should feel free to expand on these topics as needed.

Behavioral questions These questions prepare software architecture candi-
dates for demonstrating communication, interpersonal relationship, and
leadership capabilities.

Skill assessment questions The answers to these questions typically reveal
the competency level, experience, and training history of applicants.

Architecture attributes questions These are questions about functional and
nonfunctional requirements for applications and systems.

An Outline for Software
Architecture Job Interview

Questions

Bell820970_c09.indd 337 09-02-2023 15:00:42

338 Part 4 ■ Software Architecture Interview Preparations

Software architecture life- cycle questions These are queries about software
architecture activities and milestones during the software development
life cycle.

Software architecture concepts questions This topic covers software design
concepts, architecture environment design concepts, business concepts,
and consumer concepts.

Architecture and design pattern questions These are queries about
architecture patterns, design patterns, and architecture styles.

Problem- solving and decision- making questions This section elaborates
on the problem- solving process that software architects should embark
on before making decisions and providing solutions.

Data- related questions These queries focus on data topics that may be asked
during an interview. Data access, data integrity, data transformation, and
others alike are common subjects for discussion.

Production environment questions These queries are designed to discover
applicants’ understanding of the impact of a software architecture envi-
ronment on production. Refer to the definition of a software architecture
environment in Chapter 6, “Software Architecture Environment Construction.”

Software architecture frameworks questions Questions about frameworks
are popular during interviews as they reveal candidates’ knowledge about
software architecture best practices, standards, policies, and principles.

Behavioral Questions

Interviewers typically tend to catch a glimpse of applicants’ personalities and
behavior. The ability to withstand work-related pressures, handle challenging
projects, and communicate eloquently are certainly desirable skills in an appli-
cant. A software architecture job applicant is more likely to score high points
during an interview by providing persuasive responses to these revealing per-
sonality queries.

It’s not only the software architect’s style of interaction with business and
development teams that can determine the success of a project. Social and cultural
factors, such as promoting productive teamwork, may also affect information
technology (IT) initiatives. The term teamwork pertains to the collaboration
be tween various project stakeholders to ensure the deployment of high- quality
software products.

 N OT E Applicants who are able to demonstrate leadership and strong ethics are in
high demand. Their ability to foster fruitful interpersonal relationships and mitigate
arising conflicts between development teams is a big plus. Undoubtedly, these soft-
ware architect leadership characteristics often contribute to providing potent business
and IT solutions.

Bell820970_c09.indd 338 09-02-2023 15:00:42

 Chapter 9 ■ An Outline for Software Architecture Job Interview Questions 339

Attend to possible behavioral questions that may impact the outcome of the
software architecture job interview. Understand the motivation behind these
queries and prepare to answer them with examples of personal experiences.

Communication
A software architect should dedicate a considerable amount of time to commu-
nicating effectively with a project’s stakeholders. The term communication refers
to the capability to broadcast and keep business and IT professionals informed
about product development progress, challenges, and risks.

But communication is not only about circulating crucial information among
managers and development teams. It’s also about the software architect’s ability
to sell an architecture vision and mission. Moreover, in many cases, persuading
sponsors to pledge software development budgets requires special talents.
Therefore, superb communication skills characteristically result in organiza-
tional commitment to technological innovation.

 N OT E Good organizational communication culture enables the exchange of tech-
nological ideas that subsequently drive business success. Good communication is also
about the ability to embrace differing software architecture approaches. And it’s defi-
nitely about encouraging teamwork to promote productive conversations.

Prepare for such communication questions as shown in the list that follows:

Buy- in How do you achieve buy- in for your architecture vision from peers,
executives, project managers, and team members?

End- state architecture How do you persuade management to accept your
end- state architecture implementation?

Sponsorship How do you coax business executives to sponsor architec-
tural initiatives?

Progress information How do you keep stakeholders abreast of software
development projects’ progress?

Architectural decisions What tools and communication platforms are you
using to disseminate vital software architecture decisions?

Alerts In what circumstances do you alert management about technolog-
ical or business risks?

Architecture complexity How would you explain complex software
architecture implementations to nontechnical stakeholders, such as business
sponsors and business executives?

Architecture vision How do you handle communication with professionals
who disagree with your software architecture vision?

Bell820970_c09.indd 339 09-02-2023 15:00:42

340 Part 4 ■ Software Architecture Interview Preparations

Interpersonal Relationships
In the context of this chapter, the term interpersonal relationships is all about the
interaction between individuals who collaborate on accomplishing software
architecture goals. To attain these vital objectives, a software architect, therefore,
must possess soft skills to interact harmoniously and effectively with peers,
development teams, and management.

Soft skills refers to a slew of social traits that a software architect must have to
promote collaborative teamwork within an organization. One of the most impor-
tant skills is the capability to negotiate technological solutions with development
and operations teams. The ability to resolve conflicts when disagreements arise
is another talent that a software architect should be endowed with.

 N OT E In addition to the ability to negotiate, a software architect must also be able
to inspire, encourage, and motivate project teams to collaborate on providing out-
standing software solutions. Empathy for others, listening to team members, and car-
ing for staff are extra capabilities that could only empower the leadership of software
architects.

Prepare to answer questions similar to these in the list that follows:

Interpersonal skills What are the most important interpersonal skills
that a software architect must possess to successfully facilitate software
implementations?

Conflicts What methods do you typically employ to resolve interpersonal
conflicts among software development team members? Provide examples.

Personal agendas How do you make certain that development team mem-
bers do not pursue personal agendas that may derail software implemen-
tation and deployment projects?

Acceptance of leadership How do you deal with team members who refuse
to accept your software architecture leadership?

Architecture goals How do you inspire and motivate professionals to work
together and fulfill your end- state architecture goals?

Software Architecture Leadership
The ability to lead is a skill that hiring organizations are actively seeking. Without
leadership talents, a software architect would face difficulties in promoting
architecture vision and mission. Without leadership skills it would be hard
to achieve buy- in from business executives who typically sponsor software
development projects.

Bell820970_c09.indd 340 09-02-2023 15:00:42

 Chapter 9 ■ An Outline for Software Architecture Job Interview Questions 341

 N OT E It’s the leadership talent that entices followers, impacts organizational
culture, fosters high ethical standards, and, as a result, promotes business goals.

Furthermore, software architecture leadership is about the aptitude for iden-
tifying problems. It’s also about making appropriate technological decisions to
cultivate suitable business solutions. With the power of their leadership skills,
software architects can save projects and avoid software development and
integration failures.

Prepare for software architecture leadership questions similar to these:

Managers vs. leaders What’s the difference between a technology manager
and a leader?

Technological leadership How would you, as a software architect, dem-
onstrate technological leadership?

Challenging project What has been your most challenging project problem,
and what initiative did you take to resolve it?

Project saving Have you ever rescued a software development project from
failing? Why was the project about to fail, and how did your architecture
leadership save it?

Time- to- market Have you ever applied changes to software architecture
for the purpose of accelerating time- to- market? What were these design
changes, and how did they impact organizational expenditure?

Advisory role In which instances did you use your software architecture
advisory talents to guide development, integration, and operations teams?

Skill Assessment Questions

During a job interview there is not much time to assess the skill competency
levels of software architecture applicants. But queries of such nature often arise.
The responses to these queries, however, could unveil the levels of project diffi-
culties and challenges applicants have faced. They also could give a clue about
candidates’ leadership skills and their ability to withstand deadline pressures.

Despite tight interview schedules, applicants should be prepared to outline
their career paths and share compelling project experiences.

 N OT E During an interview, describe the technological challenges when led soft-
ware architecture projects. Share software design mistakes that resulted in production
failures. Elaborate on the remedies applied to mend application performance issues.
This self- exposure will shed light on candidates’ talents and their ability to offer first-
rate technological solutions.

Bell820970_c09.indd 341 09-02-2023 15:00:42

342 Part 4 ■ Software Architecture Interview Preparations

Prepare for skill assessment interview questions similar to these:

Training What professional training classes have you attended?

Certificates Have you been granted any architecture certificates?

Architecture skills Describe the most complex project you have worked on
and how your software architecture skills impacted its outcome.

Design mistakes What kind of design mistakes have you made, and how
did you employ your software architecture talents to correct them?

Decision- making mistakes What have you learned from your decision-
making mistakes, and what actions have you taken to avoid them in
the future?

Software Architecture Attributes Questions

Applicants should devote substantial effort to preparing for interview ques-
tions about architecture attributes.1 The term architecture attributes describes
characteristics of deployed applications and systems in a software architecture
environment that is hosted in production. Availability,2 scalability,3 accessibility,4
and elasticity5 are some examples of architecture attributes. When an architecture
is established upon these traits, it habitually contributes to implementation sta-
bility, acceptable application performance rates, business continuity, and security.

But applications and systems do not operate in a vacuum. They are hosted by
production environments that must support the required software architecture
attributes. Put differently, a production environment with proper infrastructure
must maintain the characteristics of a software architecture environment.

So, where could these requirements for architecture attributes be found?
They are often specified in nonfunctional requirements at the inception phase

1 Refer to the ISO/IEC 25010:2011 standard for architecture attributes examples, such as
reliability, operability, performance, efficiency, security, and compatibility.
2 The term availability pertains to the capacity of a software implementation, such as an
application, to be accessible and responsive to service consumers’ (peer software or users)
requests.
3 Scalability is a software environment’s capability to supply enough computing resources and
maintain operational continuity without changing the underlying structures of software
implementations. This ability is typically promoted by horizontal and/or vertical scaling (out
and up), clustering, etc.
4 In technical terms, accessibility refers to mechanisms that enable consumers to find, reach, and
use software services, functionality, and processes withing the boundaries of security policies.
5 Elasticity is an architecture attribute that enables a deployment environment to meet the
fluctuating demand of software implementations for computing resources.

Bell820970_c09.indd 342 09-02-2023 15:00:42

 Chapter 9 ■ An Outline for Software Architecture Job Interview Questions 343

of the software development life cycle. These documents establish benchmarks
devised to facilitate smooth operations in a production environment. Software
recovery from fatal outages, high- volume exchange of transactions, adequate
computing capacity for process consumption, and circumvention of security
threats are only a few concerns that nonfunctional requirements aim to address.

The questions that follow are examples of questions related to architecture
attributes that an applicant might encounter during an interview. These are
devised to foster architecture best practices and promote business continuity
in production.

Scalability As a software architect, how would you devise to increase the
scalability of a web application if its performance fails to meet the non-
functional requirements?

Availability What mechanisms should be employed to ensure applications
and systems availability in production?

Recoverability6 Outline a disaster recovery (DR) strategy to guarantee
application and data recovery in production. Specify the tools, infrastruc-
ture, and approaches to enable recoverability.

Adaptability7 What are the technologies and mechanisms that can boost
application intelligence and adaptability?

Reusability8 Name at least three methods to advance organizational soft-
ware reusability.

Portability9 How can a software architect devise architecture portability
across technological heterogenous environments?

Elasticity What is elasticity, and how can this architecture characteristic
address the deficiency of computing resource capacity?

Software Architecture LifeCycle Questions

During the system development life cycle (SDLC), business and technical pro-
fessionals are engaged in a slew of application development activities. Architects

6 The capability of an application, service, or system to restore its services in a timely manner, as
specified in the service- level agreement (SLA).
7 The capability of a software implementation to effectively respond to business and technologi-
cal changes. These modifications include environment transformation, business modernization,
and market trends.
8 Reusability refers to mechanisms that enable software functionality reuse, data reutilization,
and information repurposing.
9 Portability is a software architecture attribute that describes the ability of a computer program
to run on different platforms and environments without applying major changes to its composi-
tion and/or structure.

Bell820970_c09.indd 343 09-02-2023 15:00:42

344 Part 4 ■ Software Architecture Interview Preparations

not only facilitate the development process, but also pursue their own wide
range of tasks that are in line with software architecture practices and disciplines
(refer to Chapter 1, “Software Architect Capability Model,” to learn more about
architecture practices and disciplines). So far, many organizations have recognized
the contribution of software architecture processes to the SDLC. Consequently,
this realization has helped establish the software architecture life cycle that has
become an integral part of the SDLC timeline.

So, what are the most significant software architecture activities to be per-
formed during the software architecture life cycle? Unfortunately, there is no
industry- wide standard that defines common goals, milestones, and tasks for
software architecture duties. The absence of a universal software architecture
process, therefore, incentivizes organizations to develop proprietary ones to
satisfy their own enterprise imperatives.

Nevertheless, the good news is that there are numerous propositions10 that
outline the various responsibilities and methodologies for software architects
during the SDLC. Applicants should study carefully these publications to pre-
pare for software architecture life- cycle questions during an interview.

 N OT E Recall that interviewers may query applicants about software architecture
activities. Therefore, be prepared to outline a rudimentary software architecture life-
cycle model to address the process- related queries.

In simple words, should the opportunity arrive during an interview, propose
a general pattern of duties that architects could be engage in, similar to the one
depicted in Figure 9.1. As shown, this illustration identifies four chief software
architecture life- cycle stages, each of which may consist of related activities, as
indicated in Table 9.1.

10 Example: Rick Kazman, Robert L. Nord, and Mark Klein, A Life- Cycle View of Architecture
Analysis and Design Methods, Carnegie Mellon, September 2003: apps.dtic.mil/sti/
pdfs/ADA421679.pdf

Software Architecture Life Cycle

Synthesis Evaluation ConsistencyAnalysis

Figure 9.1: A Conceptual Model for Software Architecture Life Cycle Stages

Bell820970_c09.indd 344 09-02-2023 15:00:42

 Chapter 9 ■ An Outline for Software Architecture Job Interview Questions 345

Finally, consider the possible questions that may come up during a soft-
ware architecture interview. Again, provide an elementary model for software
architecture life cycle and elaborate on possible related activities.

Software architecture life cycle Identify software architecture life- cycle stages.

Software architecture tasks What should be the chief tasks to accomplish
during the software architecture life cycle?

Architecture and design activities What is the difference between design
and architecture, and how do these activities differ?

Table 9.1: Software Architecture Life Cycle Stages and Proposed Activities

STAGE PROPOSED ACTIVITIES

Analysis Problem domain analysis,11 business requirements analysis, analysis
of software architecture life- cycle cost,12 total cost of ownership
(TCO),13 return on investment (ROI), architecture solution feasibility
analysis.14

Synthesis Facilitate the development of architecture themes,15 develop user-
related stories and epics,16,17 deliver application and/or system design
for software development efforts, offer technologies and devise
integration patterns for application and systems, facilitate data
modeling and data architecture, apply security policies, formulate
capacity planning for computer resource utilization.

Evaluation Verify if the implemented software architecture complies with the
proposed application and/or system design, test architecture
assumptions and goals in preproduction environments by planning
proof of concepts (POC) activities.

Consistency Ensure business and technical continuity by monitoring applications
and systems in production, apply design and integration changes to
boost software architecture efficiency in production.

11 Problem domain analysis calls for discovering organizational challenges and risks before
authoring business and technical requirements.
12 Total cost of software architecture life cycle. This includes business and technological
expenditures to provide firm- wide solutions.
13 Total cost of ownership includes business products and infrastructure sponsorship, manage-
ment, and maintenance typically after software solutions have been deployed to production.
14 The process of validating the practicality and return on investment of design solutions.
15 An architecture theme pertains to a unifying motif, concept, abstraction, or idea that drives
the design of software implementations. Such themes can be typically spotted in requirements
and design documents.
16 A user story depicts in a simple language the software capability requirements of application
and system users.
17 An epic is a collection of users’ stories.

Bell820970_c09.indd 345 09-02-2023 15:00:42

346 Part 4 ■ Software Architecture Interview Preparations

Architecture and design evaluation How do software architects ensure
that application and/or system implementations adhere to architecture
blueprints?

Business consistency How do software architects guarantee business con-
tinuity in production?

Technical consistency How do software architects avoid the deployment
of ill- designed applications and/or systems to production?

Software Architecture Concepts Questions

Applicants are asked to demonstrate knowledge and explain software architecture
concepts in almost every job interview. These queries are not randomly selected
by interviewers. They are typically affiliated with the job requirements that
outline present projects and the software architecture skills that the hiring orga-
nization is seeking to acquire.

Then why are software architecture concepts fundamental to every software
architect? The answer to this question is rooted in the notion that technolog-
ical solutions emanate from ideas. And when these ideas mature, they become
architecture concepts. These concepts are the driving forces of every software
development initiative.

 N OT E Without concepts, software architects would not be able to see the big
picture.

This means that without concepts, software architects are incapable of gener-
alizing overarching solutions for organizational problems. Without technological
concepts, development teams tend to dive directly into the source code. As a
result, they typically disregard software reuse principles, ignore componentiza-
tion,18 and neglect architecture decomposition19 best practices.

 N OT E The link between technological ideas and enterprise solutions is the crux
of the software architecture thinking process. And the most necessary software
architecture tools used to facilitate organizational solutions are architecture concepts.

18 Componentization is the process of devising software components to increase software reuse
and promote Loose-coupling design.
19 Architecture decomposition is the process that calls for breaking down complex software and
environment design to isolate problems and focus on providing solutions.

Bell820970_c09.indd 346 09-02-2023 15:00:42

 Chapter 9 ■ An Outline for Software Architecture Job Interview Questions 347

Applicants ought to prepare for software architecture concepts questions that
are associated with these four categories, as shown in Figure 9.2: design, envi-
ronment, business, and consumer. The sections that follow elaborate on these
concepts that might be presented during a job interview.

Design Building Blocks Concepts
Under time constraints and the burden of interview pressures, applicants are
often asked to provide a solution to a business problem. The “how” types of
questions are especially challenging when design solutions must be put into a
few words without delving too deep into specific business requirements.

 N OT E One of the most effective ways to come up with a satisfying answer without
even fully understanding the array of problems that the hiring organization is facing
would be to outline a solution by employing design building blocks concepts. In doing
so, a candidate could employ a set of abstractions to demonstrate effective software
architecture problem- solving skills.

Recall, the software architecture practice is driven by design building blocks
concepts employed to facilitate the construction of executables deployed to
production. These concepts embody ideas and abstractions essential to every
software development project.

Employ Design Building Blocks Concepts to Depict Solutions

Moreover, experienced architects typically use design concepts to characterize
building blocks of software applications and systems. These building blocks pertain
to a large number of software entities, such as classes, components, modules,
services, application programming interfaces (APIs), databases, and others.

Software Architecture Concepts Questions

Environment Business ConsumerDesign

Figure 9.2: A Model for Software Architecture Concepts

Bell820970_c09.indd 347 09-02-2023 15:00:43

348 Part 4 ■ Software Architecture Interview Preparations

 N OT E Remember, almost every architecture artifact, component, pattern, method,
process, principle, and best practice can be used during an interview as a design
building block concept to illustrate a solution. And these concepts should be employed
to satisfy the “how to design” questions.

For example, tiers, layers, and software intermediaries such as gateways and
message bus are examples of design building blocks that can conceptually describe
solutions in production. Similarly, applicants may be required to explain how
integration patterns can contribute to organizational business solutions. In this
case, the hub- and- spoke architecture pattern can be employed conceptually to
depict a software distribution formation that utilizes a central message broker
to enforce security and access control policies.

Prepare for the “How to Design” Interview Questions

Applicants should be prepared to depict solutions by using design building
blocks in their responses to interview questions similar to the examples in the
list that follows. These solutions should correspond to the jobs that they are
applying for. One of the best places to find clues about these design building
blocks concepts is obviously in the corresponding job description.

Federated architecture20 Name software architecture components that could
be employed to describe a federated architecture.

High cohesion21 Describe the design building blocks of architecture com-
ponents that promote high cohesion.

Tiers22 and layers23 Describe an implementation that consists of tiers
and layers.

Hub- and- spoke architecture pattern Provide a design outline for a
hub-and-spoke software architecture that promotes a balanced central-
ized software architecture environment.

20 Federated architecture is an architecture style that enables information sharing data transfer
between heterogenous computing environments that are based on different technologies and
business models.
21 High cohesion is a design term related to the loose coupling practice that advocates breaking
down software into smaller structural components to increase reusability and reduce architec-
ture complexity and maintenance costs.
22 Tiers depict the separation of software into components (each of which represents a different
concern) that are physically deployed to a production ecosystem. In this context, software refers
to applications, services, or systems.
23 Layers represent the conceptual or logical arrangement of software into a hierarchy of
components that collaborate with each other to provide a business or technical solution.

Bell820970_c09.indd 348 09-02-2023 15:00:43

 Chapter 9 ■ An Outline for Software Architecture Job Interview Questions 349

Componentization24 Why does software componentization ultimately
enable software reuse? Provide an example.

Containerization25 What are the drawbacks of utilizing software containers?
Illustrate an architecture that utilizes containers.

Interoperability26 Describe architecture building blocks that enable inter-
operability between heterogenous systems.

Encapsulation27 What is the purpose of encapsulating data and source code?
Describe building blocks of an architecture that enables data encapsulation.

Software Architecture Environment Concepts
Too often interview questions call for characterizing and describing software
architecture environments. Applicants then are required to illustrate a deploy-
ment landscape in which architecture components collaborate and exchange
messages to meet technical requirements. Rather than focusing on architecture
solutions, the answers to these questions should demonstrate deep knowledge
about the architecture parts that make up a run-time environment.

Characterizing and effectively depicting a software architecture environment
not only requires demonstrating verbal visualization skills. The capability
to lay out a clear technological environment could land a lucrative software
architecture job.

So, what are the examples of those software architecture components, the
building blocks of a production environment? The list is indeed long, and the
technical vocabulary used to describe them is vast. Here are a few to consider:
applications, systems, services, cloud computing, containers, middleware plat-
forms, and network devices such as switches, firewalls, load balancers, and routers.

Fortunately, today’s technology jargon offers a great deal of conceptual terms
and language that represent computing environments and facilities on a larger
scale. For example, a database farm is a term that refers to server clusters and
empowering infrastructure for information retrieval. Correspondingly, private
cloud is another conceptual term that depicts a deployment environment, com-
puting capabilities, and data storage for an organization. A demilitarized zone is

24 Componentization is a software development logical method that calls for breaking down
software into pieces that are independently developed. Once deployed to production, they are
linked to provide collaborative technological and business solutions.
25 Containerization is a process of populating virtual entities, named containers, with packaged
software services that can operate on any deployment environment.
26 The ability of separated and heterogeneous computer systems to exchange information.
27 Encapsulation is a design method that calls for hiding source code to avoid exposure of
implementation details to consuming applications, services, or systems.

Bell820970_c09.indd 349 09-02-2023 15:00:43

350 Part 4 ■ Software Architecture Interview Preparations

yet another term applied to illustrate a perimeter environment created to pro-
tect an organization’s internal network from unauthorized external consumers.

As is apparent, examples of technology jargon attest that the industry has
already developed a common language and a conceptual vocabulary used to
depict deployment environments. Software architecture applicants should
embrace this conceptual language and use its lexicon during an interview to
demonstrate knowledge about organizational production landscapes and their
components.

 N OT E During an interview, attend to the principles of technical language sim-
plicity: employ concepts and metaphors to describe a deployment environment and
avoid delving into implementation specifications. Shy away from trivial details, such
as programming languages, development platforms, and deployment life cycle. Focus
only on integration and architecture patterns, middleware products, software inter-
mediaries, network topology, gateways, interoperability principles, server clusters,
disaster recovery and high- availability facilities, and even data access layers. Bottom
line: stay strategic!

Prepare for interview questions, similar to those in the list below, that call
for the description of an organizational production environment. Stay focused,
however, on software architecture components that make up a production
environment. Again, utilize technical concepts that depict software architecture
elements.

Cybersecurity Depict an architecture environment that is designed to protect
systems against cybersecurity attacks. Give examples of security controls
to address environment vulnerability.

Disaster recovery Identify the necessary software capabilities of an effec-
tive DR site. Focus on software mechanisms that provide data transfer
and synchronization.

Scalability Recommend software architecture elements that could be uti-
lized to boost application scalability.

Reusability Identify integration patterns that promote service reusability.

Layered architecture What are the elements and the structure of a layered
architectural style?

Message bus Describe an architectural environment in which a message
bus offers routing and orchestration capabilities.

Middleware How does middleware foster business and technological inter-
operability? Describe an architectural environment in which a message
bus offers routing and orchestration capabilities.

Bell820970_c09.indd 350 09-02-2023 15:00:43

 Chapter 9 ■ An Outline for Software Architecture Job Interview Questions 351

Business Concepts
Every software architect must be mindful of business terminology and concepts
that influence software design decisions. These concepts are typically affiliated
with the fundamental business vocabulary, such as business model, vision,
strategy, and mission.

Business concept queries during an interview typically uncover whether applicants
understand the influence of business strategies on software development. How a
business model bears upon technological solutions is another popular topic of the
questions that interviewers often ask. A similar query might be related to the appli-
cant’s awareness that business requirements drive the software architecture life cycle.

Business concept questions are characteristically associated with the business
terms in the list that follows:

Survival Business revenue, profits, and return on investment

Industry The industry that the business is related to

Products Organizational line of products that is dictated by the business
vision and strategy

Competitors Market competition and business risks

Applicants should be ready to explain business concepts related to the soft-
ware architecture job description. The example questions that follow are often
presented by hiring organizations:

Business architecture What is the business architect contribution to business
strategies, vision, and mission?

Business analysis What are the benefits of business analysis?

Business model How does a business model influence software design
decisions?

Time to market How can a robust software architecture accelerate the
construction of a software product?

Total cost of ownership How can software architecture reduce organiza-
tional TCO?

Business mission and strategy Why must a software architect adhere to
an organizational mission and implement business strategies?

Customer experience Why is customer experience technology vital to
business marketing?

Competitive advantage28 How can software architecture best practices
enable organizational competitive advantage?

Segmentation What is the difference between product segmentation, market
segmentation, and client segmentation?

28 Competitive advantage pertains to aspects that allow an organization to offer efficient
services and cheaper products than its competitors.

Bell820970_c09.indd 351 09-02-2023 15:00:43

352 Part 4 ■ Software Architecture Interview Preparations

Consumer Concepts
How do business requirements influence software architecture that ultimately
affects systems and application behavior? The answer to this question is rooted in
the business activities that take place at the outset of the software development life
cycle. This preliminary business requirements gathering process is conducted to
find out what software functionalities users need. A common practice employed
to discover these imperatives is to compile a set of user stories.

The term stories pertains to an analysis method— a predominately conceptual
business exercise— performed by various stakeholders, such as business sponsors,
executives, managers, business analysts, and even developers. This process is
all about asking customers to describe in simple words what applications and
systems functions they would like to utilize; what are their preferences; and
how should user interfaces be simplified. In short, user stories are confined to
the personal requirements of individuals.

For example, a story may capture a particular user’s needs and expectations
from a banking portal:

 ■ “As a banking customer, in addition to my checking account, I’d also like
to open a new savings account so that I can earn some interest on my money.”

 ■ “As a savings account holder, I’d also need to receive instant text messages
when money is withdrawn from my account, so that I can be notified
promptly.”

 ■ “As a banking customer, I’d like to have 24/7 online access to my savings
account so that I can avoid waiting for my monthly account statements.”

 N OT E Remember, tell stories from a user’s perspective to simplify interview
answers related to business requirements and application capabilities.

Each story should allude to four fundamental pieces of information that could
inevitably influence software development goals.

 ■ Consumer identification

 ■ Related business requirements

 ■ Software implementation functionality and capabilities

 ■ Justification for embarking on a particular software development initiative

Finally, be prepared for questions similar to those in the list that follows:

User requirements Why do users’ necessities drive business and technical
requirements?

Application capabilities How can users’ needs manifest themselves in
application capabilities?

Bell820970_c09.indd 352 09-02-2023 15:00:43

 Chapter 9 ■ An Outline for Software Architecture Job Interview Questions 353

Business requirements Give examples of consumers’ needs that drive
business requirements.

Technical Specifications Tell a personal user’s story that influences technical
specifications.

Software Architecture Decisions Tell a personal user’s story that drives
software architecture decisions.

Software Development Scope How does a user’s story set boundaries for
software development scope and goals?

Architecture Style, Architecture Pattern, and Design
Pattern Questions

Architecture and design patterns are employed mostly to provide solutions.
They are thought of as reusable remedies for solving recurring business and/
or technological problems. Moreover, patterns typically reveal a great deal of
information about application and system design decisions. These choices are
made chiefly by architects to determine the formation of application deployment
in production, integration patterns, system federation, interoperability, and more.

Architecture Patterns vs. Design Patterns
The terms architecture patterns and design patterns are often used interchangeably.
Be aware, however, that a growing number of professionals claim that these
terms differ. Their assertion is that architecture patterns represent solutions
for enterprise- level challenges, and enterprise- level architecture patterns are
devised to address large- scale business and technical solutions. These solutions
are related to problems with deployment to production environments, such as
middleware capabilities, integration of applications and systems, messaging
patterns, and more.

On the other hand, according to these claims, design patterns are subsets of
architecture patterns and employed to provide solutions on smaller scales. They
are confined merely to application- level solutions that include implementations
of software modules, packages, and APIs.

 N OT E In a nutshell, an architecture pattern is devised to offer broad solutions for
organizational problems. On the contrary, a design pattern typically satisfies a smaller
scale of requirements and is a subset of an architecture pattern.

Table 9.2 supports the notion that design patterns are subsets of architecture
patterns. Note the relationship examples between these two types of patterns.

Bell820970_c09.indd 353 09-02-2023 15:00:43

354 Part 4 ■ Software Architecture Interview Preparations

As shown for the Microservices29 architecture pattern, there are three affiliated
design patterns: API Gateway,30 Aggregator,31 and Saga.32 In the same fashion,
the Master Data Hub33 architecture pattern consists of three design patterns:
Registry Hub,34 Centralized Hub,35 and Consolidated Hub.36

Table 9.2: Architecture Patterns vs. Design Patterns

ARCHITECTURE PATTERN EXAMPLES RELATED DESIGN PATTERN EXAMPLES

Microservices API gateway

Aggregator

Saga

Master data hub Registry hub (virtual hub)

Centralized hub

Consolidated hub

29 A microservice is a loosely coupled and fine- grained service that operates from within a
system or an application utilizing technology- agnostic protocols, such as HTTP. Microservices
refers also to an architecture pattern that calls for grouping microservices working together to
provide solutions.
30An API gateway is a design pattern that calls for the utilization of an intermediary or a hub
for intercepting messages exchanged between consumers and microservices, applications, or
systems. Similar to reverse proxies, an API gateway implementation may possess more
capabilities than message mediation. These may include message filtering, security enforcement
mechanisms, etc.
31 The aggregator design pattern refers to an implementation that upon a consumer’s request
collects data from a variety of sources, such as repositories, information providers, applications,
and systems. Then the collected data is combined, processed, and packed into a response to the
requesting consumer.
32 Saga is a microservice design pattern that depicts a sequence of transactions that involve two
or more microservices. Each microservice in the chain processes and then passes the data to the
next microservice inline.
33The master data hub is an architecture pattern that refers to a centralized implementation that
provides data services to consumers. It’s typically utilized to protect data sources from
unauthorized exposure and standardizes data access mechanisms across an organization.
34The registry hub design pattern depicts a software entity that maintains a virtual index of
pointers to physical data in an authoritative repository. Upon a consumer’s request, the registry
hub retrieves the corresponding record from the repository, delivers it, and then stores it for
future transactions.
35 The centralized hub design pattern refers to an intermediary that stores data retrieved from
an authoritative database. By doing this, it essentially becomes the system of record for all
consumers’ read/write requests. Ingestion mechanisms then update the authoritative database
based on predefined schedules.
36 The consolidated hub refers to a central broker that aggregates data from a number of data
sources and stores the information locally for read- only purposes. This is not a viable solution
since the aggregation process does not ensure real- time ingestion of information.

Bell820970_c09.indd 354 09-02-2023 15:00:43

 Chapter 9 ■ An Outline for Software Architecture Job Interview Questions 355

Understand Architecture Styles
Simply put, an architecture style is a catalog that includes a collection of architecture
patterns. Cataloging and grouping architecture patterns by their attributes,
capabilities, and features would contribute immensely to understanding how
each architecture pattern can be employed to provide a business or technolog-
ical solution.

Find three examples of architecture styles in Table 9.3. They are well known
for characterizing unique deployment environment formations. As indicated in
the Characterization column, the Layered Architecture style is known for sepa-
rating various concerns into layers, such as user interface, business logic, data,
and possibly other application elements. Moreover, each of these layers may be
driven by a group of related architecture patterns, as indicated in the Related
Architecture Patterns column. Along these lines, the Monolithic Architecture style
may be driven by the related group of architecture patterns too. And this logic
also corresponds to the Service- Oriented Architecture (SOA) style.

Note that there may be common architecture patterns for two or more
architecture styles. For example, the layered architecture, monolithic architecture,
and SOA may implement the microservice architecture pattern.

Remember Contextual Hierarchy of Patterns
The most effective way to tackle architecture and design pattern questions
would be to accept the notion that patterns are indeed arranged in hierarchical
formations. In other words, an architecture style is located at the top of the

Table 9.3: Architecture Styles Examples

ARCHITECTURE
STYLE CHARACTERIZATION

RELATED
ARCHITECTURE
PATTERNS

Layered
architecture

Layers represent different architecture
concerns, compartmentalizing and
componentizing software
implementations.

Related group of
architecture patterns

Monolithic
architecture

Business and/or technical processes
along with related data data forming a
single, tightly- coupled, self- sufficient
distributed software implementation.

Related group of
architecture patterns

SOA Architectural style driven by
autonomous, fine- grained, and
reusable services that promote
business and technological goals.

Related group of
architecture patterns

Bell820970_c09.indd 355 09-02-2023 15:00:43

356 Part 4 ■ Software Architecture Interview Preparations

pyramid. Then architecture patterns are found beneath each architecture style.
Positioned at the very bottom of the hierarchy are the design patterns. This
concept is illustrated in Figure 9.3.

Why Interviewers Ask Architecture and Design
Pattern Questions
To a large extent, patterns are software architecture solutions, employed to pro-
vide repeatable remedies to similar business or technical problems. Interviewers,
therefore, typically ask architecture and design pattern questions to reveal how
effectively a candidate would make use of these patterns. It’s not only about
assessing the applicant’s decision- making process; the intention is also to evaluate
the candidate’s judgment when it comes to tackling organizational challenges.

Often interviewers ask candidates to provide examples for organizational
challenges and how should they be rectified. Recall that the term challenges per-
tains to business and technical problems. From a technical point of view then,
the term challenges is related to a large variety of operational problems. They
may include issues with application reuse, scalability, performance, disaster
recovery, and response time. On the business level, challenges may be related
to boosting sales, offering compelling products, and improving user interfaces
and experiences.

 N OT E When architecture and design pattern questions come up during an inter-
view, remember to emphasize that patterns are in essence reusable solutions to
recurring organizational problems. The answers then should accentuate the stra-
tegic contributions of patterns. And never forget to accompany responses with
corresponding examples.

Design
Patterns

Design
Patterns

Architecture Patterns

Architecture
Style

Design
Patterns

Figure 9.3: Style and Pattern Hierarchy

Bell820970_c09.indd 356 09-02-2023 15:00:43

 Chapter 9 ■ An Outline for Software Architecture Job Interview Questions 357

Prepare for Architecture and Design Pattern Questions
There are a myriad of architecture and design patterns to learn about. It would
be impractical, however, to memorize randomly hundreds and hundreds of
patterns before an interview. Instead, study carefully the software architecture
job description and adhere to the process that follows:

1. Understand what talents the hiring organization is seeking to employ.

2. Learn about its technologies and environments.

3. Devote attention to the duties that the future architect will be required to
fulfill.

4. Understand the problems that the hiring organization is facing.

5. Then hypothesize possible solutions to these issues.

6. Come up with architecture and design patterns to provide adequate
solutions.

 N OT E To provide compelling answers to architecture and design pattern questions,
embrace the claims that architecture patterns and design patterns differ. Remember
the contextual hierarchy between architecture styles, architecture patterns, and design
patterns discussed so far.

The list that follows represents common architecture and design pattern
queries that typically surface during a software architecture interview:

Microservice patterns Mention at least three microservice- related patterns
that you’d employ to provide a business solution for your organization.
Explain how these patterns would meet specific business requirements

Integration patterns Which integration patterns would you utilize to shield
and isolate an organizational master database?

Application design patterns You’re being asked to carve out a strategy for
building a banking application that enables customers to open checking
and savings accounts. Which design patterns would you employ to facil-
itate the software development efforts?

Interoperability Reference architecture patterns to promote interoperability
between two organizational production environments.

Federated and centralized architectures What is the difference between
centralized and federated types of architectures?

Single sign- on (SSO)37 What would be the most compelling design patterns
to enable organizational SSO capabilities?

37 SSO is a mechanism that authenticates users only once with multiple applications and
systems without repetitive credential checking.

Bell820970_c09.indd 357 09-02-2023 15:00:43

358 Part 4 ■ Software Architecture Interview Preparations

Architecture styles, architecture patterns, and design patterns What is the
difference between architecture styles, architecture patterns, and design
patterns? Provide styles and pattern examples.

Problem- solving and decision- making Questions

Problem- solving and decision- making questions are often challenging, not just
because they are complex queries. The interview time constraints and, in many
cases, applicants’ lack of problem-solving experience may derail the chances of
getting hired. No matter how technically competent a software architect can-
didate may be, providing compelling and persuasive answers to these types of
questions can be difficult for some.

There is nothing better than rigorously preparing for problem- solving ques-
tions. Even if there are no clues to organizational problems found in the job
description, there are always ways to dodge failure. One of the best approaches is
to get acquainted with the problem- solving process outlined in the next section.

 N OT E Study the mechanisms that can be applied to providing software
architecture solutions, and demonstrate good judgment when it comes to technolog-
ical decision- making.

Embrace the Software Architecture Problem- Solving and
Decision- Making Process
An applicant must master the problem- solving and decision- making processes
to prepare for a software architecture interview. Without adequate groundwork,
it would be difficult for applicants to prove their ability to deliver organiza-
tional solutions. Without demonstrating such competencies, there would be no
chance to ace an interview.

 N OT E Ultimately, the software architecture problem- solving process must
conclude with technical decisions. But even before taking such stands, problem- solving
activities must start with inspecting the business.

Identifying Business Problems
Consequently, the software architecture problem- solving process must begin
with studies and analyses. These activities are necessary to understand the
business vision and strategy of the organization. But the most important task

Bell820970_c09.indd 358 09-02-2023 15:00:43

 Chapter 9 ■ An Outline for Software Architecture Job Interview Questions 359

is to fully comprehend the specific problems that the enterprise is facing. Every
challenge that requires solutions must be further investigated to identify the
immediate cause of the problem.

Moreover, to be able to provide a suitable technological response to a business
problem, the software architect must also study the business requirements. They
typically reflect business solutions that must be met. At this point in time, the
software architecture problem- solving process goes into high gear.

So, what is next? Nothing is more compelling for a software architect than to
study the scientific evidence of a specific organizational problem. And nothing
is more important than studying the actual data that introduces the business
challenge. For example, if a vital application shows sluggish response time, a
root- cause analysis should spur architectural decisions.

Attend to the Problem- Solving and Decision- Making Process
Not matter how difficult a problem- solving and decision- making query might
be, always keep in mind that answers should be driven by a logical train of
thought, a line of reasoning, and good judgment.

 N OT E During a software architecture interview, an applicant’s compelling thought
process can demonstrate the capability to provide potent software architecture
solutions.

Study this problem- solving and decision- making process in preparation for
possible challenging questions.

Problem domain analysis Start with studying the business problem domain.

Root- cause analysis Conduct a root- cause analysis to understand what has
triggered the specific organizational problem.

Scientific evidence Never make software architecture decisions without
studying the scientific evidence and its related data.

Business solutions Never make software architecture decisions without
understanding the business solutions reflected in the business requirements.

Technological solutions Next, provide a number of technological solutions
and lean toward strategic approaches rather than tactical ones.

Choose the best one Then select the best solutions. Do not procrastinate;
there is no time for “analysis- paralysis.”

Agnostic solutions Promote an agnostic solution. Never be locked into a
vendor’s offerings.

Bell820970_c09.indd 359 09-02-2023 15:00:43

360 Part 4 ■ Software Architecture Interview Preparations

Prepare for Problem- Solving and Decision- Making Questions
There are a vast number of potential problem- solving and decision- making ques-
tions that an applicant may be required to address. Take a look at the queries
that follow. Similar ones may be asked during a software architecture interview.

Problem- solving and decision- making process Describe the step- by- step
software architect problem- solving and decision- making process.

Problem severity What is an organizational problem, and how would you
assess its severity?

Strategic and tactical solutions What is the difference between software
architecture strategic and tactical solutions? Provide an example.

Software architecture decision What is a software architecture decision,
and how does it ultimately impact a technological implementation? Pro-
vide an example.

Solution alternatives How would you choose the best software architecture
solution alternative?

Stakeholders Who would be the business and technology stakeholders who
may be involved in providing a software architecture solution?

Data integrity How can architectural decisions ensure data integrity?

Security How can architectural decisions promote systems security?

Data- Related Questions

In the course of a software architecture interview, data- affiliated questions are
common. Although there may be a vast number of data queries to prepare for,
applicants must prioritize their studying efforts. The groundwork, therefore,
should be devoted to data aspects that are chiefly reflected in the job description.

Remember, narrow down the preparation scope of data topics by focusing
on these activities:

 ■ Understand what type of data the hiring organization is using.

 ■ Study the mechanisms and protocols by which their applications and
systems exchange information over the network.

 ■ Learn about the type of the repositories the organization is hosting.

 ■ Understand how the organizational data is manipulated, interpreted, and
transformed in a production environment.

Bell820970_c09.indd 360 09-02-2023 15:00:43

 Chapter 9 ■ An Outline for Software Architecture Job Interview Questions 361

Focus on Data Aspects Related to Software Architecture
The focus on data aspects that are mostly associated with software architecture
narrows down the scope of interview questions that an applicant must prepare
for. With this reduction in scope, applicants should be ready to explain how
software architecture capabilities can provide various data solutions for an
organization. These solutions are typically related to the fundamental ques-
tions that follow:

 ■ How is data shared and distributed in a production environment?

 ■ What are the organizational data storage facilities?

 ■ How is the data manipulated to meet business requirements?

 ■ How is the data exchanged between applications and systems?

 N OT E Before attending a software architecture interview, compile a list of data-
related topics similar to the one shown in Table 9.4. And get ready to explain how
software architecture disciplines can satisfy business requirements related to organiza-
tional data.

More Data- Related Interview Questions
The previous section raises the importance of software architecture to facilitate
organizational data needs. But applicants should not be caught by surprise if

Table 9.4: Preparation Data Topics for a Software Architecture Interview

DATA TOPIC POTENTIAL INTERVIEW QUESTION

Data access What mechanisms should a software architect employ to protect
and isolate application data?

Data integrity What architecture patterns should a software architect devise to
maintain application data integrity?

Data storage What types of repositories or data platforms are you familiar with?

Data sources Provide examples of various data sources that an organization
may be utilizing.

Data types What types of data are you familiar with?

Data manipulation What is CRUD (create, read, update, and delete)?

Data transformation In which circumstances is data transformation necessary?

Data delivery Which mechanisms and protocols are you familiar with that
facilitate data exchange between applications and systems?

Bell820970_c09.indd 361 09-02-2023 15:00:43

362 Part 4 ■ Software Architecture Interview Preparations

interviewers go beyond the software architecture paradigm to assess applicants’
general data knowledge. In this case, experience does count. And for those who
seek to enter the software architecture field, meticulous preparation is required.

 N OT E Always remember to carefully inspect the software architecture job descrip-
tion to discover clues to what data- related questions may be in store.

 ■ What is the difference between data integrity and data quality?

 ■ Why do organizations tend to isolate data sources?

 ■ How does technological interoperability foster information sharing?
Provide an example.

 ■ Why do organizations support data hubs?

 ■ Describe scenarios for data filtering, augmentation, and formatting.

 ■ What is the importance of data cleansing?

 ■ What is data mining?

 ■ Who in the organization benefits the most from data analytics?

 ■ What are the types of data collection?

 ■ How does the process of data collection work?

 ■ Why is data aggregation needed?

 ■ What is data mapping?

 ■ What is data integration?

Production Environment Questions

When questioned, you have many ways to describe a production environment,
and there are so many manners in which you could depict a deployment eco-
system that hosts applications and systems. Nevertheless, the most compelling
answer always comes from an applicant who dares to wear a software architect
hat; from an applicant who is adept in software architecture disciplines; from
an applicant who underscores the contribution of software architecture and its
environment to production; from an applicant who understands the vital role
of architecture in facilitating effective distribution of software, integration, and
interoperability.

 N OT E In brief, a software architecture environment hosted by a production envi-
ronment is where organizational applications and systems are deployed, installed, con-
figured, secured, and maintained to provide business and technological solutions.

Bell820970_c09.indd 362 09-02-2023 15:00:43

 Chapter 9 ■ An Outline for Software Architecture Job Interview Questions 363

Characteristics of Software Architecture Environment
Hosted in Production
Roles and responsibilities of production environment assets, such as applications
and infrastructure, have never been radically altered: nowadays applications
continue to execute business functions, and infrastructure still supports sys-
tems operations. In contrast, a production environment as a whole continues to
grow and change as time goes by. It’s a living ecosystem whose never- ending
transformation calls for constant software architecture efforts to enable flawless
execution of applications and systems.

So, why are software architects often commissioned to remediate production
environment problems? The answer to this question is rooted in the changing
characteristics of environments over time. For example, multiple deployments of
infrastructure and systems tend to degrade production agility and even erode
application performance. Furthermore, myriad installations and configurations
in production tend to impair environment scalability.

 N OT E Interview questions affiliated with production environment characteris-
tics are common. They are related to software architecture environment imperatives
that must be met to maintain business continuity. A candidate then should prepare to
demonstrate profound knowledge of software architecture environment needs. Most
important, be able to explain the impact of software architecture environment on
production operations.

Before attending a software architecture interview, prepare a table of software
architecture environment characteristics similar to the one shown in Table 9.5.
As closely as possible, deduce these features from the software architecture job
description.

Table 9.5: Software architecture Environment Features

FEATURE EXPLANATION

Elastic An environment that meets workload changes by increasing or
decreasing computing resources

Agile An environment that adapts promptly to market trends and customer
demands

Scalable An environment that enables the increase in computing resources to
maintain effective system performance

Interoperable An environment that enables heterogenous systems to exchange and
share information

Secured An environment that promotes confidentiality, integrity, and availability
security policies

Bell820970_c09.indd 363 09-02-2023 15:00:43

364 Part 4 ■ Software Architecture Interview Preparations

Production Environment-Related Questions
Take time to prepare for software architecture interview questions similar to
those in the list that follows. These queries are related to the capabilities, fea-
tures, and elements of a production environment. Always remember to embed
software architecture views in the provided answers.

Although the presented questions seem random, a software architect should
prepare to demonstrate rudimentary knowledge of related production environ-
ment technologies.

 ■ What is a subnet?

 ■ What is a network hop?

 ■ What is a load balancer?

 ■ What is continuous integration and continuous deployment?

 ■ What is a DR environment?

 ■ What is high availability?

 ■ Define middleware.

 ■ How can a software architect devise system elasticity?

 ■ What is the difference between message orchestration and message
choreography?

 ■ What is an enterprise service bus?

 ■ Define infrastructure.

 ■ What is the difference between an application and a system?

 ■ What is a router?

 ■ What is a reverse proxy?

 ■ What is a firewall?

 ■ What is the difference between Internet Protocol (IP), IPv4, and IPv6?

 ■ What are network nodes?

 ■ What is network topology?

 ■ What is a gateway?

 ■ What is a portal?

 ■ What is a CIA (confidentiality, integrity, and availability) triad?

 ■ What is a security control?

 ■ What is capacity planning?

 ■ What is a synthetic transaction?

Bell820970_c09.indd 364 09-02-2023 15:00:43

 Chapter 9 ■ An Outline for Software Architecture Job Interview Questions 365

 ■ What is containerization?

 ■ What is the difference between the public and private clouds?

 ■ What is architecture federation?

 ■ Define scalability

 ■ What is configuration management?

 ■ What is a denial- of- service attack?

 ■ What is ransomware?

 ■ Name production environment monitoring tools.

 ■ What is SSO?

 ■ What types of quality assurance tests are you familiar with?

 ■ Name a number of testing tools and their utilization in production.

 ■ What is protected health information (PHI) and personal identifying
information (PII)?

 ■ What is the difference between authentication and authorization?

Software Architecture Framework Questions

The absence of a common industry software architecture best practices, stan-
dards, policies, and principles gave rise to the establishment of proprietary frame-
works. Some organizations privately develop guidelines for governing software
architecture life cycles. Others exclusively devise software design approaches.
Several institute internal architecture best practices. Although these frameworks
were created by different organizations, their ultimate goal is to provide guidance
and methods for software architecture disciplines.

 N OT E To maintain governance uniformity across multiple lines of business, orga-
nizations tend to enforce sweeping regulations for software architecture. These guide-
lines typically include best practices, standards, policies, principles, methodologies,
and conventions.

Focus on Array of Framework Contributions
Not all existing software architecture frameworks devised by different organiza-
tions offer equal value or comparable guidance. During an interview, therefore,
emphasize that each prevailing framework serves the software architecture
practice in a different manner.

Bell820970_c09.indd 365 09-02-2023 15:00:43

366 Part 4 ■ Software Architecture Interview Preparations

 N OT E In an interview, the applicant should stress that a software architect typi-
cally employs various frameworks to describe applications and systems in pursuit of
business and technological solutions.

The list that follows identifies chief software architecture framework contri-
butions utilized to tackle business and technological problems:

Architecture governance Methods and best practices devised to institute
software architecture centers of excellence to promote business and tech-
nological objectives. In addition, it offers guiding policies and principles
to help promote organizational architecture governance

Life cycle Processes, milestones, and goals to govern the software architecture
life cycle

Business analysis Tactics provided to conduct business problem domain
analyses, understand business solutions, and analyze business requirements

Designing methods Approaches, development tools, best practices, and
principles for designing applications and systems. Moreover, these methods
provide architecture decomposition guidance to foster loosely coupled
deployment environments

Artifacts Rules and best practices for delivering software architecture
artifacts, such as design specifications, diagrams and charts, reference
architecture, and more

Architecture evaluation Methods for verifying if application and system
implementations indeed meet software architecture blueprints

To provide satisfactory answers to software architecture interview questions,
consider the list in Table 9.6.

Table 9.6: Examples of Software Architecture Frameworks

FRAMEWORK CONTRIBUTION

The open group architecture
framework38 (TOGAF)

Enterprise architecture framework offering architecture
standards, architecture development methods, and
processes for the software architecture life cycle

Kruchten's 4+1 view model39 A software architecture method driven by logical,
physical, process, developer, and scenarios views

38 www.opengroup.org/togaf
39 P. B. Kruchten, “The 4+1 View Model of architecture,” in IEEE Software, vol. 12, no. 6,
pp. 42- 50, Nov. 1995, doi: 10.1109/52.469759.

Bell820970_c09.indd 366 09-02-2023 15:00:43

 Chapter 9 ■ An Outline for Software Architecture Job Interview Questions 367

Software Architecture Framework Questions
Software architecture framework questions are typically challenging and there-
fore require laborious preparations. These interview queries pertain to a wide
range of organizational policies. They also encompass a rainbow of business
and IT governance guidelines.

Study carefully the questions that follow and prepare for similar ones. Under-
stand the driving motivations and contributions of the various frameworks to
application and system development. Finally, remember that there are widely
recognized software architecture stand- alone best practices, principles, pol-
icies, and principles that are not necessarily supported by prevailing industry
frameworks. Dedicate attention to these as well to ensure successful interviews.

 ■ What are the chief contributions of software architecture frameworks to
technological solutions and decision- making?

 ■ Which framework’s best practices would you adhere to for providing
architecture descriptions42?

 ■ How would you utilize the 4+1 view model to provide architecture solu-
tions? Provide at least one example.

 ■ What types of TOGAF diagrams are you familiar with?

 ■ What is the benefit of the TOGAF’s Architecture Development Method
(ADM) to software design and development?

 ■ What does the International Organization for Standardization43 (ISO)/
International Electrotechnical Commission44 (IEC)/ Institute of Electrical
and Electronics Engineers45 (IEEE) 4201046 international architecture stan-
dard offer to software architecture practices? What do the International

FRAMEWORK CONTRIBUTION

U.S. department of defense
(DoD) architecture framework40

An architecture framework devised to promote
effective management decisions by sharing vital
information among DoD organizations

U.S. federal enterprise
architecture framework (FEAF)41

An architecture framework comprised of reference
models describing six subarchitecture domains:
strategy, business, data, applications, infrastructure,
and security

40 dodcio.defense.gov/Library/DoD- Architecture- Framework
41 obamawhitehouse.archives.gov/sites/default/files/omb/assets/
egov_docs/fea_v2.pdf
42 View an example for architecture descriptions: www.iso- architecture.org/42010/.
43 www.iso.org/home.html
44 https://iec.ch/homepage
45 www.ieee.org/
46 www.iso- architecture.org/42010/faq.html#wh42010

Bell820970_c09.indd 367 09-02-2023 15:00:44

368 Part 4 ■ Software Architecture Interview Preparations

Organization for Standardization (ISO), International Electrotechnical
Commission (IEC), and Institute of Electronics Engineers (IEEE) offer to
software architecture practices?

 ■ Name at least three object- oriented design principles.

 ■ What is the chief contribution of the Generalized Enterprise Reference
Architecture and Methodology47 to enterprise architecture?

 ■ You’re being commissioned to develop a strategy plan for application and
system security. What software architecture frameworks would you employ
to fulfill this task?

 ■ Which software architecture frameworks would you utilize to promote
enterprise interoperability?

 ■ What is the contribution of the Control Objectives for Information and
Related Technologies (COBIT)48 framework to management of IT?

 ■ Why is the Sherwood Applied Business Security Architecture (SABSA)49
framework advocating security measures driven by business requirements?

 ■ Why are the Twelve- Factor App50 principles important to application
architecture practices?

 ■ What is the contribution of the Federal Enterprise Architecture Framework
(FEAF) to the commercial industry’s best practices, standards, and policies?

 ■ What is the contribution of the Unified Architecture Framework (UAF)
to enterprise architecture?

47 P. Bernus, and L. Nemes, A Framework to Define a Generic Enterprise Reference Architecture and
Methodology, CSIRO publishing, 1994 (download this paper from research- repository
.griffith.edu.au/bitstream/handle/10072/176131/Bernus105429- Accepted
.pdf)
48 www.isaca.org/resources/cobit
49 sabsa.org/sabsa- executive- summary/
50 www.redhat.com/architect/12- factor- app

Bell820970_c09.indd 368 09-02-2023 15:00:44

369

A
Abbott, Edwin (author), 223
abstractions, 143, 166
accessibility, 342
accommodation, of space, 248
accomplishing, as “why” questions, 91
accountability, leadership and, 135–136
action planning, for career planning, 82–84
adaptability questions, 343
Add software architecture deliverables

step, in creating software architect
capability model, 10, 17–21

adding load balancing and failover
technologies method, 213

administrative duties, leadership and, 138
advisory role questions, 341
aesthetic software design, 162–167
aggregating method, 202
aggregator design pattern, 354
agile architecture, 190, 363
agnostic solutions questions, 359
alerts questions, 339
alignment, 33, 38, 39, 304
allocation, 248
analysis and evaluation, 291–299,

309, 333–335
Analysis stage, of life cycle, 345
analytical capabilities, of software

architecture, 145–146
analytical scale, 104
analytical- driven occupations, 105

Angular, 320
Apache, 320
API gateway, 354
application architects, 22–24, 36,

44–48, 66–68
Application architecture layer, 37
Application Dependency Model, 19, 23
application discovery and dependency

mapping (ADDM), 19
Application Integration Disciplines, 16,

18–19, 23, 303
Application Modeling Discipline, 16, 18, 22
applications

application architect responsibilities for
application capacity planning, 45, 48
application decomposition, 45, 46
application interfaces, 45, 46
application- level design, 44, 46

application capability questions, 352
application design patterns, 357
application domains, 20
application of security controls, as a

property of harmonizing forces in
software architecture
environment, 192

application testing requirements, 302–303
application vulnerability model, 301

approach, 83
Archimate, 326
Architecture Development Method

(ADM), 17

Index

Bell820970_bindex.indd 369 08-02-2023 18:50:58

370 Index ■ A–C

Architecture- Level Modifiability Analysis
(ALMA), 334

artifacts, questions about, 366
asset integration, 322
Association for Cooperative Operations

Research and Development
(ACORD), 312

asymmetrical distribution style, 258,
261, 263–264

asynchronous operations, as a property of
disharmonizing forces in software
architecture environment, 194

atomic solid, 225–226
attack plans

about, 308–309
adopting software architecture

lingo, 323–328
hiring organization’s technology, 316–322
for job interviews, 289–290, 308–336
software architecture

analysis and evaluation
methods, 333–335

analysis standards, 335–336
tools, 328–333

studying hiring organization’s
business, 309–316

attributes, of software architecture
solids, 236–237

augmentation method, 202, 269
availability, 96, 342, 343

B
balance of design good taste, as an

aesthetic aspect of software design, 164
Balance Table, 197–199
balanced architecture, 184–185, 248
balanced scorecard (BSC), 63
balanced software design, 196
behavioral goals, influences on, 195–196
behavioral questions, 337–341
best practices

about, 20, 23
for constructing software

implementations, 282–283
defined, 328
questions about, 359
for software architecture environment

construction, 220–222
big data, 296
binding method, 206

blindness, 153
boosting scalability method, 213
business

analysis questions, 351, 366
architecture questions, 351
business and technological situational

awareness, as a curiosity
aspect, 170

business architect responsibilities
business and IT partnership, 63, 65
business capability assessment, 63, 64
business investment model, 63, 64
business opportunities, 63, 65
business process management

(BPM), 63, 65
business risk assessment, 63, 65
business solution orchestration, 63, 65
business strategies, 62, 64

business concepts, 351
business domain, as a software

architecture tool category, 329, 330
business intelligence, as responsibility of

data architect, 51, 53
business knowledge, 63, 65, 311–312
business modeling, 62, 312–314, 351
business needs, 32–34
business requirements, 9, 10, 98, 353
business solutions, 63, 64, 359
business view, in software architecture

attack plans, 308, 309–316
competing forces and business

development, 190
consistency questions, 346
identifying business problems, 358–359
influences on business goals, 195–196
mission and strategy questions, 351

business architects, 62–65, 70–71
Business Insights Essentials, 311
buy versus build analysis, 325
buy- in questions, 339

C
capacity planning, as responsibility of data

architect, 51, 53
cardinal physical direction system,

253–256, 283
career enablers, as “who” questions, 92
career path

leadership- driven, 110–111
social- driven, 102–103

Bell820970_bindex.indd 370 08-02-2023 18:50:58

 Index ■ C–C 371

strategy- driven, 114–116
technical- driven, 106–107

career perspectives
for 4D software architecture, 99–100
leadership- driven, 107–109
social- driven, 100–102
strategy- driven, 112–114
technology- driven, 103–105

career planning
about, 73
conducting self- discovery, 75–76
creating a career path, 98–116
devising approaches to, 78–84
planning career execution, 85–89
as a prerequisite for leadership- driven

career path, 110
process for, 74–89
pursuing research, 76–78
self- discovery process for, 89–98
social- driven career path and, 102
strategy- driven career path and, 115
technical- driven career path and, 106

careers
career goals, 78–79, 80
career milestones and

improvement in, 80
planning execution of, 85–89
planning for opportunities, 5
setting career milestones, 80–81
strategies for, 74
tracking progress of, 27
trajectory of, 80
as “why” questions, 91

centralization
about, 217
design activities, 208–209
design methods, 209–210
process outline, 210–211
questions about, 357
as a software architecture environment

construction design activity, 200
centralized hub design pattern, 354
certification, 77, 342
challenging projects, questions about, 341
choreography as a property of

harmonizing forces in software
architecture environment, 192

classification, of software architecture
tools, 329–332

cloud adoption strategy, as responsibility
of cloud architects, 54, 56

cloud architects, 51, 54–55
cloud computing

cloud architect responsibilities
cloud architecture, 54, 56
cloud capacity planning, 55, 57
cloud cost management, 55, 57
cloud governance framework, 54, 56
cloud migration strategy, 54, 56
cloud operating model, 54, 55, 56
cloud security and compliance, 55, 57
cloud service evaluation and

selection, 55, 57
cloud solutions, 54, 56
cloud- related on- premise

services, 55, 57
in technology stack, 319

cloud elasticity, 318
cloud transition self- discovery

queries, 94
coaching, leadership and, 138
coarse- grained software components, 198
collaboration

enablement of, as a property of
harmonizing forces in software
architecture environment, 192

hierarchy of leading software
architects, 36–37

between leading software architects and
domain software architects, 65–71

as a social preference/personal trait, 100
strategic, 32–33
in technology stack, 319
as “who” questions, 92

collaborative teamwork, 340
collaborative- driven occupation, 101
collective architecture elasticity, 282
collective occupancy of software

structures, 281
combination of space navigation

systems, 283
commercial off- the- shelf (COTS) software,

175, 302
communication

communicating architecture
solutions, 324–328

as enterprise architect
responsibility, 38, 40

“how” self- questions for practicing
software architects, 98

questions about, 339
social intelligence and, 120

Bell820970_bindex.indd 371 08-02-2023 18:50:58

372 Index ■ C–D

as a software feature and capability, 240
of solutions, as solution architect

responsibility, 41, 43
in technology stack, 319

comparative perspectives, 246–247
compensation, as a consideration for

career moves, 304
competency, in Software Architecture Skill

Competency Models, 303
competing software architecture forces,

184, 189–190, 220
competitive advantage, 351
competitors, questions about, 351
componentization, 34, 130–131, 346, 349
composite software construction, 282
composite solid, 225, 227–228
composition, 199, 202–204
computing resources, 20, 248, 262
computing space logical coordinate

system, 282
concept design, 34
Conceptual Architecture Model, 18, 22,

301, 333
Conceptual Data Model, 24
Conceptual Data Schema, 20
conferences, as technology information

sources, 317
confidentiality, integrity, and availability

(CIA) triad, 58
conflicts, 139, 340
connecting the dots, 166, 204
consistency, in software architecture, 43
Consistency stage, of life cycle, 345
consolidated hub design pattern, 354
consolidation method, 202, 209, 269
consolidation of software intermediaries

method, 209
Consortium for IT Software Quality

(CISQ), 336
consumer concepts, 352–353
consumer grouping method, 209
consumer- centric strategy, self- discovery

queries, 94
container platforms, in technology

stack, 319
containerization, 349
contextual hierarchy of patterns, 355–356
continuous deployment (CD), 181
continuous integration (CI), 181
contract- driven partnerships method,

192, 217

control, of software population
density, 248

controller, 323–324
coordinate axes, 251–252
coordination of technical activities, as

solution architect responsibility, 42, 43
cost, of unbalanced software architecture

environment gravitational
forces, 187–188

creating, reading, updating, and deleting
(CRUD) operations, 236

creative thinking, leadership and, 136
creativity, power of, 154–157
critical thinking, leadership and, 136–137
cultural change, as responsibility of cloud

architects, 54, 56
curiosity, 167–171
customer experience, questions about, 351
customer relationships, social intelligence

and handling of, 124
cybersecurity, 60, 61, 301–302, 350

D
daily schedule self- discovery questions, 93
data

access to, 50, 192, 361
aggregation of, 16, 50, 192
analysis of, 49, 50, 52
data architect responsibilities

data acquisition, 51, 53
data archiving and redundancy, 51, 53
data collection, 50
data discovery, 49
data governance, 50, 52
data integration, 50, 51, 53
data migration, 50, 52
data recovery and availability, 50
data repurposing, 49
data strategy, 50, 52
data utilization, 50

data repositories, in technology
stack, 319

flow of, as an aesthetic aspect of software
design, 166

management of, 16, 50, 52, 322
modeling of, 16, 50, 52
questions about

data delivery, 361
data integrity, 360, 361
data manipulation, 361
data sources, 361

Bell820970_bindex.indd 372 08-02-2023 18:50:58

 Index ■ D–D 373

data transformation, 361
data types, 361
data- related, 338, 360–362

security of, 50, 51, 53
storage of, 50, 361

Data Aggregation Disciplines, 21, 24
data architects, 24, 49–51, 66–68
data architecture, applying disciplines for

practice of, 16
Data Backup and Recovery Model, 21, 24
Data Collection Model, 21, 24
Data Interoperability Model, 21, 24
Data Management Disciplines, 21, 24
Data Modeling Disciplines, 20, 24
Data Monitoring, 21, 24
Data Security Model, 21, 24
data solid, 225, 234–236
Data Source Discovery, 21, 24
database farm, 349
D&B, 310
D&B Hoover’s, 310
decentralization

about, 217
design activities, 208–209
design methods, 209–210
process outline, 210–211
as a property of disharmonizing forces in

software architecture
environment, 194

as a software architecture environment
construction design activity, 200

decision- maker occupation, 109
decision- maker scale, 108
decision- making

for career planning, 81–82
design rules, 325
leadership and, 134
questions about, 338, 342, 358–360

decomposition, 199, 202–204
decoupling method, 203
decreasing resource consumption

method, 274
decreasing service range method, 274
decreasing software gravitational forces

method, 210
defect tracking, as application architect

responsibility, 45, 48
defense plans

about, 291
assessing software architecture jobs as

strategic career moves, 304–305

conducting mock interviews, 305–308
creating software architect skill

competency models for job
description, 299–304

for job interviews, 288–289, 291–308
studying and analyzing job

description, 291–299
deficient design, 203, 207, 210–211, 214,

218, 270, 275, 279
deformation aspects, of multidimensional

software architecture environment, 181
deliverables, 17–21, 93, 301–303
demilitarized zone, 350
Department of Defense (DoD), 326, 367
deployment ranges, as a software feature

and capability, 240
deprecation method, 269, 278
design

aesthetic perspectives of
about, 165
agility, 164
appeal, 165
composition, 167
evolution, 164
intuition, 164
proportions, 165

design blueprints, as solution architect
responsibility, 41, 42

design building blocks concepts, 347–349
design capabilities self- discovery

questions, 93
design disciplines deliverables, in

Software Architecture Skill
Competency Models, 301

design equilibrium, 264
design patterns, 322, 323–324, 338,

353–354, 358
design scale, for leading software

architects, 48
design- time environment composition

and decomposition design
activities, 201–202

necessity of, 186–187
questions about mistakes, 342
verification checklists, 302

design activities
about, 199–200
layer and delayer, 277–280
lengthen and shorten, 272–276
software construction, 266–269
thicken and contract, 267–272

Bell820970_bindex.indd 373 08-02-2023 18:50:58

374 Index ■ D–E

design methods
layer and delayer, 278–279
lengthen and shorten, 273–274
questions about, 366
thicken and contract, 269–270

desire for change, as a curiosity aspect, 171
desire to know, as a curiosity aspect, 169
desynchronization, 200, 215–219
detaching method, 203
development, 34, 44, 45, 46, 319–320
DevOps, 319, 329, 332
DevSecOps, 329
disaster recovery questions, 350
disciplines, 14, 93, 301
disharmonized runtime ecosystem, 193
disharmonizing forces, 184, 190–194
disintegration, 200, 205–207
distance and geography, as an aesthetic

aspect of software design, 165
distributable nature, as a software

architecture solid attribute, 236–237
distributed architecture model, 129
distribution and federation method, 206
distribution and federation scope

reduction method, 206
distribution styles

of 3D software implementations in
architecture computing
space, 257–264

about, 257–258
asymmetrical, 261, 263–264
federated, 258–259
flooring, 260–261
symmetrical, 261–263

diversity, equity, and inclusion, leadership
and, 135

divisibility, as a software architecture solid
attribute, 236–237

documentation support, as application
architect responsibility, 45, 47

domain software architects
about, 49
business architect, 62–65
cloud architect, 51–57
collaboration between leading software

architects and, 65–71
data architect, 49–51
security architect, 57–61
types of, 49–65

driven strategies, for leading software
architects, 48

duplication, as a property of
disharmonizing forces in software
architecture environment, 194

duties, as “who” questions, 92

E
education, 77, 318
elasticity

defined, 211, 342
design activities, 212
design methods, 213
process outline, 214–215
in production environments, 363
as a property of harmonizing forces in

software architecture
environment, 192

questions about, 343
as a software architecture environment

construction design activity, 200
elicit ideas and concepts, as a curiosity

aspect, 171
elimination method, 269, 278
employment opportunities, for

research, 77
encapsulation, 349
encoding software architecture

environments, 195
encompassing, as a software architecture

solid attribute, 236–237
end- state architecture, 38, 40, 98, 339
engagement of solution architects, as

Enterprise architect
responsibility, 39, 40

enhancing high- availability capabilities
method, 213

entanglement effects, 182–183, 219
enterprise architects, 36, 38–40, 70–71, 94
enterprise architecture

knowledge, 321–322
enterprise architecture layer, 36–37
enterprise architecture tools, 328
environment (software architecture)

about, 173
benefits of discipline of, 174
best practices for, 220–222
construction laws of, 219–220
deformation aspects of

multidimensional, 181
driven by uncontrolled quantum

landscape behavior, 178–179
entanglement effects in, 182–183

Bell820970_bindex.indd 374 08-02-2023 18:50:58

 Index ■ E–H 375

forcing drive software behavior, 183–194
genetic encoding of, 194–195
influences on social, behavioral, and

business goals, 195–196
intelligent topological space, 179–180
life cycle of, 196–219
problem statements and

requirements, 174–176
software architecture structures, 176–178

environment equilibrium, 187
epic, 345
equal footing best practice, 259, 283
Establish software architecture disciplines

step, in creating software architect
capability model, 10, 13–16

establishment of trust, leadership
and, 137–138

Evaluation stage, of life cycle, 345
excessive software federation, as a

property of disharmonizing forces in
software architecture environment, 193

exclusive utilization, of pipe
solids, 232–233

experience, leveraging, 18
explicit, as a career goal characteristic, 79
exploratory behavior, as a curiosity

aspect, 170
Express.js, 320
extending service range method, 274
extending software distribution scope

method, 210
extreme data distribution, as a property of

disharmonizing forces in software
architecture environment, 194

extreme isolation, as a property of
disharmonizing forces in software
architecture environment, 193

F
façade, 323–324
feasibility assessments, as solution

architect responsibility, 42, 43
Federal Enterprise Architecture

Framework (FEAF), 367
federated architecture, 129–130, 198,

348, 357
federated distribution style, 258–259
federation method, 210, 217
fellowship, social intelligence and, 123
financial information exchange (FIX), 312
Findings Tables, 295–299

fine- grained software components, 198
flat architecture model, 198
flatland, 223
Flatland: A Romance of Many Dimensions

(Abbott), 223
flooring, 283
flooring distribution style, 258, 260–261
4D software architecture, career

perspectives for, 99–100
frameworks, 33, 131, 319
functional, 302
functional requirements, 321–322

G
generalist occupations, 114
generalist scale, 113
generalization, 144
genetic encoding, of software architecture

environment, 194–195
geographical location, as “where” self-

discovery questions, 95
goals, 102, 106, 110, 115
good eye for design decisions, as an

aesthetic aspect of software
design, 164

governing laws, for software construction
in 3D computing worlds, 281

graphical representation, 25
gravitational forces, 184, 185–188
guiding principles, 6

H
harmonization, 190–191
harmonized software architecture, 220
harmonizing forces, 184, 190–194
harmony level of operation, 215
hasty career decisions, as a consideration

for career moves, 304
Health Level Seven (HL7), 312
hierarchies, as an aesthetic aspect of

software design, 165
high cohesion, 348
HIPAA, 58
hiring, 5, 136
hologram idea, 195
horizontal knowledge, 292
“how” questions, 96–98
“how to design” interview

questions, 348–349
hub and spoke distribution model,

323–324, 348

Bell820970_bindex.indd 375 08-02-2023 18:50:58

376 Index ■ I–I

I
Identify software architecture practices

step, in creating software architect
capability model, 10, 12–13

identity and access management (IAM), as
responsibility of security
architects, 59, 61

IEC standards, 326, 336, 342
IEEE, 326
ill- designed software architecture

environment, 189
imagination, potency of, 157–162
impact time- to- market, “how” self-

questions for practicing software
architects, 98

improvisation- driven occupations, 114
improviser scale, 113
incident management, as responsibility of

security architects, 59, 61
inclusive association, 231
inclusive utilization, of pipe solids, 231
increasing clustering capabilities

method, 213
increasing deployments of software

intermediaries method, 210
increasing software gravity forces

method, 209
individuals, utilizing skill competency

patterns, 27
industry, 27, 93, 95, 351
inelasticity, 200, 212–215
information

exchange platforms, as technology
information sources, 318

flow of
as an aesthetic aspect of software

design, 166
as a software feature and capability, 240

preservation of, 219
software distribution guidelines for

sharing, 263
sources of for technology, 316–318

infrastructure, 314
innate talents

about, 151–152
curiosity attributes, 167–171
employing to become effective software

architects, 154
potency of imagination, 157–162
power of creativity, 154–157

promoting software architecture
effectiveness, 152–153

software design aesthetic, 162–167
innovation, as solution architect

responsibility, 42, 43
innovative software structures and

distributed formations, as an aesthetic
aspect of software design, 166

inquisitive interest and thinking, as a
curiosity aspect, 169

inseparability, 219
insertion method, 278
insulating method, 203
insurance industry, 320
integrated design, 198
integrating data source, as a property of

harmonizing forces in software
architecture environment, 192

integration
about, 33
of components, as application architect

responsibility, 45, 47
design activities, 205
design methods, 205–206
as enterprise architect

responsibility, 39, 40
process outline, 206–207
as a software architecture environment

construction design activity, 199
as solution architect responsibility, 42, 43
of technologies, as a property of

harmonizing forces in software
architecture environment, 192

integration pattern questions, 357
intelligent topological space, 179–180
intense gravitational force, 220
intensity, of software architecture

gravitational forces, 187
intercardinal physical direction system,

253–256, 283
interface solid, 225, 229–230
interfacing method, 274
internal utilization, of pipe solids,

233–234
interoperability, 128, 192, 322, 349, 357, 363
interpersonal relationship questions, 340
interpersonal skill questions, 340
interpretation of business requirements, as

solution architect responsibility, 41, 43
interviewers, as “who” questions, 92

Bell820970_bindex.indd 376 08-02-2023 18:50:58

 Index ■ I–L 377

introverted, as a social preference/
personal trait, 100

introverted- driven occupation, 102
investigatory responses to events, as a

curiosity aspect, 170
investing, as “why” questions, 91
invisible distribution attributes, 263–264
ISO standards, 58, 326, 336, 342
isolated architecture model, 198
IT practices, as a consideration for career

moves, 304
IT projects, identifying, 321
IT ticketing, in technology stack, 319
iterative design, 196

J
job descriptions, analyzing, 291–299
job interviews

about, 287–288, 337–338
attack plan, 308–336
defense plan, 291–308
preparing for, 5, 27
questions for

about, 28, 337–368
architecture pattern questions, 353–358
architecture style questions, 353–358
behavioral questions for, 338–341
data- related questions, 360–362
decision- making questions, 358–360
design pattern questions, 353–358
problem- solving questions, 358–360
production environment

questions, 362–365
skill assessment questions, 341–342
software architecture attributes

questions, 342–343
software architecture concepts

questions, 346–353
software architecture framework

questions, 365–368
software architecture life- cycle

questions, 343–346
for research, 77
strategy for, 288–291

job promotion, planning for, 5

K
knowledge, 169, 170
Kruchten’s 4 + 1 view model, 366

L
LAMP, 320
language platforms, in technology

stack, 319
Law of Demeter (LoD), 325
layer and delayer design

activities, 277–280
layer and delayer design methods, 278–279
layer and delayer process outline, 279–280
layered architecture model, 198, 350, 355
layers, 166, 348
leader occupation, 109
leader scale, 108
leadership

about, 118, 133
acceptance questions, 340
administrative duties, 138
assessment of leadership

competencies, 140–141
being proactive, 137
coaching and training, 138
creative thinking, 136
critical thinking, 136–137
decision- making, 134
diversity, equity, and inclusion, 135
establishment of trust, 137–138
hiring preferences, 136
managing time, 134
problem- solving, 134–135
questions about, 341
resolving conflicts, 139
responsibility and accountability, 135–136
team building, 139

leadership- driven career chart, 108–109
leadership- driven career path, 110–111
leadership- driven career

perspective, 107–109
leading software architects, 35–48
learning by listening to others, as a

curiosity aspect, 169
learning from others, social intelligence

and, 121–122
learning process, as a curiosity aspect, 169
length, in two- dimensional (2D)

software, 240–242
lengthen and shorten design

activities, 272–276
lengthen and shorten design

methods, 273–274

Bell820970_bindex.indd 377 08-02-2023 18:50:58

378 Index ■ L–N

lengthen and shorten process
outline, 275–276

liaison, 34
libraries, as technology information

sources, 317
Library of Congress, 311
life cycle, 196–219, 366
limited scope, 13
limiting high- availability capabilities

method, 213
line of business, as “where” self- discovery

questions, 95
lingo, in software architecture attack plans,

309, 323–328
Linux, 320
Logical Architecture Model, 18, 22,

301, 333
logical coordinate system,

252–253, 255–256
Logical Data Model, 24
Logical Data Schema, 20
long- range software distribution

method, 217
loosely- coupled, 196–197, 198
low availability, as a property of

disharmonizing forces in software
architecture environment, 194

low cohesion effect, 325

M
macro level, 176, 177–178
magazines, as technology information

sources, 317
malware analysis and prevention, as

responsibility of security
architects, 59, 60

managers, questions about, 341
master data hub, 354
MEAN, 320
Mergent intellect, 310
message brokering, as a property of

harmonizing forces in software
architecture environment, 192

message bus questions, 350
Message Flow Diagram, 18–19, 23
message harmonization method, 217
message hub, 185–186
message synchronization, as a property of

harmonizing forces in software
architecture environment, 192

message- oriented middleware (MOM),
186, 187, 322

micro level, 176–177
microservice pattern questions, 357
microservices, 354
middleware, 185–186, 319, 350
minimizing relationship method, 274
mock interviews, conducting, 304–308
Model- View- Controller (MVC), 324
modular, as a software architecture solid

attribute, 236–237
modularity method, 269
MongoDB, 320
monitoring, in technology stack, 319
monolithic architecture, 194, 355
monolithic solid, 225, 228–229
motivation, business requirements for, 8
multidimensional software architecture

environments
about, 223–224
best practices for constructing software

implementations, 282–283
construction life cycle of software

implementations, 264–280
deformation aspects of, 181
distribution styles of 3D software

implementations in architecture
computing space, 257–264

governing laws for software construction
in 3D computing world, 281

rudimentary geometrical design
structures, 224–237

software architecture dimensional
model, 237–247

software architecture solids, 224–237
3D software structures in software

architecture computing
space, 247–257

MySQL, 320

N
National Institute of Standards and

Technology (NIST), 21, 58
negative forces, 184–185
negotiation, social intelligence and, 122
Network Topology Maps, 19, 23
networking, 92, 120
news platforms, as technology information

sources, 317
next career move self- discovery queries, 94

Bell820970_bindex.indd 378 08-02-2023 18:50:59

 Index ■ N–P 379

Node.js, 320
non- analytical occupations, 105
nonanalytical scale, 104
nonfunctional requirements (NFR),

20, 51, 53
nontechnical scale, 104
non- technical- driven occupations, 105
North American Industry Classification

System (NAICS), 313
numerical coordinates, 252

O
observation, as a curiosity aspect, 170
obstacles, 102, 106, 110, 115
obtaining architecture vision support,

“how” self- questions for practicing
software architects, 98

occupation self- discovery questions, 93
office location, as “where” self- discovery

questions, 95
off- the- shelf products, 314
one- dimensional (1D) software,

237, 239–240
on- premises, 54
Open Group Architecture Framework

(TOGAF), 17, 366
The Open Group, 326
operating systems, in technology

stack, 319
operational balance, 168
operations, sustainment of, 248
opportunities, 8, 316
optimal design, 203, 207, 210, 214, 218, 270,

275, 279
optimal software architecture environment

construction, 196, 199
optimization of information workloads

method, 206
optimization of software relationships

method, 206
orchestration, as a property of

harmonizing forces in software
architecture environment, 192

organizational imperatives, personal
goals and, 5

organizational knowledge base, software
architect capability model for, 5

organizations, 4–5, 26–27
origin, 250–251
original setting, 194

P
parallelism, as a property of harmonizing

forces in software architecture
environment, 192

partnership, social intelligence and, 119
penetration testing, 59, 61, 302
Performance and Capacity Model, 20, 23
performance thresholds, 20
personal agenda questions, 340
personal development, as a curiosity

aspect, 170
personal goals, organizational

imperatives and, 5
personal knowledge gap, 5, 289, 303–304
personal road map, “how” self- queries for

applicants, 97
personally identifiable information

(PII), 327
PHP, 320
Physical Architecture Model, 18, 22,

301, 333
Physical Data Schema, 20, 24
pipe solid, 225, 230–234
Plunkett Research Online, 311
point in space, 250
policies, 328
politics, as “why” questions, 91
population density, 282
portability, 343
positioning, of software, 248
positive forces, 184–185
practical road map, “how” self- queries for

applicants, 97
practices, 91, 93, 300
pragmatic, as a career goal

characteristic, 78
pragmatic software design approaches, 327
preferences, 102, 106, 110, 115
preparation, as “when” self- discovery

questions, 96
preparation model, for job

interviews, 290–291
pre- training, as “when” self- discovery

questions, 96
principles, 328
prioritization, as a property of

harmonizing forces in software
architecture environment, 192

proactiveness, leadership and, 137
probability algorithms, 184

Bell820970_bindex.indd 379 08-02-2023 18:50:59

380 Index ■ P–R

probability assessment, of software
operations and behavior, 184

problem abstraction and generalization, as
enterprise architect responsibility, 38, 40

problem domain, 7–9, 345, 359
problems, 142–143, 174–176, 360
problem- solver occupation, 109
problem- solver scale, 108
problem- solving

leadership and, 134–135
questions about, 338, 358–360
questions about process, 360
skills for, 325–326
software architecture, 143

process outline, 270–272, 275–276, 279–280
process parallelism method, 217
product development life cycle

(PDLC), 159
production environment, 219, 338, 362–365
production facilitation, 42, 43, 45, 47
products

evaluation and selection, as solution
architect responsibility, 42, 43

evaluation documents for, 302
installation manuals for, 302
questions about, 351
selection and evaluation discipline

deliverables, in Software
Architecture Skill Competency
Models, 302

technical requirements for, 302
professional goal, 83
professionals, consulting, 18
programming frameworks, as application

architect responsibility, 45, 46
programming logic, 224
progress information questions, 339
project management, software architect

capability model for, 5
project requirements, issued by IT, 9
project saving questions, 341
promoting culture, 146, 248
promotion of interoperability method, 206
properties, 191–194
prototyping, as application architect

responsibility, 45, 47
Provide requirements and specifications

step, in creating software architect
capability model, 9, 10–23

public key infrastructure (PKI), as
responsibility of security
architects, 59, 61

publications, as technology information
sources, 317

Q
quality of solutions, 22, 309, 335–336
quantifiable, as a career goal

characteristic, 79
Quantify skill competencies step, in

creating software architect capability
model, 10, 21–27

questions, 28, 170. See also specific types
quitting, as “why” questions, 91

R
radical software distribution, as a property

of disharmonizing forces in software
architecture environment, 193

readiness, as “when” self- discovery
questions, 96

recoverability questions, 343
recovery time objective (RTO), 327
reducing clusters method, 213
reducing load balancing and failover

mechanisms method, 213
reducing scalability method, 213
redundancy, as a property of

disharmonizing forces in software
architecture environment, 194

Reference USA/Reference Solutions, 310
registry hub design pattern, 354
reinforcement method, 269, 278
relationship establishment method, 206
relationships, 165, 198
relative positions, in 3D software

architecture computing space, 250–251
relaxation of software binding method, 206
replacement method, 278
repositories, as a software architecture tool

category, 329, 332
Representation State Transfer (REST), 313
required skills self- discovery questions, 93
requirements

clarity of, in step 1 of creating software
architect capability models, 11–12

as a driver of architecture solutions, 7–9

Bell820970_bindex.indd 380 08-02-2023 18:50:59

 Index ■ R–S 381

issued by problem and solution domain
entities, 7

in Software Architecture Skill
Competency Models, 300

research, 18, 76–78
resource consumption method, 274
responsibilities

of application architects, 44–48
of business architects, 62–65
of cloud architects, 54–55
of data architects, 50–51
of enterprise architects, 38–40
in job description, 293, 296
of security architects, 58–61
of solution architects, 40–43

responsibility, leadership and, 135–136
RESTful API, 305
resume updating as “when” self- discovery

questions, 96
reusability, 343, 350
reuse method, 206
risk assessment, 42, 43, 59, 61
risk mitigation, as a curiosity aspect, 170
risks, 102, 106, 110, 115
road map, “how” self- queries for

applicants, 97
roles, 127
root- cause analysis questions, 359
rudimentary geometrical design

structures, 224–237
rudimentary guiding principles, 6
runtime environment composition and

decomposition design
activities, 201–202

S
SAAM for Complex Scenarios

(SAAMCS), 334
Saga, 354
Sarbanes- Oxley Act, 314
satisfaction, career milestones and, 80
satisfactory conditions, 188
scalability, 342, 343, 350, 363
Scenario- based Software Architecture

Analysis Method (SAAM), 334
scientific evidence questions, 359
scope of requirements, 9, 292
scope of responsibility, for leading

software architects, 48

scope reduction method, 269
secured design, 198
security

in production environments, 363
questions about, 360
security architect responsibilities

architecture, 58, 60
audits, 60, 61
awareness, 59, 61
risk management, 59, 61
strategy alignment, 58, 60

security architects, 57–61, 68–69, 84, 86–89
security controls, 21, 59, 61, 301
segmentation questions, 351
selection and evaluation of development

platforms, as application architect
responsibility, 45, 47

self- assessment
about, 22, 117–118
leadership, 133–141
social intelligence, 118–126
software architecture practice, 126–133
strategy, 141–148

self- consciousness, social intelligence
and, 119

self- discovery
conducting, 75–76
as a prerequisite for leadership- driven

career path, 110
process for, 89–98
social- driven career path and, 102
strategy- driven career path and, 115
technical- driven career path and, 106

self- identity, as “who” questions, 92
self- induced blindness, 153
self- induced social blindness, 153
self- presentation, social intelligence

and, 122–123
self- sufficiency, 100, 124, 236–237
self- sufficient- driven occupation, 102
separating method, 203
separation of concerns, 325
servers, in technology stack, 319
service centralization, as a property of

harmonizing forces in software
architecture environment, 192

Simple Object Access Protocol
(SOAP), 313

simplification, 145

Bell820970_bindex.indd 381 08-02-2023 18:50:59

382 Index ■ S–S

single sign- on (SSO) authentication
mechanism, 305, 357

Six Ws, 89–98
skill assessment, 124–126, 132–133,

337, 341–342
skill competency patterns, for

architects, 25–27
skills, 93, 293, 294, 297–298
SOA, 355
sociable, as a social preference/personal

trait, 100
social behavior, 219
social goals, influences on, 195–196
social intelligence

about, 117, 118
communication, 120
fellowship, 123
handling customer relationships, 124
learning from others, 121–122
negotiation, 122
networking, 120
partnership, 119
self- consciousness, 119
self- presentation, 122–123
self- sufficiency, 124
skill assessment, 124–126
soft skills, 120–121
teamwork, 118
teleworking, 123
trust building, 121

social media, as technology information
sources, 318

social talents, discovering, 75–76
social- driven career chart, 100–102
social- driven career path, 102–103
social- driven career perspective, 100–102
social- driven occupation, 101
soft skills, 120–121, 290
software

behavior
about, 177
as an aesthetic aspect of software

design, 166
software architecture environment

forces driving, 183–194
construction

balance table, 265–266, 283
best practices for, 282–283
design activities, 266–269
designing activities, 281

elements of, 282
laws of software architecture

environment, 219–220
life cycle, 264–280, 281
tools for, 283

control of population density, 248
descaling method, 274
design aesthetic, 162–167
design approaches, 145
development of, 91, 131
elasticity, as an aesthetic aspect of

software design, 167
granularity of, 282
isolation method, 217
positioning of, 248
probability assessment of operations and

behavior, 184
questions about development scope, 353
reuse

as enterprise architect
responsibility, 38, 39

methods for, 209
as a property of harmonizing forces in

software architecture
environment, 192

software architecture, 129
scaling method, 274
software distribution guidelines for

density of, 262
structural support, 281
structures

dimensions of, 281
influences of, on software architecture

computing space, 250
programming logic compared with, 224

software architect capability models,
4–6, 9–27

software architects
about, 3–4, 9
career planning for (See career planning)
collaboration between domain software

architects and leading, 65–71
“how” self- questions for

practicing, 97–98
levels for, 35–48
self- assessment for (See self- assessment)
self- discovery queries for, 93–94
self- discovery questions about types, 93
self- discovery questions for

candidates, 93

Bell820970_bindex.indd 382 08-02-2023 18:50:59

 Index ■ S–S 383

skill competency patterns for, 25–27
types of, 31–71
types of domain, 49–65

software architecture
applying disciplines to architecture

practices, 14–16
artifacts, 3
attributes questions, 337, 342–343
balancing, 248
business needs for, 32–34
capability weaknesses, 153
career coach, 97
communities, 97
computing space

about, 282
cardinal physical directions in, 253–256
chief features of, 249–257
intercardinal physical directions

in, 253–256
leveraging Z- axis to create floors

in, 256–257
logical coordinate system,

252–253, 255–256
skeleton of, 251–252

concepts questions
about, 338, 346–347
architecture environment

concepts, 349–350
business concepts, 351
consumer concepts, 352–353
design building block concepts, 347–349

consistency in, 43
contribution of curiosity to, 167–168
decomposition, 346
design patterns and, 130
dimensional model

about, 237–238
one dimension, 239–240
three dimensions, 242–247
two dimensions, 240–242
zero dimension, 238–239

dimensions, as an aesthetic aspect of
software design, 166

discovery, as a software architecture tool
category, 329, 331

elasticity, 250, 281
environment concepts, 349–350
frameworks

as Enterprise architect
responsibility, 38, 39

“how” self- questions for practicing
software architects, 98

questions, 338, 365–368
gravitational forces, 220
“how” self- queries for applicants, 97
interviews, 97
life cycle, 28, 338, 343–346
managers, 94
niche market, 76
organization managers, 92
patterns, 322, 338, 353–354, 358
practices

about, 117, 126
applying architecture disciplines

to, 14–16
architecture and design patterns, 130
architecture styles, 130
componentization, 130–131
distributed architecture model, 129
establishing in step 2 of creating

software architect capability
models, 12–13

federated architecture model, 129–130
interoperability, 128
role, 127
skill assessment, 132–133
software architecture frameworks,

131
software development, 131
software reuse, 129
strategy, 126–127
system integration, 128
vision, 127

principles, 325
promoting symmetry of, 248
questions about

about, 345, 346
complexity, 339
decisions, 339, 353, 360
evaluation, 366
goals, 340
governance, 366
leadership, 340–341
tasks, 345

repeatable solutions, as enterprise
architect responsibility, 38, 39

restructuring method, 269
self- discovery questions, 93
skill vetting, 22
skills, 22–24, 342

Bell820970_bindex.indd 383 08-02-2023 18:50:59

384 Index ■ S–T

solids
about, 224–225, 281
atomic solid, 225–226
attribute summary, 236–237
composite solid, 227–228
data solid, 234–236
interface solid, 229–230
monolithic solid, 228–229
pipe solid, 230–234

space, 248, 281
strategy, as a software architecture tool

category, 329, 331
styles, 130, 322, 355, 358
styles, as enterprise architect

responsibility, 39, 40
symmetry, 281, 282
verification, as application architect

responsibility, 45, 47
vision, 41, 42, 339
visualization, as a software architecture

tool category, 329, 330, 332–333
as “why” questions, 91

Software Architecture Skill Competency
Models, creating for job
descriptions, 299–304

software development life cycle (SDLC),
299, 302–303

SOLID principles, 289–290, 305
solution architects, 36, 40–43, 68–69, 94
Solution architecture layer, 37
solution domain, requirements

issued by, 7–9
solutions, 80, 360
source code integration, as Application

architect responsibility, 45, 47
source code review, as Application

architect responsibility, 45, 47
space, 248, 263
specialist occupations, 114
specialist scale, 113
specificity, 243–245, 248
sponsorship questions, 339
stacking method, 278
stakeholders questions, 360
Standard and Poor’s Capital IQ, 311
standardization capabilities, 326–327
standards, 328, 335–336
strategic collaboration, 32–33
strategic solution questions, 360
strategic thinking, 142
strategist scale, 113

strategy
about, 118, 141
abstraction, 143
alignment of, 33, 63, 64
alignment verification of, 63, 64
analytical capabilities, 145–146
assessment of strategic

competencies, 147–148
execution plan, 147
generalization, 144
influencing, 146
problem identification, 142–143
problem- solving, 143
promoting culture, 146
simplification, 145
software architecture, 126–127, 142
for software architecture job

interviews, 288–291
software design approaches, 145
strategic thinking, 142
strategy execution plan, 147
success measurement, as responsibility of

business architects, 63, 64
visualization, 144

strategy- driven career chart, 112–114
strategy- driven career path, 114–116
strategy- driven career perspective,

112–114
strategy- driven occupations, 114
strengths, in SWOT analysis, 315
structure geometrical formation, 281
structures, 176–178
subjects, 76, 77–78
summary, in job description, 293, 294–295
survival, 152–153, 351
sustainability, 245–246, 248
SWOT analysis, conducting, 315–316
symmetrical distribution style,

258, 261–263
synchronization, 200, 215–219
Synthesis stage, of life cycle, 345
system development life cycle, as

responsibility of security
architects, 59, 61

system integration, 128
system unpredictability, 179

T
tabular data format, 236
tactical solution questions, 360
tangible solutions, 41

Bell820970_bindex.indd 384 08-02-2023 18:50:59

 Index ■ T–U 385

team building, leadership and, 139
team player occupation, 109
team player scale, 108
teamwork, social intelligence and, 118
technical consistency, questions about, 346
Technical Facilitation Discipline, 16, 20, 23
technical management, 34, 41, 43
technical proficiency, software design

and, 162–163
technical requirements, 9
technical scale, 104
technical specifications, 11, 353
Technical Training, 20, 23
technical- driven career path, 106–107
technical- driven occupations, 105
technological environment, 95, 318–319
technological implementation, 34
technological incompatibility, as a

property of disharmonizing forces in
software architecture environment, 194

technological leadership questions, 341
technological mediation, 33–34
technological modernization, 38, 40, 94
technological roadmap, as enterprise

architect responsibility, 38, 40
technological solutions, 32–34, 359
technological standardization, as

enterprise architect responsibility,
38, 39

technological talents, discovering, 75–76
technological transformation, “how”

self- questions for practicing software
architects, 98

technology stacks, 318–319
technology view, in software architecture

attack plans, 309, 316–322
technology- driven career chart, 104–105
technology- driven career

perspective, 103–105
teleworking, social intelligence and, 123
testing, 34, 45, 47, 55, 57
thicken and contract design

activities, 267–272
thicken and contract design

methods, 269–270
thicken and contract process

outline, 270–272
threats, 8, 59, 61, 316
3D computing space, governing laws for

software construction in, 281

3D geometrical and topological
fabric, 177–178

3D software
about, 238, 242–247
architecture computing space, relative

positions in, 250–251
structures

about, 247
chief features of software architecture

computing space, 249–257
impetus for establishing 3D software

architecture space, 247–249
in software architecture computing

space, 247–257
tiers, 166, 348
tightly- coupled, 196–197, 198
time management, leadership and, 134
time- to- market questions, 341, 351
timing, as “when” self- discovery

questions, 96
tools, in software architecture attack plans,

309, 328–333
topological space, 180
total cost of ownership questions, 351
trade shows, as technology information

sources, 317
training, 77, 138, 318, 342
transaction progress and timing, as an

aesthetic aspect of software design, 164
transformation of architecture concepts, as

solution architect responsibility, 41, 42
trust building, social intelligence and, 121
two- dimensional (2D) software,

238, 240–242

U
uncontrolled quantum landscape behavior,

software architecture environment
driven by, 178–179

underemployment, as a consideration for
career moves, 304

unification method, 278
unifying method, 202
unstacking method, 278
use cases

collaboration between leading software
architects and domain software
architects, 66–71

layer and delayer design
activities, 277–280

Bell820970_bindex.indd 385 08-02-2023 18:50:59

386 Index ■ U–Z

lengthen and shorten design
activities, 272–276

planning career execution, 85–89
software architecture environment

centralization and decentralization
design activities, 208–211

composition and decomposition design
activities, 201–204

elasticity and inelasticity design
activities, 211–215

integration and disintegration design
activities, 204–207

synchronization and desynchronization
design activities, 215–219

thicken and contract design
activities, 267–272

user requirement questions, 352
user story, 345

V
vertical knowledge, 292
visible distribution attributes, 263–264
vision, 127
visual representation, 25

visualization, 144
volumes, 242–243, 282

W
weaknesses, in SWOT analysis, 315
well- designed software architecture

environment, 189
well- timed, as a career goal

characteristic, 79
“what” questions, 92–94
“when” questions, 95–96
“where” questions, 94–95
“who” questions, 91–92
“why” questions, 90–91
width, in two- dimensional (2D)

software, 240–242
work relocation, as “where” self- discovery

questions, 95

Z
Z- axis, leveraging, 256–257
zero- dimensional software, 237,

238–239
zero- sum game, 220

Bell820970_bindex.indd 386 08-02-2023 18:50:59

Bell820970_bindex.indd 387 08-02-2023 18:50:59

Bell820970_bindex.indd 388 08-02-2023 18:50:59

Bell820970_bindex.indd 389 08-02-2023 18:50:59

Bell820970_bindex.indd 390 08-02-2023 18:50:59

