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Python’s simplicity lets you become productive quickly, but this often means 
you aren’t using everything it has to offer.  With this hands-on guide, you’ll learn 
how to write effective, idiomatic Python code by leveraging its best—and 
possibly most neglected—features. Author Luciano Ramalho takes you 
through Python’s core language features and libraries, and shows you how to 
make your code shorter, faster, and more readable at the same time.

Many experienced programmers try to bend Python to fit patterns they 
learned from other languages, and never discover Python features outside 
of their experience. With this book, those Python programmers will 
thoroughly learn how to become proficient in Python 3.

This book covers:

 ■ The Python data model: understand how special methods are 
the key to the consistent behavior of objects

 ■ Data structures: take full advantage of built-in types, and 
understand the text versus bytes duality in the Unicode age

 ■ Functions as objects: view Python functions as first-class objects, 
and understand how this affects popular design patterns

 ■ Object-oriented idioms: build classes by learning about 
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asyncio packages

 ■ Metaprogramming: understand how properties, attribute 
descriptors, class decorators, and metaclasses work
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1. Message to the comp.lang.python Usenet group, Dec. 23, 2002: “Acrimony in c.l.p.”

Preface

Here’s the plan: when someone uses a feature you don’t understand, simply shoot them.
This is easier than learning something new, and before too long the only living coders
will be writing in an easily understood, tiny subset of Python 0.9.6 <wink>.1

— Tim Peters
 Legendary core developer and author of The Zen of Python

“Python is an easy to learn, powerful programming language.” Those are the first words
of the official Python Tutorial. That is true, but there is a catch: because the language is
easy to learn and put to use, many practicing Python programmers leverage only a
fraction of its powerful features.

An experienced programmer may start writing useful Python code in a matter of hours.
As the first productive hours become weeks and months, a lot of developers go on
writing Python code with a very strong accent carried from languages learned before.
Even if Python is your first language, often in academia and in introductory books it is
presented while carefully avoiding language-specific features.

As a teacher introducing Python to programmers experienced in other languages, I see
another problem that this book tries to address: we only miss stuff we know about.
Coming from another language, anyone may guess that Python supports regular ex‐
pressions, and look that up in the docs. But if you’ve never seen tuple unpacking or
descriptors before, you will probably not search for them, and may end up not using
those features just because they are specific to Python.

This book is not an A-to-Z exhaustive reference of Python. Its emphasis is on the lan‐
guage features that are either unique to Python or not found in many other popular
languages. This is also mostly a book about the core language and some of its libraries.
I will rarely talk about packages that are not in the standard library, even though the

xv
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Python package index now lists more than 60,000 libraries and many of them are in‐
credibly useful.

Who This Book Is For
This book was written for practicing Python programmers who want to become pro‐
ficient in Python 3. If you know Python 2 but are willing to migrate to Python 3.4 or
later, you should be fine. At the time of this writing, the majority of professional Python
programmers are using Python 2, so I took special care to highlight Python 3 features
that may be new to that audience.

However, Fluent Python is about making the most of Python 3.4, and I do not spell out
the fixes needed to make the code work in earlier versions. Most examples should run
in Python 2.7 with little or no changes, but in some cases, backporting would require
significant rewriting.

Having said that, I believe this book may be useful even if you must stick with Python
2.7, because the core concepts are still the same. Python 3 is not a new language, and
most differences can be learned in an afternoon. What’s New in Python 3.0 is a good
starting point. Of course, there have been changes since Python 3.0 was released in 2009,
but none as important as those in 3.0.

If you are not sure whether you know enough Python to follow along, review the topics
of the official Python Tutorial. Topics covered in the tutorial will not be explained here,
except for some features that are new in Python 3.

Who This Book Is Not For
If you are just learning Python, this book is going to be hard to follow. Not only that, if
you read it too early in your Python journey, it may give you the impression that every
Python script should leverage special methods and metaprogramming tricks. Premature
abstraction is as bad as premature optimization.

How This Book Is Organized
The core audience for this book should not have trouble jumping directly to any chapter
in this book. However, each of the six parts forms a book within the book. I conceived
the chapters within each part to be read in sequence.

I tried to emphasize using what is available before discussing how to build your own.
For example, in Part II, Chapter 2 covers sequence types that are ready to use, including
some that don’t get a lot of attention, like collections.deque. Building user-defined
sequences is only addressed in Part IV, where we also see how to leverage the abstract
base classes (ABCs) from collections.abc. Creating your own ABCs is discussed even
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later in Part IV, because I believe it’s important to be comfortable using an ABC before
writing your own.

This approach has a few advantages. First, knowing what is ready to use can save you
from reinventing the wheel. We use existing collection classes more often than we im‐
plement our own, and we can give more attention to the advanced usage of available
tools by deferring the discussion on how to create new ones. We are also more likely to
inherit from existing ABCs than to create a new ABC from scratch. And finally, I believe
it is easier to understand the abstractions after you’ve seen them in action.

The downside of this strategy are the forward references scattered throughout the
chapters. I hope these will be easier to tolerate now that you know why I chose this path.

Here are the main topics in each part of the book:
Part I

A single chapter about the Python data model explaining how the special methods
(e.g., __repr__) are the key to the consistent behavior of objects of all types—in a
language that is admired for its consistency. Understanding various facets of the
data model is the subject of most of the rest of the book, but Chapter 1 provides a
high-level overview.

Part II
The chapters in this part cover the use of collection types: sequences, mappings,
and sets, as well as the str versus bytes split—the cause of much celebration among
Python 3 users and much pain for Python 2 users who have not yet migrated their
code bases. The main goals are to recall what is already available and to explain
some behavior that is sometimes surprising, like the reordering of dict keys when
we are not looking, or the caveats of locale-dependent Unicode string sorting. To
achieve these goals, the coverage is sometimes high level and wide (e.g., when many
variations of sequences and mappings are presented) and sometimes deep (e.g.,
when we dive into the hash tables underneath the dict and set types).

Part III
Here we talk about functions as first-class objects in the language: what that means,
how it affects some popular design patterns, and how to implement function dec‐
orators by leveraging closures. Also covered here is the general concept of callables
in Python, function attributes, introspection, parameter annotations, and the new
nonlocal declaration in Python 3.

Part IV
Now the focus is on building classes. In Part II, the class declaration appears in
few examples; Part IV presents many classes. Like any object-oriented (OO) lan‐
guage, Python has its particular set of features that may or may not be present in
the language in which you and I learned class-based programming. The chapters
explain how references work, what mutability really means, the lifecycle of instan‐
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ces, how to build your own collections and ABCs, how to cope with multiple in‐
heritance, and how to implement operator overloading—when that makes sense.

Part V
Covered in this part are the language constructs and libraries that go beyond se‐
quential control flow with conditionals, loops, and subroutines. We start with gen‐
erators, then visit context managers and coroutines, including the challenging but
powerful new yield from syntax. Part V closes with a high-level introduction to
modern concurrency in Python with collections.futures (using threads and
processes under the covers with the help of futures) and doing event-oriented I/O
with asyncio (leveraging futures on top of coroutines and yield from).

Part VI
This part starts with a review of techniques for building classes with attributes
created dynamically to handle semi-structured data such as JSON datasets. Next,
we cover the familiar properties mechanism, before diving into how object attribute
access works at a lower level in Python using descriptors. The relationship between
functions, methods, and descriptors is explained. Throughout Part VI, the step-by-
step implementation of a field validation library uncovers subtle issues that lead to
the use of the advanced tools of the final chapter: class decorators and metaclasses.

Hands-On Approach
Often we’ll use the interactive Python console to explore the language and libraries. I
feel it is important to emphasize the power of this learning tool, particularly for those
readers who’ve had more experience with static, compiled languages that don’t provide
a read-eval-print#loop (REPL).

One of the standard Python testing packages, doctest, works by simulating console
sessions and verifying that the expressions evaluate to the responses shown. I used
doctest to check most of the code in this book, including the console listings. You don’t
need to use or even know about doctest to follow along: the key feature of doctests is
that they look like transcripts of interactive Python console sessions, so you can easily
try out the demonstrations yourself.

Sometimes I will explain what we want to accomplish by showing a doctest before the
code that makes it pass. Firmly establishing what is to be done before thinking about
how to do it helps focus our coding effort. Writing tests first is the basis of test driven
development (TDD) and I’ve also found it helpful when teaching. If you are unfamiliar
with doctest, take a look at its documentation and this book’s source code repository.
You’ll find that you can verify the correctness of most of the code in the book by typing
python3 -m doctest example_script.py in the command shell of your OS.
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Hardware Used for Timings
The book has some simple benchmarks and timings. Those tests were performed on
one or the other laptop I used to write the book: a 2011 MacBook Pro 13” with a 2.7
GHz Intel Core i7 CPU, 8GB of RAM, and a spinning hard disk, and a 2014 MacBook
Air 13” with a 1.4 GHz Intel Core i5 CPU, 4GB of RAM, and a solid-state disk. The
MacBook Air has a slower CPU and less RAM, but its RAM is faster (1600 versus 1333
MHz) and the SSD is much faster than the HD. In daily usage, I can’t tell which machine
is faster.

Soapbox: My Personal Perspective
I have been using, teaching, and debating Python since 1998, and I enjoy studying and
comparing programming languages, their design, and the theory behind them. At the
end of some chapters, I have added “Soapbox” sidebars with my own perspective about
Python and other languages. Feel free to skip these if you are not into such discussions.
Their content is completely optional.

Python Jargon
I wanted this to be a book not only about Python but also about the culture around it.
Over more than 20 years of communications, the Python community has developed its
own particular lingo and acronyms. At the end of this book, Python Jargon contains a
list of terms that have special meaning among Pythonistas.

Python Version Covered
I tested all the code in the book using Python 3.4—that is, CPython 3.4, the most popular
Python implementation written in C. There is only one exception: “The New @ Infix
Operator in Python 3.5” on page 383 shows the @ operator, which is only supported by
Python 3.5.

Almost all code in the book should work with any Python 3.x–compatible interpreter,
including PyPy3 2.4.0, which is compatible with Python 3.2.5. The notable exceptions
are the examples using yield from and asyncio, which are only available in Python
3.3 or later.

Most code should also work with Python 2.7 with minor changes, except the Unicode-
related examples in Chapter 4, and the exceptions already noted for Python 3 versions
earlier than 3.3.
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Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Note that when a line break falls within a constant_width term, a hyphen is not added
—it could be misunderstood as part of the term.
Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Every script and most code snippets that appear in the book are available in the Fluent
Python code repository on GitHub.
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PART I

Prologue





1. Story of Jython, written as a Foreword to Jython Essentials (O’Reilly, 2002), by Samuele Pedroni and Noel
Rappin.

CHAPTER 1

The Python Data Model

Guido’s sense of the aesthetics of language design is amazing. I’ve met many fine language
designers who could build theoretically beautiful languages that no one would ever use,
but Guido is one of those rare people who can build a language that is just slightly less
theoretically beautiful but thereby is a joy to write programs in.1

— Jim Hugunin
 Creator of Jython, cocreator of AspectJ, architect of the .Net DLR

One of the best qualities of Python is its consistency. After working with Python for a
while, you are able to start making informed, correct guesses about features that are
new to you.

However, if you learned another object-oriented language before Python, you may have
found it strange to use len(collection) instead of collection.len(). This apparent
oddity is the tip of an iceberg that, when properly understood, is the key to everything
we call Pythonic. The iceberg is called the Python data model, and it describes the API
that you can use to make your own objects play well with the most idiomatic language
features.

You can think of the data model as a description of Python as a framework. It formalizes
the interfaces of the building blocks of the language itself, such as sequences, iterators,
functions, classes, context managers, and so on.

While coding with any framework, you spend a lot of time implementing methods that
are called by the framework. The same happens when you leverage the Python data
model. The Python interpreter invokes special methods to perform basic object oper‐
ations, often triggered by special syntax. The special method names are always written
with leading and trailing double underscores (i.e., __getitem__). For example, the syn‐
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2. See “Private and “Protected” Attributes in Python” on page 262.

3. I personally first heard “dunder” from Steve Holden. Wikipedia credits Mark Johnson and Tim Hochberg
for the first written records of “dunder” in responses to the question “How do you pronounce __ (double
underscore)?” in the python-list on September 26, 2002: Johnson’s message; Hochberg’s (11 minutes later).

tax obj[key] is supported by the __getitem__ special method. In order to evaluate
my_collection[key], the interpreter calls my_collection.__getitem__(key).

The special method names allow your objects to implement, support, and interact with
basic language constructs such as:

• Iteration
• Collections
• Attribute access
• Operator overloading
• Function and method invocation
• Object creation and destruction
• String representation and formatting
• Managed contexts (i.e., with blocks)

Magic and Dunder
The term magic method is slang for special method, but when
talking about a specific method like __getitem__, some Python
developers take the shortcut of saying “under-under-getitem”
which is ambiguous, because the syntax __x has another special
meaning.2 Being precise and pronouncing “under-under-getitem-
under-under” is tiresome, so I follow the lead of author and teach‐
er Steve Holden and say “dunder-getitem.” All experienced Pytho‐
nistas understand that shortcut. As a result, the special methods
are also known as dunder methods.3

A Pythonic Card Deck
The following is a very simple example, but it demonstrates the power of implementing
just two special methods, __getitem__ and __len__.

Example 1-1 is a class to represent a deck of playing cards.

Example 1-1. A deck as a sequence of cards
import collections
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Card = collections.namedtuple('Card', ['rank', 'suit'])

class FrenchDeck:
    ranks = [str(n) for n in range(2, 11)] + list('JQKA')
    suits = 'spades diamonds clubs hearts'.split()

    def __init__(self):
        self._cards = [Card(rank, suit) for suit in self.suits
                                        for rank in self.ranks]

    def __len__(self):
        return len(self._cards)

    def __getitem__(self, position):
        return self._cards[position]

The first thing to note is the use of collections.namedtuple to construct a simple class
to represent individual cards. Since Python 2.6, namedtuple can be used to build classes
of objects that are just bundles of attributes with no custom methods, like a database
record. In the example, we use it to provide a nice representation for the cards in the
deck, as shown in the console session:

>>> beer_card = Card('7', 'diamonds')
>>> beer_card
Card(rank='7', suit='diamonds')

But the point of this example is the FrenchDeck class. It’s short, but it packs a punch.
First, like any standard Python collection, a deck responds to the len() function by
returning the number of cards in it:

>>> deck = FrenchDeck()
>>> len(deck)
52

Reading specific cards from the deck—say, the first or the last—should be as easy as
deck[0] or deck[-1], and this is what the __getitem__ method provides:

>>> deck[0]
Card(rank='2', suit='spades')
>>> deck[-1]
Card(rank='A', suit='hearts')

Should we create a method to pick a random card? No need. Python already has a
function to get a random item from a sequence: random.choice. We can just use it on
a deck instance:

>>> from random import choice
>>> choice(deck)
Card(rank='3', suit='hearts')
>>> choice(deck)
Card(rank='K', suit='spades')
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>>> choice(deck)
Card(rank='2', suit='clubs')

We’ve just seen two advantages of using special methods to leverage the Python data
model:

• The users of your classes don’t have to memorize arbitrary method names for stan‐
dard operations (“How to get the number of items? Is it .size(), .length(), or
what?”).

• It’s easier to benefit from the rich Python standard library and avoid reinventing
the wheel, like the random.choice function.

But it gets better.

Because our __getitem__ delegates to the [] operator of self._cards, our deck auto‐
matically supports slicing. Here’s how we look at the top three cards from a brand new
deck, and then pick just the aces by starting on index 12 and skipping 13 cards at a time:

>>> deck[:3]
[Card(rank='2', suit='spades'), Card(rank='3', suit='spades'),
Card(rank='4', suit='spades')]
>>> deck[12::13]
[Card(rank='A', suit='spades'), Card(rank='A', suit='diamonds'),
Card(rank='A', suit='clubs'), Card(rank='A', suit='hearts')]

Just by implementing the __getitem__ special method, our deck is also iterable:

>>> for card in deck:  # doctest: +ELLIPSIS
...   print(card)
Card(rank='2', suit='spades')
Card(rank='3', suit='spades')
Card(rank='4', suit='spades')
...

The deck can also be iterated in reverse:

>>> for card in reversed(deck):  # doctest: +ELLIPSIS
...   print(card)
Card(rank='A', suit='hearts')
Card(rank='K', suit='hearts')
Card(rank='Q', suit='hearts')
...
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4. In Python 2, you’d have to be explicit and write FrenchDeck(object), but that’s the default in Python 3.

Ellipsis in doctests
Whenever possible, the Python console listings in this book were
extracted from doctests to ensure accuracy. When the output was
too long, the elided part is marked by an ellipsis (...) like in the
last line in the preceding code. In such cases, we used the #
doctest: +ELLIPSIS directive to make the doctest pass. If you
are trying these examples in the interactive console, you may omit
the doctest directives altogether.

Iteration is often implicit. If a collection has no __contains__ method, the in operator
does a sequential scan. Case in point: in works with our FrenchDeck class because it is
iterable. Check it out:

>>> Card('Q', 'hearts') in deck
True
>>> Card('7', 'beasts') in deck
False

How about sorting? A common system of ranking cards is by rank (with aces being
highest), then by suit in the order of spades (highest), then hearts, diamonds, and clubs
(lowest). Here is a function that ranks cards by that rule, returning 0 for the 2 of clubs
and 51 for the ace of spades:

suit_values = dict(spades=3, hearts=2, diamonds=1, clubs=0)

def spades_high(card):
    rank_value = FrenchDeck.ranks.index(card.rank)
    return rank_value * len(suit_values) + suit_values[card.suit]

Given spades_high, we can now list our deck in order of increasing rank:

>>> for card in sorted(deck, key=spades_high):  # doctest: +ELLIPSIS
...      print(card)
Card(rank='2', suit='clubs')
Card(rank='2', suit='diamonds')
Card(rank='2', suit='hearts')
... (46 cards ommitted)
Card(rank='A', suit='diamonds')
Card(rank='A', suit='hearts')
Card(rank='A', suit='spades')

Although FrenchDeck implicitly inherits from object,4 its functionality is not inherited,
but comes from leveraging the data model and composition. By implementing the spe‐
cial methods __len__ and __getitem__, our FrenchDeck behaves like a standard Python
sequence, allowing it to benefit from core language features (e.g., iteration and slicing)
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and from the standard library, as shown by the examples using random.choice,
reversed, and sorted. Thanks to composition, the __len__ and __getitem__ imple‐
mentations can hand off all the work to a list object, self._cards.

How About Shuffling?
As implemented so far, a FrenchDeck cannot be shuffled, be‐
cause it is immutable: the cards and their positions cannot be
changed, except by violating encapsulation and handling the
_cards attribute directly. In Chapter 11, that will be fixed by
adding a one-line __setitem__ method.

How Special Methods Are Used
The first thing to know about special methods is that they are meant to be called by the
Python interpreter, and not by you. You don’t write my_object.__len__(). You write
len(my_object) and, if my_object is an instance of a user-defined class, then Python
calls the __len__ instance method you implemented.

But for built-in types like list, str, bytearray, and so on, the interpreter takes a short‐
cut: the CPython implementation of len() actually returns the value of the ob_size
field in the PyVarObject C struct that represents any variable-sized built-in object in
memory. This is much faster than calling a method.

More often than not, the special method call is implicit. For example, the statement for
i in x: actually causes the invocation of iter(x), which in turn may call x.__iter__()
if that is available.

Normally, your code should not have many direct calls to special methods. Unless you
are doing a lot of metaprogramming, you should be implementing special methods
more often than invoking them explicitly. The only special method that is frequently
called by user code directly is __init__, to invoke the initializer of the superclass in
your own __init__ implementation.

If you need to invoke a special method, it is usually better to call the related built-in
function (e.g., len, iter, str, etc). These built-ins call the corresponding special meth‐
od, but often provide other services and—for built-in types—are faster than method
calls. See, for example, “A Closer Look at the iter Function” on page 436 in Chapter 14.

Avoid creating arbitrary, custom attributes with the __foo__ syntax because such names
may acquire special meanings in the future, even if they are unused today.
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Emulating Numeric Types
Several special methods allow user objects to respond to operators such as +. We will
cover that in more detail in Chapter 13, but here our goal is to further illustrate the use
of special methods through another simple example.

We will implement a class to represent two-dimensional vectors—that is Euclidean
vectors like those used in math and physics (see Figure 1-1).

Figure 1-1. Example of two-dimensional vector addition; Vector(2, 4) + Vector(2, 1) re‐
sults in Vector(4, 5).

The built-in complex type can be used to represent two-
dimensional vectors, but our class can be extended to represent n-
dimensional vectors. We will do that in Chapter 14.

We will start by designing the API for such a class by writing a simulated console session
that we can use later as a doctest. The following snippet tests the vector addition pictured
in Figure 1-1:

>>> v1 = Vector(2, 4)
>>> v2 = Vector(2, 1)
>>> v1 + v2
Vector(4, 5)

Note how the + operator produces a Vector result, which is displayed in a friendly
manner in the console.
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The abs built-in function returns the absolute value of integers and floats, and the
magnitude of complex numbers, so to be consistent, our API also uses abs to calculate
the magnitude of a vector:

>>> v = Vector(3, 4)
>>> abs(v)
5.0

We can also implement the * operator to perform scalar multiplication (i.e., multiplying
a vector by a number to produce a new vector with the same direction and a multiplied
magnitude):

>>> v * 3
Vector(9, 12)
>>> abs(v * 3)
15.0

Example 1-2 is a Vector class implementing the operations just described, through the
use of the special methods __repr__, __abs__, __add__ and __mul__.

Example 1-2. A simple two-dimensional vector class
from math import hypot

class Vector:

    def __init__(self, x=0, y=0):
        self.x = x
        self.y = y

    def __repr__(self):
        return 'Vector(%r, %r)' % (self.x, self.y)

    def __abs__(self):
        return hypot(self.x, self.y)

    def __bool__(self):
        return bool(abs(self))

    def __add__(self, other):
        x = self.x + other.x
        y = self.y + other.y
        return Vector(x, y)

    def __mul__(self, scalar):
        return Vector(self.x * scalar, self.y * scalar)

Note that although we implemented four special methods (apart from __init__), none
of them is directly called within the class or in the typical usage of the class illustrated
by the console listings. As mentioned before, the Python interpreter is the only frequent
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caller of most special methods. In the following sections, we discuss the code for each
special method.

String Representation
The __repr__ special method is called by the repr built-in to get the string represen‐
tation of the object for inspection. If we did not implement __repr__, vector instances
would be shown in the console like <Vector object at 0x10e100070>.

The interactive console and debugger call repr on the results of the expressions evalu‐
ated, as does the %r placeholder in classic formatting with the % operator, and the !r
conversion field in the new Format String Syntax used in the str.format method.

Speaking of the % operator and the str.format method, you will
notice I use both in this book, as does the Python community at
large. I am increasingly favoring the more powerful str.for
mat, but I am aware many Pythonistas prefer the simpler %, so
we’ll probably see both in Python source code for the foreseea‐
ble future.

Note that in our __repr__ implementation, we used %r to obtain the standard repre‐
sentation of the attributes to be displayed. This is good practice, because it shows the
crucial difference between Vector(1, 2) and Vector('1', '2')—the latter would not
work in the context of this example, because the constructor’s arguments must be num‐
bers, not str.

The string returned by __repr__ should be unambiguous and, if possible, match the
source code necessary to re-create the object being represented. That is why our chosen
representation looks like calling the constructor of the class (e.g., Vector(3, 4)).

Contrast __repr__ with __str__, which is called by the str() constructor and implicitly
used by the print function. __str__ should return a string suitable for display to end
users.

If you only implement one of these special methods, choose __repr__, because when
no custom __str__ is available, Python will call __repr__ as a fallback.

“Difference between __str__ and __repr__ in Python” is a Stack
Overflow question with excellent contributions from Pythonistas
Alex Martelli and Martijn Pieters.
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Arithmetic Operators
Example 1-2 implements two operators: + and *, to show basic usage of __add__ and
__mul__. Note that in both cases, the methods create and return a new instance of
Vector, and do not modify either operand—self or other are merely read. This is the
expected behavior of infix operators: to create new objects and not touch their operands.
I will have a lot more to say about that in Chapter 13.

As implemented, Example 1-2 allows multiplying a Vector by a
number, but not a number by a Vector, which violates the com‐
mutative property of multiplication. We will fix that with the spe‐
cial method __rmul__ in Chapter 13.

Boolean Value of a Custom Type
Although Python has a bool type, it accepts any object in a boolean context, such as the
expression controlling an if or while statement, or as operands to and, or, and not. To
determine whether a value x is truthy or falsy, Python applies bool(x), which always
returns True or False.

By default, instances of user-defined classes are considered truthy, unless either
__bool__ or __len__ is implemented. Basically, bool(x) calls x.__bool__() and uses
the result. If __bool__ is not implemented, Python tries to invoke x.__len__(), and if
that returns zero, bool returns False. Otherwise bool returns True.

Our implementation of __bool__ is conceptually simple: it returns False if the mag‐
nitude of the vector is zero, True otherwise. We convert the magnitude to a Boolean
using bool(abs(self)) because __bool__ is expected to return a boolean.

Note how the special method __bool__ allows your objects to be consistent with the
truth value testing rules defined in the “Built-in Types” chapter of The Python Standard
Library documentation.

A faster implementation of Vector.__bool__ is this:
    def __bool__(self):
        return bool(self.x or self.y)

This is harder to read, but avoids the trip through abs, __abs__,
the squares, and square root. The explicit conversion to bool is
needed because __bool__ must return a boolean and or returns
either operand as is: x or y evaluates to x if that is truthy, other‐
wise the result is y, whatever that is.
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Overview of Special Methods
The “Data Model” chapter of The Python Language Reference lists 83 special method
names, 47 of which are used to implement arithmetic, bitwise, and comparison opera‐
tors.

As an overview of what is available, see Tables 1-1 and 1-2.

The grouping shown in the following tables is not exactly the same
as in the official documentation.

Table 1-1. Special method names (operators excluded)
Category Method names

String/bytes representation __repr__, __str__, __format__, __bytes__

Conversion to number __abs__, __bool__, __complex__, __int__, __float__, __hash__,
__index__

Emulating collections __len__, __getitem__, __setitem__, __delitem__, __contains__

Iteration __iter__, __reversed__, __next__

Emulating callables __call__

Context management __enter__, __exit__

Instance creation and destruction __new__, __init__, __del__

Attribute management __getattr__, __getattribute__, __setattr__, __delattr__, __dir__

Attribute descriptors __get__, __set__, __delete__

Class services __prepare__, __instancecheck__, __subclasscheck__

Table 1-2. Special method names for operators
Category Method names and related operators

Unary numeric operators __neg__ -, __pos__ +, __abs__ abs()

Rich comparison operators __lt__ >, __le__ <=, __eq__ ==, __ne__ !=, __gt__ >, __ge__ >=

Arithmetic operators __add__ +, __sub__ -, __mul__ *, __truediv__ /, __floordiv__ //, __mod__
%, __divmod__ divmod() , __pow__ ** or pow(), __round__ round()

Reversed arithmetic operators __radd__, __rsub__, __rmul__, __rtruediv__, __rfloordiv__, __rmod__,
__rdivmod__, __rpow__

Augmented assignment
arithmetic operators

__iadd__, __isub__, __imul__, __itruediv__, __ifloordiv__, __imod__,
__ipow__

Bitwise operators __invert__ ~, __lshift__ <<, __rshift__ >>, __and__ &, __or__ |,
__xor__ ^
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Category Method names and related operators

Reversed bitwise operators __rlshift__, __rrshift__, __rand__, __rxor__, __ror__

Augmented assignment bitwise
operators

__ilshift__, __irshift__, __iand__, __ixor__, __ior__

The reversed operators are fallbacks used when operands are
swapped (b * a instead of a * b), while augmented assignments
are shortcuts combining an infix operator with variable assign‐
ment (a = a * b becomes a *= b). Chapter 13 explains both
reversed operators and augmented assignment in detail.

Why len Is Not a Method
I asked this question to core developer Raymond Hettinger in 2013 and the key to his
answer was a quote from The Zen of Python: “practicality beats purity.” In “How Special
Methods Are Used” on page 8, I described how len(x) runs very fast when x is an
instance of a built-in type. No method is called for the built-in objects of CPython: the
length is simply read from a field in a C struct. Getting the number of items in a collection
is a common operation and must work efficiently for such basic and diverse types as
str, list, memoryview, and so on.

In other words, len is not called as a method because it gets special treatment as part of
the Python data model, just like abs. But thanks to the special method __len__, you can
also make len work with your own custom objects. This is a fair compromise between
the need for efficient built-in objects and the consistency of the language. Also from
The Zen of Python: “Special cases aren’t special enough to break the rules.”

If you think of abs and len as unary operators, you may be more
inclined to forgive their functional look-and-feel, as opposed to
the method call syntax one might expect in an OO language. In
fact, the ABC language—a direct ancestor of Python that pio‐
neered many of its features—had an # operator that was the
equivalent of len (you’d write #s). When used as an infix opera‐
tor, written x#s, it counted the occurrences of x in s, which in
Python you get as s.count(x), for any sequence s.

Chapter Summary
By implementing special methods, your objects can behave like the built-in types, en‐
abling the expressive coding style the community considers Pythonic.
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A basic requirement for a Python object is to provide usable string representations of
itself, one used for debugging and logging, another for presentation to end users. That
is why the special methods __repr__ and __str__ exist in the data model.

Emulating sequences, as shown with the FrenchDeck example, is one of the most widely
used applications of the special methods. Making the most of sequence types is the
subject of Chapter 2, and implementing your own sequence will be covered in Chap‐
ter 10 when we create a multidimensional extension of the Vector class.

Thanks to operator overloading, Python offers a rich selection of numeric types, from
the built-ins to decimal.Decimal and fractions.Fraction, all supporting infix arith‐
metic operators. Implementing operators, including reversed operators and augmented
assignment, will be shown in Chapter 13 via enhancements of the Vector example.

The use and implementation of the majority of the remaining special methods of the
Python data model is covered throughout this book.

Further Reading
The “Data Model” chapter of The Python Language Reference is the canonical source
for the subject of this chapter and much of this book.

Python in a Nutshell, 2nd Edition (O’Reilly) by Alex Martelli has excellent coverage of
the data model. As I write this, the most recent edition of the Nutshell book is from 2006
and focuses on Python 2.5, but there have been very few changes in the data model since
then, and Martelli’s description of the mechanics of attribute access is the most author‐
itative I’ve seen apart from the actual C source code of CPython. Martelli is also a prolific
contributor to Stack Overflow, with more than 5,000 answers posted. See his user profile
at Stack Overflow.

David Beazley has two books covering the data model in detail in the context of Python
3: Python Essential Reference, 4th Edition (Addison-Wesley Professional), and Python
Cookbook, 3rd Edition (O’Reilly), coauthored with Brian K. Jones.

The Art of the Metaobject Protocol (AMOP, MIT Press) by Gregor Kiczales, Jim des
Rivieres, and Daniel G. Bobrow explains the concept of a metaobject protocol (MOP),
of which the Python data model is one example.

Soapbox
Data Model or Object Model?

What the Python documentation calls the “Python data model,” most authors would say
is the “Python object model.” Alex Martelli’s Python in a Nutshell 2E, and David Beazley’s
Python Essential Reference 4E are the best books covering the “Python data model,” but
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they always refer to it as the “object model.” On Wikipedia, the first definition of object
model is “The properties of objects in general in a specific computer programming
language.” This is what the “Python data model” is about. In this book, I will use “data
model” because the documentation favors that term when referring to the Python object
model, and because it is the title of the chapter of The Python Language Reference most
relevant to our discussions.

Magic Methods

The Ruby community calls their equivalent of the special methods magic methods. Many
in the Python community adopt that term as well. I believe the special methods are
actually the opposite of magic. Python and Ruby are the same in this regard: both em‐
power their users with a rich metaobject protocol that is not magic, but enables users
to leverage the same tools available to core developers.

In contrast, consider JavaScript. Objects in that language have features that are magic,
in the sense that you cannot emulate them in your own user-defined objects. For ex‐
ample, before JavaScript 1.8.5, you could not define read-only attributes in your Java‐
Script objects, but some built-in objects always had read-only attributes. In JavaScript,
read-only attributes were “magic,” requiring supernatural powers that a user of the lan‐
guage did not have until ECMAScript 5.1 came out in 2009. The metaobject protocol
of JavaScript is evolving, but historically it has been more limited than those of Python
and Ruby.

Metaobjects

The Art of the Metaobject Protocol (AMOP) is my favorite computer book title. Less
subjectively, the term metaobject protocol is useful to think about the Python data model
and similar features in other languages. The metaobject part refers to the objects that
are the building blocks of the language itself. In this context, protocol is a synonym of
interface. So a metaobject protocol is a fancy synonym for object model: an API for core
language constructs.

A rich metaobject protocol enables extending a language to support new programming
paradigms. Gregor Kiczales, the first author of the AMOP book, later became a pioneer
in aspect-oriented programming and the initial author of AspectJ, an extension of Java
implementing that paradigm. Aspect-oriented programming is much easier to imple‐
ment in a dynamic language like Python, and several frameworks do it, but the most
important is zope.interface, which is briefly discussed in “Further Reading” on page
342 of Chapter 11.
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PART II

Data Structures





1. Leo Geurts, Lambert Meertens, and Steven Pemberton, ABC Programmer’s Handbook, p. 8.

CHAPTER 2

An Array of Sequences

As you may have noticed, several of the operations mentioned work equally for texts, lists
and tables. Texts, lists and tables together are called trains. […] The FOR command also
works generically on trains.1

— Geurts, Meertens, and Pemberton
 ABC Programmer’s Handbook

Before creating Python, Guido was a contributor to the ABC language—a 10-year re‐
search project to design a programming environment for beginners. ABC introduced
many ideas we now consider “Pythonic”: generic operations on sequences, built-in tuple
and mapping types, structure by indentation, strong typing without variable declara‐
tions, and more. It’s no accident that Python is so user-friendly.

Python inherited from ABC the uniform handling of sequences. Strings, lists, byte se‐
quences, arrays, XML elements, and database results share a rich set of common oper‐
ations including iteration, slicing, sorting, and concatenation.

Understanding the variety of sequences available in Python saves us from reinventing
the wheel, and their common interface inspires us to create APIs that properly support
and leverage existing and future sequence types.

Most of the discussion in this chapter applies to sequences in general, from the familiar
list to the str and bytes types that are new in Python 3. Specific topics on lists, tuples,
arrays, and queues are also covered here, but the focus on Unicode strings and byte
sequences is deferred to Chapter 4. Also, the idea here is to cover sequence types that
are ready to use. Creating your own sequence types is the subject of Chapter 10.
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Overview of Built-In Sequences
The standard library offers a rich selection of sequence types implemented in C:
Container sequences

list, tuple, and collections.deque can hold items of different types.

Flat sequences
str, bytes, bytearray, memoryview, and array.array hold items of one type.

Container sequences hold references to the objects they contain, which may be of any
type, while flat sequences physically store the value of each item within its own memory
space, and not as distinct objects. Thus, flat sequences are more compact, but they are
limited to holding primitive values like characters, bytes, and numbers.

Another way of grouping sequence types is by mutability:
Mutable sequences

list, bytearray, array.array, collections.deque, and memoryview

Immutable sequences
tuple, str, and bytes

Figure 2-1 helps visualize how mutable sequences differ from immutable ones, while
also inheriting several methods from them. Note that the built-in concrete sequence
types do not actually subclass the Sequence and MutableSequence abstract base classes
(ABCs) depicted, but the ABCs are still useful as a formalization of what functionality
to expect from a full-featured sequence type.

Figure 2-1. UML class diagram for some classes from collections.abc (superclasses are
on the left; inheritance arrows point from subclasses to superclasses; names in italic are
abstract classes and abstract methods)

Keeping in mind these common traits—mutable versus immutable; container versus
flat—is helpful to extrapolate what you know about one sequence type to others.
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The most fundamental sequence type is the list—mutable and mixed-type. I am sure
you are comfortable handling them, so we’ll jump right into list comprehensions, a
powerful way of building lists that is somewhat underused because the syntax may be
unfamiliar. Mastering list comprehensions opens the door to generator expressions,
which—among other uses—can produce elements to fill up sequences of any type. Both
are the subject of the next section.

List Comprehensions and Generator Expressions
A quick way to build a sequence is using a list comprehension (if the target is a list)
or a generator expression (for all other kinds of sequences). If you are not using these
syntactic forms on a daily basis, I bet you are missing opportunities to write code that
is more readable and often faster at the same time.

If you doubt my claim that these constructs are “more readable,” read on. I’ll try to
convince you.

For brevity, many Python programmers refer to list comprehen‐
sions as listcomps, and generator expressions as genexps. I will use
these words as well.

List Comprehensions and Readability
Here is a test: which do you find easier to read, Example 2-1 or Example 2-2?

Example 2-1. Build a list of Unicode codepoints from a string
>>> symbols = '$¢£¥€¤'
>>> codes = []
>>> for symbol in symbols:
...     codes.append(ord(symbol))
...
>>> codes
[36, 162, 163, 165, 8364, 164]

Example 2-2. Build a list of Unicode codepoints from a string, take two
>>> symbols = '$¢£¥€¤'
>>> codes = [ord(symbol) for symbol in symbols]
>>> codes
[36, 162, 163, 165, 8364, 164]

Anybody who knows a little bit of Python can read Example 2-1. However, after learning
about listcomps, I find Example 2-2 more readable because its intent is explicit.
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A for loop may be used to do lots of different things: scanning a sequence to count or
pick items, computing aggregates (sums, averages), or any number of other processing
tasks. The code in Example 2-1 is building up a list. In contrast, a listcomp is meant to
do one thing only: to build a new list.

Of course, it is possible to abuse list comprehensions to write truly incomprehensible
code. I’ve seen Python code with listcomps used just to repeat a block of code for its side
effects. If you are not doing something with the produced list, you should not use that
syntax. Also, try to keep it short. If the list comprehension spans more than two lines,
it is probably best to break it apart or rewrite as a plain old for loop. Use your best
judgment: for Python as for English, there are no hard-and-fast rules for clear writing.

Syntax Tip
In Python code, line breaks are ignored inside pairs of [], {}, or
(). So you can build multiline lists, listcomps, genexps, dictionar‐
ies and the like without using the ugly \ line continuation escape.

Listcomps No Longer Leak Their Variables
In Python 2.x, variables assigned in the for clauses in list comprehensions were set in
the surrounding scope, sometimes with tragic consequences. See the following Python
2.7 console session:

Python 2.7.6 (default, Mar 22 2014, 22:59:38)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> x = 'my precious'
>>> dummy = [x for x in 'ABC']
>>> x
'C'

As you can see, the initial value of x was clobbered. This no longer happens in Python
3.

List comprehensions, generator expressions, and their siblings set and dict compre‐
hensions now have their own local scope, like functions. Variables assigned within the
expression are local, but variables in the surrounding scope can still be referenced. Even
better, the local variables do not mask the variables from the surrounding scope.

This is Python 3:

>>> x = 'ABC'
>>> dummy = [ord(x) for x in x]
>>> x  
'ABC'
>>> dummy  
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[65, 66, 67]
>>>

The value of x is preserved.
The list comprehension produces the expected list.

List comprehensions build lists from sequences or any other iterable type by filtering
and transforming items. The filter and map built-ins can be composed to do the same,
but readability suffers, as we will see next.

Listcomps Versus map and filter
Listcomps do everything the map and filter functions do, without the contortions of
the functionally challenged Python lambda. Consider Example 2-3.

Example 2-3. The same list built by a listcomp and a map/filter composition
>>> symbols = '$¢£¥€¤'
>>> beyond_ascii = [ord(s) for s in symbols if ord(s) > 127]
>>> beyond_ascii
[162, 163, 165, 8364, 164]
>>> beyond_ascii = list(filter(lambda c: c > 127, map(ord, symbols)))
>>> beyond_ascii
[162, 163, 165, 8364, 164]

I used to believe that map and filter were faster than the equivalent listcomps, but Alex
Martelli pointed out that’s not the case—at least not in the preceding examples. The 02-
array-seq/listcomp_speed.py script in the Fluent Python code repository is a simple speed
test comparing listcomp with filter/map.

I’ll have more to say about map and filter in Chapter 5. Now we turn to the use of
listcomps to compute Cartesian products: a list containing tuples built from all items
from two or more lists.

Cartesian Products
Listcomps can generate lists from the Cartesian product of two or more iterables. The
items that make up the cartesian product are tuples made from items from every input
iterable. The resulting list has a length equal to the lengths of the input iterables mul‐
tiplied. See Figure 2-2.
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Figure 2-2. The Cartesian product of a sequence of three card ranks and a sequence of
four suits results in a sequence of twelve pairings

For example, imagine you need to produce a list of T-shirts available in two colors and
three sizes. Example 2-4 shows how to produce that list using a listcomp. The result has
six items.

Example 2-4. Cartesian product using a list comprehension
>>> colors = ['black', 'white']
>>> sizes = ['S', 'M', 'L']
>>> tshirts = [(color, size) for color in colors for size in sizes]  
>>> tshirts
[('black', 'S'), ('black', 'M'), ('black', 'L'), ('white', 'S'),
 ('white', 'M'), ('white', 'L')]
>>> for color in colors:  
...     for size in sizes:
...         print((color, size))
...
('black', 'S')
('black', 'M')
('black', 'L')
('white', 'S')
('white', 'M')
('white', 'L')
>>> tshirts = [(color, size) for size in sizes      
...                          for color in colors]
>>> tshirts
[('black', 'S'), ('white', 'S'), ('black', 'M'), ('white', 'M'),
 ('black', 'L'), ('white', 'L')]
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This generates a list of tuples arranged by color, then size.
Note how the resulting list is arranged as if the for loops were nested in the
same order as they appear in the listcomp.
To get items arranged by size, then color, just rearrange the for clauses; adding
a line break to the listcomp makes it easy to see how the result will be ordered.

In Example 1-1 (Chapter 1), the following expression was used to initialize a card deck
with a list made of 52 cards from all 13 ranks of each of the 4 suits, grouped by suit:

        self._cards = [Card(rank, suit) for suit in self.suits
                                        for rank in self.ranks]

Listcomps are a one-trick pony: they build lists. To fill up other sequence types, a genexp
is the way to go. The next section is a brief look at genexps in the context of building
nonlist sequences.

Generator Expressions
To initialize tuples, arrays, and other types of sequences, you could also start from a
listcomp, but a genexp saves memory because it yields items one by one using the iterator
protocol instead of building a whole list just to feed another constructor.

Genexps use the same syntax as listcomps, but are enclosed in parentheses rather than
brackets.

Example 2-5 shows basic usage of genexps to build a tuple and an array.

Example 2-5. Initializing a tuple and an array from a generator expression
>>> symbols = '$¢£¥€¤'
>>> tuple(ord(symbol) for symbol in symbols)  
(36, 162, 163, 165, 8364, 164)
>>> import array
>>> array.array('I', (ord(symbol) for symbol in symbols))  
array('I', [36, 162, 163, 165, 8364, 164])

If the generator expression is the single argument in a function call, there is no
need to duplicate the enclosing parentheses.
The array constructor takes two arguments, so the parentheses around the
generator expression are mandatory. The first argument of the array constructor
defines the storage type used for the numbers in the array, as we’ll see in “Arrays”
on page 48.

Example 2-6 uses a genexp with a Cartesian product to print out a roster of T-shirts of
two colors in three sizes. In contrast with Example 2-4, here the six-item list of T-shirts
is never built in memory: the generator expression feeds the for loop producing one
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item at a time. If the two lists used in the Cartesian product had 1,000 items each, using
a generator expression would save the expense of building a list with a million items
just to feed the for loop.

Example 2-6. Cartesian product in a generator expression
>>> colors = ['black', 'white']
>>> sizes = ['S', 'M', 'L']
>>> for tshirt in ('%s %s' % (c, s) for c in colors for s in sizes):  
...     print(tshirt)
...
black S
black M
black L
white S
white M
white L

The generator expression yields items one by one; a list with all six T-shirt
variations is never produced in this example.

Chapter 14 is devoted to explaining how generators work in detail. Here the idea was
just to show the use of generator expressions to initialize sequences other than lists, or
to produce output that you don’t need to keep in memory.

Now we move on to the other fundamental sequence type in Python: the tuple.

Tuples Are Not Just Immutable Lists
Some introductory texts about Python present tuples as “immutable lists,” but that is
short selling them. Tuples do double duty: they can be used as immutable lists and also
as records with no field names. This use is sometimes overlooked, so we will start with
that.

Tuples as Records
Tuples hold records: each item in the tuple holds the data for one field and the position
of the item gives its meaning.

If you think of a tuple just as an immutable list, the quantity and the order of the items
may or may not be important, depending on the context. But when using a tuple as a
collection of fields, the number of items is often fixed and their order is always vital.

Example 2-7 shows tuples being used as records. Note that in every expression, sorting
the tuple would destroy the information because the meaning of each data item is given
by its position in the tuple.
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Example 2-7. Tuples used as records
>>> lax_coordinates = (33.9425, -118.408056)  
>>> city, year, pop, chg, area = ('Tokyo', 2003, 32450, 0.66, 8014)  
>>> traveler_ids = [('USA', '31195855'), ('BRA', 'CE342567'),  
...     ('ESP', 'XDA205856')]
>>> for passport in sorted(traveler_ids):  
...     print('%s/%s' % passport)   
...
BRA/CE342567
ESP/XDA205856
USA/31195855
>>> for country, _ in traveler_ids:  
...     print(country)
...
USA
BRA
ESP

Latitude and longitude of the Los Angeles International Airport.
Data about Tokyo: name, year, population (millions), population change (%),
area (km²).
A list of tuples of the form (country_code, passport_number).
As we iterate over the list, passport is bound to each tuple.
The % formatting operator understands tuples and treats each item as a separate
field.
The for loop knows how to retrieve the items of a tuple separately—this is called
“unpacking.” Here we are not interested in the second item, so it’s assigned to
_, a dummy variable.

Tuples work well as records because of the tuple unpacking mechanism—our next sub‐
ject.

Tuple Unpacking
In Example 2-7, we assigned ('Tokyo', 2003, 32450, 0.66, 8014) to city, year,
pop, chg, area in a single statement. Then, in the last line, the % operator assigned
each item in the passport tuple to one slot in the format string in the print argument.
Those are two examples of tuple unpacking.
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Tuple unpacking works with any iterable object. The only require‐
ment is that the iterable yields exactly one item per variable in the
receiving tuple, unless you use a star (*) to capture excess items as
explained in “Using * to grab excess items” on page 29. The term
tuple unpacking is widely used by Pythonistas, but iterable un‐
packing is gaining traction, as in the title of PEP 3132 — Exten‐
ded Iterable Unpacking.

The most visible form of tuple unpacking is parallel assignment; that is, assigning items
from an iterable to a tuple of variables, as you can see in this example:

>>> lax_coordinates = (33.9425, -118.408056)
>>> latitude, longitude = lax_coordinates  # tuple unpacking
>>> latitude
33.9425
>>> longitude
-118.408056

An elegant application of tuple unpacking is swapping the values of variables without
using a temporary variable:

>>> b, a = a, b

Another example of tuple unpacking is prefixing an argument with a star when calling
a function:

>>> divmod(20, 8)
(2, 4)
>>> t = (20, 8)
>>> divmod(*t)
(2, 4)
>>> quotient, remainder = divmod(*t)
>>> quotient, remainder
(2, 4)

The preceding code also shows a further use of tuple unpacking: enabling functions to
return multiple values in a way that is convenient to the caller. For example, the
os.path.split() function builds a tuple (path, last_part) from a filesystem path:

>>> import os
>>> _, filename = os.path.split('/home/luciano/.ssh/idrsa.pub')
>>> filename
'idrsa.pub'

Sometimes when we only care about certain parts of a tuple when unpacking, a dummy
variable like _ is used as placeholder, as in the preceding example.
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If you write internationalized software, _ is not a good dummy
variable because it is traditionally used as an alias to the get
text.gettext function, as recommended in the gettext module
documentation. Otherwise, it’s a nice name for placeholder vari‐
able.

Another way of focusing on just some of the items when unpacking a tuple is to use the
*, as we’ll see right away.

Using * to grab excess items

Defining function parameters with *args to grab arbitrary excess arguments is a classic
Python feature.

In Python 3, this idea was extended to apply to parallel assignment as well:

>>> a, b, *rest = range(5)
>>> a, b, rest
(0, 1, [2, 3, 4])
>>> a, b, *rest = range(3)
>>> a, b, rest
(0, 1, [2])
>>> a, b, *rest = range(2)
>>> a, b, rest
(0, 1, [])

In the context of parallel assignment, the * prefix can be applied to exactly one variable,
but it can appear in any position:

>>> a, *body, c, d = range(5)
>>> a, body, c, d
(0, [1, 2], 3, 4)
>>> *head, b, c, d = range(5)
>>> head, b, c, d
([0, 1], 2, 3, 4)

Finally, a powerful feature of tuple unpacking is that it works with nested structures.

Nested Tuple Unpacking
The tuple to receive an expression to unpack can have nested tuples, like (a, b, (c,
d)), and Python will do the right thing if the expression matches the nesting structure.
Example 2-8 shows nested tuple unpacking in action.

Example 2-8. Unpacking nested tuples to access the longitude
metro_areas = [
    ('Tokyo', 'JP', 36.933, (35.689722, 139.691667)),   # 
    ('Delhi NCR', 'IN', 21.935, (28.613889, 77.208889)),
    ('Mexico City', 'MX', 20.142, (19.433333, -99.133333)),
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    ('New York-Newark', 'US', 20.104, (40.808611, -74.020386)),
    ('Sao Paulo', 'BR', 19.649, (-23.547778, -46.635833)),
]

print('{:15} | {:^9} | {:^9}'.format('', 'lat.', 'long.'))
fmt = '{:15} | {:9.4f} | {:9.4f}'
for name, cc, pop, (latitude, longitude) in metro_areas:  # 
    if longitude <= 0:  # 
        print(fmt.format(name, latitude, longitude))

Each tuple holds a record with four fields, the last of which is a coordinate pair.
By assigning the last field to a tuple, we unpack the coordinates.
if longitude <= 0: limits the output to metropolitan areas in the Western
hemisphere.

The output of Example 2-8 is:

                |   lat.    |   long.
Mexico City     |   19.4333 |  -99.1333
New York-Newark |   40.8086 |  -74.0204
Sao Paulo       |  -23.5478 |  -46.6358

Before Python 3, it was possible to define functions with nested
tuples in the formal parameters (e.g., def fn(a, (b, c), d):).
This is no longer supported in Python 3 function definitions, for
practical reasons explained in PEP 3113 — Removal of Tuple Pa‐
rameter Unpacking. To be clear: nothing changed from the per‐
spective of users calling a function. The restriction applies only to
the definition of functions.

As designed, tuples are very handy. But there is a missing feature when using them as
records: sometimes it is desirable to name the fields. That is why the namedtuple func‐
tion was invented. Read on.

Named Tuples
The collections.namedtuple function is a factory that produces subclasses of tuple
enhanced with field names and a class name—which helps debugging.

Instances of a class that you build with namedtuple take exactly the
same amount of memory as tuples because the field names are
stored in the class. They use less memory than a regular object
because they don’t store attributes in a per-instance __dict__.
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Recall how we built the Card class in Example 1-1 in Chapter 1:

Card = collections.namedtuple('Card', ['rank', 'suit'])

Example 2-9 shows how we could define a named tuple to hold information about a
city.

Example 2-9. Defining and using a named tuple type
>>> from collections import namedtuple
>>> City = namedtuple('City', 'name country population coordinates')  
>>> tokyo = City('Tokyo', 'JP', 36.933, (35.689722, 139.691667))  
>>> tokyo
City(name='Tokyo', country='JP', population=36.933, coordinates=(35.689722,
139.691667))
>>> tokyo.population  
36.933
>>> tokyo.coordinates
(35.689722, 139.691667)
>>> tokyo[1]
'JP'

Two parameters are required to create a named tuple: a class name and a list of
field names, which can be given as an iterable of strings or as a single space-
delimited string.
Data must be passed as positional arguments to the constructor (in contrast, the
tuple constructor takes a single iterable).
You can access the fields by name or position.

A named tuple type has a few attributes in addition to those inherited from tuple.
Example 2-10 shows the most useful: the _fields class attribute, the class method
_make(iterable), and the _asdict() instance method.

Example 2-10. Named tuple attributes and methods (continued from the previous ex‐
ample)
>>> City._fields  
('name', 'country', 'population', 'coordinates')
>>> LatLong = namedtuple('LatLong', 'lat long')
>>> delhi_data = ('Delhi NCR', 'IN', 21.935, LatLong(28.613889, 77.208889))
>>> delhi = City._make(delhi_data)  
>>> delhi._asdict()  
OrderedDict([('name', 'Delhi NCR'), ('country', 'IN'), ('population',
21.935), ('coordinates', LatLong(lat=28.613889, long=77.208889))])
>>> for key, value in delhi._asdict().items():
        print(key + ':', value)

name: Delhi NCR
country: IN
population: 21.935
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coordinates: LatLong(lat=28.613889, long=77.208889)
>>>

_fields is a tuple with the field names of the class.
_make() allow you to instantiate a named tuple from an iterable; City(*del
hi_data) would do the same.
_asdict() returns a collections.OrderedDict built from the named tuple
instance. That can be used to produce a nice display of city data.

Now that we’ve explored the power of tuples as records, we can consider their second
role as an immutable variant of the list type.

Tuples as Immutable Lists
When using a tuple as an immutable variation of list, it helps to know how similar
they actually are. As you can see in Table 2-1, tuple supports all list methods that do
not involve adding or removing items, with one exception—tuple lacks the __re
versed__ method. However, that is just for optimization; reversed(my_tuple) works
without it.

Table 2-1. Methods and attributes found in list or tuple (methods implemented by ob‐
ject are omitted for brevity)

list tuple  

s.__add__(s2) ● ● s + s2—concatenation

s.__iadd__(s2) ● s += s2—in-place concatenation

s.append(e) ● Append one element after last

s.clear() ● Delete all items

s.__contains__(e) ● ● e in s

s.copy() ● Shallow copy of the list

s.count(e) ● ● Count occurrences of an element

s.__delitem__(p) ● Remove item at position p

s.extend(it) ● Append items from iterable it

s.__getitem__(p) ● ● s[p]—get item at position

s.__getnewargs__() ● Support for optimized serialization with pickle

s.index(e) ● ● Find position of first occurrence of e

s.insert(p, e) ● Insert element e before the item at position p

s.__iter__() ● ● Get iterator

s.__len__() ● ● len(s)—number of items

s.__mul__(n) ● ● s * n—repeated concatenation
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list tuple  

s.__imul__(n) ● s *= n—in-place repeated concatenation

s.__rmul__(n) ● ● n * s—reversed repeated concatenationa

s.pop([p]) ● Remove and return last item or item at optional position p

s.remove(e) ● Remove first occurrence of element e by value

s.reverse() ● Reverse the order of the items in place

s.__reversed__() ● Get iterator to scan items from last to first

s.__setitem__(p, e) ● s[p] = e—put e in position p, overwriting existing item

s.sort([key], [reverse]) ● Sort items in place with optional keyword arguments key and reverse
a Reversed operators are explained in Chapter 13.

Every Python programmer knows that sequences can be sliced using the s[a:b] syntax.
We now turn to some less well-known facts about slicing.

Slicing
A common feature of list, tuple, str, and all sequence types in Python is the support
of slicing operations, which are more powerful than most people realize.

In this section, we describe the use of these advanced forms of slicing. Their imple‐
mentation in a user-defined class will be covered in Chapter 10, in keeping with our
philosophy of covering ready-to-use classes in this part of the book, and creating new
classes in Part IV.

Why Slices and Range Exclude the Last Item
The Pythonic convention of excluding the last item in slices and ranges works well with
the zero-based indexing used in Python, C, and many other languages. Some convenient
features of the convention are:

• It’s easy to see the length of a slice or range when only the stop position is given:
range(3) and my_list[:3] both produce three items.

• It’s easy to compute the length of a slice or range when start and stop are given: just
subtract stop - start.

• It’s easy to split a sequence in two parts at any index x, without overlapping: simply
get my_list[:x] and my_list[x:]. For example:

>>> l = [10, 20, 30, 40, 50, 60]
>>> l[:2]  # split at 2
[10, 20]
>>> l[2:]
[30, 40, 50, 60]
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>>> l[:3]  # split at 3
[10, 20, 30]
>>> l[3:]
[40, 50, 60]

But the best arguments for this convention were written by the Dutch computer scientist
Edsger W. Dijkstra (see the last reference in “Further Reading” on page 59).

Now let’s take a close look at how Python interprets slice notation.

Slice Objects
This is no secret, but worth repeating just in case: s[a:b:c] can be used to specify a
stride or step c, causing the resulting slice to skip items. The stride can also be negative,
returning items in reverse. Three examples make this clear:

>>> s = 'bicycle'
>>> s[::3]
'bye'
>>> s[::-1]
'elcycib'
>>> s[::-2]
'eccb'

Another example was shown in Chapter 1 when we used deck[12::13] to get all the
aces in the unshuffled deck:

>>> deck[12::13]
[Card(rank='A', suit='spades'), Card(rank='A', suit='diamonds'),
Card(rank='A', suit='clubs'), Card(rank='A', suit='hearts')]

The notation a:b:c is only valid within [] when used as the indexing or subscript
operator, and it produces a slice object: slice(a, b, c). As we will see in “How Slicing
Works” on page 281, to evaluate the expression seq[start:stop:step], Python calls
seq.__getitem__(slice(start, stop, step)). Even if you are not implementing
your own sequence types, knowing about slice objects is useful because it lets you assign
names to slices, just like spreadsheets allow naming of cell ranges.

Suppose you need to parse flat-file data like the invoice shown in Example 2-11. Instead
of filling your code with hardcoded slices, you can name them. See how readable this
makes the for loop at the end of the example.

Example 2-11. Line items from a flat-file invoice
>>> invoice = """
... 0.....6.................................40........52...55........
... 1909  Pimoroni PiBrella                     $17.50    3    $52.50
... 1489  6mm Tactile Switch x20                 $4.95    2     $9.90
... 1510  Panavise Jr. - PV-201                 $28.00    1    $28.00
... 1601  PiTFT Mini Kit 320x240                $34.95    1    $34.95
... """
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2. No, I did not get this backwards: the ellipsis class name is really all lowercase and the instance is a built-
in named Ellipsis, just like bool is lowercase but its instances are True and False.

>>> SKU = slice(0, 6)
>>> DESCRIPTION = slice(6, 40)
>>> UNIT_PRICE = slice(40, 52)
>>> QUANTITY =  slice(52, 55)
>>> ITEM_TOTAL = slice(55, None)
>>> line_items = invoice.split('\n')[2:]
>>> for item in line_items:
...     print(item[UNIT_PRICE], item[DESCRIPTION])
...
    $17.50   Pimoroni PiBrella
     $4.95   6mm Tactile Switch x20
    $28.00   Panavise Jr. - PV-201
    $34.95   PiTFT Mini Kit 320x240

We’ll come back to slice objects when we discuss creating your own collections in
“Vector Take #2: A Sliceable Sequence” on page 280. Meanwhile, from a user perspective,
slicing includes additional features such as multidimensional slices and ellipsis (...)
notation. Read on.

Multidimensional Slicing and Ellipsis
The [] operator can also take multiple indexes or slices separated by commas. This is
used, for instance, in the external NumPy package, where items of a two-dimensional
numpy.ndarray can be fetched using the syntax a[i, j] and a two-dimensional slice
obtained with an expression like a[m:n, k:l]. Example 2-22 later in this chapter shows
the use of this notation. The __getitem__ and __setitem__ special methods that handle
the [] operator simply receive the indices in a[i, j] as a tuple. In other words, to
evaluate a[i, j], Python calls a.__getitem__((i, j)).

The built-in sequence types in Python are one-dimensional, so they support only one
index or slice, and not a tuple of them.

The ellipsis—written with three full stops (...) and not … (Unicode U+2026)—is rec‐
ognized as a token by the Python parser. It is an alias to the Ellipsis object, the single
instance of the ellipsis class.2 As such, it can be passed as an argument to functions
and as part of a slice specification, as in f(a, ..., z) or a[i:...]. NumPy uses ...
as a shortcut when slicing arrays of many dimensions; for example, if x is a four-
dimensional array, x[i, ...] is a shortcut for x[i, :, :, :,]. See the Tentative
NumPy Tutorial to learn more about this.

At the time of this writing, I am unaware of uses of Ellipsis or multidimensional
indexes and slices in the Python standard library. If you spot one, let me know. These
syntactic features exist to support user-defined types and extensions such as NumPy.
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Slices are not just useful to extract information from sequences; they can also be used
to change mutable sequences in place—that is, without rebuilding them from scratch.

Assigning to Slices
Mutable sequences can be grafted, excised, and otherwise modified in place using slice
notation on the left side of an assignment statement or as the target of a del statement.
The next few examples give an idea of the power of this notation:

>>> l = list(range(10))
>>> l
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> l[2:5] = [20, 30]
>>> l
[0, 1, 20, 30, 5, 6, 7, 8, 9]
>>> del l[5:7]
>>> l
[0, 1, 20, 30, 5, 8, 9]
>>> l[3::2] = [11, 22]
>>> l
[0, 1, 20, 11, 5, 22, 9]
>>> l[2:5] = 100  
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: can only assign an iterable
>>> l[2:5] = [100]
>>> l
[0, 1, 100, 22, 9]

When the target of the assignment is a slice, the right side must be an iterable
object, even if it has just one item.

Everybody knows that concatenation is a common operation with sequences of any
type. Any introductory Python text explains the use of + and * for that purpose, but
there are some subtle details on how they work, which we cover next.

Using + and * with Sequences
Python programmers expect that sequences support + and *. Usually both operands of
+ must be of the same sequence type, and neither of them is modified but a new sequence
of the same type is created as result of the concatenation.

To concatenate multiple copies of the same sequence, multiply it by an integer. Again,
a new sequence is created:

>>> l = [1, 2, 3]
>>> l * 5
[1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]
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>>> 5 * 'abcd'
'abcdabcdabcdabcdabcd'

Both + and * always create a new object, and never change their operands.

Beware of expressions like a * n when a is a sequence contain‐
ing mutable items because the result may surprise you. For exam‐
ple, trying to initialize a list of lists as my_list = [[]] * 3 will
result in a list with three references to the same inner list, which is
probably not what you want.

The next section covers the pitfalls of trying to use * to initialize a list of lists.

Building Lists of Lists
Sometimes we need to initialize a list with a certain number of nested lists—for example,
to distribute students in a list of teams or to represent squares on a game board. The
best way of doing so is with a list comprehension, as in Example 2-12.

Example 2-12. A list with three lists of length 3 can represent a tic-tac-toe board
>>> board = [['_'] * 3 for i in range(3)]  
>>> board
[['_', '_', '_'], ['_', '_', '_'], ['_', '_', '_']]
>>> board[1][2] = 'X'  
>>> board
[['_', '_', '_'], ['_', '_', 'X'], ['_', '_', '_']]

Create a list of three lists of three items each. Inspect the structure.
Place a mark in row 1, column 2, and check the result.

A tempting but wrong shortcut is doing it like Example 2-13.

Example 2-13. A list with three references to the same list is useless
>>> weird_board = [['_'] * 3] * 3  
>>> weird_board
[['_', '_', '_'], ['_', '_', '_'], ['_', '_', '_']]
>>> weird_board[1][2] = 'O' 
>>> weird_board
[['_', '_', 'O'], ['_', '_', 'O'], ['_', '_', 'O']]

The outer list is made of three references to the same inner list. While it is
unchanged, all seems right.
Placing a mark in row 1, column 2, reveals that all rows are aliases referring to
the same object.
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The problem with Example 2-13 is that, in essence, it behaves like this code:

row = ['_'] * 3
board = []
for i in range(3):
    board.append(row)  

The same row is appended three times to board.

On the other hand, the list comprehension from Example 2-12 is equivalent to this code:

>>> board = []
>>> for i in range(3):
...     row = ['_'] * 3  # 
...     board.append(row)
...
>>> board
[['_', '_', '_'], ['_', '_', '_'], ['_', '_', '_']]
>>> board[2][0] = 'X'
>>> board  # 
[['_', '_', '_'], ['_', '_', '_'], ['X', '_', '_']]

Each iteration builds a new row and appends it to board.
Only row 2 is changed, as expected.

If either the problem or the solution in this section are not clear
to you, relax. Chapter 8 was written to clarify the mechanics and
pitfalls of references and mutable objects.

So far we have discussed the use of the plain + and * operators with sequences, but there
are also the += and *= operators, which produce very different results depending on the
mutability of the target sequence. The following section explains how that works.

Augmented Assignment with Sequences
The augmented assignment operators += and *= behave very differently depending on
the first operand. To simplify the discussion, we will focus on augmented addition first
(+=), but the concepts also apply to *= and to other augmented assignment operators.

The special method that makes += work is __iadd__ (for “in-place addition”). However,
if __iadd__ is not implemented, Python falls back to calling __add__. Consider this
simple expression:

>>> a += b
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3. str is an exception to this description. Because string building with += in loops is so common in the wild,
CPython is optimized for this use case. str instances are allocated in memory with room to spare, so that
concatenation does not require copying the whole string every time.

If a implements __iadd__, that will be called. In the case of mutable sequences (e.g.,
list, bytearray, array.array), a will be changed in place (i.e., the effect will be similar
to a.extend(b)). However, when a does not implement __iadd__, the expression a +=
b has the same effect as a = a + b: the expression a + b is evaluated first, producing a
new object, which is then bound to a. In other words, the identity of the object bound
to a may or may not change, depending on the availability of __iadd__.

In general, for mutable sequences, it is a good bet that __iadd__ is implemented and
that += happens in place. For immutable sequences, clearly there is no way for that to
happen.

What I just wrote about += also applies to *=, which is implemented via __imul__. The
__iadd__ and __imul__ special methods are discussed in Chapter 13.

Here is a demonstration of *= with a mutable sequence and then an immutable one:

>>> l = [1, 2, 3]
>>> id(l)
4311953800  
>>> l *= 2
>>> l
[1, 2, 3, 1, 2, 3]
>>> id(l)
4311953800  
>>> t = (1, 2, 3)
>>> id(t)
4312681568  
>>> t *= 2
>>> id(t)
4301348296  

ID of the initial list
After multiplication, the list is the same object, with new items appended
ID of the initial tuple
After multiplication, a new tuple was created

Repeated concatenation of immutable sequences is inefficient, because instead of just
appending new items, the interpreter has to copy the whole target sequence to create a
new one with the new items concatenated.3

We’ve seen common use cases for +=. The next section shows an intriguing corner case
that highlights what “immutable” really means in the context of tuples.
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4. Thanks to Leonardo Rochael and Cesar Kawakami for sharing this riddle at the 2013 PythonBrasil Confer‐
ence.

5. A reader suggested that the operation in the example can be performed with t[2].extend([50,60]),
without errors. We’re aware of that, but the intent of the example is to discuss the odd behavior of the +=
operator.

A += Assignment Puzzler
Try to answer without using the console: what is the result of evaluating the two ex‐
pressions in Example 2-14?4

Example 2-14. A riddle
>>> t = (1, 2, [30, 40])
>>> t[2] += [50, 60]

What happens next? Choose the best answer:

a. t becomes (1, 2, [30, 40, 50, 60]).
b. TypeError is raised with the message 'tuple' object does not support item

assignment.
c. Neither.
d. Both a and b.

When I saw this, I was pretty sure the answer was b, but it’s actually d, “Both a and b.”!
Example 2-15 is the actual output from a Python 3.4 console (actually the result is the
same in a Python 2.7 console).5

Example 2-15. The unexpected result: item t2 is changed and an exception is raised
>>> t = (1, 2, [30, 40])
>>> t[2] += [50, 60]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> t
(1, 2, [30, 40, 50, 60])

Online Python Tutor is an awesome online tool to visualize how Python works in detail.
Figure 2-3 is a composite of two screenshots showing the initial and final states of the
tuple t from Example 2-15.
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Figure 2-3. Initial and final state of the tuple assignment puzzler (diagram generated
by Online Python Tutor)

If you look at the bytecode Python generates for the expression s[a] += b

(Example 2-16), it becomes clear how that happens.

Example 2-16. Bytecode for the expression s[a] += b
>>> dis.dis('s[a] += b')
  1           0 LOAD_NAME                0 (s)
              3 LOAD_NAME                1 (a)
              6 DUP_TOP_TWO
              7 BINARY_SUBSCR                      
              8 LOAD_NAME                2 (b)
             11 INPLACE_ADD                        
             12 ROT_THREE
             13 STORE_SUBSCR                       
             14 LOAD_CONST               0 (None)
             17 RETURN_VALUE

Put the value of s[a] on TOS (Top Of Stack).
Perform TOS += b. This succeeds if TOS refers to a mutable object (it’s a list, in
Example 2-15).
Assign s[a] = TOS. This fails if s is immutable (the t tuple in Example 2-15).

This example is quite a corner case—in 15 years of using Python, I have never seen this
strange behavior actually bite somebody.

I take three lessons from this:

• Putting mutable items in tuples is not a good idea.
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• Augmented assignment is not an atomic operation—we just saw it throwing an
exception after doing part of its job.

• Inspecting Python bytecode is not too difficult, and is often helpful to see what is
going on under the hood.

After witnessing the subtleties of using + and * for concatenation, we can change the
subject to another essential operation with sequences: sorting.

list.sort and the sorted Built-In Function
The list.sort method sorts a list in place—that is, without making a copy. It returns
None to remind us that it changes the target object, and does not create a new list. This
is an important Python API convention: functions or methods that change an object in
place should return None to make it clear to the caller that the object itself was changed,
and no new object was created. The same behavior can be seen, for example, in the
random.shuffle function.

The convention of returning None to signal in-place changes has
a drawback: you cannot cascade calls to those methods. In con‐
trast, methods that return new objects (e.g., all str methods) can
be cascaded in the fluent interface style. See Wikipedia’s Wikipe‐
dia’s “Fluent interface” entry for further description of this topic.

In contrast, the built-in function sorted creates a new list and returns it. In fact, it
accepts any iterable object as an argument, including immutable sequences and gener‐
ators (see Chapter 14). Regardless of the type of iterable given to sorted, it always returns
a newly created list.

Both list.sort and sorted take two optional, keyword-only arguments:
reverse

If True, the items are returned in descending order (i.e., by reversing the comparison
of the items). The default is False.

key

A one-argument function that will be applied to each item to produce its sorting
key. For example, when sorting a list of strings, key=str.lower can be used to
perform a case-insensitive sort, and key=len will sort the strings by character
length. The default is the identity function (i.e., the items themselves are compared).
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6. The examples also demonstrate that Timsort—the sorting algorithm used in Python—is stable (i.e., it pre‐
serves the relative ordering of items that compare equal). Timsort is discussed further in the “Soapbox” sidebar
at the end of this chapter.

The key optional keyword parameter can also be used with the
min() and max() built-ins and with other functions from the stan‐
dard library (e.g., itertools.groupby() and heapq.nlargest()).

Here are a few examples to clarify the use of these functions and keyword arguments6:

>>> fruits = ['grape', 'raspberry', 'apple', 'banana']
>>> sorted(fruits)
['apple', 'banana', 'grape', 'raspberry']  
>>> fruits
['grape', 'raspberry', 'apple', 'banana']  
>>> sorted(fruits, reverse=True)
['raspberry', 'grape', 'banana', 'apple']  
>>> sorted(fruits, key=len)
['grape', 'apple', 'banana', 'raspberry']  
>>> sorted(fruits, key=len, reverse=True)
['raspberry', 'banana', 'grape', 'apple']  
>>> fruits
['grape', 'raspberry', 'apple', 'banana']  
>>> fruits.sort()                          
>>> fruits
['apple', 'banana', 'grape', 'raspberry']  

This produces a new list of strings sorted alphabetically.
Inspecting the original list, we see it is unchanged.
This is simply reverse alphabetical ordering.
A new list of strings, now sorted by length. Because the sorting algorithm is
stable, “grape” and “apple,” both of length 5, are in the original order.
These are the strings sorted in descending order of length. It is not the reverse
of the previous result because the sorting is stable, so again “grape” appears
before “apple.”
So far, the ordering of the original fruits list has not changed.
This sorts the list in place, and returns None (which the console omits).
Now fruits is sorted.

Once your sequences are sorted, they can be very efficiently searched. Fortunately, the
standard binary search algorithm is already provided in the bisect module of the
Python standard library. We discuss its essential features next, including the convenient
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bisect.insort function, which you can use to make sure that your sorted sequences
stay sorted.

Managing Ordered Sequences with bisect
The bisect module offers two main functions—bisect and insort—that use the bi‐
nary search algorithm to quickly find and insert items in any sorted sequence.

Searching with bisect
bisect(haystack, needle) does a binary search for needle in haystack—which must
be a sorted sequence—to locate the position where needle can be inserted while main‐
taining haystack in ascending order. In other words, all items appearing up to that
position are less than or equal to needle. You could use the result of bisect(haystack,
needle) as the index argument to haystack.insert(index, needle)—however, using
insort does both steps, and is faster.

Raymond Hettinger—a prolific Python contributor—has a Sorted
Collection recipe that leverages the bisect module but is easier
to use than these standalone functions.

Example 2-17 uses a carefully chosen set of “needles” to demonstrate the insert positions
returned by bisect. Its output is in Figure 2-4.

Example 2-17. bisect finds insertion points for items in a sorted sequence
import bisect
import sys

HAYSTACK = [1, 4, 5, 6, 8, 12, 15, 20, 21, 23, 23, 26, 29, 30]
NEEDLES = [0, 1, 2, 5, 8, 10, 22, 23, 29, 30, 31]

ROW_FMT = '{0:2d} @ {1:2d}    {2}{0:<2d}'

def demo(bisect_fn):
    for needle in reversed(NEEDLES):
        position = bisect_fn(HAYSTACK, needle)   
        offset = position * '  |'   
        print(ROW_FMT.format(needle, position, offset))   

if __name__ == '__main__':

    if sys.argv[-1] == 'left':     
        bisect_fn = bisect.bisect_left
    else:
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        bisect_fn = bisect.bisect

    print('DEMO:', bisect_fn.__name__)   
    print('haystack ->', ' '.join('%2d' % n for n in HAYSTACK))
    demo(bisect_fn)

Use the chosen bisect function to get the insertion point.
Build a pattern of vertical bars proportional to the offset.
Print formatted row showing needle and insertion point.
Choose the bisect function to use according to the last command-line
argument.
Print header with name of function selected.

Figure 2-4. Output of Example 2-17 with bisect in use—each row starts with the nota‐
tion needle @ position and the needle value appears again below its insertion point in
the haystack

The behavior of bisect can be fine-tuned in two ways.

First, a pair of optional arguments, lo and hi, allow narrowing the region in the sequence
to be searched when inserting. lo defaults to 0 and hi to the len() of the sequence.

Second, bisect is actually an alias for bisect_right, and there is a sister function called
bisect_left. Their difference is apparent only when the needle compares equal to an
item in the list: bisect_right returns an insertion point after the existing item, and
bisect_left returns the position of the existing item, so insertion would occur before
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it. With simple types like int this makes no difference, but if the sequence contains
objects that are distinct yet compare equal, then it may be relevant. For example, 1 and
1.0 are distinct, but 1 == 1.0 is True. Figure 2-5 shows the result of using bisect_left.

Figure 2-5. Output of Example 2-17 with bisect_left in use (compare with Figure 2-4
and note the insertion points for the values 1, 8, 23, 29, and 30 to the left of the same
numbers in the haystack).

An interesting application of bisect is to perform table lookups by numeric values—
for example, to convert test scores to letter grades, as in Example 2-18.

Example 2-18. Given a test score, grade returns the corresponding letter grade
>>> def grade(score, breakpoints=[60, 70, 80, 90], grades='FDCBA'):
...     i = bisect.bisect(breakpoints, score)
...     return grades[i]
...
>>> [grade(score) for score in [33, 99, 77, 70, 89, 90, 100]]
['F', 'A', 'C', 'C', 'B', 'A', 'A']

The code in Example 2-18 is from the bisect module documentation, which also lists
functions to use bisect as a faster replacement for the index method when searching
through long ordered sequences of numbers.

These functions are not only used for searching, but also for inserting items in sorted
sequences, as the following section shows.
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Inserting with bisect.insort
Sorting is expensive, so once you have a sorted sequence, it’s good to keep it that way.
That is why bisect.insort was created.

insort(seq, item) inserts item into seq so as to keep seq in ascending order. See
Example 2-19 and its output in Figure 2-6.

Example 2-19. Insort keeps a sorted sequence always sorted
import bisect
import random

SIZE = 7

random.seed(1729)

my_list = []
for i in range(SIZE):
    new_item = random.randrange(SIZE*2)
    bisect.insort(my_list, new_item)
    print('%2d ->' % new_item, my_list)

Figure 2-6. Output of Example 2-19

Like bisect, insort takes optional lo, hi arguments to limit the search to a sub-
sequence. There is also an insort_left variation that uses bisect_left to find inser‐
tion points.

Much of what we have seen so far in this chapter applies to sequences in general, not
just lists or tuples. Python programmers sometimes overuse the list type because it is
so handy—I know I’ve done it. If you are handling lists of numbers, arrays are the way
to go. The remainder of the chapter is devoted to them.
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When a List Is Not the Answer
The list type is flexible and easy to use, but depending on specific requirements, there
are better options. For example, if you need to store 10 million floating-point values, an
array is much more efficient, because an array does not actually hold full-fledged float
objects, but only the packed bytes representing their machine values—just like an array
in the C language. On the other hand, if you are constantly adding and removing items
from the ends of a list as a FIFO or LIFO data structure, a deque (double-ended queue)
works faster.

If your code does a lot of containment checks (e.g., item in
my_collection), consider using a set for my_collection, espe‐
cially if it holds a large number of items. Sets are optimized for fast
membership checking. But they are not sequences (their content
is unordered). We cover them in Chapter 3.

For the remainder of this chapter, we discuss mutable sequence types that can replace
lists in many cases, starting with arrays.

Arrays
If the list will only contain numbers, an array.array is more efficient than a list: it
supports all mutable sequence operations (including .pop, .insert, and .extend), and
additional methods for fast loading and saving such as .frombytes and .tofile.

A Python array is as lean as a C array. When creating an array, you provide a typecode,
a letter to determine the underlying C type used to store each item in the array. For
example, b is the typecode for signed char. If you create an array('b'), then each item
will be stored in a single byte and interpreted as an integer from –128 to 127. For large
sequences of numbers, this saves a lot of memory. And Python will not let you put any
number that does not match the type for the array.

Example 2-20 shows creating, saving, and loading an array of 10 million floating-point
random numbers.

Example 2-20. Creating, saving, and loading a large array of floats
>>> from array import array  
>>> from random import random
>>> floats = array('d', (random() for i in range(10**7)))  
>>> floats[-1]  
0.07802343889111107
>>> fp = open('floats.bin', 'wb')
>>> floats.tofile(fp)  
>>> fp.close()
>>> floats2 = array('d')  
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>>> fp = open('floats.bin', 'rb')
>>> floats2.fromfile(fp, 10**7)  
>>> fp.close()
>>> floats2[-1]  
0.07802343889111107
>>> floats2 == floats  
True

Import the array type.
Create an array of double-precision floats (typecode 'd') from any iterable
object—in this case, a generator expression.
Inspect the last number in the array.
Save the array to a binary file.
Create an empty array of doubles.
Read 10 million numbers from the binary file.
Inspect the last number in the array.
Verify that the contents of the arrays match.

As you can see, array.tofile and array.fromfile are easy to use. If you try the ex‐
ample, you’ll notice they are also very fast. A quick experiment show that it takes about
0.1s for array.fromfile to load 10 million double-precision floats from a binary file
created with array.tofile. That is nearly 60 times faster than reading the numbers
from a text file, which also involves parsing each line with the float built-in. Saving
with array.tofile is about 7 times faster than writing one float per line in a text file.
In addition, the size of the binary file with 10 million doubles is 80,000,000 bytes (8
bytes per double, zero overhead), while the text file has 181,515,739 bytes, for the same
data.

Another fast and more flexible way of saving numeric data is the
pickle module for object serialization. Saving an array of floats
with pickle.dump is almost as fast as with array.tofile—how‐
ever, pickle handles almost all built-in types, including complex
numbers, nested collections, and even instances of user-defined
classes automatically (if they are not too tricky in their implemen‐
tation).

For the specific case of numeric arrays representing binary data, such as raster images,
Python has the bytes and bytearray types discussed in Chapter 4.

We wrap up this section on arrays with Table 2-2, comparing the features of list and
array.array.
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Table 2-2. Methods and attributes found in list or array (deprecated array methods
and those also implemented by object were omitted for brevity)

list array  

s.__add__(s2) ● ● s + s2—concatenation

s.__iadd__(s2) ● ● s += s2—in-place concatenation

s.append(e) ● ● Append one element after last

s.byteswap() ● Swap bytes of all items in array for endianess conversion

s.clear() ● Delete all items

s.__contains__(e) ● ● e in s

s.copy() ● Shallow copy of the list

s.__copy__() ● Support for copy.copy

s.count(e) ● ● Count occurrences of an element

s.__deepcopy__() ● Optimized support for copy.deepcopy

s.__delitem__(p) ● ● Remove item at position p

s.extend(it) ● ● Append items from iterable it

s.frombytes(b) ● Append items from byte sequence interpreted as packed machine values

s.fromfile(f, n) ● Append n items from binary file f interpreted as packed machine values

s.fromlist(l) ● Append items from list; if one causes TypeError, none are appended

s.__getitem__(p) ● ● s[p]—get item at position

s.index(e) ● ● Find position of first occurrence of e

s.insert(p, e) ● ● Insert element e before the item at position p

s.itemsize ● Length in bytes of each array item

s.__iter__() ● ● Get iterator

s.__len__() ● ● len(s)—number of items

s.__mul__(n) ● ● s * n—repeated concatenation

s.__imul__(n) ● ● s *= n—in-place repeated concatenation

s.__rmul__(n) ● ● n * s—reversed repeated concatenationa

s.pop([p]) ● ● Remove and return item at position p (default: last)

s.remove(e) ● ● Remove first occurrence of element e by value

s.reverse() ● ● Reverse the order of the items in place

s.__reversed__() ● Get iterator to scan items from last to first

s.__setitem__(p, e) ● ● s[p] = e—put e in position p, overwriting existing item

s.sort([key], [reverse]) ● Sort items in place with optional keyword arguments key and reverse

s.tobytes() ● Return items as packed machine values in a bytes object

s.tofile(f) ● Save items as packed machine values to binary file f

s.tolist() ● Return items as numeric objects in a list

50 | Chapter 2: An Array of Sequences



list array  

s.typecode ● One-character string identifying the C type of the items
a Reversed operators are explained in Chapter 13.

As of Python 3.4, the array type does not have an in-place sort
method like list.sort(). If you need to sort an array, use the
sorted function to rebuild it sorted:

a = array.array(a.typecode, sorted(a))

To keep a sorted array sorted while adding items to it, use the
bisect.insort function (as seen in “Inserting with bisect.insort”
on page 47).

If you do a lot of work with arrays and don’t know about memoryview, you’re missing
out. See the next topic.

Memory Views
The built-in memorview class is a shared-memory sequence type that lets you handle
slices of arrays without copying bytes. It was inspired by the NumPy library (which we’ll
discuss shortly in “NumPy and SciPy” on page 52). Travis Oliphant, lead author of Num‐
Py, answers When should a memoryview be used? like this:

A memoryview is essentially a generalized NumPy array structure in Python itself
(without the math). It allows you to share memory between data-structures (things like
PIL images, SQLlite databases, NumPy arrays, etc.) without first copying. This is very
important for large data sets.

Using notation similar to the array module, the memoryview.cast method lets you
change the way multiple bytes are read or written as units without moving bits around
(just like the C cast operator). memoryview.cast returns yet another memoryview object,
always sharing the same memory.

See Example 2-21 for an example of changing a single byte of an array of 16-bit integers.

Example 2-21. Changing the value of an array item by poking one of its bytes
>>> numbers = array.array('h', [-2, -1, 0, 1, 2])
>>> memv = memoryview(numbers)  
>>> len(memv)
5
>>> memv[0]  
-2
>>> memv_oct = memv.cast('B')  
>>> memv_oct.tolist()  
[254, 255, 255, 255, 0, 0, 1, 0, 2, 0]
>>> memv_oct[5] = 4  

When a List Is Not the Answer | 51

http://bit.ly/1Vm6C8B


>>> numbers
array('h', [-2, -1, 1024, 1, 2])  

Build memoryview from array of 5 short signed integers (typecode 'h').
memv sees the same 5 items in the array.
Create memv_oct by casting the elements of memv to typecode 'B' (unsigned
char).
Export elements of memv_oct as a list, for inspection.
Assign value 4 to byte offset 5.
Note change to numbers: a 4 in the most significant byte of a 2-byte unsigned
integer is 1024.

We’ll see another short example with memoryview in the context of binary sequence
manipulations with struct (Chapter 4, Example 4-4).

Meanwhile, if you are doing advanced numeric processing in arrays, you should be using
the NumPy and SciPy libraries. We’ll take a brief look at them right away.

NumPy and SciPy
Throughout this book, I make a point of highlighting what is already in the Python
standard library so you can make the most of it. But NumPy and SciPy are so awesome
that a detour is warranted.

For advanced array and matrix operations, NumPy and SciPy are the reason why Python
became mainstream in scientific computing applications. NumPy implements multi-
dimensional, homogeneous arrays and matrix types that hold not only numbers but
also user-defined records, and provides efficient elementwise operations.

SciPy is a library, written on top of NumPy, offering many scientific computing algo‐
rithms from linear algebra, numerical calculus, and statistics. SciPy is fast and reliable
because it leverages the widely used C and Fortran code base from the Netlib Reposi‐
tory. In other words, SciPy gives scientists the best of both worlds: an interactive prompt
and high-level Python APIs, together with industrial-strength number-crunching func‐
tions optimized in C and Fortran.

As a very brief demo, Example 2-22 shows some basic operations with two-dimensional
arrays in NumPy.

Example 2-22. Basic operations with rows and columns in a numpy.ndarray
>>> import numpy  
>>> a = numpy.arange(12)  
>>> a
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
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>>> type(a)
<class 'numpy.ndarray'>
>>> a.shape  
(12,)
>>> a.shape = 3, 4  
>>> a
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> a[2]  
array([ 8,  9, 10, 11])
>>> a[2, 1]  
9
>>> a[:, 1]  
array([1, 5, 9])  
>>> a.transpose()
array([[ 0,  4,  8],
       [ 1,  5,  9],
       [ 2,  6, 10],
       [ 3,  7, 11]])

Import Numpy, after installing (it’s not in the Python standard library).
Build and inspect a numpy.ndarray with integers 0 to 11.
Inspect the dimensions of the array: this is a one-dimensional, 12-element array.
Change the shape of the array, adding one dimension, then inspecting the result.
Get row at index 2.
Get element at index 2, 1.
Get column at index 1.
Create a new array by transposing (swapping columns with rows).

NumPy also supports high-level operations for loading, saving, and operating on all
elements of a numpy.ndarray:

>>> import numpy
>>> floats = numpy.loadtxt('floats-10M-lines.txt')  
>>> floats[-3:]  
array([ 3016362.69195522,   535281.10514262,  4566560.44373946])
>>> floats *= .5  
>>> floats[-3:]
array([ 1508181.34597761,   267640.55257131,  2283280.22186973])
>>> from time import perf_counter as pc 
>>> t0 = pc(); floats /= 3; pc() - t0 
0.03690556302899495
>>> numpy.save('floats-10M', floats)  
>>> floats2 = numpy.load('floats-10M.npy', 'r+')  
>>> floats2 *= 6
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>>> floats2[-3:]  
memmap([ 3016362.69195522,   535281.10514262,  4566560.44373946])

Load 10 million floating-point numbers from a text file.
Use sequence slicing notation to inspect the last three numbers.
Multiply every element in the floats array by .5 and inspect the last three
elements again.
Import the high-resolution performance measurement timer (available since
Python 3.3).
Divide every element by 3; the elapsed time for 10 million floats is less than 40
milliseconds.
Save the array in a .npy binary file.
Load the data as a memory-mapped file into another array; this allows efficient
processing of slices of the array even if it does not fit entirely in memory.
Inspect the last three elements after multiplying every element by 6.

Installing NumPy and SciPy from source is not a breeze. The In‐
stalling the SciPy Stack page on SciPy.org recommends using spe‐
cial scientific Python distributions such as Anaconda, Enthought
Canopy, and WinPython, among others. These are large down‐
loads, but come ready to use. Users of popular GNU/Linux distri‐
butions can usually find NumPy and SciPy in the standard pack‐
age repositories. For example, installing them on Debian or Ubun‐
tu is as easy as:

$ sudo apt-get install python-numpy python-scipy

This was just an appetizer. NumPy and SciPy are formidable libraries, and are the foun‐
dation of other awesome tools such as the Pandas and Blaze data analysis libraries, which
provide efficient array types that can hold nonnumeric data as well as import/export
functions compatible with many different formats (e.g., .csv, .xls, SQL dumps, HDF5,
etc.). These packages deserve entire books about them. This is not one of those books.
But no overview of Python sequences would be complete without at least a quick look
at NumPy arrays.

Having looked at flat sequences—standard arrays and NumPy arrays—we now turn to
a completely different set of replacements for the plain old list: queues.
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Deques and Other Queues
The .append and .pop methods make a list usable as a stack or a queue (if you
use .append and .pop(0), you get LIFO behavior). But inserting and removing from
the left of a list (the 0-index end) is costly because the entire list must be shifted.

The class collections.deque is a thread-safe double-ended queue designed for fast
inserting and removing from both ends. It is also the way to go if you need to keep a list
of “last seen items” or something like that, because a deque can be bounded—i.e., created
with a maximum length—and then, when it is full, it discards items from the opposite
end when you append new ones. Example 2-23 shows some typical operations per‐
formed on a deque.

Example 2-23. Working with a deque
>>> from collections import deque
>>> dq = deque(range(10), maxlen=10)  
>>> dq
deque([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], maxlen=10)
>>> dq.rotate(3)  
>>> dq
deque([7, 8, 9, 0, 1, 2, 3, 4, 5, 6], maxlen=10)
>>> dq.rotate(-4)
>>> dq
deque([1, 2, 3, 4, 5, 6, 7, 8, 9, 0], maxlen=10)
>>> dq.appendleft(-1)  
>>> dq
deque([-1, 1, 2, 3, 4, 5, 6, 7, 8, 9], maxlen=10)
>>> dq.extend([11, 22, 33])  
>>> dq
deque([3, 4, 5, 6, 7, 8, 9, 11, 22, 33], maxlen=10)
>>> dq.extendleft([10, 20, 30, 40])  
>>> dq
deque([40, 30, 20, 10, 3, 4, 5, 6, 7, 8], maxlen=10)

The optional maxlen argument sets the maximum number of items allowed in
this instance of deque; this sets a read-only maxlen instance attribute.
Rotating with n > 0 takes items from the right end and prepends them to the
left; when n < 0 items are taken from left and appended to the right.
Appending to a deque that is full (len(d) == d.maxlen) discards items from
the other end; note in the next line that the 0 is dropped.
Adding three items to the right pushes out the leftmost -1, 1, and 2.
Note that extendleft(iter) works by appending each successive item of the
iter argument to the left of the deque, therefore the final position of the items
is reversed.
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Table 2-3 compares the methods that are specific to list and deque (removing those
that also appear in object).

Note that deque implements most of the list methods, and adds a few specific to its
design, like popleft and rotate. But there is a hidden cost: removing items from the
middle of a deque is not as fast. It is really optimized for appending and popping from
the ends.

The append and popleft operations are atomic, so deque is safe to use as a LIFO queue
in multithreaded applications without the need for using locks.

Table 2-3. Methods implemented in list or deque (those that are also implemented by
object were omitted for brevity)

list deque  

s.__add__(s2) ● s + s2—concatenation

s.__iadd__(s2) ● ● s += s2—in-place concatenation

s.append(e) ● ● Append one element to the right (after last)

s.appendleft(e) ● Append one element to the left (before first)

s.clear() ● ● Delete all items

s.__contains__(e) ● e in s

s.copy() ● Shallow copy of the list

s.__copy__() ● Support for copy.copy (shallow copy)

s.count(e) ● ● Count occurrences of an element

s.__delitem__(p) ● ● Remove item at position p

s.extend(i) ● ● Append items from iterable i to the right

s.extendleft(i) ● Append items from iterable i to the left

s.__getitem__(p) ● ● s[p]—get item at position

s.index(e) ● Find position of first occurrence of e

s.insert(p, e) ● Insert element e before the item at position p

s.__iter__() ● ● Get iterator

s.__len__() ● ● len(s)—number of items

s.__mul__(n) ● s * n—repeated concatenation

s.__imul__(n) ● s *= n—in-place repeated concatenation

s.__rmul__(n) ● n * s—reversed repeated concatenationa

s.pop() ● ● Remove and return last itemb

s.popleft() ● Remove and return first item

s.remove(e) ● ● Remove first occurrence of element e by value

s.reverse() ● ● Reverse the order of the items in place

s.__reversed__() ● ● Get iterator to scan items from last to first
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list deque  

s.rotate(n) ● Move n items from one end to the other

s.__setitem__(p, e) ● ● s[p] = e—put e in position p, overwriting existing item

s.sort([key], [reverse]) ● Sort items in place with optional keyword arguments key and reverse
a Reversed operators are explained in Chapter 13.
b a_list.pop(p) allows removing from position p but deque does not support that option.

Besides deque, other Python standard library packages implement queues:
queue

This provides the synchronized (i.e., thread-safe) classes Queue, LifoQueue, and
PriorityQueue. These are used for safe communication between threads. All three
classes can be bounded by providing a maxsize argument greater than 0 to the
constructor. However, they don’t discard items to make room as deque does. In‐
stead, when the queue is full the insertion of a new item blocks—i.e., it waits until
some other thread makes room by taking an item from the queue, which is useful
to throttle the number of live threads.

multiprocessing

Implements its own bounded Queue, very similar to queue.Queue but designed for
interprocess communication. A specialized multiprocessing.JoinableQueue is
also available for easier task management.

asyncio

Newly added to Python 3.4, asyncio provides Queue, LifoQueue, PriorityQueue,
and JoinableQueue with APIs inspired by the classes contained in the queue and
multiprocessing modules, but adapted for managing tasks in asynchronous pro‐
gramming.

heapq

In contrast to the previous three modules, heapq does not implement a queue class,
but provides functions like heappush and heappop that let you use a mutable se‐
quence as a heap queue or priority queue.

This ends our overview of alternatives to the list type, and also our exploration of
sequence types in general—except for the particulars of str and binary sequences,
which have their own chapter (Chapter 4).

Chapter Summary
Mastering the standard library sequence types is a prerequisite for writing concise,
effective, and idiomatic Python code.
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Python sequences are often categorized as mutable or immutable, but it is also useful
to consider a different axis: flat sequences and container sequences. The former are more
compact, faster, and easier to use, but are limited to storing atomic data such as numbers,
characters, and bytes. Container sequences are more flexible, but may surprise you when
they hold mutable objects, so you need to be careful to use them correctly with nested
data structures.

List comprehensions and generator expressions are powerful notations to build and
initialize sequences. If you are not yet comfortable with them, take the time to master
their basic usage. It is not hard, and soon you will be hooked.

Tuples in Python play two roles: as records with unnamed fields and as immutable lists.
When a tuple is used as a record, tuple unpacking is the safest, most readable way of
getting at the fields. The new * syntax makes tuple unpacking even better by making it
easier to ignore some fields and to deal with optional fields. Named tuples are not so
new, but deserve more attention: like tuples, they have very little overhead per instance,
yet provide convenient access to the fields by name and a handy ._asdict() to export
the record as an OrderedDict.

Sequence slicing is a favorite Python syntax feature, and it is even more powerful than
many realize. Multidimensional slicing and ellipsis (...) notation, as used in NumPy,
may also be supported by user-defined sequences. Assigning to slices is a very expressive
way of editing mutable sequences.

Repeated concatenation as in seq * n is convenient and, with care, can be used to
initialize lists of lists containing immutable items. Augmented assignment with += and
*= behaves differently for mutable and immutable sequences. In the latter case, these
operators necessarily build new sequences. But if the target sequence is mutable, it is
usually changed in place—but not always, depending on how the sequence is imple‐
mented.

The sort method and the sorted built-in function are easy to use and flexible, thanks
to the key optional argument they accept, with a function to calculate the ordering
criterion. By the way, key can also be used with the min and max built-in functions. To
keep a sorted sequence in order, always insert items into it using bisect.insort; to
search it efficiently, use bisect.bisect.

Beyond lists and tuples, the Python standard library provides array.array. Although
NumPy and SciPy are not part of the standard library, if you do any kind of numerical
processing on large sets of data, studying even a small part of these libraries can take
you a long way.

We closed by visiting the versatile and thread-safe collections.deque, comparing its
API with that of list in Table 2-3 and mentioning other queue implementations in the
standard library.
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Further Reading
Chapter 1, “Data Structures” of Python Cookbook, 3rd Edition (O’Reilly) by David
Beazley and Brian K. Jones has many recipes focusing on sequences, including “Recipe
1.11. Naming a Slice,” from which I learned the trick of assigning slices to variables to
improve readability, illustrated in our Example 2-11.

The second edition of Python Cookbook was written for Python 2.4, but much of its
code works with Python 3, and a lot of the recipes in Chapters 5 and 6 deal with se‐
quences. The book was edited by Alex Martelli, Anna Martelli Ravenscroft, and David
Ascher, and it includes contributions by dozens of Pythonistas. The third edition was
rewritten from scratch, and focuses more on the semantics of the language—particularly
what has changed in Python 3—while the older volume emphasizes pragmatics (i.e.,
how to apply the language to real-world problems). Even though some of the second
edition solutions are no longer the best approach, I honestly think it is worthwhile to
have both editions of Python Cookbook on hand.

The official Python Sorting HOW TO has several examples of advanced tricks for using
sorted and list.sort.

PEP 3132 — Extended Iterable Unpacking is the canonical source to read about the new
use of *extra as a target in parallel assignments. If you’d like a glimpse of Python evolv‐
ing, Missing *-unpacking generalizations is a bug tracker issue proposing even wider
use of iterable unpacking notation. PEP 448 — Additional Unpacking Generalizations
resulted from the discussions in that issue. At the time of this writing, it seems likely
the proposed changes will be merged to Python, perhaps in version 3.5.

Eli Bendersky’s blog post “Less Copies in Python with the Buffer Protocol and memo‐
ryviews includes a short tutorial on memoryview.

There are numerous books covering NumPy in the market, even some that don’t men‐
tion “NumPy” in the title. Wes McKinney’s Python for Data Analysis (O’Reilly) is one
such title.

Scientists love the combination of an interactive prompt with the power of NumPy and
SciPy so much that they developed IPython, an incredibly powerful replacement for the
Python console that also provides a GUI, integrated inline graph plotting, literate pro‐
gramming support (interleaving text with code), and rendering to PDF. Interactive,
multimedia IPython sessions can even be shared over HTTP as IPython notebooks. See
screenshots and video at The IPython Notebook. IPython is so hot that in 2012 its core
developers, most of whom are researchers at UC Berkeley, received a $1.15 million grant
from the Sloan Foundation for enhancements to be implemented over the 2013–2014
period.

In The Python Standard Library, 8.3. collections — Container datatypes includes short
examples and practical recipes using deque (and other collections).
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The best defense of the Python convention of excluding the last item in ranges and slices
was written by Edsger W. Dijkstra himself, in a short memo titled “Why Numbering
Should Start at Zero”. The subject of the memo is mathematical notation, but it’s relevant
to Python because Prof. Dijkstra explains with rigor and humor why the sequence 2, 3,
…, 12 should always be expressed as 2 ≤ i < 13. All other reasonable conventions are
refuted, as is the idea of letting each user choose a convention. The title refers to zero-
based indexing, but the memo is really about why it is desirable that 'ABCDE'[1:3]
means 'BC' and not 'BCD' and why it makes perfect sense to write 2, 3, …, 12 as
range(2, 13). (By the way, the memo is a handwritten note, but it’s beautiful and totally
readable. Somebody should create a Dijkstra font—I’d buy it.)

Soapbox
The Nature of Tuples

In 2012, I presented a poster about the ABC language at PyCon US. Before creating
Python, Guido had worked on the ABC interpreter, so he came to see my poster. Among
other things, we talked about the ABC compounds, which are clearly the predecessors
of Python tuples. Compounds also support parallel assignment and are used as com‐
posite keys in dictionaries (or tables, in ABC parlance). However, compounds are not
sequences. They are not iterable and you cannot retrieve a field by index, much less slice
them. You either handle the compound as whole or extract the individual fields using
parallel assignment, that’s all.

I told Guido that these limitations make the main purpose of compounds very clear:
they are just records without field names. His response: “Making tuples behave as se‐
quences was a hack.”

This illustrates the pragmatic approach that makes Python so much better and more
successful than ABC. From a language implementer perspective, making tuples behave
as sequences costs little. As a result, tuples may not be as “conceptually pure” as com‐
pounds, but we have many more ways of using them. They can even be used as immut‐
able lists, of all things!

It is really useful to have immutable lists in the language, even if their type is not called
frozenlist but is really tuple behaving as a sequence.

“Elegance Begets Simplicity”

The use of the syntax *extra to assign multiple items to a parameter started with func‐
tion definitions a long time ago (I have a book about Python 1.4 from 1996 that covers
that). Starting with Python 1.6, the form *extra can be used in the context of function
calls to unpack an iterable into multiple arguments, a complementary operation. This
is elegant, makes intuitive sense, and made the apply function redundant (it’s now gone).
Now, with Python 3, the *extra notation also works on the left of parallel assignments
to grab excess items, enhancing what was already a handy language feature.
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With each of these changes, the language became more flexible, more consistent, and
simpler at the same time. “Elegance begets simplicity” is the motto on my favorite PyCon
T-shirt from Chicago, 2009. It is decorated with a painting by Bruce Eckel depicting
hexagram 22 from the I Ching, 賁 (bì), “Adorning,” sometimes translated as “Grace” or
“Beauty.”

Flat Versus Container Sequences

To highlight the different memory models of the sequence types, I used the terms
container sequence and flat sequence. The “container” word is from the Data Model
documentation:

Some objects contain references to other objects; these are called containers.

I used the term “container sequence” to be specific, because there are containers in
Python that are not sequences, like dict and set. Container sequences can be nested
because they may contain objects of any type, including their own type.

On the other hand, flat sequences are sequence types that cannot be nested because they
only hold simple atomic types like integers, floats, or characters.

I adopted the term flat sequence because I needed something to contrast with “container
sequence.” I can’t cite a reference to support the use of flat sequence in this specific
context: as the category of Python sequence types that are not containers. On Wikipedia,
this usage would be tagged “original research.” I prefer to call it “our term,” hoping you’ll
find it useful and adopt it too.

Mixed Bag Lists

Introductory Python texts emphasize that lists can contain objects of mixed types, but
in practice that feature is not very useful: we put items in a list to process them later,
which implies that all items should support at least some operation in common (i.e.,
they should all “quack” whether or not they are genetically 100% ducks). For example,
you can’t sort a list in Python 3 unless the items in it are comparable:

>>> l = [28, 14, '28', 5, '9', '1', 0, 6, '23', 19]
>>> sorted(l)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unorderable types: str() < int()

Unlike lists, tuples often hold items of different types. That is natural, considering that
each item in a tuple is really a field, and each field type is independent of the others.

Key Is Brilliant

The key optional argument of list.sort, sorted, max, and min is a great idea. Other
languages force you to provide a two-argument comparison function like the deprecated
cmp(a, b) function in Python 2. Using key is both simpler and more efficient. It’s simpler
because you just define a one-argument function that retrieves or calculates whatever
criterion you want to use to sort your objects; this is easier than writing a two-argument
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function to return –1, 0, 1. It is also more efficient because the key function is invoked
only once per item, while the two-argument comparison is called every time the sorting
algorithm needs to compare two items. Of course, Python also has to compare the keys
while sorting, but that comparison is done in optimized C code and not in a Python
function that you wrote.

By the way, using key actually lets us sort a mixed bag of numbers and number-like
strings. You just need to decide whether you want to treat all items as integers or strings:

>>> l = [28, 14, '28', 5, '9', '1', 0, 6, '23', 19]
>>> sorted(l, key=int)
[0, '1', 5, 6, '9', 14, 19, '23', 28, '28']
>>> sorted(l, key=str)
[0, '1', 14, 19, '23', 28, '28', 5, 6, '9']

Oracle, Google, and the Timbot Conspiracy

The sorting algorithm used in sorted and list.sort is Timsort, an adaptive algorithm
that switches from insertion sort to merge sort strategies, depending on how ordered
the data is. This is efficient because real-world data tends to have runs of sorted items.
There is a Wikipedia article about it.

Timsort was first deployed in CPython, in 2002. Since 2009, Timsort is also used to sort
arrays in both standard Java and Android, a fact that became widely known when Oracle
used some of the code related to Timsort as evidence of Google infringement of Sun’s
intellectual property. See Oracle v. Google - Day 14 Filings.

Timsort was invented by Tim Peters, a Python core developer so prolific that he is be‐
lieved to be an AI, the Timbot. You can read about that conspiracy theory in Python
Humor. Tim also wrote The Zen of Python: import this.
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CHAPTER 3

Dictionaries and Sets

Any running Python program has many dictionaries active at the same time, even if the
user’s program code doesn’t explicitly use a dictionary.

— A. M. Kuchling
 Chapter 18, “Python’s Dictionary Implementation

The dict type is not only widely used in our programs but also a fundamental part of
the Python implementation. Module namespaces, class and instance attributes, and
function keyword arguments are some of the fundamental constructs where dictionaries
are deployed. The built-in functions live in __builtins__.__dict__.

Because of their crucial role, Python dicts are highly optimized. Hash tables are the
engines behind Python’s high-performance dicts.

We also cover sets in this chapter because they are implemented with hash tables as well.
Knowing how a hash table works is key to making the most of dictionaries and sets.

Here is a brief outline of this chapter:

• Common dictionary methods
• Special handling for missing keys
• Variations of dict in the standard library
• The set and frozenset types
• How hash tables work
• Implications of hash tables (key type limitations, unpredictable ordering, etc.)
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Generic Mapping Types
The collections.abc module provides the Mapping and MutableMapping ABCs to
formalize the interfaces of dict and similar types (in Python 2.6 to 3.2, these classes are
imported from the collections module, and not from collections.abc). See
Figure 3-1.

Figure 3-1. UML class diagram for the MutableMapping and its superclasses from col‐
lections.abc (inheritance arrows point from subclasses to superclasses; names in italic
are abstract classes and abstract methods)

Implementations of specialized mappings often extend dict or collections.User
Dict, instead of these ABCs. The main value of the ABCs is documenting and formal‐
izing the minimal interfaces for mappings, and serving as criteria for isinstance tests
in code that needs to support mappings in a broad sense:

>>> my_dict = {}
>>> isinstance(my_dict, abc.Mapping)
True

Using isinstance is better than checking whether a function argument is of dict type,
because then alternative mapping types can be used.

All mapping types in the standard library use the basic dict in their implementation,
so they share the limitation that the keys must be hashable (the values need not be
hashable, only the keys).
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What Is Hashable?
Here is part of the definition of hashable from the Python Glossary:

An object is hashable if it has a hash value which never changes during its lifetime (it
needs a __hash__() method), and can be compared to other objects (it needs an
__eq__() method). Hashable objects which compare equal must have the same hash
value. […]

The atomic immutable types (str, bytes, numeric types) are all hashable. A frozen
set is always hashable, because its elements must be hashable by definition. A tuple is
hashable only if all its items are hashable. See tuples tt, tl, and tf:

>>> tt = (1, 2, (30, 40))
>>> hash(tt)
8027212646858338501
>>> tl = (1, 2, [30, 40])
>>> hash(tl)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'
>>> tf = (1, 2, frozenset([30, 40]))
>>> hash(tf)
-4118419923444501110

At the time of this writing, the Python Glossary states: “All of
Python’s immutable built-in objects are hashable” but that is
inaccurate because a tuple is immutable, yet it may contain
references to unhashable objects.

User-defined types are hashable by default because their hash value is their id() and
they all compare not equal. If an object implements a custom __eq__ that takes into
account its internal state, it may be hashable only if all its attributes are immutable.

Given these ground rules, you can build dictionaries in several ways. The Built-in
Types page in the Library Reference has this example to show the various means of
building a dict:

>>> a = dict(one=1, two=2, three=3)
>>> b = {'one': 1, 'two': 2, 'three': 3}
>>> c = dict(zip(['one', 'two', 'three'], [1, 2, 3]))
>>> d = dict([('two', 2), ('one', 1), ('three', 3)])
>>> e = dict({'three': 3, 'one': 1, 'two': 2})
>>> a == b == c == d == e
True
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In addition to the literal syntax and the flexible dict constructor, we can use dict com‐
prehensions to build dictionaries. See the next section.

dict Comprehensions
Since Python 2.7, the syntax of listcomps and genexps was applied to dict comprehen‐
sions (and set comprehensions as well, which we’ll soon visit). A dictcomp builds a dict
instance by producing key:value pair from any iterable. Example 3-1 shows the use of
dict comprehensions to build two dictionaries from the same list of tuples.

Example 3-1. Examples of dict comprehensions
>>> DIAL_CODES = [                   
...         (86, 'China'),
...         (91, 'India'),
...         (1, 'United States'),
...         (62, 'Indonesia'),
...         (55, 'Brazil'),
...         (92, 'Pakistan'),
...         (880, 'Bangladesh'),
...         (234, 'Nigeria'),
...         (7, 'Russia'),
...         (81, 'Japan'),
...     ]
>>> country_code = {country: code for code, country in DIAL_CODES}  
>>> country_code
{'China': 86, 'India': 91, 'Bangladesh': 880, 'United States': 1,
'Pakistan': 92, 'Japan': 81, 'Russia': 7, 'Brazil': 55, 'Nigeria':
234, 'Indonesia': 62}
>>> {code: country.upper() for country, code in country_code.items()  
...  if code < 66}
{1: 'UNITED STATES', 55: 'BRAZIL', 62: 'INDONESIA', 7: 'RUSSIA'}

A list of pairs can be used directly with the dict constructor.
Here the pairs are reversed: country is the key, and code is the value.
Reversing the pairs again, values uppercased and items filtered by code < 66.

If you’re used to liscomps, dictcomps are a natural next step. If you aren’t, the spread of
the listcomp syntax means it’s now more profitable than ever to become fluent in it.

We now move to a panoramic view of the API for mappings.

Overview of Common Mapping Methods
The basic API for mappings is quite rich. Table 3-1 shows the methods implemented
by dict and two of its most useful variations: defaultdict and OrderedDict, both
defined in the collections module.
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Table 3-1. Methods of the mapping types dict, collections.defaultdict, and collec‐
tions.OrderedDict (common object methods omitted for brevity); optional arguments
are enclosed in […]

dict defaultdict OrderedDict  

d.clear() ● ● ● Remove all items

d.__contains__(k) ● ● ● k in d

d.copy() ● ● ● Shallow copy

d.__copy__() ● Support for copy.copy

d.default_factory ● Callable invoked by __missing__ to set
missing valuesa

d.__delitem__(k) ● ● ● del d[k]—remove item with key k

d.fromkeys(it, [initial]) ● ● ● New mapping from keys in iterable, with optional
initial value (defaults to None)

d.get(k, [default]) ● ● ● Get item with key k, return default or None
if missing

d.__getitem__(k) ● ● ● d[k]—get item with key k

d.items() ● ● ● Get view over items—(key, value) pairs

d.__iter__() ● ● ● Get iterator over keys

d.keys() ● ● ● Get view over keys

d.__len__() ● ● ● len(d)—number of items

d.__missing__(k) ● Called when __getitem__ cannot find the key

d.move_to_end(k, [last]) ● Move k first or last position (last is True by
default)

d.pop(k, [default]) ● ● ● Remove and return value at k, or default or
None if missing

d.popitem() ● ● ● Remove and return an arbitrary (key, val
ue) itemb

d.__reversed__() ● Get iterator for keys from last to first inserted

d.setdefault(k, [default]) ● ● ● If k in d, return d[k]; else set d[k] =
default and return it

d.__setitem__(k, v) ● ● ● d[k] = v—put v at k

d.update(m, [**kargs]) ● ● ● Update d with items from mapping or iterable of
(key, value) pairs

d.values() ● ● ● Get view over values
a default_factory is not a method, but a callable instance attribute set by the end user when defaultdict is instantiated.
b OrderedDict.popitem() removes the first item inserted (FIFO); an optional last argument, if set to True, pops the
last item (LIFO).
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1. The original script appears in slide 41 of Martelli’s “Re-learning Python” presentation. His script is actually
a demonstration of dict.setdefault, as shown in our Example 3-4.

The way update handles its first argument m is a prime example of duck typing: it first
checks whether m has a keys method and, if it does, assumes it is a mapping. Otherwise,
update falls back to iterating over m, assuming its items are (key, value) pairs. The
constructor for most Python mappings uses the logic of update internally, which means
they can be initialized from other mappings or from any iterable object producing (key,
value) pairs.

A subtle mapping method is setdefault. We don’t always need it, but when we do, it
provides a significant speedup by avoiding redundant key lookups. If you are not com‐
fortable using it, the following section explains how, through a practical example.

Handling Missing Keys with setdefault
In line with the fail-fast philosophy, dict access with d[k] raises an error when k is not
an existing key. Every Pythonista knows that d.get(k, default) is an alternative to
d[k] whenever a default value is more convenient than handling KeyError. However,
when updating the value found (if it is mutable), using either __getitem__ or get is
awkward and inefficient. Consider Example 3-2, a suboptimal script written just to show
one case where dict.get is not the best way to handle a missing key.

Example 3-2 is adapted from an example by Alex Martelli,1 which generates an index
like that in Example 3-3.

Example 3-2. index0.py uses dict.get to fetch and update a list of word occurrences from
the index (a better solution is in Example 3-4)
"""Build an index mapping word -> list of occurrences"""

import sys
import re

WORD_RE = re.compile('\w+')

index = {}
with open(sys.argv[1], encoding='utf-8') as fp:
    for line_no, line in enumerate(fp, 1):
        for match in WORD_RE.finditer(line):
            word = match.group()
            column_no = match.start()+1
            location = (line_no, column_no)
            # this is ugly; coded like this to make a point
            occurrences = index.get(word, [])   
            occurrences.append(location)        
            index[word] = occurrences           
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2. This is an example of using a method as a first-class function, the subject of Chapter 5.

# print in alphabetical order
for word in sorted(index, key=str.upper):   
    print(word, index[word])

Get the list of occurrences for word, or [] if not found.
Append new location to occurrences.
Put changed occurrences into index dict; this entails a second search through
the index.
In the key= argument of sorted I am not calling str.upper, just passing a
reference to that method so the sorted function can use it to normalize the
words for sorting.2

Example 3-3. Partial output from Example 3-2 processing the Zen of Python; each line
shows a word and a list of occurrences coded as pairs: (line-number, column-number)
$ python3 index0.py ../../data/zen.txt
a [(19, 48), (20, 53)]
Although [(11, 1), (16, 1), (18, 1)]
ambiguity [(14, 16)]
and [(15, 23)]
are [(21, 12)]
aren [(10, 15)]
at [(16, 38)]
bad [(19, 50)]
be [(15, 14), (16, 27), (20, 50)]
beats [(11, 23)]
Beautiful [(3, 1)]
better [(3, 14), (4, 13), (5, 11), (6, 12), (7, 9), (8, 11),
(17, 8), (18, 25)]
...

The three lines dealing with occurrences in Example 3-2 can be replaced by a single
line using dict.setdefault. Example 3-4 is closer to Alex Martelli’s original example.

Example 3-4. index.py uses dict.setdefault to fetch and update a list of word occurrences
from the index in a single line; contrast with Example 3-2
"""Build an index mapping word -> list of occurrences"""

import sys
import re

WORD_RE = re.compile('\w+')

index = {}
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with open(sys.argv[1], encoding='utf-8') as fp:
    for line_no, line in enumerate(fp, 1):
        for match in WORD_RE.finditer(line):
            word = match.group()
            column_no = match.start()+1
            location = (line_no, column_no)
            index.setdefault(word, []).append(location)   

# print in alphabetical order
for word in sorted(index, key=str.upper):
    print(word, index[word])

Get the list of occurrences for word, or set it to [] if not found; setdefault
returns the value, so it can be updated without requiring a second search.

In other words, the end result of this line…

my_dict.setdefault(key, []).append(new_value)

…is the same as running…

if key not in my_dict:
    my_dict[key] = []
my_dict[key].append(new_value)

…except that the latter code performs at least two searches for key—three if it’s not
found—while setdefault does it all with a single lookup.

A related issue, handling missing keys on any lookup (and not only when inserting), is
the subject of the next section.

Mappings with Flexible Key Lookup
Sometimes it is convenient to have mappings that return some made-up value when a
missing key is searched. There are two main approaches to this: one is to use a default
dict instead of a plain dict. The other is to subclass dict or any other mapping type
and add a __missing__ method. Both solutions are covered next.

defaultdict: Another Take on Missing Keys
Example 3-5 uses collections.defaultdict to provide another elegant solution to the
problem in Example 3-4. A defaultdict is configured to create items on demand
whenever a missing key is searched.

Here is how it works: when instantiating a defaultdict, you provide a callable that is
used to produce a default value whenever __getitem__ is passed a nonexistent key
argument.
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For example, given an empty defaultdict created as dd = defaultdict(list), if
'new-key' is not in dd, the expression dd['new-key'] does the following steps:

1. Calls list() to create a new list.
2. Inserts the list into dd using 'new-key' as key.
3. Returns a reference to that list.

The callable that produces the default values is held in an instance attribute called
default_factory.

Example 3-5. index_default.py: using an instance of defaultdict instead of the setdefault
method
"""Build an index mapping word -> list of occurrences"""

import sys
import re
import collections

WORD_RE = re.compile('\w+')

index = collections.defaultdict(list)      
with open(sys.argv[1], encoding='utf-8') as fp:
    for line_no, line in enumerate(fp, 1):
        for match in WORD_RE.finditer(line):
            word = match.group()
            column_no = match.start()+1
            location = (line_no, column_no)
            index[word].append(location)   

# print in alphabetical order
for word in sorted(index, key=str.upper):
    print(word, index[word])

Create a defaultdict with the list constructor as default_factory.
If word is not initially in the index, the default_factory is called to produce
the missing value, which in this case is an empty list that is then assigned to
index[word] and returned, so the .append(location) operation always
succeeds.

If no default_factory is provided, the usual KeyError is raised for missing keys.
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The default_factory of a defaultdict is only invoked to pro‐
vide default values for __getitem__ calls, and not for the other
methods. For example, if dd is a defaultdict, and k is a missing
key, dd[k] will call the default_factory to create a default val‐
ue, but dd.get(k) still returns None.

The mechanism that makes defaultdict work by calling default_factory is actually
the __missing__ special method, a feature supported by all standard mapping types
that we discuss next.

The __missing__ Method
Underlying the way mappings deal with missing keys is the aptly named __missing__
method. This method is not defined in the base dict class, but dict is aware of it: if you
subclass dict and provide a __missing__ method, the standard dict.__getitem__ will
call it whenever a key is not found, instead of raising KeyError.

The __missing__ method is just called by __getitem__ (i.e., for
the d[k] operator). The presence of a __missing__ method has no
effect on the behavior of other methods that look up keys, such as
get or __contains__ (which implements the in operator). This is
why the default_factory of defaultdict works only with
__getitem__, as noted in the warning at the end of the previous
section.

Suppose you’d like a mapping where keys are converted to str when looked up. A
concrete use case is the Pingo.io project, where a programmable board with GPIO pins
(e.g., the Raspberry Pi or the Arduino) is represented by a board object with a
board.pins attribute, which is a mapping of physical pin locations to pin objects, and
the physical location may be just a number or a string like "A0" or "P9_12". For con‐
sistency, it is desirable that all keys in board.pins are strings, but it is also convenient
that looking up my_arduino.pin[13] works as well, so beginners are not tripped when
they want to blink the LED on pin 13 of their Arduinos. Example 3-6 shows how such
a mapping would work.

Example 3-6. When searching for a nonstring key, StrKeyDict0 converts it to str when it
is not found
Tests for item retrieval using `d[key]` notation::

    >>> d = StrKeyDict0([('2', 'two'), ('4', 'four')])
    >>> d['2']
    'two'
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    >>> d[4]
    'four'
    >>> d[1]
    Traceback (most recent call last):
      ...
    KeyError: '1'

Tests for item retrieval using `d.get(key)` notation::

    >>> d.get('2')
    'two'
    >>> d.get(4)
    'four'
    >>> d.get(1, 'N/A')
    'N/A'

Tests for the `in` operator::

    >>> 2 in d
    True
    >>> 1 in d
    False

Example 3-7 implements a class StrKeyDict0 that passes the preceding tests.

A better way to create a user-defined mapping type is to sub‐
class collections.UserDict instead of dict (as we’ll do in Ex‐
ample 3-8). Here we subclass dict just to show that __miss
ing__ is supported by the built-in dict.__getitem__ method.

Example 3-7. StrKeyDict0 converts nonstring keys to str on lookup (see tests in
Example 3-6)
class StrKeyDict0(dict):   

    def __missing__(self, key):
        if isinstance(key, str):   
            raise KeyError(key)
        return self[str(key)]   

    def get(self, key, default=None):
        try:
            return self[key]   
        except KeyError:
            return default   

    def __contains__(self, key):
        return key in self.keys() or str(key) in self.keys()   
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StrKeyDict0 inherits from dict.
Check whether key is already a str. If it is, and it’s missing, raise KeyError.
Build str from key and look it up.
The get method delegates to __getitem__ by using the self[key] notation; that
gives the opportunity for our __missing__ to act.
If a KeyError was raised, __missing__ already failed, so we return the default.
Search for unmodified key (the instance may contain non-str keys), then for a
str built from the key.

Take a moment to consider why the test isinstance(key, str) is necessary in the
__missing__ implementation.

Without that test, our __missing__ method would work OK for any key k—str or not
str—whenever str(k) produced an existing key. But if str(k) is not an existing key,
we’d have an infinite recursion. The last line, self[str(key)] would call __geti
tem__ passing that str key, which in turn would call __missing__ again.

The __contains__ method is also needed for consistent behavior in this example, be‐
cause the operation k in d calls it, but the method inherited from dict does not fall
back to invoking __missing__. There is a subtle detail in our implementation of __con
tains__: we do not check for the key in the usual Pythonic way—k in my_dict—because
str(key) in self would recursively call __contains__. We avoid this by explicitly
looking up the key in self.keys().

A search like k in my_dict.keys() is efficient in Python 3 even
for very large mappings because dict.keys() returns a view,
which is similar to a set, and containment checks in sets are as
fast as in dictionaries. Details are documented in the “Dictio‐
nary” view objects section of the documentation. In Python 2,
dict.keys() returns a list, so our solution also works there, but
it is not efficient for large dictionaries, because k in my_list
must scan the list.

The check for the unmodified key—key in self.keys()—is necessary for correctness
because StrKeyDict0 does not enforce that all keys in the dictionary must be of type
str. Our only goal with this simple example is to make searching “friendlier” and not
enforce types.

So far we have covered the dict and defaultdict mapping types, but the standard
library comes with other mapping implementations, which we discuss next.
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Variations of dict
In this section, we summarize the various mapping types included in the collec
tions module of the standard library, besides defaultdict:
collections.OrderedDict

Maintains keys in insertion order, allowing iteration over items in a predictable
order. The popitem method of an OrderedDict pops the first item by default, but
if called as my_odict.popitem(last=True), it pops the last item added.

collections.ChainMap

Holds a list of mappings that can be searched as one. The lookup is performed on
each mapping in order, and succeeds if the key is found in any of them. This is useful
to interpreters for languages with nested scopes, where each mapping represents a
scope context. The “ChainMap objects” section of the collections docs has several
examples of ChainMap usage, including this snippet inspired by the basic rules of
variable lookup in Python:

import builtins
pylookup = ChainMap(locals(), globals(), vars(builtins))

collections.Counter

A mapping that holds an integer count for each key. Updating an existing key adds
to its count. This can be used to count instances of hashable objects (the keys) or
as a multiset—a set that can hold several occurrences of each element. Counter
implements the + and - operators to combine tallies, and other useful methods such
as most_common([n]), which returns an ordered list of tuples with the n most com‐
mon items and their counts; see the documentation. Here is Counter used to count
letters in words:

>>> ct = collections.Counter('abracadabra')
>>> ct
Counter({'a': 5, 'b': 2, 'r': 2, 'c': 1, 'd': 1})
>>> ct.update('aaaaazzz')
>>> ct
Counter({'a': 10, 'z': 3, 'b': 2, 'r': 2, 'c': 1, 'd': 1})
>>> ct.most_common(2)
[('a', 10), ('z', 3)]

collections.UserDict

A pure Python implementation of a mapping that works like a standard dict.

While OrderedDict, ChainMap, and Counter come ready to use, UserDict is designed
to be subclassed, as we’ll do next.

Variations of dict | 75

http://bit.ly/1Vm7I4c:
http://bit.ly/1JHVi2E


3. The exact problem with subclassing dict and other built-ins is covered in “Subclassing Built-In Types Is
Tricky” on page 348.

Subclassing UserDict
It’s almost always easier to create a new mapping type by extending UserDict rather
than dict. Its value can be appreciated as we extend our StrKeyDict0 from Example 3-7
to make sure that any keys added to the mapping are stored as str.

The main reason why it’s preferable to subclass from UserDict rather than from dict
is that the built-in has some implementation shortcuts that end up forcing us to override
methods that we can just inherit from UserDict with no problems.3

Note that UserDict does not inherit from dict, but has an internal dict instance, called
data, which holds the actual items. This avoids undesired recursion when coding special
methods like __setitem__, and simplifies the coding of __contains__, compared to
Example 3-7.

Thanks to UserDict, StrKeyDict (Example 3-8) is actually shorter than StrKeyDict0
(Example 3-7), but it does more: it stores all keys as str, avoiding unpleasant surprises
if the instance is built or updated with data containing nonstring keys.

Example 3-8. StrKeyDict always converts non-string keys to str—on insertion, update,
and lookup
import collections

class StrKeyDict(collections.UserDict):   

    def __missing__(self, key):   
        if isinstance(key, str):
            raise KeyError(key)
        return self[str(key)]

    def __contains__(self, key):
        return str(key) in self.data   

    def __setitem__(self, key, item):
        self.data[str(key)] = item    

StrKeyDict extends UserDict.
__missing__ is exactly as in Example 3-7.
__contains__ is simpler: we can assume all stored keys are str and we can check
on self.data instead of invoking self.keys() as we did in StrKeyDict0.
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__setitem__ converts any key to a str. This method is easier to overwrite when
we can delegate to the self.data attribute.

Because UserDict subclasses MutableMapping, the remaining methods that make
StrKeyDict a full-fledged mapping are inherited from UserDict, MutableMapping, or
Mapping. The latter have several useful concrete methods, in spite of being abstract base
classes (ABCs). The following methods are worth noting:
MutableMapping.update

This powerful method can be called directly but is also used by __init__ to load
the instance from other mappings, from iterables of (key, value) pairs, and key‐
word arguments. Because it uses self[key] = value to add items, it ends up calling
our implementation of __setitem__.

Mapping.get

In StrKeyDict0 (Example 3-7), we had to code our own get to obtain results con‐
sistent with __getitem__, but in Example 3-8 we inherited Mapping.get, which is
implemented exactly like StrKeyDict0.get (see Python source code).

After I wrote StrKeyDict, I discovered that Antoine Pitrou auth‐
ored PEP 455 — Adding a key-transforming dictionary to collec‐
tions and a patch to enhance the collections module with a
TransformDict. The patch is attached to issue18986 and may land
in Python 3.5. To experiment with TransformDict, I extracted it
into a standalone module (03-dict-set/transformdict.py in the Flu‐
ent Python code repository). TransformDict is more general than
StrKeyDict, and is complicated by the requirement to preserve the
keys as they were originally inserted.

We know there are several immutable sequence types, but how about an immutable
dictionary? Well, there isn’t a real one in the standard library, but a stand-in is available.
Read on.

Immutable Mappings
The mapping types provided by the standard library are all mutable, but you may need
to guarantee that a user cannot change a mapping by mistake. A concrete use case can
be found, again, in the Pingo.io project I described in “The __missing__ Method” on
page 72: the board.pins mapping represents the physical GPIO pins on the device. As
such, it’s nice to prevent inadvertent updates to board.pins because the hardware can’t
possibly be changed via software, so any change in the mapping would make it incon‐
sistent with the physical reality of the device.
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4. We are not actually using MappingProxyType in Pingo.io because it is new in Python 3.3 and we need to
support Python 2.7 at this time.

Since Python 3.3, the types module provides a wrapper class called MappingProxy
Type, which, given a mapping, returns a mappingproxy instance that is a read-only but
dynamic view of the original mapping. This means that updates to the original mapping
can be seen in the mappingproxy, but changes cannot be made through it. See
Example 3-9 for a brief demonstration.

Example 3-9. MappingProxyType builds a read-only mappingproxy instance from a
dict
>>> from types import MappingProxyType
>>> d = {1: 'A'}
>>> d_proxy = MappingProxyType(d)
>>> d_proxy
mappingproxy({1: 'A'})
>>> d_proxy[1]  
'A'
>>> d_proxy[2] = 'x'  
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'mappingproxy' object does not support item assignment
>>> d[2] = 'B'
>>> d_proxy  
mappingproxy({1: 'A', 2: 'B'})
>>> d_proxy[2]
'B'
>>>

Items in d can be seen through d_proxy.
Changes cannot be made through d_proxy.
d_proxy is dynamic: any change in d is reflected.

Here is how this could be used in practice in the Pingo.io scenario: the constructor in
a concrete Board subclass would fill a private mapping with the pin objects, and expose
it to clients of the API via a public .pins attribute implemented as a mappingproxy. That
way the clients would not be able to add, remove, or change pins by accident.4

Now that we’ve covered most mapping types in the standard library and when to use
them, we will move to the set types.
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Set Theory
Sets are a relatively new addition in the history of Python, and somewhat underused.
The set type and its immutable sibling frozenset first appeared in a module in Python
2.3 and were promoted to built-ins in Python 2.6.

In this book, the word “set” is used to refer both to set and
frozenset. When talking specifically about the set class, its name
appears in the constant width font used for source code: set.

A set is a collection of unique objects. A basic use case is removing duplication:

>>> l = ['spam', 'spam', 'eggs', 'spam']
>>> set(l)
{'eggs', 'spam'}
>>> list(set(l))
['eggs', 'spam']

Set elements must be hashable. The set type is not hashable, but frozenset is, so you
can have frozenset elements inside a set.

In addition to guaranteeing uniqueness, the set types implement the essential set oper‐
ations as infix operators, so, given two sets a and b, a | b returns their union, a & b
computes the intersection, and a - b the difference. Smart use of set operations can
reduce both the line count and the runtime of Python programs, at the same time making
code easier to read and reason about—by removing loops and lots of conditional logic.

For example, imagine you have a large set of email addresses (the haystack) and a
smaller set of addresses (the needles) and you need to count how many needles occur
in the haystack. Thanks to set intersection (the & operator) you can code that in a
simple line (see Example 3-10).

Example 3-10. Count occurrences of needles in a haystack, both of type set
found = len(needles & haystack)

Without the intersection operator, you’d have write Example 3-11 to accomplish the
same task as Example 3-10.

Example 3-11. Count occurrences of needles in a haystack (same end result as
Example 3-10)
found = 0
for n in needles:
    if n in haystack:
        found += 1
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Example 3-10 runs slightly faster than Example 3-11. On the other hand, Example 3-11
works for any iterable objects needles and haystack, while Example 3-10 requires that
both be sets. But, if you don’t have sets on hand, you can always build them on the fly,
as shown in Example 3-12.

Example 3-12. Count occurrences of needles in a haystack; these lines work for any
iterable types
found = len(set(needles) & set(haystack))

# another way:
found = len(set(needles).intersection(haystack))

Of course, there is an extra cost involved in building the sets in Example 3-12, but if
either the needles or the haystack is already a set, the alternatives in Example 3-12 may
be cheaper than Example 3-11.

Any one of the preceding examples are capable of searching 1,000 values in a hay
stack of 10,000,000 items in a little over 3 milliseconds—that’s about 3 microseconds
per needle.

Besides the extremely fast membership test (thanks to the underlying hash table), the
set and frozenset built-in types provide a rich selection of operations to create new
sets or, in the case of set, to change existing ones. We will discuss the operations shortly,
but first a note about syntax.

set Literals
The syntax of set literals—{1}, {1, 2}, etc.—looks exactly like the math notation, with
one important exception: there’s no literal notation for the empty set, so we must re‐
member to write set().

Syntax Quirk
Don’t forget: to create an empty set, you should use the construc‐
tor without an argument: set(). If you write {}, you’re creating an
empty dict—this hasn’t changed.

In Python 3, the standard string representation of sets always uses the {...} notation,
except for the empty set:

>>> s = {1}
>>> type(s)
<class 'set'>
>>> s
{1}
>>> s.pop()
1
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>>> s
set()

Literal set syntax like {1, 2, 3} is both faster and more readable than calling the
constructor (e.g., set([1, 2, 3])). The latter form is slower because, to evaluate it,
Python has to look up the set name to fetch the constructor, then build a list, and finally
pass it to the constructor. In contrast, to process a literal like {1, 2, 3}, Python runs
a specialized BUILD_SET bytecode.

Take a look at the bytecode for the two operations, as output by dis.dis (the disas‐
sembler function):

>>> from dis import dis
>>> dis('{1}')                                   
  1           0 LOAD_CONST               0 (1)
              3 BUILD_SET                1       
              6 RETURN_VALUE
>>> dis('set([1])')                              
  1           0 LOAD_NAME                0 (set) 
              3 LOAD_CONST               0 (1)
              6 BUILD_LIST               1
              9 CALL_FUNCTION            1 (1 positional, 0 keyword pair)
             12 RETURN_VALUE

Disassemble bytecode for literal expression {1}.
Special BUILD_SET bytecode does almost all the work.
Bytecode for set([1]).
Three operations instead of BUILD_SET: LOAD_NAME, BUILD_LIST, and
CALL_FUNCTION.

There is no special syntax to represent frozenset literals—they must be created by
calling the constructor. The standard string representation in Python 3 looks like a
frozenset constructor call. Note the output in the console session:

>>> frozenset(range(10))
frozenset({0, 1, 2, 3, 4, 5, 6, 7, 8, 9})

Speaking of syntax, the familiar shape of listcomps was adapted to build sets as well.

Set Comprehensions
Set comprehensions (setcomps) were added in Python 2.7, together with the dictcomps
that we saw in “dict Comprehensions” on page 66. Example 3-13 is a simple example.
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Example 3-13. Build a set of Latin-1 characters that have the word “SIGN” in their
Unicode names
>>> from unicodedata import name  
>>> {chr(i) for i in range(32, 256) if 'SIGN' in name(chr(i),'')}  
{'§', '=', '¢', '#', '¤', '<', '¥', 'µ', '×', '$', '¶', '£', '©',
'°', '+', '÷', '±', '>', '¬', '®', '%'}

Import name function from unicodedata to obtain character names.
Build set of characters with codes from 32 to 255 that have the word 'SIGN' in
their names.

Syntax matters aside, let’s now review the rich assortment of operations provided by
sets.

Set Operations
Figure 3-2 gives an overview of the methods you can expect from mutable and immut‐
able sets. Many of them are special methods for operator overloading. Table 3-2 shows
the math set operators that have corresponding operators or methods in Python. Note
that some operators and methods perform in-place changes on the target set (e.g., &=,
difference_update, etc.). Such operations make no sense in the ideal world of math‐
ematical sets, and are not implemented in frozenset.

Figure 3-2. UML class diagram for MutableSet and its superclasses from collections.abc
(names in italic are abstract classes and abstract methods; reverse operator methods
omitted for brevity)
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The infix operators in Table 3-2 require that both operands be sets,
but all other methods take one or more iterable arguments. For
example, to produce the union of four collections, a, b, c, and d,
you can call a.union(b, c, d), where a must be a set, but b, c,
and d can be iterables of any type.

Table 3-2. Mathematical set operations: these methods either produce a new set or up‐
date the target set in place, if it’s mutable

Math
symbol

Python operator Method Description

S ∩ Z s & z s.__and__(z) Intersection of s and z

z & s s.__rand__(z) Reversed & operator

s.intersection(it, …) Intersection of s and all sets built from iterables it, etc.

s &= z s.__iand__(z) s updated with intersection of s and z

s.intersection_up

date(it, …)

s updated with intersection of s and all sets built from
iterables it, etc.

S ∪ Z s | z s.__or__(z) Union of s and z

z | s s.__ror__(z) Reversed |

s.union(it, …) Union of s and all sets built from iterables it, etc.

s |= z s.__ior__(z) s updated with union of s and z

s.update(it, …) s updated with union of s and all sets built from iterables
it, etc.

S \ Z s - z s.__sub__(z) Relative complement or difference between s and z

z - s s.__rsub__(z) Reversed - operator

s.difference(it, …) Difference between s and all sets built from iterables it,
etc.

s -= z s.__isub__(z) s updated with difference between s and z

s.difference_up

date(it, …)

s updated with difference between s and all sets built
from iterables it, etc.

s.symmetric_differ

ence(it)

Complement of s & set(it)

S ∆ Z s ^ z s.__xor__(z) Symmetric difference (the complement of the intersection
s & z)

z ^ s s.__rxor__(z) Reversed ^ operator

s.symmetric_differ

ence_update(it, …)

s updated with symmetric difference of s and all sets built
from iterables it, etc.

s ^= z s.__ixor__(z) s updated with symmetric difference of s and z
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As I write this, there is a Python bug report—(issue 8743)—that
says: “The set() operators (or, and, sub, xor, and their in-place
counterparts) require that the parameter also be an instance of
set().”, with the undesired side effect that these operators don’t work
with collections.abc.Set subclasses. The bug is already fixed in
trunk for Python 2.7 and 3.4, and should be history by the time
you read this.

Table 3-3 lists set predicates: operators and methods that return True or False.

Table 3-3. Set comparison operators and methods that return a bool
Math symbol Python operator Method Description

s.isdisjoint(z) s and z are disjoint (have no elements in common)

e ∈ S e in s s.__contains__(e) Element e is a member of s

S ⊆ Z s <= z s.__le__(z) s is a subset of the z set

s.issubset(it) s is a subset of the set built from the iterable it

S ⊂ Z s < z s.__lt__(z) s is a proper subset of the z set

S ⊇ Z s >= z s.__ge__(z) s is a superset of the z set

s.issuperset(it) s is a superset of the set built from the iterable it

S ⊃ Z s > z s.__gt__(z) s is a proper superset of the z set

In addition to the operators and methods derived from math set theory, the set types
implement other methods of practical use, summarized in Table 3-4.

Table 3-4. Additional set methods
set frozenset  

s.add(e) ● Add element e to s

s.clear() ● Remove all elements of s

s.copy() ● ● Shallow copy of s

s.discard(e) ● Remove element e from s if it is present

s.__iter__() ● ● Get iterator over s

s.__len__() ● ● len(s)

s.pop() ● Remove and return an element from s, raising KeyError if s is empty

s.remove(e) ● Remove element e from s, raising KeyError if e not in s

This completes our overview of the features of sets.

We now change gears to discuss how dictionaries and sets are implemented with hash
tables. After reading the rest of this chapter, you will no longer be surprised by the
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apparently unpredictable behavior sometimes exhibited by dict, set, and their
brethren.

dict and set Under the Hood
Understanding how Python dictionaries and sets are implemented using hash tables is
helpful to make sense of their strengths and limitations.

Here are some questions this section will answer:

• How efficient are Python dict and set?
• Why are they unordered?
• Why can’t we use any Python object as a dict key or set element?
• Why does the order of the dict keys or set elements depend on insertion order,

and may change during the lifetime of the structure?
• Why is it bad to add items to a dict or set while iterating through it?

To motivate the study of hash tables, we start by showcasing the amazing performance
of dict and set with a simple test involving millions of items.

A Performance Experiment
From experience, all Pythonistas know that dicts and sets are fast. We’ll confirm that
with a controlled experiment.

To see how the size of a dict, set, or list affects the performance of search using the
in operator, I generated an array of 10 million distinct double-precision floats, the
“haystack.” I then generated an array of needles: 1,000 floats, with 500 picked from the
haystack and 500 verified not to be in it.

For the dict benchmark, I used dict.fromkeys() to create a dict named haystack
with 1,000 floats. This was the setup for the dict test. The actual code I clocked with
the timeit module is Example 3-14 (like Example 3-11).

Example 3-14. Search for needles in haystack and count those found
found = 0
for n in needles:
    if n in haystack:
        found += 1

The benchmark was repeated another four times, each time increasing tenfold the size
of haystack, to reach a size of 10,000,000 in the last test. The result of the dict perfor‐
mance test is in Table 3-5.

dict and set Under the Hood | 85



Table 3-5. Total time for using in operator to search for 1,000 needles in haystack dicts
of five sizes on a Core i7 laptop running Python 3.4.0 (tests timed the loop in
Example 3-14)

len of haystack Factor dict time Factor

1,000 1x 0.000202s 1.00x

10,000 10x 0.000140s 0.69x

100,000 100x 0.000228s 1.13x

1,000,000 1,000x 0.000290s 1.44x

10,000,000 10,000x 0.000337s 1.67x

In concrete terms, to check for the presence of 1,000 floating-point keys in a dictionary
with 1,000 items, the processing time on my laptop was 0.000202s, and the same search
in a dict with 10,000,000 items took 0.000337s. In other words, the time per search in
the haystack with 10 million items was 0.337µs for each needle—yes, that is about one
third of a microsecond per needle.

To compare, I repeated the benchmark, with the same haystacks of increasing size, but
storing the haystack as a set or as list. For the set tests, in addition to timing the for
loop in Example 3-14, I also timed the one-liner in Example 3-15, which produces the
same result: count the number of elements from needles that are also in haystack.

Example 3-15. Use set intersection to count the needles that occur in haystack
found = len(needles & haystack)

Table 3-6 shows the tests side by side. The best times are in the “set& time” column,
which displays results for the set & operator using the code from Example 3-15. The
worst times are—as expected—in the “list time” column, because there is no hash table
to support searches with the in operator on a list, so a full scan must be made, resulting
in times that grow linearly with the size of the haystack.

Table 3-6. Total time for using in operator to search for 1,000 keys in haystacks of 5
sizes, stored as dicts, sets, and lists on a Core i7 laptop running Python 3.4.0 (tests
timed the loop in Example 3-14 except the set&, which uses Example 3-15)

len of haystack Factor dict time Factor set time Factor set& time Factor list time Factor

1,000 1x 0.000202s 1.00x 0.000143s 1.00x 0.000087s 1.00x 0.010556s 1.00x

10,000 10x 0.000140s 0.69x 0.000147s 1.03x 0.000092s 1.06x 0.086586s 8.20x

100,000 100x 0.000228s 1.13x 0.000241s 1.69x 0.000163s 1.87x 0.871560s 82.57x

1,000,000 1,000x 0.000290s 1.44x 0.000332s 2.32x 0.000250s 2.87x 9.189616s 870.56x

10,000,000 10,000x 0.000337s 1.67x 0.000387s 2.71x 0.000314s 3.61x 97.948056s 9,278.90x
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5. The source code for the CPython dictobject.c module is rich in comments. See also the reference for the
Beautiful Code book in “Further Reading” on page 94.

6. Because we just mentioned int, here is a CPython implementation detail: the hash value of an int that fits
in a machine word is the value of the int itself.

If your program does any kind of I/O, the lookup time for keys in dicts or sets is negli‐
gible, regardless of the dict or set size (as long as it does fit in RAM). See the code used
to generate Table 3-6 and accompanying discussion in Appendix A, Example A-1.

Now that we have concrete evidence of the speed of dicts and sets, let’s explore how that
is achieved. The discussion of the hash table internals explains, for example, why the
key ordering is apparently random and unstable.

Hash Tables in Dictionaries
This is a high-level view of how Python uses a hash table to implement a dict. Many
details are omitted—the CPython code has some optimization tricks5—but the overall
description is accurate.

To simplify the ensuing presentation, we will focus on the inter‐
nals of dict first, and later transfer the concepts to sets.

A hash table is a sparse array (i.e., an array that always has empty cells). In standard data
structure texts, the cells in a hash table are often called “buckets.” In a dict hash table,
there is a bucket for each item, and it contains two fields: a reference to the key and a
reference to the value of the item. Because all buckets have the same size, access to an
individual bucket is done by offset.

Python tries to keep at least 1/3 of the buckets empty; if the hash table becomes too
crowded, it is copied to a new location with room for more buckets.

To put an item in a hash table, the first step is to calculate the hash value of the item key,
which is done with the hash() built-in function, explained next.

Hashes and equality

The hash() built-in function works directly with built-in types and falls back to calling
__hash__ for user-defined types. If two objects compare equal, their hash values must
also be equal, otherwise the hash table algorithm does not work. For example, because
1 == 1.0 is true, hash(1) == hash(1.0) must also be true, even though the internal
representation of an int and a float are very different.6
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Also, to be effective as hash table indexes, hash values should scatter around the index
space as much as possible. This means that, ideally, objects that are similar but not equal
should have hash values that differ widely. Example 3-16 is the output of a script to
compare the bit patterns of hash values. Note how the hashes of 1 and 1.0 are the same,
but those of 1.0001, 1.0002, and 1.0003 are very different.

Example 3-16. Comparing hash bit patterns of 1, 1.0001, 1.0002, and 1.0003 on a 32-
bit build of Python (bits that are different in the hashes above and below are highligh‐
ted with ! and the right column shows the number of bits that differ)
32-bit Python build
1        00000000000000000000000000000001
                                          != 0
1.0      00000000000000000000000000000001
------------------------------------------------
1.0      00000000000000000000000000000001
           ! !!! ! !! ! !    ! ! !! !!!   != 16
1.0001   00101110101101010000101011011101
------------------------------------------------
1.0001   00101110101101010000101011011101
          !!!  !!!! !!!!!   !!!!! !!  !   != 20
1.0002   01011101011010100001010110111001
------------------------------------------------
1.0002   01011101011010100001010110111001
          ! !   ! !!! ! !  !! ! !  ! !!!! != 17
1.0003   00001100000111110010000010010110
------------------------------------------------

The code to produce Example 3-16 is in Appendix A. Most of it deals with formatting
the output, but it is listed as Example A-3 for completeness.

Starting with Python 3.3, a random salt value is added to the
hashes of str, bytes, and datetime objects. The salt value is
constant within a Python process but varies between interpreter
runs. The random salt is a security measure to prevent a DOS
attack. Details are in a note in the documentation for the __hash__
special method.

With this basic understanding of object hashes, we are ready to dive into the algorithm
that makes hash tables operate.

The hash table algorithm

To fetch the value at my_dict[search_key], Python calls hash(search_key) to obtain
the hash value of search_key and uses the least significant bits of that number as an
offset to look up a bucket in the hash table (the number of bits used depends on the
current size of the table). If the found bucket is empty, KeyError is raised. Otherwise,
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7. The C function that shuffles the hash bits in case of collision has a curious name: perturb. For all the details,
see dictobject.c in the CPython source code.

the found bucket has an item—a found_key:found_value pair—and then Python
checks whether search_key == found_key. If they match, that was the item sought:
found_value is returned.

However, if search_key and found_key do not match, this is a hash collision. This hap‐
pens because a hash function maps arbitrary objects to a small number of bits, and—in
addition—the hash table is indexed with a subset of those bits. In order to resolve the
collision, the algorithm then takes different bits in the hash, massages them in a par‐
ticular way, and uses the result as an offset to look up a different bucket.7 If that is empty,
KeyError is raised; if not, either the keys match and the item value is returned, or the
collision resolution process is repeated. See Figure 3-3 for a diagram of this algorithm.

Figure 3-3. Flowchart for retrieving an item from a dict; given a key, this procedure ei‐
ther returns a value or raises KeyError

The process to insert or update an item is the same, except that when an empty bucket
is located, the new item is put there, and when a bucket with a matching key is found,
the value in that bucket is overwritten with the new value.

Additionally, when inserting items, Python may determine that the hash table is too
crowded and rebuild it to a new location with more room. As the hash table grows, so
does the number of hash bits used as bucket offsets, and this keeps the rate of collisions
low.
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This implementation may seem like a lot of work, but even with millions of items in a
dict, many searches happen with no collisions, and the average number of collisions
per search is between one and two. Under normal usage, even the unluckiest keys can
be found after a handful of collisions are resolved.

Knowing the internals of the dict implementation we can explain the strengths and
limitations of this data structure and all the others derived from it in Python. We are
now ready to consider why Python dicts behave as they do.

Practical Consequences of How dict Works
In the following subsections, we’ll discuss the limitations and benefits that the under‐
lying hash table implementation brings to dict usage.

Keys must be hashable objects
An object is hashable if all of these requirements are met:

1. It supports the hash() function via a hash() method that always returns the same
value over the lifetime of the object.

2. It supports equality via an eq() method.
3. If a == b is True then hash(a) == hash(b) must also be True.

User-defined types are hashable by default because their hash value is their id() and
they all compare not equal.

If you implement a class with a custom __eq__ method, you must
also implement a suitable __hash__, because you must always make
sure that if a == b is True then hash(a) == hash(b) is also True.
Otherwise you are breaking an invariant of the hash table algo‐
rithm, with the grave consequence that dicts and sets will not deal
reliably with your objects. If a custom __eq__ depends on muta‐
ble state, then __hash__ must raise TypeError with a message like
unhashable type: 'MyClass'.

dicts have significant memory overhead

Because a dict uses a hash table internally, and hash tables must be sparse to work, they
are not space efficient. For example, if you are handling a large quantity of records, it
makes sense to store them in a list of tuples or named tuples instead of using a list of
dictionaries in JSON style, with one dict per record. Replacing dicts with tuples reduces
the memory usage in two ways: by removing the overhead of one hash table per record
and by not storing the field names again with each record.
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For user-defined types, the __slots__ class attribute changes the storage of instance
attributes from a dict to a tuple in each instance. This will be discussed in “Saving Space
with the __slots__ Class Attribute” on page 264 (Chapter 9).

Keep in mind we are talking about space optimizations. If you are dealing with a few
million objects and your machine has gigabytes of RAM, you should postpone such
optimizations until they are actually warranted. Optimization is the altar where main‐
tainability is sacrificed.

Key search is very fast

The dict implementation is an example of trading space for time: dictionaries have
significant memory overhead, but they provide fast access regardless of the size of the
dictionary—as long as it fits in memory. As Table 3-5 shows, when we increased the size
of a dict from 1,000 to 10,000,000 elements, the time to search grew by a factor of 2.8,
from 0.000163s to 0.000456s. The latter figure means we could search more than 2
million keys per second in a dict with 10 million items.

Key ordering depends on insertion order
When a hash collision happens, the second key ends up in a position that it would not
normally occupy if it had been inserted first. So, a dict built as dict([(key1, value1),
(key2, value2)]) compares equal to dict([(key2, value2), (key1, value1)]),
but their key ordering may not be the same if the hashes of key1 and key2 collide.

Example 3-17 demonstrates the effect of loading three dicts with the same data, just in
different order. The resulting dictionaries all compare equal, even if their order is not
the same.

Example 3-17. dialcodes.py fills three dictionaries with the same data sorted in different
ways
# dial codes of the top 10 most populous countries
DIAL_CODES = [
        (86, 'China'),
        (91, 'India'),
        (1, 'United States'),
        (62, 'Indonesia'),
        (55, 'Brazil'),
        (92, 'Pakistan'),
        (880, 'Bangladesh'),
        (234, 'Nigeria'),
        (7, 'Russia'),
        (81, 'Japan'),
    ]

d1 = dict(DIAL_CODES)   
print('d1:', d1.keys())
d2 = dict(sorted(DIAL_CODES))   
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print('d2:', d2.keys())
d3 = dict(sorted(DIAL_CODES, key=lambda x:x[1]))   
print('d3:', d3.keys())
assert d1 == d2 and d2 == d3   

d1: built from the tuples in descending order of country population.
d2: filled with tuples sorted by dial code.
d3: loaded with tuples sorted by country name.
The dictionaries compare equal, because they hold the same key:value pairs.

Example 3-18 shows the output.

Example 3-18. Output from dialcodes.py shows three distinct key orderings
d1: dict_keys([880, 1, 86, 55, 7, 234, 91, 92, 62, 81])
d2: dict_keys([880, 1, 91, 86, 81, 55, 234, 7, 92, 62])
d3: dict_keys([880, 81, 1, 86, 55, 7, 234, 91, 92, 62])

Adding items to a dict may change the order of existing keys

Whenever you add a new item to a dict, the Python interpreter may decide that the
hash table of that dictionary needs to grow. This entails building a new, bigger hash
table, and adding all current items to the new table. During this process, new (but
different) hash collisions may happen, with the result that the keys are likely to be or‐
dered differently in the new hash table. All of this is implementation-dependent, so you
cannot reliably predict when it will happen. If you are iterating over the dictionary keys
and changing them at the same time, your loop may not scan all the items as expected
—not even the items that were already in the dictionary before you added to it.

This is why modifying the contents of a dict while iterating through it is a bad idea. If
you need to scan and add items to a dictionary, do it in two steps: read the dict from
start to finish and collect the needed additions in a second dict. Then update the first
one with it.

In Python 3, the .keys(), .items(), and .values() methods re‐
turn dictionary views, which behave more like sets than the lists
returned by these methods in Python 2. Such views are also dy‐
namic: they do not replicate the contents of the dict, and they
immediately reflect any changes to the dict.

We can now apply what we know about hash tables to sets.
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How Sets Work—Practical Consequences
The set and frozenset types are also implemented with a hash table, except that each
bucket holds only a reference to the element (as if it were a key in a dict, but without
a value to go with it). In fact, before set was added to the language, we often used
dictionaries with dummy values just to perform fast membership tests on the keys.

Everything said in “Practical Consequences of How dict Works” on page 90 about how
the underlying hash table determines the behavior of a dict applies to a set. Without
repeating the previous section, we can summarize it for sets with just a few words:

• Set elements must be hashable objects.
• Sets have a significant memory overhead.
• Membership testing is very efficient.
• Element ordering depends on insertion order.
• Adding elements to a set may change the order of other elements.

Chapter Summary
Dictionaries are a keystone of Python. Beyond the basic dict, the standard library offers
handy, ready-to-use specialized mappings like defaultdict, OrderedDict, ChainMap,
and Counter, all defined in the collections module. The same module also provides
the easy-to-extend UserDict class.

Two powerful methods available in most mappings are setdefault and update. The
setdefault method is used to update items holding mutable values, for example, in a
dict of list values, to avoid redundant searches for the same key. The update method
allows bulk insertion or overwriting of items from any other mapping, from iterables
providing (key, value) pairs and from keyword arguments. Mapping constructors
also use update internally, allowing instances to be initialized from mappings, iterables,
or keyword arguments.

A clever hook in the mapping API is the __missing__ method, which lets you customize
what happens when a key is not found.

The collections.abc module provides the Mapping and MutableMapping abstract base
classes for reference and type checking. The little-known MappingProxyType from the
types module creates immutable mappings. There are also ABCs for Set and Mutable
Set.
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The hash table implementation underlying dict and set is extremely fast. Understand‐
ing its logic explains why items are apparently unordered and may even be reordered
behind our backs. There is a price to pay for all this speed, and the price is in memory.

Further Reading
In The Python Standard Library, 8.3. collections — Container datatypes includes ex‐
amples and practical recipes with several mapping types. The Python source code for
the module Lib/collections/init.py is a great reference for anyone who wants to create a
new mapping type or grok the logic of the existing ones.

Chapter 1 of Python Cookbook, Third edition (O’Reilly) by David Beazley and Brian K.
Jones has 20 handy and insightful recipes with data structures—the majority using dict
in clever ways.

Written by A.M. Kuchling—a Python core contributor and author of many pages of the
official Python docs and how-tos—Chapter 18, “Python’s Dictionary Implementation:
Being All Things to All People, in the book Beautiful Code (O’Reilly) includes a detailed
explanation of the inner workings of the Python dict. Also, there are lots of comments
in the source code of the dictobject.cCPython module. Brandon Craig Rhodes’ pre‐
sentation The Mighty Dictionary is excellent and shows how hash tables work by using
lots of slides with… tables!

The rationale for adding sets to the language is documented in PEP 218 — Adding a
Built-In Set Object Type. When PEP 218 was approved, no special literal syntax was
adopted for sets. The set literals were created for Python 3 and backported to Python
2.7, along with dict and set comprehensions. PEP 274 — Dict Comprehensions is the
birth certificate of dictcomps. I could not find a PEP for setcomps; apparently they were
adopted because they get along well with their siblings—a jolly good reason.

Soapbox
My friend Geraldo Cohen once remarked that Python is “simple and correct.”

The dict type is an example of simplicity and correctness. It’s highly optimized to do
one thing well: retrieve arbitrary keys. It’s fast and robust enough to be used all over the
Python interpreter itself. If you need predictable ordering, use OrderedDict. That is not
a requirement in most uses of mappings, so it makes sense to keep the core implemen‐
tation simple and offer variations in the standard library.

Contrast with PHP, where arrays are described like this in the official PHP Manual:

An array in PHP is actually an ordered map. A map is a type that associates values to
keys. This type is optimized for several different uses; it can be treated as an array, list
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(vector), hash table (an implementation of a map), dictionary, collection, stack, queue,
and probably more.

From that description, I don’t know what is the real cost of using PHP’s list/Ordered
Dict hybrid.

The goal of this and the previous chapter in this book was to showcase the Python
collection types optimized for particular uses. I made the point that beyond the trusty
list and dict there are specialized alternatives for different use cases.

Before finding Python, I had done web programming using Perl, PHP, and JavaScript.
I really enjoyed having a literal syntax for mappings in these languages, and I badly miss
it whenever I have to use Java or C. A good literal syntax for mappings makes it easy to
do configuration, table-driven implementations, and to hold data for prototyping and
testing. The lack of it pushed the Java community to adopt the verbose and overly com‐
plex XML as a data format.

JSON was proposed as “The Fat-Free Alternative to XML” and became a huge success,
replacing XML in many contexts. A concise syntax for lists and dictionaries makes an
excellent data interchange format.

PHP and Ruby imitated the hash syntax from Perl, using => to link keys to values.
JavaScript followed the lead of Python and uses :. Of course, JSON came from JavaScript,
but it also happens to be an almost exact subset of Python syntax. JSON is compatible
with Python except for the spelling of the values true, false, and null. The syntax
everybody now uses for exchanging data is the Python dict and list syntax.

Simple and correct.
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1. Slide 12 of PyCon 2014 talk “Character Encoding and Unicode in Python” (slides, video).

CHAPTER 4

Text versus Bytes

Humans use text. Computers speak bytes.1

— Esther Nam and Travis Fischer
 Character Encoding and Unicode in Python

Python 3 introduced a sharp distinction between strings of human text and sequences
of raw bytes. Implicit conversion of byte sequences to Unicode text is a thing of the past.
This chapter deals with Unicode strings, binary sequences, and the encodings used to
convert between them.

Depending on your Python programming context, a deeper understanding of Unicode
may or may not be of vital importance to you. In the end, most of the issues covered in
this chapter do not affect programmers who deal only with ASCII text. But even if that
is your case, there is no escaping the str versus byte divide. As a bonus, you’ll find that
the specialized binary sequence types provide features that the “all-purpose” Python 2
str type does not have.

In this chapter, we will visit the following topics:

• Characters, code points, and byte representations
• Unique features of binary sequences: bytes, bytearray, and memoryview
• Codecs for full Unicode and legacy character sets
• Avoiding and dealing with encoding errors
• Best practices when handling text files
• The default encoding trap and standard I/O issues
• Safe Unicode text comparisons with normalization
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• Utility functions for normalization, case folding, and brute-force diacritic removal
• Proper sorting of Unicode text with locale and the PyUCA library
• Character metadata in the Unicode database
• Dual-mode APIs that handle str and bytes

Let’s start with the characters, code points, and bytes.

Character Issues
The concept of “string” is simple enough: a string is a sequence of characters. The prob‐
lem lies in the definition of “character.”

In 2015, the best definition of “character” we have is a Unicode character. Accordingly,
the items you get out of a Python 3 str are Unicode characters, just like the items of a
unicode object in Python 2—and not the raw bytes you get from a Python 2 str.

The Unicode standard explicitly separates the identity of characters from specific byte
representations:

• The identity of a character—its code point—is a number from 0 to 1,114,111 (base
10), shown in the Unicode standard as 4 to 6 hexadecimal digits with a “U+” pre‐
fix. For example, the code point for the letter A is U+0041, the Euro sign is U+20AC,
and the musical symbol G clef is assigned to code point U+1D11E. About 10% of
the valid code points have characters assigned to them in Unicode 6.3, the standard
used in Python 3.4.

• The actual bytes that represent a character depend on the encoding in use. An en‐
coding is an algorithm that converts code points to byte sequences and vice versa.
The code point for A (U+0041) is encoded as the single byte \x41 in the UTF-8
encoding, or as the bytes \x41\x00 in UTF-16LE encoding. As another example,
the Euro sign (U+20AC) becomes three bytes in UTF-8—\xe2\x82\xac—but in
UTF-16LE it is encoded as two bytes: \xac\x20.

Converting from code points to bytes is encoding; converting from bytes to code points
is decoding. See Example 4-1.

Example 4-1. Encoding and decoding
>>> s = 'café'
>>> len(s)  # 
4
>>> b = s.encode('utf8')  # 
>>> b
b'caf\xc3\xa9'  # 
>>> len(b)  # 
5
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>>> b.decode('utf8')  # 
'café'

The str 'café' has four Unicode characters.
Encode str to bytes using UTF-8 encoding.
bytes literals start with a b prefix.
bytes b has five bytes (the code point for “é” is encoded as two bytes in UTF-8).
Decode bytes to str using UTF-8 encoding.

If you need a memory aid to help distinguish .decode()
from .encode(), convince yourself that byte sequences can be
cryptic machine core dumps while Unicode str objects are “hu‐
man” text. Therefore, it makes sense that we decode bytes to str
to get human-readable text, and we encode str to bytes for stor‐
age or transmission.

Although the Python 3 str is pretty much the Python 2 unicode type with a new name,
the Python 3 bytes is not simply the old str renamed, and there is also the closely
related bytearray type. So it is worthwhile to take a look at the binary sequence types
before advancing to encoding/decoding issues.

Byte Essentials
The new binary sequence types are unlike the Python 2 str in many regards. The first
thing to know is that there are two basic built-in types for binary sequences: the im‐
mutable bytes type introduced in Python 3 and the mutable bytearray, added in
Python 2.6. (Python 2.6 also introduced bytes, but it’s just an alias to the str type, and
does not behave like the Python 3 bytes type.)

Each item in bytes or bytearray is an integer from 0 to 255, and not a one-character
string like in the Python 2 str. However, a slice of a binary sequence always produces
a binary sequence of the same type—including slices of length 1. See Example 4-2.

Example 4-2. A five-byte sequence as bytes and as bytearray
>>> cafe = bytes('café', encoding='utf_8')  
>>> cafe
b'caf\xc3\xa9'
>>> cafe[0]  
99
>>> cafe[:1]  
b'c'
>>> cafe_arr = bytearray(cafe)
>>> cafe_arr  
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bytearray(b'caf\xc3\xa9')
>>> cafe_arr[-1:]  
bytearray(b'\xa9')

bytes can be built from a str, given an encoding.
Each item is an integer in range(256).
Slices of bytes are also bytes—even slices of a single byte.
There is no literal syntax for bytearray: they are shown as bytearray() with a
bytes literal as argument.
A slice of bytearray is also a bytearray.

The fact that my_bytes[0] retrieves an int but my_bytes[:1]
returns a bytes object of length 1 should not be surprising. The
only sequence type where s[0] == s[:1] is the str type. Al‐
though practical, this behavior of str is exceptional. For every
other sequence, s[i] returns one item, and s[i:i+1] returns a
sequence of the same type with the s[1] item inside it.

Although binary sequences are really sequences of integers, their literal notation reflects
the fact that ASCII text is often embedded in them. Therefore, three different displays
are used, depending on each byte value:

• For bytes in the printable ASCII range—from space to ~—the ASCII character itself
is used.

• For bytes corresponding to tab, newline, carriage return, and \, the escape sequences
\t, \n, \r, and \\ are used.

• For every other byte value, a hexadecimal escape sequence is used (e.g., \x00 is the
null byte).

That is why in Example 4-2 you see b'caf\xc3\xa9': the first three bytes b'caf' are in
the printable ASCII range, the last two are not.

Both bytes and bytearray support every str method except those that do formatting
(format, format_map) and a few others that depend on Unicode data, including case
fold, isdecimal, isidentifier, isnumeric, isprintable, and encode. This means that
you can use familiar string methods like endswith, replace, strip, translate, upper,
and dozens of others with binary sequences—only using bytes and not str arguments.
In addition, the regular expression functions in the re module also work on binary
sequences, if the regex is compiled from a binary sequence instead of a str. The %
operator does not work with binary sequences in Python 3.0 to 3.4, but should be sup‐
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ported in version 3.5 according to PEP 461 — Adding % formatting to bytes and byte‐
array.

Binary sequences have a class method that str doesn’t have, called fromhex, which builds
a binary sequence by parsing pairs of hex digits optionally separated by spaces:

>>> bytes.fromhex('31 4B CE A9')
b'1K\xce\xa9'

The other ways of building bytes or bytearray instances are calling their constructors
with:

• A str and an encoding keyword argument.
• An iterable providing items with values from 0 to 255.
• A single integer, to create a binary sequence of that size initialized with null bytes.

(This signature will be deprecated in Python 3.5 and removed in Python 3.6. See
PEP 467 — Minor API improvements for binary sequences.)

• An object that implements the buffer protocol (e.g., bytes, bytearray, memory
view, array.array); this copies the bytes from the source object to the newly cre‐
ated binary sequence.

Building a binary sequence from a buffer-like object is a low-level operation that may
involve type casting. See a demonstration in Example 4-3.

Example 4-3. Initializing bytes from the raw data of an array
>>> import array
>>> numbers = array.array('h', [-2, -1, 0, 1, 2])  
>>> octets = bytes(numbers)  
>>> octets
b'\xfe\xff\xff\xff\x00\x00\x01\x00\x02\x00'  

Typecode 'h' creates an array of short integers (16 bits).
octets holds a copy of the bytes that make up numbers.
These are the 10 bytes that represent the five short integers.

Creating a bytes or bytearray object from any buffer-like source will always copy the
bytes. In contrast, memoryview objects let you share memory between binary data struc‐
tures. To extract structured information from binary sequences, the struct module is
invaluable. We’ll see it working along with bytes and memoryview in the next section.
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2. Pillow is PIL’s most active fork.

Structs and Memory Views
The struct module provides functions to parse packed bytes into a tuple of fields of
different types and to perform the opposite conversion, from a tuple into packed bytes.
struct is used with bytes, bytearray, and memoryview objects.

As we’ve seen in “Memory Views” on page 51, the memoryview class does not let you
create or store byte sequences, but provides shared memory access to slices of data from
other binary sequences, packed arrays, and buffers such as Python Imaging Library
(PIL) images,2 without copying the bytes.

Example 4-4 shows the use of memoryview and struct together to extract the width and
height of a GIF image.

Example 4-4. Using memoryview and struct to inspect a GIF image header
>>> import struct
>>> fmt = '<3s3sHH'  # 
>>> with open('filter.gif', 'rb') as fp:
...     img = memoryview(fp.read())  # 
...
>>> header = img[:10]  # 
>>> bytes(header)  # 
b'GIF89a+\x02\xe6\x00'
>>> struct.unpack(fmt, header)  # 
(b'GIF', b'89a', 555, 230)
>>> del header  # 
>>> del img

struct format: < little-endian; 3s3s two sequences of 3 bytes; HH two 16-bit
integers.
Create memoryview from file contents in memory…
…then another memoryview by slicing the first one; no bytes are copied here.
Convert to bytes for display only; 10 bytes are copied here.
Unpack memoryview into tuple of: type, version, width, and height.
Delete references to release the memory associated with the memoryview
instances.

Note that slicing a memoryview returns a new memoryview, without copying bytes (Leo‐
nardo Rochael—one of the technical reviewers—pointed out that even less byte copying
would happen if I used the mmap module to open the image as a memory-mapped file.
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I will not cover mmap in this book, but if you read and change binary files frequently,
learning more about mmap — Memory-mapped file support will be very fruitful).

We will not go deeper into memoryview or the struct module in this book, but if you
work with binary data, you’ll find it worthwhile to study their docs: Built-in Types »
Memory Views and struct — Interpret bytes as packed binary data.

After this brief exploration of binary sequence types in Python, let’s see how they are
converted to/from strings.

Basic Encoders/Decoders
The Python distribution bundles more than 100 codecs (encoder/decoder) for text to
byte conversion and vice versa. Each codec has a name, like 'utf_8', and often aliases,
such as 'utf8', 'utf-8', and 'U8', which you can use as the encoding argument in
functions like open(), str.encode(), bytes.decode(), and so on. Example 4-5 shows
the same text encoded as three different byte sequences.

Example 4-5. The string “El Niño” encoded with three codecs producing very different
byte sequences
>>> for codec in ['latin_1', 'utf_8', 'utf_16']:
...     print(codec, 'El Niño'.encode(codec), sep='\t')
...
latin_1 b'El Ni\xf1o'
utf_8   b'El Ni\xc3\xb1o'
utf_16  b'\xff\xfeE\x00l\x00 \x00N\x00i\x00\xf1\x00o\x00'

Figure 4-1 demonstrates a variety of codecs generating bytes from characters like the
letter “A” through the G-clef musical symbol. Note that the last three encodings are
variable-length, multibyte encodings.
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Figure 4-1. Twelve characters, their code points, and their byte representation (in hex)
in seven different encodings (asterisks indicate that the character cannot be represented
in that encoding)

All those asterisks in Figure 4-1 make clear that some encodings, like ASCII and even
the multibyte GB2312, cannot represent every Unicode character. The UTF encodings,
however, are designed to handle every Unicode code point.

The encodings shown in Figure 4-1 were chosen as a representative sample:
latin1 a.k.a. iso8859_1

Important because it is the basis for other encodings, such as cp1252 and Unicode
itself (note how the latin1 byte values appear in the cp1252 bytes and even in the
code points).

cp1252

A latin1 superset by Microsoft, adding useful symbols like curly quotes and the €
(euro); some Windows apps call it “ANSI,” but it was never a real ANSI standard.

cp437

The original character set of the IBM PC, with box drawing characters. Incompat‐
ible with latin1, which appeared later.

gb2312

Legacy standard to encode the simplified Chinese ideographs used in mainland
China; one of several widely deployed multibyte encodings for Asian languages.
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3. As of September, 2014, W3Techs: Usage of Character Encodings for Websites claims that 81.4% of sites use
UTF-8, while Built With: Encoding Usage Statistics estimates 79.4%.

utf-8

The most common 8-bit encoding on the Web, by far;3 backward-compatible with
ASCII (pure ASCII text is valid UTF-8).

utf-16le

One form of the UTF-16 16-bit encoding scheme; all UTF-16 encodings support
code points beyond U+FFFF through escape sequences called “surrogate pairs.”

UTF-16 superseded the original 16-bit Unicode 1.0 encoding—
UCS-2—way back in 1996. UCS-2 is still deployed in many sys‐
tems, but it only supports code points up to U+FFFF. As of Uni‐
code 6.3, more than 50% of the allocated code points are above U
+10000, including the increasingly popular emoji pictographs.

With this overview of common encodings now complete, we move to handling issues
in encoding and decoding operations.

Understanding Encode/Decode Problems
Although there is a generic UnicodeError exception, the error reported is almost always
more specific: either a UnicodeEncodeError (when converting str to binary sequences)
or a UnicodeDecodeError (when reading binary sequences into str). Loading Python
modules may also generate a SyntaxError when the source encoding is unexpected.
We’ll show how to handle all of these errors in the next sections.

The first thing to note when you get a Unicode error is the exact
type of the exception. Is it a UnicodeEncodeError, a UnicodeDeco
deError, or some other error (e.g., SyntaxError) that mentions an
encoding problem? To solve the problem, you have to under‐
stand it first.

Coping with UnicodeEncodeError
Most non-UTF codecs handle only a small subset of the Unicode characters. When
converting text to bytes, if a character is not defined in the target encoding, UnicodeEn
codeError will be raised, unless special handling is provided by passing an errors
argument to the encoding method or function. The behavior of the error handlers is
shown in Example 4-6.
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Example 4-6. Encoding to bytes: success and error handling
>>> city = 'São Paulo'
>>> city.encode('utf_8')  
b'S\xc3\xa3o Paulo'
>>> city.encode('utf_16')
b'\xff\xfeS\x00\xe3\x00o\x00 \x00P\x00a\x00u\x00l\x00o\x00'
>>> city.encode('iso8859_1')  
b'S\xe3o Paulo'
>>> city.encode('cp437')  
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/.../lib/python3.4/encodings/cp437.py", line 12, in encode
    return codecs.charmap_encode(input,errors,encoding_map)
UnicodeEncodeError: 'charmap' codec can't encode character '\xe3' in
position 1: character maps to <undefined>
>>> city.encode('cp437', errors='ignore')  
b'So Paulo'
>>> city.encode('cp437', errors='replace')  
b'S?o Paulo'
>>> city.encode('cp437', errors='xmlcharrefreplace')  
b'S&#227;o Paulo'

The 'utf_?' encodings handle any str.
'iso8859_1' also works for the 'São Paulo' str.
'cp437' can’t encode the 'ã' (“a” with tilde). The default error handler
—'strict'—raises UnicodeEncodeError.
The error='ignore' handler silently skips characters that cannot be encoded;
this is usually a very bad idea.
When encoding, error='replace' substitutes unencodable characters with '?';
data is lost, but users will know something is amiss.
'xmlcharrefreplace' replaces unencodable characters with an XML entity.

The codecs error handling is extensible. You may register extra
strings for the errors argument by passing a name and an error
handling function to the codecs.register_error function. See
the codecs.register_error documentation.

Coping with UnicodeDecodeError
Not every byte holds a valid ASCII character, and not every byte sequence is valid UTF-8
or UTF-16; therefore, when you assume one of these encodings while converting a
binary sequence to text, you will get a UnicodeDecodeError if unexpected bytes are
found.
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On the other hand, many legacy 8-bit encodings like 'cp1252', 'iso8859_1', and
'koi8_r' are able to decode any stream of bytes, including random noise, without
generating errors. Therefore, if your program assumes the wrong 8-bit encoding, it will
silently decode garbage.

Garbled characters are known as gremlins or mojibake (文字化け
—Japanese for “transformed text”).

Example 4-7 illustrates how using the wrong codec may produce gremlins or a Unico
deDecodeError.

Example 4-7. Decoding from str to bytes: success and error handling
>>> octets = b'Montr\xe9al'  
>>> octets.decode('cp1252')  
'Montréal'
>>> octets.decode('iso8859_7')  
'Montrιal'
>>> octets.decode('koi8_r')  
'MontrИal'
>>> octets.decode('utf_8')  
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xe9 in position 5:
invalid continuation byte
>>> octets.decode('utf_8', errors='replace')  
'Montr�al'

These bytes are the characters for “Montréal” encoded as latin1; '\xe9' is the
byte for “é”.
Decoding with 'cp1252' (Windows 1252) works because it is a proper superset
of latin1.
ISO-8859-7 is intended for Greek, so the '\xe9' byte is misinterpreted, and no
error is issued.
KOI8-R is for Russian. Now '\xe9' stands for the Cyrillic letter “И”.
The 'utf_8' codec detects that octets is not valid UTF-8, and raises Unicode
DecodeError.
Using 'replace' error handling, the \xe9 is replaced by “�” (code point U
+FFFD), the official Unicode REPLACEMENT CHARACTER intended to represent
unknown characters.
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SyntaxError When Loading Modules with Unexpected Encoding
UTF-8 is the default source encoding for Python 3, just as ASCII was the default for
Python 2 (starting with 2.5). If you load a .py module containing non-UTF-8 data and
no encoding declaration, you get a message like this:

SyntaxError: Non-UTF-8 code starting with '\xe1' in file ola.py on line
  1, but no encoding declared; see http://python.org/dev/peps/pep-0263/
  for details

Because UTF-8 is widely deployed in GNU/Linux and OSX systems, a likely scenario
is opening a .py file created on Windows with cp1252. Note that this error happens even
in Python for Windows, because the default encoding for Python 3 is UTF-8 across all
platforms.

To fix this problem, add a magic coding comment at the top of the file, as shown in
Example 4-8.

Example 4-8. ola.py: “Hello, World!” in Portuguese
# coding: cp1252

print('Olá, Mundo!')

Now that Python 3 source code is no longer limited to ASCII and
defaults to the excellent UTF-8 encoding, the best “fix” for source
code in legacy encodings like 'cp1252' is to convert them to UTF-8
already, and not bother with the coding comments. If your edi‐
tor does not support UTF-8, it’s time to switch.

Non-ASCII Names in Source Code: Should You Use Them?
Python 3 allows non-ASCII identifiers in source code:

>>> ação = 'PBR'  # ação = stock
>>> ε = 10**-6    # ε = epsilon

Some people dislike the idea. The most common argument to stick with ASCII identi‐
fiers is to make it easy for everyone to read and edit code. That argument misses the
point: you want your source code to be readable and editable by its intended audience,
and that may not be “everyone.” If the code belongs to a multinational corporation or is
open source and you want contributors from around the world, the identifiers should
be in English, and then all you need is ASCII.

But if you are a teacher in Brazil, your students will find it easier to read code that uses
Portuguese variable and function names, correctly spelled. And they will have no dif‐
ficulty typing the cedillas and accented vowels on their localized keyboards.
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Now that Python can parse Unicode names and UTF-8 is the default source encoding,
I see no point in coding identifiers in Portuguese without accents, as we used to do in
Python 2 out of necessity—unless you need the code to run on Python 2 also. If the
names are in Portuguese, leaving out the accents won’t make the code more readable to
anyone.

This is my point of view as a Portuguese-speaking Brazilian, but I believe it applies across
borders and cultures: choose the human language that makes the code easier to read by
the team, then use the characters needed for correct spelling.

Suppose you have a text file, be it source code or poetry, but you don’t know its encoding.
How do you detect the actual encoding? The next section answers that with a library
recommendation.

How to Discover the Encoding of a Byte Sequence
How do you find the encoding of a byte sequence? Short answer: you can’t. You must
be told.

Some communication protocols and file formats, like HTTP and XML, contain headers
that explicitly tell us how the content is encoded. You can be sure that some byte streams
are not ASCII because they contain byte values over 127, and the way UTF-8 and UTF-16
are built also limits the possible byte sequences. But even then, you can never be 100%
positive that a binary file is ASCII or UTF-8 just because certain bit patterns are not
there.

However, considering that human languages also have their rules and restrictions, once
you assume that a stream of bytes is human plain text it may be possible to sniff out its
encoding using heuristics and statistics. For example, if b'\x00' bytes are common, it
is probably a 16- or 32-bit encoding, and not an 8-bit scheme, because null characters
in plain text are bugs; when the byte sequence b'\x20\x00' appears often, it is likely to
be the space character (U+0020) in a UTF-16LE encoding, rather than the obscure U
+2000 EN QUAD character—whatever that is.

That is how the package Chardet — The Universal Character Encoding Detector works
to identify one of 30 supported encodings. Chardet is a Python library that you can use
in your programs, but also includes a command-line utility, chardetect. Here is what
it reports on the source file for this chapter:

$ chardetect 04-text-byte.asciidoc
04-text-byte.asciidoc: utf-8 with confidence 0.99

Although binary sequences of encoded text usually don’t carry explicit hints of their
encoding, the UTF formats may prepend a byte order mark to the textual content. That
is explained next.
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BOM: A Useful Gremlin
In Example 4-5, you may have noticed a couple of extra bytes at the beginning of a
UTF-16 encoded sequence. Here they are again:

>>> u16 = 'El Niño'.encode('utf_16')
>>> u16
b'\xff\xfeE\x00l\x00 \x00N\x00i\x00\xf1\x00o\x00'

The bytes are b'\xff\xfe'. That is a BOM—byte-order mark—denoting the “little-
endian” byte ordering of the Intel CPU where the encoding was performed.

On a little-endian machine, for each code point the least significant byte comes first:
the letter 'E', code point U+0045 (decimal 69), is encoded in byte offsets 2 and 3 as 69
and 0:

>>> list(u16)
[255, 254, 69, 0, 108, 0, 32, 0, 78, 0, 105, 0, 241, 0, 111, 0]

On a big-endian CPU, the encoding would be reversed; 'E' would be encoded as 0 and
69.

To avoid confusion, the UTF-16 encoding prepends the text to be encoded with the
special character ZERO WIDTH NO-BREAK SPACE (U+FEFF), which is invisible. On a little-
endian system, that is encoded as b'\xff\xfe' (decimal 255, 254). Because, by design,
there is no U+FFFE character, the byte sequence b'\xff\xfe' must mean the ZERO
WIDTH NO-BREAK SPACE on a little-endian encoding, so the codec knows which byte
ordering to use.

There is a variant of UTF-16—UTF-16LE—that is explicitly little-endian, and another
one explicitly big-endian, UTF-16BE. If you use them, a BOM is not generated:

>>> u16le = 'El Niño'.encode('utf_16le')
>>> list(u16le)
[69, 0, 108, 0, 32, 0, 78, 0, 105, 0, 241, 0, 111, 0]
>>> u16be = 'El Niño'.encode('utf_16be')
>>> list(u16be)
[0, 69, 0, 108, 0, 32, 0, 78, 0, 105, 0, 241, 0, 111]

If present, the BOM is supposed to be filtered by the UTF-16 codec, so that you only
get the actual text contents of the file without the leading ZERO WIDTH NO-BREAK
SPACE. The standard says that if a file is UTF-16 and has no BOM, it should be assumed
to be UTF-16BE (big-endian). However, the Intel x86 architecture is little-endian, so
there is plenty of little-endian UTF-16 with no BOM in the wild.

This whole issue of endianness only affects encodings that use words of more than one
byte, like UTF-16 and UTF-32. One big advantage of UTF-8 is that it produces the same
byte sequence regardless of machine endianness, so no BOM is needed. Nevertheless,
some Windows applications (notably Notepad) add the BOM to UTF-8 files anyway—
and Excel depends on the BOM to detect a UTF-8 file, otherwise it assumes the content
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4. I first saw the term “Unicode sandwich” in Ned Batchelder’s excellent “Pragmatic Unicode” talk at US PyCon
2012.

5. Python 2.6 or 2.7 users have to use io.open() to get automatic decoding/encoding when reading/writing.

is encoded with a Windows codepage. The character U+FEFF encoded in UTF-8 is the
three-byte sequence b'\xef\xbb\xbf'. So if a file starts with those three bytes, it is likely
to be a UTF-8 file with a BOM. However, Python does not automatically assume a file
is UTF-8 just because it starts with b'\xef\xbb\xbf'.

We now move on to handling text files in Python 3.

Handling Text Files
The best practice for handling text is the “Unicode sandwich” (Figure 4-2).4 This means
that bytes should be decoded to str as early as possible on input (e.g., when opening
a file for reading). The “meat” of the sandwich is the business logic of your program,
where text handling is done exclusively on str objects. You should never be encoding
or decoding in the middle of other processing. On output, the str are encoded to bytes
as late as possible. Most web frameworks work like that, and we rarely touch bytes when
using them. In Django, for example, your views should output Unicode str; Django
itself takes care of encoding the response to bytes, using UTF-8 by default.

Figure 4-2. Unicode sandwich: current best practice for text processing

Python 3 makes it easier to follow the advice of the Unicode sandwich, because the open
built-in does the necessary decoding when reading and encoding when writing files in
text mode, so all you get from my_file.read() and pass to my_file.write(text) are
str objects.5
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Therefore, using text files is simple. But if you rely on default encodings you will get
bitten.

Consider the console session in Example 4-9. Can you spot the bug?

Example 4-9. A platform encoding issue (if you try this on your machine, you may or
may not see the problem)
>>> open('cafe.txt', 'w', encoding='utf_8').write('café')
4
>>> open('cafe.txt').read()
'cafÃ©'

The bug: I specified UTF-8 encoding when writing the file but failed to do so when
reading it, so Python assumed the system default encoding—Windows 1252—and the
trailing bytes in the file were decoded as characters 'Ã©' instead of 'é'.

I ran Example 4-9 on a Windows 7 machine. The same statements running on recent
GNU/Linux or Mac OSX work perfectly well because their default encoding is UTF-8,
giving the false impression that everything is fine. If the encoding argument was omitted
when opening the file to write, the locale default encoding would be used, and we’d read
the file correctly using the same encoding. But then this script would generate files with
different byte contents depending on the platform or even depending on locale settings
in the same platform, creating compatibility problems.

Code that has to run on multiple machines or on multiple occa‐
sions should never depend on encoding defaults. Always pass an
explicit encoding= argument when opening text files, because the
default may change from one machine to the next, or from one day
to the next.

A curious detail in Example 4-9 is that the write function in the first statement reports
that four characters were written, but in the next line five characters are read.
Example 4-10 is an extended version of Example 4-9, explaining that and other details.

Example 4-10. Closer inspection of Example 4-9 running on Windows reveals the bug
and how to fix it
>>> fp = open('cafe.txt', 'w', encoding='utf_8')
>>> fp  
<_io.TextIOWrapper name='cafe.txt' mode='w' encoding='utf_8'>
>>> fp.write('café')
4  
>>> fp.close()
>>> import os
>>> os.stat('cafe.txt').st_size
5  
>>> fp2 = open('cafe.txt')
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>>> fp2  
<_io.TextIOWrapper name='cafe.txt' mode='r' encoding='cp1252'>
>>> fp2.encoding  
'cp1252'
>>> fp2.read()
'cafÃ©'  
>>> fp3 = open('cafe.txt', encoding='utf_8')  
>>> fp3
<_io.TextIOWrapper name='cafe.txt' mode='r' encoding='utf_8'>
>>> fp3.read()
'café'  
>>> fp4 = open('cafe.txt', 'rb')  
>>> fp4
<_io.BufferedReader name='cafe.txt'>  
>>> fp4.read()  
b'caf\xc3\xa9'

By default, open operates in text mode and returns a TextIOWrapper object.
The write method on a TextIOWrapper returns the number of Unicode
characters written.
os.stat reports that the file holds 5 bytes; UTF-8 encodes 'é' as 2 bytes, 0xc3
and 0xa9.
Opening a text file with no explicit encoding returns a TextIOWrapper with the
encoding set to a default from the locale.
A TextIOWrapper object has an encoding attribute that you can inspect: cp1252
in this case.
In the Windows cp1252 encoding, the byte 0xc3 is an “Ã” (A with tilde) and 0xa9
is the copyright sign.
Opening the same file with the correct encoding.
The expected result: the same four Unicode characters for 'café'.
The 'rb' flag opens a file for reading in binary mode.
The returned object is a BufferedReader and not a TextIOWrapper.
Reading that returns bytes, as expected.

Do not open text files in binary mode unless you need to analyze
the file contents to determine the encoding—even then, you should
be using Chardet instead of reinventing the wheel (see “How to
Discover the Encoding of a Byte Sequence” on page 109). Ordina‐
ry code should only use binary mode to open binary files, like
raster images.
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The problem in Example 4-10 has to do with relying on a default setting while opening
a text file. There are several sources for such defaults, as the next section shows.

Encoding Defaults: A Madhouse
Several settings affect the encoding defaults for I/O in Python. See the default_encod‐
ings.py script in Example 4-11.

Example 4-11. Exploring encoding defaults
import sys, locale

expressions = """
        locale.getpreferredencoding()
        type(my_file)
        my_file.encoding
        sys.stdout.isatty()
        sys.stdout.encoding
        sys.stdin.isatty()
        sys.stdin.encoding
        sys.stderr.isatty()
        sys.stderr.encoding
        sys.getdefaultencoding()
        sys.getfilesystemencoding()
    """

my_file = open('dummy', 'w')

for expression in expressions.split():
    value = eval(expression)
    print(expression.rjust(30), '->', repr(value))

The output of Example 4-11 on GNU/Linux (Ubuntu 14.04) and OSX (Mavericks 10.9)
is identical, showing that UTF-8 is used everywhere in these systems:

$ python3 default_encodings.py
 locale.getpreferredencoding() -> 'UTF-8'
                 type(my_file) -> <class '_io.TextIOWrapper'>
              my_file.encoding -> 'UTF-8'
           sys.stdout.isatty() -> True
           sys.stdout.encoding -> 'UTF-8'
            sys.stdin.isatty() -> True
            sys.stdin.encoding -> 'UTF-8'
           sys.stderr.isatty() -> True
           sys.stderr.encoding -> 'UTF-8'
      sys.getdefaultencoding() -> 'utf-8'
   sys.getfilesystemencoding() -> 'utf-8'

On Windows, however, the output is Example 4-12.
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Example 4-12. Default encodings on Windows 7 (SP 1) cmd.exe localized for Brazil;
PowerShell gives same result
Z:\>chcp  
Página de código ativa: 850
Z:\>python default_encodings.py  
 locale.getpreferredencoding() -> 'cp1252'  
                 type(my_file) -> <class '_io.TextIOWrapper'>
              my_file.encoding -> 'cp1252'  
           sys.stdout.isatty() -> True      
           sys.stdout.encoding -> 'cp850'   
            sys.stdin.isatty() -> True
            sys.stdin.encoding -> 'cp850'
           sys.stderr.isatty() -> True
           sys.stderr.encoding -> 'cp850'
      sys.getdefaultencoding() -> 'utf-8'
   sys.getfilesystemencoding() -> 'mbcs'

chcp shows the active codepage for the console: 850.
Running default_encodings.py with output to console.
locale.getpreferredencoding() is the most important setting.
Text files use locale.getpreferredencoding() by default.
The output is going to the console, so sys.stdout.isatty() is True.
Therefore, sys.stdout.encoding is the same as the console encoding.

If the output is redirected to a file, like this:

Z:\>python default_encodings.py > encodings.log

The value of sys.stdout.isatty() becomes False, and sys.stdout.encoding is set
by locale.getpreferredencoding(), 'cp1252' in that machine.

Note that there are four different encodings in Example 4-12:

• If you omit the encoding argument when opening a file, the default is given by
locale.getpreferredencoding() ('cp1252' in Example 4-12).

• The encoding of sys.stdout/stdin/stderr is given by the PYTHONIOENCODING
environment variable, if present, otherwise it is either inherited from the console
or defined by locale.getpreferredencoding() if the output/input is redirected
to/from a file.
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6. While researching this subject, I did not find a list of situations when Python 3 internally converts bytes to
str. Python core developer Antoine Pitrou says on the comp.python.devel list that CPython internal func‐
tions that depend on such conversions “don’t get a lot of use in py3k.”

7. The Python 2 sys.setdefaultencoding function was misused and is no longer documented in Python 3.
It was intended for use by the core developers when the internal default encoding of Python was still unde‐
cided. In the same comp.python.devel thread, Marc-André Lemburg states that the sys.setdefaulten
coding must never be called by user code and the only values supported by CPython are 'ascii' in Python
2 and 'utf-8' in Python 3.

• sys.getdefaultencoding() is used internally by Python to convert binary data to/
from str; this happens less often in Python 3, but still happens.6 Changing this
setting is not supported.7

• sys.getfilesystemencoding() is used to encode/decode filenames (not file con‐
tents). It is used when open() gets a str argument for the filename; if the filename
is given as a bytes argument, it is passed unchanged to the OS API. The Python
Unicode HOWTO says: “on Windows, Python uses the name mbcs to refer to what‐
ever the currently configured encoding is.” The acronym MBCS stands for Multi
Byte Character Set, which for Microsoft are the legacy variable-width encodings
like gb2312 or Shift_JIS, but not UTF-8. (On this topic, a useful answer on Stack‐
Overflow is “Difference between MBCS and UTF-8 on Windows”.)

On GNU/Linux and OSX all of these encodings are set to UTF-8
by default, and have been for several years, so I/O handles all
Unicode characters. On Windows, not only are different encod‐
ings used in the same system, but they are usually codepages like
'cp850' or 'cp1252' that support only ASCII with 127 addition‐
al characters that are not the same from one encoding to the other.
Therefore, Windows users are far more likely to face encoding
errors unless they are extra careful.

To summarize, the most important encoding setting is that returned by locale.get
preferredencoding(): it is the default for opening text files and for sys.stdout/stdin/
stderr when they are redirected to files. However, the documentation reads (in part):

locale.getpreferredencoding(do_setlocale=True)
Return the encoding used for text data, according to user preferences. User prefer‐
ences are expressed differently on different systems, and might not be available pro‐
grammatically on some systems, so this function only returns a guess. […]

Therefore, the best advice about encoding defaults is: do not rely on them.

If you follow the advice of the Unicode sandwich and always are explicit about the
encodings in your programs, you will avoid a lot of pain. Unfortunately, Unicode is
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painful even if you get your bytes correctly converted to str. The next two sections
cover subjects that are simple in ASCII-land, but get quite complex on planet Unicode:
text normalization (i.e., converting text to a uniform representation for comparisons)
and sorting.

Normalizing Unicode for Saner Comparisons
String comparisons are complicated by the fact that Unicode has combining characters:
diacritics and other marks that attach to the preceding character, appearing as one when
printed.

For example, the word “café” may be composed in two ways, using four or five code
points, but the result looks exactly the same:

>>> s1 = 'café'
>>> s2 = 'cafe\u0301'
>>> s1, s2
('café', 'café')
>>> len(s1), len(s2)
(4, 5)
>>> s1 == s2
False

The code point U+0301 is the COMBINING ACUTE ACCENT. Using it after “e” renders “é”.
In the Unicode standard, sequences like 'é' and 'e\u0301' are called “canonical equiv‐
alents,” and applications are supposed to treat them as the same. But Python sees two
different sequences of code points, and considers them not equal.

The solution is to use Unicode normalization, provided by the unicodedata.normal
ize function. The first argument to that function is one of four strings: 'NFC', 'NFD',
'NFKC', and 'NFKD'. Let’s start with the first two.

Normalization Form C (NFC) composes the code points to produce the shortest equiv‐
alent string, while NFD decomposes, expanding composed characters into base char‐
acters and separate combining characters. Both of these normalizations make compar‐
isons work as expected:

>>> from unicodedata import normalize
>>> s1 = 'café'  # composed "e" with acute accent
>>> s2 = 'cafe\u0301'  # decomposed "e" and acute accent
>>> len(s1), len(s2)
(4, 5)
>>> len(normalize('NFC', s1)), len(normalize('NFC', s2))
(4, 4)
>>> len(normalize('NFD', s1)), len(normalize('NFD', s2))
(5, 5)
>>> normalize('NFC', s1) == normalize('NFC', s2)
True
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8. Curiously, the micro sign is considered a “compatibility character” but the ohm symbol is not. The end result
is that NFC doesn’t touch the micro sign but changes the ohm symbol to capital omega, while NFKC and
NFKD change both the ohm and the micro into other characters.

>>> normalize('NFD', s1) == normalize('NFD', s2)
True

Western keyboards usually generate composed characters, so text typed by users will be
in NFC by default. However, to be safe, it may be good to sanitize strings with normal
ize('NFC', user_text) before saving. NFC is also the normalization form recom‐
mended by the W3C in Character Model for the World Wide Web: String Matching and
Searching.

Some single characters are normalized by NFC into another single character. The sym‐
bol for the ohm (Ω) unit of electrical resistance is normalized to the Greek uppercase
omega. They are visually identical, but they compare unequal so it is essential to nor‐
malize to avoid surprises:

>>> from unicodedata import normalize, name
>>> ohm = '\u2126'
>>> name(ohm)
'OHM SIGN'
>>> ohm_c = normalize('NFC', ohm)
>>> name(ohm_c)
'GREEK CAPITAL LETTER OMEGA'
>>> ohm == ohm_c
False
>>> normalize('NFC', ohm) == normalize('NFC', ohm_c)
True

In the acronyms for the other two normalization forms—NFKC and NFKD—the letter
K stands for “compatibility.” These are stronger forms of normalization, affecting the
so-called “compatibility characters.” Although one goal of Unicode is to have a single
“canonical” code point for each character, some characters appear more than once for
compatibility with preexisting standards. For example, the micro sign, 'µ' (U+00B5),
was added to Unicode to support round-trip conversion to latin1, even though the
same character is part of the Greek alphabet with code point U+03BC (GREEK SMALL
LETTER MU). So, the micro sign is considered a “compatibility character.”

In the NFKC and NFKD forms, each compatibility character is replaced by a “compat‐
ibility decomposition” of one or more characters that are considered a “preferred” rep‐
resentation, even if there is some formatting loss—ideally, the formatting should be the
responsibility of external markup, not part of Unicode. To exemplify, the compatibility
decomposition of the one half fraction '½' (U+00BD) is the sequence of three characters
'1/2', and the compatibility decomposition of the micro sign 'µ' (U+00B5) is the low‐
ercase mu 'μ' (U+03BC).8
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Here is how the NFKC works in practice:

>>> from unicodedata import normalize, name
>>> half = '½'
>>> normalize('NFKC', half)
'1⁄2'
>>> four_squared = '4²'
>>> normalize('NFKC', four_squared)
'42'
>>> micro = 'µ'
>>> micro_kc = normalize('NFKC', micro)
>>> micro, micro_kc
('µ', 'μ')
>>> ord(micro), ord(micro_kc)
(181, 956)
>>> name(micro), name(micro_kc)
('MICRO SIGN', 'GREEK SMALL LETTER MU')

Although '1⁄2' is a reasonable substitute for '½', and the micro sign is really a lowercase
Greek mu, converting '4²' to '42' changes the meaning. An application could store
'4²' as '4<sup>2</sup>', but the normalize function knows nothing about format‐
ting. Therefore, NFKC or NFKD may lose or distort information, but they can produce
convenient intermediate representations for searching and indexing: users may be
pleased that a search for '1⁄2 inch' also finds documents containing '½ inch'.

NFKC and NFKD normalization should be applied with care and
only in special cases—e.g., search and indexing—and not for per‐
manent storage, because these transformations cause data loss.

When preparing text for searching or indexing, another operation is useful: case folding,
our next subject.

Case Folding
Case folding is essentially converting all text to lowercase, with some additional trans‐
formations. It is supported by the str.casefold() method (new in Python 3.3).

For any string s containing only latin1 characters, s.casefold() produces the same
result as s.lower(), with only two exceptions—the micro sign 'µ' is changed to the
Greek lowercase mu (which looks the same in most fonts) and the German Eszett or
“sharp s” (ß) becomes “ss”:

>>> micro = 'µ'
>>> name(micro)
'MICRO SIGN'
>>> micro_cf = micro.casefold()
>>> name(micro_cf)
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'GREEK SMALL LETTER MU'
>>> micro, micro_cf
('µ', 'μ')
>>> eszett = 'ß'
>>> name(eszett)
'LATIN SMALL LETTER SHARP S'
>>> eszett_cf = eszett.casefold()
>>> eszett, eszett_cf
('ß', 'ss')

As of Python 3.4, there are 116 code points for which str.casefold() and str.low
er() return different results. That’s 0.11% of a total of 110,122 named characters in
Unicode 6.3.

As usual with anything related to Unicode, case folding is a complicated issue with plenty
of linguistic special cases, but the Python core team made an effort to provide a solution
that hopefully works for most users.

In the next couple of sections, we’ll put our normalization knowledge to use developing
utility functions.

Utility Functions for Normalized Text Matching
As we’ve seen, NFC and NFD are safe to use and allow sensible comparisons between
Unicode strings. NFC is the best normalized form for most applications. str.case
fold() is the way to go for case-insensitive comparisons.

If you work with text in many languages, a pair of functions like nfc_equal and
fold_equal in Example 4-13 are useful additions to your toolbox.

Example 4-13. normeq.py: normalized Unicode string comparison
"""
Utility functions for normalized Unicode string comparison.

Using Normal Form C, case sensitive:

    >>> s1 = 'café'
    >>> s2 = 'cafe\u0301'
    >>> s1 == s2
    False
    >>> nfc_equal(s1, s2)
    True
    >>> nfc_equal('A', 'a')
    False

Using Normal Form C with case folding:

    >>> s3 = 'Straße'
    >>> s4 = 'strasse'
    >>> s3 == s4
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    False
    >>> nfc_equal(s3, s4)
    False
    >>> fold_equal(s3, s4)
    True
    >>> fold_equal(s1, s2)
    True
    >>> fold_equal('A', 'a')
    True

"""

from unicodedata import normalize

def nfc_equal(str1, str2):
    return normalize('NFC', str1) == normalize('NFC', str2)

def fold_equal(str1, str2):
    return (normalize('NFC', str1).casefold() ==
            normalize('NFC', str2).casefold())

Beyond Unicode normalization and case folding—which are both part of the Unicode
standard—sometimes it makes sense to apply deeper transformations, like changing
'café' into 'cafe'. We’ll see when and how in the next section.

Extreme “Normalization”: Taking Out Diacritics
The Google Search secret sauce involves many tricks, but one of them apparently is
ignoring diacritics (e.g., accents, cedillas, etc.), at least in some contexts. Removing
diacritics is not a proper form of normalization because it often changes the meaning
of words and may produce false positives when searching. But it helps coping with some
facts of life: people sometimes are lazy or ignorant about the correct use of diacritics,
and spelling rules change over time, meaning that accents come and go in living lan‐
guages.

Outside of searching, getting rid of diacritics also makes for more readable URLs, at
least in Latin-based languages. Take a look at the URL for the Wikipedia article about
the city of São Paulo:

http://en.wikipedia.org/wiki/S%C3%A3o_Paulo

The %C3%A3 part is the URL-escaped, UTF-8 rendering of the single letter “ã” (“a” with
tilde). The following is much friendlier, even if it is not the right spelling:

http://en.wikipedia.org/wiki/Sao_Paulo

To remove all diacritics from a str, you can use a function like Example 4-14.
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Example 4-14. Function to remove all combining marks (module sanitize.py)
import unicodedata
import string

def shave_marks(txt):
    """Remove all diacritic marks"""
    norm_txt = unicodedata.normalize('NFD', txt)   
    shaved = ''.join(c for c in norm_txt
                     if not unicodedata.combining(c))   
    return unicodedata.normalize('NFC', shaved)   

Decompose all characters into base characters and combining marks.
Filter out all combining marks.
Recompose all characters.

Example 4-15 shows a couple of uses of shave_marks.

Example 4-15. Two examples using shave_marks from Example 4-14
>>> order = '“Herr Voß: • ½ cup of Œtker™ caffè latte • bowl of açaí.”'
>>> shave_marks(order)
'“Herr Voß: • ½ cup of Œtker™ caffe latte • bowl of acai.”'  
>>> Greek = 'Ζέφυρος, Zéfiro'
>>> shave_marks(Greek)
'Ζεφυρος, Zefiro'  

Only the letters “è”, “ç”, and “í” were replaced.
Both “έ” and “é” were replaced.

The function shave_marks from Example 4-14 works all right, but maybe it goes too
far. Often the reason to remove diacritics is to change Latin text to pure ASCII, but
shave_marks also changes non-Latin characters—like Greek letters—which will never
become ASCII just by losing their accents. So it makes sense to analyze each base char‐
acter and to remove attached marks only if the base character is a letter from the Latin
alphabet. This is what Example 4-16 does.

Example 4-16. Function to remove combining marks from Latin characters (import
statements are omitted as this is part of the sanitize.py module from Example 4-14)
def shave_marks_latin(txt):
    """Remove all diacritic marks from Latin base characters"""
    norm_txt = unicodedata.normalize('NFD', txt)   
    latin_base = False
    keepers = []
    for c in norm_txt:
        if unicodedata.combining(c) and latin_base:    
            continue  # ignore diacritic on Latin base char
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        keepers.append(c)                              
        # if it isn't combining char, it's a new base char
        if not unicodedata.combining(c):               
            latin_base = c in string.ascii_letters
    shaved = ''.join(keepers)
    return unicodedata.normalize('NFC', shaved)    

Decompose all characters into base characters and combining marks.
Skip over combining marks when base character is Latin.
Otherwise, keep current character.
Detect new base character and determine if it’s Latin.
Recompose all characters.

An even more radical step would be to replace common symbols in Western texts (e.g.,
curly quotes, em dashes, bullets, etc.) into ASCII equivalents. This is what the function
asciize does in Example 4-17.

Example 4-17. Transform some Western typographical symbols into ASCII (this snip‐
pet is also part of sanitize.py from Example 4-14)
single_map = str.maketrans("""‚ƒ„†ˆ‹‘’“”•–—˜›""",   
                           """'f"*^<''""---~>""")

multi_map = str.maketrans({   
    '€': '<euro>',
    '…': '...',
    'Œ': 'OE',
    '™': '(TM)',
    'œ': 'oe',
    '‰': '<per mille>',
    '‡': '**',
})

multi_map.update(single_map)   

def dewinize(txt):
    """Replace Win1252 symbols with ASCII chars or sequences"""
    return txt.translate(multi_map)   

def asciize(txt):
    no_marks = shave_marks_latin(dewinize(txt))      
    no_marks = no_marks.replace('ß', 'ss')           
    return unicodedata.normalize('NFKC', no_marks)   

Build mapping table for char-to-char replacement.
Build mapping table for char-to-string replacement.
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Merge mapping tables.
dewinize does not affect ASCII or latin1 text, only the Microsoft additions in
to latin1 in cp1252.
Apply dewinize and remove diacritical marks.
Replace the Eszett with “ss” (we are not using case fold here because we want to
preserve the case).
Apply NFKC normalization to compose characters with their compatibility code
points.

Example 4-18 shows asciize in use.

Example 4-18. Two examples using asciize from Example 4-17
>>> order = '“Herr Voß: • ½ cup of Œtker™ caffè latte • bowl of açaí.”'
>>> dewinize(order)
'"Herr Voß: - ½ cup of OEtker(TM) caffè latte - bowl of açaí."'  
>>> asciize(order)
'"Herr Voss: - 1⁄2 cup of OEtker(TM) caffe latte - bowl of acai."'  

dewinize replaces curly quotes, bullets, and ™ (trademark symbol).
asciize applies dewinize, drops diacritics, and replaces the 'ß'.

Different languages have their own rules for removing diacritics.
For example, Germans change the 'ü' into 'ue'. Our asciize
function is not as refined, so it may or not be suitable for your
language. It works acceptably for Portuguese, though.

To summarize, the functions in sanitize.py go way beyond standard normalization and
perform deep surgery on the text, with a good chance of changing its meaning. Only
you can decide whether to go so far, knowing the target language, your users, and how
the transformed text will be used.

This wraps up our discussion of normalizing Unicode text.

The next Unicode matter to sort out is… sorting.

Sorting Unicode Text
Python sorts sequences of any type by comparing the items in each sequence one by
one. For strings, this means comparing the code points. Unfortunately, this produces
unacceptable results for anyone who uses non-ASCII characters.

Consider sorting a list of fruits grown in Brazil:
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9. Diacritics affect sorting only in the rare case when they are the only difference between two words—in that
case, the word with a diacritic is sorted after the plain word.

>>> fruits = ['caju', 'atemoia', 'cajá', 'açaí', 'acerola']
>>> sorted(fruits)
['acerola', 'atemoia', 'açaí', 'caju', 'cajá']

Sorting rules vary for different locales, but in Portuguese and many languages that use
the Latin alphabet, accents and cedillas rarely make a difference when sorting.9 So “cajá”
is sorted as “caja,” and must come before “caju.”

The sorted fruits list should be:

['açaí', 'acerola', 'atemoia', 'cajá', 'caju']

The standard way to sort non-ASCII text in Python is to use the locale.strxfrm
function which, according to the locale module docs, “transforms a string to one that
can be used in locale-aware comparisons.”

To enable locale.strxfrm, you must first set a suitable locale for your application, and
pray that the OS supports it. On GNU/Linux (Ubuntu 14.04) with the pt_BR locale, the
sequence of commands in Example 4-19 works.

Example 4-19. Using the locale.strxfrm function as sort key
>>> import locale
>>> locale.setlocale(locale.LC_COLLATE, 'pt_BR.UTF-8')
'pt_BR.UTF-8'
>>> fruits = ['caju', 'atemoia', 'cajá', 'açaí', 'acerola']
>>> sorted_fruits = sorted(fruits, key=locale.strxfrm)
>>> sorted_fruits
['açaí', 'acerola', 'atemoia', 'cajá', 'caju']

So you need to call setlocale(LC_COLLATE, «your_locale») before using
locale.strxfrm as the key when sorting.

There are a few caveats, though:

• Because locale settings are global, calling setlocale in a library is not recom‐
mended. Your application or framework should set the locale when the process
starts, and should not change it afterwards.

• The locale must be installed on the OS, otherwise setlocale raises a locale.Error:
unsupported locale setting exception.

• You must know how to spell the locale name. They are pretty much standardized
in the Unix derivatives as 'language_code.encoding', but on Windows the syntax
is more complicated: Language Name-Language Variant_Region Name.code
page>. Note that the Language Name, Language Variant, and Region Name parts
can have spaces inside them, but the parts after the first are prefixed with special
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10. Thanks to Leonardo Rachael who went beyond his duties as tech reviewer and researched these Windows
details, even though he is a GNU/Linux user himself.

11. Again, I could not find a solution, but did find other people reporting the same problem. Alex Martelli, one
of the tech reviewers, had no problem using setlocale and locale.strxfrm on his Mac with OSX 10.9. In
summary: your mileage may vary.

different characters: a hyphen, an underline character, and a dot. All parts seem to
be optional except the language name. For example: English_United States.
850 means Language Name “English”, region “United States”, and codepage “850”.
The language and region names Windows understands are listed in the MSDN
article Language Identifier Constants and Strings, while Code Page Identifiers lists
the numbers for the last part.10

• The locale must be correctly implemented by the makers of the OS. I was successful
on Ubuntu 14.04, but not on OSX (Mavericks 10.9). On two different Macs, the call
setlocale(LC_COLLATE, 'pt_BR.UTF-8') returns the string 'pt_BR.UTF-8' with
no complaints. But sorted(fruits, key=locale.strxfrm) produced the same
incorrect result as sorted(fruits) did. I also tried the fr_FR, es_ES, and de_DE
locales on OSX, but locale.strxfrm never did its job.11

So the standard library solution to internationalized sorting works, but seems to be well
supported only on GNU/Linux (perhaps also on Windows, if you are an expert). Even
then, it depends on locale settings, creating deployment headaches.

Fortunately, there is a simpler solution: the PyUCA library, available on PyPI.

Sorting with the Unicode Collation Algorithm
James Tauber, prolific Django contributor, must have felt the pain and created
PyUCA, a pure-Python implementation of the Unicode Collation Algorithm (UCA).
Example 4-20 shows how easy it is to use.

Example 4-20. Using the pyuca.Collator.sort_key method
>>> import pyuca
>>> coll = pyuca.Collator()
>>> fruits = ['caju', 'atemoia', 'cajá', 'açaí', 'acerola']
>>> sorted_fruits = sorted(fruits, key=coll.sort_key)
>>> sorted_fruits
['açaí', 'acerola', 'atemoia', 'cajá', 'caju']

This is friendly and just works. I tested it on GNU/Linux, OSX, and Windows. Only
Python 3.X is supported at this time.

PyUCA does not take the locale into account. If you need to customize the sorting, you
can provide the path to a custom collation table to the Collator() constructor. Out of
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the box, it uses allkeys.txt, which is bundled with the project. That’s just a copy of
the Default Unicode Collation Element Table from Unicode 6.3.0.

By the way, that table is one of the many that comprise the Unicode database, our next
subject.

The Unicode Database
The Unicode standard provides an entire database—in the form of numerous structured
text files—that includes not only the table mapping code points to character names, but
also metadata about the individual characters and how they are related. For example,
the Unicode database records whether a character is printable, is a letter, is a decimal
digit, or is some other numeric symbol. That’s how the str methods isidentifier,
isprintable, isdecimal, and isnumeric work. str.casefold also uses information
from a Unicode table.

The unicodedata module has functions that return character metadata; for instance,
its official name in the standard, whether it is a combining character (e.g., diacritic like
a combining tilde), and the numeric value of the symbol for humans (not its code point).
Example 4-21 shows the use of unicodedata.name() and unicodedata.numeric()
along with the .isdecimal() and .isnumeric() methods of str.

Example 4-21. Demo of Unicode database numerical character metadata (callouts de‐
scribe each column in the output)
import unicodedata
import re

re_digit = re.compile(r'\d')

sample = '1\xbc\xb2\u0969\u136b\u216b\u2466\u2480\u3285'

for char in sample:
    print('U+%04x' % ord(char),                        
          char.center(6),                              
          're_dig' if re_digit.match(char) else '-',   
          'isdig' if char.isdigit() else '-',          
          'isnum' if char.isnumeric() else '-',        
          format(unicodedata.numeric(char), '5.2f'),   
          unicodedata.name(char),                      
          sep='\t')

Code point in U+0000 format.
Character centralized in a str of length 6.
Show re_dig if character matches the r'\d' regex.
Show isdig if char.isdigit() is True.
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12. Although it was not better than re at identifying digits in this particular sample.

Show isnum if char.isnumeric() is True.
Numeric value formated with width 5 and 2 decimal places.
Unicode character name.

Running Example 4-21 gives you the result in Figure 4-3.

Figure 4-3. Nine numeric characters and metadata about them; re_dig means the char‐
acter matches the regular expression r'\d’;

The sixth column of Figure 4-3 is the result of calling unicodedata.numeric(char) on
the character. It shows that Unicode knows the numeric value of symbols that represent
numbers. So if you want to create a spreadsheet application that supports Tamil digits
or Roman numerals, go for it!

Figure 4-3 shows that the regular expression r'\d' matches the digit “1” and the De‐
vanagari digit 3, but not some other characters that are considered digits by the isdi
git function. The re module is not as savvy about Unicode as it could be. The new
regex module available in PyPI was designed to eventually replace re and provides
better Unicode support.12 We’ll come back to the re module in the next section.

Throughout this chapter we’ve used several unicodedata functions, but there are many
more we did not cover. See the standard library documentation for the unicodedata
module.

We will wrap up our tour of str versus bytes with a quick look at a new trend: dual-
mode APIs offering functions that accept str or bytes arguments with special handling
depending on the type.
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Dual-Mode str and bytes APIs
The standard library has functions that accept str or bytes arguments and behave
differently depending on the type. Some examples are in the re and os modules.

str Versus bytes in Regular Expressions
If you build a regular expression with bytes, patterns such as \d and \w only match
ASCII characters; in contrast, if these patterns are given as str, they match Unicode
digits or letters beyond ASCII. Example 4-22 and Figure 4-4 compare how letters, ASCII
digits, superscripts, and Tamil digits are matched by str and bytes patterns.

Example 4-22. ramanujan.py: compare behavior of simple str and bytes regular expres‐
sions
import re

re_numbers_str = re.compile(r'\d+')      
re_words_str = re.compile(r'\w+')
re_numbers_bytes = re.compile(rb'\d+')   
re_words_bytes = re.compile(rb'\w+')

text_str = ("Ramanujan saw \u0be7\u0bed\u0be8\u0bef"   
            " as 1729 = 1³ + 12³ = 9³ + 10³.")         

text_bytes = text_str.encode('utf_8')   

print('Text', repr(text_str), sep='\n  ')
print('Numbers')
print('  str  :', re_numbers_str.findall(text_str))       
print('  bytes:', re_numbers_bytes.findall(text_bytes))   
print('Words')
print('  str  :', re_words_str.findall(text_str))         
print('  bytes:', re_words_bytes.findall(text_bytes))     

The first two regular expressions are of the str type.
The last two are of the bytes type.
Unicode text to search, containing the Tamil digits for 1729 (the logical line
continues until the right parenthesis token).
This string is joined to the previous one at compile time (see “2.4.2. String literal
concatenation” in The Python Language Reference).
A bytes string is needed to search with the bytes regular expressions.
The str pattern r'\d+' matches the Tamil and ASCII digits.
The bytes pattern rb'\d+' matches only the ASCII bytes for digits.
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The str pattern r'\w+' matches the letters, superscripts, Tamil, and ASCII
digits.
The bytes pattern rb'\w+' matches only the ASCII bytes for letters and digits.

Figure 4-4. Screenshot of running ramanujan.py from Example 4-22

Example 4-22 is a trivial example to make one point: you can use regular expressions
on str and bytes, but in the second case bytes outside of the ASCII range are treated
as nondigits and nonword characters.

For str regular expressions, there is a re.ASCII flag that makes \w, \W, \b, \B, \d, \D,
\s, and \S perform ASCII-only matching. See the documentation of the re module for
full details.

Another important dual-mode module is os.

str Versus bytes on os Functions
The GNU/Linux kernel is not Unicode savvy, so in the real world you may find filenames
made of byte sequences that are not valid in any sensible encoding scheme, and cannot
be decoded to str. File servers with clients using a variety of OSes are particularly prone
to this problem.

In order to work around this issue, all os module functions that accept filenames or
pathnames take arguments as str or bytes. If one such function is called with a str
argument, the argument will be automatically converted using the codec named by
sys.getfilesystemencoding(), and the OS response will be decoded with the same
codec. This is almost always what you want, in keeping with the Unicode sandwich best
practice.

But if you must deal with (and perhaps fix) filenames that cannot be handled in that
way, you can pass bytes arguments to the os functions to get bytes return values. This
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feature lets you deal with any file or pathname, no matter how many gremlins you may
find. See Example 4-23.

Example 4-23. listdir with str and bytes arguments and results
>>> os.listdir('.')  # 
['abc.txt', 'digits-of-π.txt']
>>> os.listdir(b'.')  # 
[b'abc.txt', b'digits-of-\xcf\x80.txt']

The second filename is “digits-of-π.txt” (with the Greek letter pi).
Given a byte argument, listdir returns filenames as bytes: b'\xcf\x80' is the
UTF-8 encoding of the Greek letter pi).

To help with manual handling of str or bytes sequences that are file or pathnames, the
os module provides special encoding and decoding functions:
fsencode(filename)

Encodes filename (can be str or bytes) to bytes using the codec named by
sys.getfilesystemencoding() if filename is of type str, otherwise returns the
filename bytes unchanged.

fsdecode(filename)

Decodes filename (can be str or bytes) to str using the codec named by sys.get
filesystemencoding() if filename is of type bytes, otherwise returns the file
name str unchanged.

On Unix-derived platforms, these functions use the surrogateescape error handler
(see the sidebar that follows) to avoid choking on unexpected bytes. On Windows, the
strict error handler is used.

Using surrogateescape to Deal with Gremlins
A trick to deal with unexpected bytes or unknown encodings is the surrogateescape
codec error handler described in PEP 383 — Non-decodable Bytes in System Character
Interfaces introduced in Python 3.1.

The idea of this error handler is to replace each nondecodable byte with a code point in
the Unicode range from U+DC00 to U+DCFF that lies in the so-called “Low Surrogate
Area” of the standard—a code space with no characters assigned, reserved for internal
use in applications. On encoding, such code points are converted back to the byte values
they replaced. See Example 4-24.

Example 4-24. Using surrogatescape error handling
>>> os.listdir('.')  
['abc.txt', 'digits-of-π.txt']
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>>> os.listdir(b'.')  
[b'abc.txt', b'digits-of-\xcf\x80.txt']
>>> pi_name_bytes = os.listdir(b'.')[1]  
>>> pi_name_str = pi_name_bytes.decode('ascii', 'surrogateescape')  
>>> pi_name_str  
'digits-of-\udccf\udc80.txt'
>>> pi_name_str.encode('ascii', 'surrogateescape')  
b'digits-of-\xcf\x80.txt'

List directory with a non-ASCII filename.
Let’s pretend we don’t know the encoding and get filenames as bytes.
pi_names_bytes is the filename with the pi character.
Decode it to str using the 'ascii' codec with 'surrogateescape'.
Each non-ASCII byte is replaced by a surrogate code point: '\xcf\x80'
becomes '\udccf\udc80'.
Encode back to ASCII bytes: each surrogate code point is replaced by the byte
it replaced.

This ends our exploration of str and bytes. If you are still with me, congratulations!

Chapter Summary
We started the chapter by dismissing the notion that 1 character == 1 byte. As the
world adopts Unicode (80% of websites already use UTF-8), we need to keep the concept
of text strings separated from the binary sequences that represent them in files, and
Python 3 enforces this separation.

After a brief overview of the binary sequence data types—bytes, bytearray, and memo
ryview—we jumped into encoding and decoding, with a sampling of important codecs,
followed by approaches to prevent or deal with the infamous UnicodeEncodeError,
UnicodeDecodeError, and the SyntaxError caused by wrong encoding in Python
source files.

While on the subject of source code, I presented my position on the debate about non-
ASCII identifiers: if the maintainers of the code base want to use a human language that
has non-ASCII characters, the identifiers should follow suit—unless the code needs to
run on Python 2 as well. But if the project aims to attract an international contributor
base, identifiers should be made from English words, and then ASCII suffices.

We then considered the theory and practice of encoding detection in the absence of
metadata: in theory, it can’t be done, but in practice the Chardet package pulls it off
pretty well for a number of popular encodings. Byte order marks were then presented
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as the only encoding hint commonly found in UTF-16 and UTF-32 files—sometimes
in UTF-8 files as well.

In the next section, we demonstrated opening text files, an easy task except for one
pitfall: the encoding= keyword argument is not mandatory when you open a text file,
but it should be. If you fail to specify the encoding, you end up with a program that
manages to generate “plain text” that is incompatible across platforms, due to conflicting
default encodings. We then exposed the different encoding settings that Python uses as
defaults and how to detect them: locale.getpreferredencoding(), sys.getfilesys
temencoding(), sys.getdefaultencoding(), and the encodings for the standard I/O
files (e.g., sys.stdout.encoding). A sad realization for Windows users is that these
settings often have distinct values within the same machine, and the values are mutually
incompatible; GNU/Linux and OSX users, in contrast, live in a happier place where
UTF-8 is the default pretty much everywhere.

Text comparisons are surprisingly complicated because Unicode provides multiple ways
of representing some characters, so normalizing is a prerequisite to text matching. In
addition to explaining normalization and case folding, we presented some utility func‐
tions that you may adapt to your needs, including drastic transformations like removing
all accents. We then saw how to sort Unicode text correctly by leveraging the standard
locale module—with some caveats—and an alternative that does not depend on tricky
locale configurations: the external PyUCA package.

Finally, we glanced at the Unicode database (a source of metadata about every character),
and wrapped up with brief discussion of dual-mode APIs (e.g., the re and os modules,
where some functions can be called with str or bytes arguments, prompting different
yet fitting results).

Further Reading
Ned Batchelder’s 2012 PyCon US talk “Pragmatic Unicode — or — How Do I Stop the
Pain?” was outstanding. Ned is so professional that he provides a full transcript of the
talk along with the slides and video. Esther Nam and Travis Fischer gave an excellent
PyCon 2014 talk “Character encoding and Unicode in Python: How to (╯°□°)╯︵
┻━┻ with dignity” (slides, video), from which I quoted this chapter’s short and sweet
epigraph: “Humans use text. Computers speak bytes.” Lennart Regebro—one of this
book’s technical reviewers—presents his “Useful Mental Model of Unicode (UMMU)”
in the short post “Unconfusing Unicode: What Is Unicode?”. Unicode is a complex
standard, so Lennart’s UMMU is a really useful starting point.

The official Unicode HOWTO in the Python docs approaches the subject from several
different angles, from a good historic intro to syntax details, codecs, regular expressions,
filenames, and best practices for Unicode-aware I/O (i.e., the Unicode sandwich), with
plenty of additional reference links from each section. Chapter 4, “Strings”, of Mark
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Pilgrim’s awesome book Dive into Python 3 also provides a very good intro to Unicode
support in Python 3. In the same book, Chapter 15 describes how the Chardet library
was ported from Python 2 to Python 3, a valuable case study given that the switch from
the old str to the new bytes is the cause of most migration pains, and that is a central
concern in a library designed to detect encodings.

If you know Python 2 but are new to Python 3, Guido van Rossum’s What’s New in
Python 3.0 has 15 bullet points that summarize what changed, with lots of links. Guido
starts with the blunt statement: “Everything you thought you knew about binary data
and Unicode has changed.” Armin Ronacher’s blog post “The Updated Guide to Unicode
on Python” is deep and highlights some of the pitfalls of Unicode in Python 3 (Armin
is not a big fan of Python 3).

Chapter 2, “Strings and Text,” of the Python Cookbook, Third Edition (O’Reilly), by David
Beazley and Brian K. Jones, has several recipes dealing with Unicode normalization,
sanitizing text, and performing text-oriented operations on byte sequences. Chapter 5
covers files and I/O, and it includes “Recipe 5.17. Writing Bytes to a Text File,” showing
that underlying any text file there is always a binary stream that may be accessed directly
when needed. Later in the cookbook, the struct module is put to use in “Recipe 6.11.
Reading and Writing Binary Arrays of Structures.”

Nick Coghlan’s Python Notes blog has two posts very relevant to this chapter: “Python
3 and ASCII Compatible Binary Protocols” and “Processing Text Files in Python 3”.
Highly recommended.

Binary sequences are about to gain new constructors and methods in Python 3.5, with
one of the current constructor signatures being deprecated (see PEP 467 — Minor API
improvements for binary sequences). Python 3.5 should also see the implementation of
PEP 461 — Adding % formatting to bytes and bytearray.

A list of encodings supported by Python is available at Standard Encodings in the codecs
module documentation. If you need to get that list programmatically, see how it’s done
in the /Tools/unicode/listcodecs.py script that comes with the CPython source code.

Martijn Faassen’s “Changing the Python Default Encoding Considered Harmful” and
Tarek Ziadé’s “sys.setdefaultencoding Is Evil” explain why the default encoding you get
from sys.getdefaultencoding() should never be changed, even if you discover how.

The books Unicode Explained by Jukka K. Korpela (O’Reilly) and Unicode Demysti‐
fied by Richard Gillam (Addison-Wesley) are not Python-specific but were very helpful
as I studied Unicode concepts. Programming with Unicode by Victor Stinner is a free,
self-published book (Creative Commons BY-SA) covering Unicode in general as well
as tools and APIs in the context of the main operating systems and a few programming
languages, including Python.
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The W3C pages Case Folding: An Introduction and Character Model for the World
Wide Web: String Matching and Searching cover normalization concepts, with the for‐
mer being a gentle introduction and the latter a working draft written in dry standard-
speak—the same tone of the Unicode Standard Annex #15 — Unicode Normalization
Forms. The Frequently Asked Questions / Normalization from Unicode.org is more
readable, as is the NFC FAQ by Mark Davis—author of several Unicode algorithms and
president of the Unicode Consortium at the time of this writing.

Soapbox
What Is “Plain Text”?

For anyone who deals with non-English text on a daily basis, “plain text” does not imply
“ASCII.” The Unicode Glossary defines plain text like this:

Computer-encoded text that consists only of a sequence of code points from a given
standard, with no other formatting or structural information.

That definition starts very well, but I don’t agree with the part after the comma. HTML
is a great example of a plain-text format that carries formatting and structural infor‐
mation. But it’s still plain text because every byte in such a file is there to represent a text
character, usually using UTF-8. There are no bytes with nontext meaning, as you can
find in a .png or .xls document where most bytes represent packed binary values like
RGB values and floating-point numbers. In plain text, numbers are represented as se‐
quences of digit characters.

I am writing this book in a plain-text format called—ironically—AsciiDoc, which is part
of the toolchain of O’Reilly’s excellent Atlas book publishing platform. AsciiDoc source
files are plain text, but they are UTF-8, not ASCII. Otherwise, writing this chapter would
have been really painful. Despite the name, AsciiDoc is just great.

The world of Unicode is constantly expanding and, at the edges, tool support is not
always there. That’s why I had to use images for Figures 4-1, 4-3, and 4-4: not all char‐
acters I wanted to show were available in the fonts used to render the book. On the other
hand, the Ubuntu 14.04 and OSX 10.9 terminals display them perfectly well—including
the Japanese characters for the word “mojibake”: 文字化け.

Unicode Riddles

Imprecise qualifiers such as “often,” “most,” and “usually” seem to pop up whenever I
write about Unicode normalization. I regret the lack of more definitive advice, but there
are so many exceptions to the rules in Unicode that it is hard to be absolutely positive.

For example, the µ (micro sign) is considered a “compatibility character” but the Ω
(ohm) and Å (Ångström) symbols are not. The difference has practical consequences:
NFC normalization—recommended for text matching—replaces the Ω (ohm) by Ω
(uppercase Grek omega) and the Å (Ångström) by Å (uppercase A with ring above).
But as a “compatibility character” the µ (micro sign) is not replaced by the visually

Further Reading | 135

http://www.w3.org/International/wiki/Case_folding
http://www.w3.org/TR/charmod-norm/
http://www.w3.org/TR/charmod-norm/
http://unicode.org/reports/tr15/
http://unicode.org/reports/tr15/
http://www.unicode.org/faq/normalization.html
http://www.unicode.org/
http://www.macchiato.com/unicode/nfc-faq
http://www.unicode.org/glossary/#plain_text
http://www.methods.co.nz/asciidoc/
https://atlas.oreilly.com/


identical μ (lowercase Greek mu), except when the stronger NFKC or NFKD normali‐
zations are applied, and these transformations are lossy.

I understand the µ (micro sign) is in Unicode because it appears in the latin1 encoding
and replacing it with the Greek mu would break round-trip conversion. After all, that’s
why the micro sign is a “compatibility character.” But if the ohm and Ångström symbols
are not in Unicode for compatibility reasons, then why have them at all? There are
already code points for the GREEK CAPITAL LETTER OMEGA and the LATIN CAPITAL LET
TER A WITH RING ABOVE, which look the same and replace them on NFC normalization.
Go figure.

My take after many hours studying Unicode: it is hugely complex and full of special
cases, reflecting the wonderful variety of human languages and the politics of industry
standards.

How Are str Represented in RAM?

The official Python docs avoid the issue of how the code points of a str are stored in
memory. This is, after all, an implementation detail. In theory, it doesn’t matter: whatever
the internal representation, every str must be encoded to bytes on output.

In memory, Python 3 stores each str as a sequence of code points using a fixed number
of bytes per code point, to allow efficient direct access to any character or slice.

Before Python 3.3, CPython could be compiled to use either 16 or 32 bits per code point
in RAM; the former was a “narrow build,” and the latter a “wide build.” To know which
you have, check the value of sys.maxunicode: 65535 implies a “narrow build” that can’t
handle code points above U+FFFF transparently. A “wide build” doesn’t have this lim‐
itation, but consumes a lot of memory: 4 bytes per character, even while the vast majority
of code points for Chinese ideographs fit in 2 bytes. Neither option was great, so you
had to choose depending on your needs.

Since Python 3.3, when creating a new str object, the interpreter checks the characters
in it and chooses the most economic memory layout that is suitable for that particular
str: if there are only characters in the latin1 range, that str will use just one byte per
code point. Otherwise, 2 or 4 bytes per code point may be used, depending on the str.
This is a simplification; for the full details, look up PEP 393 — Flexible String Repre‐
sentation.

The flexible string representation is similar to the way the int type works in Python 3:
if the integer fits in a machine word, it is stored in one machine word. Otherwise, the
interpreter switches to a variable-length representation like that of the Python 2 long
type. It is nice to see the spread of good ideas.
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PART III

Functions as Objects





1. “Origins of Python’s Functional Features”, from Guido’s The History of Python blog.

CHAPTER 5

First-Class Functions

I have never considered Python to be heavily influenced by functional languages, no
matter what people say or think. I was much more familiar with imperative languages
such as C and Algol 68 and although I had made functions first-class objects, I didn’t view
Python as a functional programming language.1

— Guido van Rossum
 Python BDFL

Functions in Python are first-class objects. Programming language theorists define a
“first-class object” as a program entity that can be:

• Created at runtime
• Assigned to a variable or element in a data structure
• Passed as an argument to a function
• Returned as the result of a function

Integers, strings, and dictionaries are other examples of first-class objects in Python—
nothing fancy here. But if you came to Python from a language where functions are not
first-class citizens, this chapter and the rest of Part III of the book focuses on the im‐
plications and practical applications of treating functions as objects.

The term “first-class functions” is widely used as shorthand for
“functions as first-class objects.” It’s not perfect because it seems
to imply an “elite” among functions. In Python, all functions are
first-class.

139

http://bit.ly/1FHfhIo


Treating a Function Like an Object
The console session in Example 5-1 shows that Python functions are objects. Here we
create a function, call it, read its __doc__ attribute, and check that the function object
itself is an instance of the function class.

Example 5-1. Create and test a function, then read its __doc__ and check its type
>>> def factorial(n):  
...     '''returns n!'''
...     return 1 if n < 2 else n * factorial(n-1)
...
>>> factorial(42)
1405006117752879898543142606244511569936384000000000
>>> factorial.__doc__  
'returns n!'
>>> type(factorial)  
<class 'function'>

This is a console session, so we’re creating a function in “runtime.”
__doc__ is one of several attributes of function objects.
factorial is an instance of the function class.

The __doc__ attribute is used to generate the help text of an object. In the Python
interactive console, the command help(factorial) will display a screen like that in
Figure 5-1.

Figure 5-1. Help screen for the factorial function; the text is from the __doc__ attribute
of the function object

Example 5-2 shows the “first class” nature of a function object. We can assign it a variable
fact and call it through that name. We can also pass factorial as an argument to
map. The map function returns an iterable where each item is the result of the application
of the first argument (a function) to succesive elements of the second argument (an
iterable), range(10) in this example.
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Example 5-2. Use function through a different name, and pass function as argument
>>> fact = factorial
>>> fact
<function factorial at 0x...>
>>> fact(5)
120
>>> map(factorial, range(11))
<map object at 0x...>
>>> list(map(fact, range(11)))
[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]

Having first-class functions enables programming in a functional style. One of the hall‐
marks of functional programming is the use of higher-order functions, our next topic.

Higher-Order Functions
A function that takes a function as argument or returns a function as the result is a
higher-order function. One example is map, shown in Example 5-2. Another is the built-
in function sorted: an optional key argument lets you provide a function to be applied
to each item for sorting, as seen in “list.sort and the sorted Built-In Function” on page 42.

For example, to sort a list of words by length, simply pass the len function as the key,
as in Example 5-3.

Example 5-3. Sorting a list of words by length
>>> fruits = ['strawberry', 'fig', 'apple', 'cherry', 'raspberry', 'banana']
>>> sorted(fruits, key=len)
['fig', 'apple', 'cherry', 'banana', 'raspberry', 'strawberry']
>>>

Any one-argument function can be used as the key. For example, to create a rhyme
dictionary it might be useful to sort each word spelled backward. In Example 5-4, note
that the words in the list are not changed at all; only their reversed spelling is used as
the sort criterion, so that the berries appear together.

Example 5-4. Sorting a list of words by their reversed spelling
>>> def reverse(word):
...     return word[::-1]
>>> reverse('testing')
'gnitset'
>>> sorted(fruits, key=reverse)
['banana', 'apple', 'fig', 'raspberry', 'strawberry', 'cherry']
>>>

In the functional programming paradigm, some of the best known higher-order func‐
tions are map, filter, reduce, and apply. The apply function was deprecated in Python
2.3 and removed in Python 3 because it’s no longer necessary. If you need to call a
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function with a dynamic set of arguments, you can just write fn(*args, **key
words) instead of apply(fn, args, kwargs).

The map, filter, and reduce higher-order functions are still around, but better alter‐
natives are available for most of their use cases, as the next section shows.

Modern Replacements for map, filter, and reduce
Functional languages commonly offer the map, filter, and reduce higher-order func‐
tions (sometimes with different names). The map and filter functions are still built-
ins in Python 3, but since the introduction of list comprehensions and generator ex‐
pressions, they are not as important. A listcomp or a genexp does the job of map and
filter combined, but is more readable. Consider Example 5-5.

Example 5-5. Lists of factorials produced with map and filter compared to alternatives
coded as list comprehensions
>>> list(map(fact, range(6)))  
[1, 1, 2, 6, 24, 120]
>>> [fact(n) for n in range(6)]  
[1, 1, 2, 6, 24, 120]
>>> list(map(factorial, filter(lambda n: n % 2, range(6))))  
[1, 6, 120]
>>> [factorial(n) for n in range(6) if n % 2]  
[1, 6, 120]
>>>

Build a list of factorials from 0! to 5!.
Same operation, with a list comprehension.
List of factorials of odd numbers up to 5!, using both map and filter.
List comprehension does the same job, replacing map and filter, and making
lambda unnecessary.

In Python 3, map and filter return generators—a form of iterator—so their direct
substitute is now a generator expression (in Python 2, these functions returned lists,
therefore their closest alternative is a listcomp).

The reduce function was demoted from a built-in in Python 2 to the functools module
in Python 3. Its most common use case, summation, is better served by the sum built-
in available since Python 2.3 was released in 2003. This is a big win in terms of readability
and performance (see Example 5-6).

Example 5-6. Sum of integers up to 99 performed with reduce and sum
>>> from functools import reduce  
>>> from operator import add  
>>> reduce(add, range(100))  
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4950
>>> sum(range(100))  
4950
>>>

Starting with Python 3.0, reduce is not a built-in.
Import add to avoid creating a function just to add two numbers.
Sum integers up to 99.
Same task using sum; import or adding function not needed.

The common idea of sum and reduce is to apply some operation to successive items in
a sequence, accumulating previous results, thus reducing a sequence of values to a single
value.

Other reducing built-ins are all and any:
all(iterable)

Returns True if every element of the iterable is truthy; all([]) returns True.

any(iterable)

Returns True if any element of the iterable is truthy; any([]) returns False.

I give a fuller explanation of reduce in “Vector Take #4: Hashing and a Faster ==” on
page 288 where an ongoing example provides a meaningful context for the use of this
function. The reducing functions are summarized later in the book when iterables are
in focus, in “Iterable Reducing Functions” on page 434.

To use a higher-order function, sometimes it is convenient to create a small, one-off
function. That is why anonymous functions exist. We’ll cover them next.

Anonymous Functions
The lambda keyword creates an anonymous function within a Python expression.

However, the simple syntax of Python limits the body of lambda functions to be pure
expressions. In other words, the body of a lambda cannot make assignments or use any
other Python statement such as while, try, etc.

The best use of anonymous functions is in the context of an argument list. For example,
Example 5-7 is the rhyme index example from Example 5-4 rewritten with lambda,
without defining a reverse function.

Example 5-7. Sorting a list of words by their reversed spelling using lambda
>>> fruits = ['strawberry', 'fig', 'apple', 'cherry', 'raspberry', 'banana']
>>> sorted(fruits, key=lambda word: word[::-1])
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['banana', 'apple', 'fig', 'raspberry', 'strawberry', 'cherry']
>>>

Outside the limited context of arguments to higher-order functions, anonymous func‐
tions are rarely useful in Python. The syntactic restrictions tend to make nontrivial
lambdas either unreadable or unworkable.

Lundh’s lambda Refactoring Recipe
If you find a piece of code hard to understand because of a lambda, Fredrik Lundh
suggests this refactoring procedure:

1. Write a comment explaining what the heck that lambda does.
2. Study the comment for a while, and think of a name that captures the essence of

the comment.
3. Convert the lambda to a def statement, using that name.
4. Remove the comment.

These steps are quoted from the Functional Programming HOWTO, a must read.

The lambda syntax is just syntactic sugar: a lambda expression creates a function object
just like the def statement. That is just one of several kinds of callable objects in Python.
The following section reviews all of them.

The Seven Flavors of Callable Objects
The call operator (i.e., ()) may be applied to other objects beyond user-defined func‐
tions. To determine whether an object is callable, use the callable() built-in function.
The Python Data Model documentation lists seven callable types:
User-defined functions

Created with def statements or lambda expressions.

Built-in functions
A function implemented in C (for CPython), like len or time.strftime.

Built-in methods
Methods implemented in C, like dict.get.

Methods
Functions defined in the body of a class.
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Classes
When invoked, a class runs its __new__ method to create an instance, then __in
it__ to initialize it, and finally the instance is returned to the caller. Because there
is no new operator in Python, calling a class is like calling a function. (Usually calling
a class creates an instance of the same class, but other behaviors are possible by
overriding __new__. We’ll see an example of this in “Flexible Object Creation with
__new__” on page 592.)

Class instances
If a class defines a __call__ method, then its instances may be invoked as functions.
See “User-Defined Callable Types” on page 145.

Generator functions
Functions or methods that use the yield keyword. When called, generator func‐
tions return a generator object.

Generator functions are unlike other callables in many respects. Chapter 14 is devoted
to them. They can also be used as coroutines, which are covered in Chapter 16.

Given the variety of existing callable types in Python, the safest way
to determine whether an object is callable is to use the calla
ble() built-in:

>>> abs, str, 13
(<built-in function abs>, <class 'str'>, 13)
>>> [callable(obj) for obj in (abs, str, 13)]
[True, True, False]

We now move on to building class instances that work as callable objects.

User-Defined Callable Types
Not only are Python functions real objects, but arbitrary Python objects may also be
made to behave like functions. Implementing a __call__ instance method is all it takes.

Example 5-8 implements a BingoCage class. An instance is built from any iterable, and
stores an internal list of items, in random order. Calling the instance pops an item.

Example 5-8. bingocall.py: A BingoCage does one thing: picks items from a shuffled list
import random

class BingoCage:

    def __init__(self, items):
        self._items = list(items)   
        random.shuffle(self._items)   
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    def pick(self):   
        try:
            return self._items.pop()
        except IndexError:
            raise LookupError('pick from empty BingoCage')   

    def __call__(self):   
        return self.pick()

__init__ accepts any iterable; building a local copy prevents unexpected side
effects on any list passed as an argument.
shuffle is guaranteed to work because self._items is a list.
The main method.
Raise exception with custom message if self._items is empty.
Shortcut to bingo.pick(): bingo().

Here is a simple demo of Example 5-8. Note how a bingo instance can be invoked as a
function, and the callable(…) built-in recognizes it as a callable object:

>>> bingo = BingoCage(range(3))
>>> bingo.pick()
1
>>> bingo()
0
>>> callable(bingo)
True

A class implementing __call__ is an easy way to create function-like objects that have
some internal state that must be kept across invocations, like the remaining items in the
BingoCage. An example is a decorator. Decorators must be functions, but it is sometimes
convenient to be able to “remember” something between calls of the decorator (e.g., for
memoization—caching the results of expensive computations for later use).

A totally different approach to creating functions with internal state is to use closures.
Closures, as well as decorators, are the subject of Chapter 7.

We now move on to another aspect of handling functions as objects: runtime intro‐
spection.

Function Introspection
Function objects have many attributes beyond __doc__. See what the dir function re‐
veals about our factorial:

>>> dir(factorial)
['__annotations__', '__call__', '__class__', '__closure__', '__code__',
'__defaults__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__',
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'__format__', '__ge__', '__get__', '__getattribute__', '__globals__',
'__gt__', '__hash__', '__init__', '__kwdefaults__', '__le__', '__lt__',
'__module__', '__name__', '__ne__', '__new__', '__qualname__', '__reduce__',
'__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__',
'__subclasshook__']
>>>

Most of these attributes are common to Python objects in general. In this section, we
cover those that are especially relevant to treating functions as objects, starting with
__dict__.

Like the instances of a plain user-defined class, a function uses the __dict__ attribute
to store user attributes assigned to it. This is useful as a primitive form of annotation.
Assigning arbitrary attributes to functions is not a very common practice in general,
but Django is one framework that uses it. See, for example, the short_description,
boolean, and allow_tags attributes described in The Django admin site documenta‐
tion. In the Django docs, this example shows attaching a short_description to a
method, to determine the description that will appear in record listings in the Django
admin when that method is used:

    def upper_case_name(obj):
        return ("%s %s" % (obj.first_name, obj.last_name)).upper()
    upper_case_name.short_description = 'Customer name'

Now let us focus on the attributes that are specific to functions and are not found in a
generic Python user-defined object. Computing the difference of two sets quickly gives
us a list of the function-specific attributes (see Example 5-9).

Example 5-9. Listing attributes of functions that don’t exist in plain instances
>>> class C: pass  # 
>>> obj = C()  # 
>>> def func(): pass  # 
>>> sorted(set(dir(func)) - set(dir(obj))) # 
['__annotations__', '__call__', '__closure__', '__code__', '__defaults__',
'__get__', '__globals__', '__kwdefaults__', '__name__', '__qualname__']
>>>

Create bare user-defined class.
Make an instance of it.
Create a bare function.
Using set difference, generate a sorted list of the attributes that exist in a function
but not in an instance of a bare class.

Table 5-1 shows a summary of the attributes listed by Example 5-9.
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Table 5-1. Attributes of user-defined functions
Name Type Description

__annotations__ dict Parameter and return annotations

__call__ method-wrapper Implementation of the () operator; a.k.a. the callable object protocol

__closure__ tuple The function closure, i.e., bindings for free variables (often is None)

__code__ code Function metadata and function body compiled into bytecode

__defaults__ tuple Default values for the formal parameters

__get__ method-wrapper Implementation of the read-only descriptor protocol (see Chapter 20)

__globals__ dict Global variables of the module where the function is defined

__kwdefaults__ dict Default values for the keyword-only formal parameters

__name__ str The function name

__qualname__ str The qualified function name, e.g., Random.choice (see PEP-3155)

We will discuss the __defaults__, __code__, and __annotations__ functions, used by
IDEs and frameworks to extract information about function signatures, in later sections.
But to fully appreciate these attributes, we will make a detour to explore the powerful
syntax Python offers to declare function parameters and to pass arguments into them.

From Positional to Keyword-Only Parameters
One of the best features of Python functions is the extremely flexible parameter handling
mechanism, enhanced with keyword-only arguments in Python 3. Closely related are
the use of * and ** to “explode” iterables and mappings into separate arguments when
we call a function. To see these features in action, see the code for Example 5-10 and
tests showing its use in Example 5-11.

Example 5-10. tag generates HTML; a keyword-only argument cls is used to pass
“class” attributes as a workaround because class is a keyword in Python
def tag(name, *content, cls=None, **attrs):
    """Generate one or more HTML tags"""
    if cls is not None:
        attrs['class'] = cls
    if attrs:
        attr_str = ''.join(' %s="%s"' % (attr, value)
                           for attr, value
                           in sorted(attrs.items()))
    else:
        attr_str = ''
    if content:
        return '\n'.join('<%s%s>%s</%s>' %
                         (name, attr_str, c, name) for c in content)
    else:
        return '<%s%s />' % (name, attr_str)
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The tag function can be invoked in many ways, as Example 5-11 shows.

Example 5-11. Some of the many ways of calling the tag function from Example 5-10
>>> tag('br')   
'<br />'
>>> tag('p', 'hello')   
'<p>hello</p>'
>>> print(tag('p', 'hello', 'world'))
<p>hello</p>
<p>world</p>
>>> tag('p', 'hello', id=33)   
'<p id="33">hello</p>'
>>> print(tag('p', 'hello', 'world', cls='sidebar'))   
<p class="sidebar">hello</p>
<p class="sidebar">world</p>
>>> tag(content='testing', name="img")   
'<img content="testing" />'
>>> my_tag = {'name': 'img', 'title': 'Sunset Boulevard',
...           'src': 'sunset.jpg', 'cls': 'framed'}
>>> tag(**my_tag)   
'<img class="framed" src="sunset.jpg" title="Sunset Boulevard" />'

A single positional argument produces an empty tag with that name.
Any number of arguments after the first are captured by *content as a tuple.
Keyword arguments not explicitly named in the tag signature are captured by
**attrs as a dict.
The cls parameter can only be passed as a keyword argument.
Even the first positional argument can be passed as a keyword when tag is called.
Prefixing the my_tag dict with ** passes all its items as separate arguments,
which are then bound to the named parameters, with the remaining caught by
**attrs.

Keyword-only arguments are a new feature in Python 3. In Example 5-10, the cls
parameter can only be given as a keyword argument—it will never capture unnamed
positional arguments. To specify keyword-only arguments when defining a function,
name them after the argument prefixed with *. If you don’t want to support variable
positional arguments but still want keyword-only arguments, put a * by itself in the
signature, like this:

>>> def f(a, *, b):
...     return a, b
...
>>> f(1, b=2)
(1, 2)
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Note that keyword-only arguments do not need to have a default value: they can be
mandatory, like b in the preceding example.

We now move on to the introspection of function parameters, starting with a motivating
example from a web framework, and on through introspection techniques.

Retrieving Information About Parameters
An interesting application of function introspection can be found in the Bobo HTTP
micro-framework. To see that in action, consider a variation of the Bobo tutorial “Hello
world” application in Example 5-12.

Example 5-12. Bobo knows that hello requires a person argument, and retrieves it from
the HTTP request
import bobo

@bobo.query('/')
def hello(person):
    return 'Hello %s!' % person

The bobo.query decorator integrates a plain function such as hello with the request
handling machinery of the framework. We’ll cover decorators in Chapter 7—that’s not
the point of this example here. The point is that Bobo introspects the hello function
and finds out it needs one parameter named person to work, and it will retrieve a
parameter with that name from the request and pass it to hello, so the programmer
does not need to touch the request object at all.

If you install Bobo and point its development server to the script in Example 5-12 (e.g.,
bobo -f hello.py), a hit on the URL http://localhost:8080/ will produce the mes‐
sage “Missing form variable person” with a 403 HTTP code. This happens because Bobo
understands that the person argument is required to call hello, but no such name was
found in the request. Example 5-13 is a shell session using curl to show this behavior.

Example 5-13. Bobo issues a 403 forbidden response if there are missing function argu‐
ments in the request; curl -i is used to dump the headers to standard output
$ curl -i http://localhost:8080/
HTTP/1.0 403 Forbidden
Date: Thu, 21 Aug 2014 21:39:44 GMT
Server: WSGIServer/0.2 CPython/3.4.1
Content-Type: text/html; charset=UTF-8
Content-Length: 103

<html>
<head><title>Missing parameter</title></head>
<body>Missing form variable person</body>
</html>
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However, if you get http://localhost:8080/?person=Jim, the response will be the
string 'Hello Jim!'. See Example 5-14.

Example 5-14. Passing the person parameter is required for an OK response
$ curl -i http://localhost:8080/?person=Jim
HTTP/1.0 200 OK
Date: Thu, 21 Aug 2014 21:42:32 GMT
Server: WSGIServer/0.2 CPython/3.4.1
Content-Type: text/html; charset=UTF-8
Content-Length: 10

Hello Jim!

How does Bobo know which parameter names are required by the function, and wheth‐
er they have default values or not?

Within a function object, the __defaults__ attribute holds a tuple with the default
values of positional and keyword arguments. The defaults for keyword-only arguments
appear in __kwdefaults__. The names of the arguments, however, are found within the
__code__ attribute, which is a reference to a code object with many attributes of its own.

To demonstrate the use of these attributes, we will inspect the function clip in a module
clip.py, listed in Example 5-15.

Example 5-15. Function to shorten a string by clipping at a space near the desired
length
def clip(text, max_len=80):
    """Return text clipped at the last space before or after max_len
    """
    end = None
    if len(text) > max_len:
        space_before = text.rfind(' ', 0, max_len)
        if space_before >= 0:
            end = space_before
        else:
            space_after = text.rfind(' ', max_len)
            if space_after >= 0:
                end = space_after
    if end is None:  # no spaces were found
        end = len(text)
    return text[:end].rstrip()

Example 5-16 shows the values of __defaults__, __code__.co_varnames, and
__code__.co_argcount for the clip function listed in Example 5-15.

Example 5-16. Extracting information about the function arguments
>>> from clip import clip
>>> clip.__defaults__
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(80,)
>>> clip.__code__  # doctest: +ELLIPSIS
<code object clip at 0x...>
>>> clip.__code__.co_varnames
('text', 'max_len', 'end', 'space_before', 'space_after')
>>> clip.__code__.co_argcount
2

As you can see, this is not the most convenient arrangement of information. The argu‐
ment names appear in __code__.co_varnames, but that also includes the names of the
local variables created in the body of the function. Therefore, the argument names are
the first N strings, where N is given by __code__.co_argcount which—by the way—
does not include any variable arguments prefixed with * or **. The default values are
identified only by their position in the __defaults__ tuple, so to link each with the
respective argument, you have to scan from last to first. In the example, we have two
arguments, text and max_len, and one default, 80, so it must belong to the last argument,
max_len. This is awkward.

Fortunately, there is a better way: the inspect module.

Take a look at Example 5-17.

Example 5-17. Extracting the function signature
>>> from clip import clip
>>> from inspect import signature
>>> sig = signature(clip)
>>> sig  # doctest: +ELLIPSIS
<inspect.Signature object at 0x...>
>>> str(sig)
'(text, max_len=80)'
>>> for name, param in sig.parameters.items():
...     print(param.kind, ':', name, '=', param.default)
...
POSITIONAL_OR_KEYWORD : text = <class 'inspect._empty'>
POSITIONAL_OR_KEYWORD : max_len = 80

This is much better. inspect.signature returns an inspect.Signature object, which
has a parameters attribute that lets you read an ordered mapping of names to in
spect.Parameter objects. Each Parameter instance has attributes such as name, de
fault, and kind. The special value inspect._empty denotes parameters with no default,
which makes sense considering that None is a valid—and popular—default value.

The kind attribute holds one of five possible values from the _ParameterKind class:
POSITIONAL_OR_KEYWORD

A parameter that may be passed as a positional or as a keyword argument (most
Python function parameters are of this kind).

152 | Chapter 5: First-Class Functions



VAR_POSITIONAL

A tuple of positional parameters.

VAR_KEYWORD

A dict of keyword parameters.

KEYWORD_ONLY

A keyword-only parameter (new in Python 3).

POSITIONAL_ONLY

A positional-only parameter; currently unsupported by Python function declara‐
tion syntax, but exemplified by existing functions implemented in C—like divmod
—that do not accept parameters passed by keyword.

Besides name, default, and kind, inspect.Parameter objects have an annotation
attribute that is usually inspect._empty but may contain function signature metadata
provided via the new annotations syntax in Python 3 (annotations are covered in the
next section).

An inspect.Signature object has a bind method that takes any number of arguments
and binds them to the parameters in the signature, applying the usual rules for matching
actual arguments to formal parameters. This can be used by a framework to validate
arguments prior to the actual function invocation. Example 5-18 shows how.

Example 5-18. Binding the function signature from the tag function in Example 5-10 to
a dict of arguments
>>> import inspect
>>> sig = inspect.signature(tag)  
>>> my_tag = {'name': 'img', 'title': 'Sunset Boulevard',
...           'src': 'sunset.jpg', 'cls': 'framed'}
>>> bound_args = sig.bind(**my_tag)  
>>> bound_args
<inspect.BoundArguments object at 0x...>  
>>> for name, value in bound_args.arguments.items():  
...     print(name, '=', value)
...
name = img
cls = framed
attrs = {'title': 'Sunset Boulevard', 'src': 'sunset.jpg'}
>>> del my_tag['name']  
>>> bound_args = sig.bind(**my_tag)  
Traceback (most recent call last):
  ...
TypeError: 'name' parameter lacking default value

Get the signature from tag function in Example 5-10.
Pass a dict of arguments to .bind().
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An inspect.BoundArguments object is produced.
Iterate over the items in bound_args.arguments, which is an OrderedDict, to
display the names and values of the arguments.
Remove the mandatory argument name from my_tag.
Calling sig.bind(**my_tag) raises a TypeError complaining of the missing
name parameter.

This example shows how the Python data model, with the help of inspect, exposes the
same machinery the interpreter uses to bind arguments to formal parameters in func‐
tion calls.

Frameworks and tools like IDEs can use this information to validate code. Another
feature of Python 3, function annotations, enhances the possible uses of this, as we will
see next.

Function Annotations
Python 3 provides syntax to attach metadata to the parameters of a function declaration
and its return value. Example 5-19 is an annotated version of Example 5-15. The only
differences are in the first line.

Example 5-19. Annotated clip function
def clip(text:str, max_len:'int > 0'=80) -> str:   
    """Return text clipped at the last space before or after max_len
    """
    end = None
    if len(text) > max_len:
        space_before = text.rfind(' ', 0, max_len)
        if space_before >= 0:
            end = space_before
        else:
            space_after = text.rfind(' ', max_len)
            if space_after >= 0:
                end = space_after
    if end is None:  # no spaces were found
        end = len(text)
    return text[:end].rstrip()

The annotated function declaration.

Each argument in the function declaration may have an annotation expression preceded
by :. If there is a default value, the annotation goes between the argument name and
the = sign. To annotate the return value, add -> and another expression between the )
and the : at the tail of the function declaration. The expressions may be of any type. The
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most common types used in annotations are classes, like str or int, or strings, like 'int
> 0', as seen in the annotation for max_len in Example 5-19.

No processing is done with the annotations. They are merely stored in the __annota
tions__ attribute of the function, a dict:

>>> from clip_annot import clip
>>> clip.__annotations__
{'text': <class 'str'>, 'max_len': 'int > 0', 'return': <class 'str'>}

The item with key 'return' holds the return value annotation marked with -> in the
function declaration in Example 5-19.

The only thing Python does with annotations is to store them in the __annota
tions__ attribute of the function. Nothing else: no checks, enforcement, validation, or
any other action is performed. In other words, annotations have no meaning to the
Python interpreter. They are just metadata that may be used by tools, such as IDEs,
frameworks, and decorators. At this writing no tools that use this metadata exist in the
standard library, except that inspect.signature() knows how to extract the annota‐
tions, as Example 5-20 shows.

Example 5-20. Extracting annotations from the function signature
>>> from clip_annot import clip
>>> from inspect import signature
>>> sig = signature(clip)
>>> sig.return_annotation
<class 'str'>
>>> for param in sig.parameters.values():
...     note = repr(param.annotation).ljust(13)
...     print(note, ':', param.name, '=', param.default)
<class 'str'> : text = <class 'inspect._empty'>
'int > 0'     : max_len = 80

The signature function returns a Signature object, which has a return_annotation
attribute and a parameters dictionary mapping parameter names to Parameter objects.
Each Parameter object has its own annotation attribute. That’s how Example 5-20
works.

In the future, frameworks such as Bobo could support annotations to further automate
request processing. For example, an argument annotated as price:float may be au‐
tomatically converted from a query string to the float expected by the function; a string
annotation like quantity:'int > 0' might be parsed to perform conversion and val‐
idation of a parameter.

The biggest impact of function annotations will probably not be dynamic settings such
as Bobo, but in providing optional type information for static type checking in tools like
IDEs and linters.
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After this deep dive into the anatomy of functions, the remainder of this chapter covers
the most useful packages in the standard library that support functional programming.

Packages for Functional Programming
Although Guido makes it clear that Python does not aim to be a functional program‐
ming language, a functional coding style can be used to good extent, thanks to the
support of packages like operator and functools, which we cover in the next two
sections.

The operator Module
Often in functional programming it is convenient to use an arithmetic operator as a
function. For example, suppose you want to multiply a sequence of numbers to calculate
factorials without using recursion. To perform summation, you can use sum, but there
is no equivalent function for multiplication. You could use reduce—as we saw in
“Modern Replacements for map, filter, and reduce” on page 142—but this requires a
function to multiply two items of the sequence. Example 5-21 shows how to solve this
using lambda.

Example 5-21. Factorial implemented with reduce and an anonymous function
from functools import reduce

def fact(n):
    return reduce(lambda a, b: a*b, range(1, n+1))

To save you the trouble of writing trivial anonymous functions like lambda a, b:
a*b, the operator module provides function equivalents for dozens of arithmetic oper‐
ators. With it, we can rewrite Example 5-21 as Example 5-22.

Example 5-22. Factorial implemented with reduce and operator.mul
from functools import reduce
from operator import mul

def fact(n):
    return reduce(mul, range(1, n+1))

Another group of one-trick lambdas that operator replaces are functions to pick items
from sequences or read attributes from objects: itemgetter and attrgetter actually
build custom functions to do that.

Example 5-23 shows a common use of itemgetter: sorting a list of tuples by the value
of one field. In the example, the cities are printed sorted by country code (field 1).
Essentially, itemgetter(1) does the same as lambda fields: fields[1]: create a
function that, given a collection, returns the item at index 1.
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Example 5-23. Demo of itemgetter to sort a list of tuples (data from Example 2-8)
>>> metro_data = [
...     ('Tokyo', 'JP', 36.933, (35.689722, 139.691667)),
...     ('Delhi NCR', 'IN', 21.935, (28.613889, 77.208889)),
...     ('Mexico City', 'MX', 20.142, (19.433333, -99.133333)),
...     ('New York-Newark', 'US', 20.104, (40.808611, -74.020386)),
...     ('Sao Paulo', 'BR', 19.649, (-23.547778, -46.635833)),
... ]
>>>
>>> from operator import itemgetter
>>> for city in sorted(metro_data, key=itemgetter(1)):
...     print(city)
...
('Sao Paulo', 'BR', 19.649, (-23.547778, -46.635833))
('Delhi NCR', 'IN', 21.935, (28.613889, 77.208889))
('Tokyo', 'JP', 36.933, (35.689722, 139.691667))
('Mexico City', 'MX', 20.142, (19.433333, -99.133333))
('New York-Newark', 'US', 20.104, (40.808611, -74.020386))

If you pass multiple index arguments to itemgetter, the function it builds will return
tuples with the extracted values:

>>> cc_name = itemgetter(1, 0)
>>> for city in metro_data:
...     print(cc_name(city))
...
('JP', 'Tokyo')
('IN', 'Delhi NCR')
('MX', 'Mexico City')
('US', 'New York-Newark')
('BR', 'Sao Paulo')
>>>

Because itemgetter uses the [] operator, it supports not only sequences but also map‐
pings and any class that implements __getitem__.

A sibling of itemgetter is attrgetter, which creates functions to extract object at‐
tributes by name. If you pass attrgetter several attribute names as arguments, it also
returns a tuple of values. In addition, if any argument name contains a . (dot), attrget
ter navigates through nested objects to retrieve the attribute. These behaviors are shown
in Example 5-24. This is not the shortest console session because we need to build a
nested structure to showcase the handling of dotted attributes by attrgetter.

Example 5-24. Demo of attrgetter to process a previously defined list of namedtuple
called metro_data (the same list that appears in Example 5-23)
>>> from collections import namedtuple
>>> LatLong = namedtuple('LatLong', 'lat long')  # 
>>> Metropolis = namedtuple('Metropolis', 'name cc pop coord')  # 
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>>> metro_areas = [Metropolis(name, cc, pop, LatLong(lat, long))  # 
...     for name, cc, pop, (lat, long) in metro_data]
>>> metro_areas[0]
Metropolis(name='Tokyo', cc='JP', pop=36.933, coord=LatLong(lat=35.689722,
long=139.691667))
>>> metro_areas[0].coord.lat  # 
35.689722
>>> from operator import attrgetter
>>> name_lat = attrgetter('name', 'coord.lat')  # 
>>>
>>> for city in sorted(metro_areas, key=attrgetter('coord.lat')):  # 
...     print(name_lat(city))  # 
...
('Sao Paulo', -23.547778)
('Mexico City', 19.433333)
('Delhi NCR', 28.613889)
('Tokyo', 35.689722)
('New York-Newark', 40.808611)

Use namedtuple to define LatLong.
Also define Metropolis.
Build metro_areas list with Metropolis instances; note the nested tuple
unpacking to extract (lat, long) and use them to build the LatLong for the
coord attribute of Metropolis.
Reach into element metro_areas[0] to get its latitude.
Define an attrgetter to retrieve the name and the coord.lat nested attribute.
Use attrgetter again to sort list of cities by latitude.
Use the attrgetter defined in  to show only city name and latitude.

Here is a partial list of functions defined in operator (names starting with _ are omitted,
because they are mostly implementation details):

>>> [name for name in dir(operator) if not name.startswith('_')]
['abs', 'add', 'and_', 'attrgetter', 'concat', 'contains',
'countOf', 'delitem', 'eq', 'floordiv', 'ge', 'getitem', 'gt',
'iadd', 'iand', 'iconcat', 'ifloordiv', 'ilshift', 'imod', 'imul',
'index', 'indexOf', 'inv', 'invert', 'ior', 'ipow', 'irshift',
'is_', 'is_not', 'isub', 'itemgetter', 'itruediv', 'ixor', 'le',
'length_hint', 'lshift', 'lt', 'methodcaller', 'mod', 'mul', 'ne',
'neg', 'not_', 'or_', 'pos', 'pow', 'rshift', 'setitem', 'sub',
'truediv', 'truth', 'xor']

Most of the 52 names listed are self-evident. The group of names prefixed with i and
the name of another operator—e.g., iadd, iand, etc.—correspond to the augmented
assignment operators—e.g., +=, &=, etc. These change their first argument in place, if it
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is mutable; if not, the function works like the one without the i prefix: it simply returns
the result of the operation.

Of the remaining operator functions, methodcaller is the last we will cover. It is some‐
what similar to attrgetter and itemgetter in that it creates a function on the fly. The
function it creates calls a method by name on the object given as argument, as shown
in Example 5-25.

Example 5-25. Demo of methodcaller: second test shows the binding of extra arguments
>>> from operator import methodcaller
>>> s = 'The time has come'
>>> upcase = methodcaller('upper')
>>> upcase(s)
'THE TIME HAS COME'
>>> hiphenate = methodcaller('replace', ' ', '-')
>>> hiphenate(s)
'The-time-has-come'

The first test in Example 5-25 is there just to show methodcaller at work, but if you
need to use the str.upper as a function, you can just call it on the str class and pass a
string as argument, like this:

>>> str.upper(s)
'THE TIME HAS COME'

The second test in Example 5-25 shows that methodcaller can also do a partial appli‐
cation to freeze some arguments, like the functools.partial function does. That is
our next subject.

Freezing Arguments with functools.partial
The functools module brings together a handful of higher-order functions. The best
known of them is probably reduce, which was covered in “Modern Replacements for
map, filter, and reduce” on page 142. Of the remaining functions in functools, the most
useful is partial and its variation, partialmethod.

functools.partial is a higher-order function that allows partial application of a func‐
tion. Given a function, a partial application produces a new callable with some of the
arguments of the original function fixed. This is useful to adapt a function that takes
one or more arguments to an API that requires a callback with fewer arguments.
Example 5-26 is a trivial demonstration.

Example 5-26. Using partial to use a two-argument function where a one-argument
callable is required
>>> from operator import mul
>>> from functools import partial
>>> triple = partial(mul, 3)  
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>>> triple(7)  
21
>>> list(map(triple, range(1, 10)))  
[3, 6, 9, 12, 15, 18, 21, 24, 27]

Create new triple function from mul, binding first positional argument to 3.
Test it.
Use triple with map; mul would not work with map in this example.

A more useful example involves the unicode.normalize function that we saw in “Nor‐
malizing Unicode for Saner Comparisons” on page 117. If you work with text from
many languages, you may want to apply unicode.normalize('NFC', s) to any string
s before comparing or storing it. If you do that often, it’s handy to have an nfc function
to do so, as in Example 5-27.

Example 5-27. Building a convenient Unicode normalizing function with partial
>>> import unicodedata, functools
>>> nfc = functools.partial(unicodedata.normalize, 'NFC')
>>> s1 = 'café'
>>> s2 = 'cafe\u0301'
>>> s1, s2
('café', 'café')
>>> s1 == s2
False
>>> nfc(s1) == nfc(s2)
True

partial takes a callable as first argument, followed by an arbitrary number of positional
and keyword arguments to bind.

Example 5-28 shows the use of partial with the tag function from Example 5-10, to
freeze one positional argument and one keyword argument.

Example 5-28. Demo of partial applied to the function tag from Example 5-10
>>> from tagger import tag
>>> tag
<function tag at 0x10206d1e0>  
>>> from functools import partial
>>> picture = partial(tag, 'img', cls='pic-frame')  
>>> picture(src='wumpus.jpeg')
'<img class="pic-frame" src="wumpus.jpeg" />'  
>>> picture
functools.partial(<function tag at 0x10206d1e0>, 'img', cls='pic-frame')  
>>> picture.func  
<function tag at 0x10206d1e0>
>>> picture.args
('img',)
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2. The source code for functools.py reveals that the functools.partial class is implemented in C and is
used by default. If that is not available, a pure-Python implementation of partial is available since Python
3.4.in the functools module.

>>> picture.keywords
{'cls': 'pic-frame'}

Import tag from Example 5-10 and show its ID.
Create picture function from tag by fixing the first positional argument with
'img' and the cls keyword argument with 'pic-frame'.
picture works as expected.
partial() returns a functools.partial object.2

A functools.partial object has attributes providing access to the original
function and the fixed arguments.

The functools.partialmethod function (new in Python 3.4) does the same job as
partial, but is designed to work with methods.

An impressive functools function is lru_cache, which does memoization—a form of
automatic optimization that works by storing the results of function calls to avoid ex‐
pensive recalculations. We will cover it in Chapter 7, where decorators are explained,
along with other higher-order functions designed to be used as decorators: singledis
patch and wraps.

Chapter Summary
The goal of this chapter was to explore the first-class nature of functions in Python. The
main ideas are that you can assign functions to variables, pass them to other functions,
store them in data structures, and access function attributes, allowing frameworks and
tools to act on that information. Higher-order functions, a staple of functional pro‐
gramming, are common in Python—even if the use of map, filter, and reduce is not
as frequent as it was—thanks to list comprehensions (and similar constructs like gen‐
erator expressions) and the appearance of reducing built-ins like sum, all, and any. The
sorted, min, max built-ins, and functools.partial are examples of commonly used
higher-order functions in the language.

Callables come in seven different flavors in Python, from the simple functions created
with lambda to instances of classes implementing __call__. They can all be detected by
the callable() built-in. Every callable supports the same rich syntax for declaring
formal parameters, including keyword-only parameters and annotations—both new
features introduced with Python 3.
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Python functions and their annotations have a rich set of attributes that can be read
with the help of the inspect module, which includes the Signature.bind method to
apply the flexible rules that Python uses to bind actual arguments to declared parame‐
ters.

Lastly, we covered some functions from the operator module and functools.parti
al, which facilitate functional programming by minimizing the need for the functionally
challenged lambda syntax.

Further Reading
The next two chapters continue our exploration of programming with function objects.
Chapter 6 shows how first-class functions can simplify some classic object-oriented
design patterns, while Chapter 7 dives into function decorators—a special kind of
higher-order function—and the closure mechanism that makes them work.

Chapter 7 of the Python Cookbook, Third Edition (O’Reilly), by David Beazley and Brian
K. Jones, is an excellent complement to the current chapter as well as Chapter 7 of this
book, covering mostly the same concepts with a different approach.

In The Python Language Reference, “3.2. The standard type hierarchy” presents the seven
callable types, along with all the other built-in types.

The Python-3-only features discussed in this chapter have their own PEPs: PEP 3102
— Keyword-Only Arguments and PEP 3107 — Function Annotations.

For more about the current (as of mid-2014) use of annotations, two Stack Overflow
questions are worth reading: “What are good uses for Python3’s ‘Function Annota‐
tions’” has a practical answer and insightful comments by Raymond Hettinger, and the
answer for “What good are Python function annotations?” quotes extensively from
Guido van Rossum.

PEP 362 — Function Signature Object is worth reading if you intend to use the in
spect module that implements that feature.

A great introduction to functional programming in Python is A. M. Kuchling’s Python
Functional Programming HOWTO. The main focus of that text, however, is on the use
of iterators and generators, which are the subject of Chapter 14.

fn.py is a package to support functional programming in Python 2 and 3. According
to its author, Alexey Kachayev, fn.py provides “implementation of missing features to
enjoy FP” in Python. It includes a @recur.tco decorator that implements tail-call op‐
timization for unlimited recursion in Python, among many other functions, data struc‐
tures, and recipes.
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The StackOverflow question “Python: Why is functools.partial necessary?” has a highly
informative (and funny) reply by Alex Martelli, author of the classic Python in a Nutshell.

Jim Fulton’s Bobo was probably the first web framework that deserved to be called
object-oriented. If you were intrigued by it and want to learn more about its modern
rewrite, start at its Introduction. A little of the early history of Bobo appears in a com‐
ment by Phillip J. Eby in a discussion at Joel Spolsky’s blog.

Soapbox
About Bobo

I owe my Python career to Bobo. I used it in my first Python web project in 1998. I
discovered Bobo while looking for an object-oriented way to code web applications,
after trying Perl and Java alternatives.

In 1997, Bobo had pioneered the object publishing concept: direct mapping from URLs
to a hierarchy of objects, with no need to configure routes. I was hooked when I saw the
beauty of this. Bobo also featured automatic HTTP query handling based on analysis
of the signatures of the methods or functions used to handle requests.

Bobo was created by Jim Fulton, known as “The Zope Pope” thanks to his leading role
in the development of the Zope framework, the foundation of the Plone CMS, School‐
Tool, ERP5, and other large-scale Python projects. Jim is also the creator of ZODB—the
Zope Object Database—a transactional object database that provides ACID (atomicity,
consistency, isolation, and durability), designed for ease of use from Python.

Jim has since rewritten Bobo from scratch to support WSGI and modern Python (in‐
cluding Python 3). As of this writing, Bobo uses the six library to do the function
introspection, in order to be compatible with Python 2 and Python 3 in spite of the
changes in function objects and related APIs.

Is Python a Functional Language?

Around the year 2000, I was at a training in the United States when Guido van Rossum
dropped by the classroom (he was not the instructor). In the Q&A that followed, some‐
body asked him which features of Python were borrowed from other languages. His
answer: “Everything that is good in Python was stolen from other languages.”

Shriram Krishnamurthi, professor of Computer Science at Brown University, starts his
“Teaching Programming Languages in a Post-Linnaean Age” paper with this:

Programming language “paradigms” are a moribund and tedious legacy of a bygone
age. Modern language designers pay them no respect, so why do our courses slavishly
adhere to them?

In that paper, Python is mentioned by name in this passage:
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3. There also the problem of lost indentation when pasting code to Web forums, but I digress.

What else to make of a language like Python, Ruby, or Perl? Their designers have no
patience for the niceties of these Linnaean hierarchies; they borrow features as they
wish, creating melanges that utterly defy characterization.

Krishnamurthi submits that instead of trying to classify languages in some taxonomy,
it’s more useful to consider them as aggregations of features.

Even if it was not Guido’s goal, endowing Python with first-class functions opened the
door to functional programming. In his post “Origins of Python’s Functional Fea‐
tures”, he says that map, filter, and reduce were the motivation for adding lambda to
Python in the first place. All of these features were contributed together by Amrit Prem
for Python 1.0 in 1994 (according to Misc/HISTORY in the CPython source code).

lambda, map, filter, and reduce first appeared in Lisp, the original functional language.
However, Lisp does not limit what can be done inside a lambda, because everything in
Lisp is an expression. Python uses a statement-oriented syntax in which expressions
cannot contain statements, and many language constructs are statements—including
try/catch, which is what I miss most often when writing lambdas. This is the price to
pay for Python’s highly readable syntax.3 Lisp has many strengths, but readability is not
one of them.

Ironically, stealing the list comprehension syntax from another functional language—
Haskell—significantly diminished the need for map and filter, and also for lambda.

Besides the limited anonymous function syntax, the biggest obstacle to wider adoption
of functional programming idioms in Python is the lack of tail-recursion elimination,
an optimization that allows memory-efficient computation of a function that makes a
recursive call at the “tail” of its body. In another blog post, “Tail Recursion Elimina‐
tion”, Guido gives several reasons why such optimization is not a good fit for Python.
That post is a great read for the technical arguments, but even more so because the first
three and most important reasons given are usability issues. It is no accident that Python
is a pleasure to use, learn, and teach. Guido made it so.

So there you have it: Python is, by design, not a functional language—whatever that
means. Python just borrows a few good ideas from functional languages.

The Problem with Anonymous Functions

Beyond the Python-specific syntax constraints, anonymous functions have a serious
drawback in every language: they have no name.

I am only half joking here. Stack traces are easier to read when functions have names.
Anonymous functions are a handy shortcut, people have fun coding with them, but
sometimes they get carried away—especially if the language and environment encourage
deep nesting of anonymous functions, like JavaScript on Node.js. Lots of nested anony‐
mous functions make debugging and error handling hard. Asynchronous programming
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in Python is more structured, perhaps because the limited lambda demands it. I promise
to write more about asynchronous programming in the future, but this subject must be
deferred to Chapter 18. By the way, promises, futures, and deferreds are concepts used
in modern asynchronous APIs. Along with coroutines, they provide an escape from the
so-called “callback hell.” We’ll see how callback-free asynchronous programming works
in “From Callbacks to Futures and Coroutines” on page 562.
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1. From a slide in the talk “Root Cause Analysis of Some Faults in Design Patterns,” presented by Ralph Johnson
at IME/CCSL, Universidade de São Paulo, Nov. 15, 2014.

2. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software (Addison-Wesley, 1995), p. 4.

CHAPTER 6

Design Patterns with First-Class Functions

Conformity to patterns is not a measure of goodness.1

— Ralph Johnson
 Coauthor of the Design Patterns classic

Although design patterns are language-independent, that does not mean every pattern
applies to every language. In his 1996 presentation, “Design Patterns in Dynamic Lan‐
guages”, Peter Norvig states that 16 out of the 23 patterns in the original Design Patterns
book by Gamma et al. become either “invisible or simpler” in a dynamic language (slide
9). He was talking about Lisp and Dylan, but many of the relevant dynamic features are
also present in Python.

The authors of Design Patterns acknowledge in their Introduction that the implemen‐
tation language determines which patterns are relevant:

The choice of programming language is important because it influences one’s point of
view. Our patterns assume Smalltalk/C++-level language features, and that choice de‐
termines what can and cannot be implemented easily. If we assumed procedural lan‐
guages, we might have included design patterns called “Inheritance,” “Encapsulation,”
and “Polymorphism.” Similarly, some of our patterns are supported directly by the less
common object-oriented languages. CLOS has multi-methods, for example, which lessen
the need for a pattern such as Visitor.2

In particular, in the context of languages with first-class functions, Norvig suggests
rethinking the Strategy, Command, Template Method, and Visitor patterns. The general
idea is: you can replace instances of some participant class in these patterns with simple
functions, reducing a lot of boilerplate code. In this chapter, we will refactor Strategy
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using function objects, and discuss a similar approach to simplifying the Command
pattern.

Case Study: Refactoring Strategy
Strategy is a good example of a design pattern that can be simpler in Python if you
leverage functions as first-class objects. In the following section, we describe and im‐
plement Strategy using the “classic” structure described in Design Patterns. If you are
familiar with the classic pattern, you can skip to “Function-Oriented Strategy” on page
172 where we refactor the code using functions, significantly reducing the line count.

Classic Strategy
The UML class diagram in Figure 6-1 depicts an arrangement of classes that exemplifies
the Strategy pattern.

Figure 6-1. UML class diagram for order discount processing implemented with the
Strategy design pattern

The Strategy pattern is summarized like this in Design Patterns:
Define a family of algorithms, encapsulate each one, and make them interchangeable.
Strategy lets the algorithm vary independently from clients that use it.
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A clear example of Strategy applied in the ecommerce domain is computing discounts
to orders according to the attributes of the customer or inspection of the ordered items.

Consider an online store with these discount rules:

• Customers with 1,000 or more fidelity points get a global 5% discount per order.
• A 10% discount is applied to each line item with 20 or more units in the same order.
• Orders with at least 10 distinct items get a 7% global discount.

For brevity, let’s assume that only one discount may be applied to an order.

The UML class diagram for the Strategy pattern is depicted in Figure 6-1. Its participants
are:
Context

Provides a service by delegating some computation to interchangeable components
that implement alternative algorithms. In the ecommerce example, the context is
an Order, which is configured to apply a promotional discount according to one of
several algorithms.

Strategy
The interface common to the components that implement the different algorithms.
In our example, this role is played by an abstract class called Promotion.

Concrete Strategy
One of the concrete subclasses of Strategy. FidelityPromo, BulkPromo, and Large
OrderPromo are the three concrete strategies implemented.

The code in Example 6-1 follows the blueprint in Figure 6-1. As described in Design
Patterns, the concrete strategy is chosen by the client of the context class. In our example,
before instantiating an order, the system would somehow select a promotional discount
strategy and pass it to the Order constructor. The selection of the strategy is outside of
the scope of the pattern.

Example 6-1. Implementation Order class with pluggable discount strategies
from abc import ABC, abstractmethod
from collections import namedtuple

Customer = namedtuple('Customer', 'name fidelity')

class LineItem:

    def __init__(self, product, quantity, price):
        self.product = product
        self.quantity = quantity
        self.price = price
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    def total(self):
        return self.price * self.quantity

class Order:  # the Context

    def __init__(self, customer, cart, promotion=None):
        self.customer = customer
        self.cart = list(cart)
        self.promotion = promotion

    def total(self):
        if not hasattr(self, '__total'):
            self.__total = sum(item.total() for item in self.cart)
        return self.__total

    def due(self):
        if self.promotion is None:
            discount = 0
        else:
            discount = self.promotion.discount(self)
        return self.total() - discount

    def __repr__(self):
        fmt = '<Order total: {:.2f} due: {:.2f}>'
        return fmt.format(self.total(), self.due())

class Promotion(ABC):  # the Strategy: an abstract base class

    @abstractmethod
    def discount(self, order):
        """Return discount as a positive dollar amount"""

class FidelityPromo(Promotion):  # first Concrete Strategy
    """5% discount for customers with 1000 or more fidelity points"""

    def discount(self, order):
        return order.total() * .05 if order.customer.fidelity >= 1000 else 0

class BulkItemPromo(Promotion):  # second Concrete Strategy
    """10% discount for each LineItem with 20 or more units"""

    def discount(self, order):
        discount = 0
        for item in order.cart:
            if item.quantity >= 20:
                discount += item.total() * .1
        return discount
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class LargeOrderPromo(Promotion):  # third Concrete Strategy
    """7% discount for orders with 10 or more distinct items"""

    def discount(self, order):
        distinct_items = {item.product for item in order.cart}
        if len(distinct_items) >= 10:
            return order.total() * .07
        return 0

Note that in Example 6-1, I coded Promotion as an abstract base class (ABC), to be able
to use the @abstractmethod decorator, thus making the pattern more explicit.

In Python 3.4, the simplest way to declare an ABC is to subclass
abc.ABC, as I did in Example 6-1. From Python 3.0 to 3.3, you must
use the metaclass= keyword in the class statement (e.g., class
Promotion(metaclass=ABCMeta):).

Example 6-2 shows doctests used to demonstrate and verify the operation of a module
implementing the rules described earlier.

Example 6-2. Sample usage of Order class with different promotions applied
    >>> joe = Customer('John Doe', 0)   
    >>> ann = Customer('Ann Smith', 1100)
    >>> cart = [LineItem('banana', 4, .5),   
    ...         LineItem('apple', 10, 1.5),
    ...         LineItem('watermellon', 5, 5.0)]
    >>> Order(joe, cart, FidelityPromo())   
    <Order total: 42.00 due: 42.00>
    >>> Order(ann, cart, FidelityPromo())   
    <Order total: 42.00 due: 39.90>
    >>> banana_cart = [LineItem('banana', 30, .5),   
    ...                LineItem('apple', 10, 1.5)]
    >>> Order(joe, banana_cart, BulkItemPromo())   
    <Order total: 30.00 due: 28.50>
    >>> long_order = [LineItem(str(item_code), 1, 1.0)  
    ...               for item_code in range(10)]
    >>> Order(joe, long_order, LargeOrderPromo())   
    <Order total: 10.00 due: 9.30>
    >>> Order(joe, cart, LargeOrderPromo())
    <Order total: 42.00 due: 42.00>

Two customers: joe has 0 fidelity points, ann has 1,100.
One shopping cart with three line items.
The FidelityPromo promotion gives no discount to joe.
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ann gets a 5% discount because she has at least 1,000 points.
The banana_cart has 30 units of the "banana" product and 10 apples.
Thanks to the BulkItemPromo, joe gets a $1.50 discount on the bananas.
long_order has 10 different items at $1.00 each.
joe gets a 7% discount on the whole order because of LargerOrderPromo.

Example 6-1 works perfectly well, but the same functionality can be implemented with
less code in Python by using functions as objects. The next section shows how.

Function-Oriented Strategy
Each concrete strategy in Example 6-1 is a class with a single method, discount. Fur‐
thermore, the strategy instances have no state (no instance attributes). You could say
they look a lot like plain functions, and you would be right. Example 6-3 is a refactoring
of Example 6-1, replacing the concrete strategies with simple functions and removing
the Promo abstract class.

Example 6-3. Order class with discount strategies implemented as functions
from collections import namedtuple

Customer = namedtuple('Customer', 'name fidelity')

class LineItem:

    def __init__(self, product, quantity, price):
        self.product = product
        self.quantity = quantity
        self.price = price

    def total(self):
        return self.price * self.quantity

class Order:  # the Context

    def __init__(self, customer, cart, promotion=None):
        self.customer = customer
        self.cart = list(cart)
        self.promotion = promotion

    def total(self):
        if not hasattr(self, '__total'):
            self.__total = sum(item.total() for item in self.cart)
        return self.__total

    def due(self):
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        if self.promotion is None:
            discount = 0
        else:
            discount = self.promotion(self)   
        return self.total() - discount

    def __repr__(self):
        fmt = '<Order total: {:.2f} due: {:.2f}>'
        return fmt.format(self.total(), self.due())

 

def fidelity_promo(order):   
    """5% discount for customers with 1000 or more fidelity points"""
    return order.total() * .05 if order.customer.fidelity >= 1000 else 0

def bulk_item_promo(order):
    """10% discount for each LineItem with 20 or more units"""
    discount = 0
    for item in order.cart:
        if item.quantity >= 20:
            discount += item.total() * .1
    return discount

def large_order_promo(order):
    """7% discount for orders with 10 or more distinct items"""
    distinct_items = {item.product for item in order.cart}
    if len(distinct_items) >= 10:
        return order.total() * .07
    return 0

To compute a discount, just call the self.promotion() function.
No abstract class.
Each strategy is a function.

The code in Example 6-3 is 12 lines shorter than Example 6-1. Using the new Order is
also a bit simpler, as shown in the Example 6-4 doctests.

Example 6-4. Sample usage of Order class with promotions as functions
    >>> joe = Customer('John Doe', 0)   
    >>> ann = Customer('Ann Smith', 1100)
    >>> cart = [LineItem('banana', 4, .5),
    ...         LineItem('apple', 10, 1.5),
    ...         LineItem('watermellon', 5, 5.0)]
    >>> Order(joe, cart, fidelity_promo)   
    <Order total: 42.00 due: 42.00>
    >>> Order(ann, cart, fidelity_promo)
    <Order total: 42.00 due: 39.90>
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    >>> banana_cart = [LineItem('banana', 30, .5),
    ...                LineItem('apple', 10, 1.5)]
    >>> Order(joe, banana_cart, bulk_item_promo)   
    <Order total: 30.00 due: 28.50>
    >>> long_order = [LineItem(str(item_code), 1, 1.0)
    ...               for item_code in range(10)]
    >>> Order(joe, long_order, large_order_promo)
    <Order total: 10.00 due: 9.30>
    >>> Order(joe, cart, large_order_promo)
    <Order total: 42.00 due: 42.00>

Same test fixtures as Example 6-1.
To apply a discount strategy to an Order, just pass the promotion function as an
argument.
A different promotion function is used here and in the next test.

Note the callouts in Example 6-4: there is no need to instantiate a new promotion object
with each new order: the functions are ready to use.

It is interesting to note that in Design Patterns the authors suggest: “Strategy objects
often make good flyweights.”3 A definition of the Flyweight in another part of that work
states: “A flyweight is a shared object that can be used in multiple contexts simultane‐
ously.”4 The sharing is recommended to reduce the cost of creating a new concrete
strategy object when the same strategy is applied over and over again with every new
context—with every new Order instance, in our example. So, to overcome a drawback
of the Strategy pattern—its runtime cost—the authors recommend applying yet another
pattern. Meanwhile, the line count and maintenance cost of your code are piling up.

A thornier use case, with complex concrete strategies holding internal state, may require
all the pieces of the Strategy and Flyweight design patterns combined. But often concrete
strategies have no internal state; they only deal with data from the context. If that is the
case, then by all means use plain old functions instead of coding single-method classes
implementing a single-method interface declared in yet another class. A function is
more lightweight than an instance of a user-defined class, and there is no need for
Flyweight because each strategy function is created just once by Python when it compiles
the module. A plain function is also “a shared object that can be used in multiple contexts
simultaneously.”

Now that we have implemented the Strategy pattern with functions, other possibilities
emerge. Suppose you want to create a “meta-strategy” that selects the best available
discount for a given Order. In the following sections, we present additional refactorings
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that implement this requirement using a variety of approaches that leverage functions
and modules as objects.

Choosing the Best Strategy: Simple Approach
Given the same customers and shopping carts from the tests in Example 6-4, we now
add three additional tests in Example 6-5.

Example 6-5. The best_promo function applies all discounts and returns the largest
    >>> Order(joe, long_order, best_promo)   
    <Order total: 10.00 due: 9.30>
    >>> Order(joe, banana_cart, best_promo)   
    <Order total: 30.00 due: 28.50>
    >>> Order(ann, cart, best_promo)   
    <Order total: 42.00 due: 39.90>

best_promo selected the larger_order_promo for customer joe.
Here joe got the discount from bulk_item_promo for ordering lots of bananas.
Checking out with a simple cart, best_promo gave loyal customer ann the
discount for the fidelity_promo.

The implementation of best_promo is very simple. See Example 6-6.

Example 6-6. best_promo finds the maximum discount iterating over a list of functions
promos = [fidelity_promo, bulk_item_promo, large_order_promo]   

def best_promo(order):   
    """Select best discount available
    """
    return max(promo(order) for promo in promos)   

promos: list of the strategies implemented as functions.
best_promo takes an instance of Order as argument, as do the other *_promo
functions.
Using a generator expression, we apply each of the functions from promos to the
order, and return the maximum discount computed.

Example 6-6 is straightforward: promos is a list of functions. Once you get used to the
idea that functions are first-class objects, it naturally follows that building data structures
holding functions often makes sense.

Although Example 6-6 works and is easy to read, there is some duplication that could
lead to a subtle bug: to add a new promotion strategy, we need to code the function and
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remember to add it to the promos list, or else the new promotion will work when ex‐
plicitly passed as an argument to Order, but will not be considered by best_promotion.

Read on for a couple of solutions to this issue.

Finding Strategies in a Module
Modules in Python are also first-class objects, and the standard library provides several
functions to handle them. The built-in globals is described as follows in the Python
docs:
globals()

Return a dictionary representing the current global symbol table. This is always the
dictionary of the current module (inside a function or method, this is the module
where it is defined, not the module from which it is called).

Example 6-7 is a somewhat hackish way of using globals to help best_promo auto‐
matically find the other available *_promo functions.

Example 6-7. The promos list is built by introspection of the module global namespace
promos = [globals()[name] for name in globals()   
            if name.endswith('_promo')   
            and name != 'best_promo']    

def best_promo(order):
    """Select best discount available
    """
    return max(promo(order) for promo in promos)   

Iterate over each name in the dictionary returned by globals().
Select only names that end with the _promo suffix.
Filter out best_promo itself, to avoid an infinite recursion.
No changes inside best_promo.

Another way of collecting the available promotions would be to create a module and
put all the strategy functions there, except for best_promo.

In Example 6-8, the only significant change is that the list of strategy functions is built
by introspection of a separate module called promotions. Note that Example 6-8 de‐
pends on importing the promotions module as well as inspect, which provides high-
level introspection functions (the imports are not shown for brevity, because they would
normally be at the top of the file).

176 | Chapter 6: Design Patterns with First-Class Functions



Example 6-8. The promos list is built by introspection of a new promotions module
promos = [func for name, func in
                inspect.getmembers(promotions, inspect.isfunction)]

def best_promo(order):
    """Select best discount available
    """
    return max(promo(order) for promo in promos)

The function inspect.getmembers returns the attributes of an object—in this case, the
promotions module—optionally filtered by a predicate (a boolean function). We use
inspect.isfunction to get only the functions from the module.

Example 6-8 works regardless of the names given to the functions; all that matters is
that the promotions module contains only functions that calculate discounts given or‐
ders. Of course, this is an implicit assumption of the code. If someone were to create a
function with a different signature in the promotions module, then best_promo would
break while trying to apply it to an order.

We could add more stringent tests to filter the functions, by inspecting their arguments
for instance. The point of Example 6-8 is not to offer a complete solution, but to highlight
one possible use of module introspection.

A more explicit alternative for dynamically collecting promotional discount functions
would be to use a simple decorator. We’ll show yet another version of our ecommerce
Strategy example in Chapter 7, which deals with function decorators.

In the next section, we discuss Command—another design pattern that is sometimes
implemented via single-method classes when plain functions would do.

Command
Command is another design pattern that can be simplified by the use of functions passed
as arguments. Figure 6-2 shows the arrangement of classes in the Command pattern.
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Figure 6-2. UML class diagram for menu-driven text editor implemented with the
Command design pattern. Each command may have a different receiver: the object that
implements the action. For PasteCommand, the receiver is the Document. For Open‐
Command, the receiver is the application.

The goal of Command is to decouple an object that invokes an operation (the Invoker)
from the provider object that implements it (the Receiver). In the example from Design
Patterns, each invoker is a menu item in a graphical application, and the receivers are
the document being edited or the application itself.

The idea is to put a Command object between the two, implementing an interface with a
single method, execute, which calls some method in the Receiver to perform the desired
operation. That way the Invoker does not need to know the interface of the Receiver,
and different receivers can be adapted through different Command subclasses. The In‐
voker is configured with a concrete command and calls its execute method to operate
it. Note in Figure 6-2 that MacroCommand may store a sequence of commands; its
execute() method calls the same method in each command stored.

Quoting from Gamma et al., “Commands are an object-oriented replacement for call‐
backs.” The question is: do we need an object-oriented replacement for callbacks?
Sometimes yes, but not always.

Instead of giving the Invoker a Command instance, we can simply give it a function.
Instead of calling command.execute(), the Invoker can just call command(). The Macro
Command can be implemented with a class implementing __call__. Instances of Macro
Command would be callables, each holding a list of functions for future invocation, as
implemented in Example 6-9.
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Example 6-9. Each instance of MacroCommand has an internal list of commands
class MacroCommand:
    """A command that executes a list of commands"""

    def __init__(self, commands):
        self.commands = list(commands)  # 

    def __call__(self):
        for command in self.commands:  # 
            command()

Building a list from the commands arguments ensures that it is iterable and keeps
a local copy of the command references in each MacroCommand instance.
When an instance of MacroCommand is invoked, each command in self.com
mands is called in sequence.

More advanced uses of the Command pattern—to support undo, for example—may
require more than a simple callback function. Even then, Python provides a couple of
alternatives that deserve consideration:

• A callable instance like MacroCommand in Example 6-9 can keep whatever state is
necessary, and provide extra methods in addition to __call__.

• A closure can be used to hold the internal state of a function between calls.

This concludes our rethinking of the Command pattern with first-class functions. At a
high level, the approach here was similar to the one we applied to Strategy: replacing
with callables the instances of a participant class that implemented a single-method
interface. After all, every Python callable implements a single-method interface, and
that method is named __call__.

Chapter Summary
As Peter Norvig pointed out a couple of years after the classic Design Patterns book
appeared, “16 of 23 patterns have qualitatively simpler implementation in Lisp or Dylan
than in C++ for at least some uses of each pattern” (slide 9 of Norvig’s “Design Patterns
in Dynamic Languages” presentation). Python shares some of the dynamic features of
the Lisp and Dylan languages, in particular first-class functions, our focus in this part
of the book.

From the same talk quoted at the start of this chapter, in reflecting on the 20th anni‐
versary of Design Patterns: Elements of Reusable Object-Oriented Software, Ralph John‐
son has stated that one of the failings of the book is “Too much emphasis on patterns
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5. From the same talk quoted at the start of this chapter: “Root Cause Analysis of Some Faults in Design Patterns,”
presented by Johnson at IME-USP, November 15, 2014.

as end-points instead of steps in the design patterns.”5 In this chapter, we used the Strat‐
egy pattern as a starting point: a working solution that we could simplify using first-
class functions.

In many cases, functions or callable objects provide a more natural way of implementing
callbacks in Python than mimicking the Strategy or the Command patterns as described
by Gamma, Helm, Johnson, and Vlissides. The refactoring of Strategy and the discussion
of Command in this chapter are examples of a more general insight: sometimes you
may encounter a design pattern or an API that requires that components implement an
interface with a single method, and that method has a generic-sounding name such as
“execute”, “run”, or “doIt”. Such patterns or APIs often can be implemented with less
boilerplate code in Python using first-class functions or other callables.

The message from Peter Norvig’s design patterns slides is that the Command and Strat‐
egy patterns—along with Template Method and Visitor—can be made simpler or even
“invisible” with first-class functions, at least for some applications of these patterns.

Further Reading
Our discussion of Strategy ended with a suggestion that function decorators could be
used to improve on Example 6-8. We also mentioned the use of closures a couple of
times in this chapter. Decorators as well as closures are the focus of Chapter 7. That
chapter starts with a refactoring of the ecommerce example using a decorator to register
available promotions.

“Recipe 8.21. Implementing the Visitor Pattern,” in the Python Cookbook, Third Edi‐
tion (O’Reilly), by David Beazley and Brian K. Jones, presents an elegant implementation
of the Visitor pattern in which a NodeVisitor class handles methods as first-class ob‐
jects.

On the general topic of design patterns, the choice of readings for the Python program‐
mer is not as broad as what is available to other language communities.

As far as I know, Learning Python Design Patterns, by Gennadiy Zlobin (Packt), is the
only book entirely devoted to patterns in Python—as of June 2014. But Zlobin’s work is
quite short (100 pages) and covers eight of the original 23 design patterns.

Expert Python Programming by Tarek Ziadé (Packt) is one of the best intermediate-level
Python books in the market, and its final chapter, “Useful Design Patterns,” presents
seven of the classic patterns from a Pythonic perspective.
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Alex Martelli has given several talks about Python Design Patterns. There is a video of
his EuroPython 2011 presentation and a set of slides on his personal website. I’ve found
different slide decks and videos over the years, of varying lengths, so it is worthwhile to
do a thorough search for his name with the words “Python Design Patterns.”

Around 2008, Bruce Eckel—author of the excellent Thinking in Java (Prentice Hall)—
started a book titled Python 3 Patterns, Recipes and Idioms. It was to be written by a
community of contributors led by Eckel, but six years later it’s still incomplete and
apparently stalled (as I write this, the last change to the repository is two years old).

There are many books about design patterns in the context of Java, but among them the
one I like most is Head First Design Patterns by Eric Freeman, Bert Bates, Kathy Sierra,
and Elisabeth Robson (O’Reilly). It explains 16 of the 23 classic patterns. If you like the
wacky style of the Head First series and need an introduction to this topic, you will love
that work. However, it is Java-centric.

For a fresh look at patterns from the point of view of a dynamic language with duck
typing and first-class functions, Design Patterns in Ruby by Russ Olsen (Addison-
Wesley) has many insights that are also applicable to Python. In spite of many the syn‐
tactic differences, at the semantic level Python and Ruby are closer to each other than
to Java or C++.

In Design Patterns in Dynamic Languages (slides), Peter Norvig shows how first-class
functions (and other dynamic features) make several of the original design patterns
either simpler or unnecessary.

Of course, the original Design Patterns book by Gamma et al. is mandatory reading if
you are serious about this subject. The Introduction by itself is worth the price. That is
the source of the often quoted design principles “Program to an interface, not an im‐
plementation” and “Favor object composition over class inheritance.”

Soapbox
Python has first-class functions and first-class types, features that Norvig claims affect
10 of the 23 patterns (slide 10 of Design Patterns in Dynamic Languages). In the next
chapter, we’ll see that Python also has generic functions (“Generic Functions with Single
Dispatch” on page 202), similar to the CLOS multimethods that Gamma et al. suggest as
a simpler way to implement the classic Visitor pattern. Norvig, on the other hand, says
that multimethods simplify the Builder pattern (slide 10). Matching design patterns to
language features is not an exact science.

In classrooms around the world, design patterns are frequently taught using Java ex‐
amples. I’ve heard more than one student claim that they were led to believe that the
original design patterns are useful in any implementation language. It turns out that the
“classic” 23 patterns from the Gamma et al. book apply to “classic” Java very well in spite
of being originally presented mostly in the context of C++—a few have Smalltalk ex‐
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amples in the book. But that does not mean every one of those patterns applies equally
well in any language. The authors are explicit right at the beginning of their book that
“some of our patterns are supported directly by the less common object-oriented lan‐
guages” (recall full quote on first page of this chapter).

The Python bibliography about design patterns is very thin, compared to that of Java,
C++, or Ruby. In “Further Reading” on page 180 I mentioned Learning Python Design
Patterns by Gennadiy Zlobin, which was published as recently as November 2013. In
contrast, Russ Olsen’s Design Patterns in Ruby was published in 2007 and has 384 pages
—284 more than Zlobin’s work.

Now that Python is becoming increasingly popular in academia, let’s hope more will be
written about design patterns in the context of this language. Also, Java 8 introduced
method references and anonymous functions, and those highly anticipated features are
likely to prompt fresh approaches to patterns in Java—recognizing that as languages
evolve, so must our understanding of how to apply the classic design patterns.
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1. That’s the 1995 Design Patterns book by the so-called Gang of Four.

CHAPTER 7

Function Decorators and Closures

There’s been a number of complaints about the choice of the name “decorator” for this
feature. The major one is that the name is not consistent with its use in the GoF book.1

The name decorator probably owes more to its use in the compiler area—a syntax tree is
walked and annotated.

— PEP 318 — Decorators for Functions and Methods

Function decorators let us “mark” functions in the source code to enhance their behavior
in some way. This is powerful stuff, but mastering it requires understanding closures.

One of the newest reserved keywords in Python is nonlocal, introduced in Python 3.0.
You can have a profitable life as a Python programmer without ever using it if you adhere
to a strict regimen of class-centered object orientation. However, if you want to imple‐
ment your own function decorators, you must know closures inside out, and then the
need for nonlocal becomes obvious.

Aside from their application in decorators, closures are also essential for effective asyn‐
chronous programming with callbacks, and for coding in a functional style whenever
it makes sense.

The end goal of this chapter is to explain exactly how function decorators work, from
the simplest registration decorators to the rather more complicated parameterized ones.
However, before we reach that goal we need to cover:

• How Python evaluates decorator syntax
• How Python decides whether a variable is local
• Why closures exist and how they work
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2. Python also supports class decorators. They are covered in Chapter 21.

• What problem is solved by nonlocal

With this grounding, we can tackle further decorator topics:

• Implementing a well-behaved decorator
• Interesting decorators in the standard library
• Implementing a parameterized decorator

We start with a very basic introduction to decorators, and then proceed with the rest of
the items listed here.

Decorators 101
A decorator is a callable that takes another function as argument (the decorated func‐
tion).2 The decorator may perform some processing with the decorated function, and
returns it or replaces it with another function or callable object.

In other words, assuming an existing decorator named decorate, this code:

@decorate
def target():
    print('running target()')

Has the same effect as writing this:

def target():
    print('running target()')

target = decorate(target)

The end result is the same: at the end of either of these snippets, the target name does
not necessarily refer to the original target function, but to whatever function is re‐
turned by decorate(target).

To confirm that the decorated function is replaced, see the console session in
Example 7-1.

Example 7-1. A decorator usually replaces a function with a different one
>>> def deco(func):
...     def inner():
...         print('running inner()')
...     return inner  
...
>>> @deco
... def target():  
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...     print('running target()')

...
>>> target()  
running inner()
>>> target  
<function deco.<locals>.inner at 0x10063b598>

deco returns its inner function object.
target is decorated by deco.
Invoking the decorated target actually runs inner.
Inspection reveals that target is a now a reference to inner.

Strictly speaking, decorators are just syntactic sugar. As we just saw, you can always
simply call a decorator like any regular callable, passing another function. Sometimes
that is actually convenient, especially when doing metaprogramming—changing pro‐
gram behavior at runtime.

To summarize: the first crucial fact about decorators is that they have the power to
replace the decorated function with a different one. The second crucial fact is that they
are executed immediately when a module is loaded. This is explained next.

When Python Executes Decorators
A key feature of decorators is that they run right after the decorated function is defined.
That is usually at import time (i.e., when a module is loaded by Python). Consider
registration.py in Example 7-2.

Example 7-2. The registration.py module
registry = []   

def register(func):   
    print('running register(%s)' % func)   
    registry.append(func)   
    return func   

@register   
def f1():
    print('running f1()')

@register
def f2():
    print('running f2()')

def f3():   
    print('running f3()')

def main():   
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    print('running main()')
    print('registry ->', registry)
    f1()
    f2()
    f3()

if __name__=='__main__':
    main()   

registry will hold references to functions decorated by @register.
register takes a function as argument.
Display what function is being decorated, for demonstration.
Include func in registry.
Return func: we must return a function; here we return the same received as
argument.
f1 and f2 are decorated by @register.
f3 is not decorated.
main displays the registry, then calls f1(), f2(), and f3().
main() is only invoked if registration.py runs as a script.

The output of running registration.py as a script looks like this:

$ python3 registration.py
running register(<function f1 at 0x100631bf8>)
running register(<function f2 at 0x100631c80>)
running main()
registry -> [<function f1 at 0x100631bf8>, <function f2 at 0x100631c80>]
running f1()
running f2()
running f3()

Note that register runs (twice) before any other function in the module. When reg
ister is called, it receives as an argument the function object being decorated—for
example, <function f1 at 0x100631bf8>.

After the module is loaded, the registry holds references to the two decorated func‐
tions: f1 and f2. These functions, as well as f3, are only executed when explicitly called
by main.

If registration.py is imported (and not run as a script), the output is this:

>>> import registration
running register(<function f1 at 0x10063b1e0>)
running register(<function f2 at 0x10063b268>)

At this time, if you look at the registry, here is what you get:
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>>> registration.registry
[<function f1 at 0x10063b1e0>, <function f2 at 0x10063b268>]

The main point of Example 7-2 is to emphasize that function decorators are executed
as soon as the module is imported, but the decorated functions only run when they are
explicitly invoked. This highlights the difference between what Pythonistas call import
time and runtime.

Considering how decorators are commonly employed in real code, Example 7-2 is un‐
usual in two ways:

• The decorator function is defined in the same module as the decorated functions.
A real decorator is usually defined in one module and applied to functions in other
modules.

• The register decorator returns the same function passed as argument. In practice,
most decorators define an inner function and return it.

Even though the register decorator in Example 7-2 returns the decorated function
unchanged, that technique is not useless. Similar decorators are used in many Python
web frameworks to add functions to some central registry—for example, a registry
mapping URL patterns to functions that generate HTTP responses. Such registration
decorators may or may not change the decorated function. The next section shows a
practical example.

Decorator-Enhanced Strategy Pattern
A registration decorator is a good enhancement to the ecommerce promotional dis‐
count from “Case Study: Refactoring Strategy” on page 168.

Recall that our main issue with Example 6-6 is the repetition of the function names in
their definitions and then in the promos list used by the best_promo function to deter‐
mine the highest discount applicable. The repetition is problematic because someone
may add a new promotional strategy function and forget to manually add it to the promos
list—in which case, best_promo will silently ignore the new strategy, introducing a subtle
bug in the system. Example 7-3 solves this problem with a registration decorator.

Example 7-3. The promos list is filled by the promotion decorator
promos = []   

def promotion(promo_func):   
    promos.append(promo_func)
    return promo_func

@promotion   
def fidelity(order):
    """5% discount for customers with 1000 or more fidelity points"""
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    return order.total() * .05 if order.customer.fidelity >= 1000 else 0

@promotion
def bulk_item(order):
    """10% discount for each LineItem with 20 or more units"""
    discount = 0
    for item in order.cart:
        if item.quantity >= 20:
            discount += item.total() * .1
    return discount

@promotion
def large_order(order):
    """7% discount for orders with 10 or more distinct items"""
    distinct_items = {item.product for item in order.cart}
    if len(distinct_items) >= 10:
        return order.total() * .07
    return 0

def best_promo(order):   
    """Select best discount available
    """
    return max(promo(order) for promo in promos)

The promos list starts empty.
promotion decorator returns promo_func unchanged, after adding it to the
promos list.
Any function decorated by @promotion will be added to promos.
No changes needed to best_promos, because it relies on the promos list.

This solution has several advantages over the others presented in “Case Study: Refac‐
toring Strategy” on page 168:

• The promotion strategy functions don’t have to use special names (i.e., they don’t
need to use the _promo suffix).

• The @promotion decorator highlights the purpose of the decorated function, and
also makes it easy to temporarily disable a promotion: just comment out the dec‐
orator.

• Promotional discount strategies may be defined in other modules, anywhere in the
system, as long as the @promotion decorator is applied to them.

Most decorators do change the decorated function. They usually do it by defining an
inner function and returning it to replace the decorated function. Code that uses inner
functions almost always depends on closures to operate correctly. To understand clo‐
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sures, we need to take a step back a have a close look at how variable scopes work in
Python.

Variable Scope Rules
In Example 7-4, we define and test a function that reads two variables: a local variable
a, defined as function parameter, and variable b that is not defined anywhere in the
function.

Example 7-4. Function reading a local and a global variable
>>> def f1(a):
...     print(a)
...     print(b)
...
>>> f1(3)
3
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 3, in f1
NameError: global name 'b' is not defined

The error we got is not surprising. Continuing from Example 7-4, if we assign a value
to a global b and then call f1, it works:

>>> b = 6
>>> f1(3)
3
6

Now, let’s see an example that may surprise you.

Take a look at the f2 function in Example 7-5. Its first two lines are the same as f1 in
Example 7-4, then it makes an assignment to b, and prints its value. But it fails at the
second print, before the assignment is made.

Example 7-5. Variable b is local, because it is assigned a value in the body of the func‐
tion
>>> b = 6
>>> def f2(a):
...     print(a)
...     print(b)
...     b = 9
...
>>> f2(3)
3
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 3, in f2
UnboundLocalError: local variable 'b' referenced before assignment
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Note that the output starts with 3, which proves that the print(a) statement was exe‐
cuted. But the second one, print(b), never runs. When I first saw this I was surprised,
thinking that 6 should be printed, because there is a global variable b and the assignment
to the local b is made after print(b).

But the fact is, when Python compiles the body of the function, it decides that b is a local
variable because it is assigned within the function. The generated bytecode reflects this
decision and will try to fetch b from the local environment. Later, when the call f2(3)
is made, the body of f2 fetches and prints the value of the local variable a, but when
trying to fetch the value of local variable b it discovers that b is unbound.

This is not a bug, but a design choice: Python does not require you to declare variables,
but assumes that a variable assigned in the body of a function is local. This is much
better than the behavior of JavaScript, which does not require variable declarations
either, but if you do forget to declare that a variable is local (with var), you may clobber
a global variable without knowing.

If we want the interpreter to treat b as a global variable in spite of the assignment within
the function, we use the global declaration:

>>> def f3(a):
...     global b
...     print(a)
...     print(b)
...     b = 9
...
>>> f3(3)
3
6
>>> b
9

>>> f3(3)
a = 3
b = 8
b = 30
>>> b
30
>>>

After this closer look at how variable scopes work in Python, we can tackle closures in
the next section, “Closures” on page 192. If you are curious about the bytecode differences
between the functions in Examples 7-4 and 7-5, see the following sidebar.
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Comparing Bytecodes
The dis module provides an easy way to disassemble the bytecode of Python functions.
Read Examples 7-6 and 7-7 to see the bytecodes for f1 and f2 from Examples 7-4 and 7-5.

Example 7-6. Disassembly of the f1 function from Example 7-4
>>> from dis import dis
>>> dis(f1)
  2           0 LOAD_GLOBAL              0 (print)  
              3 LOAD_FAST                0 (a)  
              6 CALL_FUNCTION            1 (1 positional, 0 keyword pair)
              9 POP_TOP

  3          10 LOAD_GLOBAL              0 (print)
             13 LOAD_GLOBAL              1 (b)  
             16 CALL_FUNCTION            1 (1 positional, 0 keyword pair)
             19 POP_TOP
             20 LOAD_CONST               0 (None)
             23 RETURN_VALUE

Load global name print.
Load local name a.
Load global name b.

Contrast the bytecode for f1 shown in Example 7-6 with the bytecode for f2 in
Example 7-7.

Example 7-7. Disassembly of the f2 function from Example 7-5
>>> dis(f2)
  2           0 LOAD_GLOBAL              0 (print)
              3 LOAD_FAST                0 (a)
              6 CALL_FUNCTION            1 (1 positional, 0 keyword pair)
              9 POP_TOP

  3          10 LOAD_GLOBAL              0 (print)
             13 LOAD_FAST                1 (b)  
             16 CALL_FUNCTION            1 (1 positional, 0 keyword pair)
             19 POP_TOP

  4          20 LOAD_CONST               1 (9)
             23 STORE_FAST               1 (b)
             26 LOAD_CONST               0 (None)
             29 RETURN_VALUE
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Load local name b. This shows that the compiler considers b a local variable,
even if the assignment to b occurs later, because the nature of the variable—
whether it is local or not—cannot change the body of the function.

The CPython VM that runs the bytecode is a stack machine, so the operations LOAD and
POP refer to the stack. It is beyond the scope of this book to further describe the Python
opcodes, but they are documented along with the dis module in dis — Disassembler
for Python bytecode.

Closures
In the blogosphere, closures are sometimes confused with anonymous functions. The
reason why many confuse them is historic: defining functions inside functions is not so
common, until you start using anonymous functions. And closures only matter when
you have nested functions. So a lot of people learn both concepts at the same time.

Actually, a closure is a function with an extended scope that encompasses nonglobal
variables referenced in the body of the function but not defined there. It does not matter
whether the function is anonymous or not; what matters is that it can access nonglobal
variables that are defined outside of its body.

This is a challenging concept to grasp, and is better approached through an example.

Consider an avg function to compute the mean of an ever-increasing series of values;
for example, the average closing price of a commodity over its entire history. Every day
a new price is added, and the average is computed taking into account all prices so far.

Starting with a clean slate, this is how avg could be used:

>>> avg(10)
10.0
>>> avg(11)
10.5
>>> avg(12)
11.0

Where does avg come from, and where does it keep the history of previous values?

For starters, Example 7-8 is a class-based implementation.

Example 7-8. average_oo.py: A class to calculate a running average
class Averager():

    def __init__(self):
        self.series = []

    def __call__(self, new_value):
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        self.series.append(new_value)
        total = sum(self.series)
        return total/len(self.series)

The Averager class creates instances that are callable:

>>> avg = Averager()
>>> avg(10)
10.0
>>> avg(11)
10.5
>>> avg(12)
11.0

Now, Example 7-9 is a functional implementation, using the higher-order function
make_averager.

Example 7-9. average.py: A higher-order function to calculate a running average
def make_averager():
    series = []

    def averager(new_value):
        series.append(new_value)
        total = sum(series)
        return total/len(series)

    return averager

When invoked, make_averager returns an averager function object. Each time an
averager is called, it appends the passed argument to the series, and computes the
current average, as shown in Example 7-10.

Example 7-10. Testing Example 7-9
>>> avg = make_averager()
>>> avg(10)
10.0
>>> avg(11)
10.5
>>> avg(12)
11.0

Note the similarities of the examples: we call Averager() or make_averager() to get a
callable object avg that will update the historical series and calculate the current mean.
In Example 7-8, avg is an instance of Averager, and in Example 7-9 it is the inner
function, averager. Either way, we just call avg(n) to include n in the series and get the
updated mean.
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It’s obvious where the avg of the Averager class keeps the history: the self.series
instance attribute. But where does the avg function in the second example find the
series?

Note that series is a local variable of make_averager because the initialization series
= [] happens in the body of that function. But when avg(10) is called, make_averager
has already returned, and its local scope is long gone.

Within averager, series is a free variable. This is a technical term meaning a variable
that is not bound in the local scope. See Figure 7-1.

Figure 7-1. The closure for averager extends the scope of that function to include the
binding for the free variable series.

Inspecting the returned averager object shows how Python keeps the names of local
and free variables in the __code__ attribute that represents the compiled body of the
function. Example 7-11 demonstrates.

Example 7-11. Inspecting the function created by make_averager in Example 7-9
>>> avg.__code__.co_varnames
('new_value', 'total')
>>> avg.__code__.co_freevars
('series',)

The binding for series is kept in the __closure__ attribute of the returned function
avg. Each item in avg.__closure__ corresponds to a name in avg.__code__.co_free
vars. These items are cells, and they have an attribute called cell_contents where
the actual value can be found. Example 7-12 shows these attributes.

Example 7-12. Continuing from Example 7-10
>>> avg.__code__.co_freevars
('series',)
>>> avg.__closure__
(<cell at 0x107a44f78: list object at 0x107a91a48>,)
>>> avg.__closure__[0].cell_contents
[10, 11, 12]
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To summarize: a closure is a function that retains the bindings of the free variables that
exist when the function is defined, so that they can be used later when the function is
invoked and the defining scope is no longer available.

Note that the only situation in which a function may need to deal with external variables
that are nonglobal is when it is nested in another function.

The nonlocal Declaration
Our previous implementation of make_averager was not efficient. In Example 7-9, we
stored all the values in the historical series and computed their sum every time averager
was called. A better implementation would just store the total and the number of items
so far, and compute the mean from these two numbers.

Example 7-13 is a broken implementation, just to make a point. Can you see where it
breaks?

Example 7-13. A broken higher-order function to calculate a running average without
keeping all history
def make_averager():
    count = 0
    total = 0

    def averager(new_value):
        count += 1
        total += new_value
        return total / count

    return averager

If you try Example 7-13, here is what you get:

>>> avg = make_averager()
>>> avg(10)
Traceback (most recent call last):
  ...
UnboundLocalError: local variable 'count' referenced before assignment
>>>

The problem is that the statement count += 1 actually means the same as count =
count + 1, when count is a number or any immutable type. So we are actually assigning
to count in the body of averager, and that makes it a local variable. The same problem
affects the total variable.

We did not have this problem in Example 7-9 because we never assigned to the ser
ies name; we only called series.append and invoked sum and len on it. So we took
advantage of the fact that lists are mutable.
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But with immutable types like numbers, strings, tuples, etc., all you can do is read, but
never update. If you try to rebind them, as in count = count + 1, then you are implicitly
creating a local variable count. It is no longer a free variable, and therefore it is not saved
in the closure.

To work around this, the nonlocal declaration was introduced in Python 3. It lets you
flag a variable as a free variable even when it is assigned a new value within the function.
If a new value is assigned to a nonlocal variable, the binding stored in the closure is
changed. A correct implementation of our newest make_averager looks like
Example 7-14.

Example 7-14. Calculate a running average without keeping all history (fixed with the
use of nonlocal)
def make_averager():
    count = 0
    total = 0

    def averager(new_value):
        nonlocal count, total
        count += 1
        total += new_value
        return total / count

    return averager

Getting by without nonlocal in Python 2
The lack of nonlocal in Python 2 requires workarounds, one of
which is described in the third code snippet of PEP 3104 — Ac‐
cess to Names in Outer Scopes, which introduced nonlocal. Es‐
sentially the idea is to store the variables the inner functions need
to change (e.g., count, total) as items or attributes of some mu‐
table object, like a dict or a simple instance, and bind that object
to a free variable.

Now that we have Python closures covered, we can effectively implement decorators
with nested functions.

Implementing a Simple Decorator
Example 7-15 is a decorator that clocks every invocation of the decorated function and
prints the elapsed time, the arguments passed, and the result of the call.

Example 7-15. A simple decorator to output the running time of functions
import time
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def clock(func):
    def clocked(*args):  # 
        t0 = time.perf_counter()
        result = func(*args)  # 
        elapsed = time.perf_counter() - t0
        name = func.__name__
        arg_str = ', '.join(repr(arg) for arg in args)
        print('[%0.8fs] %s(%s) -> %r' % (elapsed, name, arg_str, result))
        return result
    return clocked  # 

Define inner function clocked to accept any number of positional arguments.
This line only works because the closure for clocked encompasses the func free
variable.
Return the inner function to replace the decorated function.

Example 7-16 demonstrates the use of the clock decorator.

Example 7-16. Using the clock decorator
# clockdeco_demo.py

import time
from clockdeco import clock

@clock
def snooze(seconds):
    time.sleep(seconds)

@clock
def factorial(n):
    return 1 if n < 2 else n*factorial(n-1)

if __name__=='__main__':
    print('*' * 40, 'Calling snooze(.123)')
    snooze(.123)
    print('*' * 40, 'Calling factorial(6)')
    print('6! =', factorial(6))

The output of running Example 7-16 looks like this:

$ python3 clockdeco_demo.py
**************************************** Calling snooze(123)
[0.12405610s] snooze(.123) -> None
**************************************** Calling factorial(6)
[0.00000191s] factorial(1) -> 1
[0.00004911s] factorial(2) -> 2
[0.00008488s] factorial(3) -> 6
[0.00013208s] factorial(4) -> 24
[0.00019193s] factorial(5) -> 120
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[0.00026107s] factorial(6) -> 720
6! = 720

How It Works
Remember that this code:

@clock
def factorial(n):
    return 1 if n < 2 else n*factorial(n-1)

Actually does this:

def factorial(n):
    return 1 if n < 2 else n*factorial(n-1)

factorial = clock(factorial)

So, in both examples, clock gets the factorial function as its func argument (see
Example 7-15). It then creates and returns the clocked function, which the Python
interpreter assigns to factorial behind the scenes. In fact, if you import the clockde
co_demo module and check the __name__ of factorial, this is what you get:

>>> import clockdeco_demo
>>> clockdeco_demo.factorial.__name__
'clocked'
>>>

So factorial now actually holds a reference to the clocked function. From now on,
each time factorial(n) is called, clocked(n) gets executed. In essence, clocked does
the following:

1. Records the initial time t0.
2. Calls the original factorial, saving the result.
3. Computes the elapsed time.
4. Formats and prints the collected data.
5. Returns the result saved in step 2.

This is the typical behavior of a decorator: it replaces the decorated function with a new
function that accepts the same arguments and (usually) returns whatever the decorated
function was supposed to return, while also doing some extra processing.
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In Design Patterns by Gamma et al., the short description of the
Decorator pattern starts with: “Attach additional responsibilities to
an object dynamically.” Function decorators fit that description.
But at the implementation level, Python decorators bear little re‐
semblance to the classic Decorator described in the original De‐
sign Patterns work. “Soapbox” on page 213 has more on this subject.

The clock decorator implemented in Example 7-15 has a few shortcomings: it does not
support keyword arguments, and it masks the __name__ and __doc__ of the decorated
function. Example 7-17 uses the functools.wraps decorator to copy the relevant at‐
tributes from func to clocked. Also, in this new version, keyword arguments are cor‐
rectly handled.

Example 7-17. An improved clock decorator
# clockdeco2.py

import time
import functools

def clock(func):
    @functools.wraps(func)
    def clocked(*args, **kwargs):
        t0 = time.time()
        result = func(*args, **kwargs)
        elapsed = time.time() - t0
        name = func.__name__
        arg_lst = []
        if args:
            arg_lst.append(', '.join(repr(arg) for arg in args))
        if kwargs:
            pairs = ['%s=%r' % (k, w) for k, w in sorted(kwargs.items())]
            arg_lst.append(', '.join(pairs))
        arg_str = ', '.join(arg_lst)
        print('[%0.8fs] %s(%s) -> %r ' % (elapsed, name, arg_str, result))
        return result
    return clocked

functools.wraps is just one of the ready-to-use decorators in the standard library. In
the next section, we’ll meet two of the most impressive decorators that functools
provides: lru_cache and singledispatch.

Decorators in the Standard Library
Python has three built-in functions that are designed to decorate methods: property,
classmethod, and staticmethod. We will discuss property in “Using a Property for
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Attribute Validation” on page 604 and the others in “classmethod Versus staticmethod”
on page 252.

Another frequently seen decorator is functools.wraps, a helper for building well-
behaved decorators. We used it in Example 7-17. Two of the most interesting decorators
in the standard library are lru_cache and the brand-new singledispatch (added in
Python 3.4). Both are defined in the functools module. We’ll cover them next.

Memoization with functools.lru_cache
A very practical decorator is functools.lru_cache. It implements memoization: an
optimization technique that works by saving the results of previous invocations of an
expensive function, avoiding repeat computations on previously used arguments. The
letters LRU stand for Least Recently Used, meaning that the growth of the cache is
limited by discarding the entries that have not been read for a while.

A good demonstration is to apply lru_cache to the painfully slow recursive function
to generate the nth number in the Fibonacci sequence, as shown in Example 7-18.

Example 7-18. The very costly recursive way to compute the nth number in the Fibo‐
nacci series
from clockdeco import clock

@clock
def fibonacci(n):
    if n < 2:
        return n
    return fibonacci(n-2) + fibonacci(n-1)

if __name__=='__main__':
    print(fibonacci(6))

Here is the result of running fibo_demo.py. Except for the last line, all output is generated
by the clock decorator:

$ python3 fibo_demo.py
[0.00000095s] fibonacci(0) -> 0
[0.00000095s] fibonacci(1) -> 1
[0.00007892s] fibonacci(2) -> 1
[0.00000095s] fibonacci(1) -> 1
[0.00000095s] fibonacci(0) -> 0
[0.00000095s] fibonacci(1) -> 1
[0.00003815s] fibonacci(2) -> 1
[0.00007391s] fibonacci(3) -> 2
[0.00018883s] fibonacci(4) -> 3
[0.00000000s] fibonacci(1) -> 1
[0.00000095s] fibonacci(0) -> 0
[0.00000119s] fibonacci(1) -> 1
[0.00004911s] fibonacci(2) -> 1
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[0.00009704s] fibonacci(3) -> 2
[0.00000000s] fibonacci(0) -> 0
[0.00000000s] fibonacci(1) -> 1
[0.00002694s] fibonacci(2) -> 1
[0.00000095s] fibonacci(1) -> 1
[0.00000095s] fibonacci(0) -> 0
[0.00000095s] fibonacci(1) -> 1
[0.00005102s] fibonacci(2) -> 1
[0.00008917s] fibonacci(3) -> 2
[0.00015593s] fibonacci(4) -> 3
[0.00029993s] fibonacci(5) -> 5
[0.00052810s] fibonacci(6) -> 8
8

The waste is obvious: fibonacci(1) is called eight times, fibonacci(2) five times, etc.
But if we just add two lines to use lru_cache, performance is much improved. See
Example 7-19.

Example 7-19. Faster implementation using caching
import functools

from clockdeco import clock

@functools.lru_cache() # 
@clock  # 
def fibonacci(n):
    if n < 2:
        return n
    return fibonacci(n-2) + fibonacci(n-1)

if __name__=='__main__':
    print(fibonacci(6))

Note that lru_cache must be invoked as a regular function—note the
parentheses in the line: @functools.lru_cache(). The reason is that it accepts
configuration parameters, as we’ll see shortly.
This is an example of stacked decorators: @lru_cache() is applied on the
function returned by @clock.

Execution time is halved, and the function is called only once for each value of n:

$ python3 fibo_demo_lru.py
[0.00000119s] fibonacci(0) -> 0
[0.00000119s] fibonacci(1) -> 1
[0.00010800s] fibonacci(2) -> 1
[0.00000787s] fibonacci(3) -> 2
[0.00016093s] fibonacci(4) -> 3
[0.00001216s] fibonacci(5) -> 5
[0.00025296s] fibonacci(6) -> 8
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In another test, to compute fibonacci(30), Example 7-19 made the 31 calls needed in
0.0005s, while the uncached Example 7-18 called fibonacci 2,692,537 times and took
17.7 seconds in an Intel Core i7 notebook.

Besides making silly recursive algorithms viable, lru_cache really shines in applications
that need to fetch information from the Web.

It’s important to note that lru_cache can be tuned by passing two optional arguments.
Its full signature is:

functools.lru_cache(maxsize=128, typed=False)

The maxsize argument determines how many call results are stored. After the cache is
full, older results are discarded to make room. For optimal performance, maxsize should
be a power of 2. The typed argument, if set to True, stores results of different argument
types separately, i.e., distinguishing between float and integer arguments that are nor‐
mally considered equal, like 1 and 1.0. By the way, because lru_cache uses a dict to
store the results, and the keys are made from the positional and keyword arguments
used in the calls, all the arguments taken by the decorated function must be hashable.

Now let’s consider the intriguing functools.singledispatch decorator.

Generic Functions with Single Dispatch
Imagine we are creating a tool to debug web applications. We want to be able to generate
HTML displays for different types of Python objects.

We could start with a function like this:

import html

def htmlize(obj):
    content = html.escape(repr(obj))
    return '<pre>{}</pre>'.format(content)

That will work for any Python type, but now we want to extend it to generate custom
displays for some types:

• str: replace embedded newline characters with '<br>\n' and use <p> tags instead
of <pre>.

• int: show the number in decimal and hexadecimal.
• list: output an HTML list, formatting each item according to its type.

The behavior we want is shown in Example 7-20.

Example 7-20. htmlize generates HTML tailored to different object types
>>> htmlize({1, 2, 3})   
'<pre>{1, 2, 3}</pre>'
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3. This is what is meant by the term single-dispatch. If more arguments were used to select the specific functions,
we’d have multiple-dispatch.

>>> htmlize(abs)
'<pre>&lt;built-in function abs&gt;</pre>'
>>> htmlize('Heimlich & Co.\n- a game')   
'<p>Heimlich &amp; Co.<br>\n- a game</p>'
>>> htmlize(42)   
'<pre>42 (0x2a)</pre>'
>>> print(htmlize(['alpha', 66, {3, 2, 1}]))   
<ul>
<li><p>alpha</p></li>
<li><pre>66 (0x42)</pre></li>
<li><pre>{1, 2, 3}</pre></li>
</ul>

By default, the HTML-escaped repr of an object is shown enclosed in <pre></
pre>.
str objects are also HTML-escaped but wrapped in <p></p> with <br> line
breaks.
An int is shown in decimal and hexadecimal, inside <pre></pre>.
Each list item is formatted according to its type, and the whole sequence
rendered as an HTML list.

Because we don’t have method or function overloading in Python, we can’t create var‐
iations of htmlize with different signatures for each data type we want to handle dif‐
ferently. A common solution in Python would be to turn htmlize into a dispatch func‐
tion, with a chain of if/elif/elif calling specialized functions like htmlize_str,
htmlize_int, etc. This is not extensible by users of our module, and is unwieldy: over
time, the htmlize dispatcher would become too big, and the coupling between it and
the specialized functions would be very tight.

The new functools.singledispatch decorator in Python 3.4 allows each module to
contribute to the overall solution, and lets you easily provide a specialized function even
for classes that you can’t edit. If you decorate a plain function with @singledispatch,
it becomes a generic function: a group of functions to perform the same operation in
different ways, depending on the type of the first argument.3 Example 7-21 shows how.

functools.singledispatch was added in Python 3.4, but the sin
gledispatch package available on PyPI is a backport compatible
with Python 2.6 to 3.3.
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Example 7-21. singledispatch creates a custom htmlize.register to bundle several func‐
tions into a generic function
from functools import singledispatch
from collections import abc
import numbers
import html

@singledispatch   
def htmlize(obj):
    content = html.escape(repr(obj))
    return '<pre>{}</pre>'.format(content)

@htmlize.register(str)   
def _(text):             
    content = html.escape(text).replace('\n', '<br>\n')
    return '<p>{0}</p>'.format(content)

@htmlize.register(numbers.Integral)   
def _(n):
    return '<pre>{0} (0x{0:x})</pre>'.format(n)

@htmlize.register(tuple)   
@htmlize.register(abc.MutableSequence)
def _(seq):
    inner = '</li>\n<li>'.join(htmlize(item) for item in seq)
    return '<ul>\n<li>' + inner + '</li>\n</ul>'

@singledispatch marks the base function that handles the object type.
Each specialized function is decorated with @«base_function».regis

ter(«type»).
The name of the specialized functions is irrelevant; _ is a good choice to make
this clear.
For each additional type to receive special treatment, register a new function.
numbers.Integral is a virtual superclass of int.
You can stack several register decorators to support different types with the
same function.

When possible, register the specialized functions to handle ABCs (abstract classes) such
as numbers.Integral and abc.MutableSequence instead of concrete implementations
like int and list. This allows your code to support a greater variety of compatible types.
For example, a Python extension can provide alternatives to the int type with fixed bit
lengths as subclasses of numbers.Integral.
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Using ABCs for type checking allows your code to support exist‐
ing or future classes that are either actual or virtual subclasses of
those ABCs. The use of ABCs and the concept of a virtual sub‐
class are subjects of Chapter 11.

A notable quality of the singledispatch mechanism is that you can register specialized
functions anywhere in the system, in any module. If you later add a module with a new
user-defined type, you can easily provide a new custom function to handle that type.
And you can write custom functions for classes that you did not write and can’t change.

singledispatch is a well-thought-out addition to the standard library, and it offers
more features than we can describe here. The best documentation for it is PEP 443 —
Single-dispatch generic functions.

@singledispatch is not designed to bring Java-style method
overloading to Python. A single class with many overloaded var‐
iations of a method is better than a single function with a lengthy
stretch of if/elif/elif/elif blocks. But both solutions are
flawed because they concentrate too much responsibility in a sin‐
gle code unit—the class or the function. The advantage of @sin
gledispath is supporting modular extension: each module can
register a specialized function for each type it supports.

Decorators are functions and therefore they may be composed (i.e., you can apply a
decorator to a function that is already decorated, as shown in Example 7-21). The next
section explains how that works.

Stacked Decorators
Example 7-19 demonstrated the use of stacked decorators: @lru_cache is applied on
the result of @clock over fibonacci. In Example 7-21, the @htmlize.register deco‐
rator was applied twice to the last function in the module.

When two decorators @d1 and @d2 are applied to a function f in that order, the result is
the same as f = d1(d2(f)).

In other words, this:

@d1
@d2
def f():
    print('f')

Is the same as:
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def f():
    print('f')

f = d1(d2(f))

Besides stacked decorators, this chapter has shown some decorators that take argu‐
ments, for example, @lru_cache() and the htmlize.register(«type») produced by
@singledispatch in Example 7-21. The next section shows how to build decorators
that accept parameters.

Parameterized Decorators
When parsing a decorator in source code, Python takes the decorated function and
passes it as the first argument to the decorator function. So how do you make a decorator
accept other arguments? The answer is: make a decorator factory that takes those ar‐
guments and returns a decorator, which is then applied to the function to be decorated.
Confusing? Sure. Let’s start with an example based on the simplest decorator we’ve seen:
register in Example 7-22.

Example 7-22. Abridged registration.py module from Example 7-2, repeated here for
convenience
registry = []

def register(func):
    print('running register(%s)' % func)
    registry.append(func)
    return func

@register
def f1():
    print('running f1()')

print('running main()')
print('registry ->', registry)
f1()

A Parameterized Registration Decorator
In order to make it easy to enable or disable the function registration performed by
register, we’ll make it accept an optional active parameter which, if False, skips
registering the decorated function. Example 7-23 shows how. Conceptually, the new
register function is not a decorator but a decorator factory. When called, it returns
the actual decorator that will be applied to the target function.
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Example 7-23. To accept parameters, the new register decorator must be called as a
function
registry = set()   

def register(active=True):   
    def decorate(func):   
        print('running register(active=%s)->decorate(%s)'
              % (active, func))
        if active:    
            registry.add(func)
        else:
            registry.discard(func)   

        return func   
    return decorate   

@register(active=False)   
def f1():
    print('running f1()')

@register()   
def f2():
    print('running f2()')

def f3():
    print('running f3()')

registry is now a set, so adding and removing functions is faster.
register takes an optional keyword argument.
The decorate inner function is the actual decorator; note how it takes a function
as argument.
Register func only if the active argument (retrieved from the closure) is True.
If not active and func in registry, remove it.
Because decorate is a decorator, it must return a function.
register is our decorator factory, so it returns decorate.
The @register factory must be invoked as a function, with the desired
parameters.
If no parameters are passed, register must still be called as a function—@reg

ister()—i.e., to return the actual decorator, decorate.

The main point is that register() returns decorate, which is then applied to the dec‐
orated function.
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The code in Example 7-23 is in a registration_param.py module. If we import it, this is
what we get:

>>> import registration_param
running register(active=False)->decorate(<function f1 at 0x10063c1e0>)
running register(active=True)->decorate(<function f2 at 0x10063c268>)
>>> registration_param.registry
[<function f2 at 0x10063c268>]

Note how only the f2 function appears in the registry; f1 does not appear because
active=False was passed to the register decorator factory, so the decorate that was
applied to f1 did not add it to the registry.

If, instead of using the @ syntax, we used register as a regular function, the syntax
needed to decorate a function f would be register()(f) to add f to the registry, or
register(active=False)(f) to not add it (or remove it). See Example 7-24 for a demo
of adding and removing functions to the registry.

Example 7-24. Using the registration_param module listed in Example 7-23
>>> from registration_param import *
running register(active=False)->decorate(<function f1 at 0x10073c1e0>)
running register(active=True)->decorate(<function f2 at 0x10073c268>)
>>> registry  # 
{<function f2 at 0x10073c268>}
>>> register()(f3)  # 
running register(active=True)->decorate(<function f3 at 0x10073c158>)
<function f3 at 0x10073c158>
>>> registry  # 
{<function f3 at 0x10073c158>, <function f2 at 0x10073c268>}
>>> register(active=False)(f2)  # 
running register(active=False)->decorate(<function f2 at 0x10073c268>)
<function f2 at 0x10073c268>
>>> registry  # 
{<function f3 at 0x10073c158>}

When the module is imported, f2 is in the registry.
The register() expression returns decorate, which is then applied to f3.
The previous line added f3 to the registry.
This call removes f2 from the registry.
Confirm that only f3 remains in the registry.

The workings of parameterized decorators are fairly involved, and the one we’ve just
discussed is simpler than most. Parameterized decorators usually replace the decorated
function, and their construction requires yet another level of nesting. Touring such
function pyramids is our next adventure.
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The Parameterized Clock Decorator
In this section, we’ll revisit the clock decorator, adding a feature: users may pass a format
string to control the output of the decorated function. See Example 7-25.

For simplicity, Example 7-25 is based on the initial clock imple‐
mentation from Example 7-15, and not the improved one from
Example 7-17 that uses @functools.wraps, adding yet another
function layer.

Example 7-25. Module clockdeco_param.py: the parameterized clock decorator
import time

DEFAULT_FMT = '[{elapsed:0.8f}s] {name}({args}) -> {result}'

def clock(fmt=DEFAULT_FMT):   
    def decorate(func):       
        def clocked(*_args):  
            t0 = time.time()
            _result = func(*_args)   
            elapsed = time.time() - t0
            name = func.__name__
            args = ', '.join(repr(arg) for arg in _args)   
            result = repr(_result)   
            print(fmt.format(**locals()))   
            return _result   
        return clocked   
    return decorate   

if __name__ == '__main__':

    @clock()   
    def snooze(seconds):
        time.sleep(seconds)

    for i in range(3):
        snooze(.123)

clock is our parameterized decorator factory.
decorate is the actual decorator.
clocked wraps the decorated function.
_result is the actual result of the decorated function.
_args holds the actual arguments of clocked, while args is str used for display.
result is the str representation of _result, for display.
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Using **locals() here allows any local variable of clocked to be referenced in
the fmt.
clocked will replace the decorated function, so it should return whatever that
function returns.
decorate returns clocked.
clock returns decorate.
In this self test, clock() is called without arguments, so the decorator applied
will use the default format str.

If you run Example 7-25 from the shell, this is what you get:

$ python3 clockdeco_param.py
[0.12412500s] snooze(0.123) -> None
[0.12411904s] snooze(0.123) -> None
[0.12410498s] snooze(0.123) -> None

To exercise the new functionality, Examples 7-26 and 7-27 are two other modules using
clockdeco_param, and the outputs they generate.

Example 7-26. clockdeco_param_demo1.py
import time
from clockdeco_param import clock

@clock('{name}: {elapsed}s')
def snooze(seconds):
    time.sleep(seconds)

for i in range(3):
    snooze(.123)

Output of Example 7-26:

$ python3 clockdeco_param_demo1.py
snooze: 0.12414693832397461s
snooze: 0.1241159439086914s
snooze: 0.12412118911743164s

Example 7-27. clockdeco_param_demo2.py
import time
from clockdeco_param import clock

@clock('{name}({args}) dt={elapsed:0.3f}s')
def snooze(seconds):
    time.sleep(seconds)

for i in range(3):
    snooze(.123)
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Output of Example 7-27:

$ python3 clockdeco_param_demo2.py
snooze(0.123) dt=0.124s
snooze(0.123) dt=0.124s
snooze(0.123) dt=0.124s

This ends our exploration of decorators as far as space permits within the scope of this
book. See “Further Reading” on page 212, in particular Graham Dumpleton’s blog and
wrapt module for industrial-strength techniques when building decorators.

Graham Dumpleton and Lennart Regebro—one of this book’s
technical reviewers—argue that decorators are best coded as
classes implementing __call__, and not as functions like the ex‐
amples in this chapter. I agree that approach is better for non-
trivial decorators, but to explain the basic idea of this language
feature, functions are easier to understand.

Chapter Summary
We covered a lot of ground in this chapter, but I tried to make the journey as smooth
as possible even if the terrain is rugged. After all, we did enter the realm of metaprog‐
ramming.

We started with a simple @register decorator without an inner function, and finished
with a parameterized @clock() involving two levels of nested functions.

Registration decorators, though simple in essence, have real applications in advanced
Python frameworks. We applied the registration idea to an improvement of our Strategy
design pattern refactoring from Chapter 6.

Parameterized decorators almost aways involve at least two nested functions, maybe
more if you want to use @functools.wraps to produce a decorator that provides better
support for more advanced techniques. One such technique is stacked decorators, which
we briefly covered.

We also visited two awesome function decorators provided in the functools module
of standard library: @lru_cache() and @singledispatch.

Understanding how decorators actually work required covering the difference between
import time and runtime, then diving into variable scoping, closures, and the new
nonlocal declaration. Mastering closures and nonlocal is valuable not only to build
decorators, but also to code event-oriented programs for GUIs or asynchronous I/O
with callbacks.
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Further Reading
Chapter 9, “Metaprogramming,” of the Python Cookbook, Third Edition by David Beaz‐
ley and Brian K. Jones (O’Reilly), has several recipes from elementary decorators to very
sophisticated ones, including one that can be called as a regular decorator or as a dec‐
orator factory, e.g., @clock or @clock(). That’s “Recipe 9.6. Defining a Decorator That
Takes an Optional Argument” in that cookbook.

Graham Dumpleton has a series of in-depth blog posts about techniques for imple‐
menting well-behaved decorators, starting with “How You Implemented Your Python
Decorator is Wrong”. His deep expertise in this matter is also nicely packaged in the
wrapt module he wrote to simplify the implementation of decorators and dynamic
function wrappers, which support introspection and behave correctly when further
decorated, when applied to methods and when used as descriptors. (Descriptors are the
subject of chapter Chapter 20.)

Michele Simionato authored a package aiming to “simplify the usage of decorators for
the average programmer, and to popularize decorators by showing various non-trivial
examples,” according to the docs. It’s available on PyPI as the decorator package.

Created when decorators were still a new feature in Python, the Python Decorator Li‐
brary wiki page has dozens of examples. Because that page started years ago, some of
the techniques shown have been superseded, but the page is still an excellent source of
inspiration.

PEP 443 provides the rationale and a detailed description of the single-dispatch generic
functions’ facility. An old (March 2005) blog post by Guido van Rossum, “Five-Minute
Multimethods in Python”, walks through an implementation of generic functions (a.k.a.
multimethods) using decorators. His code supports multiple-dispatch (i.e., dispatch
based on more than one positional argument). Guido’s multimethods code is interesting,
but it’s a didactic example. For a modern, production-ready implementation of multiple-
dispatch generic functions, check out Reg by Martijn Faassen—author of the model-
driven and REST-savvy Morepath web framework.

“Closures in Python” is a short blog post by Fredrik Lundh that explains the terminology
of closures.

PEP 3104 — Access to Names in Outer Scopes describes the introduction of the
nonlocal declaration to allow rebinding of names that are neither local nor global. It
also includes an excellent overview of how this issue is resolved in other dynamic lan‐
guages (Perl, Ruby, JavaScript, etc.) and the pros and cons of the design options available
to Python.

On a more theoretical level, PEP 227 — Statically Nested Scopes documents the intro‐
duction of lexical scoping as an option in Python 2.1 and as a standard in Python 2.2,
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explaining the rationale and design choices for the implementation of closures in
Python.

Soapbox
The designer of any language with first-class functions faces this issue: being first-class
objects, functions are defined in a certain scope but may be invoked in other scopes.
The question is: how to evaluate the free variables? The first and simplest answer is
“dynamic scope.” This means that free variables are evaluated by looking into the envi‐
ronment where the function is invoked.

If Python had dynamic scope and no closures, we could improvise avg—similar to
Example 7-9—like this:

>>> ### this is not a real Python console session! ###
>>> avg = make_averager()
>>> series = []  # 
>>> avg(10)
10.0
>>> avg(11)  # 
10.5
>>> avg(12)
11.0
>>> series = [1]  # 
>>> avg(5)
3.0

Before using avg, we have to define series = [] ourselves, so we must know
that averager (inside make_averager) refers to a list by that name.
Behind the scenes, series is used to accumulate the values to be averaged.
When series = [1] is executed, the previous list is lost. This could happen by
accident, when handling two independent running averages at the same time.

Functions should be black boxes, with their implementation hidden from users. But
with dynamic scope, if a function uses free variables, the programmer has to know its
internals to set up an environment where it works correctly.

On the other hand, dynamic scope is easier to implement, which is probably why it was
the path taken by John McCarthy when he created Lisp, the first language to have first-
class functions. Paul Graham’s article “The Roots of Lisp” is an accessible explanation
of John McCarthy’s original paper about the Lisp language: “Recursive Functions of
Symbolic Expressions and Their Computation by Machine, Part I”. McCarthy’s paper
is a masterpiece as great as Beethoven’s 9th Symphony. Paul Graham translated it for the
rest of us, from mathematics to English and running code.

Paul Graham’s commentary also shows how tricky dynamic scoping is. Quoting from
“The Roots of Lisp”:

Further Reading | 213

http://www.paulgraham.com/rootsoflisp.html
http://bit.ly/mccarthy_recursive
http://bit.ly/mccarthy_recursive


It’s an eloquent testimony to the dangers of dynamic scope that even the very first
example of higher-order Lisp functions was broken because of it. It may be that Mc‐
Carthy was not fully aware of the implications of dynamic scope in 1960. Dynamic scope
remained in Lisp implementations for a surprisingly long time—until Sussman and
Steele developed Scheme in 1975. Lexical scope does not complicate the definition of
eval very much, but it may make compilers harder to write.

Today, lexical scope is the norm: free variables are evaluated considering the environ‐
ment where the function is defined. Lexical scope complicates the implementation of
languages with first-class functions, because it requires the support of closures. On the
other hand, lexical scope makes source code easier to read. Most languages invented
since Algol have lexical scope.

For many years, Python lambdas did not provide closures, contributing to the bad name
of this feature among functional-programming geeks in the blogosphere. This was fixed
in Python 2.2 (December 2001), but the blogosphere has a long memory. Since then,
lambda is embarrassing only because of its limited syntax.

Python Decorators and the Decorator Design Pattern

Python function decorators fit the general description of Decorator given by Gamma
et al. in Design Patterns: “Attach additional responsibilities to an object dynamically.
Decorators provide a flexible alternative to subclassing for extending functionality.”

At the implementation level, Python decorators do not resemble the classic Decorator
design pattern, but an analogy can be made.

In the design pattern, Decorator and Component are abstract classes. An instance of a
concrete decorator wraps an instance of a concrete component in order to add behaviors
to it. Quoting from Design Patterns:

The decorator conforms to the interface of the component it decorates so that its pres‐
ence is transparent to the component’s clients. The decorator forwards requests to the
component and may perform additional actions (such as drawing a border) before or
after forwarding. Transparency lets you nest decorators recursively, thereby allowing
an unlimited number of added responsibilities.” (p. 175)

In Python, the decorator function plays the role of a concrete Decorator subclass, and
the inner function it returns is a decorator instance. The returned function wraps the
function to be decorated, which is analogous to the component in the design pattern.
The returned function is transparent because it conforms to the interface of the com‐
ponent by accepting the same arguments. It forwards calls to the component and may
perform additional actions either before or after it. Borrowing from the previous cita‐
tion, we can adapt the last sentence to say that “Transparency lets you nest decorators
recursively, thereby allowing an unlimited number of added behaviors.” That is what
enable stacked decorators to work.

Note that I am not suggesting that function decorators should be used to implement the
Decorator pattern in Python programs. Although this can be done in specific situations,
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in general the Decorator pattern is best implemented with classes to represent the Dec‐
orator and the components it will wrap.
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PART IV

Object-Oriented Idioms





CHAPTER 8

Object References, Mutability,
and Recycling

‘You are sad,’ the Knight said in an anxious tone: ‘let me sing you a song to comfort you.
[…] The name of the song is called “HADDOCKS’ EYES”.’
‘Oh, that’s the name of the song, is it?’ Alice said, trying to feel interested.
‘No, you don’t understand,’ the Knight said, looking a little vexed. ‘That’s what the name
is CALLED. The name really IS “THE AGED AGED MAN."’ (adapted from Chapter VIII.
‘It’s my own Invention’).

— Lewis Carroll
 Through the Looking-Glass, and What Alice Found There

Alice and the Knight set the tone of what we will see in this chapter. The theme is the
distinction between objects and their names. A name is not the object; a name is a
separate thing.

We start the chapter by presenting a metaphor for variables in Python: variables are
labels, not boxes. If reference variables are old news to you, the analogy may still be
handy if you need to explain aliasing issues to others.

We then discuss the concepts of object identity, value, and aliasing. A surprising trait of
tuples is revealed: they are immutable but their values may change. This leads to a
discussion of shallow and deep copies. References and function parameters are our next
theme: the problem with mutable parameter defaults and the safe handling of mutable
arguments passed by clients of our functions.

The last sections of the chapter cover garbage collection, the del command, and how
to use weak references to “remember” objects without keeping them alive.

This is a rather dry chapter, but its topics lie at the heart of many subtle bugs in real
Python programs.
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Let’s start by unlearning that a variable is like a box where you store data.

Variables Are Not Boxes
In 1997, I took a summer course on Java at MIT. The professor, Lynn Andrea Stein—
an award-winning computer science educator who currently teaches at Olin College of
Engineering—made the point that the usual “variables as boxes” metaphor actually
hinders the understanding of reference variables in OO languages. Python variables are
like reference variables in Java, so it’s better to think of them as labels attached to objects.

Example 8-1 is a simple interaction that the “variables as boxes” idea cannot explain.
Figure 8-1 illustrates why the box metaphor is wrong for Python, while sticky notes
provide a helpful picture of how variables actually work.

Example 8-1. Variables a and b hold references to the same list, not copies of the list
>>> a = [1, 2, 3]
>>> b = a
>>> a.append(4)
>>> b
[1, 2, 3, 4]

Figure 8-1. If you imagine variables are like boxes, you can’t make sense of assignment
in Python; instead, think of variables as sticky notes—Example 8-1 then becomes easy
to explain

Prof. Stein also spoke about assignment in a very deliberate way. For example, when
talking about a seesaw object in a simulation, she would say: “Variable s is assigned to
the seesaw,” but never “The seesaw is assigned to variable s.” With reference variables,
it makes much more sense to say that the variable is assigned to an object, and not the
other way around. After all, the object is created before the assignment. Example 8-2
proves that the righthand side of an assignment happens first.
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Example 8-2. Variables are assigned to objects only after the objects are created
>>> class Gizmo:
...    def __init__(self):
...         print('Gizmo id: %d' % id(self))
...
>>> x = Gizmo()
Gizmo id: 4301489152  
>>> y = Gizmo() * 10  
Gizmo id: 4301489432  
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for *: 'Gizmo' and 'int'
>>>
>>> dir()  
['Gizmo', '__builtins__', '__doc__', '__loader__', '__name__',
'__package__', '__spec__', 'x']

The output Gizmo id: ... is a side effect of creating a Gizmo instance.
Multiplying a Gizmo instance will raise an exception.
Here is proof that a second Gizmo was actually instantiated before the
multiplication was attempted.
But variable y was never created, because the exception happened while the right-
hand side of the assignment was being evaluated.

To understand an assignment in Python, always read the right-
hand side first: that’s where the object is created or retrieved. Af‐
ter that, the variable on the left is bound to the object, like a label
stuck to it. Just forget about the boxes.

Because variables are mere labels, nothing prevents an object from having several labels
assigned to it. When that happens, you have aliasing, our next topic.

Identity, Equality, and Aliases
Lewis Carroll is the pen name of Prof. Charles Lutwidge Dodgson. Mr. Carroll is not
only equal to Prof. Dodgson: they are one and the same. Example 8-3 expresses this idea
in Python.

Example 8-3. charles and lewis refer to the same object
>>> charles = {'name': 'Charles L. Dodgson', 'born': 1832}
>>> lewis = charles  
>>> lewis is charles
True
>>> id(charles), id(lewis)  
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(4300473992, 4300473992)
>>> lewis['balance'] = 950  
>>> charles
{'name': 'Charles L. Dodgson', 'balance': 950, 'born': 1832}

lewis is an alias for charles.
The is operator and the id function confirm it.
Adding an item to lewis is the same as adding an item to charles.

However, suppose an impostor—let’s call him Dr. Alexander Pedachenko—claims he is
Charles L. Dodgson, born in 1832. His credentials may be the same, but Dr. Pedachenko
is not Prof. Dodgson. Figure 8-2 illustrates this scenario.

Figure 8-2. charles and lewis are bound to the same object; alex is bound to a separate
object of equal contents

Example 8-4 implements and tests the alex object depicted in Figure 8-2.

Example 8-4. alex and charles compare equal, but alex is not charles
>>> alex = {'name': 'Charles L. Dodgson', 'born': 1832, 'balance': 950}  
>>> alex == charles  
True
>>> alex is not charles  
True

alex refers to an object that is a replica of the object assigned to charles.
The objects compare equal, because of the __eq__ implementation in the dict
class.
But they are distinct objects. This is the Pythonic way of writing the negative
identity comparison: a is not b.

Example 8-3 is an example of aliasing. In that code, lewis and charles are aliases: two
variables bound to the same object. On the other hand, alex is not an alias for
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charles: these variables are bound to distinct objects. The objects bound to alex and
charles have the same value—that’s what == compares—but they have different iden‐
tities.

In The Python Language Reference, “3.1. Objects, values and types” states:
Every object has an identity, a type and a value. An object’s identity never changes once
it has been created; you may think of it as the object’s address in memory. The is operator
compares the identity of two objects; the id() function returns an integer representing
its identity.

The real meaning of an object’s ID is implementation-dependent. In CPython, id()
returns the memory address of the object, but it may be something else in another
Python interpreter. The key point is that the ID is guaranteed to be a unique numeric
label, and it will never change during the life of the object.

In practice, we rarely use the id() function while programming. Identity checks are
most often done with the is operator, and not by comparing IDs. Next, we’ll talk about
is versus ==.

Choosing Between == and is
The == operator compares the values of objects (the data they hold), while is compares
their identities.

We often care about values and not identities, so == appears more frequently than is in
Python code.

However, if you are comparing a variable to a singleton, then it makes sense to use is.
By far, the most common case is checking whether a variable is bound to None. This is
the recommended way to do it:

x is None

And the proper way to write its negation is:

x is not None

The is operator is faster than ==, because it cannot be overloaded, so Python does not
have to find and invoke special methods to evaluate it, and computing is as simple as
comparing two integer IDs. In contrast, a == b is syntactic sugar for a.__eq__(b). The
__eq__ method inherited from object compares object IDs, so it produces the same
result as is. But most built-in types override __eq__ with more meaningful implemen‐
tations that actually take into account the values of the object attributes. Equality may
involve a lot of processing—for example, when comparing large collections or deeply
nested structures.
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1. On the other hand, single-type sequences like str, bytes, and array.array are flat: they don’t contain
references but physically hold their data—characters, bytes, and numbers—in contiguous memory.

To wrap up this discussion of identity versus equality, we’ll see that the famously im‐
mutable tuple is not as rigid as you may expect.

The Relative Immutability of Tuples
Tuples, like most Python collections—lists, dicts, sets, etc.—hold references to objects.
1 If the referenced items are mutable, they may change even if the tuple itself does not.
In other words, the immutability of tuples really refers to the physical contents of the
tuple data structure (i.e., the references it holds), and does not extend to the referenced
objects.

Example 8-5 illustrates the situation in which the value of a tuple changes as result of
changes to a mutable object referenced in it. What can never change in a tuple is the
identity of the items it contains.

Example 8-5. t1 and t2 initially compare equal, but changing a mutable item inside tu‐
ple t1 makes it different
>>> t1 = (1, 2, [30, 40])  
>>> t2 = (1, 2, [30, 40])  
>>> t1 == t2  
True
>>> id(t1[-1])  
4302515784
>>> t1[-1].append(99)  
>>> t1
(1, 2, [30, 40, 99])
>>> id(t1[-1])  
4302515784
>>> t1 == t2  
False

t1 is immutable, but t1[-1] is mutable.
Build a tuple t2 whose items are equal to those of t1.
Although distinct objects, t1 and t2 compare equal, as expected.
Inspect the identity of the list at t1[-1].
Modify the t1[-1] list in place.
The identity of t1[-1] has not changed, only its value.
t1 and t2 are now different.
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This relative immutability of tuples is behind the riddle “A += Assignment Puzzler” on
page 40. It’s also the reason why some tuples are unhashable, as we’ve seen in “What Is
Hashable?” on page 65.

The distinction between equality and identity has further implications when you need
to copy an object. A copy is an equal object with a different ID. But if an object contains
other objects, should the copy also duplicate the inner objects, or is it OK to share them?
There’s no single answer. Read on for a discussion.

Copies Are Shallow by Default
The easiest way to copy a list (or most built-in mutable collections) is to use the built-
in constructor for the type itself. For example:

>>> l1 = [3, [55, 44], (7, 8, 9)]
>>> l2 = list(l1)  
>>> l2
[3, [55, 44], (7, 8, 9)]
>>> l2 == l1  
True
>>> l2 is l1  
False

list(l1) creates a copy of l1.
The copies are equal.
But refer to two different objects.

For lists and other mutable sequences, the shortcut l2 = l1[:] also makes a copy.

However, using the constructor or [:] produces a shallow copy (i.e., the outermost
container is duplicated, but the copy is filled with references to the same items held by
the original container). This saves memory and causes no problems if all the items are
immutable. But if there are mutable items, this may lead to unpleasant surprises.

In Example 8-6, we create a shallow copy of a list containing another list and a tuple,
and then make changes to see how they affect the referenced objects.

If you have a connected computer on hand, I highly recommend
watching the interactive animation for Example 8-6 at the Online
Python Tutor. As I write this, direct linking to a prepared exam‐
ple at pythontutor.com is not working reliably, but the tool is awe‐
some, so taking the time to copy and paste the code is worthwhile.
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Example 8-6. Making a shallow copy of a list containing another list; copy and paste
this code to see it animated at the Online Python Tutor
l1 = [3, [66, 55, 44], (7, 8, 9)]
l2 = list(l1)      # 
l1.append(100)     # 
l1[1].remove(55)   # 
print('l1:', l1)
print('l2:', l2)
l2[1] += [33, 22]  # 
l2[2] += (10, 11)  # 
print('l1:', l1)
print('l2:', l2)

l2 is a shallow copy of l1. This state is depicted in Figure 8-3.
Appending 100 to l1 has no effect on l2.
Here we remove 55 from the inner list l1[1]. This affects l2 because l2[1] is
bound to the same list as l1[1].
For a mutable object like the list referred by l2[1], the operator += changes the
list in place. This change is visible at l1[1], which is an alias for l2[1].
+= on a tuple creates a new tuple and rebinds the variable l2[2] here. This is
the same as doing l2[2] = l2[2] + (10, 11). Now the tuples in the last
position of l1 and l2 are no longer the same object. See Figure 8-4.

The output of Example 8-6 is Example 8-7, and the final state of the objects is depicted
in Figure 8-4.

Example 8-7. Output of Example 8-6
l1: [3, [66, 44], (7, 8, 9), 100]
l2: [3, [66, 44], (7, 8, 9)]
l1: [3, [66, 44, 33, 22], (7, 8, 9), 100]
l2: [3, [66, 44, 33, 22], (7, 8, 9, 10, 11)]
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Figure 8-3. Program state immediately after the assignment l2 = list(l1) in
Example 8-6. l1 and l2 refer to distinct lists, but the lists share references to the same
inner list object [66, 55, 44] and tuple (7, 8, 9). (Diagram generated by the Online
Python Tutor.)

Figure 8-4. Final state of l1 and l2: they still share references to the same list object, now
containing [66, 44, 33, 22], but the operation l2[2] += (10, 11) created a new tuple with
content (7, 8, 9, 10, 11), unrelated to the tuple (7, 8, 9) referenced by l1[2]. (Diagram
generated by the Online Python Tutor.)

It should be clear now that shallow copies are easy to make, but they may or may not
be what you want. How to make deep copies is our next topic.
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Deep and Shallow Copies of Arbitrary Objects
Working with shallow copies is not always a problem, but sometimes you need to make
deep copies (i.e., duplicates that do not share references of embedded objects). The copy
module provides the deepcopy and copy functions that return deep and shallow copies
of arbitrary objects.

To illustrate the use of copy() and deepcopy(), Example 8-8 defines a simple class,
Bus, representing a school bus that is loaded with passengers and then picks up or drops
off passengers on its route.

Example 8-8. Bus picks up and drops off passengers
class Bus:

    def __init__(self, passengers=None):
        if passengers is None:
            self.passengers = []
        else:
            self.passengers = list(passengers)

    def pick(self, name):
        self.passengers.append(name)

    def drop(self, name):
        self.passengers.remove(name)

Now in the interactive Example 8-9 we will create we will create a bus object (bus1) and
two clones—a shallow copy (bus2) and a deep copy (bus3)—to observe what happens
as bus1 drops off a student.

Example 8-9. Effects of using copy versus deepcopy
>>> import copy
>>> bus1 = Bus(['Alice', 'Bill', 'Claire', 'David'])
>>> bus2 = copy.copy(bus1)
>>> bus3 = copy.deepcopy(bus1)
>>> id(bus1), id(bus2), id(bus3)
(4301498296, 4301499416, 4301499752)  
>>> bus1.drop('Bill')
>>> bus2.passengers
['Alice', 'Claire', 'David']          
>>> id(bus1.passengers), id(bus2.passengers), id(bus3.passengers)
(4302658568, 4302658568, 4302657800)  
>>> bus3.passengers
['Alice', 'Bill', 'Claire', 'David']  

Using copy and deepcopy, we create three distinct Bus instances.
After bus1 drops 'Bill', he is also missing from bus2.
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Inspection of the passengers atributes shows that bus1 and bus2 share the same
list object, because bus2 is a shallow copy of bus1.
bus3 is a deep copy of bus1, so its passengers attribute refers to another list.

Note that making deep copies is not a simple matter in the general case. Objects may
have cyclic references that would cause a naïve algorithm to enter an infinite loop. The
deepcopy function remembers the objects already copied to handle cyclic references
gracefully. This is demonstrated in Example 8-10.

Example 8-10. Cyclic references: b refers to a, and then is appended to a; deepcopy still
manages to copy a
>>> a = [10, 20]
>>> b = [a, 30]
>>> a.append(b)
>>> a
[10, 20, [[...], 30]]
>>> from copy import deepcopy
>>> c = deepcopy(a)
>>> c
[10, 20, [[...], 30]]

Also, a deep copy may be too deep in some cases. For example, objects may refer to
external resources or singletons that should not be copied. You can control the behavior
of both copy and deepcopy by implementing the __copy__() and __deepcopy__()
special methods as described in the copy module documentation.

The sharing of objects through aliases also explains how parameter passing works in
Python, and the problem of using mutable types as parameter defaults. These issues will
be covered next.

Function Parameters as References
The only mode of parameter passing in Python is call by sharing. That is the same mode
used in most OO languages, including Ruby, SmallTalk, and Java (this applies to Java
reference types; primitive types use call by value). Call by sharing means that each formal
parameter of the function gets a copy of each reference in the arguments. In other words,
the parameters inside the function become aliases of the actual arguments.

The result of this scheme is that a function may change any mutable object passed as a
parameter, but it cannot change the identity of those objects (i.e., it cannot altogether
replace an object with another). Example 8-11 shows a simple function using += on one
of its parameters. As we pass numbers, lists, and tuples to the function, the actual ar‐
guments passed are affected in different ways.
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Example 8-11. A function may change any mutable object it receives
>>> def f(a, b):
...     a += b
...     return a
...
>>> x = 1
>>> y = 2
>>> f(x, y)
3
>>> x, y  
(1, 2)
>>> a = [1, 2]
>>> b = [3, 4]
>>> f(a, b)
[1, 2, 3, 4]
>>> a, b  
([1, 2, 3, 4], [3, 4])
>>> t = (10, 20)
>>> u = (30, 40)
>>> f(t, u)  
(10, 20, 30, 40)
>>> t, u
((10, 20), (30, 40))

The number x is unchanged.
The list a is changed.
The tuple t is unchanged.

Another issue related to function parameters is the use of mutable values for defaults,
as discussed next.

Mutable Types as Parameter Defaults: Bad Idea
Optional parameters with default values are a great feature of Python function defini‐
tions, allowing our APIs to evolve while remaining backward-compatible. However, you
should avoid mutable objects as default values for parameters.

To illustrate this point, in Example 8-12, we take the Bus class from Example 8-8 and
change its __init__ method to create HauntedBus. Here we tried to be clever and instead
of having a default value of passengers=None, we have passengers=[], thus avoiding
the if in the previous __init__. This “cleverness” gets us into trouble.

Example 8-12. A simple class to illustrate the danger of a mutable default
class HauntedBus:
    """A bus model haunted by ghost passengers"""

    def __init__(self, passengers=[]):   
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        self.passengers = passengers   

    def pick(self, name):
        self.passengers.append(name)   

    def drop(self, name):
        self.passengers.remove(name)

When the passengers argument is not passed, this parameter is bound to the
default list object, which is initially empty.
This assignment makes self.passengers an alias for passengers, which is itself
an alias for the default list, when no passengers argument is given.
When the methods .remove() and .append() are used with self.passengers
we are actually mutating the default list, which is an attribute of the function
object.

Example 8-13 shows the eerie behavior of the HauntedBus.

Example 8-13. Buses haunted by ghost passengers
>>> bus1 = HauntedBus(['Alice', 'Bill'])
>>> bus1.passengers
['Alice', 'Bill']
>>> bus1.pick('Charlie')
>>> bus1.drop('Alice')
>>> bus1.passengers  
['Bill', 'Charlie']
>>> bus2 = HauntedBus()  
>>> bus2.pick('Carrie')
>>> bus2.passengers
['Carrie']
>>> bus3 = HauntedBus()  
>>> bus3.passengers  
['Carrie']
>>> bus3.pick('Dave')
>>> bus2.passengers  
['Carrie', 'Dave']
>>> bus2.passengers is bus3.passengers  
True
>>> bus1.passengers  
['Bill', 'Charlie']

So far, so good: no surprises with bus1.
bus2 starts empty, so the default empty list is assigned to self.passengers.
bus3 also starts empty, again the default list is assigned.
The default is no longer empty!
Now Dave, picked by bus3, appears in bus2.
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The problem: bus2.passengers and bus3.passengers refer to the same list.
But bus1.passengers is a distinct list.

The problem is that Bus instances that don’t get an initial passenger list end up sharing
the same passenger list among themselves.

Such bugs may be subtle. As Example 8-13 demonstrates, when a HauntedBus is in‐
stantiated with passengers, it works as expected. Strange things happen only when a
HauntedBus starts empty, because then self.passengers becomes an alias for the de‐
fault value of the passengers parameter. The problem is that each default value is eval‐
uated when the function is defined—i.e., usually when the module is loaded—and the
default values become attributes of the function object. So if a default value is a mutable
object, and you change it, the change will affect every future call of the function.

After running the lines in Example 8-13, you can inspect the HauntedBus.__init__
object and see the ghost students haunting its __defaults__ attribute:

>>> dir(HauntedBus.__init__)  # doctest: +ELLIPSIS
['__annotations__', '__call__', ..., '__defaults__', ...]
>>> HauntedBus.__init__.__defaults__
(['Carrie', 'Dave'],)

Finally, we can verify that bus2.passengers is an alias bound to the first element of the
HauntedBus.__init__.__defaults__ attribute:

>>> HauntedBus.__init__.__defaults__[0] is bus2.passengers
True

The issue with mutable defaults explains why None is often used as the default value for
parameters that may receive mutable values. In Example 8-8, __init__ checks whether
the passengers argument is None, and assigns a new empty list to self.passengers.
As explained in the following section, if passengers is not None, the correct implemen‐
tation assigns a copy of it to self.passengers. Let’s now take a closer look.

Defensive Programming with Mutable Parameters
When you are coding a function that receives a mutable parameter, you should carefully
consider whether the caller expects the argument passed to be changed.

For example, if your function receives a dict and needs to modify it while processing
it, should this side effect be visible outside of the function or not? Actually it depends
on the context. It’s really a matter of aligning the expectation of the coder of the function
and that of the caller.

The last bus example in this chapter shows how a TwilightBus breaks expectations by
sharing its passenger list with its clients. Before studying the implementation, see in
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Example 8-14 how the TwilightBus class works from the perspective of a client of the
class.

Example 8-14. Passengers disappear when dropped by a TwilightBus
>>> basketball_team = ['Sue', 'Tina', 'Maya', 'Diana', 'Pat']  
>>> bus = TwilightBus(basketball_team)  
>>> bus.drop('Tina')  
>>> bus.drop('Pat')
>>> basketball_team  
['Sue', 'Maya', 'Diana']

basketball_team holds five student names.
A TwilightBus is loaded with the team.
The bus drops one student, then another.
The dropped passengers vanished from the basketball team!

TwilightBus violates the “Principle of least astonishment,” a best practice of interface
design. It surely is astonishing that when the bus drops a student, her name is removed
from the basketball team roster.

Example 8-15 is the implementation TwilightBus and an explanation of the problem.

Example 8-15. A simple class to show the perils of mutating received arguments
class TwilightBus:
    """A bus model that makes passengers vanish"""

    def __init__(self, passengers=None):
        if passengers is None:
            self.passengers = []   
        else:
            self.passengers = passengers  

    def pick(self, name):
        self.passengers.append(name)

    def drop(self, name):
        self.passengers.remove(name)   

Here we are careful to create a new empty list when passengers is None.
However, this assignment makes self.passengers an alias for passengers,
which is itself an alias for the actual argument passed to __init__ (i.e.,basket
ball_team in Example 8-14).
When the methods .remove() and .append() are used with self.passen
gers, we are actually mutating the original list received as argument to the
constructor.
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2. If two objects refer to each other, as in Example 8-10, they may be destroyed if the garbage collector determines
that they are otherwise unreachable because their only references are their mutual references.

The problem here is that the bus is aliasing the list that is passed to the constructor.
Instead, it should keep its own passenger list. The fix is simple: in __init__, when the
passengers parameter is provided, self.passengers should be initialized with a copy
of it, as we did correctly in Example 8-8 (“Deep and Shallow Copies of Arbitrary Ob‐
jects” on page 228):

    def __init__(self, passengers=None):
        if passengers is None:
            self.passengers = []
        else:
            self.passengers = list(passengers) 

Make a copy of the passengers list, or convert it to a list if it’s not one.

Now our internal handling of the passenger list will not affect the argument used to
initialize the bus. As a bonus, this solution is more flexible: now the argument passed
to the passengers parameter may be a tuple or any other iterable, like a set or even
database results, because the list constructor accepts any iterable. As we create our
own list to manage, we ensure that it supports the necessary .remove() and .ap
pend() operations we use in the .pick() and .drop() methods.

Unless a method is explicitly intended to mutate an object re‐
ceived as argument, you should think twice before aliasing the
argument object by simply assigning it to an instance variable in
your class. If in doubt, make a copy. Your clients will often be
happier.

del and Garbage Collection
Objects are never explicitly destroyed; however, when they become unreachable they may
be garbage-collected.

— “Data Model” chapter of The Python Language Reference

The del statement deletes names, not objects. An object may be garbage collected as
result of a del command, but only if the variable deleted holds the last reference to the
object, or if the object becomes unreachable.2 Rebinding a variable may also cause the
number of references to an object to reach zero, causing its destruction.
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There is a __del__ special method, but it does not cause the dis‐
posal of the instance, and should not be called by your code.
__del__ is invoked by the Python interpreter when the instance is
about to be destroyed to give it a chance to release external re‐
sources. You will seldom need to implement __del__ in your own
code, yet some Python beginners spend time coding it for no good
reason. The proper use of __del__ is rather tricky. See the __del__
special method documentation in the “Data Model” chapter of The
Python Language Reference.

In CPython, the primary algorithm for garbage collection is reference counting. Es‐
sentially, each object keeps count of how many references point to it. As soon as that
refcount reaches zero, the object is immediately destroyed: CPython calls the __del__
method on the object (if defined) and then frees the memory allocated to the object. In
CPython 2.0, a generational garbage collection algorithm was added to detect groups
of objects involved in reference cycles—which may be unreachable even with outstand‐
ing references to them, when all the mutual references are contained within the group.
Other implementations of Python have more sophisticated garbage collectors that do
not rely on reference counting, which means the __del__ method may not be called
immediately when there are no more references to the object. See “PyPy, Garbage Col‐
lection, and a Deadlock” by A. Jesse Jiryu Davis for discussion of improper and proper
use of __del__.

To demonstrate the end of an object’s life, Example 8-16 uses weakref.finalize to
register a callback function to be called when an object is destroyed.

Example 8-16. Watching the end of an object when no more references point to it
>>> import weakref
>>> s1 = {1, 2, 3}
>>> s2 = s1         
>>> def bye():      
...     print('Gone with the wind...')
...
>>> ender = weakref.finalize(s1, bye)  
>>> ender.alive  
True
>>> del s1
>>> ender.alive  
True
>>> s2 = 'spam'  
Gone with the wind...
>>> ender.alive
False

s1 and s2 are aliases referring to the same set, {1, 2, 3}.
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This function must not be a bound method of the object about to be destroyed
or otherwise hold a reference to it.
Register the bye callback on the object referred by s1.
The .alive attribute is True before the finalize object is called.
As discussed, del does not delete an object, just a reference to it.
Rebinding the last reference, s2, makes {1, 2, 3} unreachable. It is destroyed,
the bye callback is invoked, and ender.alive becomes False.

The point of Example 8-16 is to make explicit that del does not delete objects, but objects
may be deleted as a consequence of being unreachable after del is used.

You may be wondering why the {1, 2, 3} object was destroyed in Example 8-16. After
all, the s1 reference was passed to the finalize function, which must have held on to
it in order to monitor the object and invoke the callback. This works because final
ize holds a weak reference to {1, 2, 3}, as explained in the next section.

Weak References
The presence of references is what keeps an object alive in memory. When the reference
count of an object reaches zero, the garbage collector disposes of it. But sometimes it is
useful to have a reference to an object that does not keep it around longer than necessary.
A common use case is a cache.

Weak references to an object do not increase its reference count. The object that is the
target of a reference is called the referent. Therefore, we say that a weak reference does
not prevent the referent from being garbage collected.

Weak references are useful in caching applications because you don’t want the cached
objects to be kept alive just because they are referenced by the cache.

Example 8-17 shows how a weakref.ref instance can be called to reach its referent. If
the object is alive, calling the weak reference returns it, otherwise None is returned.

Example 8-17 is a console session, and the Python console auto‐
matically binds the _ variable to the result of expressions that are
not None. This interfered with my intended demonstration but also
highlights a practical matter: when trying to micro-manage mem‐
ory we are often surprised by hidden, implicit assignments that
create new references to our objects. The _ console variable is one
example. Traceback objects are another common source of unex‐
pected references.
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Example 8-17. A weak reference is a callable that returns the referenced object or None
if the referent is no more
>>> import weakref
>>> a_set = {0, 1}
>>> wref = weakref.ref(a_set)  
>>> wref
<weakref at 0x100637598; to 'set' at 0x100636748>
>>> wref()  
{0, 1}
>>> a_set = {2, 3, 4}  
>>> wref()  
{0, 1}
>>> wref() is None  
False
>>> wref() is None  
True

The wref weak reference object is created and inspected in the next line.
Invoking wref() returns the referenced object, {0, 1}. Because this is a console
session, the result {0, 1} is bound to the _ variable.
a_set no longer refers to the {0, 1} set, so its reference count is decreased. But
the _ variable still refers to it.
Calling wref() still returns {0, 1}.
When this expression is evaluated, {0, 1} lives, therefore wref() is not None.
But _ is then bound to the resulting value, False. Now there are no more strong
references to {0, 1}.
Because the {0, 1} object is now gone, this last call to wref() returns None.

The weakref module documentation makes the point that the weakref.ref class is
actually a low-level interface intended for advanced uses, and that most programs are
better served by the use of the weakref collections and finalize. In other words, con‐
sider using WeakKeyDictionary, WeakValueDictionary, WeakSet, and finalize
(which use weak references internally) instead of creating and handling your own weak
ref.ref instances by hand. We just did that in Example 8-17 in the hope that showing
a single weakref.ref in action could take away some of the mystery around them. But
in practice, most of the time Python programs use the weakref collections.

The next subsection briefly discusses the weakref collections.

The WeakValueDictionary Skit
The class WeakValueDictionary implements a mutable mapping where the values are
weak references to objects. When a referred object is garbage collected elsewhere in the
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3. cheeseshop.python.org is also an alias for PyPI—the Python Package Index software repository—which
started its life quite empty. At the time of this writing, the Python Cheese Shop has 41,426 packages. Not bad,
but still far from the more than 131,000 modules available in CPAN—the Comprehensive Perl Archive Net‐
work—the envy of all dynamic language communities.

4. Parmesan cheese is aged at least a year at the factory, so it is more durable than fresh cheese, but this is not
the answer we are looking for.

program, the corresponding key is automatically removed from WeakValueDiction
ary. This is commonly used for caching.

Our demonstration of a WeakValueDictionary is inspired by the classic Cheese Shop
skit by Monty Python, in which a customer asks for more than 40 kinds of cheese,
including cheddar and mozzarella, but none are in stock.3

Example 8-18 implements a trivial class to represent each kind of cheese.

Example 8-18. Cheese has a kind attribute and a standard representation
class Cheese:

    def __init__(self, kind):
        self.kind = kind

    def __repr__(self):
        return 'Cheese(%r)' % self.kind

In Example 8-19, each cheese is loaded from a catalog to a stock implemented as a
WeakValueDictionary. However, all but one disappear from the stock as soon as the
catalog is deleted. Can you explain why the Parmesan cheese lasts longer than the
others?4 The tip after the code has the answer.

Example 8-19. Customer: “Have you in fact got any cheese here at all?”
>>> import weakref
>>> stock = weakref.WeakValueDictionary()  
>>> catalog = [Cheese('Red Leicester'), Cheese('Tilsit'),
...                 Cheese('Brie'), Cheese('Parmesan')]
...
>>> for cheese in catalog:
...     stock[cheese.kind] = cheese  
...
>>> sorted(stock.keys())
['Brie', 'Parmesan', 'Red Leicester', 'Tilsit']  
>>> del catalog
>>> sorted(stock.keys())
['Parmesan']  
>>> del cheese
>>> sorted(stock.keys())
[]
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stock is a WeakValueDictionary.
The stock maps the name of the cheese to a weak reference to the cheese instance
in the catalog.
The stock is complete.
After the catalog is deleted, most cheeses are gone from the stock, as expected
in WeakValueDictionary. Why not all, in this case?

A temporary variable may cause an object to last longer than ex‐
pected by holding a reference to it. This is usually not a problem
with local variables: they are destroyed when the function re‐
turns. But in Example 8-19, the for loop variable cheese is a glob‐
al variable and will never go away unless explicitly deleted.

A counterpart to the WeakValueDictionary is the WeakKeyDictionary in which the
keys are weak references. The weakref.WeakKeyDictionary documentation hints on
possible uses:

[A WeakKeyDictionary] can be used to associate additional data with an object owned
by other parts of an application without adding attributes to those objects. This can be
especially useful with objects that override attribute accesses.

The weakref module also provides a WeakSet, simply described in the docs as “Set class
that keeps weak references to its elements. An element will be discarded when no strong
reference to it exists any more.” If you need to build a class that is aware of every one of
its instances, a good solution is to create a class attribute with a WeakSet to hold the
references to the instances. Otherwise, if a regular set was used, the instances would
never be garbage collected, because the class itself would have strong references to them,
and classes live as long as the Python process unless you deliberately delete them.

These collections, and weak references in general, are limited in the kinds of objects
they can handle. The next section explains.

Limitations of Weak References
Not every Python object may be the target, or referent, of a weak reference. Basic list
and dict instances may not be referents, but a plain subclass of either can solve this
problem easily:

class MyList(list):
    """list subclass whose instances may be weakly referenced"""

a_list = MyList(range(10))
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5. This is clearly documented. Type help(tuple) in the Python console to read: “If the argument is a tuple, the
return value is the same object.” I thought I knew everything about tuples before writing this book.

# a_list can be the target of a weak reference
wref_to_a_list = weakref.ref(a_list)

A set instance can be a referent, and that’s why a set was used in Example 8-17. User-
defined types also pose no problem, which explains why the silly Cheese class was
needed in Example 8-19. But int and tuple instances cannot be targets of weak refer‐
ences, even if subclasses of those types are created.

Most of these limitations are implementation details of CPython that may not apply to
other Python iterpreters. They are the result of internal optimizations, some of which
are discussed in the following (highly optional) section.

Tricks Python Plays with Immutables
You may safely skip this section. It discusses some Python imple‐
mentation details that are not really important for users of Python.
They are shortcuts and optimizations done by the CPython core
developers, which should not bother you when using the lan‐
guage, and that may not apply to other Python implementations
or even future versions of CPython. Nevertheless, while experi‐
menting with aliases and copies you may stumble upon these
tricks, so I felt they were worth mentioning.

I was surprised to learn that, for a tuple t, t[:] does not make a copy, but returns a
reference to the same object. You also get a reference to the same tuple if you write
tuple(t).5 Example 8-20 proves it.

Example 8-20. A tuple built from another is actually the same exact tuple
>>> t1 = (1, 2, 3)
>>> t2 = tuple(t1)
>>> t2 is t1  
True
>>> t3 = t1[:]
>>> t3 is t1  
True

t1 and t2 are bound to the same object.
And so is t3.

The same behavior can be observed with instances of str, bytes, and frozenset. Note
that a frozenset is not a sequence, so fs[:] does not work if fs is a frozenset. But
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6. The white lie of having the copy method not copying anything can be explained by interface compatibility:
it makes frozenset more compatible with set. Anyway, it makes no difference to the end user whether two
identical immutable objects are the same or are copies.

fs.copy() has the same effect: it cheats and returns a reference to the same object, and
not a copy at all, as Example 8-21 shows.6

Example 8-21. String literals may create shared objects
>>> t1 = (1, 2, 3)
>>> t3 = (1, 2, 3)  # 
>>> t3 is t1  # 
False
>>> s1 = 'ABC'
>>> s2 = 'ABC'  # 
>>> s2 is s1 # 
True

Creating a new tuple from scratch.
t1 and t3 are equal, but not the same object.
Creating a second str from scratch.
Surprise: a and b refer to the same str!

The sharing of string literals is an optimization technique called interning. CPython
uses the same technique with small integers to avoid unnecessary duplication of “pop‐
ular” numbers like 0, –1, and 42. Note that CPython does not intern all strings or inte‐
gers, and the criteria it uses to do so is an undocumented implementation detail.

Never depend on str or int interning! Always use == and not is
to compare them for equality. Interning is a feature for internal use
of the Python interpreter.

The tricks discussed in this section, including the behavior of frozenset.copy(), are
“white lies”; they save memory and make the interpreter faster. Do not worry about
them, they should not give you any trouble because they only apply to immutable types.
Probably the best use of these bits of trivia is to win bets with fellow Pythonistas.
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7. Actually the type of an object may be changed by merely assigning a different class to its __class__ attribute,
but that is pure evil and I regret writing this footnote.

Chapter Summary
Every Python object has an identity, a type, and a value. Only the value of an object
changes over time.7

If two variables refer to immutable objects that have equal values (a == b is True), in
practice it rarely matters if they refer to copies or are aliases referring to the same object
because the value of an immutable object does not change, with one exception. The
exception is immutable collections such as tuples and frozensets: if an immutable col‐
lection holds references to mutable items, then its value may actually change when the
value of a mutable item changes. In practice, this scenario is not so common. What
never changes in an immutable collection are the identities of the objects within.

The fact that variables hold references has many practical consequences in Python pro‐
gramming:

• Simple assignment does not create copies.
• Augmented assignment with += or *= creates new objects if the lefthand variable is

bound to an immutable object, but may modify a mutable object in place.
• Assigning a new value to an existing variable does not change the object previously

bound to it. This is called a rebinding: the variable is now bound to a different object.
If that variable was the last reference to the previous object, that object will be
garbage collected.

• Function parameters are passed as aliases, which means the function may change
any mutable object received as an argument. There is no way to prevent this, except
making local copies or using immutable objects (e.g., passing a tuple instead of a
list).

• Using mutable objects as default values for function parameters is dangerous be‐
cause if the parameters are changed in place, then the default is changed, affecting
every future call that relies on the default.

In CPython, objects are discarded as soon as the number of references to them reaches
zero. They may also be discarded if they form groups with cyclic references but no
outside references. In some situations, it may be useful to hold a reference to an object
that will not—by itself—keep an object alive. One example is a class that wants to keep
track of all its current instances. This can be done with weak references, a low-level
mechanism underlying the more useful collections WeakValueDictionary, WeakKey
Dictionary, WeakSet, and the finalize function from the weakref module.

242 | Chapter 8: Object References, Mutability, and Recycling



Further Reading
The “Data Model” chapter of The Python Language Reference starts with a clear ex‐
planation of object identities and values.

Wesley Chun, author of the Core Python series of books, made a great presentation about
many of the topics covered in this chapter during OSCON 2013. You can download the
slides from the “Python 103: Memory Model & Best Practices” talk page. There is also
a YouTube video of a longer presentation Wesley gave at EuroPython 2011, covering
not only the theme of this chapter but also the use of special methods.

Doug Hellmann wrote a long series of excellent blog posts titled Python Module of the
Week, which became a book, The Python Standard Library by Example. His posts “copy
– Duplicate Objects” and “weakref – Garbage-Collectable References to Objects” cover
some of the topics we just discussed.

More information on the CPython generational garbage collector can be found in the
gc module documentation, which starts with the sentence “This module provides an
interface to the optional garbage collector.” The “optional” qualifier here may be sur‐
prising, but the “Data Model” chapter also states:

An implementation is allowed to postpone garbage collection or omit it altogether—it is
a matter of implementation quality how garbage collection is implemented, as long as no
objects are collected that are still reachable.

Fredrik Lundh—creator of key libraries like ElementTree, Tkinter, and the PIL image
library—has a short post about the Python garbage collector titled “How Does Python
Manage Memory?” He emphasizes that the garbage collector is an implementation fea‐
ture that behaves differently across Python interpreters. For example, Jython uses the
Java garbage collector.

The CPython 3.4 garbage collector improved handling of objects with a __del__ meth‐
od, as described in PEP 442 — Safe object finalization.

Wikipedia has an article about string interning, mentioning the use of this technique
in several languages, including Python.
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Soapbox
Equal Treatment to All Objects

I learned Java before I discovered Python. The == operator in Java never felt right for
me. It is much more common for programmers to care about equality than identity, but
for objects (not primitive types) the Java == compares references, and not object values.
Even for something as basic as comparing strings, Java forces you to use the .equals
method. Even then, there is another catch: if you write a.equals(b) and a is null, you
get a null pointer exception. The Java designers felt the need to overload + for strings,
so why not go ahead and overload == as well?

Python gets this right. The == operator compares object values and is compares refer‐
ences. And because Python has operator overloading, == works sensibly with all objects
in the standard library, including None, which is a proper object, unlike Java’s null.

And of course, you can define __eq__ in your own classes to decide what == means for
your instances. If you don’t override __eq__, the method inherited from object com‐
pares object IDs, so the fallback is that every instance of a user-defined class is considered
different.

These are some of the things that made me switch from Java to Python as soon as I
finished reading the Python Tutorial one afternoon in September 1998.

Mutability

This chapter would be redundant if all Python objects were immutable. When you are
dealing with unchanging objects, it makes no difference whether variables hold the
actual objects or references to shared objects. If a == b is true, and neither object can
change, they might as well be the same. That’s why string interning is safe. Object identity
becomes important only when objects are mutable.

In “pure” functional programming, all data is immutable: appending to a collection
actually creates a new collection. Python, however, is not a functional language, much
less a pure one. Instances of user-defined classes are mutable by default in Python—as
in most object-oriented languages. When creating your own objects, you have to be
extra careful to make them immutable, if that is a requirement. Every attribute of the
object must also be immutable, otherwise you end up with something like the tuple:
immutable as far as object IDs go, but the value of a tuple may change if it holds a
mutable object.

Mutable objects are also the main reason why programming with threads is so hard to
get right: threads mutating objects without proper synchronization produce corrupted
data. Excessive synchronization, on the other hand, causes deadlocks.
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Object Destruction and Garbage Collection

There is no mechanism in Python to directly destroy an object, and this omission is
actually a great feature: if you could destroy an object at any time, what would happen
to existing strong references pointing to it?

Garbage collection in CPython is done primarily by reference counting, which is easy
to implement, but is prone to memory leaking when there are reference cycles, so with
version 2.0 (October 2000) a generational garbage collector was implemented, and it is
able to dispose of unreachable objects kept alive by reference cycles.

But the reference counting is still there as a baseline, and it causes the immediate disposal
of objects with zero references. This means that, in CPython—at least for now—it’s safe
to write this:

open('test.txt', 'wt', encoding='utf-8').write('1, 2, 3')

That code is safe because the reference count of the file object will be zero after the write
method returns, and Python will immediately close the file before destroying the object
representing it in memory. However, the same line is not safe in Jython or IronPython
that use the garbage collector of their host runtimes (the Java VM and the .NET CLR),
which are more sophisticated but do not rely on reference counting and may take longer
to destroy the object and close the file. In all cases, including CPython, the best practice
is to explicitly close the file, and the most reliable way of doing it is using the with
statement, which guarantees that the file will be closed even if exceptions are raised while
it is open. Using with, the previous snippet becomes:

with open('test.txt', 'wt', encoding='utf-8') as fp:
    fp.write('1, 2, 3')

If you are into the subject of garbage collectors, you may want to read Thomas Perl’s
paper “Python Garbage Collector Implementations: CPython, PyPy and GaS”, from
which I learned the bit about the safety of the open().write() in CPython.

Parameter Passing: Call by Sharing

A popular way of explaining how parameter passing works in Python is the phrase:
“Parameters are passed by value, but the values are references.” This not wrong, but
causes confusion because the most common parameter passing modes in older lan‐
guages are call by value (the function gets a copy of the argument) and call by refer‐
ence (the function gets a pointer to the argument). In Python, the function gets a copy
of the arguments, but the arguments are always references. So the value of the referenced
objects may be changed, if they are mutable, but their identity cannot. Also, because the
function gets a copy of the reference in an argument, rebinding it has no effect outside
of the function. I adopted the term call by sharing after reading up on the subject in
Programming Language Pragmatics, Third Edition by Michael L. Scott (Morgan Kauf‐
mann), particularly “8.3.1: Parameter Modes.”
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The Full Quote of Alice and the Knights’s Song

I love this passage, but it was too long as a chapter opener. So here is the complete dialog
about the Knight’s song, its name, and how the song and its name are called:

‘You are sad,’ the Knight said in an anxious tone: ‘let me sing you a song to comfort you.’
‘Is it very long?’ Alice asked, for she had heard a good deal of poetry that day.
‘It’s long,’ said the Knight, ‘but very, VERY beautiful. Everybody that hears me sing it—
either it brings the TEARS into their eyes, or else—’
‘Or else what?’ said Alice, for the Knight had made a sudden pause.
‘Or else it doesn’t, you know. The name of the song is called “HADDOCKS’ EYES”.’
‘Oh, that’s the name of the song, is it?’ Alice said, trying to feel interested.
‘No, you don’t understand,’ the Knight said, looking a little vexed. ‘That’s what the name
is CALLED. The name really IS “THE AGED AGED MAN”.’
‘Then I ought to have said “That’s what the SONG is called”?’ Alice corrected herself.
‘No, you oughtn’t: that’s quite another thing! The SONG is called “WAYS AND
MEANS”: but that’s only what it’s CALLED, you know!’
‘Well, what IS the song, then?’ said Alice, who was by this time completely bewildered.
‘I was coming to that,’ the Knight said. ‘The song really IS “A-SITTING ON A GATE”:
and the tune’s my own invention.’

— Lewis Carroll
 Chapter VIII, “It’s My Own Invention,” Through the Looking-Glass
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1. From the Paste Style Guide.

CHAPTER 9

A Pythonic Object

Never, ever use two leading underscores. This is annoyingly private.1

— Ian Bicking
 Creator of pip, virtualenv, Paste and many other projects

Thanks to the Python data model, your user-defined types can behave as naturally as
the built-in types. And this can be accomplished without inheritance, in the spirit of
duck typing: you just implement the methods needed for your objects to behave as
expected.

In previous chapters, we presented the structure and behavior of many built-in objects.
We will now build user-defined classes that behave as real Python objects.

This chapter starts where Chapter 1 ended, by showing how to implement several special
methods that are commonly seen in Python objects of many different types.

In this chapter, we will see how to:

• Support the built-in functions that produce alternative object representations (e.g.,
repr(), bytes(), etc).

• Implement an alternative constructor as a class method.
• Extend the format mini-language used by the format() built-in and the str.for
mat() method.

• Provide read-only access to attributes.
• Make an object hashable for use in sets and as dict keys.
• Save memory with the use of __slots__.
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We’ll do all that as we develop a simple two-dimensional Euclidean vector type.

The evolution of the example will be paused to discuss two conceptual topics:

• How and when to use the @classmethod and @staticmethod decorators.
• Private and protected attributes in Python: usage, conventions, and limitations.

Let’s get started with the object representation methods.

Object Representations
Every object-oriented language has at least one standard way of getting a string repre‐
sentation from any object. Python has two:
repr()

Return a string representing the object as the developer wants to see it.

str()

Return a string representing the object as the user wants to see it.

As you know, we implement the special methods __repr__ and __str__ to support
repr() and str().

There are two additional special methods to support alternative representations of ob‐
jects: __bytes__ and __format__. The __bytes__ method is analogous to __str__: it’s
called by bytes() to get the object represented as a byte sequence. Regarding __for
mat__, both the built-in function format() and the str.format() method call it to get
string displays of objects using special formatting codes. We’ll cover __bytes__ in the
next example, and __format__ after that.

If you’re coming from Python 2, remember that in Python 3
__repr__, __str__, and __format__ must always return Unicode
strings (type str). Only __bytes__ is supposed to return a byte
sequence (type bytes).

Vector Class Redux
In order to demonstrate the many methods used to generate object representations,
we’ll use a Vector2d class similar to the one we saw in Chapter 1. We will build on it in
this and future sections. Example 9-1 illustrates the basic behavior we expect from a
Vector2d instance.

Example 9-1. Vector2d instances have several representations
    >>> v1 = Vector2d(3, 4)
    >>> print(v1.x, v1.y)   
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2. I used eval to clone the object here just to make a point about repr; to clone an instance, the copy.copy
function is safer and faster.

    3.0 4.0
    >>> x, y = v1   
    >>> x, y
    (3.0, 4.0)
    >>> v1   
    Vector2d(3.0, 4.0)
    >>> v1_clone = eval(repr(v1))   
    >>> v1 == v1_clone   
    True
    >>> print(v1)   
    (3.0, 4.0)
    >>> octets = bytes(v1)   
    >>> octets
    b'd\\x00\\x00\\x00\\x00\\x00\\x00\\x08@\\x00\\x00\\x00\\x00\\x00\\x00\\x10@'
    >>> abs(v1)   
    5.0
    >>> bool(v1), bool(Vector2d(0, 0))   
    (True, False)

The components of a Vector2d can be accessed directly as attributes (no getter
method calls).
A Vector2d can be unpacked to a tuple of variables.
The repr of a Vector2d emulates the source code for constructing the instance.
Using eval here shows that the repr of a Vector2d is a faithful representation
of its constructor call.2

Vector2d supports comparison with ==; this is useful for testing.
print calls str, which for Vector2d produces an ordered pair display.
bytes uses the __bytes__ method to produce a binary representation.
abs uses the __abs__ method to return the magnitude of the Vector2d.
bool uses the __bool__ method to return False for a Vector2d of zero
magnitude or True otherwise.

Vector2d from Example 9-1 is implemented in vector2d_v0.py (Example 9-2). The code
is based on Example 1-2, but the infix operators will be implemented in Chapter 13—
except for == (which is useful for testing). At this point, Vector2d uses several special
methods to provide operations that a Pythonista expects in a well-designed object.

Example 9-2. vector2d_v0.py: methods so far are all special methods
from array import array
import math
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3. This line could also be written as yield self.x; yield.self.y. I have a lot more to say about the
__iter__ special method, generator expressions, and the yield keyword in Chapter 14.

class Vector2d:
    typecode = 'd'   

    def __init__(self, x, y):
        self.x = float(x)     
        self.y = float(y)

    def __iter__(self):
        return (i for i in (self.x, self.y))   

    def __repr__(self):
        class_name = type(self).__name__
        return '{}({!r}, {!r})'.format(class_name, *self)   

    def __str__(self):
        return str(tuple(self))   

    def __bytes__(self):
        return (bytes([ord(self.typecode)]) +   
                bytes(array(self.typecode, self)))   

    def __eq__(self, other):
        return tuple(self) == tuple(other)   

    def __abs__(self):
        return math.hypot(self.x, self.y)   

    def __bool__(self):
        return bool(abs(self))   

typecode is a class attribute we’ll use when converting Vector2d instances to/
from bytes.
Converting x and y to float in __init__ catches errors early, which is helpful
in case Vector2d is called with unsuitable arguments.
__iter__ makes a Vector2d iterable; this is what makes unpacking work (e.g,
x, y = my_vector). We implement it simply by using a generator expression
to yield the components one after the other.3

__repr__ builds a string by interpolating the components with {!r} to get their
repr; because Vector2d is iterable, *self feeds the x and y components to
format.
From an iterable Vector2d, it’s easy to build a tuple for display as an ordered
pair.
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To generate bytes, we convert the typecode to bytes and concatenate…
…bytes converted from an array built by iterating over the instance.
To quickly compare all components, build tuples out of the operands. This works
for operands that are instances of Vector2d, but has issues. See the following
warning.
The magnitude is the length of the hypotenuse of the triangle formed by the x
and y components.
__bool__ uses abs(self) to compute the magnitude, then converts it to bool,
so 0.0 becomes False, nonzero is True.

Method __eq__ in Example 9-2 works for Vector2d operands but
also returns True when comparing Vector2d instances to other
iterables holding the same numeric values (e.g., Vector(3, 4) ==
[3, 4]). This may be considered a feature or a bug. Further dis‐
cussion needs to wait until Chapter 13, when we cover operator
overloading.

We have a fairly complete set of basic methods, but one obvious operation is missing:
rebuilding a Vector2d from the binary representation produced by bytes().

An Alternative Constructor
Because we can export a Vector2d as bytes, naturally we need a method that imports a
Vector2d from a binary sequence. Looking at the standard library for inspiration, we
find that array.array has a class method named .frombytes that suits our purpose—
we saw it in “Arrays” on page 48. We adopt its name and use its functionality in a class
method for Vector2d in vector2d_v1.py (Example 9-3).

Example 9-3. Part of vector2d_v1.py: this snippet shows only the frombytes class meth‐
od, added to the Vector2d definition in vector2d_v0.py (Example 9-2)
    @classmethod   
    def frombytes(cls, octets):   
        typecode = chr(octets[0])   
        memv = memoryview(octets[1:]).cast(typecode)   
        return cls(*memv)   

Class method is modified by the classmethod decorator.
No self argument; instead, the class itself is passed as cls.
Read the typecode from the first byte.
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4. We had a brief introduction to memoryview, explaining its .cast method in “Memory Views” on page 51.

Create a memoryview from the octets binary sequence and use the typecode to
cast it.4

Unpack the memoryview resulting from the cast into the pair of arguments
needed for the constructor.

Because we just used a classmethod decorator, and it is very Python-specific, let’s have
a word about it.

classmethod Versus staticmethod
The classmethod decorator is not mentioned in the Python tutorial, and neither is
staticmethod. Anyone who has learned OO in Java may wonder why Python has both
of these decorators and not just one of them.

Let’s start with classmethod. Example 9-3 shows its use: to define a method that operates
on the class and not on instances. classmethod changes the way the method is called,
so it receives the class itself as the first argument, instead of an instance. Its most com‐
mon use is for alternative constructors, like frombytes in Example 9-3. Note how the
last line of frombytes actually uses the cls argument by invoking it to build a new
instance: cls(*memv). By convention, the first parameter of a class method should be
named cls (but Python doesn’t care how it’s named).

In contrast, the staticmethod decorator changes a method so that it receives no special
first argument. In essence, a static method is just like a plain function that happens to
live in a class body, instead of being defined at the module level. Example 9-4 contrasts
the operation of classmethod and staticmethod.

Example 9-4. Comparing behaviors of classmethod and staticmethod
>>> class Demo:
...     @classmethod
...     def klassmeth(*args):
...         return args  # 
...     @staticmethod
...     def statmeth(*args):
...         return args  # 
...
>>> Demo.klassmeth()  # 
(<class '__main__.Demo'>,)
>>> Demo.klassmeth('spam')
(<class '__main__.Demo'>, 'spam')
>>> Demo.statmeth()   # 
()
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5. Leonardo Rochael, one of the technical reviewers of this book disagrees with my low opinion of staticme
thod, and recommends the blog post “The Definitive Guide on How to Use Static, Class or Abstract Methods
in Python” by Julien Danjou as a counter-argument. Danjou’s post is very good; I do recommend it. But it
wasn’t enough to change my mind about staticmethod. You’ll have to decide for yourself.

>>> Demo.statmeth('spam')
('spam',)

klassmeth just returns all positional arguments.
statmeth does the same.
No matter how you invoke it, Demo.klassmeth receives the Demo class as the first
argument.
Demo.statmeth behaves just like a plain old function.

The classmethod decorator is clearly useful, but I’ve never seen
a compelling use case for staticmethod. If you want to define a
function that does not interact with the class, just define it in the
module. Maybe the function is closely related even if it never
touches the class, so you want to them nearby in the code. Even
so, defining the function right before or after the class in the same
module is close enough for all practical purposes.5

Now that we’ve seen what classmethod is good for (and that staticmethod is not very
useful), let’s go back to the issue of object representation and see how to support for‐
matted output.

Formatted Displays
The format() built-in function and the str.format() method delegate the actual for‐
matting to each type by calling their .__format__(format_spec) method. The for
mat_spec is a formatting specifier, which is either:

• The second argument in format(my_obj, format_spec), or
• Whatever appears after the colon in a replacement field delimited with {} inside a

format string used with str.format()

For example:

>>> brl = 1/2.43  # BRL to USD currency conversion rate
>>> brl
0.4115226337448559
>>> format(brl, '0.4f')  # 
'0.4115'
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>>> '1 BRL = {rate:0.2f} USD'.format(rate=brl)  # 
'1 BRL = 0.41 USD'

Formatting specifier is '0.4f'.
Formatting specifier is '0.2f'. The 'rate' substring in the replacement field is
called the field name. It’s unrelated to the formatting specifier, but determines
which argument of .format() goes into that replacement field.

The second callout makes an important point: a format string such as '{0.mass:
5.3e}' actually uses two separate notations. The '0.mass' to the left of the colon is the
field_name part of the replacement field syntax; the '5.3e' after the colon is the for‐
matting specifier. The notation used in the formatting specifier is called the Format
Specification Mini-Language.

If format() and str.format() are new to you, classroom experi‐
ence has shown that it’s best to study the format() function first,
which uses just the Format Specification Mini-Language. After you
get the gist of that, read Format String Syntax to learn about the
{:} replacement field notation, used in the str.format() meth‐
od (including the !s, !r, and !a conversion flags).

A few built-in types have their own presentation codes in the Format Specification Mini-
Language. For example—among several other codes—the int type supports b and x for
base 2 and base 16 output, respectively, while float implements f for a fixed-point
display and % for a percentage display:

>>> format(42, 'b')
'101010'
>>> format(2/3, '.1%')
'66.7%'

The Format Specification Mini-Language is extensible because each class gets to inter‐
pret the format_spec argument as it likes. For instance, the classes in the datetime
module use the same format codes in the strftime() functions and in their __for
mat__ methods. Here are a couple examples using the format() built-in and the
str.format() method:

>>> from datetime import datetime
>>> now = datetime.now()
>>> format(now, '%H:%M:%S')
'18:49:05'
>>> "It's now {:%I:%M %p}".format(now)
"It's now 06:49 PM"

If a class has no __format__, the method inherited from object returns str(my_ob
ject). Because Vector2d has a __str__, this works:
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>>> v1 = Vector2d(3, 4)
>>> format(v1)
'(3.0, 4.0)'

However, if you pass a format specifier, object.__format__ raises TypeError:

>>> format(v1, '.3f')
Traceback (most recent call last):
  ...
TypeError: non-empty format string passed to object.__format__

We will fix that by implementing our own format mini-language. The first step will be
to assume the format specifier provided by the user is intended to format each float
component of the vector. This is the result we want:

>>> v1 = Vector2d(3, 4)
>>> format(v1)
'(3.0, 4.0)'
>>> format(v1, '.2f')
'(3.00, 4.00)'
>>> format(v1, '.3e')
'(3.000e+00, 4.000e+00)'

Example 9-5 implements __format__ to produce the displays just shown.

Example 9-5. Vector2d.format method, take #1
    # inside the Vector2d class

    def __format__(self, fmt_spec=''):
        components = (format(c, fmt_spec) for c in self)  # 
        return '({}, {})'.format(*components)  # 

Use the format built-in to apply the fmt_spec to each vector component,
building an iterable of formatted strings.
Plug the formatted strings in the formula '(x, y)'.

Now let’s add a custom formatting code to our mini-language: if the format specifier
ends with a 'p', we’ll display the vector in polar coordinates: <r, θ>, where r is the
magnitude and θ (theta) is the angle in radians. The rest of the format specifier (whatever
comes before the 'p') will be used as before.

When choosing the letter for the custom format code I avoided
overlapping with codes used by other types. In Format Specifica‐
tion Mini-Language we see that integers use the codes 'bcdoxXn',
floats use 'eEfFgGn%', and strings use 's'. So I picked 'p' for polar
coordinates. Because each class interprets these codes independ‐
ently, reusing a code letter in a custom format for a new type is not
an error, but may be confusing to users.
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To generate polar coordinates we already have the __abs__ method for the magnitude,
and we’ll code a simple angle method using the math.atan2() function to get the angle.
This is the code:

    # inside the Vector2d class

    def angle(self):
        return math.atan2(self.y, self.x)

With that, we can enhance our __format__ to produce polar coordinates. See
Example 9-6.

Example 9-6. Vector2d.format method, take #2, now with polar coordinates
    def __format__(self, fmt_spec=''):
        if fmt_spec.endswith('p'):   
            fmt_spec = fmt_spec[:-1]   
            coords = (abs(self), self.angle())   
            outer_fmt = '<{}, {}>'   
        else:
            coords = self   
            outer_fmt = '({}, {})'   
        components = (format(c, fmt_spec) for c in coords)   
        return outer_fmt.format(*components)   

Format ends with 'p': use polar coordinates.
Remove 'p' suffix from fmt_spec.
Build tuple of polar coordinates: (magnitude, angle).
Configure outer format with angle brackets.
Otherwise, use x, y components of self for rectangular coordinates.
Configure outer format with parentheses.
Generate iterable with components as formatted strings.
Plug formatted strings into outer format.

With Example 9-6, we get results similar to these:

>>> format(Vector2d(1, 1), 'p')
'<1.4142135623730951, 0.7853981633974483>'
>>> format(Vector2d(1, 1), '.3ep')
'<1.414e+00, 7.854e-01>'
>>> format(Vector2d(1, 1), '0.5fp')
'<1.41421, 0.78540>'

As this section shows, it’s not hard to extend the format specification mini-language to
support user-defined types.

256 | Chapter 9: A Pythonic Object



Now let’s move to a subject that’s not just about appearances: we will make our Vec
tor2d hashable, so we can build sets of vectors, or use them as dict keys. But before we
can do that, we must make vectors immutable. We’ll do what it takes next.

A Hashable Vector2d
As defined, so far our Vector2d instances are unhashable, so we can’t put them in a set:

>>> v1 = Vector2d(3, 4)
>>> hash(v1)
Traceback (most recent call last):
  ...
TypeError: unhashable type: 'Vector2d'
>>> set([v1])
Traceback (most recent call last):
  ...
TypeError: unhashable type: 'Vector2d'

To make a Vector2d hashable, we must implement __hash__ (__eq__ is also required,
and we already have it). We also need to make vector instances immutable, as we’ve seen
in “What Is Hashable?” on page 65.

Right now, anyone can do v1.x = 7 and there is nothing in the code to suggest that
changing a Vector2d is forbidden. This is the behavior we want:

>>> v1.x, v1.y
(3.0, 4.0)
>>> v1.x = 7
Traceback (most recent call last):
  ...
AttributeError: can't set attribute

We’ll do that by making the x and y components read-only properties in Example 9-7.

Example 9-7. vector2d_v3.py: only the changes needed to make Vector2d immutable
are shown here; see full listing in Example 9-9
class Vector2d:
    typecode = 'd'

    def __init__(self, x, y):
        self.__x = float(x)   
        self.__y = float(y)

    @property   
    def x(self):   
        return self.__x   

    @property   
    def y(self):
        return self.__y
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6. This is not how Ian Bicking would do it; recall the quote at the start of the chapter. The pros and cons of
private attributes are the subject of the upcoming “Private and “Protected” Attributes in Python” on page 262.

    def __iter__(self):
        return (i for i in (self.x, self.y))   

    # remaining methods follow (omitted in book listing)

Use exactly two leading underscores (with zero or one trailing underscore) to
make an attribute private.6

The @property decorator marks the getter method of a property.
The getter method is named after the public property it exposes: x.
Just return self.__x.
Repeat same formula for y property.
Every method that just reads the x, y components can stay as they were, reading
the public properties via self.x and self.y instead of the private attribute, so
this listing omits the rest of the code for the class.

Vector.x and Vector.y are examples of read-only properties.
Read/write properties will be covered in Chapter 19, where we
dive deeper into the @property.

Now that our vectors are reasonably immutable, we can implement the __hash__
method. It should return an int and ideally take into account the hashes of the object
attributes that are also used in the __eq__ method, because objects that compare equal
should have the same hash. The __hash__ special method documentation suggests using
the bitwise XOR operator (^) to mix the hashes of the components, so that’s what we
do. The code for our Vector2d.__hash__ method is really simple, as shown in
Example 9-8.

Example 9-8. vector2d_v3.py: implementation of hash
    # inside class Vector2d:

    def __hash__(self):
        return hash(self.x) ^ hash(self.y)

With the addition of the __hash__ method, we now have hashable vectors:

>>> v1 = Vector2d(3, 4)
>>> v2 = Vector2d(3.1, 4.2)
>>> hash(v1), hash(v2)
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(7, 384307168202284039)
>>> set([v1, v2])
{Vector2d(3.1, 4.2), Vector2d(3.0, 4.0)}

It’s not strictly necessary to implement properties or otherwise
protect the instance attributes to create a hashable type. Imple‐
menting __hash__ and __eq__ correctly is all it takes. But the hash
value of an instance is never supposed to change, so this pro‐
vides an excellent opportunity to talk about read-only properties.

If you are creating a type that has a sensible scalar numeric value, you may also imple‐
ment the __int__ and __float__ methods, invoked by the int() and float() con‐
structors—which are used for type coercion in some contexts. There’s also a __com
plex__ method to support the complex() built-in constructor. Perhaps Vector2d
should provide __complex__, but I’ll leave that as an exercise for you.

We have been working on Vector2d for a while, showing just snippets, so Example 9-9
is a consolidated, full listing of vector2d_v3.py, including all the doctests I used when
developing it.

Example 9-9. vector2d_v3.py: the full monty
"""
A two-dimensional vector class

    >>> v1 = Vector2d(3, 4)
    >>> print(v1.x, v1.y)
    3.0 4.0
    >>> x, y = v1
    >>> x, y
    (3.0, 4.0)
    >>> v1
    Vector2d(3.0, 4.0)
    >>> v1_clone = eval(repr(v1))
    >>> v1 == v1_clone
    True
    >>> print(v1)
    (3.0, 4.0)
    >>> octets = bytes(v1)
    >>> octets
    b'd\\x00\\x00\\x00\\x00\\x00\\x00\\x08@\\x00\\x00\\x00\\x00\\x00\\x00\\x10@'
    >>> abs(v1)
    5.0
    >>> bool(v1), bool(Vector2d(0, 0))
    (True, False)

Test of ``.frombytes()`` class method:
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    >>> v1_clone = Vector2d.frombytes(bytes(v1))
    >>> v1_clone
    Vector2d(3.0, 4.0)
    >>> v1 == v1_clone
    True

Tests of ``format()`` with Cartesian coordinates:

    >>> format(v1)
    '(3.0, 4.0)'
    >>> format(v1, '.2f')
    '(3.00, 4.00)'
    >>> format(v1, '.3e')
    '(3.000e+00, 4.000e+00)'

Tests of the ``angle`` method::

    >>> Vector2d(0, 0).angle()
    0.0
    >>> Vector2d(1, 0).angle()
    0.0
    >>> epsilon = 10**-8
    >>> abs(Vector2d(0, 1).angle() - math.pi/2) < epsilon
    True
    >>> abs(Vector2d(1, 1).angle() - math.pi/4) < epsilon
    True

Tests of ``format()`` with polar coordinates:

    >>> format(Vector2d(1, 1), 'p')  # doctest:+ELLIPSIS
    '<1.414213..., 0.785398...>'
    >>> format(Vector2d(1, 1), '.3ep')
    '<1.414e+00, 7.854e-01>'
    >>> format(Vector2d(1, 1), '0.5fp')
    '<1.41421, 0.78540>'

Tests of `x` and `y` read-only properties:

    >>> v1.x, v1.y
    (3.0, 4.0)
    >>> v1.x = 123
    Traceback (most recent call last):
      ...
    AttributeError: can't set attribute

Tests of hashing:
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    >>> v1 = Vector2d(3, 4)
    >>> v2 = Vector2d(3.1, 4.2)
    >>> hash(v1), hash(v2)
    (7, 384307168202284039)
    >>> len(set([v1, v2]))
    2

"""

from array import array
import math

class Vector2d:
    typecode = 'd'

    def __init__(self, x, y):
        self.__x = float(x)
        self.__y = float(y)

    @property
    def x(self):
        return self.__x

    @property
    def y(self):
        return self.__y

    def __iter__(self):
        return (i for i in (self.x, self.y))

    def __repr__(self):
        class_name = type(self).__name__
        return '{}({!r}, {!r})'.format(class_name, *self)

    def __str__(self):
        return str(tuple(self))

    def __bytes__(self):
        return (bytes([ord(self.typecode)]) +
                bytes(array(self.typecode, self)))

    def __eq__(self, other):
        return tuple(self) == tuple(other)

    def __hash__(self):
        return hash(self.x) ^ hash(self.y)

    def __abs__(self):
        return math.hypot(self.x, self.y)

    def __bool__(self):
        return bool(abs(self))
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    def angle(self):
        return math.atan2(self.y, self.x)

    def __format__(self, fmt_spec=''):
        if fmt_spec.endswith('p'):
            fmt_spec = fmt_spec[:-1]
            coords = (abs(self), self.angle())
            outer_fmt = '<{}, {}>'
        else:
            coords = self
            outer_fmt = '({}, {})'
        components = (format(c, fmt_spec) for c in coords)
        return outer_fmt.format(*components)

    @classmethod
    def frombytes(cls, octets):
        typecode = chr(octets[0])
        memv = memoryview(octets[1:]).cast(typecode)
        return cls(*memv)

To recap, in this and the previous sections, we saw some essential special methods that
you may want to implement to have a full-fledged object. Of course, it is a bad idea to
implement all of these methods if your application has no real use for them. Customers
don’t care if your objects are “Pythonic” or not.

As coded in Example 9-9, Vector2d is a didactic example with a laundry list of special
methods related to object representation, not a template for every user-defined class.

In the next section, we’ll take a break from Vector2d to discuss the design and drawbacks
of the private attribute mechanism in Python—the double-underscore prefix in
self.__x.

Private and “Protected” Attributes in Python
In Python, there is no way to create private variables like there is with the private
modifier in Java. What we have in Python is a simple mechanism to prevent accidental
overwriting of a “private” attribute in a subclass.

Consider this scenario: someone wrote a class named Dog that uses a mood instance
attribute internally, without exposing it. You need to subclass Dog as Beagle. If you create
your own mood instance attribute without being aware of the name clash, you will clobber
the mood attribute used by the methods inherited from Dog. This would be a pain to
debug.

To prevent this, if you name an instance attribute in the form __mood (two leading
underscores and zero or at most one trailing underscore), Python stores the name in
the instance __dict__ prefixed with a leading underscore and the class name, so in the
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Dog class, __mood becomes _Dog__mood, and in Beagle it’s _Beagle__mood. This language
feature goes by the lovely name of name mangling.

Example 9-10 shows the result in the Vector2d class from Example 9-7.

Example 9-10. Private attribute names are “mangled” by prefixing the _ and the class
name
>>> v1 = Vector2d(3, 4)
>>> v1.__dict__
{'_Vector2d__y': 4.0, '_Vector2d__x': 3.0}
>>> v1._Vector2d__x
3.0

Name mangling is about safety, not security: it’s designed to prevent accidental access
and not intentional wrongdoing (Figure 9-1 illustrates another safety device).

Figure 9-1. A cover on a switch is a safety device, not a security one: it prevents acciden‐
tal activation, not malicious use

Anyone who knows how private names are mangled can read the private attribute di‐
rectly, as the last line of Example 9-10 shows—that’s actually useful for debugging and
serialization. They can also directly assign a value to a private component of a Vector2d
by simply writing v1._Vector__x = 7. But if you are doing that in production code,
you can’t complain if something blows up.

The name mangling functionality is not loved by all Pythonistas, and neither is the
skewed look of names written as self.__x. Some prefer to avoid this syntax and use
just one underscore prefix to “protect” attributes by convention (e.g., self._x). Critics
of the automatic double-underscore mangling suggest that concerns about accidental
attribute clobbering should be addressed by naming conventions. This is the full quote
from the prolific Ian Bicking, cited at the beginning of this chapter:

Private and “Protected” Attributes in Python | 263



7. From the Paste Style Guide.

8. In modules, a single _ in front of a top-level name does have an effect: if you write from mymod import *
the names with a _ prefix are not imported from mymod. However, you can still write from mymod import
_privatefunc. This is explained in the Python Tutorial, section 6.1. More on Modules.

9. One example is in the gettext module docs.

10. If this state of affairs depresses you, and makes you wish Python was more like Java in this regard, don’t read
my discussion of the relative strength of the Java private modifier in “Soapbox” on page 272.

Never, ever use two leading underscores. This is annoyingly private. If name clashes are
a concern, use explicit name mangling instead (e.g., _MyThing_blahblah). This is es‐
sentially the same thing as double-underscore, only it’s transparent where double un‐
derscore obscures.7

The single underscore prefix has no special meaning to the Python interpreter when
used in attribute names, but it’s a very strong convention among Python programmers
that you should not access such attributes from outside the class.8 It’s easy to respect the
privacy of an object that marks its attributes with a single _, just as it’s easy respect the
convention that variables in ALL_CAPS should be treated as constants.

Attributes with a single _ prefix are called “protected” in some corners of the Python
documentation.9 The practice of “protecting” attributes by convention with the form
self._x is widespread, but calling that a “protected” attribute is not so common. Some
even call that a “private” attribute.

To conclude: the Vector2d components are “private” and our Vector2d instances are
“immutable”—with scare quotes—because there is no way to make them really private
and immutable.10

We’ll now come back to our Vector2d class. In this final section, we cover a special
attribute (not a method) that affects the internal storage of an object, with potentially
huge impact on the use of memory but little effect on its public interface: __slots__.

Saving Space with the __slots__ Class Attribute
By default, Python stores instance attributes in a per-instance dict named __dict__.
As we saw in “Practical Consequences of How dict Works” on page 90, dictionaries have
a significant memory overhead because of the underlying hash table used to provide
fast access. If you are dealing with millions of instances with few attributes, the
__slots__ class attribute can save a lot of memory, by letting the interpreter store the
instance attributes in a tuple instead of a dict.
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A __slots__ attribute inherited from a superclass has no effect.
Python only takes into account __slots__ attributes defined in
each class individually.

To define __slots__, you create a class attribute with that name and assign it an iterable
of str with identifiers for the instance attributes. I like to use a tuple for that, because
it conveys the message that the __slots__ definition cannot change. See Example 9-11.

Example 9-11. vector2d_v3_slots.py: the slots attribute is the only addition to Vector2d
class Vector2d:
    __slots__ = ('__x', '__y')

    typecode = 'd'

    # methods follow (omitted in book listing)

By defining __slots__ in the class, you are telling the interpreter: “These are all the
instance attributes in this class.” Python then stores them in a tuple-like structure in
each instance, avoiding the memory overhead of the per-instance __dict__. This can
make a huge difference in memory usage if your have millions of instances active at the
same time.

If you are handling millions of objects with numeric data, you
should really be using NumPy arrays (see “NumPy and SciPy” on
page 52), which are not only memory-efficient but have highly
optimized functions for numeric processing, many of which op‐
erate on the entire array at once. I designed the Vector2d class just
to provide context when discussing special methods, because I try
to avoid vague foo and bar examples when I can.

Example 9-12 shows two runs of a script that simply builds a list, using a list com‐
prehension, with 10,000,000 instances of Vector2d. The mem_test.py script takes the
name of a module with a Vector2d class variant as command-line argument. In the first
run, I am using vector2d_v3.Vector2d (from Example 9-7); in the second run, the
__slots__ version of vector2d_v3_slots.Vector2d is used.

Example 9-12. mem_test.py creates 10 million Vector2d instances using the class de‐
fined in the named module (e.g., vector2d_v3.py)
$ time python3 mem_test.py vector2d_v3.py
Selected Vector2d type: vector2d_v3.Vector2d
Creating 10,000,000 Vector2d instances
Initial RAM usage:      5,623,808
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  Final RAM usage:  1,558,482,944

real  0m16.721s
user  0m15.568s
sys 0m1.149s
$ time python3 mem_test.py vector2d_v3_slots.py
Selected Vector2d type: vector2d_v3_slots.Vector2d
Creating 10,000,000 Vector2d instances
Initial RAM usage:      5,718,016
  Final RAM usage:    655,466,496

real  0m13.605s
user  0m13.163s
sys 0m0.434s

As Example 9-12 reveals, the RAM footprint of the script grows to 1.5 GB when instance
__dict__ is used in each of the 10 million Vector2d instances, but that is reduced to
655 MB when Vector2d has a __slots__ attribute. The __slots__ version is also faster.
The mem_test.py script in this test basically deals with loading a module, checking
memory usage, and formatting results. The code is not really relevant here so it’s in
Appendix A, Example A-4.

When __slots__ is specified in a class, its instances will not be
allowed to have any other attributes apart from those named in
__slots__. This is really a side effect, and not the reason why
__slots__ exists. It’s considered bad form to use __slots__ just
to prevent users of your class from creating new attributes in the
instances if they want to. __slots__ should used for optimiza‐
tion, not for programmer restraint.

It may be possible, however, to “save memory and eat it too”: if you add the '__dict__'
name to the __slots__ list, your instances will keep attributes named in __slots__ in
the per-instance tuple, but will also support dynamically created attributes, which will
be stored in the usual __dict__. Of course, having '__dict__' in __slots__ may en‐
tirely defeat its purpose, depending on the number of static and dynamic attributes in
each instance and how they are used. Careless optimization is even worse than prema‐
ture optimization.

There is another special per-instance attribute that you may want to keep: the __weak
ref__ attribute is necessary for an object to support weak references (covered in “Weak
References” on page 236). That attribute is present by default in instances of user-defined
classes. However, if the class defines __slots__, and you need the instances to be targets
of weak references, then you need to include '__weakref__' among the attributes
named in __slots__.
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To summarize, __slots__ has some caveats and should not be abused just for the sake
of limiting what attributes can be assigned by users. It is mostly useful when working
with tabular data such as database records where the schema is fixed by definition and
the datasets may be very large. However, if you do this kind of work often, you must
check out not only NumPy, but also the pandas data analysis library, which can handle
nonnumeric data and import/export to many different tabular data formats.

The Problems with __slots__
To summarize, __slots__ may provide significant memory savings if properly used,
but there are a few caveats:

• You must remember to redeclare __slots__ in each subclass, because the inherited
attribute is ignored by the interpreter.

• Instances will only be able to have the attributes listed in __slots__, unless you
include '__dict__' in __slots__ (but doing so may negate the memory savings).

• Instances cannot be targets of weak references unless you remember to include
'__weakref__' in __slots__.

If your program is not handling millions of instances, it’s probably not worth the trouble
of creating a somewhat unusual and tricky class whose instances may not accept dy‐
namic attributes or may not support weak references. Like any optimization, __slots__
should be used only if justified by a present need and when its benefit is proven by
careful profiling.

The last topic in this chapter has to do with overriding a class attribute in instances and
subclasses.

Overriding Class Attributes
A distinctive feature of Python is how class attributes can be used as default values for
instance attributes. In Vector2d there is the typecode class attribute. It’s used twice in
the __bytes__ method, but we read it as self.typecode by design. Because Vector2d
instances are created without a typecode attribute of their own, self.typecode will get
the Vector2d.typecode class attribute by default.

But if you write to an instance attribute that does not exist, you create a new instance
attribute—e.g., a typecode instance attribute—and the class attribute by the same name
is untouched. However, from then on, whenever the code handling that instance reads
self.typecode, the instance typecode will be retrieved, effectively shadowing the class
attribute by the same name. This opens the possibility of customizing an individual
instance with a different typecode.
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The default Vector2d.typecode is 'd', meaning each vector component will be repre‐
sented as an 8-byte double precision float when exporting to bytes. If we set the type
code of a Vector2d instance to 'f' prior to exporting, each component will be exported
as a 4-byte single precision float. Example 9-13 demonstrates.

We are discussing adding a custom instance attribute, therefore
Example 9-13 uses the Vector2d implementation without
__slots__ as listed in Example 9-9.

Example 9-13. Customizing an instance by setting the typecode attribute that was for‐
merly inherited from the class
>>> from vector2d_v3 import Vector2d
>>> v1 = Vector2d(1.1, 2.2)
>>> dumpd = bytes(v1)
>>> dumpd
b'd\x9a\x99\x99\x99\x99\x99\xf1?\x9a\x99\x99\x99\x99\x99\x01@'
>>> len(dumpd)  # 
17
>>> v1.typecode = 'f'  # 
>>> dumpf = bytes(v1)
>>> dumpf
b'f\xcd\xcc\x8c?\xcd\xcc\x0c@'
>>> len(dumpf)  # 
9
>>> Vector2d.typecode  # 
'd'

Default bytes representation is 17 bytes long.
Set typecode to 'f' in the v1 instance.
Now the bytes dump is 9 bytes long.
Vector2d.typecode is unchanged; only the v1 instance uses typecode 'f'.

Now it should be clear why the bytes export of a Vector2d is prefixed by the type
code: we wanted to support different export formats.

If you want to change a class attribute you must set it on the class directly, not through
an instance. You could change the default typecode for all instances (that don’t have
their own typecode) by doing this:

>>> Vector2d.typecode = 'f'

However, there is an idiomatic Python way of achieving a more permanent effect, and
being more explicit about the change. Because class attributes are public, they are in‐
herited by subclasses, so it’s common practice to subclass just to customize a class data
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attribute. The Django class-based views use this technique extensively. Example 9-14
shows how.

Example 9-14. The ShortVector2d is a subclass of Vector2d, which only overwrites the
default typecode
>>> from vector2d_v3 import Vector2d
>>> class ShortVector2d(Vector2d):  # 
...     typecode = 'f'
...
>>> sv = ShortVector2d(1/11, 1/27)  # 
>>> sv
ShortVector2d(0.09090909090909091, 0.037037037037037035)  # 
>>> len(bytes(sv))  # 
9

Create ShortVector2d as a Vector2d subclass just to overwrite the typecode
class attribute.
Build ShortVector2d instance sv for demonstration.
Inspect the repr of sv.
Check that the length of the exported bytes is 9, not 17 as before.

This example also explains why I did not hardcode the class_name in Vec
to2d.__repr__, but instead got it from type(self).__name__, like this:

    # inside class Vector2d:

    def __repr__(self):
        class_name = type(self).__name__
        return '{}({!r}, {!r})'.format(class_name, *self)

If I had hardcoded the class_name, subclasses of Vector2d like ShortVector2d would
have to overwrite __repr__ just to change the class_name. By reading the name from
the type of the instance, I made __repr__ safer to inherit.

This ends our coverage of implementing a simple class that leverages the data model to
play well with the rest of Python—offering different object representations, implement‐
ing a custom formatting code, exposing read-only attributes, and supporting hash() to
integrate with sets and mappings.

Chapter Summary
The aim of this chapter was to demonstrate the use of special methods and conventions
in the construction of a well-behaved Pythonic class.

Is vector2d_v3.py (Example 9-9) more Pythonic than vector2d_v0.py (Example 9-2)?
The Vector2d class in vector2d_v3.py certainly exhibits more Python features. But
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whether the first or the last Vector2d implementation is more idiomatic depends on
the context where it would be used. Tim Peter’s Zen of Python says:

Simple is better than complex.

A Pythonic object should be as simple as the requirements allow—and not a parade of
language features.

But my goal in expanding the Vector2d code was to provide context for discussing
Python special methods and coding conventions. If you look back at Table 1-1, the
several listings in this chapter demonstrated:

• All string/bytes representation methods: __repr__, __str__, __format__, and
__bytes__.

• Several methods for converting an object to a number: __abs__, __bool__,
__hash__.

• The __eq__ operator, to test bytes conversion and to enable hashing (along with
__hash__).

While supporting conversion to bytes we also implemented an alternative constructor,
Vector2d.frombytes(), which provided the context for discussing the decorators
@classmethod (very handy) and @staticmethod (not so useful, module-level functions
are simpler). The frombytes method was inspired by it’s namesake in the array.ar
ray class.

We saw that the Format Specification Mini-Language is extensible by implementing a
__format__ method that does some minimal parsing of format_spec provided to the
format(obj, format_spec) built-in or within replacement fields '{:«for

mat_spec»}' in strings used with the str.format method.

In preparation to make Vector2d instances hashable, we made an effort to make them
immutable, at least preventing accidental changes by coding the x and y attributes as
private, and exposing them as read-only properties. We then implemented __hash__
using the recommended technique of xor-ing the hashes of the instance attributes.

We then discussed the memory savings and the caveats of declaring a __slots__ at‐
tribute in Vector2d. Because using __slots__ is somewhat tricky, it really makes sense
only when handling a very large number of instances—think millions of instances, not
just thousands.

The last topic we covered was the overriding of a class attribute accessed via the instances
(e.g., self.typecode). We did that first by creating an instance attribute, and then by
subclassing and overwriting at the class level.
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Throughout the chapter, I mentioned how design choices in the examples were in‐
formed by studying the API of standard Python objects. If this chapter can be sum‐
marized in one sentence, this is it:

To build Pythonic objects, observe how real Python objects behave.
— Ancient Chinese proverb

Further Reading
This chapter covered several special methods of the data model, so naturally the primary
references are the same as the ones provided in Chapter 1, which gave a high-level view
of the same topic. For convenience, I’ll repeat those four earlier recommendations here,
and add a few other ones:
“Data Model” chapter of The Python Language Reference

Most of the methods we used in this chapter are documented in “3.3.1. Basic cus‐
tomization”.

Python in a Nutshell, 2nd Edition, by Alex Martelli
Excellent coverage of the data model, even if only Python 2.5 is covered (in the
second edition). The fundamental concepts are all the same and most of the Data
Model APIs haven’t changed at all since Python 2.2, when built-in types and user-
defined classes became more compatible.

Python Cookbook, 3rd Edition, by David Beazley and Brian K. Jones
Very modern coding practices demonstrated through recipes. Chapter 8, “Classes
and Objects” in particular has several solutions related to discussions in this chapter.

Python Essential Reference, 4th Edition, by David Beazley
Covers the data model in detail in the context of Python 2.6 and Python 3.

In this chapter, we covered every special method related to object representation, except
__index__. It’s used to coerce an object to an integer index in the specific context of
sequence slicing, and was created to solve a need in NumPy. In practice, you and I are
not likely to need to implement __index__ unless we decide to write a new numeric
data type, and we want it to be usable as arguments to __getitem__. If you are curious
about it, A.M. Kuchling’s What’s New in Python 2.5 has a short explanation, and PEP
357 — Allowing Any Object to be Used for Slicing details the need for __index__, from
the perspective of an implementor of a C-extension, Travis Oliphant, the lead author of
NumPy.

An early realization of the need for distinct string representations for objects appeared
in Smalltalk. The 1996 article “How to Display an Object as a String: printString and
displayString” by Bobby Woolf discusses the implementation of the printString and
displayString methods in that language. From that article, I borrowed the pithy de‐
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scriptions “the way the developer wants to see it” and “the way the user wants to see it”
when defining repr() and str() in “Object Representations” on page 248.

Soapbox
Properties Help Reduce Upfront Costs

In the initial versions of Vector2d, the x and y attributes were public, as are all Python
instance and class attributes by default. Naturally, users of vectors need to be able to
access its components. Although our vectors are iterable and can be unpacked into a
pair of variables, it’s also desirable to be able to write my_vector.x and my_vector.y to
get each component.

When we felt the need to avoid accidental updates to the x and y attributes, we imple‐
mented properties, but nothing changed elsewhere in the code and in the public interface
of Vector2d, as verified by the doctests. We are still able to access my_vector.x and
my_vector.y.

This shows that we can always start our classes in the simplest possible way, with public
attributes, because when (or if) we later need to impose more control with getters and
setters, these can be implemented through properties without changing any of the code
that already interacts with our objects through the names (e.g., x and y) that were initially
simple public attributes.

This approach is the opposite of that encouraged by the Java language: a Java program‐
mer cannot start with simple public attributes and only later, if needed, implement
properties, because they don’t exist in the language. Therefore, writing getters and setters
is the norm in Java—even when those methods do nothing useful—because the API
cannot evolve from simple public attributes to getters and setters without breaking all
code that uses those attributes.

In addition, as our technical reviewer Alex Martelli points out, typing getter/setter calls
everywhere is goofy. You have to write stuff like:

---
>>> my_object.set_foo(my_object.get_foo() + 1)
---

Just to do this:

---
>>> my_object.foo += 1
---

Ward Cunningham, inventor of the wiki and an Extreme Programming pioneer, rec‐
ommends asking “What’s the simplest thing that could possibly work?” The idea is to

272 | Chapter 9: A Pythonic Object



11. See “Simplest Thing that Could Possibly Work: A Conversation with Ward Cunningham, Part V”.

focus on the goal.11 Implementing setters and getters up front is a distraction from the
goal. In Python, we can simply use public attributes knowing we can change them to
properties later, if the need arises.

Safety Versus Security in Private Attributes
Perl doesn’t have an infatuation with enforced privacy. It would prefer that you stayed
out of its living room because you weren’t invited, not because it has a shotgun.

— Larry Wall
 Creator of Perl

Python and Perl are polar opposites in many regards, but Larry and Guido seem to agree
on object privacy.

Having taught Python to many Java programmers over the years, I’ve found a lot of them
put too much faith in the privacy guarantees that Java offers. As it turns out, the Java
private and protected modifiers normally provide protection against accidents only
(i.e., safety). They can only guarantee security against malicious intent if the application
is deployed with a security manager, and that seldom happens in practice, even in cor‐
porate settings.

To prove my point, I like to show this Java class (Example 9-15).

Example 9-15. Confidential.java: a Java class with a private field named secret
public class Confidential {

    private String secret = "";

    public Confidential(String text) {
        secret = text.toUpperCase();
    }
}

In Example 9-15, I store the text in the secret field after converting it to uppercase,
just to make it obvious that whatever is in that field will be in all caps.

The actual demonstration consists of running expose.py with Jython. That script uses
introspection (“reflection” in Java parlance) to get the value of a private field. The code
is in Example 9-16.

Example 9-16. expose.py: Jython code to read the content of a private field in an‐
other class
import Confidential

message = Confidential('top secret text')
secret_field = Confidential.getDeclaredField('secret')
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secret_field.setAccessible(True)  # break the lock!
print 'message.secret =', secret_field.get(message)

If you run Example 9-16, this is what you get:

$ jython expose.py
message.secret = TOP SECRET TEXT

The string 'TOP SECRET TEXT' was read from the secret private field of the Confiden
tial class.

There is no black magic here: expose.py uses the Java reflection API to get a reference
to the private field named 'secret', and then calls 'secret_field.setAccessi
ble(True)' to make it readable. The same thing can be done with Java code, of course
(but it takes more than three times as many lines to do it; see the file Expose.java in the
Fluent Python code repository).

The crucial call .setAccessible(True) will fail only if the Jython script or the Java main
program (e.g., Expose.class) is running under the supervision of a SecurityManager.
But in the real world, Java applications are rarely deployed with a SecurityManager—
except for Java applets (remember those?).

My point is: in Java too, access control modifiers are mostly about safety and not security,
at least in practice. So relax and enjoy the power Python gives you. Use it responsibly.
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CHAPTER 10

Sequence Hacking, Hashing, and Slicing

Don’t check whether it is-a duck: check whether it quacks-like-a duck, walks-like-a duck,
etc, etc, depending on exactly what subset of duck-like behavior you need to play your
language-games with. (comp.lang.python, Jul. 26, 2000)

— Alex Martelli

In this chapter, we will create a class to represent a multidimensional Vector class—a
significant step up from the two-dimensional Vector2d of Chapter 9. Vector will behave
like a standard Python immutable flat sequence. Its elements will be floats, and it will
support the following by the end of this chapter:

• Basic sequence protocol: __len__ and __getitem__.
• Safe representation of instances with many items.
• Proper slicing support, producing new Vector instances.
• Aggregate hashing taking into account every contained element value.
• Custom formatting language extension.

We’ll also implement dynamic attribute access with __getattr__ as a way of replacing
the read-only properties we used in Vector2d—although this is not typical of sequence
types.

The code-intensive presentation will be interrupted by a conceptual discussion about
the idea of protocols as an informal interface. We’ll talk about how protocols and duck
typing are related, and its practical implications when you create your own types.

Let’s get started.
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Vector Applications Beyond Three Dimensions
Who needs a vector with 1,000 dimensions? Hint: not 3D artists! However, n-
dimensional vectors (with large values of n) are widely used in information retrieval,
where documents and text queries are represented as vectors, with one dimension per
word. This is called the Vector space model. In this model, a key relevance metric is the
cosine similarity (i.e., the cosine of the angle between a query vector and a document
vector). As the angle decreases, the cosine approaches the maximum value of 1, and so
does the relevance of the document to the query.

Having said that, the Vector class in this chapter is a didactic example and we’ll not do
much math here. Our goal is just to demonstrate some Python special methods in the
context of a sequence type.

NumPy and SciPy are the tools you need for real-world vector math. The PyPI package
gemsim, by Radim Rehurek, implements vector space modeling for natural language
processing and information retrieval, using NumPy and SciPy.

Vector: A User-Defined Sequence Type
Our strategy to implement Vector will be to use composition, not inheritance. We’ll
store the components in an array of floats, and will implement the methods needed for
our Vector to behave like an immutable flat sequence.

But before we implement the sequence methods, let’s make sure we have a baseline
implementation of Vector that is compatible with our earlier Vector2d class—except
where such compatibility would not make sense.

Vector Take #1: Vector2d Compatible
The first version of Vector should be as compatible as possible with our earlier Vec
tor2d class.

However, by design, the Vector constructor is not compatible with the Vector2d con‐
structor. We could make Vector(3, 4) and Vector(3, 4, 5) work, by taking arbitrary
arguments with *args in __init__, but the best practice for a sequence constructor is
to take the data as an iterable argument in the constructor, like all built-in sequence
types do. Example 10-1 shows some ways of instantiating our new Vector objects.

Example 10-1. Tests of Vector.__init__ and Vector.__repr__
>>> Vector([3.1, 4.2])
Vector([3.1, 4.2])
>>> Vector((3, 4, 5))
Vector([3.0, 4.0, 5.0])
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>>> Vector(range(10))
Vector([0.0, 1.0, 2.0, 3.0, 4.0, ...])

Apart from new constructor signature, I made sure every test I did with Vector2d (e.g.,
Vector2d(3, 4)) passed and produced the same result with a two-component Vec
tor([3, 4]).

When a Vector has more than six components, the string pro‐
duced by repr() is abbreviated with ... as seen in the last line of
Example 10-1. This is crucial in any collection type that may con‐
tain a large number of items, because repr is used for debugging
(and you don’t want a single large object to span thousands of lines
in your console or log). Use the reprlib module to produce
limited-length representations, as in Example 10-2.
The reprlib module is called repr in Python 2. The 2to3 tool
rewrites imports from repr automatically.

Example 10-2 lists the implementation of our first version of Vector (this example builds
on the code shown in Examples 9-2 and 9-3).

Example 10-2. vector_v1.py: derived from vector2d_v1.py
from array import array
import reprlib
import math

class Vector:
    typecode = 'd'

    def __init__(self, components):
        self._components = array(self.typecode, components)   

    def __iter__(self):
        return iter(self._components)   

    def __repr__(self):
        components = reprlib.repr(self._components)   
        components = components[components.find('['):-1]   
        return 'Vector({})'.format(components)

    def __str__(self):
        return str(tuple(self))

    def __bytes__(self):
        return (bytes([ord(self.typecode)]) +
                bytes(self._components))   
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1. The iter() function is covered in Chapter 14, along with the __iter__ method.

    def __eq__(self, other):
        return tuple(self) == tuple(other)

    def __abs__(self):
        return math.sqrt(sum(x * x for x in self))   

    def __bool__(self):
        return bool(abs(self))

    @classmethod
    def frombytes(cls, octets):
        typecode = chr(octets[0])
        memv = memoryview(octets[1:]).cast(typecode)
        return cls(memv)   

The self._components instance “protected” attribute will hold an array with
the Vector components.
To allow iteration, we return an iterator over self._components.1

Use reprlib.repr() to get a limited-length representation of self._compo
nents (e.g., array('d', [0.0, 1.0, 2.0, 3.0, 4.0, ...])).
Remove the array('d', prefix and the trailing ) before plugging the string into
a Vector constructor call.
Build a bytes object directly from self._components.
We can’t use hypot anymore, so we sum the squares of the components and
compute the sqrt of that.
The only change needed from the earlier frombytes is in the last line: we pass
the memoryview directly to the constructor, without unpacking with * as we did
before.

The way I used reprlib.repr deserves some elaboration. That function produces safe
representations of large or recursive structures by limiting the length of the output string
and marking the cut with '...'. I wanted the repr of a Vector to look like Vector([3.0,
4.0, 5.0]) and not Vector(array('d', [3.0, 4.0, 5.0])), because the fact that
there is an array inside a Vector is an implementation detail. Because these constructor
calls build identical Vector objects, I prefer the simpler syntax using a list argument.

When coding __repr__, I could have produced the simplified components display with
this expression: reprlib.repr(list(self._components)). However, this would be
wasteful, as I’d be copying every item from self._components to a list just to use the
list repr. Instead, I decided to apply reprlib.repr to the self._components array
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directly, and then chop off the characters outside of the []. That’s what the second line
of __repr__ does in Example 10-2.

Because of its role in debugging, calling repr() on an object should
never raise an exception. If something goes wrong inside your
implementation of __repr__, you must deal with the issue and do
your best to produce some serviceable output that gives the user a
chance of identifying the target object.

Note that the __str__, __eq__, and __bool__ methods are unchanged from Vector2d,
and only one character was changed in frombytes (a * was removed in the last line).
This is one of the benefits of making the original Vector2d iterable.

By the way, we could have subclassed Vector from Vector2d, but I chose not to do it
for two reasons. First, the incompatible constructors really make subclassing not ad‐
visable. I could work around that with some clever parameter handling in __init__,
but the second reason is more important: I want Vector to be a standalone example of
a class implementing the sequence protocol. That’s what we’ll do next, after a discussion
of the term protocol.

Protocols and Duck Typing
As early as Chapter 1, we saw that you don’t need to inherit from any special class to
create a fully functional sequence type in Python; you just need to implement the meth‐
ods that fulfill the sequence protocol. But what kind of protocol are we talking about?

In the context of object-oriented programming, a protocol is an informal interface,
defined only in documentation and not in code. For example, the sequence protocol in
Python entails just the __len__ and __getitem__ methods. Any class Spam that imple‐
ments those methods with the standard signature and semantics can be used anywhere
a sequence is expected. Whether Spam is a subclass of this or that is irrelevant; all that
matters is that it provides the necessary methods. We saw that in Example 1-1, repro‐
duced here in Example 10-3.

Example 10-3. Code from Example 1-1, reproduced here for convenience
import collections

Card = collections.namedtuple('Card', ['rank', 'suit'])

class FrenchDeck:
    ranks = [str(n) for n in range(2, 11)] + list('JQKA')
    suits = 'spades diamonds clubs hearts'.split()

    def __init__(self):
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        self._cards = [Card(rank, suit) for suit in self.suits
                                        for rank in self.ranks]

    def __len__(self):
        return len(self._cards)

    def __getitem__(self, position):
        return self._cards[position]

The FrenchDeck class in Example 10-3 takes advantage of many Python facilities because
it implements the sequence protocol, even if that is not declared anywhere in the code.
Any experienced Python coder will look at it and understand that it is a sequence, even
if it subclasses object. We say it is a sequence because it behaves like one, and that is
what matters.

This became known as duck typing, after Alex Martelli’s post quoted at the beginning
of this chapter.

Because protocols are informal and unenforced, you can often get away with imple‐
menting just part of a protocol, if you know the specific context where a class will be
used. For example, to support iteration, only __getitem__ is required; there is no need
to provide __len__.

We’ll now implement the sequence protocol in Vector, initially without proper support
for slicing, but later adding that.

Vector Take #2: A Sliceable Sequence
As we saw with the FrenchDeck example, supporting the sequence protocol is really easy
if you can delegate to a sequence attribute in your object, like our self._components
array. These __len__ and __getitem__ one-liners are a good start:

class Vector:
    # many lines omitted
    # ...

    def __len__(self):
        return len(self._components)

    def __getitem__(self, index):
        return self._components[index]

With these additions, all of these operations now work:

>>> v1 = Vector([3, 4, 5])
>>> len(v1)
3
>>> v1[0], v1[-1]
(3.0, 5.0)
>>> v7 = Vector(range(7))
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>>> v7[1:4]
array('d', [1.0, 2.0, 3.0])

As you can see, even slicing is supported—but not very well. It would be better if a slice
of a Vector was also a Vector instance and not a array. The old FrenchDeck class has
a similar problem: when you slice it, you get a list. In the case of Vector, a lot of
functionality is lost when slicing produces plain arrays.

Consider the built-in sequence types: every one of them, when sliced, produces a new
instance of its own type, and not of some other type.

To make Vector produce slices as Vector instances, we can’t just delegate the slicing to
array. We need to analyze the arguments we get in __getitem__ and do the right thing.

Now, let’s see how Python turns the syntax my_seq[1:3] into arguments for
my_seq.__getitem__(...).

How Slicing Works
A demo is worth a thousand words, so take a look at Example 10-4.

Example 10-4. Checking out the behavior of __getitem__ and slices
>>> class MySeq:
...     def __getitem__(self, index):
...         return index  # 
...
>>> s = MySeq()
>>> s[1]  # 
1
>>> s[1:4]  # 
slice(1, 4, None)
>>> s[1:4:2]  # 
slice(1, 4, 2)
>>> s[1:4:2, 9]  # 
(slice(1, 4, 2), 9)
>>> s[1:4:2, 7:9]  # 
(slice(1, 4, 2), slice(7, 9, None))

For this demonstration, __getitem__ merely returns whatever is passed to it.
A single index, nothing new.
The notation 1:4 becomes slice(1, 4, None).
slice(1, 4, 2) means start at 1, stop at 4, step by 2.
Surprise: the presence of commas inside the [] means __getitem__ receives a
tuple.
The tuple may even hold several slice objects.
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Now let’s take a closer look at slice itself in Example 10-5.

Example 10-5. Inspecting the attributes of the slice class
>>> slice  # 
<class 'slice'>
>>> dir(slice) # 
['__class__', '__delattr__', '__dir__', '__doc__', '__eq__',
 '__format__', '__ge__', '__getattribute__', '__gt__',
 '__hash__', '__init__', '__le__', '__lt__', '__ne__',
 '__new__', '__reduce__', '__reduce_ex__', '__repr__',
 '__setattr__', '__sizeof__', '__str__', '__subclasshook__',
 'indices', 'start', 'step', 'stop']

slice is a built-in type (we saw it first in “Slice Objects” on page 34).
Inspecting a slice we find the data attributes start, stop, and step, and an
indices method.

In Example 10-5, calling dir(slice) reveals an indices attribute, which turns out to
be a very interesting but little-known method. Here is what help(slice.indices)
reveals:
S.indices(len) -> (start, stop, stride)

Assuming a sequence of length len, calculate the start and stop indices, and the
stride length of the extended slice described by S. Out of bounds indices are clipped
in a manner consistent with the handling of normal slices.

In other words, indices exposes the tricky logic that’s implemented in the built-in
sequences to gracefully handle missing or negative indices and slices that are longer
than the target sequence. This method produces “normalized” tuples of nonnegative
start, stop, and stride integers adjusted to fit within the bounds of a sequence of the
given length.

Here are a couple of examples, considering a sequence of len == 5, e.g., 'ABCDE':

>>> slice(None, 10, 2).indices(5)  # 
(0, 5, 2)
>>> slice(-3, None, None).indices(5)  # 
(2, 5, 1)

'ABCDE'[:10:2] is the same as 'ABCDE'[0:5:2]
'ABCDE'[-3:] is the same as 'ABCDE'[2:5:1]
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As I write this, the slice.indices method is apparently not doc‐
umented in the online Python Library Reference. The Python
Python/C API Reference Manual documents a similar C-level
function, PySlice_GetIndicesEx. I discovered slice.indices
while exploring slice objects in the Python console, using dir()
and help(). Yet another evidence of the value of the interactive
console as a discovery tool.

In our Vector code, we’ll not need the slice.indices() method because when we get
a slice argument we’ll delegate its handling to the _components array. But if you can’t
count on the services of an underlying sequence, this method can be a huge time saver.

Now that we know how to handle slices, let’s take a look at the improved Vector.__ge
titem__ implementation.

A Slice-Aware __getitem__
Example 10-6 lists the two methods needed to make Vector behave as a sequence:
__len__ and __getitem__ (the latter now implemented to handle slicing correctly).

Example 10-6. Part of vector_v2.py: __len__ and __getitem__ methods added to Vec‐
tor class from vector_v1.py (see Example 10-2)
    def __len__(self):
        return len(self._components)

    def __getitem__(self, index):
        cls = type(self)   
        if isinstance(index, slice):   
            return cls(self._components[index])   
        elif isinstance(index, numbers.Integral):   
            return self._components[index]   
        else:
            msg = '{cls.__name__} indices must be integers'
            raise TypeError(msg.format(cls=cls))   

Get the class of the instance (i.e., Vector) for later use.
If the index argument is a slice…
…invoke the class to build another Vector instance from a slice of the _compo
nents array.
If the index is an int or some other kind of integer…
…just return the specific item from _components.
Otherwise, raise an exception.
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Excessive use of isinstance may be a sign of bad OO design, but
handling slices in __getitem__ is a justified use case. Note in
Example 10-6 the test against numbers.Integral—an Abstract
Base Class. Using ABCs in insinstance tests makes an API more
flexible and future-proof. Chapter 11 explains why. Unfortunate‐
ly, there is no ABC for slice in the Python 3.4 standard library.

To discover which exception to raise in the else clause of __getitem__, I used the
interactive console to check the result of 'ABC'[1, 2]. I then learned that Python raises
a TypeError, and I also copied the wording from the error message: “indices must be
integers.” To create Pythonic objects, mimic Python’s own objects.

Once the code in Example 10-6 is added to the Vector class, we have proper slicing
behavior, as Example 10-7 demonstrates.

Example 10-7. Tests of enhanced Vector.getitem from Example 10-6
    >>> v7 = Vector(range(7))
    >>> v7[-1]   
    6.0
    >>> v7[1:4]   
    Vector([1.0, 2.0, 3.0])
    >>> v7[-1:]   
    Vector([6.0])
    >>> v7[1,2]   
    Traceback (most recent call last):
      ...
    TypeError: Vector indices must be integers

An integer index retrieves just one component value as a float.
A slice index creates a new Vector.
A slice of len == 1 also creates a Vector.
Vector does not support multidimensional indexing, so a tuple of indices or
slices raises an error.

Vector Take #3: Dynamic Attribute Access
In the evolution from Vector2d to Vector, we lost the ability to access vector compo‐
nents by name (e.g., v.x, v.y). We are now dealing with vectors that may have a large
number of components. Still, it may be convenient to access the first few components
with shortcut letters such as x, y, z instead of v[0], v[1] and v[2].

Here is the alternative syntax we want to provide for reading the first four components
of a vector:
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2. Attribute lookup is more complicated than this; we’ll see the gory details in Part VI. For now, this simplified
explanation will do.

>>> v = Vector(range(10))
>>> v.x
0.0
>>> v.y, v.z, v.t
(1.0, 2.0, 3.0)

In Vector2d, we provided read-only access to x and y using the @property decorator
(Example 9-7). We could write four properties in Vector, but it would be tedious. The
__getattr__ special method provides a better way.

“The __getattr__ method is invoked by the interpreter when attribute lookup fails. In
simple terms, given the expression my_obj.x, Python checks if the my_obj instance has
an attribute named x; if not, the search goes to the class (my_obj.__class__), and then
up the inheritance graph.2 If the x attribute is not found, then the __getattr__ method
defined in the class of my_obj is called with self and the name of the attribute as a string
(e.g., 'x').

Example 10-8 lists our __getattr__ method. Essentially it checks whether the attribute
being sought is one of the letters xyzt and if so, returns the corresponding vector com‐
ponent.

Example 10-8. Part of vector_v3.py: __getattr__ method added to Vector class from
vector_v2.py
    shortcut_names = 'xyzt'

    def __getattr__(self, name):
        cls = type(self)   
        if len(name) == 1:   
            pos = cls.shortcut_names.find(name)   
            if 0 <= pos < len(self._components):   
                return self._components[pos]
        msg = '{.__name__!r} object has no attribute {!r}'   
        raise AttributeError(msg.format(cls, name))

Get the Vector class for later use.
If the name is one character, it may be one of the shortcut_names.
Find position of 1-letter name; str.find would also locate 'yz' and we don’t
want that, this is the reason for the test above.
If the position is within range, return the array element.
If either test failed, raise AttributeError with a standard message text.
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It’s not hard to implement __getattr__, but in this case it’s not enough. Consider the
bizarre interaction in Example 10-9.

Example 10-9. Inappropriate behavior: assigning to v.x raises no error, but introduces
an inconsistency
>>> v = Vector(range(5))
>>> v
Vector([0.0, 1.0, 2.0, 3.0, 4.0])
>>> v.x  # 
0.0
>>> v.x = 10  # 
>>> v.x  # 
10
>>> v
Vector([0.0, 1.0, 2.0, 3.0, 4.0])  # 

Access element v[0] as v.x.
Assign new value to v.x. This should raise an exception.
Reading v.x shows the new value, 10.
However, the vector components did not change.

Can you explain what is happening? In particular, why the second time v.x returns 10
if that value is not in the vector components array? If you don’t know right off the bat,
study the explanation of __getattr__ given right before Example 10-8. It’s a bit subtle,
but a very important foundation to understand a lot of what comes later in the book.

The inconsistency in Example 10-9 was introduced because of the way __getattr__
works: Python only calls that method as a fall back, when the object does not have the
named attribute. However, after we assign v.x = 10, the v object now has an x attribute,
so __getattr__ will no longer be called to retrieve v.x: the interpreter will just return
the value 10 that is bound to v.x. On the other hand, our implementation of __get
attr__ pays no attention to instance attributes other than self._components, from
where it retrieves the values of the “virtual attributes” listed in shortcut_names.

We need to customize the logic for setting attributes in our Vector class in order to
avoid this inconsistency.

Recall that in the latest Vector2d examples from Chapter 9, trying to assign to the .x
or .y instance attributes raised AttributeError. In Vector we want the same exception
with any attempt at assigning to all single-letter lowercase attribute names, just to avoid
confusion. To do that, we’ll implement __setattr__ as listed in Example 10-10.

Example 10-10. Part of vector_v3.py: __setattr__ method in Vector class
    def __setattr__(self, name, value):
        cls = type(self)
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        if len(name) == 1:   
            if name in cls.shortcut_names:   
                error = 'readonly attribute {attr_name!r}'
            elif name.islower():   
                error = "can't set attributes 'a' to 'z' in {cls_name!r}"
            else:
                error = ''   
            if error:   
                msg = error.format(cls_name=cls.__name__, attr_name=name)
                raise AttributeError(msg)
        super().__setattr__(name, value)   

Special handling for single-character attribute names.
If name is one of xyzt, set specific error message.
If name is lowercase, set error message about all single-letter names.
Otherwise, set blank error message.
If there is a nonblank error message, raise AttributeError.
Default case: call __setattr__ on superclass for standard behavior.

The super() function provides a way to access methods of super‐
classes dynamically, a necessity in a dynamic language support‐
ing multiple inheritance like Python. It’s used to delegate some task
from a method in a subclass to a suitable method in a superclass,
as seen in Example 10-10. There is more about super in “Multi‐
ple Inheritance and Method Resolution Order” on page 351.

While choosing the error message to display with AttributeError, my first check was
the behavior of the built-in complex type, because they are immutable and have a pair
of data attributes real and imag. Trying to change either of those in a complex instance
raises AttributeError with the message "can't set attribute". On the other hand,
trying to set a read-only attribute protected by a property as we did in “A Hashable
Vector2d” on page 257 produces the message "readonly attribute". I drew inspira‐
tion from both wordings to set the error string in __setitem__, but was more explicit
about the forbidden attributes.

Note that we are not disallowing setting all attributes, only single-letter, lowercase ones,
to avoid confusion with the supported read-only attributes x, y, z, and t.
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3. The sum, any, and all cover the most common uses of reduce. See the discussion in “Modern Replacements
for map, filter, and reduce” on page 142.

Knowing that declaring __slots__ at the class level prevents set‐
ting new instance attributes, it’s tempting to use that feature in‐
stead of implementing __setattr__ as we did. However, because
of all the caveats discussed in “The Problems with __slots__” on
page 267, using __slots__ just to prevent instance attribute cre‐
ation is not recommended. __slots__ should be used only to save
memory, and only if that is a real issue.

Even without supporting writing to the Vector components, here is an important take‐
away from this example: very often when you implement __getattr__ you need to code
__setattr__ as well, to avoid inconsistent behavior in your objects.

If we wanted to allow changing components, we could implement __setitem__ to en‐
able v[0] = 1.1 and/or __setattr__ to make v.x = 1.1 work. But Vector will remain
immutable because we want to make it hashable in the coming section.

Vector Take #4: Hashing and a Faster ==
Once more we get to implement a __hash__ method. Together with the existing
__eq__, this will make Vector instances hashable.

The __hash__ in Example 9-8 simply computed hash(self.x) ^ hash(self.y). We
now would like to apply the ^ (xor) operator to the hashes of every component, in
succession, like this: v[0] ^ v[1] ^ v[2]…. That is what the functools.reduce
function is for. Previously I said that reduce is not as popular as before,3 but computing
the hash of all vector components is a perfect job for it. Figure 10-1 depicts the general
idea of the reduce function.

Figure 10-1. Reducing functions—reduce, sum, any, all—produce a single aggregate re‐
sult from a sequence or from any finite iterable object.
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So far we’ve seen that functools.reduce() can be replaced by sum(), but now let’s
properly explain how it works. The key idea is to reduce a series of values to a single
value. The first argument to reduce() is a two-argument function, and the second
argument is an iterable. Let’s say we have a two-argument function fn and a list lst.
When you call reduce(fn, lst), fn will be applied to the first pair of elements—
fn(lst[0], lst[1])—producing a first result, r1. Then fn is applied to r1 and the next
element—fn(r1, lst[2])—producing a second result, r2. Now fn(r2, lst[3]) is
called to produce r3 … and so on until the last element, when a single result, rN, is
returned.

Here is how you could use reduce to compute 5! (the factorial of 5):

>>> 2 * 3 * 4 * 5  # the result we want: 5! == 120
120
>>> import functools
>>> functools.reduce(lambda a,b: a*b, range(1, 6))
120

Back to our hashing problem, Example 10-11 shows the idea of computing the aggregate
xor by doing it in three ways: with a for loop and two reduce calls.

Example 10-11. Three ways of calculating the accumulated xor of integers from 0 to 5
>>> n = 0
>>> for i in range(1, 6):  # 
...     n ^= i
...
>>> n
1
>>> import functools
>>> functools.reduce(lambda a, b: a^b, range(6))  # 
1
>>> import operator
>>> functools.reduce(operator.xor, range(6))  # 
1

Aggregate xor with a for loop and an accumulator variable.
functools.reduce using an anonymous function.
functools.reduce replacing custom lambda with operator.xor.

From the alternatives in Example 10-11, the last one is my favorite, and the for loop
comes second. What is your preference?

As seen in “The operator Module” on page 156, operator provides the functionality of
all Python infix operators in function form, lessening the need for lambda.

To code Vector.__hash__ in my preferred style, we need to import the functools and
operator modules. Example 10-12 shows the relevant changes.
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Example 10-12. Part of vector_v4.py: two imports and __hash__ method added to Vec‐
tor class from vector_v3.py
from array import array
import reprlib
import math
import functools  # 
import operator  # 

class Vector:
    typecode = 'd'

    # many lines omitted in book listing...

    def __eq__(self, other):  # 
        return tuple(self) == tuple(other)

    def __hash__(self):
        hashes = (hash(x) for x in self._components)  # 
        return functools.reduce(operator.xor, hashes, 0)  # 

    # more lines omitted...

Import functools to use reduce.
Import operator to use xor.
No change to __eq__; I listed it here because it’s good practice to keep __eq__
and __hash__ close in source code, because they need to work together.
Create a generator expression to lazily compute the hash of each component.
Feed hashes to reduce with the xor function to compute the aggregate hash
value; the third argument, 0, is the initializer (see next warning).

When using reduce, it’s good practice to provide the third argu‐
ment, reduce(function, iterable, initializer), to prevent
this exception: TypeError: reduce() of empty sequence with
no initial value (excellent message: explains the problem and
how to fix it). The initializer is the value returned if the se‐
quence is empty and is used as the first argument in the reducing
loop, so it should be the identity value of the operation. As exam‐
ples, for +, |, ^ the initializer should be 0, but for *, & it should
be 1.

As implemented, the __hash__ method in Example 10-8 is a perfect example of a map-
reduce computation (Figure 10-2).
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4. We’ll seriously consider the matter of Vector([1, 2]) == (1, 2) in “Operator Overloading 101” on page
372.

Figure 10-2. Map-reduce: apply function to each item to generate a new series (map),
then compute aggregate (reduce)

The mapping step produces one hash for each component, and the reduce step aggre‐
gates all hashes with the xor operator. Using map instead of a genexp makes the mapping
step even more visible:

    def __hash__(self):
        hashes = map(hash, self._components)
        return functools.reduce(operator.xor, hashes)

The solution with map would be less efficient in Python 2, where
the map function builds a new list with the results. But in Python
3, map is lazy: it creates a generator that yields the results on de‐
mand, thus saving memory—just like the generator expression we
used in the __hash__ method of Example 10-8.

While we are on the topic of reducing functions, we can replace our quick implemen‐
tation of __eq__ with another one that will be cheaper in terms of processing and mem‐
ory, at least for large vectors. As introduced in Example 9-2, we have this very concise
implementation of __eq__:

    def __eq__(self, other):
        return tuple(self) == tuple(other)

This works for Vector2d and for Vector—it even considers Vector([1, 2]) equal to
(1, 2), which may be a problem, but we’ll overlook that for now.4 But for Vector
instances that may have thousands of components, it’s very inefficient. It builds two
tuples copying the entire contents of the operands just to use the __eq__ of the tuple
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type. For Vector2d (with only two components), it’s a good shortcut, but not for the
large multidimensional vectors. A better way of comparing one Vector to another
Vector or iterable would be Example 10-13.

Example 10-13. Vector.eq using zip in a for loop for more efficient comparison
    def __eq__(self, other):
        if len(self) != len(other):  # 
            return False
        for a, b in zip(self, other):  # 
            if a != b:  # 
                return False
        return True  # 

If the len of the objects are different, they are not equal.
zip produces a generator of tuples made from the items in each iterable
argument. See “The Awesome zip” on page 293 if zip is new to you. The len
comparison above is needed because zip stops producing values without
warning as soon as one of the inputs is exhausted.
As soon as two components are different, exit returning False.
Otherwise, the objects are equal.

Example 10-13 is efficient, but the all function can produce the same aggregate com‐
putation of the for loop in one line: if all comparisons between corresponding com‐
ponents in the operands are True, the result is True. As soon as one comparison is False,
all returns False. Example 10-14 shows how __eq__ looks using all.

Example 10-14. Vector.eq using zip and all: same logic as Example 10-13
    def __eq__(self, other):
        return len(self) == len(other) and all(a == b for a, b in zip(self, other))

Note that we first check that the operands have equal length, because zip will stop at
the shortest operand.

Example 10-14 is the implementation we choose for __eq__ in vector_v4.py.

We wrap up this chapter by bringing back the __format__ method from Vector2d to
Vector.
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5. That’s surprising (to me, at least). I think zip should raise ValueError if the sequences are not all of the
same length, which is what happens when unpacking an iterable to a tuple of variables of different length.

The Awesome zip
Having a for loop that iterates over items without fiddling with index variables is great
and prevents lots of bugs, but demands some special utility functions. One of them is
the zip built-in, which makes it easy to iterate in parallel over two or more iterables by
returning tuples that you can unpack into variables, one for each item in the parallel
inputs. See Example 10-15.

The zip function is named after the zipper fastener because
the physical device works by interlocking pairs of teeth taken
from both zipper sides, a good visual analogy for what
zip(left, right) does. No relation with compressed files.

Example 10-15. The zip built-in at work
>>> zip(range(3), 'ABC')  # 
<zip object at 0x10063ae48>
>>> list(zip(range(3), 'ABC'))  # 
[(0, 'A'), (1, 'B'), (2, 'C')]
>>> list(zip(range(3), 'ABC', [0.0, 1.1, 2.2, 3.3]))  # 
[(0, 'A', 0.0), (1, 'B', 1.1), (2, 'C', 2.2)]
>>> from itertools import zip_longest  # 
>>> list(zip_longest(range(3), 'ABC', [0.0, 1.1, 2.2, 3.3], fillvalue=-1))
[(0, 'A', 0.0), (1, 'B', 1.1), (2, 'C', 2.2), (-1, -1, 3.3)]

zip returns a generator that produces tuples on demand.
Here we build a list from it just for display; usually we iterate over the
generator.
zip has a surprising trait: it stops without warning when one of the iterables is
exhausted.5

The itertools.zip_longest function behaves differently: it uses an optional
fillvalue (None by default) to complete missing values so it can generate tuples
until the last iterable is exhausted.

The enumerate built-in is another generator function often used in for loops to avoid
manual handling of index variables. If you are not familiar with enumerate, you should
definitely check it out in the “Built-in functions” documentation. The zip and enumer
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6. The Wolfram Mathworld site has an article on Hypersphere; on Wikipedia, “hypersphere” redirects to the "n-
sphere” entry.

ate built-ins, along with several other generator functions in the standard library, are
covered in “Generator Functions in the Standard Library” on page 424.

Vector Take #5: Formatting
The __format__ method of Vector will resemble that of Vector2d, but instead of pro‐
viding a custom display in polar coordinates, Vector will use spherical coordinates—
also known as “hyperspherical” coordinates, because now we support n dimensions,
and spheres are “hyperspheres” in 4D and beyond.6 Accordingly, we’ll change the cus‐
tom format suffix from 'p' to 'h'.

As we saw in “Formatted Displays” on page 253, when extending
the Format Specification Mini-Language it’s best to avoid reusing
format codes supported by built-in types. In particular, our exten‐
ded mini-language also uses the float formatting codes 'eEfFgGn
%' in their original meaning, so we definitely must avoid these.
Integers use 'bcdoxXn' and strings use 's'. I picked 'p' for Vec
tor2d polar coordinates. Code 'h' for hyperspherical coordi‐
nates is a good choice.

For example, given a Vector object in 4D space (len(v) == 4), the 'h' code will produce
a display like <r, Φ₁, Φ₂, Φ₃> where r is the magnitude (abs(v)) and the remaining
numbers are the angular coordinates Φ₁, Φ₂, Φ₃.

Here are some samples of the spherical coordinate format in 4D, taken from the doctests
of vector_v5.py (see Example 10-16):

>>> format(Vector([-1, -1, -1, -1]), 'h')
'<2.0, 2.0943951023931957, 2.186276035465284, 3.9269908169872414>'
>>> format(Vector([2, 2, 2, 2]), '.3eh')
'<4.000e+00, 1.047e+00, 9.553e-01, 7.854e-01>'
>>> format(Vector([0, 1, 0, 0]), '0.5fh')
'<1.00000, 1.57080, 0.00000, 0.00000>'

Before we can implement the minor changes required in __format__, we need to code
a pair of support methods: angle(n) to compute one of the angular coordinates (e.g.,
Φ₁), and angles() to return an iterable of all angular coordinates. I’ll not describe the
math here; if you’re curious, Wikipedia’s "n-sphere” entry has the formulas I used to
calculate the spherical coordinates from the Cartesian coordinates in the Vector com‐
ponents array.
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Example 10-16 is a full listing of vector_v5.py consolidating all we’ve implemented since
“Vector Take #1: Vector2d Compatible” on page 276 and introducing custom formatting.

Example 10-16. vector_v5.py: doctests and all code for final Vector class; callouts high‐
light additions needed to support __format__
"""
A multidimensional ``Vector`` class, take 5

A ``Vector`` is built from an iterable of numbers::

    >>> Vector([3.1, 4.2])
    Vector([3.1, 4.2])
    >>> Vector((3, 4, 5))
    Vector([3.0, 4.0, 5.0])
    >>> Vector(range(10))
    Vector([0.0, 1.0, 2.0, 3.0, 4.0, ...])

Tests with two dimensions (same results as ``vector2d_v1.py``)::

    >>> v1 = Vector([3, 4])
    >>> x, y = v1
    >>> x, y
    (3.0, 4.0)
    >>> v1
    Vector([3.0, 4.0])
    >>> v1_clone = eval(repr(v1))
    >>> v1 == v1_clone
    True
    >>> print(v1)
    (3.0, 4.0)
    >>> octets = bytes(v1)
    >>> octets
    b'd\\x00\\x00\\x00\\x00\\x00\\x00\\x08@\\x00\\x00\\x00\\x00\\x00\\x00\\x10@'
    >>> abs(v1)
    5.0
    >>> bool(v1), bool(Vector([0, 0]))
    (True, False)

Test of ``.frombytes()`` class method:

    >>> v1_clone = Vector.frombytes(bytes(v1))
    >>> v1_clone
    Vector([3.0, 4.0])
    >>> v1 == v1_clone
    True

Tests with three dimensions::
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    >>> v1 = Vector([3, 4, 5])
    >>> x, y, z = v1
    >>> x, y, z
    (3.0, 4.0, 5.0)
    >>> v1
    Vector([3.0, 4.0, 5.0])
    >>> v1_clone = eval(repr(v1))
    >>> v1 == v1_clone
    True
    >>> print(v1)
    (3.0, 4.0, 5.0)
    >>> abs(v1)  # doctest:+ELLIPSIS
    7.071067811...
    >>> bool(v1), bool(Vector([0, 0, 0]))
    (True, False)

Tests with many dimensions::

    >>> v7 = Vector(range(7))
    >>> v7
    Vector([0.0, 1.0, 2.0, 3.0, 4.0, ...])
    >>> abs(v7)  # doctest:+ELLIPSIS
    9.53939201...

Test of ``.__bytes__`` and ``.frombytes()`` methods::

    >>> v1 = Vector([3, 4, 5])
    >>> v1_clone = Vector.frombytes(bytes(v1))
    >>> v1_clone
    Vector([3.0, 4.0, 5.0])
    >>> v1 == v1_clone
    True

Tests of sequence behavior::

    >>> v1 = Vector([3, 4, 5])
    >>> len(v1)
    3
    >>> v1[0], v1[len(v1)-1], v1[-1]
    (3.0, 5.0, 5.0)

Test of slicing::

    >>> v7 = Vector(range(7))
    >>> v7[-1]
    6.0
    >>> v7[1:4]
    Vector([1.0, 2.0, 3.0])
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    >>> v7[-1:]
    Vector([6.0])
    >>> v7[1,2]
    Traceback (most recent call last):
      ...
    TypeError: Vector indices must be integers

Tests of dynamic attribute access::

    >>> v7 = Vector(range(10))
    >>> v7.x
    0.0
    >>> v7.y, v7.z, v7.t
    (1.0, 2.0, 3.0)

Dynamic attribute lookup failures::

    >>> v7.k
    Traceback (most recent call last):
      ...
    AttributeError: 'Vector' object has no attribute 'k'
    >>> v3 = Vector(range(3))
    >>> v3.t
    Traceback (most recent call last):
      ...
    AttributeError: 'Vector' object has no attribute 't'
    >>> v3.spam
    Traceback (most recent call last):
      ...
    AttributeError: 'Vector' object has no attribute 'spam'

Tests of hashing::

    >>> v1 = Vector([3, 4])
    >>> v2 = Vector([3.1, 4.2])
    >>> v3 = Vector([3, 4, 5])
    >>> v6 = Vector(range(6))
    >>> hash(v1), hash(v3), hash(v6)
    (7, 2, 1)

Most hash values of non-integers vary from a 32-bit to 64-bit CPython build::

    >>> import sys
    >>> hash(v2) == (384307168202284039 if sys.maxsize > 2**32 else 357915986)
    True

Tests of ``format()`` with Cartesian coordinates in 2D::
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    >>> v1 = Vector([3, 4])
    >>> format(v1)
    '(3.0, 4.0)'
    >>> format(v1, '.2f')
    '(3.00, 4.00)'
    >>> format(v1, '.3e')
    '(3.000e+00, 4.000e+00)'

Tests of ``format()`` with Cartesian coordinates in 3D and 7D::

    >>> v3 = Vector([3, 4, 5])
    >>> format(v3)
    '(3.0, 4.0, 5.0)'
    >>> format(Vector(range(7)))
    '(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0)'

Tests of ``format()`` with spherical coordinates in 2D, 3D and 4D::

    >>> format(Vector([1, 1]), 'h')  # doctest:+ELLIPSIS
    '<1.414213..., 0.785398...>'
    >>> format(Vector([1, 1]), '.3eh')
    '<1.414e+00, 7.854e-01>'
    >>> format(Vector([1, 1]), '0.5fh')
    '<1.41421, 0.78540>'
    >>> format(Vector([1, 1, 1]), 'h')  # doctest:+ELLIPSIS
    '<1.73205..., 0.95531..., 0.78539...>'
    >>> format(Vector([2, 2, 2]), '.3eh')
    '<3.464e+00, 9.553e-01, 7.854e-01>'
    >>> format(Vector([0, 0, 0]), '0.5fh')
    '<0.00000, 0.00000, 0.00000>'
    >>> format(Vector([-1, -1, -1, -1]), 'h')  # doctest:+ELLIPSIS
    '<2.0, 2.09439..., 2.18627..., 3.92699...>'
    >>> format(Vector([2, 2, 2, 2]), '.3eh')
    '<4.000e+00, 1.047e+00, 9.553e-01, 7.854e-01>'
    >>> format(Vector([0, 1, 0, 0]), '0.5fh')
    '<1.00000, 1.57080, 0.00000, 0.00000>'
"""

from array import array
import reprlib
import math
import numbers
import functools
import operator
import itertools   

class Vector:
    typecode = 'd'
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    def __init__(self, components):
        self._components = array(self.typecode, components)

    def __iter__(self):
        return iter(self._components)

    def __repr__(self):
        components = reprlib.repr(self._components)
        components = components[components.find('['):-1]
        return 'Vector({})'.format(components)

    def __str__(self):
        return str(tuple(self))

    def __bytes__(self):
        return (bytes([ord(self.typecode)]) +
                bytes(self._components))

    def __eq__(self, other):
        return (len(self) == len(other) and
                all(a == b for a, b in zip(self, other)))

    def __hash__(self):
        hashes = (hash(x) for x in self)
        return functools.reduce(operator.xor, hashes, 0)

    def __abs__(self):
        return math.sqrt(sum(x * x for x in self))

    def __bool__(self):
        return bool(abs(self))

    def __len__(self):
        return len(self._components)

    def __getitem__(self, index):
        cls = type(self)
        if isinstance(index, slice):
            return cls(self._components[index])
        elif isinstance(index, numbers.Integral):
            return self._components[index]
        else:
            msg = '{.__name__} indices must be integers'
            raise TypeError(msg.format(cls))

    shortcut_names = 'xyzt'

    def __getattr__(self, name):
        cls = type(self)
        if len(name) == 1:
            pos = cls.shortcut_names.find(name)
            if 0 <= pos < len(self._components):
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                return self._components[pos]
        msg = '{.__name__!r} object has no attribute {!r}'
        raise AttributeError(msg.format(cls, name))

    def angle(self, n):   
        r = math.sqrt(sum(x * x for x in self[n:]))
        a = math.atan2(r, self[n-1])
        if (n == len(self) - 1) and (self[-1] < 0):
            return math.pi * 2 - a
        else:
            return a

    def angles(self):   
        return (self.angle(n) for n in range(1, len(self)))

    def __format__(self, fmt_spec=''):
        if fmt_spec.endswith('h'):  # hyperspherical coordinates
            fmt_spec = fmt_spec[:-1]
            coords = itertools.chain([abs(self)],
                                     self.angles())   
            outer_fmt = '<{}>'   
        else:
            coords = self
            outer_fmt = '({})'   
        components = (format(c, fmt_spec) for c in coords)   
        return outer_fmt.format(', '.join(components))   

    @classmethod
    def frombytes(cls, octets):
        typecode = chr(octets[0])
        memv = memoryview(octets[1:]).cast(typecode)
        return cls(memv)

Import itertools to use chain function in __format__.
Compute one of the angular coordinates, using formulas adapted from the n-
sphere article.
Create generator expression to compute all angular coordinates on demand.
Use itertools.chain to produce genexp to iterate seamlessly over the
magnitude and the angular coordinates.
Configure spherical coordinate display with angular brackets.
Configure Cartesian coordinate display with parentheses.
Create generator expression to format each coordinate item on demand.
Plug formatted components separated by commas inside brackets or
parentheses.
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We are making heavy use of generator expressions in __for
mat__, angle, and angles but our focus here is in providing
__format__ to bring Vector to the same implementation level as
Vector2d. When we cover generators in Chapter 14 we’ll use some
of the code in Vector as examples, and then the generator tricks
will be explained in detail.

This concludes our mission for this chapter. The Vector class will be enhanced with
infix operators in Chapter 13, but our goal here was to explore techniques for coding
special methods that are useful in a wide variety of collection classes.

Chapter Summary
The Vector example in this chapter was designed to be compatible with Vector2d,
except for the use of a different constructor signature accepting a single iterable argu‐
ment, just like the built-in sequence types do. The fact that Vector behaves as a sequence
just by implementing __getitem__ and __len__ prompted a discussion of protocols,
the informal interfaces used in duck-typed languages.

We then looked at how the my_seq[a:b:c] syntax works behind the scenes, by creating
a slice(a, b, c) object and handing it to __getitem__. Armed with this knowledge,
we made Vector respond correctly to slicing, by returning new Vector instances, just
like a Pythonic sequence is expected to do.

The next step was to provide read-only access to the first few Vector components using
notation such as my_vec.x. We did it by implementing __getattr__. Doing that opened
the possibility of tempting the user to assign to those special components by writing
my_vec.x = 7, revealing a potential bug. We fixed it by implementing __setattr__ as
well, to forbid assigning values to single-letter attributes. Very often, when you code a
__getattr__ you need to add __setattr__ too, in order to avoid inconsistent behavior.

Implementing the __hash__ function provided the perfect context for using func
tools.reduce, because we needed to apply the xor operator ̂  in succession to the hashes
of all Vector components to produce an aggregate hash value for the whole Vector.
After applying reduce in __hash__, we used the all reducing built-in to create a more
efficient __eq__ method.

The last enhancement to Vector was to reimplement the __format__ method from
Vector2d by supporting spherical coordinates as an alternative to the default Cartesian
coordinates. We used quite a bit of math and several generators to code __format__ and
its auxiliary functions, but these are implementation details—and we’ll come back to
the generators in Chapter 14. The goal of that last section was to support a custom
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format, thus fulfilling the promise of a Vector that could do everything a Vector2d did,
and more.

As we did in Chapter 9, here we often looked at how standard Python objects behave,
to emulate them and provide a “Pythonic” look-and-feel to Vector.

In Chapter 13, we will implement several infix operators on Vector. The math will be
much simpler than that in the angle() method here, but exploring how infix operators
work in Python is a great lesson in OO design. But before we get to operator overloading,
we’ll step back from working on one class and look at organizing multiple classes with
interfaces and inheritance, the subjects of Chapters 11 and 11.

Further Reading
Most special methods covered in the Vector example also appear in the Vector2d
example from Chapter 9, so the references in “Further Reading” on page 271 are all
relevant here.

The powerful reduce higher-order function is also known as fold, accumulate, aggre‐
gate, compress, and inject. For more information, see Wikipedia’s “Fold (higher-order
function)” article, which presents applications of that higher-order function with em‐
phasis on functional programming with recursive data structures. The article also in‐
cludes a table listing fold-like functions in dozens of programming languages.

Soapbox
Protocols as Informal Interfaces

Protocols are not an invention of Python. The Smalltalk team, who also coined the
expression “object oriented,” used “protocol” as a synonym for what we now call inter‐
faces. Some Smalltalk programming environments allowed programmers to tag a group
of methods as a protocol, but that was merely a documentation and navigation aid, and
not enforced by the language. That’s why I believe “informal interface” is a reasonable
short explanation for “protocol” when I speak to an audience that is more familiar with
formal (and compiler enforced) interfaces.

Established protocols naturally evolve in any language that uses dynamic typing, that
is, when type-checking done at runtime because there is no static type information in
method signatures and variables. Ruby is another important OO language that has dy‐
namic typing and uses protocols.

In the Python documentation, you can often tell when a protocol is being discussed
when you see language like “a file-like object.” This is a quick way of saying “something
that behaves sufficiently like a file, by implementing the parts of the file interface that
are relevant in the context.”
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You may think that implementing only part of a protocol is sloppy, but it has the ad‐
vantage of keeping things simple. Section 3.3 of the “Data Model” chapter suggests:

When implementing a class that emulates any built-in type, it is important that the
emulation only be implemented to the degree that it makes sense for the object being
modeled. For example, some sequences may work well with retrieval of individual el‐
ements, but extracting a slice may not make sense.

— “Data Model” chapter of The Python Language Reference

When we don’t need to code nonsense methods just to fulfill some over-designed in‐
terface contract and keep the compiler happy, it becomes easier to follow the KISS prin‐
ciple.

I’ll have more to say about protocols and interfaces in Chapter 11, where that is actually
the main focus.

Origins of Duck Typing

I believe the Ruby community, more than any other, helped popularize the term “duck
typing,” as they preached to the Java masses. But the expression has been used in Python
discussions before either Ruby or Python were “popular.” According to Wikipedia, an
early example of the duck analogy in object-oriented programming is a message to the
Python-list by Alex Martelli from July 26, 2000: polymorphism (was Re: Type checking
in python?). That’s where the quote at the beginning of this chapter came from. If you
are curious about the literary origins of the “duck typing” term, and the applications of
this OO concept in many languages, check out Wikipedia’s “Duck typing” entry.

A safe format, with Enhanced Usability

While implementing __format__, we did not take any precautions regarding Vector
instances with a very large number of components, as we did in __repr__ using re
prlib. The reasoning is that repr() is for debugging and logging, so it must always
generate some serviceable output, while __format__ is used to display output to end
users who presumably want to see the entire Vector. If you think this is dangerous, then
it would be cool to implement a further extension to the format specifier mini-language.

Here is how I’d do it: by default, any formatted Vector would display a reasonable but
limited number of components, say 30. If there are more elements than that, the default
behavior would be similar to what the reprlib does: chop the excess and put ... in its
place. However, if the format specifier ended with the special * code, meaning “all,” then
the size limitation would be disabled. So a user who’s unaware of the problem of very
long displays will not be bitten by it by accident. But if the default limitation becomes a
nuisance, then the presence of the ... should prompt the user to research the docu‐
mentation and discover the * formatting code.

Send a pull request to the Fluent Python repository on GitHub if you implement this!

The Search for a Pythonic Sum
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7. I adapted the code for this presentation: in 2003, reduce was a built-in, but in Python 3 we need to import
it; also, I replaced the names x and y with my_list and sub, for sub-list.

There’s no single answer to “What is Pythonic?” just as there’s no single answer to “What
is beautiful?” Saying, as I often do, that it means using “idiomatic Python” is not 100%
satisfactory, because what may be “idiomatic” for you may not be for me. One thing I
know: “idiomatic” does not mean using the most obscure language features.

In the Python-list, there’s a thread from April 2003 titled “Pythonic Way to Sum n-th
List Element?”. It’s relevant to our discussion of reduce in this chapter.

The original poster, Guy Middleton, asked for an improvement on this solution, stating
he did not like to use lambda:7

>>> my_list = [[1, 2, 3], [40, 50, 60], [9, 8, 7]]
>>> import functools
>>> functools.reduce(lambda a, b: a+b, [sub[1] for sub in my_list])
60

That code uses lots of idioms: lambda, reduce, and a list comprehension. It would prob‐
ably come last in a popularity contest, because it offends people who hate lambda and
those who despise list comprehensions—pretty much both sides of a divide.

If you’re going to use lambda, there’s probably no reason to use a list comprehension—
except for filtering, which is not the case here.

Here is a solution of my own that will please the lambda lovers:

>>> functools.reduce(lambda a, b: a + b[1], my_list, 0)
60

I did not take part in the original thread, and I wouldn’t use that in real code, because I
don’t like lambda too much myself, but I wanted to show an example without a list
comprehension.

The first answer came from Fernando Perez, creator of IPython, highlighting that Num‐
Py supports n-dimensional arrays and n-dimensional slicing:

>>> import numpy as np
>>> my_array = np.array(my_list)
>>> np.sum(my_array[:, 1])
60

I think Perez’s solution is cool, but Guy Middleton praised this next solution, by Paul
Rubin and Skip Montanaro:

>>> import operator
>>> functools.reduce(operator.add, [sub[1] for sub in my_list], 0)
60

Then Evan Simpson asked, “What’s wrong with this?”:
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>>> t = 0
>>> for sub in my_list:
...     total += sub[1]
>>> t
60

Lots of people agreed that was quite Pythonic. Alex Martelli went as far as saying that’s
probably how Guido would code it.

I like Evan Simpson’s code but I also like David Eppstein’s comment on it:

If you want the sum of a list of items, you should write it in a way that looks like “the
sum of a list of items”, not in a way that looks like “loop over these items, maintain
another variable t, perform a sequence of additions”. Why do we have high level lan‐
guages if not to express our intentions at a higher level and let the language worry about
what low-level operations are needed to implement it?

Then Alex Martelli comes back to suggest:

“The sum” is so frequently needed that I wouldn’t mind at all if Python singled it out as
a built-in. But “reduce(operator.add, …” just isn’t a great way to express it, in my opinion
(and yet as an old APL’er, and FP-liker, I should like it—but I don’t).

Alex goes on to suggest a sum() function, which he contributed. It became a built-in in
Python 2.3, released only three months after that conversation took place. So Alex’s
preferred syntax became the norm:

>>> sum([sub[1] for sub in my_list])
60

By the end of the next year (November 2004), Python 2.4 was launched with generator
expressions, providing what is now in my opinion the most Pythonic answer to Guy
Middleton’s original question:

>>> sum(sub[1] for sub in my_list)
60

This is not only more readable than reduce but also avoids the trap of the empty se‐
quence: sum([]) is 0, simple as that.

In the same conversation, Alex Martelli suggests the reduce built-in in Python 2 was
more trouble than it was worth, because it encouraged coding idioms that were hard to
explain. He was most convincing: the function was demoted to the functools module
in Python 3.

Still, functools.reduce has its place. It solved the problem of our Vector.__hash__ in
a way that I would call Pythonic.
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CHAPTER 11

Interfaces: From Protocols to ABCs

An abstract class represents an interface.1

— Bjarne Stroustrup
 Creator of C++

Interfaces are the subject of this chapter: from the dynamic protocols that are the hall‐
mark of duck typing to abstract base classes (ABCs) that make interfaces explicit and
verify implementations for conformance.

If you have a Java, C#, or similar background, the novelty here is in the informal pro‐
tocols of duck typing. But for the long-time Pythonista or Rubyist, that is the “normal”
way of thinking about interfaces, and the news is the formality and type-checking of
ABCs. The language was 15 years old when ABCs were introduced in Python 2.6.

We’ll start the chapter by reviewing how the Python community traditionally under‐
stood interfaces as somewhat loose—in the sense that a partially implemented interface
is often acceptable. We’ll make that clear through a couple examples that highlight the
dynamic nature of duck typing.

Then, a guest essay by Alex Martelli will introduce ABCs and give name to a new trend
in Python programming. The rest of the chapter will be devoted to ABCs, starting with
their common use as superclasses when you need to implement an interface. We’ll then
see when an ABC checks concrete subclasses for conformance to the interface it defines,
and how a registration mechanism lets developers declare that a class implements an
interface without subclassing. Finally, we’ll see how an ABC can be programmed to
automatically “recognize” arbitrary classes that conform to its interface—without sub‐
classing or explicit registration.
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We will implement a new ABC to see how that works, but Alex Martelli and I don’t want
to encourage you to start writing your own ABCs left and right. The risk of over-
engineering with ABCs is very high.

ABCs, like descriptors and metaclasses, are tools for building
frameworks. Therefore, only a very small minority of Python de‐
velopers can create ABCs without imposing unreasonable limita‐
tions and needless work on fellow programmers.

Let’s get started with the Pythonic view of interfaces.

Interfaces and Protocols in Python Culture
Python was already highly successful before ABCs were introduced, and most existing
code does not use them at all. Since Chapter 1, we’ve been talking about duck typing and
protocols. In “Protocols and Duck Typing” on page 279, protocols are defined as the
informal interfaces that make polymorphism work in languages with dynamic typing
like Python.

How do interfaces work in a dynamic-typed language? First, the basics: even without
an interface keyword in the language, and regardless of ABCs, every class has an
interface: the set public attributes (methods or data attributes) implemented or inherited
by the class. This includes special methods, like __getitem__ or __add__.

By definition, protected and private attributes are not part of an interface, even if “pro‐
tected” is merely a naming convention (the single leading underscore) and private at‐
tributes are easily accessed (recall “Private and “Protected” Attributes in Python” on
page 262). It is bad form to violate these conventions.

On the other hand, it’s not a sin to have public data attributes as part of the interface of
an object, because—if necessary—a data attribute can always be turned into a property
implementing getter/setter logic without breaking client code that uses the plain
obj.attr syntax. We did that in the Vector2d class: in Example 11-1, we see the first
implementation with public x and y attributes.

Example 11-1. vector2d_v0.py: x and y are public data attributes (same code as
Example 9-2)
class Vector2d:
    typecode = 'd'

    def __init__(self, x, y):
        self.x = float(x)
        self.y = float(y)

    def __iter__(self):
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        return (i for i in (self.x, self.y))

    # more methods follow (omitted in this listing)

In Example 9-7, we turned x and y into read-only properties (Example 11-2). This is a
significant refactoring, but an essential part of the interface of Vector2d is unchanged:
users can still read my_vector.x and my_vector.y.

Example 11-2. vector2d_v3.py: x and y reimplemented as properties (see full listing in
Example 9-9)
class Vector2d:
    typecode = 'd'

    def __init__(self, x, y):
        self.__x = float(x)
        self.__y = float(y)

    @property
    def x(self):
        return self.__x

    @property
    def y(self):
        return self.__y

    def __iter__(self):
        return (i for i in (self.x, self.y))

    # more methods follow (omitted in this listing)

A useful complementary definition of interface is: the subset of an object’s public meth‐
ods that enable it to play a specific role in the system. That’s what is implied when the
Python documentation mentions “a file-like object” or “an iterable,” without specifying
a class. An interface seen as a set of methods to fulfill a role is what Smalltalkers called
a procotol, and the term spread to other dynamic language communities. Protocols are
independent of inheritance. A class may implement several protocols, enabling its in‐
stances to fulfill several roles.

Protocols are interfaces, but because they are informal—defined only by documentation
and conventions—protocols cannot be enforced like formal interfaces can (we’ll see
how ABCs enforce interface conformance later in this chapter). A protocol may be
partially implemented in a particular class, and that’s OK. Sometimes all a specific API
requires from “a file-like object” is that it has a .read() method that returns bytes. The
remaining file methods may or may not be relevant in the context.

As I write this, the Python 3 documentation of memoryview says that it works with objects
that “support the buffer protocol, which is only documented at the C API level. The
bytearray constructor accepts an “an object conforming to the buffer interface.” Now
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2. Issue16518: “add buffer protocol to glossary” was actually resolved by replacing many mentions of “object that
supports the buffer protocol/interface/API” with “bytes-like object”; a follow-up issue is “Other mentions of
the buffer protocol”.

there is a move to adopt “bytes-like object” as a friendlier term.2 I point this out to
emphasize that “X-like object,” “X protocol,” and “X interface” are synonyms in the
minds of Pythonistas.

One of the most fundamental interfaces in Python is the sequence protocol. The inter‐
preter goes out of its way to handle objects that provide even a minimal implementation
of that protocol, as the next section demonstrates.

Python Digs Sequences
The philosophy of the Python data model is to cooperate with essential protocols as
much as possible. When it comes to sequences, Python tries hard to work with even the
simplest implementations.

Figure 11-1 shows how the formal Sequence interface is defined as an ABC.

Figure 11-1. UML class diagram for the Sequence ABC and related abstract classes
from collections.abc. Inheritance arrows point from subclass to its superclasses. Names
in italic are abstract methods.

Now, take a look at the Foo class in Example 11-3. It does not inherit from abc.Se
quence, and it only implements one method of the sequence protocol: __getitem__
(__len__ is missing).

Example 11-3. Partial sequence protocol implementation with __getitem__: enough for
item access, iteration, and the in operator
>>> class Foo:
...     def __getitem__(self, pos):
...         return range(0, 30, 10)[pos]
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...
>>> f[1]
10
>>> f = Foo()
>>> for i in f: print(i)
...
0
10
20
>>> 20 in f
True
>>> 15 in f
False

There is no method __iter__ yet Foo instances are iterable because—as a fallback—
when Python sees a __getitem__ method, it tries to iterate over the object by calling
that method with integer indexes starting with 0. Because Python is smart enough to
iterate over Foo instances, it can also make the in operator work even if Foo has no
__contains__ method: it does a full scan to check if an item is present.

In summary, given the importance of the sequence protocol, in the absence __iter__
and __contains__ Python still manages to make iteration and the in operator work by
invoking __getitem__.

Our original FrenchDeck from Chapter 1 does not subclass from abc.Sequence either,
but it does implement both methods of the sequence protocol: __getitem__ and
__len__. See Example 11-4.

Example 11-4. A deck as a sequence of cards (same as Example 1-1)
import collections

Card = collections.namedtuple('Card', ['rank', 'suit'])

class FrenchDeck:
    ranks = [str(n) for n in range(2, 11)] + list('JQKA')
    suits = 'spades diamonds clubs hearts'.split()

    def __init__(self):
        self._cards = [Card(rank, suit) for suit in self.suits
                                        for rank in self.ranks]

    def __len__(self):
        return len(self._cards)

    def __getitem__(self, position):
        return self._cards[position]

A good part of the demos in Chapter 1 work because of the special treatment Python
gives to anything vaguely resembling a sequence. Iteration in Python represents an
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extreme form of duck typing: the interpreter tries two different methods to iterate over
objects.

Now let’s study another example emphasizing the dynamic nature of protocols.

Monkey-Patching to Implement a Protocol at Runtime
The FrenchDeck class from Example 11-4 has a major flaw: it cannot be shuffled. Years
ago when I first wrote the FrenchDeck example I did implement a shuffle method.
Later I had a Pythonic insight: if a FrenchDeck acts like a sequence, then it doesn’t need
its own shuffle method because there is already random.shuffle, documented as
“Shuffle the sequence x in place.”

When you follow established protocols, you improve your chan‐
ces of leveraging existing standard library and third-party code,
thanks to duck typing.

The standard random.shuffle function is used like this:

>>> from random import shuffle
>>> l = list(range(10))
>>> shuffle(l)
>>> l
[5, 2, 9, 7, 8, 3, 1, 4, 0, 6]

However, if we try to shuffle a FrenchDeck instance, we get an exception, as in
Example 11-5.

Example 11-5. random.shuffle cannot handle FrenchDeck
>>> from random import shuffle
>>> from frenchdeck import FrenchDeck
>>> deck = FrenchDeck()
>>> shuffle(deck)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File ".../python3.3/random.py", line 265, in shuffle
    x[i], x[j] = x[j], x[i]
TypeError: 'FrenchDeck' object does not support item assignment

The error message is quite clear: “'FrenchDeck' object does not support item assign‐
ment.” The problem is that shuffle operates by swapping items inside the collection,
and FrenchDeck only implements the immutable sequence protocol. Mutable sequences
must also provide a __setitem__ method.
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Because Python is dynamic, we can fix this at runtime, even at the interactive console.
Example 11-6 shows how to do it.

Example 11-6. Monkey patching FrenchDeck to make it mutable and compatible with
random.shuffle (continuing from Example 11-5)
>>> def set_card(deck, position, card):  
...     deck._cards[position] = card
...
>>> FrenchDeck.__setitem__ = set_card  
>>> shuffle(deck)  
>>> deck[:5]
[Card(rank='3', suit='hearts'), Card(rank='4', suit='diamonds'), Card(rank='4',
suit='clubs'), Card(rank='7', suit='hearts'), Card(rank='9', suit='spades')]

Create a function that takes deck, position, and card as arguments.
Assign that function to an attribute named __setitem__ in the FrenchDeck class.
deck can now be sorted because FrenchDeck now implements the necessary
method of the mutable sequence protocol.

The signature of the __setitem__ special method is defined in The Python Language
Reference in “3.3.6. Emulating container types”. Here we named the arguments deck,
position, card—and not self, key, value as in the language reference—to show
that every Python method starts life as a plain function, and naming the first argument
self is merely a convention. This is OK in a console session, but in a Python source file
it’s much better to use self, key, and value as documented.

The trick is that set_card knows that the deck object has an attribute named _cards,
and _cards must be a mutable sequence. The set_card function is then attached to the
FrenchDeck class as the __setitem__ special method. This is an example of monkey
patching: changing a class or module at runtime, without touching the source code.
Monkey patching is powerful, but the code that does the actual patching is very tightly
coupled with the program to be patched, often handling private and undocumented
parts.

Besides being an example of monkey patching, Example 11-6 highlights that protocols
are dynamic: random.shuffle doesn’t care what type of argument it gets, it only needs
the object to implement part of the mutable sequence protocol. It doesn’t even matter
if the object was “born” with the necessary methods or if they were somehow acquired
later.

The theme of this chapter so far has been “duck typing”: operating with objects regardless
of their types, as long as they implement certain protocols.
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When we did present diagrams with ABCs, the intent was to show how the protocols
are related to the explicit interfaces documented in the abstract classes, but we did not
actually inherit from any ABC so far.

In the following sections, we will leverage ABCs directly, and not just as documentation.

Alex Martelli’s Waterfowl
After reviewing the usual protocol-style interfaces of Python, we move to ABCs. But
before diving into examples and details, Alex Martelli explains in a guest essay why
ABCs were a great addition to Python.

I am very grateful to Alex Martelli. He was already the most ci‐
ted person in this book before he became one of the technical
editors. His insights have been invaluable, and then he offered to
write this essay. We are incredibly lucky to have him. Take it away,
Alex!

Waterfowl and ABCs
By Alex Martelli

I’ve been credited on Wikipedia for helping spread the helpful meme and sound-bite
“duck typing” (i.e, ignoring an object’s actual type, focusing instead on ensuring that the
object implements the method names, signatures, and semantics required for its in‐
tended use).

In Python, this mostly boils down to avoiding the use of isinstance to check the object’s
type (not to mention the even worse approach of checking, for example, whether
type(foo) is bar—which is rightly anathema as it inhibits even the simplest forms of
inheritance!).

The overall duck typing approach remains quite useful in many contexts—and yet, in
many others, an often preferable one has evolved over time. And herein lies a tale…

In recent generations, the taxonomy of genus and species (including but not limited to
the family of waterfowl known as Anatidae) has mostly been driven by phenetics—an
approach focused on similarities of morphology and behavior… chiefly, observable
traits. The analogy to “duck typing” was strong.

However, parallel evolution can often produce similar traits, both morphological and
behavioral ones, among species that are actually unrelated, but just happened to evolve
in similar, though separate, ecological niches. Similar “accidental similarities” happen
in programming, too—for example, consider the classic OOP example:
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class Artist:
    def draw(self): ...

class Gunslinger:
    def draw(self): ...

class Lottery:
    def draw(self): ...

Clearly, the mere existence of a method called draw, callable without arguments, is far
from sufficient to assure us that two objects x and y such that x.draw() and y.draw()
can be called are in any way exchangeable or abstractly equivalent—nothing about the
similarity of the semantics resulting from such calls can be inferred. Rather, we need a
knowledgeable programmer to somehow positively assert that such an equivalence
holds at some level!

In biology (and other disciplines) this issue has led to the emergence (and, on many
facets, the dominance) of an approach that’s an alternative to phenetics, known as
cladistics—focusing taxonomical choices on characteristics that are inherited from
common ancestors, rather than ones that are independently evolved. (Cheap and rapid
DNA sequencing can make cladistics highly practical in many more cases, in recent
years.)

For example, sheldgeese (once classified as being closer to other geese) and shelducks
(once classified as being closer to other ducks) are now grouped together within the
subfamily Tadornidae (implying they’re closer to each other than to any other Anatidae,
as they share a closer common ancestor). Furthermore, DNA analysis has shown, in
particular, that the white-winged wood duck is not as close to the Muscovy duck (the
latter being a shelduck) as similarity in looks and behavior had long suggested—so the
wood duck was reclassified into its own genus, and entirely out of the subfamily!

Does this matter? It depends on the context! For such purposes as deciding how best to
cook a waterfowl once you’ve bagged it, for example, specific observable traits (not all
of them—plumage, for example, is de minimis in such a context), mostly texture and
flavor (old-fashioned phenetics!), may be far more relevant than cladistics. But for other
issues, such as susceptibility to different pathogens (whether you’re trying to raise wa‐
terfowl in captivity, or preserve them in the wild), DNA closeness can matter much
more…

So, by very loose analogy with these taxonomic revolutions in the world of waterfowls,
I’m recommending supplementing (not entirely replacing—in certain contexts it shall
still serve) good old duck typing with… goose typing!

What goose typing means is: isinstance(obj, cls) is now just fine… as long as cls is
an abstract base class—in other words, cls’s metaclass is abc.ABCMeta.
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3. You can also, of course, define your own ABCs—but I would discourage all but the most advanced Pythonistas
from going that route, just as I would discourage them from defining their own custom metaclasses… and
even for said “most advanced Pythonistas,” those of us sporting deep mastery of every fold and crease in the
language, these are not tools for frequent use: such “deep metaprogramming,” if ever appropriate, is intended
for authors of broad frameworks meant to be independently extended by vast numbers of separate develop‐
ment teams… less than 1% of “most advanced Pythonistas” may ever need that! — A.M.

You can find many useful existing abstract classes in collections.abc (and additional
ones in the numbers module of The Python Standard Library).3

Among the many conceptual advantages of ABCs over concrete classes (e.g., Scott
Meyer’s “all non-leaf classes should be abstract”—see Item 33 in his book, More Effective
C++), Python’s ABCs add one major practical advantage: the register class method,
which lets end-user code “declare” that a certain class becomes a “virtual” subclass of an
ABC (for this purpose the registered class must meet the ABC’s method name and
signature requirements, and more importantly the underlying semantic contract—but
it need not have been developed with any awareness of the ABC, and in particular need
not inherit from it!). This goes a long way toward breaking the rigidity and strong
coupling that make inheritance something to use with much more caution than typically
practiced by most OOP programmers…

Sometimes you don’t even need to register a class for an ABC to recognize it as a subclass!

That’s the case for the ABCs whose essence boils down to a few special methods. For
example:

>>> class Struggle:
...     def __len__(self): return 23
...
>>> from collections import abc
>>> isinstance(Struggle(), abc.Sized)
True

As you see, abc.Sized recognizes Struggle as “a subclass,” with no need for registration,
as implementing the special method named __len__ is all it takes (it’s supposed to be
implemented with the proper syntax—callable without arguments—and semantics—
returning a nonnegative integer denoting an object’s “length”; any code that implements
a specially named method, such as __len__, with arbitrary, non-compliant syntax and
semantics has much worse problems anyway).

So, here’s my valediction: whenever you’re implementing a class embodying any of the
concepts represented in the ABCs in numbers, collections.abc, or other framework
you may be using, be sure (if needed) to subclass it from, or register it into, the corre‐
sponding ABC. At the start of your programs using some library or framework defining
classes which have omitted to do that, perform the registrations yourself; then, when
you must check for (most typically) an argument being, e.g, “a sequence,” check whether:

isinstance(the_arg, collections.abc.Sequence)

316 | Chapter 11: Interfaces: From Protocols to ABCs

http://ptgmedia.pearsoncmg.com/images/020163371x/items/item33.html


4. Unfortunately, in Python 3.4, there is no ABC that helps distinguish a str from tuple or other immuta‐
ble sequences, so we must test against str. In Python 2, the basestr type exists to help with tests like these.
It’s not an ABC, but it’s a superclass of both str and unicode; however, in Python 3, basestr is gone.
Curiously, there is in Python 3 a collections.abc.ByteString type, but it only helps detecting bytes
and bytearray.

And, don’t define custom ABCs (or metaclasses) in production code… if you feel the
urge to do so, I’d bet it’s likely to be a case of “all problems look like a nail”-syndrome
for somebody who just got a shiny new hammer—you (and future maintainers of your
code) will be much happier sticking with straightforward and simple code, eschewing
such depths. Valē!

Besides coining the “goose typing,” Alex makes the point that inheriting from an ABC
is more than implementing the required methods: it’s also a clear declaration of intent
by the developer. That intent can also be made explicit through registering a virtual
subclass.

In addition, the use of isinstance and issubclass becomes more acceptable to test
against ABCs. In the past, these functions worked against duck typing, but with ABCs
they become more flexible. After all, if a component does not implement an ABC by
subclassing, it can always be registered after the fact so it passes those explicit type
checks.

However, even with ABCs, you should beware that excessive use of isinstance checks
may be a code smell—a symptom of bad OO design. It’s usually not OK to have a chain
of if/elif/elif with insinstance checks performing different actions depending on
the type of an object: you should be using polymorphism for that—i.e., designing your
classes so that the interpreter dispatches calls to the proper methods, instead of you
hardcoding the dispatch logic in if/elif/elif blocks.

There is a common, practical exception to the preceding recom‐
mendation: some Python APIs accept a single str or a sequence
of str items; if it’s just a single str, you want to wrap it in a list,
to ease processing. Because str is a sequence type, the simplest way
to distinguish it from any other immutable sequence is to do an
explicit isinstance(x, str) check.4

On the other hand, it’s usually OK to perform an insinstance check against an ABC if
you must enforce an API contract: “Dude, you have to implement this if you want to
call me,” as technical reviewer Lennart Regebro put it. That’s particularly useful in sys‐
tems that have a plug-in architecture. Outside of frameworks, duck typing is often sim‐
pler and more flexible than type checks.
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5. This snippet was extracted from Example 21-2.

For example, in several classes in this book, when I needed to take a sequence of items
and process them as a list, instead of requiring a list argument by type checking, I
simply took the argument and immediately built a list from it: that way I can accept
any iterable, and if the argument is not iterable, the call will fail soon enough with a very
clear message. One example of this code pattern is in the __init__ method in
Example 11-13, later in this chapter. Of course, this approach wouldn’t work if the se‐
quence argument shouldn’t be copied, either because it’s too large or because my code
needs to change it in place. Then an insinstance(x, abc.MutableSequence) would
be better. If any iterable is acceptable, then calling iter(x) to obtain an iterator would
be the way to go, as we’ll see in “Why Sequences Are Iterable: The iter Function” on page
404.

Another example is how you might imitate the handling of the field_names argument
in collections.namedtuple: field_names accepts a single string with identifiers sep‐
arated by spaces or commas, or a sequence of identifiers. It might be tempting to use
isinstance, but Example 11-7 shows how I’d do it using duck typing.5

Example 11-7. Duck typing to handle a string or an iterable of strings
    try:  
        field_names = field_names.replace(',', ' ').split()  
    except AttributeError:  
        pass  
    field_names = tuple(field_names)  

Assume it’s a string (EAFP = it’s easier to ask forgiveness than permission).
Convert commas to spaces and split the result into a list of names.
Sorry, field_names doesn’t quack like a str… there’s either no .replace, or it
returns something we can’t .split.
Now we assume it’s already an iterable of names.
To make sure it’s an iterable and to keep our own copy, create a tuple out of what
we have.

Finally, in his essay, Alex reinforces more than once the need for restraint in the creation
of ABCs. An ABC epidemic would be disastrous, imposing excessive ceremony in a
language that became popular because it’s practical and pragmatic. During the Fluent
Python review process, Alex wrote:

ABCs are meant to encapsulate very general concepts, abstractions, introduced by a
framework—things like “a sequence” and “an exact number.” [Readers] most likely don’t
need to write any new ABCs, just use existing ones correctly, to get 99.9% of the benefits
without serious risk of misdesign.
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Now let’s see goose typing in practice.

Subclassing an ABC
Following Martelli’s advice, we’ll leverage an existing ABC, collections.MutableSe
quence, before daring to invent our own. In Example 11-8, FrenchDeck2 is explicitly
declared a subclass of collections.MutableSequence.

Example 11-8. frenchdeck2.py: FrenchDeck2, a subclass of collections.MutableSequence
import collections

Card = collections.namedtuple('Card', ['rank', 'suit'])

class FrenchDeck2(collections.MutableSequence):
    ranks = [str(n) for n in range(2, 11)] + list('JQKA')
    suits = 'spades diamonds clubs hearts'.split()

    def __init__(self):
        self._cards = [Card(rank, suit) for suit in self.suits
                                        for rank in self.ranks]

    def __len__(self):
        return len(self._cards)

    def __getitem__(self, position):
        return self._cards[position]

    def __setitem__(self, position, value):  # 
        self._cards[position] = value

    def __delitem__(self, position):  # 
        del self._cards[position]

    def insert(self, position, value):  # 
        self._cards.insert(position, value)

__setitem__ is all we need to enable shuffling…
But subclassing MutableSequence forces us to implement __delitem__, an
abstract method of that ABC.
We are also required to implement insert, the third abstract method of
MutableSequence.

Python does not check for the implementation of the abstract methods at import time
(when the frenchdeck2.py module is loaded and compiled), but only at runtime when
we actually try to instantiate FrenchDeck2. Then, if we fail to implement any abstract
method, we get a TypeError exception with a message such as "Can't instantiate
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abstract class FrenchDeck2 with abstract methods __delitem__, insert".
That’s why we must implement __delitem__ and insert, even if our FrenchDeck2
examples do not need those behaviors: the MutableSequence ABC demands them.

As Figure 11-2 shows, not all methods of the Sequence and MutableSequence ABCs are
abstract.

Figure 11-2. UML class diagram for the MutableSequence ABC and its superclasses
from collections.abc (inheritance arrows point from subclasses to ancestors; names in
italic are abstract classes and abstract methods)

From Sequence, FrenchDeck2 inherits the following ready-to-use concrete methods:
__contains__, __iter__, __reversed__, index, and count. From MutableSequence, it
gets append, reverse, extend, pop, remove, and __iadd__.

The concrete methods in each collections.abc ABC are implemented in terms of the
public interface of the class, so they work without any knowledge of the internal struc‐
ture of instances.

As the coder of a concrete subclass, you may be able to override
methods inherited from ABCs with more efficient implementa‐
tions. For example, __contains__ works by doing a full scan of the
sequence, but if your concrete sequence keeps its items sorted, you
can write a faster __contains__ that does a binary search using
bisect function (see “Managing Ordered Sequences with bisect”
on page 44).

To use ABCs well, you need to know what’s available. We’ll review the collections ABCs
next.
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6. Multiple inheritance was considered harmful and excluded from Java, except for interfaces: Java interfaces
can extend multiple interfaces, and Java classes can implement multiple interfaces.

ABCs in the Standard Library
Since Python 2.6, ABCs are available in the standard library. Most are defined in the
collections.abc module, but there are others. You can find ABCs in the numbers and
io packages, for example. But the most widely used is collections.abc. Let’s see what
is available there.

ABCs in collections.abc

There are two modules named abc in the standard library. Here
we are talking about collections.abc. To reduce loading time, in
Python 3.4, it’s implemented outside of the collections pack‐
age, in Lib/_collections_abc.py), so it’s imported separately from
collections. The other abc module is just abc (i.e., Lib/abc.py)
where the abc.ABC class is defined. Every ABC depends on it, but
we don’t need to import it ourselves except to create a new ABC.

Figure 11-3 is a summary UML class diagram (without attribute names) of all 16 ABCs
defined in collections.abc as of Python 3.4. The official documentation of collec
tions.abc has a nice table summarizing the ABCs, their relationships, and their abstract
and concrete methods (called “mixin methods”). There is plenty of multiple inheritance
going on in Figure 11-3. We’ll devote most of Chapter 12 to multiple inheritance, but
for now it’s enough to say that it is usually not a problem when ABCs are concerned.6
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Figure 11-3. UML class diagram for ABCs in collections.abc

Let’s review the clusters in Figure 11-3:
Iterable, Container, and Sized

Every collection should either inherit from these ABCs or at least implement com‐
patible protocols. Iterable supports iteration with __iter__, Container supports
the in operator with __contains__, and Sized supports len() with __len__.

Sequence, Mapping, and Set
These are the main immutable collection types, and each has a mutable subclass. A
detailed diagram for MutableSequence is in Figure 11-2; for MutableMapping and
MutableSet, there are diagrams in Chapter 3 (Figures 3-1 and 3-2).

MappingView

In Python 3, the objects returned from the mapping methods .items(), .keys(),
and .values() inherit from ItemsView, ValuesView, and ValuesView, respectively.
The first two also inherit the rich interface of Set, with all the operators we saw in
“Set Operations” on page 82.

Callable and Hashable
These ABCs are not so closely related to collections, but collections.abc was the
first package to define ABCs in the standard library, and these two were deemed
important enough to be included. I’ve never seen subclasses of either Callable or
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7. For callable detection, there is the callable() built-in function—but there is no equivalent hashable()
function, so isinstance(my_obj, Hashable) is the preferred way to test for a hashable object.

Hashable. Their main use is to support the insinstance built-in as a safe way of
determining whether an object is callable or hashable.7

Iterator

Note that iterator subclasses Iterable. We discuss this further in Chapter 14.

After the collections.abc package, the most useful package of ABCs in the standard
library is numbers, covered next.

The Numbers Tower of ABCs
The numbers package defines the so-called “numerical tower” (i.e., this linear hierarchy
of ABCs), where Number is the topmost superclass, Complex is its immediate subclass,
and so on, down to Integral:

• Number

• Complex

• Real

• Rational

• Integral

So if you need to check for an integer, use isinstance(x, numbers.Integral) to accept
int, bool (which subclasses int) or other integer types that may be provided by external
libraries that register their types with the numbers ABCs. And to satisfy your check, you
or the users of your API may always register any compatible type as a virtual subclass
of numbers.Integral.

If, on the other hand, a value can be a floating-point type, you write isinstance(x,
numbers.Real), and your code will happily take bool, int, float, fractions.Frac
tion, or any other noncomplex numerical type provided by an external library, such as
NumPy, which is suitably registered.

Somewhat surprisingly, decimal.Decimal is not registered as a
virtual subclass of numbers.Real. The reason is that, if you need
the precision of Decimal in your program, then you want to be
protected from accidental mixing of decimals with other less pre‐
cise numeric types, particularly floats.
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8. Perhaps the client needs to audit the randomizer; or the agency wants to provide a rigged one. You never
know…

9. The Oxford English Dictionary defines tombola as “A kind of lottery resembling lotto.”

After looking at some existing ABCs, let’s practice goose typing by implementing an
ABC from scratch and putting it to use. The goal here is not to encourage everyone to
start coding ABCs left and right, but to learn how to read the source code of the ABCs
you’ll find in the standard library and other packages.

Defining and Using an ABC
To justify creating an ABC, we need to come up with a context for using it as an extension
point in a framework. So here is our context: imagine you need to display advertisements
on a website or a mobile app in random order, but without repeating an ad before the
full inventory of ads is shown. Now let’s assume we are building an ad management
framework called ADAM. One of its requirements is to support user-provided nonrep‐
eating random-picking classes.8 To make it clear to ADAM users what is expected of a
“nonrepeating random-picking” component, we’ll define an ABC.

Taking a clue from “stack” and “queue” (which describe abstract interfaces in terms of
physical arrangements of objects), I will use a real-world metaphor to name our ABC:
bingo cages and lottery blowers are machines designed to pick items at random from a
finite set, without repeating, until the set is exhausted.

The ABC will be named Tombola, after the Italian name of bingo and the tumbling
container that mixes the numbers.9

The Tombola ABC has four methods. The two abstract methods are:

• .load(…): put items into the container.
• .pick(): remove one item at random from the container, returning it.

The concrete methods are:

• .loaded(): return True if there is at least one item in the container.
• .inspect(): return a sorted tuple built from the items currently in the container,

without changing its contents (its internal ordering is not preserved).

Figure 11-4 shows the Tombola ABC and three concrete implementations.
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10. «registered» and «virtual subclass» are not standard UML words. We are using them to represent a class
relationship that is specific to Python.

Figure 11-4. UML diagram for an ABC and three subclasses. The name of the Tombola
ABC and its abstract methods are written in italics, per UML conventions. The dashed
arrow is used for interface implementation, here we are using it to show that Tombo‐
List is a virtual subclass of Tombola because it is registered, as we will see later in this
chapter.10

Example 11-9 shows the definition of the Tombola ABC.

Example 11-9. tombola.py: Tombola is an ABC with two abstract methods and two
concrete methods
import abc

class Tombola(abc.ABC):   

    @abc.abstractmethod
    def load(self, iterable):   
        """Add items from an iterable."""

    @abc.abstractmethod
    def pick(self):   
        """Remove item at random, returning it.

        This method should raise `LookupError` when the instance is empty.
        """
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11. Before ABCs existed, abstract methods would use the statement raise NotImplementedError to signal
that subclasses were responsible for their implementation.

    def loaded(self):   
        """Return `True` if there's at least 1 item, `False` otherwise."""
        return bool(self.inspect())   

    def inspect(self):
        """Return a sorted tuple with the items currently inside."""
        items = []
        while True:   
            try:
                items.append(self.pick())
            except LookupError:
                break
        self.load(items)   
        return tuple(sorted(items))

To define an ABC, subclass abc.ABC.
An abstract method is marked with the @abstractmethod decorator, and often
its body is empty except for a docstring.11

The docstring instructs implementers to raise LookupError if there are no items
to pick.
An ABC may include concrete methods.
Concrete methods in an ABC must rely only on the interface defined by the
ABC (i.e., other concrete or abstract methods or properties of the ABC).
We can’t know how concrete subclasses will store the items, but we can build
the inspect result by emptying the Tombola with successive calls to .pick()…
…then use .load(…) to put everything back.

An abstract method can actually have an implementation. Even if
it does, subclasses will still be forced to override it, but they will be
able to invoke the abstract method with super(), adding func‐
tionality to it instead of implementing from scratch. See the abc
module documentation for details on @abstractmethod usage.

The .inspect() method in Example 11-9 is perhaps a silly example, but it shows that,
given .pick() and .load(…) we can inspect what’s inside the Tombola by picking all
items and loading them back. The point of this example is to highlight that it’s OK to
provide concrete methods in ABCs, as long as they only depend on other methods in
the interface. Being aware of their internal data structures, concrete subclasses of Tom
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bola may always override .inspect() with a smarter implementation, but they don’t
have to.

The .loaded() method in Example 11-9 may not be as silly, but it’s expensive: it
calls .inspect() to build the sorted tuple just to apply bool() on it. This works, but a
concrete subclass can do much better, as we’ll see.

Note that our roundabout implementation of .inspect() requires that we catch a
LookupError thrown by self.pick(). The fact that self.pick() may raise LookupEr
ror is also part of its interface, but there is no way to declare this in Python, except in
the documentation (see the docstring for the abstract pick method in Example 11-9.)

I chose the LookupError exception because of its place in the Python hierarchy of ex‐
ceptions in relation to IndexError and KeyError, the most likely exceptions to be raised
by the data structures used to implement a concrete Tombola. Therefore, implementa‐
tions can raise LookupError, IndexError, or KeyError to comply. See Example 11-10
(for a complete tree, see “5.4. Exception hierarchy” of The Python Standard Library).

Example 11-10. Part of the Exception class hierarchy
BaseException
 ├── SystemExit
 ├── KeyboardInterrupt
 ├── GeneratorExit
 └── Exception
      ├── StopIteration
      ├── ArithmeticError
      │    ├── FloatingPointError
      │    ├── OverflowError
      │    └── ZeroDivisionError
      ├── AssertionError
      ├── AttributeError
      ├── BufferError
      ├── EOFError
      ├── ImportError
      ├── LookupError  
      │    ├── IndexError  
      │    └── KeyError  
      ├── MemoryError
      ... etc.

LookupError is the exception we handle in Tombola.inspect.
IndexError is the LookupError subclass raised when we try to get an item from
a sequence with an index beyond the last position.
KeyError is raised when we use a nonexistent key to get an item from a mapping.

Defining and Using an ABC | 327



We now have our very own Tombola ABC. To witness the interface checking performed
by an ABC, let’s try to fool Tombola with a defective implementation in Example 11-11.

Example 11-11. A fake Tombola doesn’t go undetected
>>> from tombola import Tombola
>>> class Fake(Tombola):  # 
...     def pick(self):
...         return 13
...
>>> Fake  # 
<class '__main__.Fake'>
<class 'abc.ABC'>, <class 'object'>)
>>> f = Fake()  # 
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class Fake with abstract methods load

Declare Fake as a subclass of Tombola.
The class was created, no errors so far.
TypeError is raised when we try to instantiate Fake. The message is very clear:
Fake is considered abstract because it failed to implement load, one of the
abstract methods declared in the Tombola ABC.

So we have our first ABC defined, and we put it to work validating a class. We’ll soon
subclass the Tombola ABC, but first we must cover some ABC coding rules.

ABC Syntax Details
The best way to declare an ABC is to subclass abc.ABC or any other ABC.

However, the abc.ABC class is new in Python 3.4, so if you are using an earlier version
of Python—and it does not make sense to subclass another existing ABC—then you
must use the metaclass= keyword in the class statement, pointing to abc.ABCMeta
(not abc.ABC). In Example 11-9, we would write:

class Tombola(metaclass=abc.ABCMeta):
    # ...

The metaclass= keyword argument was introduced in Python 3. In Python 2, you must
use the __metaclass__ class attribute:

class Tombola(object):  # this is Python 2!!!
    __metaclass__ = abc.ABCMeta
    # ...
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12. @abc.abstractmethod entry in the abc module documentation.

We’ll explain metaclasses in Chapter 21. For now, let’s accept that a metaclass is a special
kind of class, and agree that an ABC is a special kind of class; for example, “regular”
classes don’t check subclasses, so this is a special behavior of ABCs.

Besides the @abstractmethod, the abc module defines the @abstractclassmethod,
@abstractstaticmethod, and @abstractproperty decorators. However, these last
three are deprecated since Python 3.3, when it became possible to stack decorators on
top of @abstractmethod, making the others redundant. For example, the preferred way
to declare an abstract class method is:

class MyABC(abc.ABC):
    @classmethod
    @abc.abstractmethod
    def an_abstract_classmethod(cls, ...):
        pass

The order of stacked function decorators usually matters, and in
the case of @abstractmethod, the documentation is explicit:

When abstractmethod() is applied in combination with
other method descriptors, it should be applied as the
innermost decorator, …12

In other words, no other decorator may appear between @abstract
method and the def statement.

Now that we got these ABC syntax issues covered, let’s put Tombola to use by imple‐
menting some full-fledged concrete descendants of it.

Subclassing the Tombola ABC
Given the Tombola ABC, we’ll now develop two concrete subclasses that satisfy its in‐
terface. These classes were pictured in Figure 11-4, along with the virtual subclass to be
discussed in the next section.

The BingoCage class in Example 11-12 is a variation of Example 5-8 using a better
randomizer. This BingoCage implements the required abstract methods load and
pick, inherits loaded from Tombola, overrides inspect, and adds __call__.

Example 11-12. bingo.py: BingoCage is a concrete subclass of Tombola
import random

from tombola import Tombola

Defining and Using an ABC | 329

http://bit.ly/1QOFpGB
https://docs.python.org/dev/library/abc.html


class BingoCage(Tombola):   

    def __init__(self, items):
        self._randomizer = random.SystemRandom()   
        self._items = []
        self.load(items)   

    def load(self, items):
        self._items.extend(items)
        self._randomizer.shuffle(self._items)   

    def pick(self):   
        try:
            return self._items.pop()
        except IndexError:
            raise LookupError('pick from empty BingoCage')

    def __call__(self):   
        self.pick()

This BingoCage class explicitly extends Tombola.
Pretend we’ll use this for online gaming. random.SystemRandom implements the
random API on top of the os.urandom(…) function, which provides random bytes
“suitable for cryptographic use” according to the os module docs.
Delegate initial loading to the .load(…) method.
Instead of the plain random.shuffle() function, we use the .shuffle() method
of our SystemRandom instance.
pick is implemented as in Example 5-8.
__call__ is also from Example 5-8. It’s not needed to satisfy the Tombola
interface, but there’s no harm in adding extra methods.

BingoCage inherits the expensive loaded and the silly inspect methods from Tombo
la. Both could be overridden with much faster one-liners, as in Example 11-13. The
point is: we can be lazy and just inherit the suboptimal concrete methods from an ABC.
The methods inherited from Tombola are not as fast as they could be for BingoCage, but
they do provide correct results for any Tombola subclass that correctly implements pick
and load.

Example 11-13 shows a very different but equally valid implementation of the Tombo
la interface. Instead of shuffling the “balls” and popping the last, LotteryBlower pops
from a random position.
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13. I gave this as an example of duck typing after Martelli’s “Waterfowl and ABCs” on page 314.

Example 11-13. lotto.py: LotteryBlower is a concrete subclass that overrides the inspect
and loaded methods from Tombola
import random

from tombola import Tombola

class LotteryBlower(Tombola):

    def __init__(self, iterable):
        self._balls = list(iterable)   

    def load(self, iterable):
        self._balls.extend(iterable)

    def pick(self):
        try:
            position = random.randrange(len(self._balls))   
        except ValueError:
            raise LookupError('pick from empty BingoCage')
        return self._balls.pop(position)   

    def loaded(self):   
        return bool(self._balls)

    def inspect(self):   
        return tuple(sorted(self._balls))

The initializer accepts any iterable: the argument is used to build a list.
The random.randrange(…) function raises ValueError if the range is empty, so
we catch that and throw LookupError instead, to be compatible with Tombola.
Otherwise the randomly selected item is popped from self._balls.
Override loaded to avoid calling inspect (as Tombola.loaded does in
Example 11-9). We can make it faster by working with self._balls directly—
no need to build a whole sorted tuple.
Override inspect with one-liner.

Example 11-13 illustrates an idiom worth mentioning: in __init__, self._balls stores
list(iterable) and not just a reference to iterable (i.e., we did not merely assign
iterable to self._balls). As mentioned before,13 this makes our LotteryBlower
flexible because the iterable argument may be any iterable type. At the same time, we
make sure to store its items in a list so we can pop items. And even if we always get
lists as the iterable argument, list(iterable) produces a copy of the argument,
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14. “Defensive Programming with Mutable Parameters” on page 232 in Chapter 8 was devoted to the aliasing
issue we just avoided here.

which is a good practice considering we will be removing items from it and the client
may not be expecting the list of items she provided to be changed.14

We now come to the crucial dynamic feature of goose typing: declaring virtual subclasses
with the register method.

A Virtual Subclass of Tombola
An essential characteristic of goose typing—and the reason why it deserves a waterfowl
name—is the ability to register a class as a virtual subclass of an ABC, even if it does not
inherit from it. When doing so, we promise that the class faithfully implements the
interface defined in the ABC—and Python will believe us without checking. If we lie,
we’ll be caught by the usual runtime exceptions.

This is done by calling a register method on the ABC. The registered class then be‐
comes a virtual subclass of the ABC, and will be recognized as such by functions like
issubclass and isinstance, but it will not inherit any methods or attributes from the
ABC.

Virtual subclasses do not inherit from their registered ABCs, and
are not checked for conformance to the ABC interface at any time,
not even when they are instantiated. It’s up to the subclass to ac‐
tually implement all the methods needed to avoid runtime errors.

The register method is usually invoked as a plain function (see “Usage of register in
Practice” on page 338), but it can also be used as a decorator. In Example 11-14, we use
the decorator syntax and implement TomboList, a virtual subclass of Tombola depicted
in Figure 11-5.

TomboList works as advertised, and the doctests that prove it are described in “How the
Tombola Subclasses Were Tested” on page 335.

332 | Chapter 11: Interfaces: From Protocols to ABCs



Figure 11-5. UML class diagram for the TomboList, a real subclass of list and a virtual
subclass of Tombola

Example 11-14. tombolist.py: class TomboList is a virtual subclass of Tombola
from random import randrange

from tombola import Tombola

@Tombola.register  # 
class TomboList(list):  # 

    def pick(self):
        if self:  # 
            position = randrange(len(self))
            return self.pop(position)  # 
        else:
            raise LookupError('pop from empty TomboList')

    load = list.extend  # 

    def loaded(self):
        return bool(self)  # 

    def inspect(self):
        return tuple(sorted(self))
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15. The same trick I used with load doesn’t work with loaded, because the list type does not implement
__bool__, the method I’d have to bind to loaded. On the other hand, the bool built-in function doesn’t
need __bool__ to work because it can also use __len__. See “4.1. Truth Value Testing” in the “Built-in
Types” chapter.

16. There is a whole section explaining the __mro__ class attribute in “Multiple Inheritance and Method Reso‐
lution Order” on page 351. Right now, this quick explanation will do.

# Tombola.register(TomboList)  # 

Tombolist is registered as a virtual subclass of Tombola.
Tombolist extends list.
Tombolist inherits __bool__ from list, and that returns True if the list is not
empty.
Our pick calls self.pop, inherited from list, passing a random item index.
Tombolist.load is the same as list.extend.
loaded delegates to bool.15

If you’re using Python 3.3 or earlier, you can’t use .register as a class decorator.
You must use standard call syntax.

Note that because of the registration, the functions issubclass and isinstance act as
if TomboList is a subclass of Tombola:

>>> from tombola import Tombola
>>> from tombolist import TomboList
>>> issubclass(TomboList, Tombola)
True
>>> t = TomboList(range(100))
>>> isinstance(t, Tombola)
True

However, inheritance is guided by a special class attribute named __mro__—the Method
Resolution Order. It basically lists the class and its superclasses in the order Python uses
to search for methods.16 If you inspect the __mro__ of TomboList, you’ll see that it lists
only the “real” superclasses—list and object:

>>> TomboList.__mro__
(<class 'tombolist.TomboList'>, <class 'list'>, <class 'object'>)

Tombola is not in Tombolist.__mro__, so Tombolist does not inherit any methods from
Tombola.
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As I coded different classes to implement the same interface, I wanted a way to submit
them all to the same suite of doctests. The next section shows how I leveraged the API
of regular classes and ABCs to do it.

How the Tombola Subclasses Were Tested
The script I used to test the Tombola examples uses two class attributes that allow in‐
trospection of a class hierarchy:
__subclasses__()

Method that returns a list of the immediate subclasses of the class. The list does not
include virtual subclasses.

_abc_registry

Data attribute—available only in ABCs—that is bound to a WeakSet with weak
references to registered virtual subclasses of the abstract class.

To test all Tombola subclasses, I wrote a script to iterate over a list built from Tombo
la.__subclasses__() and Tombola._abc_registry, and bind each class to the name
ConcreteTombola used in the doctests.

A successful run of the test script looks like this:

$ python3 tombola_runner.py
BingoCage        23 tests,  0 failed - OK
LotteryBlower    23 tests,  0 failed - OK
TumblingDrum     23 tests,  0 failed - OK
TomboList        23 tests,  0 failed - OK

The test script is Example 11-15 and the doctests are in Example 11-16.

Example 11-15. tombola_runner.py: test runner for Tombola subclasses
import doctest

from tombola import Tombola

# modules to test
import bingo, lotto, tombolist, drum   

TEST_FILE = 'tombola_tests.rst'
TEST_MSG = '{0:16} {1.attempted:2} tests, {1.failed:2} failed - {2}'

def main(argv):
    verbose = '-v' in argv
    real_subclasses = Tombola.__subclasses__()   
    virtual_subclasses = list(Tombola._abc_registry)   

    for cls in real_subclasses + virtual_subclasses:   
        test(cls, verbose)
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def test(cls, verbose=False):

    res = doctest.testfile(
            TEST_FILE,
            globs={'ConcreteTombola': cls},   
            verbose=verbose,
            optionflags=doctest.REPORT_ONLY_FIRST_FAILURE)
    tag = 'FAIL' if res.failed else 'OK'
    print(TEST_MSG.format(cls.__name__, res, tag))   

if __name__ == '__main__':
    import sys
    main(sys.argv)

Import modules containing real or virtual subclasses of Tombola for testing.
__subclasses__() lists the direct descendants that are alive in memory. That’s
why we imported the modules to test, even if there is no further mention of them
in the source code: to load the classes into memory.
Build a list from _abc_registry (which is a WeakSet) so we can concatenate
it with the result of __subclasses__().
Iterate over the subclasses found, passing each to the test function.
The cls argument—the class to be tested—is bound to the name ConcreteTom
bola in the global namespace provided to run the doctest.
The test result is printed with the name of the class, the number of tests
attempted, tests failed, and an 'OK' or 'FAIL' label.

The doctest file is Example 11-16.

Example 11-16. tombola_tests.rst: doctests for Tombola subclasses
==============
Tombola tests
==============

Every concrete subclass of Tombola should pass these tests.

Create and load instance from iterable::

    >>> balls = list(range(3))
    >>> globe = ConcreteTombola(balls)
    >>> globe.loaded()
    True
    >>> globe.inspect()
    (0, 1, 2)
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Pick and collect balls::

    >>> picks = []
    >>> picks.append(globe.pick())
    >>> picks.append(globe.pick())
    >>> picks.append(globe.pick())

Check state and results::

    >>> globe.loaded()
    False
    >>> sorted(picks) == balls
    True

Reload::

    >>> globe.load(balls)
    >>> globe.loaded()
    True
    >>> picks = [globe.pick() for i in balls]
    >>> globe.loaded()
    False

Check that `LookupError` (or a subclass) is the exception
thrown when the device is empty::

    >>> globe = ConcreteTombola([])
    >>> try:
    ...     globe.pick()
    ... except LookupError as exc:
    ...     print('OK')
    OK

Load and pick 100 balls to verify that they all come out::

    >>> balls = list(range(100))
    >>> globe = ConcreteTombola(balls)
    >>> picks = []
    >>> while globe.inspect():
    ...     picks.append(globe.pick())
    >>> len(picks) == len(balls)
    True
    >>> set(picks) == set(balls)
    True
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Check that the order has changed and is not simply reversed::

    >>> picks != balls
    True
    >>> picks[::-1] != balls
    True

Note: the previous 2 tests have a *very* small chance of failing
even if the implementation is OK. The probability of the 100
balls coming out, by chance, in the order they were inspect is
1/100!, or approximately 1.07e-158. It's much easier to win the
Lotto or to become a billionaire working as a programmer.

THE END

This concludes our Tombola ABC case study. In the next section, we’ll address how the
register ABC function is used in the wild.

Usage of register in Practice
In Example 11-14, we used Tombola.register as a class decorator. Prior to Python 3.3,
register could not be used like that—it had to be called as a plain function after the
class definition, as suggested by the comment at the end of Example 11-14.

However, even if register can now be used as a decorator, it’s more widely deployed
as a function to register classes defined elsewhere. For example, in the source code for
the collections.abc module, the built-in types tuple, str, range, and memoryview are
registered as virtual subclasses of Sequence like this:

Sequence.register(tuple)
Sequence.register(str)
Sequence.register(range)
Sequence.register(memoryview)

Several other built-in types are registered to ABCs in _collections_abc.py. Those regis‐
trations happen only when that module is imported, which is OK because you’ll have
to import it anyway to get the ABCs: you need access to MutableMapping to be able to
write isinstance(my_dict, MutableMapping).

We’ll wrap up this chapter by explaining a bit of ABC magic that Alex Martelli performed
in “Waterfowl and ABCs” on page 314.

Geese Can Behave as Ducks
In his Waterfowl and ABCs essay, Alex shows that a class can be recognized as a virtual
subclass of an ABC even without registration. Here is his example again, with an added
test using issubclass:
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>>> class Struggle:
...     def __len__(self): return 23
...
>>> from collections import abc
>>> isinstance(Struggle(), abc.Sized)
True
>>> issubclass(Struggle, abc.Sized)
True

Class Struggle is considered a subclass of abc.Sized by the issubclass function (and,
consequently, by isinstance as well) because abc.Sized implements a special class
method named __subclasshook__. See Example 11-17.

Example 11-17. Sized definition from the source code of Lib/_collections_abc.py
(Python 3.4)
class Sized(metaclass=ABCMeta):

    __slots__ = ()

    @abstractmethod
    def __len__(self):
        return 0

    @classmethod
    def __subclasshook__(cls, C):
        if cls is Sized:
            if any("__len__" in B.__dict__ for B in C.__mro__):  # 
                return True  # 
        return NotImplemented  # 

If there is an attribute named __len__ in the __dict__ of any class listed in
C.__mro__ (i.e., C and its superclasses)…
…return True, signaling that C is a virtual subclass of Sized.
Otherwise return NotImplemented to let the subclass check proceed.

If you are interested in the details of the subclass check, see the source code for the
ABCMeta.__subclasscheck__ method in Lib/abc.py. Beware: it has lots of ifs and two
recursive calls.

The __subclasshook__ adds some duck typing DNA to the whole goose typing prop‐
osition. You can have formal interface definitions with ABCs, you can make isin
stance checks everywhere, and still have a completely unrelated class play along just
because it implements a certain method (or because it does whatever it takes to convince
a __subclasshook__ to vouch for it). Of course, this only works for ABCs that do pro‐
vide a __subclasshook__.
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Is it a good idea to implement __subclasshook__ in our own ABCs? Probably not. All
the implementations of __subclasshook__ I’ve seen in the Python source code are in
ABCs like Sized that declare just one special method, and they simply check for that
special method name. Given their “special” status, you can be pretty sure that any meth‐
od named __len__ does what you expect. But even in the realm of special methods and
fundamental ABCs, it can be risky to make such assumptions. For example, mappings
implement __len__, __getitem__, and __iter__ but they are rightly not considered a
subtype of Sequence, because you can’t retrieve items using an integer offset and they
make no guarantees about the ordering of items—except of course for OrderedDict,
which preserves the insertion order, but does support item retrieval by offset either.

For ABCs that you and I may write, a __subclasshook__ would be even less dependable.
I am not ready to believe that any class named Spam that implements or inherits load,
pick, inspect, and loaded is guaranteed to behave as a Tombola. It’s better to let the
programmer affirm it by subclassing Spam from Tombola, or at least registering: Tombo
la.register(Spam). Of course, your __subclasshook__ could also check method sig‐
natures and other features, but I just don’t think it’s worthwhile.

Chapter Summary
The goal of this chapter was to travel from the highly dynamic nature of informal in‐
terfaces—called protocols—visit the static interface declarations of ABCs, and conclude
with the dynamic side of ABCs: virtual subclasses and dynamic subclass detection with
__subclasshook__.

We started the journey by reviewing the traditional understanding of interfaces in the
Python community. For most of the history of Python, we’ve been mindful of interfaces,
but they were informal like the protocols from Smalltalk, and the official docs used
language such as “foo protocol,” “foo interface,” and “foo-like object” interchangeably.
Protocol-style interfaces have nothing to do with inheritance; each class stands alone
when implementing a protocol. That’s what interfaces look like when you embrace duck
typing.

With Example 11-3, we observed how deeply Python supports the sequence protocol.
If a class implements __getitem__ and nothing else, Python manages to iterate over it,
and the in operator just works. We then went back to the old FrenchDeck example of
Chapter 1 to support shuffling by dynamically adding a method. This illustrated monkey
patching and emphasized the dynamic nature of protocols. Again we saw how a partially
implemented protocol can be useful: just adding __setitem__ from the mutable se‐
quence protocol allowed us to leverage a ready-to-use function from the standard li‐
brary: random.shuffle. Being aware of existing protocols lets us make the most of the
rich Python standard library.
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17. Alex coined the expression “goose typing” and this is the first time ever it appears in a book!

18. PyMOTW, abc module page, section “Why use Abstract Base Classes?”

Alex Martelli then introduced the term “goose typing”17 to describe a new style of Python
programming. With “goose typing,” ABCs are used to make interfaces explicit and
classes may claim to implement an interface by subclassing an ABC or by registering
with it—without requiring the strong and static link of an inheritance relationship.

The FrenchDeck2 example made clear the main drawbacks and advantages of explicit
ABCs. Inheriting from abc.MutableSequence forced us to implement two methods we
did not really need: insert and __delitem__. On the other hand, even a Python newbie
can look at FrenchDeck2 and see that it’s a mutable sequence. And, as bonus, we inherited
11 ready-to-use methods from abc.MutableSequence (five indirectly from abc.Se
quence).

After a panoramic view of existing ABCs from collections.abc in Figure 11-3, we
wrote an ABC from scratch. Doug Hellmann, creator of the cool PyMOTW.com
(Python Module of the Week) explains the motivation:

By defining an abstract base class, a common API can be established for a set of subclasses.
This capability is especially useful in situations where someone less familiar with the
source for an application is going to provide plug-in extensions…18

Putting the Tombola ABC to work, we created three concrete subclasses: two inheriting
from Tombola, the other a virtual subclass registered with it, all passing the same suite
of tests.

In concluding the chapter, we mentioned how several built-in types are registered to
ABCs in the collections.abc module so you can ask isinstance(memoryview,
abc.Sequence) and get True, even if memoryview does not inherit from abc.Se
quence. And finally we went over the __subclasshook__ magic, which lets an ABC
recognize any unregistered class as a subclass, as long as it passes a test that can be as
simple or as complex as you like—the examples in the standard library merely check
for method names.

To sum up, I’d like to restate Alex Martelli’s admonition that we should refrain from
creating our own ABCs, except when we are building user-extensible frameworks—
which most of the time we are not. On a daily basis, our contact with ABCs should be
subclassing or registering classes with existing ABCs. Less often than subclassing or
registering, we might use ABCs for isinstance checks. And even more rarely—if ever
—we find occasion to write a new ABC from scratch.

After 15 years of Python, the first abstract class I ever wrote that is not a didactic example
was the Board class of the Pingo project. The drivers that support different single board
computers and controllers are subclasses of Board, thus sharing the same interface. In
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19. You’ll find that in the Python standard library too: classes that are in fact abstract but nobody ever made them
explicitly so.

20. Python Cookbook, 3rd Edition (O’Reilly), “Recipe 8.12. Defining an Interface or Abstract Base Class”, p. 276.

reality, although conceived and implemented as an abstract class, the pingo.Board class
does not subclass abc.ABC as I write this.19 I intend to make Board an explicit ABC
eventually—but there are more important things to do in the project.

Here is a fitting quote to end this chapter:
Although ABCs facilitate type checking, it’s not something that you should overuse in a
program. At its heart, Python is a dynamic language that gives you great flexibility. Trying
to enforce type constraints everywhere tends to result in code that is more complicated
than it needs to be. You should embrace Python’s flexibility.20

— David Beazley and Brian Jones
 Python Cookbook

Or, as technical reviewer Leonardo Rochael wrote: “If you feel tempted to create a cus‐
tom ABC, please first try to solve your problem through regular duck-typing.”

Further Reading
Beazley and Jones’s Python Cookbook, 3rd Edition (O’Reilly) has a section about defining
an ABC (Recipe 8.12). The book was written before Python 3.4, so they don’t use the
now preferred syntax when declaring ABCs by subclassing from abc.ABC instead of
using the metaclass keyword. Apart from this small detail, the recipe covers the major
ABC features very well, and ends with the valuable advice quoted at the end of the
previous section.

The Python Standard Library by Example by Doug Hellmann (Addison-Wesley), has a
chapter about the abc module. It’s also available on the Web in Doug’s excellent Py‐
MOTW — Python Module of the Week. Both the book and the site focus on Python 2;
therefore, adjustments must be made if you are using Python 3. And for Python 3.4,
remember that the only recommended ABC method decorator is @abstractmethod—
the others were deprecated. The other quote about ABCs in the chapter summary is
from Doug’s site and book.

When using ABCs, multiple inheritance is not only common but practically inevitable,
because each of the fundamental collection ABCs—Sequence, Mapping, and Set—ex‐
tends multiple ABCs (see Figure 11-3). Therefore, Chapter 12 is an important follow-
up to this one.

PEP 3119 — Introducing Abstract Base Classes gives the rationale for ABCs, and PEP
3141 - A Type Hierarchy for Numbers presents the ABCs of the numbers module.
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For a discussion of the pros and cons of dynamic typing, see Guido van Rossum’s in‐
terview to Bill Venners in “Contracts in Python: A Conversation with Guido van Ros‐
sum, Part IV”.

The zope.interface package provides a way of declaring interfaces, checking whether
objects implement them, registering providers, and querying for providers of a given
interface. The package started as a core piece of Zope 3, but it can and has been used
outside of Zope. It is the basis of the flexible component architecture of large-scale
Python projects like Twisted, Pyramid, and Plone. Lennart Regebro has a great intro‐
duction to zope.interface in “A Python Component Architecture”. Baiju M wrote an
entire book about it: A Comprehensive Guide to Zope Component Architecture.

Soapbox
Type Hints

Probably the biggest news in the Python world in 2014 was that Guido van Rossum gave
a green light to the implementation of optional static type checking using function an‐
notations, similar to what the Mypy checker does. This happened in the Python-ideas
mailing-list on August 15. The message is Optional static typing — the crossroads. The
next month, PEP 484 - Type Hints was published as a draft, authored by Guido.

The idea is to let programmers optionally use annotations to declare parameter and
return types in function definitions. The key word here is optionally. You’d only add
such annotations if you want the benefits and constraints that come with them, and you
could put them in some functions but not in others.

On the surface, this may sound like what Microsoft did with with TypeScript, its Java‐
Script superset, except that TypeScript goes much further: it adds new language con‐
structs (e.g., modules, classes, explicit interfaces, etc.), allows typed variable declara‐
tions, and actually compiles down to plain JavaScript. As of this writing, the goals of
optional static typing in Python are much less ambitious.

To understand the reach of this proposal, there is a key point that Guido makes in the
historic August 15, 2014, email:

I am going to make one additional assumption: the main use cases will be linting, IDEs,
and doc generation. These all have one thing in common: it should be possible to run
a program even though it fails to type check. Also, adding types to a program should
not hinder its performance (nor will it help :-).

So, it seems this is not such a radical move as it seems at first. PEP 482 - Literature
Overview for Type Hints is referenced by PEP 484 - Type Hints, and briefly documents
type hints in third-party Python tools and in other languages.

Radical or not, type hints are upon us: support for PEP 484 in the form of a typing
module is likely to land in Python 3.5 already. The way the proposal is worded and
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21. Adapted from Douglas Crockford’s JavaScript: The Good Parts (O’Reilly), Appendix B, p. 109.

implemented makes it clear that no existing code will stop running because of the lack
of type hints—or their addition, for that matter.

Finally, PEP 484 clearly states:

It should also be emphasized that Python will remain a dynamically typed language,
and the authors have no desire to ever make type hints mandatory, even by convention.

Is Python Weakly Typed?

Discussions about language typing disciplines are sometimes confused due to lack of a
uniform terminology. Some writers (like Bill Venners in the interview with Guido men‐
tioned in “Further Reading” on page 342), say that Python has weak typing, which puts
it into the same category of JavaScript and PHP. A better way of talking about typing
discipline is to consider two different axes:
Strong versus weak typing

If the language rarely performs implicit conversion of types, it’s considered strongly
typed; if it often does it, it’s weakly typed. Java, C++, and Python are strongly typed.
PHP, JavaScript, and Perl are weakly typed.

Static versus dynamic typing
If type-checking is performed at compile time, the language is statically typed; if it
happens at runtime, it’s dynamically typed. Static typing requires type declarations
(some modern languages use type inference to avoid some of that). Fortran and
Lisp are the two oldest programming languages still alive and they use, respectively,
static and dynamic typing.

Strong typing helps catch bugs early.

Here are some examples of why weak typing is bad:21

// this is JavaScript (tested with Node.js v0.10.33)
'' == '0'   // false
0 == ''     // true
0 == '0'    // true
'' < 0      // false
'' < '0'    // true

Python does not perform automatic coercion between strings and numbers, so the ==
expressions all result False—preserving the transitivity of ==—and the < comparisons
raise TypeError in Python 3.

Static typing makes it easier for tools (compilers, IDEs) to analyze code to detect errors
and provide other services (optimization, refactoring, etc.). Dynamic typing increases
opportunities for reuse, reducing line count, and allows interfaces to emerge naturally
as protocols, instead of being imposed early on.
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To summarize, Python uses dynamic and strong typing. PEP 484 - Type Hints will not
change that, but will allow API authors to add optional type annotations so that tools
can perform some static type checking.

Monkey Patching

Monkey patching has a bad reputation. If abused, it can lead to systems that are hard to
understand and maintain. The patch is usually tightly coupled with its target, making
it brittle. Another problem is that two libraries that apply monkey-patches may step on
each other’s toes, with the second library to run destroying patches of the first.

But monkey patching can also be useful, for example, to make a class implement a
protocol at runtime. The adapter design pattern solves the same problem by imple‐
menting a whole new class.

It’s easy to monkey-patch Python code, but there are limitations. Unlike Ruby and Java‐
Script, Python does not let you monkey-patch the built-in types. I actually consider this
an advantage, because you can be certain that a str object will always have those same
methods. This limitation reduces the chance that external libraries try to apply con‐
flicting patches.

Interfaces in Java, Go, and Ruby

Since C++ 2.0 (1989), abstract classes have been used to specify interfaces in that lan‐
guage. The designers of Java opted not to have multiple inheritance of classes, which
precluded the use of abstract classes as interface specifications—because often a class
needs to implement more than one interface. But they added the interface as a language
construct, and a class can implement more than one interface—a form of multiple in‐
heritance. Making interface definitions more explicit than ever was a great contribution
of Java. With Java 8, an interface can provide method implementations, called Default
Methods. With this, Java interfaces became closer to abstract classes in C++ and Python.

The Go language has a completely different approach. First of all, there is no inheritance
in Go. You can define interfaces, but you don’t need (and you actually can’t) explicitly
say that a certain type implements an interface. The compiler determines that automat‐
ically. So what they have in Go could be called “static duck typing,” in the sense that
interfaces are checked at compile time but what matters is what types actually imple‐
ment.

Compared to Python, it’s as if, in Go, every ABC implemented the __subclasshook__
checking function names and signatures, and you never subclassed or registered an
ABC. If we wanted Python to look more like Go, we would have to perform type checks
on all function arguments. Some of the infrastructure is available (recall “Function An‐
notations” on page 154). Guido has already said he thinks it’s OK to use those annota‐
tions for type checking—at least in support tools. See “Soapbox” on page 163 in Chap‐
ter 5 for more about this.

Rubyists are firm believers in duck typing, and Ruby has no formal way to declare an
interface or an abstract class, except to do the same we did in Python prior to 2.6: raise
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NotImplementedError in the body of methods to make them abstract by forcing the
user to subclass and implement them.

Meanwhile, I read that Yukihiro “Matz” Matsumoto, creator of Ruby, said in a keynote
in September 2014 that static typing may be in the future of the language. That was at
Ruby Kaigi in Japan, one of the most important Ruby conferences every year. As I write
this, I haven’t seen a transcript, but Godfrey Chan posted about it on his blog: “Ruby
Kaigi 2014: Day 2”. From Chan’s report, it seems Matz focused on function annotations.
There is even mention of Python function annotations.

I wonder if function annotations would be really good without ABCs to add structure
to the type system without losing flexibility. So maybe formal interfaces are also in the
future of Ruby.

I believe Python ABCs, with the register function and __subclasshook__, brought
formal interfaces to the language without throwing away the advantages of dynamic
typing.

Perhaps the geese are poised to overtake the ducks.

Metaphors and Idioms in Interfaces

A metaphor fosters understanding by making constraints clear. That’s the value of the
words “stack” and “queue” in describing those fundamental data structures: they make
clear how items can be added or removed. On the other hand, Alan Cooper writes in
About Face, 4E (Wiley):

Strict adherence to metaphors ties interfaces unnecessarily tightly to the workings of
the physical world.

He’s referring to user interfaces, but the admonition applies to APIs as well. But Cooper
does grant that when a “truly appropriate” metaphor “falls on our lap,” we can use it (he
writes “falls on our lap” because it’s so hard to find fitting metaphors that you should
not spend time actively looking for them). I believe the bingo machine imagery I used
in this chapter is appropriate and I stand by it.

About Face is by far the best book about UI design I’ve read—and I’ve read a few. Letting
go of metaphors as a design paradigm, and replacing it with “idiomatic interfaces” was
the most valuable thing I learned from Cooper’s work. As mentioned, Cooper does not
deal with APIs, but the more I think about his ideas, the more I see how they apply to
Python. The fundamental protocols of the language are what Cooper calls “idioms.”
Once we learn what a “sequence” is we can apply that knowledge in different contexts.
This is a main theme of Fluent Python: highlighting the fundamental idioms of the
language, so your code is concise, effective, and readable—for a fluent Pythonista.
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1. Alan Kay, “The Early History of Smalltalk,” in SIGPLAN Not. 28, 3 (March 1993), 69–95. Also available
online. Thanks to my friend Christiano Anderson who shared this reference as I was writing this chapter.

CHAPTER 12

Inheritance: For Good or For Worse

[We] started to push on the inheritance idea as a way to let novices build on frameworks
that could only be designed by experts.1.

— Alan Kay
 The Early History of Smalltalk

This chapter is about inheritance and subclassing, with emphasis on two particulars
that are very specific to Python:

• The pitfalls of subclassing from built-in types
• Multiple inheritance and the method resolution order

Many consider multiple inheritance more trouble than it’s worth. The lack of it certainly
did not hurt Java; it probably fueled its widespread adoption after many were trauma‐
tized by the excessive use of multiple inheritance in C++.

However, the amazing success and influence of Java means that a lot of programmers
come to Python without having seen multiple inheritance in practice. This is why, in‐
stead of toy examples, our coverage of multiple inheritance will be illustrated by two
important Python projects: the Tkinter GUI toolkit and the Django Web framework.

We’ll start with the issue of subclassing built-ins. The rest of the chapter will cover
multiple inheritance with our case studies and discuss good and bad practices when
building class hierarchies.
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Subclassing Built-In Types Is Tricky
Before Python 2.2, it was not possible to subclass built-in types such as list or dict.
Since then, it can be done but there is a major caveat: the code of the built-ins (written
in C) does not call special methods overridden by user-defined classes.

A good short description of the problem is in the documentation for PyPy, in “Differ‐
ences between PyPy and CPython”, section Subclasses of built-in types:

Officially, CPython has no rule at all for when exactly overridden method of subclasses
of built-in types get implicitly called or not. As an approximation, these methods are
never called by other built-in methods of the same object. For example, an overridden
__getitem__() in a subclass of dict will not be called by e.g. the built-in get()
method.

Example 12-1 illustrates the problem.

Example 12-1. Our __setitem__ override is ignored by the __init__ and __update__
methods of the built-in dict
>>> class DoppelDict(dict):
...     def __setitem__(self, key, value):
...         super().__setitem__(key, [value] * 2)  # 
...
>>> dd = DoppelDict(one=1)  # 
>>> dd
{'one': 1}
>>> dd['two'] = 2  # 
>>> dd
{'one': 1, 'two': [2, 2]}
>>> dd.update(three=3)  # 
>>> dd
{'three': 3, 'one': 1, 'two': [2, 2]}

DoppelDict.__setitem__ duplicates values when storing (for no good reason,
just to have a visible effect). It works by delegating to the superclass.
The __init__ method inherited from dict clearly ignored that __setitem__
was overridden: the value of 'one' is not duplicated.
The [] operator calls our __setitem__ and works as expected: 'two' maps to
the duplicated value [2, 2].
The update method from dict does not use our version of __setitem__ either:
the value of 'three' was not duplicated.

This built-in behavior is a violation of a basic rule of object-oriented programming: the
search for methods should always start from the class of the target instance (self), even
when the call happens inside a method implemented in a superclass. In this sad state of
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affairs, the __missing__ method—which we saw in “The __missing__ Method” on page
72—works as documented only because it’s handled as a special case.

The problem is not limited to calls within an instance—whether self.get() calls
self.__getitem__())—but also happens with overridden methods of other classes that
should be called by the built-in methods. Example 12-2 is an example adapted from the
PyPy documentation.

Example 12-2. The __getitem__ of AnswerDict is bypassed by dict.update
>>> class AnswerDict(dict):
...     def __getitem__(self, key):  # 
...         return 42
...
>>> ad = AnswerDict(a='foo')  # 
>>> ad['a']  # 
42
>>> d = {}
>>> d.update(ad)  # 
>>> d['a']  # 
'foo'
>>> d
{'a': 'foo'}

AnswerDict.__getitem__ always returns 42, no matter what the key.
ad is an AnswerDict loaded with the key-value pair ('a', 'foo').
ad['a'] returns 42, as expected.
d is an instance of plain dict, which we update with ad.
The dict.update method ignored our AnswerDict.__getitem__.

Subclassing built-in types like dict or list or str directly is error-
prone because the built-in methods mostly ignore user-defined
overrides. Instead of subclassing the built-ins, derive your classes
from the collections module using UserDict, UserList, and
UserString, which are designed to be easily extended.

If you subclass collections.UserDict instead of dict, the issues exposed in Examples
12-1 and 12-2 are both fixed. See Example 12-3.

Example 12-3. DoppelDict2 and AnswerDict2 work as expected because they extend
UserDict and not dict
>>> import collections
>>>
>>> class DoppelDict2(collections.UserDict):
...     def __setitem__(self, key, value):
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2. If you are curious, the experiment is in the strkeydict_dictsub.py file in the Fluent Python code repository.

3. By the way, in this regard, PyPy behaves more “correctly” than CPython, at the expense of introducing a minor
incompatibility. See “Differences between PyPy and CPython” for details.

...         super().__setitem__(key, [value] * 2)

...
>>> dd = DoppelDict2(one=1)
>>> dd
{'one': [1, 1]}
>>> dd['two'] = 2
>>> dd
{'two': [2, 2], 'one': [1, 1]}
>>> dd.update(three=3)
>>> dd
{'two': [2, 2], 'three': [3, 3], 'one': [1, 1]}
>>>
>>> class AnswerDict2(collections.UserDict):
...     def __getitem__(self, key):
...         return 42
...
>>> ad = AnswerDict2(a='foo')
>>> ad['a']
42
>>> d = {}
>>> d.update(ad)
>>> d['a']
42
>>> d
{'a': 42}

As an experiment to measure the extra work required to subclass a built-in, I rewrote
the StrKeyDict class from Example 3-8. The original version inherited from collec
tions.UserDict, and implemented just three methods: __missing__, __contains__,
and __setitem__. The experimental StrKeyDict subclassed dict directly, and imple‐
mented the same three methods with minor tweaks due to the way the data was stored.
But in order to make it pass the same suite of tests, I had to implement __init__, get,
and update because the versions inherited from dict refused to cooperate with the
overridden __missing__, __contains__, and __setitem__. The UserDict subclass
from Example 3-8 has 16 lines, while the experimental dict subclass ended up with 37
lines.2

To summarize: the problem described in this section applies only to method delegation
within the C language implementation of the built-in types, and only affects user-
defined classes derived directly from those types. If you subclass from a class coded in
Python, such as UserDict or MutableMapping, you will not be troubled by this.3

350 | Chapter 12: Inheritance: For Good or For Worse

https://github.com/fluentpython/example-code
http://bit.ly/1JHNmhX


Another matter related to inheritance, particularly of multiple inheritance, is: how does
Python decide which attribute to use if superclasses from parallel branches define at‐
tributes with the same name? The answer is next.

Multiple Inheritance and Method Resolution Order
Any language implementing multiple inheritance needs to deal with potential naming
conflicts when unrelated ancestor classes implement a method by the same name. This
is called the “diamond problem,” and is illustrated in Figure 12-1 and Example 12-4.

Figure 12-1. Left: UML class diagram illustrating the “diamond problem.” Right:
Dashed arrows depict Python MRO (method resolution order) for Example 12-4.

Example 12-4. diamond.py: classes A, B, C, and D form the graph in Figure 12-1
class A:
    def ping(self):
        print('ping:', self)

class B(A):
    def pong(self):
        print('pong:', self)

class C(A):
    def pong(self):
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        print('PONG:', self)

class D(B, C):

    def ping(self):
        super().ping()
        print('post-ping:', self)

    def pingpong(self):
        self.ping()
        super().ping()
        self.pong()
        super().pong()
        C.pong(self)

Note that both classes B and C implement a pong method. The only difference is that
C.pong outputs the word PONG in uppercase.

If you call d.pong() on an instance of D, which pong method actually runs? In C++, the
programmer must qualify method calls with class names to resolve this ambiguity. This
can be done in Python as well. Take a look at Example 12-5.

Example 12-5. Two ways of invoking method pong on an instance of class D
>>> from diamond import *
>>> d = D()
>>> d.pong()  # 
pong: <diamond.D object at 0x10066c278>
>>> C.pong(d)  # 
PONG: <diamond.D object at 0x10066c278>

Simply calling d.pong() causes the B version to run.
You can always call a method on a superclass directly, passing the instance as an
explicit argument.

The ambiguity of a call like d.pong() is resolved because Python follows a specific order
when traversing the inheritance graph. That order is called MRO: Method Resolution
Order. Classes have an attribute called __mro__ holding a tuple of references to the
superclasses in MRO order, from the current class all the way to the object class. For
the D class, this is the __mro__ (see Figure 12-1):

>>> D.__mro__
(<class 'diamond.D'>, <class 'diamond.B'>, <class 'diamond.C'>,
<class 'diamond.A'>, <class 'object'>)

The recommended way to delegate method calls to superclasses is the super() built-in
function, which became easier to use in Python 3, as method pingpong of class D in

352 | Chapter 12: Inheritance: For Good or For Worse



4. In Python 2, the first line of D.pingpong would be written as super(D, self).ping() rather than
super().ping()

Example 12-4 illustrates.4. However, it’s also possible, and sometimes convenient, to
bypass the MRO and invoke a method on a superclass directly. For example, the D.ping
method could be written as:

    def ping(self):
        A.ping(self)  # instead of super().ping()
        print('post-ping:', self)

Note that when calling an instance method directly on a class, you must pass self
explicitly, because you are accessing an unbound method.

However, it’s safest and more future-proof to use super(), especially when calling
methods on a framework, or any class hierarchies you do not control. Example 12-6
shows that super() follows the MRO when invoking a method.

Example 12-6. Using super() to call ping (source code in Example 12-4)
>>> from diamond import D
>>> d = D()
>>> d.ping()  # 
ping: <diamond.D object at 0x10cc40630>  # 
post-ping: <diamond.D object at 0x10cc40630>  # 

The ping of D makes two calls.
The first call is super().ping(); the super delegates the ping call to class A;
A.ping outputs this line.
The second call is print('post-ping:', self), which outputs this line.

Now let’s see what happens when pingpong is called on an instance of D. See
Example 12-7.

Example 12-7. The five calls made by pingpong (source code in Example 12-4)
>>> from diamond import D
>>> d = D()
>>> d.pingpong()
>>> d.pingpong()
ping: <diamond.D object at 0x10bf235c0>  # 
post-ping: <diamond.D object at 0x10bf235c0>
ping: <diamond.D object at 0x10bf235c0>  # 
pong: <diamond.D object at 0x10bf235c0>  # 
pong: <diamond.D object at 0x10bf235c0>  # 
PONG: <diamond.D object at 0x10bf235c0>  # 
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Call #1 is self.ping(), which runs the ping method of D, which outputs this
line and the next one.
Call #2 is super.ping(), which bypasses the ping in D and finds the ping method
in A.
Call #3 is self.pong(), which finds the B implementation of pong, according to
the __mro__.
Call #4 is super.pong(), which finds the same B.pong implementation, also
following the __mro__.
Call #5 is C.pong(self), which finds the C.pong implementation, ignoring the
__mro__.

The MRO takes into account not only the inheritance graph but also the order in which
superclasses are listed in a subclass declaration. In other words, if in diamond.py
(Example 12-4) the D class was declared as class D(C, B):, the __mro__ of class D would
be different: C would be searched before B.

I often check the __mro__ of classes interactively when I am studying them.
Example 12-8 has some examples using familiar classes.

Example 12-8. Inspecting the __mro__ attribute in several classes
>>> bool.__mro__  
(<class 'bool'>, <class 'int'>, <class 'object'>)
>>> def print_mro(cls):  
...     print(', '.join(c.__name__ for c in cls.__mro__))
...
>>> print_mro(bool)
bool, int, object
>>> from frenchdeck2 import FrenchDeck2
>>> print_mro(FrenchDeck2)  
FrenchDeck2, MutableSequence, Sequence, Sized, Iterable, Container, object
>>> import numbers
>>> print_mro(numbers.Integral)  
Integral, Rational, Real, Complex, Number, object
>>> import io  
>>> print_mro(io.BytesIO)
BytesIO, _BufferedIOBase, _IOBase, object
>>> print_mro(io.TextIOWrapper)
TextIOWrapper, _TextIOBase, _IOBase, object

bool inherits methods and attributes from int and object.
print_mro produces more compact displays of the MRO.
The ancestors of FrenchDeck2 include several ABCs from the collec
tions.abc module.
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These are the numeric ABCs provided by the numbers module.
The io module includes ABCs (those with the …Base suffix) and concrete classes
like BytesIO and TextIOWrapper, which are the types of binary and text file
objects returned by open(), depending on the mode argument.

The MRO is computed using an algorithm called C3. The can‐
onical paper on the Python MRO explaining C3 is Michele Sim‐
ionato’s “The Python 2.3 Method Resolution Order”. If you are
interested in the subtleties of the MRO, “Further Reading” on page
367 has other pointers. But don’t fret too much about this, the al‐
gorithm is sensible; as Simionato writes:

[…] unless you make strong use of multiple inheri‐
tance and you have non-trivial hierarchies, you don’t
need to understand the C3 algorithm, and you can easi‐
ly skip this paper.

To wrap up this discussion of the MRO, Figure 12-2 illustrates part of the complex
multiple inheritance graph of the Tkinter GUI toolkit from the Python standard library.
To study the picture, start at the Text class at the bottom. The Text class implements a
full featured, multiline editable text widget. It has rich functionality of its own, but also
inherits many methods from other classes. The left side shows a plain UML class dia‐
gram. On the right, it’s decorated with arrows showing the MRO, as listed here with the
help of the print_mro convenience function defined in Example 12-8:

>>> import tkinter
>>> print_mro(tkinter.Text)
Text, Widget, BaseWidget, Misc, Pack, Place, Grid, XView, YView, object
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5. As previously mentioned, Java 8 allows interfaces to provide method implementations as well. The new feature
is called Default Methods in the official Java Tutorial.

Figure 12-2. Left: UML class diagram of the Tkinter Text widget class and its super‐
classes. Right: Dashed arrows depict Text.mro.

In the next section, we’ll discuss the pros and cons of multiple inheritance, with examples
from real frameworks that use it.

Multiple Inheritance in the Real World
It is possible to put multiple inheritance to good use. The Adapter pattern in the Design
Patterns book uses multiple inheritance, so it can’t be completely wrong to do it (the
remaining 22 patterns in the book use single inheritance only, so multiple inheritance
is clearly not a cure-all).

In the Python standard library, the most visible use of multiple inheritance is the col
lections.abc package. That is not controversial: after all, even Java supports multiple
inheritance of interfaces, and ABCs are interface declarations that may optionally pro‐
vide concrete method implementations.5

An extreme example of multiple inheritance in the standard library is the Tkinter GUI
toolkit (module tkinter: Python interface to Tcl/Tk). I used part of the Tkinter widget
hierarchy to illustrate the MRO in Figure 12-2, but Figure 12-3 shows all the widget
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classes in the tkinter base package (there are more widgets in the tkinter.ttk sub-
package).

Figure 12-3. Summary UML diagram for the Tkinter GUI class hierarchy; classes tag‐
ged «mixin» are designed to provide concrete methods to other classes via multiple in‐
heritance

Tkinter is 20 years old as I write this, and is not an example of current best practices.
But it shows how multiple inheritance was used when coders did not appreciate its
drawbacks. And it will serve as a counter-example when we cover some good practices
in the next section.

Consider these classes from Figure 12-3:

➊ Toplevel: The class of a top-level window in a Tkinter application.

➋ Widget: The superclass of every visible object that can be placed on a window.

➌ Button: A plain button widget.

➍ Entry: A single-line editable text field.

➎ Text: A multiline editable text field.
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Here are the MROs of those classes, displayed by the print_mro function from
Example 12-8:

>>> import tkinter
>>> print_mro(tkinter.Toplevel)
Toplevel, BaseWidget, Misc, Wm, object
>>> print_mro(tkinter.Widget)
Widget, BaseWidget, Misc, Pack, Place, Grid, object
>>> print_mro(tkinter.Button)
Button, Widget, BaseWidget, Misc, Pack, Place, Grid, object
>>> print_mro(tkinter.Entry)
Entry, Widget, BaseWidget, Misc, Pack, Place, Grid, XView, object
>>> print_mro(tkinter.Text)
Text, Widget, BaseWidget, Misc, Pack, Place, Grid, XView, YView, object

Things to note about how these classes relate to others:

• Toplevel is the only graphical class that does not inherit from Widget, because it
is the top-level window and does not behave like a widget—for example, it cannot
be attached to a window or frame. Toplevel inherits from Wm, which provides direct
access functions of the host window manager, like setting the window title and
configuring its borders.

• Widget inherits directly from BaseWidget and from Pack, Place, and Grid. These
last three classes are geometry managers: they are responsible for arranging widgets
inside a window or frame. Each encapsulates a different layout strategy and widget
placement API.

• Button, like most widgets, descends only from Widget, but indirectly from Misc,
which provides dozens of methods to every widget.

• Entry subclasses Widget and XView, the class that implements horizontal scrolling.
• Text subclasses from Widget, XView, and YView, which provides vertical scrolling

functionality.

We’ll now discuss some good practices of multiple inheritance and see whether Tkinter
goes along with them.

Coping with Multiple Inheritance
[…] we needed a better theory about inheritance entirely (and still do). For example,
inheritance and instancing (which is a kind of inheritance) muddles both pragmatics
(such as factoring code to save space) and semantics (used for way too many tasks such
as: specialization, generalization, speciation, etc.).

— Alan Kay
 The Early History of Smalltalk
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As Alan Kay wrote, inheritance is used for different reasons, and multiple inheritance
adds alternatives and complexity. It’s easy to create incomprehensible and brittle designs
using multiple inheritance. Because we don’t have a comprehensive theory, here are a
few tips to avoid spaghetti class graphs.

1. Distinguish Interface Inheritance from Implementation
Inheritance
When dealing with multiple inheritance, it’s useful to keep straight the reasons why
subclassing is done in the first place. The main reasons are:

• Inheritance of interface creates a subtype, implying an “is-a” relationship.
• Inheritance of implementation avoids code duplication by reuse.

In practice, both uses are often simultaneous, but whenever you can make the intent
clear, do it. Inheritance for code reuse is an implementation detail, and it can often be
replaced by composition and delegation. On the other hand, interface inheritance is the
backbone of a framework.

2. Make Interfaces Explicit with ABCs
In modern Python, if a class is designed to define an interface, it should be an explicit
ABC. In Python ≥ 3.4, this means: subclass abc.ABC or another ABC (see “ABC Syntax
Details” on page 328 if you need to support older Python versions).

3. Use Mixins for Code Reuse
If a class is designed to provide method implementations for reuse by multiple unrelated
subclasses, without implying an “is-a” relationship, it should be an explicit mixin class.
Conceptually, a mixin does not define a new type; it merely bundles methods for reuse.
A mixin should never be instantiated, and concrete classes should not inherit only from
a mixin. Each mixin should provide a single specific behavior, implementing few and
very closely related methods.

4. Make Mixins Explicit by Naming
There is no formal way in Python to state that a class is a mixin, so it is highly recom‐
mended that they are named with a …Mixin suffix. Tkinter does not follow this advice,
but if it did, XView would be XViewMixin, Pack would be PackMixin, and so on with all
the classes where I put the «mixin» tag in Figure 12-3.
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6. In “Waterfowl and ABCs” on page 314, Alex Martelli quotes Scott Meyer’s More Effective C++, which goes
even further: “all non-leaf classes should be abstract” (i.e., concrete classes should not have concrete super‐
classes at all).

7. “A class that is constructed primarily by inheriting from mixins and does not add its own structure or behavior
is called an aggregate class.”, Grady Booch et al., Object Oriented Analysis and Design, 3E (Addison-Wesley,
2007), p. 109.

5. An ABC May Also Be a Mixin; The Reverse Is Not True
Because an ABC can implement concrete methods, it works as a mixin as well. An ABC
also defines a type, which a mixin does not. And an ABC can be the sole base class of
any other class, while a mixin should never be subclassed alone except by another, more
specialized mixin—not a common arrangement in real code.

One restriction applies to ABCs and not to mixins: the concrete methods implemented
in an ABC should only collaborate with methods of the same ABC and its superclasses.
This implies that concrete methods in an ABC are always for convenience, because
everything they do, a user of the class can also do by calling other methods of the ABC.

6. Don’t Subclass from More Than One Concrete Class
Concrete classes should have zero or at most one concrete superclass.6 In other words,
all but one of the superclasses of a concrete class should be ABCs or mixins. For example,
in the following code, if Alpha is a concrete class, then Beta and Gamma must be ABCs
or mixins:

class MyConcreteClass(Alpha, Beta, Gamma):
    """This is a concrete class: it can be instantiated."""
    # ... more code ...

7. Provide Aggregate Classes to Users
If some combination of ABCs or mixins is particularly useful to client code, provide a
class that brings them together in a sensible way. Grady Booch calls this an aggregate
class.7

For example, here is the complete source code for tkinter.Widget:

class Widget(BaseWidget, Pack, Place, Grid):
    """Internal class.

    Base class for a widget which can be positioned with the
    geometry managers Pack, Place or Grid."""
    pass

The body of Widget is empty, but the class provides a useful service: it brings together
four superclasses so that anyone who needs to create a new widget does not need to
remember all those mixins, or wonder if they need to be declared in a certain order in
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8. Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software, Introduction, p. 20.

a class statement. A better example of this is the Django ListView class, which we’ll
discuss shortly, in “A Modern Example: Mixins in Django Generic Views” on page 362.

8. “Favor Object Composition Over Class Inheritance.”
This quote comes straight the Design Patterns book,8 and is the best advice I can offer
here. Once you get comfortable with inheritance, it’s too easy to overuse it. Placing
objects in a neat hierarchy appeals to our sense of order; programmers do it just for fun.

However, favoring composition leads to more flexible designs. For example, in the case
of the tkinter.Widget class, instead of inheriting the methods from all geometry man‐
agers, widget instances could hold a reference to a geometry manager, and invoke its
methods. After all, a Widget should not “be” a geometry manager, but could use the
services of one via delegation. Then you could add a new geometry manager without
touching the widget class hierarchy and without worrying about name clashes. Even
with single inheritance, this principle enhances flexibility, because subclassing is a form
of tight coupling, and tall inheritance trees tend to be brittle.

Composition and delegation can replace the use of mixins to make behaviors available
to different classes, but cannot replace the use of interface inheritance to define a hier‐
archy of types.

We will now analyze Tkinter from the point of view of these recommendations.

Tkinter: The Good, the Bad, and the Ugly

Keep in mind that Tkinter has been part of the standard library
since Python 1.1 was released in 1994. Tkinter is a layer on top of
the excellent Tk GUI toolkit of the Tcl language. The Tcl/Tk
combo is not originally object oriented, so the Tk API is basical‐
ly a vast catalog of functions. However, the toolkit is very object
oriented in its concepts, if not in its implementation.

Most advice in the previous section is not followed by Tkinter, with #7 being a notable
exception. Even then, it’s not a great example, because composition would probably
work better for integrating the geometry managers into Widget, as discussed in #8.

The docstring of tkinter.Widget starts with the words “Internal class.” This suggests
that Widget should probably be an ABC. Although Widget has no methods of its own,
it does define an interface. Its message is: “You can count on every Tkinter widget pro‐
viding basic widget methods (__init__, destroy, and dozens of Tk API functions), in
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addition to the methods of all three geometry managers.” We can agree that this is not
a great interface definition (it’s just too broad), but it is an interface, and Widget “defines”
it as the union of the interfaces of its superclasses.

The Tk class, which encapsulates the GUI application logic, inherits from Wm and Misc,
neither of which are abstract or mixin (Wm is not proper mixin because TopLevel sub‐
classes only from it). The name of the Misc class is—by itself—a very strong code
smell. Misc has more than 100 methods, and all widgets inherit from it. Why is it nec‐
essary that every single widget has methods for clipboard handling, text selection, timer
management, and the like? You can’t really paste into a button or select text from a
scrollbar. Misc should be split into several specialized mixin classes, and not all widgets
should inherit from every one of those mixins.

To be fair, as a Tkinter user, you don’t need to know or use multiple inheritance at all.
It’s an implementation detail hidden behind the widget classes that you will instantiate
or subclass in your own code. But you will suffer the consequences of excessive multiple
inheritance when you type dir(tkinter.Button) and try to find the method you need
among the 214 attributes listed.

Despite the problems, Tkinter is stable, flexible, and not necessarily ugly. The legacy
(and default) Tk widgets are not themed to match modern user interfaces, but the
tkinter.ttk package provides pretty, native-looking widgets, making professional GUI
development viable since Python 3.1 (2009). Also, some of the legacy widgets, like
Canvas and Text, are incredibly powerful. With just a little coding, you can turn a Canvas
object into a simple drag-and-drop drawing application. Tkinter and Tcl/Tk are defi‐
nitely worth a look if you are interested in GUI programming.

However, our theme here is not GUI programming, but the practice of multiple inher‐
itance. A more up-to-date example with explicit mixin classes can be found in Django.

A Modern Example: Mixins in Django Generic Views
You don’t need to know Django to follow this section. I am just
using a small part of the framework as a practical example of
multiple inheritance, and I will try to give all the necessary back‐
ground, assuming you have some experience with server-side web
development in another language or framework.

In Django, a view is a callable object that takes, as argument, an object representing an
HTTP request and returns an object representing an HTTP response. The different
responses are what interests us in this discussion. They can be as simple as a redirect
response, with no content body, or as complex as a catalog page in an online store,
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9. Django programmers know that the as_view class method is the most visible part of the View interface, but
it’s not relevant to us here.

rendered from an HTML template and listing multiple merchandise with buttons for
buying and links to detail pages.

Originally, Django provided a set of functions, called generic views, that implemented
some common use cases. For example, many sites need to show search results that
include information from numerous items, with the listing spanning multiple pages,
and for each item a link to a page with detailed information about it. In Django, a list
view and a detail view are designed to work together to solve this problem: a list view
renders search results, and a detail view produces pages for individual items.

However, the original generic views were functions, so they were not extensible. If you
needed to do something similar but not exactly like a generic list view, you’d have to
start from scratch.

In Django 1.3, the concept of class-based views was introduced, along with a set of
generic view classes organized as base classes, mixins, and ready-to-use concrete classes.
The base classes and mixins are in the base module of the django.views.generic
package, pictured in Figure 12-4. At the top of the diagram we see two classes that take
care of very distinct responsibilities: View and TemplateResponseMixin.

A great resource to study these classes is the Classy Class-Based
Views website, where you can easily navigate through them, see all
methods in each class (inherited, overridden, and added meth‐
ods), view diagrams, browse their documentation, and jump to
their source code on GitHub.

View is the base class of all views (it could be an ABC), and it provides core functionality
like the dispatch method, which delegates to “handler” methods like get, head, post,
etc., implemented by concrete subclasses to handle the different HTTP verbs.9 The
RedirectView class inherits only from View, and you can see that it implements get,
head, post, etc.

Concrete subclasses of View are supposed to implement the handler methods, so why
aren’t they part of the View interface? The reason: subclasses are free to implement just
the handlers they want to support. A TemplateView is used only to display content, so
it only implements get. If an HTTP POST request is sent to a TemplateView, the inherited
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10. If you are into design patterns, you’ll notice that the Django dispatch mechanism is a dynamic variation of
the Template Method pattern. It’s dynamic because the View class does not force subclasses to implement all
handlers, but dispatch checks at runtime if a concrete handler is available for the specific request.

View.dispatch method checks that there is no post handler, and produces an HTTP
405 Method Not Allowed response.10

Figure 12-4. UML class diagram for the django.views.generic.base module

The TemplateResponseMixin provides functionality that is of interest only to views that
need to use a template. A RedirectView, for example, has no content body, so it has no
need of a template and it does not inherit from this mixin. TemplateResponseMixin
provides behaviors to TemplateView and other template-rendering views, such as List
View, DetailView, etc., defined in other modules of the django.views.generic pack‐
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age. Figure 12-5 depicts the django.views.generic.list module and part of the base
module.

Figure 12-5. UML class diagram for the django.views.generic.list module. Here the
three classes of the base module are collapsed (see Figure 12-4). The ListView class has
no methods or attributes: it’s an aggregate class.

For Django users, the most important class in Figure 12-5 is ListView, which is an
aggregate class, with no code at all (its body is just a docstring). When instantiated, a
ListView has an object_list instance attribute through which the template can iterate
to show the page contents, usually the result of a database query returning multiple
objects. All the functionality related to generating this iterable of objects comes from
the MultipleObjectMixin. That mixin also provides the complex pagination logic—to
display part of the results in one page and links to more pages.

Suppose you want to create a view that will not render a template, but will produce a
list of objects in JSON format. Thats’ why the BaseListView exists. It provides an easy-
to-use extension point that brings together View and MultipleObjectMixin function‐
ality, without the overhead of the template machinery.

The Django class-based views API is a better example of multiple inheritance than
Tkinter. In particular, it is easy to make sense of its mixin classes: each has a well-defined
purpose, and they are all named with the …Mixin suffix.

Class-based views were not universally embraced by Django users. Many do use them
in a limited way, as black boxes, but when it’s necessary to create something new, a lot

A Modern Example: Mixins in Django Generic Views | 365



of Django coders continue writing monolithic view functions that take care of all those
responsibilities, instead of trying to reuse the base views and mixins.

It does take some time to learn how to leverage class-based views and how to extend
them to fulfill specific application needs, but I found that it was worthwhile to study
them: they eliminate a lot of boilerplate code, make it easier to reuse solutions, and even
improve team communication—for example, by defining standard names to templates,
and to the variables passed to template contexts. Class-based views are Django views
“on rails.”

This concludes our tour of multiple inheritance and mixin classes.

Chapter Summary
We started our coverage of inheritance explaining the problem with subclassing built-
in types: their native methods implemented in C do not call overridden methods in
subclasses, except in very few special cases. That’s why, when we need a custom list,
dict, or str type, it’s easier to subclass UserList, UserDict, or UserString—all defined
in the collections module, which actually wraps the built-in types and delegate op‐
erations to them—three examples of favoring composition over inheritance in the stan‐
dard library. If the desired behavior is very different from what the built-ins offer, it may
be easier to subclass the appropriate ABC from collections.abc and write your own
implementation.

The rest of the chapter was devoted to the double-edged sword of multiple inheritance.
First we saw how the method resolution order, encoded in the __mro__ class attribute,
addresses the problem of potential naming conflicts in inherited methods. We also saw
how the super() built-in follows the __mro__ to call a method on a superclass. We then
studied how multiple inheritance is used in the Tkinter GUI toolkit that comes with the
Python standard library. Tkinter is not an example of current best practices, so we
discussed some ways of coping with multiple inheritance, including careful use of mixin
classes and avoiding multiple inheritance altogether by using composition instead. After
considering how multiple inheritance is abused in Tkinter, we wrapped up by studying
the core parts of the Django class-based views hierarchy, which I consider a better ex‐
ample of mixin usage.

Lennart Regebro—a very experienced Pythonista and one of this book’s technical re‐
viewers—finds the design of Django’s mixin views hierarchy confusing. But he also
wrote:

The dangers and badness of multiple inheritance are greatly overblown. I’ve actually
never had a real big problem with it.
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In the end, each of us may have different opinions about how to use multiple inheritance,
or whether to use it at all in our own projects. But often we don’t have a choice: the
frameworks we must use impose their own choices.

Further Reading
When using ABCs, multiple inheritance is not only common but practically inevitable,
because each of the most fundamental collection ABCs (Sequence, Mapping, and Set)
extend multiple ABCs. The source code for collections.abc (Lib/_collec‐
tions_abc.py) is a good example of multiple inheritance with ABCs—many of which are
also mixin classes.

Raymond Hettinger’s post Python’s super() considered super! explains the workings of
super and multiple inheritance in Python from a positive perspective. It was written in
response to Python’s Super is nifty, but you can’t use it (a.k.a. Python’s Super Considered
Harmful) by James Knight.

Despite the titles of those posts, the problem is not really the super built-in—which in
Python 3 is not as ugly as it was in Python 2. The real issue is multiple inheritance, which
is inherently complicated and tricky. Michele Simionato goes beyond criticizing and
actually offers a solution in his Setting Multiple Inheritance Straight: he implements
traits, a constrained form of mixins that originated in the Self language. Simionato has
a long series of illuminating blog posts about multiple inheritance in Python, including
The wonders of cooperative inheritance, or using super in Python 3; Mixins considered
harmful, part 1 and part 2; and Things to Know About Python Super, part 1, part 2 and
part 3. The oldest posts use the Python 2 super syntax, but are still relevant.

I read the first edition of Grady Booch’s Object Oriented Analysis and Design, 3E
(Addison-Wesley, 2007), and highly recommend it as a general primer on object ori‐
ented thinking, independent of programming language. It is a rare book that covers
multiple inheritance without prejudice.

Soapbox
Think About the Classes You Really Need

The vast majority of programmers write applications, not frameworks. Even those who
do write frameworks are likely to spend a lot (if not most) of their time writing appli‐
cations. When we write applications, we normally don’t need to code class hierarchies.
At most, we write classes that subclass from ABCs or other classes provided by the
framework. As application developers, it’s very rare that we need to write a class that
will act as the superclass of another. The classes we code are almost always leaf classes
(i.e., leaves of the inheritance tree).
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If, while working as an application developer, you find yourself building multilevel class
hierarchies, it’s likely that one or more of the following applies:

• You are reinventing the wheel. Go look for a framework or library that provides
components you can reuse in your application.

• You are using a badly designed framework. Go look for an alternative.
• You are overengineering. Remember the KISS principle.
• You became bored coding applications and decided to start a new framework.

Congratulations and good luck!

It’s also possible that all of the above apply to your situation: you became bored and
decided to reinvent the wheel by building your own overengineered and badly designed
framework, which is forcing you to code class after class to solve trivial problems.
Hopefully you are having fun, or at least getting paid for it.

Misbehaving Built-ins: Bug or Feature?

The built-in dict, list, and str types are essential building blocks of Python itself, so
they must be fast—any performance issues in them would severely impact pretty much
everything else. That’s why CPython adopted the shortcuts that cause their built-in
methods to misbehave by not cooperating with methods overridden by subclasses. A
possible way out of this dilemma would be to offer two implementations for each of
those types: one “internal,” optimized for use by the interpreter and an external, easily
extensible one.

But wait, this is what we have: UserDict, UserList, and UserString are not as fast as
the built-ins but are easily extensible. The pragmatic approach taken by CPython means
we also get to use, in our own applications, the highly optimized implementations that
are hard to subclass. Which makes sense, considering that it’s not so often that we need
a custom mapping, list, or string, but we use dict, list and str every day. We just need
to be aware of the trade-offs involved.

Inheritance Across Languages

Alan Kay coined the term “object oriented,” and Smalltalk had only single inheritance,
although there are forks with various forms of multiple inheritance support, including
the modern Squeak and Pharo Smalltalk dialects that support traits—a language con‐
struct that fulfills the role of a mixin class, while avoiding some of the issues with multiple
inheritance.

The first popular language to implement multiple inheritance was C++, and the feature
was abused enough that Java—intended as a C++ replacement—was designed without
support for multiple inheritance of implementation (i.e., no mixin classes). That is, until
Java 8 introduced default methods that make interfaces very similar to the abstract
classes used to define interfaces in C++ and in Python. Except that Java interfaces cannot
have state—a key distinction. After Java, probably the most widely deployed JVM lan‐
guage is Scala, and it implements traits. Other languages supporting traits are the latest
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stable versions of PHP and Groovy, and the under-construction languages Rust and Perl
6—so it’s fair to say that traits are trendy as I write this.

Ruby offers an original take on multiple inheritance: it does not support it, but intro‐
duces mixins as a language feature. A Ruby class can include a module in its body, so
the methods defined in the module become part of the class implementation. This is a
“pure” form of mixin, with no inheritance involved, and it’s clear that a Ruby mixin has
no influence on the type of the class where it’s used. This provides the benefits of mixins,
while avoiding many of its usual problems.

Two recent languages that are getting a lot of traction severely limit inheritance: Go and
Julia. Go has no inheritance at all, but it implements interfaces in a way that resembles
a static form of duck typing (see “Soapbox” on page 343 for more about this). Julia avoids
the terms “classes” and has only “types.” Julia has a type hierarchy but subtypes cannot
inherit structure, only behaviors, and only abstract types can be subtyped. In addition,
Julia methods are implemented using multiple dispatch—a more advanced form of the
mechanism we saw in “Generic Functions with Single Dispatch” on page 202.
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1. Source: “The C Family of Languages: Interview with Dennis Ritchie, Bjarne Stroustrup, and James Gosling”.

CHAPTER 13

Operator Overloading: Doing It Right

There are some things that I kind of feel torn about, like operator overloading. I left out
operator overloading as a fairly personal choice because I had seen too many people abuse
it in C++.1

— James Gosling
 Creator of Java

Operator overloading allows user-defined objects to interoperate with infix operators
such as + and | or unary operators like - and ~. More generally, function invocation (()),
attribute access (.), and item access/slicing ([]) are also operators in Python, but this
chapter covers unary and infix operators.

In “Emulating Numeric Types” on page 9 (Chapter 1) we saw some trivial implemen‐
tations of operators in a bare bones Vector class. The __add__ and __mul__ methods
in Example 1-2 were written to show how special methods support operator overload‐
ing, but there are subtle problems in their implementations that we overlooked. Also,
in Example 9-2, we noted that the Vector2d.__eq__ method considers this to be True:
Vector(3, 4) == [3, 4]—which may or not make sense. We will address those matters
in this chapter.

In the following sections, we will cover:

• How Python supports infix operators with operands of different types
• Using duck typing or explicit type checks to deal with operands of various types
• How an infix operator method should signal it cannot handle an operand
• The special behavior of the rich comparison operators (e.g., ==, >, <=, etc.)
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• The default handling of augmented assignment operators, like +=, and how to over‐
load them

Operator Overloading 101
Operator overloading has a bad name in some circles. It is a language feature that can
be (and has been) abused, resulting in programmer confusion, bugs, and unexpected
performance bottlenecks. But if well used, it leads to pleasurable APIs and readable
code. Python strikes a good balance between flexibility, usability, and safety by imposing
some limitations:

• We cannot overload operators for the built-in types.
• We cannot create new operators, only overload existing ones.
• A few operators can’t be overloaded: is, and, or, not (but the bitwise &, |, ~, can).

In Chapter 10, we already had one infix operator in Vector: ==, supported by the __eq__
method. In this chapter, we’ll improve the implementation of __eq__ to better handle
operands of types other than Vector. However, the rich comparison operators (==, !=,
>, <, >=, <=) are special cases in operator overloading, so we’ll start by overloading four
arithmetic operators in Vector: the unary - and +, followed by the infix + and *.

Let’s start with the easiest topic: unary operators.

Unary Operators
In The Python Language Reference, “6.5. Unary arithmetic and bitwise operations” lists
three unary operators, shown here with their associated special methods:
- (__neg__)

Arithmetic unary negation. If x is -2 then -x == 2.

+ (__pos__)
Arithmetic unary plus. Usually x == +x, but there are a few cases when that’s not
true. See “When x and +x Are Not Equal” on page 373 if you’re curious.

~ (__invert__)
Bitwise inverse of an integer, defined as ~x == -(x+1). If x is 2 then ~x == -3.

The Data Model” chapter of The Python Language Reference also lists the abs(…) built-
in function as a unary operator. The associated special method is __abs__, as we’ve seen
before, starting with “Emulating Numeric Types” on page 9.

It’s easy to support the unary operators. Simply implement the appropriate special
method, which will receive just one argument: self. Use whatever logic makes sense in
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your class, but stick to the fundamental rule of operators: always return a new object.
In other words, do not modify self, but create and return a new instance of a suitable
type.

In the case of - and +, the result will probably be an instance of the same class as self;
for +, returning a copy of self is the best approach most of the time. For abs(…), the
result should be a scalar number. As for ~, it’s difficult to say what would be a sensible
result if you’re not dealing with bits in an integer, but in an ORM it could make sense
to return the negation of an SQL WHERE clause, for example.

As promised before, we’ll implement several new operators on the Vector class from
Chapter 10. Example 13-1 shows the __abs__ method we already had in
Example 10-16, and the newly added __neg__ and __pos__ unary operator method.

Example 13-1. vector_v6.py: unary operators - and + added to Example 10-16
    def __abs__(self):
        return math.sqrt(sum(x * x for x in self))

    def __neg__(self):
        return Vector(-x for x in self)   

    def __pos__(self):
        return Vector(self)   

To compute -v, build a new Vector with every component of self negated.
To compute +v, build a new Vector with every component of self.

Recall that Vector instances are iterable, and the Vector.__init__ takes an iterable
argument, so the implementations of __neg__ and __pos__ are short and sweet.

We’ll not implement __invert__, so if the user tries ~v on a Vector instance, Python
will raise TypeError with a clear message: “bad operand type for unary ~: 'Vector'.”

The following sidebar covers a curiosity that may help you win a bet about unary +
someday. The next important topic is “Overloading + for Vector Addition” on page 375.

When x and +x Are Not Equal
Everybody expects that x == +x, and that is true almost all the time in Python, but I
found two cases in the standard library where x != +x.

The first case involves the decimal.Decimal class. You can have x != +x if x is a Deci
mal instance created in an arithmetic context and +x is then evaluated in a context with
different settings. For example, x is calculated in a context with a certain precision, but
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the precision of the context is changed and then +x is evaluated. See Example 13-2 for
a demonstration.

Example 13-2. A change in the arithmetic context precision may cause x to differ
from +x
>>> import decimal
>>> ctx = decimal.getcontext()   
>>> ctx.prec = 40   
>>> one_third = decimal.Decimal('1') / decimal.Decimal('3')   
>>> one_third   
Decimal('0.3333333333333333333333333333333333333333')
>>> one_third == +one_third   
True
>>> ctx.prec = 28   
>>> one_third == +one_third   
False
>>> +one_third   
Decimal('0.3333333333333333333333333333')

Get a reference to the current global arithmetic context.
Set the precision of the arithmetic context to 40.
Compute 1/3 using the current precision.
Inspect the result; there are 40 digits after the decimal point.
one_third == +one_third is True.
Lower precision to 28—the default for Decimal arithmetic in Python 3.4.
Now one_third == +one_third is False.
Inspect +one_third; there are 28 digits after the '.' here.

The fact is that each occurrence of the expression +one_third produces a new Deci
mal instance from the value of one_third, but using the precision of the current arith‐
metic context.

The second case where x != +x you can find in the collections.Counter documen‐
tation. The Counter class implements several arithmetic operators, including infix + to
add the tallies from two Counter instances. However, for practical reasons, Counter
addition discards from the result any item with a negative or zero count. And the prefix
+ is a shortcut for adding an empty Counter, therefore it produces a new Counter
preserving only the tallies that are greater than zero. See Example 13-3.

Example 13-3. Unary + produces a new Counter without zeroed or negative tallies
>>> ct = Counter('abracadabra')
>>> ct
Counter({'a': 5, 'r': 2, 'b': 2, 'd': 1, 'c': 1})
>>> ct['r'] = -3
>>> ct['d'] = 0
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>>> ct
Counter({'a': 5, 'b': 2, 'c': 1, 'd': 0, 'r': -3})
>>> +ct
Counter({'a': 5, 'b': 2, 'c': 1})

Now, back to our regularly scheduled programming.

Overloading + for Vector Addition
The Vector class is a sequence type, and the section “3.3.6. Em‐
ulating container types” in the “Data Model” chapter says sequen‐
ces should support the + operator for concatenation and * for
repetition. However, here we will implement + and * as mathe‐
matical vector operations, which are a bit harder but more mean‐
ingful for a Vector type.

Adding two Euclidean vectors results in a new vector in which the components are the
pairwise additions of the components of the addends. To illustrate:

>>> v1 = Vector([3, 4, 5])
>>> v2 = Vector([6, 7, 8])
>>> v1 + v2
Vector([9.0, 11.0, 13.0])
>>> v1 + v2 == Vector([3+6, 4+7, 5+8])
True

What happens if we try to add two Vector instances of different lengths? We could raise
an error, but considering practical applications (such as information retrieval), it’s better
to fill out the shortest Vector with zeros. This is the result we want:

>>> v1 = Vector([3, 4, 5, 6])
>>> v3 = Vector([1, 2])
>>> v1 + v3
Vector([4.0, 6.0, 5.0, 6.0])

Given these basic requirements, the implementation of __add__ is short and sweet, as
shown in Example 13-4.

Example 13-4. Vector.add method, take #1
    # inside the Vector class

    def __add__(self, other):
        pairs = itertools.zip_longest(self, other, fillvalue=0.0)  # 
        return Vector(a + b for a, b in pairs)  # 
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pairs is a generator that will produce tuples (a, b) where a is from self, and
b is from other. If self and other have different lengths, fillvalue is used to
supply the missing values for the shortest iterable.
A new Vector is built from a generator expression producing one sum for each
item in pairs.

Note how __add__ returns a new Vector instance, and does not affect self or other.

Special methods implementing unary or infix operators should
never change their operands. Expressions with such operators are
expected to produce results by creating new objects. Only aug‐
mented assignment operators may change the first operand (self),
as discussed in “Augmented Assignment Operators” on page 388.

Example 13-4 allows adding Vector to a Vector2d, and Vector to a tuple or to any
iterable that produces numbers, as Example 13-5 proves.

Example 13-5. Vector.__add__ take #1 supports non-Vector objects, too
>>> v1 = Vector([3, 4, 5])
>>> v1 + (10, 20, 30)
Vector([13.0, 24.0, 35.0])
>>> from vector2d_v3 import Vector2d
>>> v2d = Vector2d(1, 2)
>>> v1 + v2d
Vector([4.0, 6.0, 5.0])

Both additions in Example 13-5 work because __add__ uses zip_longest(…), which
can consume any iterable, and the generator expression to build the new Vector merely
performs a + b with the pairs produced by zip_longest(…), so an iterable producing
any number items will do.

However, if we swap the operands (Example 13-6), the mixed-type additions fail..

Example 13-6. Vector.__add__ take #1 fails with non-Vector left operands
>>> v1 = Vector([3, 4, 5])
>>> (10, 20, 30) + v1
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: can only concatenate tuple (not "Vector") to tuple
>>> from vector2d_v3 import Vector2d
>>> v2d = Vector2d(1, 2)
>>> v2d + v1
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'Vector2d' and 'Vector'
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To support operations involving objects of different types, Python implements a special
dispatching mechanism for the infix operator special methods. Given an expression a
+ b, the interpreter will perform these steps (also see Figure 13-1):

1. If a has __add__, call a.__add__(b) and return result unless it’s NotImplemented.
2. If a doesn’t have __add__, or calling it returns NotImplemented, check if b has

__radd__, then call b.__radd__(a) and return result unless it’s NotImplemented.
3. If b doesn’t have __radd__, or calling it returns NotImplemented, raise TypeError

with an unsupported operand types message.

Figure 13-1. Flowchart for computing a + b with __add__ and __radd__
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2. The Python documentation uses both terms. The “Data Model” chapter uses “reflected,” but “9.1.2.2. Imple‐
menting the arithmetic operations” in the numbers module docs mention “forward” and “reverse” methods,
and I find this terminology better, because “forward” and “reversed” clearly name each of the directions, while
“reflected” doesn’t have an obvious opposite.

The __radd__ method is called the “reflected” or “reversed” version of __add__. I prefer
to call them “reversed” special methods.2 Three of this book’s technical reviewers—Alex,
Anna, and Leo—told me they like to think of them as the “right” special methods,
because they are called on the righthand operand. Whatever “r”-word you prefer, that’s
what the “r” prefix stands for in __radd__, __rsub__, and the like.

Therefore, to make the mixed-type additions in Example 13-6 work, we need to imple‐
ment the Vector.__radd__ method, which Python will invoke as a fall back if the left
operand does not implement __add__ or if it does but returns NotImplemented to signal
that it doesn’t know how to handle the right operand.

Do not confuse NotImplemented with NotImplementedError. The
first, NotImplemented, is a special singleton value that an infix
operator special method should return to tell the interpreter it
cannot handle a given operand. In contrast, NotImplementedEr
ror is an exception that stub methods in abstract classes raise to
warn that they must be overwritten by subclasses.

The simplest possible __radd__ that works is shown in Example 13-7.

Example 13-7. Vector.__add__ and __radd__ methods
    # inside the Vector class

    def __add__(self, other):  # 
        pairs = itertools.zip_longest(self, other, fillvalue=0.0)
        return Vector(a + b for a, b in pairs)

    def __radd__(self, other):  # 
        return self + other

No changes to __add__ from Example 13-4; listed here because __radd__ uses
it.
__radd__ just delegates to __add__.

Often, __radd__ can be as simple as that: just invoke the proper operator, therefore
delegating to __add__ in this case. This applies to any commutative operator; + is com‐
mutative when dealing with numbers or our vectors, but it’s not commutative when
concatenating sequences in Python.
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The methods in Example 13-4 work with Vector objects, or any iterable with numeric
items, such as a Vector2d, a tuple of integers, or an array of floats. But if provided with
a noniterable object, __add__ fails with a message that is not very helpful, as in
Example 13-8.

Example 13-8. Vector.__add__ method needs an iterable operand
>>> v1 + 1
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "vector_v6.py", line 328, in __add__
    pairs = itertools.zip_longest(self, other, fillvalue=0.0)
TypeError: zip_longest argument #2 must support iteration

Another unhelpful message is given if an operand is iterable but its items cannot be
added to the float items in the Vector. See Example 13-9.

Example 13-9. Vector.__add__ method needs an iterable with numeric items
>>> v1 + 'ABC'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "vector_v6.py", line 329, in __add__
    return Vector(a + b for a, b in pairs)
  File "vector_v6.py", line 243, in __init__
    self._components = array(self.typecode, components)
  File "vector_v6.py", line 329, in <genexpr>
    return Vector(a + b for a, b in pairs)
TypeError: unsupported operand type(s) for +: 'float' and 'str'

The problems in Examples 13-8 and 13-9 actually go deeper than obscure error mes‐
sages: if an operator special method cannot return a valid result because of type incom‐
patibility, it should return NotImplemented and not raise TypeError. By returning No
tImplemented, you leave the door open for the implementer of the other operand type
to perform the operation when Python tries the reversed method call.

In the spirit of duck typing, we will refrain from testing the type of the other operand,
or the type of its elements. We’ll catch the exceptions and return NotImplemented. If
the interpreter has not yet reversed the operands, it will try that. If the reverse method
call returns NotImplemented, then Python will raise issue TypeError with a standard
error message like “unsupported operand type(s) for +: Vector and str.”

The final implementation of the special methods for Vector addition are in
Example 13-10.

Example 13-10. vector_v6.py: operator + methods added to vector_v5.py
(Example 10-16)
    def __add__(self, other):
        try:
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3. The @ sign can be used as an infix dot product operator starting with Python 3.5. More about it in “The New
@ Infix Operator in Python 3.5” on page 383.

            pairs = itertools.zip_longest(self, other, fillvalue=0.0)
            return Vector(a + b for a, b in pairs)
        except TypeError:
            return NotImplemented

    def __radd__(self, other):
        return self + other

If an infix operator method raises an exception, it aborts the op‐
erator dispatch algorithm. In the particular case of TypeError, it
is often better to catch it and return NotImplemented. This al‐
lows the interpreter to try calling the reversed operator method,
which may correctly handle the computation with the swapped
operands, if they are of different types.

At this point, we have safely overloaded the + operator by writing __add__ and
__radd__. We will now tackle another infix operator: *.

Overloading * for Scalar Multiplication
What does Vector([1, 2, 3]) * x mean? If x is a number, that would be a scalar
product, and the result would be a new Vector with each component multiplied by x—
also known as an elementwise multiplication:

>>> v1 = Vector([1, 2, 3])
>>> v1 * 10
Vector([10.0, 20.0, 30.0])
>>> 11 * v1
Vector([11.0, 22.0, 33.0])

Another kind of product involving Vector operands would be the dot product of two
vectors—or matrix multiplication, if you take one vector as a 1 × N matrix and the other
as an N × 1 matrix. The current practice in NumPy and similar libraries is not to overload
the * with these two meanings, but to use * only for the scalar product. For example, in
NumPy, numpy.dot() computes the dot product.3

Back to our scalar product, again we start with the simplest __mul__ and __rmul__
methods that could possibly work:

    # inside the Vector class

    def __mul__(self, scalar):
        return Vector(n * scalar for n in self)
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    def __rmul__(self, scalar):
        return self * scalar

Those methods do work, except when provided with incompatible operands. The
scalar argument has to be a number that when multiplied by a float produces another
float (because our Vector class uses an array of floats internally). So a complex number
will not do, but the scalar can be an int, a bool (because bool is a subclass of int), or
even a fractions.Fraction instance.

We could use the same duck typing technique as we did in Example 13-10 and catch a
TypeError in __mul__, but there is another, more explicit way that makes sense in this
situation: goose typing. We use isinstance() to check the type of scalar, but instead
of hardcoding some concrete types, we check against the numbers.Real ABC, which
covers all the types we need, and keeps our implementation open to future numeric
types that declare themselves actual or virtual subclasses of the numbers.Real ABC.
Example 13-11 shows a practical use of goose typing—an explicit check against an ab‐
stract type; see the_ Fluent Python_ code repository for the full listing.

As you may recall from “ABCs in the Standard Library” on page
321, decimal.Decimal is not registered as a virtual subclass of
numbers.Real. Thus, our Vector class will not handle decimal.Dec
imal numbers.

Example 13-11. vector_v7.py: operator * methods added
from array import array
import reprlib
import math
import functools
import operator
import itertools
import numbers  # 

class Vector:
    typecode = 'd'

    def __init__(self, components):
        self._components = array(self.typecode, components)

    # many methods omitted in book listing, see vector_v7.py
    # in https://github.com/fluentpython/example-code ...

    def __mul__(self, scalar):
        if isinstance(scalar, numbers.Real):  # 
            return Vector(n * scalar for n in self)
        else:  # 
            return NotImplemented
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    def __rmul__(self, scalar):
        return self * scalar  # 

Import the numbers module for type checking.
If scalar is an instance of a numbers.Real subclass, create new Vector with
multiplied component values.
Otherwise, raise TypeError with an explicit message.
In this example, __rmul__ works fine by just performing self * scalar,
delegating to the __mul__ method.

With Example 13-11, we can multiply Vectors by scalar values of the usual and not so
usual numeric types:

>>> v1 = Vector([1.0, 2.0, 3.0])
>>> 14 * v1
Vector([14.0, 28.0, 42.0])
>>> v1 * True
Vector([1.0, 2.0, 3.0])
>>> from fractions import Fraction
>>> v1 * Fraction(1, 3)
Vector([0.3333333333333333, 0.6666666666666666, 1.0])

Implementing + and * we saw the most common patterns for coding infix operators.
The techniques we described for + and * are applicable to all operators listed in Table 13-1
(the in-place operators will be covered in “Augmented Assignment Operators” on page
388).

Table 13-1. Infix operator method names (the in-place operators are used for augmen‐
ted assignment; comparison operators are in Table 13-2)

Operator Forward Reverse In-place Description

+ __add__ __radd__ __iadd__ Addition or concatenation

- __sub__ __rsub__ __isub__ Subtraction

* __mul__ __rmul__ __imul__ Multiplication or repetition

/ __truediv__ __rtruediv__ __itruediv__ True division

// __floordiv__ __rfloordiv__ __ifloordiv__ Floor division

% __mod__ __rmod__ __imod__ Modulo

divmod() __divmod__ __rdivmod__ __idivmod__ Returns tuple of floor
division quotient and
modulo

**, pow() __pow__ __rpow__ __ipow__ Exponentiationa

@ __matmul__ __rmatmul__ __imatmul__ Matrix multiplicationb

& __and__ __rand__ __iand__ Bitwise and

| __or__ __ror__ __ior__ Bitwise or
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Operator Forward Reverse In-place Description

^ __xor__ __rxor__ __ixor__ Bitwise xor

<< __lshift__ __rlshift__ __ilshift__ Bitwise shift left

>> __rshift__ __rrshift__ __irshift__ Bitwise shift right
a pow takes an optional third argument, modulo: pow(a, b, modulo), also supported by the special methods when
invoked directly (e.g., a.__pow__(b, modulo)).
b New in Python 3.5.

The rich comparison operators are another category of infix operators, using a slightly
different set of rules. We cover them in the next main section: “Rich Comparison Oper‐
ators” on page 384.

The following optional sidebar is about the @ operator introduced in Python 3.5—not
yet released at the time of this writing.

The New @ Infix Operator in Python 3.5
Python 3.4 does not have an infix operator for the dot product. However, as I write this,
Python 3.5 pre-alpha already implements PEP 465 — A dedicated infix operator for
matrix multiplication, making the @ sign available for that purpose (e.g., a @ b is the
dot product of a and b). The @ operator is supported by the special methods __mat
mul__, __rmatmul__, and __imatmul__, named for “matrix multiplication.” These meth‐
ods are not used anywhere in the standard library at this time, but are recognized by the
interpreter in Python 3.5 so the NumPy team—and the rest of us—can support the @
operator in user-defined types. The parser was also changed to handle the infix @ (a @
b is a syntax error in Python 3.4).

Just for fun, after compiling Python 3.5 from source, I was able to implement and test
the @ operator for the Vector dot product.

These are the simple tests I did:

>>> va = Vector([1, 2, 3])
>>> vz = Vector([5, 6, 7])
>>> va @ vz == 38.0  # 1*5 + 2*6 + 3*7
True
>>> [10, 20, 30] @ vz
380.0
>>> va @ 3
Traceback (most recent call last):
  ...
TypeError: unsupported operand type(s) for @: 'Vector' and 'int'

And here is the code of the relevant special methods:

class Vector:
    # many methods omitted in book listing
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    def __matmul__(self, other):
        try:
            return sum(a * b for a, b in zip(self, other))
        except TypeError:
            return NotImplemented

    def __rmatmul__(self, other):
        return self @ other

The full source is in the vector_py3_5.py file in the Fluent Python code repository.

Remember to try it with Python 3.5, otherwise you’ll get a SyntaxError!

Rich Comparison Operators
The handling of the rich comparison operators ==, !=, >, <, >=, <= by the Python inter‐
preter is similar to what we just saw, but differs in two important aspects:

• The same set of methods are used in forward and reverse operator calls. The rules
are summarized in Table 13-2. For example, in the case of ==, both the forward and
reverse calls invoke __eq__, only swapping arguments; and a forward call to __gt__
is followed by a reverse call to __lt__ with the swapped arguments.

• In the case of == and !=, if the reverse call fails, Python compares the object IDs
instead of raising TypeError.

Table 13-2. Rich comparison operators: reverse methods invoked when the initial meth‐
od call returns NotImplemented

Group Infix operator Forward method call Reverse method call Fall back

Equality a == b a.__eq__(b) b.__eq__(a) Return id(a) == id(b)

a != b a.__ne__(b) b.__ne__(a) Return not (a == b)

Ordering a > b a.__gt__(b) b.__lt__(a) Raise TypeError

a < b a.__lt__(b) b.__gt__(a) Raise TypeError

a >= b a.__ge__(b) b.__le__(a) Raise TypeError

a <= b a.__le__(b) b.__ge__(a) Raise TypeError
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New Behavior in Python 3
The fallback step for all comparison operators changed from
Python 2. For __ne__, Python 3 now returns the negated result of
__eq__. For the ordering comparison operators, Python 3 raises
TypeError with a message like 'unorderable types: int() <
tuple()'. In Python 2, those comparisons produced weird re‐
sults taking into account object types and IDs in some arbitrary
way. However, it really makes no sense to compare an int to a
tuple, for example, so raising TypeError in such cases is a real
improvement in the language.

Given these rules, let’s review and improve the behavior of the Vector.__eq__ method,
which was coded as follows in vector_v5.py (Example 10-16):

class Vector:
    # many lines omitted

    def __eq__(self, other):
        return (len(self) == len(other) and
                all(a == b for a, b in zip(self, other)))

That method produces the results in Example 13-12.

Example 13-12. Comparing a Vector to a Vector, a Vector2d, and a tuple
>>> va = Vector([1.0, 2.0, 3.0])
>>> vb = Vector(range(1, 4))
>>> va == vb  # 
True
>>> vc = Vector([1, 2])
>>> from vector2d_v3 import Vector2d
>>> v2d = Vector2d(1, 2)
>>> vc == v2d  # 
True
>>> t3 = (1, 2, 3)
>>> va == t3  # 
True

Two Vector instances with equal numeric components compare equal.
A Vector and a Vector2d are also equal if their components are equal.
A Vector is also considered equal to a tuple or any iterable with numeric items
of equal value.

The last one of the results in Example 13-12 is probably not desirable. I really have no
hard rule about this; it depends on the application context. But the Zen of Python says:

In the face of ambiguity, refuse the temptation to guess.
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Excessive liberality in the evaluation of operands may lead to surprising results, and
programmers hate surprises.

Taking a clue from Python itself, we can see that [1,2] == (1, 2) is False. Therefore,
let’s be conservative and do some type checking. If the second operand is a Vector
instance (or an instance of a Vector subclass), then use the same logic as the current
__eq__. Otherwise, return NotImplemented and let Python handle that. See
Example 13-13.

Example 13-13. vector_v8.py: improved __eq__ in the Vector class
    def __eq__(self, other):
        if isinstance(other, Vector):   
            return (len(self) == len(other) and
                    all(a == b for a, b in zip(self, other)))
        else:
            return NotImplemented   

If the other operand is an instance of Vector (or of a Vector subclass), perform
the comparison as before.
Otherwise, return NotImplemented.

If you run the tests in Example 13-12 with the new Vector.__eq__ from
Example 13-13, what you get now is shown in Example 13-14.

Example 13-14. Same comparisons as Example 13-12: last result changed
>>> va = Vector([1.0, 2.0, 3.0])
>>> vb = Vector(range(1, 4))
>>> va == vb  # 
True
>>> vc = Vector([1, 2])
>>> from vector2d_v3 import Vector2d
>>> v2d = Vector2d(1, 2)
>>> vc == v2d  # 
True
>>> t3 = (1, 2, 3)
>>> va == t3  # 
False

Same result as before, as expected.
Same result as before, but why? Explanation coming up.
Different result; this is what we wanted. But why does it work? Read on…

Among the three results in Example 13-14, the first one is no news, but the last two were
caused by __eq__ returning NotImplemented in Example 13-13. Here is what happens
in the example with a Vector and a Vector2d, step by step:

386 | Chapter 13: Operator Overloading: Doing It Right



4. The logic for object.__eq__ and object.__ne__ is in function object_richcompare in Objects/typeob‐
ject.c in the CPython source code.

1. To evaluate vc == v2d, Python calls Vector.__eq__(vc, v2d).
2. Vector.__eq__(vc, v2d) verifies that v2d is not a Vector and returns NotImple

mented.
3. Python gets NotImplemented result, so it tries Vector2d.__eq__(v2d, vc).
4. Vector2d.__eq__(v2d, vc) turns both operands into tuples an compares them:

the result is True (the code for Vector2d.__eq__ is in Example 9-9).

As for the comparison between Vector and tuple in Example 13-14, the actual steps
are:

1. To evaluate va == t3, Python calls Vector.__eq__(va, t3).
2. Vector.__eq__(va, t3) verifies that t3 is not a Vector and returns NotImplemen

ted.
3. Python gets NotImplemented result, so it tries tuple.__eq__(t3, va).
4. tuple.__eq__(t3, va) has no idea what a Vector is, so it returns NotImplemented.
5. In the special case of ==, if the reversed call returns NotImplemented, Python com‐

pares object IDs as a last resort.

How about !=? We don’t need to implement it because the fallback behavior of the
__ne__ inherited from object suits us: when __eq__ is defined and does not return
NotImplemented, __ne__ returns that result negated.

In other words, given the same objects we used in Example 13-14, the results for != are
consistent:

>>> va != vb
False
>>> vc != v2d
False
>>> va != (1, 2, 3)
True

The __ne__ inherited from object works like the following code—except that the orig‐
inal is written in C:4

    def __ne__(self, other):
        eq_result = self == other
        if eq_result is NotImplemented:
            return NotImplemented
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        else:
            return not eq_result

Python 3 Documentation Bug
As I write this, the rich comparison method documentation states:
“The truth of x==y does not imply that x!=y is false. Accordingly,
when defining __eq__(), one should also define __ne__() so that
the operators will behave as expected.” That was true for Python
2, but in Python 3 that’s not good advice, because a useful default
__ne__ implementation is inherited from the object class, and it’s
rarely necessary to override it. The new behavior is documented
in Guido’s What’s New in Python 3.0, in the section “Operators
And Special Methods.” The documentation bug is recorded as
issue 4395.

After covering the essentials of infix operator overloading, let’s turn to a different class
of operators: the augmented assignment operators.

Augmented Assignment Operators
Our Vector class already supports the augmented assignment operators += and *=.
Example 13-15 shows them in action.

Example 13-15. Augmented assignment works with immutable targets by creating new
instances and rebinding
>>> v1 = Vector([1, 2, 3])
>>> v1_alias = v1  # 
>>> id(v1)  # 
4302860128
>>> v1 += Vector([4, 5, 6])  # 
>>> v1  # 
Vector([5.0, 7.0, 9.0])
>>> id(v1)  # 
4302859904
>>> v1_alias  # 
Vector([1.0, 2.0, 3.0])
>>> v1 *= 11  # 
>>> v1  # 
Vector([55.0, 77.0, 99.0])
>>> id(v1)
4302858336

Create alias so we can inspect the Vector([1, 2, 3]) object later.
Remember the ID of the initial Vector bound to v1.
Perform augmented addition.
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The expected result…
…but a new Vector was created.
Inspect v1_alias to confirm the original Vector was not altered.
Perform augmented multiplication.
Again, the expected result, but a new Vector was created.

If a class does not implement the in-place operators listed in Table 13-1, the augmented
assignment operators are just syntactic sugar: a += b is evaluated exactly as a = a +
b. That’s the expected behavior for immutable types, and if you have __add__ then +=
will work with no additional code.

However, if you do implement an in-place operator method such as __iadd__, that
method is called to compute the result of a += b. As the name says, those operators are
expected to change the lefthand operand in place, and not create a new object as the
result.

The in-place special methods should never be implemented for
immutable types like our Vector class. This is fairly obvious, but
worth stating anyway.

To show the code of an in-place operator, we will extend the BingoCage class from
Example 11-12 to implement __add__ and __iadd__.

We’ll call the subclass AddableBingoCage. Example 13-16 is the behavior we want for
the + operator.

Example 13-16. A new AddableBingoCage instance can be created with
    >>> vowels = 'AEIOU'
    >>> globe = AddableBingoCage(vowels)   
    >>> globe.inspect()
    ('A', 'E', 'I', 'O', 'U')
    >>> globe.pick() in vowels   
    True
    >>> len(globe.inspect())   
    4
    >>> globe2 = AddableBingoCage('XYZ')   
    >>> globe3 = globe + globe2
    >>> len(globe3.inspect())   
    7
    >>> void = globe + [10, 20]   
    Traceback (most recent call last):
      ...
    TypeError: unsupported operand type(s) for +: 'AddableBingoCage' and 'list'
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Create a globe instance with five items (each of the vowels).
Pop one of the items, and verify it is one the vowels.
Confirm that the globe is down to four items.
Create a second instance, with three items.
Create a third instance by adding the previous two. This instance has seven items.
Attempting to add an AddableBingoCage to a list fails with TypeError. That
error message is produced by the Python interpreter when our __add__ method
returns NotImplemented.

Because an AddableBingoCage is mutable, Example 13-17 shows how it will work when
we implement __iadd__.

Example 13-17. An existing AddableBingoCage can be loaded with += (continuing
from Example 13-16)
    >>> globe_orig = globe   
    >>> len(globe.inspect())   
    4
    >>> globe += globe2   
    >>> len(globe.inspect())
    7
    >>> globe += ['M', 'N']   
    >>> len(globe.inspect())
    9
    >>> globe is globe_orig   
    True
    >>> globe += 1   
    Traceback (most recent call last):
      ...
    TypeError: right operand in += must be 'AddableBingoCage' or an iterable

Create an alias so we can check the identity of the object later.
globe has four items here.
An AddableBingoCage instance can receive items from another instance of the
same class.
The righthand operand of += can also be any iterable.
Throughout this example, globe has always referred to the globe_orig object.
Trying to add a noniterable to an AddableBingoCage fails with a proper error
message.

Note that the += operator is more liberal than + with regard to the second operand. With
+, we want both operands to be of the same type (AddableBingoCage, in this case),
because if we accepted different types this might cause confusion as to the type of the
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result. With the +=, the situation is clearer: the lefthand object is updated in place, so
there’s no doubt about the type of the result.

I validated the contrasting behavior of + and += by observing how
the list built-in type works. Writing my_list + x, you can only
concatenate one list to another list, but if you write my_list +=
x, you can extend the lefthand list with items from any iterable
x on the righthand side. This is consistent with how the list.ex
tend() method works: it accepts any iterable argument.

Now that we are clear on the desired behavior for AddableBingoCage, we can look at its
implementation in Example 13-18.

Example 13-18. bingoaddable.py: AddableBingoCage extends BingoCage to support +
and +=
import itertools   

from tombola import Tombola
from bingo import BingoCage

class AddableBingoCage(BingoCage):   

    def __add__(self, other):
        if isinstance(other, Tombola):   
            return AddableBingoCage(self.inspect() + other.inspect())   
        else:
            return NotImplemented

    def __iadd__(self, other):
        if isinstance(other, Tombola):
            other_iterable = other.inspect()   
        else:
            try:
                other_iterable = iter(other)   
            except TypeError:   
                self_cls = type(self).__name__
                msg = "right operand in += must be {!r} or an iterable"
                raise TypeError(msg.format(self_cls))
        self.load(other_iterable)   
        return self   

PEP 8 — Style Guide for Python Code recommends coding imports from the
standard library above imports of your own modules.
AddableBingoCage extends BingoCage.
Our __add__ will only work with an instance of Tombola as the second operand.
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5. The iter built-in function will be covered in the next chapter. Here I could have used tuple(other), and
it would work, but at the cost of building a new tuple when all the .load(…) method needs is to iterate
over its argument.

Retrieve items from other, if it is an instance of Tombola.
Otherwise, try to obtain an iterator over other.5

If that fails, raise an exception explaining what the user should do. When
possible, error messages should explicitly guide the user to the solution.
If we got this far, we can load the other_iterable into self.
Very important: augmented assignment special methods must return self.

We can summarize the whole idea of in-place operators by contrasting the return
statements that produce results in __add__ and __iadd__ in Example 13-18:
__add__

The result is produced by calling the constructor AddableBingoCage to build a new
instance.

__iadd__

The result is produced by returning self, after it has been modified.

To wrap up this example, a final observation on Example 13-18: by design, no __radd__
was coded in AddableBingoCage, because there is no need for it. The forward method
__add__ will only deal with righthand operands of the same type, so if Python is trying
to compute a + b where a is an AddableBingoCage and b is not, we return NotImple
mented—maybe the class of b can make it work. But if the expression is b + a and b is
not an AddableBingoCage, and it returns NotImplemented, then it’s better to let Python
give up and raise TypeError because we cannot handle b.

In general, if a forward infix operator method (e.g., __mul__) is
designed to work only with operands of the same type as self, it’s
useless to implement the corresponding reverse method (e.g.,
__rmul__) because that, by definition, will only be invoked when
dealing with an operand of a different type.

This concludes our exploration of operator overloading in Python.

Chapter Summary
We started this chapter by reviewing some restrictions Python imposes on operator
overloading: no overloading of operators in built-in types, and overloading limited to
existing operators, except for a few ones (is, and, or, not).
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We got down to business with the unary operators, implementing __neg__ and
__pos__. Next came the infix operators, starting with +, supported by the __add__
method. We saw that unary and infix operators are supposed to produce results by
creating new objects, and should never change their operands. To support operations
with other types, we return the NotImplemented special value—not an exception—al‐
lowing the interpreter to try again by swapping the operands and calling the reverse
special method for that operator (e.g., __radd__). The algorithm Python uses to handle
infix operators is summarized in the flowchart in Figure 13-1.

Mixing operand types means we need to detect when we get an operand we can’t handle.
In this chapter, we did this in two ways: in the duck typing way, we just went ahead and
tried the operation, catching a TypeError exception if it happened; later, in __mul__, we
did it with an explicit isinstance test. There are pros and cons to these approaches:
duck typing is more flexible, but explicit type checking is more predictable. When we
did use isinstance, we were careful to avoid testing with a concrete class, but used the
numbers.Real ABC: isinstance(scalar, numbers.Real). This is a good compromise
between flexibility and safety, because existing or future user-defined types can be de‐
clared as actual or virtual subclasses of an ABC, as we saw in Chapter 11.

The next topic we covered was the rich comparison operators. We implemented == with
__eq__ and discovered that Python provides a handy implementation of != in the
__ne__ inherited from the object base class. The way Python evaluates these operators
along with >, <, >=, and <= is slightly different, with a different logic for choosing the
reverse method, and special fallback handling for == and !=, which never generate errors
because Python compares the object IDs as a last resort.

In the last section, we focused on augmented assignment operators. We saw that Python
handles them by default as a combination of plain operator followed by assignment,
that is: a += b is evaluated exactly as a = a + b. That always creates a new object, so it
works for mutable or immutable types. For mutable objects, we can implement in-place
special methods such as __iadd__ for +=, and alter the value of the lefthand operand.
To show this at work, we left behind the immutable Vector class and worked on im‐
plementing a BingoCage subclass to support += for adding items to the random pool,
similar to the way the list built-in supports += as a shortcut for the list.extend()
method. While doing this, we discussed how + tends to be stricter than += regarding the
types it accepts. For sequence types, + usually requires that both operands are of the
same type, while += often accepts any iterable as the righthand operand.

Further Reading
Operator overloading is one area of Python programming where isinstance tests are
common. In general, libraries should leverage dynamic typing—to be more flexible—
by avoiding explicit type tests and just trying operations and then handling the excep‐
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tions, opening the door for working with objects regardless of their types, as long as
they support the necessary operations. But Python ABCs allow a stricter form of duck
typing, dubbed “goose typing” by Alex Martelli, which is often useful when writing code
that overloads operators. So, if you skipped Chapter 11, make sure to read it.

The main reference for the operator special methods is the “Data Model” chapter. It’s
the canonical source, but at this time it’s plagued by that glaring bug mentioned in
Python 3 Documentation Bug, advising “when defining __eq__(), one should also de‐
fine __ne__().” In reality, the __ne__ inherited from the object class in Python 3 covers
the vast majority of needs, so implementing __ne__ is rarely necessary in practice. An‐
other relevant reading in the Python documentation is “9.1.2.2. Implementing the
arithmetic operations” in the numbers module of The Python Standard Library.

A related technique is generic functions, supported by the @singledispatch decorator
in Python 3 (“Generic Functions with Single Dispatch” on page 202). In Python Cook‐
book, 3E (O’Reilly), by David Beazley and Brian K. Jones, “Recipe 9.20. Implementing
Multiple Dispatch with Function Annotations” uses some advanced metaprogramming
—involving a metaclass—to implement type-based dispatching with function annota‐
tions. The second edition of the Python Cookbook by Martelli, Ravenscroft, and Ascher
has an interesting recipe (2.13, by Erik Max Francis) showing how to overload the <<
operator to emulate the C++ iostream syntax in Python. Both books have other exam‐
ples with operator overloading, I just picked two notable recipes.

The functools.total_ordering function is a class decorator (supported in Python 2.7
and later) that automatically generates methods for all rich comparison operators in any
class that defines at least a couple of them. See the functools module docs.

If you are curious about operator method dispatching in languages with dynamic typing,
two seminal readings are “A Simple Technique for Handling Multiple Polymorphism”
by Dan Ingalls (member of the original Smalltalk team) and “Arithmetic and Double
Dispatching in Smalltalk-80” by Kurt J. Hebel and Ralph Johnson (Johnson became
famous as one of the authors of the original Design Patterns book). Both papers provide
deep insight into the power of polymorphism in languages with dynamic typing, like
Smalltalk, Python, and Ruby. Python does not use double dispatching for handling
operators as described in those articles. The Python algorithm using forward and reverse
operators is easier for user-defined classes to support than double dispatching, but re‐
quires special handling by the interpreter. In contrast, classic double dispatching is a
general technique you can use in Python or any OO language beyond the specific context
of infix operators, and in fact Ingalls, Hebel, and Johnson use very different examples
to describe it.

The article “The C Family of Languages: Interview with Dennis Ritchie, Bjarne Stroustr‐
up, and James Gosling” from which I quoted the epigraph in this chapter, and two other
snippets in “Soapbox” on page 395, appeared in Java Report, 5(7), July 2000 and C++
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Report, 12(7), July/August 2000. It’s an awesome reading if you are into programming
language design.

Soapbox
Operator Overloading: Pros and Cons

James Gosling, quoted at the start of this chapter, made the conscious decision to leave
operator overloading out when he designed Java. In that same interview (“The C Family
of Languages: Interview with Dennis Ritchie, Bjarne Stroustrup, and James Gosling”)
he says:

Probably about 20 to 30 percent of the population think of operator overloading as the
spawn of the devil; somebody has done something with operator overloading that has
just really ticked them off, because they’ve used like + for list insertion and it makes life
really, really confusing. A lot of that problem stems from the fact that there are only
about half a dozen operators you can sensibly overload, and yet there are thousands or
millions of operators that people would like to define—so you have to pick, and often
the choices conflict with your sense of intuition.

Guido van Rossum picked the middle way in supporting operator overloading: he did
not leave the door open for users creating new arbitrary operators like <=> or :-), which
prevents a Tower of Babel of custom operators, and allows the Python parser to be
simple. Python also does not let you overload the operators of the built-in types, another
limitation that promotes readability and predictable performance.

Gosling goes on to say:

Then there’s a community of about 10 percent that have actually used operator over‐
loading appropriately and who really care about it, and for whom it’s actually really
important; this is almost exclusively people who do numerical work, where the notation
is very important to appealing to people’s intuition, because they come into it with an
intuition about what the + means, and the ability to say “a + b” where a and b are complex
numbers or matrices or something really does make sense.

The notation side of the issue cannot be underestimated. Here is an illustrative example
from the realm of finances. In Python, you can compute compound interest using a
formula written like this:

interest = principal * ((1 + rate) ** periods - 1)

That same notation works regardless of the numeric types involved. Thus, if you are
doing serious financial work, you can make sure that periods is an int, while rate,
interest, and principal are exact numbers—instances of the Python decimal.Deci
mal class — and that formula will work exactly as written.

But in Java, if you switch from float to BigDecimal to get arbitrary precision, you can’t
use infix operators anymore, because they only work with the primitive types. This is
the same formula coded to work with BigDecimal numbers in Java:
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6. My friend Mario Domenech Goulart, a core developer of the CHICKEN Scheme compiler, will probably
disagree with this.

BigDecimal interest = principal.multiply(BigDecimal.ONE.add(rate)
                        .pow(periods).subtract(BigDecimal.ONE));

It’s clear that infix operators make formulas more readable, at least for most of us.6 And
operator overloading is necessary to support nonprimitive types with infix operator
notation. Having operator overloading in a high-level, easy-to-use language was prob‐
ably a key reason for the amazing penetration of Python in scientific computing in recent
years.

Of course, there are benefits to disallowing operator overloading in a language. It is
arguably a sound decision for lower-level systems languages where performance and
safety are paramount. The much newer Go language followed the lead of Java in this
regard and does not support operator overloading.

But overloaded operators, when used sensibly, do make code easier to read and write.
It’s a great feature to have in a modern high-level language.

A Glimpse at Lazy Evaluation

If you look closely at the traceback in Example 13-9, you’ll see evidence of the lazy
evaluation of generator expressions. Example 13-19 is that same traceback, now with
callouts.

Example 13-19. Same as Example 13-9
>>> v1 + 'ABC'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "vector_v6.py", line 329, in __add__
    return Vector(a + b for a, b in pairs)  # 
  File "vector_v6.py", line 243, in __init__
    self._components = array(self.typecode, components)  # 
  File "vector_v6.py", line 329, in <genexpr>
    return Vector(a + b for a, b in pairs)  # 
TypeError: unsupported operand type(s) for +: 'float' and 'str'

The Vector call gets a generator expression as its components argument. No
problem at this stage.
The components genexp is passed to the array constructor. Within the array
constructor, Python tries to iterate over the genexp, causing the evaluation of
the first item a + b. That’s when the TypeError occurs.
The exception propagates to the Vector constructor call, where it is reported.

This shows how the generator expression is evaluated at the latest possible moment, and
not where it is defined in the source code.
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In contrast, if the Vector constructor was invoked as Vector([a + b for a, b in
pairs]), then the exception would happen right there, because the list comprehension
tried to build a list to be passed as the argument to the Vector() call. The body of
Vector.__init__ would not be reached at all.

Chapter 14 will cover generator expressions in detail, but I did not want to let this
accidental demonstration of their lazy nature go unnoticed.
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PART V

Control Flow





1. From “Revenge of the Nerds”, a blog post.

2. Python 2.2 users could use yield with the directive from __future__ import generators; yield became
available by default in Python 2.3.

CHAPTER 14

Iterables, Iterators, and Generators

When I see patterns in my programs, I consider it a sign of trouble. The shape of a program
should reflect only the problem it needs to solve. Any other regularity in the code is a
sign, to me at least, that I’m using abstractions that aren’t powerful enough—often that
I’m generating by hand the expansions of some macro that I need to write.1

— Paul Graham
 Lisp hacker and venture capitalist

Iteration is fundamental to data processing. And when scanning datasets that don’t fit
in memory, we need a way to fetch the items lazily, that is, one at a time and on demand.
This is what the Iterator pattern is about. This chapter shows how the Iterator pattern
is built into the Python language so you never need to implement it by hand.

Python does not have macros like Lisp (Paul Graham’s favorite language), so abstracting
away the Iterator pattern required changing the language: the yield keyword was added
in Python 2.2 (2001).2 The yield keyword allows the construction of generators, which
work as iterators.

Every generator is an iterator: generators fully implement the
iterator interface. But an iterator—as defined in the GoF book—
retrieves items from a collection, while a generator can produce
items “out of thin air.” That’s why the Fibonacci sequence gener‐
ator is a common example: an infinite series of numbers cannot
be stored in a collection. However, be aware that the Python
community treats iterator and generator as synonyms most of the
time.
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Python 3 uses generators in many places. Even the range() built-in now returns a
generator-like object instead of full-blown lists like before. If you must build a list
from range, you have to be explicit (e.g., list(range(100))).

Every collection in Python is iterable, and iterators are used internally to support:

• for loops
• Collection types construction and extension
• Looping over text files line by line
• List, dict, and set comprehensions
• Tuple unpacking
• Unpacking actual parameters with * in function calls

This chapter covers the following topics:

• How the iter(…) built-in function is used internally to handle iterable objects
• How to implement the classic Iterator pattern in Python
• How a generator function works in detail, with line-by-line descriptions
• How the classic Iterator can be replaced by a generator function or generator ex‐

pression
• Leveraging the general-purpose generator functions in the standard library
• Using the new yield from statement to combine generators
• A case study: using generator functions in a database conversion utility designed

to work with large datasets
• Why generators and coroutines look alike but are actually very different and should

not be mixed

We’ll get started studying how the iter(…) function makes sequences iterable.

Sentence Take #1: A Sequence of Words
We’ll start our exploration of iterables by implementing a Sentence class: you give its
constructor a string with some text, and then you can iterate word by word. The first
version will implement the sequence protocol, and it’s iterable because all sequences are
iterable, as we’ve seen before, but now we’ll see exactly why.

Example 14-1 shows a Sentence class that extracts words from a text by index.
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3. We first used reprlib in “Vector Take #1: Vector2d Compatible” on page 276.

Example 14-1. sentence.py: A Sentence as a sequence of words
import re
import reprlib

RE_WORD = re.compile('\w+')

class Sentence:

    def __init__(self, text):
        self.text = text
        self.words = RE_WORD.findall(text)   

    def __getitem__(self, index):
        return self.words[index]   

    def __len__(self):   
        return len(self.words)

    def __repr__(self):
        return 'Sentence(%s)' % reprlib.repr(self.text)   

re.findall returns a list with all nonoverlapping matches of the regular
expression, as a list of strings.
self.words holds the result of .findall, so we simply return the word at the
given index.
To complete the sequence protocol, we implement __len__—but it is not needed
to make an iterable object.
reprlib.repr is a utility function to generate abbreviated string representations
of data structures that can be very large.3

By default, reprlib.repr limits the generated string to 30 characters. See the console
session in Example 14-2 to see how Sentence is used.

Example 14-2. Testing iteration on a Sentence instance
>>> s = Sentence('"The time has come," the Walrus said,')  # 
>>> s
Sentence('"The time ha... Walrus said,')  # 
>>> for word in s:  # 
...     print(word)
The
time
has
come
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the
Walrus
said
>>> list(s)  # 
['The', 'time', 'has', 'come', 'the', 'Walrus', 'said']

A sentence is created from a string.
Note the output of __repr__ using ... generated by reprlib.repr.
Sentence instances are iterable; we’ll see why in a moment.
Being iterable, Sentence objects can be used as input to build lists and other
iterable types.

In the following pages, we’ll develop other Sentence classes that pass the tests in
Example 14-2. However, the implementation in Example 14-1 is different from all the
others because it’s also a sequence, so you can get words by index:

>>> s[0]
'The'
>>> s[5]
'Walrus'
>>> s[-1]
'said'

Every Python programmer knows that sequences are iterable. Now we’ll see precisely
why.

Why Sequences Are Iterable: The iter Function
Whenever the interpreter needs to iterate over an object x, it automatically calls iter(x).

The iter built-in function:

1. Checks whether the object implements __iter__, and calls that to obtain an iterator.
2. If __iter__ is not implemented, but __getitem__ is implemented, Python creates

an iterator that attempts to fetch items in order, starting from index 0 (zero).
3. If that fails, Python raises TypeError, usually saying “C object is not iterable,” where

C is the class of the target object.

That is why any Python sequence is iterable: they all implement __getitem__. In fact,
the standard sequences also implement __iter__, and yours should too, because the
special handling of __getitem__ exists for backward compatibility reasons and may be
gone in the future (although it is not deprecated as I write this).

As mentioned in “Python Digs Sequences” on page 310, this is an extreme form of duck
typing: an object is considered iterable not only when it implements the special method
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__iter__, but also when it implements __getitem__, as long as __getitem__ accepts
int keys starting from 0.

In the goose-typing approach, the definition for an iterable is simpler but not as flexible:
an object is considered iterable if it implements the __iter__ method. No subclassing
or registration is required, because abc.Iterable implements the __subclasshook__,
as seen in “Geese Can Behave as Ducks” on page 338. Here is a demonstration:

>>> class Foo:
...     def __iter__(self):
...         pass
...
>>> from collections import abc
>>> issubclass(Foo, abc.Iterable)
True
>>> f = Foo()
>>> isinstance(f, abc.Iterable)
True

However, note that our initial Sentence class does not pass the issubclass(Sentence,
abc.Iterable) test, even though it is iterable in practice.

As of Python 3.4, the most accurate way to check whether an ob‐
ject x is iterable is to call iter(x) and handle a TypeError excep‐
tion if it isn’t. This is more accurate than using isinstance(x,
abc.Iterable), because iter(x) also considers the legacy
__getitem__ method, while the Iterable ABC does not.

Explicitly checking whether an object is iterable may not be worthwhile if right after the
check you are going to iterate over the object. After all, when the iteration is attempted
on a noniterable, the exception Python raises is clear enough: TypeError: 'C' object
is not iterable . If you can do better than just raising TypeError, then do so in a
try/except block instead of doing an explicit check. The explicit check may make sense
if you are holding on to the object to iterate over it later; in this case, catching the error
early may be useful.

The next section makes explicit the relationship between iterables and iterators.

Iterables Versus Iterators
From the explanation in “Why Sequences Are Iterable: The iter Function” on page 404
we can extrapolate a definition:
iterable

Any object from which the iter built-in function can obtain an iterator. Objects
implementing an __iter__ method returning an iterator are iterable. Sequences

Iterables Versus Iterators | 405



are always iterable; as are objects implementing a __getitem__ method that takes
0-based indexes.

It’s important to be clear about the relationship between iterables and iterators: Python
obtains iterators from iterables.

Here is a simple for loop iterating over a str. The str 'ABC' is the iterable here. You
don’t see it, but there is an iterator behind the curtain:

>>> s = 'ABC'
>>> for char in s:
...     print(char)
...
A
B
C

If there was no for statement and we had to emulate the for machinery by hand with
a while loop, this is what we’d have to write:

>>> s = 'ABC'
>>> it = iter(s)  # 
>>> while True:
...     try:
...         print(next(it))  # 
...     except StopIteration:  # 
...         del it  # 
...         break  # 
...
A
B
C

Build an iterator it from the iterable.
Repeatedly call next on the iterator to obtain the next item.
The iterator raises StopIteration when there are no further items.
Release reference to it—the iterator object is discarded.
Exit the loop.

StopIteration signals that the iterator is exhausted. This exception is handled inter‐
nally in for loops and other iteration contexts like list comprehensions, tuple unpacking,
etc.

The standard interface for an iterator has two methods:
__next__

Returns the next available item, raising StopIteration when there are no more
items.
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__iter__

Returns self; this allows iterators to be used where an iterable is expected, for
example, in a for loop.

This is formalized in the collections.abc.Iterator ABC, which defines the __next__
abstract method, and subclasses Iterable—where the abstract __iter__ method is
defined. See Figure 14-1.

Figure 14-1. The Iterable and Iterator ABCs. Methods in italic are abstract. A concrete
Iterable.iter should return a new Iterator instance. A concrete Iterator must implement
next. The Iterator.iter method just returns the instance itself.

The Iterator ABC implements __iter__ by doing return self. This allows an iterator
to be used wherever an iterable is required. The source code for abc.Iterator is in
Example 14-3.

Example 14-3. abc.Iterator class; extracted from Lib/_collections_abc.py
class Iterator(Iterable):

    __slots__ = ()

    @abstractmethod
    def __next__(self):
        'Return the next item from the iterator. When exhausted, raise StopIteration'
        raise StopIteration

    def __iter__(self):
        return self

    @classmethod
    def __subclasshook__(cls, C):
        if cls is Iterator:
            if (any("__next__" in B.__dict__ for B in C.__mro__) and
                any("__iter__" in B.__dict__ for B in C.__mro__)):
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                return True
        return NotImplemented

The Iterator ABC abstract method is it.__next__() in Python
3 and it.next() in Python 2. As usual, you should avoid calling
special methods directly. Just use the next(it): this built-in func‐
tion does the right thing in Python 2 and 3.

The Lib/types.py module source code in Python 3.4 has a comment that says:

# Iterators in Python aren't a matter of type but of protocol.  A large
# and changing number of builtin types implement *some* flavor of
# iterator.  Don't check the type!  Use hasattr to check for both
# "__iter__" and "__next__" attributes instead.

In fact, that’s exactly what the __subclasshook__ method of the abc.Iterator ABC
does (see Example 14-3).

Taking into account the advice from Lib/types.py and the logic
implemented in Lib/_collections_abc.py, the best way to check if an
object x is an iterator is to call isinstance(x, abc.Iterator).
Thanks to Iterator.__subclasshook__, this test works even if the
class of x is not a real or virtual subclass of Iterator.

Back to our Sentence class from Example 14-1, you can clearly see how the iterator is
built by iter(…) and consumed by next(…) using the Python console:

>>> s3 = Sentence('Pig and Pepper')  # 
>>> it = iter(s3)  # 
>>> it  # doctest: +ELLIPSIS
<iterator object at 0x...>
>>> next(it)  # 
'Pig'
>>> next(it)
'and'
>>> next(it)
'Pepper'
>>> next(it)  # 
Traceback (most recent call last):
  ...
StopIteration
>>> list(it)  # 
[]
>>> list(iter(s3))  # 
['Pig', 'and', 'Pepper']

Create a sentence s3 with three words.
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Obtain an iterator from s3.
next(it) fetches the next word.
There are no more words, so the iterator raises a StopIteration exception.
Once exhausted, an iterator becomes useless.
To go over the sentence again, a new iterator must be built.

Because the only methods required of an iterator are __next__ and __iter__, there is
no way to check whether there are remaining items, other than to call next() and catch
StopInteration. Also, it’s not possible to “reset” an iterator. If you need to start over,
you need to call iter(…) on the iterable that built the iterator in the first place. Calling
iter(…) on the iterator itself won’t help, because—as mentioned—Itera

tor.__iter__ is implemented by returning self, so this will not reset a depleted iter‐
ator.

To wrap up this section, here is a definition for iterator:
iterator

Any object that implements the __next__ no-argument method that returns the
next item in a series or raises StopIteration when there are no more items. Python
iterators also implement the __iter__ method so they are iterable as well.

This first version of Sentence was iterable thanks to the special treatment the iter(…)
built-in gives to sequences. Now we’ll implement the standard iterable protocol.

Sentence Take #2: A Classic Iterator
The next Sentence class is built according to the classic Iterator design pattern following
the blueprint in the GoF book. Note that this is not idiomatic Python, as the next re‐
factorings will make very clear. But it serves to make explicit the relationship between
the iterable collection and the iterator object.

Example 14-4 shows an implementation of a Sentence that is iterable because it imple‐
ments the __iter__ special method, which builds and returns a SentenceIterator.
This is how the Iterator design pattern is described in the original Design Patterns book.

We are doing it this way here just to make clear the crucial distinction between an iterable
and an iterator and how they are connected.

Example 14-4. sentence_iter.py: Sentence implemented using the Iterator pattern
import re
import reprlib

RE_WORD = re.compile('\w+')
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class Sentence:

    def __init__(self, text):
        self.text = text
        self.words = RE_WORD.findall(text)

    def __repr__(self):
        return 'Sentence(%s)' % reprlib.repr(self.text)

    def __iter__(self):   
        return SentenceIterator(self.words)   

class SentenceIterator:

    def __init__(self, words):
        self.words = words   
        self.index = 0   

    def __next__(self):
        try:
            word = self.words[self.index]   
        except IndexError:
            raise StopIteration()   
        self.index += 1   
        return word   

    def __iter__(self):   
        return self

The __iter__ method is the only addition to the previous Sentence

implementation. This version has no __getitem__, to make it clear that the class
is iterable because it implements __iter__.
__iter__ fulfills the iterable protocol by instantiating and returning an iterator.
SentenceIterator holds a reference to the list of words.
self.index is used to determine the next word to fetch.
Get the word at self.index.
If there is no word at self.index, raise StopIteration.
Increment self.index.
Return the word.
Implement self.__iter__.

The code in Example 14-4 passes the tests in Example 14-2.
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4. Gamma et. al., Design Patterns: Elements of Reusable Object-Oriented Software, p. 259.

Note that implementing __iter__ in SentenceIterator is not actually needed for this
example to work, but the it’s the right thing to do: iterators are supposed to implement
both __next__ and __iter__, and doing so makes our iterator pass the issubclass(Sen
tenceInterator, abc.Iterator) test. If we had subclassed SentenceIterator from
abc.Iterator, we’d inherit the concrete abc.Iterator.__iter__ method.

That is a lot of work (for us lazy Python programmers, anyway). Note how most code
in SentenceIterator deals with managing the internal state of the iterator. Soon we’ll
see how to make it shorter. But first, a brief detour to address an implementation shortcut
that may be tempting, but is just wrong.

Making Sentence an Iterator: Bad Idea
A common cause of errors in building iterables and iterators is to confuse the two. To
be clear: iterables have an __iter__ method that instantiates a new iterator every time.
Iterators implement a __next__ method that returns individual items, and an __iter__
method that returns self.

Therefore, iterators are also iterable, but iterables are not iterators.

It may be tempting to implement __next__ in addition to __iter__ in the Sentence
class, making each Sentence instance at the same time an iterable and iterator over
itself. But this is a terrible idea. It’s also a common anti-pattern, according to Alex Mar‐
telli who has a lot of experience with Python code reviews.

The “Applicability” section4 of the Iterator design pattern in the GoF book says:
Use the Iterator pattern

•  to access an aggregate object’s contents without exposing its internal representation.

•  to support multiple traversals of aggregate objects.

•  to provide a uniform interface for traversing different aggregate structures (that is,
to support polymorphic iteration).

To “support multiple traversals” it must be possible to obtain multiple independent
iterators from the same iterable instance, and each iterator must keep its own internal
state, so a proper implementation of the pattern requires each call to iter(my_itera
ble) to create a new, independent, iterator. That is why we need the SentenceItera
tor class in this example.

Sentence Take #2: A Classic Iterator | 411



An iterable should never act as an iterator over itself. In other
words, iterables must implement __iter__, but not __next__.
On the other hand, for convenience, iterators should be iterable.
An iterator’s __iter__ should just return self.

Now that the classic Iterator pattern is properly demonstrated, we can get let it go. The
next section presents a more idiomatic implementation of Sentence.

Sentence Take #3: A Generator Function
A Pythonic implementation of the same functionality uses a generator function to re‐
place the SequenceIterator class. A proper explanation of the generator function
comes right after Example 14-5.

Example 14-5. sentence_gen.py: Sentence implemented using a generator function
import re
import reprlib

RE_WORD = re.compile('\w+')

class Sentence:

    def __init__(self, text):
        self.text = text
        self.words = RE_WORD.findall(text)

    def __repr__(self):
        return 'Sentence(%s)' % reprlib.repr(self.text)

    def __iter__(self):
        for word in self.words:   
            yield word   
        return   

# done! 

Iterate over self.word.
Yield the current word.

412 | Chapter 14: Iterables, Iterators, and Generators



5. When reviewing this code, Alex Martelli suggested the body of this method could simply be return
iter(self.words). He is correct, of course: the result of calling __iter__ would also be an iterator, as it
should be. However, I used a for loop with yield here to introduce the syntax of a generator function,
which will be covered in detail in the next section.

6. Sometimes I add a gen prefix or suffix when naming generator functions, but this is not a common prac‐
tice. And you can’t do that if you’re implementing an iterable, of course: the necessary special method must
be named __iter__.

7. Thanks to David Kwast for suggesting this example.

This return is not needed; the function can just “fall-through” and return
automatically. Either way, a generator function doesn’t raise StopIteration: it
simply exits when it’s done producing values.5

No need for a separate iterator class!

Here again we have a different implementation of Sentence that passes the tests in
Example 14-2.

Back in the Sentence code in Example 14-4, __iter__ called the SentenceIterator
constructor to build an iterator and return it. Now the iterator in Example 14-5 is in
fact a generator object, built automatically when the __iter__ method is called, because
__iter__ here is a generator function.

A full explanation of generator functions follows.

How a Generator Function Works
Any Python function that has the yield keyword in its body is a generator function: a
function which, when called, returns a generator object. In other words, a generator
function is a generator factory.

The only syntax distinguishing a plain function from a generator
function is the fact that the latter has a yield keyword some‐
where in its body. Some argued that a new keyword like gen should
be used for generator functions instead of def, but Guido did not
agree. His arguments are in PEP 255 — Simple Generators.6

Here is the simplest function useful to demonstrate the behavior of a generator:7

>>> def gen_123():  # 
...     yield 1  # 
...     yield 2
...     yield 3
...
>>> gen_123  # doctest: +ELLIPSIS
<function gen_123 at 0x...>  # 
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>>> gen_123()   # doctest: +ELLIPSIS
<generator object gen_123 at 0x...>  # 
>>> for i in gen_123():  # 
...     print(i)
1
2
3
>>> g = gen_123()  # 
>>> next(g)  # 
1
>>> next(g)
2
>>> next(g)
3
>>> next(g)  # 
Traceback (most recent call last):
  ...
StopIteration

Any Python function that contains the yield keyword is a generator function.
Usually the body of a generator function has loop, but not necessarily; here I
just repeat yield three times.
Looking closely, we see gen_123 is a function object.
But when invoked, gen_123() returns a generator object.
Generators are iterators that produce the values of the expressions passed to
yield.
For closer inspection, we assign the generator object to g.
Because g is an iterator, calling next(g) fetches the next item produced by yield.
When the body of the function completes, the generator object raises a StopIt
eration.

A generator function builds a generator object that wraps the body of the function.
When we invoke next(…) on the generator object, execution advances to the next yield
in the function body, and the next(…) call evaluates to the value yielded when the func‐
tion body is suspended. Finally, when the function body returns, the enclosing generator
object raises StopIteration, in accordance with the Iterator protocol.
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8. Prior to Python 3.3, it was an error to provide a value with the return statement in a generator function.
Now that is legal, but the return still causes a StopIteration exception to be raised. The caller can retrieve
the return value from the exception object. However, this is only relevant when using a generator func‐
tion as a coroutine, as we’ll see in “Returning a Value from a Coroutine” on page 475.

I find it helpful to be strict when talking about the results ob‐
tained from a generator: I say that a generator yields or produces
values. But it’s confusing to say a generator “returns” values. Func‐
tions return values. Calling a generator function returns a gener‐
ator. A generator yields or produces values. A generator doesn’t
“return” values in the usual way: the return statement in the body
of a generator function causes StopIteration to be raised by the
generator object.8

Example 14-6 makes the interaction between a for loop and the body of the function
more explicit.

Example 14-6. A generator function that prints messages when it runs
>>> def gen_AB():  # 
...     print('start')
...     yield 'A'       # 
...     print('continue')
...     yield 'B'       # 
...     print('end.')   # 
...
>>> for c in gen_AB():  # 
...     print('-->', c)  # 
...
start    
--> A   
continue 
--> B   
end.     
>>>  

The generator function is defined like any function, but uses yield.
The first implicit call to next() in the for loop at  will print 'start' and stop
at the first yield, producing the value 'A'.
The second implicit call to next() in the for loop will print 'continue' and
stop at the second yield, producing the value 'B'.
The third call to next() will print 'end.' and fall through the end of the function
body, causing the generator object to raise StopIteration.
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To iterate, the for machinery does the equivalent of g = iter(gen_AB()) to get
a generator object, and then next(g) at each iteration.
The loop block prints --> and the value returned by next(g). But this output
will be seen only after the output of the print calls inside the generator function.
The string 'start' appears as a result of print('start') in the generator
function body.
yield 'A' in the generator function body produces the value A consumed by
the for loop, which gets assigned to the c variable and results in the output --
> A.
Iteration continues with a second call next(g), advancing the generator function
body from yield 'A' to yield 'B'. The text continue is output because of the
second print in the generator function body.
yield 'B' produces the value B consumed by the for loop, which gets assigned
to the c loop variable, so the loop prints --> B.
Iteration continues with a third call next(it), advancing to the end of the body
of the function. The text end. appears in the output because of the third print
in the generator function body.
When the generator function body runs to the end, the generator object raises
StopIteration. The for loop machinery catches that exception, and the loop
terminates cleanly.

Now hopefully it’s clear how Sentence.__iter__ in Example 14-5 works: __iter__ is
a generator function which, when called, builds a generator object that implements the
iterator interface, so the SentenceIterator class is no longer needed.

This second version of Sentence is much shorter than the first, but it’s not as lazy as it
could be. Nowadays, laziness is considered a good trait, at least in programming lan‐
guages and APIs. A lazy implementation postpones producing values to the last possible
moment. This saves memory and may avoid useless processing as well.

We’ll build a lazy Sentence class next.

Sentence Take #4: A Lazy Implementation
The Iterator interface is designed to be lazy: next(my_iterator) produces one item
at a time. The opposite of lazy is eager: lazy evaluation and eager evaluation are actual
technical terms in programming language theory.

Our Sentence implementations so far have not been lazy because the __init__ eagerly
builds a list of all words in the text, binding it to the self.words attribute. This will
entail processing the entire text, and the list may use as much memory as the text itself
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(probably more; it depends on how many nonword characters are in the text). Most of
this work will be in vain if the user only iterates over the first couple words.

Whenever you are using Python 3 and start wondering “Is there a lazy way of doing
this?”, often the answer is “Yes.”

The re.finditer function is a lazy version of re.findall which, instead of a list, re‐
turns a generator producing re.MatchObject instances on demand. If there are many
matches, re.finditer saves a lot of memory. Using it, our third version of Sentence is
now lazy: it only produces the next word when it is needed. The code is in Example 14-7.

Example 14-7. sentence_gen2.py: Sentence implemented using a generator function
calling the re.finditer generator function
import re
import reprlib

RE_WORD = re.compile('\w+')

class Sentence:

    def __init__(self, text):
        self.text = text   

    def __repr__(self):
        return 'Sentence(%s)' % reprlib.repr(self.text)

    def __iter__(self):
        for match in RE_WORD.finditer(self.text):   
            yield match.group()   

No need to have a words list.
finditer builds an iterator over the matches of RE_WORD on self.text, yielding
MatchObject instances.
match.group() extracts the actual matched text from the MatchObject instance.

Generator functions are an awesome shortcut, but the code can be made even shorter
with a generator expression.

Sentence Take #5: A Generator Expression
Simple generator functions like the one in the previous Sentence class (Example 14-7)
can be replaced by a generator expression.

A generator expression can be understood as a lazy version of a list comprehension: it
does not eagerly build a list, but returns a generator that will lazily produce the items
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on demand. In other words, if a list comprehension is a factory of lists, a generator
expression is a factory of generators.

Example 14-8 is a quick demo of a generator expression, comparing it to a list compre‐
hension.

Example 14-8. The gen_AB generator function is used by a list comprehension, then by
a generator expression
>>> def gen_AB():  # 
...     print('start')
...     yield 'A'
...     print('continue')
...     yield 'B'
...     print('end.')
...
>>> res1 = [x*3 for x in gen_AB()]  # 
start
continue
end.
>>> for i in res1:  # 
...     print('-->', i)
...
--> AAA
--> BBB
>>> res2 = (x*3 for x in gen_AB())  # 
>>> res2  # 
<generator object <genexpr> at 0x10063c240>
>>> for i in res2:  # 
...     print('-->', i)
...
start
--> AAA
continue
--> BBB
end.

This is the same gen_AB function from Example 14-6.
The list comprehension eagerly iterates over the items yielded by the generator
object produced by calling gen_AB(): 'A' and 'B'. Note the output in the next
lines: start, continue, end.
This for loop is iterating over the res1 list produced by the list comprehension.
The generator expression returns res2. The call to gen_AB() is made, but that
call returns a generator, which is not consumed here.
res2 is a generator object.
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Only when the for loop iterates over res2, the body of gen_AB actually executes.
Each iteration of the for loop implicitly calls next(res2), advancing gen_AB to
the next yield. Note the output of gen_AB with the output of the print in the
for loop.

So, a generator expression produces a generator, and we can use it to further reduce the
code in the Sentence class. See Example 14-9.

Example 14-9. sentence_genexp.py: Sentence implemented using a generator expression
import re
import reprlib

RE_WORD = re.compile('\w+')

class Sentence:

    def __init__(self, text):
        self.text = text

    def __repr__(self):
        return 'Sentence(%s)' % reprlib.repr(self.text)

    def __iter__(self):
        return (match.group() for match in RE_WORD.finditer(self.text))

The only difference from Example 14-7 is the __iter__ method, which here is not a
generator function (it has no yield) but uses a generator expression to build a generator
and then returns it. The end result is the same: the caller of __iter__ gets a generator
object.

Generator expressions are syntactic sugar: they can always be replaced by generator
functions, but sometimes are more convenient. The next section is about generator
expression usage.

Generator Expressions: When to Use Them
I used several generator expressions when implementing the Vector class in
Example 10-16. Each of the methods __eq__, __hash__, __abs__, angle, angles,
format, __add__, and __mul__ has a generator expression. In all those methods, a list
comprehension would also work, at the cost of using more memory to store the inter‐
mediate list values.

In Example 14-9, we saw that a generator expression is a syntactic shortcut to create a
generator without defining and calling a function. On the other hand, generator func‐
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tions are much more flexible: you can code complex logic with multiple statements, and
can even use them as coroutines (see Chapter 16).

For the simpler cases, a generator expression will do, and it’s easier to read at a glance,
as the Vector example shows.

My rule of thumb in choosing the syntax to use is simple: if the generator expression
spans more than a couple of lines, I prefer to code a generator function for the sake of
readability. Also, because generator functions have a name, they can be reused. You can
always name a generator expression and use it later by assigning it to a variable, of course,
but that is stretching its intended usage as a one-off generator.

Syntax Tip
When a generator expression is passed as the single argument to
a function or constructor, you don’t need to write a set of paren‐
theses for the function call and another to enclose the generator
expression. A single pair will do, like in the Vector call from the
__mul__ method in Example 10-16, reproduced here. However, if
there are more function arguments after the generator expres‐
sion, you need to enclose it in parentheses to avoid a SyntaxError:

def __mul__(self, scalar):
    if isinstance(scalar, numbers.Real):
        return Vector(n * scalar for n in self)
    else:
        return NotImplemented

The Sentence examples we’ve seen exemplify the use of generators playing the role of
classic iterators: retrieving items from a collection. But generators can also be used to
produce values independent of a data source. The next section shows an example of
that.

Another Example: Arithmetic Progression Generator
The classic Iterator pattern is all about traversal: navigating some data structure. But a
standard interface based on a method to fetch the next item in a series is also useful
when the items are produced on the fly, instead of retrieved from a collection. For
example, the range built-in generates a bounded arithmetic progression (AP) of inte‐
gers, and the itertools.count function generates a boundless AP.

We’ll cover itertools.count in the next section, but what if you need to generate a
bounded AP of numbers of any type?

Example 14-10 shows a few console tests of an ArithmeticProgression class we will
see in a moment. The signature of the constructor in Example 14-10 is Arithmetic
Progression(begin, step[, end]). The range() function is similar to the Arithme
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ticProgression here, but its full signature is range(start, stop[, step]). I chose
to implement a different signature because for an arithmetic progression the step is
mandatory but end is optional. I also changed the argument names from start/stop
to begin/end to make it very clear that I opted for a different signature. In each test in
Example 14-10 I call list() on the result to inspect the generated values.

Example 14-10. Demonstration of an ArithmeticProgression class
    >>> ap = ArithmeticProgression(0, 1, 3)
    >>> list(ap)
    [0, 1, 2]
    >>> ap = ArithmeticProgression(1, .5, 3)
    >>> list(ap)
    [1.0, 1.5, 2.0, 2.5]
    >>> ap = ArithmeticProgression(0, 1/3, 1)
    >>> list(ap)
    [0.0, 0.3333333333333333, 0.6666666666666666]
    >>> from fractions import Fraction
    >>> ap = ArithmeticProgression(0, Fraction(1, 3), 1)
    >>> list(ap)
    [Fraction(0, 1), Fraction(1, 3), Fraction(2, 3)]
    >>> from decimal import Decimal
    >>> ap = ArithmeticProgression(0, Decimal('.1'), .3)
    >>> list(ap)
    [Decimal('0.0'), Decimal('0.1'), Decimal('0.2')]

Note that type of the numbers in the resulting arithmetic progression follows the type
of begin or step, according to the numeric coercion rules of Python arithmetic. In
Example 14-10, you see lists of int, float, Fraction, and Decimal numbers.

Example 14-11 lists the implementation of the ArithmeticProgression class.

Example 14-11. The ArithmeticProgression class
class ArithmeticProgression:

    def __init__(self, begin, step, end=None):   
        self.begin = begin
        self.step = step
        self.end = end  # None -> "infinite" series

    def __iter__(self):
        result = type(self.begin + self.step)(self.begin)   
        forever = self.end is None   
        index = 0
        while forever or result < self.end:   
            yield result   
            index += 1
            result = self.begin + self.step * index   
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9. In Python 2, there was a coerce() built-in function but it’s gone in Python 3, deemed unnecessary because
the numeric coercion rules are implicit in the arithmetic operator methods. So the best way I could think
of to coerce the initial value to be of the same type as the rest of the series was to perform the addition and
use its type to convert the result. I asked about this in the Python-list and got an excellent response from
Steven D’Aprano.

10. The 14-it-generator/ directory in the Fluent Python code repository includes doctests and a script, arit‐
prog_runner.py, which runs the tests against all variations of the aritprog*.py scripts.

__init__ requires two arguments: begin and step. end is optional, if it’s None,
the series will be unbounded.
This line produces a result value equal to self.begin, but coerced to the type
of the subsequent additions.9

For readability, the forever flag will be True if the self.end attribute is None,
resulting in an unbounded series.
This loop runs forever or until the result matches or exceeds self.end. When
this loop exits, so does the function.
The current result is produced.
The next potential result is calculated. It may never be yielded, because the while
loop may terminate.

In the last line of Example 14-11, instead of simply incrementing the result with
self.step iteratively, I opted to use an index variable and calculate each result by
adding self.begin to self.step multiplied by index to reduce the cumulative effect
of errors when working with with floats.

The ArithmeticProgression class from Example 14-11 works as intended, and is a
clear example of the use of a generator function to implement the __iter__ special
method. However, if the whole point of a class is to build a generator by implementing
__iter__, the class can be reduced to a generator function. A generator function is, after
all, a generator factory.

Example 14-12 shows a generator function called aritprog_gen that does the same job
as ArithmeticProgression but with less code. The tests in Example 14-10 all pass if
you just call aritprog_gen instead of ArithmeticProgression.10

Example 14-12. The aritprog_gen generator function
def aritprog_gen(begin, step, end=None):
    result = type(begin + step)(begin)
    forever = end is None
    index = 0
    while forever or result < end:
        yield result
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        index += 1
        result = begin + step * index

Example 14-12 is pretty cool, but always remember: there are plenty of ready-to-use
generators in the standard library, and the next section will show an even cooler im‐
plementation using the itertools module.

Arithmetic Progression with itertools
The itertools module in Python 3.4 has 19 generator functions that can be combined
in a variety of interesting ways.

For example, the itertools.count function returns a generator that produces numbers.
Without arguments, it produces a series of integers starting with 0. But you can provide
optional start and step values to achieve a result very similar to our aritprog_gen
functions:

>>> import itertools
>>> gen = itertools.count(1, .5)
>>> next(gen)
1
>>> next(gen)
1.5
>>> next(gen)
2.0
>>> next(gen)
2.5

However, itertools.count never stops, so if you call list(count()), Python will try
to build a list larger than available memory and your machine will be very grumpy
long before the call fails.

On the other hand, there is the itertools.takewhile function: it produces a generator
that consumes another generator and stops when a given predicate evaluates to False.
So we can combine the two and write this:

>>> gen = itertools.takewhile(lambda n: n < 3, itertools.count(1, .5))
>>> list(gen)
[1, 1.5, 2.0, 2.5]

Leveraging takewhile and count, Example 14-13 is sweet and short.

Example 14-13. aritprog_v3.py: this works like the previous aritprog_gen functions
import itertools

def aritprog_gen(begin, step, end=None):
    first = type(begin + step)(begin)
    ap_gen = itertools.count(first, step)
    if end is not None:
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        ap_gen = itertools.takewhile(lambda n: n < end, ap_gen)
    return ap_gen

Note that aritprog_gen is not a generator function in Example 14-13: it has no yield
in its body. But it returns a generator, so it operates as a generator factory, just as a
generator function does.

The point of Example 14-13 is: when implementing generators, know what is available
in the standard library, otherwise there’s a good chance you’ll reinvent the wheel. That’s
why the next section covers several ready-to-use generator functions.

Generator Functions in the Standard Library
The standard library provides many generators, from plain-text file objects providing
line-by-line iteration, to the awesome os.walk function, which yields filenames while
traversing a directory tree, making recursive filesystem searches as simple as a for loop.

The os.walk generator function is impressive, but in this section I want to focus on
general-purpose functions that take arbitrary iterables as arguments and return gener‐
ators that produce selected, computed, or rearranged items. In the following tables, I
summarize two dozen of them, from the built-in, itertools, and functools modules.
For convenience, I grouped them by high-level functionality, regardless of where they
are defined.

Perhaps you know all the functions mentioned in this section, but
some of them are underused, so a quick overview may be good
to recall what’s already available.

The first group are filtering generator functions: they yield a subset of items produced
by the input iterable, without changing the items themselves. We used itertools.take
while previously in this chapter, in “Arithmetic Progression with itertools” on page
423. Like takewhile, most functions listed in Table 14-1 take a predicate, which is a
one-argument Boolean function that will be applied to each item in the input to deter‐
mine whether the item is included in the output.

Table 14-1. Filtering generator functions
Module Function Description

iter

tools

compress(it, selec

tor_it)

Consumes two iterables in parallel; yields items from it whenever the
corresponding item in selector_it is truthy

iter

tools

dropwhile(predi

cate, it)

Consumes it skipping items while predicate computes truthy, then yields
every remaining item (no further checks are made)
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11. Here the term “mapping” is unrelated to dictionaries, but has to do with the map built-in.

Module Function Description

(built-in) filter(predicate,

it)

Applies predicate to each item of iterable, yielding the item if predi
cate(item) is truthy; if predicate is None, only truthy items are yielded

iter

tools

filterfalse(predi

cate, it)

Same as filter, with the predicate logic negated: yields items whenever
predicate computes falsy

iter

tools

islice(it, stop)

or islice(it,

start, stop,

step=1)

Yields items from a slice of it, similar to s[:stop] or
s[start:stop:step] except it can be any iterable, and the operation is
lazy

iter

tools

takewhile(predi

cate, it)

Yields items while predicate computes truthy, then stops and no further
checks are made

The console listing in Example 14-14 shows the use of all functions in Table 14-1.

Example 14-14. Filtering generator functions examples
>>> def vowel(c):
...     return c.lower() in 'aeiou'
...
>>> list(filter(vowel, 'Aardvark'))
['A', 'a', 'a']
>>> import itertools
>>> list(itertools.filterfalse(vowel, 'Aardvark'))
['r', 'd', 'v', 'r', 'k']
>>> list(itertools.dropwhile(vowel, 'Aardvark'))
['r', 'd', 'v', 'a', 'r', 'k']
>>> list(itertools.takewhile(vowel, 'Aardvark'))
['A', 'a']
>>> list(itertools.compress('Aardvark', (1,0,1,1,0,1)))
['A', 'r', 'd', 'a']
>>> list(itertools.islice('Aardvark', 4))
['A', 'a', 'r', 'd']
>>> list(itertools.islice('Aardvark', 4, 7))
['v', 'a', 'r']
>>> list(itertools.islice('Aardvark', 1, 7, 2))
['a', 'd', 'a']

The next group are the mapping generators: they yield items computed from each in‐
dividual item in the input iterable—or iterables, in the case of map and starmap.11 The
generators in Table 14-2 yield one result per item in the input iterables. If the input
comes from more than one iterable, the output stops as soon as the first input iterable
is exhausted.
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Table 14-2. Mapping generator functions
Module Function Description

itertools accumulate(it,

[func])

Yields accumulated sums; if func is provided, yields the result of applying it to the
first pair of items, then to the first result and next item, etc.

(built-in) enumerate(itera

ble, start=0)

Yields 2-tuples of the form (index, item), where index is counted from
start, and item is taken from the iterable

(built-in) map(func, it1,

[it2, …, itN])

Applies func to each item of it, yielding the result; if N iterables are given, func
must take N arguments and the iterables will be consumed in parallel

itertools starmap(func, it) Applies func to each item of it, yielding the result; the input iterable should yield
iterable items iit, and func is applied as func(*iit)

Example 14-15 demonstrates some uses of itertools.accumulate.

Example 14-15. itertools.accumulate generator function examples
>>> sample = [5, 4, 2, 8, 7, 6, 3, 0, 9, 1]
>>> import itertools
>>> list(itertools.accumulate(sample))  # 
[5, 9, 11, 19, 26, 32, 35, 35, 44, 45]
>>> list(itertools.accumulate(sample, min))  # 
[5, 4, 2, 2, 2, 2, 2, 0, 0, 0]
>>> list(itertools.accumulate(sample, max))  # 
[5, 5, 5, 8, 8, 8, 8, 8, 9, 9]
>>> import operator
>>> list(itertools.accumulate(sample, operator.mul))  # 
[5, 20, 40, 320, 2240, 13440, 40320, 0, 0, 0]
>>> list(itertools.accumulate(range(1, 11), operator.mul))
[1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]  # 

Running sum.
Running minimum.
Running maximum.
Running product.
Factorials from 1! to 10!.

The remaining functions of Table 14-2 are shown in Example 14-16.

Example 14-16. Mapping generator function examples
>>> list(enumerate('albatroz', 1))  # 
[(1, 'a'), (2, 'l'), (3, 'b'), (4, 'a'), (5, 't'), (6, 'r'), (7, 'o'), (8, 'z')]
>>> import operator
>>> list(map(operator.mul, range(11), range(11)))  # 
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
>>> list(map(operator.mul, range(11), [2, 4, 8]))  # 
[0, 4, 16]
>>> list(map(lambda a, b: (a, b), range(11), [2, 4, 8]))  # 
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[(0, 2), (1, 4), (2, 8)]
>>> import itertools
>>> list(itertools.starmap(operator.mul, enumerate('albatroz', 1)))  # 
['a', 'll', 'bbb', 'aaaa', 'ttttt', 'rrrrrr', 'ooooooo', 'zzzzzzzz']
>>> sample = [5, 4, 2, 8, 7, 6, 3, 0, 9, 1]
>>> list(itertools.starmap(lambda a, b: b/a,
...     enumerate(itertools.accumulate(sample), 1)))  # 
[5.0, 4.5, 3.6666666666666665, 4.75, 5.2, 5.333333333333333,
5.0, 4.375, 4.888888888888889, 4.5]

Number the letters in the word, starting from 1.
Squares of integers from 0 to 10.
Multiplying numbers from two iterables in parallel: results stop when the
shortest iterable ends.
This is what the zip built-in function does.
Repeat each letter in the word according to its place in it, starting from 1.
Running average.

Next, we have the group of merging generators—all of these yield items from multiple
input iterables. chain and chain.from_iterable consume the input iterables sequen‐
tially (one after the other), while product, zip, and zip_longest consume the input
iterables in parallel. See Table 14-3.

Table 14-3. Generator functions that merge multiple input iterables
Module Function Description

itertools chain(it1, …, itN) Yield all items from it1, then from it2 etc., seamlessly

itertools chain.from_iterable(it) Yield all items from each iterable produced by it, one after the other,
seamlessly; it should yield iterable items, for example, a list of iterables

itertools product(it1, …, itN, re

peat=1)

Cartesian product: yields N-tuples made by combining items from each
input iterable like nested for loops could produce; repeat allows the
input iterables to be consumed more than once

(built-in) zip(it1, …, itN) Yields N-tuples built from items taken from the iterables in parallel, silently
stopping when the first iterable is exhausted

itertools zip_longest(it1, …,

itN, fillvalue=None)

Yields N-tuples built from items taken from the iterables in parallel,
stopping only when the last iterable is exhausted, filling the blanks with
the fillvalue

Example 14-17 shows the use of the itertools.chain and zip generator functions and
their siblings. Recall that the zip function is named after the zip fastener or zipper (no
relation with compression). Both zip and itertools.zip_longest were introduced in
“The Awesome zip” on page 293.
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Example 14-17. Merging generator function examples
>>> list(itertools.chain('ABC', range(2)))  # 
['A', 'B', 'C', 0, 1]
>>> list(itertools.chain(enumerate('ABC')))  # 
[(0, 'A'), (1, 'B'), (2, 'C')]
>>> list(itertools.chain.from_iterable(enumerate('ABC')))  # 
[0, 'A', 1, 'B', 2, 'C']
>>> list(zip('ABC', range(5)))  # 
[('A', 0), ('B', 1), ('C', 2)]
>>> list(zip('ABC', range(5), [10, 20, 30, 40]))  # 
[('A', 0, 10), ('B', 1, 20), ('C', 2, 30)]
>>> list(itertools.zip_longest('ABC', range(5)))  # 
[('A', 0), ('B', 1), ('C', 2), (None, 3), (None, 4)]
>>> list(itertools.zip_longest('ABC', range(5), fillvalue='?'))  # 
[('A', 0), ('B', 1), ('C', 2), ('?', 3), ('?', 4)]

chain is usually called with two or more iterables.
chain does nothing useful when called with a single iterable.
But chain.from_iterable takes each item from the iterable, and chains them
in sequence, as long as each item is itself iterable.
zip is commonly used to merge two iterables into a series of two-tuples.
Any number of iterables can be consumed by zip in parallel, but the generator
stops as soon as the first iterable ends.
itertools.zip_longest works like zip, except it consumes all input iterables
to the end, padding output tuples with None as needed.
The fillvalue keyword argument specifies a custom padding value.

The itertools.product generator is a lazy way of computing Cartesian products,
which we built using list comprehensions with more than one for clause in “Cartesian
Products” on page 23. Generator expressions with multiple for clauses can also be used
to produce Cartesian products lazily. Example 14-18 demonstrates itertools.product.

Example 14-18. itertools.product generator function examples
>>> list(itertools.product('ABC', range(2)))  # 
[('A', 0), ('A', 1), ('B', 0), ('B', 1), ('C', 0), ('C', 1)]
>>> suits = 'spades hearts diamonds clubs'.split()
>>> list(itertools.product('AK', suits))  # 
[('A', 'spades'), ('A', 'hearts'), ('A', 'diamonds'), ('A', 'clubs'),
('K', 'spades'), ('K', 'hearts'), ('K', 'diamonds'), ('K', 'clubs')]
>>> list(itertools.product('ABC'))  # 
[('A',), ('B',), ('C',)]
>>> list(itertools.product('ABC', repeat=2))  # 
[('A', 'A'), ('A', 'B'), ('A', 'C'), ('B', 'A'), ('B', 'B'),
('B', 'C'), ('C', 'A'), ('C', 'B'), ('C', 'C')]
>>> list(itertools.product(range(2), repeat=3))
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[(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0),
(1, 0, 1), (1, 1, 0), (1, 1, 1)]
>>> rows = itertools.product('AB', range(2), repeat=2)
>>> for row in rows: print(row)
...
('A', 0, 'A', 0)
('A', 0, 'A', 1)
('A', 0, 'B', 0)
('A', 0, 'B', 1)
('A', 1, 'A', 0)
('A', 1, 'A', 1)
('A', 1, 'B', 0)
('A', 1, 'B', 1)
('B', 0, 'A', 0)
('B', 0, 'A', 1)
('B', 0, 'B', 0)
('B', 0, 'B', 1)
('B', 1, 'A', 0)
('B', 1, 'A', 1)
('B', 1, 'B', 0)
('B', 1, 'B', 1)

The Cartesian product of a str with three characters and a range with two
integers yields six tuples (because 3 * 2 is 6).
The product of two card ranks ('AK'), and four suits is a series of eight tuples.
Given a single iterable, product yields a series of one-tuples, not very useful.
The repeat=N keyword argument tells product to consume each input iterable
N times.

Some generator functions expand the input by yielding more than one value per input
item. They are listed in Table 14-4.

Table 14-4. Generator functions that expand each input item into multiple output
items

Module Function Description

itertools combinations(it,

out_len)

Yield combinations of out_len items from the items yielded by it

itertools combinations_with_re

placement(it, out_len)

Yield combinations of out_len items from the items yielded by it,
including combinations with repeated items

itertools count(start=0, step=1) Yields numbers starting at start, incremented by step, indefinitely

itertools cycle(it) Yields items from it storing a copy of each, then yields the entire
sequence repeatedly, indefinitely

itertools permutations(it,

out_len=None)

Yield permutations of out_len items from the items yielded by it;
by default, out_len is len(list(it))
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Module Function Description

itertools repeat(item, [times]) Yield the given item repeadedly, indefinetly unless a number of times
is given

The count and repeat functions from itertools return generators that conjure items
out of nothing: neither of them takes an iterable as input. We saw itertools.count in
“Arithmetic Progression with itertools” on page 423. The cycle generator makes a
backup of the input iterable and yields its items repeatedly. Example 14-19 illustrates
the use of count, repeat, and cycle.

Example 14-19. count, cycle, and repeat
>>> ct = itertools.count()  # 
>>> next(ct)  # 
0
>>> next(ct), next(ct), next(ct)  # 
(1, 2, 3)
>>> list(itertools.islice(itertools.count(1, .3), 3))  # 
[1, 1.3, 1.6]
>>> cy = itertools.cycle('ABC')  # 
>>> next(cy)
'A'
>>> list(itertools.islice(cy, 7))  # 
['B', 'C', 'A', 'B', 'C', 'A', 'B']
>>> rp = itertools.repeat(7)  # 
>>> next(rp), next(rp)
(7, 7)
>>> list(itertools.repeat(8, 4))  # 
[8, 8, 8, 8]
>>> list(map(operator.mul, range(11), itertools.repeat(5)))  # 
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50]

Build a count generator ct.
Retrieve the first item from ct.
I can’t build a list from ct, because ct never stops, so I fetch the next three
items.
I can build a list from a count generator if it is limited by islice or takewhile.
Build a cycle generator from 'ABC' and fetch its first item, 'A'.
A list can only be built if limited by islice; the next seven items are retrieved
here.
Build a repeat generator that will yield the number 7 forever.
A repeat generator can be limited by passing the times argument: here the
number 8 will be produced 4 times.
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A common use of repeat: providing a fixed argument in map; here it provides
the 5 multiplier.

The combinations, combinations_with_replacement, and permutations generator
functions—together with product—are called the combinatoric generators in the iter
tools documentation page. There is a close relationship between itertools.product
and the remaining combinatoric functions as well, as Example 14-20 shows.

Example 14-20. Combinatoric generator functions yield multiple values per input item
>>> list(itertools.combinations('ABC', 2))  # 
[('A', 'B'), ('A', 'C'), ('B', 'C')]
>>> list(itertools.combinations_with_replacement('ABC', 2))  # 
[('A', 'A'), ('A', 'B'), ('A', 'C'), ('B', 'B'), ('B', 'C'), ('C', 'C')]
>>> list(itertools.permutations('ABC', 2))  # 
[('A', 'B'), ('A', 'C'), ('B', 'A'), ('B', 'C'), ('C', 'A'), ('C', 'B')]
>>> list(itertools.product('ABC', repeat=2))  # 
[('A', 'A'), ('A', 'B'), ('A', 'C'), ('B', 'A'), ('B', 'B'), ('B', 'C'),
('C', 'A'), ('C', 'B'), ('C', 'C')]

All combinations of len()==2 from the items in 'ABC'; item ordering in the
generated tuples is irrelevant (they could be sets).
All combinations of len()==2 from the items in 'ABC', including combinations
with repeated items.
All permutations of len()==2 from the items in 'ABC'; item ordering in the
generated tuples is relevant.
Cartesian product from 'ABC' and 'ABC' (that’s the effect of repeat=2).

The last group of generator functions we’ll cover in this section are designed to yield all
items in the input iterables, but rearranged in some way. Here are two functions that
return multiple generators: itertools.groupby and itertools.tee. The other gener‐
ator function in this group, the reversed built-in, is the only one covered in this section
that does not accept any iterable as input, but only sequences. This makes sense: because
reversed will yield the items from last to first, it only works with a sequence with a
known length. But it avoids the cost of making a reversed copy of the sequence by
yielding each item as needed. I put the itertools.product function together with the
merging generators in Table 14-3 because they all consume more than one iterable, while
the generators in Table 14-5 all accept at most one input iterable.

Table 14-5. Rearranging generator functions
Module Function Description

itertools groupby(it,

key=None)

Yields 2-tuples of the form (key, group), where key is the grouping criterion
and group is a generator yielding the items in the group

Generator Functions in the Standard Library | 431

http://bit.ly/py-itertools
http://bit.ly/py-itertools


Module Function Description

(built-in) reversed(seq) Yields items from seq in reverse order, from last to first; seq must be a sequence
or implement the __reversed__ special method

itertools tee(it, n=2) Yields a tuple of n generators, each yielding the items of the input iterable
independently

Example 14-21 demonstrates the use of itertools.groupby and the reversed built-in.
Note that itertools.groupby assumes that the input iterable is sorted by the grouping
criterion, or at least that the items are clustered by that criterion—even if not sorted.

Example 14-21. itertools.groupby
>>> list(itertools.groupby('LLLLAAGGG'))  # 
[('L', <itertools._grouper object at 0x102227cc0>),
('A', <itertools._grouper object at 0x102227b38>),
('G', <itertools._grouper object at 0x102227b70>)]
>>> for char, group in itertools.groupby('LLLLAAAGG'):  # 
...     print(char, '->', list(group))
...
L -> ['L', 'L', 'L', 'L']
A -> ['A', 'A',]
G -> ['G', 'G', 'G']
>>> animals = ['duck', 'eagle', 'rat', 'giraffe', 'bear',
...            'bat', 'dolphin', 'shark', 'lion']
>>> animals.sort(key=len)  # 
>>> animals
['rat', 'bat', 'duck', 'bear', 'lion', 'eagle', 'shark',
'giraffe', 'dolphin']
>>> for length, group in itertools.groupby(animals, len):  # 
...     print(length, '->', list(group))
...
3 -> ['rat', 'bat']
4 -> ['duck', 'bear', 'lion']
5 -> ['eagle', 'shark']
7 -> ['giraffe', 'dolphin']
>>> for length, group in itertools.groupby(reversed(animals), len): # 
...     print(length, '->', list(group))
...
7 -> ['dolphin', 'giraffe']
5 -> ['shark', 'eagle']
4 -> ['lion', 'bear', 'duck']
3 -> ['bat', 'rat']
>>>

groupby yields tuples of (key, group_generator).
Handling groupby generators involves nested iteration: in this case, the outer
for loop and the inner list constructor.
To use groupby, the input should be sorted; here the words are sorted by length.
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12. The itertools.chain from the standard library is written in C.

Again, loop over the key and group pair, to display the key and expand the group
into a list.
Here the reverse generator is used to iterate over animals from right to left.

The last of the generator functions in this group is iterator.tee, which has a unique
behavior: it yields multiple generators from a single input iterable, each yielding every
item from the input. Those generators can be consumed independently, as shown in
Example 14-22.

Example 14-22. itertools.tee yields multiple generators, each yielding every item of the
input generator
>>> list(itertools.tee('ABC'))
[<itertools._tee object at 0x10222abc8>, <itertools._tee object at 0x10222ac08>]
>>> g1, g2 = itertools.tee('ABC')
>>> next(g1)
'A'
>>> next(g2)
'A'
>>> next(g2)
'B'
>>> list(g1)
['B', 'C']
>>> list(g2)
['C']
>>> list(zip(*itertools.tee('ABC')))
[('A', 'A'), ('B', 'B'), ('C', 'C')]

Note that several examples in this section used combinations of generator functions.
This is a great feature of these functions: because they all take generators as arguments
and return generators, they can be combined in many different ways.

While on the subject of combining generators, the yield from statement, new in Python
3.3, is a tool for doing just that.

New Syntax in Python 3.3: yield from
Nested for loops are the traditional solution when a generator function needs to yield
values produced from another generator.

For example, here is a homemade implementation of a chaining generator:12

>>> def chain(*iterables):
...     for it in iterables:
...         for i in it:
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...             yield i

...
>>> s = 'ABC'
>>> t = tuple(range(3))
>>> list(chain(s, t))
['A', 'B', 'C', 0, 1, 2]

The chain generator function is delegating to each received iterable in turn. PEP 380
— Syntax for Delegating to a Subgenerator introduced new syntax for doing that, shown
in the next console listing:

>>> def chain(*iterables):
...     for i in iterables:
...         yield from i
...
>>> list(chain(s, t))
['A', 'B', 'C', 0, 1, 2]

As you can see, yield from i replaces the inner for loop completely. The use of yield
from in this example is correct, and the code reads better, but it seems like mere syntactic
sugar. Besides replacing a loop, yield from creates a channel connecting the inner
generator directly to the client of the outer generator. This channel becomes really im‐
portant when generators are used as coroutines and not only produce but also consume
values from the client code. Chapter 16 dives into coroutines, and has several pages
explaining why yield from is much more than syntactic sugar.

After this first encounter with yield from, we’ll go back to our review of iterable-savvy
functions in the standard library.

Iterable Reducing Functions
The functions in Table 14-6 all take an iterable and return a single result. They are known
as “reducing,” “folding,” or “accumulating” functions. Actually, every one of the built-
ins listed here can be implemented with functools.reduce, but they exist as built-ins
because they address some common use cases more easily. Also, in the case of all and
any, there is an important optimization that can’t be done with reduce: these functions
short-circuit (i.e., they stop consuming the iterator as soon as the result is determined).
See the last test with any in Example 14-23.

Table 14-6. Built-in functions that read iterables and return single values
Module Function Description

(built-in) all(it) Returns True if all items in it are truthy, otherwise False; all([])
returns True

(built-in) any(it) Returns True if any item in it is truthy, otherwise False; any([])
returns False
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Module Function Description

(built-in) max(it, [key=,] [de

fault=])
Returns the maximum value of the items in it;a key is an ordering
function, as in sorted; default is returned if the iterable is empty

(built-in) min(it, [key=,] [de

fault=])
Returns the minimum value of the items in it.b key is an ordering function,
as in sorted; default is returned if the iterable is empty

functools reduce(func, it, [ini

tial])

Returns the result of applying func to the first pair of items, then to that
result and the third item and so on; if given, initial forms the initial
pair with the first item

(built-in) sum(it, start=0) The sum of all items in it, with the optional start value added (use
math.fsum for better precision when adding floats)

a May also be called as max(arg1, arg2, …, [key=?]), in which case the maximum among the arguments is returned.
b May also be called as min(arg1, arg2, …, [key=?]), in which case the minimum among the arguments is returned.

The operation of all and any is exemplified in Example 14-23.

Example 14-23. Results of all and any for some sequences
>>> all([1, 2, 3])
True
>>> all([1, 0, 3])
False
>>> all([])
True
>>> any([1, 2, 3])
True
>>> any([1, 0, 3])
True
>>> any([0, 0.0])
False
>>> any([])
False
>>> g = (n for n in [0, 0.0, 7, 8])
>>> any(g)
True
>>> next(g)
8

A longer explanation about functools.reduce appeared in “Vector Take #4: Hashing
and a Faster ==” on page 288.

Another built-in that takes an iterable and returns something else is sorted. Unlike
reversed, which is a generator function, sorted builds and returns an actual list. After
all, every single item of the input iterable must be read so they can be sorted, and the
sorting happens in a list, therefore sorted just returns that list after it’s done. I
mention sorted here because it does consume an arbitrary iterable.
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Of course, sorted and the reducing functions only work with iterables that eventually
stop. Otherwise, they will keep on collecting items and never return a result.

We’ll now go back to the iter() built-in: it has a little-known feature that we haven’t
covered yet.

A Closer Look at the iter Function
As we’ve seen, Python calls iter(x) when it needs to iterate over an object x.

But iter has another trick: it can be called with two arguments to create an iterator
from a regular function or any callable object. In this usage, the first argument must be
a callable to be invoked repeatedly (with no arguments) to yield values, and the second
argument is a sentinel: a marker value which, when returned by the callable, causes the
iterator to raise StopIteration instead of yielding the sentinel.

The following example shows how to use iter to roll a six-sided die until a 1 is rolled:

>>> def d6():
...     return randint(1, 6)
...
>>> d6_iter = iter(d6, 1)
>>> d6_iter
<callable_iterator object at 0x00000000029BE6A0>
>>> for roll in d6_iter:
...     print(roll)
...
4
3
6
3

Note that the iter function here returns a callable_iterator. The for loop in the
example may run for a very long time, but it will never display 1, because that is the
sentinel value. As usual with iterators, the d6_iter object in the example becomes use‐
less once exhausted. To start over, you must rebuild the iterator by invoking iter(…)
again.

A useful example is found in the iter built-in function documentation. This snippet
reads lines from a file until a blank line is found or the end of file is reached:

with open('mydata.txt') as fp:
    for line in iter(fp.readline, ''):
        process_line(line)

To close this chapter, I present a practical example of using generators to handle a large
volume of data efficiently.
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Case Study: Generators in a Database Conversion Utility
A few years ago I worked at BIREME, a digital library run by PAHO/WHO (Pan-
American Health Organization/World Health Organization) in São Paulo, Brazil.
Among the bibliographic datasets created by BIREME are LILACS (Latin American and
Caribbean Health Sciences index) and SciELO (Scientific Electronic Library Online),
two comprehensive databases indexing the scientific and technical literature produced
in the region.

Since the late 1980s, the database system used to manage LILACS is CDS/ISIS, a non-
relational, document database created by UNESCO and eventually rewritten in C by
BIREME to run on GNU/Linux servers. One of my jobs was to research alternatives for
a possible migration of LILACS—and eventually the much larger SciELO—to a modern,
open source, document database such as CouchDB or MongoDB.

As part of that research, I wrote a Python script, isis2json.py, that reads a CDS/ISIS file
and writes a JSON file suitable for importing to CouchDB or MongoDB. Initially, the
script read files in the ISO-2709 format exported by CDS/ISIS. The reading and writing
had to be done incrementally because the full datasets were much bigger than main
memory. That was easy enough: each iteration of the main for loop read one record
from the .iso file, massaged it, and wrote it to the .json output.

However, for operational reasons, it was deemed necessary that isis2json.py supported
another CDS/ISIS data format: the binary .mst files used in production at BIREME—
to avoid the costly export to ISO-2709.

Now I had a problem: the libraries used to read ISO-2709 and .mst files had very different
APIs. And the JSON writing loop was already complicated because the script accepted
a variety of command-line options to restructure each output record. Reading data using
two different APIs in the same for loop where the JSON was produced would be un‐
wieldy.

The solution was to isolate the reading logic into a pair of generator functions: one for
each supported input format. In the end, the isis2json.py script was split into four func‐
tions. You can see the main Python 2 script in Example A-5, but the full source code
with dependencies is in fluentpython/isis2json on GitHub.

Here is a high-level overview of how the script is structured:
main

The main function uses argparse to read command-line options that configure the
structure of the output records. Based on the input filename extension, a suitable
generator function is selected to read the data and yield the records, one by one.
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13. The library used to read the complex .mst binary is actually written in Java, so this functionality is only
available when isis2json.py is executed with the Jython interpreter, version 2.5 or newer. For further details,
see the README.rst file in the repository. The dependencies are imported inside the generator functions that
need them, so the script can run even if only one of the external libraries is available.

iter_iso_records

This generator function reads .iso files (assumed to be in the ISO-2709 format). It
takes two arguments: the filename and isis_json_type, one of the options related
to the record structure. Each iteration of its for loop reads one record, creates an
empty dict, populates it with field data, and yields the dict.

iter_mst_records

This other generator functions reads .mst files.13 If you look at the source code for
isis2json.py, you’ll see that it’s not as simple as iter_iso_records, but its interface
and overall structure is the same: it takes a filename and an isis_json_type argu‐
ment and enters a for loop, which builds and yields one dict per iteration, repre‐
senting a single record.

write_json

This function performs the actual writing of the JSON records, one at a time. It
takes numerous arguments, but the first one—input_gen—is a reference to a gen‐
erator function: either iter_iso_records or iter_mst_records. The main for
loop in write_json iterates over the dictionaries yielded by the selected in
put_gen generator, massages it in several ways as determined by the command-line
options, and appends the JSON record to the output file.

By leveraging generator functions, I was able to decouple the reading logic from the
writing logic. Of course, the simplest way to decouple them would be to read all records
to memory, then write them to disk. But that was not a viable option because of the size
of the datasets. Using generators, the reading and writing is interleaved, so the script
can process files of any size.

Now if isis2json.py needs to support an additional input format—say, MARCXML, a
DTD used by the U.S. Library of Congress to represent ISO-2709 data—it will be easy
to add a third generator function to implement the reading logic, without changing
anything in the complicated write_json function.

This is not rocket science, but it’s a real example where generators provided a flexible
solution to processing databases as a stream of records, keeping memory usage low
regardless of the amount of data. Anyone who manages large datasets finds many op‐
portunities for using generators in practice.

The next section addresses an aspect of generators that we’ll actually skip for now. Read
on to understand why.
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14. Slide 33, “Keeping It Straight,” in “A Curious Course on Coroutines and Concurrency”.

15. According to the Jargon file, to grok is not merely to learn something, but to absorb it so “it becomes part of
you, part of your identity.”

Generators as Coroutines
About five years after generator functions with the yield keyword were introduced in
Python 2.2, PEP 342 — Coroutines via Enhanced Generators was implemented in
Python 2.5. This proposal added extra methods and functionality to generator objects,
most notably the .send() method.

Like .__next__(), .send() causes the generator to advance to the next yield, but it
also allows the client using the generator to send data into it: whatever argument is
passed to .send() becomes the value of the corresponding yield expression inside the
generator function body. In other words, .send() allows two-way data exchange be‐
tween the client code and the generator—in contrast with .__next__(), which only lets
the client receive data from the generator.

This is such a major “enhancement” that it actually changes the nature of generators:
when used in this way, they become coroutines. David Beazley—probably the most pro‐
lific writer and speaker about coroutines in the Python community—warned in a fa‐
mous PyCon US 2009 tutorial:

•  Generators produce data for iteration

•  Coroutines are consumers of data

•  To keep your brain from exploding, you don’t mix the two concepts together

•  Coroutines are not related to iteration

•  Note: There is a use of having yield produce a value in a coroutine, but it’s not tied
to iteration.14

— David Beazley
 “A Curious Course on Coroutines and Concurrency”

I will follow Dave’s advice and close this chapter—which is really about iteration tech‐
niques—without touching send and the other features that make generators usable as
coroutines. Coroutines will be covered in Chapter 16.

Chapter Summary
Iteration is so deeply embedded in the language that I like to say that Python groks
iterators.15 The integration of the Iterator pattern in the semantics of Python is a prime
example of how design patterns are not equally applicable in all programming lan‐
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guages. In Python, a classic iterator implemented “by hand” as in Example 14-4 has no
practical use, except as a didactic example.

In this chapter, we built a few versions of a class to iterate over individual words in text
files that may be very long. Thanks to the use of generators, the successive refactorings
of the Sentence class become shorter and easier to read—when you know how they
work.

We then coded a generator of arithmetic progressions and showed how to leverage the
itertools module to make it simpler. An overview of 24 general-purpose generator
functions in the standard library followed.

Following that, we looked at the iter built-in function: first, to see how it returns an
iterator when called as iter(o), and then to study how it builds an iterator from any
function when called as iter(func, sentinel).

For practical context, I described the implementation of a database conversion utility
using generator functions to decouple the reading to the writing logic, enabling efficient
handling of large datasets and making it easy to support more than one data input
format.

Also mentioned in this chapter were the yield from syntax, new in Python 3.3, and
coroutines. Both topics were just introduced here; they get more coverage later in the
book.

Further Reading
A detailed technical explanation of generators appears in The Python Language Refer‐
ence in 6.2.9. Yield expressions. The PEP where generator functions were defined is
PEP 255 — Simple Generators.

The itertools module documentation is excellent because of all the examples included.
Although the functions in that module are implemented in C, the documentation shows
how many of them would be written in Python, often by leveraging other functions in
the module. The usage examples are also great: for instance, there is a snippet showing
how to use the accumulate function to amortize a loan with interest, given a list of
payments over time. There is also an Itertools Recipes section with additional high-
performance functions that use the itertools functions as building blocks.

Chapter 4, “Iterators and Generators,” of Python Cookbook, 3E (O’Reilly), by David
Beazley and Brian K. Jones, has 16 recipes covering this subject from many different
angles, always focusing on practical applications.

The yield from syntax is explained with examples in What’s New in Python 3.3 (see
PEP 380: Syntax for Delegating to a Subgenerator). We’ll also cover it in detail in “Using
yield from” on page 477 and “The Meaning of yield from” on page 483 in Chapter 16.
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16. Joe Gibbs Politz, Alejandro Martinez, Matthew Milano, Sumner Warren, Daniel Patterson, Junsong Li, Anand
Chitipothu, and Shriram Krishnamurthi, “Python: The Full Monty,” SIGPLAN Not. 48, 10 (October 2013),
217-232.

If you are interested in document databases and would like to learn more about the
context of “Case Study: Generators in a Database Conversion Utility” on page 437, the
Code4Lib Journal—which covers the intersection between libraries and technology—
published my paper “From ISIS to CouchDB: Databases and Data Models for Biblio‐
graphic Records”. One section of the paper describes the isis2json.py script. The rest of
it explains why and how the semistructured data model implemented by document
databases like CouchDB and MongoDB are more suitable for cooperative bibliographic
data collection than the relational model.

Soapbox
Generator Function Syntax: More Sugar Would Be Nice

Designers need to ensure that controls and displays for different purposes are signifi‐
cantly different from one another.

— Donald Norman
 The Design of Everyday Things

Source code plays the role of “controls and displays” in programming languages. I think
Python is exceptionally well designed; its source code is often as readable as pseudocode.
But nothing is perfect. Guido van Rossum should have followed Donald Norman’s ad‐
vice (previously quoted) and introduced another keyword for defining generator ex‐
pressions, instead of reusing def. The “BDFL Pronouncements” section of PEP 255 —
Simple Generators actually argues:

A “yield” statement buried in the body is not enough warning that the semantics are so
different.

But Guido hates introducing new keywords and he did not find that argument con‐
vincing, so we are stuck with def.

Reusing the function syntax for generators has other bad consequences. In the paper
and experimental work “Python, the Full Monty: A Tested Semantics for the Python
Programming Language,” Politz16 et al. show this trivial example of a generator function
(section 4.1 of the paper):

def f(): x=0
    while True:
        x += 1
        yield x

The authors then make the point that we can’t abstract the process of yielding with a
function call (Example 14-24).
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17. Slide 31, “A Curious Course on Coroutines and Concurrency”.

Example 14-24. “[This] seems to perform a simple abstraction over the process of
yielding” (Politz et al.)
def f():
    def do_yield(n):
        yield n
    x = 0
    while True:
        x += 1
        do_yield(x)

If we call f() in Example 14-24, we get an infinite loop, and not a generator, because
the yield keyword only makes the immediately enclosing function a generator function.
Although generator functions look like functions, we cannot delegate another generator
function with a simple function call. As a point of comparison, the Lua language does
not impose this limitation. A Lua coroutine can call other functions and any of them
can yield to the original caller.

The new yield from syntax was introduced to allow a Python generator or coroutine
to delegate work to another, without requiring the workaround of an inner for loop.
Example 14-24 can be “fixed” by prefixing the function call with yield from, as in
Example 14-25.

Example 14-25. This actually performs a simple abstraction over the process of
yielding
def f():
    def do_yield(n):
        yield n
    x = 0
    while True:
        x += 1
        yield from do_yield(x)

Reusing def for declaring generators was a usability mistake, and the problem was
compounded in Python 2.5 with coroutines, which are also coded as functions with
yield. In the case of coroutines, the yield just happens to appear—usually—on the
righthand side of an assignment, because it receives the argument of the .send() call
from the client. As David Beazley says:

Despite some similarities, generators and coroutines are basically two different con‐
cepts.17

I believe coroutines also deserved their own keyword. As we’ll see later, coroutines are
often used with special decorators, which do set them apart from other functions. But
generator functions are not decorated as frequently, so we have to scan their bodies for
yield to realize they are not functions at all, but a completely different beast.
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It can be argued that, because those features were made to work with little additional
syntax, extra syntax would be merely “syntactic sugar.” I happen to like syntactic sugar
when it makes features that are different look different. The lack of syntactic sugar is
the main reason why Lisp code is hard to read: every language construct in Lisp looks
like a function call.

Semantics of Generator Versus Iterator

There are at least three ways of thinking about the relationship between iterators and
generators.

The first is the interface viewpoint. The Python iterator protocol defines two methods:
__next__ and __iter__. Generator objects implement both, so from this perspective,
every generator is an iterator. By this definition, objects created by the enumerate()
built-in are iterators:

>>> from collections import abc
>>> e = enumerate('ABC')
>>> isinstance(e, abc.Iterator)
True

The second is the implementation viewpoint. From this angle, a generator is a Python
language construct that can be coded in two ways: as a function with the yield keyword
or as a generator expression. The generator objects resulting from calling a generator
function or evaluating a generator expression are instances of an internal Generator
Type. From this perspective, every generator is also an iterator, because Generator
Type instances implement the iterator interface. But you can write an iterator that is not
a generator—by implementing the classic Iterator pattern, as we saw in Example 14-4,
or by coding an extension in C. The enumerate objects are not generators from this
perspective:

>>> import types
>>> e = enumerate('ABC')
>>> isinstance(e, types.GeneratorType)
False

This happens because types.GeneratorType is defined as “The type of generator-
iterator objects, produced by calling a generator function.”

The third is the conceptual viewpoint. In the classic Iterator design pattern—as defined
in the GoF book—the iterator traverses a collection and yields items from it. The iterator
may be quite complex; for example, it may navigate through a tree-like data structure.
But, however much logic is in a classic iterator, it always reads values from an existing
data source, and when you call next(it), the iterator is not expected to change the item
it gets from the source; it’s supposed to just yield it as is.

In contrast, a generator may produce values without necessarily traversing a collection,
like range does. And even if attached to a collection, generators are not limited to yield‐
ing just the items in it, but may yield some other values derived from them. A clear
example of this is the enumerate function. By the original definition of the design pat‐
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tern, the generator returned by enumerate is not an iterator because it creates the tuples
it yields.

At this conceptual level, the implementation technique is irrelevant. You can write a
generator without using a Python generator object. Example 14-26 is a Fibonacci gen‐
erator I wrote just to make this point.

Example 14-26. fibo_by_hand.py: Fibonacci generator without GeneratorType in‐
stances
class Fibonacci:

    def __iter__(self):
        return FibonacciGenerator()

class FibonacciGenerator:

    def __init__(self):
        self.a = 0
        self.b = 1

    def __next__(self):
        result = self.a
        self.a, self.b = self.b, self.a + self.b
        return result

    def __iter__(self):
        return self

Example 14-26 works but is just a silly example. Here is the Pythonic Fibonacci gener‐
ator:

def fibonacci():
    a, b = 0, 1
    while True:
        yield a
        a, b = b, a + b

And of course, you can always use the generator language construct to perform the basic
duties of an iterator: traversing a collection and yielding items from it.

In reality, Python programmers are not strict about this distinction: generators are also
called iterators, even in the official docs. The canonical definition of an iterator in the
Python Glossary is so general it encompasses both iterators and generators:

Iterator: An object representing a stream of data. […]

The full definition of iterator in the Python Glossary is worth reading. On the other
hand, the definition of generator there treats iterator and generator as synonyms, and
uses the word “generator” to refer both to the generator function and the generator
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18. Gamma et. al., Design Patterns: Elements of Reusable Object-Oriented Software, p. 261.

object it builds. So, in the Python community lingo, iterator and generator are fairly
close synonyms.

The Minimalistic Iterator Interface in Python

In the “Implementation” section of the Iterator pattern,18 the Gang of Four wrote:

The minimal interface to Iterator consists of the operations First, Next, IsDone, and
CurrentItem.

However, that very sentence has a footnote which reads:

We can make this interface even smaller by merging Next, IsDone, and CurrentItem
into a single operation that advances to the next object and returns it. If the traversal is
finished, then this operation returns a special value (0, for instance) that marks the end
of the iteration.

This is close to what we have in Python: the single method __next__ does the job. But
instead of using a sentinel, which could be overlooked by mistake, the StopIteration
exception signals the end of the iteration. Simple and correct: that’s the Python way.
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1. PyCon US 2013 keynote: “What Makes Python Awesome”; the part about with starts at 23:00 and ends at
26:15.

CHAPTER 15

Context Managers and else Blocks

Context managers may end up being almost as important as the subroutine itself. We’ve
only scratched the surface with them. […] Basic has a with statement, there are with
statements in lots of languages. But they don’t do the same thing, they all do something
very shallow, they save you from repeated dotted [attribute] lookups, they don’t do setup
and tear down. Just because it’s the same name don’t think it’s the same thing. The with
statement is a very big deal.1

— Raymond Hettinger
 Eloquent Python evangelist

In this chapter, we will discuss control flow features that are not so common in other
languages, and for this reason tend to be overlooked or underused in Python. They are:

• The with statement and context managers
• The else clause in for, while, and try statements

The with statement sets up a temporary context and reliably tears it down, under the
control of a context manager object. This prevents errors and reduces boilerplate code,
making APIs at the same time safer and easier to use. Python programmers are finding
lots of uses for with blocks beyond automatic file closing.

The else clause is completely unrelated to with. But this is Part V, and I couldn’t find
another place for covering else, and I wouldn’t have a one-page chapter about it, so
here it is.

Let’s review the smaller topic to get to the real substance of this chapter.
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Do This, Then That: else Blocks Beyond if
This is no secret, but it is an underappreciated language feature: the else clause can be
used not only in if statements but also in for, while, and try statements.

The semantics of for/else, while/else, and try/else are closely related, but very
different from if/else. Initially the word else actually hindered my understanding of
these features, but eventually I got used to it.

Here are the rules:
for

The else block will run only if and when the for loop runs to completion (i.e., not
if the for is aborted with a break).

while

The else block will run only if and when the while loop exits because the condition
became falsy (i.e., not when the while is aborted with a break).

try

The else block will only run if no exception is raised in the try block. The official
docs also state: “Exceptions in the else clause are not handled by the preceding
except clauses.”

In all cases, the else clause is also skipped if an exception or a return, break, or
continue statement causes control to jump out of the main block of the compound
statement.

I think else is a very poor choice for the keyword in all cases
except if. It implies an excluding alternative, like “Run this loop,
otherwise do that,” but the semantics for else in loops is the
opposite: “Run this loop, then do that.” This suggests then as a
better keyword—which would also make sense in the try con‐
text: “Try this, then do that.” However, adding a new keyword is
a breaking change to the language, and Guido avoids it like the
plague.

Using else with these statements often makes the code easier to read and saves the
trouble of setting up control flags or adding extra if statements.

The use of else in loops generally follows the pattern of this snippet:

for item in my_list:
    if item.flavor == 'banana':
        break
else:
    raise ValueError('No banana flavor found!')
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In the case of try/except blocks, else may seem redundant at first. After all, the
after_call() in the following snippet will run only if the dangerous_call() does not
raise an exception, correct?

try:
    dangerous_call()
    after_call()
except OSError:
    log('OSError...')

However, doing so puts the after_call() inside the try block for no good reason. For
clarity and correctness, the body of a try block should only have the statements that
may generate the expected exceptions. This is much better:

try:
    dangerous_call()
except OSError:
    log('OSError...')
else:
    after_call()

Now it’s clear that the try block is guarding against possible errors in dangerous_call()
and not in after_call(). It’s also more obvious that after_call() will only execute if
no exceptions are raised in the try block.

In Python, try/except is commonly used for control flow, and not just for error han‐
dling. There’s even an acronym/slogan for that documented in the official Python glos‐
sary:

EAFP
Easier to ask for forgiveness than permission. This common Python coding style
assumes the existence of valid keys or attributes and catches exceptions if the as‐
sumption proves false. This clean and fast style is characterized by the presence of
many try and except statements. The technique contrasts with the LBYL style com‐
mon to many other languages such as C.

The glossary then defines LBYL:
LBYL

Look before you leap. This coding style explicitly tests for pre-conditions before
making calls or lookups. This style contrasts with the EAFP approach and is char‐
acterized by the presence of many if statements. In a multi-threaded environment,
the LBYL approach can risk introducing a race condition between “the looking” and
“the leaping”. For example, the code, if key in mapping: return mapping[key] can
fail if another thread removes key from mapping after the test, but before the lookup.
This issue can be solved with locks or by using the EAFP approach.

Given the EAFP style, it makes even more sense to know and use well else blocks in
try/except statements.

Now let’s address the main topic of this chapter: the powerful with statement.
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2. with blocks don’t define a new scope, as functions and modules do.

Context Managers and with Blocks
Context manager objects exist to control a with statement, just like iterators exist to
control a for statement.

The with statement was designed to simplify the try/finally pattern, which guarantees
that some operation is performed after a block of code, even if the block is aborted
because of an exception, a return or sys.exit() call. The code in the finally clause
usually releases a critical resource or restores some previous state that was temporarily
changed.

The context manager protocol consists of the __enter__ and __exit__ methods. At the
start of the with, __enter__ is invoked on the context manager object. The role of the
finally clause is played by a call to __exit__ on the context manager object at the end
of the with block.

The most common example is making sure a file object is closed. See Example 15-1 for
a detailed demonstration of using with to close a file.

Example 15-1. Demonstration of a file object as a context manager
>>> with open('mirror.py') as fp:  # 
...     src = fp.read(60)  # 
...
>>> len(src)
60
>>> fp  # 
<_io.TextIOWrapper name='mirror.py' mode='r' encoding='UTF-8'>
>>> fp.closed, fp.encoding  # 
(True, 'UTF-8')
>>> fp.read(60)  # 
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: I/O operation on closed file.

fp is bound to the opened file because the file’s __enter__ method returns self.
Read some data from fp.
The fp variable is still available.2

You can read the attributes of the fp object.
But you can’t perform I/O with fp because at the end of the with block, the
TextIOWrapper.__exit__ method is called and closes the file.
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The first callout in Example 15-1 makes a subtle but crucial point: the context manager
object is the result of evaluating the expression after with, but the value bound to the
target variable (in the as clause) is the result of calling __enter__ on the context manager
object.

It just happens that in Example 15-1, the open() function returns an instance of
TextIOWrapper, and its __enter__ method returns self. But the __enter__ method
may also return some other object instead of the context manager.

When control flow exits the with block in any way, the __exit__ method is invoked on
the context manager object, not on whatever is returned by __enter__.

The as clause of the with statement is optional. In the case of open, you’ll always need
it to get a reference to the file, but some context managers return None because they
have no useful object to give back to the user.

Example 15-2 shows the operation of a perfectly frivolous context manager designed to
highlight the distinction between the context manager and the object returned by its
__enter__ method.

Example 15-2. Test driving the LookingGlass context manager class
    >>> from mirror import LookingGlass
    >>> with LookingGlass() as what:   
    ...      print('Alice, Kitty and Snowdrop')   
    ...      print(what)
    ...
    pordwonS dna yttiK ,ecilA   
    YKCOWREBBAJ
    >>> what   
    'JABBERWOCKY'
    >>> print('Back to normal.')   
    Back to normal.

The context manager is an instance of LookingGlass; Python calls __enter__
on the context manager and the result is bound to what.
Print a str, then the value of the target variable what.
The output of each print comes out backward.
Now the with block is over. We can see that the value returned by __enter__,
held in what, is the string 'JABBERWOCKY'.
Program output is no longer backward.

Example 15-3 shows the implementation of LookingGlass.
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Example 15-3. mirror.py: code for the LookingGlass context manager class
class LookingGlass:

    def __enter__(self):   
        import sys
        self.original_write = sys.stdout.write   
        sys.stdout.write = self.reverse_write   
        return 'JABBERWOCKY'   

    def reverse_write(self, text):   
        self.original_write(text[::-1])

    def __exit__(self, exc_type, exc_value, traceback):   
        import sys   
        sys.stdout.write = self.original_write   
        if exc_type is ZeroDivisionError:   
            print('Please DO NOT divide by zero!')
            return True   
         

Python invokes __enter__ with no arguments besides self.
Hold the original sys.stdout.write method in an instance attribute for later
use.
Monkey-patch sys.stdout.write, replacing it with our own method.
Return the 'JABBERWOCKY' string just so we have something to put in the target
variable what.
Our replacement to sys.stdout.write reverses the text argument and calls the
original implementation.
Python calls __exit__ with None, None, None if all went well; if an exception
is raised, the three arguments get the exception data, as described next.
It’s cheap to import modules again because Python caches them.
Restore the original method to sys.stdout.write.
If the exception is not None and its type is ZeroDivisionError, print a message…
…and return True to tell the interpreter that the exception was handled.
If __exit__ returns None or anything but True, any exception raised in the with
block will be propagated.

When real applications take over standard output, they often want
to replace sys.stdout with another file-like object for a while, then
switch back to the original. The contextlib.redirect_stdout
context manager does exactly that: just pass it the file-like object
that will stand in for sys.stdout.

452 | Chapter 15: Context Managers and else Blocks

http://bit.ly/1MM7Sw6


3. The three arguments received by self are exactly what you get if you call sys.exc_info() in the finally
block of a try/finally statement. This makes sense, considering that the with statement is meant to replace
most uses of try/finally, and calling sys.exc_info() was often necessary to determine what clean-up
action would be required.

The interpreter calls the __enter__ method with no arguments—beyond the implicit
self. The three arguments passed to __exit__ are:
exc_type

The exception class (e.g., ZeroDivisionError).

exc_value

The exception instance. Sometimes, parameters passed to the exception construc‐
tor—such as the error message—can be found in exc_value.args.

traceback

A traceback object.3

For a detailed look at how a context manager works, see Example 15-4, where Looking
Glass is used outside of a with block, so we can manually call its __enter__ and
__exit__ methods.

Example 15-4. Exercising LookingGlass without a with block
    >>> from mirror import LookingGlass
    >>> manager = LookingGlass()   
    >>> manager
    <mirror.LookingGlass object at 0x2a578ac>
    >>> monster = manager.__enter__()   
    >>> monster == 'JABBERWOCKY'   
    eurT
    >>> monster
    'YKCOWREBBAJ'
    >>> manager
    >ca875a2x0 ta tcejbo ssalGgnikooL.rorrim<
    >>> manager.__exit__(None, None, None)   
    >>> monster
    'JABBERWOCKY'

Instantiate and inspect the manager instance.
Call the context manager __enter__() method and store result in monster.
Monster is the string 'JABBERWOCKY'. The True identifier appears reversed
because all output via stdout goes through the write method we patched in
__enter__.
Call manager.__exit__ to restore previous stdout.write.
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Context managers are a fairly novel feature and slowly but surely the Python community
is finding new, creative uses for them. Some examples from the standard library are:

• Managing transactions in the sqlite3 module; see “12.6.7.3. Using the connection
as a context manager”.

• Holding locks, conditions, and semaphores in threading code; see “17.1.10. Using
locks, conditions, and semaphores in the with statement”.

• Setting up environments for arithmetic operations with Decimal objects; see the
decimal.localcontext documentation.

• Applying temporary patches to objects for testing; see the unittest.mock.patch
function.

The standard library also includes the contextlib utilities, covered next.

The contextlib Utilities
Before rolling your own context manager classes, take a look at “29.6 contextlib —
Utilities for with-statement contexts” in The Python Standard Library. Besides the al‐
ready mentioned redirect_stdout, the contextlib module includes classes and other
functions that are more widely applicable:
closing

A function to build context managers out of objects that provide a close() method
but don’t implement the __enter__/__exit__ protocol.

suppress

A context manager to temporarily ignore specified exceptions.

@contextmanager

A decorator that lets you build a context manager from a simple generator function,
instead of creating a class and implementing the protocol.

ContextDecorator

A base class for defining class-based context managers that can also be used as
function decorators, running the entire function within a managed context.

ExitStack

A context manager that lets you enter a variable number of context managers. When
the with block ends, ExitStack calls the stacked context managers’ __exit__
methods in LIFO order (last entered, first exited). Use this class when you don’t
know beforehand how many context managers you need to enter in your with
block; for example, when opening all files from an arbitrary list of files at the same
time.
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The most widely used of these utilities is surely the @contextmanager decorator, so it
deserves more attention. That decorator is also intriguing because it shows a use for the
yield statement unrelated to iteration. This paves the way to the concept of a coroutine,
the theme of the next chapter.

Using @contextmanager
The @contextmanager decorator reduces the boilerplate of creating a context manager:
instead of writing a whole class with __enter__/__exit__ methods, you just implement
a generator with a single yield that should produce whatever you want the __en
ter__ method to return.

In a generator decorated with @contextmanager, yield is used to split the body of the
function in two parts: everything before the yield will be executed at the beginning of
the while block when the interpreter calls __enter__; the code after yield will run
when __exit__ is called at the end of the block.

Here is an example. Example 15-5 replaces the LookingGlass class from Example 15-3
with a generator function.

Example 15-5. mirror_gen.py: a context manager implemented with a generator
import contextlib

@contextlib.contextmanager   
def looking_glass():
    import sys
    original_write = sys.stdout.write   

    def reverse_write(text):   
        original_write(text[::-1])

    sys.stdout.write = reverse_write   
    yield 'JABBERWOCKY'   
    sys.stdout.write = original_write   

Apply the contextmanager decorator.
Preserve original sys.stdout.write method.
Define custom reverse_write function; original_write will be available in the
closure.
Replace sys.stdout.write with reverse_write.
Yield the value that will be bound to the target variable in the as clause of the
with statement. This function pauses at this point while the body of the with
executes.
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4. The actual class is named _GeneratorContextManager. If you want to see exactly how it works, read its
source code in Lib/contextlib.py in the Python 3.4 distribution.

When control exits the with block in any way, execution continues after the
yield; here the original sys.stdout.write is restored.

Example 15-6 shows the looking_glass function in operation.

Example 15-6. Test driving the looking_glass context manager function
    >>> from mirror_gen import looking_glass
    >>> with looking_glass() as what:   
    ...      print('Alice, Kitty and Snowdrop')
    ...      print(what)
    ...
    pordwonS dna yttiK ,ecilA
    YKCOWREBBAJ
    >>> what
    'JABBERWOCKY'

The only difference from Example 15-2 is the name of the context manager:
looking_glass instead of LookingGlass.

Essentially the contextlib.contextmanager decorator wraps the function in a class
that implements the __enter__ and __exit__ methods.4

The __enter__ method of that class:

1. Invokes the generator function and holds on to the generator object—let’s call it gen.
2. Calls next(gen) to make it run to the yield keyword.
3. Returns the value yielded by next(gen), so it can be bound to a target variable in

the with/as form.

When the with block terminates, the __exit__ method:

1. Checks an exception was passed as exc_type; if so, gen.throw(exception) is in‐
voked, causing the exception to be raised in the yield line inside the generator
function body.

2. Otherwise, next(gen) is called, resuming the execution of the generator function
body after the yield.

Example 15-5 has a serious flaw: if an exception is raised in the body of the with block,
the Python interpreter will catch it and raise it again in the yield expression inside
looking_glass. But there is no error handling there, so the looking_glass function
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5. The exception is sent into the generator using the throw method, covered in “Coroutine Termination and
Exception Handling” on page 471.

will abort without ever restoring the original sys.stdout.write method, leaving the
system in an invalid state.

Example 15-7 adds special handling of the ZeroDivisionError exception, making it
functionally equivalent to the class-based Example 15-3.

Example 15-7. mirror_gen_exc.py: generator-based context manager implementing ex‐
ception handling—same external behavior as Example 15-3
import contextlib

@contextlib.contextmanager
def looking_glass():
    import sys
    original_write = sys.stdout.write

    def reverse_write(text):
        original_write(text[::-1])

    sys.stdout.write = reverse_write
    msg = ''   
    try:
        yield 'JABBERWOCKY'
    except ZeroDivisionError:   
        msg = 'Please DO NOT divide by zero!'
    finally:
        sys.stdout.write = original_write   
        if msg:
            print(msg)   

Create a variable for a possible error message; this is the first change in relation
to Example 15-5.
Handle ZeroDivisionError by setting an error message.
Undo monkey-patching of sys.stdout.write.
Display error message, if it was set.

Recall that the __exit__ method tells the interpreter that it has handled the exception
by returning True; in that case, the interpreter suppresses the exception. On the other
hand, if __exit__ does not explicitly return a value, the interpreter gets the usual
None, and propagates the exception. With @contextmanager, the default behavior is
inverted: the __exit__ method provided by the decorator assumes any exception sent
into the generator is handled and should be suppressed.5 You must explicitly re-raise an
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6. This convention was adopted because when context managers were created, generators could not return
values, only yield. They now can, as explained in “Returning a Value from a Coroutine” on page 475. As you’ll
see, returning a value from a generator does involve an exception.

7. This tip is quoted literally from a comment by Leonardo Rochael, one of the tech reviewers for this book.
Nicely said, Leo!

exception in the decorated function if you don’t want @contextmanager to suppress it.
6

Having a try/finally (or a with block) around the yield is an
unavoidable price of using @contextmanager, because you never
know what the users of your context manager are going to do inside
their with block.7

An interesting real-life example of @contextmanager outside of the standard library is
Martijn Pieters’ in-place file rewriting context manager. Example 15-8 shows how it’s
used.

Example 15-8. A context manager for rewriting files in place
import csv

with inplace(csvfilename, 'r', newline='') as (infh, outfh):
    reader = csv.reader(infh)
    writer = csv.writer(outfh)

    for row in reader:
        row += ['new', 'columns']
        writer.writerow(row)

The inplace function is a context manager that gives you two handles—infh and outfh
in the example—to the same file, allowing your code to read and write to it at the same
time. It’s easier to use than the standard library’s fileinput.input function (which also
provides a context manager, by the way).

If you want to study Martijn’s inplace source code (listed in the post), find the yield
keyword: everything before it deals with setting up the context, which entails creating
a backup file, then opening and yielding references to the readable and writable file
handles that will be returned by the __enter__ call. The __exit__ processing after the
yield closes the file handles and restores the file from the backup if something went
wrong.

Note that the use of yield in a generator used with the @contextmanager decorator has
nothing to do with iteration. In the examples shown in this section, the generator func‐
tion is operating more like a coroutine: a procedure that runs up to a point, then sus‐
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pends to let the client code run until the client wants the coroutine to proceed with its
job. Chapter 16 is all about coroutines.

Chapter Summary
This chapter started easily enough with discussion of else blocks in for, while, and
try statements. Once you get used to the peculiar meaning of the else clause in these
statements, I believe else can clarify your intentions.

We then covered context managers and the meaning of the with statement, quickly
moving beyond its common use to automatically close opened files. We implemented
a custom context manager: the LookingGlass class with the __enter__/__exit__
methods, and saw how to handle exceptions in the __exit__ method. A key point that
Raymond Hettinger made in his PyCon US 2013 keynote is that with is not just for
resource management, but it’s a tool for factoring out common setup and teardown
code, or any pair of operations that need to be done before and after another procedure
(slide 21, What Makes Python Awesome?).

Finally, we reviewed functions in the contextlib standard library module. One of them,
the @contextmanager decorator, makes it possible to implement a context manager
using a simple generator with one yield—a leaner solution than coding a class with at
least two methods. We reimplemented the LookingGlass as a looking_glass generator
function, and discussed how to do exception handling when using @contextmanager.

The @contextmanager decorator is an elegant and practical tool that brings together
three distinctive Python features: a function decorator, a generator, and the with state‐
ment.

Further Reading
Chapter 8, “Compound Statements,” in The Python Language Reference says pretty much
everything there is to say about else clauses in if, for, while, and try statements.
Regarding Pythonic usage of try/except, with or without else, Raymond Hettinger
has a brilliant answer to the question “Is it a good practice to use try-except-else in
Python?” in StackOverflow. Alex Martelli’s Python in a Nutshell, 2E (O’Reilly), has a
chapter about exceptions with an excellent discussion of the EAFP style, crediting com‐
puting pioneer Grace Hopper for coining the phrase “It’s easier to ask forgiveness than
permission.”

The Python Standard Library, Chapter 4, “Built-in Types,” has a section devoted to
Context Manager Types. The __enter__/__exit__ special methods are also docu‐
mented in The Python Language Reference in “3.3.8. With Statement Context Manag‐
ers”. Context managers were introduced in PEP 343 — The “with” Statement. This PEP
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is not easy reading because it spends a lot of time covering corner cases and arguing
against alternative proposals. That’s the nature of PEPs.

Raymond Hettinger highlighted the with statement as a “winning language feature” in
his PyCon US 2013 keynote. He also showed some interesting applications of context
managers in his talk “Transforming Code into Beautiful, Idiomatic Python” at the same
conference.

Jeff Preshing’ blog post “The Python with Statement by Example” is interesting for the
examples using context managers with the pycairo graphics library.

Beazley and Jones devised context managers for very different purposes in their Python
Cookbook, 3E (O’Reilly). “Recipe 8.3. Making Objects Support the Context-
Management Protocol” implements a LazyConnection class whose instances are con‐
text managers that open and close network connections automatically in with blocks.
“Recipe 9.22. Defining Context Managers the Easy Way” introduces a context manager
for timing code, and another for making transactional changes to a list object: within
the with block, a working copy of the list instance is made, and all changes are applied
to that working copy. Only when the with block completes without an exception, the
working copy replaces the original list. Simple and ingenious.

Soapbox
Factoring Out the Bread

In his PyCon US 2013 keynote, “What Makes Python Awesome,” Raymond Hettinger
says when he first saw the with statement proposal he thought it was “a little bit arcane.”
Initially, I had a similar reaction. PEPs are often hard to read, and PEP 343 is typical in
that regard.

Then—Hettinger told us—he had an insight: subroutines are the most important in‐
vention in the history of computer languages. If you have sequences of operations like
A;B;C and P;B;Q, you can factor out B in a subroutine. It’s like factoring out the filling
in a sandwich: using tuna with different breads. But what if you want to factor out the
bread, to make sandwiches with wheat bread, using a different filling each time? That’s
what the with statement offers. It’s the complement of the subroutine. Hettinger went
on to say:

The with statement is a very big deal. I encourage you to go out and take this tip of the
iceberg and drill deeper. You can probably do profound things with the with statement.
The best uses of it have not been discovered yet. I expect that if you make good use of
it, it will be copied into other languages and all future languages will have it. You can
be part of discovering something almost as profound as the invention of the subroutine
itself.
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Hettinger admits he is overselling the with statement. Nevertheless, it is a very useful
feature. When he used the sandwich analogy to explain how with is the complement to
the subroutine, many possibilities opened up in my mind.

If you need to convince anyone that Python is awesome, you should watch Hettinger’s
keynote. The bit about context managers is from 23:00 to 26:15. But the entire keynote
is excellent.
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CHAPTER 16

Coroutines

If Python books are any guide, [coroutines are] the most poorly documented, obscure,
and apparently useless feature of Python.

— David Beazley
 Python author

We find two main senses for the verb “to yield” in dictionaries: to produce or to give
way. Both senses apply in Python when we use the yield keyword in a generator. A line
such as yield item produces a value that is received by the caller of next(…), and it
also gives way, suspending the execution of the generator so that the caller may proceed
until it’s ready to consume another value by invoking next() again. The caller pulls
values from the generator.

A coroutine is syntactically like a generator: just a function with the yield keyword in
its body. However, in a coroutine, yield usually appears on the right side of an expres‐
sion (e.g., datum = yield), and it may or may not produce a value—if there is no
expression after the yield keyword, the generator yields None. The coroutine may re‐
ceive data from the caller, which uses .send(datum) instead of next(…) to feed the
coroutine. Usually, the caller pushes values into the coroutine.

It is even possible that no data goes in or out through the yield keyword. Regardless of
the flow of data, yield is a control flow device that can be used to implement cooperative
multitasking: each coroutine yields control to a central scheduler so that other corou‐
tines can be activated.

When you start thinking of yield primarily in terms of control flow, you have the
mindset to understand coroutines.

Python coroutines are the product of a series of enhancements to the humble generator
functions we’ve seen so far in the book. Following the evolution of coroutines in Python
helps understand their features in stages of increasing functionality and complexity.
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After a brief overview of how generators were enable to act as a coroutine, we jump to
the core of the chapter. Then we’ll see:

• The behavior and states of a generator operating as a coroutine
• Priming a coroutine automatically with a decorator
• How the caller can control a coroutine through the .close() and .throw(…)

methods of the generator object
• How coroutines can return values upon termination
• Usage and semantics of the new yield from syntax
• A use case: coroutines for managing concurrent activities in a simulation

How Coroutines Evolved from Generators
The infrastructure for coroutines appeared in PEP 342 — Coroutines via Enhanced
Generators, implemented in Python 2.5 (2006): since then, the yield keyword can be
used in an expression, and the .send(value) method was added to the generator API.
Using .send(…), the caller of the generator can post data that then becomes the value
of the yield expression inside the generator function. This allows a generator to be used
as a coroutine: a procedure that collaborates with the caller, yielding and receiving values
from the caller.

In addition to .send(…), PEP 342 also added .throw(…) and .close() methods that
respectively allow the caller to throw an exception to be handled inside the generator,
and to terminate it. These features are covered in the next section and in “Coroutine
Termination and Exception Handling” on page 471.

The latest evolutionary step for coroutines came with PEP 380 - Syntax for Delegating
to a Subgenerator, implemented in Python 3.3 (2012). PEP 380 made two syntax changes
to generator functions, to make them more useful as coroutines:

• A generator can now return a value; previously, providing a value to the return
statement inside a generator raised a SyntaxError.

• The yield from syntax enables complex generators to be refactored into smaller,
nested generators while avoiding a lot of boilerplate code previously required for a
generator to delegate to subgenerators.

These latest changes will be addressed in “Returning a Value from a Coroutine” on page
475 and “Using yield from” on page 477.

Let’s follow the established tradition of Fluent Python and start with some very basic
facts and examples, then move into increasingly mind-bending features.
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1. You’ll only see this state in a multithreaded application—or if the generator object calls getgenerator
state on itself, which is not useful.

Basic Behavior of a Generator Used as a Coroutine
Example 16-1 illustrates the behavior of a coroutine.

Example 16-1. Simplest possible demonstration of coroutine in action
>>> def simple_coroutine():  # 
...     print('-> coroutine started')
...     x = yield  # 
...     print('-> coroutine received:', x)
...
>>> my_coro = simple_coroutine()
>>> my_coro  # 
<generator object simple_coroutine at 0x100c2be10>
>>> next(my_coro)  # 
-> coroutine started
>>> my_coro.send(42)  # 
-> coroutine received: 42
Traceback (most recent call last):  # 
  ...
StopIteration

A coroutine is defined as a generator function: with yield in its body.
yield is used in an expression; when the coroutine is designed just to receive
data from the client it yields None—this is implicit because there is no expression
to the right of the yield keyword.
As usual with generators, you call the function to get a generator object back.
The first call is next(…) because the generator hasn’t started so it’s not waiting
in a yield and we can’t send it any data initially.
This call makes the yield in the coroutine body evaluate to 42; now the coroutine
resumes and runs until the next yield or termination.
In this case, control flows off the end of the coroutine body, which prompts the
generator machinery to raise StopIteration, as usual.

A coroutine can be in one of four states. You can determine the current state using the
inspect.getgeneratorstate(…) function, which returns one of these strings:
'GEN_CREATED'

Waiting to start execution.

'GEN_RUNNING'

Currently being executed by the interpreter.1
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'GEN_SUSPENDED'

Currently suspended at a yield expression.

'GEN_CLOSED'

Execution has completed.

Because the argument to the send method will become the value of the pending yield
expression, it follows that you can only make a call like my_coro.send(42) if the coro‐
utine is currently suspended. But that’s not the case if the coroutine has never been
activated—when its state is 'GEN_CREATED'. That’s why the first activation of a coroutine
is always done with next(my_coro)—you can also call my_coro.send(None), and the
effect is the same.

If you create a coroutine object and immediately try to send it a value that is not None,
this is what happens:

>>> my_coro = simple_coroutine()
>>> my_coro.send(1729)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: can't send non-None value to a just-started generator

Note the error message: it’s quite clear.

The initial call next(my_coro) is often described as “priming” the coroutine (i.e., ad‐
vancing it to the first yield to make it ready for use as a live coroutine).

To get a better feel for the behavior of a coroutine, an example that yields more than
once is useful. See Example 16-2.

Example 16-2. A coroutine that yields twice
>>> def simple_coro2(a):
...     print('-> Started: a =', a)
...     b = yield a
...     print('-> Received: b =', b)
...     c = yield a + b
...     print('-> Received: c =', c)
...
>>> my_coro2 = simple_coro2(14)
>>> from inspect import getgeneratorstate
>>> getgeneratorstate(my_coro2)  
'GEN_CREATED'
>>> next(my_coro2)  
-> Started: a = 14
14
>>> getgeneratorstate(my_coro2)  
'GEN_SUSPENDED'
>>> my_coro2.send(28)  
-> Received: b = 28
42
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>>> my_coro2.send(99)  
-> Received: c = 99
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration
>>> getgeneratorstate(my_coro2)  
'GEN_CLOSED'

inspect.getgeneratorstate reports GEN_CREATED (i.e., the coroutine has not
started).
Advance coroutine to first yield, printing -> Started: a = 14 message then
yielding value of a and suspending to wait for value to be assigned to b.
getgeneratorstate reports GEN_SUSPENDED (i.e., the coroutine is paused at a
yield expression).
Send number 28 to suspended coroutine; the yield expression evaluates to 28
and that number is bound to b. The -> Received: b = 28 message is displayed,
the value of a + b is yielded (42), and the coroutine is suspended waiting for
the value to be assigned to c.
Send number 99 to suspended coroutine; the yield expression evaluates to 99
the number is bound to c. The -> Received: c = 99 message is displayed, then
the coroutine terminates, causing the generator object to raise StopIteration.
getgeneratorstate reports GEN_CLOSED (i.e., the coroutine execution has
completed).

It’s crucial to understand that the execution of the coroutine is suspended exactly at the
yield keyword. As mentioned before, in an assignment statement, the code to the right
of the = is evaluated before the actual assignment happens. This means that in a line like
b = yield a, the value of b will only be set when the coroutine is activated later by the
client code. It takes some effort to get used to this fact, but understanding it is essential
to make sense of the use of yield in asynchronous programming, as we’ll see later.

Execution of the simple_coro2 coroutine can be split in three phases, as shown in
Figure 16-1:

1. next(my_coro2) prints first message and runs to yield a, yielding number 14.
2. my_coro2.send(28) assigns 28 to b, prints second message, and runs to yield a +

b, yielding number 42.
3. my_coro2.send(99) assigns 99 to c, prints third message, and the coroutine ter‐

minates.
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2. This example is inspired by a snippet from Jacob Holm in the Python-ideas list, message titled “Yield-From:
Finalization guarantees.” Some variations appear later in the thread, and Holm further explains his thinking
in message 003912.

Figure 16-1. Three phases in the execution of the simple_coro2 coroutine (note that
each phase ends in a yield expression, and the next phase starts in the very same line,
when the value of the yield expression is assigned to a variable)

Now let’s consider a slightly more involved coroutine example.

Example: Coroutine to Compute a Running Average
While discussing closures in Chapter 7, we studied objects to compute a running aver‐
age: Example 7-8 shows a plain class and Example 7-14 presents a higher-order function
producing a closure to keep the total and count variables across invocations.
Example 16-3 shows how to do the same with a coroutine.2

Example 16-3. coroaverager0.py: code for a running average coroutine
def averager():
    total = 0.0
    count = 0
    average = None
    while True:   
        term = yield average   
        total += term
        count += 1
        average = total/count

This infinite loop means this coroutine will keep on accepting values and
producing results as long as the caller sends them. This coroutine will only
terminate when the caller calls .close() on it, or when it’s garbage collected
because there are no more references to it.
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The yield statement here is used to suspend the coroutine, produce a result to
the caller, and—later—to get a value sent by the caller to the coroutine, which
resumes its infinite loop.

The advantage of using a coroutine is that total and count can be simple local variables:
no instance attributes or closures are needed to keep the context between calls.
Example 16-4 are doctests to show the averager coroutine in operation.

Example 16-4. coroaverager0.py: doctest for the running average coroutine in
Example 16-3
    >>> coro_avg = averager()   
    >>> next(coro_avg)   
    >>> coro_avg.send(10)   
    10.0
    >>> coro_avg.send(30)
    20.0
    >>> coro_avg.send(5)
    15.0

Create the coroutine object.
Prime it by calling next.
Now we are in business: each call to .send(…) yields the current average.

In the doctest (Example 16-4), the call next(coro_avg) makes the coroutine advance
to the yield, yielding the initial value for average, which is None, so it does not appear
on the console. At this point, the coroutine is suspended at the yield, waiting for a value
to be sent. The line coro_avg.send(10) provides that value, causing the coroutine to
activate, assigning it to term, updating the total, count, and average variables, and
then starting another iteration in the while loop, which yields the average and waits
for another term.

The attentive reader may be anxious to know how the execution of an averager instance
(e.g., coro_avg) may be terminated, because its body is an infinite loop. We’ll cover that
in “Coroutine Termination and Exception Handling” on page 471.

But before discussing coroutine termination, let’s talk about getting them started. Pri‐
ming a coroutine before use is a necessary but easy-to-forget chore. To avoid it, a special
decorator can be applied to the coroutine. One such decorator is presented next.

Decorators for Coroutine Priming
You can’t do much with a coroutine without priming it: we must always remember to
call next(my_coro) before my_coro.send(x). To make coroutine usage more conve‐
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3. There are several similar decorators published on the Web. This one is adapted from the ActiveState recipe
Pipeline made of coroutines by Chaobin Tang, who in turn credits David Beazley.

nient, a priming decorator is sometimes used. The coroutine decorator in Example 16-5
is an example.3

Example 16-5. coroutil.py: decorator for priming coroutine
from functools import wraps

def coroutine(func):
    """Decorator: primes `func` by advancing to first `yield`"""
    @wraps(func)
    def primer(*args,**kwargs):   
        gen = func(*args,**kwargs)   
        next(gen)   
        return gen   
    return primer

The decorated generator function is replaced by this primer function which,
when invoked, returns the primed generator.
Call the decorated function to get a generator object.
Prime the generator.
Return it.

Example 16-6 shows the @coroutine decorator in use. Contrast with Example 16-3.

Example 16-6. coroaverager1.py: doctest and code for a running average coroutine us‐
ing the @coroutine decorator from Example 16-5
"""
A coroutine to compute a running average

    >>> coro_avg = averager()   
    >>> from inspect import getgeneratorstate
    >>> getgeneratorstate(coro_avg)   
    'GEN_SUSPENDED'
    >>> coro_avg.send(10)   
    10.0
    >>> coro_avg.send(30)
    20.0
    >>> coro_avg.send(5)
    15.0

"""

from coroutil import coroutine   

@coroutine   
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def averager():   
    total = 0.0
    count = 0
    average = None
    while True:
        term = yield average
        total += term
        count += 1
        average = total/count

Call averager(), creating a generator object that is primed inside the primer
function of the coroutine decorator.
getgeneratorstate reports GEN_SUSPENDED, meaning that the coroutine is
ready to receive a value.
You can immediately start sending values to coro_avg: that’s the point of the
decorator.
Import the coroutine decorator.
Apply it to the averager function.
The body of the function is exactly the same as Example 16-3.

Several frameworks provide special decorators designed to work with coroutines. Not
all of them actually prime the coroutine—some provide other services, such as hooking
it to an event loop. One example from the Tornado asynchronous networking library
is the tornado.gen decorator.

The yield from syntax we’ll see in “Using yield from” on page 477 automatically primes
the coroutine called by it, making it incompatible with decorators such as @coroutine
from Example 16-5. The asyncio.coroutine decorator from the Python 3.4 standard
library is designed to work with yield from so it does not prime the coroutine. We’ll
cover it in Chapter 18.

We’ll now focus on essential features of coroutines: the methods used to terminate and
throw exceptions into them.

Coroutine Termination and Exception Handling
An unhandled exception within a coroutine propagates to the caller of the next or send
that triggered it. Example 16-7 is an example using the decorated averager coroutine
from Example 16-6.

Example 16-7. How an unhandled exception kills a coroutine
>>> from coroaverager1 import averager
>>> coro_avg = averager()
>>> coro_avg.send(40)  # 

Coroutine Termination and Exception Handling | 471

http://bit.ly/1MMcGBF


40.0
>>> coro_avg.send(50)
45.0
>>> coro_avg.send('spam')  # 
Traceback (most recent call last):
  ...
TypeError: unsupported operand type(s) for +=: 'float' and 'str'
>>> coro_avg.send(60)  # 
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

Using the @coroutine decorated averager we can immediately start sending
values.
Sending a nonnumeric value causes an exception inside the coroutine.
Because the exception was not handled in the coroutine, it terminated. Any
attempt to reactivate it will raise StopIteration.

The cause of the error was the sending of a value 'spam' that could not be added to the
total variable in the coroutine.

Example 16-7 suggests one way of terminating coroutines: you can use send with some
sentinel value that tells the coroutine to exit. Constant built-in singletons like None and
Ellipsis are convenient sentinel values. Ellipsis has the advantage of being quite
unusual in data streams. Another sentinel value I’ve seen used is StopIteration—the
class itself, not an instance of it (and not raising it). In other words, using it like: my_co
ro.send(StopIteration).

Since Python 2.5, generator objects have two methods that allow the client to explicitly
send exceptions into the coroutine—throw and close:
generator.throw(exc_type[, exc_value[, traceback]])

Causes the yield expression where the generator was paused to raise the exception
given. If the exception is handled by the generator, flow advances to the next
yield, and the value yielded becomes the value of the generator.throw call. If the
exception is not handled by the generator, it propagates to the context of the caller.

generator.close()

Causes the yield expression where the generator was paused to raise a Generator
Exit exception. No error is reported to the caller if the generator does not handle
that exception or raises StopIteration—usually by running to completion. When
receiving a GeneratorExit, the generator must not yield a value, otherwise a Run
timeError is raised. If any other exception is raised by the generator, it propagates
to the caller.
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The official documentation of the generator object methods is
buried deep in The Python Language Reference, (see 6.2.9.1.
Generator-iterator methods).

Let’s see how close and throw control a coroutine. Example 16-8 lists the demo_exc_han
dling function used in the following examples.

Example 16-8. coro_exc_demo.py: test code for studying exception handling in a corou‐
tine
class DemoException(Exception):
    """An exception type for the demonstration."""

def demo_exc_handling():
    print('-> coroutine started')
    while True:
        try:
            x = yield
        except DemoException:   
            print('*** DemoException handled. Continuing...')
        else:   
            print('-> coroutine received: {!r}'.format(x))
    raise RuntimeError('This line should never run.')   

Special handling for DemoException.
If no exception, display received value.
This line will never be executed.

The last line in Example 16-8 is unreachable because the infinite loop can only be aborted
with an unhandled exception, and that terminates the coroutine immediately.

Normal operation of demo_exc_handling is shown in Example 16-9.

Example 16-9. Activating and closing demo_exc_handling without an exception
    >>> exc_coro = demo_exc_handling()
    >>> next(exc_coro)
    -> coroutine started
    >>> exc_coro.send(11)
    -> coroutine received: 11
    >>> exc_coro.send(22)
    -> coroutine received: 22
    >>> exc_coro.close()
    >>> from inspect import getgeneratorstate
    >>> getgeneratorstate(exc_coro)
    'GEN_CLOSED'
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If the DemoException is thrown into the coroutine, it’s handled and the demo_exc_han
dling coroutine continues, as in Example 16-10.

Example 16-10. Throwing DemoException into demo_exc_handling does not break it
    >>> exc_coro = demo_exc_handling()
    >>> next(exc_coro)
    -> coroutine started
    >>> exc_coro.send(11)
    -> coroutine received: 11
    >>> exc_coro.throw(DemoException)
    *** DemoException handled. Continuing...
    >>> getgeneratorstate(exc_coro)
    'GEN_SUSPENDED'

On the other hand, if an unhandled exception is thrown into the coroutine, it stops—
its state becomes 'GEN_CLOSED'. Example 16-11 demonstrates it.

Example 16-11. Coroutine terminates if it can’t handle an exception thrown into it
    >>> exc_coro = demo_exc_handling()
    >>> next(exc_coro)
    -> coroutine started
    >>> exc_coro.send(11)
    -> coroutine received: 11
    >>> exc_coro.throw(ZeroDivisionError)
    Traceback (most recent call last):
      ...
    ZeroDivisionError
    >>> getgeneratorstate(exc_coro)
    'GEN_CLOSED'

If it’s necessary that some cleanup code is run no matter how the coroutine ends, you
need to wrap the relevant part of the coroutine body in a try/finally block, as in
Example 16-12.

Example 16-12. coro_finally_demo.py: use of try/finally to perform actions on corou‐
tine termination
class DemoException(Exception):
    """An exception type for the demonstration."""

def demo_finally():
    print('-> coroutine started')
    try:
        while True:
            try:
                x = yield
            except DemoException:
                print('*** DemoException handled. Continuing...')
            else:
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                print('-> coroutine received: {!r}'.format(x))
    finally:
        print('-> coroutine ending')

One of the main reasons why the yield from construct was added to Python 3.3 has to
do with throwing exceptions into nested coroutines. The other reason was to enable
coroutines to return values more conveniently. Read on to see how.

Returning a Value from a Coroutine
Example 16-13 shows a variation of the averager coroutine that returns a result. For
didactic reasons, it does not yield the running average with each activation. This is to
emphasize that some coroutines do not yield anything interesting, but are designed to
return a value at the end, often the result of some accumulation.

The result returned by averager in Example 16-13 is a namedtuple with the number of
terms averaged (count) and the average. I could have returned just the average value,
but returning a tuple exposes another interesting piece of data that was accumulated:
the count of terms.

Example 16-13. coroaverager2.py: code for an averager coroutine that returns a result
from collections import namedtuple

Result = namedtuple('Result', 'count average')

def averager():
    total = 0.0
    count = 0
    average = None
    while True:
        term = yield
        if term is None:
            break   
        total += term
        count += 1
        average = total/count
    return Result(count, average)   

In order to return a value, a coroutine must terminate normally; this is why this
version of averager has a condition to break out of its accumulating loop.
Return a namedtuple with the count and average. Before Python 3.3, it was a
syntax error to return a value in a generator function.

To see how this new averager works, we can drive it from the console, as in
Example 16-14.
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Example 16-14. coroaverager2.py: doctest showing the behavior of averager
    >>> coro_avg = averager()
    >>> next(coro_avg)
    >>> coro_avg.send(10)   
    >>> coro_avg.send(30)
    >>> coro_avg.send(6.5)
    >>> coro_avg.send(None)   
    Traceback (most recent call last):
       ...
    StopIteration: Result(count=3, average=15.5)

This version does not yield values.
Sending None terminates the loop, causing the coroutine to end by returning the
result. As usual, the generator object raises StopIteration. The value attribute
of the exception carries the value returned.

Note that the value of the return expression is smuggled to the caller as an attribute of
the StopIteration exception. This is a bit of a hack, but it preserves the existing be‐
havior of generator objects: raising StopIteration when exhausted.

Example 16-15 shows how to retrieve the value returned by the coroutine.

Example 16-15. Catching StopIteration lets us get the value returned by averager
    >>> coro_avg = averager()
    >>> next(coro_avg)
    >>> coro_avg.send(10)
    >>> coro_avg.send(30)
    >>> coro_avg.send(6.5)
    >>> try:
    ...     coro_avg.send(None)
    ... except StopIteration as exc:
    ...     result = exc.value
    ...
    >>> result
    Result(count=3, average=15.5)

This roundabout way of getting the return value from a coroutine makes more sense
when we realize it was defined as part of PEP 380, and the yield from construct handles
it automatically by catching StopIteration internally. This is analogous to the use of
StopIteration in for loops: the exception is handled by the loop machinery in a way
that is transparent to the user. In the case of yield from, the interpreter not only con‐
sumes the StopIteration, but its value attribute becomes the value of the yield
from expression itself. Unfortunately we can’t test this interactively in the console, be‐
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4. There is an iPython extension called ipython-yf that enables evaluating yield from directly in the iPython
console. It’s used to test asynchronous code and works with asyncio. It was submitted as a patch to Python
3.5 but was not accepted. See Issue #22412: Towards an asyncio-enabled command line in the Python bug
tracker.

5. As I write this, there is an open PEP proposing the addition of await and async keywords: PEP 492 —
Coroutines with async and await syntax.

cause it’s a syntax error to use yield from—or yield, for that matter—outside of a
function.4

The next section has an example where the averager coroutine is used with yield
from to produce a result, as intended in PEP 380. So let’s tackle yield from.

Using yield from
The first thing to know about yield from is that it is a completely new language con‐
struct. It does so much more than yield that the reuse of that keyword is arguably
misleading. Similar constructs in other languages are called await, and that is a much
better name because it conveys a crucial point: when a generator gen calls yield from
subgen(), the subgen takes over and will yield values to the caller of gen; the caller will
in effect drive subgen directly. Meanwhile gen will be blocked, waiting until subgen
terminates.5

We’ve seen in Chapter 14 that yield from can be used as a shortcut to yield in a for
loop. For example, this:

>>> def gen():
...     for c in 'AB':
...         yield c
...     for i in range(1, 3):
...         yield i
...
>>> list(gen())
['A', 'B', 1, 2]

Can be written as:

>>> def gen():
...     yield from 'AB'
...     yield from range(1, 3)
...
>>> list(gen())
['A', 'B', 1, 2]
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6. Example 16-16 is a didactic example only. The itertools module already provides an optimized chain function
written in C.

When we first mentioned yield from in “New Syntax in Python 3.3: yield from” on
page 433, the code from Example 16-16 demonstrates a practical use for it.6

Example 16-16. Chaining iterables with yield from
>>> def chain(*iterables):
...     for it in iterables:
...         yield from it
...
>>> s = 'ABC'
>>> t = tuple(range(3))
>>> list(chain(s, t))
['A', 'B', 'C', 0, 1, 2]

A slightly more complicated—but more useful—example of yield from is in “Recipe
4.14. Flattening a Nested Sequence” in Beazley and Jones’s Python Cookbook, 3E (source
code available on GitHub).

The first thing the yield from x expression does with the x object is to call iter(x) to
obtain an iterator from it. This means that x can be any iterable.

However, if replacing nested for loops yielding values was the only contribution of
yield from, this language addition wouldn’t have had a good chance of being accepted.
The real nature of yield from cannot be demonstrated with simple iterables; it requires
the mind-expanding use of nested generators. That’s why PEP 380, which introduced
yield from, is titled “Syntax for Delegating to a Subgenerator.”

The main feature of yield from is to open a bidirectional channel from the outermost
caller to the innermost subgenerator, so that values can be sent and yielded back and
forth directly from them, and exceptions can be thrown all the way in without adding
a lot of exception handling boilerplate code in the intermediate coroutines. This is what
enables coroutine delegation in a way that was not possible before.

The use of yield from requires a nontrivial arrangement of code. To talk about the
required moving parts, PEP 380 uses some terms in a very specific way:
delegating generator

The generator function that contains the yield from <iterable> expression.

subgenerator
The generator obtained from the <iterable> part of the yield from expression.
This is the “subgenerator” mentioned in the title of PEP 380: “Syntax for Delegating
to a Subgenerator.”
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7. The picture in Figure 16-2 was inspired by a diagram by Paul Sokolovsky.

caller
PEP 380 uses the term “caller” to refer to the client code that calls the delegating
generator. Depending on context, I use “client” instead of “caller,” to distinguish
from the delegating generator, which is also a “caller” (it calls the subgenerator).

PEP 380 often uses the word “iterator” to refer to the subgenera‐
tor. That’s confusing because the delegating generator is also an
iterator. So I prefer to use the term subgenerator, in line with the
title of the PEP—“Syntax for Delegating to a Subgenerator.” How‐
ever, the subgenerator can be a simple iterator implementing on‐
ly __next__, and yield from can handle that too, although it was
created to support generators implementing __next__, send,
close, and throw.

Example 16-17 provides more context to see yield from at work, and Figure 16-2
identifies the relevant parts of the example.7

Figure 16-2. While the delegating generator is suspended at yield from, the caller sends
data directly to the subgenerator, which yields data back to the caller. The delegating
generator resumes when the subgenerator returns and the interpreter raises StopItera‐
tion with the returned value attached.

The coroaverager3.py script reads a dict with weights and heights from girls and boys
in an imaginary seventh grade class. For example, the key 'boys;m' maps to the heights
of 9 boys, in meters; 'girls;kg' are the weights of 10 girls in kilograms. The script
feeds the data for each group into the averager coroutine we’ve seen before, and pro‐
duces a report like this one:

$ python3 coroaverager3.py
 9 boys  averaging 40.42kg
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 9 boys  averaging 1.39m
10 girls averaging 42.04kg
10 girls averaging 1.43m

The code in Example 16-17 is certainly not the most straightforward solution to the
problem, but it serves to show yield from in action. This example is inspired by the
one given in What’s New in Python 3.3.

Example 16-17. coroaverager3.py: using yield from to drive averager and report
statistics
from collections import namedtuple

Result = namedtuple('Result', 'count average')

# the subgenerator
def averager():   
    total = 0.0
    count = 0
    average = None
    while True:
        term = yield   
        if term is None:   
            break
        total += term
        count += 1
        average = total/count
    return Result(count, average)   

# the delegating generator
def grouper(results, key):   
    while True:   
        results[key] = yield from averager()   

# the client code, a.k.a. the caller
def main(data):   
    results = {}
    for key, values in data.items():
        group = grouper(results, key)   
        next(group)   
        for value in values:
            group.send(value)   
        group.send(None)  # important! 

    # print(results)  # uncomment to debug
    report(results)

# output report
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def report(results):
    for key, result in sorted(results.items()):
        group, unit = key.split(';')
        print('{:2} {:5} averaging {:.2f}{}'.format(
              result.count, group, result.average, unit))

data = {
    'girls;kg':
        [40.9, 38.5, 44.3, 42.2, 45.2, 41.7, 44.5, 38.0, 40.6, 44.5],
    'girls;m':
        [1.6, 1.51, 1.4, 1.3, 1.41, 1.39, 1.33, 1.46, 1.45, 1.43],
    'boys;kg':
        [39.0, 40.8, 43.2, 40.8, 43.1, 38.6, 41.4, 40.6, 36.3],
    'boys;m':
        [1.38, 1.5, 1.32, 1.25, 1.37, 1.48, 1.25, 1.49, 1.46],
}

if __name__ == '__main__':
    main(data)

Same averager coroutine from Example 16-13. Here it is the subgenerator.
Each value sent by the client code in main will be bound to term here.
The crucial terminating condition. Without it, a yield from calling this
coroutine will block forever.
The returned Result will be the value of the yield from expression in grouper.
grouper is the delegating generator.
Each iteration in this loop creates a new instance of averager; each is a generator
object operating as a coroutine.
Whenever grouper is sent a value, it’s piped into the averager instance by the
yield from. grouper will be suspended here as long as the averager instance
is consuming values sent by the client. When an averager instance runs to the
end, the value it returns is bound to results[key]. The while loop then
proceeds to create another averager instance to consume more values.
main is the client code, or “caller” in PEP 380 parlance. This is the function that
drives everything.
group is a generator object resulting from calling grouper with the results dict
to collect the results, and a particular key. It will operate as a coroutine.
Prime the coroutine.
Send each value into the grouper. That value ends up in the term = yield line
of averager; grouper never has a chance to see it.
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Sending None into grouper causes the current averager instance to terminate,
and allows grouper to run again, which creates another averager for the next
group of values.

The last callout in Example 16-17 with the comment "important!" highlights a crucial
line of code: group.send(None), which terminates one averager and starts the next. If
you comment out that line, the script produces no output. Uncommenting the print(re
sults) line near the end of main reveals that the results dict ends up empty.

If you want to figure out for yourself why no results are collec‐
ted, it will be a great way to exercise your understanding of how
yield from works. The code for coroaverager3.py is in the Flu‐
ent Python code repository. The explanation is next.

Here is an overview of how Example 16-17 works, explaining what would happen if we
omitted the call group.send(None) marked “important!” in main:

• Each iteration of the outer for loop creates a new grouper instance named group;
this is the delegating generator.

• The call next(group) primes the grouper delegating generator, which enters its
while True loop and suspends at the yield from, after calling the subgenerator
averager.

• The inner for loop calls group.send(value); this feeds the subgenerator averag
er directly. Meanwhile, the current group instance of grouper is suspended at the
yield from.

• When the inner for loop ends, the group instance is still suspended at the yield
from, so the assignment to results[key] in the body of grouper has not happened
yet.

• Without the last group.send(None) in the outer for loop, the averager subgen‐
erator never terminates, the delegating generator group is never reactivated, and
the assignment to results[key] never happens.

• When execution loops back to the top of the outer for loop, a new grouper instance
is created and bound to group. The previous grouper instance is garbage collected
(together with its own unfinished averager subgenerator instance).
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8. Message to Python-Dev: “PEP 380 (yield from a subgenerator) comments” (March 21, 2009).

The key takeaway from this experiment is: if a subgenerator nev‐
er terminates, the delegating generator will be suspended forever
at the yield from. This will not prevent your program from mak‐
ing progress because the yield from (like the simple yield) trans‐
fers control to the client code (i.e., the caller of the delegating
generator). But it does mean that some task will be left unfinished.

Example 16-17 demonstrates the simplest arrangement of yield from, with only one
delegating generator and one subgenerator. Because the delegating generator works as
a pipe, you can connect any number of them in a pipeline: one delegating generator uses
yield from to call a subgenerator, which itself is a delegating generator calling another
subgenerator with yield from, and so on. Eventually this chain must end in a simple
generator that uses just yield, but it may also end in any iterable object, as in
Example 16-16.

Every yield from chain must be driven by a client that calls next(…) or .send(…) on
the outermost delegating generator. This call may be implicit, such as a for loop.

Now let’s review the formal description of the yield from construct, as presented in
PEP 380.

The Meaning of yield from
While developing PEP 380, Greg Ewing—the author—was questioned about the com‐
plexity of the proposed semantics. One of his answers was “For humans, almost all the
important information is contained in one paragraph near the top.” He then quoted part
of the draft of PEP 380 which at the time read as follows:

“When the iterator is another generator, the effect is the same as if the body of the sub‐
generator were inlined at the point of the yield from expression. Furthermore, the
subgenerator is allowed to execute a return statement with a value, and that value be‐
comes the value of the yield from expression.”8

Those soothing words are no longer part of the PEP—because they don’t cover all the
corner cases. But they are OK as a first approximation.

The approved version of PEP 380 explains the behavior of yield from in six points in
the Proposal section. I reproduce them almost exactly here, except that I replaced every
occurrence of the ambiguous word “iterator” with “subgenerator” and added a few
clarifications. Example 16-17 illustrates these four points:
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• Any values that the subgenerator yields are passed directly to the caller of the del‐
egating generator (i.e., the client code).

• Any values sent to the delegating generator using send() are passed directly to the
subgenerator. If the sent value is None, the subgenerator’s __next__() method is
called. If the sent value is not None, the subgenerator’s send() method is called. If
the call raises StopIteration, the delegating generator is resumed. Any other ex‐
ception is propagated to the delegating generator.

• return expr in a generator (or subgenerator) causes StopIteration(expr) to be
raised upon exit from the generator.

• The value of the yield from expression is the first argument to the StopItera
tion exception raised by the subgenerator when it terminates.

The other two features of yield from have to do with exceptions and termination:

• Exceptions other than GeneratorExit thrown into the delegating generator are
passed to the throw() method of the subgenerator. If the call raises StopItera
tion, the delegating generator is resumed. Any other exception is propagated to
the delegating generator.

• If a GeneratorExit exception is thrown into the delegating generator, or the
close() method of the delegating generator is called, then the close() method of
the subgenerator is called if it has one. If this call results in an exception, it is
propagated to the delegating generator. Otherwise, GeneratorExit is raised in the
delegating generator.

The detailed semantics of yield from are subtle, especially the points dealing with
exceptions. Greg Ewing did a great job putting them to words in English in PEP 380.

Ewing also documented the behavior of yield from using pseudocode (with Python
syntax). I personally found it useful to spend some time studying the pseudocode in
PEP 380. However, the pseudocode is 40 lines long and not so easy to grasp at first.

A good way to approach that pseudocode is to simplify it to handle only the most basic
and common use case of yield from.

Consider that yield from appears in a delegating generator. The client code drives
delegating generator, which drives the subgenerator. So, to simplify the logic involved,
let’s pretend the client doesn’t ever call .throw(…) or .close() on the delegating gen‐
erator. Let’s also pretend the subgenerator never raises an exception until it terminates,
when StopIteration is raised by the interpreter.
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Example 16-17 is a script where those simplifying assumptions hold. In fact, in much
real-life code, the delegating generator is expected to run to completion. So let’s see how
yield from works in this happier, simpler world.

Take a look at Example 16-18, which is an expansion of this single statement, in the
body of the delegating generator:

RESULT = yield from EXPR

Try to follow the logic in Example 16-18.

Example 16-18. Simplified pseudocode equivalent to the statement RESULT = yield
from EXPR in the delegating generator (this covers the simplest case: .throw(…)
and .close() are not supported; the only exception handled is StopIteration)
_i = iter(EXPR)   
try:
    _y = next(_i)   
except StopIteration as _e:
    _r = _e.value   
else:
    while 1:   
        _s = yield _y   
        try:
            _y = _i.send(_s)   
        except StopIteration as _e:   
            _r = _e.value
            break

RESULT = _r   

The EXPR can be any iterable, because iter() is applied to get an iterator _i (this
is the subgenerator).
The subgenerator is primed; the result is stored to be the first yielded value _y.
If StopIteration was raised, extract the value attribute from the exception and
assign it to _r: this is the RESULT in the simplest case.
While this loop is running, the delegating generator is blocked, operating just
as a channel between the caller and the subgenerator.
Yield the current item yielded from the subgenerator; wait for a value _s sent by
the caller. Note that this is the only yield in this listing.
Try to advance the subgenerator, forwarding the _s sent by the caller.
If the subgenerator raised StopIteration, get the value, assign to _r, and exit
the loop, resuming the delegating generator.
_r is the RESULT: the value of the whole yield from expression.
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In this simplified pseudocode, I preserved the variable names used in the pseudocode
published in PEP 380. The variables are:
_i (iterator)

The subgenerator

_y (yielded)
A value yielded from the subgenerator

_r (result)
The eventual result (i.e., the value of the yield from expression when the subgen‐
erator ends)

_s (sent)
A value sent by the caller to the delegating generator, which is forwarded to the
subgenerator

_e (exception)
An exception (always an instance of StopIteration in this simplified pseudocode)

Besides not handling .throw(…) and .close(), the simplified pseudocode always
uses .send(…) to forward next() or .send(…) calls by the client to the subgenerator.
Don’t worry about these fine distinctions on a first reading. As mentioned,
Example 16-17 would run perfectly well if the yield from did only what is shown in
the simplified pseudocode in Example 16-18.

But the reality is more complicated, because of the need to handle .throw(…)
and .close() calls from the client, which must be passed into the subgenerator. Also,
the subgenerator may be a plain iterator that does not support .throw(…) or .close(),
so this must be handled by the yield from logic. If the subgenerator does implement
those methods, inside the subgenerator both methods cause exceptions to be raised,
which must be handled by the yield from machinery as well. The subgenerator may
also throw exceptions of its own, unprovoked by the caller, and this must also be dealt
with in the yield from implementation. Finally, as an optimization, if the caller calls
next(…) or .send(None), both are forwarded as a next(…) call on the subgenerator;
only if the caller sends a non-None value, the .send(…) method of the subgenerator is
used.

For your convenience, following is the complete pseudocode of the yield from expan‐
sion from PEP 380, syntax-highlighted and annotated. Example 16-19 was copied ver‐
batim; only the callout numbers were added by me.

Again, the code shown in Example 16-19 is an expansion of this single statement, in the
body of the delegating generator:

RESULT = yield from EXPR
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Example 16-19. Pseudocode equivalent to the statement RESULT = yield from EXPR in
the delegating generator
_i = iter(EXPR)   
try:
    _y = next(_i)   
except StopIteration as _e:
    _r = _e.value   
else:
    while 1:   
        try:
            _s = yield _y   
        except GeneratorExit as _e:   
            try:
                _m = _i.close
            except AttributeError:
                pass
            else:
                _m()
            raise _e
        except BaseException as _e:   
            _x = sys.exc_info()
            try:
                _m = _i.throw
            except AttributeError:
                raise _e
            else:   
                try:
                    _y = _m(*_x)
                except StopIteration as _e:
                    _r = _e.value
                    break
        else:   
            try:   
                if _s is None:   
                    _y = next(_i)
                else:
                    _y = _i.send(_s)
            except StopIteration as _e:   
                _r = _e.value
                break

RESULT = _r   

The EXPR can be any iterable, because iter() is applied to get an iterator _i (this
is the subgenerator).
The subgenerator is primed; the result is stored to be the first yielded value _y.
If StopIteration was raised, extract the value attribute from the exception and
assign it to _r: this is the RESULT in the simplest case.
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9. In a message to Python-ideas on April 5, 2009, Nick Coghlan questioned whether the implicit priming done
by yield from was a good idea.

While this loop is running, the delegating generator is blocked, operating just
as a channel between the caller and the subgenerator.
Yield the current item yielded from the subgenerator; wait for a value _s sent by
the caller. This is the only yield in this listing.
This deals with closing the delegating generator and the subgenerator. Because
the subgenerator can be any iterator, it may not have a close method.
This deals with exceptions thrown in by the caller using .throw(…). Again, the
subgenerator may be an iterator with no throw method to be called—in which
case the exception is raised in the delegating generator.
If the subgenerator has a throw method, call it with the exception passed from
the caller. The subgenerator may handle the exception (and the loop continues);
it may raise StopIteration (the _r result is extracted from it, and the loop ends);
or it may raise the same or another exception, which is not handled here and
propagates to the delegating generator.
If no exception was received when yielding…
Try to advance the subgenerator…
Call next on the subgenerator if the last value received from the caller was None,
otherwise call send.
If the subgenerator raised StopIteration, get the value, assign to _r, and exit
the loop, resuming the delegating generator.
_r is the RESULT: the value of the whole yield from expression.

Most of the logic of the yield from pseudocode is implemented in six try/except
blocks nested up to four levels deep, so it’s a bit hard to read. The only other control
flow keywords used are one while, one if, and one yield. Find the while, the yield,
the next(…), and the .send(…) calls: they will help you get an idea of how the whole
structure works.

Right at the top of Example 16-19, one important detail revealed by the pseudocode is
that the subgenerator is primed (second callout in Example 16-19).9 This means that
auto-priming decorators such as that in “Decorators for Coroutine Priming” on page
469 are incompatible with yield from.

In the same message I quoted in the opening of this section, Greg Ewing has this to say
about the pseudocode expansion of yield from:
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10. Opening sentence of the “Motivation” section in PEP 342.

You’re not meant to learn about it by reading the expansion—that’s only there to pin down
all the details for language lawyers.

Focusing on the details of the pseudocode expansion may not be helpful—depending
on your learning style. Studying real code that uses yield from is certainly more prof‐
itable than poring over the pseudocode of its implementation. However, almost all the
yield from examples I’ve seen are tied to asynchronous programming with the asyn
cio module, so they depend on an active event loop to work. We’ll see yield from
numerous times in Chapter 18. There are a few links in “Further Reading” on page 500 to
interesting code using yield from without an event loop.

We’ll now move on to a classic example of coroutine usage: programming simulations.
This example does not showcase yield from, but it does reveal how coroutines are used
to manage concurrent activities on a single thread.

Use Case: Coroutines for Discrete Event Simulation
Coroutines are a natural way of expressing many algorithms, such as simulations, games,
asynchronous I/O, and other forms of event-driven programming or co-operative mul‐
titasking.10

— Guido van Rossum and Phillip J. Eby
 PEP 342—Coroutines via Enhanced Generators

In this section, I will describe a very simple simulation implemented using just corou‐
tines and standard library objects. Simulation is a classic application of coroutines in
the computer science literature. Simula, the first OO language, introduced the concept
of coroutines precisely to support simulations.

The motivation for the following simulation example is not aca‐
demic. Coroutines are the fundamental building block of the
asyncio package. A simulation shows how to implement concur‐
rent activities using coroutines instead of threads—and this will
greatly help when we tackle asyncio with in Chapter 18.

Before going into the example, a word about simulations.

About Discrete Event Simulations
A discrete event simulation (DES) is a type of simulation where a system is modeled as
a sequence of events. In a DES, the simulation “clock” does not advance by fixed incre‐
ments, but advances directly to the simulated time of the next modeled event. For ex‐
ample, if we are simulating the operation of a taxi cab from a high-level perspective, one
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11. See the official documentation for Simpy—not to be confused with the well-known but unrelated SymPy, a
library for symbolic mathematics.

event is picking up a passenger, the next is dropping the passenger off. It doesn’t matter
if a trip takes 5 or 50 minutes: when the drop off event happens, the clock is updated to
the end time of the trip in a single operation. In a DES, we can simulate a year of cab
trips in less than a second. This is in contrast to a continuous simulation where the clock
advances continuously by a fixed—and usually small—increment.

Intuitively, turn-based games are examples of discrete event simulations: the state of the
game only changes when a player moves, and while a player is deciding the next move,
the simulation clock is frozen. Real-time games, on the other hand, are continuous
simulations where the simulation clock is running all the time, the state of the game is
updated many times per second, and slow players are at a real disadvantage.

Both types of simulations can be written with multiple threads or a single thread using
event-oriented programming techniques such as callbacks or coroutines driven by an
event loop. It’s arguably more natural to implement a continuous simulation using
threads to account for actions happening in parallel in real time. On the other hand,
coroutines offer exactly the right abstraction for writing a DES. SimPy11 is a DES package
for Python that uses one coroutine to represent each process in the simulation.

In the field of simulation, the term process refers to the activities
of an entity in the model, and not to an OS process. A simulation
process may be implemented as an OS process, but usually a thread
or a coroutine is used for that purpose.

If you are interested in simulations, SimPy is well worth studying. However, in this
section, I will describe a very simple DES implemented using only standard library
features. My goal is to help you develop an intuition about programming concurrent
actions with coroutines. Understanding the next section will require careful study, but
the reward will come as insights on how libraries such as asyncio, Twisted, and Tornado
can manage many concurrent activities using a single thread of execution.

The Taxi Fleet Simulation
In our simulation program, taxi_sim.py, a number of taxi cabs are created. Each will
make a fixed number of trips and then go home. A taxi leaves the garage and starts
“prowling”—looking for a passenger. This lasts until a passenger is picked up, and a trip
starts. When the passenger is dropped off, the taxi goes back to prowling.

The time elapsed during prowls and trips is generated using an exponential distribution.
For a cleaner display, times are in whole minutes, but the simulation would work as well
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12. I am not an expert in taxi fleet operations, so don’t take my numbers seriously. Exponential distributions are
commonly used in DES. You’ll see some very short trips. Just pretend it’s a rainy day and some passengers
are taking cabs just to go around the block—in an ideal city where there are cabs when it rains.

using float intervals.12 Each change of state in each cab is reported as an event.
Figure 16-3 shows a sample run of the program.

Figure 16-3. Sample run of taxi_sim.py with three taxis. The -s 3 argument sets the
random generator seed so program runs can be reproduced for debugging and demon‐
stration. Colored arrows highlight taxi trips.

The most important thing to note in Figure 16-3 is the interleaving of the trips by the
three taxis. I manually added the arrows to make it easier to see the taxi trips: each arrow
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13. I was the passenger. I realized I forgot my wallet.

starts when a passenger is picked up and ends when the passenger is dropped off. In‐
tuitively, this demonstrates how coroutines can be used for managing concurrent ac‐
tivities.

Other things to note about Figure 16-3:

• Each taxi leaves the garage 5 minutes after the other.
• It took 2 minutes for taxi 0 to pick up the first passenger at time=2; 3 minutes for

taxi 1 (time=8), and 5 minutes for taxi 2 (time=15).
• The cabbie in taxi 0 only makes two trips (purple arrows): the first starts at time=2

and ends at time=18; the second starts at time=28 and ends at time=65—the longest
trip in this simulation run.

• Taxi 1 makes four trips (green arrows) then goes home at time=110.
• Taxi 2 makes six trips (red arrows) then goes home at time=109. His last trip lasts

only one minute, starting at time=97.13

• While taxi 1 is making her first trip, starting at time=8, taxi 2 leaves the garage at
time=10 and completes two trips (short red arrows).

• In this sample run, all scheduled events completed in the default simulation time
of 180 minutes; last event was at time=110.

The simulation may also end with pending events. When that happens, the final message
reads like this:

*** end of simulation time: 3 events pending ***

The full listing of taxi_sim.py is at Example A-6. In this chapter, we’ll show only the
parts that are relevant to our study of coroutines. The really important functions are
only two: taxi_process (a coroutine), and the Simulator.run method where the main
loop of the simulation is executed.

Example 16-20 shows the code for taxi_process. This coroutine uses two objects de‐
fined elsewhere: the compute_delay function, which returns a time interval in minutes,
and the Event class, a namedtuple defined like this:

Event = collections.namedtuple('Event', 'time proc action')

In an Event instance, time is the simulation time when the event will occur, proc is the
identifier of the taxi process instance, and action is a string describing the activity.

Let’s review taxi_process play by play in Example 16-20.
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14. The verb “drive” is commonly used to describe the operation of a coroutine: the client code drives the coroutine
by sending it values. In Example 16-21, the client code is what you type in the console.

Example 16-20. taxi_sim.py: taxi_process coroutine that implements the activities of
each taxi
def taxi_process(ident, trips, start_time=0):   
    """Yield to simulator issuing event at each state change"""
    time = yield Event(start_time, ident, 'leave garage')   
    for i in range(trips):   
        time = yield Event(time, ident, 'pick up passenger')   
        time = yield Event(time, ident, 'drop off passenger')   

    yield Event(time, ident, 'going home')   
    # end of taxi process  

taxi_process will be called once per taxi, creating a generator object to
represent its operations. ident is the number of the taxi (e.g., 0, 1, 2 in the sample
run); trips is the number of trips this taxi will make before going home;
start_time is when the taxi leaves the garage.
The first Event yielded is 'leave garage'. This suspends the coroutine, and
lets the simulation main loop proceed to the next scheduled event. When it’s
time to reactivate this process, the main loop will send the current simulation
time, which is assigned to time.
This block will be repeated once for each trip.
An Event signaling passenger pick up is yielded. The coroutine pauses here.
When the time comes to reactivate this coroutine, the main loop will again send
the current time.
An Event signaling passenger drop off is yielded. The coroutine is suspended
again, waiting for the main loop to send it the time of when it’s reactivated.
The for loop ends after the given number of trips, and a final 'going home'
event is yielded. The coroutine will suspend for the last time. When reactivated,
it will be sent the time from the simulation main loop, but here I don’t assign it
to any variable because it will not be used.
When the coroutine falls off the end, the generator object raises StopIteration.

You can “drive” a taxi yourself by calling taxi_process in the Python console.14

Example 16-21 shows how.

Example 16-21. Driving the taxi_process coroutine
>>> from taxi_sim import taxi_process
>>> taxi = taxi_process(ident=13, trips=2, start_time=0)  
>>> next(taxi)  
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Event(time=0, proc=13, action='leave garage')
>>> taxi.send(_.time + 7)  
Event(time=7, proc=13, action='pick up passenger')  
>>> taxi.send(_.time + 23)  
Event(time=30, proc=13, action='drop off passenger')
>>> taxi.send(_.time + 5)  
Event(time=35, proc=13, action='pick up passenger')
>>> taxi.send(_.time + 48)  
Event(time=83, proc=13, action='drop off passenger')
>>> taxi.send(_.time + 1)
Event(time=84, proc=13, action='going home')  
>>> taxi.send(_.time + 10)  
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

Create a generator object to represent a taxi with ident=13 that will make two
trips and start working at t=0.
Prime the coroutine; it yields the initial event.
We can now send it the current time. In the console, the _ variable is bound to
the last result; here I add 7 to the time, which means the taxi will spend 7
minutes searching for the first passenger.
This is yielded by the for loop at the start of the first trip.
Sending _.time + 23 means the trip with the first passenger will last 23 minutes.
Then the taxi will prowl for 5 minutes.
The last trip will take 48 minutes.
After two complete trips, the loop ends and the 'going home' event is yielded.
The next attempt to send to the coroutine causes it to fall through the end. When
it returns, the interpreter raises StopIteration.

Note that in Example 16-21 I am using the console to emulate the simulation main loop.
I get the .time attribute of an Event yielded by the taxi coroutine, add an arbitrary
number, and use the sum in the next taxi.send call to reactivate it. In the simulation,
the taxi coroutines are driven by the main loop in the Simulator.run method. The
simulation “clock” is held in the sim_time variable, and is updated by the time of each
event yielded.

To instantiate the Simulator class, the main function of taxi_sim.py builds a taxis
dictionary like this:

    taxis = {i: taxi_process(i, (i + 1) * 2, i * DEPARTURE_INTERVAL)
             for i in range(num_taxis)}
    sim = Simulator(taxis)
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DEPARTURE_INTERVAL is 5; if num_taxis is 3 as in the sample run, the preceding lines
will do the same as:

    taxis = {0: taxi_process(ident=0, trips=2, start_time=0),
             1: taxi_process(ident=1, trips=4, start_time=5),
             2: taxi_process(ident=2, trips=6, start_time=10)}
    sim = Simulator(taxis)

Therefore, the values of the taxis dictionary will be three distinct generator objects
with different parameters. For instance, taxi 1 will make 4 trips and begin looking for
passengers at start_time=5. This dict is the only argument required to build a Simu
lator instance.

The Simulator.__init__ method is shown in Example 16-22. The main data structures
of Simulator are:
self.events

A PriorityQueue to hold Event instances. A PriorityQueue lets you put items,
then get them ordered by item[0]; i.e., the time attribute in the case of our Event
namedtuple objects.

self.procs

A dict mapping each process number to an active process in the simulation—a
generator object representing one taxi. This will be bound to a copy of taxis dict
shown earlier.

Example 16-22. taxi_sim.py: Simulator class initializer
class Simulator:

    def __init__(self, procs_map):
        self.events = queue.PriorityQueue()  
        self.procs = dict(procs_map)  

The PriorityQueue to hold the scheduled events, ordered by increasing time.
We get the procs_map argument as a dict (or any mapping), but build a dict
from it, to have a local copy because when the simulation runs, each taxi that
goes home is removed from self.procs, and we don’t want to change the object
passed by the user.

Priority queues are a fundamental building block of discrete event simulations: events
are created in any order, placed in the queue, and later retrieved in order according to
the scheduled time of each one. For example, the first two events placed in the queue
may be:

Event(time=14, proc=0, action='pick up passenger')
Event(time=11, proc=1, action='pick up passenger')
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This means that taxi 0 will take 14 minutes to pick up the first passenger, while taxi 1—
starting at time=10—will take 1 minute and pick up a passenger at time=11. If those
two events are in the queue, the first event the main loop gets from the priority queue
will be Event(time=11, proc=1, action='pick up passenger').

Now let’s study the main algorithm of the simulation, the Simulator.run method. It’s
invoked by the main function right after the Simulator is instantiated, like this:

    sim = Simulator(taxis)
    sim.run(end_time)

The listing with callouts for the Simulator class is in Example 16-23, but here is a high-
level view of the algorithm implemented in Simulator.run:

1. Loop over processes representing taxis.
a. Prime the coroutine for each taxi by calling next() on it. This will yield the first

Event for each taxi.
b. Put each event in the self.events queue of the Simulator.

2. Run the main loop of the simulation while sim_time < end_time.
a. Check if self.events is empty; if so, break from the loop.
b. Get the current_event from self.events. This will be the Event object with

the lowest time in the PriorityQueue.
c. Display the Event.
d. Update the simulation time with the time attribute of the current_event.
e. Send the time to the coroutine identified by the proc attribute of the cur

rent_event. The coroutine will yield the next_event.
f. Schedule next_event by adding it to the self.events queue.

The complete Simulator class is Example 16-23.

Example 16-23. taxi_sim.py: Simulator, a bare-bones discrete event simulation class;
focus on the run method
class Simulator:

    def __init__(self, procs_map):
        self.events = queue.PriorityQueue()
        self.procs = dict(procs_map)

    def run(self, end_time):   
        """Schedule and display events until time is up"""
        # schedule the first event for each cab
        for _, proc in sorted(self.procs.items()):   
            first_event = next(proc)   
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15. This is typical of a discrete event simulation: the simulation clock is not incremented by a fixed amount on
each loop, but advances according to the duration of each event completed.

            self.events.put(first_event)   

        # main loop of the simulation
        sim_time = 0   
        while sim_time < end_time:   
            if self.events.empty():   
                print('*** end of events ***')
                break

            current_event = self.events.get()   
            sim_time, proc_id, previous_action = current_event   
            print('taxi:', proc_id, proc_id * '   ', current_event)   
            active_proc = self.procs[proc_id]   
            next_time = sim_time + compute_duration(previous_action)   
            try:
                next_event = active_proc.send(next_time)   
            except StopIteration:
                del self.procs[proc_id]   
            else:
                self.events.put(next_event)   
        else:   
            msg = '*** end of simulation time: {} events pending ***'
            print(msg.format(self.events.qsize()))

The simulation end_time is the only required argument for run.
Use sorted to retrieve the self.procs items ordered by the key; we don’t care
about the key, so assign it to _.
next(proc) primes each coroutine by advancing it to the first yield, so it’s ready
to be sent data. An Event is yielded.
Add each event to the self.events PriorityQueue. The first event for each taxi
is 'leave garage', as seen in the sample run (Example 16-20).
Zero sim_time, the simulation clock.
Main loop of the simulation: run while sim_time is less than the end_time.
The main loop may also exit if there are no pending events in the queue.
Get Event with the smallest time in the priority queue; this is the current_event.
Unpack the Event data. This line updates the simulation clock, sim_time, to
reflect the time when the event happened.15

Display the Event, identifying the taxi and adding indentation according to the
taxi ID.
Retrieve the coroutine for the active taxi from the self.procs dictionary.
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16. Message to thread “Yield-From: Finalization guarantees” in the Python-ideas mailing list. The David Beazley
tutorial Guido refers to is “A Curious Course on Coroutines and Concurrency”.

Compute the next activation time by adding the sim_time and the result of
calling compute_duration(…) with the previous action (e.g., 'pick up passen
ger', 'drop off passenger', etc.)
Send the time to the taxi coroutine. The coroutine will yield the next_event or
raise StopIteration when it’s finished.
If StopIteration is raised, delete the coroutine from the self.procs dictionary.
Otherwise, put the next_event in the queue.
If the loop exits because the simulation time passed, display the number of events
pending (which may be zero by coincidence, sometimes).

Linking back to Chapter 15, note that the Simulator.run method in Example 16-23
uses else blocks in two places that are not if statements:

• The main while loop has an else statement to report that the simulation ended
because the end_time was reached—and not because there were no more events to
process.

• The try statement at the bottom of the while loop tries to get a next_event by
sending the next_time to the current taxi process, and if that is successful the else
block puts the next_event into the self.events queue.

I believe the code in Simulator.run would be a bit harder to read without those else
blocks.

The point of this example was to show a main loop processing events and driving co‐
routines by sending data to them. This is the basic idea behind asyncio, which we’ll
study in Chapter 18.

Chapter Summary
Guido van Rossum wrote there are three different styles of code you can write using
generators:

There’s the traditional “pull” style (iterators), “push” style (like the averaging example),
and then there are “tasks” (Have you read Dave Beazley’s coroutines tutorial yet?…).16

Chapter 14 was devoted to iterators; this chapter introduced coroutines used in “push
style” and also as very simple “tasks”—the taxi processes in the simulation example.
Chapter 18 will put them to use as asynchronous tasks in concurrent programming.
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The running average example demonstrated a common use for a coroutine: as an ac‐
cumulator processing items sent to it. We saw how a decorator can be applied to prime
a coroutine, making it more convenient to use in some cases. But keep in mind that
priming decorators are not compatible with some uses of coroutines. In particular,
yield from subgenerator() assumes the subgenerator is not primed, and primes it
automatically.

Accumulator coroutines can yield back partial results with each send method call, but
they become more useful when they can return values, a feature that was added in
Python 3.3 with PEP 380. We saw how the statement return the_result in a generator
now raises StopIteration(the_result), allowing the caller to retrieve the_result
from the value attribute of the exception. This is a rather cumbersome way to retrieve
coroutine results, but it’s handled automatically by the yield from syntax introduced
in PEP 380.

The coverage of yield from started with trivial examples using simple iterables, then
moved to an example highlighting the three main components of any significant use of
yield from: the delegating generator (defined by the use of yield from in its body),
the subgenerator activated by yield from, and the client code that actually drives the
whole setup by sending values to the subgenerator through the pass-through channel
established by yield from in the delegating generator. This section was wrapped up
with a look at the formal definition of yield from behavior as described in PEP 380
using English and Python-like pseudocode.

We closed the chapter with the discrete event simulation example, showing how gen‐
erators can be used as an alternative to threads and callbacks to support concurrency.
Although simple, the taxi simulation gives a first glimpse at how event-driven frame‐
works like Tornado and asyncio use a main loop to drive coroutines executing con‐
current activities with a single thread of execution. In event-oriented programming with
coroutines, each concurrent activity is carried out by a coroutine that repeatedly yields
control back to the main loop, allowing other coroutines to be activated and move
forward. This is a form of cooperative multitasking: coroutines voluntarily and explicitly
yield control to the central scheduler. In contrast, threads implement preemptive mul‐
titasking. The scheduler can suspend threads at any time—even halfway through a
statement—to give way to other threads.

One final note: this chapter adopted a broad, informal definition of a coroutine: a gen‐
erator function driven by a client sending it data through .send(…) calls or yield
from. This broad definition is the one used in PEP 342 — Coroutines via Enhanced
Generators and in most existing Python books as I write this. The asyncio library we’ll
see in Chapter 18 is built on coroutines, but a stricter definition of coroutine is adopted
there: asyncio coroutines are (usually) decorated with an @asyncio.coroutine deco‐
rator, and they are always driven by yield from, not by calling .send(…) directly on

Chapter Summary | 499

https://www.python.org/dev/peps/pep-0342/
https://www.python.org/dev/peps/pep-0342/


them. Of course, asyncio coroutines are driven by next(…) and .send(…) under the
covers, but in user code we only use yield from to make them run.

Further Reading
David Beazley is the ultimate authority on Python generators and coroutines. The
Python Cookbook, 3E (O’Reilly) he coauthored with Brian Jones has numerous recipes
with coroutines. Beazley’s PyCon tutorials on the subject are legendary for their depth
and breadth. The first was at PyCon US 2008: “Generator Tricks for Systems Program‐
mers”. PyCon US 2009 saw the legendary “A Curious Course on Coroutines and Con‐
currency” (hard-to-find video links for all three parts: part 1, part 2, part 3). His most
recent tutorial from PyCon 2014 in Montréal was “Generators: The Final Frontier,” in
which he tackles more concurrency examples—so it’s really more about topics in Chap‐
ter 18 of Fluent Python. Dave can’t resist making brains explode in his classes, so in the
last part of “The Final Frontier,” coroutines replace the classic Visitor pattern in an
arithmetic expression evaluator.

Coroutines allow new ways of organizing code, and just as recursion or polymorphism
(dynamic dispatch), it takes some time getting used to their possibilities. An interesting
example of classic algorithm rewritten with coroutines is in the post “Greedy algorithm
with coroutines,” by James Powell. You may also want to browse “Popular recipes tagged
coroutine" in the ActiveState Code recipes database.

Paul Sokolovsky implemented yield from in Damien George’s super lean MicroPy‐
thon interpreter designed to run on microcontrollers. As he studied the feature, he
created a great, detailed diagram to explain how yield from works, and shared it in the
python-tulip mailing list. Sokolovsky was kind enough to allow me to copy the PDF to
this book’s site, where it has a more permanent URL.

As I write this, the vast majority of uses of yield from to be found are in asyncio itself
or code that uses it. I spent a lot of time looking for examples of yield from that did
not depend on asyncio. Greg Ewing—who penned PEP 380 and implemented yield
from in CPython—published a few examples of its use: a BinaryTree class, a simple
XML parser, and a task scheduler.

Brett Slatkin’s Effective Python (Addison-Wesley) has an excellent short chapter titled
“Consider Coroutines to Run Many Functions Concurrently” (available online as a
sample chapter). That chapter includes the best example of driving generators with
yield from I’ve seen: an implementation of John Conway’s Game of Life in which
coroutines are used to manage the state of each cell as the game runs. The example code
for Effective Python can be found in a GitHub repository. I refactored the code for the
Game of Life example—separating the functions and classes that implement the game
from the testing snippets used in Slatkin’s book (original code). I also rewrote the tests
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17. Nowadays even tenured professors agree that Wikipedia is a good place to start studying pretty much any
subject in computer science. Not true about other subjects, but for computer science, Wikipedia rocks.

as doctests, so you can see the output of the various coroutines and classes without
running the script. The refactored example is posted as a GitHub gist.

Other interesting examples of yield from without asyncio appear in a message to the
Python Tutor list, “Comparing two CSV files using Python” by Peter Otten, and a Rock-
Paper-Scissors game in Ian Ward’s “Iterables, Iterators, and Generators” tutorial pub‐
lished as an iPython notebook.

Guido van Rossum sent a long message to the python-tulip Google Group titled “The
difference between yield and yield-from" that is worth reading. Nick Coghlan posted
a heavily commented version of the yield from expansion to Python-Dev on March
21, 2009; in the same message, he wrote:

Whether or not different people will find code using yield from difficult to understand
or not will have more to do with their grasp of the concepts of cooperative multitasking
in general more so than the underlying trickery involved in allowing truly nested gen‐
erators.

PEP 492 — Coroutines with async and await syntax by Yury Selivanov proposes the
addition of two keywords to Python: async and await. The former will be used with
other existing keywords to define new language constructs. For example, async def
will be used to define a coroutine, and async for to loop over asynchronous iterables
with asynchronous iterators (implementing __aiter__ and __anext__, coroutine ver‐
sions of __iter__ and __next__). To avoid conflict with the upcoming async keyword,
the essential function asyncio.async() will be renamed asyncio.ensure_future() in
Python 3.4.4. The await keyword will do something similar to yield from, but will
only be allowed inside coroutines defined with async def—where the use of yield and
yield from will be forbidden. With new syntax, the PEP establishes a clear separation
between the legacy generators that evolved into coroutine-like objects and a new breed
of native coroutine objects with better language support thanks to infrastructure like
the async and await keywords and several new special methods. Coroutines are poised
to become really important in the future of Python and the language should be adapted
to better integrate them.

Experimenting with discrete event simulations is a great way to become comfortable
with cooperative multitasking. Wikipedia’s “Discrete event simulation” article is a good
place to start.17 A short tutorial about writing discrete event simulations by hand (no
special libraries) is Ashish Gupta’s “Writing a Discrete Event Simulation: Ten Easy Les‐
sons.” The code is in Java so it’s class-based and uses no coroutines, but can easily be
ported to Python. Regardless of the code, the tutorial is a good short introduction to
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the terminology and components of a discrete event simulation. Converting Gupta’s
examples to Python classes and then to classes leveraging coroutines is a good exercise.

For a ready-to-use library in Python, using coroutines, there is SimPy. Its online doc‐
umentation explains:

SimPy is a process-based discrete-event simulation framework based on standard Python.
Its event dispatcher is based on Python’s generators and can also be used for asynchronous
networking or to implement multi-agent systems (with both simulated and real com‐
munication).

Coroutines are not so new in Python but they were pretty much tied to niche application
domains before asynchronous programming frameworks started supporting them,
starting with Tornado. The addition of yield from in Python 3.3 and asyncio in Python
3.4 will likely boost the adoption of coroutines—and of Python 3.4 itself. However,
Python 3.4 is less than a year old as I write this—so once you watch David Beazley’s
tutorials and cookbook examples on the subject, there isn’t a whole lot of content out
there that goes deep into Python coroutine programming. For now.

Soapbox
Raise from lambda

In programming languages, keywords establish the basic rules of control flow and ex‐
pression evaluation.

A keyword in a language is like a piece in a board game. In the language of Chess, the
keywords are ♔, ♕, ♖, ♗, ♘, and ♙. In the game of Go, it’s ●.

Chess players have six different types of pieces to implement their plans, whereas Go
players seem to have only one type of piece. However, in the semantics of Go, adjacent
pieces form larger, solid pieces of many different shapes, with emerging properties. Some
arrangements of Go pieces are indestructible. Go is more expressive than Chess. In Go
there are 361 possible opening moves, and an estimated 1e+170 legal positions; for
Chess, the numbers are 20 opening moves 1e+50 positions.

Adding a new piece to Chess would be a radical change. Adding a new keyword in a
programming language is also a radical change. So it makes sense for language designers
to be wary of introducing keywords.

Table 16-1. Number of keywords in programming languages
Keywords Language Comment

5 Smalltalk-80 Famous for its minimalist syntax.

25 Go The language, not the game.

32 C That’s ANSI C. C99 has 37 keywords, C11 has 44.

33 Python Python 2.7 has 31 keywords; Python 1.5 had 28.
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18. “The Value Of Syntax?” is an interesting discussion about extensible syntax and programming language
usability. The forum, Lambda the Ultimate, is a watering hole for programming language geeks.

19. A highly recommended post related to this issue in the context of JavaScript, Python, and other languages is
“What Color Is Your Function?” by Bob Nystrom.

Keywords Language Comment

41 Ruby Keywords may be used as identifiers (e.g., class is also a method name).

49 Java As in C, the names of the primitive types (char, float, etc.) are reserved.

60 JavaScript Includes all keywords from Java 1.0, many of which are unused.

65 PHP Since PHP 5.3, seven keywords were introduced, including goto, trait, and yield.

85 C++ According to cppreference.com, C++11 added 10 keywords to the existing 75.

555 COBOL I did not make this up. See this IBM ILE COBOL manual.

∞ Scheme Anyone can define new keywords.

Python 3 added nonlocal, promoted None, True, and False to keyword status, and
dropped print and exec. It’s very uncommon for a language to drop keywords as it
evolves. Table 16-1 lists some languages, ordered by number of keywords.

Scheme inherited from Lisp a macro facility that allows anyone to create special forms
adding new control structures and evaluation rules to the language. The user-defined
identifiers of those forms are called “syntactic keywords.” The Scheme R5RS standard
states “There are no reserved identifiers” (page 45 of the standard), but a typical imple‐
mentation such as MIT/GNU Scheme comes with 34 syntactic keywords predefined,
such as if, lambda, and define-syntax—the keyword that lets you conjure new key‐
words.18

Python is like Chess, and Scheme is like Go (the game).

Now, back to Python syntax. I think Guido is too conservative with keywords. It’s nice
to have a small set of them, and adding new keywords potentially breaks a lot of code.
But the use of else in loops reveals a recurring problem: the overloading of existing
keywords when a new one would be a better choice. In the context of for, while, and
try, a new then keyword would be preferable to abusing else.

The most serious manifestation of this problem is the overloading of def: it’s now used
to define functions, generators, and coroutines—objects that are too different to share
the same declaration syntax.19

The introduction of yield from is particularly worrying. Once again, I believe Python
users would be best served by a new keyword. Even worse, this starts a new trend:
chaining existing keywords to create new syntax, instead of adding sensible, descriptive
keywords. I fear one day we may be poring over the meaning of raise from lambda.

Breaking News
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As I wrap up this book’s technical review process, it seems Yury Selivanov’s PEP 492 —
Coroutines with async and await syntax is on the way to being accepted for implemen‐
tation in Python 3.5 already! The PEP has the support of Guido van Rossum and Victor
Stinner, respectively the author and a leading maintainer of the asyncio library that
would be the main use case for the new syntax. In response to Selivanov’s message to
Python-ideas, Guido even hints at delaying the release of Python 3.5 so the PEP can be
implemented.

Of course, this would put to rest most of the complaints I expressed in the preceding
sections.
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1. From Michele Simionato’s post Threads, processes and concurrency in Python: some thoughts, subtitled
“Removing the hype around the multicore (non) revolution and some (hopefully) sensible comment about
threads and other forms of concurrency.”

CHAPTER 17

Concurrency with Futures

The people bashing threads are typically system programmers which have in mind use
cases that the typical application programmer will never encounter in her life. […] In
99% of the use cases an application programmer is likely to run into, the simple pattern
of spawning a bunch of independent threads and collecting the results in a queue is
everything one needs to know.1

— Michele Simionato
 Python deep thinker

This chapter focuses on the concurrent.futures library introduced in Python 3.2, but
also available for Python 2.5 and newer as the futures package on PyPI. This library
encapsulates the pattern described by Michele Simionato in the preceding quote, mak‐
ing it almost trivial to use.

Here I also introduce the concept of “futures”—objects representing the asynchronous
execution of an operation. This powerful idea is the foundation not only of concur
rent.futures but also of the asyncio package, which we’ll cover in Chapter 18.

We’ll start with a motivating example.

Example: Web Downloads in Three Styles
To handle network I/O efficiently, you need concurrency, as it involves high latency—
so instead of wasting CPU cycles waiting, it’s better to do something else until a response
comes back from the network.

To make this last point with code, I wrote three simple programs to download images
of 20 country flags from the Web. The first one, flags.py, runs sequentially: it only re‐
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quests the next image when the previous one is downloaded and saved to disk. The other
two scripts make concurrent downloads: they request all images practically at the same
time, and save the files as they arrive. The flags_threadpool.py script uses the concur
rent.futures package, while flags_asyncio.py uses asyncio.

Example 17-1 shows the result of running the three scripts, three times each. I also
posted a 73s video on YouTube so you can watch them running while an OS X Finder
window displays the flags as they are saved. The scripts are downloading images from
flupy.org, which is behind a CDN, so you may see slower results in the first runs. The
results in Example 17-1 were obtained after several runs, so the CDN cache was warm.

Example 17-1. Three typical runs of the scripts flags.py, flags_threadpool.py, and
flags_asyncio.py
$ python3 flags.py
BD BR CD CN DE EG ET FR ID IN IR JP MX NG PH PK RU TR US VN  
20 flags downloaded in 7.26s  
$ python3 flags.py
BD BR CD CN DE EG ET FR ID IN IR JP MX NG PH PK RU TR US VN
20 flags downloaded in 7.20s
$ python3 flags.py
BD BR CD CN DE EG ET FR ID IN IR JP MX NG PH PK RU TR US VN
20 flags downloaded in 7.09s
$ python3 flags_threadpool.py
DE BD CN JP ID EG NG BR RU CD IR MX US PH FR PK VN IN ET TR
20 flags downloaded in 1.37s  
$ python3 flags_threadpool.py
EG BR FR IN BD JP DE RU PK PH CD MX ID US NG TR CN VN ET IR
20 flags downloaded in 1.60s
$ python3 flags_threadpool.py
BD DE EG CN ID RU IN VN ET MX FR CD NG US JP TR PK BR IR PH
20 flags downloaded in 1.22s
$ python3 flags_asyncio.py  
BD BR IN ID TR DE CN US IR PK PH FR RU NG VN ET MX EG JP CD
20 flags downloaded in 1.36s
$ python3 flags_asyncio.py
RU CN BR IN FR BD TR EG VN IR PH CD ET ID NG DE JP PK MX US
20 flags downloaded in 1.27s
$ python3 flags_asyncio.py
RU IN ID DE BR VN PK MX US IR ET EG NG BD FR CN JP PH CD TR  
20 flags downloaded in 1.42s

The output for each run starts with the country codes of the flags as they are
downloaded, and ends with a message stating the elapsed time.
It took flags.py an average 7.18s to download 20 images.
The average for flags_threadpool.py was 1.40s.
For flags_asyncio.py, 1.35 was the average time.
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Note the order of the country codes: the downloads happened in a different
order every time with the concurrent scripts.

The difference in performance between the concurrent scripts is not significant, but
they are both more than five times faster than the sequential script—and this is just for
a fairly small task. If you scale the task to hundreds of downloads, the concurrent scripts
can outpace the sequential one by a factor or 20 or more.

While testing concurrent HTTP clients on the public Web you may
inadvertently launch a denial-of-service (DoS) attack, or be sus‐
pected of doing so. In the case of Example 17-1, it’s OK to do it
because those scripts are hardcoded to make only 20 requests. For
testing nontrivial HTTP clients, you should set up your own test
server. The 17-futures/countries/README.rst file in the Fluent
Python code GitHub repository has instructions for setting a lo‐
cal Nginx server.

Now let’s study the implementations of two of the scripts tested in Example 17-1: flags.py
and flags_threadpool.py. I will leave the third script, flags_asyncio.py, for Chapter 18,
but I wanted to demonstrate all three together to make a point: regardless of the con‐
currency strategy you use—threads or asyncio—you’ll see vastly improved throughput
over sequential code in I/O-bound applications, if you code it properly.

On to the code.

A Sequential Download Script
Example 17-2 is not very interesting, but we’ll reuse most of its code and settings to
implement the concurrent scripts, so it deserves some attention.

For clarity, there is no error handling in Example 17-2. We will
deal with exceptions later, but here we want to focus on the ba‐
sic structure of the code, to make it easier to contrast this script
with the concurrent ones.

Example 17-2. flags.py: sequential download script; some functions will be reused by
the other scripts
import os
import time
import sys

import requests   
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POP20_CC = ('CN IN US ID BR PK NG BD RU JP '
            'MX PH VN ET EG DE IR TR CD FR').split()   

BASE_URL = 'http://flupy.org/data/flags'   

DEST_DIR = 'downloads/'   

def save_flag(img, filename):   
    path = os.path.join(DEST_DIR, filename)
    with open(path, 'wb') as fp:
        fp.write(img)

def get_flag(cc):   
    url = '{}/{cc}/{cc}.gif'.format(BASE_URL, cc=cc.lower())
    resp = requests.get(url)
    return resp.content

def show(text):   
    print(text, end=' ')
    sys.stdout.flush()

def download_many(cc_list):   
    for cc in sorted(cc_list):   
        image = get_flag(cc)
        show(cc)
        save_flag(image, cc.lower() + '.gif')

    return len(cc_list)

def main(download_many):   
    t0 = time.time()
    count = download_many(POP20_CC)
    elapsed = time.time() - t0
    msg = '\n{} flags downloaded in {:.2f}s'
    print(msg.format(count, elapsed))

if __name__ == '__main__':
    main(download_many)   

Import the requests library; it’s not part of the standard library, so by
convention we import it after the standard library modules os, time, and sys,
and separate it from them with a blank line.
List of the ISO 3166 country codes for the 20 most populous countries in order
of decreasing population.
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2. The images are originally from the CIA World Factbook, a public-domain, U.S. government publication. I
copied them to my site to avoid the risk of launching a DOS attack on CIA.gov.

The website with the flag images.2

Local directory where the images are saved.
Simply save the img (a byte sequence) to filename in the DEST_DIR.
Given a country code, build the URL and download the image, returning the
binary contents of the response.
Display a string and flush sys.stdout so we can see progress in a one-line
display; this is needed because Python normally waits for a line break to flush
the stdout buffer.
download_many is the key function to compare with the concurrent
implementations.
Loop over the list of country codes in alphabetical order, to make it clear that
the ordering is preserved in the output; return the number of country codes
downloaded.
main records and reports the elapsed time after running download_many.
main must be called with the function that will make the downloads; we pass the
download_many function as an argument so that main can be used as a library
function with other implementations of download_many in the next examples.

The requests library by Kenneth Reitz is available on PyPI and is
more powerful and easier to use than the urllib.request mod‐
ule from the Python 3 standard library. In fact, requests is con‐
sidered a model Pythonic API. It is also compatible with Python
2.6 and up, while the urllib2 from Python 2 was moved and
renamed in Python 3, so it’s more convenient to use requests
regardless of the Python version you’re targeting.

There’s really nothing new to flags.py. It serves as a baseline for comparing the other
scripts and I used it as a library to avoid redundant code when implementing them.
Now let’s see a reimplementation using concurrent.futures.

Downloading with concurrent.futures
The main features of the concurrent.futures package are the ThreadPoolExecutor
and ProcessPoolExecutor classes, which implement an interface that allows you to
submit callables for execution in different threads or processes, respectively. The classes
manage an internal pool of worker threads or processes, and a queue of tasks to be
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executed. But the interface is very high level and we don’t need to know about any of
those details for a simple use case like our flag downloads.

Example 17-3 shows the easiest way to implement the downloads concurrently, using
the ThreadPoolExecutor.map method.

Example 17-3. flags_threadpool.py: threaded download script using futures.Thread‐
PoolExecutor
from concurrent import futures

from flags import save_flag, get_flag, show, main   

MAX_WORKERS = 20   

def download_one(cc):   
    image = get_flag(cc)
    show(cc)
    save_flag(image, cc.lower() + '.gif')
    return cc

def download_many(cc_list):
    workers = min(MAX_WORKERS, len(cc_list))   
    with futures.ThreadPoolExecutor(workers) as executor:   
        res = executor.map(download_one, sorted(cc_list))   

    return len(list(res))   

if __name__ == '__main__':
    main(download_many)   

Reuse some functions from the flags module (Example 17-2).
Maximum number of threads to be used in the ThreadPoolExecutor.
Function to download a single image; this is what each thread will execute.
Set the number of worker threads: use the smaller number between the
maximum we want to allow (MAX_WORKERS) and the actual items to be processed,
so no unnecessary threads are created.
Instantiate the ThreadPoolExecutor with that number of worker threads; the
executor.__exit__ method will call executor.shutdown(wait=True), which
will block until all threads are done.
The map method is similar to the map built-in, except that the download_one
function will be called concurrently from multiple threads; it returns a generator
that can be iterated over to retrieve the value returned by each function.
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Return the number of results obtained; if any of the threaded calls raised an
exception, that exception would be raised here as the implicit next() call tried
to retrieve the corresponding return value from the iterator.
Call the main function from the flags module, passing the enhanced version of
download_many.

Note that the download_one function from Example 17-3 is essentially the body of the
for loop in the download_many function from Example 17-2. This is a common refac‐
toring when writing concurrent code: turning the body of a sequential for loop into a
function to be called concurrently.

The library is called concurrency.futures yet there are no futures to be seen in
Example 17-3, so you may be wondering where they are. The next section explains.

Where Are the Futures?
Futures are essential components in the internals of concurrent.futures and of asyn
cio, but as users of these libraries we sometimes don’t see them. Example 17-3 leverages
futures behind the scenes, but the code I wrote does not touch them directly. This section
is an overview of futures, with an example that shows them in action.

As of Python 3.4, there are two classes named Future in the standard library: concur
rent.futures.Future and asyncio.Future. They serve the same purpose: an instance
of either Future class represents a deferred computation that may or may not have
completed. This is similar to the Deferred class in Twisted, the Future class in Tornado,
and Promise objects in various JavaScript libraries.

Futures encapsulate pending operations so that they can be put in queues, their state of
completion can be queried, and their results (or exceptions) can be retrieved when
available.

An important thing to know about futures in general is that you and I should not create
them: they are meant to be instantiated exclusively by the concurrency framework, be
it concurrent.futures or asyncio. It’s easy to understand why: a Future represents
something that will eventually happen, and the only way to be sure that something will
happen is to schedule its execution. Therefore, concurrent.futures.Future instances
are created only as the result of scheduling something for execution with a concur
rent.futures.Executor subclass. For example, the Executor.submit() method takes
a callable, schedules it to run, and returns a future.

Client code is not supposed to change the state of a future: the concurrency framework
changes the state of a future when the computation it represents is done, and we can’t
control when that happens.
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Both types of Future have a .done() method that is nonblocking and returns a Boolean
that tells you whether the callable linked to that future has executed or not. Instead of
asking whether a future is done, client code usually asks to be notified. That’s why both
Future classes have an .add_done_callback() method: you give it a callable, and the
callable will be invoked with the future as the single argument when the future is done.

There is also a .result() method, which works the same in both classes when the future
is done: it returns the result of the callable, or re-raises whatever exception might have
been thrown when the callable was executed. However, when the future is not done, the
behavior of the result method is very different between the two flavors of Future. In
a concurrency.futures.Future instance, invoking f.result() will block the caller’s
thread until the result is ready. An optional timeout argument can be passed, and if the
future is not done in the specified time, a TimeoutError exception is raised. In “asyn‐
cio.Future: Nonblocking by Design” on page 545, we’ll see that the asyncio.Future.re
sult method does not support timeout, and the preferred way to get the result of futures
in that library is to use yield from—which doesn’t work with concurrency.fu
tures.Future instances.

Several functions in both libraries return futures; others use them in their implemen‐
tation in a way that is transparent to the user. An example of the latter is the Execu
tor.map we saw in Example 17-3: it returns an iterator in which __next__ calls the
result method of each future, so what we get are the results of the futures, and not the
futures themselves.

To get a practical look at futures, we can rewrite Example 17-3 to use the concur
rent.futures.as_completed function, which takes an iterable of futures and returns
an iterator that yields futures as they are done.

Using futures.as_completed requires changes to the download_many function only.
The higher-level executor.map call is replaced by two for loops: one to create and
schedule the futures, the other to retrieve their results. While we are at it, we’ll add a
few print calls to display each future before and after it’s done. Example 17-4 shows the
code for a new download_many function. The code for download_many grew from 5 to
17 lines, but now we get to inspect the mysterious futures. The remaining functions are
the same as in Example 17-3.

Example 17-4. flags_threadpool_ac.py: replacing executor.map with executor.submit
and futures.as_completed in the download_many function
def download_many(cc_list):
    cc_list = cc_list[:5]   
    with futures.ThreadPoolExecutor(max_workers=3) as executor:   
        to_do = []
        for cc in sorted(cc_list):   
            future = executor.submit(download_one, cc)   
            to_do.append(future)   
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            msg = 'Scheduled for {}: {}'
            print(msg.format(cc, future))   

        results = []
        for future in futures.as_completed(to_do):   
            res = future.result()   
            msg = '{} result: {!r}'
            print(msg.format(future, res))  
            results.append(res)

    return len(results)

For this demonstration, use only the top five most populous countries.
Hardcode max_workers to 3 so we can observe pending futures in the output.
Iterate over country codes alphabetically, to make it clear that results arrive out
of order.
executor.submit schedules the callable to be executed, and returns a future
representing this pending operation.
Store each future so we can later retrieve them with as_completed.
Display a message with the country code and the respective future.
as_completed yields futures as they are completed.
Get the result of this future.
Display the future and its result.

Note that the future.result() call will never block in this example because the fu
ture is coming out of as_completed. Example 17-5 shows the output of one run of
Example 17-4.

Example 17-5. Output of flags_threadpool_ac.py
$ python3 flags_threadpool_ac.py
Scheduled for BR: <Future at 0x100791518 state=running>  
Scheduled for CN: <Future at 0x100791710 state=running>
Scheduled for ID: <Future at 0x100791a90 state=running>
Scheduled for IN: <Future at 0x101807080 state=pending>  
Scheduled for US: <Future at 0x101807128 state=pending>
CN <Future at 0x100791710 state=finished returned str> result: 'CN'  
BR ID <Future at 0x100791518 state=finished returned str> result: 'BR'  
<Future at 0x100791a90 state=finished returned str> result: 'ID'
IN <Future at 0x101807080 state=finished returned str> result: 'IN'
US <Future at 0x101807128 state=finished returned str> result: 'US'

5 flags downloaded in 0.70s
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The futures are scheduled in alphabetical order; the repr() of a future shows
its state: the first three are running, because there are three worker threads.
The last two futures are pending, waiting for worker threads.
The first CN here is the output of download_one in a worker thread; the rest of
the line is the output of download_many.
Here two threads output codes before download_many in the main thread can
display the result of the first thread.

If you run flags_threadpool_ac.py several times, you’ll see the
order of the results varying. Increasing the max_workers argu‐
ment to 5 will increase the variation in the order of the results.
Decreasing it to 1 will make this code run sequentially, and the
order of the results will always be the order of the submit calls.

We saw two variants of the download script using concurrent.futures: Example 17-3
with ThreadPoolExecutor.map and Example 17-4 with futures.as_completed. If you
are curious about the code for flags_asyncio.py, you may peek at Example 18-5 in
Chapter 18.

Strictly speaking, none of the concurrent scripts we tested so far can perform downloads
in parallel. The concurrent.futures examples are limited by the GIL, and the
flags_asyncio.py is single-threaded.

At this point, you may have questions about the informal benchmarks we just did:

• How can flags_threadpool.py perform 5× faster than flags.py if Python threads are
limited by a Global Interpreter Lock (GIL) that only lets one thread run at any time?

• How can flags_asyncio.py perform 5× faster than flags.py when both are single
threaded?

I will answer the second question in “Running Circling Around Blocking Calls” on page
552.

Read on to understand why the GIL is nearly harmless with I/O-bound processing.
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3. This is a limitation of the CPython interpreter, not of the Python language itself. Jython and IronPython are
not limited in this way; but Pypy, the fastest Python interpreter available, also has a GIL.

4. Slide 106 of “Generators: The Final Frontier”.

Blocking I/O and the GIL
The CPython interpreter is not thread-safe internally, so it has a Global Interpreter Lock
(GIL), which allows only one thread at a time to execute Python bytecodes. That’s why
a single Python process usually cannot use multiple CPU cores at the same time.3

When we write Python code, we have no control over the GIL, but a built-in function
or an extension written in C can release the GIL while running time-consuming tasks.
In fact, a Python library coded in C can manage the GIL, launch its own OS threads,
and take advantage of all available CPU cores. This complicates the code of the library
considerably, and most library authors don’t do it.

However, all standard library functions that perform blocking I/O release the GIL when
waiting for a result from the OS. This means Python programs that are I/O bound can
benefit from using threads at the Python level: while one Python thread is waiting for
a response from the network, the blocked I/O function releases the GIL so another
thread can run.

That’s why David Beazley says: “Python threads are great at doing nothing.”4

Every blocking I/O function in the Python standard library relea‐
ses the GIL, allowing other threads to run. The time.sleep()
function also releases the GIL. Therefore, Python threads are per‐
fectly usable in I/O-bound applications, despite the GIL.

Now let’s take a brief look at a simple way to work around the GIL for CPU-bound jobs
using concurrent.futures.

Launching Processes with concurrent.futures
The concurrent.futures documentation page is subtitled “Launching parallel tasks”.
The package does enable truly parallel computations because it supports distributing
work among multiple Python processes using the ProcessPoolExecutor class—thus
bypassing the GIL and leveraging all available CPU cores, if you need to do CPU-bound
processing.

Both ProcessPoolExecutor and ThreadPoolExecutor implement the generic Execu
tor interface, so it’s very easy to switch from a thread-based to a process-based solution
using concurrent.futures.
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There is no advantage in using a ProcessPoolExecutor for the flags download example
or any I/O-bound job. It’s easy to verify this; just change these lines in Example 17-3:

def download_many(cc_list):
    workers = min(MAX_WORKERS, len(cc_list))
    with futures.ThreadPoolExecutor(workers) as executor:

To this:

def download_many(cc_list):
    with futures.ProcessPoolExecutor() as executor:

For simple uses, the only notable difference between the two concrete executor classes
is that ThreadPoolExecutor.__init__ requires a max_workers argument setting the
number of threads in the pool. That is an optional argument in ProcessPoolExecu
tor, and most of the time we don’t use it—the default is the number of CPUs returned
by os.cpu_count(). This makes sense: for CPU-bound processing, it makes no sense
to ask for more workers than CPUs. On the other hand, for I/O-bound processing, you
may use 10, 100, or 1,000 threads in a ThreadPoolExecutor; the best number depends
on what you’re doing and the available memory, and finding the optimal number will
require careful testing.

A few tests revealed that the average time to download the 20 flags increased to 1.8s
with a ProcessPoolExecutor—compared to 1.4s in the original ThreadPoolExecutor
version. The main reason for this is likely to be the limit of four concurrent downloads
on my four-core machine, against 20 workers in the thread pool version.

The value of ProcessPoolExecutor is in CPU-intensive jobs. I did some performance
tests with a couple of CPU-bound scripts:
arcfour_futures.py

Encrypt and decrypt a dozen byte arrays with sizes from 149 KB to 384 KB using a
pure-Python implementation of the RC4 algorithm (listing: Example A-7).

sha_futures.py
Compute the SHA-256 hash of a dozen 1 MB byte arrays with the standard library
hashlib package, which uses the OpenSSL library (listing: Example A-9).

Neither of these scripts do I/O except to display summary results. They build and process
all their data in memory, so I/O does not interfere with their execution time.

Table 17-1 shows the average timings I got after 64 runs of the RC4 example and 48 runs
of the SHA example. The timings include the time to actually spawn the worker pro‐
cesses.
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Table 17-1. Time and speedup factor for the RC4 and SHA examples with one to four
workers on an Intel Core i7 2.7 GHz quad-core machine, using Python 3.4

Workers RC4 time RC4 factor SHA time SHA factor

1 11.48s 1.00x 22.66s 1.00x

2 8.65s 1.33x 14.90s 1.52x

3 6.04s 1.90x 11.91s 1.90x

4 5.58s 2.06x 10.89s 2.08x

In summary, for cryptographic algorithms, you can expect to double the performance
by spawning four worker processes with a ProcessPoolExecutor, if you have four CPU
cores.

For the pure-Python RC4 example, you can get results 3.8 times faster if you use PyPy
and four workers, compared with CPython and four workers. That’s a speedup of 7.8
times in relation to the baseline of one worker with CPython in Table 17-1.

If you are doing CPU-intensive work in Python, you should try
PyPy. The arcfour_futures.py example ran from 3.8 to 5.1 times
faster using PyPy, depending on the number of workers used. I
tested with PyPy 2.4.0, which is compatible with Python 3.2.5, so
it has concurrent.futures in the standard library.

Now let’s investigate the behavior of a thread pool with a demonstration program that
launches a pool with three workers, running five callables that output timestamped
messages.

Experimenting with Executor.map
The simplest way to run several callables concurrently is with the Executor.map func‐
tion we first saw in Example 17-3. Example 17-6 is a script to demonstrate how Execu
tor.map works in some detail. Its output appears in Example 17-7.

Example 17-6. demo_executor_map.py: Simple demonstration of the map method of
ThreadPoolExecutor
from time import sleep, strftime
from concurrent import futures

def display(*args):   
    print(strftime('[%H:%M:%S]'), end=' ')
    print(*args)
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def loiter(n):   
    msg = '{}loiter({}): doing nothing for {}s...'
    display(msg.format('\t'*n, n, n))
    sleep(n)
    msg = '{}loiter({}): done.'
    display(msg.format('\t'*n, n))
    return n * 10   

def main():
    display('Script starting.')
    executor = futures.ThreadPoolExecutor(max_workers=3)   
    results = executor.map(loiter, range(5))   
    display('results:', results)  # .
    display('Waiting for individual results:')
    for i, result in enumerate(results):   
        display('result {}: {}'.format(i, result))

main()

This function simply prints whatever arguments it gets, preceded by a timestamp
in the format [HH:MM:SS].
loiter does nothing except display a message when it starts, sleep for n seconds,
then display a message when it ends; tabs are used to indent the messages
according to the value of n.
loiter returns n * 10 so we can see how to collect results.
Create a ThreadPoolExecutor with three threads.
Submit five tasks to the executor (because there are only three threads, only
three of those tasks will start immediately: the calls loiter(0), loiter(1), and
loiter(2)); this is a nonblocking call.
Immediately display the results of invoking executor.map: it’s a generator, as
the output in Example 17-7 shows.
The enumerate call in the for loop will implicitly invoke next(results), which
in turn will invoke _f.result() on the (internal) _f future representing the first
call, loiter(0). The result method will block until the future is done, therefore
each iteration in this loop will have to wait for the next result to be ready.

I encourage you to run Example 17-6 and see the display being updated incrementally.
While you’re at it, play with the max_workers argument for the ThreadPoolExecutor
and with the range function that produces the arguments for the executor.map call—
or replace it with lists of handpicked values to create different delays.

Example 17-7 shows a sample run of Example 17-6.
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5. Your mileage may vary: with threads, you never know the exact sequencing of events that should happen
practically at the same time; it’s possible that, in another machine, you see loiter(1) starting before
loiter(0) finishes, particularly because sleep always releases the GIL so Python may switch to another
thread even if you sleep for 0s.

Example 17-7. Sample run of demo_executor_map.py from Example 17-6
$ python3 demo_executor_map.py
[15:56:50] Script starting.  
[15:56:50] loiter(0): doing nothing for 0s...  
[15:56:50] loiter(0): done.
[15:56:50]      loiter(1): doing nothing for 1s...  
[15:56:50]              loiter(2): doing nothing for 2s...
[15:56:50] results: <generator object result_iterator at 0x106517168>  
[15:56:50]                      loiter(3): doing nothing for 3s...  
[15:56:50] Waiting for individual results:
[15:56:50] result 0: 0  
[15:56:51]      loiter(1): done. 
[15:56:51]                              loiter(4): doing nothing for 4s...
[15:56:51] result 1: 10  
[15:56:52]              loiter(2): done.  
[15:56:52] result 2: 20
[15:56:53]                      loiter(3): done.
[15:56:53] result 3: 30
[15:56:55]                              loiter(4): done.  
[15:56:55] result 4: 40

This run started at 15:56:50.
The first thread executes loiter(0), so it will sleep for 0s and return even before
the second thread has a chance to start, but YMMV.5

loiter(1) and loiter(2) start immediately (because the thread pool has three
workers, it can run three functions concurrently).
This shows that the results returned by executor.map is a generator; nothing
so far would block, regardless of the number of tasks and the max_workers
setting.
Because loiter(0) is done, the first worker is now available to start the fourth
thread for loiter(3).
This is where execution may block, depending on the parameters given to the
loiter calls: the __next__ method of the results generator must wait until the
first future is complete. In this case, it won’t block because the call to loi
ter(0) finished before this loop started. Note that everything up to this point
happened within the same second: 15:56:50.
loiter(1) is done one second later, at 15:56:51. The thread is freed to start
loiter(4).
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The result of loiter(1) is shown: 10. Now the for loop will block waiting for
the result of loiter(2).
The pattern repeats: loiter(2) is done, its result is shown; same with loiter(3).
There is a 2s delay until loiter(4) is done, because it started at 15:56:51 and
did nothing for 4s.

The Executor.map function is easy to use but it has a feature that may or may not be
helpful, depending on your needs: it returns the results exactly in the same order as the
calls are started: if the first call takes 10s to produce a result, and the others take 1s each,
your code will block for 10s as it tries to retrieve the first result of the generator returned
by map. After that, you’ll get the remaining results without blocking because they will
be done. That’s OK when you must have all the results before proceeding, but often it’s
preferable to get the results as they are ready, regardless of the order they were submitted.
To do that, you need a combination of the Executor.submit method and the fu
tures.as_completed function, as we saw in Example 17-4. We’ll come back to this
technique in “Using futures.as_completed” on page 527.

The combination of executor.submit and futures.as_comple
ted is more flexible than executor.map because you can submit
different callables and arguments, while executor.map is de‐
signed to run the same callable on the different arguments. In
addition, the set of futures you pass to futures.as_completed may
come from more than one executor—perhaps some were created
by a ThreadPoolExecutor instance while others are from a Proc
essPoolExecutor.

In the next section, we will resume the flag download examples with new requirements
that will force us to iterate over the results of futures.as_completed instead of using
executor.map.

Downloads with Progress Display and Error Handling
As mentioned, the scripts in “Example: Web Downloads in Three Styles” on page 505
have no error handling to make them easier to read and to contrast the structure of the
three approaches: sequential, threaded, and asynchronous.

In order to test the handling of a variety of error conditions, I created the flags2
examples:
flags2_common.py

This module contains common functions and settings used by all flags2 examples,
including a main function, which takes care of command-line parsing, timing, and
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reporting results. This is really support code, not directly relevant to the subject of
this chapter, so the source code is in Appendix A, Example A-10.

flags2_sequential.py
A sequential HTTP client with proper error handling and progress bar display. Its
download_one function is also used by flags2_threadpool.py.

flags2_threadpool.py
Concurrent HTTP client based on futures.ThreadPoolExecutor to demonstrate
error handling and integration of the progress bar.

flags2_asyncio.py
Same functionality as previous example but implemented with asyncio and
aiohttp. This will be covered in “Enhancing the asyncio downloader Script” on
page 554, in Chapter 18.

Be Careful When Testing Concurrent Clients
When testing concurrent HTTP clients on public HTTP servers,
you may generate many requests per second, and that’s how denial-
of-service (DoS) attacks are made. We don’t want to attack any‐
one, just learn how to build high-performance clients. Carefully
throttle your clients when hitting public servers. For high-
concurrency experiments, set up a local HTTP server for testing.
Instructions for doing it are in the README.rst file in the 17-
futures/countries/ directory of the Fluent Python code repository.

The most visible feature of the flags2 examples is that they have an animated, text-
mode progress bar implemented with the TQDM package. I posted a 108s video on
YouTube to show the progress bar and contrast the speed of the three flags2 scripts.
In the video, I start with the sequential download, but I interrupt it after 32s because it
was going to take more than 5 minutes to hit on 676 URLs and get 194 flags; I then run
the threaded and asyncio scripts three times each, and every time they complete the
job in 6s or less (i.e., more than 60 times faster). Figure 17-1 shows two screenshots:
during and after running flags2_threadpool.py.
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Figure 17-1. Top-left: flags2_threadpool.py running with live progress bar generated by
tqdm; bottom-right: same terminal window after the script is finished.

TQDM is very easy to use, the simplest example appears in an animated .gif in the
project’s README.md. If you type the following code in the Python console after in‐
stalling the tqdm package, you’ll see an animated progress bar were the comment is:

>>> import time
>>> from tqdm import tqdm
>>> for i in tqdm(range(1000)):
...     time.sleep(.01)
...
>>> # -> progress bar will appear here <-

Besides the neat effect, the tqdm function is also interesting conceptually: it consumes
any iterable and produces an iterator which, while it’s consumed, displays the progress
bar and estimates the remaining time to complete all iterations. To compute that esti‐
mate, tqdm needs to get an iterable that has a len, or receive as a second argument the
expected number of items. Integrating TQDM with our flags2 examples provide an
opportunity to look deeper into how the concurrent scripts actually work, by forcing
us to use the futures.as_completed and the asyncio.as_completed functions so that
tqdm can display progress as each future is completed.

The other feature of the flags2 example is a command-line interface. All three scripts
accept the same options, and you can see them by running any of the scripts with the
-h option. Example 17-8 shows the help text.

Example 17-8. Help screen for the scripts in the flags2 series
$ python3 flags2_threadpool.py -h
usage: flags2_threadpool.py [-h] [-a] [-e] [-l N] [-m CONCURRENT] [-s LABEL]
                            [-v]
                            [CC [CC ...]]
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6. Before configuring Cloudflare, I got HTTP 503 errors—Service Temporarily Unavailable—when testing the
scripts with a few dozen concurrent requests on my inexpensive shared host account. Now those errors are
gone.

Download flags for country codes. Default: top 20 countries by population.

positional arguments:
  CC                    country code or 1st letter (eg. B for BA...BZ)

optional arguments:
  -h, --help            show this help message and exit
  -a, --all             get all available flags (AD to ZW)
  -e, --every           get flags for every possible code (AA...ZZ)
  -l N, --limit N       limit to N first codes
  -m CONCURRENT, --max_req CONCURRENT
                        maximum concurrent requests (default=30)
  -s LABEL, --server LABEL
                        Server to hit; one of DELAY, ERROR, LOCAL, REMOTE
                        (default=LOCAL)
  -v, --verbose         output detailed progress info

All arguments are optional. The most important arguments are discussed next.

One option you can’t ignore is -s/--server: it lets you choose which HTTP server and
base URL will be used in the test. You can pass one of four strings to determine where
the script will look for the flags (the strings are case insensitive):
LOCAL

Use http://localhost:8001/flags; this is the default. You should configure a
local HTTP server to answer at port 8001. I used Nginx for my tests. The RE‐
ADME.rst file for this chapter’s example code explains how to install and configure
it.

REMOTE

Use http://flupy.org/data/flags; that is a public website owned by me, hosted
on a shared server. Please do not pound it with too many concurrent requests. The
flupy.org domain is handled by a free account on the Cloudflare CDN so you may
notice that the first downloads are slower, but they get faster when the CDN cache
warms up.6

DELAY

Use http://localhost:8002/flags; a proxy delaying HTTP responses should be
listening at port 8002. I used a Mozilla Vaurien in front of my local Nginx to intro‐
duce delays. The previously mentioned README.rst file has instructions for run‐
ning a Vaurien proxy.
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ERROR

Use http://localhost:8003/flags; a proxy introducing HTTP errors and delay‐
ing responses should be installed at port 8003. I used a different Vaurien configu‐
ration for this.

The LOCAL option only works if you configure and start a local
HTTP server on port 8001. The DELAY and ERROR options require
proxies listening on ports 8002 and 8003. Configuring Nginx and
Mozilla Vaurien to enable these options is explained in the 17-
futures/countries/README.rst file in the Fluent Python code
repository on GitHub.

By default, each flags2 script will fetch the flags of the 20 most populous countries
from the LOCAL server (http://localhost:8001/flags) using a default number of
concurrent connections, which varies from script to script. Example 17-9 shows a sam‐
ple run of the flags2_sequential.py script using all defaults.

Example 17-9. Running flags2_sequential.py with all defaults: LOCAL site, top-20
flags, 1 concurrent connection
$ python3 flags2_sequential.py
LOCAL site: http://localhost:8001/flags
Searching for 20 flags: from BD to VN
1 concurrent connection will be used.
--------------------
20 flags downloaded.
Elapsed time: 0.10s

You can select which flags will be downloaded in several ways. Example 17-10 shows
how to download all flags with country codes starting with the letters A, B, or C.

Example 17-10. Run flags2_threadpool.py to fetch all flags with country codes prefixes
A, B, or C from DELAY server
$ python3 flags2_threadpool.py -s DELAY a b c
DELAY site: http://localhost:8002/flags
Searching for 78 flags: from AA to CZ
30 concurrent connections will be used.
--------------------
43 flags downloaded.
35 not found.
Elapsed time: 1.72s

Regardless of how the country codes are selected, the number of flags to fetch can be
limited with the -l/--limit option. Example 17-11 demonstrates how to run exactly
100 requests, combining the -a option to get all flags with -l 100.
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Example 17-11. Run flags2_asyncio.py to get 100 flags (-al 100) from the ERROR serv‐
er, using 100 concurrent requests (-m 100)
$ python3 flags2_asyncio.py -s ERROR -al 100 -m 100
ERROR site: http://localhost:8003/flags
Searching for 100 flags: from AD to LK
100 concurrent connections will be used.
--------------------
73 flags downloaded.
27 errors.
Elapsed time: 0.64s

That’s the user interface of the flags2 examples. Let’s see how they are implemented.

Error Handling in the flags2 Examples
The common strategy adopted in all three examples to deal with HTTP errors is that
404 errors (Not Found) are handled by the function in charge of downloading a single
file (download_one). Any other exception propagates to be handled by the down
load_many function.

Again, we’ll start by studying the sequential code, which is easier to follow—and mostly
reused by the thread pool script. Example 17-12 shows the functions that perform the
actual downloads in the flags2_sequential.py and flags2_threadpool.py scripts.

Example 17-12. flags2_sequential.py: basic functions in charge of downloading; both
are reused in flags2_threadpool.py
def get_flag(base_url, cc):
    url = '{}/{cc}/{cc}.gif'.format(base_url, cc=cc.lower())
    resp = requests.get(url)
    if resp.status_code != 200:   
        resp.raise_for_status()
    return resp.content

def download_one(cc, base_url, verbose=False):
    try:
        image = get_flag(base_url, cc)
    except requests.exceptions.HTTPError as exc:   
        res = exc.response
        if res.status_code == 404:
            status = HTTPStatus.not_found   
            msg = 'not found'
        else:   
            raise
    else:
        save_flag(image, cc.lower() + '.gif')
        status = HTTPStatus.ok
        msg = 'OK'
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    if verbose:   
        print(cc, msg)

    return Result(status, cc)   

get_flag does no error handling, it uses requests.Response.raise_for_sta
tus to raise an exception for any HTTP code other than 200.
download_one catches requests.exceptions.HTTPError to handle HTTP code
404 specifically…
…by setting its local status to HTTPStatus.not_found; HTTPStatus is an Enum
imported from flags2_common (Example A-10).
Any other HTTPError exception is re-raised; other exceptions will just propagate
to the caller.
If the -v/--verbose command-line option is set, the country code and status
message will be displayed; this how you’ll see progress in the verbose mode.
The Result namedtuple returned by download_one will have a status field with
a value of HTTPStatus.not_found or HTTPStatus.ok.

Example 17-13 lists the sequential version of the download_many function. This code is
straightforward, but its worth studying to contrast with the concurrent versions coming
up. Focus on how it reports progress, handles errors, and tallies downloads.

Example 17-13. flags2_sequential.py: the sequential implementation of down‐
load_many
def download_many(cc_list, base_url, verbose, max_req):
    counter = collections.Counter()   
    cc_iter = sorted(cc_list)   
    if not verbose:
        cc_iter = tqdm.tqdm(cc_iter)   
    for cc in cc_iter:   
        try:
            res = download_one(cc, base_url, verbose)   
        except requests.exceptions.HTTPError as exc:   
            error_msg = 'HTTP error {res.status_code} - {res.reason}'
            error_msg = error_msg.format(res=exc.response)
        except requests.exceptions.ConnectionError as exc:   
            error_msg = 'Connection error'
        else:   
            error_msg = ''
            status = res.status

        if error_msg:
            status = HTTPStatus.error   
        counter[status] += 1   
        if verbose and error_msg:  
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            print('*** Error for {}: {}'.format(cc, error_msg))

    return counter   

This Counter will tally the different download outcomes: HTTPStatus.ok,
HTTPStatus.not_found, or HTTPStatus.error.
cc_iter holds the list of the country codes received as arguments, ordered
alphabetically.
If not running in verbose mode, cc_iter is passed to the tqdm function, which
will return an iterator that yields the items in cc_iter while also displaying the
animated progress bar.
This for loop iterates over cc_iter and…
…performs the download by successive calls to download_one.
HTTP-related exceptions raised by get_flag and not handled by down
load_one are handled here.
Other network-related exceptions are handled here. Any other exception will
abort the script, because the flags2_common.main function that calls down
load_many has no try/except.
If no exception escaped download_one, then the status is retrieved from the
HTTPStatus namedtuple returned by download_one.
If there was an error, set the local status accordingly.
Increment the counter by using the value of the HTTPStatus Enum as key.
If running in verbose mode, display the error message for the current country
code, if any.
Return the counter so that the main function can display the numbers in its final
report.

We’ll now study the refactored thread pool example, flags2_threadpool.py.

Using futures.as_completed
In order to integrate the TQDM progress bar and handle errors on each request, the
flags2_threadpool.py script uses futures.ThreadPoolExecutor with the
futures.as_completed function we’ve already seen. Example 17-14 is the full listing of
flags2_threadpool.py. Only the download_many function is implemented; the other
functions are reused from the flags2_common and flags2_sequential modules.

Example 17-14. flags2_threadpool.py: full listing
import collections
from concurrent import futures
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import requests
import tqdm   

from flags2_common import main, HTTPStatus   
from flags2_sequential import download_one   

DEFAULT_CONCUR_REQ = 30   
MAX_CONCUR_REQ = 1000   

def download_many(cc_list, base_url, verbose, concur_req):
    counter = collections.Counter()
    with futures.ThreadPoolExecutor(max_workers=concur_req) as executor:   
        to_do_map = {}   
        for cc in sorted(cc_list):   
            future = executor.submit(download_one,
                            cc, base_url, verbose)   
            to_do_map[future] = cc   
        done_iter = futures.as_completed(to_do_map)   
        if not verbose:
            done_iter = tqdm.tqdm(done_iter, total=len(cc_list))   
        for future in done_iter:   
            try:
                res = future.result()   
            except requests.exceptions.HTTPError as exc:   
                error_msg = 'HTTP {res.status_code} - {res.reason}'
                error_msg = error_msg.format(res=exc.response)
            except requests.exceptions.ConnectionError as exc:
                error_msg = 'Connection error'
            else:
                error_msg = ''
                status = res.status

            if error_msg:
                status = HTTPStatus.error
            counter[status] += 1
            if verbose and error_msg:
                cc = to_do_map[future]   
                print('*** Error for {}: {}'.format(cc, error_msg))

    return counter

if __name__ == '__main__':
    main(download_many, DEFAULT_CONCUR_REQ, MAX_CONCUR_REQ)

Import the progress-bar display library.
Import one function and one Enum from the flags2_common module.
Reuse the donwload_one from flags2_sequential (Example 17-12).
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If the -m/--max_req command-line option is not given, this will be the
maximum number of concurrent requests, implemented as the size of the thread
pool; the actual number may be smaller, if the number of flags to download is
smaller.
MAX_CONCUR_REQ caps the maximum number of concurrent requests regardless
of the number of flags to download or the -m/--max_req command-line option;
it’s a safety precaution.
Create the executor with max_workers set to concur_req, computed by the main
function as the smaller of: MAX_CONCUR_REQ, the length of cc_list, and the value
of the -m/--max_req command-line option. This avoids creating more threads
than necessary.
This dict will map each Future instance—representing one download—with
the respective country code for error reporting.
Iterate over the list of country codes in alphabetical order. The order of the results
will depend on the timing of the HTTP responses more than anything, but if
the size of the thread pool (given by concur_req) is much smaller than
len(cc_list), you may notice the downloads batched alphabetically.
Each call to executor.submit schedules the execution of one callable and
returns a Future instance. The first argument is the callable, the rest are the
arguments it will receive.
Store the future and the country code in the dict.
futures.as_completed returns an iterator that yields futures as they are done.
If not in verbose mode, wrap the result of as_completed with the tqdm function
to display the progress bar; because done_iter has no len, we must tell tqdm
what is the expected number of items as the total= argument, so tqdm can
estimate the work remaining.
Iterate over the futures as they are completed.
Calling the result method on a future either returns the value returned by the
callable, or raises whatever exception was caught when the callable was executed.
This method may block waiting for a resolution, but not in this example because
as_completed only returns futures that are done.
Handle the potential exceptions; the rest of this function is identical to the
sequential version of download_many (Example 17-13), except for the next
callout.
To provide context for the error message, retrieve the country code from the
to_do_map using the current future as key. This was not necessary in the
sequential version because we were iterating over the list of country codes, so
we had the current cc; here we are iterating over the futures.

Downloads with Progress Display and Error Handling | 529



7. The threading module has been available since Python 1.5.1 (1998), yet some insist on using the old thread
module. In Python 3, it was renamed to _thread to highlight the fact that it’s just a low-level implementation
detail, and shouldn’t be used in application code.

Example 17-14 uses an idiom that’s very useful with futures.as_completed: building
a dict to map each future to other data that may be useful when the future is completed.
Here the to_do_map maps each future to the country code assigned to it. This makes it
easy to do follow-up processing with the result of the futures, despite the fact that they
are produced out of order.

Python threads are well suited for I/O-intensive applications, and the concurrent.fu
tures package makes them trivially simple to use for certain use cases. This concludes
our basic introduction to concurrent.futures. Let’s now discuss alternatives for when
ThreadPoolExecutor or ProcessPoolExecutor are not suitable.

Threading and Multiprocessing Alternatives
Python has supported threads since its release 0.9.8 (1993); concurrent.futures is just
the latest way of using them. In Python 3, the original thread module was deprecated
in favor of the higher-level threading module.7 If futures.ThreadPoolExecutor is not
flexible enough for a certain job, you may need to build your own solution out of basic
threading components such as Thread, Lock, Semaphore, etc.—possibly using the
thread-safe queues of the queue module for passing data between threads. Those moving
parts are encapsulated by futures.ThreadPoolExecutor.

For CPU-bound work, you need to sidestep the GIL by launching multiple processes.
The futures.ProcessPoolExecutor is the easiest way to do it. But again, if your use
case is complex, you’ll need more advanced tools. The multiprocessing package em‐
ulates the threading API but delegates jobs to multiple processes. For simple programs,
multiprocessing can replace threading with few changes. But multiprocessing also
offers facilities to solve the biggest challenge faced by collaborating processes: how to
pass around data.

Chapter Summary
We started the chapter by comparing two concurrent HTTP clients with a sequential
one, demonstrating significant performance gains over the sequential script.

After studying the first example based on concurrent.futures, we took a closer look
at future objects, either instances of concurrent.futures.Future, or asyncio.Fu
ture, emphasizing what these classes have in common (their differences will be em‐
phasized in Chapter 18). We saw how to create futures by calling Executor.sub
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mit(…), and iterate over completed futures with concurrent.futures.as_comple
ted(…).

Next, we saw why Python threads are well suited for I/O-bound applications, despite
the GIL: every standard library I/O function written in C releases the GIL, so while a
given thread is waiting for I/O, the Python scheduler can switch to another thread. We
then discussed the use of multiple processes with the concurrent.futures.Proces
sPoolExecutor class, to go around the GIL and use multiple CPU cores to run cryp‐
tographic algorithms, achieving speedups of more than 100% when using four workers.

In the following section, we took a close look at how the concurrent.futures.Thread
PoolExecutor works, with a didactic example launching tasks that did nothing for a
few seconds, except displaying their status with a timestamp.

Next we went back to the flag downloading examples. Enhancing them with a progress
bar and proper error handling prompted further exploration of the future.as_comple
ted generator function showing a common pattern: storing futures in a dict to link
further information to them when submitting, so that we can use that information when
the future comes out of the as_completed iterator.

We concluded the coverage of concurrency with threads and processes with a brief
reminder of the lower-level, but more flexible threading and multiprocessing mod‐
ules, which represent the traditional way of leveraging threads and processes in Python.

Further Reading
The concurrent.futures package was contributed by Brian Quinlan, who presented
it in a great talk titled “The Future Is Soon!” at PyCon Australia 2010. Quinlan’s talk has
no slides; he shows what the library does by typing code directly in the Python console.
As a motivating example, the presentation features a short video with XKCD cartoonist/
programmer Randall Munroe making an unintended DOS attack on Google Maps to
build a colored map of driving times around his city. The formal introduction to the
library is PEP 3148 - futures - execute computations asynchronously. In the PEP,
Quinlan wrote that the concurrent.futures library was “heavily influenced by the Java
java.util.concurrent package.”

Parallel Programming with Python (Packt), by Jan Palach, covers several tools for con‐
current programming, including the concurrent.futures, threading, and multiproc
essing modules. It goes beyond the standard library to discuss Celery, a task queue
used to distribute work across threads and processes, even on different machines. In
the Django community, Celery is probably the most widely used system to offload heavy
tasks such as PDF generation to other processes, thus avoiding delays in producing an
HTTP response.
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8. Thanks to Lucas Brunialti for sending me a link to this talk.

In the Beazley and Jones Python Cookbook, 3E (O’Reilly) there are recipes using con
current.futures starting with “Recipe 11.12. Understanding Event-Driven I/O.”
“Recipe 12.7. Creating a Thread Pool” shows a simple TCP echo server, and “Recipe
12.8. Performing Simple Parallel Programming” offers a very practical example: ana‐
lyzing a whole directory of gzip compressed Apache logfiles with the help of a Proces
sPoolExecutor. For more about threads, the entire Chapter 12 of Beazley and Jones is
great, with special mention to “Recipe 12.10. Defining an Actor Task,” which demon‐
strates the Actor model: a proven way of coordinating threads through message passing.

Brett Slatkin’s Effective Python (Addison-Wesley) has a multitopic chapter about con‐
currency, including coverage of coroutines, concurrent.futures with threads and
processes, and the use of locks and queues for thread programming without the Thread
PoolExecutor.

High Performance Python (O’Reilly) by Micha Gorelick and Ian Ozsvald and The Python
Standard Library by Example (Addison-Wesley), by Doug Hellmann, also cover threads
and processes.

For a modern take on concurrency without threads or callbacks, Seven Concurrency
Models in Seven Weeks, by Paul Butcher (Pragmatic Bookshelf) is an excellent read. I
love its subtitle: “When Threads Unravel.” In that book, threads and locks are covered
in Chapter 1, and the remaining six chapters are devoted to modern alternatives to
concurrent programming, as supported by different languages. Python, Ruby, and Java‐
Script are not among them.

If you are intrigued about the GIL, start with the Python Library and Extension FAQ
(“Can’t we get rid of the Global Interpreter Lock?”). Also worth reading are posts by
Guido van Rossum and Jesse Noller (contributor of the multiprocessing package): “It
isn’t Easy to Remove the GIL” and “Python Threads and the Global Interpreter Lock.”
Finally, David Beazley has a detailed exploration on the inner workings of the GIL:
“Understanding the Python GIL.”8 In slide #54 of the presentation, Beazley reports some
alarming results, including a 20× increase in processing time for a particular benchmark
with the new GIL algorithm introduced in Python 3.2. However, Beazley apparently
used an empty while True: pass to simulate CPU-bound work, and that is not realistic.
The issue is not significant with real workloads, according to a comment by Antoine
Pitrou—who implemented the new GIL algorithm—in the bug report submitted by
Beazley.

While the GIL is real problem and is not likely to go away soon, Jesse Noller and Richard
Oudkerk contributed a library to make it easier to work around it in CPU-bound ap‐
plications: the multiprocessing package, which emulates the threading API across
processes, along with supporting infrastructure of locks, queues, pipes, shared memory,
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9. Slide #9 from “A Curious Course on Coroutines and Concurrency,” tutorial presented at PyCon
2009.

etc. The package was introduced in PEP 371 — Addition of the multiprocessing package
to the standard library. The official documentation for the package is a 93 KB .rst file—
that’s about 63 pages—making it one of the longest chapters in the Python standard
library. Multiprocessing is the basis for the concurrent.futures.ProcessPoolExecu
tor.

For CPU- and data-intensive parallel processing, a new option with a lot of momentum
in the big data community is the Apache Spark distributed computing engine, offering
a friendly Python API and support for Python objects as data, as shown in their examples
page.

Two elegant and super easy libraries for parallelizing tasks over processes are lelo by
João S. O. Bueno and python-parallelize by Nat Pryce. The lelo package defines a
@parallel decorator that you can apply to any function to magically make it unblocking:
when you call the decorated function, its execution is started in another process. Nat
Pryce’s python-parallelize package provides a parallelize generator that you can
use to distribute the execution of a for loop over multiple CPUs. Both packages use the
multiprocessing module under the covers.

Soapbox
Thread Avoidance

Concurrency: one of the most difficult topics in computer science (usually best avoi‐
ded).9

— David Beazley
 Python coach and mad scientist

I agree with the apparently contradictory quotes by David Beazley, above, and Michele
Simionato at the start of this chapter. After attending a concurrency course at the uni‐
versity—in which “concurrent programming” was equated to managing threads and
locks—I came to the conclusion that I don’t want to manage threads and locks myself,
any more than I want to manage memory allocation and deallocation. Those jobs are
best carried out by the systems programmers who have the know-how, the inclination,
and the time to get them right—hopefully.

That’s why I think the concurrent.futures package is exciting: it treats threads, pro‐
cesses, and queues as infrastructure at your service, not something you have to deal with
directly. Of course, it’s designed with simple jobs in mind, the so-called “embarrassingly
parallel” problems. But that’s a large slice of the concurrency problems we face when
writing applications—as opposed to operating systems or database servers, as Simionato
points out in that quote.
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For “nonembarrassing” concurrency problems, threads and locks are not the answer
either. Threads will never disappear at the OS level, but every programming language
I’ve found exciting in the last several years provides better, higher-level, concurrency
abstractions, as the Seven Concurrency Models book demonstrates. Go, Elixir, and Clo‐
jure are among them. Erlang—the implementation language of Elixir—is a prime ex‐
ample of a language designed from the ground up with concurrency in mind. It doesn’t
excite me for a simple reason: I find its syntax ugly. Python spoiled me that way.

José Valim, well-known as a Ruby on Rails core contributor, designed Elixir with a
pleasant, modern syntax. Like Lisp and Clojure, Elixir implements syntactic macros.
That’s a double-edged sword. Syntactic macros enable powerful DSLs, but the prolifer‐
ation of sublanguages can lead to incompatible codebases and community fragmenta‐
tion. Lisp drowned in a flood of macros, with each Lisp shop using its own arcane dialect.
Standardizing around Common Lisp resulted in a bloated language. I hope José Valim
can inspire the Elixir community to avoid a similar outcome.

Like Elixir, Go is a modern language with fresh ideas. But, in some regards, it’s a con‐
servative language, compared to Elixir. Go doesn’t have macros, and its syntax is simpler
than Python’s. Go doesn’t support inheritance or operator overloading, and it offers
fewer opportunities for metaprogramming than Python. These limitations are consid‐
ered features. They lead to more predictable behavior and performance. That’s a big plus
in the highly concurrent, mission-critical settings where Go aims to replace C++, Java,
and Python.

While Elixir and Go are direct competitors in the high-concurrency space, their design
philosophies appeal to different crowds. Both are likely to thrive. But in the history of
programming languages, the conservative ones tend to attract more coders. I’d like to
become fluent in Go and Elixir.

About the GIL

The GIL simplifies the implementation of the CPython interpreter and of extensions
written in C, so we can thank the GIL for the vast number of extensions in C available
for Python—and that is certainly one of the key reasons why Python is so popular today.

For many years, I was under the impression that the GIL made Python threads nearly
useless beyond toy applications. It was not until I discovered that every blocking I/O call
in the standard library releases the GIL that I realized Python threads are excellent for
I/O-bound systems—the kind of applications customers usually pay me to develop,
given my professional experience.
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Concurrency in the Competition

MRI—the reference implementation of Ruby—also has a GIL, so its threads are under
the same limitations as Python’s. Meanwhile, JavaScript interpreters don’t support user-
level threads at all; asynchronous programming with callbacks is their only path to
concurrency. I mention this because Ruby and JavaScript are the closest direct compet‐
itors to Python as general-purpose, dynamic programming languages.

Looking at the concurrency-savvy new crop of languages, Go and Elixir are probably
the ones best positioned to eat Python’s lunch. But now we have asyncio. If hordes of
people believe Node.js with raw callbacks is a viable platform for concurrent program‐
ming, how hard can it be to win them over to Python when the asyncio ecosystem
matures? But that’s a topic for the next “Soapbox” on page 580.
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1. Slide 5 of the talk “Concurrency Is Not Parallelism (It’s Better)”.

2. Imre Simon (1943–2009) was a pioneer of computer science in Brazil who made seminal contributions to
Automata Theory and started the field of Tropical Mathematics. He was also an advocate of free software and
free culture. I was fortunate to study, work, and hang out with him.

CHAPTER 18

Concurrency with asyncio

Concurrency is about dealing with lots of things at once.
Parallelism is about doing lots of things at once.
Not the same, but related.
One is about structure, one is about execution.
Concurrency provides a way to structure a solution to solve a problem that may (but not
necessarily) be parallelizable.1

— Rob Pike
 Co-inventor of the Go language

Professor Imre Simon2 liked to say there are two major sins in science: using different
words to mean the same thing and using one word to mean different things. If you do
any research on concurrent or parallel programming you will find different definitions
for “concurrency” and “parallelism.” I will adopt the informal definitions by Rob Pike,
quoted above.

For real parallelism, you must have multiple cores. A modern laptop has four CPU cores
but is routinely running more than 100 processes at any given time under normal, casual
use. So, in practice, most processing happens concurrently and not in parallel. The
computer is constantly dealing with 100+ processes, making sure each has an oppor‐
tunity to make progress, even if the CPU itself can’t do more than four things at once.
Ten years ago we used machines that were also able to handle 100 processes concurrently,
but on a single core. That’s why Rob Pike titled that talk “Concurrency Is Not Parallelism
(It’s Better).”
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This chapter introduces asyncio, a package that implements concurrency with corou‐
tines driven by an event loop. It’s one of the largest and most ambitious libraries ever
added to Python. Guido van Rossum developed asyncio outside of the Python repos‐
itory and gave the project a code name of “Tulip”—so you’ll see references to that flower
when researching this topic online. For example, the main discussion group is still called
python-tulip.

Tulip was renamed to asyncio when it was added to the standard library in Python 3.4.
It’s also compatible with Python 3.3—you can find it on PyPI under the new official
name. Because it uses yield from expressions extensively, asyncio is incompatible with
older versions of Python.

The Trollius project—also named after a flower—is a backport of
asyncio to Python 2.6 and newer, replacing yield from with
yield and clever callables named From and Return. A yield from
… expression becomes yield From(…); and when a coroutine needs
to return a result, you write raise Return(result) instead of
return result. Trollius is led by Victor Stinner, who is also an
asyncio core developer, and who kindly agreed to review this
chapter as this book was going into production.

In this chapter we’ll see:

• A comparison between a simple threaded program and the asyncio equivalent,
showing the relationship between threads and asynchronous tasks

• How the asyncio.Future class differs from concurrent.futures.Future
• Asynchronous versions of the flag download examples from Chapter 17
• How asynchronous programming manages high concurrency in network applica‐

tions, without using threads or processes
• How coroutines are a major improvement over callbacks for asynchronous pro‐

gramming
• How to avoid blocking the event loop by offloading blocking operations to a thread

pool
• Writing asyncio servers, and how to rethink web applications for high concurrency
• Why asyncio is poised to have a big impact in the Python ecosystem

Let’s get started with the simple example contrasting threading and asyncio.
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Thread Versus Coroutine: A Comparison
During a discussion about threads and the GIL, Michele Simionato posted a simple but
fun example using multiprocessing to display an animated spinner made with the
ASCII characters "|/-\" on the console while some long computation is running.

I adapted Simionato’s example to use a thread with the Threading module and then a
coroutine with asyncio, so you can see the two examples side by side and understand
how to code concurrent behavior without threads.

The output shown in Examples 18-1 and 18-2 is animated, so you really should run the
scripts to see what happens. If you’re in the subway (or somewhere else without a WiFi
connection), take a look at Figure 18-1 and imagine the \ bar before the word “thinking”
is spinning.

Figure 18-1. The scripts spinner_thread.py and spinner_asyncio.py produce similar
output: the repr of a spinner object and the text Answer: 42. In the screenshot, spin‐
ner_asyncio.py is still running, and the spinner message \ thinking! is shown; when the
script ends, that line will be replaced by the Answer: 42.

Let’s review the spinner_thread.py script first (Example 18-1).

Example 18-1. spinner_thread.py: animating a text spinner with a thread
import threading
import itertools
import time
import sys

class Signal:   
    go = True

def spin(msg, signal):   

Thread Versus Coroutine: A Comparison | 539

http://bit.ly/1Ox3vWA
http://bit.ly/1Ox3vWA


    write, flush = sys.stdout.write, sys.stdout.flush
    for char in itertools.cycle('|/-\\'):   
        status = char + ' ' + msg
        write(status)
        flush()
        write('\x08' * len(status))   
        time.sleep(.1)
        if not signal.go:   
            break
    write(' ' * len(status) + '\x08' * len(status))   

def slow_function():   
    # pretend waiting a long time for I/O
    time.sleep(3)   
    return 42

def supervisor():   
    signal = Signal()
    spinner = threading.Thread(target=spin,
                               args=('thinking!', signal))
    print('spinner object:', spinner)   
    spinner.start()   
    result = slow_function()   
    signal.go = False   
    spinner.join()   
    return result

def main():
    result = supervisor()   
    print('Answer:', result)

if __name__ == '__main__':
    main()

This class defines a simple mutable object with a go attribute we’ll use to control
the thread from outside.
This function will run in a separate thread. The signal argument is an instance
of the Signal class just defined.
This is actually an infinite loop because itertools.cycle produces items
cycling from the given sequence forever.
The trick to do text-mode animation: move the cursor back with backspace
characters (\x08).
If the go attribute is no longer True, exit the loop.
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Clear the status line by overwriting with spaces and moving the cursor back to
the beginning.
Imagine this is some costly computation.
Calling sleep will block the main thread, but crucially, the GIL will be released
so the secondary thread will proceed.
This function sets up the secondary thread, displays the thread object, runs the
slow computation, and kills the thread.
Display the secondary thread object. The output looks like <Thread(Thread-1,
initial)>.
Start the secondary thread.
Run slow_function; this blocks the main thread. Meanwhile, the spinner is
animated by the secondary thread.
Change the state of the signal; this will terminate the for loop inside the spin
function.
Wait until the spinner thread finishes.
Run the supervisor function.

Note that, by design, there is no API for terminating a thread in Python. You must send
it a message to shut down. Here I used the signal.go attribute: when the main thread
sets it to false, the spinner thread will eventually notice and exit cleanly.

Now let’s see how the same behavior can be achieved with an @asyncio.coroutine
instead of a thread.

As noted in the “Chapter Summary” on page 498 (Chapter 16),
asyncio uses a stricter definition of “coroutine.” A coroutine
suitable for use with the asyncio API must use yield from and
not yield in its body. Also, an asyncio coroutine should be driv‐
en by a caller invoking it through yield from or by passing the
coroutine to one of the asyncio functions such as asyn
cio.async(…) and others covered in this chapter. Finally, the
@asyncio.coroutine decorator should be applied to coroutines,
as shown in the examples.

Take a look at Example 18-2.

Example 18-2. spinner_asyncio.py: animating a text spinner with a coroutine
import asyncio
import itertools
import sys
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@asyncio.coroutine   
def spin(msg):   
    write, flush = sys.stdout.write, sys.stdout.flush
    for char in itertools.cycle('|/-\\'):
        status = char + ' ' + msg
        write(status)
        flush()
        write('\x08' * len(status))
        try:
            yield from asyncio.sleep(.1)   
        except asyncio.CancelledError:   
            break
    write(' ' * len(status) + '\x08' * len(status))

@asyncio.coroutine
def slow_function():   
    # pretend waiting a long time for I/O
    yield from asyncio.sleep(3)   
    return 42

@asyncio.coroutine
def supervisor():   
    spinner = asyncio.async(spin('thinking!'))   
    print('spinner object:', spinner)   
    result = yield from slow_function()   
    spinner.cancel()   
    return result

def main():
    loop = asyncio.get_event_loop()   
    result = loop.run_until_complete(supervisor())   
    loop.close()
    print('Answer:', result)

if __name__ == '__main__':
    main()

Coroutines intended for use with asyncio should be decorated with @asyn
cio.coroutine. This not mandatory, but is highly advisable. See explanation
following this listing.
Here we don’t need the signal argument that was used to shut down the thread
in the spin function of Example 18-1.
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Use yield from asyncio.sleep(.1) instead of just time.sleep(.1), to sleep
without blocking the event loop.
If asyncio.CancelledError is raised after spin wakes up, it’s because
cancellation was requested, so exit the loop.
slow_function is now a coroutine, and uses yield from to let the event loop
proceed while this coroutine pretends to do I/O by sleeping.
The yield from asyncio.sleep(3) expression handles the control flow to the
main loop, which will resume this coroutine after the sleep delay.
supervisor is now a coroutine as well, so it can drive slow_function with yield
from.
asyncio.async(…) schedules the spin coroutine to run, wrapping it in a Task
object, which is returned immediately.
Display the Task object. The output looks like <Task pending coro=<spin()
running at spinner_asyncio.py:12>>.
Drive the slow_function(). When that is done, get the returned value.
Meanwhile, the event loop will continue running because slow_function
ultimately uses yield from asyncio.sleep(3) to hand control back to the main
loop.
A Task object can be cancelled; this raises asyncio.CancelledError at the yield
line where the coroutine is currently suspended. The coroutine may catch the
exception and delay or even refuse to cancel.
Get a reference to the event loop.
Drive the supervisor coroutine to completion; the return value of the coroutine
is the return value of this call.

Never use time.sleep(…) in asyncio coroutines unless you want
to block the main thread, therefore freezing the event loop and
probably the whole application as well. If a coroutine needs to
spend some time doing nothing, it should yield from asyn
cio.sleep(DELAY).

The use of the @asyncio.coroutine decorator is not mandatory, but highly recom‐
mended: it makes the coroutines stand out among regular functions, and helps with
debugging by issuing a warning when a coroutine is garbage collected without being
yielded from—which means some operation was left unfinished and is likely a bug. This
is not a priming decorator.
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Note that the line count of spinner_thread.py and spinner_asyncio.py is nearly the same.
The supervisor functions are the heart of these examples. Let’s compare them in detail.
Example 18-3 lists only the supervisor from the Threading example.

Example 18-3. spinner_thread.py: the threaded supervisor function
def supervisor():
    signal = Signal()
    spinner = threading.Thread(target=spin,
                               args=('thinking!', signal))
    print('spinner object:', spinner)
    spinner.start()
    result = slow_function()
    signal.go = False
    spinner.join()
    return result

For comparison, Example 18-4 shows the supervisor coroutine.

Example 18-4. spinner_asyncio.py: the asynchronous supervisor coroutine
@asyncio.coroutine
def supervisor():
    spinner = asyncio.async(spin('thinking!'))
    print('spinner object:', spinner)
    result = yield from slow_function()
    spinner.cancel()
    return result

Here is a summary of the main differences to note between the two supervisor im‐
plementations:

• An asyncio.Task is roughly the equivalent of a threading.Thread. Victor Stinner,
special technical reviewer for this chapter, points out that “a Task is like a green
thread in libraries that implement cooperative multitasking, such as gevent.”

• A Task drives a coroutine, and a Thread invokes a callable.
• You don’t instantiate Task objects yourself, you get them by passing a coroutine to
asyncio.async(…) or loop.create_task(…).

• When you get a Task object, it is already scheduled to run (e.g., by asyn
cio.async); a Thread instance must be explicitly told to run by calling its start
method.

• In the threaded supervisor, the slow_function is a plain function and is directly
invoked by the thread. In the asyncio supervisor, slow_function is a coroutine
driven by yield from.

• There’s no API to terminate a thread from the outside, because a thread could be
interrupted at any point, leaving the system in an invalid state. For tasks, there is
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the Task.cancel() instance method, which raises CancelledError inside the co‐
routine. The coroutine can deal with this by catching the exception in the yield
where it’s suspended.

• The supervisor coroutine must be executed with loop.run_until_complete in
the main function.

This comparison should help you understand how concurrent jobs are orchestrated
with asyncio, in contrast to how it’s done with the more familiar Threading module.

One final point related to threads versus coroutines: if you’ve done any nontrivial pro‐
gramming with threads, you know how challenging it is to reason about the program
because the scheduler can interrupt a thread at any time. You must remember to hold
locks to protect the critical sections of your program, to avoid getting interrupted in the
middle of a multistep operation—which could leave data in an invalid state.

With coroutines, everything is protected against interruption by default. You must ex‐
plicitly yield to let the rest of the program run. Instead of holding locks to synchronize
the operations of multiple threads, you have coroutines that are “synchronized” by def‐
inition: only one of them is running at any time. And when you want to give up control,
you use yield or yield from to give control back to the scheduler. That’s why it is
possible to safely cancel a coroutine: by definition, a coroutine can only be cancelled
when it’s suspended at a yield point, so you can perform cleanup by handling the
CancelledError exception.

We’ll now see how the asyncio.Future class differs from the concurrent.futures.Fu
ture class we saw in Chapter 17.

asyncio.Future: Nonblocking by Design
The asyncio.Future and the concurrent.futures.Future classes have mostly the
same interface, but are implemented differently and are not interchangeable. PEP-3156
— Asynchronous IO Support Rebooted: the “asyncio” Module has this to say about this
unfortunate situation:

In the future (pun intended) we may unify asyncio.Future and concurrent.fu
tures.Future (e.g., by adding an __iter__ method to the latter that works with yield
from).

As mentioned in “Where Are the Futures?” on page 511, futures are created only as the
result of scheduling something for execution. In asyncio, BaseEventLoop.cre
ate_task(…) takes a coroutine, schedules it to run, and returns an asyncio.Task in‐
stance—which is also an instance of asyncio.Future because Task is a subclass of
Future designed to wrap a coroutine. This is analogous to how we create concur
rent.futures.Future instances by invoking Executor.submit(…).
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Like its concurrent.futures.Future counterpart, the asyncio.Future class pro‐
vides .done(), .add_done_callback(…), and .results() methods, among others. The
first two methods work as described in “Where Are the Futures?” on page 511,
but .result() is very different.

In asyncio.Future, the .result() method takes no arguments, so you can’t specify a
timeout. Also, if you call .result() and the future is not done, it does not block waiting
for the result. Instead, an asyncio.InvalidStateError is raised.

However, the usual way to get the result of an asyncio.Future is to yield from it, as
we’ll see in Example 18-8.

Using yield from with a future automatically takes care of waiting for it to finish,
without blocking the event loop—because in asyncio, yield from is used to give control
back to the event loop.

Note that using yield from with a future is the coroutine equivalent of the functionality
offered by add_done_callback: instead of triggering a callback, when the delayed op‐
eration is done, the event loop sets the result of the future, and the yield from expres‐
sion produces a return value inside our suspended coroutine, allowing it to resume.

In summary, because asyncio.Future is designed to work with yield from, these
methods are often not needed:

• You don’t need my_future.add_done_callback(…) because you can simply put
whatever processing you would do after the future is done in the lines that follow
yield from my_future in your coroutine. That’s the big advantage of having co‐
routines: functions that can be suspended and resumed.

• You don’t need my_future.result() because the value of a yield from expression
on a future is the result (e.g., result = yield from my_future).

Of course, there are situations in which .done(), .add_done_callback(…), and .re
sults() are useful. But in normal usage, asyncio futures are driven by yield from,
not by calling those methods.

We’ll now consider how yield from and the asyncio API brings together futures, tasks,
and coroutines.

Yielding from Futures, Tasks, and Coroutines
In asyncio, there is a close relationship between futures and coroutines because you
can get the result of an asyncio.Future by yielding from it. This means that res =
yield from foo() works if foo is a coroutine function (therefore it returns a coroutine
object when called) or if foo is a plain function that returns a Future or Task instance.
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3. Suggested by Petr Viktorin in a September 11, 2014, message to the Python-ideas list.

This is one of the reasons why coroutines and futures are interchangeable in many parts
of the asyncio API.

In order to execute, a coroutine must be scheduled, and then it’s wrapped in an asyn
cio.Task. Given a coroutine, there are two main ways of obtaining a Task:
asyncio.async(coro_or_future, *, loop=None)

This function unifies coroutines and futures: the first argument can be either one.
If it’s a Future or Task, it’s returned unchanged. If it’s a coroutine, async calls
loop.create_task(…) on it to create a Task. An optional event loop may be passed
as the loop= keyword argument; if omitted, async gets the loop object by calling
asyncio.get_event_loop().

BaseEventLoop.create_task(coro)

This method schedules the coroutine for execution and returns an asyncio.Task
object. If called on a custom subclass of BaseEventLoop, the object returned may
be an instance of some other Task-compatible class provided by an external library
(e.g., Tornado).

BaseEventLoop.create_task(…) is only available in Python 3.4.2
or later. If you’re using an older version of Python 3.3 or 3.4, you
need to use asyncio.async(…), or install a more recent version of
asyncio from PyPI.

Several asyncio functions accept coroutines and wrap them in asyncio.Task objects
automatically, using asyncio.async internally. One example is BaseEventLoop.run_un
til_complete(…).

If you want to experiment with futures and coroutines on the Python console or in small
tests, you can use the following snippet:3

>>> import asyncio
>>> def run_sync(coro_or_future):
...     loop = asyncio.get_event_loop()
...     return loop.run_until_complete(coro_or_future)
...
>>> a = run_sync(some_coroutine())

The relationship between coroutines, futures, and tasks is documented in section 18.5.3.
Tasks and coroutines of the asyncio documentation, where you’ll find this note:

In this documentation, some methods are documented as coroutines, even if they are
plain Python functions returning a Future. This is intentional to have a freedom of
tweaking the implementation of these functions in the future.
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Having covered these fundamentals, we’ll now study the code for the asynchronous flag
download script flags_asyncio.py demonstrated along with the sequential and thread
pool scripts in Example 17-1 (Chapter 17).

Downloading with asyncio and aiohttp
As of Python 3.4, asyncio only supports TCP and UDP directly. For HTTP or any other
protocol, we need third-party packages; aiohttp is the one everyone seems to be using
for asyncio HTTP clients and servers at this time.

Example 18-5 is the full listing for the flag downloading script flags_asyncio.py. Here is
a high-level view of how it works:

1. We start the process in download_many by feeding the event loop with several co‐
routine objects produced by calling download_one.

2. The asyncio event loop activates each coroutine in turn.
3. When a client coroutine such as get_flag uses yield from to delegate to a library

coroutine—such as aiohttp.request—control goes back to the event loop, which
can execute another previously scheduled coroutine.

4. The event loop uses low-level APIs based on callbacks to get notified when a block‐
ing operation is completed.

5. When that happens, the main loop sends a result to the suspended coroutine.
6. The coroutine then advances to the next yield, for example, yield from

resp.read() in get_flag. The event loop takes charge again. Steps 4, 5, and 6 repeat
until the event loop is terminated.

This is similar to the example we looked at in “The Taxi Fleet Simulation” on page
490, where a main loop started several taxi processes in turn. As each taxi process yiel‐
ded, the main loop scheduled the next event for that taxi (to happen in the future), and
proceeded to activate the next taxi in the queue. The taxi simulation is much simpler,
and you can easily understand its main loop. But the general flow is the same as in
asyncio: a single-threaded program where a main loop activates queued coroutines one
by one. Each coroutine advances a few steps, then yields control back to the main loop,
which then activates the next coroutine in the queue.

Now let’s review Example 18-5 play by play.

Example 18-5. flags_asyncio.py: asynchronous download script with asyncio and
aiohttp
import asyncio

import aiohttp   
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from flags import BASE_URL, save_flag, show, main   

@asyncio.coroutine   
def get_flag(cc):
    url = '{}/{cc}/{cc}.gif'.format(BASE_URL, cc=cc.lower())
    resp = yield from aiohttp.request('GET', url)   
    image = yield from resp.read()   
    return image

@asyncio.coroutine
def download_one(cc):   
    image = yield from get_flag(cc)   
    show(cc)
    save_flag(image, cc.lower() + '.gif')
    return cc

def download_many(cc_list):
    loop = asyncio.get_event_loop()   
    to_do = [download_one(cc) for cc in sorted(cc_list)]   
    wait_coro = asyncio.wait(to_do)   
    res, _ = loop.run_until_complete(wait_coro)   
    loop.close()  

    return len(res)

if __name__ == '__main__':
    main(download_many)

aiohttp must be installed—it’s not in the standard library.
Reuse some functions from the flags module (Example 17-2).
Coroutines should be decorated with @asyncio.coroutine.
Blocking operations are implemented as coroutines, and your code delegates to
them via yield from so they run asynchronously.
Reading the response contents is a separate asynchronous operation.
download_one must also be a coroutine, because it uses yield from.
The only difference from the sequential implementation of download_one are
the words yield from in this line; the rest of the function body is exactly as
before.
Get a reference to the underlying event-loop implementation.
Build a list of generator objects by calling the download_one function once for
each flag to be retrieved.
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Despite its name, wait is not a blocking function. It’s a coroutine that completes
when all the coroutines passed to it are done (that’s the default behavior of wait;
see explanation after this example).
Execute the event loop until wait_coro is done; this is where the script will block
while the event loop runs. We ignore the second item returned by run_un
til_complete. The reason is explained next.
Shut down the event loop.

It would be nice if event loop instances were context managers,
so we could use a with block to make sure the loop is closed.
However, the situation is complicated by the fact that client code
never creates the event loop directly, but gets a reference to it by
calling asyncio.get_event_loop(). Sometimes our code does
not “own” the event loop, so it would be wrong to close it. For
example, when using an external GUI event loop with a package
like Quamash, the Qt library is responsible for shutting down the
loop when the application quits.

The asyncio.wait(…) coroutine accepts an iterable of futures or coroutines; wait wraps
each coroutine in a Task. The end result is that all objects managed by wait become
instances of Future, one way or another. Because it is a coroutine function, calling
wait(…) returns a coroutine/generator object; this is what the wait_coro variable holds.
To drive the coroutine, we pass it to loop.run_until_complete(…).

The loop.run_until_complete function accepts a future or a coroutine. If it gets a
coroutine, run_until_complete wraps it into a Task, similar to what wait does. Coro‐
utines, futures, and tasks can all be driven by yield from, and this is what run_un
til_complete does with the wait_coro object returned by the wait call. When wait_co
ro runs to completion, it returns a 2-tuple where the first item is the set of completed
futures, and the second is the set of those not completed. In Example 18-5, the second
set will always be empty—that’s why we explicitly ignore it by assigning to _. But wait
accepts two keyword-only arguments that may cause it to return even if some of the
futures are not complete: timeout and return_when. See the asyncio.wait documen‐
tation for details.

Note that in Example 18-5 I could not reuse the get_flag function from flags.py
(Example 17-2) because that uses the requests library, which performs blocking I/O.
To leverage asyncio, we must replace every function that hits the network with an
asynchronous version that is invoked with yield from, so that control is given back to
the event loop. Using yield from in get_flag means that it must be driven as a coro‐
utine.
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That’s why I could not reuse the download_one function from flags_threadpool.py
(Example 17-3) either. The code in Example 18-5 drives get_flag with yield_from, so
download_one is itself also a coroutine. For each request, a download_one coroutine
object is created in download_many, and they are all driven by the loop.run_until_com
plete function, after being wrapped by the asyncio.wait coroutine.

There are a lot of new concepts to grasp in asyncio but the overall logic of Example 18-5
is easy to follow if you employ a trick suggested by Guido van Rossum himself: squint
and pretend the yield from keywords are not there. If you do that, you’ll notice that
the code is as easy to read as plain old sequential code.

For example, imagine that the body of this coroutine…

@asyncio.coroutine
def get_flag(cc):
    url = '{}/{cc}/{cc}.gif'.format(BASE_URL, cc=cc.lower())
    resp = yield from aiohttp.request('GET', url)
    image = yield from resp.read()
    return image

…works like the following function, except that it never blocks:

def get_flag(cc):
    url = '{}/{cc}/{cc}.gif'.format(BASE_URL, cc=cc.lower())
    resp = aiohttp.request('GET', url)
    image = resp.read()
    return image

Using the yield from foo syntax avoids blocking because the current coroutine is
suspended (i.e., the delegating generator where the yield from code is), but the control
flow goes back to the event loop, which can drive other coroutines. When the foo future
or coroutine is done, it returns a result to the suspended coroutine, resuming it.

At the end of the section “Using yield from” on page 477, I stated two facts about every
usage of yield from. Here they are, summarized:

• Every arrangement of coroutines chained with yield from must be ultimately
driven by a caller that is not a coroutine, which invokes next(…) or .send(…) on
the outermost delegating generator, explicitly or implicitly (e.g., in a for loop).

• The innermost subgenerator in the chain must be a simple generator that uses just
yield—or an iterable object.

When using yield from with the asyncio API, both facts remain true, with the fol‐
lowing specifics:

• The coroutine chains we write are always driven by passing our outermost dele‐
gating generator to an asyncio API call, such as loop.run_until_complete(…).
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In other words, when using asyncio our code doesn’t drive a coroutine chain by
calling next(…) or .send(…) on it—the asyncio event loop does that.

• The coroutine chains we write always end by delegating with yield from to some
asyncio coroutine function or coroutine method (e.g., yield from asyn

cio.sleep(…) in Example 18-2) or coroutines from libraries that implement
higher-level protocols (e.g., resp = yield from aiohttp.request('GET', url)
in the get_flag coroutine of Example 18-5).
In other words, the innermost subgenerator will be a library function that does the
actual I/O, not something we write.

To summarize: as we use asyncio, our asynchronous code consists of coroutines that
are delegating generators driven by asyncio itself and that ultimately delegate to asyn
cio library coroutines—possibly by way of some third-party library such as aiohttp.
This arrangement creates pipelines where the asyncio event loop drives—through our
coroutines—the library functions that perform the low-level asynchronous I/O.

We are now ready to answer one question raised in Chapter 17:

• How can flags_asyncio.py perform 5× faster than flags.py when both are single
threaded?

Running Circling Around Blocking Calls
Ryan Dahl, the inventor of Node.js, introduces the philosophy of his project by saying
“We’re doing I/O completely wrong.4" He defines a blocking function as one that does
disk or network I/O, and argues that we can’t treat them as we treat nonblocking func‐
tions. To explain why, he presents the numbers in the first two columns of Table 18-1.

Table 18-1. Modern computer latency for reading data from different devices; third col‐
umn shows proportional times in a scale easier to understand for us slow humans

Device CPU cycles Proportional “human” scale

L1 cache 3 3 seconds

L2 cache 14 14 seconds

RAM 250 250 seconds

disk 41,000,000 1.3 years

network 240,000,000 7.6 years
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5. In fact, although Node.js does not support user-level threads written in JavaScript, behind the scenes it im‐
plements a thread pool in C with the libeio library, to provide its callback-based file APIs—because as of
2014 there are no stable and portable asynchronous file handling APIs for most OSes.

To make sense of Table 18-1, bear in mind that modern CPUs with GHz clocks run
billions of cycles per second. Let’s say that a CPU runs exactly 1 billion cycles per second.
That CPU can make 333,333,333 L1 cache reads in one second, or 4 (four!) network
reads in the same time. The third column of Table 18-1 puts those numbers in perspec‐
tive by multiplying the second column by a constant factor. So, in an alternate universe,
if one read from L1 cache took 3 seconds, then a network read would take 7.6 years!

There are two ways to prevent blocking calls to halt the progress of the entire application:

• Run each blocking operation in a separate thread.
• Turn every blocking operation into a nonblocking asynchronous call.

Threads work fine, but the memory overhead for each OS thread—the kind that Python
uses—is on the order of megabytes, depending on the OS. We can’t afford one thread
per connection if we are handling thousands of connections.

Callbacks are the traditional way to implement asynchronous calls with low memory
overhead. They are a low-level concept, similar to the oldest and most primitive con‐
currency mechanism of all: hardware interrupts. Instead of waiting for a response, we
register a function to be called when something happens. In this way, every call we make
can be nonblocking. Ryan Dahl advocates callbacks for their simplicity and low over‐
head.

Of course, we can only make callbacks work because the event loop underlying our
asynchronous applications can rely on infrastructure that uses interrupts, threads, poll‐
ing, background processes, etc. to ensure that multiple concurrent requests make pro‐
gress and they eventually get done.5 When the event loop gets a response, it calls back
our code. But the single main thread shared by the event loop and our application code
is never blocked—if we don’t make mistakes.

When used as coroutines, generators provide an alternative way to do asynchronous
programming. From the perspective of the event loop, invoking a callback or call‐
ing .send() on a suspended coroutine is pretty much the same. There is a memory
overhead for each suspended coroutine, but it’s orders of magnitude smaller than the
overhead for each thread. And they avoid the dreaded “callback hell,” which we’ll discuss
in “From Callbacks to Futures and Coroutines” on page 562.

Now the five-fold performance advantage of flags_asyncio.py over flags.py should make
sense: flags.py spends billions of CPU cycles waiting for each download, one after the
other. The CPU is actually doing a lot meanwhile, just not running your program. In
contrast, when loop_until_complete is called in the download_many function of
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flags_asyncio.py, the event loop drives each download_one coroutine to the first yield
from, and this in turn drives each get_flag coroutine to the first yield from, calling
aiohttp.request(…). None of these calls are blocking, so all requests are started in a
fraction of a second.

As the asyncio infrastructure gets the first response back, the event loop sends it to the
waiting get_flag coroutine. As get_flag gets a response, it advances to the next yield
from, which calls resp.read() and yields control back to the main loop. Other responses
arrive in close succession (because they were made almost at the same time). As each
get_flag returns, the delegating generator download_flag resumes and saves the image
file.

For maximum performance, the save_flag operation should be
asynchronous, but asyncio does not provide an asynchronous
filesystem API at this time—as Node does. If that becomes a bot‐
tleneck in your application, you can use the loop.run_in_execu
tor function to run save_flag in a thread pool. Example 18-9
will show how.

Because the asynchronous operations are interleaved, the total time needed to download
many images concurrently is much less than doing it sequentially. When making 600
HTTP requests with asyncio I got all results back more than 70 times faster than with
a sequential script.

Now let’s go back to the HTTP client example to see how we can display an animated
progress bar and perform proper error handling.

Enhancing the asyncio downloader Script
Recall from “Downloads with Progress Display and Error Handling” on page 520 that
the flags2 set of examples share the same command-line interface. This includes the
flags2_asyncio.py we will analyze in this section. For instance, Example 18-6 shows how
to get 100 flags (-al 100) from the ERROR server, using 100 concurrent requests (-m 100).

Example 18-6. Running flags2_asyncio.py
$ python3 flags2_asyncio.py -s ERROR -al 100 -m 100
ERROR site: http://localhost:8003/flags
Searching for 100 flags: from AD to LK
100 concurrent connections will be used.
--------------------
73 flags downloaded.
27 errors.
Elapsed time: 0.64s
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Act Responsibly When Testing Concurrent Clients
Even if the overall download time is not different between the
threaded and asyncio HTTP clients, asyncio can send requests
faster, so it’s even more likely that the server will suspect a DOS
attack. To really exercise these concurrent clients at full speed, set
up a local HTTP server for testing, as explained in the RE‐
ADME.rst inside the 17-futures/countries/ directory of the Fluent
Python code repository.

Now let’s see how flags2_asyncio.py is implemented.

Using asyncio.as_completed
In Example 18-5, I passed a list of coroutines to asyncio.wait, which—when driven
by loop.run_until.complete—would return the results of the downloads when all
were done. But to update a progress bar we need to get results as they are done. Fortu‐
nately, there is an asyncio equivalent of the as_completed generator function we used
in the thread pool example with the progress bar (Example 17-14).

Writing a flags2 example to leverage asyncio entails rewriting several functions that
the concurrent.future version could reuse. That’s because there’s only one main thread
in an asyncio program and we can’t afford to have blocking calls in that thread, as it’s
the same thread that runs the event loop. So I had to rewrite get_flag to use yield
from for all network access. Now get_flag is a coroutine, so download_one must drive
it with yield from, therefore download_one itself becomes a coroutine. Previously, in
Example 18-5, download_one was driven by download_many: the calls to down
load_one were wrapped in an asyncio.wait call and passed to loop.run_until_com
plete. Now we need finer control for progress reporting and error handling, so I moved
most of the logic from download_many into a new downloader_coro coroutine, and use
download_many just to set up the event loop and schedule downloader_coro.

Example 18-7 shows the top of the flags2_asyncio.py script where the get_flag and
download_one coroutines are defined. Example 18-8 lists the rest of the source, with
downloader_coro and download_many.

Example 18-7. flags2_asyncio.py: Top portion of the script; remaining code is in
Example 18-8
import asyncio
import collections

import aiohttp
from aiohttp import web
import tqdm
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from flags2_common import main, HTTPStatus, Result, save_flag

# default set low to avoid errors from remote site, such as
# 503 - Service Temporarily Unavailable
DEFAULT_CONCUR_REQ = 5
MAX_CONCUR_REQ = 1000

class FetchError(Exception):   
    def __init__(self, country_code):
        self.country_code = country_code

@asyncio.coroutine
def get_flag(base_url, cc):  
    url = '{}/{cc}/{cc}.gif'.format(base_url, cc=cc.lower())
    resp = yield from aiohttp.request('GET', url)
    if resp.status == 200:
        image = yield from resp.read()
        return image
    elif resp.status == 404:
        raise web.HTTPNotFound()
    else:
        raise aiohttp.HttpProcessingError(
            code=resp.status, message=resp.reason,
            headers=resp.headers)

@asyncio.coroutine
def download_one(cc, base_url, semaphore, verbose):   
    try:
        with (yield from semaphore):   
            image = yield from get_flag(base_url, cc)   
    except web.HTTPNotFound:   
        status = HTTPStatus.not_found
        msg = 'not found'
    except Exception as exc:
        raise FetchError(cc) from exc   
    else:
        save_flag(image, cc.lower() + '.gif')   
        status = HTTPStatus.ok
        msg = 'OK'

    if verbose and msg:
        print(cc, msg)

    return Result(status, cc)

This custom exception will be used to wrap other HTTP or network exceptions
and carry the country_code for error reporting.
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get_flag will either return the bytes of the image downloaded, raise
web.HTTPNotFound if the HTTP response status is 404, or raise an
aiohttp.HttpProcessingError for other HTTP status codes.
The semaphore argument is an instance of asyncio.Semaphore, a
synchronization device that limits the number of concurrent requests.
A semaphore is used as a context manager in a yield from expression so that
the system as whole is not blocked: only this coroutine is blocked while the
semaphore counter is at the maximum allowed number.
When this with statement exits, the semaphore counter is decremented,
unblocking some other coroutine instance that may be waiting for the same
semaphore object.
If the flag was not found, just set the status for the Result accordingly.
Any other exception will be reported as a FetchError with the country code and
the original exception chained using the raise X from Y syntax introduced in
PEP 3134 — Exception Chaining and Embedded Tracebacks.
This function call actually saves the flag image to disk.

In Example 18-7, you can see that the code for get_flag and download_one changed
significantly from the sequential version because these functions are now coroutines
using yield from to make asynchronous calls.

Network client code of the sort we are studying should always use some throttling
mechanism to avoid pounding the server with too many concurrent requests—the
overall performance of the system may degrade if the server is overloaded. In
flags2_threadpool.py (Example 17-14), the throttling was done by instantiating the
ThreadPoolExecutor with the required max_workers argument set to concur_req in
the download_many function, so only concur_req threads are started in the pool. In
flags2_asyncio.py, I used an asyncio.Semaphore, which is created by the download
er_coro function (shown next, in Example 18-8) and is passed as the semaphore argu‐
ment to download_one in Example 18-7.6

A Semaphore is an object that holds an internal counter that is decremented whenever
we call the .acquire() coroutine method on it, and incremented when we call
the .release() coroutine method. The initial value of the counter is set when the
Semaphore is instantiated, as in this line of downloader_coro:

    semaphore = asyncio.Semaphore(concur_req)
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Calling .acquire() does not block when the counter is greater than zero, but if the
counter is zero, .acquire() will block the calling coroutine until some other coroutine
calls .release() on the same Semaphore, thus incrementing the counter. In
Example 18-7, I don’t call .acquire() or .release(), but use the semaphore as a context
manager in this block of code inside download_one:

        with (yield from semaphore):
            image = yield from get_flag(base_url, cc)

That snippet guarantees that no more than concur_req instances of get_flags coro‐
utines will be started at any time.

Now let’s take a look at the rest of the script in Example 18-8. Note that most functionality
of the old download_many function is now in a coroutine, downloader_coro. This was
necessary because we must use yield from to retrieve the results of the futures yielded
by asyncio.as_completed, therefore as_completed must be invoked in a coroutine.
However, I couldn’t simply turn download_many into a coroutine, because I must pass
it to the main function from flags2_common in the last line of the script, and that main
function is not expecting a coroutine, just a plain function. Therefore I created down
loader_coro to run the as_completed loop, and now download_many simply sets up
the event loop and schedules downloader_coro by passing it to loop.run_until_com
plete.

Example 18-8. flags2_asyncio.py: Script continued from Example 18-7
@asyncio.coroutine
def downloader_coro(cc_list, base_url, verbose, concur_req):   
    counter = collections.Counter()
    semaphore = asyncio.Semaphore(concur_req)   
    to_do = [download_one(cc, base_url, semaphore, verbose)
             for cc in sorted(cc_list)]   

    to_do_iter = asyncio.as_completed(to_do)   
    if not verbose:
        to_do_iter = tqdm.tqdm(to_do_iter, total=len(cc_list))   
    for future in to_do_iter:   
        try:
            res = yield from future   
        except FetchError as exc:   
            country_code = exc.country_code   
            try:
                error_msg = exc.__cause__.args[0]   
            except IndexError:
                error_msg = exc.__cause__.__class__.__name__   
            if verbose and error_msg:
                msg = '*** Error for {}: {}'
                print(msg.format(country_code, error_msg))
            status = HTTPStatus.error
        else:
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            status = res.status

        counter[status] += 1   

    return counter   

def download_many(cc_list, base_url, verbose, concur_req):
    loop = asyncio.get_event_loop()
    coro = downloader_coro(cc_list, base_url, verbose, concur_req)
    counts = loop.run_until_complete(coro)   
    loop.close()   

    return counts

if __name__ == '__main__':
    main(download_many, DEFAULT_CONCUR_REQ, MAX_CONCUR_REQ)

The coroutine receives the same arguments as download_many, but it cannot be
invoked directly from main precisely because it’s a coroutine function and not a
plain function like download_many.
Create an asyncio.Semaphore that will allow up to concur_req active coroutines
among those using this semaphore.
Create a list of coroutine objects, one per call to the download_one coroutine.
Get an iterator that will return futures as they are done.
Wrap the iterator in the tqdm function to display progress.
Iterate over the completed futures; this loop is very similar to the one in down
load_many in Example 17-14; most changes have to do with exception handling
because of differences in the HTTP libraries (requests versus aiohttp).
The easiest way to retrieve the result of an asyncio.Future is using yield from
instead of calling future.result().
Every exception in download_one is wrapped in a FetchError with the original
exception chained.
Get the country code where the error occurred from the FetchError exception.
Try to retrieve the error message from the original exception (__cause__).
If the error message cannot be found in the original exception, use the name of
the chained exception class as the error message.
Tally outcomes.
Return the counter, as done in the other scripts.
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7. A detailed discussion about this can be found in a thread I started in the python-tulip group, titled “Which
other futures my come out of asyncio.as_completed?”. Guido responds, and gives insight on the implemen‐
tation of as_completed as well as the close relationship between futures and coroutines in asyncio.

download_many simply instantiates the coroutine and passes it to the event loop
with run_until_complete.
When all work is done, shut down the event loop and return counts.

In Example 18-8, we could not use the mapping of futures to country codes we saw in
Example 17-14 because the futures returned by asyncio.as_completed are not neces‐
sarily the same futures we pass into the as_completed call. Internally, the asyncio
machinery replaces the future objects we provide with others that will, in the end, pro‐
duce the same results.7

Because I could not use the futures as keys to retrieve the country code from a dict in
case of failure, I implemented the custom FetchError exception (shown in
Example 18-7). FetchError wraps a network exception and holds the country code
associated with it, so the country code can be reported with the error in verbose mode.
If there is no error, the country code is available as the result of the yield from fu
ture expression at the top of the for loop.

This wraps up the discussion of an asyncio example functionally equivalent to the
flags2_threadpool.py we saw earlier. Next, we’ll implement enhancements to
flags2_asyncio.py that will let us explore asyncio further.

While discussing Example 18-7, I noted that save_flag performs disk I/O and should
be executed asynchronously. The following section shows how.

Using an Executor to Avoid Blocking the Event Loop
In the Python community, we tend to overlook the fact that local filesystem access is
blocking, rationalizing that it doesn’t suffer from the higher latency of network access
(which is also dangerously unpredictable). In contrast, Node.js programmers are con‐
stantly reminded that all filesystem functions are blocking because their signatures re‐
quire a callback. Recall from Table 18-1 that blocking for disk I/O wastes millions of
CPU cycles, and this may have a significant impact on the performance of the applica‐
tion.

In Example 18-7, the blocking function is save_flag. In the threaded version of the
script (Example 17-14), save_flag blocks the thread that’s running the download_one
function, but that’s only one of several worker threads. Behind the scenes, the blocking
I/O call releases the GIL, so another thread can proceed. But in flags2_asyncio.py,
save_flag blocks the single thread our code shares with the asyncio event loop, there‐
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fore the whole application freezes while the file is being saved. The solution to this
problem is the run_in_executor method of the event loop object.

Behind the scenes, the asyncio event loop has a thread pool executor, and you can send
callables to be executed by it with run_in_executor. To use this feature in our example,
only a few lines need to change in the download_one coroutine, as shown in
Example 18-9.

Example 18-9. flags2_asyncio_executor.py: Using the default thread pool executor to
run save_flag
@asyncio.coroutine
def download_one(cc, base_url, semaphore, verbose):
    try:
        with (yield from semaphore):
            image = yield from get_flag(base_url, cc)
    except web.HTTPNotFound:
        status = HTTPStatus.not_found
        msg = 'not found'
    except Exception as exc:
        raise FetchError(cc) from exc
    else:
        loop = asyncio.get_event_loop()   
        loop.run_in_executor(None,   
                save_flag, image, cc.lower() + '.gif')   
        status = HTTPStatus.ok
        msg = 'OK'

    if verbose and msg:
        print(cc, msg)

    return Result(status, cc)

Get a reference to the event loop object.
The first argument to run_in_executor is an executor instance; if None, the
default thread pool executor of the event loop is used.
The remaining arguments are the callable and its positional arguments.

When I tested Example 18-9, there was no noticeable change in
performance for using run_in_executor to save the image files
because they are not large (13 KB each, on average). But you’ll see
an effect if you edit the save_flag function in flags2_com‐
mon.py to save 10 times as many bytes on each file—just by cod‐
ing fp.write(img*10) instead of fp.write(img). With an aver‐
age download size of 130 KB, the advantage of using run_in_ex
ecutor becomes clear. If you’re downloading megapixel images,
the speedup will be significant.
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The advantage of coroutines over callbacks becomes evident when we need to coordi‐
nate asynchronous requests, and not just make completely independent requests. The
next section explains the problem and the solution.

From Callbacks to Futures and Coroutines
Event-oriented programming with coroutines requires some effort to master, so it’s good
to be clear on how it improves on the classic callback style. This is the theme of this
section.

Anyone with some experience in callback-style event-oriented programming knows the
term “callback hell”: the nesting of callbacks when one operation depends on the result
of the previous operation. If you have three asynchronous calls that must happen in
succession, you need to code callbacks nested three levels deep. Example 18-10 is an
example in JavaScript.

Example 18-10. Callback hell in JavaScript: nested anonymous functions, a.k.a. Pyra‐
mid of Doom
api_call1(request1, function (response1) {
    // stage 1
    var request2 = step1(response1);

    api_call2(request2, function (response2) {
        // stage 2
        var request3 = step2(response2);

        api_call3(request3, function (response3) {
            // stage 3
            step3(response3);
        });
    });
});

In Example 18-10, api_call1, api_call2, and api_call3 are library functions your
code uses to retrieve results asynchronously—perhaps api_call1 goes to a database
and api_call2 gets data from a web service, for example. Each of these take a callback
function, which in JavaScript are often anonymous functions (they are named stage1,
stage2, and stage3 in the following Python example). The step1, step2, and step3
here represent regular functions of your application that process the responses received
by the callbacks.

Example 18-11 shows what callback hell looks like in Python.

Example 18-11. Callback hell in Python: chained callbacks
def stage1(response1):
    request2 = step1(response1)
    api_call2(request2, stage2)
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def stage2(response2):
    request3 = step2(response2)
    api_call3(request3, stage3)

def stage3(response3):
    step3(response3)

api_call1(request1, stage1)

Although the code in Example 18-11 is arranged very differently from Example 18-10,
they do exactly the same thing, and the JavaScript example could be written using the
same arrangement (but the Python code can’t be written in the JavaScript style because
of the syntactic limitations of lambda).

Code organized as Example 18-10 or Example 18-11 is hard to read, but it’s even harder
to write: each function does part of the job, sets up the next callback, and returns, to let
the event loop proceed. At this point, all local context is lost. When the next callback
(e.g., stage2) is executed, you don’t have the value of request2 any more. If you need
it, you must rely on closures or external data structures to store it between the different
stages of the processing.

That’s where coroutines really help. Within a coroutine, to perform three asynchronous
actions in succession, you yield three times to let the event loop continue running.
When a result is ready, the coroutine is activated with a .send() call. From the per‐
spective of the event loop, that’s similar to invoking a callback. But for the users of a
coroutine-style asynchronous API, the situation is vastly improved: the entire sequence
of three operations is in one function body, like plain old sequential code with local
variables to retain the context of the overall task under way. See Example 18-12.

Example 18-12. Coroutines and yield from enable asynchronous programming without
callbacks
@asyncio.coroutine
def three_stages(request1):
    response1 = yield from api_call1(request1)
    # stage 1
    request2 = step1(response1)
    response2 = yield from api_call2(request2)
    # stage 2
    request3 = step2(response2)
    response3 = yield from api_call3(request3)
    # stage 3
    step3(response3)
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loop.create_task(three_stages(request1))  # must explicitly schedule execution

Example 18-12 is much easier to follow the previous JavaScript and Python examples:
the three stages of the operation appear one after the other inside the same function.
This makes it trivial to use previous results in follow-up processing. It also provides a
context for error reporting through exceptions.

Suppose in Example 18-11 the processing of the call api_call2(request2, stage2)
raises an I/O exception (that’s the last line of the stage1 function). The exception cannot
be caught in stage1 because api_call2 is an asynchronous call: it returns immediately,
before any I/O is performed. In callback-based APIs, this is solved by registering two
callbacks for each asynchronous call: one for handling the result of successful opera‐
tions, another for handling errors. Work conditions in callback hell quickly deteriorate
when error handling is involved.

In contrast, in Example 18-12, all the asynchronous calls for this three-stage operation
are inside the same function, three_stages, and if the asynchronous calls api_call1,
api_call2, and api_call3 raise exceptions we can handle them by putting the respec‐
tive yield from lines inside try/except blocks.

This is a much better place than callback hell, but I wouldn’t call it coroutine heaven
because there is a price to pay. Instead of regular functions, you must use coroutines
and get used to yield from, so that’s the first obstacle. Once you write yield from in
a function, it’s now a coroutine and you can’t simply call it, like we called api_call1(re
quest1, stage1) in Example 18-11 to start the callback chain. You must explicitly
schedule the execution of the coroutine with the event loop, or activate it using yield
from in another coroutine that is scheduled for execution. Without the call loop.cre
ate_task(three_stages(request1)) in the last line, nothing would happen in
Example 18-12.

The next example puts this theory into practice.

Doing Multiple Requests for Each Download
Suppose you want to save each country flag with the name of the country and the country
code, instead of just the country code. Now you need to make two HTTP requests per
flag: one to get the flag image itself, the other to get the metadata.json file in the same
directory as the image: that’s where the name of the country is recorded.

Articulating multiple requests in the same task is easy in the threaded script: just make
one request then the other, blocking the thread twice, and keeping both pieces of data
(country code and name) in local variables, ready to use when saving the files. If you
need to do the same in an asynchronous script with callbacks, you start to smell the
sulfur of callback hell: the country code and name will need to be passed around in a
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closure or held somewhere until you can save the file because each callback runs in a
different local context. Coroutines and yield from provide relief from that. The solu‐
tion is not as simple as with threads, but more manageable than chained or nested
callbacks.

Example 18-13 shows code from the third variation of the asyncio flag downloading
script, using the country name to save each flag. The download_many and download
er_coro are unchanged from flags2_asyncio.py (Examples 18-7 and 18-8). The changes
are:
download_one

This coroutine now uses yield from to delegate to get_flag and the new get_coun
try coroutine.

get_flag

Most code from this coroutine was moved to a new http_get coroutine so it can
also be used by get_country.

get_country

This coroutine fetches the metadata.json file for the country code, and gets the
name of the country from it.

http_get

Common code for getting a file from the Web.

Example 18-13. flags3_asyncio.py: more coroutine delegation to perform two requests
per flag
@asyncio.coroutine
def http_get(url):
    res = yield from aiohttp.request('GET', url)
    if res.status == 200:
        ctype = res.headers.get('Content-type', '').lower()
        if 'json' in ctype or url.endswith('json'):
            data = yield from res.json()   
        else:
            data = yield from res.read()   
        return data

    elif res.status == 404:
        raise web.HTTPNotFound()
    else:
        raise aiohttp.errors.HttpProcessingError(
            code=res.status, message=res.reason,
            headers=res.headers)

@asyncio.coroutine
def get_country(base_url, cc):
    url = '{}/{cc}/metadata.json'.format(base_url, cc=cc.lower())
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    metadata = yield from http_get(url)   
    return metadata['country']

@asyncio.coroutine
def get_flag(base_url, cc):
    url = '{}/{cc}/{cc}.gif'.format(base_url, cc=cc.lower())
    return (yield from http_get(url))  

@asyncio.coroutine
def download_one(cc, base_url, semaphore, verbose):
    try:
        with (yield from semaphore):  
            image = yield from get_flag(base_url, cc)
        with (yield from semaphore):
            country = yield from get_country(base_url, cc)
    except web.HTTPNotFound:
        status = HTTPStatus.not_found
        msg = 'not found'
    except Exception as exc:
        raise FetchError(cc) from exc
    else:
        country = country.replace(' ', '_')
        filename = '{}-{}.gif'.format(country, cc)
        loop = asyncio.get_event_loop()
        loop.run_in_executor(None, save_flag, image, filename)
        status = HTTPStatus.ok
        msg = 'OK'

    if verbose and msg:
        print(cc, msg)

    return Result(status, cc)

If the content type has 'json' in it or the url ends with .json, use the
response .json() method to parse it and return a Python data structure—in this
case, a dict.
Otherwise, use .read() to fetch the bytes as they are.
metadata will receive a Python dict built from the JSON contents.
The outer parentheses here are required because the Python parser gets confused
and produces a syntax error when it sees the keywords return yield from lined
up like that.
I put the calls to get_flag and get_country in separate with blocks controlled
by the semaphore because I want to keep it acquired for the shortest possible
time.
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The yield from syntax appears nine times in Example 18-13. By now you should be
getting the hang of how this construct is used to delegate from one coroutine to another
without blocking the event loop.

The challenge is to know when you have to use yield from and when you can’t use it.
The answer in principle is easy, you yield from coroutines and asyncio.Future in‐
stances—including tasks. But some APIs are tricky, mixing coroutines and plain func‐
tions in seemingly arbitrary ways, like the StreamWriter class we’ll use in one of the
servers in the next section.

Example 18-13 wraps up the flags2 set of examples. I encourage you to play with them
to develop an intuition of how concurrent HTTP clients perform. Use the -a, -e, and
-l command-line options to control the number of downloads, and the -m option to
set the number of concurrent downloads. Run tests against the LOCAL, REMOTE, DELAY,
and ERROR servers. Discover the optimum number of concurrent downloads to maxi‐
mize throughput against each server. Tweak the settings of the vaurien_error_delay.sh
script to add or remove errors and delays.

We’ll now go from client scripts to writing servers with asyncio.

Writing asyncio Servers
The classic toy example of a TCP server is an echo server. We’ll build slightly more
interesting toys: Unicode character finders, first using plain TCP, then using HTTP.
These servers will allow clients to query for Unicode characters based on words in their
canonical names, using the unicodedata module we discussed in “The Unicode Data‐
base” on page 127. A Telnet session with the TCP character finder server, searching for
chess pieces and characters with the word “sun” is shown in Figure 18-2.
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Figure 18-2. A Telnet session with the tcp_charfinder.py server: querying for “chess
black” and “sun”.

Now, on to the implementations.

An asyncio TCP Server
Most of the logic in these examples is in the charfinder.py module, which has nothing
concurrent about it. You can use charfinder.py as a command-line character finder, but
more importantly, it was designed to provide content for our asyncio servers. The code
for charfinder.py is in the Fluent Python code repository.

The charfinder module indexes each word that appears in character names in the
Unicode database bundled with Python, and creates an inverted index stored in a
dict. For example, the inverted index entry for the key 'SUN' contains a set with the
10 Unicode characters that have that word in their names. The inverted index is saved
in a local charfinder_index.pickle file. If multiple words appear in the query, charfind
er computes the intersection of the sets retrieved from the index.
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We’ll now focus on the tcp_charfinder.py script that is answering the queries in
Figure 18-2. Because I have a lot to say about this code, I’ve split it into two parts:
Example 18-14 and Example 18-15.

Example 18-14. tcp_charfinder.py: a simple TCP server using asyncio.start_server; code
for this module continues in Example 18-15
import sys
import asyncio

from charfinder import UnicodeNameIndex   

CRLF = b'\r\n'
PROMPT = b'?> '

index = UnicodeNameIndex()   

@asyncio.coroutine
def handle_queries(reader, writer):   
    while True:   
        writer.write(PROMPT)  # can't yield from!   
        yield from writer.drain()  # must yield from!   
        data = yield from reader.readline()   
        try:
            query = data.decode().strip()
        except UnicodeDecodeError:   
            query = '\x00'
        client = writer.get_extra_info('peername')   
        print('Received from {}: {!r}'.format(client, query))   
        if query:
            if ord(query[:1]) < 32:   
                break
            lines = list(index.find_description_strs(query))  
            if lines:
                writer.writelines(line.encode() + CRLF for line in lines)  
            writer.write(index.status(query, len(lines)).encode() + CRLF)  

            yield from writer.drain()   
            print('Sent {} results'.format(len(lines)))   

    print('Close the client socket')   
    writer.close()   

UnicodeNameIndex is the class that builds the index of names and provides
querying methods.
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8. Leonardo Rochael pointed out that building the UnicodeNameIndex could be delegated to another thread
using loop.run_with_executor() in the main function of Example 18-15, so the server would be ready
to take requests immediately while the index is built. That is true, but querying the index is the only thing
this app does, so that would not be a big win. It’s an interesting exercise to do as Leo suggests, though. Go
ahead and do it, if you like.

When instantiated, UnicodeNameIndex uses charfinder_index.pickle, if
available, or builds it, so the first run may take a few seconds longer to start.8

This is the coroutine we need to pass to asyncio_startserver; the arguments
received are an asyncio.StreamReader and an asyncio.StreamWriter.
This loop handles a session that lasts until any control character is received from
the client.
The StreamWriter.write method is not a coroutine, just a plain function; this
line sends the ?> prompt.
StreamWriter.drain flushes the writer buffer; it is a coroutine, so it must be
called with yield from.
StreamWriter.readline is a coroutine; it returns bytes.
A UnicodeDecodeError may happen when the Telnet client sends control
characters; if that happens, we pretend a null character was sent, for simplicity.
This returns the remote address to which the socket is connected.
Log the query to the server console.
Exit the loop if a control or null character was received.
This returns a generator that yields strings with the Unicode codepoint, the
actual character and its name (e.g., U+0039\t9\tDIGIT NINE); for simplicity, I
build a list from it.
Send the lines converted to bytes using the default UTF-8 encoding, appending
a carriage return and a line feed to each; note that the argument is a generator
expression.
Write a status line such as 627 matches for 'digit'.
Flush the output buffer.
Log the response to the server console.
Log the end of the session to the server console.
Close the StreamWriter.

The handle_queries coroutine has a plural name because it starts an interactive session
and handles multiple queries from each client.
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Note that all I/O in Example 18-14 is in bytes. We need to decode the strings received
from the network, and encode strings sent out. In Python 3, the default encoding is
UTF-8, and that’s what we are using implicitly.

One caveat is that some of the I/O methods are coroutines and must be driven with
yield from, while others are simple functions. For example, StreamWriter.write is a
plain function, on the assumption that most of the time it does not block because it
writes to a buffer. On the other hand, StreamWriter.drain, which flushes the buffer
and performs the actual I/O is a coroutine, as is Streamreader.readline. While I was
writing this book, a major improvement to the asyncio API docs was the clear labeling
of coroutines as such.

Example 18-15 lists the main function for the module started in Example 18-14.

Example 18-15. tcp_charfinder.py (continued from Example 18-14): the main function
sets up and tears down the event loop and the socket server
def main(address='127.0.0.1', port=2323):   
    port = int(port)
    loop = asyncio.get_event_loop()
    server_coro = asyncio.start_server(handle_queries, address, port,
                                loop=loop)  
    server = loop.run_until_complete(server_coro)  

    host = server.sockets[0].getsockname()   
    print('Serving on {}. Hit CTRL-C to stop.'.format(host))   
    try:
        loop.run_forever()   
    except KeyboardInterrupt:  # CTRL+C pressed
        pass

    print('Server shutting down.')
    server.close()   
    loop.run_until_complete(server.wait_closed())   
    loop.close()   

if __name__ == '__main__':
    main(*sys.argv[1:])   

The main function can be called with no arguments.
When completed, the coroutine object returned by asyncio.start_server
returns an instance of asyncio.Server, a TCP socket server.
Drive server_coro to bring up the server.
Get address and port of the first socket of the server and…
…display it on the server console. This is the first output generated by this script
on the server console.
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Run the event loop; this is where main will block until killed when CTRL-C is
pressed on the server console.
Close the server.
server.wait_closed() returns a future; use loop.run_until_complete to let
the future do its job.
Terminate the event loop.
This is a shortcut for handling optional command-line arguments: explode
sys.argv[1:] and pass it to a main function with suitable default arguments.

Note how run_until_complete accepts either a coroutine (the result of start_serv
er) or a Future (the result of server.wait_closed). If run_until_complete gets a
coroutine as argument, it wraps the coroutine in a Task.

You may find it easier to understand how control flows in tcp_charfinder.py if you take
a close look at the output it generates on the server console, listed in Example 18-16.

Example 18-16. tcp_charfinder.py: this is the server side of the session depicted in
Figure 18-2
$ python3 tcp_charfinder.py
Serving on ('127.0.0.1', 2323). Hit CTRL-C to stop.  
Received from ('127.0.0.1', 62910): 'chess black'  
Sent 6 results
Received from ('127.0.0.1', 62910): 'sun'  
Sent 10 results
Received from ('127.0.0.1', 62910): '\x00'   
Close the client socket  

This is output by main.
First iteration of the while loop in handle_queries.
Second iteration of the while loop.
The user hit CTRL-C; the server receives a control character and closes the session.
The client socket is closed but the server is still running, ready to service another
client.

Note how main almost immediately displays the Serving on... message and blocks in
the loop.run_forever() call. At that point, control flows into the event loop and stays
there, occasionally coming back to the handle_queries coroutine, which yields control
back to the event loop whenever it needs to wait for the network as it sends or receives
data. While the event loop is alive, a new instance of the handle_queries coroutine will
be started for each client that connects to the server. In this way, multiple clients can be
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handled concurrently by this simple server. This continues until a KeyboardInter
rupt occurs or the process is killed by the OS.

The tcp_charfinder.py code leverages the high-level asyncio Streams API that provides
a ready-to-use server so you only need to implement a handler function, which can be
a plain callback or a coroutine. There is also a lower-level Transports and Protocols
API, inspired by the transport and protocols abstractions in the Twisted framework.
Refer to the asyncio Transports and Protocols documentation for more information,
including a TCP echo server implemented with that lower-level API.

The next section presents an HTTP character finder server.

An aiohttp Web Server
The aiohttp library we used for the asyncio flags examples also supports server-side
HTTP, so that’s what I used to implement the http_charfinder.py script. Figure 18-3
shows the simple web interface of the server, displaying the result of a search for a “cat
face” emoji.

Figure 18-3. Browser window displaying search results for “cat face” on the http_char‐
finder.py server
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Some browsers are better than others at displaying Unicode. The
screenshot in Figure 18-3 was captured with Firefox on OS X, and
I got the same result with Safari. But up-to-date Chrome and Op‐
era browsers on the same machine did not display emoji charac‐
ters like the cat faces. Other search results (e.g., “chess”) looked
fine, so it’s likely a font issue on Chrome and Opera on OSX.

We’ll start by analyzing the most interesting part of http_charfinder.py: the bottom half
where the event loop and the HTTP server is set up and torn down. See Example 18-17.

Example 18-17. http_charfinder.py: the main and init functions
@asyncio.coroutine
def init(loop, address, port):   
    app = web.Application(loop=loop)   
    app.router.add_route('GET', '/', home)   
    handler = app.make_handler()   
    server = yield from loop.create_server(handler,
                                           address, port)   
    return server.sockets[0].getsockname()   

def main(address="127.0.0.1", port=8888):
    port = int(port)
    loop = asyncio.get_event_loop()
    host = loop.run_until_complete(init(loop, address, port))   
    print('Serving on {}. Hit CTRL-C to stop.'.format(host))
    try:
        loop.run_forever()   
    except KeyboardInterrupt:  # CTRL+C pressed
        pass
    print('Server shutting down.')
    loop.close()   

if __name__ == '__main__':
    main(*sys.argv[1:])

The init coroutine yields a server for the event loop to drive.
The aiohttp.web.Application class represents a web application…
…with routes mapping URL patterns to handler functions; here GET / is routed
to the home function (see Example 18-18).
The app.make_handler method returns an aiohttp.web.RequestHandler
instance to handle HTTP requests according to the routes set up in the app
object.
create_server brings up the server, using handler as the protocol handler and
binding it to address and port.
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Return the address and port of the first server socket.
Run init to start the server and get its address and port.
Run the event loop; main will block here while the event loop is in control.
Close the event loop.

As you get acquainted with the asyncio API, it’s interesting to contrast how the servers
are set up in Example 18-17 and in the TCP example (Example 18-15) shown earlier.

In the earlier TCP example, the server was created and scheduled to run in the main
function with these two lines:

    server_coro = asyncio.start_server(handle_queries, address, port,
                                loop=loop)
    server = loop.run_until_complete(server_coro)

In the HTTP example, the init function creates the server like this:

    server = yield from loop.create_server(handler,
                                           address, port)

But init itself is a coroutine, and what makes it run is the main function, with this line:

    host = loop.run_until_complete(init(loop, address, port))

Both asyncio.start_server and loop.create_server are coroutines that return
asyncio.Server objects. In order to start up a server and return a reference to it, each
of these coroutines must be driven to completion. In the TCP example, that was done
by calling loop.run_until_complete(server_coro), where server_coro was the re‐
sult of asyncio.start_server. In the HTTP example, create_server is invoked on a
yield_from expression inside the init coroutine, which is in turn driven by the main
function when it calls loop.run_until_complete(init(...)).

I mention this to emphasize this essential fact we’ve discussed before: a coroutine only
does anything when driven, and to drive an asyncio.coroutine you either use yield
from or pass it to one of several asyncio functions that take coroutine or future argu‐
ments, such as run_until_complete.

Example 18-18 shows the home function, which is configured to handle the / (root) URL
in our HTTP server.

Example 18-18. http_charfinder.py: the home function
def home(request):   
    query = request.GET.get('query', '').strip()   
    print('Query: {!r}'.format(query))   
    if query:   
        descriptions = list(index.find_descriptions(query))
        res = '\n'.join(ROW_TPL.format(**vars(descr))
                        for descr in descriptions)
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        msg = index.status(query, len(descriptions))
    else:
        descriptions = []
        res = ''
        msg = 'Enter words describing characters.'

    html = template.format(query=query, result=res,   
                           message=msg)
    print('Sending {} results'.format(len(descriptions)))   
    return web.Response(content_type=CONTENT_TYPE, text=html)  

A route handler receives an aiohttp.web.Request instance.
Get the query string stripped of leading and trailing blanks.
Log query to server console.
If there was a query, bind res to HTML table rows rendered from result of the
query to the index, and msg to a status message.
Render the HTML page.
Log response to server console.
Build Response and return it.

Note that home is not a coroutine, and does not need to be if there are no yield from
expressions in it. The aiohttp documentation for the add_route method states that the
handler “is converted to coroutine internally when it is a regular function.”

There is a downside to the simplicity of the home function in Example 18-18. The fact
that it’s a plain function and not a coroutine is a symptom of a larger issue: the need to
rethink how we code web applications to achieve high concurrency. Let’s consider this
matter.

Smarter Clients for Better Concurrency
The home function in Example 18-18 looks very much like a view function in Django
or Flask. There is nothing asynchronous about its implementation: it gets a request,
fetches data from a database, and builds a response by rendering a full HTML page. In
this example, the “database” is the UnicodeNameIndex object, which is in memory. But
accessing a real database should be done asynchronously, otherwise you’re blocking the
event loop while waiting for database results. For example, the aiopg package provides
an asynchronous PostgreSQL driver compatible with asyncio; it lets you use yield
from to send queries and fetch results, so your view function can behave as a proper
coroutine.

Besides avoiding blocking calls, highly concurrent systems must split large chunks of
work into smaller pieces to stay responsive. The http_charfinder.py server illustrates this
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9. That’s what CJK stands for: the ever-expanding set of Chinese, Japanese, and Korean characters. Future
versions of Python may support more CJK ideographs than Python 3.4 does.

10. I have more to say about this trend in “Soapbox” on page 580.

point: if you search for “cjk” you’ll get back 75,821 Chinese, Japanese, and Korean
ideographs.9 In this case, the home function will return a 5.3 MB HTML document,
featuring a table with 75,821 rows.

On my machine, it takes 2s to fetch the response to the “cjk” query, using the curl
command-line HTTP client from a local http_charfinder.py server. A browser takes
even longer to actually layout the page with such a huge table. Of course, most queries
return much smaller responses: a query for “braille” returns 256 rows in a 19 KB page
and takes 0.017s on my machine. But if the server spends 2s serving a single “cjk” query,
all the other clients will be waiting for at least 2s, and that is not acceptable.

The way to avoid the long response problem is to implement pagination: return results
with at most, say, 200 rows, and have the user click or scroll the page to fetch more. If
you look up the charfinder.py module in the Fluent Python code repository, you’ll see
that the UnicodeNameIndex.find_descriptions method takes optional start and
stop arguments: they are offsets to support pagination. So you could return the first
200 results, then use AJAX or even WebSockets to send the next batch when—and if—
the user wants to see it.

Most of the necessary coding for sending results in batches would be on the browser.
This explains why Google and all large-scale Internet properties rely on lots of client-
side coding to build their services: smart asynchronous clients make better use of server
resources.

Although smart clients can help even old-style Django applications, to really serve them
well we need frameworks that support asynchronous programming all the way: from
the handling of HTTP requests and responses, to the database access. This is especially
true if you want to implement real-time services such as games and media streaming
with WebSockets.10

Enhancing http_charfinder.py to support progressive download is left as an exercise to
the reader. Bonus points if you implement “infinite scroll,” like Twitter does. With this
challenge, I wrap up our coverage of concurrent programming with asyncio.

Chapter Summary
This chapter introduced a whole new way of coding concurrency in Python, leveraging
yield from, coroutines, futures, and the asyncio event loop. The first simple examples,
the spinner scripts, were designed to demonstrate a side-by-side comparison of the
threading and the asyncio approaches to concurrency.
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We then discussed the specifics of asyncio.Future, focusing on its support for yield
from, and its relationship with coroutines and asyncio.Task. Next, we analyzed the
asyncio-based flag download script.

We then reflected on Ryan Dahl’s numbers for I/O latency and the effect of blocking
calls. To keep a program alive despite the inevitable blocking functions, there are two
solutions: using threads or asynchronous calls—the latter being implemented as call‐
backs or coroutines.

In practice, asynchronous libraries depend on lower-level threads to work—down to
kernel-level threads—but the user of the library doesn’t create threads and doesn’t need
to be aware of their use in the infrastructure. At the application level, we just make sure
none of our code is blocking, and the event loop takes care of the concurrency under
the hood. Avoiding the overhead of user-level threads is the main reason why asyn‐
chronous systems can manage more concurrent connections than multithreaded sys‐
tems.

Resuming the flag downloading examples, adding a progress bar and proper error han‐
dling required significant refactoring, particularly with the switch from asyn
cio.wait to asyncio.as_completed, which forced us to move most of the functionality
of download_many to a new downloader_coro coroutine, so we could use yield from
to get the results from the futures produced by asyncio.as_completed, one by one.

We then saw how to delegate blocking jobs—such as saving a file—to a thread pool using
the loop.run_in_executor method.

This was followed by a discussion of how coroutines solve the main problems of call‐
backs: loss of context when carrying out multistep asynchronous tasks, and lack of a
proper context for error handling.

The next example—fetching the country names along with the flag images—demon‐
strated how the combination of coroutines and yield from avoids the so-called callback
hell. A multistep procedure making asynchronous calls with yield from looks like
simple sequential code, if you pay no attention to the yield from keywords.

The final examples in the chapter were asyncio TCP and HTTP servers that allow
searching for Unicode characters by name. Analysis of the HTTP server ended with a
discussion on the importance of client-side JavaScript to support higher concurrency
on the server side, by enabling the client to make smaller requests on demand, instead
of downloading large HTML pages.
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11. Comment on PEP-3156 in a Jan. 20, 2013 message to the python-ideas list.

Further Reading
Nick Coghlan, a Python core developer, made the following comment on the draft of
PEP-3156 — Asynchronous IO Support Rebooted: the “asyncio” Module in January
2013:

Somewhere early in the PEP, there may need to be a concise description of the two APIs
for waiting for an asynchronous Future:

1.  f.add_done_callback(…)

2.  yield from f in a coroutine (resumes the coroutine when the future completes,
with either the result or exception as appropriate)

At the moment, these are buried in amongst much larger APIs, yet they’re key to under‐
standing the way everything above the core event loop layer interacts.11

Guido van Rossum, the author of PEP-3156, did not heed Coghlan’s advice. Starting
with PEP-3156, the asyncio documentation is very detailed but not user friendly. The
nine .rst files that make up the asyncio package docs total 128 KB—that’s roughly 71
pages. In the standard library, only the “Built-in Types” chapter is bigger, and it covers
the API for the numeric types, sequence types, generators, mappings, sets, bool, context
managers, etc.

Most pages in the asyncio manual focus on concepts and the API. There are useful
diagrams and examples scattered all over it, but one section that is very practical is
“18.5.11. Develop with asyncio,” which presents essential usage patterns. The asyncio
docs need more content explaining how asyncio should be used.

Because it’s very new, asyncio lacks coverage in print. Jan Palach’s Parallel Programming
with Python (Packt, 2014) is the only book I found that has a chapter about asyncio,
but it’s a short chapter.

There are, however, excellent presentations about asyncio. The best I found is Brett
Slatkin’s “Fan-In and Fan-Out: The Crucial Components of Concurrency,” subtitled
“Why do we need Tulip? (a.k.a., PEP 3156—asyncio),” which he presented at PyCon
2014 in Montréal (video). In 30 minutes, Slatkin shows a simple web crawler example,
highlighting how asyncio is intended to be used. Guido van Rossum is in the audience
and mentions that he also wrote a web crawler as a motivating example for asyncio;
Guido’s code does not depend on aiohttp—it uses only the standard library. Slatkin
also wrote the insightful post “Python’s asyncio Is for Composition, Not Raw Perfor‐
mance.”
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Other must-see asyncio talks are by Guido van Rossum himself: the PyCon US 2013
keynote, and talks he gave at LinkedIn and Twitter University. Also recommended are
Saúl Ibarra Corretgé’s “A Deep Dive into PEP-3156 and the New asyncio Module”
(slides, video).

Dino Viehland showed how asyncio can be integrated with the Tkinter event loop in
his “Using futures for async GUI programming in Python 3.3” talk at PyCon US 2013.
Viehland shows how easy it is to implement the essential parts of the asyncio.Abstrac
tEventLoop interface on top of another event loop. His code was written with Tulip,
prior to the addition of asyncio to the standard library; I adapted it to work with the
Python 3.4 release of asyncio. My updated refactoring is on GitHub.

Victor Stinner—an asyncio core contributor and author of the Trollius backport—
regularly updates a list of relevant links: The new Python asyncio module aka “tulip”.
Other collections of asyncio resources are Asyncio.org and aio-libs on Github, where
you’ll find asynchronous drivers for PostgreSQL, MySQL, and several NoSQL databases.
I haven’t tested these drivers, but the projects seem very active as I write this.

Web services are going to be an important use case for asyncio. Your code will likely
depend on the aiohttp library led by Andrew Svetlov. You’ll also want to set up an
environment to test your error handling code, and the Vaurien “chaos TCP proxy”
designed by Alexis Métaireau and Tarek Ziadé is invaluable for that. Vaurien was created
for the Mozilla Services project and lets you introduce delays and random errors into
the TCP traffic between your program and backend servers such as databases and web
services providers.

Soapbox
The One Loop

For a long time, asynchronous programming has been the approach favored by most
Pythonistas for network applications, but there was always the dilemma of picking one
of the mutually incompatible libraries. Ryan Dahl cites Twisted as a source of inspiration
for Node.js, and Tornado championed the use of coroutines for event-oriented pro‐
gramming in Python.

In the JavaScript world, there is some debate between advocates of simple callbacks and
proponents of various competing higher-level abstractions. Early versions the Node.js
API used Promises—similar to our Futures—but Ryan Dahl decided to standardize on
callbacks only. James Coglan argues this was Node’s biggest missed opportunity.

In Python, the debate is over: the addition of asyncio to the standard library establishes
coroutines and futures as the Pythonic way of writing asynchronous code. Furthermore,
the asyncio package defines standard interfaces for asynchronous futures and the event
loop, providing reference implementations for them.
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The Zen of Python applies perfectly:

There should be one—and preferably only one—obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.

Maybe it takes a Dutch passport to find yield from obvious. It was not obvious at first
for this Brazilian, but after a while I got the hang of it.

More importantly, asyncio was designed so that its event loop can be replaced by an
external package. That’s why the asyncio.get_event_loop and set_event_loop func‐
tions exist; they are part of an abstract Event Loop Policy API.

Tornado already has an AsyncIOMainLoop class that implements the asyncio.Ab
stractEventLoop interface, so you can run asynchronous code using both libraries on
the same event loop. There is also the intriguing Quamash project that integrates asyn
cio to the Qt event loop for developing GUI applications with PyQt or PySide. These
are just two of a growing number of interoperable event-oriented packages made pos‐
sible by asyncio.

Smarter HTTP clients such as single-page web applications (like Gmail) or smartphone
apps demand quick, lightweight responses and push updates. These needs are better
served by asynchronous frameworks instead of traditional web frameworks like Django,
which are designed to serve fully rendered HTML pages and lack support for asyn‐
chronous database access.

The WebSockets protocol was designed to enable real-time updates for clients that are
always connected, from games to streaming applications. This requires highly concur‐
rent asynchronous servers able to keep ongoing interactions with hundreds or thou‐
sands of clients. WebSockets is very well supported by the asyncio architecture and at
least two libraries already implement it on top of asyncio: Autobahn|Python and Web‐
Sockets.

This overall trend—dubbed “the real-time Web”—is a key factor in the demand for
Node.js, and the reason why rallying around asyncio is so important for the Python
ecosystem. There’s still a lot of work to do. For starters, we need an asynchronous HTTP
server and client API in the standard library, an asynchronous DBAPI 3.0, and new
database drivers built on asyncio.

The biggest advantage Python 3.4 with asyncio has over Node.js is Python itself: a better
designed language, with coroutines and yield from to make asynchronous code more
maintainable than the primitive callbacks of JavaScript. Our biggest disadvantage is the
libraries: Python comes with “batteries included,” but our batteries are not designed for
asynchronous programming. The rich ecosystem of libraries for Node.js is entirely built
around async calls. But Python and Node.js both have a problem that Go and Erlang
have solved from the start: we have no transparent way to write code that leverages all
available CPU cores.
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12. See Guido’s January 29, 2015, message, immediately followed by an answer from Glyph.

Standardizing the event loop interface and an asynchronous library was a major coup,
and only our BDFL could have pulled it off, given that there were well-entrenched, high-
quality alternatives available. He did it in consultation with the authors of the major
Python asynchronous frameworks. The influence of Glyph Lefkowitz, the leader of
Twisted, is most evident. Guido’s “Deconstructing Deferred” post to the Python-tulip
group is a must-read if you want to understand why asyncio.Future is not like the
Twisted Deferred class. Making clear his respect for the oldest and largest Python asyn‐
chronous framework, Guido also started the meme WWTD—What Would Twisted Do?
—when discussing design options in the python-twisted group.12

Fortunately, Guido van Rossum led the charge so Python is better positioned to face the
concurrency challenges of the present. Mastering asyncio takes effort. But if you plan
to write concurrent network applications in Python, seek the One Loop:

One Loop to rule them all, One Loop to find them,
One Loop to bring them all and in liveness bind them.
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PART VI

Metaprogramming





1. Alex Martelli, Python in a Nutshell, 2E (O’Reilly), p. 101.

2. Bertrand Meyer, Object-Oriented Software Construction, 2E, p. 57.

CHAPTER 19

Dynamic Attributes and Properties

The crucial importance of properties is that their existence makes it perfectly safe and
indeed advisable for you to expose public data attributes as part of your class’s public
interface.1

— Alex Martelli
 Python contributor and book author

Data attributes and methods are collectively known as attributes in Python: a method
is just an attribute that is callable. Besides data attributes and methods, we can also create
properties, which can be used to replace a public data attribute with accessor methods
(i.e., getter/setter), without changing the class interface. This agrees with the Uniform
access principle:

All services offered by a module should be available through a uniform notation, which
does not betray whether they are implemented through storage or through computation.2

Besides properties, Python provides a rich API for controlling attribute access and im‐
plementing dynamic attributes. The interpreter calls special methods such as __get
attr__ and __setattr__ to evaluate attribute access using dot notation (e.g.,
obj.attr). A user-defined class implementing __getattr__ can implement “virtual
attributes” by computing values on the fly whenever somebody tries to read a nonexis‐
tent attribute like obj.no_such_attribute.

Coding dynamic attributes is the kind of metaprogramming that framework authors
do. However, in Python, the basic techniques are so straightforward that anyone can
put them to work, even for everyday data wrangling tasks. That’s how we’ll start this
chapter.
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3. You can read about this feed and rules for using it at “DIY: OSCON schedule”. The original 744KB JSON file
is still online as I write this. A copy named osconfeed.json can be found in the oscon-schedule/data/ directory
in the Fluent Python code repository.

Data Wrangling with Dynamic Attributes
In the next few examples, we’ll leverage dynamic attributes to work with a JSON data
feed published by O’Reilly for the OSCON 2014 conference. Example 19-1 shows four
records from that data feed.3

Example 19-1. Sample records from osconfeed.json; some field contents abbreviated
{ "Schedule":
  { "conferences": [{"serial": 115 }],
    "events": [
      { "serial": 34505,
        "name": "Why Schools Don´t Use Open Source to Teach Programming",
        "event_type": "40-minute conference session",
        "time_start": "2014-07-23 11:30:00",
        "time_stop": "2014-07-23 12:10:00",
        "venue_serial": 1462,
        "description": "Aside from the fact that high school programming...",
        "website_url": "http://oscon.com/oscon2014/public/schedule/detail/34505",
        "speakers": [157509],
        "categories": ["Education"] }
    ],
    "speakers": [
      { "serial": 157509,
        "name": "Robert Lefkowitz",
        "photo": null,
        "url": "http://sharewave.com/",
        "position": "CTO",
        "affiliation": "Sharewave",
        "twitter": "sharewaveteam",
        "bio": "Robert ´r0ml´ Lefkowitz is the CTO at Sharewave, a startup..." }
    ],
    "venues": [
      { "serial": 1462,
        "name": "F151",
        "category": "Conference Venues" }
    ]
  }
}

Example 19-1 shows 4 out of the 895 records in the JSON feed. As you can see, the entire
dataset is a single JSON object with the key "Schedule", and its value is another mapping
with four keys: "conferences", "events", "speakers", and "venues". Each of those
four keys is paired with a list of records. In Example 19-1, each list has one record, but
in the full dataset, those lists have dozens or hundreds of records—with the exception
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of "conferences", which holds just the single record shown. Every item in those four
lists has a "serial" field, which is a unique identifier within the list.

The first script I wrote to deal with the OSCON feed simply downloads the feed, avoiding
unnecessary traffic by checking if there is a local copy. This makes sense because OSCON
2014 is history now, so that feed will not be updated.

There is no metaprogramming in Example 19-2; pretty much everything boils down to
this expression: json.load(fp), but that’s enough to let us explore the dataset. The
osconfeed.load function will be used in the next several examples.

Example 19-2. osconfeed.py: downloading osconfeed.json (doctests are in
Example 19-3)
from urllib.request import urlopen
import warnings
import os
import json

URL = 'http://www.oreilly.com/pub/sc/osconfeed'
JSON = 'data/osconfeed.json'

def load():
    if not os.path.exists(JSON):
        msg = 'downloading {} to {}'.format(URL, JSON)
        warnings.warn(msg)   
        with urlopen(URL) as remote, open(JSON, 'wb') as local:   
            local.write(remote.read())

    with open(JSON) as fp:
        return json.load(fp)   

Issue a warning if a new download will be made.
with using two context managers (allowed since Python 2.7 and 3.1) to read the
remote file and save it.
The json.load function parses a JSON file and returns native Python objects.
In this feed, we have the types: dict, list, str, and int.

With the code in Example 19-2, we can inspect any field in the data. See Example 19-3.

Example 19-3. osconfeed.py: doctests for Example 19-2
    >>> feed = load()   
    >>> sorted(feed['Schedule'].keys())   
    ['conferences', 'events', 'speakers', 'venues']
    >>> for key, value in sorted(feed['Schedule'].items()):
    ...     print('{:3} {}'.format(len(value), key))   
    ...
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4. An often mentioned one is AttrDict; another, allowing quick creation of nested mappings is addict.

      1 conferences
    484 events
    357 speakers
     53 venues
    >>> feed['Schedule']['speakers'][-1]['name']   
    'Carina C. Zona'
    >>> feed['Schedule']['speakers'][-1]['serial']   
    141590
    >>> feed['Schedule']['events'][40]['name']
    'There *Will* Be Bugs'
    >>> feed['Schedule']['events'][40]['speakers']   
    [3471, 5199]

feed is a dict holding nested dicts and lists, with string and integer values.
List the four record collections inside "Schedule".
Display record counts for each collection.
Navigate through the nested dicts and lists to get the name of the last speaker.
Get serial number of that same speaker.
Each event has a 'speakers' list with 0 or more speaker serial numbers.

Exploring JSON-Like Data with Dynamic Attributes
Example 19-2 is simple enough, but the syntax feed['Schedule']['events'][40]
['name'] is cumbersome. In JavaScript, you can get the same value by writing
feed.Schedule.events[40].name. It’s easy to implement a dict-like class that does the
same in Python—there are plenty of implementations on the Web.4 I implemented my
own FrozenJSON, which is simpler than most recipes because it supports reading only:
it’s just for exploring the data. However, it’s also recursive, dealing automatically with
nested mappings and lists.

Example 19-4 is a demonstration of FrozenJSON and the source code is in Example 19-5.

Example 19-4. FrozenJSON from Example 19-5 allows reading attributes like name
and calling methods like .keys() and .items()
    >>> from osconfeed import load
    >>> raw_feed = load()
    >>> feed = FrozenJSON(raw_feed)   
    >>> len(feed.Schedule.speakers)   
    357
    >>> sorted(feed.Schedule.keys())   
    ['conferences', 'events', 'speakers', 'venues']
    >>> for key, value in sorted(feed.Schedule.items()):  
    ...     print('{:3} {}'.format(len(value), key))
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    ...
      1 conferences
    484 events
    357 speakers
     53 venues
    >>> feed.Schedule.speakers[-1].name   
    'Carina C. Zona'
    >>> talk = feed.Schedule.events[40]
    >>> type(talk)   
    <class 'explore0.FrozenJSON'>
    >>> talk.name
    'There *Will* Be Bugs'
    >>> talk.speakers   
    [3471, 5199]
    >>> talk.flavor   
    Traceback (most recent call last):
      ...
    KeyError: 'flavor'

Build a FrozenJSON instance from the raw_feed made of nested dicts and lists.
FrozenJSON allows traversing nested dicts by using attribute notation; here we
show the length of the list of speakers.
Methods of the underlying dicts can also be accessed, like .keys(), to retrieve
the record collection names.
Using items(), we can retrieve the record collection names and their contents,
to display the len() of each of them.
A list, such as feed.Schedule.speakers, remains a list, but the items inside
are converted to FrozenJSON if they are mappings.
Item 40 in the events list was a JSON object; now it’s a FrozenJSON instance.
Event records have a speakers list with speaker serial numbers.
Trying to read a missing attribute raises KeyError, instead of the usual Attrib
uteError.

The keystone of the FrozenJSON class is the __getattr__ method, which we already
used in the Vector example in “Vector Take #3: Dynamic Attribute Access” on page
284, to retrieve Vector components by letter—v.x, v.y, v.z, etc. It’s essential to recall
that the __getattr__ special method is only invoked by the interpreter when the usual
process fails to retrieve an attribute (i.e., when the named attribute cannot be found in
the instance, nor in the class or in its superclasses).

The last line of Example 19-4 exposes a minor issue with the implementation: ideally,
trying to read a missing attribute should raise AttributeError. I actually did implement
the error handling, but it doubled the size of the __getattr__ method and distracted
from the most important logic I wanted to show, so I left it out for didactic reasons.
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As shown in Example 19-5, the FrozenJSON class has only two methods (__init__,
__getattr__) and a __data instance attribute, so attempts to retrieve an attribute by
any other name will trigger __getattr__. This method will first look if the self.__da
ta dict has an attribute (not a key!) by that name; this allows FrozenJSON instances to
handle any dict method such as items, by delegating to self.__data.items(). If
self.___data doesn’t have an attribute with the given name, __getattr__ uses name as
a key to retrieve an item from self.__dict, and passes that item to FrozenJ
SON.build. This allows navigating through nested structures in the JSON data, as each
nested mapping is converted to another FrozenJSON instance by the build class method.

Example 19-5. explore0.py: turn a JSON dataset into a FrozenJSON holding nested
FrozenJSON objects, lists, and simple types
from collections import abc

class FrozenJSON:
    """A read-only façade for navigating a JSON-like object
       using attribute notation
    """

    def __init__(self, mapping):
        self.__data = dict(mapping)   

    def __getattr__(self, name):   
        if hasattr(self.__data, name):
            return getattr(self.__data, name)   
        else:
            return FrozenJSON.build(self.__data[name])   

    @classmethod
    def build(cls, obj):   
        if isinstance(obj, abc.Mapping):   
            return cls(obj)
        elif isinstance(obj, abc.MutableSequence):   
            return [cls.build(item) for item in obj]
        else:   
            return obj

Build a dict from the mapping argument. This serves two purposes: ensures we
got a dict (or something that can be converted to one) and makes a copy for
safety.
__getattr__ is called only when there’s no attribute with that name.
If name matches an attribute of the instance __data, return that. This is how calls
to methods like keys are handled.
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5. This line is where a KeyError exception may occur, in the expression self.__data[name]. It should be
handled and an AttributeError raised instead, because that’s what is expected from __getattr__. The
diligent reader is invited to code the error handling as an exercise.

6. The source of the data is JSON, and the only collection types in JSON data are dict and list.

Otherwise, fetch the item with the key name from self.__data, and return the
result of calling FrozenJSON.build() on that.5

This is an alternate constructor, a common use for the @classmethod decorator.
If obj is a mapping, build a FrozenJSON with it.
If it is a MutableSequence, it must be a list,6 so we build a list by passing every
item in obj recursively to .build().
If it’s not a dict or a list, return the item as it is.

Note that no caching or transformation of the original feed is done. As the feed is
traversed, the nested data structures are converted again and again into FrozenJSON.
But that’s OK for a dataset of this size, and for a script that will only be used to explore
or convert the data.

Any script that generates or emulates dynamic attribute names from arbitrary sources
must deal with one issue: the keys in the original data may not be suitable attribute
names. The next section addresses this.

The Invalid Attribute Name Problem
The FrozenJSON class has a limitation: there is no special handling for attribute names
that are Python keywords. For example, if you build an object like this:

>>> grad = FrozenJSON({'name': 'Jim Bo', 'class': 1982})

You won’t be able to read grad.class because class is a reserved word in Python:

>>> grad.class
  File "<stdin>", line 1
    grad.class
             ^
SyntaxError: invalid syntax

You can always do this, of course:

>>> getattr(grad, 'class')
1982

But the idea of FrozenJSON is to provide convenient access to the data, so a better sol‐
ution is checking whether a key in the mapping given to FrozenJSON.__init__ is a
keyword, and if so, append an _ to it, so the attribute can be read like this:
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>>> grad.class_
1982

This can be achieved by replacing the one-liner __init__ from Example 19-5 with the
version in Example 19-6.

Example 19-6. explore1.py: append a _ to attribute names that are Python keywords
    def __init__(self, mapping):
        self.__data = {}
        for key, value in mapping.items():
            if keyword.iskeyword(key):   
                key += '_'
            self.__data[key] = value

The keyword.iskeyword(…) function is exactly what we need; to use it, the
keyword module must be imported, which is not shown in this snippet.

A similar problem may arise if a key in the JSON is not a valid Python identifier:

>>> x = FrozenJSON({'2be':'or not'})
>>> x.2be
  File "<stdin>", line 1
    x.2be
      ^
SyntaxError: invalid syntax

Such problematic keys are easy to detect in Python 3 because the str class provides the
s.isidentifier() method, which tells you whether s is a valid Python identifier ac‐
cording to the language grammar. But turning a key that is not a valid identifier into
valid attribute name is not trivial. Two simple solutions would be raising an exception
or replacing the invalid keys with generic names like attr_0, attr_1, and so on. For the
sake of simplicity, I will not worry about this issue.

After giving some thought to the dynamic attribute names, let’s turn to another essential
feature of FrozenJSON: the logic of the build class method, which is used by __get
attr__ to return a different type of object depending on the value of the attribute being
accessed, so that nested structures are converted to FrozenJSON instances or lists of
FrozenJSON instances.

Instead of a class method, the same logic could be implemented as the __new__ special
method, as we’ll see next.

Flexible Object Creation with __new__
We often refer to __init__ as the constructor method, but that’s because we adopted
jargon from other languages. The special method that actually constructs an instance
is __new__: it’s a class method (but gets special treatment, so the @classmethod decorator
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is not used), and it must return an instance. That instance will in turn be passed as the
first argument self of __init__. Because __init__ gets an instance when called, and
it’s actually forbidden from returning anything, __init__ is really an “initializer.” The
real constructor is __new__—which we rarely need to code because the implementation
inherited from object suffices.

The path just described, from __new__ to __init__, is the most common, but not the
only one. The __new__ method can also return an instance of a different class, and when
that happens, the interpreter does not call __init__.

In other words, the process of building an object in Python can be summarized with
this pseudocode:

# pseudo-code for object construction
def object_maker(the_class, some_arg):
    new_object = the_class.__new__(some_arg)
    if isinstance(new_object, the_class):
        the_class.__init__(new_object, some_arg)
    return new_object

# the following statements are roughly equivalent
x = Foo('bar')
x = object_maker(Foo, 'bar')

Example 19-7 shows a variation of FrozenJSON where the logic of the former build class
method was moved to __new__.

Example 19-7. explore2.py: using new instead of build to construct new objects that
may or may not be instances of FrozenJSON
from collections import abc

class FrozenJSON:
    """A read-only façade for navigating a JSON-like object
       using attribute notation
    """

    def __new__(cls, arg):   
        if isinstance(arg, abc.Mapping):
            return super().__new__(cls)   
        elif isinstance(arg, abc.MutableSequence):   
            return [cls(item) for item in arg]
        else:
            return arg

    def __init__(self, mapping):
        self.__data = {}
        for key, value in mapping.items():
            if iskeyword(key):
                key += '_'
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            self.__data[key] = value

    def __getattr__(self, name):
        if hasattr(self.__data, name):
            return getattr(self.__data, name)
        else:
            return FrozenJSON(self.__data[name])   

As a class method, the first argument __new__ gets is the class itself, and the
remaining arguments are the same that __init__ gets, except for self.
The default behavior is to delegate to the __new__ of a super class. In this case,
we are calling __new__ from the object base class, passing FrozenJSON as the
only argument.
The remaining lines of __new__ are exactly as in the old build method.
This was where FrozenJSON.build was called before; now we just call the Fro
zenJSON constructor.

The __new__ method gets the class as the first argument because, usually, the created
object will be an instance of that class. So, in FrozenJSON.__new__, when the expression
super().__new__(cls) effectively calls object.__new__(FrozenJSON), the instance
built by the object class is actually an instance of FrozenJSON—i.e., the __class__
attribute of the new instance will hold a reference to FrozenJSON—even though the
actual construction is performed by object.__new__, implemented in C, in the guts of
the interpreter.

There is an obvious shortcoming in the way the OSCON JSON feed is structured: the
event at index 40, titled 'There *Will* Be Bugs' has two speakers, 3471 and 5199, but
finding them is not easy, because those are serial numbers, and the Schedule.speak
ers list is not indexed by them. The venue field, present in every event record, also
holds the a serial number, but finding the corresponding venue record requires a linear
scan of the Schedule.venues list. Our next task is restructuring the data, and then
automating the retrieval of linked records.

Restructuring the OSCON Feed with shelve
The funny name of the standard shelve module makes sense when you realize that
pickle is the name of the Python object serialization format—and of the module that
converts objects to/from that format. Because pickle jars are kept in shelves, it makes
sense that shelve provides pickle storage.

The shelve.open high-level function returns a shelve.Shelf instance—a simple key-
value object database backed by the dbm module, with these characteristics:
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7. I could also do len(db), but that would be costly in a large dbm database.

• shelve.Shelf subclasses abc.MutableMapping, so it provides the essential meth‐
ods we expect of a mapping type

• In addition, shelve.Shelf provides a few other I/O management methods, like
sync and close; it’s also a context manager.

• Keys and values are saved whenever a new value is assigned to a key.
• The keys must be strings.
• The values must be objects that the pickle module can handle.

Consult the documentation for the shelve, dbm, and pickle modules for the details and
caveats. What matters to us now is that shelve provides a simple, efficient way to re‐
organize the OSCON schedule data: we will read all records from the JSON file and save
them to a shelve.Shelf. Each key will be made from the record type and the serial
number (e.g., 'event.33950' or 'speaker.3471') and the value will be an instance of
a new Record class we are about to introduce.

Example 19-8 shows the doctests for the schedule1.py script using shelve. To try it out
interactively, run the script as python -i schedule1.py to get a console prompt with
the module loaded. The load_db function does the heavy work: it calls oscon
feed.load (from Example 19-2) to read the JSON data and saves each record as a Record
instance in the Shelf object passed as db. After that, retrieving a speaker record is as
easy as speaker = db['speaker.3471'].

Example 19-8. Trying out the functionality provided by schedule1.py (Example 19-9)
    >>> import shelve
    >>> db = shelve.open(DB_NAME)   
    >>> if CONFERENCE not in db:   
    ...     load_db(db)   
    ...
    >>> speaker = db['speaker.3471']   
    >>> type(speaker)   
    <class 'schedule1.Record'>
    >>> speaker.name, speaker.twitter   
    ('Anna Martelli Ravenscroft', 'annaraven')
    >>> db.close()   

shelve.open opens an existing or just-created database file.
A quick way to determine if the database is populated is to look for a known key,
in this case conference.115—the key to the single conference record.7

If the database is empty, call load_db(db) to load it.
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8. A fundamental weakness of doctest is the lack of proper resource setup and guaranteed tear-down. I wrote
most tests for schedule1.py using py.test, and you can see them at Example A-12.

Fetch a speaker record.
It’s an instance of the Record class defined in Example 19-9.
Each Record instance implements a custom set of attributes reflecting the fields
of the underlying JSON record.
Always remember to close a shelve.Shelf. If possible, use a with block to make
sure the Shelf is closed.8

The code for schedule1.py is in Example 19-9.

Example 19-9. schedule1.py: exploring OSCON schedule data saved to a shelve.Shelf
import warnings

import osconfeed   

DB_NAME = 'data/schedule1_db'
CONFERENCE = 'conference.115'

class Record:
    def __init__(self, **kwargs):
        self.__dict__.update(kwargs)   

def load_db(db):
    raw_data = osconfeed.load()   
    warnings.warn('loading ' + DB_NAME)
    for collection, rec_list in raw_data['Schedule'].items():   
        record_type = collection[:-1]   
        for record in rec_list:
            key = '{}.{}'.format(record_type, record['serial'])   
            record['serial'] = key   
            db[key] = Record(**record)   

Load the osconfeed.py module from Example 19-2.
This is a common shortcut to build an instance with attributes created from
keyword arguments (detailed explanation follows).
This may fetch the JSON feed from the Web, if there’s no local copy.
Iterate over the collections (e.g., 'conferences', 'events', etc.).
record_type is set to the collection name without the trailing 's' (i.e., 'events'
becomes 'event').
Build key from the record_type and the 'serial' field.
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9. By the way, Bunch is the name of the class used by Alex Martelli to share this tip in a recipe from 2001 titled
“The simple but handy collector of a bunch of named stuff class”.

Update the 'serial' field with the full key.
Build Record instance and save it to the database under the key.

The Record.__init__ method illustrates a popular Python hack. Recall that the
__dict__ of an object is where its attributes are kept—unless __slots__ is declared in
the class, as we saw in “Saving Space with the __slots__ Class Attribute” on page 264.
So, updating an instance __dict__ with a mapping is a quick way to create a bunch of
attributes in that instance.9

I am not going to repeat the details we discussed earlier in “The
Invalid Attribute Name Problem” on page 591, but depending on
the application context, the Record class may need to deal with
keys that are not valid attribute names.

The definition of Record in Example 19-9 is so simple that you may be wondering why
we did not use it before, instead of the more complicated FrozenJSON. There are a couple
reasons. First, FrozenJSON works by recursively converting the nested mappings and
lists; Record doesn’t need that because our converted dataset doesn’t have mappings
nested in mappings or lists. The records contain only strings, integers, lists of strings,
and lists of integers. A second reason is that FrozenJSON provides access to the embed‐
ded __data dict attributes—which we used to invoke methods like keys—and now we
don’t need that functionality either.

The Python standard library provides at least two classes similar
to our Record, where each instance has an arbitrary set of at‐
tributes built from keyword arguments to the constructor: multi
processing.Namespace (documentation, source code), and arg
parse.Namespace (documentation, source code). I implemented
Record to highlight the essence of the idea: __init__ updating
the instance __dict__.

After reorganizing the schedule dataset as we just did, we can now extend the Record
class to provide a useful service: automatically retrieving venue and speaker records
referenced in an event record. This is similar to what the Django ORM does when you
access a models.ForeignKey field: instead of the key, you get the linked model object.
We’ll use properties to do that in the next example.
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Linked Record Retrieval with Properties
The goal of this next version is: given an event record retrieved from the shelf, reading
its venue or speakers attributes will not return serial numbers but full-fledged record
objects. See the partial interaction in Example 19-10 as an example.

Example 19-10. Extract from the doctests of schedule2.py
    >>> DbRecord.set_db(db)   
    >>> event = DbRecord.fetch('event.33950')   
    >>> event   
    <Event 'There *Will* Be Bugs'>
    >>> event.venue   
    <DbRecord serial='venue.1449'>
    >>> event.venue.name   
    'Portland 251'
    >>> for spkr in event.speakers:   
    ...     print('{0.serial}: {0.name}'.format(spkr))
    ...
    speaker.3471: Anna Martelli Ravenscroft
    speaker.5199: Alex Martelli

DbRecord extends Record, adding database support: to operate, DbRecord must
be given a reference to a database.
The DbRecord.fetch class method retrieves records of any type.
Note that event is an instance of the Event class, which extends DbRecord.
Accessing event.venue returns a DbRecord instance.
Now it’s easy to find out the name of an event.venue. This automatic
dereferencing is the goal of this example.
We can also iterate over the event.speakers list, retrieving DbRecords
representing each speaker.

Figure 19-1 Provides an overview of the classes we’ll be studying in this section:
Record

The __init__ method is the same as in schedule1.py (Example 19-9); the __eq__
method was added to facilitate testing.

DbRecord

Subclass of Record adding a __db class attribute, set_db and get_db static methods
to set/get that attribute, a fetch class method to retrieve records from the database,
and a __repr__ instance method to support debugging and testing.

Event

Subclass of DbRecord adding venue and speakers properties to retrieve linked re‐
cords, and a specialized __repr__ method.
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10. The StackOverflow topic “Class-level read only properties in Python” has solutions to read-only attributes
in classes, including one by Alex Martelli. The solutions require metaclasses, so you may want to read
Chapter 21 before studying them.

11. The full listing for schedule2.py is in Example A-13, together with py.test scripts in “Chapter 19: OSCON
Schedule Scripts and Tests” on page 708.

Figure 19-1. UML class diagram for an enhanced Record class and two subclasses:
DbRecord and Event.

The DbRecord.__db class attribute exists to hold a reference to the opened
shelve.Shelf database, so it can be used by the DbRecord.fetch method and the
Event.venue and Event.speakers properties that depend on it. I coded __db as a private
class attribute with conventional getter and setter methods because I wanted to protect
it from accidental overwriting. I did not use a property to manage __db because of a
crucial fact: properties are class attributes designed to manage instance attributes.10

The code for this section is in the schedule2.py module in the Fluent Python code repos‐
itory. Because the module tops 100 lines, I’ll present it in parts.11

The first statements of schedule2.py are shown in Example 19-11.

Example 19-11. schedule2.py: imports, constants, and the enhanced Record class
import warnings
import inspect   

import osconfeed

DB_NAME = 'data/schedule2_db'   
CONFERENCE = 'conference.115'

class Record:
    def __init__(self, **kwargs):
        self.__dict__.update(kwargs)

    def __eq__(self, other):   
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12. Explicitly subclassing from object in Python 3 is not wrong, just redundant because all classes are new-
style now. This is one example where breaking with the past made the language cleaner. If the same code
must run in Python 2 and Python 3, inheriting from object should be explicit.

        if isinstance(other, Record):
            return self.__dict__ == other.__dict__
        else:
            return NotImplemented

inspect will be used in the load_db function (Example 19-14).
Because we are storing instances of different classes, we create and use a different
database file, 'schedule2_db', instead of the 'schedule_db' of Example 19-9.
An __eq__ method is always handy for testing.

In Python 2, only “new style” classes support properties. To write
a new style class in Python 2 you must subclass directly or indi‐
rectly from object. Record in Example 19-11 is the base class of a
hierarchy that will use properties, so in Python 2 its declaration
would start with:12

class Record(object):
    # etc...

The next classes defined in schedule2.py are a custom exception type and DbRecord. See
Example 19-12.

Example 19-12. schedule2.py: MissingDatabaseError and DbRecord class
class MissingDatabaseError(RuntimeError):
    """Raised when a database is required but was not set."""   

class DbRecord(Record):   

    __db = None   

    @staticmethod   
    def set_db(db):
        DbRecord.__db = db   

    @staticmethod   
    def get_db():
        return DbRecord.__db

    @classmethod   
    def fetch(cls, ident):
        db = cls.get_db()
        try:
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            return db[ident]   
        except TypeError:
            if db is None:   
                msg = "database not set; call '{}.set_db(my_db)'"
                raise MissingDatabaseError(msg.format(cls.__name__))
            else:   
                raise

    def __repr__(self):
        if hasattr(self, 'serial'):   
            cls_name = self.__class__.__name__
            return '<{} serial={!r}>'.format(cls_name, self.serial)
        else:
            return super().__repr__()   

Custom exceptions are usually marker classes, with no body. A docstring
explaining the usage of the exception is better than a mere pass statement.
DbRecord extends Record.
The __db class attribute will hold a reference to the opened shelve.Shelf
database.
set_db is a staticmethod to make it explicit that its effect is always exactly the
same, no matter how it’s called.
Even if this method is invoked as Event.set_db(my_db), the __db attribute will
be set in the DbRecord class.
get_db is also a staticmethod because it will always return the object referenced
by DbRecord.__db, no matter how it’s invoked.
fetch is a class method so that its behavior is easier to customize in subclasses.
This retrieves the record with the ident key from the database.
If we get a TypeError and db is None, raise a custom exception explaining that
the database must be set.
Otherwise, re-raise the exception because we don’t know how to handle it.
If the record has a serial attribute, use it in the string representation.
Otherwise, default to the inherited __repr__.

Now we get to the meat of the example: the Event class, listed in Example 19-13.

Example 19-13. schedule2.py: the Event class
class Event(DbRecord):   

    @property
    def venue(self):
        key = 'venue.{}'.format(self.venue_serial)
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        return self.__class__.fetch(key)   

    @property
    def speakers(self):
        if not hasattr(self, '_speaker_objs'):   
            spkr_serials = self.__dict__['speakers']   
            fetch = self.__class__.fetch   
            self._speaker_objs = [fetch('speaker.{}'.format(key))
                                  for key in spkr_serials]   
        return self._speaker_objs   

    def __repr__(self):
        if hasattr(self, 'name'):   
            cls_name = self.__class__.__name__
            return '<{} {!r}>'.format(cls_name, self.name)
        else:
            return super().__repr__()   

Event extends DbRecord.
The venue property builds a key from the venue_serial attribute, and passes it
to the fetch class method, inherited from DbRecord (see explanation after this
example).
The speakers property checks if the record has a _speaker_objs attribute.
If it doesn’t, the 'speakers' attribute is retrieved directly from the instance
__dict__ to avoid an infinite recursion, because the public name of this property
is also speakers.
Get a reference to the fetch class method (the reason for this will be explained
shortly).
self._speaker_objs is loaded with a list of speaker records, using fetch.
That list is returned.
If the record has a name attribute, use it in the string representation.
Otherwise, default to the inherited __repr__.

In the venue property of Example 19-13, the last line returns
self.__class__.fetch(key). Why not write that simply as self.fetch(key)? The
simpler formula works with the specific dataset of the OSCON feed because there is no
event record with a 'fetch' key. If even a single event record had a key named
'fetch', then within that specific Event instance, the reference self.fetch would re‐
trieve the value of that field, instead of the fetch class method that Event inherits from
DbRecord. This is a subtle bug, and it could easily sneak through testing and blow up
only in production when the venue or speaker records linked to that specific Event
record are retrieved.
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When creating instance attribute names from data, there is al‐
ways the risk of bugs due to shadowing of class attributes (such as
methods) or data loss through accidental overwriting of existing
instance attributes. This caveat is probably the main reason why,
by default, Python dicts are not like JavaScript objects in the first
place.

If the Record class behaved more like a mapping, implementing a dynamic __geti
tem__ instead of a dynamic __getattr__, there would be no risk of bugs from over‐
writing or shadowing. A custom mapping is probably the Pythonic way to implement
Record. But if I took that road, we’d not be reflecting on the tricks and traps of dynamic
attribute programming.

The final piece of this example is the revised load_db function in Example 19-14.

Example 19-14. schedule2.py: the load_db function
def load_db(db):
    raw_data = osconfeed.load()
    warnings.warn('loading ' + DB_NAME)
    for collection, rec_list in raw_data['Schedule'].items():
        record_type = collection[:-1]   
        cls_name = record_type.capitalize()   
        cls = globals().get(cls_name, DbRecord)   
        if inspect.isclass(cls) and issubclass(cls, DbRecord):   
            factory = cls   
        else:
            factory = DbRecord   
        for record in rec_list:   
            key = '{}.{}'.format(record_type, record['serial'])
            record['serial'] = key
            db[key] = factory(**record)   

So far, no changes from the load_db in schedule1.py (Example 19-9).
Capitalize the record_type to get a potential class name (e.g., 'event' becomes
'Event').
Get an object by that name from the module global scope; get DbRecord if there’s
no such object.
If the object just retrieved is a class, and is a subclass of DbRecord…
…bind the factory name to it. This means factory may be any subclass of
DbRecord, depending on the record_type.
Otherwise, bind the factory name to DbRecord.
The for loop that creates the key and saves the records is the same as before,
except that…
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…the object stored in the database is constructed by factory, which may be
DbRecord or a subclass selected according to the record_type.

Note that the only record_type that has a custom class is Event, but if classes named
Speaker or Venue are coded, load_db will automatically use those classes when building
and saving records, instead of the default DbRecord class.

So far, the examples in this chapter were designed to show a variety of techniques for
implementing dynamic attributes using basic tools such as __getattr__, hasattr, get
attr, @property, and __dict__.

Properties are frequently used to enforce business rules by changing a public attribute
into an attribute managed by a getter and setter without affecting client code, as the next
section shows.

Using a Property for Attribute Validation
So far, we have only seen the @property decorator used to implement read-only prop‐
erties. In this section, we will create a read/write property.

LineItem Take #1: Class for an Item in an Order
Imagine an app for a store that sells organic food in bulk, where customers can order
nuts, dried fruit, or cereals by weight. In that system, each order would hold a sequence
of line items, and each line item could be represented by a class as in Example 19-15.

Example 19-15. bulkfood_v1.py: the simplest LineItem class
class LineItem:

    def __init__(self, description, weight, price):
        self.description = description
        self.weight = weight
        self.price = price

    def subtotal(self):
        return self.weight * self.price

That’s nice and simple. Perhaps too simple. Example 19-16 shows a problem.

Example 19-16. A negative weight results in a negative subtotal
    >>> raisins = LineItem('Golden raisins', 10, 6.95)
    >>> raisins.subtotal()
    69.5
    >>> raisins.weight = -20  # garbage in...
    >>> raisins.subtotal()    # garbage out...
    -139.0
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13. Direct quote by Jeff Bezos in the Wall Street Journal story “Birth of a Salesman” (October 15, 2011).

This is a toy example, but not as fanciful as you may think. Here is a true story from the
early days of Amazon.com:

We found that customers could order a negative quantity of books! And we would credit
their credit card with the price and, I assume, wait around for them to ship the books.13

— Jeff Bezos
 Founder and CEO of Amazon.com

How do we fix this? We could change the interface of LineItem to use a getter and a
setter for the weight attribute. That would be the Java way, and it’s not wrong.

On the other hand, it’s natural to be able set the weight of an item by just assigning to
it; and perhaps the system is in production with other parts already accessing
item.weight directly. In this case, the Python way would be to replace the data attribute
with a property.

LineItem Take #2: A Validating Property
Implementing a property will allow us to use a getter and a setter, but the interface of
LineItem will not change (i.e., setting the weight of a LineItem will still be written as
raisins.weight = 12).

Example 19-17 lists the code for a read/write weight property.

Example 19-17. bulkfood_v2.py: a LineItem with a weight property
class LineItem:

    def __init__(self, description, weight, price):
        self.description = description
        self.weight = weight   
        self.price = price

    def subtotal(self):
        return self.weight * self.price

    @property   
    def weight(self):   
        return self.__weight   

    @weight.setter   
    def weight(self, value):
        if value > 0:
            self.__weight = value   
        else:
            raise ValueError('value must be > 0')   
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Here the property setter is already in use, making sure that no instances with
negative weight can be created.
@property decorates the getter method.
The methods that implement a property all have the name of the public attribute:
weight.
The actual value is stored in a private attribute __weight.
The decorated getter has a .setter attribute, which is also a decorator; this ties
the getter and setter together.
If the value is greater than zero, we set the private __weight.
Otherwise, ValueError is raised.

Note how a LineItem with an invalid weight cannot be created now:

>>> walnuts = LineItem('walnuts', 0, 10.00)
Traceback (most recent call last):
    ...
ValueError: value must be > 0

Now we have protected weight from users providing negative values. Although buyers
usually can’t set the price of an item, a clerical error or a bug may create a LineItem with
a negative price. To prevent that, we could also turn price into a property, but this
would entail some repetition in our code.

Remember the Paul Graham quote from Chapter 14: “When I see patterns in my pro‐
grams, I consider it a sign of trouble.” The cure for repetition is abstraction. There are
two ways to abstract away property definitions: using a property factory or a descriptor
class. The descriptor class approach is more flexible, and we’ll devote Chapter 20 to a
full discussion of it. Properties are in fact implemented as descriptor classes themselves.
But here we will continue our exploration of properties by implementing a property
factory as a function.

But before we can implement a property factory, we need to have a deeper understanding
of properties.

A Proper Look at Properties
Although often used as a decorator, the property built-in is actually a class. In Python,
functions and classes are often interchangeable, because both are callable and there is
no new operator for object instantiation, so invoking a constructor is no different than
invoking a factory function. And both can be used as decorators, as long as they return
a new callable that is a suitable replacement of the decorated function.

This is the full signature of the property constructor:
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property(fget=None, fset=None, fdel=None, doc=None)

All arguments are optional, and if a function is not provided for one of them, the cor‐
responding operation is not allowed by the resulting property object.

The property type was added in Python 2.2, but the @ decorator syntax appeared only
in Python 2.4, so for a few years, properties were defined by passing the accessor func‐
tions as the first two arguments.

The “classic” syntax for defining properties without decorators is illustrated in
Example 19-18.

Example 19-18. bulkfood_v2b.py: same as Example 19-17 but without using decorators
class LineItem:

    def __init__(self, description, weight, price):
        self.description = description
        self.weight = weight
        self.price = price

    def subtotal(self):
        return self.weight * self.price

    def get_weight(self):   
        return self.__weight

    def set_weight(self, value):   
        if value > 0:
            self.__weight = value
        else:
            raise ValueError('value must be > 0')

    weight = property(get_weight, set_weight)   

A plain getter.
A plain setter.
Build the property and assign it to a public class attribute.

The classic form is better than the decorator syntax in some situations; the code of the
property factory we’ll discuss shortly is one example. On the other hand, in a class body
with many methods, the decorators make it explicit which are the getters and setters,
without depending on the convention of using get and set prefixes in their names.

The presence of a property in a class affects how attributes in instances of that class can
be found in a way that may be surprising at first. The next section explains.
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Properties Override Instance Attributes
Properties are always class attributes, but they actually manage attribute access in the
instances of the class.

In “Overriding Class Attributes” on page 267 we saw that when an instance and its class
both have a data attribute by the same name, the instance attribute overrides, or shad‐
ows, the class attribute—at least when read through that instance. Example 19-19 illus‐
trates this point.

Example 19-19. Instance attribute shadows class data attribute
>>> class Class:  # 
...     data = 'the class data attr'
...     @property
...     def prop(self):
...         return 'the prop value'
...
>>> obj = Class()
>>> vars(obj)  # 
{}
>>> obj.data  # 
'the class data attr'
>>> obj.data = 'bar' # 
>>> vars(obj)  # 
{'data': 'bar'}
>>> obj.data  # 
'bar'
>>> Class.data  # 
'the class data attr'

Define Class with two class attributes: the data data attribute and the prop
property.
vars returns the __dict__ of obj, showing it has no instance attributes.
Reading from obj.data retrieves the value of Class.data.
Writing to obj.data creates an instance attribute.
Inspect the instance to see the instance attribute.
Now reading from obj.data retrieves the value of the instance attribute. When
read from the obj instance, the instance data shadows the class data.
The Class.data attribute is intact.

Now, let’s try to override the prop attribute on the obj instance. Resuming the previous
console session, we have Example 19-20.
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Example 19-20. Instance attribute does not shadow class property (continued from
Example 19-19)
>>> Class.prop  # 
<property object at 0x1072b7408>
>>> obj.prop  # 
'the prop value'
>>> obj.prop = 'foo'  # 
Traceback (most recent call last):
  ...
AttributeError: can't set attribute
>>> obj.__dict__['prop'] = 'foo'  # 
>>> vars(obj)  # 
{'prop': 'foo', 'attr': 'bar'}
>>> obj.prop  # 
'the prop value'
>>> Class.prop = 'baz'  # 
>>> obj.prop  # 
'foo'

Reading prop directly from Class retrieves the property object itself, without
running its getter method.
Reading obj.prop executes the property getter.
Trying to set an instance prop attribute fails.
Putting 'prop' directly in the obj.__dict__ works.
We can see that obj now has two instance attributes: attr and prop.
However, reading obj.prop still runs the property getter. The property is not
shadowed by an instance attribute.
Overwriting Class.prop destroys the property object.
Now obj.prop retrieves the instance attribute. Class.prop is not a property
anymore, so it no longer overrides obj.prop.

As a final demonstration, we’ll add a new property to Class, and see it overriding an
instance attribute. Example 19-21 picks up where Example 19-20 left off.

Example 19-21. New class property shadows existing instance attribute (continued
from Example 19-20)
>>> obj.data  # 
'bar'
>>> Class.data  # 
'the class data attr'
>>> Class.data = property(lambda self: 'the "data" prop value')  # 
>>> obj.data  # 
'the "data" prop value'
>>> del Class.data  # 
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>>> obj.data  # 
'bar'

obj.data retrieves the instance data attribute.
Class.data retrieves the class data attribute.
Overwrite Class.data with a new property.
obj.data is now shadowed by the Class.data property.
Delete the property.
obj.data now reads the instance data attribute again.

The main point of this section is that an expression like obj.attr does not search for
attr starting with obj. The search actually starts at obj.__class__, and only if there is
no property named attr in the class, Python looks in the obj instance itself. This rule
applies not only to properties but to a whole category of descriptors, the overriding
descriptors. Further treatment of descriptors must wait for Chapter 20, where we’ll see
that properties are in fact overriding descriptors.

Now back to properties. Every Python code unit—modules, functions, classes, methods
—can have a docstring. The next topic is how to attach documentation to properties.

Property Documentation
When tools such as the console help() function or IDEs need to display the documen‐
tation of a property, they extract the information from the __doc__ attribute of the
property.

If used with the classic call syntax, property can get the documentation string as the
doc argument:

    weight = property(get_weight, set_weight, doc='weight in kilograms')

When property is deployed as a decorator, the docstring of the getter method—the one
with the @property decorator itself—is used as the documentation of the property as a
whole. Figure 19-2 shows the help screens generated from the code in Example 19-22.
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Figure 19-2. Screenshots of the Python console when issuing the commands
help(Foo.bar) and help(Foo). Source code in Example 19-22.

Example 19-22. Documentation for a property
class Foo:

    @property
    def bar(self):
        '''The bar attribute'''
        return self.__dict__['bar']

    @bar.setter
    def bar(self, value):
        self.__dict__['bar'] = value

Now that we have these property essentials covered, let’s go back to the issue of protecting
both the weight and price attributes of LineItem so they only accept values greater
than zero—but without implementing two nearly identical pairs of getters/setters by
hand.

Coding a Property Factory
We’ll create a quantity property factory—so named because the managed attributes
represent quantities that can’t be negative or zero in the application. Example 19-23
shows the clean look of the LineItem class using two instances of quantity properties:
one for managing the weight attribute, the other for price.

Example 19-23. bulkfood_v2prop.py: the quantity property factory in use
class LineItem:
    weight = quantity('weight')   
    price = quantity('price')   
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14. This code is adapted from “Recipe 9.21. Avoiding Repetitive Property Methods” from Python Cookbook,
3E by David Beazley and Brian K. Jones (O’Reilly).

    def __init__(self, description, weight, price):
        self.description = description
        self.weight = weight   
        self.price = price

    def subtotal(self):
        return self.weight * self.price   

Use the factory to define the first custom property, weight, as a class attribute.
This second call builds another custom property, price.
Here the property is already active, making sure a negative or 0 weight is
rejected.
The properties are also in use here, retrieving the values stored in the instance.

Recall that properties are class attributes. When building each quantity property, we
need to pass the name of the LineItem attribute that will be managed by that specific
property. Having to type the word weight twice in this line is unfortunate:

    weight = quantity('weight')

But avoiding that repetition is complicated because the property has no way of knowing
which class attribute name will be bound to it. Remember: the right side of an assignment
is evaluated first, so when quantity() is invoked, the price class attribute doesn’t even
exist.

Improving the quantity property so that the user doesn’t need to
retype the attribute name is a nontrivial metaprogramming prob‐
lem. We’ll see a workaround in Chapter 20, but real solutions will
have to wait until Chapter 21, because they require either a class
decorator or a metaclass.

Example 19-24 lists the implementation of the quantity property factory.14

Example 19-24. bulkfood_v2prop.py: the quantity property factory
def quantity(storage_name):   

    def qty_getter(instance):   
        return instance.__dict__[storage_name]   

    def qty_setter(instance, value):   
        if value > 0:
            instance.__dict__[storage_name] = value   
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        else:
            raise ValueError('value must be > 0')

    return property(qty_getter, qty_setter)   

The storage_name argument determines where the data for each property is
stored; for the weight, the storage name will be 'weight'.
The first argument of the qty_getter could be named self, but that would be
strange because this is not a class body; instance refers to the LineItem instance
where the attribute will be stored.
qty_getter references storage_name, so it will be preserved in the closure of
this function; the value is retrieved directly from the instance.__dict__ to
bypass the property and avoid an infinite recursion.
qty_setter is defined, also taking instance as first argument.
The value is stored directly in the instance.__dict__, again bypassing the
property.
Build a custom property object and return it.

The bits of Example 19-24 that deserve careful study revolve around the stor
age_name variable. When you code each property in the traditional way, the name of
the attribute where you will store a value is hardcoded in the getter and setter methods.
But here, the qty_getter and qty_setter functions are generic, and they depend on
the storage_name variable to know where to get/set the managed attribute in the in‐
stance __dict__. Each time the quantity factory is called to build a property, the
storage_name must be set to a unique value.

The functions qty_getter and qty_setter will be wrapped by the property object
created in the last line of the factory function. Later when called to perform their duties,
these functions will read the storage_name from their closures, to determine where to
retrieve/store the managed attribute values.

In Example 19-25, I create and inspect a LineItem instance, exposing the storage at‐
tributes.

Example 19-25. bulkfood_v2prop.py: the quantity property factory
    >>> nutmeg = LineItem('Moluccan nutmeg', 8, 13.95)
    >>> nutmeg.weight, nutmeg.price   
    (8, 13.95)
    >>> sorted(vars(nutmeg).items())   
    [('description', 'Moluccan nutmeg'), ('price', 13.95), ('weight', 8)]

Reading the weight and price through the properties shadowing the namesake
instance attributes.
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Using vars to inspect the nutmeg instance: here we see the actual instance
attributes used to store the values.

Note how the properties built by our factory leverage the behavior described in “Prop‐
erties Override Instance Attributes” on page 608: the weight property overrides the
weight instance attribute so that every reference to self.weight or nutmeg.weight is
handled by the property functions, and the only way to bypass the property logic is to
access the instance __dict__ directly.

The code in Example 19-25 may be a bit tricky, but it’s concise: it’s identical in length to
the decorated getter/setter pair defining just the weight property in Example 19-17. The
LineItem definition in Example 19-23 looks much better without the noise of the getter/
setters.

In a real system, that same kind of validation may appear in many fields, across several
classes, and the quantity factory would be placed in a utility module to be used over
and over again. Eventually that simple factory could be refactored into a more extensible
descriptor class, with specialized subclasses performing different validations. We’ll do
that in Chapter 20.

Now let us wrap up the discussion of properties with the issue of attribute deletion.

Handling Attribute Deletion
Recall from the Python tutorial that object attributes can be deleted using the del
statement:

del my_object.an_attribute

In practice, deleting attributes is not something we do every day in Python, and the
requirement to handle it with a property is even more unusual. But it is supported, and
I can think of a silly example to demonstrate it.

In a property definition, the @my_propety.deleter decorator is used to wrap the meth‐
od in charge of deleting the attribute managed by the property. As promised,
Example 19-26 is a silly example showing how to code a property deleter.

Example 19-26. blackknight.py: inspired by the Black Knight character of “Monty
Python and the Holy Grail”
class BlackKnight:

    def __init__(self):
        self.members = ['an arm', 'another arm',
                        'a leg', 'another leg']
        self.phrases = ["'Tis but a scratch.",
                        "It's just a flesh wound.",
                        "I'm invincible!",
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                        "All right, we'll call it a draw."]

    @property
    def member(self):
        print('next member is:')
        return self.members[0]

    @member.deleter
    def member(self):
        text = 'BLACK KNIGHT (loses {})\n-- {}'
        print(text.format(self.members.pop(0), self.phrases.pop(0)))

The doctests in blackknight.py are in Example 19-27.

Example 19-27. blackknight.py: doctests for Example 19-26 (the Black Knight never
concedes defeat)
    >>> knight = BlackKnight()
    >>> knight.member
    next member is:
    'an arm'
    >>> del knight.member
    BLACK KNIGHT (loses an arm)
    -- 'Tis but a scratch.
    >>> del knight.member
    BLACK KNIGHT (loses another arm)
    -- It's just a flesh wound.
    >>> del knight.member
    BLACK KNIGHT (loses a leg)
    -- I'm invincible!
    >>> del knight.member
    BLACK KNIGHT (loses another leg)
    -- All right, we'll call it a draw.

Using the classic call syntax instead of decorators, the fdel argument is used to set the
deleter function. For example, the member property would be coded like this in the body
of the BlackKnight class:

    member = property(member_getter, fdel=member_deleter)

If you are not using a property, attribute deletion can also be handled by implementing
the lower-level __delattr__ special method, presented in “Special Methods for At‐
tribute Handling” on page 617. Coding a silly class with __delattr__ is left as an exercise
to the procrastinating reader.

Properties are a powerful feature, but sometimes simpler or lower-level alternatives are
preferable. In the final section of this chapter, we’ll review some the core APIs that
Python offers for dynamic attribute programming.
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15. Alex Martelli points out that, although __slots__ can be coded as a list, it’s better to be explicit and always
use a tuple, because changing the list in the __slots__ after the class body is processed has no effect, so it
would be misleading to use a mutable sequence there.

Essential Attributes and Functions for Attribute Handling
Throughout this chapter, and even before in the book, we’ve used some of the built-in
functions and special methods Python provides for dealing with dynamic attributes.
This section gives an overview of them in one place, because their documentation is
scattered in the official docs.

Special Attributes that Affect Attribute Handling
The behavior of many of the functions and special methods listed in the following sec‐
tions depend on three special attributes:
__class__

A reference to the object’s class (i.e., obj.__class__ is the same as type(obj)).
Python looks for special methods such as __getattr__ only in an object’s class, and
not in the instances themselves.

__dict__

A mapping that stores the writable attributes of an object or class. An object that
has a __dict__ can have arbitrary new attributes set at any time. If a class has a
__slots__ attribute, then its instances may not have a __dict__. See __slots__
(next).

__slots__

An attribute that may be defined in a class to limit the attributes its instances can
have. __slots__ is a tuple of strings naming the allowed attributes.15 If the
'__dict__' name is not in __slots__, then the instances of that class will not have
a __dict__ of their own, and only the named attributes will be allowed in them.

Built-In Functions for Attribute Handling
These five built-in functions perform object attribute reading, writing, and introspec‐
tion:
dir([object])

Lists most attributes of the object. The official docs say dir is intended for inter‐
active use so it does not provide a comprehensive list of attributes, but an “inter‐
esting” set of names. dir can inspect objects implemented with or without a
__dict__. The __dict__ attribute itself is not listed by dir, but the __dict__ keys
are listed. Several special attributes of classes, such as __mro__, __bases__, and
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__name__ are not listed by dir either. If the optional object argument is not given,
dir lists the names in the current scope.

getattr(object, name[, default])

Gets the attribute identified by the name string from the object. This may fetch an
attribute from the object’s class or from a superclass. If no such attribute exists,
getattr raises AttributeError or returns the default value, if given.

hasattr(object, name)

Returns True if the named attribute exists in the object, or can be somehow fetched
through it (by inheritance, for example). The documentation explains: “This is
implemented by calling getattr(object, name) and seeing whether it raises an At‐
tributeError or not.”

setattr(object, name, value)

Assigns the value to the named attribute of object, if the object allows it. This
may create a new attribute or overwrite an existing one.

vars([object])

Returns the __dict__ of object; vars can’t deal with instances of classes that define
__slots__ and don’t have a __dict__ (contrast with dir, which handles such in‐
stances). Without an argument, vars() does the same as locals(): returns a dict
representing the local scope.

Special Methods for Attribute Handling
When implemented in a user-defined class, the special methods listed here handle at‐
tribute retrieval, setting, deletion, and listing.

Attribute access using either dot notation or the built-in functions getattr, hasattr,
and setattr trigger the appropriate special methods listed here. Reading and writing
attributes directly in the instance __dict__ does not trigger these special methods—
and that’s the usual way to bypass them if needed.

“Section 3.3.9. Special method lookup” of the “Data model” chapter warns:
For custom classes, implicit invocations of special methods are only guaranteed to work
correctly if defined on an object’s type, not in the object’s instance dictionary.

In other words, assume that the special methods will be retrieved on the class itself, even
when the target of the action is an instance. For this reason, special methods are not
shadowed by instance attributes with the same name.

In the following examples, assume there is a class named Class, obj is an instance of
Class, and attr is an attribute of obj.
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For every one of these special methods, it doesn’t matter if the attribute access is done
using dot notation or one of the built-in functions listed in “Built-In Functions for
Attribute Handling” on page 616. For example, both obj.attr and getattr(obj,
'attr', 42) trigger Class.__getattribute__(obj, 'attr').
__delattr__(self, name)

Always called when there is an attempt to delete an attribute using the del statement;
e.g., del obj.attr triggers Class.__delattr__(obj, 'attr').

__dir__(self)

Called when dir is invoked on the object, to provide a listing of attributes; e.g.,
dir(obj) triggers Class.__dir__(obj).

__getattr__(self, name)

Called only when an attempt to retrieve the named attribute fails, after the obj,
Class, and its superclasses are searched. The expressions obj.no_such_attr, get
attr(obj, 'no_such_attr'), and hasattr(obj, 'no_such_attr') may trigger
Class.__getattr__(obj, 'no_such_attr'), but only if an attribute by that name
cannot be found in obj or in Class and its superclasses.

__getattribute__(self, name)

Always called when there is an attempt to retrieve the named attribute, except when
the attribute sought is a special attribute or method. Dot notation and the get
attr and hasattr built-ins trigger this method. __getattr__ is only invoked after
__getattribute__, and only when __getattribute__ raises AttributeError. To
retrieve attributes of the instance obj without triggering an infinite recursion, im‐
plementations of __getattribute__ should use super().__getattri

bute__(obj, name).

__setattr__(self, name, value)

Always called when there is an attempt to set the named attribute. Dot notation and
the setattr built-in trigger this method; e.g., both obj.attr = 42 and
setattr(obj, 'attr', 42) trigger Class.__setattr__(obj, 'attr', 42).

In practice, because they are unconditionally called and affect
practically every attribute access, the __getattribute__ and
__setattr__ special methods are harder to use correctly than
__getattr__—which only handles nonexisting attribute names.
Using properties or descriptors is less error prone than defining
these special methods.

This concludes our dive into properties, special methods, and other techniques for
coding dynamic attributes.
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Chapter Summary
We started our coverage of dynamic attributes by showing practical examples of simple
classes to make it easier to deal with a JSON data feed. The first example was the
FrozenJSON class that converted nested dicts and lists into nested FrozenJSON instances
and lists of them. The FrozenJSON code demonstrated the use of the __getattr__ special
method to convert data structures on the fly, whenever their attributes were read. The
last version of FrozenJSON showcased the use of the __new__ constructor method to
transform a class into a flexible factory of objects, not limited to instances of itself.

We then converted the JSON feed to a shelve.Shelf database storing serialized in‐
stances of a Record class. The first rendition of Record was a few lines long and intro‐
duced the “bunch” idiom: using self.__dict__.update(**kwargs) to build arbitrary
attributes from keyword arguments passed to __init__. The second iteration of this
example saw the extension of Record with a DbRecord class for database integration and
an Event class implementing automatic retrieval of linked records through properties.

Coverage of properties continued with the LineItem class, where a property was de‐
ployed to protect a weight attribute from negative or zero values that make no business
sense. After a deeper look at property syntax and semantics, we created a property
factory to enforce the same validation on weight and price, without coding multiple
getters and setters. The property factory leveraged subtle concepts—such as closures
and the instance attribute overriding by properties—to provide an elegant generic sol‐
ution using the same number of lines as a single handcoded property definition.

Finally, we had a brief look at handling attribute deletion with properties, followed by
an overview of the key special attributes, built-in functions, and special methods that
support attribute metaprogramming in the core Python language.

Further Reading
The official documentation for the attribute handling and introspection built-in func‐
tions is Chapter 2, “Built-in Functions” of The Python Standard Library. The related
special methods and the __slots__ special attribute are documented in The Python
Language Reference in “3.3.2. Customizing attribute access”. The semantics of how
special methods are invoked bypassing instances is explained in “3.3.9. Special method
lookup”. In Chapter 4, “Built-in Types,” of the Python Standard Library, “4.13. Special
Attributes” covers __class__ and __dict__ attributes.

Python Cookbook, 3E by David Beazley and Brian K. Jones (O’Reilly) has several recipes
covering the topics of this chapter, but I will highlight three that are outstanding: “Recipe
8.8. Extending a Property in a Subclass” addresses the thorny issue of overriding the
methods inside a property inherited from a superclass; “Recipe 8.15. Delegating At‐
tribute Access” implements a proxy class showcasing most special methods from “Spe‐
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cial Methods for Attribute Handling” on page 617 in this book; and the awesome “Recipe
9.21. Avoiding Repetitive Property Methods,” which was the basis for the property fac‐
tory function presented in Example 19-24.

Python in a Nutshell, 2E (O’Reilly), by Alex Martelli, covers only Python 2.5 but the
fundamentals still apply to Python 3 and his treatment is rigorous and objective. Martelli
devotes only three pages to properties, but that’s because the book follows an axiomatic
presentation style: the previous 15 pages or so provide a thorough description of the
semantics of Python classes from the ground up, including descriptors, which are how
properties are actually implemented under the hood. So by the time he gets to properties,
he can pack a lot of insights in those three pages—including that which I selected to
open this chapter.

Bertrand Meyer, quoted in the Uniform Access Principle definition in this chapter open‐
ing, wrote the excellent Object-Oriented Software Construction, 2E (Prentice-Hall). The
book is more than 1,250 pages long, and I confess I did not read it all, but the first six
chapters provide one of the best conceptual introductions to OO analysis and design
I’ve seen, Chapter 11 introduces Design by Contract (Meyer invented the method and
coined the term), and Chapter 35 offers his assessments of some key OO languages:
Simula, Smalltalk, CLOS (the Lisp OO extension), Objective-C, C++, and Java, with
brief comments on some others. Meyer is also the inventor of the pseudo-pseudocode:
only in the last page of the book he reveals that the “notation” he uses throughout as
pseudocode is in fact Eiffel.

Soapbox
Meyer’s Uniform Access Principle (sometimes called UAP by acronym-lovers) is aes‐
thetically appealing. As a programmer using an API, I shouldn’t have to care whether
coconut.price simply fetches a data attribute or performs a computation. As a con‐
sumer and a citizen, I do care: in ecommerce today the value of coconut.price often
depends on who is asking, so it’s certainly not a mere data attribute. In fact, it’s common
practice that the price is lower if the query comes from outside the store—say, from a
price-comparison engine. This effectively punishes loyal customers who like to browse
within a particular store. But I digress.

The previous digression does raise a relevant point for programming: although the
Uniform Access Principle makes perfect sense in an ideal world, in reality users of an
API may need to know whether reading coconut.price is potentially too expensive or
time consuming. As usual in matters of software engineering, Ward Cunningham’s
original Wiki hosts insightful arguments about the merits of the Uniform Access Prin‐
ciple.

In object-oriented programming languages, application or violations of the Uniform
Access Principle usually revolve around the syntax of reading public data attributes
versus invoking getter/setter methods.
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16. Including the no-name default that the Java Tutorial calls “package-private.”

17. Alex Martelli, Python in a Nutshell, 2E (O’Reilly), p. 101.

Smalltalk and Ruby address this issue in a simple and elegant way: they don’t support
public data attributes at all. Every instance attribute in these languages is private, so
every access to them must be through methods. But their syntax makes this painless: in
Ruby, coconut.price invokes the price getter; in Smalltalk, it’s simply coconut price.

At the other end of the spectrum, the Java language allows the programmer to choose
among four access level modifiers.16 The general practice does not agree with the syntax
established by the Java designers, though. Everybody in Java-land agrees that attributes
should be private, and you must spell it out every time, because it’s not the default.
When all attributes are private, all access to them from outside the class must go through
accessors. Java IDEs include shortcuts for generating accessor methods automatically.
Unfortunately, the IDE is not so helpful when you must read the code six months later.
It’s up to you to wade through a sea of do-nothing accessors to find those that add value
by implementing some business logic.

Alex Martelli speaks for the majority of the Python community when he calls accessors
“goofy idioms” and then provides these examples that look very different but do the
same thing:17

someInstance.widgetCounter += 1
# rather than...
someInstance.setWidgetCounter(someInstance.getWidgetCounter() + 1)

Sometimes when designing APIs, I’ve wondered whether every method that does not
take an argument (besides self), returns a value (other than None), and is a pure function
(i.e., has no side effects) should be replaced by a read-only property. In this chapter, the
LineItem.subtotal method (as in Example 19-23) would be a good candidate to be‐
come a read-only property. Of course, this excludes methods that are designed to change
the object, such as my_list.clear(). It would be a terrible idea to turn that into a
property, so that merely acessing my_list.clear would delete the contents of the list!

In the Pingo.io GPIO library (mentioned in “The __missing__ Method” on page 72),
much of the user-level API is based on properties. For example, to read the current value
of an analog pin, the user writes pin.value, and setting a digital pin mode is written as
pin.mode = OUT. Behind the scenes, reading an analog pin value or setting a digital pin
mode may involve a lot of code, depending on the specific board driver. We decided to
use properties in Pingo because we want the API to be comfortable to use even in in‐
teractive environments like iPython Notebook, and we feel pin.mode = OUT is easier on
the eyes and on the fingers than pin.set_mode(OUT).

Although I find the Smalltalk and Ruby solution cleaner, I think the Python approach
makes more sense than the Java one. We are allowed to start simple, coding data mem‐
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18. The reasons I am about to mention are given in the Dr. Dobbs Journal article titled “Java’s new Considered
Harmful”, by Jonathan Amsterdam and in “Consider static factory methods instead of constructors”, which is
Item 1 of the award-winning book Effective Java (Addison-Wesley) by Joshua Bloch.

bers as public attributes, because we know they can always be wrapped by properties
(or descriptors, which we’ll talk about in the next chapter).

__new__ Is Better Than new

Another example of the Uniform Access Principle (or a variation of it) is the fact that
function calls and object instantiation use the same syntax in Python: my_obj =
foo(), where foo may be a class or any other callable.

Other languages influenced by C++ syntax have a new operator that makes instantiation
look different than a call. Most of the time, the user of an API doesn’t care whether foo
is a function or a class. Until recently, I was under the impression that property was a
function. In normal usage, it makes no difference.

There are many good reasons for replacing constructors with factories.18 A popular
motive is limiting the number of instances, by returning previously built ones (as in the
Singleton pattern). A related use is caching expensive object construction. Also, some‐
times it’s convenient to return objects of different types depending on the arguments
given.

Coding a constructor is simpler; providing a factory adds flexibility at the expense of
more code. In languages that have a new operator, the designer of an API must decide
in advance whether to stick with a simple constructor or invest in factory. If the initial
choice is wrong, the correction may be costly—all because new is an operator.

Sometimes it may also be convenient to go the other way, and replace a simple function
with a class.

In Python, classes and functions are interchangeable in many situations. Not only be‐
cause there’s no new operator, but also because there is the __new__ special method,
which can turn a class into a factory producing objects of different kinds (as we saw in
“Flexible Object Creation with __new__” on page 592) or returning prebuilt instances
instead of creating a new one every time.

This function-class duality would be easier to leverage if PEP 8 — Style Guide for Python
Code did not recommend CamelCase for class names. On the other hand, dozens of
classes in the standard library have lowercase names (e.g., property, str, defauldict,
etc.). So maybe the use of lowercase class names is a feature, and not a bug. But however
we look at it, the inconsistent capitalization of classes in the Python standard library
poses a usability problem.

Although calling a function is not different than calling a class, it’s good to know which
is which because of another thing we can do with a class: subclassing. So I personally
use CamelCase in every class that I code, and I wish all classes in the Python standard
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library used the same convention. I am looking at you, collections.OrderedDict and
collections.defaultdict.
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1. Raymond Hettinger, Descriptor HowTo Guide.

CHAPTER 20

Attribute Descriptors

Learning about descriptors not only provides access to a larger toolset, it creates a deeper
understanding of how Python works and an appreciation for the elegance of its design.1

— Raymond Hettinger
 Python core developer and guru

Descriptors are a way of reusing the same access logic in multiple attributes. For ex‐
ample, field types in ORMs such as the Django ORM and SQL Alchemy are descriptors,
managing the flow of data from the fields in a database record to Python object attributes
and vice versa.

A descriptor is a class that implements a protocol consisting of the __get__, __set__,
and __delete__ methods. The property class implements the full descriptor protocol.
As usual with protocols, partial implementations are OK. In fact, most descriptors we
see in real code implement only __get__ and __set__, and many implement only one
of these methods.

Descriptors are a distinguishing feature of Python, deployed not only at the application
level but also in the language infrastructure. Besides properties, other Python features
that leverage descriptors are methods and the classmethod and staticmethod deco‐
rators. Understanding descriptors is key to Python mastery. This is what this chapter is
about.

Descriptor Example: Attribute Validation
As we saw in “Coding a Property Factory” on page 611, a property factory is a way to
avoid repetitive coding of getters and setters by applying functional programming pat‐
terns. A property factory is a higher-order function that creates a parameterized set of
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accessor functions and builds a custom property instance from them, with closures to
hold settings like the storage_name. The object-oriented way of solving the same prob‐
lem is a descriptor class.

We’ll continue the series of LineItem examples where we left it, in “Coding a Property
Factory” on page 611, by refactoring the quantity property factory into a Quantity
descriptor class.

LineItem Take #3: A Simple Descriptor
A class implementing a __get__, a __set__, or a __delete__ method is a descriptor.
You use a descriptor by declaring instances of it as class attributes of another class.

We’ll create a Quantity descriptor and the LineItem class will use two instances of
Quantity: one for managing the weight attribute, the other for price. A diagram helps,
so take a look at Figure 20-1.

Figure 20-1. UML class diagram for LineItem using a descriptor class named Quantity.
Underlined attributes in UML are class attributes. Note that weight and price are in‐
stances of Quantity attached to the LineItem class, but LineItem instances also have
their own weight and price attributes where those values are stored.

Note that the word weight appears twice in Figure 20-1, because there are really two
distinct attributes named weight: one is a class attribute of LineItem, the other is an
instance attribute that will exist in each LineItem object. This also applies to price.

From now on, I will use the following definitions:
Descriptor class

A class implementing the descriptor protocol. That’s Quantity in Figure 20-1.

Managed class
The class where the descriptor instances are declared as class attributes—LineI

tem in Figure 20-1.
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Descriptor instance
Each instance of a descriptor class, declared as a class attribute of the managed class.
In Figure 20-1, each descriptor instance is represented by a composition arrow with
an underlined name (the underline means class attribute in UML). The black dia‐
monds touch the LineItem class, which contains the descriptor instances.

Managed instance
One instance of the managed class. In this example, LineItem instances will be the
managed instances (they are not shown in the class diagram).

Storage attribute
An attribute of the managed instance that will hold the value of a managed attribute
for that particular instance. In Figure 20-1, the LineItem instance attributes weight
and price will be the storage attributes. They are distinct from the descriptor in‐
stances, which are always class attributes.

Managed attribute
A public attribute in the managed class that will be handled by a descriptor instance,
with values stored in storage attributes. In other words, a descriptor instance and
a storage attribute provide the infrastructure for a managed attribute.

It’s important to realize that Quantity instances are class attributes of LineItem. This
crucial point is highlighted by the mills and gizmos in Figure 20-2.

Figure 20-2. UML class diagram annotated with MGN (Mills & Gizmos Notation):
classes are mills that produce gizmos—the instances. The Quantity mill produces two
red gizmos, which are attached to the LineItem mill: weight and price. The LineItem
mill produces blue gizmos that have their own weight and price attributes where those
values are stored.
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2. Classes and instances are drawn as rectangles in UML class diagrams. There are visual differences, but in‐
stances are rarely shown in class diagrams, so developers may not recognize them as such.

Introducing Mills & Gizmos Notation
After explaining descriptors many times, I realized UML is not very good at showing
relationships involving classes and instances, like the relationship between a managed
class and the descriptor instances.2 So I invented my own “language,” the Mills & Gizmos
Notation (MGN), which I use to annotate UML diagrams.

MGN is designed to make very clear the distinction between classes and instances. See
Figure 20-3. In MGN, a class is drawn as a “mill,” a complicated machine that produces
gizmos. Classes/mills are always machines with levers and dials. The gizmos are the
instances, and they look much simpler. A gizmo is the same color as the mill that made
it.

Figure 20-3. MGN sketch showing the LineItem class making three instances, and
Quantity making two. One instance of Quantity is retrieving a value stored in a
LineItem instance.

For this example, I drew LineItem instances as rows in a tabular invoice, with three cells
representing the three attributes (description, weight, and price). Because Quanti
ty instances are descriptors, they have a magnifying glass to __get__ values and a claw
to __set__ values. When we get to metaclasses, you’ll thank me for these doodles.

Enough doodling for now. Here is the code: Example 20-1 shows the Quantity de‐
scriptor class and a new LineItem class using two instances of Quantity.

Example 20-1. bulkfood_v3.py: quantity descriptors manage attributes in LineItem
class Quantity:   

    def __init__(self, storage_name):
        self.storage_name = storage_name   
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3. White truffles cost thousands of dollars per pound. Disallowing the sale of truffles for $0.01 is left as an
exercise for the enterprising reader. I know a person who actually bought an $1,800 encyclopedia of statistics
for $18 because of an error in an online store (not Amazon.com).

    def __set__(self, instance, value):   
        if value > 0:
            instance.__dict__[self.storage_name] = value   
        else:
            raise ValueError('value must be > 0')

class LineItem:
    weight = Quantity('weight')   
    price = Quantity('price')   

    def __init__(self, description, weight, price):   
        self.description = description
        self.weight = weight
        self.price = price

    def subtotal(self):
        return self.weight * self.price

Descriptor is a protocol-based feature; no subclassing is needed to implement
one.
Each Quantity instance will have a storage_name attribute: that’s the name of
the attribute that will hold the value in the managed instances.
__set__ is called when there is an attempt to assign to the managed attribute.
Here, self is the descriptor instance (i.e., LineItem.weight or LineI
tem.price), instance is the managed instance (a LineItem instance), and val
ue is the value being assigned.
Here, we must handle the managed instance __dict__ directly; trying to use the
setattr built-in would trigger the __set__ method again, leading to infinite
recursion.
The first descriptor instance is bound to the weight attribute.
The second descriptor instance is bound to the price attribute.
The rest of the class body is as simple and clean as the original code in
bulkfood_v1.py (Example 19-15).

In Example 20-1, each managed attribute has the same name as its storage attribute,
and there is no special getter logic, so Quantity doesn’t need a __get__ method.

The code in Example 20-1 works as intended, preventing the sale of truffles for $0:3
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>>> truffle = LineItem('White truffle', 100, 0)
Traceback (most recent call last):
    ...
ValueError: value must be > 0

When coding a __set__ method, you must keep in mind what the
self and instance arguments mean: self is the descriptor in‐
stance, and instance is the managed instance. Descriptors man‐
aging instance attributes should store values in the managed in‐
stances. That’s why Python provides the instance argument to the
descriptor methods.

It may be tempting, but wrong, to store the value of each managed attribute in the
descriptor instance itself. In other words, in the __set__ method, instead of coding:

    instance.__dict__[self.storage_name] = value

the tempting but bad alternative would be:

    self.__dict__[self.storage_name] = value

To understand why this would be wrong, think about the meaning of the first two
arguments to __set__: self and instance. Here, self is the descriptor instance, which
is actually a class attribute of the managed class. You may have thousands of LineI
tem instances in memory at one time, but you’ll only have two instances of the descrip‐
tors: LineItem.weight and LineItem.price. So anything you store in the descriptor
instances themselves is actually part of a LineItem class attribute, and therefore is shared
among all LineItem instances.

A drawback of Example 20-1 is the need to repeat the names of the attributes when the
descriptors are instantiated in the managed class body. It would be nice if the LineI
tem class could be declared like this:

class LineItem:
    weight = Quantity()
    price = Quantity()

    # remaining methods as before

The problem is that—as we saw in Chapter 8—the righthand side of an assignment is
executed before the variable exists. The expression Quantity() is evaluated to create a
descriptor instance, and at this time there is no way the code in the Quantity class can
guess the name of the variable to which the descriptor will be bound (e.g., weight or
price).

As it stands, Example 20-1 requires naming each Quantity explicitly, which is not only
inconvenient but dangerous: if a programmer copy and pasting code forgets to edit both
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names and writes something like price = Quantity('weight'), the program will mis‐
behave badly, clobbering the value of weight whenever the price is set.

A not-so-elegant but workable solution to the repeated name problem is presented next.
Better solutions require either a class decorator or a metaclass, so I’ll leave them for
Chapter 21.

LineItem Take #4: Automatic Storage Attribute Names
To avoid retyping the attribute name in the descriptor declarations, we’ll generate a
unique string for the storage_name of each Quantity instance. Figure 20-4 shows the
updated UML diagram for the Quantity and LineItem classes.

Figure 20-4. UML class diagram for Example 20-2. Now Quantity has both get and set
methods, and LineItem instances have storage attributes with generated names:
_Quantity#0 and _Quantity#1.

To generate the storage_name, we start with a '_Quantity#' prefix and concatenate an
integer: the current value of a Quantity.__counter class attribute that we’ll increment
every time a new Quantity descriptor instance is attached to a class. Using the hash
character in the prefix guarantees the storage_name will not clash with attributes cre‐
ated by the user using dot notation, because nutmeg._Quantity#0 is not valid Python
syntax. But we can always get and set attributes with such “invalid” identifiers using the
getattr and setattr built-in functions, or by poking the instance __dict__.
Example 20-2 shows the new implementation.

Example 20-2. bulkfood_v4.py: each Quantity descriptor gets a unique storage_name
class Quantity:
    __counter = 0   

    def __init__(self):
        cls = self.__class__   
        prefix = cls.__name__
        index = cls.__counter
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        self.storage_name = '_{}#{}'.format(prefix, index)   
        cls.__counter += 1   

    def __get__(self, instance, owner):   
        return getattr(instance, self.storage_name)   

    def __set__(self, instance, value):
        if value > 0:
            setattr(instance, self.storage_name, value)   
        else:
            raise ValueError('value must be > 0')

class LineItem:
    weight = Quantity()   
    price = Quantity()

    def __init__(self, description, weight, price):
        self.description = description
        self.weight = weight
        self.price = price

    def subtotal(self):
        return self.weight * self.price

__counter is a class attribute of Quantity, counting the number of Quantity
instances.
cls is a reference to the Quantity class.
The storage_name for each descriptor instance is unique because it’s built from
the descriptor class name and the current __counter value (e.g., _Quantity#0).
Increment __counter.
We need to implement __get__ because the name of the managed attribute is
not the same as the storage_name. The owner argument will be explained shortly.
Use the getattr built-in function to retrieve the value from the instance.
Use the setattr built-in to store the value in the instance.
Now we don’t need to pass the managed attribute name to the Quantity
constructor. That was the goal for this version.

Here we can use the higher-level getattr and setattr built-ins to store the value—
instead of resorting to instance.__dict__—because the managed attribute and the
storage attribute have different names, so calling getattr on the storage attribute will
not trigger the descriptor, avoiding the infinite recursion discussed in Example 20-1.
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If you test bulkfood_v4.py, you can see that the weight and price descriptors work as
expected, and the storage attributes can also be read directly, which is useful for de‐
bugging:

>>> from bulkfood_v4 import LineItem
>>> coconuts = LineItem('Brazilian coconut', 20, 17.95)
>>> coconuts.weight, coconuts.price
(20, 17.95)
>>> getattr(raisins, '_Quantity#0'), getattr(raisins, '_Quantity#1')
(20, 17.95)

If we wanted to follow the convention Python uses to do name
mangling (e.g., _LineItem__quantity0) we’d have to know the
name of the managed class (i.e., LineItem), but the body of a class
definition runs before the class itself is built by the interpreter, so
we don’t have that information when each descriptor instance is
created. However, in this case, there is no need to include the
managed class name to avoid accidental overwriting in subclass‐
es: the descriptor class __counter will be incremented every time
a new descriptor is instantiated, guaranteeing that each storage
name will be unique across all managed classes.

Note that __get__ receives three arguments: self, instance, and owner. The owner
argument is a reference to the managed class (e.g., LineItem), and it’s handy when the
descriptor is used to get attributes from the class. If a managed attribute, such as
weight, is retrieved via the class like LineItem.weight, the descriptor __get__ method
receives None as the value for the instance argument. This explains the Attribute error
in the next console session:

>>> from bulkfood_v4 import LineItem
>>> LineItem.weight
Traceback (most recent call last):
  ...
  File ".../descriptors/bulkfood_v4.py", line 54, in __get__
    return getattr(instance, self.storage_name)
AttributeError: 'NoneType' object has no attribute '_Quantity#0'

Raising AttributeError is an option when implementing __get__, but if you choose
to do so, the message should be fixed to remove the confusing mention of NoneType and
_Quantity#0, which are implementation details. A better message would be "'LineI
tem' class has no such attribute". Ideally, the name of the missing attribute should
be spelled out, but the descriptor doesn’t know the name of the managed attribute in
this example, so we can’t do better at this point.

On the other hand, to support introspection and other metaprogramming tricks by the
user, it’s a good practice to make __get__ return the descriptor instance when the man‐

Descriptor Example: Attribute Validation | 633



aged attribute is accessed through the class. Example 20-3 is a minor variation of
Example 20-2, adding a bit of logic to Quantity.__get__.

Example 20-3. bulkfood_v4b.py (partial listing): when invoked through the managed
class, get returns a reference to the descriptor itself
class Quantity:
    __counter = 0

    def __init__(self):
        cls = self.__class__
        prefix = cls.__name__
        index = cls.__counter
        self.storage_name = '_{}#{}'.format(prefix, index)
        cls.__counter += 1

    def __get__(self, instance, owner):
        if instance is None:
            return self   
        else:
            return getattr(instance, self.storage_name)   

    def __set__(self, instance, value):
        if value > 0:
            setattr(instance, self.storage_name, value)
        else:
            raise ValueError('value must be > 0')

If the call was not through an instance, return the descriptor itself.
Otherwise, return the managed attribute value, as usual.

Trying out Example 20-3, this is what we see:

>>> from bulkfood_v4b import LineItem
>>> LineItem.price
<bulkfood_v4b.Quantity object at 0x100721be0>
>>> br_nuts = LineItem('Brazil nuts', 10, 34.95)
>>> br_nuts.price
34.95

Looking at Example 20-2, you may think that’s a lot of code just for managing a couple
of attributes, but it’s important to realize that the descriptor logic is now abstracted into
a separate code unit: the Quantity class. Usually we do not define a descriptor in the
same module where it’s used, but in a separate utility module designed to be used across
the application—even in many applications, if you are developing a framework.

With this in mind, Example 20-4 better represents the typical usage of a descriptor.

634 | Chapter 20: Attribute Descriptors



Example 20-4. bulkfood_v4c.py: LineItem definition uncluttered; the Quantity descrip‐
tor class now resides in the imported model_v4c module
import model_v4c as model   

class LineItem:
    weight = model.Quantity()   
    price = model.Quantity()

    def __init__(self, description, weight, price):
        self.description = description
        self.weight = weight
        self.price = price

    def subtotal(self):
        return self.weight * self.price

Import the model_v4c module, giving it a friendlier name.
Put model.Quantity to use.

Django users will notice that Example 20-4 looks a lot like a model definition. It’s no
coincidence: Django model fields are descriptors.

As implemented so far, the Quantity descriptor works pretty well.
Its only real drawback is the use of generated storage names like
_Quantity#0, making debugging hard for the users. But auto‐
matically assigning storage names that resemble the managed
attribute names requires a class decorator or a metaclass, topics
we’ll defer to Chapter 21.

Because descriptors are defined in classes, we can leverage inheritance to reuse some of
the code we have for new descriptors. That’s what we’ll do in the following section.

Property Factory Versus Descriptor Class
It’s not hard to reimplement the enhanced descriptor class of Example 20-2 by adding
a few lines to the property factory shown in Example 19-24. The __counter variable
presents a difficulty, but we can make it persist across invocations of the factory by
defining it as an attribute of factory function object itself, as shown in Example 20-5.

Example 20-5. bulkfood_v4prop.py: same functionality as Example 20-2 with a
property factory instead of a descriptor class
def quantity():   
    try:
        quantity.counter += 1   
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    except AttributeError:
        quantity.counter = 0   

    storage_name = '_{}:{}'.format('quantity', quantity.counter)   

    def qty_getter(instance):   
        return getattr(instance, storage_name)

    def qty_setter(instance, value):
        if value > 0:
            setattr(instance, storage_name, value)
        else:
            raise ValueError('value must be > 0')

    return property(qty_getter, qty_setter)

No storage_name argument.
We can’t rely on class attributes to share the counter across invocations, so we
define it as an attribute of the quantity function itself.
If quantity.counter is undefined, set it to 0.
We also don’t have instance attributes, so we create storage_name as a local
variable and rely on closures to keep them alive for later use by qty_getter and
qty_setter.
The remaining code is identical to Example 19-24, except here we can use the
getattr and setattr built-ins instead of fiddling with instance.__dict__.

So, which do you prefer? Example 20-2 or Example 20-5?

I prefer the descriptor class approach mainly for two reasons:

• A descriptor class can be extended by subclassing; reusing code from a factory
function without copying and pasting is much harder.

• It’s more straightforward to hold state in class and instance attributes than in func‐
tion attributes and closures as we had to do in Example 20-5.

On the other hand, when I explain Example 20-5, I don’t feel the urge to draw mills and
gizmos. The property factory code does not depend on strange object relationships
evidenced by descriptor methods having arguments named self and instance.

To summarize, the property factory pattern is simpler in some regards, but the descriptor
class approach is more extensible. It’s also more widely used.
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4. Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software, p. 326.

LineItem Take #5: A New Descriptor Type
he imaginary organic food store hits a snag: somehow a line item instance was created
with a blank description and the order could not be fulfilled. To prevent that, we’ll create
a new descriptor, NonBlank. As we design NonBlank, we realize it will be very much like
the Quantity descriptor, except for the validation logic.

Reflecting on the functionality of Quantity, we note it does two different things: it takes
care of the storage attributes in the managed instances, and it validates the value used
to set those attributes. This prompts a refactoring, producing two base classes:
AutoStorage

Descriptor class that manages storage attributes automatically.

Validated

AutoStorage abstract subclass that overrides the __set__ method, calling a vali
date method that must be implemented by subclasses.

We’ll then rewrite Quantity and implement NonBlank by inheriting from Validated
and just coding the validate methods. Figure 20-5 depicts the setup.

Figure 20-5. A hierarchy of descriptor classes. The AutoStorage base class manages the
automatic storage of the attribute, Validated handles validation by delegating to an ab‐
stract validate method, Quantity and NonBlank are concrete subclasses of Validated.

The relationship between Validated, Quantity, and NonBlank is an application of the
Template Method design pattern. In particular, the Validated.__set__ is a clear ex‐
ample of what the Gang of Four describe as a template method:

A template method defines an algorithm in terms of abstract operations that subclasses
override to provide concrete behavior.4
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In this case, the abstract operation is validation. Example 20-6 lists the implementation
of the classes in Figure 20-5.

Example 20-6. model_v5.py: the refactored descriptor classes
import abc

class AutoStorage:   
    __counter = 0

    def __init__(self):
        cls = self.__class__
        prefix = cls.__name__
        index = cls.__counter
        self.storage_name = '_{}#{}'.format(prefix, index)
        cls.__counter += 1

    def __get__(self, instance, owner):
        if instance is None:
            return self
        else:
            return getattr(instance, self.storage_name)

    def __set__(self, instance, value):
        setattr(instance, self.storage_name, value)   

class Validated(abc.ABC, AutoStorage):   

    def __set__(self, instance, value):
        value = self.validate(instance, value)   
        super().__set__(instance, value)   

    @abc.abstractmethod
    def validate(self, instance, value):   
        """return validated value or raise ValueError"""

class Quantity(Validated):   
    """a number greater than zero"""

    def validate(self, instance, value):
        if value <= 0:
            raise ValueError('value must be > 0')
        return value

class NonBlank(Validated):
    """a string with at least one non-space character"""

    def validate(self, instance, value):
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        value = value.strip()
        if len(value) == 0:
            raise ValueError('value cannot be empty or blank')
        return value   

AutoStorage provides most of the functionality of the former Quantity
descriptor…
…except validation.
Validated is abstract but also inherits from AutoStorage.
__set__ delegates validation to a validate method…
…then uses the returned value to invoke __set__ on a superclass, which
performs the actual storage.
In this class, validate is an abstract method.
Quantity and NonBlank inherit from Validated.
Requiring the concrete validate methods to return the validated value gives
them an opportunity to clean up, convert, or normalize the data received. In this
case, the value is returned stripped of leading and trailing blanks.

Users of model_v5.py don’t need to know all these details. What matters is that they get
to use Quantity and NonBlank to automate the validation of instance attributes. See the
latest LineItem class in Example 20-7.

Example 20-7. bulkfood_v5.py: LineItem using Quantity and NonBlank descriptors
import model_v5 as model   

class LineItem:
    description = model.NonBlank()   
    weight = model.Quantity()
    price = model.Quantity()

    def __init__(self, description, weight, price):
        self.description = description
        self.weight = weight
        self.price = price

    def subtotal(self):
        return self.weight * self.price

Import the model_v5 module, giving it a friendlier name.
Put model.NonBlank to use. The rest of the code is unchanged.
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The LineItem examples we’ve seen in this chapter demonstrate a typical use of descrip‐
tors to manage data attributes. Such a descriptor is also called an overriding descriptor
because its __set__ method overrides (i.e., interrupts and overrules) the setting of an
attribute by the same name in the managed instance. However, there are also non-
overriding descriptors. We’ll explore this distinction in detail in the next section.

Overriding Versus Nonoverriding Descriptors
Recall that there is an important asymmetry in the way Python handles attributes.
Reading an attribute through an instance normally returns the attribute defined in the
instance, but if there is no such attribute in the instance, a class attribute will be retrieved.
On the other hand, assigning to an attribute in an instance normally creates the attribute
in the instance, without affecting the class at all.

This asymmetry also affects descriptors, in effect creating two broad categories of de‐
scriptors depending on whether the __set__ method is defined. Observing the different
behaviors requires a few classes, so we are going to use the code in Example 20-8 as our
testbed for the following sections.

Every __get__ and __set__ method in Example 20-8 calls
print_args so their invocations are displayed in a readable way.
Understanding print_args and the auxiliary functions cls_name
and display is not important, so don’t get distracted by them.

Example 20-8. descriptorkinds.py: simple classes for studying descriptor overriding be‐
haviors
### auxiliary functions for display only ###

def cls_name(obj_or_cls):
    cls = type(obj_or_cls)
    if cls is type:
        cls = obj_or_cls
    return cls.__name__.split('.')[-1]

def display(obj):
    cls = type(obj)
    if cls is type:
        return '<class {}>'.format(obj.__name__)
    elif cls in [type(None), int]:
        return repr(obj)
    else:
        return '<{} object>'.format(cls_name(obj))

def print_args(name, *args):
    pseudo_args = ', '.join(display(x) for x in args)
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    print('-> {}.__{}__({})'.format(cls_name(args[0]), name, pseudo_args))

### essential classes for this example ###

class Overriding:   
    """a.k.a. data descriptor or enforced descriptor"""

    def __get__(self, instance, owner):
        print_args('get', self, instance, owner)   

    def __set__(self, instance, value):
        print_args('set', self, instance, value)

class OverridingNoGet:   
    """an overriding descriptor without ``__get__``"""

    def __set__(self, instance, value):
        print_args('set', self, instance, value)

class NonOverriding:   
    """a.k.a. non-data or shadowable descriptor"""

    def __get__(self, instance, owner):
        print_args('get', self, instance, owner)

class Managed:   
    over = Overriding()
    over_no_get = OverridingNoGet()
    non_over = NonOverriding()

    def spam(self):   
        print('-> Managed.spam({})'.format(display(self)))

A typical overriding descriptor class with __get__ and __set__.
The print_args function is called by every descriptor method in this example.
An overriding descriptor without a __get__ method.
No __set__ method here, so this is a nonoverriding descriptor.
The managed class, using one instance of each of the descriptor classes.
The spam method is here for comparison, because methods are also descriptors.

In the following sections, we will examine the behavior of attribute reads and writes on
the Managed class and one instance of it, going through each of the different descriptors
defined.
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Overriding Descriptor
A descriptor that implements the __set__ method is called an overriding descriptor,
because although it is a class attribute, a descriptor implementing __set__ will override
attempts to assign to instance attributes. This is how Example 20-2 was implemented.
Properties are also overriding descriptors: if you don’t provide a setter function, the
default __set__ from the property class will raise AttributeError to signal that the
attribute is read-only. Given the code in Example 20-8, experiments with an overriding
descriptor can be seen in Example 20-9.

Example 20-9. Behavior of an overriding descriptor: obj.over is an instance of Overrid‐
ing (Example 20-8)
    >>> obj = Managed()   
    >>> obj.over   
    -> Overriding.__get__(<Overriding object>, <Managed object>,
        <class Managed>)
    >>> Managed.over   
    -> Overriding.__get__(<Overriding object>, None, <class Managed>)
    >>> obj.over = 7   
    -> Overriding.__set__(<Overriding object>, <Managed object>, 7)
    >>> obj.over   
    -> Overriding.__get__(<Overriding object>, <Managed object>,
        <class Managed>)
    >>> obj.__dict__['over'] = 8   
    >>> vars(obj)   
    {'over': 8}
    >>> obj.over   
    -> Overriding.__get__(<Overriding object>, <Managed object>,
        <class Managed>)

Create Managed object for testing.
obj.over triggers the descriptor __get__ method, passing the managed instance
obj as the second argument.
Managed.over triggers the descriptor __get__ method, passing None as the
second argument (instance).
Assigning to obj.over triggers the descriptor __set__ method, passing the value
7 as the last argument.
Reading obj.over still invokes the descriptor __get__ method.
Bypassing the descriptor, setting a value directly to the obj.__dict__.
Verify that the value is in the obj.__dict__, under the over key.
However, even with an instance attribute named over, the Managed.over
descriptor still overrides attempts to read obj.over.
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Overriding Descriptor Without __get__
Usually, overriding descriptors implement both __set__ and __get__, but it’s also pos‐
sible to implement only __set__, as we saw in Example 20-1. In this case, only writing
is handled by the descriptor. Reading the descriptor through an instance will return the
descriptor object itself because there is no __get__ to handle that access. If a namesake
instance attribute is created with a new value via direct access to the instance
__dict__, the __set__ method will still override further attempts to set that attribute,
but reading that attribute will simply return the new value from the instance, instead of
returning the descriptor object. In other words, the instance attribute will shadow the
descriptor, but only when reading. See Example 20-10.

Example 20-10. Overriding descriptor without get: obj.over_no_get is an instance of
OverridingNoGet (Example 20-8)
    >>> obj.over_no_get   
    <__main__.OverridingNoGet object at 0x665bcc>
    >>> Managed.over_no_get   
    <__main__.OverridingNoGet object at 0x665bcc>
    >>> obj.over_no_get = 7   
    -> OverridingNoGet.__set__(<OverridingNoGet object>, <Managed object>, 7)
    >>> obj.over_no_get   
    <__main__.OverridingNoGet object at 0x665bcc>
    >>> obj.__dict__['over_no_get'] = 9   
    >>> obj.over_no_get   
    9
    >>> obj.over_no_get = 7   
    -> OverridingNoGet.__set__(<OverridingNoGet object>, <Managed object>, 7)
    >>> obj.over_no_get   
    9

This overriding descriptor doesn’t have a __get__ method, so reading
obj.over_no_get retrieves the descriptor instance from the class.
The same thing happens if we retrieve the descriptor instance directly from the
managed class.
Trying to set a value to obj.over_no_get invokes the __set__ descriptor
method.
Because our __set__ doesn’t make changes, reading obj.over_no_get again
retrieves the descriptor instance from the managed class.
Going through the instance __dict__ to set an instance attribute named
over_no_get.
Now that over_no_get instance attribute shadows the descriptor, but only for
reading.
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Trying to assign a value to obj.over_no_get still goes through the descriptor
set.
But for reading, that descriptor is shadowed as long as there is a namesake
instance attribute.

Nonoverriding Descriptor
If a descriptor does not implement __set__, then it’s a nonoverriding descriptor. Setting
an instance attribute with the same name will shadow the descriptor, rendering it inef‐
fective for handling that attribute in that specific instance. Methods are implemented
as nonoverriding descriptors. Example 20-11 shows the operation of a nonoverriding
descriptor.

Example 20-11. Behavior of a nonoverriding descriptor: obj.non_over is an instance of
NonOverriding (Example 20-8)
    >>> obj = Managed()
    >>> obj.non_over   
    -> NonOverriding.__get__(<NonOverriding object>, <Managed object>,
        <class Managed>)
    >>> obj.non_over = 7   
    >>> obj.non_over   
    7
    >>> Managed.non_over   
    -> NonOverriding.__get__(<NonOverriding object>, None, <class Managed>)
    >>> del obj.non_over   
    >>> obj.non_over   
    -> NonOverriding.__get__(<NonOverriding object>, <Managed object>,
        <class Managed>)

obj.non_over triggers the descriptor __get__ method, passing obj as the second
argument.
Managed.non_over is a nonoverriding descriptor, so there is no __set__ to
interfere with this assignment.
The obj now has an instance attribute named non_over, which shadows the
namesake descriptor attribute in the Managed class.
The Managed.non_over descriptor is still there, and catches this access via the
class.
If the non_over instance attribute is deleted…
Then reading obj.non_over hits the __get__ method of the descriptor in the
class, but note that the second argument is the managed instance.
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Python contributors and authors use different terms when discus‐
sing these concepts. Overriding descriptors are also called data
descriptors or enforced descriptors. Nonoverriding descriptors are
also known as nondata descriptors or shadowable descriptors.

In the previous examples, we saw several assignments to an instance attribute with the
same name as a descriptor, and different results according to the presence of a __set__
method in the descriptor.

The setting of attributes in the class cannot be controlled by descriptors attached to the
same class. In particular, this means that the descriptor attributes themselves can be
clobbered by assigning to the class, as the next section explains.

Overwriting a Descriptor in the Class
Regardless of whether a descriptor is overriding or not, it can be overwritten by as‐
signment to the class. This is a monkey-patching technique, but in Example 20-12 the
descriptors are replaced by integers, which would effectively break any class that de‐
pended on the descriptors for proper operation.

Example 20-12. Any descriptor can be overwritten on the class itself
    >>> obj = Managed()   
    >>> Managed.over = 1   
    >>> Managed.over_no_get = 2
    >>> Managed.non_over = 3
    >>> obj.over, obj.over_no_get, obj.non_over   
    (1, 2, 3)

Create a new instance for later testing.
Overwrite the descriptor attributes in the class.
The descriptors are really gone.

Example 20-12 reveals another asymmetry regarding reading and writing attributes:
although the reading of a class attribute can be controlled by a descriptor with __get__
attached to the managed class, the writing of a class attribute cannot be handled by a
descriptor with __set__ attached to the same class.

In order to control the setting of attributes in a class, you have to
attach descriptors to the class of the class—in other words, the
metaclass. By default, the metaclass of user-defined classes is type,
and you cannot add attributes to type. But in Chapter 21, we’ll
create our own metaclasses.
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Let’s now focus on how descriptors are used to implement methods in Python.

Methods Are Descriptors
A function within a class becomes a bound method because all user-defined functions
have a __get__ method, therefore they operate as descriptors when attached to a class.
Example 20-13 demonstrates reading the spam method from the Managed class intro‐
duced in Example 20-8.

Example 20-13. A method is a nonoverriding descriptor
    >>> obj = Managed()
    >>> obj.spam   
    <bound method Managed.spam of <descriptorkinds.Managed object at 0x74c80c>>
    >>> Managed.spam   
    <function Managed.spam at 0x734734>
    >>> obj.spam = 7   
    >>> obj.spam
    7

Reading from obj.spam retrieves a bound method object.
But reading from Managed.spam retrieves a function.
Assigning a value to obj.spam shadows the class attribute, rendering the spam
method inaccessible from the obj instance.

Because functions do not implement __set__, they are nonoverriding descriptors, as
the last line of Example 20-13 shows.

The other key takeaway from Example 20-13 is that obj.spam and Managed.spam re‐
trieve different objects. As usual with descriptors, the __get__ of a function returns a
reference to itself when the access happens through the managed class. But when the
access goes through an instance, the __get__ of the function returns a bound method
object: a callable that wraps the function and binds the managed instance (e.g., obj) to
the first argument of the function (i.e., self), like the functools.partial function does
(as seen in “Freezing Arguments with functools.partial” on page 159).

For a deeper understanding of this mechanism, take a look at Example 20-14.

Example 20-14. method_is_descriptor.py: a Text class, derived from UserString
import collections

class Text(collections.UserString):

    def __repr__(self):
        return 'Text({!r})'.format(self.data)
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    def reverse(self):
        return self[::-1]

Now let’s investigate the Text.reverse method. See Example 20-15.

Example 20-15. Experiments with a method
    >>> word = Text('forward')
    >>> word   
    Text('forward')
    >>> word.reverse()   
    Text('drawrof')
    >>> Text.reverse(Text('backward'))   
    Text('drawkcab')
    >>> type(Text.reverse), type(word.reverse)   
    (<class 'function'>, <class 'method'>)
    >>> list(map(Text.reverse, ['repaid', (10, 20, 30), Text('stressed')]))   
    ['diaper', (30, 20, 10), Text('desserts')]
    >>> Text.reverse.__get__(word)   
    <bound method Text.reverse of Text('forward')>
    >>> Text.reverse.__get__(None, Text)   
    <function Text.reverse at 0x101244e18>
    >>> word.reverse   
    <bound method Text.reverse of Text('forward')>
    >>> word.reverse.__self__   
    Text('forward')
    >>> word.reverse.__func__ is Text.reverse   
    True

The repr of a Text instance looks like a Text constructor call that would make
an equal instance.
The reverse method returns the text spelled backward.
A method called on the class works as a function.
Note the different types: a function and a method.
Text.reverse operates as a function, even working with objects that are not
instances of Text.
Any function is a nonoverriding descriptor. Calling its __get__ with an instance
retrieves a method bound to that instance.
Calling the function’s __get__ with None as the instance argument retrieves the
function itself.
The expression word.reverse actually invokes Text.reverse.__get__(word),
returning the bound method.
The bound method object has a __self__ attribute holding a reference to the
instance on which the method was called.
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5. Python is not consistent in such messages. Trying to change the c.real attribute of a complex number gets
AttributeError: read-only attribute, but an attempt to change c.conjugate (a method of com
plex), results in AttributeError: 'complex' object attribute 'conjugate' is read-only.

The __func__ attribute of the bound method is a reference to the original
function attached to the managed class.

The bound method object also has a __call__ method, which handles the actual invo‐
cation. This method calls the original function referenced in __func__, passing the
__self__ attribute of the method as the first argument. That’s how the implicit binding
of the conventional self argument works.

The way functions are turned into bound methods is a prime example of how descriptors
are used as infrastructure in the language.

After this deep dive into how descriptors and methods work, let’s go through some
practical advice about their use.

Descriptor Usage Tips
The following list addresses some practical consequences of the descriptor character‐
istics just described:
Use property to Keep It Simple

The property built-in actually creates overriding descriptors implementing both
__set__ and __get__, even if you do not define a setter method. The default
__set__ of a property raises AttributeError: can't set attribute, so a prop‐
erty is the easiest way to create a read-only attribute, avoiding the issue described
next.

Read-only descriptors require __set__
If you use a descriptor class to implement a read-only attribute, you must remember
to code both __get__ and __set__, otherwise setting a namesake attribute on an
instance will shadow the descriptor. The __set__ method of a read-only attribute
should just raise AttributeError with a suitable message.5

Validation descriptors can work with __set__ only
In a descriptor designed only for validation, the __set__ method should check the
value argument it gets, and if valid, set it directly in the instance __dict__ using
the descriptor instance name as key. That way, reading the attribute with the same
name from the instance will be as fast as possible, because it will not require a
__get__. See the code for Example 20-1.
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Caching can be done efficiently with __get__ only
If you code just the __get__ method, you have a nonoverriding descriptor. These
are useful to make some expensive computation and then cache the result by setting
an attribute by the same name on the instance. The namesake instance attribute
will shadow the descriptor, so subsequent access to that attribute will fetch it directly
from the instance __dict__ and not trigger the descriptor __get__ anymore.

Nonspecial methods can be shadowed by instance attributes
Because functions and methods only implement __get__, they do not handle at‐
tempts at setting instance attributes with the same name, so a simple assignment
like my_obj.the_method = 7 means that further access to the_method through that
instance will retrieve the number 7—without affecting the class or other instances.
However, this issue does not interfere with special methods. The interpreter only
looks for special methods in the class itself, in other words, repr(x) is executed as
x.__class__.__repr__(x), so a __repr__ attribute defined in x has no effect on
repr(x). For the same reason, the existence of an attribute named __getattr__ in
an instance will not subvert the usual attribute access algorithm.

The fact that nonspecial methods can be overridden so easily in instances may sound
fragile and error-prone, but I personally have never been bitten by this in more than 15
years of Python coding. On the other hand, if you are doing a lot of dynamic attribute
creation, where the attribute names come from data you don’t control (as we did in the
earlier parts of this chapter), then you should be aware of this and perhaps implement
some filtering or escaping of the dynamic attribute names to preserve your sanity.

The FrozenJSON class in Example 19-6 is safe from instance at‐
tribute shadowing methods because its only methods are special
methods and the build class method. Class methods are safe as
long as they are always accessed through the class, as I did with
FrozenJSON.build in Example 19-6—later replaced by __new__
in Example 19-7. The Record class (Examples 19-9 and 19-11)
and subclasses are also safe: they use only special methods, class
methods, static methods, and properties. Properties are data de‐
scriptors, so cannot be overridden by instance attributes.

To close this chapter, we’ll cover two features we saw with properties that we have not
addressed in the context of descriptors: documentation and handling attempts to delete
a managed attribute.
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6. Customizing the help text for each descriptor instance is surprisingly hard. One solution requires dynamically
building a wrapper class for each descriptor instance.

Descriptor docstring and Overriding Deletion
The docstring of a descriptor class is used to document every instance of the descriptor
in the managed class. See Figure 20-6 for the help displays for the LineItem class with
the Quantity and NonBlank descriptors from Examples 20-6 and 20-7.

Figure 20-6. Screenshots of the Python console when issuing the commands help(LineI‐
tem.weight) and help(LineItem)

That is somewhat unsatisfactory. In the case of LineItem, it would be good to add, for
example, the information that weight must be in kilograms. That would be trivial with
properties, because each property handles a specific managed attribute. But with de‐
scriptors, the same Quantity descriptor class is used for weight and price.6

The second detail we discussed with properties but have not addressed with descriptors
is handling attempts to delete a managed attribute. That can be done by implementing
a __delete__ method alongside or instead of the usual __get__ and/or __set__ in the

650 | Chapter 20: Attribute Descriptors



descriptor class. Coding a silly descriptor class with __delete__ is left as an exercise to
the leisurely reader.

Chapter Summary
The first example of this chapter was a continuation of the LineItem examples from
Chapter 19. In Example 20-1, we replaced properties with descriptors. We saw that a
descriptor is a class that provides instances that are deployed as attributes in the man‐
aged class. Discussing this mechanism required special terminology, introducing terms
such as managed instance and storage attribute.

In “LineItem Take #4: Automatic Storage Attribute Names” on page 631, we removed
the requirement that Quantity descriptors were declared with an explicit stor
age_name, which was redundant and error-prone, because that name should always
match the attribute name on the left of the assignment in the descriptor instantiation.
The solution was to generate unique storage_names by combining the descriptor class
name with a counter at the class level (e.g., '_Quantity#1').

Next, we compared the code size, strengths, and weaknesses of a descriptor class with
a property factory built on functional programming idioms. The latter works perfectly
well and is simpler in some ways, but the former is more flexible and is the standard
solution. A key advantage of the descriptor class was exploited in “LineItem Take #5: A
New Descriptor Type” on page 637: subclassing to share code while building specialized
descriptors with some common functionality.

We then looked at the different behavior of descriptors providing or omitting the
__set__ method, making the crucial distinction between overriding and non-
overriding descriptors. Through detailed testing we uncovered when descriptors are in
control and when they are shadowed, bypassed, or overwritten.

Following that, we studied a particular category of nonoverriding descriptors: methods.
Console testing revealed how a function attached to a class becomes a method when
accessed through an instance, by leveraging the descriptor protocol.

To conclude the chapter, “Descriptor Usage Tips” on page 648 provided a brief look at
how descriptor deletion and documentation work.

Throughout this chapter, we faced a few issues that only class metaprogramming can
solve, and we deferred those to Chapter 21.

Further Reading
Besides the obligatory reference to the “Data Model” chapter, Raymond Hettinger’s
Descriptor HowTo Guide is a valuable resource—part of the HowTo collection in the
official Python documentation.
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As usual with Python object model subjects, Alex Martelli’s Python in a Nutshell, 2E
(O’Reilly) is authoritative and objective, even if somewhat dated: the key mechanisms
discussed in this chapter were introduced in Python 2.2, long before the 2.5 version
covered by that book. Martelli also has a presentation titled Python’s Object Model,
which covers properties and descriptors in depth (slides, video). Highly recommended.

For Python 3 coverage with practical examples, Python Cookbook, 3E by David Beazley
and Brian K. Jones (O’Reilly), has many recipes illustrating descriptors, of which I want
to highlight “6.12. Reading Nested and Variable-Sized Binary Structures,” “8.10. Using
Lazily Computed Properties,” “8.13. Implementing a Data Model or Type System,” and
“9.9. Defining Decorators As Classes”—the latter of which addresses deep issues with
the interaction of function decorators, descriptors, and methods, explaining how a
function decorator implemented as a class with __call__ also needs to implement
__get__ if it wants to work with decorating methods as well as functions.

Soapbox
The Problem with self

“Worse is Better” is a design philosophy described by Richard P. Gabriel in “The Rise
of Worse is Better”. The first priority of this philosophy is “Simplicity,” which Gabriel
states as:

The design must be simple, both in implementation and interface. It is more important
for the implementation to be simple than the interface. Simplicity is the most important
consideration in a design.

I believe the requirement to explicitly declare self as a first argument in methods is an
application of “Worse is Better” in Python. The implementation is simple—elegant even
—at the expense of the user interface: a method signature like def zfill(self,
width): doesn’t visually match the invocation pobox.zfill(8).

Modula-3 introduced that convention—and the use of the self identifier—but there is
a difference: in Modula-3, interfaces are declared separately from their implementation,
and in the interface declaration the self argument is omitted, so from the user’s per‐
spective, a method appears in an interface declaration exactly with the same number of
explicit arguments it takes.

One improvement in this regard has been the error messages: for a user-defined method
with one argument besides self, if the user invokes obj.meth(), Python 2.7 raises
TypeError: meth() takes exactly 2 arguments (1 given), but in Python 3.4 the
message is less confusing, sidestepping the issue of the argument count and naming the
missing argument: meth() missing 1 required positional argument: 'x'.
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7. See, for example, A. M. Kuchling’s famous Python Warts post (archived); Kuchling himself is not so bothered
by the self qualifier, but he mentions it—probably echoing opinions from comp.lang.python.

Besides the use of self as an explicit argument, the requirement to qualify all access to
instance attributes with self is also criticized.7 I personally don’t mind typing the self
qualifier: it’s good to distinguish local variables from attributes. My issue is with the use
of self in the def statement. But I got used to it.

Anyone who is unhappy about the explicit self in Python can feel a lot better by con‐
sidering the baffling semantics of the implicit this in JavaScript. Guido had some good
reasons to make self work as it does, and he wrote about them in “Adding Support for
User-Defined Classes”, a post on his blog, The History of Python.
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1. Message to comp.lang.python, subject: “Acrimony in c.l.p.”. This is another part of the same message from
December 23, 2002, quoted in the Preface. The TimBot was inspired that day.

CHAPTER 21

Class Metaprogramming

[Metaclasses] are deeper magic than 99% of users should ever worry about. If you wonder
whether you need them, you don’t (the people who actually need them know with cer‐
tainty that they need them, and don’t need an explanation about why).1

— Tim Peters
 Inventor of the timsort algorithm and prolific Python contributor

Class metaprogramming is the art of creating or customizing classes at runtime. Classes
are first-class objects in Python, so a function can be used to create a new class at any
time, without using the class keyword. Class decorators are also functions, but capable
of inspecting, changing, and even replacing the decorated class with another class. Fi‐
nally, metaclasses are the most advanced tool for class metaprogramming: they let you
create whole new categories of classes with special traits, such as the abstract base classes
we’ve already seen.

Metaclasses are powerful, but hard to get right. Class decorators solve many of the same
problems more simply. In fact, metaclasses are now so hard to justify in real code that
my favorite motivating example lost much of its appeal with the introduction of class
decorators in Python 2.6.

Also covered here is the distinction between import time and runtime: a crucial pre-
requisite for effective Python metaprogramming.

This is an exciting topic, and it’s easy to get carried away. So I must
start this chapter with the following admonition:
If you are not authoring a framework, you should not be writing
metaclasses—unless you’re doing it for fun or to practice the con‐
cepts.
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We’ll get started by reviewing how to create a class at runtime.

A Class Factory
The standard library has a class factory that we’ve seen several times in this book:
collections.namedtuple. It’s a function that, given a class name and attribute names
creates a subclass of tuple that allows retrieving items by name and provides a nice
__repr__ for debugging.

Sometimes I’ve felt the need for a similar factory for mutable objects. Suppose I’m writ‐
ing a pet shop application and I want to process data for dogs as simple records. It’s bad
to have to write boilerplate like this:

class Dog:
    def __init__(self, name, weight, owner):
        self.name = name
        self.weight = weight
        self.owner = owner

Boring… the field names appear three times each. All that boilerplate doesn’t even buy
us a nice repr:

>>> rex = Dog('Rex', 30, 'Bob')
>>> rex
<__main__.Dog object at 0x2865bac>

Taking a hint from collections.namedtuple, let’s create a record_factory that creates
simple classes like Dog on the fly. Example 21-1 shows how it should work.

Example 21-1. Testing record_factory, a simple class factory
    >>> Dog = record_factory('Dog', 'name weight owner')   
    >>> rex = Dog('Rex', 30, 'Bob')
    >>> rex   
    Dog(name='Rex', weight=30, owner='Bob')
    >>> name, weight, _ = rex   
    >>> name, weight
    ('Rex', 30)
    >>> "{2}'s dog weighs {1}kg".format(*rex)   
    "Bob's dog weighs 30kg"
    >>> rex.weight = 32   
    >>> rex
    Dog(name='Rex', weight=32, owner='Bob')
    >>> Dog.__mro__   
    (<class 'factories.Dog'>, <class 'object'>)

Factory signature is similar to that of namedtuple: class name, followed by
attribute names in a single string, separated by spaces or commas.
Nice repr.
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2. Thanks to my friend J.S. Bueno for suggesting this solution.

Instances are iterable, so they can be conveniently unpacked on assignment…
…or when passing to functions like format.
A record instance is mutable.
The newly created class inherits from object—no relationship to our factory.

The code for record_factory is in Example 21-2.2

Example 21-2. record_factory.py: a simple class factory
def record_factory(cls_name, field_names):
    try:
        field_names = field_names.replace(',', ' ').split()   
    except AttributeError:  # no .replace or .split
        pass  # assume it's already a sequence of identifiers
    field_names = tuple(field_names)   

    def __init__(self, *args, **kwargs):   
        attrs = dict(zip(self.__slots__, args))
        attrs.update(kwargs)
        for name, value in attrs.items():
            setattr(self, name, value)

    def __iter__(self):   
        for name in self.__slots__:
            yield getattr(self, name)

    def __repr__(self):   
        values = ', '.join('{}={!r}'.format(*i) for i
                           in zip(self.__slots__, self))
        return '{}({})'.format(self.__class__.__name__, values)

    cls_attrs = dict(__slots__ = field_names,   
                     __init__  = __init__,
                     __iter__  = __iter__,
                     __repr__  = __repr__)

    return type(cls_name, (object,), cls_attrs)   

Duck typing in practice: try to split field_names by commas or spaces; if that
fails, assume it’s already an iterable, with one name per item.
Build a tuple of attribute names, this will be the __slots__ attribute of the new
class; this also sets the order of the fields for unpacking and __repr__.
This function will become the __init__ method in the new class. It accepts
positional and/or keyword arguments.
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Implement an __iter__, so the class instances will be iterable; yield the field
values in the order given by __slots__.
Produce the nice repr, iterating over __slots__ and self.
Assemble dictionary of class attributes.
Build and return the new class, calling the type constructor.

We usually think of type as a function, because we use it like one, e.g., type(my_ob
ject) to get the class of the object—same as my_object.__class__. However, type is
a class. It behaves like a class that creates a new class when invoked with three arguments:

MyClass = type('MyClass', (MySuperClass, MyMixin),
               {'x': 42, 'x2': lambda self: self.x * 2})

The three arguments of type are named name, bases, and dict—the latter being a map‐
ping of attribute names and attributes for the new class. The preceding code is func‐
tionally equivalent to this:

class MyClass(MySuperClass, MyMixin):
    x = 42

    def x2(self):
        return self.x * 2

The novelty here is that the instances of type are classes, like MyClass here, or the Dog
class in Example 21-1.

In summary, the last line of record_factory in Example 21-2 builds a class named by
the value of cls_name, with object as its single immediate superclass and with class
attributes named __slots__, __init__, __iter__, and __repr__, of which the last three
are instance methods.

We could have named the __slots__ class attribute anything else, but then we’d have
to implement __setattr__ to validate the names of attributes being assigned, because
for our record-like classes we want the set of attributes to be always the same and in the
same order. However, recall that the main feature of __slots__ is saving memory when
you are dealing with millions of instances, and using __slots__ has some drawbacks,
discussed in “Saving Space with the __slots__ Class Attribute” on page 264.

Invoking type with three arguments is a common way of creating a class dynamically.
If you peek at the source code for collections.namedtuple, you’ll see a different ap‐
proach: there is _class_template, a source code template as a string, and the namedtu
ple function fills its blanks calling _class_template.format(…). The resulting source
code string is then evaluated with the exec built-in function.
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It’s good practice to avoid exec or eval for metaprogramming in
Python. These functions pose serious security risks if they are fed
strings (even fragments) from untrusted sources. Python offers
sufficient introspection tools to make exec and eval unnecessary
most of the time. However, the Python core developers chose to
use exec when implementing namedtuple. The chosen approach
makes the code generated for the class available in the ._source
attribute.

Instances of classes created by record_factory have a limitation: they are not serializ‐
able—that is, they can’t be used with the dump/load functions from the pickle module.
Solving this problem is beyond the scope of this example, which aims to show the type
class in action in a simple use case. For the full solution, study the source code for
collections.nameduple; search for the word “pickling.”

A Class Decorator for Customizing Descriptors
When we left the LineItem example in “LineItem Take #5: A New Descriptor Type” on
page 637, the issue of descriptive storage names was still pending: the value of attributes
such as weight was stored in an instance attribute named _Quantity#0, which made
debugging a bit hard. You can retrieve the storage name from a descriptor in
Example 20-7 with the following lines:

>>> LineItem.weight.storage_name
'_Quantity#0'

However, it would be better if the storage names actually included the name of the
managed attribute, like this:

>>> LineItem.weight.storage_name
'_Quantity#weight'

Recall from “LineItem Take #4: Automatic Storage Attribute Names” on page 631 that
we could not use descriptive storage names because when the descriptor is instantiated
it has no way of knowing the name of the managed attribute (i.e., the class attribute to
which the descriptor will be bound, such as weight in the preceding examples). But
once the whole class is assembled and the descriptors are bound to the class attributes,
we can inspect the class and set proper storage names to the descriptors. This could be
done in the __new__ method of the LineItem class, so that by the time the descriptors
are used in the __init__ method, the correct storage names are set. The problem of
using __new__ for that purpose is wasted effort: the logic of __new__ will run every time
a new LineItem instance is created, but the binding of the descriptor to the managed
attribute will never change once the LineItem class itself is built. So we need to set the
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storage names when the class is created. That can be done with a class decorator or a
metaclass. We’ll do it first in the easier way.

A class decorator is very similar to a function decorator: it’s a function that gets a class
object and returns the same class or a modified one.

In Example 21-3, the LineItem class will be evaluated by the interpreter and the resulting
class object will be passed to the model.entity function. Python will bind the global
name LineItem to whatever the model.entity function returns. In this example, mod
el.entity returns the same LineItem class with the storage_name attribute of each
descriptor instance changed.

Example 21-3. bulkfood_v6.py: LineItem using Quantity and NonBlank descriptors
import model_v6 as model

@model.entity   
class LineItem:
    description = model.NonBlank()
    weight = model.Quantity()
    price = model.Quantity()

    def __init__(self, description, weight, price):
        self.description = description
        self.weight = weight
        self.price = price

    def subtotal(self):
        return self.weight * self.price

The only change in this class is the added decorator.

Example 21-4 shows the implementation of the decorator. Only the new code at the
bottom of model_v6.py is listed here; the rest of the module is identical to mod‐
el_v5.py (Example 20-6).

Example 21-4. model_v6.py: a class decorator
def entity(cls):   
    for key, attr in cls.__dict__.items():   
        if isinstance(attr, Validated):   
            type_name = type(attr).__name__
            attr.storage_name = '_{}#{}'.format(type_name, key)   
    return cls   

Decorator gets class as argument.
Iterate over dict holding the class attributes.
If the attribute is one of our Validated descriptors…
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3. Contrast with the import statement in Java, which is just a declaration to let the compiler know that certain
packages are required.

…set the storage_name to use the descriptor class name and the managed
attribute name (e.g., _NonBlank#description).
Return the modified class.

The doctests in bulkfood_v6.py prove that the changes are successful. For example,
Example 21-5 shows the names of the storage attributes in a LineItem instance.

Example 21-5. bulkfood_v6.py: doctests for new storage_name descriptor attributes
    >>> raisins = LineItem('Golden raisins', 10, 6.95)
    >>> dir(raisins)[:3]
    ['_NonBlank#description', '_Quantity#price', '_Quantity#weight']
    >>> LineItem.description.storage_name
    '_NonBlank#description'
    >>> raisins.description
    'Golden raisins'
    >>> getattr(raisins, '_NonBlank#description')
    'Golden raisins'

That’s not too complicated. Class decorators are a simpler way of doing something that
previously required a metaclass: customizing a class the moment it’s created.

A significant drawback of class decorators is that they act only on the class where they
are directly applied. This means subclasses of the decorated class may or may not inherit
the changes made by the decorator, depending on what those changes are. We’ll explore
the problem and see how it’s solved in the following sections.

What Happens When: Import Time Versus Runtime
For successful metaprogramming, you must be aware of when the Python interpreter
evaluates each block of code. Python programmers talk about “import time” versus
“runtime” but the terms are not strictly defined and there is a gray area between them.
At import time, the interpreter parses the source code of a .py module in one pass from
top to bottom, and generates the bytecode to be executed. That’s when syntax errors
may occur. If there is an up-to-date .pyc file available in the local __pycache__, those
steps are skipped because the bytecode is ready to run.

Although compiling is definitely an import-time activity, other things may happen at
that time, because almost every statement in Python is executable in the sense that they
potentially run user code and change the state of the user program. In particular, the
import statement is not merely a declaration3 but it actually runs all the top-level code
of the imported module when it’s imported for the first time in the process—further
imports of the same module will use a cache, and only name binding occurs then. That
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4. I’m not saying starting a database connection just because a module is imported is a good idea, only pointing
out it can be done.

top-level code may do anything, including actions typical of “runtime”, such as con‐
necting to a database.4 That’s why the border between “import time” and “runtime” is
fuzzy: the import statement can trigger all sorts of “runtime” behavior.

In the previous paragraph, I wrote that importing “runs all the top-level code,” but “top-
level code” requires some elaboration. The interpreter executes a def statement on the
top level of a module when the module is imported, but what does that achieve? The
interpreter compiles the function body (if it’s the first time that module is imported),
and binds the function object to its global name, but it does not execute the body of the
function, obviously. In the usual case, this means that the interpreter defines top-level
functions at import time, but executes their bodies only when—and if—the functions
are invoked at runtime.

For classes, the story is different: at import time, the interpreter executes the body of
every class, even the body of classes nested in other classes. Execution of a class body
means that the attributes and methods of the class are defined, and then the class object
itself is built. In this sense, the body of classes is “top-level code”: it runs at import time.

This is all rather subtle and abstract, so here is an exercise to help you see what happens
when.

The Evaluation Time Exercises
Consider a script, evaltime.py, which imports a module evalsupport.py. Both modules
have several print calls to output markers in the format <[N]>, where N is a number.
The goal of this pair of exercises is to determine when each of theses calls will be made.

Students have reported these exercises are helpful to better ap‐
preciate how Python evaluates the source code. Do take the time
to solve them with paper and pencil before looking at “Solution
for scenario #1” on page 664.

The listings are Examples 21-6 and 21-7. Grab paper and pencil and—without running
the code—write down the markers in the order they will appear in the output, in two
scenarios:
Scenario #1

The module evaltime.py is imported interactively in the Python console:

>>> import evaltime
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Scenario #2
The module evaltime.py is run from the command shell:

$ python3 evaltime.py

Example 21-6. evaltime.py: write down the numbered <[N]> markers in the order they
will appear in the output
from evalsupport import deco_alpha

print('<[1]> evaltime module start')

class ClassOne():
    print('<[2]> ClassOne body')

    def __init__(self):
        print('<[3]> ClassOne.__init__')

    def __del__(self):
        print('<[4]> ClassOne.__del__')

    def method_x(self):
        print('<[5]> ClassOne.method_x')

    class ClassTwo(object):
        print('<[6]> ClassTwo body')

@deco_alpha
class ClassThree():
    print('<[7]> ClassThree body')

    def method_y(self):
        print('<[8]> ClassThree.method_y')

class ClassFour(ClassThree):
    print('<[9]> ClassFour body')

    def method_y(self):
        print('<[10]> ClassFour.method_y')

if __name__ == '__main__':
    print('<[11]> ClassOne tests', 30 * '.')
    one = ClassOne()
    one.method_x()
    print('<[12]> ClassThree tests', 30 * '.')
    three = ClassThree()
    three.method_y()
    print('<[13]> ClassFour tests', 30 * '.')
    four = ClassFour()
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    four.method_y()

print('<[14]> evaltime module end')

Example 21-7. evalsupport.py: module imported by evaltime.py
print('<[100]> evalsupport module start')

def deco_alpha(cls):
    print('<[200]> deco_alpha')

    def inner_1(self):
        print('<[300]> deco_alpha:inner_1')

    cls.method_y = inner_1
    return cls

# BEGIN META_ALEPH
class MetaAleph(type):
    print('<[400]> MetaAleph body')

    def __init__(cls, name, bases, dic):
        print('<[500]> MetaAleph.__init__')

        def inner_2(self):
            print('<[600]> MetaAleph.__init__:inner_2')

        cls.method_z = inner_2
# END META_ALEPH

print('<[700]> evalsupport module end')

Solution for scenario #1
Example 21-8 is the output of importing the evaltime.py module in the Python console.

Example 21-8. Scenario #1: importing evaltime in the Python console
>>> import evaltime
<[100]> evalsupport module start  
<[400]> MetaAleph body  
<[700]> evalsupport module end
<[1]> evaltime module start
<[2]> ClassOne body  
<[6]> ClassTwo body  
<[7]> ClassThree body
<[200]> deco_alpha  
<[9]> ClassFour body
<[14]> evaltime module end  
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All top-level code in evalsupport runs when the module is imported; the
deco_alpha function is compiled, but its body does not execute.
The body of the MetaAleph function does run.
The body of every class is executed…
…including nested classes.
The decorator function runs after the body of the decorated ClassThree is
evaluated.
In this scenario, the evaltime is imported, so the if __name__ == '__main__':
block never runs.

Notes about scenario #1:

1. This scenario is triggered by a simple import evaltime statement.
2. The interpreter executes every class body of the imported module and its depend‐

ency, evalsupport.
3. It makes sense that the interpreter evaluates the body of a decorated class before it

invokes the decorator function that is attached on top of it: the decorator must get
a class object to process, so the class object must be built first.

4. The only user-defined function or method that runs in this scenario is the deco_al
pha decorator.

Now let’s see what happens in scenario #2.

Solution for scenario #2

Example 21-9 is the output of running python evaltime.py.

Example 21-9. Scenario #2: running evaltime.py from the shell
$ python3 evaltime.py
<[100]> evalsupport module start
<[400]> MetaAleph body
<[700]> evalsupport module end
<[1]> evaltime module start
<[2]> ClassOne body
<[6]> ClassTwo body
<[7]> ClassThree body
<[200]> deco_alpha
<[9]> ClassFour body  
<[11]> ClassOne tests ..............................
<[3]> ClassOne.__init__  
<[5]> ClassOne.method_x
<[12]> ClassThree tests ..............................
<[300]> deco_alpha:inner_1  
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<[13]> ClassFour tests ..............................
<[10]> ClassFour.method_y
<[14]> evaltime module end
<[4]> ClassOne.__del__  

Same output as Example 21-8 so far.
Standard behavior of a class.
ClassThree.method_y was changed by the deco_alpha decorator, so the call
three.method_y() runs the body of the inner_1 function.
The ClassOne instance bound to one global variable is garbage-collected only
when the program ends.

The main point of scenario #2 is to show that the effects of a class decorator may not
affect subclasses. In Example 21-6, ClassFour is defined as a subclass of ClassThree.
The @deco_alpha decorator is applied to ClassThree, replacing its method_y, but that
does not affect ClassFour at all. Of course, if the ClassFour.method_y did invoke the
ClassThree.method_y with super(…), we would see the effect of the decorator, as the
inner_1 function executed.

In contrast, the next section will show that metaclasses are more effective when we want
to customize a whole class hierarchy, and not one class at a time.

Metaclasses 101
A metaclass is a class factory, except that instead of a function, like record_factory
from Example 21-2, a metaclass is written as a class. Figure 21-1 depicts a metaclass
using the Mills & Gizmos Notation: a mill producing another mill.

666 | Chapter 21: Class Metaprogramming



Figure 21-1. A metaclass is a class that builds classes

Consider the Python object model: classes are objects, therefore each class must be an
instance of some other class. By default, Python classes are instances of type. In other
words, type is the metaclass for most built-in and user-defined classes:

>>> 'spam'.__class__
<class 'str'>
>>> str.__class__
<class 'type'>
>>> from bulkfood_v6 import LineItem
>>> LineItem.__class__
<class 'type'>
>>> type.__class__
<class 'type'>

To avoid infinite regress, type is an instance of itself, as the last line shows.

Note that I am not saying that str or LineItem inherit from type. What I am saying is
that str and LineItem are instances of type. They all are subclasses of object.
Figure 21-2 may help you confront this strange reality.
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Figure 21-2. Both diagrams are true. The left one emphasizes that str, type, and LineI‐
tem are subclasses of object. The right one makes it clear that str, object, and LineItem
are instances of type, because they are all classes.

The classes object and type have a unique relationship: object
is an instance of type, and type is a subclass of object. This
relationship is “magic”: it cannot be expressed in Python be‐
cause either class would have to exist before the other could be
defined. The fact that type is an instance of itself is also magical.

Besides type, a few other metaclasses exist in the standard library, such as ABCMeta and
Enum. The next snippet shows that the class of collections.Iterable is abc.ABCMeta.
The class Iterable is abstract, but ABCMeta is not—after all, Iterable is an instance of
ABCMeta:

>>> import collections
>>> collections.Iterable.__class__
<class 'abc.ABCMeta'>
>>> import abc
>>> abc.ABCMeta.__class__
<class 'type'>
>>> abc.ABCMeta.__mro__
(<class 'abc.ABCMeta'>, <class 'type'>, <class 'object'>)

Ultimately, the class of ABCMeta is also type. Every class is an instance of type, directly
or indirectly, but only metaclasses are also subclasses of type. That’s the most important
relationship to understand metaclasses: a metaclass, such as ABCMeta, inherits from type
the power to construct classes. Figure 21-3 illustrates this crucial relationship.
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Figure 21-3. Iterable is a subclass of object and an instance of ABCMeta. Both object
and ABCMeta are instances of type, but the key relationship here is that ABCMeta is
also a subclass of type, because ABCMeta is a metaclass. In this diagram, Iterable is the
only abstract class.

The important takeaway here is that all classes are instances of type, but metaclasses
are also subclasses of type, so they act as class factories. In particular, a metaclass can
customize its instances by implementing __init__. A metaclass __init__ method can
do everything a class decorator can do, but its effects are more profound, as the next
exercise demonstrates.

The Metaclass Evaluation Time Exercise
This is a variation of “The Evaluation Time Exercises” on page 662. The evalsup‐
port.py module is the same as Example 21-7, but the main script is now eval‐
time_meta.py, listed in Example 21-10.

Example 21-10. evaltime_meta.py: ClassFive is an instance of the MetaAleph metaclass
from evalsupport import deco_alpha
from evalsupport import MetaAleph

print('<[1]> evaltime_meta module start')

@deco_alpha
class ClassThree():
    print('<[2]> ClassThree body')

    def method_y(self):
        print('<[3]> ClassThree.method_y')
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class ClassFour(ClassThree):
    print('<[4]> ClassFour body')

    def method_y(self):
        print('<[5]> ClassFour.method_y')

class ClassFive(metaclass=MetaAleph):
    print('<[6]> ClassFive body')

    def __init__(self):
        print('<[7]> ClassFive.__init__')

    def method_z(self):
        print('<[8]> ClassFive.method_y')

class ClassSix(ClassFive):
    print('<[9]> ClassSix body')

    def method_z(self):
        print('<[10]> ClassSix.method_y')

if __name__ == '__main__':
    print('<[11]> ClassThree tests', 30 * '.')
    three = ClassThree()
    three.method_y()
    print('<[12]> ClassFour tests', 30 * '.')
    four = ClassFour()
    four.method_y()
    print('<[13]> ClassFive tests', 30 * '.')
    five = ClassFive()
    five.method_z()
    print('<[14]> ClassSix tests', 30 * '.')
    six = ClassSix()
    six.method_z()

print('<[15]> evaltime_meta module end')

Again, grab pencil and paper and write down the numbered <[N]> markers in the order
they will appear in the output, considering these two scenarios:
Scenario #3

The module evaltime_meta.py is imported interactively in the Python console.

Scenario #4
The module evaltime_meta.py is run from the command shell.

Solutions and analysis are next.
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Solution for scenario #3
Example 21-11 shows the output of importing evaltime_meta.py in the Python console.

Example 21-11. Scenario #3: importing evaltime_meta in the Python console
>>> import evaltime_meta
<[100]> evalsupport module start
<[400]> MetaAleph body
<[700]> evalsupport module end
<[1]> evaltime_meta module start
<[2]> ClassThree body
<[200]> deco_alpha
<[4]> ClassFour body
<[6]> ClassFive body
<[500]> MetaAleph.__init__  
<[9]> ClassSix body
<[500]> MetaAleph.__init__  
<[15]> evaltime_meta module end

The key difference from scenario #1 is that the MetaAleph.__init__ method is
invoked to initialize the just-created ClassFive.
And MetaAleph.__init__ also initializes ClassSix, which is a subclass of Class
Five.

The Python interpreter evaluates the body of ClassFive but then, instead of calling
type to build the actual class body, it calls MetaAleph. Looking at the definition of
MetaAleph in Example 21-12, you’ll see that the __init__ method gets four arguments:
self

That’s the class object being initialized (e.g., ClassFive)

name, bases, dic
The same arguments passed to type to build a class

Example 21-12. evalsupport.py: definition of the metaclass MetaAleph from
Example 21-7
class MetaAleph(type):
    print('<[400]> MetaAleph body')

    def __init__(cls, name, bases, dic):
        print('<[500]> MetaAleph.__init__')

        def inner_2(self):
            print('<[600]> MetaAleph.__init__:inner_2')

        cls.method_z = inner_2
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When coding a metaclass, it’s conventional to replace self with
cls. For example, in the __init__ method of the metaclass, us‐
ing cls as the name of the first argument makes it clear that the
instance under construction is a class.

The body of __init__ defines an inner_2 function, then binds it to cls.method_z. The
name cls in the signature of MetaAleph.__init__ refers to the class being created (e.g.,
ClassFive). On the other hand, the name self in the signature of inner_2 will even‐
tually refer to an instance of the class we are creating (e.g., an instance of ClassFive).

Solution for scenario #4

Example 21-13 shows the output of running python evaltime.py from the command
line.

Example 21-13. Scenario #4: running evaltime_meta.py from the shell
$ python3 evaltime.py
<[100]> evalsupport module start
<[400]> MetaAleph body
<[700]> evalsupport module end
<[1]> evaltime_meta module start
<[2]> ClassThree body
<[200]> deco_alpha
<[4]> ClassFour body
<[6]> ClassFive body
<[500]> MetaAleph.__init__
<[9]> ClassSix body
<[500]> MetaAleph.__init__
<[11]> ClassThree tests ..............................
<[300]> deco_alpha:inner_1  
<[12]> ClassFour tests ..............................
<[5]> ClassFour.method_y  
<[13]> ClassFive tests ..............................
<[7]> ClassFive.__init__
<[600]> MetaAleph.__init__:inner_2  
<[14]> ClassSix tests ..............................
<[7]> ClassFive.__init__
<[600]> MetaAleph.__init__:inner_2  
<[15]> evaltime_meta module end

When the decorator is applied to ClassThree, its method_y is replaced by the
inner_1 method…
But this has no effect on the undecorated ClassFour, even though ClassFour is
a subclass of ClassThree.
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The __init__ method of MetaAleph replaces ClassFive.method_z with its
inner_2 function.
The same happens with the ClassFive subclass, ClassSix: its method_z is
replaced by inner_2.

Note that ClassSix makes no direct reference to MetaAleph, but it is affected by it
because it’s a subclass of ClassFive and therefore it is also an instance of MetaAleph, so
it’s initialized by MetaAleph.__init__.

Further class customization can be done by implementing __new__
in a metaclass. But more often than not, implementing __init__
is enough.

We can now put all this theory in practice by creating a metaclass to provide a definitive
solution to the descriptors with automatic storage attribute names.

A Metaclass for Customizing Descriptors
Back to the LineItem examples. It would be nice if the user did not have to be aware of
decorators or metaclasses at all, and could just inherit from a class provided by our
library, like in Example 21-14.

Example 21-14. bulkfood_v7.py: inheriting from model.Entity can work, if a metaclass
is behind the scenes
import model_v7 as model

class LineItem(model.Entity):   
    description = model.NonBlank()
    weight = model.Quantity()
    price = model.Quantity()

    def __init__(self, description, weight, price):
        self.description = description
        self.weight = weight
        self.price = price

    def subtotal(self):
        return self.weight * self.price

LineItem is a subclass of model.Entity.
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Example 21-14 looks pretty harmless. No strange syntax to be seen at all. However, it
only works because model_v7.py defines a metaclass, and model.Entity is an instance
of that metaclass. Example 21-15 shows the implementation of the Entity class in the
model_v7.py module.

Example 21-15. model_v7.py: the EntityMeta metaclass and one instance of it, Entity
class EntityMeta(type):
    """Metaclass for business entities with validated fields"""

    def __init__(cls, name, bases, attr_dict):
        super().__init__(name, bases, attr_dict)   
        for key, attr in attr_dict.items():   
            if isinstance(attr, Validated):
                type_name = type(attr).__name__
                attr.storage_name = '_{}#{}'.format(type_name, key)

class Entity(metaclass=EntityMeta):   
    """Business entity with validated fields"""

Call __init__ on the superclass (type in this case).
Same logic as the @entity decorator in Example 21-4.
This class exists for convenience only: the user of this module can just subclass
Entity and not worry about EntityMeta—or even be aware of its existence.

The code in Example 21-14 passes the tests in Example 21-3. The support module,
model_v7.py, is harder to understand than model_v6.py, but the user-level code is sim‐
pler: just inherit from model_v7.entity and you get custom storage names for your
Validated fields.

Figure 21-4 is a simplified depiction of what we just implemented. There is a lot going
on, but the complexity is hidden inside the model_v7 module. From the user perspective,
LineItem is simply a subclass of Entity, as coded in Example 21-14. This is the power
of abstraction.
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5. Recall from “ABC Syntax Details” on page 328 that in Python 2.7 the __metaclass__ class attribute is used,
and the metaclass= keyword argument is not supported in the class declaration.

Figure 21-4. UML class diagram annotated with MGN (Mills & Gizmos Notation): the
EntityMeta meta-mill builds the LineItem mill. Configuration of the descriptors (e.g.,
weight and price) is done by EntityMeta.__init__. Note the package boundary of mod‐
el_v7.

Except for the syntax for linking a class to the metaclass,5 everything written so far about
metaclasses applies to versions of Python as early as 2.2, when Python types underwent
a major overhaul. The next section covers a feature that is only available in Python 3.

The Metaclass __prepare__ Special Method
In some applications it’s interesting to be able to know the order in which the attributes
of a class are defined. For example, a library to read/write CSV files driven by user-
defined classes may want to map the order of the fields declared in the class to the order
of the columns in the CSV file.

As we’ve seen, both the type constructor and the __new__ and __init__ methods of
metaclasses receive the body of the class evaluated as a mapping of names to attributes.
However, by default, that mapping is a dict, which means the order of the attributes as
they appear in the class body is lost by the time our metaclass or class decorator can
look at them.

The solution to this problem is the __prepare__ special method, introduced in Python
3. This special method is relevant only in metaclasses, and it must be a class method
(i.e., defined with the @classmethod decorator). The __prepare__ method is invoked
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by the interpreter before the __new__ method in the metaclass to create the mapping
that will be filled with the attributes from the class body. Besides the metaclass as first
argument, __prepare__ gets the name of the class to be constructed and its tuple of base
classes, and it must return a mapping, which will be received as the last argument by
__new__ and then __init__ when the metaclass builds a new class.

It sounds complicated in theory, but in practice, every time I’ve seen __prepare__ being
used it was very simple. Take a look at Example 21-16.

Example 21-16. model_v8.py: the EntityMeta metaclass uses prepare, and Entity now
has a field_names class method
class EntityMeta(type):
    """Metaclass for business entities with validated fields"""

    @classmethod
    def __prepare__(cls, name, bases):
        return collections.OrderedDict()   

    def __init__(cls, name, bases, attr_dict):
        super().__init__(name, bases, attr_dict)
        cls._field_names = []   
        for key, attr in attr_dict.items():   
            if isinstance(attr, Validated):
                type_name = type(attr).__name__
                attr.storage_name = '_{}#{}'.format(type_name, key)
                cls._field_names.append(key)   

class Entity(metaclass=EntityMeta):
    """Business entity with validated fields"""

    @classmethod
    def field_names(cls):   
        for name in cls._field_names:
            yield name

Return an empty OrderedDict instance, where the class attributes will be stored.
Create a _field_names attribute in the class under construction.
This line is unchanged from the previous version, but attr_dict here is the
OrderedDict obtained by the interpreter when it called __prepare__ before
calling __init__. Therefore, this for loop will go over the attributes in the order
they were added.
Add the name of each Validated field found to _field_names.
The field_names class method simply yields the names of the fields in the order
they were added.
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With the simple additions made in Example 21-16, we are now able to iterate over the
Validated fields of any Entity subclass using the field_names class method.
Example 21-17 demonstrates this new feature.

Example 21-17. bulkfood_v8.py: doctest showing the use of field_names—no changes
are needed in the LineItem class; field_names is inherited from model.Entity
    >>> for name in LineItem.field_names():
    ...     print(name)
    ...
    description
    weight
    price

This wraps up our coverage of metaclasses. In the real world, metaclasses are used in
frameworks and libraries that help programmers perform, among other tasks:

• Attribute validation
• Applying decorators to many methods at once
• Object serialization or data conversion
• Object-relational mapping
• Object-based persistency
• Dynamic translation of class structures from other languages

We’ll now have a brief overview of methods defined in the Python data model for all
classes.

Classes as Objects
Every class has a number of attributes defined in the Python data model, documented
in “4.13. Special Attributes” of the “Built-in Types” chapter in the Library Reference.
Three of those attributes we’ve seen several times in the book already: __mro__,
__class__, and __name__. Other class attributes are:
cls.__bases__

The tuple of base classes of the class.

cls.__qualname__

A new attribute in Python 3.3 holding the qualified name of a class or function,
which is a dotted path from the global scope of the module to the class definition.
For example, in Example 21-6, the __qualname__ of the inner class ClassTwo is the
string 'ClassOne.ClassTwo', while its __name__ is just 'ClassTwo'. The specifi‐
cation for this attribute is PEP-3155 — Qualified name for classes and functions.
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cls.__subclasses__()

This method returns a list of the immediate subclasses of the class. The implemen‐
tation uses weak references to avoid circular references between the superclass and
its subclasses—which hold a strong reference to the superclasses in their __bases__
attribute. The method returns the list of subclasses that currently exist in memory.

cls.mro()

The interpreter calls this method when building a class to obtain the tuple of su‐
perclasses that is stored in the __mro__ attribute of the class. A metaclass can over‐
ride this method to customize the method resolution order of the class under con‐
struction.

None of the attributes mentioned in this section are listed by the
dir(…) function.

With this, our study of class metaprogramming ends. This is a vast topic and I only
scratched the surface. That’s why we have “Further Reading” sections in this book.

Chapter Summary
Class metaprogramming is about creating or customizing classes dynamically. Classes
in Python are first-class objects, so we started the chapter by showing how a class can
be created by a function invoking the type built-in metaclass.

In the next section, we went back to the LineItem class with descriptors from Chap‐
ter 20 to solve a lingering issue: how to generate names for the storage attributes that
reflected the names of the managed attributes (e.g., _Quantity#price instead of _Quan
tity#1). The solution was to use a class decorator, essentially a function that gets a just-
built class and has the opportunity to inspect it, change it, and even replace it with a
different class.

We then moved to a discussion of when different parts of the source code of a module
actually run. We saw that there is some overlap between the so-called “import time” and
“runtime,” but clearly a lot of code runs triggered by the import statement. Under‐
standing what runs when is crucial, and there are some subtle rules, so we used the
evaluation-time exercises to cover this topic.

The following subject was an introduction to metaclasses. We saw that all classes are
instances of type, directly or indirectly, so that is the “root metaclass” of the language.
A variation of the evaluation-time exercise was designed to show that a metaclass can
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customize a hierarchy of classes—in contrast with a class decorator, which affects a single
class and may have no impact on its descendants.

The first practical application of a metaclass was to solve the issue of the storage attribute
names in LineItem. The resulting code is a bit trickier than the class decorator solution,
but it can be encapsulated in a module so that the user merely subclasses an apparently
plain class (model.Entity) without being aware that it is an instance of a custom met‐
aclass (model.EntityMeta). The end result is reminiscent of the ORM APIs in Django
and SQLAlchemy, which use metaclasses in their implementations but don’t require the
user to know anything about them.

The second metaclass we implemented added a small feature to model.EntityMeta: a
__prepare__ method to provide an OrderedDict to serve as the mapping from names
to attributes. This preserves the order in which those attributes are bound in the body
of the class under construction, so that metaclass methods like __new__ and __init__
can use that information. In the example, we implemented a _field_names class at‐
tribute, which made possible an Entity.field_names() so users could retrieve the
Validated descriptors in the same order they appear in the source code.

The last section was a brief overview of attributes and methods available in all Python
classes.

Metaclasses are challenging, exciting, and—sometimes—abused by programmers try‐
ing to be too clever. To wrap up, let’s recall Alex Martelli’s final advice from his essay
“Waterfowl and ABCs” on page 314:

And, don’t define custom ABCs (or metaclasses) in production code… if you feel the
urge to do so, I’d bet it’s likely to be a case of “all problems look like a nail”-syndrome for
somebody who just got a shiny new hammer—you (and future maintainers of your code)
will be much happier sticking with straightforward and simple code, eschewing such
depths.

— Alex Martelli

Wise words from a man who is not only a master of Python metaprogramming but also
an accomplished software engineer working on some of the largest mission-critical
Python deployments in the world.

Further Reading
The essential references for this chapter in the Python documentation are “3.3.3. Cus‐
tomizing class creation” in the “Data Model” chapter of The Python Language Reference,
the type class documentation in the “Built-in Functions” page, and “4.13. Special At‐
tributes” of the “Built-in Types” chapter in the Library Reference. Also, in the Library
Reference, the types module documentation covers two functions that are new in
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6. Amazon.com catalog page for Putting Metaclasses to Work. You can still buy it used. I bought it and found
it a hard read, but I will probably go back to it later.

Python 3.3 and are designed to help with class metaprogramming: types.new_class(…)
and types.prepare_class(…).

Class decorators were formalized in PEP 3129 - Class Decorators, written by Collin
Winter, with the reference implementation authored by Jack Diederich. The PyCon 2009
talk “Class Decorators: Radically Simple” (video), also by Jack Diederich, is a quick
introduction to the feature.

Python in a Nutshell, 2E by Alex Martelli features outstanding coverage of metaclasses,
including a metaMetaBunch metaclass that aims to solve the same problem as our simple
record_factory from Example 21-2 but is much more sophisticated. Martelli does not
address class decorators because the feature appeared later than his book. Beazley and
Jones provide excellent examples of class decorators and metaclasses in their Python
Cookbook, 3E (O’Reilly). Michael Foord wrote an intriguing post titled “Meta-classes
Made Easy: Eliminating self with Metaclasses”. The subtitle says it all.

For metaclasses, the main references are PEP 3115 — Metaclasses in Python 3000, in
which the __prepare__ special method was introduced and Unifying types and classes
in Python 2.2, authored by Guido van Rossum. The text applies to Python 3 as well, and
it covers what were then called the “new-style” class semantics, including descriptors
and metaclasses. It’s a must-read. One of the references cited by Guido is Putting Met‐
aclasses to Work: a New Dimension in Object-Oriented Programming, by Ira R. Forman
and Scott H. Danforth (Addison-Wesley, 1998), a book to which he gave 5 stars on
Amazon.com, adding the following review:

This book contributed to the design for metaclasses in Python 2.2
Too bad this is out of print; I keep referring to it as the best tutorial I know for the difficult
subject of cooperative multiple inheritance, supported by Python via the super() func‐
tion.6.

For Python 3.5—in alpha as I write this—PEP 487 - Simpler customization of class
creation puts forward a new special method, __init_subclass__ that will allow a reg‐
ular class (i.e., not a metaclass) to customize the initialization of its subclasses. As with
class decorators, __init_subclass__ will make class metaprogramming more acces‐
sible and also make it that much harder to justify the deployment of the nuclear option
—metaclasses.

If you are into metaprogramming, you may wish Python had the ultimate metaprog‐
ramming feature: syntactic macros, as offered by Elixir and the Lisp family of languages.
Be careful what you wish for. I’ll just say one word: MacroPy.
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7. Brian Harvey and Matthew Wright, Simply Scheme (MIT Press, 1999), p. xvii. Full text available
at Berkeley.edu.

8. Machine Beauty by David Gelernter (Basic Books) is an intriguing short book about elegance and aesthetics
in works of engineering, from bridges to software.

Soapbox
I will start the last soapbox in the book with a long quote from Brian Harvey and Matthew
Wright, two computer science professors from the University of California (Berkeley
and Santa Barbara). In their book, Simply Scheme, Harvey and Wright wrote:

There are two schools of thought about teaching computer science. We might caricature
the two views this way:

1. The conservative view: Computer programs have become too large and complex
to encompass in a human mind. Therefore, the job of computer science education
is to teach people how to discipline their work in such a way that 500 mediocre
programmers can join together and produce a program that correctly meets its
specification.

2. The radical view: Computer programs have become too large and complex to
encompass in a human mind. Therefore, the job of computer science education is
to teach people how to expand their minds so that the programs can fit, by learning
to think in a vocabulary of larger, more powerful, more flexible ideas than the
obvious ones. Each unit of programming thought must have a big payoff in the
capabilities of the program.7

— Brian Harvey and Matthew Wright
 Preface to Simply Scheme

Harvey and Wright’s exaggerated descriptions are about teaching computer science, but
they also apply to programming language design. By now, you should have guessed that
I subscribe to the “radical” view, and I believe Python was designed in that spirit.

The property idea is a great step forward compared to the accessors-from-the-start
approach practically demanded by Java and supported by Java IDEs generating getters/
setters with a keyboard shortcut. The main advantage of properties is to let us start our
programs simply exposing attributes as public—in the spirit of KISS—knowing a public
attribute can become a property at any time without much pain. But the descriptor idea
goes way beyond that, providing a framework for abstracting away repetitive accessor
logic. That framework is so effective that essential Python constructs use it behind the
scenes.

Another powerful idea is functions as first-class objects, paving the way to higher-order
functions. Turns out the combination of descriptors and higher-order functions enable
the unification of functions and methods. A function’s __get__ produces a method
object on the fly by binding the instance to the self argument. This is elegant.8
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Finally, we have the idea of classes as first-class objects. It’s an outstanding feat of design
that a beginner-friendly language provides powerful abstractions such as class decora‐
tors and full-fledged, user-defined metaclasses. Best of all: the advanced features are
integrated in a way that does not complicate Python’s suitability for casual programming
(they actually help it, under the covers). The convenience and success of frameworks
such as Django and SQLAlchemy owes much to metaclasses, even if many users of these
tools aren’t aware of them. But they can always learn and create the next great library.

I haven’t yet found a language that manages to be easy for beginners, practical for pro‐
fessionals, and exciting for hackers in the way that Python is. Thanks, Guido van Rossum
and everybody else who makes it so.

682 | Chapter 21: Class Metaprogramming



Afterword

Python is a language for consenting adults.
— Alan Runyan

 Cofounder of Plone

Alan’s pithy definition expresses one of the best qualities of Python: it gets out of the
way and lets you do what you must. This also means it doesn’t give you tools to restrict
what others can do with your code and the objects it builds.

Of course, Python is not perfect. Among the top irritants to me is the inconsistent use
of CamelCase, snake_case and joinedwords in the standard library. But the language
definition and the standard library are only part of an ecosystem. The community of
users and contributors is the best part of the Python ecosystem.

Here is one example of the community at its best: one morning while writing about
asyncio I was frustrated because the API has many functions, dozens of which are
coroutines, and you have to call the coroutines with yield from but you can’t do that
with regular functions. This was documented in the asyncio pages, but sometimes you
had to read a few paragraphs to find out whether a particular function was a coroutine.
So I sent a message to python-tulip titled “Proposal: make coroutines stand out in the
asyncio docs”. Victor Stinner, an asyncio core developer, Andrew Svetlov, main author
of aiohttp, Ben Darnell, lead developer of Tornado, and Glyph Lefkowitz, inventor of
Twisted, joined the conversation. Darnell suggested a solution, Alexander Shorin ex‐
plained how to implement it in Sphinx, and Stinner added the necessary configuration
and markup. Less than 12 hours after I raised the issue, the entire asyncio documen‐
tation set online was updated with the coroutine tags you can see today.

That story did not happen in an exclusive club. Anybody can join the python-tulip list,
and I had posted only a few times when I wrote the proposal. The story illustrates a
community that is really open to new ideas and new members. Guido van Rossum hangs
out in python-tulip and can regularly be seen answering even simple questions.
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Another example of openness: the Python Software Foundation (PSF) has been working
to increase diversity in the Python community. Some encouraging results are already
in. The 2013–2014 PSF board saw the first women elected directors: Jessica McKellar
and Lynn Root. And in the 2015 PyCon North America in Montréal—chaired by Diana
Clarke—about 1/3 of the speakers were women. I am unaware of any other major IT
conference that has gone so far in the pursuit of gender equality.

If you are a Pythonista but you have not engaged with the community, I encourage you
to do so. Seek the Python Users Group (PUG) in your area. If there isn’t one, create it.
Python is everywhere, so you will not be alone. Travel to events if you can. Come to a
PythonBrasil conference—we’ve had international speakers regularly for many years
now. Meeting fellow Pythonistas in person beats any online interaction and is known
to bring real benefits besides all the knowledge sharing. Like real jobs and real friend‐
ships.

I know I could not have written this book without the help of many friends I made over
the years in the Python community.

My father Jairo Ramalho used to say “Só erra quem trabalha”—Portuguese for “Only
those who work make mistakes”—great advice to avoid being paralyzed by the fear of
making errors. I certainly made my share of mistakes while writing this book. The
reviewers, editors, and Early Release readers caught many of them. Within hours of the
first Early Release, a reader was reporting typos in the errata page for the book. Other
readers contributed more reports, and friends contacted me directly to offer suggestions
and corrections. The O’Reilly copyeditors will catch other errors during the production
process, which will start as soon as I manage to stop writing. I take responsibility and
apologize for any errors and suboptimal prose that remains.

I am very happy to bring this work to conclusion, mistakes and all, and I am very grateful
to everybody who helped along the way.

I hope to see you soon at some live event. Please come say hi if you see me around!

Further Reading
I will wrap up the book with references regarding what it its to be “Pythonic”—the main
question this book tried to address.

Brandon Rhodes is an awesome Python teacher, and his talk “A Python Æsthetic: Beauty
and Why I Python” is beautiful, starting with the use of Unicode U+00C6 (LATIN CAP
ITAL LETTER AE) in the title. Another awesome teacher, Raymond Hettinger, spoke of
beauty in Python at PyCon US 2013: “Transforming Code into Beautiful, Idiomatic
Python”.

The Evolution of Style Guides thread that Ian Lee started on Python-ideas is worth
reading. Lee is the maintainer of the pep8 package that checks Python source code for
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PEP 8 compliance. To check the code in this book, I used flake8, which wraps pep8,
pyflakes, and Ned Batchelder’s McCabe complexity plug-in.

Besides PEP 8, other influential style guides are the Google Python Style Guide and the
Pocoo style guide, from the team who brings us Flake, Sphinx, Jinja 2, and other great
Python libraries.

The Hitchhiker’s Guide to Python! is a collective work about writing Pythonic code. Its
most prolific contributor is Kenneth Reitz, a community hero thanks to his beautifully
Pythonic requests package. David Goodger presented a tutorial at PyCon US 2008
titled “Code Like a Pythonista: Idiomatic Python”. If printed, the tutorial notes are 30
pages long. Of course, the reStructuredText source is available and can be rendered to
HTML and S5 slides by docutils. After all, Goodger created both reStructuredText and
docutils—the foundations of Sphinx, Python’s excellent documentation system
(which, by the way, is also the official documentation system for MongoDB and many
other projects).

Martijn Faassen tackles the question head-on in “What is Pythonic?” In the python-
list, there is a thread with that same title. Martijn’s post is from 2005, and the thread
from 2003, but the Pythonic ideal hasn’t changed much—neither has the language, for
that matter. A great thread with “Pythonic” in the title is “Pythonic way to sum n-th list
element?”, from which I quoted extensively in “Soapbox” on page 302.

PEP 3099 — Things that will Not Change in Python 3000 explains why many things are
the way they are, even after the major overhaul that was Python 3. For a long time,
Python 3 was nicknamed Python 3000, but it arrived a few centuries sooner—to the
dismay of some. PEP 3099 was written by Georg Brandl, compiling many opinions
expressed by the BDFL, Guido van Rossum. The Python Essays page lists several texts
by Guido himself.
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APPENDIX A

Support Scripts

Here are full listings for some scripts that were too long to fit in the main text. Also
included are scripts used to generate some of the tables and data fixtures used in this
book.

These scripts are also available in the Fluent Python code repository, along with almost
every other code snippet that appears in the book.

Chapter 3: in Operator Performance Test
Example A-1 is the code I used to produce the timings in Table 3-6 using the timeit
module. The script mostly deals with setting up the haystack and needles samples and
with formatting output.

While coding Example A-1, I found something that really puts dict performance in
perspective. If the script is run in “verbose mode” (with the -v command-line option),
the timings I get are nearly twice those in Table 3-5. But note that, in this script, “verbose
mode” means only four calls to print while setting up the test, and one additional print
to show the number of needles found when each test finishes. No output happens within
the loop that does the actual search of the needles in the haystack, but these five print
calls take about as much time as searching for 1,000 needles.

Example A-1. container_perftest.py: run it with the name of a built-in collection type as
a command-line argument (e.g., container_perftest.py dict)
"""
Container ``in`` operator performance test
"""
import sys
import timeit

SETUP = '''
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import array
selected = array.array('d')
with open('selected.arr', 'rb') as fp:
    selected.fromfile(fp, {size})
if {container_type} is dict:
    haystack = dict.fromkeys(selected, 1)
else:
    haystack = {container_type}(selected)
if {verbose}:
    print(type(haystack), end='  ')
    print('haystack: %10d' % len(haystack), end='  ')
needles = array.array('d')
with open('not_selected.arr', 'rb') as fp:
    needles.fromfile(fp, 500)
needles.extend(selected[::{size}//500])
if {verbose}:
    print(' needles: %10d' % len(needles), end='  ')
'''

TEST = '''
found = 0
for n in needles:
    if n in haystack:
        found += 1
if {verbose}:
    print('  found: %10d' % found)
'''

def test(container_type, verbose):
    MAX_EXPONENT = 7
    for n in range(3, MAX_EXPONENT + 1):
        size = 10**n
        setup = SETUP.format(container_type=container_type,
                             size=size, verbose=verbose)
        test = TEST.format(verbose=verbose)
        tt = timeit.repeat(stmt=test, setup=setup, repeat=5, number=1)
        print('|{:{}d}|{:f}'.format(size, MAX_EXPONENT + 1, min(tt)))

if __name__=='__main__':
    if '-v' in sys.argv:
        sys.argv.remove('-v')
        verbose = True
    else:
        verbose = False
    if len(sys.argv) != 2:
        print('Usage: %s <container_type>' % sys.argv[0])
    else:
        test(sys.argv[1], verbose)

The script container_perftest_datagen.py (Example A-2) generates the data fixture for
the script in Example A-1.

688 | Appendix A: Support Scripts



Example A-2. container_perftest_datagen.py: generate files with arrays of unique float‐
ing point numbers for use in Example A-1
"""
Generate data for container performance test
"""

import random
import array

MAX_EXPONENT = 7
HAYSTACK_LEN = 10 ** MAX_EXPONENT
NEEDLES_LEN = 10 ** (MAX_EXPONENT - 1)
SAMPLE_LEN = HAYSTACK_LEN + NEEDLES_LEN // 2

needles = array.array('d')

sample = {1/random.random() for i in range(SAMPLE_LEN)}
print('initial sample: %d elements' % len(sample))

# complete sample, in case duplicate random numbers were discarded
while len(sample) < SAMPLE_LEN:
    sample.add(1/random.random())

print('complete sample: %d elements' % len(sample))

sample = array.array('d', sample)
random.shuffle(sample)

not_selected = sample[:NEEDLES_LEN // 2]
print('not selected: %d samples' % len(not_selected))
print('  writing not_selected.arr')
with open('not_selected.arr', 'wb') as fp:
    not_selected.tofile(fp)

selected = sample[NEEDLES_LEN // 2:]
print('selected: %d samples' % len(selected))
print('  writing selected.arr')
with open('selected.arr', 'wb') as fp:
    selected.tofile(fp)

Chapter 3: Compare the Bit Patterns of Hashes
Example A-3 is a simple script to visually show how different are the bit patterns for the
hashes of similiar floating-point numbers (e.g., 1.0001, 1.0002, etc.). Its output appears
in Example 3-16.

Example A-3. hashdiff.py: display the difference of bit paterns from hash values
import sys

MAX_BITS = len(format(sys.maxsize, 'b'))

Chapter 3: Compare the Bit Patterns of Hashes | 689



print('%s-bit Python build' % (MAX_BITS + 1))

def hash_diff(o1, o2):
    h1 = '{:>0{}b}'.format(hash(o1), MAX_BITS)
    h2 = '{:>0{}b}'.format(hash(o2), MAX_BITS)
    diff = ''.join('!' if b1 != b2 else ' ' for b1, b2 in zip(h1, h2))
    count = '!= {}'.format(diff.count('!'))
    width = max(len(repr(o1)), len(repr(o2)), 8)
    sep = '-' * (width * 2 + MAX_BITS)
    return '{!r:{width}} {}\n{:{width}} {} {}\n{!r:{width}} {}\n{}'.format(
                o1, h1, ' ' * width, diff, count, o2, h2, sep, width=width)

if __name__ == '__main__':
    print(hash_diff(1, 1.0))
    print(hash_diff(1.0, 1.0001))
    print(hash_diff(1.0001, 1.0002))
    print(hash_diff(1.0002, 1.0003))

Chapter 9: RAM Usage With and Without __slots__
The memtest.py script was used for a demostration in “Saving Space with the __slots__
Class Attribute” on page 264: Example 9-12.

The memtest.py script takes a module name in the command line and loads it. Assuming
the module defines a class named Vector, memtest.py creates a list with 10 million
instances, reporting the memory usage before and after the list is created.

Example A-4. memtest.py: create lots of Vector instances reporting memory usage
import importlib
import sys
import resource

NUM_VECTORS = 10**7

if len(sys.argv) == 2:
    module_name = sys.argv[1].replace('.py', '')
    module = importlib.import_module(module_name)
else:
    print('Usage: {} <vector-module-to-test>'.format())
    sys.exit(1)

fmt = 'Selected Vector2d type: {.__name__}.{.__name__}'
print(fmt.format(module, module.Vector2d))

mem_init = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
print('Creating {:,} Vector2d instances'.format(NUM_VECTORS))

vectors = [module.Vector2d(3.0, 4.0) for i in range(NUM_VECTORS)]

mem_final = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
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print('Initial RAM usage: {:14,}'.format(mem_init))
print('  Final RAM usage: {:14,}'.format(mem_final))

Chapter 14: isis2json.py Database Conversion Script
Example A-5 is the isis2json.py script discussed in “Case Study: Generators in a Database
Conversion Utility” on page 437 (Chapter 14). It uses generator functions to lazily con‐
vert CDS/ISIS databases to JSON for loading to CouchDB or MongoDB.

Note that this is a Python 2 script, designed to run on CPython or Jython, versions 2.5
to 2.7, but not on Python 3. Under CPython it can read only .iso files; with Jython it can
also read .mst files, using the Bruma library available on the fluentpython/isis2json
repository in GitHub. See usage documentation in that repository.

Example A-5. isis2json.py: dependencies and documentation available on GitHub
repository fluentpython/isis2json
# this script works with Python or Jython (versions >=2.5 and <3)

import sys
import argparse
from uuid import uuid4
import os

try:
    import json
except ImportError:
    if os.name == 'java':  # running Jython
        from com.xhaus.jyson import JysonCodec as json
    else:
        import simplejson as json

SKIP_INACTIVE = True
DEFAULT_QTY = 2**31
ISIS_MFN_KEY = 'mfn'
ISIS_ACTIVE_KEY = 'active'
SUBFIELD_DELIMITER = '^'
INPUT_ENCODING = 'cp1252'

def iter_iso_records(iso_file_name, isis_json_type):   
    from iso2709 import IsoFile
    from subfield import expand

    iso = IsoFile(iso_file_name)
    for record in iso:
        fields = {}
        for field in record.directory:
            field_key = str(int(field.tag))  # remove leading zeroes
            field_occurrences = fields.setdefault(field_key, [])
            content = field.value.decode(INPUT_ENCODING, 'replace')
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            if isis_json_type == 1:
                field_occurrences.append(content)
            elif isis_json_type == 2:
                field_occurrences.append(expand(content))
            elif isis_json_type == 3:
                field_occurrences.append(dict(expand(content)))
            else:
                raise NotImplementedError('ISIS-JSON type %s conversion '
                    'not yet implemented for .iso input' % isis_json_type)

        yield fields
    iso.close()

def iter_mst_records(master_file_name, isis_json_type):   
    try:
        from bruma.master import MasterFactory, Record
    except ImportError:
        print('IMPORT ERROR: Jython 2.5 and Bruma.jar '
              'are required to read .mst files')
        raise SystemExit
    mst = MasterFactory.getInstance(master_file_name).open()
    for record in mst:
        fields = {}
        if SKIP_INACTIVE:
            if record.getStatus() != Record.Status.ACTIVE:
                continue
        else:  # save status only there are non-active records
            fields[ISIS_ACTIVE_KEY] = (record.getStatus() ==
                                       Record.Status.ACTIVE)
        fields[ISIS_MFN_KEY] = record.getMfn()
        for field in record.getFields():
            field_key = str(field.getId())
            field_occurrences = fields.setdefault(field_key, [])
            if isis_json_type == 3:
                content = {}
                for subfield in field.getSubfields():
                    subfield_key = subfield.getId()
                    if subfield_key == '*':
                        content['_'] = subfield.getContent()
                    else:
                        subfield_occurrences = content.setdefault(subfield_key, [])
                        subfield_occurrences.append(subfield.getContent())
                field_occurrences.append(content)
            elif isis_json_type == 1:
                content = []
                for subfield in field.getSubfields():
                    subfield_key = subfield.getId()
                    if subfield_key == '*':
                        content.insert(0, subfield.getContent())
                    else:
                        content.append(SUBFIELD_DELIMITER + subfield_key +
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                                       subfield.getContent())
                field_occurrences.append(''.join(content))
            else:
                raise NotImplementedError('ISIS-JSON type %s conversion '
                    'not yet implemented for .mst input' % isis_json_type)
        yield fields
    mst.close()

def write_json(input_gen, file_name, output, qty, skip, id_tag,   
               gen_uuid, mongo, mfn, isis_json_type, prefix,
               constant):
    start = skip
    end = start + qty
    if id_tag:
        id_tag = str(id_tag)
        ids = set()
    else:
        id_tag = ''
    for i, record in enumerate(input_gen):
        if i >= end:
            break
        if not mongo:
            if i == 0:
                output.write('[')
            elif i > start:
                output.write(',')
        if start <= i < end:
            if id_tag:
                occurrences = record.get(id_tag, None)
                if occurrences is None:
                    msg = 'id tag #%s not found in record %s'
                    if ISIS_MFN_KEY in record:
                        msg = msg + (' (mfn=%s)' % record[ISIS_MFN_KEY])
                    raise KeyError(msg % (id_tag, i))
                if len(occurrences) > 1:
                    msg = 'multiple id tags #%s found in record %s'
                    if ISIS_MFN_KEY in record:
                        msg = msg + (' (mfn=%s)' % record[ISIS_MFN_KEY])
                    raise TypeError(msg % (id_tag, i))
                else:  # ok, we have one and only one id field
                    if isis_json_type == 1:
                        id = occurrences[0]
                    elif isis_json_type == 2:
                        id = occurrences[0][0][1]
                    elif isis_json_type == 3:
                        id = occurrences[0]['_']
                    if id in ids:
                        msg = 'duplicate id %s in tag #%s, record %s'
                        if ISIS_MFN_KEY in record:
                            msg = msg + (' (mfn=%s)' % record[ISIS_MFN_KEY])
                        raise TypeError(msg % (id, id_tag, i))
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                    record['_id'] = id
                    ids.add(id)
            elif gen_uuid:
                record['_id'] = unicode(uuid4())
            elif mfn:
                record['_id'] = record[ISIS_MFN_KEY]
            if prefix:
                # iterate over a fixed sequence of tags
                for tag in tuple(record):
                    if str(tag).isdigit():
                        record[prefix+tag] = record[tag]
                        del record[tag]  # this is why we iterate over a tuple
                        # with the tags, and not directly on the record dict
            if constant:
                constant_key, constant_value = constant.split(':')
                record[constant_key] = constant_value
            output.write(json.dumps(record).encode('utf-8'))
            output.write('\n')
    if not mongo:
        output.write(']\n')

def main():   
    # create the parser
    parser = argparse.ArgumentParser(
        description='Convert an ISIS .mst or .iso file to a JSON array')

    # add the arguments
    parser.add_argument(
        'file_name', metavar='INPUT.(mst|iso)',
        help='.mst or .iso file to read')
    parser.add_argument(
        '-o', '--out', type=argparse.FileType('w'), default=sys.stdout,
        metavar='OUTPUT.json',
        help='the file where the JSON output should be written'
             ' (default: write to stdout)')
    parser.add_argument(
        '-c', '--couch', action='store_true',
        help='output array within a "docs" item in a JSON document'
             ' for bulk insert to CouchDB via POST to db/_bulk_docs')
    parser.add_argument(
        '-m', '--mongo', action='store_true',
        help='output individual records as separate JSON dictionaries, one'
             ' per line for bulk insert to MongoDB via mongoimport utility')
    parser.add_argument(
        '-t', '--type', type=int, metavar='ISIS_JSON_TYPE', default=1,
        help='ISIS-JSON type, sets field structure: 1=string, 2=alist,'
             ' 3=dict (default=1)')
    parser.add_argument(
        '-q', '--qty', type=int, default=DEFAULT_QTY,
        help='maximum quantity of records to read (default=ALL)')
    parser.add_argument(
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        '-s', '--skip', type=int, default=0,
        help='records to skip from start of .mst (default=0)')
    parser.add_argument(
        '-i', '--id', type=int, metavar='TAG_NUMBER', default=0,
        help='generate an "_id" from the given unique TAG field number'
             ' for each record')
    parser.add_argument(
        '-u', '--uuid', action='store_true',
        help='generate an "_id" with a random UUID for each record')
    parser.add_argument(
        '-p', '--prefix', type=str, metavar='PREFIX', default='',
        help='concatenate prefix to every numeric field tag'
             ' (ex. 99 becomes "v99")')
    parser.add_argument(
        '-n', '--mfn', action='store_true',
        help='generate an "_id" from the MFN of each record'
             ' (available only for .mst input)')
    parser.add_argument(
        '-k', '--constant', type=str, metavar='TAG:VALUE', default='',
        help='Include a constant tag:value in every record (ex. -k type:AS)')

    '''
    # TODO: implement this to export large quantities of records to CouchDB
    parser.add_argument(
        '-r', '--repeat', type=int, default=1,
        help='repeat operation, saving multiple JSON files'
             ' (default=1, use -r 0 to repeat until end of input)')
    '''
    # parse the command line
    args = parser.parse_args()
    if args.file_name.lower().endswith('.mst'):
        input_gen_func = iter_mst_records   
    else:
        if args.mfn:
            print('UNSUPORTED: -n/--mfn option only available for .mst input.')
            raise SystemExit
        input_gen_func = iter_iso_records   
    input_gen = input_gen_func(args.file_name, args.type)   
    if args.couch:
        args.out.write('{ "docs" : ')
    write_json(input_gen, args.file_name, args.out, args.qty,   
               args.skip, args.id, args.uuid, args.mongo, args.mfn,
               args.type, args.prefix, args.constant)
    if args.couch:
        args.out.write('}\n')
    args.out.close()

if __name__ == '__main__':
    main()

iter_iso_records generator function reads .iso file, yields records.
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iter_mst_records generator function reads .mst file, yields records.
write_json iterates over input_gen generator and outputs the .json file.
Main function reads command-line arguments then…
…selects iter_iso_records or…
…iter_mst_records depending on input file extension.
A generator object is built from the selected generator function.
write_json is called with the generator as the first argument.

Chapter 16: Taxi Fleet Discrete Event Simulation
Example A-6 is the full listing for taxi_sim.py discussed in “The Taxi Fleet Simula‐
tion” on page 490.

Example A-6. taxi_sim.py: the taxi fleet simulator
"""
Taxi simulator
==============

Driving a taxi from the console::

    >>> from taxi_sim import taxi_process
    >>> taxi = taxi_process(ident=13, trips=2, start_time=0)
    >>> next(taxi)
    Event(time=0, proc=13, action='leave garage')
    >>> taxi.send(_.time + 7)
    Event(time=7, proc=13, action='pick up passenger')
    >>> taxi.send(_.time + 23)
    Event(time=30, proc=13, action='drop off passenger')
    >>> taxi.send(_.time + 5)
    Event(time=35, proc=13, action='pick up passenger')
    >>> taxi.send(_.time + 48)
    Event(time=83, proc=13, action='drop off passenger')
    >>> taxi.send(_.time + 1)
    Event(time=84, proc=13, action='going home')
    >>> taxi.send(_.time + 10)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    StopIteration

Sample run with two cars, random seed 10. This is a valid doctest::

    >>> main(num_taxis=2, seed=10)
    taxi: 0  Event(time=0, proc=0, action='leave garage')
    taxi: 0  Event(time=5, proc=0, action='pick up passenger')
    taxi: 1     Event(time=5, proc=1, action='leave garage')
    taxi: 1     Event(time=10, proc=1, action='pick up passenger')
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    taxi: 1     Event(time=15, proc=1, action='drop off passenger')
    taxi: 0  Event(time=17, proc=0, action='drop off passenger')
    taxi: 1     Event(time=24, proc=1, action='pick up passenger')
    taxi: 0  Event(time=26, proc=0, action='pick up passenger')
    taxi: 0  Event(time=30, proc=0, action='drop off passenger')
    taxi: 0  Event(time=34, proc=0, action='going home')
    taxi: 1     Event(time=46, proc=1, action='drop off passenger')
    taxi: 1     Event(time=48, proc=1, action='pick up passenger')
    taxi: 1     Event(time=110, proc=1, action='drop off passenger')
    taxi: 1     Event(time=139, proc=1, action='pick up passenger')
    taxi: 1     Event(time=140, proc=1, action='drop off passenger')
    taxi: 1     Event(time=150, proc=1, action='going home')
    *** end of events ***

See longer sample run at the end of this module.

"""

import random
import collections
import queue
import argparse
import time

DEFAULT_NUMBER_OF_TAXIS = 3
DEFAULT_END_TIME = 180
SEARCH_DURATION = 5
TRIP_DURATION = 20
DEPARTURE_INTERVAL = 5

Event = collections.namedtuple('Event', 'time proc action')

# BEGIN TAXI_PROCESS
def taxi_process(ident, trips, start_time=0):
    """Yield to simulator issuing event at each state change"""
    time = yield Event(start_time, ident, 'leave garage')
    for i in range(trips):
        time = yield Event(time, ident, 'pick up passenger')
        time = yield Event(time, ident, 'drop off passenger')

    yield Event(time, ident, 'going home')
    # end of taxi process
# END TAXI_PROCESS

# BEGIN TAXI_SIMULATOR
class Simulator:

    def __init__(self, procs_map):
        self.events = queue.PriorityQueue()
        self.procs = dict(procs_map)
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    def run(self, end_time):
        """Schedule and display events until time is up"""
        # schedule the first event for each cab
        for _, proc in sorted(self.procs.items()):
            first_event = next(proc)
            self.events.put(first_event)

        # main loop of the simulation
        sim_time = 0
        while sim_time < end_time:
            if self.events.empty():
                print('*** end of events ***')
                break

            current_event = self.events.get()
            sim_time, proc_id, previous_action = current_event
            print('taxi:', proc_id, proc_id * '   ', current_event)
            active_proc = self.procs[proc_id]
            next_time = sim_time + compute_duration(previous_action)
            try:
                next_event = active_proc.send(next_time)
            except StopIteration:
                del self.procs[proc_id]
            else:
                self.events.put(next_event)
        else:
            msg = '*** end of simulation time: {} events pending ***'
            print(msg.format(self.events.qsize()))
# END TAXI_SIMULATOR

def compute_duration(previous_action):
    """Compute action duration using exponential distribution"""
    if previous_action in ['leave garage', 'drop off passenger']:
        # new state is prowling
        interval = SEARCH_DURATION
    elif previous_action == 'pick up passenger':
        # new state is trip
        interval = TRIP_DURATION
    elif previous_action == 'going home':
        interval = 1
    else:
        raise ValueError('Unknown previous_action: %s' % previous_action)
    return int(random.expovariate(1/interval)) + 1

def main(end_time=DEFAULT_END_TIME, num_taxis=DEFAULT_NUMBER_OF_TAXIS,
         seed=None):
    """Initialize random generator, build procs and run simulation"""
    if seed is not None:
        random.seed(seed)  # get reproducible results
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    taxis = {i: taxi_process(i, (i+1)*2, i*DEPARTURE_INTERVAL)
             for i in range(num_taxis)}
    sim = Simulator(taxis)
    sim.run(end_time)

if __name__ == '__main__':

    parser = argparse.ArgumentParser(
                        description='Taxi fleet simulator.')
    parser.add_argument('-e', '--end-time', type=int,
                        default=DEFAULT_END_TIME,
                        help='simulation end time; default = %s'
                        % DEFAULT_END_TIME)
    parser.add_argument('-t', '--taxis', type=int,
                        default=DEFAULT_NUMBER_OF_TAXIS,
                        help='number of taxis running; default = %s'
                        % DEFAULT_NUMBER_OF_TAXIS)
    parser.add_argument('-s', '--seed', type=int, default=None,
                        help='random generator seed (for testing)')

    args = parser.parse_args()
    main(args.end_time, args.taxis, args.seed)

"""

Sample run from the command line, seed=3, maximum elapsed time=120::

# BEGIN TAXI_SAMPLE_RUN
$ python3 taxi_sim.py -s 3 -e 120
taxi: 0  Event(time=0, proc=0, action='leave garage')
taxi: 0  Event(time=2, proc=0, action='pick up passenger')
taxi: 1     Event(time=5, proc=1, action='leave garage')
taxi: 1     Event(time=8, proc=1, action='pick up passenger')
taxi: 2        Event(time=10, proc=2, action='leave garage')
taxi: 2        Event(time=15, proc=2, action='pick up passenger')
taxi: 2        Event(time=17, proc=2, action='drop off passenger')
taxi: 0  Event(time=18, proc=0, action='drop off passenger')
taxi: 2        Event(time=18, proc=2, action='pick up passenger')
taxi: 2        Event(time=25, proc=2, action='drop off passenger')
taxi: 1     Event(time=27, proc=1, action='drop off passenger')
taxi: 2        Event(time=27, proc=2, action='pick up passenger')
taxi: 0  Event(time=28, proc=0, action='pick up passenger')
taxi: 2        Event(time=40, proc=2, action='drop off passenger')
taxi: 2        Event(time=44, proc=2, action='pick up passenger')
taxi: 1     Event(time=55, proc=1, action='pick up passenger')
taxi: 1     Event(time=59, proc=1, action='drop off passenger')
taxi: 0  Event(time=65, proc=0, action='drop off passenger')
taxi: 1     Event(time=65, proc=1, action='pick up passenger')
taxi: 2        Event(time=65, proc=2, action='drop off passenger')
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taxi: 2        Event(time=72, proc=2, action='pick up passenger')
taxi: 0  Event(time=76, proc=0, action='going home')
taxi: 1     Event(time=80, proc=1, action='drop off passenger')
taxi: 1     Event(time=88, proc=1, action='pick up passenger')
taxi: 2        Event(time=95, proc=2, action='drop off passenger')
taxi: 2        Event(time=97, proc=2, action='pick up passenger')
taxi: 2        Event(time=98, proc=2, action='drop off passenger')
taxi: 1     Event(time=106, proc=1, action='drop off passenger')
taxi: 2        Event(time=109, proc=2, action='going home')
taxi: 1     Event(time=110, proc=1, action='going home')
*** end of events ***
# END TAXI_SAMPLE_RUN

"""

Chapter 17: Cryptographic Examples
These scripts were used to show the use of futures.ProcessPoolExecutor to run CPU-
intensive tasks.

Example A-7 encrypts and decrypts random byte arrays with the RC4 algorithm. It
depends on the arcfour.py module (Example A-8) to run.

Example A-7. arcfour_futures.py: futures.ProcessPoolExecutor example
import sys
import time
from concurrent import futures
from random import randrange
from arcfour import arcfour

JOBS = 12
SIZE = 2**18

KEY = b"'Twas brillig, and the slithy toves\nDid gyre"
STATUS = '{} workers, elapsed time: {:.2f}s'

def arcfour_test(size, key):
    in_text = bytearray(randrange(256) for i in range(size))
    cypher_text = arcfour(key, in_text)
    out_text = arcfour(key, cypher_text)
    assert in_text == out_text, 'Failed arcfour_test'
    return size

def main(workers=None):
    if workers:
        workers = int(workers)
    t0 = time.time()

    with futures.ProcessPoolExecutor(workers) as executor:
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        actual_workers = executor._max_workers
        to_do = []
        for i in range(JOBS, 0, -1):
            size = SIZE + int(SIZE / JOBS * (i - JOBS/2))
            job = executor.submit(arcfour_test, size, KEY)
            to_do.append(job)

        for future in futures.as_completed(to_do):
            res = future.result()
            print('{:.1f} KB'.format(res/2**10))

    print(STATUS.format(actual_workers, time.time() - t0))

if __name__ == '__main__':
    if len(sys.argv) == 2:
        workers = int(sys.argv[1])
    else:
        workers = None
    main(workers)

Example A-8 implements the RC4 encryption algorithm in pure Python.

Example A-8. arcfour.py: RC4 compatible algorithm
"""RC4 compatible algorithm"""

def arcfour(key, in_bytes, loops=20):

    kbox = bytearray(256)  # create key box
    for i, car in enumerate(key):  # copy key and vector
        kbox[i] = car
    j = len(key)
    for i in range(j, 256):  # repeat until full
        kbox[i] = kbox[i-j]

    # [1] initialize sbox
    sbox = bytearray(range(256))

    # repeat sbox mixing loop, as recommened in CipherSaber-2
    # http://ciphersaber.gurus.com/faq.html#cs2
    j = 0
    for k in range(loops):
        for i in range(256):
            j = (j + sbox[i] + kbox[i]) % 256
            sbox[i], sbox[j] = sbox[j], sbox[i]

    # main loop
    i = 0
    j = 0
    out_bytes = bytearray()

    for car in in_bytes:
        i = (i + 1) % 256
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        # [2] shuffle sbox
        j = (j + sbox[i]) % 256
        sbox[i], sbox[j] = sbox[j], sbox[i]
        # [3] compute t
        t = (sbox[i] + sbox[j]) % 256
        k = sbox[t]
        car = car ^ k
        out_bytes.append(car)

    return out_bytes

def test():
    from time import time
    clear = bytearray(b'1234567890' * 100000)
    t0 = time()
    cipher = arcfour(b'key', clear)
    print('elapsed time: %.2fs' % (time() - t0))
    result = arcfour(b'key', cipher)
    assert result == clear, '%r != %r' % (result, clear)
    print('elapsed time: %.2fs' % (time() - t0))
    print('OK')

if __name__ == '__main__':
    test()

Example A-9 applies the SHA-256 hash algorithm to random byte arrays. It uses hash
lib from the standard library, which in turn uses the OpenSSL library written in C.

Example A-9. sha_futures.py: futures.ProcessPoolExecutor example
import sys
import time
import hashlib
from concurrent import futures
from random import randrange

JOBS = 12
SIZE = 2**20
STATUS = '{} workers, elapsed time: {:.2f}s'

def sha(size):
    data = bytearray(randrange(256) for i in range(size))
    algo = hashlib.new('sha256')
    algo.update(data)
    return algo.hexdigest()

def main(workers=None):
    if workers:
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        workers = int(workers)
    t0 = time.time()

    with futures.ProcessPoolExecutor(workers) as executor:
        actual_workers = executor._max_workers
        to_do = (executor.submit(sha, SIZE) for i in range(JOBS))
        for future in futures.as_completed(to_do):
            res = future.result()
            print(res)

    print(STATUS.format(actual_workers, time.time() - t0))

if __name__ == '__main__':
    if len(sys.argv) == 2:
        workers = int(sys.argv[1])
    else:
        workers = None
    main(workers)

Chapter 17: flags2 HTTP Client Examples
All flags2 examples from “Downloads with Progress Display and Error Handling” on
page 520 use functions from the flags2_common.py module (Example A-10).

Example A-10. flags2_common.py
"""Utilities for second set of flag examples.
"""

import os
import time
import sys
import string
import argparse
from collections import namedtuple
from enum import Enum

Result = namedtuple('Result', 'status data')

HTTPStatus = Enum('Status', 'ok not_found error')

POP20_CC = ('CN IN US ID BR PK NG BD RU JP '
            'MX PH VN ET EG DE IR TR CD FR').split()

DEFAULT_CONCUR_REQ = 1
MAX_CONCUR_REQ = 1

SERVERS = {
    'REMOTE': 'http://flupy.org/data/flags',
    'LOCAL':  'http://localhost:8001/flags',
    'DELAY':  'http://localhost:8002/flags',
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    'ERROR':  'http://localhost:8003/flags',
}
DEFAULT_SERVER = 'LOCAL'

DEST_DIR = 'downloads/'
COUNTRY_CODES_FILE = 'country_codes.txt'

def save_flag(img, filename):
    path = os.path.join(DEST_DIR, filename)
    with open(path, 'wb') as fp:
        fp.write(img)

def initial_report(cc_list, actual_req, server_label):
    if len(cc_list) <= 10:
        cc_msg = ', '.join(cc_list)
    else:
        cc_msg = 'from {} to {}'.format(cc_list[0], cc_list[-1])
    print('{} site: {}'.format(server_label, SERVERS[server_label]))
    msg = 'Searching for {} flag{}: {}'
    plural = 's' if len(cc_list) != 1 else ''
    print(msg.format(len(cc_list), plural, cc_msg))
    plural = 's' if actual_req != 1 else ''
    msg = '{} concurrent connection{} will be used.'
    print(msg.format(actual_req, plural))

def final_report(cc_list, counter, start_time):
    elapsed = time.time() - start_time
    print('-' * 20)
    msg = '{} flag{} downloaded.'
    plural = 's' if counter[HTTPStatus.ok] != 1 else ''
    print(msg.format(counter[HTTPStatus.ok], plural))
    if counter[HTTPStatus.not_found]:
        print(counter[HTTPStatus.not_found], 'not found.')
    if counter[HTTPStatus.error]:
        plural = 's' if counter[HTTPStatus.error] != 1 else ''
        print('{} error{}.'.format(counter[HTTPStatus.error], plural))
    print('Elapsed time: {:.2f}s'.format(elapsed))

def expand_cc_args(every_cc, all_cc, cc_args, limit):
    codes = set()
    A_Z = string.ascii_uppercase
    if every_cc:
        codes.update(a+b for a in A_Z for b in A_Z)
    elif all_cc:
        with open(COUNTRY_CODES_FILE) as fp:
            text = fp.read()
        codes.update(text.split())
    else:
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        for cc in (c.upper() for c in cc_args):
            if len(cc) == 1 and cc in A_Z:
                codes.update(cc+c for c in A_Z)
            elif len(cc) == 2 and all(c in A_Z for c in cc):
                codes.add(cc)
            else:
                msg = 'each CC argument must be A to Z or AA to ZZ.'
                raise ValueError('*** Usage error: '+msg)
    return sorted(codes)[:limit]

def process_args(default_concur_req):
    server_options = ', '.join(sorted(SERVERS))
    parser = argparse.ArgumentParser(
                description='Download flags for country codes. '
                'Default: top 20 countries by population.')
    parser.add_argument('cc', metavar='CC', nargs='*',
                help='country code or 1st letter (eg. B for BA...BZ)')
    parser.add_argument('-a', '--all', action='store_true',
                help='get all available flags (AD to ZW)')
    parser.add_argument('-e', '--every', action='store_true',
                help='get flags for every possible code (AA...ZZ)')
    parser.add_argument('-l', '--limit', metavar='N', type=int,
                help='limit to N first codes', default=sys.maxsize)
    parser.add_argument('-m', '--max_req', metavar='CONCURRENT', type=int,
                default=default_concur_req,
                help='maximum concurrent requests (default={})'
                      .format(default_concur_req))
    parser.add_argument('-s', '--server', metavar='LABEL',
                default=DEFAULT_SERVER,
                help='Server to hit; one of {} (default={})'
                      .format(server_options, DEFAULT_SERVER))
    parser.add_argument('-v', '--verbose', action='store_true',
                help='output detailed progress info')
    args = parser.parse_args()
    if args.max_req < 1:
        print('*** Usage error: --max_req CONCURRENT must be >= 1')
        parser.print_usage()
        sys.exit(1)
    if args.limit < 1:
        print('*** Usage error: --limit N must be >= 1')
        parser.print_usage()
        sys.exit(1)
    args.server = args.server.upper()
    if args.server not in SERVERS:
        print('*** Usage error: --server LABEL must be one of',
              server_options)
        parser.print_usage()
        sys.exit(1)
    try:
        cc_list = expand_cc_args(args.every, args.all, args.cc, args.limit)
    except ValueError as exc:
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        print(exc.args[0])
        parser.print_usage()
        sys.exit(1)

    if not cc_list:
        cc_list = sorted(POP20_CC)
    return args, cc_list

def main(download_many, default_concur_req, max_concur_req):
    args, cc_list = process_args(default_concur_req)
    actual_req = min(args.max_req, max_concur_req, len(cc_list))
    initial_report(cc_list, actual_req, args.server)
    base_url = SERVERS[args.server]
    t0 = time.time()
    counter = download_many(cc_list, base_url, args.verbose, actual_req)
    assert sum(counter.values()) == len(cc_list), \
        'some downloads are unaccounted for'
    final_report(cc_list, counter, t0)

The flags2_sequential.py script (Example A-11) is the baseline for comparison with the
concurrent implementations. flags2_threadpool.py (Example 17-14) also uses the
get_flag and download_one functions from flags2_sequential.py.

Example A-11. flags2_sequential.py
"""Download flags of countries (with error handling).

Sequential version

Sample run::

    $ python3 flags2_sequential.py -s DELAY b
    DELAY site: http://localhost:8002/flags
    Searching for 26 flags: from BA to BZ
    1 concurrent connection will be used.
    --------------------
    17 flags downloaded.
    9 not found.
    Elapsed time: 13.36s

"""

import collections

import requests
import tqdm

from flags2_common import main, save_flag, HTTPStatus, Result

DEFAULT_CONCUR_REQ = 1

706 | Appendix A: Support Scripts



MAX_CONCUR_REQ = 1

# BEGIN FLAGS2_BASIC_HTTP_FUNCTIONS
def get_flag(base_url, cc):
    url = '{}/{cc}/{cc}.gif'.format(base_url, cc=cc.lower())
    resp = requests.get(url)
    if resp.status_code != 200:
        resp.raise_for_status()
    return resp.content

def download_one(cc, base_url, verbose=False):
    try:
        image = get_flag(base_url, cc)
    except requests.exceptions.HTTPError as exc:
        res = exc.response
        if res.status_code == 404:
            status = HTTPStatus.not_found
            msg = 'not found'
        else:
            raise
    else:
        save_flag(image, cc.lower() + '.gif')
        status = HTTPStatus.ok
        msg = 'OK'

    if verbose:
        print(cc, msg)

    return Result(status, cc)
# END FLAGS2_BASIC_HTTP_FUNCTIONS

# BEGIN FLAGS2_DOWNLOAD_MANY_SEQUENTIAL
def download_many(cc_list, base_url, verbose, max_req):
    counter = collections.Counter()
    cc_iter = sorted(cc_list)
    if not verbose:
        cc_iter = tqdm.tqdm(cc_iter)
    for cc in cc_iter:
        try:
            res = download_one(cc, base_url, verbose)
        except requests.exceptions.HTTPError as exc:
            error_msg = 'HTTP error {res.status_code} - {res.reason}'
            error_msg = error_msg.format(res=exc.response)
        except requests.exceptions.ConnectionError as exc:
            error_msg = 'Connection error'
        else:
            error_msg = ''
            status = res.status

        if error_msg:
            status = HTTPStatus.error
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        counter[status] += 1
        if verbose and error_msg:
            print('*** Error for {}: {}'.format(cc, error_msg))

    return counter
# END FLAGS2_DOWNLOAD_MANY_SEQUENTIAL

if __name__ == '__main__':
    main(download_many, DEFAULT_CONCUR_REQ, MAX_CONCUR_REQ)

Chapter 19: OSCON Schedule Scripts and Tests
Example A-12 is the test script for the schedule1.py module (Example 19-9). It uses the
py.test library and test runner.

Example A-12. test_schedule1.py
import shelve
import pytest

import schedule1 as schedule

@pytest.yield_fixture
def db():
    with shelve.open(schedule.DB_NAME) as the_db:
        if schedule.CONFERENCE not in the_db:
            schedule.load_db(the_db)
        yield the_db

def test_record_class():
    rec = schedule.Record(spam=99, eggs=12)
    assert rec.spam == 99
    assert rec.eggs == 12

def test_conference_record(db):
    assert schedule.CONFERENCE in db

def test_speaker_record(db):
    speaker = db['speaker.3471']
    assert speaker.name == 'Anna Martelli Ravenscroft'

def test_event_record(db):
    event = db['event.33950']
    assert event.name == 'There *Will* Be Bugs'

def test_event_venue(db):
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    event = db['event.33950']
    assert event.venue_serial == 1449

Example A-13 is the full listing of the schedule2.py example presented in “Linked Record
Retrieval with Properties” on page 598 in four parts.

Example A-13. schedule2.py
"""
schedule2.py: traversing OSCON schedule data

    >>> import shelve
    >>> db = shelve.open(DB_NAME)
    >>> if CONFERENCE not in db: load_db(db)

# BEGIN SCHEDULE2_DEMO

    >>> DbRecord.set_db(db)
    >>> event = DbRecord.fetch('event.33950')
    >>> event
    <Event 'There *Will* Be Bugs'>
    >>> event.venue
    <DbRecord serial='venue.1449'>
    >>> event.venue.name
    'Portland 251'
    >>> for spkr in event.speakers:
    ...     print('{0.serial}: {0.name}'.format(spkr))
    ...
    speaker.3471: Anna Martelli Ravenscroft
    speaker.5199: Alex Martelli

# END SCHEDULE2_DEMO

    >>> db.close()

"""

# BEGIN SCHEDULE2_RECORD
import warnings
import inspect

import osconfeed

DB_NAME = 'data/schedule2_db'
CONFERENCE = 'conference.115'

class Record:
    def __init__(self, **kwargs):
        self.__dict__.update(kwargs)

    def __eq__(self, other):

Chapter 19: OSCON Schedule Scripts and Tests | 709



        if isinstance(other, Record):
            return self.__dict__ == other.__dict__
        else:
            return NotImplemented
# END SCHEDULE2_RECORD

# BEGIN SCHEDULE2_DBRECORD
class MissingDatabaseError(RuntimeError):
    """Raised when a database is required but was not set."""

class DbRecord(Record):

    __db = None

    @staticmethod
    def set_db(db):
        DbRecord.__db = db

    @staticmethod
    def get_db():
        return DbRecord.__db

    @classmethod
    def fetch(cls, ident):
        db = cls.get_db()
        try:
            return db[ident]
        except TypeError:
            if db is None:
                msg = "database not set; call '{}.set_db(my_db)'"
                raise MissingDatabaseError(msg.format(cls.__name__))
            else:  # 
                raise

    def __repr__(self):
        if hasattr(self, 'serial'):
            cls_name = self.__class__.__name__
            return '<{} serial={!r}>'.format(cls_name, self.serial)
        else:
            return super().__repr__()
# END SCHEDULE2_DBRECORD

# BEGIN SCHEDULE2_EVENT
class Event(DbRecord):

    @property
    def venue(self):
        key = 'venue.{}'.format(self.venue_serial)
        return self.__class__.fetch(key)
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    @property
    def speakers(self):
        if not hasattr(self, '_speaker_objs'):
            spkr_serials = self.__dict__['speakers']
            fetch = self.__class__.fetch
            self._speaker_objs = [fetch('speaker.{}'.format(key))
                                  for key in spkr_serials]
        return self._speaker_objs

    def __repr__(self):
        if hasattr(self, 'name'):
            cls_name = self.__class__.__name__
            return '<{} {!r}>'.format(cls_name, self.name)
        else:
            return super().__repr__()
# END SCHEDULE2_EVENT

# BEGIN SCHEDULE2_LOAD
def load_db(db):
    raw_data = osconfeed.load()
    warnings.warn('loading ' + DB_NAME)
    for collection, rec_list in raw_data['Schedule'].items():
        record_type = collection[:-1]
        cls_name = record_type.capitalize()
        cls = globals().get(cls_name, DbRecord)
        if inspect.isclass(cls) and issubclass(cls, DbRecord):
            factory = cls
        else:
            factory = DbRecord
        for record in rec_list:
            key = '{}.{}'.format(record_type, record['serial'])
            record['serial'] = key
            db[key] = factory(**record)
# END SCHEDULE2_LOAD

Example A-14 was used to test Example A-13 with py.test.

Example A-14. test_schedule2.py
import shelve
import pytest

import schedule2 as schedule

@pytest.yield_fixture
def db():
    with shelve.open(schedule.DB_NAME) as the_db:
        if schedule.CONFERENCE not in the_db:
            schedule.load_db(the_db)
        yield the_db
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def test_record_attr_access():
    rec = schedule.Record(spam=99, eggs=12)
    assert rec.spam == 99
    assert rec.eggs == 12

def test_record_repr():
    rec = schedule.DbRecord(spam=99, eggs=12)
    assert 'DbRecord object at 0x' in repr(rec)
    rec2 = schedule.DbRecord(serial=13)
    assert repr(rec2) == "<DbRecord serial=13>"

def test_conference_record(db):
    assert schedule.CONFERENCE in db

def test_speaker_record(db):
    speaker = db['speaker.3471']
    assert speaker.name == 'Anna Martelli Ravenscroft'

def test_missing_db_exception():
    with pytest.raises(schedule.MissingDatabaseError):
        schedule.DbRecord.fetch('venue.1585')

def test_dbrecord(db):
    schedule.DbRecord.set_db(db)
    venue = schedule.DbRecord.fetch('venue.1585')
    assert venue.name == 'Exhibit Hall B'

def test_event_record(db):
    event = db['event.33950']
    assert repr(event) == "<Event 'There *Will* Be Bugs'>"

def test_event_venue(db):
    schedule.Event.set_db(db)
    event = db['event.33950']
    assert event.venue_serial == 1449
    assert event.venue == db['venue.1449']
    assert event.venue.name == 'Portland 251'

def test_event_speakers(db):
    schedule.Event.set_db(db)
    event = db['event.33950']
    assert len(event.speakers) == 2
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    anna_and_alex = [db['speaker.3471'], db['speaker.5199']]
    assert event.speakers == anna_and_alex

def test_event_no_speakers(db):
    schedule.Event.set_db(db)
    event = db['event.36848']
    assert len(event.speakers) == 0
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Python Jargon

Many terms here are not exclusive to Python, of course, but particularly in the defini‐
tions you may find meanings that are specific to the Python community.

Also see the official Python glossary.
ABC (programming language)

A programming language created by Leo
Geurts, Lambert Meertens, and Steven
Pemberton. Guido van Rossum, who de‐
veloped Python, worked as a programmer
implementing the ABC environment in the
1980s. Block structuring by indentation,
built-in tuples and dictionaries, tuple un‐
packing, the semantics of the for loop, and
uniform handling of all sequence types are
some of the distinctive characteristics of
Python that came from ABC.

Abstract base class (ABC)
A class that cannot be instantiated, only
subclassed. ABCs are how interfaces are
formalized in Python. Instead of inheriting
from an ABC, a class may also declare that
it fulfills the interface by registering with
the ABC to become a virtual subclass.

accessor
A method implemented to provide access
to a single data attribute. Some authors use
acessor as a generic term encompassing get‐
ter and setter methods, others use it to refer
only to getters, referring to setters as mu‐
tators.

aliasing
Assigning two or more names to the same
object. For example, in a = []; b = a the
variables a and b are aliases for the same list
object. Aliasing happens naturally all the
time in any language where variables store
references to objects. To avoid confusion,
just forget the idea that variables are boxes
that hold objects (an object can’t be in two
boxes at the same time). It’s better to think
of them as labels attached to objects (an ob‐
ject can have more than one label).

argument
An expression passed to a function when it
is called. In Pythonic parlance, argument
and parameter are almost always syno‐
nyms. See parameter for more about the
distinction and usage of these terms.

attribute
Methods and data attributes (i.e., “fields” in
Java terms) are all known as attributes in
Python. A method is just an attribute that
happens to be a callable object (usually a
function, but not necessarily).
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BDFL
Benevolent Dictator For Life, alias for Gui‐
do van Rossum, creator of the Python lan‐
guage.

binary sequence
Generic term for sequence types with byte
elements. The built-in binary sequence
types are byte, bytearray, and memory
view.

BOM
Byte Order Mark, a sequence of bytes that
may be present at the start of a UTF-16 en‐
coded file. A BOM is the character U+FEFF
(ZERO WIDTH NO-BREAK SPACE) encoded to
produce either b'\xfe\xff' on a big-
endian CPU, or b'\xff\xfe' on a little-
endian one. Because there is no U+FFFE
characer in Unicode, the presence of these
bytes unambiguously reveals the byte or‐
dering used in the encoding. Although re‐
dundant, a BOM encoded as b'\xef\xbb
\xbf' may be found in UTF-8 files.

bound method
A method that is accessed through an in‐
stance becomes bound to that instance. Any
method is actually a descriptor and when
accessed, it returns itself wrapped in an ob‐
ject that binds the method to the instance.
That object is the bound method. It can be
invoked without passing the value of self.
For example, given the assignment my_meth
od = my_obj.method, the bound method
can later be called as my_method(). Contrast
with unbound method.

built-in function (BIF)
A function bundled with the Python inter‐
preter, coded in the underlying implemen‐
tation language (i.e., C for CPython; Java for
Jython, and so on). The term often refers
only to the functions that don’t need to be
imported, documented in Chapter 2,
“Built-in Functions,” of The Python Stan‐
dard Library Reference. But built-in mod‐
ules like sys, math, re, etc. also contain
built-in functions.

byte string
An unfortunate name still used to refer to
bytes or bytearray in Python 3. In Python
2, the str type was really a byte string, and
the term made sense to distinguish str
from unicode strings. In Python 3, it makes
no sense to insist on this term, and I tried
to use byte sequence whenever I needed to
talk in general about…byte sequences.

bytes-like object
A generic sequence of bytes. The most com‐
mon bytes-like types are bytes, bytear
ray, and memoryview but other objects sup‐
porting the low-level CPython buffer pro‐
tocol also qualify, if their elements are single
bytes.

callable object
An object that can be invoked with the call
operator (), to return a result or to perform
some action. There are seven flavors of call‐
able objects in Python: user-defined func‐
tions, built-in functions, built-in methods,
instance methods, generator functions,
classes, and instances of classes that imple‐
ment the __call__ special method.

CamelCase
The convention of writing identifiers by
joining words with uppercased initials (e.g.,
ConnectionRefusedError). PEP-8 recom‐
mends class names should be written in
CamelCase, but the advice is not followed
by the Python standard library. See
snake_case.

Cheese Shop
Original name of the Python Package In‐
dex (PyPI), after the Monty Python skit
about a cheese shop where nothing is avail‐
able. As of this writing, the alias https://
cheeseshop.python.org still works. See PyPI.

class
A program construct defining a new type,
with data attributes and methods specifying
possible operations on them. See type.

code point
An integer in the range 0 to 0x10FFFF used
to identify an entry in the Unicode charac‐

BDFL
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ter database. As of Unicode 7.0, less than 3%
of all code points are assigned to characters.
In the Python documentation, the term
may be spelled as one or two words. For ex‐
ample, in Chapter 2, “Built-in Functions,”
of the Python Library Reference, the chr
function is said to take an integer “code‐
point,” while its inverse, ord, is described as
returning a “Unicode code point.”

code smell
A coding pattern that suggests there may be
something wrong with the design of a pro‐
gram. For example, excessive use of isin
stance checks against concrete classes is a
code smell, as it makes the program harder
to extend to deal with new types in the fu‐
ture.

codec
(encoder/decoder) A module with func‐
tions to encode and decode, usually from
str to bytes and back, although Python has
a few codecs that perform bytes to bytes
and str to str transformations.

collection
Generic term for data structures made of
items that can be accessed individually.
Some collections can contain objects of ar‐
bitrary types (see container) and others on‐
ly objects of a single atomic type (see flat
sequence). list and bytes are both collec‐
tions, but list is a container, and bytes is
a flat sequence.

considered harmful
Edsger Dijkstra’s letter titled “Go To State‐
ment Considered Harmful” established a
formula for titles of essays criticizing some
computer science technique. Wikipedia’s
“Considered harmful” article lists several
examples, including "Considered Harmful
Essays Considered Harmful” by Eric A.
Meyer.

constructor
Informally, the __init__ instance method
of a class is called its constructor, because
its semantics is similar to that of a Java con‐
structor. However, a fitting name for __in

it__ is initializer, as it does not actually
build the instance, but receives it as its self
argument. The constructor term better de‐
scribes the __new__ class method, which
Python calls before __init__, and is re‐
sponsible for actually creating an instance
and returning it. See initializer.

container
An object that holds references to other ob‐
jects. Most collection types in Python are
containers, but some are not. Contrast with
flat sequence, which are collections but not
containers.

context manager
An object implementing both the __en
ter__ and __exit__ special methods, for
use in a with block.

coroutine
A generator used for concurrent program‐
ming by receiving values from a scheduler
or an event loop via coro.send(value).
The term may be used to describe the gen‐
erator function or the generator object ob‐
tained by calling the generator function. See
generator.

CPython
The standard Python interpreter, imple‐
mented in C. This term is only used when
discussing implementation-specific behav‐
ior, or when talking about the multiple
Python interpreters available, such as PyPy.

CRUD
Acronym for Create, Read, Update, and De‐
lete, the four basic functions in any appli‐
cation that stores records.

decorator
A callable object A that returns another call‐
able object B and is invoked in code using
the syntax @A right before the definition of
a callable C. When reading such code, the
Python interpreter invokes A(C) and binds
the resulting B to the variable previously as‐
signed to C, effectively replacing the defini‐
tion of C with B. If the target callable C is a

code smell
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function, then A is a function decorator; if
C is a class, then A is a class decorator.

deep copy
A copy of an object in which all the objects
that are attributes of the object are them‐
selves also copied. Contrast with shallow
copy.

descriptor
A class implementing one or more of the
__get__, __set__, or __delete__ special
methods becomes a descriptor when one of
its instances is used as a class attribute of
another class, the managed class. Descrip‐
tors manage the access and deletion of
managed attributes in the managed class,
often storing data in the managed instances.

docstring
Short for documentation string. When the
first statement in a module, class, or func‐
tion is a string literal, it is taken to be the
docstring for the enclosing object, and the
interpreter saves it as the __doc__ attribute
of that object. See also doctest.

doctest
A module with functions to parse and run
examples embedded in the docstrings of
Python modules or in plain-text files. May
also be used from the command line as:

python -m doctest
module_with_tests.py

DRY
Don’t Repeat Yourself—a software engi‐
neering principle stating that “Every piece
of knowledge must have a single, unambig‐
uous, authoritative representation within a
system.” It first appeared in the book The
Pragmatic Programmer by Andy Hunt and
Dave Thomas (Addison-Wesley, 1999).

duck typing
A form of polymorphism where functions
operate on any object that implements the
appropriate methods, regardless of their
classes or explicit interface declarations.

dunder
Shortcut to pronounce the names of special
methods and attributes that are written with
leading and trailing double-underscores
(i.e., __len__ is read as “dunder len”).

dunder method
See dunder and special methods.

EAFP
Acronym standing for the quote “It’s easier
to ask forgiveness than permission,” attrib‐
uted to computer pioneer Grace Hopper,
and quoted by Pythonistas referring to dy‐
namic programming practices like access‐
ing attributes without testing first if they
exist, and then catching the exception when
that is the case. The docstring for the ha
sattr function actually says that it works
“by calling getattr(object, name) and catch‐
ing AttributeError.”

eager
An iterable object that builds all its items at
once. In Python, a list comprehension is ea‐
ger. Contrast with lazy.

fail-fast
A systems design approach recommending
that errors should be reported as early as
possible. Python adheres to this principle
more closely than most dynamic languages.
For example, there is no “undefined” value:
variables referenced before initialization
generate an error, and my_dict[k] raises an
exception if k is missing (in contrast with
JavaScript). As another example, parallel
assignment via tuple unpacking in Python
only works if every item is explicitly han‐
dled, while Ruby silently deals with item
count mismatches by ignoring unused
items on the right side of the =, or by as‐
signing nil to extra variables on the left
side.

falsy
Any value x for which bool(x) returns
False; Python implicitly uses bool to eval‐
uate objects in Boolean contexts, such as the
expression controlling an if or while loop.
The opposite of truthy.

deep copy
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file-like object
Used informally in the official documenta‐
tion to refer to objects implementing the file
protocol, with methods such as read,
write, close, etc. Common variants are
text files containing encoded strings with
line-oriented reading and writing, String
IO instances which are in-memory text
files, and binary files, containing unenco‐
ded bytes. The latter may be buffered or
unbuffered. ABCs for the standard file
types are defined in the io module since
Python 2.6.

first-class function
Any function that is a first-class object in
the language (i.e., can be created at runtime,
assigned to variables, passed as an argu‐
ment, and returned as the result of another
function). Python functions are first-class
functions.

flat sequence
A sequence type that physically stores the
values of its items, and not references to
other objects. The built-in types str, bytes,
bytearray, memoryview, and array.array
are flat sequences. Contrast with list, tu
ple, and collections.deque, which are
container sequences. See container.

function
Strictly, an object resulting from evaluation
of a def block or a lambda expression. In‐
formally, the word function is used to de‐
scribe any callable object, such as methods
and even classes sometimes. The official
Built-in Functions list includes several
built-in classes like dict, range, and str.
Also see callable object.

genexp
Short for generator expression.

generator
An iterator built with a generator function
or a generator expression that may produce
values without necessarily iterating over a
collection; the canonical example is a gen‐
erator to produce the Fibonacci series
which, because it is infinite, would never fit

in a collection. The term is sometimes used
to describe a generator function, besides the
object that results from calling it.

generator function
A function that has the yield keyword in
its body. When invoked, a generator func‐
tion returns a generator.

generator expression
An expression enclosed in parentheses us‐
ing the same syntax of a list comprehen‐
sion, but returning a generator instead of a
list. A generator expression can be under‐
stood as a lazy version of a list comprehen‐
sion. See lazy.

generic function
A group of functions designed to imple‐
ment the same operation in customized
ways for different object types. As of Python
3.4, the functools.singledispatch deco‐
rator is the standard way to create generic
functions. This is known as multimethods
in other languages.

GoF book
Alias for Design Patterns: Elements of Re‐
usable Object-Oriented Software (Addison-
Wesley, 1995), authored by the so-called
Gang of Four (GoF): Erich Gamma, Ri‐
chard Helm, Ralph Johnson, and John Vlis‐
sides.

hashable
An object is hashable if it has both __hash__
and __eq__ methods, with the constraints
that the hash value must never change and
if a == b then hash(a) == hash(b) must
also be True. Most immutable built-in types
are hashable, but a tuple is only hashable if
every one of its items is also hashable.

higher-order function
A function that takes another function as
argument, like sorted, map, and filter, or
a function that returns a function as result,
as Python decorators do.

file-like object
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idiom
“A manner of speaking that is natural to na‐
tive speakers of a language,” according to
the Princeton WordNet.

import time
The moment of initial execution of a mod‐
ule when its code is loaded by the Python
interpreter, evaluated from top to bottom,
and compiled into bytecode. This is when
classes and functions are defined and be‐
come live objects. This is also when deco‐
rators are executed.

initializer
A better name for the __init__ method
(instead of constructor). Initializing the in‐
stance received as self is the task of __in
it__. Actual instance construction is done
by the __new__ method. See constructor.

iterable
Any object from which the iter built-in
function can obtain an iterator. An iterable
object works as the source of items in for
loops, comprehensions, and tuple unpack‐
ing. Objects implementing an __iter__
method returning an iterator are iterable.
Sequences are always iterable; other objects
implementing a __getitem__ method may
also be iterable.

iterable unpacking
A modern, more precise synonym for tuple
unpacking. See also parallel assignment.

iterator
Any object that implements the __next__
no-argument method, which returns the
next item in a series, or raises StopItera
tion when there are no more items. Python
iterators also implement the __iter__

method so they are also iterable. Classic
iterators, according to the original design
pattern, return items from a collection. A
generator is also an iterator, but it’s more
flexible. See generator.

KISS principle
The acronym stands for “Keep It Simple,
Stupid.” This calls for seeking the simplest
possible solution, with the fewest moving

parts. The phrase was coined by Kelly John‐
son, a highly accomplished aerospace en‐
gineer who worked in the real Area 51 de‐
signing some of the most advanced aircraft
of the 20th century.

lazy
An iterable object that produces items on
demand. In Python, generators are lazy.
Contrast eager.

listcomp
Short for list comprehension.

list comprehension
An expression enclosed in brackets that
uses the for and in keywords to build a list
by processing and filtering the elements
from one or more iterables. A list compre‐
hension works eagerly. See eager.

liveness
An asynchronous, threaded, or distributed
system exhibits the liveness property when
“something good eventually happens” (i.e.,
even if some expected computation is not
happening right now, it will be completed
eventually). If a system deadlocks, it has lost
its liveness.

magic method
Same as special method.

managed attribute
A public attribute managed by a descriptor
object. Although the managed attribute is
defined in the managed class, it operates like
an instance attribute (i.e., it usually has a
value per instance, held in a storage at‐
tribute). See descriptor.

managed class
A class that uses a descriptor object to man‐
age one of its attributes. See descriptor.

managed instance
An instance of a managed class. See man‐
aged attribute and descriptor.

metaclass
A class whose instances are classes. By de‐
fault, Python classes are instances of type,
for example, type(int) is the class type,

idiom
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therefore type is a metaclass. User-defined
metaclasses can be created by subclassing
type.

metaprogramming
The practice of writing programs that use
runtime information about themselves to
change their behavior. For example, an
ORM may introspect model class declara‐
tions to determine how to validate database
record fields and convert database types to
Python types.

monkey patching
Dynamically changing a module, class, or
function at runtime, usually to add features
or fix bugs. Because it is done in memory
and not by changing the source code, a
monkey patch only affects the currently
running instance of the program. Monkey
patches break encapsulation and tend to be
tightly coupled to the implementation de‐
tails of the patched code units, so they are
seen as temporary workarounds and not a
recommended technique for code integra‐
tion.

mixin class
A class designed to be subclassed together
with one or more additional classes in a
multiple-inheritance class tree. A mixin
class should never be instantiated, and a
concrete subclass of a mixin class should
also subclass another nonmixin class.

mixin method
A concrete method implementation pro‐
vided in an ABC or in a mixin class.

mutator
See accessor.

name mangling
The automatic renaming of private at‐
tributes from __x to _MyClass__x, per‐
formed by the Python interpreter at run‐
time.

nonoverriding descriptor
A descriptor that does not implement
__set__ and therefore does not interfere
with setting of the managed attribute in the

managed instance. Consequently, if a
namesake attribute is set in the managed
instance, it will shadow the descriptor in
that instance. Also called nondata descrip‐
tor or shadowable descriptor. Contrast with
overriding descriptor.

ORM
Object-Relational Mapper—an API that
provides access to database tables and re‐
cords as Python classes and objects, pro‐
viding method calls to perform database
operations. SQLAlchemy is a popular
standalone Python ORM; the Django and
Web2py frameworks have their own bun‐
dled ORMs.

overriding descriptor
A descriptor that implements __set__ and
therefore intercepts and overrides attempts
at setting the managed attribute in the man‐
aged instance. Also called data descriptor or
enforced descriptor. Contrast with non-
overriding descriptor.

parallel assignment
Assigning to several variables from items in
an iterable, using syntax like a, b = [c, d]
—also known as destructuring assignment.
This is a common application of tuple un‐
packing.

parameter
Functions are declared with 0 or more “for‐
mal parameters,” which are unbound local
variables. When the function is called, the
arguments or “actual parameters” passed
are bound to those variables. In this book,
I tried to use argument to refer to an actual
parameter passed to a function, and pa‐
rameter for a formal parameter in the func‐
tion declaration. However, that is not al‐
ways feasible because the terms parameter
and argument are used interchangeably all
over the Python docs and API. See argu‐
ment.

prime (verb)
Calling next(coro) on a coroutine to ad‐
vance it to its first yield expression so that

metaprogramming
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it becomes ready to receive values in suc‐
ceeding coro.send(value) calls.

PyPI
The Python Package Index, where more
than 60,000 packages are available, also
known as the Cheese shop (see Cheese
shop). PyPI is pronounced as “pie-P-eye” to
avoid confusion with PyPy.

PyPy
An alternative implementation of the
Python programming language using a
toolchain that compiles a subset of Python
to machine code, so the interpreter source
code is actually written in Python. PyPy also
includes a JIT to generate machine code for
user programs on the fly—like the Java VM
does. As of November 2014, PyPy is 6.8
times faster than CPython on average, ac‐
cording to published benchmarks. PyPy is
pronounced as “pie-pie” to avoid confusion
with PyPI.

Pythonic
Used to praise idiomatic Python code, that
makes good use of language features to be
concise, readable, and often faster as well.
Also said of APIs that enable coding in a
way that seems natural to proficient Python
programmers. See idiom.

refcount
The reference counter that each CPython
object keeps internally in order to deter‐
mine when it can be destroyed by the
garbage collector.

referent
The object that is the target of a reference.
This term is most often used to discuss weak
references.

REPL
Read-eval-print loop, an interactive con‐
sole, like the standard python or alterna‐
tives like ipython, bpython, and Python
Anywhere.

sequence
Generic name for any iterable data struc‐
ture with a known size (e.g., len(s)) and

allowing item access via 0-based integer in‐
dexes (e.g., s[0]). The word sequence has
been part of the Python jargon from the
start, but only with Python 2.6 was it for‐
malized as an abstract class in collec
tions.abc.Sequence.

serialization
Converting an object from its in-memory
structure to a binary or text-oriented for‐
mat for storage or transmission, in a way
that allows the future reconstruction of a
clone of the object on the same system or
on a different one. The pickle module sup‐
ports serialization of arbitrary Python ob‐
jects to a binary format.

shallow copy
A copy of an object which shares references
to all the objects that are attributes of the
original object. Contrast with deep copy.
Also see aliasing.

singleton
An object that is the only existing instance
of a class—usually not by accident but be‐
cause the class is designed to prevent cre‐
ation of more than one instance. There is
also a design pattern named Singleton,
which is a recipe for coding such classes.
The None object is a singleton in Python.

slicing
Producing a subset of a sequence by using
the slice notation, e.g., my_sequence[2:6].
Slicing usually copies data to produce a new
object; in particular, my_sequence[:] cre‐
ates a shallow copy of the entire sequence.
But a memoryview object can be sliced to
produce a new memoryview that shares data
with the original object.

snake_case
The convention of writing identifiers by
joining words with the underscore charac‐
ter (_)—for example, run_until_com

plete. PEP-8 calls this style “lowercase with
words separated by underscores” and rec‐
ommends it for naming functions, meth‐
ods, arguments, and variables. For pack‐
ages, PEP-8 recommends concatenating

PyPI
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words with no separators. The Python stan‐
dard library has many examples of
snake_case identifiers, but also many ex‐
amples of identifiers with no separation be‐
tween words (e.g., getattr, classmethod,
isinstance, str.endswith, etc.). See Cam‐
elCase.

special method
A method with a special name such as
__getitem__, spelled with leading and
trailing double underscores. Almost all spe‐
cial methods recognized by Python are de‐
scribed in the “Data model” chapter of The
Python Language Reference, but a few that
are used only in specific contexts are doc‐
umented in other parts of the documenta‐
tion. For example, the __missing__ meth‐
od of mappings is mentioned in “4.10. Map‐
ping Types — dict" in The Python Standard
Library.

storage attribute
An attribute in a managed instance used to
store the value of an attribute managed by
a descriptor. See also managed attribute.

strong reference
A reference that keeps an object alive in
Python. Contrast with weak reference.

tuple unpacking
Assigning items from an iterable object to
a tuple of variables (e.g., first, second,
third == my_list). This is the usual term
used by Pythonistas, but iterable unpack‐
ing is gaining traction.

truthy
Any value x for which bool(x) returns
True; Python implicitly uses bool to evalu‐
ate objects in Boolean contexts, such as the
expression controlling an if or while loop.
The opposite of falsy.

type
Each specific category of program data, de‐
fined by a set of possible values and opera‐
tions on them. Some Python types are close
to machine data types (e.g., float and
bytes) while others are extensions (e.g., int

is not limited to CPU word size, str holds
multibyte Unicode data points) and very
high-level abstractions (e.g., dict, deque,
etc.). Types may be user defined or built into
the interpreter (a “built-in” type). Before
the watershed type/class unification in
Python 2.2, types and classes were different
entities, and user-defined classes could not
extend built-in types. Since then, built-in
types and new-style classes became com‐
patible, and a class is an instance of type. In
Python 3 all classes are new-style classes.
See class and metaclass.

unbound method
An instance method accessed directly on a
class is not bound to an instance; therefore
it’s said to be an “unbound method.” To suc‐
ceed, a call to an unbound method must
explicitly pass an instance of the class as the
first argument. That instance will be as‐
signed to the self argument in the method.
See bound method.

uniform access principle
Bertrand Meyer, creator of the Eiffel Lan‐
guage, wrote: “All services offered by a
module should be available through a uni‐
form notation, which does not betray
whether they are implemented through
storage or through computation.” Proper‐
ties and descriptors allow the implementa‐
tion of the uniform access principle in
Python. The lack of a new operator, making
function calls and object instantiation look
the same, is another form of this principle:
the caller does not need to know whether
the invoked object is a class, a function, or
any other callable.

user-defined
Almost always in the Python docs the word
user refers to you and I—programmers who
use the Python language—as opposed to
the developers who implement a Python
interpreter. So the term “user-defined class”
means a class written in Python, as opposed
to built-in classes written in C, like str.

special method
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view
Python 3 views are special data structures
returned by the dict meth‐
ods .keys(), .values(), and .items(),
providing a dynamic view into the dict
keys and values without data duplication,
which occurs in Python 2 where those
methods return lists. All dict views are
iterable and support the in operator. In ad‐
dition, if the items referenced by the view
are all hashable, then the view also imple‐
ments the collections.abc.Set interface.
This is the case for all views returned by
the .keys() method, and for views re‐
turned by .items() when the values are al‐
so hashable.

virtual subclass
A class that does not inherit from a super‐
class but is registered using TheSuper
Class.register(TheSubClass). See docu‐
mentation for abc.ABCMeta.register.

wart
A misfeature of the language. Andrew
Kuchling’s famous post “Python warts” has

been acknowledged by the BDFL as influ‐
ential in the decision to break backward-
compatibility in the design of Python 3, as
most of the failings could not be fixed
otherwise. Many of Kuchling’s issues were
fixed in Python 3.

weak reference
A special kind of object reference that does
not increase the referent object reference
count. Weak references are created with
one of the functions and data structures in
the weakref module.

YAGNI
“You Ain’t Gonna Need It,” a slogan to avoid
implementing functionality that is not im‐
mediately necessary based on assumptions
about future needs.

Zen of Python
Type import this into any Python console
since version 2.2.

view

724 | Python Jargon

http://bit.ly/1DeDbKf


We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
!= operator, 384
!r conversion field, 11
# operator, 14
% operator, 11
%r placeholder, 11
() (function invocation), 371
() (parentheses), 22, 144
() call operator, 144
* operator, 10, 12, 29, 36, 148, 380
** (double asterisk), 148
*= operator, 38, 388
*args, 29
*extra, 60
+ operator, 9, 12, 36, 372, 375–380
+= operator, 38, 388
+ELLIPSIS directive, 7
+x, 373
. (attribute access), 371
.add_done_callback() method, 512
.append method, 55
.done() method, 512
.frombytes method, 251
.pop method, 55
.result() method, 512
2D vector addition, 9
404 errors (Not Found), 525
< operator, 384
<= operator, 384

== operator, 223, 244, 288, 384
> operator, 384
>= operator, 384
@ operator, 383
@abstractclassmethod, 329
@abstractmethod, 326
@abstractproperty, 329
@abstractstaticmethod, 329
@asyncio.coroutine decorator, 541, 543
@classmethod decorator, 592
@contextmanager decorator, 454
@property decorator, 604
[:] operator, 225
[] (square brackets), 6, 22, 35, 371
\ (backslash), 22
^ operator, 258, 288
_ (underscore), 28, 264
__ (double underscore), 3, 4
__add__, 38, 308, 375, 392
__bool__, 12
__builtins__, 63
__bytes__, 248
__call__, 145
__class__, 616
__delattr__, 615, 618
__delete__, 625
__del__, 235
__dict__, 63, 147, 616
__doc__, 140, 146
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__enter__, 450
__eq__, 385
__exit__, 450
__float__, 259
__format__, 248, 253, 294, 303
__getattribute__, 618
__getattr__, 285, 618
__getitem__, 4, 70, 283, 308, 310
__get__, 625
__hash__, 87, 258, 288
__iadd__, 38, 392
__imatmul__, 383
__init__, 416, 592, 669
__int__, 259
__invert__, 372
__iter__, 404, 406, 409
__len__, 4, 14, 283
__matmul__, 383
__missing__, 72
__mro__, 334
__mul__, 380
__neg__, 372
__new__, 592, 622
__next__, 406, 411
__ne__, 385
__pos__, 372
__prepare__, 675
__radd__, 378
__repr__, 11
__rmatmul__, 383
__rmul__, 380
__ruml__, 12
__self__, 618
__setattr__, 618
__setitem__, 312
__set__, 625, 630
__slots__, 264, 616, 690
__str__, 11
__subclasshook__, 339
{} (curly brackets), 22
~ operator, 372
– operator, 372
… (ellipsis), 35, 277

A
ABC (Abstract Base Class)

advantages of, 316
appropriate use of, 308, 317, 341
as mixins, 360

declaring, 328
defining and using, 324–335
definition of term, 715
explicit interfaces using, 359
goose typing and, 341
in standard library, 321
numbers package, 323
subclass creation, 329
subclass testing, 335
subclassing process, 319
syntax details, 328
virtual subclass creation, 332

ABC language, 19, 60, 715
abs function, 10
absolute values, 10
accessor methods, 585, 621, 715
accumulating functions, 434
Adapter pattern, 356
addition

2D vector, 9
vector, 375–380

aggregate classes, 360
aiohttp package, 548, 573
algorithms

binary search, 44
C3 algorithm, 355
cryptographic, 517, 700
for hash tables, 88
RC4, 700
Timsort sorting algorithm, 62
Unicode Collation Algorithm (UCA), 126

aliasing, 221, 715
and operator, 372
anonymous functions, 143, 164, 192
arcfour.py module, 700
argument lists, 143
arguments

definition of term, 715
explicit self, 630, 652
freezing with functools.parital, 159
grabbing arbitrary excess, 29
instance, 630
keyword-only, 148

arithmetic operators, 12, 13, 156, 372
arithmetic progression generator, 420
array.array library, 251
arrays

benefits of, 48
building with generator expressions, 25
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creating, saving and loading, 48
handling with memory views, 51
handling with NumPy, 52
vs. lists, 49

asciize function, 123
assignment

augmented, 13, 38–42, 388–392
destructuring, 721
of variables, 220
overwriting descriptors with, 645
parallel, 28, 721
to slices, 36

asynchronous operations, 552, 580
asyncio package, 538–577

APIs provided by, 57
asynchronous operations, 552
asyncio.as_completed, 555
asyncio.Future class, 545
asyncio.Task objects, 547
asyncio.wait(…), 550
avoiding event loop blocking, 560
benefits of, 581
coroutines in, 541
coroutines vs. futures, 546
development of, 538
downloader script enhancement, 554
downloading with aiohttp package, 548
TCP server, 568
time.sleep(…), 543
vs. Threading module, 539
writing asyncio servers, 567–577
yield from construct and, 546, 551

attribute access (.), 371
attribute descriptors, 625–651

attribute validation, 625–640
docstrings, 650
methods as, 646
overriding deletion, 650
overriding vs. nonoverriding, 640–646
overview of, 625
overwriting, 645
usage tips, 648
using, 626
vs. property factories, 635

attribute validation
automatic storage attribute names, 631
new descriptor types, 637
simple descriptor class, 626

attributes
assigning arbitrary, 147
definition of term, 715
deleting, 614
dynamic, 585–604
dynamic access, 284
handling of, 616
instance, 649
listing, 147
managed, 627, 720
names, 591
of user-defined functions, 147
overriding, 267
private and protected, 262, 273, 308
public, 272, 308
special, 616
storage, 627, 631, 723
validating with descriptors, 625–640
validating with properties, 604

augmented assignment, 13, 38–42, 388–392

B
backslash (\), 22
BDFL (Benevolent Dictator For Life), 716
BIF (see built-in functions)
big-endian byte ordering, 110
binary search algorithm, 44
binary sequences

building, 101
built-in types for, 99
definition of term, 716
displays used, 100
fromhex class method, 101
sharing memory, 101
str method support, 100

bisect module
inserting with bisect.insort, 47
main functions, 44
searching with bisect function, 44

bitwise operators, 13, 372
blocking I/O functions, 515, 552
Bobo HTTP micro-framework, 150, 163
BOM (Byte Order Mark), 110, 716
bool (x), 12
boolean values, custom types and, 12
bound methods, 716
built-in functions, 42, 63, 144, 616, 716
built-in methods, 144
byte strings, 716
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bytearray type, 99
bytes (see encoding/decoding)
bytes argument, 129
bytes type, 99
bytes-like objects, 716

C
C3 algorithm, 355
caches

attribute descriptors and, 649
using WeakValueDictionary class, 237
weak references and, 236

call by reference, 245
call by sharing, 229, 245
Callable ABC, 323
callable objects, 144, 716
callable() function, 144
callbacks

callback hell, 562
vs. coroutines, 562
vs. futures, 562

CamelCase, 622, 683, 716
canonical equivalents, 117
card deck example, 4–8
cartesian products, generating lists from, 23
case folding, 119
ChainMap, 75
characters

code point identification, 98
compatibility, 118
definition of term, 98
encoding/decoding of, 98
Unicode standard for, 98

Chardet Universal Character Encoding Detec‐
tor, 109

charfinder.py module, 568
Cheese Shop, 716
class decorators

drawbacks of, 661
for customizing descriptors, 659
vs. function decorators, 660
vs. metaclasses, 655

class metaprogramming, 655–679
class factory, 656
classes as objects, 677
descriptor customization, 659
exec/eval functions and, 659
import time vs. runtime, 661–666
metaclass basics, 666–673

metaclass for customizing descriptors, 673
metaclasses vs. class decorators, 655
__prepare__, 675

classes
aggregate, 360
as callable objects, 145
as objects, 677, 682
customizing at runtime (see class metaprog‐

ramming)
definition of term, 716
descriptor, 625, 635, 718
managed, 626, 720
metaclasses, 666–673, 720
MGN notation for, 628
mixin, 359, 362–366, 721
multilevel hierarchies, 367

classmethod decorator, 252
closures (see decorators and closures)
code point, 98, 716
code smell, 317, 717
code, top-level, 662
codec module, 103, 717
coding idioms, 304
collections

definition of term, 717
iterability of, 402

collections.abc module
ABCs in, 321
collections.ChainMap, 75
collections.Counter, 75
collections.defaultdict, 66, 70
collections.deque class, 55
collections.MutableSequence, 319
collections.MutableSet, 82
collections.namedtuple function, 30
collections.OrderedDict, 66, 75
collections.UserDict, 76
Mapping/MutableMapping ABCs, 64, 322
multiple inheritance in, 356

Command design pattern, 177
comparison operators, 13, 372, 384–388
compatibility characters, 118
composition, 361
compounds, 60
concrete subclasses, 320, 329, 360
concurrency

asynchronous operations, 552, 580
better approach to, 534
concurrent vs. sequential scripts, 507
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concurrent.futures download, 509
concurrent.futures task launching, 515
error handling and, 520, 525
examples of, 505
GIL (Global Interpreter Lock) and, 515
importance of, 505
importance of futures in, 511
in other languages, 535
multiple download requests, 564
nonblocking design and, 545
progress displays, 521
smarter clients for, 576
testing concurrent clients, 521
threading vs. coroutines, 539
threading/multiprocessing alternatives, 530
using futures.as_completed, 527
vs. parallelism, 537
with asyncio package, 539–577
with Executor.map function, 517

concurrent.futures library, 505–531
behind the scenes operation of, 511
benefits of, 533
downloading, 509
futures.as_completed, 522, 527
futures.ProcessPoolExecutor, 530
introduction of, 505
launching processes with, 515

“Considered Harmful” article, 717
constructors, definition of term, 717
Container ABC, 322
container sequences, 20, 61
containers, definition of term, 717
context managers

contextlib utilities, 454
definition of term, 717
temporary contexts via with statements, 447
uses for, 454
with statement and, 450

continuous simulation, 489
copy function, 228
coroutines

benefits of, 563
computing running averages, 468
decorators for priming, 469
definition of term, 717
delaying, 543
evolution of, 464
exception handling, 472
for discrete event simulation, 489–498, 696

generators as, 439, 465
in asyncio, 541
obtaining Tasks, 547
possible states of, 465
returning values from, 475
termination of, 471
vs. callbacks, 562
vs. futures, 546
vs. generators, 463
vs. threading, 539
yield from meaning, 483–489
yield from use, 477–483
yield keyword and, 467

cosine similarity, 276
Counter, 75
cp1252 encoding, 104
cp437 encoding, 104
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cryptographic algorithms, 517, 700
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data descriptors (see overriding descriptors)
data model, 3–16
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example of, 4
metaobject protocol, 16
overview of, 3
protocols and sequences, 310
special (magic) methods, 4, 16
special methods, overview of, 13
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data structures
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database conversion utility, 437, 691
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Command, 177
Decorator, 199
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dict, 87

dict comprehensions (dictcomp), 66
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dict.setdefault, 69
dictionaries and sets, 63–95
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implementation with hash tables, 85–93
mapping methods overview, 66
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practical consequences, 93
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downloads
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asyncio TCP server, 568
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error handling for, 520, 525
multiple requests for, 564
progress displays, 521, 527
with aiohttp package, 548

DRY (Don’t Repeat Yourself) principle, 718
duck typing
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Python support for, 247
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case folding, 119
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example of, 98
normalized text matching, 120
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str representation in RAM, 136
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evaluation time exercises, 662, 669
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Executor.submit function, 520
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filter function, 23, 142
first-class functions

anonymous functions, 143, 164
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callable objects, 144
definition of term, 719
design patterns with, 167–182
flexible parameter handling, 148
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function introspection, 146
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higher-order functions, 141
retrieving parameter information, 150
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flags2_common.py module, 521, 703
flat sequences, 20, 61, 719
flexible string representation, 136
flyweights, 174
folding functions, 434
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for loops, 293
for/else clause, 448
format function, 253
Format Specification Mini-Language, 254, 294
Format String Syntax library, 11, 254
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404 errors (Not Found), 525
free variables, 194, 214
fromhex class method, 101
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fsdecode(filename) function, 131
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first-class, 139–165, 719
folding, 434
generator, 145, 441, 719
generic, 719
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definition of term, 719
delegating, 478
in database conversion utility, 437
subgenerators, 478
vs. coroutines, 463
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not operator, 372
NotImplemented, 378
NotImplementedError, 378
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NumPy
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vector math with, 276
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object composition, 361
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(see also data model)
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object-oriented languages, 3
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context managers, 717
creating with __new__, 592
decorators, 717
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file-like, 719
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ORM (Object-Relational Mapper), 721
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parallel assignment, 28, 721
parallel tasks, launching, 515
parallelism, vs. concurrency, 537
parameterized decorators, 206–211
parameters
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retrieving information about, 150
using mutable types, 232

parentheses ( () ), 22, 144
pickle module, 594
plain text, definition of term, 135
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process, definition of term, 490
progress displays, 521, 527
properties

advantages of, 681
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252
formatted displays, 253
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overriding class attributes, 267
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PyUCA library, 126

Q
queue package, 57
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record retrieval, 598
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reference variables, 220
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registration decorators, 187, 206
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REPL (Read-eval-print-loop), 722
repr function, 248
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requests library, 509
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reversed operators, 13
rich comparison operators, 372, 384–388
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Sequence ABC, 322
Sequence interface, 310
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building, 21–26
concatenating multiple copies of, 36
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