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Preface

The cyber world is changing rapidly nowadays, and many old threats are no longer
relevant. There are multiple reasons for this, but mainly, it is due to the fact that the
environment of systems that we use is constantly evolving, just like the new methods to
achieve malicious goals. In this book, we will place a strong emphasis on modern malware
threats, which are on the increase presently. Over the last few years, the malware landscape
has evolved dramatically, from basic IRC botnets to Advanced Persistent Threats (APT)
and state-sponsored malware that targets activists, steals blueprints, or even attacks nuclear
reactors. And cybercrime has evolved to be a multi-million dollar business, from
credit/debit card thefts to SWIFT banking hijacking, Point-of-Sale (POS) malware, and
ransomware. With all of this, the world is seeing an increased demand for highly skilled
malware researchers to cope with this level of threats and to be able to create the next
generation of security protection technologies.

Virtually any programming language can be used to write a piece of code that will later be
used for malicious purposes, so at first, the book covers universal basic knowledge,
applicable to any situation. As Windows is still the most prevalent operating system in the
world, it is no surprise that the vast majority of malicious code is written for it, so the next
few chapters will cover this platform in detail. Then, since attackers tend to use
programming languages that are both popular (so there is a higher probability they already
know it) and supported by the target victim's system, the book will help you become
familiar with the most common examples. Finally, as the targeted systems were

expanded relatively recently with the emergence of Internet of Things (IoT) malware and
new mobile platforms, we will also teach you how to analyze these emerging threats.

The main goal of this book is to give the reader a set of practical recipes that can

quickly be applied for analyzing virtually any type of malware they may encounter within
the modern world, whether the purpose is to confirm its main functionality or extract
relevant Indicators of Compromise (IOCs) for further investigation. This knowledge can
be used in multiple ways, such as estimating potential losses, properly applying
remediation policies, strengthening the environment, or even for general research or
educational purposes.



Preface

Who this book is for

If you are an IT security administrator, forensic analyst, or malware researcher looking at
securing systems from malicious software, or investigating malicious code, then this book is
for you. Prior programming experience and some understanding of malware attacks and
investigation would do wonders.

What this book covers

Chapter 1, A Crash Course in CISC/RISC and Programming Basics, offers an insight into all
widely used assembly languages, providing foundational knowledge to peer behind any
reverse engineering efforts. While many security professionals spend most of their time
reversing threats for the IA-32 (x86) platform on Windows as the prevalent source of threats
nowadays, other platforms are increasingly gaining in popularity because of a changing
landscape of the systems we use: from desktop to mobile, from IA-32 to x64. The main
purpose of this part is to show the reader that there is pretty much the same logic behind
any assembly language, and moving from one to another is not a problem, as long as you
get the general idea of how they work.

Chapter 2, Basic Static and Dynamic Analysis for x86/x64, dives deeper into Windows
executable files' inner structure, covering the PE header, PE loading, process and thread
creation, and communication between the operating system and this newly created process.
This chapter also covers the basic static and dynamic analysis of a malicious sample, and
teaches you how to debug and alter its execution path and behavior.

Chapter 3, Unpacking, Decryption, and Deobfuscation, sharpens readers' skills to handle
packed, encrypted malware for Windows, and all of the techniques that malware authors
use to protect their samples against amateur reverse engineers. This chapter covers
malware packed with various types of packers, as well as detection and unpacking using
various simple and advanced techniques. Also, it covers encryption algorithms, from
simple XOR algorithms to advanced ones, such as 3DES and AES encryption, for protecting
important information such as strings and APIs (especially related to C&C
communications), as well as extra modules.

Chapter 4, Inspecting Process Injection and API Hooking, covers advanced techniques
implemented in multiple APT, state-sponsored, and widespread cybercrime attacks, from
basic process injection to process hollowing and API hooking. In addition, it explains the
motivations behind using these techniques, how they work, and how to analyze and work
around them.

[2]
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Chapter 5, Bypassing Anti-Reverse Engineering Techniques, offers a guide on various anti-
reverse engineering techniques that malware authors use to protect their samples, and this
thereby, slow down the reverse engineering process. This chapter reveals a lot of these
techniques, from detecting the debugger and other analysis tools to breakpoint detection,
virtual machine (VM) detection, and even attacking the anti-malware tools and products.
It also covers the VM and sandbox detection techniques that malware authors use to avoid
the spam detection and automatic malware detection techniques implemented in various
enterprises.

Chapter 6, Understanding Kernel-Mode Rootkits, digs deeper into the Windows kernel and its
internal structures and mechanisms. We will be covering different techniques used by
malware authors to hide their malware presence from users and antivirus products. We
will be looking at different advanced kernel-mode hooking techniques, process injection
from kernel mode, and how to perform static and dynamic analysis in kernel mode.

Chapter 7, Handling Exploits and Shellcode, gives the reader an idea of how exploits work in
general, discussing the logic behind position-independent code. In addition, we will
provide practical tips and tricks on how to analyze the most common file types associated
with exploits that are actively used in modern attacks today.

Chapter 8, Reversing Bytecode Languages: .NET, Java, and More, introduces the reader to
cross-platform-compiled programs that don't need to be ported for different systems. Here,
we will take a look at how malware authors try to leverage these advantages for malign
purposes. In addition, the reader will be provided with an arsenal of tools and techniques
whose aim is to make the analysis quick and efficient.

Chapter 9, Scripts and Macros: Reversing, Deobfuscation, and Debugging, discusses scripts and
macro-based threats. Web incorporated script languages a long time ago, and nowadays,
other script languages are also becoming increasingly popular in various projects, from
proofs of concepts and prototypes to production-level systems. This chapter will provide an
overview of various techniques that script malware authors incorporate in order to
complicate the analysis and prolong the infection, and how this can be dealt with.

Chapter 10, Dissecting Linux and IoT Malware, is a hands-on guide to analyzing Linux
threats that have become increasingly popular with the growing popularity of IoT devices
commonly powered by Linux. Once it was clear that these systems are often less immune to
infections due to multiple historical factors, and that it is possible to monetize these
weakness, the current IoT malware trend emerged. This chapter is dedicated to reverse
engineering various pieces of Linux malware, from the now-classic Mirai and its recent
modifications to more sophisticated cases.

[3]
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Chapter 11, Introduction to macOS and iOS Threats, is dedicated to reverse engineering
techniques applicable to Apple platforms. Once considered as virtually immune to any
infections, nowadays, we see more and more attempts to compromise the security of the
users of these platforms. While still relatively immature, the significance of this trend
shouldn't be underestimated, especially with the rise of APT attacks.

Chapter 12, Analyzing Android Malware Samples, teaches the reader to deal with Android
malware, walking through the most common patterns and providing detailed guidelines on
how to analyze them. As our lives become more and more dynamic, the world is gradually
shifting from desktop to mobile systems. As a result, more and more of our valuable data,
from personal information to financial access codes, is stored on phones and tablets and
eventually attracts malicious actors, thereby creating a demand for reverse engineers
experienced with this platform.

To get the most out of this book

As a very minimum, this book requires strong IT knowledge. We have done our best to
explain all important terms and notions so the reader won't have to switch back and forth
between the book and the internet, but some topics covered may be quite advanced with a
high level of technical detail. Therefore, any reverse engineering experience, while not
mandatory, will be an advantage.

Download the example code files

You can download the example code files for this book from your account at
www.packt . com. If you purchased this book elsewhere, you can visit
www . packt . com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt . com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e
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Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Mastering-Malware-Analysis. In case there's an update to the code, it
will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it

here: http://www.packtpub.com/sites/default/files/downloads/9781789610789_ColorI
mages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "One of these techniques is by using NtGlobalFlag."

A block of code is set as follows:

mov gword ptr
mov gword ptr
mov gword ptr
mov gword ptr
pushfqg

sub rsp, 30h
cli

mov rcx,qword ptr gs:[20h]
add rcx,120h

call nt!RtlCaptureContext

rsp+8], rcx
rsp+10h], rdx
rsp+18h], r8

[
[
[
[rsp+20h], r9
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Any command-line input or output is written as follows:

.shell -ci "uf /c nt!IopLoadDriver" grep -B 1 —-i "call.*ptr \[.*h"

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"It can be restored by selecting the View | Graph Overview option."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt .com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.
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Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.
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Section 1: Fundamental Theory

In this section, you will be introduced to the core concepts required to successfully perform
the static analysis of samples for various platforms, including the basics of architectures
and assembly. While you may already have some prior knowledge of the x86 family, less
common architectures, such as PowerPC or SH-4, are also extensively targeted by malware

nowadays, so they shouldn't be underestimated. The following chapter is included in this
section:

e Chapter 1, A Crash Course in CISC/RISC and Programming Basics



A Crash Course in CISC/RISC
and Programming Basics

Before diving into the malware world, we need to have a complete understanding of the
core of the machines we are analyzing malware on. For reverse engineering purposes, it
makes sense to focus largely on the architecture and the operating system it supports. Of
course, there are multiple devices and modules that comprise a system, but it is mainly
these two that define a set of tools and approaches used during the analysis. The physical
representation of any architecture is a processor. A processor is like a heart of any smart
device or computer in that it keeps them alive.

In this chapter, we will cover the basics of the most widely used architectures, from the
well-known x86 and x64 Instruction Set Architectures (ISAs) to solutions powering
multiple mobile and Internet of Things (IoT) devices that are often misused by malware
families, such as Mirai and many others. It will set the tone for your journey into malware
analysis, as static analysis is impossible without understanding assembly

instructions. Although modern decompilers indeed become better and better, they don't
exist for all platforms that are targeted by malware. Additionally, they will probably never
be able to handle obfuscated code. Don't be daunted by the complexity of assembly; it just
takes time to get used to it, and after a while, it becomes possible to read it like any other
programming language. While this chapter provides a starting point, it always makes sense
to deepen your knowledge by practicing and exploring further.

This chapter is divided into the following sections to facilitate the learning process:

¢ Basic concepts

Assembly languages

Becoming familiar with x86 (IA-32 and x64)
Exploring ARM assembly

Basics of MIPS

Covering the SuperH assembly
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e Working with SPARC
¢ Moving from assembly to high-level programming languages

Basic concepts

Most people don't really understand that the processor is pretty much a smart calculator. If
you look at most of its instructions (whatever the assembly language is), you will find
many of them dealing with numbers and doing some calculations. However, there are
multiple features that actually differentiate processors from usual calculators:

¢ Processors have access to a bigger memory space compared to traditional
calculators. This memory space gives them the ability to store billions of values,
which allows them to perform more complex operations. Additionally, they have
multiple fast and small memory storage units embedded inside the processors'
chip called registers.

¢ Processors support many instruction types other than arithmetic instructions,
such as changing the execution flow based on certain conditions.

e Processors are able to communicate with other devices (such as speakers, mics,
hard disks, graphics card, and so on).

Armed with such features in conjunction with great flexibility, processors became the go-to
smart machines for technologies such as Al, machine learning, and others. In the following
sections, we will explore these features and later will dive deeper into different assembly
languages and how these features are manifested in these languages' instruction set.

Registers

As most of the processors have access to a huge memory space storing billions of values, it
takes longer for the processor to access the data (and it gets complex, as we will see later).
So, to speed up the processor operations, they contain small and fast internal memory
storage units called registers.

Registers are built into the processor chip and are able to store the immediate values that
are needed while performing calculations and data transfer from one place to another.

[10]
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Registers may have different names, sizes, and functions, depending on the architecture.
Here are some of the types that are widely used:

¢ General data registers: General data registers are registers that are used to save
values or results from different arithmetic and logical operations.

¢ Stack and frame pointers: These are registers that are used to point to the
beginning and the end of the stack.

e Instruction pointer/program counter: The instruction pointer is used to point to
the start of the next instruction to be executed by the processor.

Memory

Memory plays an important role in the development of all smart devices that we see
nowadays. The ability to manage lots of values, text, images, and videos on a fast and
volatile memory allows processors to process more information and display graphical
interfaces in 3D and virtual reality.

Virtual memory

In modern operating systems, whether they are 32-bit, 64-bit, or whatever the size of the
physical memory, the operating system allocates a fixed size, isolated virtual memory (in
which its pages are mapped to the physical memory pages) for each application to secure
the operating system's and the other applications' data.

Each application only has the ability to access their own virtual memory. They have the
ability to read, write, or execute instructions in their virtual memory pages. Each virtual
memory page has a set of permissions assigned to it that represent the type of operations
that the application is allowed to execute on this page. These permissions are read, write,
and execute. Additionally, multiple permissions can be assigned to each memory page.

For an application to access any stored value inside a memory address, it needs a virtual
address, which is basically the address of where this value is stored in memory.

[11]
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Despite knowing the virtual address, access can be hindered by another issue, which is
storing this virtual address. The size of the virtual address in 32-bit systems is 4 bytes and
in 64-bit systems is it 8 bytes. This means we need to allocate another space in memory to
store that virtual address. For this new space in memory, we will need to store its own
memory address in another memory space that will lead us to an infinite loop, as shown in
the following figure:

0x00000000 0x00000000 0x00000000

0x00020000
Y = 0x00010000 |

0x00010000 0x00010000

OxFFFFFFFF OxFFFFFFFF OxFFFFFFFF

Figure 1: Virtual memory addresses

To solve this condition, multiple solutions are used nowadays, and in the next section, we
will cover one of them, which is the stack.

Stack

Stack literally means a pile of objects. In computer science, a stack is basically a data
structure that helps to save different values in memory with the same size in a pile
structure using the principle of Last in First Out (LIFO).

A stack is pointed to by two registers (the frame pointer points to its top and the stack
pointer points to its bottom).

A stack is common between all known assembly languages and it has several functions. For
example, it may help in solving mathematical equations, such as X =5 + 6*2 + 7(4 + 6), by
storing each calculated value and pushing each one in the stack, and later pop ping (or
pulling) them back to calculate the sum of all of them and saving them in variable x.

[12]
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It is also commonly used to pass arguments (especially if there are a lot of them) and store
local variables.

A stack is also used to save the return addresses just before calling a function or a
subroutine. So, after this routine finishes, it pops the return address back from the top of
the stack and returns it to where it was called from to continue the execution.

While the stack pointer is generally pointing to the current top of the stack, the frame
pointer is keeping the address of the top of the stack before the subroutine call, so it can be
easily restored after it is returned.

Branches, loops, and conditions

The second feature that processors have is the ability to change the execution flow of a
program based on a given condition. In every assembly language, there are multiple
comparison instructions and flow control instructions. The flow control instructions can be
divided into the following categories:

¢ Unconditional jump: This is a type of instruction that forcefully changes the flow
of the execution to another address (without any given condition).

¢ Conditional jump: This is like a logical gate that switches to another branch
based on the given condition (such as equal to zero, greater than, or lower than),
as shown in the following figure:

_code start:
mov r0, #2
mov rl, #2
add ro, rO, r1
cmp r0, #4
beq _true block
v . v
add 11, #5 Hfg/efb'o“r Lo
b func2 bx r !

Figure 2: An example of a conditional jump

e Call: This changes the execution to another function and saves the return address
in the stack.

[13]
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Exceptions, interrupts, and communicating with
other devices

In assembly language, communication with different hardware devices is done through
what's called interrupts.

An interrupt is a signal to the processor sent by the hardware or software indicating that
there's something happening or there is a message to be delivered. The processor suspends
its current running process, saving its state, and executes a function called an interrupt
handler to deal with this interrupt. Interrupts have their own notation and are widely used
to communicate with hardware for sending requests and dealing with their responses.

There are two types of interrupts. Hardware interrupts are generally used to handle
external events when communicating with hardware. Software interrupts are caused by
software, usually by calling a particular instruction. The difference between an interrupt
and an exception is that exceptions take place within the processor rather than externally.
An example of an operation generating an exception can be a division by zero.

Assembly languages

There are two big groups of architectures defining assembly languages that we will cover in
this section, and they are Complex Instruction Set Computer (CISC) and Reduced
Instruction Set Computer (RISC).

CISC versus RISC

Without going into too many details, the main difference between CISC assemblies, such as
Intel IA-32 and x64, and RISC assembly languages associated with architectures such as
ARM, is the complexity of their instructions.

CISC assembly languages have more complex instructions. They focus on completing tasks
using as few lines of assembly instructions as possible. To do that, CISC assembly
languages include instructions that can perform multiple operations, such as mul in Intel
assembly, which performs data access, multiplication, and data store operations.
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In the RISC assembly language, assembly instructions are simple and generally perform
only one operation each. This may lead to more lines of code to complete a specific task.
However, it may also be more efficient, as this omits the execution of any unnecessary
operations.

Types of instructions

In the following sections, we will cover the main structure of each assembly language, the
three basic types of assembly instructions, and how they are translated into each of these
languages:

¢ Data manipulation:
¢ Arithmetic manipulation

¢ Logic and bit manipulation
e Shifts and rotations
e Data transfers:
¢ Transfers between memory and registers
¢ Transfers between registers
¢ Execution of flow control:
¢ Jumps or calls
e Branches based on a condition

Becoming familiar with x86 (IA-32 and x64)

Intel x86 (IA-32 and x64) is the most common architecture used in PCs and is powering
many servers, so there is no surprise that most of the malware samples we have at the
moment are supporting it. x86 is a CISC architecture, and it includes multiple complex
instructions in addition to simple ones. In this section, we will introduce the most common
of them, along with how compilers take advantage of them in their calling conventions.

[15]
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Registers

Here is a table showing the relationship between registers in IA-32 and x64 architectures:

4 bytes 2 bytes

rax eax ax al, ah
rcx ecx CX cl, ch
rax edx dx dl, dh
rox ebx bx bl , bh
rsp esp sp spl*
rbp ebp bp bpl*
rsi esi si sil*
rdi edi di dil*
r8-r15 r8d-r15d* r8w-r15w* r8b-r15b*

Figure 3: Registers used in the x86 architecture

r8 to r15 are available only in x64 and not in IA-32, and sp1, bpl, sil,
and dil can be accessed only in x64.

The first four registers (rax, rbx, rcx, and rdx) General-Purpose Registers (GPRs), but
some of them have the following special use for certain instructions:

e rax/eax: This is used to store information and it's a special register for some
calculations

e rcx/ecx: This is used as a counter register in loop instructions
e rdx/edx: This is used in division to return the modulus

In x64, the registers from r8 to r15 are also GPRs that were added to the available GPRs.
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The rsp/esp register is used as a stack pointer that points to the top of the stack. It moves
when there's a value getting pushed up, or down, when there's a value getting pulled out
from the stack. The rbp/ebp register is used as a frame pointer, which means it points to the
bottom of the stack and it's helpful for the function's local variable, as we will see later in
this section. In addition to this, rbp/ebp is sometimes used as a GPR for storing any kind of
data.

rsi/esi and rdi/edi are used mostly to define the addresses when copying a group of
bytes in memory. The rsi/esi register always plays the role of the source and the rdi/edi
register plays the role of the destination. Both registers are non-volatile and are also GPRs .

Special registers

There are two special registers in Intel assembly and they are as follows:

e rip/eip: This is an instruction pointer that points to the next instruction to be
executed. It cannot be accessed directly but there are special instructions to access
it.

e rflags/eflags/flags: This register contains the current state of the processor.
Its flags are affected by the arithmetic and logical instructions (they also compare
instructions such as cmp and test), and it's used with conditional jumps and
other instructions as well. Here are the most common flags:

e Carry flag (CF): This is when an arithmetic operation goes out of
bounds; look at the following operation:

mov al, FFh ;al = OxFF & CF = 0
add al, 1 ;al = 0 & CF =1

e Zero flag (ZF): This flag is set when the arithmetic or a logical
operation's result is zero. This could also be set with compare
instructions.

e Sign flag (SF): This flag indicates that the result of the operation is
negative.

e Overflow flag (OF): This flag indicates that an overflow occurred
in an operation, leading to a change of the sign (only on signed
numbers), as follows:

mov cl, 7Fh ;cl = 0x7F (127) & OF = 0
inc cl ;cl = 0x80 (-128) & OF = 1

[17]
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There are other registers as well, such as MMX and FPU registers (and instructions to work
them) but we won't cover them in this chapter.

The instruction structure

For Intel x86 assembly (IA-32 or x64), the common structure of its instructions is opcode,
dest, and src.

Let's get deeper into them.

opcode

opcode is the name of the instruction. Some instructions have only opcode without any
dest or src such as the following:

Nop, pushad, popad, movsb

pushad and popad are not available in x64.

dest

dest represents the destination or where the result of the calculations will be saved, as well
as becoming part of the calculations themselves like this:

add eax, ecx ;eax = (eax + ecx)
sub rdx, rcx ;rdx = (rdx - rcx)

Also, it could play a role of a source and a destination with some opcode instructions that
take only dest without a source:

inc eax
dec ecx

Or, it could be only the source, such as these instructions that save the value to the stack
like this:

push rdx
pop rcx

[18]
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dest could look like the following:

® REG: A register such as eax and edx.
e r/m: A place in memory such as the following;:
DWORD PTR [00401000h]

BYTE PTR [EAX + 00401000h]
WORD PTR [EDX*4 + EAX+ 30]

e A value in the stack (used to represent local variables), such as the following:

DWORD PTR [ESP+4]
DWORD PTR [EBP-8]

Src

src represents the source or another value in the calculations, but it doesn't save the results
afterward. It may look like this:

e REG: For instance, add rcx and r8
e r/m: For instance, add ecx and dword ptr [00401000h]
e imm: An immediate value such as mov eax and 00100000h

The instruction set

Here, we will cover the different types of instructions that we listed in the previous section.

Data manipulation instructions

Some of the arithmetic instructions are as follows:

Instruction Structure Description
dd, d
add/sub @ /Sik;c est, dest = dest + src/dest = dest - src
inc/dec inc/dec dest dest = dest + 1l/dest = dest - 1
mul mul src (Unsigned multiply) rdx:rax = rax* src
, ) rdx:rax/src (returns the result in rax and the
div div src

remainder/modulus in rdx)

[19]
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Additionally, for logic and bits manipulation, they are like this:

Instruction Structure Description
dest = dest & src/dest = dest | src/dest
or/and/xor| or/and/xor dest,or src B de/st N sre /

not not dest

dest = !dest (the bits are flipped)

And, lastly, for shifts and rotations

they are like this:

Instruction Structure

Description

shl/shr dest, imm, or cx
(the dest register's

dest = dest << src/dest = dest >> src
(shifts the dest register's bits to the left or the

shl/sh . C 1. . .
fohz maximum number of bits | right, which is the same effect as multiplying or
such as 32 or 64) dividing by two src times)
hl/shr dest, imm, or . .
rol/ror |° /shr dest, imn, Or cx Rotates the dest register's bits left or right

(same as shl and shr)

Data transfer instructions
There's a mov instruction, which copies a value from src to dest. This instruction has
multiple forms, as we can see in this table:

Instruction Structure

Description

mov mov dest Or src

dest = src

src is smaller than dest (src is 16-bits and
dest is 32-bits)

movsx/movzx|movsx/movzx dest Or src .. L.
movzx: Sets the remaining bits in dest to zero

movsx: Preserves the sign of the src value

Other instructions related to stack are like this:

Instruction Structure

Description

push/pop |push/pop dest

Pushes the value on to the top the stack (esp = esp -4)/

pulls the value out of the stack (esp = esp + 4)

pushad/popad| pushad/popad

Saves all registers to the stack/pulls out all registers from
the stack (in x86 only)

[20]
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For string manipulation, they are like this:

Instruction Structure Description

lodsb/lodsw/lodsd/lodsqg|lodsb/lodsw/lodsd/lodsqg Lf(;i?j i:}i;:jfﬁfg’:bgjgg}iggts

stosb/stosw/stosd/stosqg|stosb/stosw/stosd/stosg St?liersgb}:;,fflzis;i}3;/;7::;/8;2:%

movsb/movsw/movsd/movsglmovsb/movsw/movsd/movsg Copyfjfrﬁti’sik;}gzsi’ fobgéeis’/ggi bytes

Flow control instructions

Some of the unconditional redirections are as follows:

Instruction Structure Description

jmp <relative address>

. . The relative address is calculated from the start of
Jmp jmp DWORD/OWORD ptr the next instruction after jmp to the destination
[Absolute Address]
call <relative address>
call call DWORD/QWORD ptr

[Absolute Address]

Same as jmp but it saves the return address in the
stack

Pulls the return address from the stack, cleans the

ret/retn ret imm stack from the pushed arguments, and jumps to
that address

Some of the conditional redirections are as follows:

Instruction Structure Description
) T jz/jnz <relative .. . . .
nz/jz/jb/ja Similar to jmp, but jumps based on a condition
inz/jz/3b/3 addresss> Jmp, but jump
loo loop <relative Similar to jmp, but it decrements rcx/ecx and jumps if it
P address> didn't reach zero (uses rcx/ecx as a loop counter)
rep is a prefix that is used with string instructions; it
rep opcode dest P P g . .
rep . decrements rcx/ecx, and repeats the instruction until
or src (if needed)
rcx/ecx reaches zero

[21]
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Arguments, local variables, and calling
conventions (in x86 and x64)

There are multiple ways in which the compilers represent functions, calls, local variables,
and more. We will not be covering all of them, but we will be covering some of them. We
will cover standard call (stdcall), which is only used in x86, and then we will be covering
the differences between the other calls and stdcall.

stdcall

The stack, rsp/esp, and rbp/ebp registers do most of the work when it comes to arguments
and local variables. The call instruction saves the return address at the top of the stack
before transferring the execution to the new function, and the ret instruction at the end of
the function returns the execution back to the caller function using the return address saved
in the stack.

Arguments

For stdcall, the arguments are also pushed in the stack from the last argument to the first
like this:

Push Arg02
Push Arg01l
Call FuncOl

In the call function, the arguments can be accessed by rsp/esp but keeping in mind how
many values have been pushed to the top of the stack through time with something like
this:

mov eax, [esp + 4] ;Arg0Ol
push eax
mov ecx, [esp + 8] ; Arg0l keeping in mind the previous push

[22]
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In this case, the value located at the address specified by the value inside the square
brackets is transferred. Fortunately, modern static analysis tools, such as IDA Pro, can
detect which argument is being accessed in each instruction, as in this case.

The most common way to access arguments, as well as local variables, is by using rbp/ebp.
First, the called function needs to save the current rsp/esp in rbp/ebp register and then
access them this way:

push ebp
mov ebp, esp

mov ecx, [ebp + 8] ;Arg0l
push eax
mov ecx, [ebp + 8] ;still Arg0l (no changes)

And, at the end of the called function, it returns back the original value of rbp/ebp and the
rsp/esp like this:

mov esp, ebp

pop ebp
ret

As it's a common function epilogue, Intel created a special instruction for it, which is
leave, so it became this:

leave
ret

Local variables

For local variables, the called function allocates space for them by shifting the
rsp/esp instruction up. To allocate space for two variables of four bytes each, the code will
be this:

push ebp
mov ebp, esp
sub esp, 8

[23]
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Additionally, the end of the function will be this:

mov ebp, esp

Variable EBP-C

& ESP

Variable EBP-8

Variable EBP-4

Variable EBP-C

Variable EBP-8

Variable EBP-4

pop ebp
ret
BEFORE PUSH EBP MOV EBR, ESP
EBP [— ESP EBP [— ESP=EBP
Stack ltem <«— Esp Stack Item Stack Item
Stack ltem «— EBP Stack Item [«— EBP Stack Item
SUB ESR, 0x0C MOV ESFR, EBP POP EBP

Variable EBP-C

Variable EBP-8

Variable EBP-4

EBP [«— EBP EBP [¢— ESP=EBP EBP
Stack Iltem Stack ltem Stack ltem «— EsP
Stack ltem Stack ltem Stack ltem «— EBP

Figure 4: An example of a stack change at the beginning and at the end of the function

Additionally, if there are arguments, the ret instruction cleans the stack given the number
of bytes to pull out from the top of the stack like this:

ret 8 ;2 Arguments, 4 bytes each

cdecl

cdecl (which stands for ¢ declaration) is another calling convention that was used by
many C compilers in x86. It's very similar to stdcall, with the only difference being that the
caller cleans the stack after the callee function (the called function) returns like this:

Caller:
push Arg02
push Arg0O1
call Callee

add esp, 8 ;cleans the stack
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fastcall

The __fastcall calling convention is also widely used by different compilers, including
Microsoft C++ compiler and GCC. This calling convention passes the first two arguments in
ecx and edx, and pushes the remaining arguments in the stack. It's only used in x86 as
there's only one calling convention for x64.

thiscall

For object-oriented programming and for the non-static member functions (such as the
classes' functions), the C compiler needs to pass the address of the object whose attribute
will be accessed or manipulated using this function as an argument.

In GCC compiler, this call is almost identical to the cdec1 calling convention and it passes
the object address as a first argument. But in the Microsoft C++ compiler, it's similar to
stdcall and it passes the object address in ecx. It's common to see such patterns in some
object-oriented malware families.

The x64 calling convention

In x64, the calling convention is more dependent on the registers. For Windows, the caller
function passes the first four arguments to the registers in this order: rcx, rdx, r8, r9, and
the rest are pushed back to the stack. While for the other operating systems, the first six
arguments are usually passed to the registers in this order: rsi, rdi, rcx, rdx, r8, r9, and
the remaining to the stack.

In both cases, the called function cleans the stack after using ret imm, and this is the only
calling convention for these operating systems in x64.

Exploring ARM assembly

Most readers are probably more familiar with the x86 architecture, which implements the
CISC design, and may wonder—why do we actually need something else? The main
advantage of RISC architectures is that processors that implement them generally require
fewer transistors, which eventually makes them more energy and heat efficient and reduces
the associated manufacturing costs, making them a better choice for portable devices. We
start our introduction to RISC architectures with ARM for a good reason—at the moment,
this is the most widely used architecture in the world.
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The explanation is simple—processors implementing it can be found on multiple mobile
devices and appliances such as phones, video game consoles, or digital cameras, heavily
outnumbering PCs. For this reason, multiple IoT malware families and mobile malware
targeting Android and iOS platforms have payloads for ARM architecture; an example can
be seen in the following screenshot:

Taa s 53 ]| dd @ F@X|] >
| E— ] S— § S — ) S [

Regular funckion B9 Instruckion Daka Unexplored External svmbol

Ewave. B | B rexve. 0 | B ot [0 | Hen. 0 | B
EXPORT start
start

var 4C= -8wdl
var_24= -8x24
var_ 1= -8x1C
var_l4= -8xl4
var_C= -8xC

var_8= -8

var_4= -4

arg 8= @
FUNCTION CHUNMK AT @8816AE4 SIZE 80BBee7s BYTES
FUNCTION CHUNMK AT @8816EBC SIZE @@8B8218 BYTES

MOV R11, #a&

MOV LR, #8

LDR R1, [SP+arg_@],#4

MOV R2, 5P

5TR R2, [SP,#-4+arg_@]!

STR R@, [SP,#var_4]!

LDR R12, =.term_proc

STR R12, [SP,#4+var 8]!

LDR R@, =sub FG48

LDR R3, =.init_proc

B loc_16EBC

End of function start

100.00% |(79,56) [(535,405) [00000190 [00008190: start |{Synchronized wich

Figure 5: Disassembled IoT malware targeting ARM-based devices

Thus, in order to be able to analyze them, it is necessary to understand how ARM works
first.
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ARM originally stood for Acorn RISC Machine, and later for advanced RISC Machine.
Acorn was a British company considered by many as the British Apple, producing some of
the most powerful PCs of that time. It was later split into several independent entities with
Arm Holdings (currently owned by SoftBank Group) supporting and extending the current
standard.

There are multiple operating systems supporting it, including Windows, Android, iOS,
various Unix/Linux distributions, and many other lesser known embedded OSes. The
support for a 64-bit address space was added in 2011 with the release of the ARMv8
standard.

Overall, the following ARM architecture profiles are available:

¢ Application profiles (suffix A, for example, the Cortex-A family): This
implements a traditional ARM architecture and supports a virtual memory
system architecture based on a Memory Management Unit (MMU). These
profiles support both ARM and Thumb instruction sets (as discussed later).

* Real-time profiles (suffix R, for example, the Cortex-R family): This
implements a traditional ARM architecture and supports a protected memory
system architecture based on a Memory Protection Unit (MPU).

e Microcontroller profiles (suffix M, for example, the Cortex-M family): This
implements a programmers' model and is designed for integration into Field
Programmable Gate Arrays (FPGAs).

Each family has its own corresponding set of associated architectures (for example, the
Cortex-A 32-bit family incorporates ARMv7-A and ARMvS8-A architectures), which in turn
incorporate several cores (for example, ARMv7-R architecture incorporates Cortex-

R4, Cortex-R5, and so on).

Basics

Here, we will cover both the original 32-bit and the newer 64-bit architectures. There were
multiple versions released over time, starting from the ARMvl1. In this book, we will focus
on the recent versions of them.

ARM is a load-store architecture; it divides all instructions into the following two
categories:

e Memory access: Moves data between memory and registers
¢ Arithmetic Logic Unit (ALU) operations: Does computations involving registers
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ARM supports arithmetic operations for adding, subtracting, and multiplying, and some
new versions, starting from ARMvV7, also support division operations. It supports big-
endian order, and uses the little-endian format by default.

There are 16 registers visible at any time on the 32-bit ARM: R0-R15. This number is
convenient as it takes only 4 bits to define which register is going to be used. Out of them,
13 (sometimes referred to as 14 including R14 or R15, also R13) are general-purpose
registers: R13 and R15 each have a special function while R14 can take it occasionally. Let's
have alook at them in greater detail:

RO-R7: Low registers are the same in all CPU modes.

R8-R12: High registers are the same in all CPU modes except the Fast Interrupt
Request (FIQ) mode not accessible by 16-bit instructions.

R13 (also known as sp): Stack pointer—points to the top of the stack, and each
CPU mode has its own version of it. It is discouraged to use it as a GPR.

R14 (also known as LR): Link register—in user mode it contains the return
address for the current function, mainly when BL (Branch with Link) or

BLX (Branch with Link and eXchange) instructions are executed. It can also be
used as a GPR if the return address is stored on the stack. Each CPU mode has its
own version of it.

R15 (also known as PC): Program counter, points to the currently executed
command. It's not a GPR.

Altogether, there are 30 general-purpose 32-bit registers on most of the ARM architectures
overall, including the same name instances in different CPU modes.

Apart from these, there are several other important registers, as follows:

Current Program Status Register (CPSR): This contains bits describing a current
processor mode, a processor state, and some other values.

Saved Program Status Registers (SPSR): This stores the value of CPSR when the
exception is taken, so it can be restored later. Each CPU mode has its own version
of it, except the user and system modes, as they are not exception-handling
modes.

Application Program Status Register (APSR): This stores copies of the ALU
status flags, also known as condition code flags, and on later architectures, it also
holds the Q (saturation) and the greater than or equal to (GE) flags.
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The number of Floating-Point Registers (FPRs) for a 32-bit architecture may vary,
depending on the core, up to 32.

ARMVS (64-bit) has 31 general-purpose x0-x30 (R0-R30 notation can also be found) and 32
FPRs accessible at all times. The lower part of each register has the W prefix and can be
accessed as WO-W30.

There are several registers that have a particular purpose, as follows:

Name Size Description
XZR/WZR 64/32 bits, respectively Zero register
PC 64 bits Program counter
SP/WSP 64/32 bits, respectively Current stack pointer
ELR 64 bits Exception link register
SPSR 32 bits Saved processor state register

ARMVS defines four exception levels (EL0O-EL3), and each of the last three registers gets its
own copy of each of them; ELR and SPSR don't have a separate copy for ELO.

There is no register called x31 or Ww31; the number 31 in many instructions represents the
zero register, ZR (WZR/XZR). x29 can be used as a frame pointer (which stores the original
stack position), and X30 as a link register (which stores a return value from the functions).

Regarding the calling convention, R0-R3 on the 32-bit ARM and X0-X7 on the 64-bit ARM
are used to store argument values passed to functions R0-R1 and X0-X7 (and X8, also
known as xR indirectly) to hold return results. If the type of the returned value is too big to
fit them, then space needs to be allocated and returned as a pointer. Apart from this, R12
(32-bit) and x16-X17 (64-bit) can be used as intra-procedure-call scratch registers (by so-
called veneers and procedure linkage table code), R9 (32-bit) and x18 (64-bit) can be used as
platform registers (for OS-specific purposes) if needed, otherwise they are used the same
way as other temporaries.

As previously mentioned, there are several CPU modes implemented according to the
official documentation, as follows:

Operating mode Abbreviation|Description
name
Usual program execution state, used by most of the
User usr
programs
Fast interrupt fig Supports data transfer or channel process
Interrupt irg Used for general-purpose interrupt handling
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Supervisor svc Protected mode for the OS

Abort abt Is entered after a data or instruction Prefetch Abort
Privileged user mode for the OS. Can be entered

System Sys only from another privileged mode by modifying the
mode bit of the CPSR

Undefined und Is entered when an undefined instruction is executed

Instruction sets

There are several instruction sets available for ARM processors: ARM and Thumb. A
processor that is executing ARM instructions is said to be operating in the ARM state and
vice versa. ARM processors always start in the ARM state, and then a program can switch
to the Thumb state by using a BX instruction. Thumb Execution Environment (ThumbEE)
was introduced relatively recently in ARMv7 and is based on Thumb, with some changes
and additions to facilitate dynamically generated code.

ARM instructions are 32 bits long (for both AArch32 and AArch64), while Thumb and
ThumbEE instructions are either 16 or 32 bits long (originally, almost all Thumb
instructions were 16-bit, while Thumb-2 introduced a mix of 16- and 32-bit instructions).

All instructions can be split into the following categories according to the official
documentation:

Instruction Group Description Examples
B: Branch
These instructions are used to: BX: Branch and exchange instruction
« Follow subroutines set
¢ Go forward and backwards for CBZ: Compare against zero and

Branch and control conditional structures and loops branch

¢ Make instructions conditional

: IT: If-then, makes up to four
* Switch between ARM and Thumb states

following instructions conditional

(32-bit Thumb)
Operate with GPRs, support data [ADD: Add
Data processing |movement between registers MOV: Move data
and arithmetic operations MUL: Multiply

LDR: Load register (1 byte)
Register load and [Move data between registers and [STRB: Store register (1 byte)
store memory Swp: Swap register and memory
content
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Instruction Group Description Examples
STM/LDM: Store and load multiple
Multiple register |Load or store multiple registers to and from memory
load and store GPRs from or to memory PUSH/POP: Push and pop registers to

and from the stack

MRS: Move the contents of the CPSR

Status register Moye the content of a status or SI?SR to.a GPR MSR; load
ACCess register (CPSR or SPSR) to or specified fields of the CPSR or SPSR
from a GPR with an immediate value or another
register's value
Extend the ARM architecture;
C enable control of the system cpp/cpp2: Coprocessor data
oprocessor . .
control coprocessor registers operations
(CP15)

In order to interact with the OS, syscalls can be accessed using the Software Interrupt
(SWI) instruction, which was later renamed the Supervisor Call (SVC) instruction.

See the official ARM documentation (a link is provided later) to get the exact syntax for any
instruction. Here is an example of how it may look:

SVC{cond} #imm

The {cond} code in this case will be a condition code. There are several condition codes
supported by ARM, as follows:

e £0Q: Equal to

e NE: Not equal to

e Cs/us: Carry set or unsigned higher or both
e cC/L0: Carry clear or unsigned lower
e MI: Negative

e PL: Positive or zero

e vs: Overflow

e vC: No overflow

e HI: Unsigned higher

¢ Ls: Unsigned lower or both

¢ GE: Signed greater than or equal to

e LT: Signed less than

e GT: Signed greater than
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e LE: Signed less than or equal to
e AL: Always (normally omitted)

An imm value stands for the immediate value.

Basics of MIPS

Microprocessor without Interlocked Pipelined Stages (MIPS) was developed by MIPS
technologies (formerly MIPS computer systems). Similar to ARM, at first, it was a 32-bit
architecture with 64-bit functionality added later. Taking advantage of the RISC ISA, MIPS
processors are characterized by low power and heat consumption. They can often be found
in multiple embedded systems such as routers and gateways, and several video game
consoles such as Sony PlayStation also incorporated them. Unfortunately, due to the
popularity of this architecture, the systems implementing it became a target of multiple IoT
malware families. An example can be seen in the following screenshot:

260]> VV @ entry® (nodes 3 edges 3 zoom 100%) BB-NORM mouse
[0x400260]

100
(int argl, int arg_oh, );
; arg
; var
; var
3 var
; arg

move :
bal ©x40026cC

Figure 6: IoT malware targeting MIPS-based systems

[32]



A Crash Course in CISC/RISC and Programming Basics Chapter 1

As the architecture evolved, there were several versions of it, starting from MIPS I and
going up to V, and then several releases of the more recent MIPS32/MIPS64. MIPS64
remains backward-compatible with MIPS32. These base architectures can be

further supplemented with optional architectural extensions called Application Specific
Extension (ASE) and modules to improve performance for certain tasks that are generally
not used by the malicious code much. MicroMIPS32/64 are supersets of MIPS32 and
MIPS64 architectures respectively, with almost the same 32-bit instruction set and
additional 16-bit instructions to reduce the code size. They are used where code
compression is required, and are designed for microcontrollers and other small embedded
devices.

Basics

MIPS supports bi-endianness. The following registers are available:

e 32 GPRs r0-r31, 32-bit size on MIPS32 and 64-bit size on MIPS64.

¢ A special-purpose PC register that can be affected only indirectly by some
instructions.

e Two special-purpose registers to hold the results of integer multiplication and
division (HI and LO). These registers and related instructions were removed
from the base instruction set in the release of 6 and now exist in the Digital
Signal Processor (DSP) module.

The reason behind 32 GPRs is simple—MIPS uses 5 bits to specify the register, so this way,
we can have a maximum of 25 = 32 different values. Two of the GPRs have a particular
purpose, as follows:

e Register r0 (sometimes referred to as $0 or $zero) is a constant register and
always stores zero, and provides read-only access. It can be used as a /dev/null

analog to discard the output of some operation, or as a fast source of a zero
value.

e r31 (also known as $ra) stores the return address during the procedure call
branch/jump and link instructions.

Other registers are generally used for particular purposes, as follows:

e r1 (also known as $at): Assembler is temporary—used when resolving pseudo-
instructions

e r2-r3 (also known as $v0 and $v1): Values—hold return function values

e r4-r7 (also known as $a0-$a3): Arguments—used to deliver function arguments
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e r8-r15 (also known as $t0-$t7/$a4-sa7 and $t4-st7): Temporaries—the first
four can also be used to provide function arguments in N32 and N64 calling
conventions (another 032 calling convention uses only r4-r7 registers;
subsequent arguments are passed on the stack)

® r16-r23 (also known as $s0-$s7): Saved temporaries—preserved across
function calls

e r24-r25 (also known as $t8-$t9): Temporaries

e r26-r27 (also known as $k0-$k1): Generally reserved for the OS kernel

e r28 (also known as $gp): Global pointer—points to the global area (data
segment)

e r29 (also known as $sp): Stack pointer

e 30 (also known as $s8 or $fp): Saved value/frame pointer—stores the original
stack pointer (before the function was called).

MIPS also has the following co-processors available:

e CP0: System control

e CP1: FPU

e CP2: Implementation-specific

e CP3: FPU (has dedicated COP1X opcode type instructions)

The instruction set

The majority of the main instructions were introduced in MIPS I and II. MIPS III introduced
64-bit integers and addresses, and MIPS IV and V improved floating-point operations and
added a new set to boost the overall efficacy. Every instruction there has the same
length—32 bits (4 bytes), and any instruction starts with an opcode that takes 6 bits. The
following three major instruction formats supported are R, I, and J:

I i ..
nstruction Syntax Description

category
Specifies three registers: an optional
shift amount f?eld (for shift anq These instructions are used when all
rotate instructions), and an optional .

R-type N the data values used are located in
function field (for control codes to rooisters
differentiate between instructions & )
sharing the same opcode).
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This group is used when the instruction
operates with a register and an
immediate value, for example, the ones
that involve memory operations to
store the offset value.

Ltvpe Specifies two registers and an
yp immediate value.

Has a jump target address after the

J-type opcode that takes the remaining bits. They are used to affect the control flow.

For the FPU-related operations, the analogous FR and FI types exist.

Apart from this, several other less common formats exist, mainly coprocessors and
extension-related formats.

In the documentation, registers usually have the following suffixes:

e Source (s)
e Target (t)
¢ Destination (d)

All instructions can be split into the following several groups depending on the
functionality type:

¢ Control flow—mainly consists of conditional and unconditional jumps and

branches:
e JR: Jump register (] format)

e BLTZ: Branch on less than zero (I format)
e Memory access—load and store operations:
¢ 1B: Load byte (I format)
o Su: Store word (I format)
e ALU—covers various arithmetic operations:
e ADDU: Add unsigned (R format)
e XOR: Exclusive or (R format)
e SLL: Shift left logical (R format)
e OS interaction via exceptions—interacts with the OS kernel:
e SYSCALL: System call (custom format)
e BREAK: Breakpoint (custom format)
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Floating-point instructions will have similar names for the same types of operations in most
cases, for example, ADD.S. Some instructions are more unique such as Check for Equal
(C.EQ.D).

As we can see here and later, the same basic groups can be applied to virtually any
architecture, and the only difference will be in the implementation. Some common
operations may get their own instructions to benefit from optimizations and, in this way,
reduce the size of the code and improve the performance.

As the MIPS instruction set is pretty minimalistic, the assembler macros called pseudo-
instructions also exist. Here are some of the most commonly used:

e ABS: Absolute value—translates to a combination of ADDU, BGEZ, and SUB
e BLT: Branch on less than—translates to a combination of SLT and BNE
e BGT/BGE/BLE: Similar to BLT

e LI/LA: Load immediate/address—translates to a combination of LUI and ORI or
ADDIU for a 16-bit LI

e MOVE: Moves the content of one register into another—translates to ADD/ADDIU
with a zero value
¢ NOP: No operation—translates to SLL with zero values

e NOT: Logical NOT—translates to NOR

Diving deep into PowerPC

PowerPC stands for Performance Optimization With Enhanced RISC—Performance
Computing and sometimes spelled as PPC. It was created in the early 1990s by the alliance
of Apple, IBM, and Motorola (commonly abbreviated as AIM). It was originally intended to
be used in PCs and was powering Apple products including PowerBooks and iMacs up
until 2006. The CPUs implementing it can also be found in game consoles such as Sony
PlayStation 3, XBOX 360, and Wii, and in IBM servers and multiple embedded devices,
such as car and plane controllers and even in the famous ASIMO robot. Later, the
administrative responsibilities were transferred to an open standards body, Power.org,
where some of the former creators remained members, such as IBM and Freescale. They
then separated from Motorola and were later acquired by NXP Semiconductors, as well as
many new entities. The OpenPOWER Foundation is a newer initiative by IBM, Google,
IBM, NVIDIA, Mellanox, and Tyan, which is aiming to facilitate collaboration in the
development of this technology.
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PowerPC was mainly based on IBM POWER ISA and, later, a unified Power ISA was
released, which combined POWER and PowerPC into a single ISA that is now used in
multiple products under a Power Architecture umbrella term.

There are plenty of IoT malware families that have payloads for this architecture.

Basics

The Power ISA is divided into several categories; each category can be found in a certain
part of the specification or book. CPUs implement a set of these categories depending on
their class; only the base category is an obligatory one.

Here is a list of the main categories and their definitions in the latest second standard:

¢ Base: Covered in Book I (Power ISA User Instruction Set Architecture) and Book I1
(Power ISA Virtual Environment Architecture)

e Server: Covered in Book III-S (Power ISA Operating Environment Architecture —
Server Environment)

e Embedded: Book III-E (Power ISA Operating Environment Architecture — Embedded
Environment)

There are many more granular categories covering aspects such as floating-point operations
and caching for certain instructions.

Another book, Book VLE (Power ISA Operating Environment Architecture — Variable Length
Encoding (VLE) Instructions Architecture), defines alternative instructions and definitions
intended to increase the density of the code by using 16-bit instructions as opposed to the
more common 32-bit ones.

Power ISA version 3 consists of three books with the same names as Books I to III of
the previous standard, without distinctions between environments.

The processor starts in the big-endian mode but can switch by changing a bit in the MSR
(Machine State Register), so that bi-endianness is supported.
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There are many sets of registers documented in Power ISA, mainly grouped around either
an associated facility or a category. Here is a basic summary of the most commonly used
ones:

¢ 32 GPRs for integer operations, generally used by their number only (64-bit)
e 64 Vector Scalar Registers (VSRs) for vector operations and floating-point
operations:
e 32 Vector Registers (VRs) as part of the VSRs for vector operations
(128-bit)
¢ 32 FPRs as part of the VSRs for floating-point operations (64-bit)

e Special purpose fixed-point facility registers, such as the following:
¢ Fixed-point exception register (XER)—contains multiple status
bits (64-bit)
¢ Branch facility registers:
¢ Condition Register (CR)—consists of 8 4-bit fields, CR0-CR7,
involving things like control flow and comparison (32-bit)
¢ Link Register (LR)—provides the branch target address (64-bit)
¢ Count Register (CTR)—holds a loop count (64-bit)
e Target Access Register (TAR)—specifies branch target address
(64-bit)
e Timer facility registers:
e Time Base (TB)—is incremented periodically with the defined
frequency (64-bit)
e Other special purpose registers from a particular category, including the
following;:
¢ Accumulator (ACC) (64-bit)—the Signal Processing Engine (SPE)
category

Generally, functions can pass all arguments in registers for non-recursive calls; additional
arguments are passed on the stack.
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The instruction set

Most of the instructions are 32-bit size, only the Variable-Length Encoding (VLE) group
is smaller in order to provide a higher code density for embedded applications. All
instructions are split into the following three categories:

e Defined: All of the instructions are defined in the Power ISA books.

e Illegal: Available for future extensions of the Power ISA. An attempt to execute
them will invoke the illegal instruction error handler.

¢ Reserved: Allocated to specific purposes that are outside the scope of the Power
ISA. An attempt to execute them will either perform an implemented action or
invoke the illegal instruction error handler if the implementation is not available.

Bits 0 to 5 always specify the opcode, and many instructions also have an extended opcode.
A large number of instruction formats are supported; here are some examples:

¢ I-FORM [OPCD+LI+AA+LK]
e B—FORM [OPCD+BO+BI+BD+AA+LK]

Each instruction field has its own abbreviation and meaning; it makes sense to consult the
official Power ISA document to get a full list of them and their corresponding formats. In
the case of the previously mentioned I-FORM, they are as follows:

e opPCD: Opcode

LI: Immediate field used to specify a 24-bit signed two's complement integer
AA: Absolute address bit

LK: Link bit affecting the link register

Instructions are also split into groups according to the associated facility and category,
making them very similar to registers:

e Branch instructions:
® b/ba/bl/bla: Branch

® bc/bea/bel/bela: Branch conditional
e sc: System call
e Fixed-point instructions:
¢ 1bz: Load byte and zero
e stb: Store byte
e addi: Add immediate

e ori: Or immediate
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e Floating-point instructions:
e fmr: Floating move register

¢ 1fs: Load floating-point single
e stfd: Store floating-point double

e SPE instructions:
e brinc: Bit-reversed increment

Covering the SuperH assembly

SuperH, often abbreviated as SH, is a RISC ISA developed by Hitachi. SuperH went
through several iterations, starting from SH-1 and moving up to SH-4. The more recent
SH-5 has two modes of operation, one of which is identical to the user-mode instructions of
SH-4, while another, SHmedia, is quite different. Each family takes its own market niche:

e SH-1: Home appliances

SH-2: Car controllers and video game consoles such as Sega Saturn

SH-3: Mobile applications such as car navigators

SH-4: Car multimedia terminals and video game consoles such as Sega
Dreamcast

SH-5: High-end multimedia applications

Microcontrollers and CPUs implementing it are currently produced by Renesas Electronics,
a joint venture of the Hitachi and Mitsubishi Semiconductor groups. As IoT malware
mainly targets SH-4-based systems, we will focus on this SuperH family.

Basics

In terms of registers, SH-4 offers the following;:

¢ 16 general registers R0-R15 (32-bit)

e 7 control registers (32-bit):
¢ Global Base Register (GBR)

Status Register (SR)

Saved Status Register (SSR)
Saved Program Counter (SPC)
Vector Base Counter (VBR)

[40]



A Crash Course in CISC/RISC and Programming Basics Chapter 1

¢ Saved General Register (SGR) 15
¢ Debug Base Register (DBR) (only from the privileged mode)
e 4 system registers (32-bit):
¢ MACH/MACL: Multiply-and-accumulate registers
¢ PR: Procedure register
e PC
¢ FPSCR: Floating-point status/control register
e 32 FPU registers FR0O-FR15 (also known as DRO/2/4/... or FV0/4/...)and
XF0-XF15 (also known as XD0/2/4/. . . or XMIRX); two banks of either 16 single-

precision (32-bit) or eight double-precision (64-bit) FPRs and FPUL (floating-
point communication register) (32-bit)

Usually, R4-R7 are used to pass arguments to a function with the result returned in RO. R8-
R13 are saved across multiple function calls. R14 serves as the frame pointer and R15 as a
stack pointer.

Regarding the data formats, in SH-4, a word takes 16 bits, a long word takes 32 bits, and a
quad word takes 64 bits.

Two processor modes are supported: user mode and privileged mode. SH-4
generally operates in the user mode and switches to the privileged mode in case of an
exception or an interrupt.

The instruction set

The SH-4 features instruction set is upward-compatible with the SH-1, SH-2, and SH-3
families. It uses 16-bit fixed length instructions in order to reduce the program code
size. Except for BF and BT, all branch instructions and the RTE (return from exception
instruction) implement so-called delayed branches, where the instruction following the
branch is executed before the branch destination instruction.

All instructions are split into the following categories (with some examples):
¢ Fixed-point transfer instructions:

e MOV: Move data (or particular data types specified)
® SWAP: Swap register halves

e Arithmetic operation instructions:
e SUB: Subtract binary numbers

e cMp/EQ: Compare conditionally (in this case on equal to)
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¢ Logic operation instructions:
e AND: AND logical

e XOR: Exclusive or logical
Shift instructions:

e ROTL: Rotate left

e sSHLL: Shift logical left

Branch instructions:
e BF: Branch if false

e JMP: Jump (unconditional branch)

System control instructions:
¢ 1DC: Load to control register

e STS: Store system register

Floating-point single-precision instructions:
e FMOV: Floating-point move

Floating-point double-precision instructions:
e FABS: Floating-point absolute value

Floating-point control instructions:
e 1DS: Load to FPU system register

Floating-point graphics acceleration instructions
e FIPR: Floating-point inner product

Working with SPARC

Scalable Processor Architecture (SPARC) is a RISC ISA that was originally developed by
Sun Microsystems (now part of the Oracle corporation). The first implementation was used
in Sun's own workstation and server systems. Later, it was licensed to multiple other
manufacturers, one of them being Fujitsu. As Oracle terminated SPARC Design in 2017, all
future development continued with Fujitsu as the main provider of SPARC servers.

Several fully open source implementations of SPARC architecture exist. Multiple operating
systems are currently supporting it, including Oracle Solaris, Linux, and BSD systems, and
multiple IoT malware families have dedicated modules for it as well.
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Basics

According to the Oracle SPARC Architecture documentation, the particular
implementation may contain between 72 and 640 general-purpose 64-bit R registers.
However, only 31/32 GPRs are immediately visible at any one time; 8 are global
registers, R[0] to R[7] (also known as g0-g7), with the first register, g0, hardwired to
0; and 24 are associated with the following register windows:

e Eightin registers in[0]-in[7] (R[24]-R[31]): For passing arguments and
returning results

e Eight local registers 1ocal[0]-1local[7] (R[16]-R[23]): For retaining local
variables

. Eight out registers out [0]~out [7] (R[8]-R[15]): For passing arguments and
returning results

The CALL instruction writes its own address into the out [7] (R[15]) register.

In order to pass arguments to the function, they must be placed in the out registers and,
when the function gets control, it will access them in its in registers. Additional arguments
can be provided through the stack. The result is placed to the first in register, which then
becomes the first out register when the function returns. The SAVE and RESTORE
instructions are used in this switch to allocate a new register window and later restore the
previous one, respectively.

SPARC also has 32 single-precision FPRs (32-bit), 32 double-precision FPRs (64-bit), and 16
quad-precision FPRs (128- bit), some of which overlap.

Apart from that, there are many other registers that serve specific purposes, including the
following;:

¢ FPRS: Contains the FPU mode and status information

¢ Ancillary state registers (ASR 0, ASR 2-6, ASR 19-22, and ASR 24-28 are not
reserved): Serve multiple purposes, including the following:
e ASR 2: Condition Codes Register (CCR)

e ASR5: PC
e ASR 6: FPRS
¢ ASR 19: General Status Register (GSR)
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¢ Register-Window PR state registers (PR 9-14): Determine the state of the register
windows including the following:
e PR 9: Current Window Pointer (CWP)

¢ PR 14: Window State (WSTATE)

¢ Non-register-Window PR state registers (PR 0-3, PR 5-8 and PR 16): Visible only
to software running in the privileged mode

32-bit SPARC uses big-endianness, while 64-bit SPARC uses big-endian instructions but can
access data in any order. SPARC also uses a notion of traps that implement a transfer of
control to privileged software using a dedicated table that may contain the first 8
instructions (32 for some frequently used traps) of each trap handler. The base address of
the table is set by software in a Trap Base Address (TBA) register.

The instruction set

The instruction from the memory location, which is specified by the PC, is fetched and
executed, and then new values are assigned to the PC and the Next Program Counter
(NPC), which is a pseudo-register.

Detailed instruction formats can be found in the individual instruction descriptions.
Here are the basic categories of instructions supported with examples:

e Memory access:
e 1DUB: Load unsigned byte

e ST: Store
¢ Arithmetic/logical/shift integers:
e ADD: Add
e SLL: Shift left logical
¢ Control transfer:
¢ BE: Branch on equal
e JMPL: Jump and link
e CcALL: Call and link
e RETURN: Return from the function

e State register access:
e WRCCR: Write CCR
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Floating-point operations:
e FOR: Logical or for F registers

Conditional move:
e MOVcce: Move if the condition is True for the selected condition

code (cc)

Register window management:
e SAVE: Save caller's window

o FLUSHW: Flush register Windows

Single Instruction Multiple Data (SIMD) instructions:
e FPSUB: Partitioned integer subtraction for F registers

Moving from assembly to high-level
programming languages

Developers mostly don't write in assembly. Instead, they write in higher-level languages,
such as C or C++, and the compiler converts this high-level code into a low-level
representation in assembly language. In this section, we will look at different code blocks
represented in the assembly.

Arithmetic statements

Now we will look at different C statements and how they are represented in the assembly.
We will take Intel IA-32 as an example and the same concept applies to other assembly
languages as well:

e X = 50 (assuming 0x00010000 is the address of the X variable in memory):

mov eax, 50
mov dword ptr [00010000h],eax

e X = Y+50 (assuming 0x00010000 represents X and 0x00020000 represents Y):
mov eax, dword ptr [00020000h]

add eax, 50
mov dword ptr [00010000h],eax
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e X = Y+ (50*2):

mov eax, dword ptr [00020000h]

push eax ;save Y for now

mov eax, 50 ;do the multiplication first
mov ebx, 2

imul ebx ;the result is in edx:eax

mov ecx, eax

pop eax ;gets back Y value

add eax,ecx

mov dword ptr [00010000h],eax

e X = Y+ (50/2):

mov eax, dword ptr [00020000h]

push eax ;save Y for now

mov eax, 50

mov ebx, 2

div ebx ;the result in eax, and the remainder is in edx
mov ecx, eax

pop eax

add eax,ecx

mov dword ptr [00010000h],eax

e X = Y+ (50 % 2) (% represents the remainder or the modulus):

mov eax, dword ptr [00020000h]
push eax ;save Y for now

mov eax, 50

mov ebx, 2

div ebx ;the reminder is in edx
mov ecx, edx

pop eax

add eax,ecx

mov dword ptr [00010000h],eax

Hopefully, this explains how the compiler converts these arithmetic statements to assembly
language.
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If conditions

Basic If statements may look like this:

e If (X == 50) (assuming 0x0001000 represents the X variable):

mov eax, 50
cmp dword ptr [00010000h],eax

e If (X | 00001000b) (| represents the OR logical gate):

mov eax, 000001000b
test dword ptr [00010000h],eax

In order to understand the branching and flow redirection, let's take a look at the following
diagram to see how it's manifested in pseudocode:

IF..THEN..ELSE..ENDIF IF.. THEN..ENDIF
Test for some condition Test for some condition
v
Block 1
Block 1

]

\ 4

Block 2 —

Block 2

Block 3

Figure 7: Conditional flow redirection

[47]



A Crash Course in CISC/RISC and Programming Basics Chapter 1

To apply this branching sequence in assembly, the compiler uses a mix of conditional and
unconditional jmps, as follows:

e TF.. THEN.. ENDIEF:

cmp dword ptr [00010000h],50
jnz 3rd_Block ; if not true

Some Code

3rd_Block:
Some code

e TF.. THEN.. ELSE.. ENDIF:

cmp dword ptr [00010000h],50
jnz Else_Block ; if not true

éé&e code

565 4th_Block ;Jump after Else
Else_Block:

éé&e code

ééﬁ_Block:

Some code

While loop conditions

The while loop conditions are quite similar to i f conditions in terms of how they are
represented in assembly:

1st_Block:

cmp dword ptr [00010000h],50
While (X == 50){ jnz 2nd_Block ; if not true
} jmp 1st_Block

2nd_Block:
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1st_Block:

Do{ ...

}While (X == 50) Cmp dword ptr [00010000h], 50
Jz 1st_Block ; if true

Summary

In this chapter, we covered the essentials of computer programming and described
universal elements shared between multiple CISC and RISC architectures. Then, we went
through multiple assembly languages including the ones behind Intel x86, ARM, MIPS, and
others, and understood their application areas, which eventually shaped the design and
structure. We also covered the fundamental basics of each of them, learned the most
important notions (such as the registers used and CPU modes supported), got an idea of
how the instruction sets look, discovered what opcode formats are supported there, and
explored what calling conventions are used.

Finally, we went from the low-level assembly languages to their high-level representation
s3 in C or other similar languages, and became familiar with a set of examples for universal
blocks, such as if conditions and loops.

After reading this chapter, you should have the ability to read the disassembled code of
different assembly languages and be able to understand what high-level code it could
possibly represent. While not aiming to be completely comprehensive, the main goal of this
chapter is to provide a strong foundation, as well as a direction that you can follow in order
to deepen your knowledge before starting analysis on actual malicious code. It should be
your starting point for learning how to perform static code analysis on different platforms
and devices.

In chapter 2, Basic Static and Dynamic Analysis for x86/x64, we will start analyzing the
actual malware for particular platforms, and the instruction sets we have become familiar
with will be used as languages describing its functionality.
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Section 2: Diving Deep into
Windows Malware

With Windows remaining the most prevalent operating system for the PC, there is no
surprise that the vast majority of existing malware families are focused on this platform.
Moreover, a lot of attention and the number of high-profile actors led to Windows malware
featuring multiple diverse and sophisticated techniques not common to other systems.
Here, we will cover them in great detail and teach you how to analyze them using multiple
real-world examples. The following chapters are included in this section:

® Chapter 2, Basic Static and Dynamic Analysis for x86/x64
e Chapter 3, Unpacking, Decryption, and Deobfuscation

e Chapter 4, Inspecting Process Injection and API Hooking

e Chapter 5, Bypassing Anti-Reverse Engineering Techniques
e chapter 6, Understanding Kernel-Mode Rootkits



Basic Static and Dynamic
Analysis for x86/x64

In this chapter, we are going to cover the core fundamentals that you need to know in order
to analyze a 32-bit or a 64-bit malware in the Windows platform. We will cover the
Windows Portable Executable file header (PE header) and look at how it can help us
answer different incident handling and threat intelligence questions.

We will also walk through the concepts and the basics of static and dynamic analysis,
including process and threads, process creation flow, and WOW64 processes. At the end,
we will cover the debugging process, setting breakpoints, and alerting the program
execution.

This chapter will help you do the basic static and dynamic analysis of malware samples and
help you understand the theory and equip you with the practical knowledge. Additionally,
we will learn about the tools needed for malware analysis.

This chapter is divided into the following sections to facilitate the learning process:

e Working with the PE header structure
Static and dynamic linking

Using PE header information for static analysis

PE loading and process creation
¢ Dynamic analysis with OllyDbg/immunity debugger

Working with the PE header structure

When you start to perform basic static analysis on a file, your first valuable piece of
information will be the PE header. The PE header is basically a structure that any
executable Windows file follows.
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It keeps various information, such as supported systems, memory layout for sections
containing code and data (such as strings, pictures, and so on), and various metadata,
helping the system load and execute a file properly.

In this section, we will explore the PE header structure and learn how we can analyze a PE
file and read its information.

Why PE?
The portable executable structure or design was able to solve multiple issues that appeared
in previous structures, such as MZ for MS-DOS executables or the early stages of COM

structures. It represents a quite complete design for any executable file. Some of the
features of the PE structure are as follows:

It detaches the code and the data in sections, making it easy to manage the data
separately from the program and link any string back in the assembly code.

Each section has separate memory permissions, which are basically a layer of
security over the virtual memory of each program running to allow or deny
reading from a specific page of memory, writing to a specific page of memory, or
executing code in a specific page of memory. A page of memory is 0x1000 bytes,
which is 4,096 bytes in decimal.

The file is expandable in memory (less size on a hard disk), which allows creating
space for uninitialized variables (or variables that are not important to include a
specific value before the application uses them) and, at the same time, saves
space on the hard disk and does not fill it with empty bytes or zeros.

Supports dynamic linking (via export and import tables), which is a very
important technology that we will talk about later in this chapter.

Supports relocation, which allows the program to be loaded in a different place
in memory from that it was designed to be loaded in.

Supports resource section, and it can as well package any additional files, images,
or icons with the program in one executable file.

Portable for multiple processors, subsystems, and types of files, which allows the

PE structure to be used across many platforms, processors, and devices, such as
Windows CE and Windows mobile.
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Exploring PE structure

Here, we will cover the structure of an executable file in the Windows operating system.
This structure is used by Microsoft to represent an executable file or a third-party library in
the Windows operating system across multiple devices, such as PCs, tablets, and mobile
devices.

MZ header

Early in the MS-DOS era, Windows and DOS co-existed, and both had their executable files
with the same extension, .exe. So, each Windows application had to start with a small DOS
application that prints a message, This program cannot be run in DOS mode (or any
similar message). So, when a windows application get executed in the DOS environment,
the small DOS application at the start of it will get executed and prints this message to the
user to run it on Windows environment. In the following figure, you can see the Executable
file header starting with the DOS program DOS MZ Header:

MZ Header

PE Header

Section Header

Sections

.text

.data

Figure 1: Example PE structure

This DOS header starts with MZ and the header ends with a field called e_1fanew, which
points to the start of the portable executable header, or PE header.

PE header

The PE header starts with two letters, PE, followed by two important headers, which are a
file header and an optional header, and later on, all the additional headers pointed to by the

data directory array.
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File header

The most important values from this header are as follows:
signature 'PE', 0, O

OFfset:dxdd . .

50745 60160 -4CHAT B3W0E-00 60 08 PO-00 68 08 80 | PE..L........... i o PO Nein Fynltoen

88 60 60 co-EBNEE 82 81 5 NL_lmberofSt_?ctwns 3

; AR ST sizeofOptionalHeader Oxel

Characteristics 0x102 [32b EXE]

Figure 2: File header explained

e Machine: This field represents the processor type, for example, the value 0x14c
represents Intel 386 or later processors.

* NumberOfSections: This value represents the number of sections that
follow the headers, such as the code section, data section and resources section

(for files or images).

e TimeDateStamp: This is the exact date and time that this program was compiled.
It's very useful for threat intelligence and creating the timeline of the attack.

e Characteristics: This value represents the type of the executable file, is it a
program, a dynamic link library (we will cover it later in the chapter), or maybe a

driver?

Optional header

Following the file header, the optional header comes with way more information, as shown

here:

Of fset: @158

.6B'81 o0 p0-80 60 00 BB
00 86 90 ©0-60 08 80 aa A6 18 8@ e8-00 oo ee aa
80 88 Pe 9o-EENEENGENEE-BE T8 EE B8 B
90 96 B9 B0-80 PG 06 BB-B4 BE PA BE-B8 A BA B8O
@49 60 68-00 92760 '88-00 0P 60 Po-B2NEE e oo
06 60 80 00-60 08 60 ae 80 06 96 PO-BO 60 66 08
80 60 00 90-1ENEE

Magic
AddressofentryPoint
ImageBase
sectionAlignment
FileAlignment

Majorsubsystemversion

SizeofImage
SizeofHeaders
Subsystem
NumberofRvaAndsSizes

0x10b [32b]
0x1000

0x400000

0x1000

0x200

4 [NT 4 or Tater]
0x4000

0x200

2 [Gu1]

16

Figure 3: Optional header explained
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The most important values from this header are as follows:

Magic: This identifies the type of the system or the PE file (if it's x86 or x64).

AddressOfEntryPoint: This is a very important field for our analysis and it
points to the starting point of program execution (to the first assembly
instruction to be executed in the program).

ImageBase: This is the address where the program was designed to be loaded in
the virtual memory. If the program has a relocation section, it can be moved
somewhere else if it will overlap with another executable loaded in the same
address.

SectionAlignment: The size of each section and all headers' size should be
aligned to this value while loaded in the memory (generally, this value is
0x1000).

FileAlignment: The size of each section in the PE file (and as well the size of all
headers) has to be aligned to this number (for example, for a section with

size 0x1164 and file alignment 0x200, the section size will be changed

to 0x1200 on the hard disk).

MajorSubsystemVersion: This represents the minimum Windows version to
run the application, such as Windows XP or Windows 7.

SizeOfImage: This is the size of the whole application in memory (usually, it's
larger than the size of the file on the hard disk due to uninitialized data and other
reasons).

SizeOfHeaders: This the size of all headers.

Subsystem: This could be a Windows UI application or a console application, or
could even run on other Windows subsystems, such as Microsoft POSIX.

Data directory

The data directory array points to the other optional headers that might be included in the
executable and are not necessary included in every application.

It includes 16 entries with this format:

¢ Address: This points to the beginning of the header in memory (relative to the

start of the file).

e Size: This is the size of the header.

Address

|Size
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The data directory array includes many different values; not all of them are that important
for malware analysis, but some of the important blocks to mention are as follows:

e Import table: This represents the code functions (or APIs) that this program
doesn't include but wants to import from other executable files or libraries of
code (or DLLs).

e Export table: This represents the code functions (or APIs) that this program
includes in its code and is willing to export and allow other applications to use,
rather than rewrite them from scratch.

¢ Resource table: This is always located at the start of the resource section and its
purpose is to represent the packages' files with the program, such as icons,
images, and others.

* Relocation table: This is always located at the start of the relocation section and
it's used to fix addresses in the code when the PE file is loaded to another place in
memory.

e TLS table: Thread Local Storage could be used to bypass debuggers, and will be
explained later.

Section table

Following the 16 entries of the data directory array come the section headers. This is a list of
headers with each header representing a section of the PE file. The number of headers in
total is the exact number stored in the NumberOfSections field in FileHeader.

The section header is a very simple header and it looks like this:

Sections table
RVA' th\' physcal sizg physical oMset
Name Virtualsize virtualAddress SizeOfRawData PointerToRawData Characteristics
.text 0x1000 — 0x1000 0x200 0x200 CODE EXECUTE READ|
.rdata 0x1000 0x2000 0x200 0x400 . INITIALIZED READ
data  Ox1000_ __  Ox3000 Ox200 ______ Ox600 _________DATA __READ _WRITE

Figure 4: Example of a section table
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And these fields are used for the following:

Name: The name of the section (8 bytes max).

VirtualAddress: The pointer to the beginning of the section in memory
(relatively to the start of the file). These types of addresses used to be called RVA
addresses.

VirtualSize: The size of a section (in memory).
SizeOfRawData: The size of a section (on the hard disk).
PointerToRawData: The pointer to the beginning of the section in the file on

the hard disk (relatively to the start of the file). These types of addresses used to
be called offsets.

Characteristics: Memory protection flags (EXECUTE, READ, and WRITE).

PE+ (x64 PE)

You may be thinking now that x64 PE files have all fields with 8 bytes compared to 4 bytes
in x86 PE files. But the truth is that PE+ header is very similar the good old PE header with
very few changes as follows:

ImageBase: It is 8 bytes instead of 4 bytes.
BaseOfData: This was removed from the optional header.

Others: Some other fields, such
as SizeOfHeapCommit, SizeOfHeapReserve, SizeOfStackReserve,
and SizeOfStackCommitare now 8 bytes instead of 4 bytes.

Magic: This value changed from 0x10B (representing x86) to 0x20B
(representing x64).

As PE files stayed with the maximum 2 GB size, and all other RVA addresses, including
AddressOfEntrypoint, stayed at 4 bytes.
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PE analysis tools

After we have understood the PE Format, we need to be parse different PE Files (EXE files)
and read all of their header values. Luckily, we don't have to do this ourselves; there are
lots of different tools that can help us read PE header information easily. The most well-
known free tools to analyze a PE file header are as follows:

¢ PEiD:

I8 pEID v0.95 =101 x|
File: | G:cbevl.exe L]
Entrypoint: | 000306C0 EP Section: | LIPX1

File OFfset: | 0001D&cCO First Bytes: |&0,BE,00,30
Linker Info: 2.0 Subswskern: | Win3z2 GLI

|L|F‘X 0.89.6- 1,02 / 1,05 - 2,90 -=> Markus & Laszlo

| rulki Scan I | Task'-.-'iewerl | Cpkions I | Abouk || Exik I

[V Stay ontop

Figure 5: PEID Ul

This is the most well-known tool for analyzing PE headers. It's a basic tool but it has

the ability to detect the compiler (Visual Studio for example) or detect the packer that
is used to pack this malware using static signatures stored within the application (this
will be covered in more details in Chapter 3, Unpacking, Decryption, and Deobfuscation)
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o CFF Explorer:

CFF Explorer ¥II - [Lab06-01.exe]

File Settings 7
H @ Lab06-01.exe
2%
ke Wirtual Size virtual Address | Raw Size Raw Address | Reloc Address | Linenumbers | Relocations ... | Linenumber. .. | Characteristics
E1 [TIFile: Lab06-01.exe
[ gg?;Hedader Byte[a] Duword Dword Dowiord Dword Dowiord Dword ‘Word Word Dowiord
E eaders
= File Header Jext 00004955 00001000 00005000 00001000 00000000 00000000 oooa oooo 60000020
Z Dptional Header .rdata 00000BDC 00006000 00001000 0000A000 00000000 00000000 nooo nooo 40000040
] Data Directories [x] .data 00003E43 00007000 00003000 00007000 0oooooon 00000000 oooo oooo 0000040
— Section Headers [¢]
— (2 Import Directony
— '-‘J_',Address Converter
— *‘j_,Dependem:y Walker
— '*‘_LH&:: Editor
— 4, Identifier
— “j_,'lllpﬂll Adder _
—'*‘j;ﬂuickDisassemblel | % Eﬁ |
— %, Rebuilder
— %, Resource Editor Of fset 01 2 3 4 5 & 7 8 9 & B C D E F Azcil
L— &, uPx Utility o0ooooooo | 40 54 90 00 03 00 00 00 04 00 OO0 OO FF FF 00 00 | HZN. | I
= 00000010 | B8 00 0O 00 00 OO0 OO 0O 40 00 OO0 OO OO 0O 00 OO F
opooooz0 | 00 00 0O OO0 00 00 OO0 0O OO0 0O OO0 OO OO0 0O 00 OO0 .. ..
00000030 | 00 00 00 00 00 00 OO0 0O OO0 00 OO0 0O ES 0O 00 OO0 -
00000040 | OE 1F BA OE 00 B4 09 CD 21 BB 01 4C CD 21 54 68 e I aLiiTh
00000050 [ 69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E &F is.progran. Canno
00000060 | 74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20 t.be.run.in.DOS
00000070 | 6D 6F 64 65 2E 0D (0D 0A 24 00 00 0O 00 00 00 00 |mode. ..§ ...
00000080 | €1 4B &4D 37 85 Ca C3 64 85 CA C3 64 85 Ca C3 64 | he—71EXdIEEdIEEd
00000090 [ B3 EC C& 64 54 CA C3 64 0 D6 CD 64 8B Ch C3 A4 | *iEdiERd10IdnERd
000000AD | B3 EC C9 64 AB CA C3 64 85 CA C3 64 81 CA C3 64 *iEd EAdIEAQIER
000000B0 | B85 CA C2 64 49 CA C3 64 E7 D5 DO 64 B7 Ca C3 64 1EAdeERdcOBd 1EAd
000000C0 | B3 EC D6 64 84 CA C3 64 52 69 63 68 85 CA C3 64 *10d1EAdRich1ERd
000000Do | 00 00 0O 00 00 OO0 OO 0O OO0 0O OO0 OO OO 0O 00 OO
O00000ED | 0O 00 0O OO0 00 00 OO0 0O S0 45 00 0O 4C 01 03 00
O000000FD | 72 34 47 4D 00 00 00 0O OO0 00 00 0O EO 0O OF O1
00000100 | 0B 01 06 00 00 50 00 00 00 50 00 OO0 400 00 00 00
00000110 | 90 10 00 00 00 10 00 0O OO0 60 OO0 0O OO0 0O 40 00
00000120 | 00 10 0O 00 00 10 OO 0O O4 0O OO0 OO OO 0O 00 OO
00000130 | 04 00 0O OO0 00 00 OO 0O OO0 BO OO0 QO 00 10 00 OO0
00000140 [ 00 00 0O OO0 03 00 00 00 OO0 00 10 0O OO0 10 00 OO0
00000150 | 00 00 10 00 00 10 00 00 00 00 00 00 10 00 00 00
00000160 | OO 00 0O OO0 00 00 00 0O C4 64 00 0O 3C 00 00 OO
oooonsoolon no o op oo 0o o0 00 on 0o 0o oo 0n o0 oo oo oo

Most screenshots in this book depict the UI or output and are thus for

Figure 6: CFF Explorer Ul

reference purposes only; the text within them need not be referred to.

This a relatively a new and more advanced tool than PEiD created by FireEye. This
tool parses more information from the EXE File and as well, able to detect the
compiler/packer that's used on this PE File (and it's more accurate than PEiD)

In the next section, we will further our knowledge and explore the nitty-gritty of static and

dynamic linking.
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Static and dynamic linking

In this section, we will cover the code libraries that were introduced in early operating
systems to speed up the software development and improve the the ability of cooperation
between different teams within a company to produce a software.

These libraries were a known target for malware families as they can be easily injected
inside different applications in their memory and impersonate them to disguise their
malicious activities.

Static linking

With the increasing number of applications on different operating systems, the developers
found that there were a lot of code reuse and rewriting of the same logic over and over
again to support certain functionalities in their programs. And because of that, the
invention of code libraries came in handy:

.iﬁ’ .iﬁ

Figure 7: Static linking from compilation to loading
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Code libraries (. 1ib) include lots of functions to be copied to your program when required,
so there is no need to reinvent the wheel and rewrite these functions again (excluding
rewriting the code for the mathematical operations such as sin or cos for any application
that deals with mathematical equations). This is done by a program called a linker, which
basically copies the needed functions into a program and generates the executable file with
all the needed functions inside. This process is called the static linking.

Dynamic linking
Statically linked libraries lead to having the same code copied over and over again inside

each program that might need it, which in turn leads to the loss of hard disk space and
increases the size of the executable files.

In modern operating systems such as Windows and Linux, there are hundreds of libraries,
and each one has thousands of functions for UI, graphics, 3D, internet communications, and
more. Because of that, static linking appeared limited and to mitigate this issue, dynamic
linking emerged. It allowed programs to expand more and become more functionality-rich,
as we see today:

Shared/Dynamic libraries

—
3 Runtime
a
Dynamic S
libraries | Stack
|
|
|
—

Static linker

Application file

Application file

Dynamic library
references

Application code

Dynamic library
references

Figure 8: Dynamic linking from compilation to loading
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Dynamic linking works in the following way: instead of storing the code inside each
executable, any needed library is loaded beside each application in the same virtual
memory, so that this application can directly call the required functions. These libraries are
named Dynamic Link Libraries (DLLs), as you can see in the previous figure.

Dynamic link libraries

DLL is a complete PE file that includes all the headers, sections, and most importantly, the
export table.

The export table includes all the functions that this library exports. Not all library functions
are exported as some of them are for internal use. But the functions that are exported can be
accessed through its name or its ordinal number (index number), and they are

called Application Programming Interfaces (APIs).

Windows provides lots of libraries for Windows programmers to access its functionality,
and some of these libraries are as follows:

¢ kernel32.d11: This includes the basic and core functionality for all programs,
including reading a file and writing a file.

e ntdll.d1l1l: This exports Windows native APIs; kerne132.d11 uses this library
as a backend for its own functionality. Some malware writers try to access
undocumented APIs inside this library to make it harder for reverse engineers to
understand the malware functionality, such as 1drloaddll.

e user32.d11: This library is used mainly for the Windows GUL

® advapi32.dl1: This library is used mainly for working with the registry and
encryption.

e shell32.d11: This is responsible for shell operations such as executing files and
opening files.

e ws2_32.d11: All functionality related to internet sockets and network
communications (very important for understanding custom network
communication protocols).

e wininet.dll: HTTP and FTP functions, including proxies and more.

e urlmon.dll: Thisis an add-on to wininet.dl1 that's used for working with
URLs, web compression, downloading files, and more.

e gdi32.d11: This is used for simple graphics functionality.
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Application programming interface

Without going into the details of the actual meaning of this name, all you really need to
know in malware analysis is that APIs are those exported functions in any library that any
application can call or interact with.

APIs can be exported from an . exe file as well as a library, and this program (. exe file) can
run as a program, be loaded as a library, or called from other libraries loaded by the
program while running.

Each program includes in its import table the name of each required library and the list of
APIs required from this library. And in each library, the export table contains the API
name, the API ordinal number, and the RVA address of this API in the library.

0 Each API has an ordinal number, but not all APIs have a name.

Dynamic API loading

It's very common in malware code to obscure the name of the libraries and the APIs that
they are using to hide their functionality from static analysis using what's called dynamic
API loading.

Dynamic API loading is supported by Windows (and other operating systems as well)
using two very well-known APIs :

e LoadLibraryA: This APIloads a dynamic link library into the virtual memory of
the calling program and returns its address (variations include LoadLibraryWw,
LoadLibraryExA, and LoadLibraryExW).

® GetProcAddress: This API gets the address of an API given its name and the
address of the library that contains this API.

By calling these two APIs, the malware is able to access APIs that are not written in the
import table and are totally hidden from the eyes of the reverse engineer.

In some advanced malware, the malware author also hides the name of the libraries and the
APIs in the strings of the malware using encryption or other obfuscation techniques, which
will be covered in a later chapter.
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These APIs are not the only APIs that can allow dynamic API loading; there are others,
such as GetModuleHandle, hard disk, and also other techniques that will be explored later
in chapter 7, Handling Exploits and Shellcode.

Using PE header information for static
analysis

Now, as we have covered PE header, dynamic link libraries, and APIs, the question that
arises is How can we use this information in our static analysis? This totally depends on the
questions that you want to answer, and that is what we will cover right now.

How to use PE header for incident handling

If an incident occurs, static analysis of the PE header can help you answer multiple
questions in your report. Here are the questions and how a PE header can help you answer
them:

e Is this malware packed?

PE header can help you to identify if this malware is packed. Packers tend to
change sections names from the familiar names(. text, .data, and . rsrc)
to other names, such as UPX1 or others.

Also, they mostly hide most of the APIs in the import table. So, you will see
the import table contains very few APIs, and that could be another sign as
well. We will cover unpacking detail in chapter 3, Unpacking, Decryption,
and Deobfuscation.

e Is this malware a dropper or a downloader?

It's very common to see droppers having an additional PE file inside their
resources. Using tools such as Resource Hacker can detect this PE file (or
even a ZIP file that contains it), and you will be able to find the dropped
backdoor.

For downloaders, it's common to see an API named UrlDownloadToFileA
from a DLL named urlmon.dll, which a Windows library and an API to
execute the ShellExecuteafile. There are other APIs as well that do the
same, but these two APIs are the most known ones and the easiest to use for
malware authors.
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e Does it connect to the Command & Control Servers (C&C, or the attacker
website)? And how?

There are different APIs that can tell you that this malware connects to the
internet, such assocket, send, and recv and they can tell you if they do
connect to a server or if they listen to a port such as 1isten and connect.

Some APIs can tell you even the protocol that they are using such
as HTTPSendRequestA or FTPPutFile, and they both are from
wininet.dll.

e What functionalities does this malware have?

Some APIs are related to file searching, such as FindFirstFilea, which
could be a hint that this malware perhaps is ransomware.

It could use APIs like Process32First, Process32Next, and
CreateRemoteThread, which could mean a process injection functionality,
or using TerminateProcess, which could represent that this malware may
terminate other applications, such as antivirus programs or malware analysis
tools.

If you feel you don't understand what all of these APIs are, you don't need to worry, as we
will cover all of these in detail in the later chapters. This section gives you hints and ideas to
think about your next static malware analysis and to know what you would be searching
for in a PE header.

Your vision is always the main question that you should answer in your report, which we
covered in chapter 1, A Crash Course in CISC/RISC and Programming Basics. And perhaps a
basic static analysis for the strings and the PE header would be enough to help your case.

How to use a PE header for threat intelligence

We have covered how a PE header could help you answer questions related to incident
handling or a normal tactical report. Now, we will cover the following questions related to
threat intelligence and how a PE header can help you answer them:

¢ When was this sample created?

Sometimes, it's a very important for threat researchers to know how old the
sample is. Is it an old sample or a new variant, and when did the attackers
actually start to plan their attacks in the first place.
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PE header includes a value called TimeDateStamp in the file header. This
value includes the exact date and time this sample was compiled, which can
help answer this question and help threat researchers build their attack
timeline.

e What's the country of origin of these attackers?

Was it from the US? From Russia? China? Or even from Iran? That can
answer a lot about attacker's motivations.

One of the ways to answer this question is again TimeDateStamp, looking at
many samples and their compile time. You can see that in some cases, they
fall into 9-5 jobs for the Russian time-zone or the Chinese time-zone. In some
cases it is possible to identify the attackers' country of origin, as can be seen
in the following screenshot:

i Moscow business hours

FREQUENCY

o 1 2 3 4 5 6 T B 9 W0 11 12 13 14 15 16 17 18 189 20 21 22 24

TIME OF DAY (UTC)

Figure 9: Patterns in compilation timestamps
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e Is it a stolen certificate? Are all these samples related?

One of data directory entries is related to the certificate. Some applications
are signed by their manufacturer to provide trust for the users and the
operating system that this application is safe. But these certificates sometimes
get stolen and used by different malware actors (gangs).

For all the malicious samples that use a specific stolen certificate, it's likely
that all of them are produced by the same actor. Even if they have a different
purpose or target different victims, they're likely to be different activities by
the same attackers.

Here are some of the questions that the static analysis of a PE header can help you to
answer. As we said earlier, a PE header is an information treasure trove if you look into the
details hiding inside its fields. We are only giving hints and ideas; there is so much more to
get out of it, and it's for you to explore.

PE loading and process creation

Everything that we have covered so far is purely the PE file format on the hard disk, we
didn't cover how this PE file changes in memory while getting loaded and the whole
execution process of these files. In this section, we will cover how Windows loads a PE file,
executes it, and makes it a live program.

Basic terminology

To understand PE loading and process creation, we have to cover some basic terminology,
such as process, thread, Thread Environment Block (TEB), Process Environment Block
(PEB), and others before we dive into the flow of loading and executing an executable PE
file.

What's process?

A process is not just a representation of a running program in memory, but is also basically
the container of all the information of the running application. This container encapsulates
all the virtual memory for that process (each process in Windows x86 has a virtual memory
of 4 GB and on x64, it is 16 TB) and their equivalent physical memory. All the loaded DLLs,
opened files, opened sockets, the list of threads running in this process (we will cover this
later), the process ID, and much more.
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A process is basically a structure in the kernel that holds all of this information inside,
working as an entity to represent this running executable file, as shown in the following
diagram:

0x00000000
Stack has fixed size
stack and grows up to lower
. addresses
Stock upper limit
Heap grows down
heap to higher address
0x00400000
Program image
MZ header
PE header
Sections
Memory space
DLL (1)
Ox7FFDFO00
DLL (2)
Ox7FFEOQOO
Ox7FFEL1000
PEB (data block of main thread)
OXx7FFFFFFF

Figure 10: Example of a 32-bit process memory layout

Next, Let's compare the various aspects of virtual memory and physical memory in the next
section.
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Virtual memory to physical memory mapping

What makes modern operating systems very different from MS-DOS and operating
systems alike, makes them able to simultaneously running multiple processes at the same
time is the invention of virtual memory.

Virtual memory is like a holder for each process. Each process has its own virtual memory
space for this process, its related libraries, and all memory allocated for this process from
the stack, heap, and private memory.

This virtual memory has a mapper to the equivalent physical memory. Not all virtual
memory pages are mapped to physical memory, and each mapped one has its own
permission (READ, READWRITE, READEXECUTE, or READWRITEEXECUTE), as shown in the
following diagram:

Virtual Memory Virtual Memory
0x00000000 0x00000000
)
©
=
@©
 ma
>
o
=
(5}
>
2
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©
£
=
OXFFFFFFFF OXFFFFFFFF
PID: 63217 PID: 5343

Figure 11: Mappings between physical and virtual memory

Virtual memory allows you to create a security layer between one process and another and
allows the operating system to manage different processes and suspend a process to run
another easily.
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Threads

A process without a thread running is like a dead body. A thread is not only the entity that
represents an execution path inside a process (and each process can have one or more
threads running simultaneously), but also a structure in the kernel that saves the whole
state of that execution, including the registers, stack information, and the last error.

Each thread in Windows has a small time frame to run before it gets stopped to resume
another thread (as the number of processor cores is much smaller than the number of
threads running in the entire system). When Windows changes the execution from one
thread to another, it takes a snapshot of the whole execution state (registers, stack,
instruction pointer, and so on) and saves it in the thread structure to be able to resume it
again from where it stopped.

All threads running in one process share the same resources of that process, including the
virtual memory, open files, open sockets, DLLs, mutexes, and others, and they synchronize
between each other on accessing these resources.

Each thread has its own stack, instruction pointer, code functions for error handling (SEH,
which will be covered in chapter 5, Bypassing Anti-Reverse Engineering Techniques), its own
thread ID, and thread information structure called TEB (which will be covered soon), as
shown in the following figure:

A single-thread process A process with two threads

User Address Space User Address Space

Own stack, registers Own stack, registers

stack including program
counter

Thread 2

including program
stack e

counter

Own stack, registers
including program
counter

Thread 1

text stack

Process ID
Group ID

User ID text

Process ID
Group ID

Files
Locks
Sockets data =TS
Locks
Sockets

User ID

Figure 12: Example processes with one and multiple threads
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Next, we will talk about the crucial data structures that is needed to understand threads
and processes. Let's venture.

Important data structures: TIB, TEB, and PEB

The last information you need to understand related to processes and threads are these data
structures (TIB, TEB, and PEB). These structures are information stored inside the process
memory and accessible through its code. Their main function is to include all the
information about the process and each thread and make them accessible to the code so that
it can easily know the process filename, the loaded DLLs, and other related information.

They are all accessible through a special segment register s, like this:

mov eax, DWORD PTR FS: [XX]
And these data structures have the following functions:

¢ Thread Information Block (TIB): Has some information about the
thread, including the list of functions that are used for error handling and much
more

e Thread Environment Block (TEB): Has more information about the thread,
including the thread ID and much more

¢ Process Environment Block (PEB): Includes information about the process, such
as the process name, process ID (PID), loaded modules (all PE files loaded in the
memory including the program itself and its DLLs), and much more

Throughout the entire length of the book and the next section as well, we will cover
different information that is stored in these structures, which is used to help the malicious
code achieve its target.

Process loading step by step

Now that we know the basic terminology, we can now dive into PE loading and process
creation. We will look into it sequentially, as shown in the following steps:

1. Starting the program: When you double-click on a program in My Computer,
let's say calc.exe, Explorer.exe (the process of My Computer), it calls an API
called CreateProcess, which gives the operating system the request to create
this process and start the execution.
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2. Creating the process data structures: Windows then creates the process data
structure in the kernel (which is called EProcess) and sets a unique ID for this
process (ProcessID), and sets the explorer.exe process ID as a parent PID for
the newly created calc.exe process.

3. Initialize the virtual memory: Then, Windows creates the process, virtual
memory and its representation of the physical memory and saves it inside the
EProcess structure, creates the PEB structure with all necessary information, and
then loads the main two DLLs that Windows applications will always need,
which are ntd11.d11 and kernel32.d11 (some applications run on other
Windows subsystems, such as POSIX, and they don't use kernel32.d11).

4. Loading the PE file: After that, Windows starts loading the PE file (which we
will explain next), loading all the required third-party libraries (DLLs), including
all DLLs these libraries require, and makes sure to find the required APIs from
these libraries and save their addresses in the import table of the loaded PE file
so the code can easily access them and call to them.

5. Start the execution: Last but not least, Windows creates the first thread in the
process, which does some initialization and calls to the PE file's entry point to
start the execution of the program.

PE file loading step by step

The windows PE loader follows these steps while loading an executable PE file into
memory (including dynamic link libraries):

1. Parsing the headers: Windows first starts with parsing the DOS header to find
the PE header and then parses the PE header (file and optional header) to gather
some important information:

e ImageBase: To load the PE file (if possible) in this address in its
virtual memory.

® NoOfSections: To be used in loading the sections.

e SizeOfImage: As this will be the final size of the whole PE file
after being loaded in memory, this value will be used to allocate
the space initially.
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2. Parsing section table: Using the NoOfSections field, it parses all the sections in
the PE file and makes sure to get all the necessary information, including their
addresses and sizes in memory (VirtualAddress and VirtualSize), as well as
the pointer and the size of the section on the hard disk for reading its data.

3. Mapping the file in memory: Using SectionAlignment, the loader copies all
the headers and then moves each section to new place using its
VirtualAddress and VirtualSize (if VirtualAddress or VirtualSize are
not aligned with sectionAlignment, the loader will align them first and then

use them), as shown in the following diagram:
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Figure 13: Mapping sections from disk to memory
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4. Dealing with third-party libraries: In this step, the loader loads all the required
DLLs, going through this process again and again recursively until all DLLs are
loaded. After that, it gets the addresses of all the required APIs and saves them in
the import table of the loaded PE file.

5. Dealing with relocation: If the program or any third-party library has a
relocation table (in its data directory) and is loaded in a different place than its
ImageBase, the loader fixes all the absolute addresses in the code with the new
address of the program/library (with the new ImageBase).

6. Start the execution: In the last step, as in the process creation, Windows creates
the first thread, which executes the program from its EntryPoint. Some anti-
reverse engineering techniques can force it to start somewhere else before, which
we will cover in chapter 5, Bypassing Anti-Reverse Engineering Techniques.

WOWG64 processes

You can now easily understand how a 32-bit process gets loaded in an x86 environment as
well as a 64-bit process in an x64 environment. So, how about a 32-bit process in an x64
environment?

For this special case, Windows has created what's called the WOW64 emulator. This
emulator consist of the following three DLLs:

e wowb64.dll
e wowb4cpu.dll

® wowb4dwin.dll

These DLLs basically create a simulated environment for the 32-bit process, which includes
a32-bitntdl1.d11 and a 32-bit kerne132.d11
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These DLLs, rather than connecting directly to the Windows kernel, call to an API
X86SwitchTo64BitMode, which then switches to x64 and calls to the 64-bit ntd11.d11,
which communicates directly to the kernel, as shown in the following diagram:

l Loads ‘
PE+ (64bit process)
’ 32bit 32bit
PE(32bitprocess) M omeiz2dil | ) Ntdll.dil
Loads
Native (x64) WoW64win.dll WoWe64cpu.dll WoWe4.dll
kernel32.dll
WoW64 Emulation

Figure 14: WOW64 architecture

Also, WOW64-sandboxed processes (x86 processes running in x64 environment)
introduced new APIs, such as IsWow64Process, which is used by malware to identify if
it's running as a 32-bit process in an x64 environment, or in an x86 environment. And it
introduced multiple new APIs as well specific for WOW64 environment.

Dynamic analysis with OllyDbg/immunity
debugger

After we've explained processes, threads, and the execution of the PE files, now it's time to
start debugging a running process and understanding its functionality through tracing over
its code in the runtime.
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Debugging tools

There are multiple debugging tools we can use, and here we will just give three examples
that are very similar in their Uls and actually have a lot of code in common (at least two of

them):

e OllyDbg: This is the most well-known debugger in the Windows platform, and
its Ul has become the standard for most Windows debuggers:
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Figure 15: OllyDbg UI
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e Immunity Debugger: This is basically a scriptable clone of OllyDbg, and was
created mainly for exploitation and bug hunting;:

€} Immuni
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Figure 16: Immunity Debugger UI
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e x64_dbg: This is a debugger for x86 and x64 executables with a very similar (if
not identical) interface to OllyDbg. It's also an open source debugger:

File Vview Debug FPlugins Options Help
CoE 08¢ EEemgi@acw BeeEeLi aB O
B cru Q;_og' .&whl-wmlﬁlmsmlﬂw E]swmqsl 2 References | 5 Threads |

00000000005 AAZAL sUB rsp,20 A General |

00000000005 AAZAS mov rbp,rsp 0D00TFCEGBE1664
00000000005 AAZAB nop 0000000000000000
00000000005 AAZAT lea rcx,qword ptr ds:[59EC48] 000007 FFFFFDFD00
00000000005AA2ZE0 €&l sample. 410BAD 0000000000542 A0
00000000005 AAZBS mov rax,qword ptr ds:[5D0200] 0000000000000000
00DC0000005 AAZBC mov rox,qword ptr ds:[rax] 000000000013FFSE
00000000005 AAZEF €&l sample.s8E210 0000000000000000
00D00000005AA2C 4 mov rax,gword ptr ds:[5D0200] 0000000000000000
00000000005 AAZCE mov rox,qword ptr ds:[rax]

00000000005AAZCE mov dl,1 000007FFEFFDEQOD
00000000005 AAZD0 €&l sample.530DED

00DC0000005AAZDS mov rax,qword ptr ds:[5D0200]

00000000005 AAZDC mov rox,gword ptr ds:[rax]

00DC0000005 AAZDF mov rdx,gword ptr ds:[59E440]

00000000005 AAZES mov r8,qword ptr ds:[5D0508]

00000000005 AAZED €811 sample.ssE240

00000000005 AAZF2 mov rax,qword ptr ds:[5D0200]

00DCO000005AAZFS mov rox,qword ptr ds:[rax]

00000000005 AAZFC - sample.58E450

00000000005AAZ01 | sample. 404980

<}

.
.
.
.
-
.
-
.
)
.
.
.
-
.
-
.
.
.
.
.
.

RFLAGS  0000000000000244
ZF'1 FF 'YL AF O
OF O SF 0 DF O
CE 0 TFO IF 1

f 00000000001 3FFED
000007 FCEB221000

000007 FCES221010
000007 FCEB221020
000007 FCEB221030
000007 FCES221040
000007 FCE8B221050
000007 FCEB221060
000007 FCEB221070

000000000013FF68
000000000013FF70
000000000013FF7E
Q0000000001 3IFFE0
000000000013FFE8
QO00000000013FF20
000000000013FFI8
00000000001 3FFAR

ANRMATCAC0331000 >
< T

Figure 17: x64dbg UI

We will cover OllyDbg 1.10 as it's the most common version of OllyDbg, and most of the
plugins run on this version.
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How to analyze a sample with OllyDbg

Ollydbg Ul interface is pretty simple and easy to learn. Here will cover the steps and the
different windows that can help you through your analysis:

1. Select a sample to debug: You can directly open the sample file from File |

Open and choose a PE file to open (it could be a DLL file as well, but make sure
it's a 32-bit sample). Or you can attach to a running process as follows:

Select process to attach [} X
Process |Name Window Path ~
QtiWebEng Ci:\Program Files (x8&)‘\Dropbox\Client\QtWebEnginePFrocess.exe
QtWekEng C:\Program Files (x86)\Dropbox\Client\QtWebEngineProcess.exe
1 | DropboxU C:\Program Files (x86)‘\Dropbox\Update\DropboxUpdate.exe
GoogleCr C:\Program Files (x86)\Google\Update\l.3.33.17\GoogleCrashHandler.exe
4 | POWERENT |HardwareMonitorWindow C:\Program Files (x86)\Microsoft Office‘\root\0fficel&\POWERENT.EXE
LT | vinware-a C:\Program Files (x86)\VMware\VMware Workstation\vmware-authd.exe
1 |vmware-h C:\Program Files (x86)‘\VMware\VMware Workstation\vmware-hostd.exe
4 |voware-t |vinware-tray Main UI Window|C:\Program Files (x86)\VMware\VMware Workstation\viware-tray.exe W

Cancel

Figure 18: OllyDbg attaching dialog window

2. CPU window: Your main window: This is the window that you spend most of
your debugging time in. This window includes the assembly code on the top-left
side, which has the ability to set breakpoints by double-clicking on the address or
modifying the program's assembly code.

You've also got the registers on the top-right side and you have the ability to
modify the registers at any given time (if the execution is paused). You have
on the bottom side the stack and the data in hex, which you can also modify.
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You can simply modify any data in memory in the following two views:

* OllyDbg - Ebenezer.exe - [CPU - main thread, module Ebenezer] EI
@ File View Debug Trace Plugins Options Windows Help ml?”?l
(=4 x| »[=]1] w3+ 34 WU| L]E|m|w[T]c|R]:|K|] B|M H]
DUCUOGEL]  GOED FAFEFFFF | CHP OWORD PTR S5 (EBP-16CT, 3 ~ |Fegisters (FRUD "
BESE3ST3(v 75 11 JHE SHORT @8563556 EAX rEHFSSrE kerne 3. BaseThreadin LtThunk  —
pESEISS| R 16 PUSH 16 R peRESacE
pasestyy| ES C4Feeope  |CALL pBSlzcde ECH BB5E35AR Ebenszer. {Modu leEntruPoint >
DESEISC| 3204 B ADD ESP, 4 Ern SERREEE
PESEISTF| &R B3 PUSH 3 Eon CEFEERED
pESE25a1| EZ CAFSFFFE | CALL BESE2CSe Eif Aoicrrog
pESEE5Es|  B3B0_FA4FEFFFF | CMP OWORD FTR S5: (EBP-18CT,4 S
BESE5E0( 75 @7 JNE SHORT BOEBIEse il oopaoooe
PESHISEF|  BS BlEEBass | MOU E )
BACEZE24 | EB B2 JMP SHDRT BEEEIE9S EIF BESEIEAE Ebenczer. <ModuleEntruPoint:
pasRssgel 5300 #OR EAK, EAX C B ES BBZE 32bit BIFFFFFFFF) =
phooosaE| EBES HOY ESE.EEF [FIF 1 cs @3 22bic @l FFFEFFFF) 3
pocaseenl = o —n 5 S5 882E 22bir BIFFFFFFFE
ghoaoeEl L2 RETH ZMI OS 8926 3zbit BIFFFFFFFE
e s S @ FS BAEZ 32bitr PEFDDBBBIFFF
T @ G5 BA2B 3zbit @(FFFFFFFF)
PESEISIE( CC INTZ re
el LML - 08 LastErr BEOEEEEE ERROR_SUCCESS
SEEC HOyU EEF, ESP EFL BEEEBZ46 (MO, ME, E, BE, NS, PE, GE, LE
sl eaFr POSH -1
S| 68 goFlesmm  [PUSH OFFSET @R63F17S o7 Eers B-2 -
Al &5 SOAFSEGG  |PUSH GESEAFSS EL
F| &4:A1 pbGGGEEs|MOU EQX, DWORD PTR FS:[@] 315 omet
cES| Sh PISH EAR T3 e
CEE|  B4:2925 GEEPEE|MOY OWORD FTR FS:[81,ESF e
SE0) 234 Ad FOD ESP. ST bl R a
Stack LBB1GrrooI=8 | 517 empty
EBP=BRIoFF94 ESPUDZDI
FST 6988 Cond B0 66 Ecc b b B 05 a6
- |FCW B27F Prec WEAR,53 Mask 111111 .
Last crnd BEEES
Address |Hex dump ASCIT ~ @EEEC(&HF Al 3= RETURM to kernel32. PEHF H ~
BOELCO0E| B8 B0 GB 00| B9 0B 00 09 FE [EETQEEEE 2
oaestaas| oe a1 aFF o[ L 77a29F 72| r 8| RETURN to ntdll. 7PE2aFr2
aResCo1g B618FFOC|r PEFDERBE| 4%~
PBESCR1S| B8
ooEEais 0615FFAB|| PFEELEFS| ~Ana
e 0E12FFA4|| oosEEmme
EEEr 0615FFAS| | peesmmem
0612FFAC|| 7EFDE@ER| 0=~
PBESCESS| B gaterrae
EEEErE e 6015FFE4| | oeEGEmEE
0615FFES|| posemmem
oE12FFEC(| Be1oFFRel & +
& 0615FFCE| | peesmmER
e oE12FFC4|| FFFFFFFF End of SEM chain
ooEEaeE BE1EFFCE|| PrREF1FE| Sasw| SE handler
FrEEa e BE12FFCE || 62772470 15ul
ooREERLS 2512FFOB| | poommmms|
ohEEraEE oE12FFDs || BE1SFFEC| o +
oonEEREs 6a12FFOE( L77825F 45| Efdu| RETURN fron ntdL L. PPEZSF4E vo ntdll.7Po2)
BOEECETS BE1SFFOC| HESEHISAR aSE Ebenegzer.<Modu leEntruFoint >
BRESCEAG[ 06 B D 00|68 B 0O 66 ~ | e e eaoal -

|Entry point of main module |F'aused

Figure 19: OllyDbg default window layout explained

3. Executable modules Window: There are multiple windows in OllyDbg that
would help you through your analysis, such as the Executable modules window
(you can access it through View | Executable modules) as shown in the
following screenshot:
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ﬂ Executable modules

fo | =

Base Size Entry Hame File wersion Path &
00400000 | 00003000 |004010E0Q | 1ewel0d C:\Users\amrth\Documents\Virtualtilevel(4d.exe
§FC40000 | 00090000 |6FCT7E1B0 | apphelp |10.0.17134.1 (W|C:\WINDOWS\SYSTEM32\apphelp.dll
74750000 | 000EQQOQOQ | 747606RA0 |KERNEL32|10.0.17134.376 |C:\WINDOWS\System32\KERNEL32.DLL
T45E0000 | 000BFOO0 | T4R15660 | mavert 7.0.17134.1 (Wi |C:\WINDOWS\System32\msvecrt.dll
772C0000 | 001E4000 | 773AF350 |KERNELBR | 10.0.17134.37€ |C:\WINDOWS\System32\KERNELBASE.d1l
776C0000| 00190000 ntdll 10.0.17134.228 |C:\WINDOWS\SYSTEM32\ntdll.dll
W

Figure 20: OllyDbg dialog window for executable modules

This window will help you see all the loaded PE files in this process' virtual
memory, including the malware sample and all libraries or DLLs loaded
with it. If you are attaching to a process, it may help you see any injected
malicious libraries (DLLs) inside this process and its virtual address.

4. Memory map window: Also, you can allocated all memory inside the process'
virtual memory (allocated memory is the memory that has a representation of it
in the physical memory or its cache on the hard disk). You can see what they
represent, their memory protection (read, write, and/or execute), and as well, you
can dump any memory chunk from this window, as shown in the following
screenshot:

M| Memory map =N R~
Address |Size Owner Section |Contains Type|RAccess |Initial |Mapped as &
00400000 | 0000&000 Priv|RW BW

004E0000 | 000CS000 Map |R R ‘\Device\HarddiskVolume3\Windows\5System32\locale.nls
00690000 | 0000BOOO Priv|RW BW

00380000 | 00002000 Priv|BW Gua|BW

0038F000 | 00001000 stack of th|Priv|(BW Gua|RW

00970000\ 00003000 Priv|RW BW

§FC40000| 00001000 |apphelp PE header Imag|R EWE

§FC41000|0007A000 |apphelp |.text code, export | Imag |R EWE

§FCBBOO0O0 | 00002000 |apphelp |.data data Imag|R EWE

EFCBDO00 | 00003000 |apphelp |.idata imports Imag|R EWE

§FCCO000| 00017000 |apphelp |.rsrc resources Imag|R EWE

§FCDT7000| 00006000 |apphelp |.reloc relocations|Imag|R EWE

74750000\ 00001000 |EERNEL32 PE header Imag|R RWE

74760000\ 00061000 |EERNEL32 | .text code Imag|R E RWE

74700000 | 00028000 | EERNEL32 | .rdata imports,exp|Imag|R EWE w

Figure 21: OllyDbg memory map dialog window
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5. Debugging the sample: In the Debug menu, you have multiple options to run
the program's assembly code from full execution until hitting a breakpoint using
Run, or just using F9.

The other option will be to just step over. Step over basically executes one
line of code. However, if this line of code is a call to another function, it
executes this function completely and stops just after this function returns,
which makes it different from Step into, which goes inside the function and
stops at the beginning of it, as shown in the following screenshot:

Debug Plugins Options  Window Help
Fun Fo
Pause F12
Restart Ctrl+F2
Close Alt+F2
Step into F7
Step over Fa
Animate into Ctrl+F7
Animate over Ctrl+F2
Execute till return Ctrl+F9
Execute till user code Alt+F9

Figure 22: OllyDbg debug menu

It includes as well the ability to set hardware breakpoints and view them,
which we will cover later in this chapter.

6. There is much more: OllyDbg gives you the ability to modify the code of the
program; change its registers, state, memory; dump any part of the memory; and
save the changes of the PE file in memory back to the hard disk for further static
analysis if needed.
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Types of breakpoints

To be able to analyze a sample and understand its behavior, you need to be able to control
its execution flow. You need to be able to stop the execution when a condition is met,
examine its memory, and alter its registers values and instructions.

There are two types of interrupt breakpoints, which are discussed in the following sections.

Step into/step over breakpoint

This breakpoint is very simple and allows the processor to execute one instruction only
from the program, before returning back to the debugger.

This breakpoint is done by modifying a flag in a register called EF1ags. This breakpoint
could be detected by malware to detect the presence of a debugger, which we will cover in
the anti-reverse engineering tricks in chapter 5, Bypassing Anti-Reverse Engineering
Techniques.

INT3 breakpoint

This is the most common breakpoint and you can easily set this breakpoint by double-
clicking on the hex representation of an assembly line in the CPU window in OllyDbg. You
can see after a red highlight over the address of this instruction, as shown in the following
screenshot:

I010EF| &8245 EC MOV DWORD ETE S55: [EBE-14],ERX
B& 00000300 MON ERX, 30000
004010F7( S0 FUSH ERX

Figure 23: Disassembly in OllyDbg

Well, this is what you see through the debugger's Ul, but what you don't see is that the first
byte of this instruction (0xB8 in this case) has been modified to 0xcc (INT3 instruction),
which stops the execution once the processor reaches it and returns back to the debugger.

Once the debugger returns back on this INT3 breakpoint, it replaces the 0xCC back to 0xB8
and executes this instruction normally.
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The problem of this breakpoint is that, if the malware tries to read or modify the bytes of
this instruction, it will read the first byte as 0xCC instead of 0xB8, which can break some

code or detect the presence of the debugger (which we will cover in chapter 5, Bypassing
Anti-Reverse Engineering Techniques ).

Memory breakpoints

Memory breakpoints can be used, not to stop on specific instructions, but to stop when any
instruction tries to read a specific part of memory or modifies it. This type of breakpoint is
done by modifying the memory protection of this page of memory, either by making it non-
accessible if the breakpoint is on accessing (or reading) this memory page or read-only if
the breakpoint is on modifying (or writing) on this memory page.

They are accessible by right-clicking on Breakpoint | Memory, on access or Memory, on
write, as shown in the following screenshot:

Breakpoint * Teggle F2
Hit trace -] Conditional Shift+F2
Run trace > Conditicnal log Shift+F4
Mew crigin here Ctrl+Gray * W T £
Goto > Memory, on access

Thread » Mermary, on write

Teshodiuy ’ Hardware, on execution

Figure 24: OllyDbg breakpoint menu

You may wonder why there is no memory on-execute using execute protection for
memory, and the reason is that execute protection wasn't enforced until Windows 8. If you
have your virtual machine running on Windows XP or Windows 7, I will show you how to
enforce this protection and how to create memory breakpoints on execute in Chapter

3, Unpacking, Decryption, and Deobfuscation.

Another way many debuggers set a memory breakpoint on access is by adding
PAGE_GUARD (0x100) protection to the page's original protection and removing the
PAGE_GUARD once the breakpoint is hit.
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Hardware breakpoints

Hardware breakpoints are based on eight registers that are not accessible through the user-
mode code (through the program code), which are DRO to DR7.

These registers allow you to set a maximum of four breakpoints given specific addresses for
read, write, or execute of 1, 2, or 4 bytes, starting from the given address. They are very
useful as they don't modify the instruction bytes such as INT3 breakpoints to set, and they
are much harder to detect (as these registers are not accessible for the program's assembly).
However, they still could be detected and removed by the malware, which we will discuss
in Chapter 5, Bypassing Anti-Reverse Engineering Techniques.

You can view them from the Debug menu by going to Hardware breakpoints, as shown in
the following screenshot:

Hardware breakpoints X

# Baze Size  Stopon

1 |004m10F2 | [Execute | Follow1 | Delete 1 |
2 I L[ | | |
s [ [ | | |
"o I B | |

)8

Figure 25: OllyDbg dialog window for hardware breakpoints

Modifying the program execution

To be able to bypass anti-debugging tricks, forcing the malware to communicate with the
C&C or even testing different branches of the malware execution, you need to be able to
alter the execution flow of the malware. Now, we will look at different techniques to alter
the execution flow and the behavior of any thread.
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Patching—modifying the program's assembly
instructions

You can modify the code execution path by changing the assembly instruction. You can
change, for example, a conditional jump instruction to the opposite condition, like in the
following screenshot, and force the execution of a specific branch that wasn't supposed to
be executed:

00401074 0OF85 0DOOOOOO JHZ lewel04,0040108D

10401080| B& 01000000 MOV ERX, [\ e ot 0040107A >
10401085| 8845 F7 MOV BYTE
10401082 | ES 02000000 JME leve =l
1102D|"EB €2 JMP SHOR
OFBE45 F7 MovsE ER W Fill with NOP's Assemhlel Cancel |
53F8 0L CMP ERX, I

Figure 26: Working with assembly in OllyDbg

Change EFlags

Rather than modifying the code of the conditional jump instruction, you can modify
the results of the comparison before it by changing the EF1ags registers.

On the top-right corner after the registers, you have multiple flags that you can change.
Each flag represents a specific result from any comparison (other instructions change these
flags as well). For example, zF represents if the two values are equal or a register became
zero. By changing the zF flag, you force conditional jumps such as jnz and jz to jump to
the opposite branch and force the change of the execution path.

Modifying the instruction pointer value

You can force the execution of a specific branch or any instruction by simply modifying the
EIP or the instruction pointer, and it could be done by right-clicking on "New origin here".

[86]



Basic Static and Dynamic Analysis for x86/x64 Chapter 2

Changing the program data

As you can change an instruction code, you can change the data values. With the bottom-
left view (the hexadecimal view), you can change bytes of the data by right-clicking

on Binary | Edit. And you can also copy/paste hexadecimal values, as shown in the
following screenshot:

| [ MOV ERE, 1evell e it data at 00402018 X
004010CB| 5C PUSH ERX
004010CC| E& 87000000 B <ap.cnsd U [2_arrays are not

4010D1| 83C4 04 ADD ESE, 4 UNICODE |
e e s ascpp | HER+00 |E2% 20 6172 72 61 79 73 20 61 72 €5 o
)0402000|01 02 03 04|05 06 07 080 MDD i

00402008|08 00 03 02|07 05 09 08|..0 [.L
1040201000 04 06 01|54 68 65 20|.00The | [F Keep size

20 €1 72 72 61 79 73 |2 array ] | Cancel

6l 72 &5 20 6E 6F 74| are not |

Figure 27: Data editing in OllyDbg

Debugging malicious services

While loading individual executables and DLLs for debugging is generally a pretty
straightforward task, things get a little bit more complicated when we talk about debugging
Windows services.

What is service?

Services are tasks that are generally supposed to execute certain logic in the background,
similar to daemons on Linux. So, there is no surprise that malware authors commonly use
them to achieve reliable persistence.
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Services are controlled by the Service Control Manager (SCM) implemented in
%SystemRoot%\System32\services.exe. All services have the corresponding
HKLM\SYSTEM\CurrentControlSet\services\<service_name> registry key. It
contains multiple values describing the service, including the following:

e ImagePath: A file path to the corresponding executable with optional arguments

e Type: The REG_DWORD value specifies the type of the service. Examples of

supported values include the following:
® 0x00000001 (kernel): In this case, the logic is implemented in a

driver (which will be covered in more detail in chapter
6, Understanding Kernel-Mode Rootkits, which is dedicated to kernel-
mode threats).

® 0x00000010 (own): The service runs in its own process.

® 0x00000020 (share): The service runs in a shared process.

e start: Another REG_DWORD value, which describes the way the service is
supposed to start. The following options are commonly used:
® 0x00000000 (boot) and 0x00000001 (system): These values are
used for drivers. In this case, they will be loaded by the boot loader
or during the kernel initialization respectively.

® 0x00000002 (auto): The service will start automatically each time
the machine restarts, the obvious choice for malware.

e 0x00000003 (demand): Specifies a service that should be started
manually. This option is particularly useful for debugging.

® 0x00000004 (disabled): The service won't be started.

There are two ways the user-mode service can be designed:

¢ As an executable: Here, the actual logic is implemented in a dedicated executable
file, and the previously-mentioned ImagePath will contain its full file path.
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e As a DLL: Here, instead of having its own EXE file, all service logic is
implemented in a DLL loaded into the address space of one of the svchost .exe

processes. In order to be loaded, malware generally creates a new group in the
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost

registry key and later passes this value to the svchost . exe using the -k
argument. The path to the DLL will be specified not in the ImagePath value of
the service registry key as in the previous case (here, it will contain the path of
the svchost . exe with the service group argument) but in the ServiceDl11

value of the
HKLM\SYSTEM\CurrentControlSet\services\<service_name>\Parameter

s registry key. The service DLL should contain the ServiceMain export
function. If the SvchostPushServiceGlobals export is present, it will be
executed before ServiceMain.

The user-mode service with a dedicated executable can be registered using the standard sc
command line tool like this:

sc create <service_name> type= own binpath= <path_to_executable>

The process is slightly more complicated for DLL-based services:

reg add "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost" /v
"<service_group>" /t REG_MULTI_SZ /d "<service_name>\0" /f

reg add "HKLM\SYSTEM\CurrentControlSet\Services\<service_name>\Parameters"
/v ServiceDll /t REG_EXPAND_SZ /d <path_to_dll> /f

sc create <service_name> type= share binpath=
"C:\Windows\System32\svchost.exe -k <service_group>"

Using this approach, the created service can be started on demand when necessary, for
example, by using the following commands:

sc start <service_name>

Or:

net start <service_name_or_display_name>
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Attaching to the service

There are multiple ways services can be attached to immediately once they start:

e Creating a dedicated registry key: It is possible to create a key such as
HKLM\ SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File

Execution Options\<filename> with the corresponding string data value
Debugger containing the full path to the debugger to be attached to the service
once the program with the specified <filename> starts. Here, there is a nuance
that the window of the attached debugger may not appear if the service is not
interactive. It can be fixed using one of the following ways:

e Open services.msc, then open Properties for the debugged
service, then go to the Log On tab and set a tick against the Allow
service to interact with desktop option.

e It can also be done manually by opening the Type value of the
HKLM\SYSTEM\CurrentControlSet\services\<service_name
> registry key and replacing its data with the result of a binary or
operation with the current value and 0x00000100 DWORD
(SERVICE_INTERACTIVE_PROCESS flag).For example,
0x00000010 will become 0x00000110

e In addition, it can be originally created as interactive when using the sc tool with
the type= interact type= own Or type= interact type= share
arguments. Another option here is to use remote debugging.

¢ Using GFlags: The GFlags tool (the Global Flags Editor), which is part of the
Debugging Tools (the same as WinDbg), provides multiple options for tweaking
the process of debugging the candidate application. To attach the debugger, it
modifies the registry key mentioned previously, so both approaches can be used
pretty much interchangeably in this case. In order to do it using its Ul, it is
required to set the filename of the program of interest (not the full path) to the
Image File tab, the Image field, then refresh the window using the Tab key and
set a tick against the Debugger field where the full path to the debugger of
preference should be specified. As in the previous case, it is required to make
sure the service is interactive.

¢ Enabling child debugging: Here, it is possible to attach to services.exe with a
debugger supporting breaks on the child process creation, enable it (for example,
with the . childdbg 1 command in WinDbg) and then start the service of
interest.
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e Patching the EntryPoint: The idea here is to put \xEB\xFE bytes to the
EntryPoint of the analyzed sample that represents JMP instruction to redirect the
execution to the start of itself which creates an infinite loop. Then, it becomes
possible to find the corresponding process (it will consume a large amount of
CPU resources), attach to it with a debugger, restore the original bytes, and
continue execution as usual while making sure that the restored instructions are
successfully executed.

Once the debugger is attached, it is possible to place the breakpoint at the EntryPoint of the
sample to stop the execution there and then you can patch again the first 2 bytes (which has
been changed to \xEB\xFE) to return back the original first 2 bytes.

The common problem with debugging services is the timeout. By default, the service gets
killed after about 30 seconds if it didn't signal that it was executed successfully, which may
complicate the debugging process. For example, WinDbg in this case accidentally starts
showing a No runnable debuggees error when trying to execute any command. In order
to extend this time interval, it is required to create or update the DWORD
ServicesPipeTimeout value in the HKLM\SYSTEM\CurrentControlSet\Control
registry key with the new timeout in milliseconds and restart the machine.

The service DLL's exports, such as ServiceMain, can be debugged using any of the
previously-mentioned approaches. In this case, it is possible to either attach to the
corresponding svchost . exe process immediately once it is created and enable breaking on
DLL load (for example, using the sxe 1d[:<dl1l_name>] command in WinDbg) or patch
the DLL's EntryPoint or any other export of interest with the infinite loop instruction and
attach to svchost . exe at any time once it started.

This brings us to the end of this exciting chapter. Let's now take quick peep into what we
have learned and what we will cover in chapter 3, Unpacking, Decryption, and
Deobfuscation.

Summary

In this chapter, we have covered the PE structure of Windows' executable files. We have
covered the PE header field by field and examined its importance for static analysis,
finishing with the main questions for incident handling and threat intelligence that the PE
header of this sample can help us to answer.

We also covered the dynamic link libraries and how PE files that reside together in the
same virtual memory are able to communicate and share code and functions through what
are called APIs. And we covered how import and export tables work.
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We also covered the dynamic analysis from the basic foundation, such as what a process is
and what a thread is with step-by-step guidance on how Windows creates a process and
loads a PE file, from your double-click on an application in Windows Explorer until the
program is running in front of you.

And, last but not least, we have covered the dynamic analysis of malware with OllyDbg,
going through the most important functionalities of this tool in order to monitor, debug,
and even modify the program execution. We talked about the different types of
breakpoints, how to set them, and how they actually work internally so you can later
understand how they can be detected by the malware, and how to bypass their anti-reverse
engineering techniques.

By the end of this chapter, you should be able to have the basic foundation to perform a
basic malware analysis, including static and dynamic analysis. You should also have an
understanding of what questions you need to answer in each step and the whole process
you need to follow to have a full understanding of this malware functionality.

In chapter 3, Unpacking, Decryption and Deobfuscation, we will take our discussion and
venture into unpacking, decryption, and deobfuscation from the context of malware. We
will explore different techniques introduced my malware authors to bypass detection and
amateur reverse engineers. We will also learn how to bypass these techniques and deal
with them.
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In this chapter, we are going to explore different techniques that have been introduced by
malware authors to bypass antivirus software static signatures and amateur reverse
engineers, that is, packing, encryption and obfuscation. We will learn how to identify
packed samples, how to unpack them, how to deal with different encryption
algorithms—from simple ones, such as sliding key encryption, to more complex algorithms,
such as 3DES, AES, and Public Key Encryption (PKA)—and how to deal with API

encryption, string encryption, and network traffic encryption.

This chapter will help you deal with malware that uses packing and encryption to evade
detection and amateur reverse engineering. With the information in this chapter, you will
be able to manually unpack malware samples with custom types of packers, understand the
malware encryption algorithms that are needed to decrypt its code, strings, APIs, or
network traffic, and extract its infiltrated data. You will also understand how to automate
the decryption process using IDA Python scripting.

This chapter is divided into the following sections to facilitate the learning process:

e Exploring packers

Identifying a packed sample

Performing automatic unpacking of packed samples

Manually unpacking using OllyDbg

Dumping the unpacked sample and fixing the import table

Identifying basic encryption algorithms and functions

String search detection techniques for simple algorithms
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Identifying the RC4 encryption algorithm

Using IDA for decryption and unpacking

Exploring packers

A packer is a tool that packs together the executable file's code, data, and sometimes
resources, and contains code for unpacking the program on the fly and executing it:

Standard symmetric and asymmetric encryption algorithms

Applications of encryption in modern malware—Vawtrak banking Trojan

Original File

Original MZ-PE
header

Section 1

Section 2

i

Packing

Packed File

New MZ-PE Header

Packed sections

Unpacking
code

Unpacked File
in Memory

4 N\
Original MZ-PE
Header

->
(N J

Figure 1: The process of unpacking a sample

Packers help malware authors hide their malicious code behind this compression layer.
This code only gets unpacked and executed once the malware is executed (in runtime
mode), which helps malware authors bypass static signature-based detection.
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Exploring packing and encrypting tools

There are multiple tools that can pack/encrypt executable files, but each has a different
purpose. It's important to understand the difference between them as their encryption
techniques are customized for the purpose they serve. Let's go over them:

e Packers: These programs mainly compress executable files, thereby reducing
their total size. Since their purpose is compression, they were not created for
hiding malicious traits and are not malicious on their own. Therefore, they can't
be indicators that the packed file is likely malicious. There are many well-known
packers around, and they are used by both benign software and malware
families—for example:

e UPX: This is an open source packer, and its command-line tool has
the ability to unpack the packed file.

e ASPack: This is a commonly used packer which has a free and a
premium version. The same company that provides ASPack also
provides protectors such as ASProtect.

¢ Legal protectors: The main purpose of these tools are to protect against reverse
engineering attempts—for example, to protect the licensing system of shareware
products or to hide implementation details from competitors. They often
incorporate encryption and various anti-reverse engineering tricks. Some of them
might be misused to protect malware, but this is not their purpose.

e Malicious encryptors: Similar to legal protectors, their purpose is also to make
the analysis process harder; however, the focus here is different: to avoid
antivirus detection, you need to bypass sandboxes and hide the malicious traits
of a file. Their presence indicates that the encrypted file is more than likely to be
malicious as they are not available on the legal market.

In reality, all of these tools are called packers and may include both protection and
compression capabilities.

Identifying a packed sample

There are multiple tools and multiple ways to identify whether the sample is packed. In this
section, we will take a look at different techniques and signs that you can use, from the
easiest and most straightforward to more intermediate ones.
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Technique 1 - checking PE tool static signatures

The first way to identify whether the malware is packed is by using static signatures. Every
packer has unique characteristics that can help you identify it. For example, the UPX packer
renames all sections as UPX1, UPX2, and so on, while the ASPack packer names the last
section . aspack. Some PE tools, such as PEiD and CFF Explorer, are able to scan the PE file
using these signatures or traits and identify the packer that was used to compress the file (if
it's packed); otherwise, they will identify the compiler that was used to compile this
executable file (if it's not packed):

PE PEID v0.95 =10 x|
File: | Grichavl.exe D
Entrvpaoint: | 00030620 EF Section: | LPsL
File Offset: [0001DACO First Bytes: | &0,BE,00,30
Linker Info: 9,0 Subsystem: |'Win32 GUL

|L|F‘X 0,896 - 1,02 / 1,05 - 2,90 - Markus & Laszlo

| Multi Scan | | Task\.-'iewerl | Opkions | | About I | Exik |

¥ Stay onkop

Figure 2: PEiD tool detecting ASPack

All you need to do is open this file in PEiD—you will see the signature that was triggered
on this PE file (in the preceding diagram, it was identified as ASPack). However, since they
can't always identify the packer/compiler that was used, you need other ways to identify
whether it's packed, and what packer was used, if any.

Technique 2 - evaluating PE section names

Section names can reveal a lot about the compiler or the packer, if the file is packed. An
unpacked PE file contains sections such as .text or .code, .data, .idata, .rsrc,
and . reloc, while packed files can contain specific section names, such

as UPX0, .aspack, .stub, and so on:
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EP Section: |LPx1 .‘

First Bytes: - |60,BE,00,50 k|
Subsystem: | Win3z2 GLIT Mame | W, Offset | YW, Size | R. Offset | R. Size | Flags |
LP0 00001000 00012000 00000400 00000000 EOO000S0
= LPs1 00013000  OOOLEOOD 00000400  OO0IDADD  EOOO0040
aszl0 JFstE 00031000 00002000  OOOIDEOO  OOOO1EO0  COOOOO040

| | [ abou ][ Ed
=

Close

Figure 3: PEiD tool's section viewer

These section names can help you identify whether this file is packed. Searching for these
section names on the internet could help you identify the packer that uses these names for
its packed data or its stub (unpacking code). You can easily find the section names by
opening the file in PEiD and clicking on the > button beside the EP Section. By doing this,
you will see the list of sections in this PE file, as well as their names.

Technique 3 - using stub execution signs

Most packers compress PE file sections, including the code section, data section, import
table, and so on, and then add a new section at the end which contains the unpacking code
(stub). Since most of the unpacked PE files start the execution from the first section (. text
or .code), the packed PE files start the execution from one of the last sections, which is a
clear indication that a decryption process will be running. The following signs are an
indication that this is happening:

¢ The entry point is not pointing to the first section (it would mostly be pointing to
one of the last two sections) and this section's memory permission is
EXECUTABLE (in the section's characteristics)

e The first section's memory permission will be mostly READWRITE

It is worth mentioning that many virus families that infect executable files have similar
attributes.
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Technique 4 - detecting a small import table

For most applications, the import table is full of APIs from system libraries, as well as third-
party libraries; however, in most of the packed PE files, the import table will be quite small,
and will include a few APIs from known libraries. This is enough to unpack the file. Only
one API from each library of the PE file would be used after being unpacked. The reason for
this is that most of the packers load the import table manually after unpacking the PE file,
as you can see in the following screenshot:

DliName OriginalFirstThunk TimeDateStamp ForwarderChain Name FirstThunk -~ DilName OriginalFirstThunk TimeDateStamp ForwarderChain Name FirstThunk -
KERNEL3Z.dl  00008B04 00000000 00000000 0DO09IEE  0DODBOGD ADVAPI3Z.dl  0D00ODOO 00000000 00000000 0DIDIEBE  0DID3EIC
UseR32.dl 00008C38 00000000 00000000 00009612 00008194 coMcTL32.dl 00000000 00000000 00000000 0DIDIESS  ODID3E44
GDI32.dl 000DBAED 00000000 00000000 0D0096A4  0DODSD3C GDI32.dI 00000000 00000000 00000000 0DIDIEAZ  ODID3ESE
SHELL32.dIl 00008C1C 00000000 00000000 00009730 00008178 KERNEL32.DLL  D0DDDDOD 00000000 00000000 O0ID3EAC  001D3ES4
ADVAPL32.dll 00008AA4 00000000 00000000 000097D2 00003000 ole32.dl 00000000 00000000 00000000 00ID3EBS  OOID3E68
COMCTL32dl  0000BACC 00000000 00000000 00009S1E 00008028 SHELL32.dIl 00000000 00000000 00000000 0DID3EC3  ODIDIETD
ole32.dl 00008DS0 00000000 00000000 00009872 ODODS2AC User32.dI 00000000 00000000 00000000 ODID3ECE  ODIDIETR
VERSION.dll 00008040 00000000 00000000 0DOD9BEE  0D0DB29C ~ | | version.dl 00000000 00000000 00000000 ODID3EDA  0DID3EBO 2
Thunk RVA | Thunk Offset | Thunk Value | Hint/Ordinal | APTName A | ThunkRVA | Thunk Offset | Thunk Value | Hint/Ordinal | APIName
00008000 00005800 0000975A 0250 RegEnumKeyW 001D3E3C D00SF43C 001D 3EES 0000 RegEnumKeyW
00008004 00006804 00009768 0261 RegOpenKeyExw
00008008 00006808 0000874C 0230 RegCloseKey
0000800C 0000E80C 0000873C 0244 RegDeleteKeyw
00008010 00006810 000097C0 0248 RegDeleteValue\W
00008014 00006814 000097AE 0239 RegCreateKeyExw
00008018 00006818 0000979C 027 RegSetValusExi
0000801C 0000681C 00009788 026E RegQueryValueExW v

Close Close

Figure 4: The import table of an unpacked sample versus a packed sample with UPX

The packed sample removed all the APIs from ADVAPI32.d11 and left only one, so the
library will be automatically loaded by Windows Loader (it loads the program if there's a
missing library). After unpacking, the unpacker stub code will load all of these APIs again
using the GetProcAddress APL

Now that we have a fair idea of how to identify a packed sample, let's venture forward and
explore the automatic unpacking of packed samples in the next section.
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Automatically unpacking packed samples

Before you dive into the manual, time-consuming unpacking process, you need to try some
fast automatic techniques first to get a clean unpacked sample in no time at all. In this
section, we will explain the most well-known techniques for quickly unpacking samples
that are packed with common packers.

Technique 1 - the official unpacking process

Some packers, such as UPX or WinRAR, are self-extracting packages that include an
unpacking technology that's shipped with the tool. As you may know, these tools are not
created to hide any malicious traits, so some of them provide these unpacking features for
both developers and end users.

In some cases, the malware uses a commercial protector in an illegal way to protect its
malware from reverse engineering and detection. In this case, you can even directly contact
the protection provider to unprotect this piece of malware for your analysis.

Technique 2 - using OllyScript with OllyDbg

There is an OllyDbg plugin called OllyScript that can help automate the unpacking process.
It does this by scripting OllyDbg actions, such as setting a breakpoint, continuing
execution, and pointing the EIP register to a different place or modifying some bytes.

Nowadays, OllyScript is not widely used, but it definitely provided inspiration for the next
technique.
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Technique 3 - using generic unpackers

Generic unpackers are debuggers that have been prescripted to unpack specific packers or
to automate the manual unpacking process, which we will describe in the next section:

JQuickUnpack ¥2.1 - windowsxp2.exe

File Log Options  Plugine  About

)
e

®

I [ 3

Quick Unpack 2.1 for Windows 2000/7XP/2003/Vista BT
(] stripper engine by spd

founded by FEUERRADER [4HTeam)
[z] coded by Archer

=

18:04:30 - Opered windowsxp2. exe

I Cpen file I
Attach to process |

Quick self analyze.... PECompact 2 2

Full unpack |
Use script |

PESiffer EP Scan: PEEompacl w

FEID zzanring... PECompact 2.x - ForceOEP by Feustrads =
Generic OEP Finder by Usér & Archer

tport FECOVERY
* Smart method
™ Smatt method-+tracer

™ Do not recover

™ Load libraries anly

d of moduls For impart: I 00000000
TSC delta: I 00000000

| Cut last sections & rebuild resources
I Include suspect Functions inta import

I Process call oo imp e

I append overlay

¥ Protect DRx

[

[ Execute functions while tracing impart

Kill target |
Test unpacked |
Find karget |
Delete unpacked |
Clear log |
Exit |

Figure 5: The QuickUnpack tool in detail

They are more generic and can work with multiple packers, even if the packers were not
designed to unpack their files: however, malware can easily escape from these tools, which
may lead to the execution of the malware on the user's machine. Because of this, you should

always use these tools on a virtual machine or in a safe environment.

Technique 4 - emulation

Another group of tools worth mentioning is emulators. Emulators are programs that
simulate the execution environment, including the processor (for executing instructions,

dealing with registers, and so on), memory, the operating system, and so on.
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These tools have more capabilities for running malware safely (as it's all simulated) and
have more control over the execution process. Therefore, they can help set up more
sophisticated breakpoints, and can also be easily scripted (like libemu and the Pokas x86
Emulator), as shown in the following code:

from pySRDF import *

emu = Emulator ("upx.exe")

x = emu.SetBp("__isdirty(eip)") #which set bp on Execute on modified data
emu.Run() # OR emu.Run("ins.log") to log all running instructions

emu.Dump ("upx_unpacked.exe",DUMP_FIXIMPORTTABLE) #DUMP_FIXIMPORTTABLE
create new import table for new API

print "File Unpacked Successfully\n\nThe Disassembled Code\n-———-—---—-————-

n

In this example, we used the Pokas x86 Emulator. It was much easier to set more
complicated breakpoints, such as Execute on modified data, which gets triggered
when the instruction pointer (EIP) is pointing to a decrypted/unpacked place in memory.

Technique 5 - memory dumps

The last technique we will mention is incorporating memory dumps. This technique is
widely used, as it's one of the easiest for most packers and protectors to use (especially if
they have anti-debugging techniques), as it basically involves executing the malware and
taking a memory snapshot of its process and every process it injects code into.

This technique is very beneficial for static analysis, as well for static signature scanning;
however, the memory dump that is produced is different from the original sample and
can't be executed. The addresses and the import table need to be fixed before any further
dynamic analysis is possible.

Some common sandboxing tools provide a process's memory dump as a core feature or as
one of their plugins' features, such as Cuckoo Sandbox.

Since this technique doesn't provide a clean sample, and because of the limitations of the
previous automated techniques we described, understanding how to unpack malware
manually can help you with these special cases, which you will see from time to time. With
manual unpacking, and by having an understanding of anti-reverse engineering techniques
(these will be covered in chapter 5, Bypassing Anti-Reverse Engineering Techniques), you will
be able to deal with the most advanced packers.

In the next section, we will explore manual unpacking with OllyDbg.
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Manual unpacking using OllyDbg

Since automated unpacking is faster and easier to use than manual unpacking, it doesn't
work with all packers, encryptors, or protectors. This is because some of them require a
manual, custom way to unpack. Some of them have anti-VM techniques or anti-reverse
engineering techniques, while others use unusual APIs or assembly instructions that the
emulators can't detect. In this section, we will look at different techniques for manually
unpacking malware.

When it comes to unpacking, many reverse engineers prefer to just execute the original
sample, dump the whole process memory, and hope that the unpacked module will be
available there. While quite fast, this approach also has multiple disadvantages, such as the
following;:

e It is possible that the unpacked sample will already be mapped by sections and
that the import table will already have been populated, so the engineer will have
to change the physical addresses of each section to be equal to the virtual ones,
restore imports, and maybe even handle relocs in order to make them executable
again. The hash of this sample will be different from the original one.

¢ The original loader may unpack the sample to allocated memory, inject it
somewhere else, and free the memory so that it won't be a part of the full dump.

e It is very easy to miss some modules; for example, the original loader may
unpack only a sample for a 32- or 64-bit platform.

The much cleaner way is to stop unpacking when the sample has just been unpacked, but
hasn't been used yet. This way, it will just be an original file. By doing this, its hash can be
used for threat intel purposes.

In this section, we will cover several common universal methods of unpacking samples.

Technique 6 - memory breakpoint on execution

This technique is very straightforward. Many packers encrypt the first few sections
(including the code section), and the unpacker stub just unpacks each of them and then
transfers control to the original entry point (OEP) for the application to run normally. We
don't know the OEP, but we can easily assume that it's in the first section and that we can
set a breakpoint to catch any execution of instructions there.
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Step 1 - setting the breakpoints

We can use a hardware breakpoint on execution, but this breakpoint can be only set on a
maximum of four bytes, which means that you have to know the OEP to be able to set one.
The more effective solution is to use memory breakpoints on execution.

The ability to use memory breakpoints on execution is available in OllyDbg, and can be
accessed by going to View | Memory. Now, we can change the first section's memory
permissions to READWRITE if it was Full access:

00400000 00001000 | Ixeshe u PE header Imag R RWE

00401000 0000C000 Ixeshe u|UPXO0 j Am'a;u — - !
0040D000 00004000 Ixeshe u UPX1 code

00411000 | 00001000 Ixeshe u|UPX2 data,y |DvmpinCPV

004E0000 | 00007000 Dump

007B0000 00003000 Search Ctrl+8

72E20000| 00001000 | WINHTTP PE hez

72E21000| 0004D000 | WINHTTP | .text coda , B[ e e -

72E6E000| 00001000 WINHTTP | .data data Set memory breakpoint on access

T2E6F000 00005000 WINHTTP @ .rsrc resoul Set memaory breakpoint on wite

T72E74000 00004000 WINHTTP @ .reloc relocs ~y— = PR
72E90000| 00001000 | webio PE hez

72E91000 | 00032000 webio .text code,] |[Sctbresk-on-ewecite o o
72EC3000| 0000A000 | webio .data data Read/wri
72ECD000  0000F000 | webio .rsrc resouy  Copytoclipboard 4 Execute
72EDC000 | 00003000 webio .reloc relocs Sort by » Tl
73270000 0005C000 . Appearance » Full sccess
748D0000 | 00008000 THag R RWE T

ZJARIO0O00 0003000 Imacr B BRWE

Figure 6: Changing memory permissions in OllyDbg

In this case, we can't execute code in this section until it gets execute permission. By default,
in multiple Windows versions, it will still be executable for noncritical processes, even if the
memory permissions don't include the EXECUTE permission. Therefore, you need to enforce
what's called Data Execution Prevention (DEP), which enforces the EXECUTE permission
and doesn't allow any non executable data to be executed.

This technology is used to prevent exploitation attempts, which we will cover in more
detail in chapter 7, Handling Exploits and Shellcode; however, it comes in handy when we
want to unpack malware samples easily.
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Step 2 - turning on Data Execution Prevention

To turn on DEP, you can go to Advanced System Settings and then Data Execution
Prevention. You will need to turn it on for all programs and services, as shown in the
following screenshot:

=S 2L
—~— i X |F
‘\Ju & » Control Panel » Sy Hallldrss v |43 || Search Control Pane r
Computer Name | | System Protection | Remote ]
Control Panel Home |
r Y
N Performance Options &
% Device Manager
¥ Remote settings Visual Effects | Advanced| Data Execution Prevention
% System protection
i A Data Execution Prevention (DEP) helps protect against
% Advanced system settings 2 é damage from viruses and other security threats. How
does it work?
) Turn on DEP for essential Windows programs and services
only
@ Turn on DEP foﬁll programs and services except those I
select:
272 GHz
isplay
Add... R v
| S— E/ & Change settings
Your computer’s processor supports hardware-based DEP.
oK Cancel | Apply
W
‘ ™ You must activate today. Activate Windows now
Action Cents
o Product ID: 00346-339-0000007-85284  Change product key
ge [ Y
Windows Update
Performance Information and
Tools

Figure 7: Changing DEP settings on Windows
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Now, these types of breakpoint should be enforced and the malware should be prevented
from executing in this section, particularly at the beginning of the decrypted code (OEP).

Step 3 - preventing any further attempts to change

memory permissions

Unfortunately, this is not enough. The unpacking stub can easily bypass this breakpoint by
changing the permission of this section to full access again by using the VirtualProtect
APIL

This API gives the program the ability to change the memory permissions of any memory
chunk to any other permissions. You need to set a breakpoint on this API by going to CPU
View and right-clicking on the disassemble area. C | Go To | Expression (or Ctrl + G), type
in the name of the API (in our case, this is VirtualProtect) and set a breakpoint on the
address it takes you to.

If the stub tries to call virtualProtect to change the memory permissions, the debugged
process will break and you can change the permission it tries to set on the first section. You
can change the NewProtect value to READONLY or READWRITE and remove the EXECUTE bit
from it:

PIBESIXIY 0040F40C|rCALL to VirtualProtect from Ixeshe a.0
0018FF44 00401000 || rddress Ixeshe a.00401000
FF4 00008000 31z 8000 (32735.)
00000020 lewl tect PAGE EXECUTE READ
0040F5F4 rot Ixeshe_a.0040F5F4
00000006

Figure 8: Finding an address that VirtualProtect API changes permissions for
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Step 4 - executing and getting the OEP

Once you click Run, the debugged process will break directly on the OEP, which will can
an access violation error to appear, as you can see in the following screenshot:

B x| »|n| Wi+ ¥IE ¥ =+ LjE|M[T|W/H|c|/|K|B|R|:[S]| E[H?
55 ' PUSH EBP .
00408B87| BBEC MOV EBP,ESP
)0408B89| 6A FF PUSH -1
( 68 E8904000 PUSH Ixeshe u.004090E8
00408890, 68 308B4000 PUSH Ixeshe u.00408B30
00408895, 64:A1 00000000 MOV EAX,DWORD PTR FS:[0]
B9B| 50 PUSH EAX
( BO9C| 64:8925 0000000(MOV DWORD PTR FS: [0],ESP EST 000
00408BA3| B3EC 68 SUB ESP, 68 EDI 000
00408BA6| 53 PUSH EBX
( 56 PUSH ESI EIP 004
57 PUSH EDI 1 ES
0 8965 ES8 Mov DWORD'PTRISSI[EEP=181, |- o
( 33DB XOR EBX,EBX A (
( 895D FC Mov DWORDIBTRSSH[EEP"4] .E |, o
EBP=0018FF94
La
| Access violation when execuling [00408886] - use Shift+F 7/F8/FS to pass exception to program [ [Paused

Figure 9: Staying at the OEP of the sample in OllyDbg

This is not always the case, as some packers modify the first few bytes of the first section
with instructions such as ret, jmp, call, just to make the debugged process break on this
breakpoint; however, after a few iterations, the program will break. This occurs after full
decryption/decompression of the first section, which it does in order to execute the original
code of the program.
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Technique 7 - call stack backtracing

The call stack is a relatively hard topic to understand, but it is very useful for speeding up
your malware analysis process. It's also useful in the unpacking process.

Take a look at the following code and imagine what the stack will look like:

func 01:
1: push ebp
2: mov esp, ebp ;now ebp = esp
3: call func 02
func 02:
4: push ebp ;which was the previous esp before the call
5: mov ebp, esp ;now ebp = new esp
5: call func 03
func 03:
6: push ebp ;which is equal to previous esp
7: mov ebp, esp ; ebp = another new esp

You will notice that, just after the return address from call func03 in the stack, the
address of the previous esp is stored. The previous esp value is stored in the stack. This
stored esp value points to the top of the stack, just after instruction 5. On top of the stack
from this previous esp value, the first esp value is stored (this is because of instruction 4
of ebp is equal to the first esp value) and followed by the return address from call
func02, and so on.
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Here, the stored esp value is followed by a return address. This esp value points to the
previously stored esp value, followed by the previous return address, and so on. This is
known as a call stack. The following screenshot shows what this looks like in OllyDbg:

Ba19F4FE| BE19FE2C
BE19F4FC|| @1A9210E| RETURN to USERZZ.OLADZI0E from USER2Z. MessageBouTimeoutl
GE19FCEE| | GEECE0FZ
EE19F5E4 || BEPACFFS| UNICODE "™You do not have administrative rights on this computer. HAs a result. some debugaing features maw fai
BE1SFEES || BEF42E7E | UNICODE "0l lyDba™

GE13FEAEC| | BREARESE
Ga13FS16|| aEaaaaaE
@a13Fsid|| FFFFFFFF
BE1IFS1E| | 88409455 | OLLYDBG. Ba403465
EE1IFELC | @B4BEIES| ASCIT "He - He™
EE1IFEZE || BEEREEEE
EE1IFEES || @AV4Z2EFE| UNICODE "01 lyDbg™

BALSFE22 || BEFACFFS | UNICODE ™You do not hawve administrative rights on thiz computer. As 3 result, some debugging features maw fai
GE19FEZC| J6@19FE4C
BE19FE2E || @LAPIFSA| RETURN to USERZZ.OLAYIFEA from USER2Z. MessageBouTimeouth
GE19FE24 || GEECE0FZ
EE19FE22 || BB4BOASA| ASCIT "™ou do not have administrative rights on this computer. As a result, some debugaing features maw fail.
BE1FEEC|| BB4BPIEE| ASCIT ™01 lyDba™

GE13FE4E || BREARESE
@a13F54d || GREARREE
@a13Fs45|| FFFFFFFF
BE19F54C | JB819FF3E
EE1IFEEE || 88439877 | RETURN to OLLYDBG. 88439677 from <JHMF.LUSERSZ. MessageBorA
EE1IFEES || BEECEDFZ
EALSFEES|| BB4BSASA| ASCII "™You do not have administrative rights on this computer. As a result, some debugging features may fail.
HEATSFEED || @@4BF1EE| ASCIT ™01 luDbg™

Figure 10: Stored values followed by a return address in OllyDbg

As you can see, the stored esp value points to the next call stack (another stored esp value
and the return address of the previous call), and so on.

OllyDbg includes a view window for the call stack that can be accessed through View |
Call Stack. It looks as follows:

[4 call stack of main thread

bddress |S5tack Procedure Called from Frame

0012Fegl | 77868094 |Mavybe ntdll EKiFastSystemTszll |(ntdll.ZwRequestWaitReplyPor|0012F&B8
0012FeeC| 77879522 (ntdll. ZwRequestWaeitReplyPort |(ntdll. 77879510 001ZF&88
0012F&8C|7777CBEC |ntdll.CsrClientCellServer kernel3z . 7T777CBEE 001ZF&88
001ZE770(777T7CBEFC|? kernel3Z . T7T777CRE kernel3Z WriteConsoleR+13 001ZF7&C
0012F78C|(7777C364 | kernel3Z WriteConsoled kernel3z.7777C35F 001ZF788
001ZF7EE (0040B543 |7 kernel3Z WriteFile hello.0040B53D 001ZF7E4
0012FDA4 (0040B835 |7 hello.0040B1DO hello.0040B830 001ZFBE8
001ZFDES (0040B1&6B|? hello.0040B794 hello.0040Bl&6 001ZFCE4
001ZFEQOC (00405848 hello.( hello. 00405843 001ZFEODB
001ZFE48 (004025FC hello.00402Z5F7 001ZFE44
001ZFES4 ([00402BAD hello.0040ZBAS 001ZFEDO

Figure 11: Call stack window in OllyDbg
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Now, you may be wondering: how can the call stack help us unpack our malware in a fast
and efficient way?

Here, we can set a breakpoint that we are sure will make the debugged process break in the
middle of the execution of the decrypted code (the actual program code after the unpacking
phase). Once the execution stops, we can backtrace the call stack and go back to the first call
in the decrypted code. Once we are there, we can just slide up until we reach the start of the
first function that was executed in the decrypted code, and we can declare this address as
the OEP.

Step 1 - setting the breakpoints

To apply this approach, you need to set the breakpoints on the APIs that the program will
execute at some point. You can rely on the common APIs that are getting used, your
behavioral analysis, or a sandbox report that will give you the APIs that were used during
the execution of the sample.

Some examples of some known APIs
are GetModuleFileNameA, GetCommandline, CreateFileA, VirtualAlloc, HeapAllog,
memset, and so on.

First, you set a breakpoint on these APIs (use all of your known ones, except the ones that
could be used by the unpacking stub) and execute the program until the execution breaks:

0018F48
004088C5 | RETURN to Txo.ﬂ.hn_n.f‘lf}rlr}sflr:"_‘ from WINHTTP.WinHttpOpen
0018EFCS | UNICODE "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT &

Figure 12: The return address in the stack window in OllyDbg

Now, you need to check the stack, since most of your next steps will be on the stack side. By
doing this, you can start following the call stack.

Step 2 - following the call stack

Follow the stored esp value in the stack and then the next stored esp value until you land
on the first return address, as shown in the following screenshot:

0018FF88
00408CBA | RETURN to Ixeshe u.00408CBA from Ixeshe u.0040106E
00400500 | Ixeshe u.00400000

Figure 13: The last return address in the stack window in OllyDbg
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Now, follow the return address on the disassembled section in the CPU window, as
follows:

00408CA9| 58 POP EAX
00408CcAaA| 50 PUSH EAX
( 3 PUSH ESI
)408CAC| 53 PUSH EBX
00408CAD 53 PUSH EBX
00408cC FF15 38904000 CALL DWORD PTR DS:[409038] kernel32.GetModuleHandleA
00408CB4| 50 PUSH EAX
00408CB5 EB8 B483FFFF |GALL Ixeshe u.0040106E |
00408CBA| 8945 98 MOV [ DWORD PTR SS: [EEP-68] , EAX
DO408BCRD 50 PUSH EAX
00408C FF15 8C904000 CALL DWORD PTR DS:[40908C] MSVCRT.exit

Figure 14: Following the last return address in OllyDbg

Now, you have reached the first call in the unpacked section, and the only step left is
reaching the OEP.

Step 3 - reaching the OEP

Now, you only need to slide up until you reach the OEP:

D0408BB7D| 50 PUSH EAX

00408B7E| C3 RETN

00408B7F| CC INT3

00408B80|-FF25 6C904000 JMP DWORD PTR DS: [40906C] MSVCRT . memcpy
00408B86 55 | PUSH EBP

00408B87| BBEC MOV EBP,ESP

00408B89| 6A FF PUSH -1

0D40BBB8E| 68 EB8904000 PUSH Ixeshe u.004090E8

00408B90| 68 308B4000 PUSH Ixeshe u.00408B30 JMP to MSVCRT._except handler3
00408B95 64:A1 00000000 MOV EAX,DWORD PTR FS:[0]

00408B9B| 50 PUSH EAX

00408BB9C| 64:8925 0000000 MOV DWORD PTR FS:[0] ,ESP

00408BA3| 83EC 638 SUB ESP,68

00408BA6| 53 PUSH EBX

00408 ! PUSH ESL

D0408BA8B| 57 PUSH EDI

DO408BAY9| 8965 E8 MOV DWORD PTR SS: [EBP-18],EsP

0040BBAC| 33DB XOR EBX,EBX

00408BAE| 895D FC MOV DWORD PTR SS:[EBP-4],EBX

D0408BB1 6A 02 PUSH 2

00408BBBE3| FF15 AC904000 EALL DWORD PTR DS: [4090AC] MSVCRT. set app type
00408BEY9| 59 POP ECX - - =

00408BBA| 830D FCD24000 OR DWORD PTR DS: [40D2FC] ,FFFFFFFF
00408BC1 830D 00D34000 OR DWORD PTR DS: [40D300] ,FFFFFFFF
00408EC8| FF15 A8904000 |EANE DWORD PTR DS: [4090A8] MSVCRT.__p__fmode

Figure 15: Finding the OEP in OllyDbg

This is the same entry point that we were able to reach in the previous technique.
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It's a simple technique to use and it works with many complex packers and encryptors.
However, this technique could lead to the actual execution of the malware or at least some
pieces of its code, which makes it inefficient, in some cases.

Technique 8 — monitoring memory allocated
spaces for unpacked code

This method is extremely useful if the time to analyze a sample is limited, or if there are
many of them, without going into the details of how the sample is actually stored.

The idea here is that the original malware usually allocates a big block of memory in order
to store the unpacked/decrypted embedded sample. We will cover what happens when this
does not happen later.

There are multiple Windows APIs that can be used for allocating memory in user mode.
Attackers generally tend to use the following ones:

e VirtualAlloc/VirtualAllocEx
e IocalAlloc

® GlobalAlloc

e HeapAlloc

In kernel mode, there are other functions such as Rt 1AllocateHeap,
zwAllocateVirtualMemory, and ExAllocatePoolWithTag that can be used in pretty
much the same way.

If the sample is written in C, it makes sense to monitor malloc/calloc functions straight
away. For C++ malware, we can also monitor the new operator.

As long as we stop at the entry point of the sample (or at the beginning of the TLS routine,
if it is available), we can set a breakpoint on execution to the following functions. Generally,
it is OK to put a breakpoint on the first instruction of the function, but if there is a concern
that malware can hook it (that is, replace the first several bytes with some custom code), the
breakpoint at the last instruction will work better.

Another advantage of this is that, this way, it needs only one breakpoint for both
VirtualAllocEx and VirtualAlloc (which is a wrapper around the former API). In the
IDA debugger, it is possible to go to the API by pressing the G hotkey and prefixing the API
name with the corresponding DLL without the file extension and separating it with an
underscore, for example, kernel32_vVirtualAlloc.
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After this, we continue execution and keep monitoring the sizes of the allocated blocks. As
long as it is big enough, we can put a breakpoint on the write access in order to intercept
the moment when the encrypted (or already decrypted, on the fly) payload is being written
there. If the malware calls one of these functions too many times, it makes sense to set a
conditional breakpoint and monitor only allocations of blocks bigger than a particular size.
After this, if the block is still encrypted, we can keep a breakpoint on writes and wait until
the decryption routine starts processing it. Finally, we dump the memory block onto disk
when the last byte is decrypted.

Other API functions that can be used in the same approach include the following:

e VirtualProtect: Malware authors can use this in order to make the memory
block storing the unpacked sample executable

® WriteProcessMemory: Often used in order to inject the unpacked payload,
either to some other process or to itself

In most cases, the malware unpacks the whole sample at once so that after dumping it, we
get the correct Mz-PE file, which can be analyzed independently. However, other options
exist, such as the following:

e A decrypted block is a corrupted executable and depends on the original packer
in order to perform correctly.

¢ The packer decrypts the sample section by section and loads each of them one by
one. There are many ways this can be handled, for example:
e Dump sections as long as they become available and concatenate
them later
¢ Modify the decryption routine to process the whole sample at once
e Write a script that decrypts the whole encrypted block

If at any stage the malicious program terminates, it might be a sign that it either needs
something extra (such as command-line arguments or an external file, or perhaps it needs
to be loaded in a specific way), or that there is an anti-reverse engineering trick that needs
to be bypassed. You can confirm this in various ways—for example, by intercepting the
moment when the program is going to terminate (for example, by placing a breakpoint on
ExitProcess, TerminateProcess or the more fancy PostQuitMessage API call) and
trace which part of the code is responsible for it.
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Some engineers prefer to go through the main function manually, step by step—without
going into subroutines until one of them causes a termination—and then restart the process
and trace the code of this routine. It then traces the code of the routine inside it, if
necessary, right up until the moment the terminating logic is confirmed.

Technique 9 - in-place unpacking

While definitely not common, it is possible to either decrypt the sample in the same section
that it was originally located (this section should have write permissions) or in another
section of an original file.

In this case, it makes sense to perform the following steps:

1. Search for a big encrypted block (usually, it has high entropy and is visible to the
naked eye in a hex editor).

2. Find the exact place where it will be read (the first bytes of the block may serve
other purposes—for example, they might store various types of metadata, such
as sizes or checksums/hashes, to verify the decryption).

3. Put a breakpoint on read and/or write there.

4. Run the program and wait for the breakpoint to be triggered.

As long as this block is accessed by the decryption routine, it is pretty straightforward to
get the decrypted version of it—either by placing a breakpoint on execution at the end of
the decryption function or a breakpoint on write to the last bytes of the encrypted block to
intercept the moment when they are processed.

It is worth mentioning that this approach can be used together with the one that relies on
malware allocating memory discussed in Technique 8 — monitoring memory allocated spaces for
unpacked code section.
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Technique 10 - stack restoration based

Restoring the stack is usually quicker to do than the previous two techniques, but it is much
less reliable. The idea here is that some packers keep the stack in order and transfer control
to the unpacked sample to has the same stack level that they started with. What that means
is that it will access the value located at the address that was originally pointed by the
frame pointer register (ebx/rbx), minus one value of a size of the address length for the
selected architecture (for example, a 4-byte DWORD for a 32-bit platform) just before
transferring control to the unpacked code, even when using the jmp instruction.

In this case, it is possible to set a breakpoint on access to the [ebp-4] value while staying at
the entry point of the sample and then executing it so that the breakpoint will hopefully
trigger just before transferring control to the unpacked code. Often, this happens when the
packer restores the registers to the original values—for example, by using the popad
instruction.

Obviously, this may never happen, depending on the implementation of the unpacking
code, and there may be other situations where this does happen (for example, when there
are multiple garbage calls before starting the actual unpacking process). Therefore, this
method can only be used as a first quick check before more time is spent on the first two
methods, which will work in pretty much any case.

After we reach the point where we have the unpacked sample in memory, we need to save
it to disk. In the next section, we will describe how to dump the unpacked malware from
memory to disk and fix the import table.

Dumping the unpacked sample and fixing
the import table

In this section, we will look at how to dump the unpacked malware in memory to disk and
fix its import table. In addition to this, if the import table has already been populated with
API addresses by the loader, we will need to restore the original values. In this case, other
tools will be able to read it, and we will be able to execute it for dynamic analysis.
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Dumping the process

To dump the process, you can use OllyDump. OllyDump is an OllyDbg plugin that can
dump the process back to an executable file. It unloads the PE file back from memory into

the necessary file format:

OllyDump - Packed_1.exe

Start Addres; [400000 Size: |1FOO0 Durmnp
Eritry Point; 10050 -+ Modify, [D71B40 Get EIP as OEP | Cancel |

Base of Code; |1C000 Base of Data; |1E000

W Fix Baw Size & Offzet of Dump Image

Section | Wirtual Size | irtual Offset | Raw Size | Raw Offset | Charactanstics
LIF=0 oooieoao 00001 o0a oo Boao 0oaoiaoa EQ00a0E0
LIFx1 0oo02a00 0a01cooa 00002000 0a0icoaag EQ000040
NE 0000 aoa 0o EQoD 0000 0og 0ooEQad CO00a04a

v Rebuid lmpart
* Methodl : Search JMPAPI] | CALLIAPI] in memary image
™ Method? : Search DLL & AP name string in durmped file

Figure 16: OllyDump UI

Once you reach the OEP from the previous manual unpacking process, you can set the OEP
as the new entry point. OllyDump has the ability to fix the import table (as we will soon
describe). You can either use it or uncheck the Rebuild Import checkbox if you are willing

to use other tools.
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Another option is to use tools such as PETools or Lord PE for 32-bit and VSD for 64-bit
Windows. The main advantage of these solutions is that apart from the so-called Dump
Full option, which mainly dumps original sections associated with the sample, it is also
possible to dump a particular memory region—for example, allocated memory with the
decrypted/unpacked sample(s):

Region Dump ﬂ

Address Size Protect Skate Type il
Ooooaooa onoioooo Mo ACCZESS FREE MNONE
oot aooa oooozo00 READWRITE ZOMMIT FRIVATE
00012000 000QEQQD MO ACCESS FREE NOME
Oooz000a onoag2000 READ'WRITE COMMIT FRIVATE
ooozz000 O0o0EDQO Mo ACCESS FREE MONE
00030000 000F2000 MOMNE RESERNE FRIVATE
onoo1000 READMWRITE | P...  COMMIT FRIVATE
f RI % FRIVATE
00003000 READ OMLY COMMIT MAPFED
00133000 00aaDooon MO ACZESS FREE NOME
00140000 onoo2000 READ OMLY ZOMMIT MAFPPED
00142000 0000EQ00 M ACCZESS FREE MOME
00150000 0oasA000 READWRITE COMMIT FRIVATE j

—Dump Informations
Address [ 00123000 Size | o00ODDOO pump || Refresh | close |

Figure 17: Region Dump window of PETools

Next, we are going to have a look at fixing the import table of a piece of malware.

Fixing the import table

Now, you may be wondering: what happens to the import table that needs to be fixed? The
answer is: when the PE file gets loaded in the process memory or the unpacker stub loads
the import table, the loader goes through the Import Table header from the Data Directory
(you may need to read chapter 2, Basic Static and Dynamic Analysis for x86/x64, again to
fully understand this) and populates it with the actual addresses of API functions from
DLLs that are available on the machine:
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Bt =20 )5 o 0 W= G Al o e T U R
GadnFEzn| s-FF25 GE0ZEEEE| JHP DWORD PTR DS: <6
GednFEsE| s-FFE5 G4035668E| JHP DWORD PTR DS: <6
Qa4AFass) s-FP25 BE0SSHEE| JMP DWORD PTR DS:0<6 | pyyame CriginalFirstThunk TimeDateStamp ForwarderChain Name FirstThunk ~
Ge4nAFEsc| s-FF25 GLOSEEEE| JHP DWORD PTR DS:[<f
ooarFoaz| t—Froc 1aD35800| JHP DWORD PTR Dasrc: |ADVAPISZDLL  0010DOCS 04AD0220 059F0000 0010DSCB  DO10DOE4
904aFe4| S-FF26 14D35098| JMP OWORD PTR DS:c<e |KERNEL3ZDLL  0010D100 00002000 DOF3A330 0010DSD5  0010D2B4
GE4nFE4E| 5—FF25 12025666| JMP DWORD PTR DS:C<f | VERSIOM.DLL 00100468 T4616E72 B616C5065 0010D9E2 00100478
G54AFES4| S-FF25 1CDZ5E88| JMP DWORD PTR DS:C<¢ |COMCTL32.DLL  0010D483 00000042 00F&2308 0010DSEE 00100430
[GE4AFEER| S-FF25 ZE0S5688 | JMP DWORD PTR DS:[<¢ | COMDLG32Z.DLL 00100495 00200000 00000000 0010DSFE 001004AC

2 H GDI32.0LL 001004C0 636F6CES BE430073 0010DADS 00100540 1

052 [BESE0EE41=FFAID10E (ADVAPISZ. ReaClosekey) | GHF||32.DLL 0010D5C0 57152101 00000088 0010DA12 00100504
[Local calls from GO43CSCE, BA4ICA4E, BR442099, || )SER32.OLL 00100588 05DFO000 05DFO000 0010DAIE  0010D7CE v
Address |Ualue Canment Thunk RVA Thunk Offset | Thunk Value | Hint/Ordinal | API Name |
oot | 77Ra7E0R ADURP 152, Redromakays | COWOOES  DDOCCAES  ODIODAS3 0000 RegClosekey
555a05EC | PPALOPFE| ADUAP 122, ReaDe Letekeyh 0010D0ES 000CC4ES 0010DA%1 0000 RegCreateKeyA
555a05FE| PPR1EFAE| ADURFIS2. ReaOpenkeyR 0010D0EC 000CC4EC 0010DAS1 oooo RegDeleteKeyA
a65600F 4| 77A1D3E6| ADUAPIS2. ReglueryValueExn | 0010D0FD 0ooCC4F0 0010DA61 0000 RegOpenKeyA
oos60oFs| 7PAL1ESFE| ADVARIS2. RegSetlalueExA 0010D0F4 000CCAF4 0010DAGF 0000 RegQueryValueExA
(alat=talnlel o = Ts o s s s s o 0010D0FS 000CC4F3 0010DAS3 oooo RegSetValusExa
Gesa0 1 66| @6160A9S v
cesa0 164 @6160A03
ooz 16:| @o160RES
Gesa0 160 | @8160ACD Close
Gesa01 16| @8160A0E

Figure 18: Import table before and after PE loading

After this, these API addresses are used to execute this API throughout the application
code, usually by using call and jmp instructions:

BE43Cc3CcO() . 58 FUSH ERX hkew
HE4SCECE(] o ER ClZ2e@7as CALL <JMP.&ADUAFRIZZ. Regl losekew > Real loseken
|BB4HEF94| 5-FF2& E4DBEBBB|JHP DWORD FTR DS: [<&ADVAFIZZ.ReaClosekew »] | ADOUAFIZZ. Regllosekey |

Figure 19: Examples of different API calls

To unload the import table, we need to find this list of API addresses, find which API each
address represents (we need to go through each library list of addresses and their
corresponding API names for this), and then replace each of these addresses with either an
offset pointing to the API name string or an ordinal value. If we don't find the API names in
the file, we may need to create a new section that we can add these API names to and use
them to unload the Import Table.
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Fortunately, there are tools that do this automatically. In this section, we will talk about

the Import Reconstructor (ImpREC):

Imported Functions Found

£! Import REConstructor v1.7e FINAL (C) 2001-2010 MackT/uCF o] = |
Attach to an Active Process
|c:"\_tl:nDIS'\_installs\impfec\impcnrtrec. exe [0000044C) j Pick DLL

- advapid2. dil FThunk: 00040000 MEFunc: 5 [decimal:5) walidYES

- comct32.dil FThunk: 00040018 MbFunc:2 [decimal: 2] walid: YES
-gdid2. dll FThunk: 00040024 MbFunc:1C (decimal: 28] walid:YES

- kemel32.dll FThunk: 00040038 MbFunc: 77 [decimal: 1139] walidYES
- zhell22. dll FThunk; 00040278 MbFunc:1 [decimal: 1] valid:vY'ES

- FThunk: 00040 280 MbFunc:BD [decimal:109] valid:MO
Swingpool.dry FThunk: 00040438 MbFunc: 3 [decimal: 3] walid:YES

- comdlg32. dil FT hunk: 00040 448 NbFunc: 2 [decimal: 2] validvYES

Log

rva; 000401 6C forwarded from mod:nkdll. dil ord: 02C0 name: RHD eleteCriticals ection -
rvea: 00040170 forwarded from mod:ntdll dil ard: 0004 name: RtlinitializeCriticalS ection

Current imparts:
¥ [decimal: 7] walid module(z] [added: +7 [decimal+7

100 [decir imparted fI.Jr'll::til:lr'll':s:'l. [added:; +100 [decimal:+ 5

AT Infoz needed Mew Import Infos [ID+ASCH+LOADER]
OEF |00034E55 IAT AutoSearch R, 100000000 Size |O00DOBEC
R, |Q004CFFC Size (00000458 W Add new section

Load Tree | Save Trese | | Fix Cumnp

Show [rrealid

Show Suszpect

Auto Trace

Clear lmports

Clear Log

Options

Abaout

Exit

el e B

Figure 20: ImpREC interface
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To fix the import table, you need to follow these steps:

1. Dump the process or any library you want to dump using OllyDump (and
uncheck the Rebuild Import checkbox).

2. Open ImpREC and choose the process you are currently debugging.
Now set the OEP value to the correct value and click on IAT AutoSearch.

4. After that, click on Get Imports and delete any rows with valid: NO from the
Imported Functions Found section.

®

5. Click on the Fix Dump button and then select the previously dumped file with
OllyDump. Now, you will have a working, unpacked PE file. You can load it in
PEiD or any other PE explorer application to check whether it's working.

0 For a 64-bit Windows system, Scylla or CHimpREC can be used instead.

In the next section, we will discuss basic encryption algorithms and functions to strengthen
our knowledge base and thus enrich our malware analysis capabilities.

Identifying different encryption algorithms
and functions

In this section, we will take a look at the simple encryption algorithms that are widely used
in the wild. We will learn about the difference between symmetric and asymmetric
encryption and we will learn how to identify these encryption algorithms in the malware
disassembled code.
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Types of encryption algorithms

Encryption is basically the process of modifying data or information to make it unreadable
or unusable without a secret key, which is only given to people who are expected to read
the message. The difference between encoding or packing and encryption is that packing
doesn't use any key, and its main goal is not related to protecting the information or
limiting access to it compared to encryption.

There are two basic techniques for encrypting information: symmetric encryption (also
called secret key encryption) and asymmetric encryption (also called public key
encryption):

e Symmetric algorithms: These types of algorithms use the same key for
encryption and decryption. It's a secret key that's shared by both sides:

Plaintext:

Protected data Ly

Ciphertext:

Dk6aj9jskinc
ckwnsos8shs

Plaintext:

«—D t
Protected data =

Figure 21: Symmetric algorithm explained
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e Asymmetric algorithms: In this algorithm, two keys are used. One is used for
encryption and the other is used for decryption. These two keys are called
the public key and the private key. One key is shared publicly (public key),
while the other one is private key:

Plaintext: N
— Encrypt

@

Protected data

Ciphertext:

Wc6aj9jrkdni
pfw8s1s8shm

Plaintext: (o

<+«—— Decrypt
Protected data é

Figure 22: Asymmetric algorithm explained

Basic encryption algorithms

Most encryption algorithms that are used by malware consist of basic mathematical and
logical instructions—that is, xor, add, sub, rol, and ror. These instructions are reversible,
and you don't lose data while encrypting with them compared to shl, shr, where it is
possible to lose some bits from the left and right. This also happens with and, or, which can
lead to the loss of data when using or is 1 or and is 0.
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Some basic encryption algorithms are as follows:

e Simple static encryption: Here, you use operations such as xor, add, or rol:

31 0

0000 1000 1000 1000 0000 1000 1000 1010
| | | | | I | |

! N\ N N X X N\
1010 0000 1000 1000 ~ 1000 ~ 0000 1000 1000
| | | | | | |

Figure 23: Example of the rol operation

¢ Running key encryption: Here, you can make key changes from one byte to
another, like this:

loop_start:

mov edx, <secret_key>

xor dword ptr [<data_to_encrypt> + eax], edx
add edx, 0x05 ;add 5 to the key,

inc eax

loop loop_start

¢ Substitutional key encryption: Malware can substitute bytes with each other or
substitute each value with another value (for example, for each byte with a value
of 0x45, the malware could change this value to 0x23), like RC4 encryption,
which we will look at later.

¢ Other encryption algorithms: Malware authors never run out of ideas when it
comes creating new algorithms that represent a combination of these arithmetic
and logical instructions. This leads us to the next question: how can we identify
encryption functions?

How to identify encryption functions

The following screenshot demarcates sections, which are numbered from 1 to 4. These
sections are key to understanding and identifying the encryption algorithms that are used
in malware:
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.text:100025E8 Loop:
.text:188025E8 movsx
.text:180025EC cmp
.text:180025EF jnz
.text:1e025F1 mov
.text:188025F5 jmp
.text:108025F7 ;

.text:108025F7

.text:1@8025F7 loc_100@25F7:
.text:10@025F7 sub
.text:100025FA cmp
.text:100025FD jge
.text:108025FF add
.text:10802602

.text:10002602 loc_10002602:
.text:10002602 mov
.text:10002605

.text:10002605 loc_10002605:
.text:1ee02605 inc
.text:1e802606 cmp
.text:10802608 jl
.text:1080260A

; CODE XREF: DecryptFunc+38lj
eax, byte ptr [edx+esi] (;E\
eax, 20h =/
short loc_160625F7
byte ptr [edx+esi], @
short loc_160062605

; CODE XREF: DecryptFunc+1FTj

eax, 37h (j
‘7

eax, 21h g§>

short loc_l0e02602

eax, SEh

; CODE XREF: DecryptFunc+2DTj
N\
3)
(3

; CODE XREF: DecryptFunc+25Tj

[edx+esi], al

edx
edx, ecx
short Loop

—®

Figure 24: Things to pay attention to when identifying the encryption algorithm

To identify an encryption function, there are four things you should be searching for, as

shown in the following table:

data write

Sequential The encryption function has to read data from memory—not a fixed

data read value, but an array of bytes, one by one.
There's no encryption loop without encryption! It may sound obvious,

5 Encrypting the |but a loop with sequential read and sequential write can be easily

value misunderstood as an encryption loop, and they are just data or memory
copiers.
A sequential data write is also easy to miss. If the function is writing by a

Sequential fixed address, it's possible that it is just generating a checksum of this

data in order to check the integrity of it (this is used to check for INT3
breakpoints or to crack key protection).

4|Loop

It's important to note that the variable that's used as a loop index is the
same one that's used for the sequential read and write, and they both
change on every iteration. If you noticed that the index variable that's
used in a sequential read and write is not getting modified from one
iteration to another, it might not be an encryption function.
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These four points are the core parts of any encryption loop. These can be easily spotted in a
small encryption loop, but may be harder to spot in a more complicated encryption loop
such as RC4 encryption, which we will discuss later.

String search detection techniques for
simple algorithms

In this section, we will be looking into a technique called X-RAYING (first introduced by
Peter Ferrie in the PRINCIPLES AND PRACTISE OF X-RAYING article in VB2004). This
technique is used by antivirus products and other static signature tools to detect samples
with signatures, even if they are encrypted. This technique is able to dig under the
encryption layers to reveal the sample code and detect it without knowing the encryption
key in the first place and without incorporating time-consuming techniques such as brute
forcing. Here, we will describe the theory and the applications of this technique, as well as
some of the tools we can use to help us use it. We may use this technique in order to detect
embedded PE files or decrypt malicious samples.

The basics of X-RAYING

For the types of algorithms that we described earlier, if you have the encrypted data, the
encryption algorithm, and the secret key, you can easily decrypt the data (which is the
purpose of all encryption algorithms); however, if you have the encrypted data (ciphertext)
and a piece of the decrypted data, can you still decrypt the remaining parts of the
encrypted data?

In X-RAYING, you can brute force the algorithm and its secret key(s) if you have a piece of
decrypted data (plaintext), even if you don't know the offset of this plain text data in the
whole encrypted blob. It works on almost all the simple algorithms that we described
earlier, even with multiple layers of encryption.
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For most of the encrypted PE files, the plain text includes strings such as "this program
cannot run in DOS mode" or "kernel32.d11", and it can contain an array of null bytes
or INT3 (0xCC) bytes.

For malware strings (if they are all encrypted by the same key), they can include strings
such as "HTTP" or some common API names.

Simple static encryption

If we assume that the encryption algorithm is just simple static encryption using xor, we
can just search for plaintext inside ciphertext, like this:

for i in ciphertext:
key = ciphertext[i:i+4] xor "This"
if decrypt (ciphertext[i:<length of plaintext>], key) == " program
cannot run in DOS mode":
we found it!!!
else:
continue searching

It's as simple as that—we assume the key from the result of the xoring ciphertext and the
first few bytes of the plaintext and then test this key with the remaining plain text. If this
key works it will reveal the remaining plain text of the ciphertext, which means that you
will have found the secret key and can decrypt the remaining data.

Other encryption algorithms

For the other simple encryption algorithms, you only need longer plain text. This breaks
through all the encryption layers, including the sliding key, substitutional encryption
algorithms, and so on.

We are not planning to go through all of them here, but you can dive deeper into this
research if you wish.
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X-RAYING tools for malware analysis and
detection

Some tools have been written to help malware researchers use the X-RAYING technique for
scanning. The following are some of these tools that you can use, either from the command
line or by using a script:

e XORSearch: This is a tool that was created by Didier Stevens, and it searches
inside ciphertext by using a given plain text sample to search for. It doesn't only
cover xor—it also covers other algorithms, including bit shifting (such as ro1,
ror):

C:“HORSearch.exe —n 20 441855893 .pcapny 441855893
Found SHIFT @1 position 1FAAC-28>: t=1&ic=7A8718721&id=-441A558?3&iguid={ch?751d84

e
Found SHIFT 81 position 2271¢-28>: 81_178.77.128.180_A_441055893 1 A B 8 _41"....

R

Figure 25: XORSearch UI

e Yara Scanner: Yara is a static signature tool that helps scan files with predefined
signatures. It allows regex, wildcard, and other types of signatures. It also
allows xor signatures:

BN SANSISC

rule xor_test {
- xor.yara test-xor.txt

strings g e cor . txt
$a = "hitp:/fisc.sans.edu” xor [REEREEEBERYE ($325%7%/20" .,
condition:

%a

Figure 26: Example of using a YARA signature
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Unfortunately, these tools are only created for xor encryption algorithms. For more
advanced X-RAYING techniques, you may need to write a small script to scan with
manually.

Identifying the RC4 encryption algorithm

The RC4 algorithm is one of the most common encryption algorithms that is used by
malware authors, mainly because it is simple and at the same time strong enough to not be
broken like other simple encryption algorithms. It is not available as a WinAPI, so malware
authors generally implement it manually. This means it may be hard for novice reverse
engineers to identify. In this section, we will see what this algorithm looks like and how
you can identify it.

The RC4 encryption algorithm

The RC4 algorithm is a symmetric algorithm that uses one secret key (maximum of 256
bytes). The algorithm consists of two parts, a key-scheduling algorithm (KSA) and

a pseudo-random generation algorithm (PRGA). Let's have a look at each of them in
greater detail.

Key-scheduling algorithm

The key-scheduling part of the algorithm basically creates an array of 256 bytes from the
secret key, which is just another, bigger version of the key. This array will be the key that is
used to encrypt and decrypt the data afterwards. This part consists of the following two
parts:

e It creates an array with values from 0 to 256 sequentially:
for i from 0 to 255

S[i] := 1
endfor
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e It swaps bytes based on the key—this generates an index number, j, based on the

secret key:
for i from 0 to 255
J = (j + S[i] + key[i mod keylength]) mod 256
swap values of S[i] and S[j]
endfor

Once this initiation part for the key is done, the decryption algorithm starts. In most cases,
the KSA part is written in a separate function that takes only the secret key, without the
data that needs to be encrypted or decrypted.

Pseudo-random generation algorithm

The pseudo-random generation part of the algorithm just generate pseudo-random values
(again, based on swapping bytes, like we did for the key), but also performs an X0OR
operation with the generated value and a byte from the data:

i :=0
j =0
while GeneratingOutput:
i := (i + 1) mod 256
J = (j + S[i]) mod 256
swap values of S[i] and S[]j]
K := S[(S[i] + S[j]) mod 256]
Data[i] = Datal[i] xor K
endwhile

As you can see, the actual algorithm that was used was xor. However, all this swapping
aims to generate a different key every single time (similar to sliding key algorithms).

Identifying RC4 algorithms in a malware sample

To identify an RC4 algorithm, there are some key characteristics that can help you detect it
rather than you having to spend hours trying to analyze each part of the algorithm:

e The generation of the 256 bytes array: This part is easy to recognize, and it's
quite unique for a typical RC4 algorithm like this:
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.text:0040105A Lodpl: ; CODE XREF: KSA+50.j
" |.text:0840105A mowv eax, [ebp+i]

.text:ee40105D cmp eax, 256

.text:00401063 jge loc_46168B

.text:00401069 jmp loc_401078B
AEXE TOBABLOBE ; - - - - o -
.text:0040106E

.text:0040106E loc_40106E: ; CODE XREF: KSA+60lj
.text:0040106E mov eax, [ebp+i]
.text:00401071 mov ecx, eax
.text:00401073 add eax, 1
.text:0e401076 mov [ebp+i], eax
— |.text:004010879 jmp short Loopl

Figure 27: Array generation in the RC4 algorithm

e There's lots of swapping: If you can recognize the swapping function or code,
you will find it everywhere in the RC4 algorithm. The KSA and PRGA parts of
the algorithm are a good sign that it is an RC4 algorithm:

.text:004010EA mov eax, [ebp+S]
.text:004010ED mov ecx, [ebp+i]
.text:0e4016F0 add eax, ecx
.text:004010F2 mov ecx, [ebp+S]
.text:004016F5 mov edx, [ebp+]]
.text:004010F8 add ecx, edx
.text:004010FA push ecx
.text:004010FB push eax
.text:004010FC call swap
.text:00401101 add esp, 8
.text: 00401104 jmp short loc_4010A7

Figure 28: Swapping in the RC4 algorithm

¢ The actual algorithm is XOR: At the end of a loop, you will notice that this
algorithm is basically a xor algorithm. All the swapping is done on the key. The
only changes that affect the data are done through xor:

.text:004011F3 mov [ebp+var_18], eax ; var_18 --> ciphertext[n]
.text:0e4011F6 MOVSX eax, byte ptr [ecx]

.text:004011F9 xor edx, eax

.text:004011FB mov eax, [ebp+var_18]

.text:004011FE mov [eax], dl

.text:00401200 jmp loc_40115E

Figure 29: Xor operation in the RC4 algorithm
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¢ Encryption and decryption similarity: You will also notice that the encryption
and the decryption functions are the exact same function. The xor logical gate is
reversible. You can encrypt the data with xor and the secret key and decrypt this
encrypted data with xor and the same key (which is different from the add/sub
algorithms, for example).

Standard symmetric and asymmetric
encryption algorithms

Standard encryption algorithms such as symmetric DES and AES or asymmetric RSA are
widely used by malware authors. However, the vast majority of samples that include these
algorithms never implement these algorithms themselves or copy their code into their
malware. They are mainly implemented using core Windows APIs or through a third-party
library, such as OpenSSL.

These algorithms are mathematically more complicated than simple encryption algorithms
or RC4. You don't need to understand their mathematical background to understand how
they are implemented—you only need to understand how to identify how any of these
algorithms can be used and how to figure out the exact algorithm used, the
encryption/decryption key(s), and the data.

Extracting information from Windows
cryptography APIs

There are some common APIs that are used with both symmetric and asymmetric
algorithms, including DES, AES, RSA, and even RC4 encryption. Some of these APIs
are CryptAcquireContext, CryptCreateHash, CryptHashData, CryptEncrypt,
CryptDecrypt, Crypt ImportKey, CryptDestroyKey, CryptDestroyHash, and
CryptReleaseContext (from Advapi32.d11).

Here, we will take a look at the steps malware has to go through to encrypt or decrypt its
data using any of these algorithms and how to identify the exact algorithm that's used, as
well as the secret key.

[130]



Unpacking, Decryption, and Deobfuscation Chapter 3

Step 1 - initializing and connecting to the cryptographic
service provider (CSP)

The cryptographic service provider is a library that implements cryptography-related APIs
in Microsoft Windows. For the malware sample to initialize and use one of these providers,
it executes the CryptAcquireContext API, as follows:

CryptAcquireContext (&§hProv, NULL,MS_STRONG_PROV, PROV_RSA_FULL,0) ;

The provider can tell you a lot about the algorithm that can be used for the encryption
process, as well as the most common values used by malware authors:

e PROV_RSA_FULL: This provides access to DES, Triple DES, RC2, and RC4 for
encryption, as well as RSA for key exchange and signatures

e PROV_RSA_AES: This is used for AES, RC2, and RC4 encryption (again, together
with RSA)

You can find all the supported providers in your system in the registry of the following
key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\Defaults\Provider

Step 2 - preparing the key

There are two ways to prepare the encryption key. As you may know, the encryption keys
for these algorithms are usually of a fixed size (112 bits or 128 bits, and so on). Here are the
steps the malware author takes to prepare the key:

1. First, the author uses their plain text key and hashes it using any of the known
hashing algorithms, such as MD5, SHA128, SHA256, or others:

CryptCreateHash (hProv, CALG_MD5, 0, 0, &hHash) ;
CryptHashData (hHash, secretkey, secretkeylen, 0);

2. Then, they create a session key from this hash using CryptDeriveKey—for
example, CryptDeriveKey (hProv, CALG_3DES, hHash, 0, &hKey) ;. From here,
they can easily identify the algorithm from the second argument value that's
provided to this API. The most common algorithms/values are as follows:

CALG_DES = 0x00006601,// DES encryption algorithm.
CALG_3DES = 0x00006603,// Triple DES encryption algorithm.
CALG_AES = 0x00006611,// Advanced Encryption Standard (AES)
ALG_RC4 = 0x00006801,// RC4 stream encryption algorithm.
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CALG_RSA_KEYX = 0x0000a400,// RSA public key exchange
algorithm.

3. Some malware authors provide a KEYBLOB, which includes their key to
CryptImportKey. A KEYBLOB is a simple structure that contains the key type,
the algorithm that was used, and the secret key for encryption. The structure of
a KEYBLOB is as follows:

typedef struct KEYBLOB {

BYTE bType;

BYTE bVersion;

WORD reserved;
ALG_ID aiKeyAlg;
DWORD KEYLEN;

BYTE[] KEY;

}

The bType phrase represents the type of this key. The most common types are as follows:

e PLAINTEXTKEYBLOB (0x8): States a plain text key for a symmetric algorithm,
such as DES, 3DES, or AES

e PRIVATEKEYBLOB (0x7): States that this key is the private key of an asymmetric
algorithm

e PUBLICKEYBLOB (0x6): States that this key is the public key of an asymmetric
algorithm

The aiKeyAlg phrase includes the type of the algorithm as the second argument
of CryptDeriveKey. Some examples of this KEYBLOB are as follows:

BYTE DesKeyBlob[] = {
0x08,0x02,0x00,0x00,0x01,0x66,0x00,0x00, // BLOB header
0x08,0x00,0x00,0x00, // key length, in bytes
0xf1,0x0e,0x25,0x7c, 0x6b, Oxce, 0x0d, 0x34 // DES key with parity
bi

As you can see, the first byte (bType) shows us that it's a PLAINTEXTKEYBLOB, while the
algorithm (0x01, 0x66) represents CALG_DES (0x6601).
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Another example of this is as follows:

BYTE rsa_public_key[] = {
0x06, 0x02, 0x00, 0x00, 0x00, Oxa4, 0x00, 0x00,
0x52, 0x53, 0x41, 0x31, 0x00, 0x08, 0x00, 0x00,

}

This represents a PUBLICKEYBLOB (0x6), while the algorithm
represents CALG_RSA_KEYX (0xa400). After that, they are loaded via Crypt ImportKey:

CryptImportKey (akey->prov, (BYTE *) &key_blob, sizeof (key_blob), 0, O,
&akey—->ckey)

Step 3 - encrypting or decrypting the data

Now that the key is ready, the malware uses CryptEncrypt or CryptDecrypt to encrypt
or decrypt the data. With this API, you can identify the start of the encrypted blob (or the
blob to be encrypted). These APIs are used like this:

CryptEncrypt (hKey, NULL, 1, 0, cyphertext,ctlen, sz);
CryptDecrypt (hKey,NULL, 1, 0,plaintext, &ctlen);

Step 4 - freeing the memory

This is the last step, where we free the memory and all the handles that have been used by
using the CryptDestroyKey, CryptDestroyHash, and CryptReleaseContext APlIs.

Cryptography API next generation (CNG)

There are other ways to implement these encryption algorithms. One of them is by

using cryptography API next generation (CNG), which is a new set of APIs that have been
implemented by Microsoft. Still not widely used in malware, they are actually much easier
to understand and extract information from. The steps for using them are as follows:

1. Initialize the algorithm provider: In this step, you can identify the exact
algorithm (check MSDN for the list of supported algorithms):

BCryptOpenAlgorithmProvider (&§hAesAlg, BCRYPT_AES_ALGORITHM,
NULL, 0)
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2. Prepare the key: This is different from preparing a key in symmetric and
asymmetric algorithms. This API may use an imported key or generate a key.
This can help you extract the secret key that's used for encryption, like so:

BCryptGenerateSymmetricKey (hAesAlg, &hKey, pbKeyObject,
cbKeyObject, (PBYTE)SecretKey, sizeof (SecretKey), 0)

3. Encrypt or decrypt data: In this step, you can easily identify the start of the data
blob to be encrypted (or decrypted):

BCryptEncrypt (hKey, pbPlainText, cbPlainText, NULL, pbIV,
cbBlockLen, NULL, 0, &cbCipherText, BCRYPT_BLOCK_PADDING)

4. Cleanup: This is the last step, and uses APIs such
as BCryptCloseAlgorithmProvider, BCryptDestroyKey, and HeapFree to
clean up the data.

Applications of encryption in modern
malware — Vawtrak banking Trojan

In this chapter, we have seen how encryption or packing is used to encrypt the full
malware. Here, we will look at other implementations of these encryption algorithms inside
the malware code for obfuscation and for hiding malicious key characteristics. These key
characteristics can be used to identify the malware family using static signatures or even
network signatures.

In this section, we will take a look at a known banking trojan called Vawtrak. We will see
how this malware family encrypts its strings and API names, and obfuscates its own
network communication.
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String and APl name encryption

Vawtrak implements a quite simple encryption algorithm. It's based on sliding key
algorithm principles and uses subtraction as its main encryption technique. Its encryption
looks like this:

.text:18887DF8 ; Attributes: bp-based frame

.text:186870F8

.text:18887DF8 DecryptString  proc near 3 CODE XREF: sub_188@115D+231p
Ltext:188870F8 3 sub_le@@11ES+Betp ...
Ltext:188870F8

Ltext:18887DF8 Max = dword ptr -@ch

Ltext:18887DF8 Seed = dword ptr -8

.text:10887DF8 i = dword ptr -4

.text:1@@87DF8 SrcString = dword ptr 3

Ltext:188870F8 DstString = dword ptr @ch

Ltext:18ee7DF8

.text:18887DF3 push ebp

.text:188870F9 mov ebp, esp

.text:18887DFB sub esp, @ch

. text:18@87DFE mowv eax, [ebp+Srcstring]

Ltext:18e87E01 mov eax, [eax]

Ltext:10007E03 mov [ebp+Seed], eax

.text:1@@87E@6 mowv eax, [ebp+Srcstring]

.text:18@87E69 mov eax, [eax+4]

Ltext:18e87E6C xor eax, [ebp+Seed]

.text:19807E0F shr eax, 1@h

Ltext:18@87E12 mov [ebp+iax], eax

Ltext:18887ELS mov eax, [ebp+SrcString]

.text:18887ELS add eax, B

.text:18@87ELB mov [ebp+Srestring], eax

Ltext:18@87ELE and [ebp+i], @

Ltext:18e87E22 jmp short loc_1@8@e@7E2B

LEext:l@eevE2S4 ;-
Ltext:leee7E24

Ltext:18087E24 3 CODE XREF: DecryptString+6lij
.text:18887E24 mowv eax, [ebp+i]

Ltext:1@ea7e27 inc eax

Ltext:19087E28 mov [ebp+i], eax

Ltext:18e87E2B

.text:18887E2B loc_1@@@7E2B: 3 CODE XREF: DecryptString+2Atj
Ltext:19887E2B mov eax, [ebp+i]

Ltext:18@87E2E cmp eax, [ebp+Max]

Ltext:18887E31 jnb short loc_l1@8@@7ESE

Ltext:18887E33 imul eax, [ebp+Seed], 41C64EEDh ; Seed = Seed * @x41CR4EED + @x3839
Ltext:18887E33 3 Dststr[i] = SrcStr[i] - Seed
Ltext:18087E3A add eax, 383%h

.text:18@87E3F mov [ebp+5eed], eax

Ltext:18887E42 mov eax, [ebp+SrcString]

Ltext:18ea7E45 add eax, [ebp+i]

Ltext:18@87E48 movzx  eax, byte ptr [eax]

.text:19087E4B movEx  ecx, byte ptr [ebp+Seed]

Ltext:18887E4F sub eax, ecx 3 Decryption Part
.text:18@87ES1 mov ecx, [ebp+DstString]

Ltext:18087E54 add ecx, [ebp+i]

Ltext:18887ES7 mov [ecx], al

L text:18@87E59 jmp short Loo

.text:18887ESE ;

Ltext:18887ESE

.text:18887E56 loc_l@@@7ESE: ; CODE XREF: DecryptString+39tj
.text:18@87ESE mov eax, [ebp+Max]

.text:18887ESE mov esp, ebp

.text:leeavEca pop ebp

Ltext:18887E6L retn

.text:18887EEL DecryptString endp

Figure 30: Encryption loop in Vawtrak malware
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The encryption algorithm consists of two parts:

¢ Generating the next key: This generates a 4-byte number (called a seed) and uses
only 1 byte of it as a key. This is randomly generated with this algorithm:

seed = ((seed * 0x41C64E6D) + 0x3039 ) & OXFFFFFFFF
key seed & OxFF

¢ Encrypt data: This part is very simple as it encrypts the data using data[i] =
data[i] - eax.

This encryption algorithm is used to encrypt API names and DLL names, so after
decryption, the malware can load the DLL dynamically using an API called LoadLibrary,
which loads a library if it wasn't loaded or just gets its address if it's already loaded (you
may also see GetModuleHandle, which only gets the address of the already loaded DLL).

After getting the DLL address, the malware gets the API address to execute using an API
called GetProcAddress, which gets this function address from the address of the library
and the API name. The malware implements it as follows:

. text: 18001970 push offset unk_1peer724

.text:18881982 call Decryptstring ; wininet.dll

- text: 18801987 pop ecx unk_1@@@F724  db 29h ; APIs+B
. text:18881958 pop ecx -

. text:18881989 lea eax, [ebp+LibFi db 63h ; ¢
. text:1888198C push eax db ©Fsh ; @
. text:18@a195D call ds:LoadLibraryA db 7Eh ; ~
. text:18861993 mov ebx, eax db 86h ; T
. text:18801995 test ebx, ebx db @Fh

. text:18001997 jz short loc_108681 db @F7h ; +
. text:18881999 push esi db 7Eh ; ~
L text:1884199A xor esi, esi db 25h ; %
. text:1088199C push edi

. text:18@41990 cmp off_lealzead, esi

. text:188819A3 jz short loc_188819DF

. text:188819A5 mov eax, offset off_leelzeas

. text: 18881944 xor edi, edi

. text:188819AC

. text:188019AC loc_10@@19AC: 3 CODE XREF: GetWininetAPIs+6EBlj
. text:188819AC lea ecx, [ebp+ProcName]

. text:188019AF push ecx

.text:10681980 push dword ptr [eax]

. text:18841962 call DecryptString  ; HttpAddRequestHeadersA

. text: 18881987 pop ecx

. text: 18881968 pop ecx

. text:180019E89 lea eax, [ebp+ProcName]

. text:188a196C push eax 3 lpProcName

. text:188419BD push ebx 3 hModule

. text:188a196E call ds:GetProcAddress

Figure 31: Resolving API names in Vawtrak malware
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The same function (DecryptString) is used a lot inside the malware to decrypt each string
on demand (only when it's being used), as follows:

=
Directio Ty Address Text 2
@ D.. p LoadNetDLLs:loc_10001819 call DecryptString; ieframe.dl
@ D.. p CheckRapportProcess?+17  call DecryptString; rapport
@ D.. p sub_10002261+466 call DecryptString; MOD ID=%u EXEC: %s
@ D.. p sub_1000226149D call DecryptString; String_AnsiToWide Fail: %ou
@ D.. p sub_10002261+126 call DecryptString; INJ MOD: %hu Status: Yeu GLE: Yau
= Dp.. p sub_100020C5+51 call  DecryptString; OLE%40.8X %0, 2 %0, 2X %60, 8% %:0. 8%
@ D.. p RandomObjString+1A call DecryptString; {%60.8X-%60, 4X-%00, 4X-Y00, 4X-%00, 4X Y0, 8}
@ D.. p GenerateRandomString+7C  call DecryptString; {960, 8X-%%60, 45-360, -0, 4%-%%60. 4 3%60.8%}
@ D.. p sub_10002FAS+58 call DecryptString; BOT_ID:
@ D.. p sub_10002FAS+3A call DecryptString; PROJECT_ID:
D.. p sub_10002FAS+B1 cal DecryptString; BUILD:
@ D.. p sub_l0002FAS+D7 call DecryptString; RAMD:
@ D.. p sub_l0002FAS+103 call DecryptString; UPDATE_VER:
@ D.. p MalwareMain+1E call DecryptString; SeCreateGlobalPrivilege
@ D.. p MalwareMain+36 call DecryptString
@ D.. p MalwareMain+4E call DecryptString
@ D.. p MalwareMain+DF call DecryptString; BROWSER START
@ D.. p MalwareMain+108 call DecryptString; SHELL START
@ D.. p sub_10003588+18 call DecryptString; SOFTWARE\BOT
@ D.. p sub_10003588+26 call DecryptString; COMFIG
@ D... p CreateProcessHookingFun... call DecryptString; chrome.exe
@ D.. p CreateProcessHookingFun... call DecryptString; —use-spdy=off
@ D.. p RegGetValueHooker +68 call DecryptString; chrome.exe
@ D.. p GetCreateProcessInternal... call DecryptString; CreateProcessInternaly
@ D.. p GetCreateProcessInternal... call DecryptString; kernelbase.dll
@ D.. p GetCreateProcessInternal.. call DecryptString; kernel32.dll
@ D.. p ChedkCurrentProcessMam... call DecryptString; explorer.exe
@ D.. p CheckCurrentProcessMam... call DecryptString; iexplore.exe
@ D.. p CheckCurrentProcessMam... call DecryptString; firefox.exe
@ D.. p CheckCurrentProcessMam... call DecryptString; chrome.exe
]
OK Cancel Search Help
Line 23 of 79

Figure 32: Xrefs to decryption routine in Vawtrak malware

To decrypt this, you need to go through each call to the decrypt function being called and
pass the address of the encrypted string to decrypt it. This may be exhausting or time-
consuming, so automation (maybe using IDA Python or a scriptable debugger/emulator)
could help, as we will see in the next section.
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Network communication encryption

Vawtrak can use different encryption algorithms to encrypt its own network
communications. It implements multiple algorithms, including RC4, LZMA
encoding/compression, the LCG encryption algorithm (this is used with strings, as we
mentioned in the previous section), and others. In this section, we will take a look at the
different parts of its encryption.

Inside the requests, it has implemented some encryption to hide basic information,
including CAMPAIGN_ID and BOT_ID, as shown in the following screenshot:

= Follow TCP Stream (tcp.stream g 5) T + =
Stream Content

POST /work/new/index.php HTTP/1.1

Accept: text/html,application/xhtml+xml,application/xml;q=8._9,%/*;:q=8.8
Accept-Language: en-US;qe@.5,en;qe8.3

Accept-Encoding: gzip, deflate

Cookie: PHPSESSID=SCBEC19EG61G6GET1TFEOEEI39EAABTCS

Pragma: no-cache

Cache-Control: max-age=@

Content-Type: application/foctet-stream

User-Agent: Mozillas5.8 (compatible; MSIE 8.8; Windows NT 6.1; WIN32)
Host: ninthclub.com

Content-Length: 71

Za. DL QBT ... H0...H..eHTTP/1.1 288 OK

Figure 33: Network traffic of the Vawtrak malware

The cookie, or PHPSESSID, included an encrypted message. The encryption algorithm that
was used was RC4 encryption. Here is the message after decryption:

Figure 34: Extracted information from the network traffic of the Vawtrak malware
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The decrypted PHPSESSID includes the RC4 key in the first 4 bytes. BOT_ID and the next
byte represent the Campaign_Id (0x03), and the remaining ones represent some other
important information.

The data that's received is in the following structure and includes the first seed that will be
used in decryption, the total size, and multiple algorithms that are used to decrypt them:

Length of first segment
Seed
Mumber of segments
Total size

fi1 21 04 oollos oolfra a: oo] 74 Y TR S " SO |
10|05 56 01 00 3B OO0 ©09% 0% OC 57 BO oW I ik e W.W
J|EB D& D7 753 51 D& BOD ¢ 2B D7 B4 |...aQ...W....+

D7 63 01 07 AF 6F 16 A6 +Cass0.CT.P". 2
00040151 78 DT 3D 7B T3 El 00 D1l OB |Ox.=xs.g.=.lc...
00 00 72 TA B4 50 2: 10|..cz.P". 2" 1.PHs.

Figure 35: The structure used for decryption in the Vawtrak malware

Unfortunately, with network communication, there's no simple way to grab the algorithms
that were used, or the protocol's structure. You have to search for network communication
functions such as Ht t pAddRequestHeadersA (the one we saw in the decryption process
earlier) and the other network APIs and trace the data that was received, as well as trace the
data that's going to be sent, until you find the algorithms and the structure behind the
command-and-control communication.

Using IDA for decryption and unpacking

The IDA disassembler is a very convenient tool for storing the markup of analyzed
samples. Its embedded debuggers and several remote debugger server applications allow
you to perform both static and dynamic analysis in one place for multiple platforms—even
the ones where IDA can't be executed on its own. It also has multiple plugins that can
extend its functionality even further, as well as embedded script languages that can
automate any tedious tasks.
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IDA tips and tricks

While OllyDbg provides pretty decent functionality in terms of debugging, generally, IDA
has more options for maintaining the markup. This is why, many reverse engineers tend to
do both static and dynamic analysis there, which is particularly useful in terms of
unpacking. Here are some tips and tricks that will make this process more enjoyable.

Static analysis

First, let's look at some recommendations that are mainly applicable to static analysis:

e When working with the memory dump rather than the original sample, it may
seem like the import table has already been populated with API addresses. The
easy way to get the actual API names in this case is to
use the pe_d11s.idc script, which is distributed in
the pe_scripts.zip package. This is available for free on the official IDA
website. From there, you need to load the required DLLs from the machine
where the dump was made. Don't forget to remove the filename extension for the
DLL when loading it, since a dot symbol can't be used in names in IDA.

e [t generally makes sense to recreate structures that are used by malware in IDA's
Structures tab rather than adding comments throughout the disassembly, next to
the instructions that are accessing their fields by offsets. Keeping track of
structures is a much less error-prone approach, and means that we can reuse
them for similar samples, as well as for comparing different versions of malware.
After this, you can simply right-click on the value and select the Structure
offset option (the T hotkey). A structure can be quickly added by pressing the Ins
hotkey in the structures subview and specifying its name. Then, a single field can
be added by putting a cursor at the end of the structure and
pressing the D hotkey one, two, or three times, depending on the size that's
required. Finally, to add the rest of the fields that have the same size, select the
required field, right-click and choose the Array... option, specify the required
number of elements that have the same size, and remove the ticks in the
checkboxes for the Use "dup" construct and Create as array options.
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o For cases where the malware accesses fields of a structure stored in the stack, it is
possible to get the actual offsets by right-clicking and selecting
the Manual... option (Alt + F1 hotkey) on the variable, replacing the variable
name with the name of pointer at the beginning of the structure and remaining
offset, and then replacing the offset with the required structure field, as shown in
the following screenshot:

push
push
lea

push
call

add
lea
push
lea
push
call
add
mov
lea
push
call
push
call
mov
cmp
jz

34h push 34h
Li] push a
eax, [ebp+buffer_for_ APIs_2] lea eax, [ebp+buffer_for_APIs_2]
eax push eax
nemset ; arg_8 - dst call menset ; arg_@8 - dst
; arg_4 - value ; arg_4 - value
; arg_8 - size ; arg_8 - size
esp, BCh add esp, BCh
ecx, [ebp+buffer_for_APIs_2] lea ecx, [ebp+buffer_for_APIs_2]
ecx push ecx
edx, [ebp+buffer_for_APIs_1] lea edx, [ebp+buffer_for_APIs_1]
edx push edx
restore_imports call restore_imports
esp, 8 add esp, 8
[ebp+var_18], B8 nov [ebp+var_18], 8
eax, [ebp+var_18] lea eax, [ebp+uar_ 18]
eax push eax
[ebp+uvar_38] call [ebp+buffer_for_APIs_2+APIs_2._GetCommandLineW]
eax push eax
[ebp+uvar_38] call [ebp+buffer_for_APIs_2+APIs_2 . CommandLineToArgull]
[ebp+var_1C], eax nov [ebp+var_1C], eax
[ebp+var_1C], 8 cnp [ebp+var_1C], 8
loc_48189D jz loc_48189D

Figure 36: Mapping a local variable to the corresponding structure field

Make sure that the Check operand option is enabled when renaming the operand
to verify that the total sum of values remains accurate.

Another option is to select the text of the variable (not just left-click on it), right-
click the Structure offset option (again, the T hotkey), specify the offset delta
value should be equal to the offset of the pointer to the beginning of the structure,
and finally select the structure field that's suggested.
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This method is quicker, but doesn't preserve the name of the pointer, as we can

see on the following screenshot:

push 34h
push a
lea eax, [ebp+buffer_for APIs_ 2]
push eax
call memset ; arg_8 - dst
; arg_4 - wvalue
; arg 8 - size
add esp, BCh
lea ecx, [ebp+buffer_for APIs_ 2]
push BCx
lea edx, [ebp+buffer_for APIs_1]
push edz
call restore_imports
add esp, 8
moy [ebp+var_ 18], 8
lea eax, [ebp+var_ 18]
push eax
call [ebp+({APIs_2 _GetCommandLineW-56h)]
push eax
call [ebp+{APIs_2 . CommandLineToArgui-56h)]
mov [ebp+var_ 1C], eax
cmp [ebp+var_1C], @
jz loc 481890

Figure 37: Another way to map a local variable to the structure field

e Many custom encryption algorithms incorporate the xor operation, so the easy
way to find it is by following these steps:

1. Open the Text search window (Alt + T hotkey).
Put xor in the string field and search for it.

2.
3. Check the Find all occurrences checkbox.
4.

Sort the results and search for xor operations that incorporate two
different registers or a value in memory that is not accessed using the
frame pointer register (ebp).

e Don't hesitate to use free plugins like FindCrypt, IDAscope or IDA
Signsrch that can search for encryption algorithms by signatures.

e If you need to import a C file with a list of definitions as enums, it is

recommended that you use the h2enum. idc script (don't forget to provide
a correct mask in the second dialog window). When importing C files with

structures, it generally makes sense to prepend them with a #pragma

pack (1) statement to keep offsets correct. Both the File | Load file | Parse C
header file... option and the TILIB tool can be used pretty much interchangeably.
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¢ In case you need to rename multiple consequent values that are pointing to the
actual APIs in the populated import table, select all of them and execute
the renimp. idc script, which can be found in IDA's idc directory.

e If you need to have both IDA <= 6.95 and IDA 7.0+ together on one Windows
machine, do the following:
1. Install both x86 and x64 Python to different locations—for
example, C: \Python27 and C:\Python27x64.

2. Make sure that the following environment variables point to the setup
for IDA <= 6.95:

set

PYTHONPATH=C:\Python27;C:\Python27\Lib; C:\Python27\DLL
s;C:\Python27\Lib\1lib-tk;

set NLSPATH=C:\IDA6.95\

3. By doing this, IDA <= 6.95 can be used as usual by clicking on its
icon. In order to execute IDA 7.0+, create a special LNK file that will
redefine these environment variables before executing IDA:

C:\Windows\System32\cmd.exe /c "SET
PYTHONPATH=C:\Python27x64;C:\Python27x64\Lib; C:\Python
27x64\DLLs;C:\Python27x64\Lib\lib-tk; && SET
NLSPATH=C:\IDA7.0 && START /D ~"C:\IDA7.0"" ida.exe"

¢ Often, malware samples come with open source libraries like OpenSSL that are
statically linked in order to take advantage of the properly implemented
encryption algorithms. Debugging such code can be quite tricky, as it may not be
immediately obvious which part of the code belongs to malware and which part
belongs to the legitimate library. In addition, it may take a reasonable amount of
time to figure out the purpose of each function within the library itself. In this
case, it makes sense to create a FLIRT signature that can be reused later for other
samples. Here's how you can do this; we will be using OpenSSL as an example:
1. Either find the already compiled file or compile a . 1ib/ . a file for
OpenSSL for the required platform (in our case, this is Windows). The
compiler should be as close to the one that was used by the malware as
possible.

2. Get flair utilities for your IDA from the official website. This package
contains a set of tools to generate unified PAT files from various object
and library formats (OMF, COFF, and so on), as well as
the sigmake tool.
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3. Generate PAT files, for example, by using the pcf tool:
pcf libcrypto.a libcrypto.pat

4. Use sigmake to generate . sig files:
sigmake libcrypto.pat libcrypto.sig

If necessary, resolve collisions by editing the . exc file that was created
and rerun sigmake.

5. Place the resulting . sig file in the sig folder of the IDA root directory.
6. Follow these steps to learn how to use it:
1. Go to View | Open
subviews | Signatures (Shift + F5 hotkey).
2. Right-click Apply new signature (Ins hotkey).
3. Find the signature with the name you specified and confirm
it by pressing OK or double-clicking on it.
4. Another way to do this is by using the File | Load
file | FLIRT signature file... option.

Another popular option for creating custom FLIRT signatures is the idb2pat tool.

Dynamic analysis

Now, let's talk about tips and tricks that aim to facilitate dynamic analysis in IDA:

¢ In order to debug samples in IDA, make sure that the sample has an executable
file extension (for example, . exe); otherwise the IDA will refuse to execute it,
saying that the file does not exist.

e Older versions of IDA don't have the Local Windows debugger option available
for x64 samples. However, it is possible to use the Remote Windows debugger
option together with the win64_remotex64.exe server application located in
the IDA's dbgsrv folder. It is possible to run it on the same machine if necessary
and make them interact with each other via localhost using the Debugger |
Process options... option.
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e The graph view only shows graphs for recognized or created functions. It is
possible to quickly switch between text and graph views using the Space
hotkey. When debugging starts, the Graph overview window in the graph view
may disappear, but it can be restored by selecting the View | Graph Overview
option.

e By default, IDA runs an automatic analysis when it opens the file, which means
that any code that's unpacked later won't be analyzed. In order to fix this
dynamically, follow these steps:

1. If necessary, make the IDA recognize the entry point of the unpacked
block as code by pressing the C hotkey. Usually, it also makes sense to
make a function from it using the P hotkey.

2. Mark the memory segment storing the unpacked code as a loader
segment. Follow these steps to do this:
1. Go to View | Open subviews | Segments (Shift + F7 hotkey
combination).
2. Find the segment storing the code of interest.

3. Either right-click on it and select the Edit segment... option
or use the Ctrl + E hotkey combination.

4. Put a tick in the Loader segment checkbox.

3. Rerun the analysis by either going to Options | General... | Analysis
and pressing the Reanalyze program button or right-clicking in the
lower-left corner of the main IDA window and selecting the Reanalyze
program option there.

e If you need to unpack a DLL, follow these steps:
1. Load it to IDA as any other executable.
2. Choose your debugger of preference:
¢ Local Win32 debugger for 32-bit Windows
¢ Remote Windows debugger with
the win64_remote64.exe application for 64-bit
Windows

3. Go to Debugger | Process options..., where you should do the
following:

e Set the full path of rund1132.exe (or regsvr32.exe
for COM DLL, which can be recognized by
Dl1lRegisterServer/DllUnregisterServer or
the D11Install exports that are present) to
the Application field.
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e Set the full path to the DLL to the Parameters field.
Additional parameters will vary, depending on the type
of DLL:

e For a typical DLL that's loaded using
rundl132.exe, append either a name or
a hash, followed by the ordinal (for
example, #1) of the export function you
want to debug, and separate it from the
path by a comma. You have to provide an
argument, even if you want to execute
only the main EntryPoint logic.

¢ For Control Panel (CPL) DLLs that can be
recognized by the CP1Applet export, the
shell32.d11l,Control_RunDLL argume
nt can be specified before the path to the
analyzed for the DLL instead.

e For the COM DLL that was loaded with
the help of regsvr32.exe, the full path
should be prepended with the /u
argument in case
the D11UnregisterServer export should
be debugged. For aDl11Install export, a
combination of /n /i[:cmdline]
arguments should be used instead.

e In case the DLL is a service DLL
(generally, it can be recognized by the
ServiceMain export function and
services-related imports) and you need to
properly debug serviceMain,
see Chapter 2, Basic Static and Dynamic
Analysis for x86/x64 for more details on
how to debug services.

¢ Among other useful-for-dynamic-analysis scripts, funcap appears to be
extremely handy as it allows you to record arguments that have been passed to
functions during the execution process and keep them in comments once it's
done.
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e If, after decryption, the malware constantly uses code and data from another
memory segment (Trickbot is a good example), it is possible to dump these
segments and then add them separately to the IDB using the File | Load File |
Additional binary file... option. When using it, it makes sense to set the Loading
segment value to 0 and specify the actual VA in the Loading offset field. If the
engineer already put the VA value (in paragraphs) in the Loading segment and
kept the loading offset equal to 0 instead, it is possible to fix it by going to View |
Open subviews | Selectors and changing the value of the associated selector to
Zero.

Classic and new syntax of IDA scripts

Talking about scripting, the original way to write IDA scripts was with a proprietary IDC
language. This had multiple high-level APIs that can be used in both static and dynamic
analysis.

Later, IDA started supporting Python and provided access to IDC functions with the same
names under the idc module. Another functionality (generally, more low level) is available
in the idaapi and idautils modules, but for automating most generic things, the idc
module is good enough.

Since the list of APIs has extended over time, more and more naming inconsistencies have
been accumulated. Eventually, at some stage, it requiring a revision, which would be
impossible to implement while keeping it backwards-compatible. As a result, starting from
IDA version 7.0 (the next version after 6.95), a new list of APIs were introduced which
affected plugins relying on the SDK and IDC functions. Some of them were just renamed
from CamelCase to underscore_case, while others were replaced with new ones.

Here are some examples of them, showing both the original and new syntax:

¢ Navigation:
e Functions/NextFunction: get_next_func allows you to iterate
through functions
¢ Heads/NextHead: next_head allows you to iterate through
instructions
® ScreenEA: get_screen_ea gets a sample's virtual address where
the cursor is currently located

¢ Data access:
e Byte/Word/Dword: byte/word/dword read a value of a particular
size
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¢ Data modification:
® PatchByte/PatchWord/PatchDword:
patch_byte/patch_word/patch_dword write a block of a
particular size
e OpEnumEx: op_enum converts an Operand into an enum value

¢ Auxiliary data storage:
e AddEnum: add_enum adds a new enum

e AddStrucEx: add_struc adds a new structure

Here is an example of an IDA Python script implementing a custom xor decryption
algorithm for short blocks:

from idc import *
from idaapi import *

def decrypt_str(content):
result = ""
for val in content:
val = chr((ord(val) - 1) & BxFF)
result += val
return result

def read_bytes_until_zero(ea):

result = ""

for i in range(@xFFFF):
val = Byte(ea + i)
if (val) == @:

break

result += chr(val)

return result

def patch_bytes(ea, buf, size):
for i in range(size):
PatchByte(ea, ord(buf[i]))
ea += 1

def decrypt_all():

start = ScreenEA()

size = int(Askstr("1", "Enter the size of the list (in hex)"), 16)

for ea in range(start, start + size*4, 4):
decr_str = decrypt_str(read_bytes_until_zero(Dword(ea)))
print decr_str
patch_bytes(Dword{ea), decr_str, len(decr_str))
MakeUnknown(Dword{(ea), len(decr_str), DOUNK_SIMPLE)
MakeStr(Dword(ea), BADADDR)

CompileLine( 'static _decrypt_all() {RunPythonStatement("decrypt_all()");}")
AddHotkey("z", "_decrypt_all"™)

Figure 38: Original IDA Python API syntax for 32-bit Windows
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Here is a script implementing the same custom xor decryption algorithm for a 64-bit
architecture using the new syntax:

from idc import *
from idaapi import *

def decrypt_str(content):
result = ""
for val in content:
val = chr((ord(val) - 1) & BxFF)
result += val
return result

def read_bytes_until_zero(ea):
result = ""
for i in range(@xFFFF):
val = get_byte(ea + i)
if (val) == @e:
break
result += chr(val)
return result

def patch_bytes(ea, buf, size):
for i in range(size):
patch_byte(ea, ord(buf[i]))
ea += 1

def decrypt_all():

start = get_screen_ea()

size = int(ask_str("1", 3, "Enter the size of the list (in hex)"), 18)

for ea in range(start, start + size*8, 8):
decr_str = decrypt_str(read_bytes_until_zero(get_qword(ea)))
print decr_str
patch_bytes(get_gword(ea), decr_str, len(decr_str))
create_strlit(get_gword(ea), @, STRTYPE_C)

compile_idc_text('static _decrypt_all() {RunPythonStatement("decrypt_all()");}"')
add_idc_hotkey("z", "_decrypt_all")

Figure 39: New IDA Python API syntax for 64-bit Windows

Some situations may require an enormous amount of time to analyze a relatively big
sample (or several of them) if the engineer doesn't use IDA scripting and they are using
dynamic string decryption and dynamic winAPIs resolution.
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Dynamic string decryption

In this case, the block of encrypted strings is not decrypted at once. Instead, each string is
decrypted immediately before being used, so they are never decrypted all at the same time.
In order to solve this problem, follow these steps:

1. Find a function that's responsible for decrypting all strings.

2. Replicate the decryptor behavior.

3. Let the script find all the places in the code where this function is being called
and then read an encrypted string that will be passed as its argument.

4. Decrypt it and write it back on top of the encrypted one so that all the references
will remain valid.

Dynamic WIinAPIs resolution

With the dynamic WinAPIs resolution, only one function with different arguments is being
used to get access to all the WinAPIs. It dynamically searches for the requested API (and
often the corresponding DLL), usually using some sort of checksum of the name that's
provided as an argument. There are two common approaches to making this readable:

¢ Using enums:
1. Find the matches between all checksums, APIs, and DLLs used.

2. Store the associations as enum values.

3. Find all the places where the resolving function is being used, take its
checksum argument, and convert it into the corresponding enum name.

¢ Using comments:
1. Find the matchings between all checksums, APIs, and DLLs used.
2. Store associations in memory.
3. Find all the places where the resolving function is being used, take its
checksum argument, and place a comment with the corresponding API
name next to it.

IDA scripting is really what makes a difference and turns novice analysts into professionals
who are able to efficiently solve any reverse engineering problem in a timely manner. After
you have written a few scripts using this approach, it becomes pretty straightforward to
update or extend them with extra functionality for new tasks.
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Summary

In this chapter, we covered various types of packers and explained the differences between
them. We also gave recommendations on how we can identify the packer that's being used.
Then, we went through several techniques of how to unpack samples both automatically
and manually, and provided real-world examples of how to do so in the most efficient way,
depending on the context. After this, we covered advanced manual unpacking methods
that generally take a longer time to execute, but give you the ability to unpack virtually any
sample in a meaningful period of time.

Furthermore, we covered different encryption algorithms and provided guidelines on how
to identify and handle them. Then, we went through a modern malware example that
incorporated these guidelines so that you could get an idea of how all this theory can be
applied in practice. Finally, we covered IDA script languages—a powerful way to
drastically speed up the analysis process.

In chapter 4, Inspecting Process Injection and API Hooking, we are going to expand our
knowledge about various techniques that are used by malware authors in order to achieve
their goals and provide a handful of tips on how to deal with them.
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In this chapter, we are going to explore more advanced techniques that are used by
malware authors for various reasons, including bypassing firewalls, tricking reverse
engineers, and monitoring and collecting user information in order to steal credit card data
and for other purposes.

We will be diving into various process injection techniques, including DLL injection and
process hollowing (an advanced technique that was introduced by Stuxnet) and explain
how to deal with them. Later, we will look at API hooking, IAT hooking, and other
hooking techniques that are used by malware authors and how to handle them.

By the end of this chapter, you will have extended your knowledge of the Windows
platform and be able to analyze more complex malware. You will learn how to analyze
injected code inside other processes, detect it through memory forensics, and detect
different types of API hooking techniques and analyze them to detect Man-in-The-Browser
(MiTB) attacks or any other attacks.

To make the learning process seamless, this chapter is divided into the following sections:

¢ Understanding process injection

DLL injection

Working with process injection

Memory forensics techniques for process injection
Understanding API hooking

Working with API hooking

¢ Exploring IAT hooking
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Understanding process injection

Process injection is one of the most well-known techniques malware authors use to bypass
firewalls, perform memory forensics techniques, and slow down inexperienced reverse
engineers by adding malicious functionality to legitimate processes and hiding it while
doing so. In this section, we will cover the theory behind process injection and why it is
commonly used in various APT attacks nowadays.

What's process injection?

In the Windows operating system, processes are allowed to allocate, read, and write in
another process's virtual memory, as well as create new threads, suspend threads, and
change these threads' registers, including the instruction pointer (EIP/RIP). Process
injection is a technique that's implemented by malware authors so that they can inject code
inside another process memory or a complete library (DLL) and execute that code (or the
EntryPoint of that DLL) inside the space of that process.

In Windows 7 and higher, it's not permitted to inject into core Windows processes such as
explorer.exe or into other users' processes. But it's still OK to inject in most current user
browsers and other current user processes.

This technique is legitimately used by multiple endpoint security products to monitor
applications and for sandboxing (as we will see in the API hooking section), but it's also
misused by malware authors.

Why process injection?

For malware authors, process injection helps them to do the following;:

¢ Bypass trivial firewalls that block internet connections from all applications
except browsers or other whitelisted apps. By injecting into one of these
whitelisted applications, the malware can communicate with the C&C without
any warning or blocking from the firewall.

¢ Evade debuggers and other dynamic analysis or monitoring tools by running the
malicious code inside another unmonitored and not debugged process.
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¢ Hook APIs in the legitimate process the malware injected its code into, which can
give more monitoring abilities over the user behavior on the malware author's
machine.

¢ Maintain persistence for fileless malware. By injecting into a background process,
the malware can maintain persistence on a server that rarely gets rebooted.

Now, we will dive deeper into various process injection techniques, how they work, and
how to deal with them. We will start with the most simple, straightforward technique: DLL
injection.

DLL injection

The Windows operating system allows processes to load dynamic link libraries into other
processes for security reasons, sandboxing, or even graphics. In this section, we will explore
the legitimate straightforward ways to inject a DLL into a process, as well as the other
techniques that allow you to inject into a process using Windows APIs.

Windows-supported DLL injection

Windows has created registry entries for DLLs so that they can be loaded in every process
that meets certain criteria. Many of them allow the malware DLL to be injected into
multiple processes, including browsers and other legitimate processes. There are many of
these registry entries available, but we will explore the most common ones here.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Windows\AppInit_DLLs

This registry entry was one of the most misused registry entries by malware to inject DLL
code into other processes and maintain persistence. The libraries included in this path are
loaded together with every process that loads user32.d11 (the system library used mainly
for the UI).
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In Windows 7, it requires DLLs to be signed and it's disabled by default for Windows 8 and
beyond. However, it still can be misused by setting

the RequireSignedAppInit_DLLs value to False and LoadAppInit_DLLs to True (see
the following screenshot). To do this, you require administrative privileges to be able to set
these entries, which can be resolved, for example, with the help of social engineering;:

string @)

string_

tringBuilder.

Figure 1: Using the Applnit_DLLs registry entry to inject the malware library into different browsers

Now, let's move to the next commonly misused registry key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\AppCertDlls

The libraries in this registry entry are loaded in each process that calls at least one of the
following functions:

® CreateProcess

® CreateProcessAsUser

® CreateProcessWithLogonW
® CreateProcessWithTokenW

e WinExec
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This allows the malware to be injected into most browsers (as many of them create child
processes to manage different tabs) and other applications as well. It still requires
administrative privileges since HKEY_LOCAL_MACHINE is not writable for normal users on a
Windows machine (Vista and above):

HKEY_CURRENT_USER\Software\Classes\<AppName>\shellex\ContextMenuHandlers

This path loads a shell extension (a DLL file) in order to add additional features to the main
Windows shell (explorer.exe). Basically, it loads the malware library as an extension to
explorer.exe. This path can be easily created and modified without any administrative

privileges.

There are other registry entries available that can inject the malware library into other
processes, as well as multiple software solutions, like Autoruns from Sysinternals, that
allow you to see whether any of these registry entries have been exploited for malicious use

on the current system:

=
File Entry Options Help
L'J &l] @ Iﬂ )( [v‘ Fitter: I:l
1% Applnit 1% KnownDLLs n Winlogon & Winsock Providers i3 Print Monitors Q) LSA Providers L' Network Providers ﬂfﬂ WML ﬂ Office
22 Everything é Logon ';J Explorer g Internet Explorer ._j Scheduled Tasks % SEervices Drivers Codecs E Boot Execute E Image Hijacks
Autorun Entry Description Publisher Image Path Timestamp VirusTotal ™
Q’ HKLMSYSTEM"CumrentControlSet*ControlSafe Boot \Altemate Shell 1/15/2019 1:35 AM
B8 cmd exe ‘Windows Command Pro... {Verfied) Microsoft Windows ¢ windows \system32'cmd exe 11/20/1975 8:18 FM
Q HKLMSOFTWARE"Microsoft'.Windows“CumentVersionRun 1/24/2019 9:55 PM
[55] AdobeAAMUpdater-10  Adobe Updater Startup ... (Verfied) Adobe Systems Incorporated  ¢:\program files (86)'common files'... 5/17/2015 2:36 PM
2L AvastUlexe Avlaunch component  (Verfied) AVAST Software sro. c:\program files‘avast software®ava... 12/21/2018 10:35 PM
Aﬂ ETDCtd ETD Control Center {Verified) ELAN Microelectronics Corp... ¢:\program files'elantech‘etdctd.exe  7/21/2016 10:02 AM
@’ HKLM\SOFTWARE Wow6432Node' \Microsoft \Windows\CumentVersion \Run 2/4/2019 12:45 AM
F..r AvastUlexe Avlaunch compenent  (Verfied) AVAST Software sro. c:\program files\avast softwaretava... 12/21/2018 10:33 PM
%2 Dropbox Dropbox ({Verffied) Dropbox, Inc c:\program files (x86})"dropboxclien... 1/30/2015 12.54 PM
@ KeePass 2 Preload KeePass {Verified) Open Source Developer, D... c:\program files (<86)'keepass pass... 1/9/2017 10:08 AM
[5=] WindowsUpdate XerMonitor c:\users‘amrappdata‘roaming®winl... 11/9/2018 7:03 FM
Q’ HKCLMNSOFTWARE! Microsoft Windows \CumentVersion\Run 2/3/201911:47 PM
| [%5] BingSvc Microsoft Bing Service  (Verfied) Microsoft Corporation chwsers‘amriappdatatlocalmicres... 11/5/2015 3:37 AM
[0 B Bueleans Blue Jeans Application  {Verfied) Blue Jeans Network c\usershamriappdatatlocalblue je... 10/24/2016 7.38 PM
& Chromium Chromium {Not verfied) The Chromium Authors  ¢:\users'amriappdatailocal'chromi... 1/20/2017 11:27 PM
N CloudStorage Cloud Storage Desktop ... (Verfied) Livedrive Intemet Lid c:\program files (x86)\cloud storage... 9/7/2017 10:40 AM
o EADM Origin (Verfied) Bectronic Arts, Inc c-\program files (<86)'onigin‘ongin exe 1/23/2019 6:40 FM
€ GoogleChromeAutoLaun... Google Chrome {Verfied) Google Inc c:\program files (x86)'google’\chrom... 12/11/2018 5:00 AM
4@ OneDrive Microsoft OneDrive {Verified) Microsoft Comporation csersiamriappdatatlocalmicros... 1/8/20199:57 PM W
< >
r utorrent.exe Size: 1,864 K
K @? pTorrent Time: 1/7/2019 9:35 PM
BitTorrent Inc. Version: 3.5.5.44954
"C:\UsersiamriAppData\Roaming WTorrentiuTorrent.exe™ MINIMIZED
Ready. Signed Windows Entries Hidden.

Figure 2: Autoruns.exe application in Sysinternals Suites
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These are most of the legitimate straightforward ways malware injects its DLLs into
different processes. Now, we will explore the more advanced techniques that require the
use of different Windows APIs to allocate, write, and execute malicious code inside other
processes.

A simple DLL injection technique

This technique uses the LoadLibrary API as a way to load a malicious library using
Windows PE loader and execute its EntryPoint. The main goal is to inject the path of the
malicious DLL into the process using the VirtualAllocEx API

and WriteProcessMemory. Then, it creates a thread into that process using
CreateRemoteThread, with the address of the LoadLibrary API as the thread start
address. When passing the DLL path as an argument to that thread (which is passed to
the LoadLibrary API), the Windows PE loader will load that DLL into the process and
execute its code flawlessly:

MEMORY DISK

ORIGINAL IMAGE

LOADED DLL

Figure 3. Simple DLL injection mechanism

The exact steps the malware generally follows are like so:

1. Get the targeted process handle via its PID using the OpenProcess API This
handle will be used to access, read, and write to this process.

2. Allocate a space in that process virtual memory using the VirtualallocEx APL
This space will be used to write the full path of the malicious DLL file.
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3. Write to the process using the WriteProcessMemory APL Write the path of the
malware DLL.

4. Load and execute this DLL using CreateRemoteThread and give
the LoadLibraryA address as the start address and the address of the DLL path
as an argument.

Alternative APIs can also be used, for example, the undocumented Rt 1CreateUserThread
instead of CreateRemoteThread.

This technique is simple compared to the techniques we will cover in the following
sections. However, this technique leaves traces of the malicious DLL in the process
information. Any simple tool such as 1istdlls.exe from Sysinternals Suite can help
incident response engineers to detect this malicious behavior. In addition, this technique
won't work for fileless malware since the malware DLL file must be present on a hard disk
before it can be loaded using LoadLibraryA.

In the next section, we will cover more advanced techniques. They still rely on the APIs we
described earlier, but they include more steps to make process injection successful.

Working with process injection

In this section, we will cover the intermediate to advanced techniques of process injection.
These techniques leave no trace on a disk and can enable fileless malware to maintain
persistence. Before we cover these techniques, let's talk about how the malware finds the
process that it wants to inject into—in particular, how it gets the list of the running
processes with their names and PIDs.

Getting the list of running processes

For malware to get a list of the running processes, the following steps are required:

1. Create a snapshot of all of the processes running at that moment. This snapshot
contains information about all running processes, their names, process IDs, and
other important information. It can be acquired using
the CreateToolhelp32Snapshot APL Usually, it is executed
when TH32CS_SNAPPROCESS is given as an argument (to take a snapshot of the
running processes, not threads or loaded libraries).
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2. Get the first process in this list using the Process32First APL This API gets the
first process in the snapshot and starts the iteration over the list of processes.

3. Loop on the Process32Next API to get each process in the list, one by one, with
its name and process ID, as shown in the following screenshot:

Ltext:18869536 xor esi, esi
Ltext:18889832 push esi 3 th22ProcessID
Ltext:1eee9s3s push TH32CS_SNAPPROCESS ; dwFlags
Ltext:18889835 call ds:CreateToolhelp32Snapshot
Ltext:18889836 mow edi, eax
Ltext:18ae8983D cmp edi, @FFFFFFFFh
Ltext: 18869848 jnz short loc_188@9846
Ltextileaessq2 xor eax, eax
Ltext:10069844 jmp short End
LEexErIBBe0BAE ; -
Ltext:1e889846
Ltext:18809846 loc_10@89846: ; CODE XREF: ProcessInjection+381]
Ltext: 18089846 lea eax, [esp+l4ah+pe]
Ltext: 18089344 mov [esp+l4dhtpe.dwsize], 128h
Ltext:18889852 push eax 3 lppe
Ltext:18889853 push edi ; hSnapshot
Ltext:18889854 call ds:Process32First
Ltext:1888935A test eax, eax
Ltext: 18889850 jz short NoMoreProcesses
text:1888985E mov esi, [esp+148h+Buffer]
Ltext:leaesse2
.text:18889862 Loop: ; CODE XREF: ProcessInjection+8Cj
:'"" . text: 18689862 mov eax, [esp+l4Bh+pe.th32ProcessID]
] Jtext:18889866 test eax, eax
. Ltext:19989868 jz short NextProcess
1 Ltext: 18689864 cmp eax, 4
: Ltext: 18089360 jz short NextProcess
1 Ltext:1888986F cmp eax, ebx
. Ltext:19989871 jz short NextProcess
1 Ltext:18889873 push esi
: Ltext:18089374 lea ecx, [esptlddh+pe.szExeFile]
1 Ltext: 18889878 push ecx
. Ltext:18889879 push [esp+148h+pe.th32ParentProcessID]
1 Ltext: 18889870 push eax
. .text:1888987E call [esp+15@h+InjectIntoProcessFunc]
' Ltext: 18889882 test eax, eax
. Ltext:18869884 jz short loc_188@9896
] Ltext:leee9sse
. .text:18889886 NextProcess: ; CODE XREF: ProcessInjection+6@tTj
1 Ltext: 18089386 3 ProcessInjection+65%1]
. .text: 18089886 lea eax, [esp+l48h+pe]
1 Ltext: 18889884 push eax 3 lppe
. Ltext: 18089858 push edi 3 hSnapshot
' .text:1886983C call ds:Process32Next
: Ltext:18889892 test eax, eax
=== ew | text:18089594 jnz short Loop
Ltext: 1889896

Figure 4: Process searching using CreateToolhelp32Snapshot
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Once the desired process has been found, the malware then goes to the next phase by
executing the OpenProcess API with the process's PID, as we learned in the previous
section.

Code injection

This technique sounds very similar to DLL injection. The difference here is actually in the
executed code inside the target process. In this technique, the malware injects a piece of
assembly code (as an array of bytes) and executes it using the CreateRemoteThread APL.
This piece of code is position-independent and we can say it's PE-independent. It has the
ability to load its own import table, access its own data, and execute all of the malicious
activities inside the targeted process.

The steps that the malware follows for this code injection techniques are like so:

1. Search for the targeted process using CreateToolhelp32Snapshot,
Process32First, and Process32Next.

2. Get the process handle using the OpenProcess APL

3. Allocate memory inside this process using VirtualAllocEx (or
CreateSectionEx, which can be used in pretty much the same way) with the
size of the whole piece of assembly code.

4. Copy that code into the targeted process using WriteProcessMemory, as we
have seen already.

5. Execute this code using the CreateRemoteThread APL Some malware gives the
name or the PID of the malware process to this injected code so that it can
terminate the malware (and possibly delete its file and all of its traces) to ensure
there's no clear evidence of the malware's existence.
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In the following screenshot, we can see an example of a typical code injection:

Ltext: 18804534 push esi 3 hProcess

Jtext:1888A535 call ds:VirtualAllocEx

Ltext:1988A53E mov edi, eax ; edi --» Address of buffer inside the process
Ltext: 18eaAs53D test edi, edi

Ltext:1080A53F jnz short loc_l@@8A545

Ltext: 18884541

Jtext:18884A541 loc_1@88A541: ; CODE XREF: InjectDataIntoProcess+5F+j
Ctext:1888A541 xor eax, eax

Ltext: 10804543 jmp short loc_l@@@AS8E

SE@XEZIBBBASAS 5~ === m oo
.text:1888A545

Ltext:1880A545 loc_1888A545: 3 CODE XREF: InjectDataIntoProcess+2ET]
Ltext: 10804545 push [esp+lCh+dwsize] ; nSize
Ltext:1868A549 cdg

Ltext:1888A544 mov ecx, esi 3 hProcess
text:1088A54C mov ebp, edx

Ltext: 189aA54E mov ebx, eax

Ltext:1888A558 mov edx, [esp+28h+InjectedData] ; lpBuffer
Jtext:1848A554 push ebp

Ltext:1088A555 push ebx ; lpBaseAddress
.text:1088A556 call WriteIntoProcessMemory

Jtext:1888A558 add esp, @Ch

Ltext: 1888A55E test eax, eax

.text: 18804568 jnz short loc_l@@@A572

Ltext: 10804562 push 3088h 3 dwFreeType
Ltext:1888A567 push eax 5 dwSize
Jtext:1088A568 push edi 5 lpAddress

Ltext: 10804569 push esi 3 hProcess
.text:1888A56A call ds:VirtualFreeEx

Jtext:1888A576 jmp short loc_1868A541

CEEKEZLBBOASTZ 5 ———— === ===
.text:1680A572

Ltext:1880A572 loc_1@88A572: 3 CODE XREF: InjectDataIntoProcess+4Ftj
Ltext:1888A572 mov ecx, [esp+1Ch+Entrypoint]

text:1888A576 xor eax, eax

.text:1080A578 add ecx, ebx 3 Actual Entrypoint = BaseAddress + Relative Entrypoint
Ltext:18eass7A mov edx, esi

Ltext:1888A57C push ebp

Jtext:1848A57D adc eax, ebp

Ltext:1080A57F push ebx 3 Start Address of the buffer

.text: 18804588 push eax

Ltext:1888A581 push ecx

.text:1888A582 mov ecx, [esp+2Ch+var_4]

.text:1880A586 call CreateRemoteThreadFunc

.text:1080A586 add esp, 1éh

Figure 5: Code injection example

It's very similar to the DLL injection in regards to the steps that were used for process
injection, but most of the hard work is in this piece of assembly code. We will dive deeper
into this type of position-independent PE independent code (that is, shellcode) in Chapter
7, Handling Exploits and Shellcode. We will cover how it identifies its own place in memory,
how it accesses the APIs, and how it performs malicious tasks.
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Advanced code injection-reflective DLL injection

This position-independent code (shellcode) can go one step further and load a malicious
DLL into the targeted process's memory from memory rather than from disk. In this case,
the payload PE file gets injected with a custom PE loader (either shellcode or as part of this
file) into the targeted process, and the loader will be responsible for loading this payload
manually.

It allocates memory with the size of the ImageBase and follows the PE loading steps
including import table loading and fixing. The relocation entries (in the relocation table,
check chapter 2, Basic Static and Dynamic Analysis for x86/x64, is shown in the following
screenshot:

Ltext:188eCs34 mov eax, 'IM'
Ltext: 10880339 cmp [esi], ax
Ltext:leealssc jnz loc_l@eacsco
Ltext: 10080542 push ebx
Ltext: 10080843 mov ebx, [esi+3Ch] ; FILE_DOS_HEADER.elf_anew
Ltext:18eaCs46 add ebx, esi
Ltext: 10080548 cmp dword ptr [ebx], 'EP’
Ltext:1008C34E jnz short loc_1888C8C3
.text:1868C858 mov ecx, [esi+58h]
Ltext:18eaCsss3 mov eax, 18Bh
.text:1808C858 call MemAlloc
Ltext:188eCssD mov edi, eax
Ltext:188aCssF test edi, edi
Ltext: 10880861 jz short loc_1888C8C3
Jtext:1888C863 xor eax, eax
.text: 10880865 cmp ax, [ebx+8] 3 FILE_HEADER.number_of_sections
Ltext: 10080369 jnb short loc_18@8C8AB
.text: 10080366 lea ebp, [ebx+1@Ch]
Ltext:leealsyl
Ltext:1888C871 LoopOnsections: ; CODE XREF: PEReadFileMap+AS5ij
? Ltext: 10880371 mov edx, [ebp+@]
] Ltext:1ea88C874 mov ecx, [ebp-8]
: Ltext:18eaCs77 add edx, esi
] .text:18e88C879 push dword ptr [ebp-4]
: Ltext:18eaCs7C add ecx, edi
] .text:1888C87E call memcpy 3 copy PE section
' .text:1868C883 mov eax, [espt+28htvar_14]
] .text: 18880887 cmp eax, [ebp+@]
H Ltext: 10880884 pop ecx
] .text: 18880888 cmova  eax, [ebp+@]
H .text:1008C38F lea ebp, [ebp+28h] ; sizeof(IMAGE_SECTION_HEADER). Moves to the next section
] .text:1ee88C892 mov ecx, [esp+24h+i]
H .text: 10080396 mov [esp+24htvar_14], eax
1 .text: 18880894 inc ecx
H .text: 10080396 movzx  eax, word ptr [ebx+6] ; FILE_HEADER.number_of_ sections
] .text:1888C89F mov [esp+24h+i], ecx
H Ltext: 10080843 cmp ecx, eax
== [ text:1888C8A5 jb short
Ltext: 10080847 mov ebp, [esp
.text:1eealsAB
Ltext: 10080548 loc_l@@aCBAB: ; CODE XREF: PEReadFileMap+691j
.text: 10080348 push ebp
Ltext:188aCsAC mov edx, esi
.text:1888CBAE mov ecx, edi
.text:1866C36@ call memcpy
.text: 10880365 mov eax, [esp+2B8h+var_8]

Figure 6: PE loading process in shellcode
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This technique looks similar in terms of results to DLL injection, but it doesn't require that
the malicious DLL be stored on the hard disk and it doesn't leave usual traces of this DLL
inside the Process Environment Block (PEB). So, memory forensics applications that only
rely on PEB to detect DLLs wouldn't be able to detect this loaded DLL in memory.

Stuxnet secret technique-process hollowing

Hollow process injection (process hollowing) is an advanced technique that was
introduced in Stuxnet malware before it became popular in the APT attacks domain.
Process hollowing is simply a matter of replacing the targeted process's PE memory image
from its virtual memory (removing the loaded PE file of the actual application from its
virtual memory) and replacing it with the malware executable file.

For example, the malware creates a new process of svchost .exe. After the process is
created and the PE file of svchost is loaded, the malware removes the loaded svchost PE file
from its memory and then loads the malware executable PE file to the same place and
executes it as a svchost process.

This mechanism completely disguises the malware executable in a legitimate coat as the
Process Environment Block (PEB) and the equivalent EPROCESS object still holds
information about the legitimate process. This helps malware to bypass firewalls and
memory forensics tools.

The process of this form of code injection is quite different from the previous ones. Here are
the steps the malware has to take in order to do this:

1. Create a legitimate process in suspended mode, which creates the process and its
first thread, but don't start the thread (the thread is in suspended mode):
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CreateProcessA

a,

pDestCmdLine,

a,

a,

a,
CREATE_SUSPEMDED,
a,

a,

pStartuplnfo,

pProcessInfo

if (!pProcessInfo->hProcess)
i

printf("Error creating processirin");

Figure 7: Creating a process in suspended mode

2. Unload the legitimate application's memory image using VirtualFreeEx
(hollowing out the process).

3. Allocate the same space in memory (the same as the unloaded PE image) for the
malware PE image (the VirtualAllocEx API allows the malware to choose the
preferred address to be allocated if it's free).

4. Inject the malware executable into that space by loading the PE file and fixing its
import table (and its relocation table if needed).

5. Change the thread starting point to the malware EntryPoint using
the SetThreadContext API The GetThreadContext API allows the malware
to get all of the registers' values, thread state, and all of the necessary information
for the thread to be resumed after this, whereas the Set ThreadContext API
allows the malware to change these values, including the EIP/RIP register
(instruction pointer) so that it can set it to the new EntryPoint.
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6. The last step is to resume this suspended thread to execute the malware from

that point:

if (!SetThreadContext({pProcessInfo->hThread, pContext))
printf{"Error setting context\rin"};
return;

}.

printf("Resuming thread\ryn");

if (!ResumeThread(pProcessInfo->hThread))
printf{"Error resuming thread\r\n"};
return;

}.

Figure 8: SetThreadContext and ResumeThread

This is the most well-known technique of process hollowing. There are other techniques
that don't unload the actual process and include both the malware and the legitimate
application executables together or use the Createsection API to inject the malware code
as an object.

Now, we will have a look at how we can extract the injected code and analyze it in our
dynamic analysis process or in our memory forensics process.

Dynamic analysis of code injection

The dynamic analysis of process injection is quite tricky. The malware escapes the
debugged process into another one in order to run the shellcode or load the DLL. To be able
to debug this shellcode successfully, there are some tricks that may help you to debug the
injected code.
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Technique 1—debug it where it is

The first technique, which is preferred by many engineers, is to not allow the malware to
inject the shellcode but rather to debug the shellcode in the malware memory as if it were
already injected. Generally, malware injects its shellcode inside another process and
executes it from a specific point in that shellcode. We can locate that shellcode inside the
malware binary (or memory if it gets decrypted) and just set the EIP /RIP register (set
origin here in OllyDbg) to this shellcode EntryPoint and continue the execution from there.
It allows us to execute this shellcode inside a debugged process and even bypass some
checks for the name of the process this shellcode is supposed to run in.

The steps to perform this technique are as follows:

1. Once the malware calls VirtualAllocEx to allocate space for the shellcode in
the targeted process memory, save the returned address of that allocated space
(let's say the returned address was 0x300000).

2. Set a breakpoint on WriteProcessMemory and save the source and the
destination addresses. The source address is the address of that shellcode inside
the malware process's memory (let's say 0x450000) and the destination will
probably be the returned address from VirtualAllocEx.

3. Now, set a breakpoint on CreateRemoteThread and get the EntryPoint (and the
arguments, if there are any) of that shellcode in the targeted process (let's say it
will be 0x30012F).

4. Now, calculate the shellcode EntryPoint inside the malware process's memory,
which in this case will be 0x30012F - 0x300000 + 0x450000 = 0x45012F.

5. If a virtual machine is used for debugging (which is definitely recommended),
save a snapshot and then set the EIP value to the shellcode EntryPoint
(0x45012F), set any necessary arguments, and continue debugging from there.

This technique is very simple and easy to debug and handle. However, it works with
simple shellcode and doesn't work properly with multiple injections (multiple calls

of WriteProcessMemory), process hollowing, or with complicated arguments. It needs
cautious debugging after it in order to not receive bugs or errors from having this shellcode
running in a process that's different from what it was intended to be executed in.
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Technique 2—attach to the targeted process

Another simple solution is to attach to the targeted process before the malware executes
CreateRemoteThread or modifies the CreateRemoteThread creation flags to
CREATE_SUSPENDED, like this:

CreateRemoteThread (Process, NULL, NULL,
(LPTHREAD_START_ROUTINE) LoadLibrary, (LPVOID)Memory, CREATE_SUSPENDED,
NULL) ;

To be able to do so, we need to know the targeted process that the malware will inject into.
This means that we need to set breakpoints on the Process32First and

Process32Next APIs and analyze the code in-between searching for the APIs, such as
strcmp or equivalent code, to find the required process to inject into. Not all calls are just
for process injection; it can also be used as an anti-reverse engineering trick, as we will see
in Chapter 5, Bypassing Anti-Reverse Engineering Techniques.

Technique 3—dealing with process hollowing

Unfortunately, the previous two techniques don't work with process hollowing. In process
hollowing, the malware creates a new process in a suspended state, which makes it unseen
by OllyDbg and similar debuggers. Therefore, it's hard to attach to them before the
malware resumes the process and the malicious code gets executed, undebugged, and
unmonitored.

As we already mentioned, in process hollowing, the malware hollows out the legitimate
application PE image and loads the malicious PE image inside the targeted process
memory. The simplest way to deal with this is to set a breakpoint on
WriteProcessMemory and dump the PE file before it's loaded into the targeted process
memory. Once the breakpoint is triggered, follow the source argument in
WriteProcessMemory and scroll up until the start of the PE file is found (usually, it can be
recognized by the MZ signature and common This program cannot run in DOS

mode text, which is shown in the following screenshot):
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BAddress Hex dump BASCIT
31140000 |4D 5A 90 00 03 00 00 00|04 00 00 OO FF FF 00 O0O|MZ.0...0...¥%-.
B8 00 OO0 0O 00 OO0 OO 0O 40 OO QOO0 00 OO0 00 00 00| ,uuwuuwun Beeeunn.
00 00 00 00| 00 OO0 OO0 OO0 OO0 OO0 00 OO0 OO0 00 00 00| - e e e e eee s
00 00 0O 00 00 OO0 OO0 OO 00 OO0 OO0 OO FO 00 00 OO0 .. e e B...
OE 1F BA OE 00 B4 0% cD 21 B8 01 4c|cD 21 54 ég([°0.”.1! ,ILi!Th
€9 73 20 70 72 6F 67 72 61 6D 20 63|61 EE EE 6F|is program canno
74 20 62 65 20 72 75 6E |20 69 6FE 20 44 4F 53 20|t be run in DOS
6D ©6F 64 €5 2E (0D 0D OA 24 00 00 00 00 00 00 00jmode....5.......
50 90 14 €014 F1 7A 33 14 F1 7A 33 14 Fl1 7A 33 PO'MH=z3MHz30Hz3
19 A3 9B 33|37 F1 7A 33 19 A3 A5 33 1B F1 7A 33|[£>37fiz3[£¥3[fz3
19 A3 9Aa 33 6B F1 7A 33 |/1D 89 E9 33 19 F1 7A 33|[£53kfiz3%e3fiz3
14 F1 7B 33 67 F1 7A 33 69 88 9B 33 16 F1 7A 33|[fi{3gfiz3i” »3[fiz3
€9 B8 9A 33 16 F1 7A 33 19 A3 Al 33|15 F1 7A 33| i"s3[H=z30£; 30=z3
14 F1 ED 33 15 F1 7A 33 69 88 A4 33|15 F1 7A 33|[[i3Mz3i " =3[f=z3
52 &9 63 68 14 F1 7 33 /00 00 00 00|00 00 00 0O0|Richlfiz3........
50 45 00 00 4Cc 01 05 00 BO 9% 5D 57 00 00 OO OO PE..IND.

Figure 9: PE file in hex dump in OllyDbg

Some malware families use CreateSection and MapViewOfSection instead of
WriteMemoryProcess. These two APIs, as we described earlier, create a memory object
that we can write the malicious executable into. This memory object can also be mapped to
another process as well. So, after the malware writes the malicious PE image to the memory
object, it maps it into the targeted process and then uses CreateRemoteThread to execute
its EntryPoint.

In this case, we can set a breakpoint on MapViewOfSection to get the returned address of
the mapped memory object (before the malware writes any data to this memory object).
Now, it is possible to set a breakpoint or write on this returned address in order to catch
any writing operation to this memory object (writing to this memory object is equivalent to
WriteProcessMemory).

Once your breakpoint on write hits, we can find what data is getting written to this
memory object (most probably a PE file in the case of process hollowing) and the source of
the data that contains all of the PE files that are unloaded so that we can easily dump it to
disk and load it in OllyDbg as if it were injected into another process.

This technique, in brief, is all about finding the PE file before it gets loaded and dumping it
as a normal executable file. Once we get it, we get the second stage payload. Now, all we
need to do is debug it in OllyDbg or analyze it statically (for example, using IDA Pro or any
other similar tool).

Now, we will take a look at how to detect and dump the injected code (or injected PE file)
from a memory dump using a memory forensics tool called Volatility, which gets even
more tricky than dealing with process injection using dynamic analysis.
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Memory forensics techniques for process
injection

Since one of the main reasons to use process injection is to hide malware presence from
memory forensics tools, it gets quite tricky to detect it using memory forensics techniques.

In this section, we will take a look at different techniques that we can use to detect different
types of process injection.

Here, we will be using a tool called volatility. This tool is a free, open source program for
memory forensics that can analyze memory dumps from infected machines. So, let's get
started.

Technique 1—detecting code injection
and reflective DLL injection

The main red flags that help in detecting injected code inside a process is that the allocated
memory that contains the shellcode or the loaded DLL is always allocated with EXECUTE
permission and doesn't represent a mapped file. When a module (an executable file) gets
loaded using Windows PE Loader, it gets loaded with an IMAGE flag to represent that it's a
memory map of an executable file. But when this memory page is allocated normally using
VirtualAlloc, it gets allocated with a PRIVATE flag to show that it is allocated for data:

0094c000| 00002000 00850000 Priv|RW GuaiRW
00%4E000| 00002000 00850000 stack of thread 00006850 Priv|RW GualRW
00A4C000| 00002000 00950000 Priv|RW GualRW
00R4E000| 00002000 00950000 stack of thread 00002D44 Priv|RW GualRW
00B4C000| 00002000 00A50000 Priv|RW GualRW
00B4E0QO0Q| 00002000 00A50000 stack of thread 00006B5C Priv|RW GualRW
00B50000| 00036000 00B50000 Map |R R

00D50000| 00181000 00D50000 Map |R R

01140000| 00001000 movefile 01140000 PE header Imag | R RWE
01141000| 00010000 |[movefile 01140000 | .text code Imag|R RWE
01151000|0000C000 | movefile 01140000 | .rdata imports Imag|R RWE
0115D000| 00004000 |[movefile 01140000 | .data data Imag|R RWE
01161000| 00001000 |movefile 01140000 | .rsrc resources Imag|R RWE
01162000| 00001000 |[movefile 01140000 | .reloc relocations Imag|R RWE
01170000| 01401000 01170000 Map |R R

53330000| 00001000 | CcOMCTT32 53330000 PE header Imag| R RWE
53331000| 00073000 |CcoMCTL32 53330000 | .text code, exports Imag|R RWE
533a4000| 00003000 |CcoMCTL32 53330000 | .data data Imag| R RWE
533A7000| 00003000 |COMCTL32 53330000 | .idata imports Imag|R RWE
533AA000|0000F000 |COMCTL3Z 53330000 |.rsrc resources Imag|R RWE
533B5000| 00005000 | CcoMCTL32 53330000 | .relocc relocations Imag| R RWE

Figure 10: OllyDbg memory map window—Iloaded image memory chunk and private memory chunk
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It's not common to see private allocated memory having the EXECUTE permission, and it's
also not common (which most shellcode injections do) to have the WRITE permission with
the EXECUTE permission (READ_WRITE_EXECUTE).

In Volatility, there is a command called malfind. This command finds hidden and injected
code inside a process (or the entire system). This command can be executed (given the
image name and the OS version) with a process ID if the scan for a specific process is
required, or without a PID in order to scan the entire system, as shown in the following
screenshot:

malfind -p 1640

y: 1, Protec

L
L
L
L
L
AL
AL
L
L
AL

Figure 11: The malfind command in Volatility detects a PE file (MZ header)

As we can see, the malfind command detected an injected PE file (by MZ header) inside an
Adobe Reader process at the address 0x003d0000.
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Now, we can dump all memory images inside this process using the vaddump command.
This command dumps all memory regions inside the process, following the EPROCESS
kernel object for that process and its virtual memory map (and its equivalent physical
memory pages) using what's called Virtual Address Descriptors (VADs), which are simply
mappers between virtual memory and their equivalent physical memory. vaddump will
dump all of the memory regions into a separate file, as shown in the following screenshot:

D ./Dump

Figure 12: Dumping the 0x003d000 address using the vaddump command in Volatility

For injected PE files, we can dump them to disk (and reconstruct their headers and sections
back, but not import tables) using d11dump instead of vaddump, as shown in the following
screenshot:

--profile
~amework 2

: module.16

Figure 13: Using dlldump given the process ID and the ImageBase of the DLL as --base

After that, we will have a memory dump of the malware PE file (or shellcode) to scan and
analyze. It's not a perfect dump, but we can scan it with strings or perform static analysis
on it. We may need to fix the addresses of the import table manually by patching these
addresses in OllyDbg and dumping them again or directly debugging them.
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Technique 2—detecting process hollowing

When the malware hollows out the application PE image from its process, Windows
removes any connections between this memory space and the PE file of that application. So,
any allocation at that address becomes private and doesn't represent any loaded image (PE
file).

However, this unlink only happens in the EPROCESS kernel object and not in the PEB that is
accessible inside the process memory. In Volatility, there are two commands that you can
use to get a list of all of the loaded modules inside a process. One command lists the loaded
modules from the PEB information (from user mode), which is d1111ist, and the other one
lists all loaded modules from EPROCESS kernel object information (kernel mode), which is
ldrmodules. Any mismatch in the results between both commands could represent a
hollow process injection, as shown in the following screenshot:

p d111ist -p

Size

Pa
C
C
C
C
C
C
C
C

vmem —-profile=w 5P2x86 Tdrmodules -p
Framework
InLoad InInit InMem MappedPath

True
True
True
True
True
True

Figure 14: Isass.exe at the 0x01000000 address is not linked to its PE file in ldrmodules
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There are multiple types of mismatch, and they represent different types of process
hollowing, such as the following:

e When the application module is not linked to its PE file, like in the preceding
screenshot, it represents that the process is hollowed out and that the malware is
loaded in the same place.

e When the application module appears in the d111ist results and not at all in the
ldrmodules results, it represents that the process is hollowed out and that the
malware is possibly loaded in another address. The malfind command could
help us to find the new address or dump all memory regions in that process
using vaddump and scan them for PE files (search for MZ magic).

e When the application appears in both commands' results and linked with the PE
filename of the application, but there's a mismatch of the module address in both
results, it represents that the application is not hollowed out, but the malware
has been injected and PEB information has been tampered with to link to the
malware instead of the legitimate application PE image.

In all of these cases, it shows that the malware has injected itself inside this process using
the process hollowing technique, and vaddump or procdump will help to dump the
malware PE image.

Technique 3—detecting process hollowing using
the HollowFind plugin

There is a plugin called HollowFind that combines all of these commands. It finds a
suspicious memory space or evidence of a hollowed out process and returns these results,
as shown in the following screenshot:
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~/Downloads# python volatility-master/vol.py -f stuxnet.wvmem hollowfind
Volatility Foundation Volatility Framework 2.6
Hollowed Proc Infnrl'lld‘tlnn
1928
PPID: 668
: 55 UTC+0008

"C:\WINDOWSHN =M
Hulluw Type: Invalld EXE Memory Prutr(tlun and ] th Discrepancy

VAD and PEB Comparison:
Ad (VAD): 0x1000000
Path (VAD) :
tection: PAGE EXECUTE READWRITE
VEL!

(PEB): 8x10000800
Path(PEB): C:\WINDOWS\system32\lsass.
ection: PAGE_EXECUTE_READWRITE
Vad

bly(Entry Point):
180014bd e95T1cPOOO JMP 0x1003121
10014c2 0000 ADD [EAX], AL
16614c4 0000 ADD [EAX], AL
0x010014c6 0000 ADD [EAX], AL

Figure 15: The HollowFind plugin for detecting hollow process injection

This plugin can also dump the memory image into a chosen directory:

# p”thun volatility- ma~tw /Vul py -f stuxnet.vmem hollowfind -D ./dump

Figure 16: The HollowFind plugin for dumping the malware PE image

So, that's it for process injection and how to analyze it dynamically using OllyDbg (or any
other debugger), as well as how to detect it in a memory dump using Volatility.

In the next section, we will cover another important technique that's used by malware
authors, known as API hooking. It's usually used in combination with process injection for
man-in-the-middle attacks or for hiding malware presence using user-mode rootkits
techniques.
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Understanding APl hooking

APT hooking is a common technique that's used by malware authors to intercept calls to
Windows APIs in order to change the input or output of these commands. It is based on the
process injection technique we described earlier.

This technique allows malware authors to have full control over the target process and
therefore the user experience from their interaction with that process, including browsers
and website pages, antivirus applications and its scanned files, and so on. By controlling
the Windows APIs, the malware authors can also capture sensitive information from the
process memory and the API arguments.

Since API hooking is used by malware authors, it has different legitimate reasons to be
used, such as malware sandboxing and backward compatibility for old applications.
Therefore, Windows officially supports API hooking, as we will see later in this chapter.

Why API hooking?

There are multiple reasons why malware would incorporate API hooking in its arsenal.
Let's go into the details of this process and cover the APIs that malware authors generally
hook in order to achieve their goals:

¢ Hiding malware presence (rootkits): For the malware to hide its presence from
users and antivirus scanners, it needs to hook the following APIs:
¢ Process listing APIs such as Process32First and
Process32Next so that it can remove the malware process from
the results
e File listing APIs such as FindFirstFileA and FindNextFileA

¢ Registry enumeration APIs such as RegQueryInfoKey
and RegEnumKeyEx

¢ Stealing banking details (banking Trojans): For the malware to capture HTTP
messages, inject code into a bank home page, and capture sent username and pin
codes, it usually hooks the following APIs:
e Internet communication functions such
as InternetConnectA, HttpSendRequestA, InternetReadFile
, and other wininet .d11l APIs. WSARecv and WSASend from
ws2_32.d11 are another possibility here.

e Firefox APIs such as PR_Read, PR_Write, PR_Close.
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¢ Other uses: Hooking CreateProcessAa, CreateProcessAsUserA, and similar
APISs to inject into child processes or prevent some processes from starting.
Hooking LoadLibrarya and LoadLibraryExA is also possible.

Both the A and W versions of WinAPIs (for ANSI and Unicode, respectively) can be hooked
in the same way.

Working with API hooking

In this section, we will look at different techniques for API hooking, from the simple
methods that can only alter API arguments to more complex ones that were used in
different banking Trojans, including Vawtrak.

Inline API hooking

To hook an API, the malware needs to modify the first few bytes (typically, this is five
bytes) of the API assembly code and replace them with jmp <hooking_function> so that
it can change the API arguments and maybe skip the call to this API and return a fake
result (like an error or just NULL). The code change generally looks like this:

Before Hooking:
API_START:
mov edi, edi
push ebp
mov esp, ebp

After Hooking:
API_START:
jmp hooking_function

So, the malware replaces the first five bytes (which, in this case, are three instructions) with
one instruction, which is jmp to the hooked function. Windows supports API hooking and
has added an extra instruction, mov edi, edi, which takes two bytes of space, which
makes the function prologue5 bytes. This makes API hooking a much easier task to
perform.
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The hooking_function saves the replaced five bytes at the beginning of the API and uses
them to call the API back, for example, like this:

hooking_function:
<change API parameters>

mov edi, edi

push ebp

mov esp, ebp

jmp API+5 ;jump to the API after the first replaced 5 bytes

This way, hooking_function can work seamlessly without affecting the program flow. It
can alter the arguments of the API and therefore control the results, and it can directly
execute ret to the program without actually calling the API.

Inline API hooking with trampoline

In the previous simple hooking function, the malware can alter the arguments of the APL
But when you're using trampolines, the malware can also alter the return value of the API
and any data associated with it. The trampoline is simply a small function that only
executes jmp to the API and includes the first missing five bytes (or three instructions, in
the previous case), like this:

Trampoline:
mov edi, edi
push ebp
mov esp, ebp
jmp API+5 ;jump to the API after the first replaced 5 bytes

Rather than jumping back to the API, which in the end returns control to the program, the
hooking function calls the trampoline as a replacement of the API and the trampoline
returns to the hooking function with the return value of the API to be altered by the
hooking function before returning back to the program, as shown in the following
screenshot:
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API Hooking Function

Code before hook

‘—|— Trampoline L call API

Code after hook

Figure 17: Hooking function with Trampoline

The code of the hooking function looks more complex:

hooking_function:
<change API parameters>

push API_argument03
push API_argument02
push API_argumentOl
call trampoline ;Jmp to the API and return with the API return value

<change API return value>
ret ;jreturn back to the main program

This added step gives malware more control over the API and its output, which makes it
able to inject JavaScript code into the output of InternetReadFile, PR_Read, or other
APIs to steal credentials or transfer money to a different bank account.

Inline API hooking with a length disassembler

As we have seen in the previous techniques, API hooking is quite simple when you use
themov edi, edi instruction at the beginning of each API, which makes the first five
bytes predictable for API hooking functionality. Unfortunately, this can't always be the case
with all Windows APIs, and so sometimes malware families have to disassemble the first
few instructions to avoid breaking the API.
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Some malware families such as Vawtrak use a length disassembler to replace a few
instructions (with a size equal or greater than five bytes) with the jmp instruction to the
hooking function, as shown in the following screenshot. Then, it copies these instructions to
the trampoline and adds a jmp instruction to the API:

.text:1888C503 loc_1888C503: ; CODE XREF: CopyAPIFirstInstructions+61tj
.text:18eecsD3 ; CopyAPIFirstInstructions+6Ct]

text:1eeacsD3 push edi

Ltext:18a8aCs504 mov edx, esi

Ltext:188alsD6 mov ecx, ebx

text:1808CsD8 call memcpy

text:18eaCsDD test [esp+24h+var_C], B@h

Ltext:leaaCs5e2 pop BCX

Ltexwt:18@eC5E3 jz short loc_l@@eCsFB

Ltext:1eeaCs5ES cmp edi, 5

text:18@eCsES jnz short loc_18@@CERE

text:18@8C5EA mov al, [esi]

text:1888C5EC cmp al, BEBh ; call opcode (@xEB represents a call instruction)
.text:1888C5EE jz short loc_18@8&C5F4

text:1888C5F8 cmp al, BESh ; far jmp opcode (@xE9 represents a far jmp instruction)
.text:1888C5F2 jnz short loc_18@8C68E

Ltext:leaalsr4

.text:1888C5F4 loc_1@88C5F4: ; CODE XREF: CopyAPIFirstInstructions+B21j
Ltext:1888C5F4 mov eax, esi

.text:188aC5F6 sub eax, ebx

Jtext:1808C5F8 add [ebx+1], eax

Ltext:1eaal5FB

Ltext:1888C5FE loc_1@@aC5FB: ; CODE XREF: CopyAPIFirstInstructions+A71j
Ltext:18@aCs5FE add ebp, edi

Ltext: 1eeaCsFD add esi, edi

Ltext: 1eeaCsFF add ebx, edi

text:leeeceal cmp ebp, 5 3 The minimum length for all copied instructions
text:leealcad jb Loop

Ltext:188aC60A mov eax, ebp

text:18eaC6aC jmp short loc_18@8C618

Figure 18. The Vawtrak API hooking with a disassembler

The main goal of this is to ensure that the trampoline doesn't jmp back to the API in the
middle of the instruction and to make the API hooking work seamlessly without any
unpredictable effects on the hooked process behavior.
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Detecting APl hooking using memory forensics

As we already know, API hooking is built on process injection, and dealing with API
hooking in dynamic analysis and memory forensics is very similar to dealing with process
injections. Adding to the previous techniques of detecting process injection

(using malfind or hollowfind), we can use a Volatility command called apihooks. This
command scans the process's libraries, searching for hooked APIs (starting with jmp or

a call), and shows the name of the hooked API and the address of the hooking function, as
shown in the following screenshot:

ex.vmem -—-
1lity

Pr 1640
Victim module: r
Fu ion:

Hook addre
Hooking modul

0
1

oo

Figure 19. The Volatility command apihooks for detecting API hooking

We can then use vaddump (as we described earlier in this chapter) to dump this memory
address and use IDA Pro or any other static analysis tool to disassemble the shellcode and
understand the motivation behind this API hooking.
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Exploring IAT hooking

IAT hooking (import address table hooking) is another form of API hooking that isn't
widely used. This hooking technique doesn't require any disassembler, code patching, or a
trampoline. The idea behind it is to modify the import table's addresses so that they point
to the malicious hooking functions rather than the actual API. In this case, the hooking
function executes jmp on the actual API address (or call after pushing the API arguments

to the stack) and then returns to the actual program, as shown in the following diagram:

IAT Hooking
=
Application Code
mov edi, edi
push ebp
mov ebp, esp

push strFileName
call CreateFile
push [ebp][8]

Import Address Table

jmp CreateFile
jmp GetProcAddress
jmp LocalFree

Original flow —» Rootkit code
processing arguments

After hooking —»

Figure 20. IAT hooking mechanism

This hooking is not effective against the dynamic loading of APIs (using GetProcAddress
and LoadLibrary), but it's still effective against many legitimate applications, which

includes most of their required APIs in the import table.
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Summary

In this chapter, we have covered two very well-known techniques that are used by many
malware families: process injection and API hooking. These techniques are used for many
reasons, including disguising the malware, bypassing firewalls, maintaining persistence for
fileless malware, man-in-the-browser attacks, and more.

We have covered how to deal with code injection in the dynamic analysis process, as well
as how to detect code injection and API hooking and how to analyze them in the memory
forensics process.

After reading this chapter, you will have a greater understanding of complex malware and
how it can be injected into legitimate processes. This will help you to analyze cyberattacks
incorporating various techniques and protect your organization from future threats more
effectively.

In chapter 5, Bypassing Anti-Reverse Engineering Techniques, we will cover other techniques
that are used by malware authors to make it harder for reverse engineers to analyze them
and understand their behavior.

[182]



Bypassing Anti-Reverse
Engineering Techniques

In this chapter, we will cover various anti-reverse engineering techniques that malware
authors use to protect their code against unauthorized analysts who want to understand its
functionality. We will familiarize ourselves with various approaches, from detecting the
debugger and other analysis tools to breakpoint detection, VM detection, and even
attacking the anti-malware tools and products.

We will also cover the VM and sandbox-detection techniques that malware authors use to
avoid spam detection, as well as automatic malware-detection techniques that are
implemented in various enterprises. As these anti-reverse engineering techniques are
widely used by malware authors, it's very important to understand how to detect them and
bypass them to be able to analyze complex malware or a highly obfuscated malware.

The chapter is divided into the following sections:

¢ Exploring debugger detection

Handling debugger breakpoints evasion
¢ Escaping the debugger
Obfuscation and anti-disassemblers

Detecting and evading behavioral-analysis tools

Detecting sandboxes and virtual machines
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Exploring debugger detection

For malware authors to keep their operations going without being interrupted by antivirus
products or any takedown operations, they have to fight back and equip their tools with
various anti-reverse engineering techniques. Debuggers are the most common tools that
malware analysts use to dissect malware and reveal its functionality. Therefore, malware
authors implement various anti-debugging tricks to keep their Command & Control
servers (C&Cs) hidden and their configurations, exfiltrated data, and their communication
with the malware well protected.

Direct check for debugger presence

Windows includes lots of ways to detect the presence of a debugger. There are multiple
APIs that help detect whether the current process is being debugged or not, as follows:

e TsDebuggerPresent
® CheckRemoteDebuggerPresent

® NtQueryInformationProcess (with the ProcessDebugPort (7) argument)

These APIs access a flag in the process environment block (PEB) called
BeingDebugged that is set to True when the process is running under a debugger. To
access this flag, malware can execute the following instructions:

mov eax, dword ptr fs:[30h] ; PEB
cmp byte ptr [eax+2], 1 ; PEB.BeingDebugged
Jjz <debugger_detected>

These are mostly direct ways to check for the presence of a debugger. However, there are
also other ways to detect them, such as by observing the differences in the process loading,
thread loading, or the initialization phase between a process running with a debugger and
another process running without a debugger. One of these techniques involves

using NtGlobalFlag.

The best way to bypass them is by overwriting IsDebuggerPresent or
CheckRemoteDebuggerPresent APIs by NOP instructions or by setting a breakpoint at the
start of each of these APIs for monitoring and changing the return values.

[184]



Bypassing Anti-Reverse Engineering Techniques Chapter 5

Detecting a debugger through an environment
change

NtGlobalFlag is a flag at offset 0x68 of the PEB in 32-bit systems and 0xBC in 64-bit
systems. During normal execution, this flag is set to zero when the process is running
without the presence of a debugger, but when a debugger is attached to the process, this
flag is set with the following three values:

e FLG_HEAP_ENABLE_TAIL_CHECK (0x10)
e FLG_HEAP_ENABLE_FREE_CHECK (0x20)
e FLG_HEAP_VALIDATE_PARAMETERS (0x40)

The initial value of NtGlobalFlag can be changed from the registry. However, in the
default situation, malware can check for the presence of a debugger using these flags by
executing the following instructions:

mov eax, fs:[30h] ;Process Environment Block

mov al, [eax+68h] ;NtGlobalFlag

and al, 70h ;Other flags can also be checked this way
cmp al, 70h ;0x10 0x20 | 0x40

je <debugger_detected>

The following flags can be used in the x64 environment:

push 60h

pop rsi

gs:lodsqg ;Process Environment Block
mov al, [rsi*2+rax—-14h] ;NtGlobalFlag
and al, 70h

cmp al, 70h

je <debugger_detected>

This is just one of many ways in which the differences in the environment between
processes running under a debugger can be detected.
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Detecting a debugger using parent processes

One last technique worth mentioning is that processes can detect whether they were
created by a debugger by checking the parent process's name. Windows OS sets the process
ID and the parent process ID in the process information. Using the parent process ID, you
can check whether it was created normally (for example, by using Explorer.exe or
iexplore.exe) or whether it has been created by a debugger (for example, by detecting
the presence of the dbg substring in its name).

There are two common techniques for malware to get the parent process ID, listed as
follows:

¢ Looping through the list of running processes using
CreateToolhelp32Snapshot, Process32First and Process32Next (as we
saw in Chapter 4, Inspecting Process Injection and API Hooking, with process
injection). These APIs not only return the process name and ID, but also more
information, such as the parent process ID that the malware is looking for.
Malware samples can use these APIs to find the current process and then get the
parent process ID.

¢ Using the undocumented NtQueryInformationProcess APL
Given ProcessBasicInformation as an argument, this API can return the
parent process ID. Even though this API could be altered in later versions of
Windows, it's still widely used by malware to get process information, as shown
in the following screenshot:

ff ff
0040105d &€a 00 PUSH 0x0
0040105f €a 18 PUSH 0x18
00401061 &2 00 30 PUSH ProcessInfo
40 00
00401066 €a 00 PUSH PROCESS_BASIC INFORMATION
00401068 €a £f PUSH -0x1
0040106a =8 cd ££ CALL HtQueryInformationProcess
ff ff
0040106f 58 POP ERX
00401070 bb 00 30 MOV EEX, ProcessInfo
40 00
00401075 39 43 14 CMP dword ptr [EBX + offset ProcessInfo.ParentProcessID],ELX
00401078 75 07 JNZ LAE 00401081
00401072 €a 00 PUSH ox0
0040107c =8 8b IL CALL ExitProcess
ff ff

Figure 1: Using NtQueryInfomationProcess to get the parent process
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After getting the parent process ID, the next step is to get the process name or the filename
to check whether it's the name of a common debugger or includes any dbg or debugger
substrings in its name. There are two common ways to get the process name from its ID, as
shown in the following list:

¢ Looping through the processes the same way to get the parent process ID, but
this time they get the process name by providing the parent process ID that they
got earlier.

e Using the GetProcessImageFileNameA API to get the filename of a process
given its handle. To do this, they need to execute the OpenProcess APl in order
to get permission to access this process to query for information (by
using PROCESS_QUERY_INFORMATION as the requested permissions argument).
This API returns the process filename, which can be checked later to detect
whether it's a debugger.

Handling debugger breakpoints evasion

Another way to detect debuggers or evade them is to detect their breakpoints. Whether
they are software breakpoints (like INT3), hardware breakpoints, single-step breakpoints
(trap flag), or memory breakpoints, malware can detect them and possibly remove them to
escape reverse engineer control.

Detecting software breakpoints (INT3)

This type of breakpoint is the easiest to use, as well the easiest to detect. As we stated in
Chapter 1, A Crash Course in CISC/RISC and Programming Basics, this breakpoint modifies
the instruction bytes by replacing the first byte with 0xCc (the INT3 instruction), which
creates an exception (an error) that gets delivered to the debugger to handle.
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Since it modifies the code in memory, it's easy to scan the code section in memory for the
INT3 byte. A simple scan will look like this:

Loop ¥REF[1]:

00401033 20 38 cc CMP byts ptr [ER¥]=>LAB 00401048, 0xcc
00401038 74 21 JZ Debugger_Detected
00401038 40 INC ERY
00401039 49 DEC ECK
0040103z 75 £7 JHZ Loop
0040103c ke 00 00 MOV EST, 0x0

0o oo
00401041 €a 00 PUSH 0x0
00401043 =5 bE ££ CRLL ExitProcess

ff f£f

Figure 2: Simple INT3 scan

The only drawback of this approach is that some C++ compilers write INT3 instructions
after the end of each function as filler bytes. An INT3 byte (0xCC) can also be found inside
some instructions as part of an address or a value, so searching for this byte through the
code may not be an effective solution, and could return lots of false positives.

There are two other techniques that are commonly used by malware to scan for an INT3
breakpoint, as shown in the following list:

e Precalculating a checksum (a sum of a group of bytes) for the entire code section
and recalculating it again in execution mode. If the value has changed, then there
will be some bytes that have been changed, either by patching or by setting an
INT3 breakpoint. An example would be as follows:

mov esi,<CodeStart>
mov ecx,<CodeSize>
XOr eax,eax

ChecksumLoop:
movzx edx,byte [esi]
add eax, edx
rol eax,1
inc esi
loop .checksum_loop

cmp eax, <Correct_Checksum>
jne <breakpoint_detected>
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¢ Reading the malware sample file and comparing the code section from the file to
the memory version. If there are any differences between them, this means that
the malware has been patched in memory or there is a software breakpoint
(INT3) that has been added in the code. This technique is not widely used as it's
not effective if the malware sample has its relocation table populated (check
Chapter 2, Basic Static and Dynamic Analysis for x86/x64, for more information).

The best solution for software breakpoint detection is to use hardware breakpoints, single-
stepping (code tracing) or setting access breakpoints on different places in the code section
for any memory read.

Once a memory breakpoint being accessed gets a hit, you can find the checksum calculating
code and deal with it by patching its checksum code itself as you can see in the following
screenshot:

00401043
00401048
004010

4

[ T | ST

0040

48104000
:FF35 00000
:8925 00000
48104000
59104000
81E9 48104000
> 8038 ccC
.74 21

.15 F7
BE 00000000
€a 00
. E8 BEFFFFFF
$ BB 03000000
BA 04000000
€A 01
ES8 ATFFFFFF
> 6A 01
EE8 AOFFFFFF

PUSH int3_sca.00401048

PUSH DWORD PTR FS: [0]

MOV DWORD PTR FS:[0],ESP
MOV EARX,int3_sca.00401048
MOV ECX,int3_sca.00401059
SUB ECX,int3_sca.00401048
CMP BYTE PTR DS: [EAX],0CC
JE SHORT int3 sca.00401059
INC EAX

DEC ECX

JNZ SHORT int3_ sca.00401033
MOV ESTI, 0

FUSH 0

CALL <JMP.:skernel32.ExitProcess>
MOV FR¥ .=

Address

Hex dump

MOV E Backup >
FUSH Copy >
CALL Binary s 15>
EUSH Assembl 5

CALL emale pace  ig>
DB 0( Eakel

DE 00 Comment

DB Breakpoint >

- = Hit trace >

DB 00

DB 0d Run trace »

DB New origin here Ctrl+Gray *
Disac Goto ¥

Toggle

Conditional

L

C

Conditional log

Run to selection

Memory, on access

SE handler installation

Entry address

Entry address

ExitCode = 0
ExitProcess
Structured excepticn handler

ExitCode = 1
ExitProcess
ExitCode = 1
ExitProcess

F2
Shift+F2
Shift+F4

F4

Figure 3: Breakpoint on Memory, On Access on the code section to detect INT3 scan loop/checksum calculating loop
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In this figure, we have set a breakpoint Memory, on access on the code section. By
executing the program, the application should stop on the address 0x00401033, as this
instruction tried to access the address 0x00401048 where we set our breakpoint. In this
manner, we can detect the INT3 scan loop or the checksum calculating loop.

By patching the check at the end of the checksum calculator or the jz/jnz with the opposite
check, you can easily bypass this technique.

Detecting single-stepping breakpoints (trap flag)

Another type of breakpoint detection technique that is widely used is the trap flag. When
you trace over the instructions one by one, checking the changes they make in memory and
on the registers' values, your debugger sets the trap flag in the EFLAGS register, which is
responsible for stopping on the next instruction and returning control back to the debugger.

This flag is very hard to catch because EFLAGS is not directly readable. It's only readable
through the pushf instruction, which saves this register value in the stack. Since this flag is
always set to False after returning to the debugger, it's hard to check the value of this flag
and detect a single-step breakpoint; however, there are multiple ways to detect this
behavior. Let's go through the most common examples.

Detecting a trap flag using the SS register

In the x86 architecture, there are multiple registers that are not widely used nowadays.
These registers were used in DOS operating systems before virtual memory was
introduced, particularly the segment registers. Apart from the Fs register (which you
already know about), there are other segment registers, such as cs, which was used to point
to the code section, DS, which was used to point to the data section, and ss, which was
used to point to the stack.
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The pop SS instruction is quite special. This instruction is used to get a value from the
stack and change the stack segment (or address) according to this value. So if there's any
exception happening while executing this instruction, it could lead to confusion (which
stack would be used to store the exception information?). Therefore, no exceptions or
interrupts are allowed while executing this instruction, including any breakpoints or trap
flags.

If you are tracing over this instruction, your debugger will move the cursor and will skip to
the next instruction and jump directly to the instruction after it. It doesn't mean this
skipped instruction wasn't executed, it was executed but not interrupted by the debugger.

For example, in the following code, your debugger cursor will move from POP SS to MOV
EAX, 1,skipping the PUSHFD instruction, even if it was executed:

PUSH SS

POP SS

PUSHFD ;your debugger wouldn't stop on this instruction

MOV EAX,1 ;your debugger will automatically stop on this instruction.

The trick here is that, in the previous example, the trap flag will remain set while executing
the pushfd instruction, but it won't be allowed to return to the debugger., so the pushfd
instruction will push the EFLAGS register to the stack, including the actual value of the trap
flag (if it was set, it will show in the EFLAGS register). Then, it's easy for malware to check
whether the trap flag is set and detect the debugger. An example of this is shown in the
following screenshot:

text: 88481016 push 55

text:aed4a8lely pop 55

text: 28481018 pushf

text: 88481019 mov eax, [esp]

text:8848181C and eax, 18ah

text:@e481821 jnz short Debugger Detected
text: 88481023 push a 3 UExitCode
text: 28481825 call ExitProcess

Figure 4: Trap flag detection using the SS register

This is a direct way of checking for code tracing or single-stepping. Another way to detect it
is by monitoring the time that passed while executing an instruction or a group of
instructions, which is what we will talk about in the next section.
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Detecting single-stepping using timing techniques

There are multiple ways to get the exact time with millisecond accuracy from the moment
the system is on until the execution of this instruction. There is an x86 instruction called
rdtsc that returns the time in EDX : EAX registers. By calculating the difference between the
time before and after executing a certain instruction, any delay will be clearly shown, which
represents reverse-engineering tracing through the code. An example of this is shown in the
following screenshot:

00401010 Of 31 RDTSC
00401012 50 PUSH EI
00401013 33 coO KOR EL¥,ER
00401015 0f 31 RDTSC
00401017 2B 04 24 SUB ER¥,dword ptr [ESF]=>local 4
; more than 20 milliseconds, detect a single-stepping
0040101a 83 £8 20 CMP EL¥, 0x20
00401014 77 07 JR Debugger Detected
0040101f ga 00 PUSH 0x0
00401021 =8 da ££ CALL ExitProcess

Figure 5: The rdtsc instruction to detect single-stepping

This instruction is not the only way to get the time at any given moment. There are multiple
APIs supported by Windows that help programmers get the exact time, as follows:

® GetLocalTime

® GetSystemTime

® GetTickCount

® KiGetTickCount (in kernel mode)
® QueryPerformanceCounter

e timeGetTime

e timeGetSystemTime

This technique is widely used and more common than the SS segment register trick. The
best solution is to patch the instructions. It's easy to detect it if you are already stepping
through the instructions; you can patch the code or just set the instruction pointer
(EIP/RIP) to make it point after the check.
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Evading hardware breakpoints

Hardware breakpoints are based on registers that are not accessible in user mode.
Therefore, it's not easy for malware to check these registers and clear them to remove them.

For malware to be able to access them, it needs to have them pushed to the stack and pulled
out from it again. To do that, many malware families rely on structured exception
handling (SEH).

What is structured exception handling?

For any program to handle exceptions, Windows provides a mechanism called SEH. It's
based on setting a callback function to handle the exception and then resume execution.
If this callback failed to handle the exception, it can pass this exception to the previous
callback that was set. If the last callback was unable to handle the exception, the
operating system terminates the process and informs the user about the unhandled
exception, and often suggests hat they send it to the developer company.

A pointer to the first callback to be called is stored in the thread information block (TIB)
and can be accessed via FS: [0x00]. The structure is a linked list, which means that each
item in this list has the address to the callback function and follows the address of the
previous item in the list (the previous callback). The linked list looks like this in the stack:

Stack
TEB
FS[0] : 0012FF40 0012FF40 : 0012FFBO : next SEH record

0012FF44 : 7C839ADS : SE Handler

"0012FFBO : 0012FFEOQ :/next SEH record
0012FFB4 : 0040109A : SE Handler

*0012FFEOQ : FFFFFFFF : next SEH record (end of chain) |
0012FFE4 : 7C839ADS : SE Handler

Figure 6: SEH linked list in the stack
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The setup of the SEH callback generally looks like this:

PUSH <callback_function> // Address of the callback function
PUSH FS: [0] // Address of previous callback item in the list
MOV FS:[0],ESP // Install new EXECEPTION_REGISTRATION

As you can see, the SEH linked list is mostly saved in the stack. Each item points to the
previous one. When an exception occurs, the operating system executes this callback
function and passes the necessary information about the exception and the thread state to it
(registers, the instruction pointer, and so on). This callback has the ability to modify the
registers, the instruction pointer, and the whole thread context. Once the callback returns,
the operating system takes the modified thread state and registers (which is called the
context) and resumes based on it. The callback function looks like this:

__cdecl _except_handler (
struct _EXCEPTION_RECORD *ExceptionRecord,
void * EstablisherFrame,
struct _CONTEXT *ContextRecord,
void * DispatcherContext
)

The important arguments are the following:

e ExceptionRecord: Contains information related to the exception or the error
that has been generated. It contains the exception code number, the address, and
other information.

e ContextRecord: This is a structure that represents the state of that thread at the
time of the exception. It's a long structure that contains all the registers and other
information. A snippet of this structure would look as follows:

struct CONTEXT {
DWORD ContextFlags;

DWORD DRI[7];

FLOATING_SAVE_AREA FloatSave;
DWORD SegGs;
DWORD SegF's;
DWORD SegEs;
DWORD SegDs;
DWORD Edi;

bi

There are multiple ways to detect a debugger using SEH. One of these ways is by detecting
and removing hardware breakpoints.
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Detecting and removing hardware breakpoints

To detect or remove hardware breakpoints, malware can use SEH to get the thread context,
check the values of the DR registers and clear all of them to remove the hardware
breakpoints—or at least just check their values and exit if a debugger is detected. The code

is as follows:

XOr eax, eax
push offset except_callback

push d fs:[eax]

mov fs:[eax], esp

int 3 ;force an exception to occur

except_callback:
mov eax, [esptOch] ;get ContextRecord
mov ecx, [eax+4] ;Dr0
or ecx, [eax+8] ;Dril
or ecx, [eax+0ch] ;Dr2
or ecx, [eax+10h] ;Dr3
jne <Debugger_Detected>

Another way to remove hardware breakpoints is to use the Get ThreadContext () APIto
access the current thread (or another thread) context and check for the presence of
hardware breakpoints or clear them using the Set ThreadContext () APL

The best way to deal with these breakpoints is to set a breakpoint on Get ThreadContext,
SetThreadContext, or on the exception callback function to make sure they don't reset
or detect your hardware breakpoints.

Memory breakpoints

The last type of breakpoint to talk about is memory breakpoints. It's not common to see an
anti memory breakpoints trick, but they can be easily detected by using

the ReadProcessMemory () API with the malware's ImageBase as an argument and the
SizeOfImage as the size. ReadProcessMemory () will return False if any page inside the
malware is guarded (PAGE_GUARD) or set to no-access protection (PAGE_NOACCESS).

For a malware sample to detect a memory breakpoint upon write or execute, it can query
any memory page protection using the VirtualQuery APIL Alternatively, it can evade
them by using VirtualProtect with PAGE_EXECUTE_READWRITE.

The best way to deal with these anti-debugging tricks is to set breakpoints on all of these
APIs and force them to return the desired result for the malware to resume execution.
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Escaping the debugger

Apart from detecting debuggers and removing their breakpoints, there are multiple tricks
that malware uses to escape the debugger's control: escaping the breakpoints, step-into and
step-over, or escaping the whole debugging environment altogether. Let's cover some of
the most common tricks.

Process injection

We have talked about process injection before, in chapter 4, Inspecting Process Injection and
API Hooking. Process injection is a very well-known technique, not only for man-in-the-
browser attacks, but also for escaping the debugged process into a process that is not
currently debugged. By injecting into another process, malware can get out of the
debugger's control and execute code before the debugger can attach to it.

A commonly used solution to bypass this trick is to inject an infinite loop into the
EntryPoint of the injected code before it gets executed, usually in the injector code either
before the WriteProcessMemory call when the code hasn't been injected yet or before
CreateRemoteThread, this time in another process's memory.

An infinite loop can be created by writing two bytes (0xEB 0xFE) that represent a jmp
instruction to itself, as you can see in the following screenshot:

JOF CC INT:
=I5zl 1515 JMP SHORT trace Tr.<ModuleEntryPoint>
10401012 . 6L FF EFUSH -1

Figure 7: Injected JMP instruction to create an infinite loop

Next, we are going to talk about another popular technique called the TLS callback. Read
on!
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TLS callbacks

Many reverse engineers start the debugging phase from the EntryPoint of the malware,
which usually makes sense. However, some malicious code can start before the
EntryPoint. Some malware families use Thread-Local Storage (TLS) to execute code that
initializes every thread (which runs before the thread's actual code starts). This gives the
malware the ability to escape the debugging and do some preliminary checks, and maybe
run most of the malicious code this way while having benign code at the EntryPoint.

In a data directory block of the PE header, there is an entry for TLS. It is commonly stored
in the .t 1s section, and the structure of it looks like this:

typedef struct IMAGE TL3 DIRECTORYGZ {
TLONGLONG JtartiddressOfRawbatar
TLONGLONG EndiddressOfRavData;
TLCHGLONG hAddress0fIndex; /¢ PDWORD
TLONGLONG hAddressCfCallBacks: /¢ PIMAGE TLS CALLEACE *;
DWORD Size0fZeroFill;
DWORD Characteristics;
} IMAGE TL3 DIRECTORYGY:
typedef THAGE TL3 DIRECTCRY64 * PIMAGE TLS DIRECTORYGS:

typedef struct IMAGE TL3 DIRECTORY3IZ {
DWORD StarthddressOfRawData;
DWORD EndiddressCOfRavData;
DWORD Address0fIndex; /f PDWORD
DWORD Lddress0fCallBacks: /¢ PIMAGE TL3 CALLBALCE *
DWORD FizelfferoFill;
DWoORD Characteristics;
} IMAGE TLS DIRECTORYIZ:
typedef THMAGE TL3 DIRECTCRYIZ & PINAGE TL3 DIRECTORYIEZ ;

Figure 8: TLS structure

The AddressOfCallBacks points to a null-terminated array (the last element is zero) of
callback functions, which are to be called after each other, each time a thread is created.
Any malware can set its malicious code to start inside the AddressOfCallBacks array and
ensure that this code is executed before the Ent ryPoint.

A solution for this trick is to check the PE header before debugging the malware and set a
breakpoint on every callback function registered inside the Address0OfCallBacks field.
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Windows events callbacks

Another trick used by malware authors to evade the reverse engineer's single-stepping and
breakpoints is by setting callbacks. Callbacks are each called for a specific event (like a
mouse click, keyboard keystroke, or a window moving to the front). If you are single-
stepping over the malware instructions, the callback would still be executed without you
noticing. In addition, if you are setting breakpoints based on the code flow, it will still
bypass your breakpoints.

There are so many ways to set callback functions. Therefore, we will just mention two of
them here, as follows:

e Using the RegisterClass APL: The RegisterClass API creates a window
class that can be used to create a window. This API takes a structure
called WNDCLASSA as an argument. The WNDCLASSA structure contains all the
necessary information related to this window, including the icon, the cursor icon,
the style, and most importantly the callback function to receive window
events. The code looks as follows:

MOV DWORD PTR[WndCls.lpfnWndProc], <WindowCallback>

LEA EAX,DWORD PTR SS:[WndCls]

PUSH EAX ; pWndClass
CALL <JMP.&user32.RegisterClassA> ;
RegisterClassA

¢ Using SetWindowLong: Another way to set the window callback is to use
SetWindowLong. If you have the window handle (from EnumWindows or
FindWindow or other APIs), you can call the SetWindowLong API to change the
window callback function. Here is what this code looks like:

PUSH <WindowCallback>
PUSH GWL_DlgProc

PUSH hWnd ;Window Handle
CALL SetWindowLongA

The best solution for this is to set breakpoints on all the APIs that register callbacks or their
callback functions. You can check the malware's import table, any calls to
GetProcAddress, or other functions that dynamically call an APL
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Obfuscation and anti-disassemblers

Dissemblers are one of the most common tools that are used for reverse engineering, and so
they are actively targeted by malware authors. Now, we will take a look at the different
techniques that are used in malware to obfuscate its code and make it harder for reverse
engineers to analyze it.

Encryption

Encryption is the most common technique as it also protects malware from antivirus static
signatures. Malware can encrypt its own code and have a small piece of stub code to
decrypt the malicious code before executing it. The malware can also encrypt its own data,
such as strings, APl names, and their C&Cs.

Dealing with encryption is not always easy. One solution is to execute the malware and
dump the memory after it is decrypted. You can dump the process memory using the
SysInternals tool called processdump . exe and the commandline looks like:

procdump -ma <process name/pid>

This will dump the whole process and its memory. If you only want the process

image, you can use —mm to create a Mini process image. Also known sandboxes, now take
process dumps from the monitored processes, which will help you get the malware in a
decrypted form.

But for cases like encrypting strings and decrypting each string on demand, you will need
to reverse the encryption algorithm and write a script to go through all the calls to the
decryption function and use its parameters to decrypt the strings. You can check out
Chapter 2, Basic Static and Dynamic Analysis for x86/x64, for more information on how to
write such scripts.

Junk code insertion

Another well-known technique that's used in many samples, and which became
increasingly popular from the late 90s and early 2000s, is junk code insertion. With this
technique, the malware author inserts lots of code that never gets executed, either after
unconditional jumps, a call that never returns, or conditional jumps with conditions that
would never be met. The main goal of this code is to waste the reverse engineer's time
analyzing useless code or make the code graph look more complicated than it actually is.
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Another similar technique is to insert ineffective code. This ineffective code could

be something like nop, push & pop, inc & dec. A combination of these instructions
could look like real code; however, they all compensate for each other, as you can see in the

following screenshot:

e0401005| SBFO HUJ ESI,ERX
00401007  3E:8A00 ou AL, BYTE PTR DS:(EAX)
00401000 84CO TEST L, AL

f4a100C|v 74 4D JE SHDRT Test.20401058
10100E| S8 PUSH EBX

SE: 8FOS T4F5401 POP DWORD PTR DS:([4@F974)

D308 RCR _EBX,CL

@FCB BSWRAFP EBX

€8 SD104000 PUSH Test.00401050

B POP EBX

3E: 8903 HOU DWORD PTR DS:(EBX),ERX

43 INC EBX

24| ©FBDC2 BSR_EAX,E
‘| RI 46RI780C TEST EAX, 0C?Bﬂ946

NOP
INC EDX
s2 PUSH EDX
FEDC24 DEC BVTE PTR $8:(ESP)
C_EOxX
',"‘ - .‘,‘ “ UH'“
00401038| B3 27 HOU BL,27
pe4a183a| B8 7CFRAL?F MOV ERX, 7FRIFA7C
204081837 |v EB 01 grf' SHORT Test.00401042

3E C?BS FCGBHIHCU DICRD PTR DS: (4188FC1,0

20 218DESB9 U8 ERX,B9ESBDZ21
6908 ES77D450 m.u. EEX, EDX, 900477ES

Figure 9: Pointless junk code

There are different forms of this junk code, including the expansion of an instruction; for
example, inc edx becomes add edx, 3 and sub edx, 2,and so on. This way, itis
possible to obfuscate the actual values, such as 0x5a4D ('MZ') or other values that could

represent specific functionality for this subroutine.

This technique has been around since the 90s in metamorphic engines, but it's still used by

some families to obfuscate their code.

Code transportation

Another trick that's commonly used by malware authors is code transportation. This
technique doesn't insert junk code; instead, it rearranges the code inside each subroutine
with lots of unconditional jumps, including call and pop or conditional jumps that are

always true.
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It makes the function graph look very complicated to analyze and wastes the reverse
engineer's time. An example of such code can be seen in the following screenshot:

[Cranioocly FE 26 i ~-1«a-m,r=zr,uur—
BagIeE,| 53 J?’USH
3E: 8F@S 74F9401 POP OMURD PTR DS:[48F974]
D30B RCR EBX,CL
BFCE BSWAP EBX
62 SC104000 ?3SHETest .B840165C
3%:8963 ﬂﬁg EgURD PTR DS:[EBX],EAX
aFe0Cz BSR_ERX, EDX
ﬂ? 46R9?80C TEST Eﬂx 00789946
JMP_SH DT Tecst QQRAQIA2S
SBFB MOU ESI, EAX
3E: 8RB0 MOV AL, B?TE PTR DS:[ERX]
24C0 TEST ﬂL
74 2A JE SHORT Test BB40105SA
EE O SHORT Test.ARdA10R7
EBCZ ﬂDU EHx, ED®
PUSH EDX
B& 86 ) DH, 86
a7 MOV BL, 27

B3 '
B2 VCFRAL?F MOV ERX, PFR1FA?C
EB 61 JMP SHORT Test.B88401841

i

T2 EAY, EDR
3E:C705 FC88411HOU DWORD PTR DS:C[4188FC1, 0 |
20 219DESBS | SUB EAX,BIESAD21
69D ES77D49D | IMUL_EEX,EDX, 90D477ES

4

=
o

Figure 10: Code transportation with unconditional jumps

There is a more complicated form of this where malware rearranges the code of each
subroutine in the middle of the other subroutines. This form makes it harder for the
disassembler to connect each subroutine as it makes it miss the ret instruction at the end of
the function and then not consider it as a function.

Some other malware families don't put a ret instruction at the end of the subroutine and
substitute it with pop and jmp to hide this subroutine from the disassembler. These are just
some of the many forms of code transportation and junk code insertion techniques.

Dynamic API calling with checksum

Dynamic API calling is a famous anti disassembling trick used by many malware families.
The main reason behind using it is that this way, they hide API names from static analysis
tools and make it harder to understand what each function inside the malware is doing.
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For a malware author to implement this trick, they need to pre calculate a checksum for this
API name and push this value as an argument to a function that scans export tables of
different libraries that are searching for an API with this checksum. An example of this is
shown in the following screenshot:

0041478D push BCE82D5F77h ; func_hash
aau1 4792 push BF734E815h ; library_hash
00414797 call resolue : getsockname
Bau1 4790 lea ecx, [ESi+sﬂh]

0041472 push ECX

aeu147A3 push esi

00414704 push [esp+1Bh+arg_A]

Au147A8 call eax

Figure 11: Library and API names' checksums (hash)

The code for resolving the function actually goes through the PE header of the library,
loops through the import table, and calculates the checksum of each API to compare it with
the given checksum (or hash) that's provided as an argument.

The solution to this approach could require scripting to loop through all known API names
and calculate their checksum or executing this function multiple times when given each
checksum as input and saving the equivalent API name for it.

Proxy functions and proxy argument stacking

The Nymaim banking Trojan took anti disassembling to another level by adding additional
techniques, such as proxy functions and proxy argument stacking.

With the proxy functions technique, malware doesn't directly call the required function;
instead, it calls a proxy function that calculates the address of the required function and
transfers the execution there. Nymaim included more than 100 different proxy functions
with different algorithms (4 or 5 algorithms in total). The proxy function call looks like this:

push eax

push

push

call obfuscated_fn_call_48 ; call strlen

Figure 12: Proxy function arguments to calculate the function address
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The proxy function code itself looks like this:

il s =
B841ACAA
aay1Acen
gay1acea ; Does a function call according to the previous arguments
aau1Aacen ; Attributes: bp-based frame
aay1acan
aay1Aaceaa obfuscated fn_call 48 proc near
B841ACAA
aey1acea arg_#= dword ptr 8
aeu1acea arg_4= dword ptr BCh
aau1acen arg_%8= dword ptr 18h
aay1Acen
aay1acan ; FUNCTION CHUNK AT ©8843B858 SIZE OO0068888 BYTES
B841ACAA
ge41acea 55 push ebp
ge41ace1 B89 ES mou ebp, esp
aeu1aces sa push eax
aau1Acas BB 45 B4 mov eax, [ehp+l]
aau1Aaca7 89 45 18 mov [ebp+arg 8], eax
aau1AceA 8B 45 AC mov eax, [ebp+arg_4]
aay1AcAD 33 45 ag #or eax, [ebp+arg_8A]
8041AC18 E9 3B BC 62 B8 jmp loc_43BB5H
ae41ac18 obfuscated_fn_call_ 48 endp
aa41Ac1a
FEE
BA43BR5A ; START OF FUNCTIOH CHUNKE FOR obfuscated_fn_call_ 48
BA43ER5A
88438850 loc_43B858:
00438850 61 45 B4 add [ebp+H], eax
9843B853 S8 pop eax
BO43B85L C9 leave
B843B855 C2 B8 AA retn 8
BA43B85S ; END OF FUNCTION CHUNK FOR obfuscated fn_call_ 48

Figure 13: Nymaim proxy function

Chapter 5
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For arguments, Nymaim used a function to push arguments to the stack rather than just
using the push instruction. This trick could confuse the disassembler into recognizing the
arguments that were given to each function or API. An example of proxy argument
stacking is as follows:

push .
call register_push_8 ; push edi
push ;U
call register_push_8 ; push esi

Figure 14: Proxy argument stacking technique in Nymaim

This malware included many different forms of the techniques that we introduced in this
section, so as long as the main idea is clear, you should be able to understand all of them.

Detecting and evading behavioral analysis
tools

There are multiple ways that malware can detect and evade behavioral analysis tools, such
as ProcMon, Wireshark, API hooking tools, and so on, even if they don't directly debug the
malware or interact with it. In this section, we will talk about two common ways in which
malware detects and evades behavioral analysis tools.

Finding the tool process

One of the simplest and most common ways malware deals with malware-analysis tools
(and antivirus tools as well) is to loop through all the running processes and detect any
unwanted processes. Then, it is possible to either terminate it or to stop its execution to
avoid further analysis.

In chapter 4, Inspecting Process Injection and API Hooking, we covered how malware can
loop through all running processes using the CreateToolhelp32Snapshot,
Process32First, and Process32Next APIs. In this anti-reverse engineering trick, the
malware uses these APIs in exactly the same way to check the process name against a list of
unwanted processes names or their hashes. If there's a match, the malware terminates itself
or uses an approach such as calling the TerminateProcess API to kill that process. The
following screenshot shows an example of this trick being implemented in Gozi malware:
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TEEEELLTTTTTEEEEEE LT T PP ET T T d i i T it ddidffrridsiiiiitiieed
/{ opens process
HANDLE ProcOpenProcessByNameW( PWSTR ProcessMName, DWORD dwDesiredAccess )
{

HANDLE hProcessSnap = INVALID_HANDLE_VALUE;

HANDLE hProcess = MULL;

PROCESSENTRY32W pe32;

DWORD Error = ERROR_FILE_NOT_FOUND;

// Take a snapshot of all processes in the system.
hProcessSnap = CreateToolhelp32Snapshot( TH32CS_SNAPPROCESS, @ );
if( hProcessSnap == INVALID_HANDLE_VALUE )

{

return NULLj;

// Set the size of the structure before using it.

pe32.dwSize = sizeof( PROCESSENTRY32W );

// Retrieve information about the first process,

// and exit if unsuccessful

if( !Process32FirstW( hProcessSnap, &pe32 ) )

{
CloseHandle( hProcessSnap ); // clean the snapshot object
return NULL;

// Now walk the snapshot of processes, and

// display information about each process in turn

do
{
if ( lstrcmpiW (pe32.szExeFile,ProcessName) == @ )
{
if { ( hProcess = OpenProcess( dwDesiredAccess, FALSE, pe32.th32ProcessID )) == NULL ){
Error = GetlastError();
Yelse{
Error = NO_ERROR;
1
break;
1

} while{ Process32MNextl( hProcessSnap, &pe32 ) );

Figure 15: Gozi malware looping through all running processes
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The following screenshot shows an example of Gozi malware code using
the TerminateProcess API to kill a process of its choice:

I

// terminates process by name

I

WINERROR ProcTerminateProcessh(
LPWSTR Processhiame

)

WIMERROR 5tatus = NO_ERROR;
HAMDLE hProcess = ProcOpenProcessByNameW(ProcessName, PROCESS_TERMINATE);

if (hProcess)

1
if (!TerminateProcess(hProcess,8))
Status = GetlastError();
CloseHandle(hProcess);
b
else

Status = GetlastError();

return Status;

Figure 16: Gozi malware terminating a process with the help of the ProcOpenProcessByNameW function

This trick can be bypassed by renaming the tools you are using before executing them. This
simple solution could hide your tools perfectly if you just avoid using any known
keywords in the new names, such as dbg, disassembler, AV, and so on.

Searching for the tool window

Another trick would be not to search for the tool's process name, but instead to search for
its window name (the window's title). By searching for a program window name, malware
can avoid any renaming that could be performed on the process name, which gives it the
opportunity to detect new tools as well (mostly, window names are more descriptive than
the process name).
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This trick can be done in the following two ways:

e Using FindWindow: Malware can use either the full window title, such as
Microsoft network monitor, or the window class name. The window class name
is a name that was given to this window when it was created, and it's different
from the title that appears on the window. For example, the OllyDbg window
class name is OLLYDBG, while the full title could change based on the process
name of the malware under analysis. An example of this is as follows:

push NULL

push .szWindowClassOllyDbg
call FindWindowA

test eax,eax

jnz <debugger_found>

push NULL

push .szWindowClassWinDbg
call FindWindowA

test eax,eax

jnz <debugger_found>

.szWindowClassOllyDbg db "OLLYDBG", 0
.szWindowClassWinDbg db "WinDbgFrameClass", 0O

¢ Using EnumWWindows: Another way to avoid searching for the window class name
or dealing with the change of window titles is to just go through all the window
names that are accessible and scan their titles, searching for suspicious window
names such as Debugger, Monitor, Wireshark, Disassembler, and so on. This is a
more flexible way to deal with new tools or tools the malware author forgot to
cover.
With the EnumWindows API, you need to set a callback to receive all windows.
For each top-level window, this callback will receive the handle of this
window, from which it can get its name using the GetWindowText APIL. An
example of this is as follows:

o040 51 -
oo40o 3] - [lP’ram

Callback = FinFishe.0OO0401ClE
o040 .
0040z0F7 (] - rﬂrg4

Figure 17: FinFisher using EnumWindows to set its callback function
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The callback function declaration looks like this:

BOOL CALLBACK EnumWindowsProc (
_In_ HWND hwnd,
_In_ LPARAM lParam

)i

The hwnd phrase is the handle of the window, while 1Param is a user-defined argument
(it's passed by the user to the callback function). Malware can use the GetWindowText
API when given this handle (hwnd) to get the window title and scan it against a predefined
list of keywords.

It's more complicated to modify window titles or classes than actually set breakpoints on
these APIs and use the callback function to bypass them. There are plugins for popular
tools, such as OllyDbg and IDA, that can help rename their title window to avoid detection
(like 011yAdvanced), which you can use as a solution as well.

Detecting sandboxes and virtual machines

Malware authors know that if their malware sample is running on a virtual machine, then
it's probably being analyzed by a reverse engineer or it's probably running under the
analysis of an automated tool such as a sandbox. There are multiple ways in which
malware authors can detect virtual machines and sandboxes. Let's go over some of them
now.

Different output between virtual machines and
real machines

Nothing is perfect. Therefore, malware authors use the mistakes of the virtual machines'
implementations in some of the assembly instructions. Examples of these are as follows:

e CPUID hypervisor bit: The CPUID instruction returns information about the
CPU and provides a leaf/ID of this information in eax. For leaf 0x01 (eax =
1), the CPUID sets bit 31 to 1, indicating that the operating system is running
inside a virtual machine or a hypervisor.

e Virtualization brand: With the CPUID instruction, for some virtualization tools,
given eax = 0x40000000, it could return the name of the virtualization tool,
such as Microsoft HV or VMware in EBX, EDX, and ECX.
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e MMX registers: MMX registers are a set of registers that were introduced by
Intel that help speed up graphics calculations. Some virtualization tools don't
support them. Some malware or packers use them for unpacking in order to
detect or avoid running on a virtual machine.

Detecting virtualization processes and services

Virtualization tools mostly install tools on the guest machine to enable clipboard
synchronization, drag and drop, mouse synchronization, and so on. These tools can be
easily detected by scanning for these processes using the CreateToolhelp32Snapshot,
Process32First, and Process32Next APIs. Some of these processes are as follows:

e VMware:

e vmtoolsd.exe
e vmacthlp.exe
® VMwareUser.exe
® VMwareService.exe
® VMwareTray.exe
¢ VirtualBox:
® VBoxService.exe

® VBoxTray.exe

Detecting virtualization through registry keys

There are multiple registry keys that can be used to detect virtualization environments.
Some of them are related to the hard disk name (which is usually named after the
virtualization software), the installed virtualization sync tools, or to other settings for the
virtualization process. Some of these registry entries are as follows:

e HKILM\SOFTWARE\Vmware Inc.\\\Vmware Tools
® SYSTEM\CurrentControlSet\Control\VirtualDeviceDrivers

e HKEY LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Class\{4D36E968
-E325-11CE-BFC1-08002BE10318}\0000\ProviderName

e HKEY LOCAL_MACHINE\HARDWARE\\ACPI\\DSDT\\VBOX__
e HKEY ILOCAL_MACHINE\SOFTWARE\\Oracle\\VirtualBox Guest Additions
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Detecting virtual machines using PowerShell

It's not just registry values that reveal lots of information about the virtualization
tools—Windows-managed information, which is accessible using PowerShell, can also be

used, as shown in the following screenshot:

X Windows PowerShell
PS C:n\Scripts» Get—WmiObject Win32 ComputerSuystem

Domain springfield. local

Manuf acturer UMware. Inc.

Mode 1 UMware Uirtual Platform
Mamne #PPRO

PrimaryOunerMame IT

TotalPhysicalMemory 267894784

PS C:“Scripts>

Figure 18: The PowerShell command to detect VMWare

This information can also be accessed through a WMI query, such as the following:

SELECT * FROM Win32_ComputerSystem WHERE Manufacturer LIKE "&VMware$%$" AND
Model LIKE "$VMware Virtual Platform%"

For Microsoft Hyper-V, it would be as follows:

SELECT * FROM Win32_ComputerSystem WHERE Manufacturer LIKE "$Microsoft
Corporation%" AND Model LIKE "%Virtual Machine%"

These techniques make it harder to hide the fact that this malware is running inside
virtualization software and not on a real machine.

Detecting sandboxes by using default settings

Sandboxes are sometimes easier to detect. They have lots of default settings that malware
authors can use to identify them. The usernames could be default values, such as cuckoo or
user. The filesystem could include the same decoy files and the same structure of the files
(if not, then the same number of files). These settings can be easily detected for commonly
used sandboxes, without even looking at their known tools and processes.
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Another way to evade sandboxes is to avoid performing malicious activities in their
analysis time window. These sandboxes execute malware for several seconds or minutes
and then collect the necessary information before terminating the virtual machine. Some
malware families use APIs such as S1leep to skip the execution for quite some time or run it
after a machine restart. This trick can help evade sandboxes and ensure that they don't
collect important information, such as C&C domains or malware-persistence techniques.

Other techniques

There are lots of other techniques that malware families can use to detect virtualized
environments, such as the following:

e Connecting to VirtualBox inter-process
communication: \\\\ . \\pipe\\VBoxTrayIPC

e Detecting other virtualization software files, such as VBoxHook .d11

e Detecting their window title or window class name, such
as VBoxTrayToolWndClass or VBoxTrayToolWnd

e The MAC address of their network adapter

This list can be further expanded with many similar techniques and approaches for
detecting a virtualized environment.

Summary

In this chapter, we have covered many tricks that malware authors use to detect and evade
reverse engineering, from detecting the debugger and its breakpoints to detecting virtual
machines and sandboxes, as well as going through obfuscation and debugger-escaping
techniques. By the end of this chapter, you will be able to analyze more advanced malware
equipped with multiple anti-debugging or anti-VM tricks. You will also be able to analyze a
highly obfuscated malware with lots of anti-disassembling tricks.

In chapter 6, Understanding Kernel-Mode Rootkits, we are going to enter the operating
system's core. We are going to cover the kernel mode and learn how each API call and each
operation works internally in the Windows operating system, as well as how rootkits can
hook each of these steps to hide malicious activity from antivirus products and the user's
eyes.
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Understanding Kernel-Mode
Rootkits

In this chapter, we are going to dig deeper into the Windows kernel and its internal
structure and mechanisms. We will cover different techniques used by malware authors to
hide their malware presence from users and antivirus products.

We will look at different advanced kernel-mode hooking techniques, process injection in
kernel mode, and how to perform static and dynamic analysis.

Before we get into rootkits and learn how they are implemented, we need to understand
how the operating system actually works and how rootkits can target different parts of the
OS and use it to their advantage.
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This chapter is divided into the following sections to facilitate seamless learning:

¢ Kernel mode versus user mode

¢ Windows internals

¢ Rootkits and device drivers

¢ Hooking mechanisms

¢ Direct Kernel Object Manipulation Attack (DKOM)

¢ Process injection in kernel mode

o Kernel Patch Protection (KPP) in x64 systems (PatchGuard)
e Static and dynamic analysis in kernel mode

Kernel mode versus user mode

You will have noticed a number of user-mode processes on your computer (all the
applications you see are running in user mode), such as modifying files, connecting to the
internet, and performing lots of activities. However, you might be surprised to know that
user-mode applications don't actually have privileges to do all of this. In fact, they don't
have the privileges to do anything except modify their own memory (without allocating or
changing permissions).

For any process to create a file or connect to a domain, it needs to send a request to the
kernel mode in order to perform that action. This request is done through what is known as
a system call, and this system call switches to kernel mode to perform this action (that is, if
the permission is granted). Kernel mode and user mode are not only supported by the OS
(or software restrictions)—they are also supported by the processors through protection
rings (or hardware restrictions).

Protection rings

Intel processors provide four rings of privileges. Each ring has lower privileges than the
previous one, as shown in the following diagram:
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RING O

KERNEL
MODE

Figure 1: Processor rings

Windows uses only two of these rings: RING 0 for kernel mode and RING 3 for user mode.
Modern processors such as Intel and AMD have another ring (RING 1) for hypervisors and
virtualizations so that each OS can run natively. However, the hypervisors still control
certain operations, such as hard disk access.

These rings are created for handling faults (such as memory access faults or any type of
exceptions) and for security. RING 3 has the least privileges—that is, the processes in this
ring cannot affect the system, they cannot access the memory of other processes, and they
cannot access physical memory (they must run in virtualized memory). In contrast, RING 0
can do anything—it can directly affect the system and its resources. Therefore, it's only
accessible to the Windows kernel and the device drivers.

Windows internals

Before we dive into the malicious activities of rootkits, let's take a look at how the Windows
OS actually works and how the interaction between the user mode and kernel mode is
organized. This knowledge will allow us to better understand the specifics of kernel-mode
malware and what parts on the system it may target.
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The infrastructure of Windows

As we mentioned previously, the OS is divided into two parts: user mode and kernel mode.
This is demonstrated in the following diagram:

System Processes  Services Applications

Task Manager

D
User

application 1
User

application 1
User

application 1

LSASS J svchost.exe

Winlogon services.exe

POSIX
Subsystem DLLs | | Windows DLLs

A 4 Yy v Y
NTDLL.DLL
User mode
Kernel mode
y
System Service Dispatcher
(Kernel mode callable interfaces) !
Windows
= § User,
/0 Manager ‘{,;; OE;- § GDI
> = 3
D o
g > | 3 |
Fllle system Ei § u§’ Grgpmc
& Filter drivers |~ & 2 ) drivers
< s
— Kernel F—
Hardware Abstraction Layer (Hal)

Figure 2: The Windows OS design
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Now, let's learn about the scope of these applications:

e User mode: This contains all the processes and services running in the system
(which you can see in task manager). These processes are running under
subsystems such as POSIX, the Win32 subsystem, and (more recently) the
Windows subsystem for Linux. All of these subsystems call different APIs, which
are tailored for that system through specific libraries, such as kernel132.d11 in
the Win32 and Win64 subsystems.

All of these Dynamic-Link Libraries (DLLs) call APIs in one DLL
(ntdll.d1l1l), which communicates directly to the kernel mode. Ntd11l.d11 is

a library that sends requests to the kernel using special instructions, such

as sysenter or syscall (depending on the mode and whether it is Intel or
AMD; in this chapter, we will be using them interchangeably). The request ID is
saved in each register and the parameters are saved in the user-mode stack:

(] s =

0000000078EAT7BO ; Exported entry 257. HtCreateSection
0000000A78EAT7BO ; Exported entry 1586. ZuCreateSection
ABBOBBEAB7BEAT7ED

G0BOO0AO7BEATTED

A0BO0BAB7BEA17ED

9080008007 SEA17EA public ZwCreateSection
ABBOBBEAB7BEAT7ED ZuCreateSection proc near

000000007 8BEA17BO 4C BB D1 mou r108, rcx ; NtCreateSection
AOBO0OAB7BEA17E3 BS 47 B0 80 B8 mou eax, 47h

AOBOBBABTBEATFBE BF 85 syscall

G0BoOOOAO7BEAT7EA C3 retn

000000 0A78EAT7BA ZuCreateSection endp

ABBOBBAB7BEAT7EA

Figure 3: The syscall instruction

¢ Kernel mode: This manages all the resources, including the memory;, files, Ul,
sound, graphics, and more. It also schedules threads, processes, and manages the
UI of all applications. The kernel mode communicates with device drivers that
directly send commands or receive inputs from the hardware. The kernel mode
manages all of these requests and any operations that should be done before and
after.

So, this is a brief explanation of how the Windows OS works. Now, it is time to explore the
life cycle of a request from the user mode to the kernel mode so that we can gain an
understanding of how this all works together. Additionally, we will also explore how
rootkits are able to interfere with the system to perform malicious activities.
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The execution path from user mode to kernel
mode

Let's take a look at the life cycle of one API that requires kernel mode (in this example, it
will be FindFirstFiled). We will dissect each step so that we can understand the role that
each part of the system plays in handling process requests:

ZwQueryDirectoryFile
executes SYSCALL/SYSENTER FindFirstFile calls
instruction passing the
corresponding function

FindFirstFile call

ZwQueryDirectoryFile

number N
User Mode
Kernel Mode
y
Instruction executes a Driver(s) can process the
fast call in kernel mode transferring NtQueryDirectoryFile request chan |F:1 the input
control to a function with sends an IRP request to the or/an(Zi the out gt agnd ret F:n'n
the number N in SSDT corresponding driver(s) o IT: i &
N ; ) e result to the use
(in this case, NtQueryDirectoryFile) )

Figure 4: The API call life cycle

Let's break down the preceding diagram, as follows:

1. First, the process calls the FindFirstFileA API, which is implemented in
the kernel32.d11 library.

2. Then, Kernel32.d11 (like all subsystem DLLs) calls the ntd11.d11 library. In
this example, it calls an API called zZwQueryDirectoryFile (or
ZwQueryDirectoryFileEx).

3. All of the zw* APIs execute syscall, as you saw in Figure 3.
ZwQueryDirectoryFile executes syscall by providing the command ID in
eax (here, the command ID is changing from one Windows version to another).

4. Now, the application moves to the kernel mode and execution is redirected to a
kernel-mode function called KiSystemService, which is also called the system
service dispatcher.
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5. KisystemsService searches for the function that represents the command ID
that was in eax (in this case, it is 0x91) in the System Service Dispatch Table
(SSDT). This table is sorted by the command ID, and the function it finds is
NtQueryDirectoryFile. It calls this function and passes all the arguments that
were pushed to the user-mode stack of the process called FindFirstFileA:

User mode

Kernel mode

l

System service call

SYSTEM SERVICE DISPATCHER

SYSTEM SERVICE

DISPATCH TABLE i : . | SSDT

A 4
System service 3

Figure 5: SSDT explained

6. Next, NtQueryDirectoryFile is executed and this function sends a request
called I/0 Request Packet (IRP) to either fastfat.sys or ntfs.sys (this
depends on the filesystem that is installed).

7. This request passes through multiple device drivers attached to the filesystem
driver. These device drivers are able to modify the inputs in any request and the
outputs (or responses) from the filesystem.

8. Finally, these attached device drivers are executed and the filesystem driver
processes the request. The IRP request makes its way back to
NtQueryDirectoryFile and KiSystemService with an instruction called
sysexit. It returns to the user-mode process with the results.
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This may sound relatively complex but, for now, this is all you need to know about how
kernel-mode rootkits work and, more importantly, what weaknesses in this process the
rootkits can use to achieve their goals.

Rootkits and device drivers

Now that you understand Windows internals and how user mode and kernel mode
interactions work, let's dig into rootkits. In this section, we will understand what these
rootkits are and how they are designed. After we have grasped the basic concepts of
rootkits, we will discuss device drivers.

What is a rootkit?

Rootkits are essentially low-level tools that provide stealth capabilities to malicious
modules. This way, their main purpose is generally to complicate the malware detection
and remediation procedures on the target machine by hiding the presence of related
artefacts. There are multiple ways it can be done, let's discuss them in greater detail.

Types of rootkits

There are various types of rootkits in user mode, kernel mode, and even boot mode:

e Application rootkits: These replace the normal, legitimate application files or
their shortcuts with a rootkit that ensures the malware is loaded and hidden
from the user.

e Library rootkits: We covered library rootkits in chapter 4, Inspecting Process
Injection and API Hooking; they are user-mode rootkits that inject themselves into
other processes and hook their APIs to hide the malware files, registers, and
other Indicators of Compromise (IoCs) from these processes. They can be used
to hook AV programs, task managers, and more.
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¢ Kernel-mode rootkits: We will be primarily covering these rootkits in this
chapter. These rootkits are device drivers that hook different functions in kernel
mode to hide the malware's presence and give the malware the power of kernel
mode. They can also inject code and data into other processes, terminate AV
processes, intercept network traffic, or perform man-in-the-middle attacks.

» Bootkits: Bootkits are a type of rootkit that modify the boot sector. They are used
to load malicious files before the OS even boots. This allows the malware to take
full control prior to the OS and its security mechanisms launching.

¢ Firmware rootkits: This group of threats targets firmware (such as UEFI or BIOS)
in order to achieve the earliest execution possible.

In this chapter, we will focus on kernel-mode rootkits and how they can hook multiple
functions or modify kernel objects to hide malware. Before we get into their hooking
mechanisms, let's first understand what device drivers are.

What is a device driver?

Device drivers are kernel-mode tools that are created to interact with hardware. Each
hardware manufacturer creates a device driver to communicate with their own hardware
and translate the IRPs into requests that the hardware device understands.

One of the main purposes of any OS is to standardize the channel of communication with
any type of device, regardless of the vendor. For example, if you have replaced your wired
mouse with a wireless one from a different vendor, it should not affect the applications that
interact with the mouse in general. Additionally, if you are a developer, you should not
worry about what type of keyboard or printer the user has.

Device drivers make it possible to understand the I/O request and return the output in a
standardized format, regardless of how the device works.

There are other device drivers as well that are not related to actual devices, such as
antivirus modules or, in our case, rootkits. Kernel-mode rootkits are device drivers that use
the capabilities that the kernel mode provides to support the actual malware in terms of
stealth and persistence.

Now let's take a look at how rootkits achieve their goals and what weaknesses in
the execution path from user mode to kernel mode they take advantage of.
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Hooking mechanisms

In this section, we will explore different types of hooking mechanisms. In the following
diagram, we can see various types of hooking techniques that rootkits use at different
stages of the request process flow:

User Input
7 1. User-Mode Hooking
CALL FindNextFile User programme.exe 2. SYSENTER Hooks
- 3. SSDT Hooks
FindNextFile 4. Code Patching
CALL NQueryDirectory File Kernel32.dll 5. Layered Devices In Chain
-
NQueryDirectory File:
MOV/EAX, XX Ntll.dll
SYSENTER
— User Mode
4 Kernel Mode

IA32_SYSENTER_EP IZ‘ IE‘

System Service XX
Dispatcher —

(KiSystemService)
Filesystem Driver Stack
- /0 Manager System Service
5 NTFS driver ol Dispatch Table
AV filter driver (SSDT)

< » NtQueryDirectory File [¢—

4]

User-Mode Hooking

Figure 6: The hooking mechanisms of rootkits
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Rootkits can install hooks at different stages of this process flow:

¢ User-mode hooking/API hooking: These are the user-mode API hooking
mechanisms that are used for hiding malware processes, files, registries, and
more. We covered this in chapter 4, Inspecting Process Injection and API Hooking.

e SYSENTER hooking: This is the first option that's available for the kernel-mode
rootkits to hook. In this case, they change the address that sysenter will transfer
the execution to, and intercept all requests from the user mode to the kernel
mode.

¢ SSDT hooking: This technique works more closely with the functions that the
rootkit wants to hook. This type of hooking modifies the SSDT to redirect
requests to a malicious function instead of the actual function that handles the
request (it is similar to IAT hooking).

¢ Code patching: Rather than modifying the SSDT, this rootkit patches the
function that handles the request to call the malicious function at the start (it is
similar to API hooking).

e Layered drivers/IRP hooking: This is the legitimate technique for hooking and
intercepting requests and modifying inputs and outputs. This technique is harder
to implement, but it's also harder to detect as it's legitimate. This is because it is
supported by Microsoft, is more universal, and is well-documented.

We will also be exploring other techniques used by rootkits, such as DKOM for objects such
as EPROCESS and ETHREAD, which we talked about in chapter 2, Basic Static and Dynamic
Analysis for x86/x64; and Interrupt Descriptor Table (IDT) hooking, which targets
exception handling mechanisms in Windows. Notably, IDT was used for passing data to
the kernel mode in Windows 2000 and earlier before sysenter became the preferred
method of doing this.

Now, let's go through these techniques in greater detail.

SSDT hooking

This is one of the most common and easiest techniques that is used by rootkits to install
hooks in kernel mode. In this section, we will take a look at different methods of SSDT
hooking, including hooking the sysenter entry function, modifying the SSDT itself, and
hooking the SSDT functions.
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Hooking the SYSENTER entry function

When a user-mode application executes sysenter (int 0x2e in Windows 2000 and earlier
versions), the processor switches the execution to kernel mode and, in particular, to a
specific address stored in the Model Specific Register (MSR). MSRs are the control
registers that are used for debugging, monitoring, toggling, or disabling various CPU
features.

There are three important registers for the user-mode-to-kernel-mode switching process
using sysenter:

e MSR 0x174 (1A32_sYSENTER_CS): This stores the CS segment register value,
which is available after using sysenter; here, the SS segment register will be a
CS value of +8.

e MSR 0x175 (IA32_SYSENTER_ESP): This stores the value of the kernel-mode
stack pointer once sysenter is executed; it is where the arguments will be
copied to.

e MSR 0x176 (1232_sYSENTER_EIP): This is the new EIP value after
executing sysenter. It points to the KiSystemService function on x86 or
the KiSystemCallé64 function on x86-64.

These registers can be read and modified using rdmsr and wrmsr assembly instructions.
The rdmsr instruction takes the register ID in the ecx/rcx register and returns the result in
edx:eax (rdx:rax registers in x64 while the higher 32 bits in both registers are not used);
an example of this is as follows:

mov ecx, 0x176 ;IA32_SYSENTER_EIP
rdmsr ;jread msr register
mov <eip_low>, eax

mov <eip_high>, edx

wrmsr is very similar to rdmsr. wrmsr takes the register ID in ecx and the value to write in
the edx: eax pair. The hooking code is as follows:

mov ecx, 0x176 ;IA32_SYSENTER_EIP

xor edx, edx

mov eax, <malicious_hooking_function>

Wrmsr ;write this value in sysenter EIP

This technique has multiple drawbacks, as follows:

¢ For environments that have multiple processors, only one processor is being
hooked. This means that the attacker has to create multiple threads, hoping that
they will run on all processors so that it becomes possible to hook all of them.
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¢ The attacker needs to get the arguments from the user-mode stack and parse
them.

e In this way, all functions are being hooked, so it is necessary to implement some
filtration in order to check only the functions that are supposed to be hooked.

This is the first place that malware can hook into the kernel mode. Let's take a look at the
second place, which is modifying the SSDT.

Modifying SSDT in an x86 environment

In 32-bit systems, the SSDT address is exported by ntoskrnl.exe under the name of
KeServiceDescriptorTable. There are slots for four different SSDT entries, but
Windows has only used two of them so far: KeServiceDescriptorTable and
KeServiceDescriptorTableShadow.

When a user-mode application uses sysenter, as you saw in Figure 3, the application
provides the function number or ID in the eax register. This value in eax is divided in the
following way:

Figure 7: The sysenter eax argument value

These values are as follows:

e bits 0-11: This is the System Service Number (SSN), which is the index of this
function in the SSDT

e bits 12-13:Thisis the Service Descriptor Table (SDT), which represents the
SSDT number (here, KeServiceDescriptorTable is 0x00,
and KeServiceDescriptorTableShadow is 0x01)

e bits 14-31:This value is not used and is filled with zeros

As there are only two tables, the value of SDT is always either 00 or 01.

The KeServiceDescriptorTable SSDT is the only one that is accessible. Additionally, it's
the one that most malware uses to monitor process creation, scanning calls, filesystem calls,
and registries. In comparison, the KeServiceDescriptorTableShadow SSDT is mainly
used for the Graphics Device Interface (GDI), which is generally not relevant for malware.
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The SSDT contains four elements:

e KiServiceTable: This is the array of function addresses to represent each ID
that is passed to eax before sysenter.

e CounterBaseTable: This is not used.
e nSystemCalls: This is the number of items or functions in KiServiceTable.

e KiArgumentTable: This is an array that is sorted in the same way as
KiServiceTable. Here, each item includes the number of bytes that should be
allocated for each function's arguments.

For malware to hook this table, it needs to get the ServiceDescriptorTable that's
exported by ntoskrnl.exe, and then move to KiServiceTable and modify the function
that it wants to hook. To be able to modify this table, it needs to disable the write protection
(as this is a read-only table). There are multiple ways to do this, and the most common way
is by modifying the CRO register value and setting the write-protection bit to zero:

PUSH EBX

MOV EBX, CRO

OR EBX, 0x00010000
MOV CRO, EBX

POP EBX

The full hooking mechanism looks as follows:

{

}i

Y:

{

}

{

typedef struct SystemServiceTable

typedef struct ServiceDescriptorTable
{

extern "C" ServiceDescriptorTable* KeServiceDescriptorTable;

VOID SSDTDevice::Initialize(Driver* driver)

NTSTATUS SSDTDevice::AttachTo(WCHAR* FunctionName,DWORD newFunction)

DWORD *KiServiceTable;
DWORD *CounterBaseTable;
DWORD nSystemCalls;
DWORD *KiArgumentTable;

SystemServiceTable ServiceDescriptor[41;

pDriver = driver;
this->Type = _SSDTDEVICE:

this->FuncIndex = GetSSDTIndex (FunctionName);

if (this->FuncIndex == ()return STATUS_ERROR;

this->realdddr = KeServiceDescriptorTable->ServiceDescriptor[(].KiServiceTable [this->FuncIndex];
DisableliriteProtection();

InterlockedExchange ( (PLONG) &KeServiceDescriptorTable=>ServiceDescriptor[0].KiServiceTable [this=>FuncIndex] ,newFunction) ;
EnableWriteProtection();

Attached = true;
return STATUS SUCCESS;

Figure 8: The SSDT hooking code from the winSRDF project
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As you can see in the preceding code, the application was able to get the address of the
ServiceDescriptorTable, which was exported with the
KeServiceDescriptorTable name from ntoskrnl.exe; it then got the
KiServiceTable array; disabled the write protection; and, finally, used
InterlockedExchange to modify the table while no other thread was using it
(InterlockedExhange protects the application from writing at the same time another
thread is reading).

Modifying SSDT in an x64 environment

In the x64 environment, Windows implemented more protection for patching SSDT.
Initially, SSDT hooking was used by malware and anti-malware alike. It was also used by
sandboxes and other behavioral antivirus tools. However, in version x64, Microsoft decided
to stop this completely and began offering legitimate applications rather than SSDT
hooking.

Microsoft implemented multiple protections to stop SSDT hooking, such as PatchGuard
(which we will talk about later in this chapter). Additionally, it stopped exporting
KeServiceDescriptorTable via ntoskrnl.exe.

Since KeServiceDescriptorTable is not exported, malware families started to search for
functions that used this table in order to gain access to the addresses. One of the functions
they used was KiSystemServiceRepeat.

This function contains the following code:

lea rl1l0, <KeServiceDescriptorTable>
lea rll, <KeServiceDescriptorTableShadow>
test DWORD PTR [rbx + 100h] , 80h
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As you can see, this function uses the addresses of both SSDT entries. However, finding this
function and the code inside it isn't easy. The function is close to KiSystemCall64 (the
sysenter entry function in the x64 environment). Malware can get the address

of KiSystemCallé64 using the IA32_SYSENTER_EIP MSR register. By doing so, it can start
searching from it for around 0 x 500 bytes or more until it finds the preceding code. In
general, malware searches for particular opcodes in order to find this function, as you can
see in the following screenshot:

LIITERIEIDEF R FER AR E AT T AT TR I LI TR AL F I A F TR D R I T I A B i i ity

/7 Description :

£ Retrieve KeServiceDescriptorTable address

I Parameters :

I None

I Return value :

/7 ULONGLONG : The service descriptor table address

I Process :

/7 Since KeServiceDescriptorTable isn't an exported symbol anymore, we have to retrieve it.

£ When looking at the disassembly version of nt!KiSystemServiceRepeat, we can see interesting instructions :

e 4c8d15c720230@ lea rl@, [nt!KeServiceDescriptorTable (addr)] => it's the address we are looking for (:
£ 4c8d1dee212388 lea rll, [nt!KeServiceDescriptorTableShadow (addr)]

e 7830001000080 test dword ptr[rbx+16eh], 8eh

I

i Furthermore, the LSTAR MSR value (at @xC@@0@8882) is initiaslized with nt!KiSystemCallé4, which is a function
/7 close to nt!KisystemServiceRepeat. We will begin to search from this address, the opcodes @x83f7, the ones

£ after the two lea instructions, once we get here, we can finally retrieve the KeServiceDescriptorTable address

LIITERIEIDEF R FER AR E AT T AT TR I LI TR AL F I A F TR D R I T I A B i i ity
ULONGLONG GetkKeServiceDescriptorTablesd()

{
PUCHAR pstartsearchAddress = (PUCHAR)_ readmsr(0xC02e0e82);
PUCHAR pEndSearchAddress = (PUCHAR)( ((ULONG_PTR)pStartSearchAddress + PAGE_SIZE) & (~@x@FFF) };
PULONG pFindCodeAddress = NULL;
ULONG_PTR  pKeServiceDescriptorTable;
while ( ++pStartSearchAddress < pEndSearchaddress )
{
if ( (*(PULONG)pstartsearchAddress & exFFFFFFB@) == @x83f7ee00 )
1
pFindCodeAddress = (PULONG)(pStartSearchAddress - 12);
return (ULONG_PTR)pFindCodeAddress + (((*(PULONG)pFindCodeAddress)>»>24)+7) + (ULONG_PTR)(((*(PULONG)(pFindCodeAddress+1))
}
¥
return @;
i

Figure 9: SSDT hooking in the x64 environment by the zerOmOn project

This mechanism is not completely reliable, and it could be easily broken in a later Windows
version; however, it's one of the known mechanisms to find an SSDT address in x64.
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Hooking SSDT functions

The final technique worth mentioning in SSDT hooking is hooking the functions that are
referenced in the SSDT. This is very similar to API hooking. In this case, malware gets the
function from the SSDT using the function ID and patches the first few bytes with jmp
<malicious_func>. It then returns the execution back to the original function after
checking the process that called this function and its parameters.

This technique is used because SSDT hooks can be easily detected by antivirus or rootkit
scanning programs. It's easy to loop through all the functions inside the SSDT and search
for a function that is outside the legitimate driver's or application's memory image.

That's all for SSDT hooking; now, let's take a look at layered drivers or IRP hooking.

IRP hooking

IRPs are the main objects that represent the input (a request) and the output (a response)
from a device. Each request packet is simplified by a chain of drivers until the message is
understandable so that the user-mode application can be sent to it.

For example, consider that you want to play a music file (such as an MP3 file). Once the file
has been opened by an application that understands MP3 format, it is converted into
something that can be understood by a kernel-mode driver. Then, this driver simplifies it
for the next driver and so on, until it reaches the actual speaker as an encoded group of
waves. Another example is an electric signal from a keyboard, which is simplified to be a
click on a button using an ID (for example, the r button). Then, it is passed to a keyboard
driver, which understands that this is the letter r and passes it to the next one. This
continues until it reaches, say, a text editor, such as Notepad, to write the letter r.

So, how does all of this relate to rootkits? Well, a rootkit that's present in this chain of
drivers that processes IRP request packets can change the input, the output, or ignore the
request altogether (for example, when the malicious file is being accessed by a researcher or
some antivirus product) and send back an access denied response. This is the only
legitimate way that Windows supports you being able to hook any request from user mode
and modify its input and output.
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Devices and major functions

For any driver to be able to receive and handle IRP requests, it is necessary to create a
device object. This device can be attached to a chain of device drivers that processes a
specific type of IRP request. For example, if the attacker wants to hook filesystem requests,
they need to create a device and attach it to the chain of filesystem devices. After this, it
becomes possible to start receiving IRP requests associated with this filesystem (such as
opening a file or querying a directory).

Creating a device object is simple: the driver can simply call the ToCreateDevice APl and
provide the flags corresponding to the device it wants to attach to. For malware analysis,
these flags could help you understand the goal of this device, such as

the FILE_DEVICE_DISK_FILE_SYSTEM flag.

The driver also needs to set up all the functions that will receive and handle these requests.
Each IRP request has major function code in IRP_MJ_xxXX format. This code helps to
understand what this IRP request is about, such as IRP_MJ_CREATE (this could be used for
creating a file or opening a file) or IRP_MJ_DIRECTORY_CONTROL (this could be used for
querying a directory). Here is an example of the code implementing this setup:

for(i = @; i <= IRP_MI_MAXIMUM_FUNCTION; i++ )

{

DriverObject-»*MajorFunction[i] = IRPDispatchRoutine;

¥

DriverObject->MajorFunction[IRP_MJ_FILE SYSTEM_CONTROL] = OnFileSystemControl;

DriverObject-»MajorFunction[IRP_M]_DIRECTORY_CONTROL] = OnDirectoryControl;

Figure 10: Setting up the major functions

In each of these functions, the driver can get the parameters of this request from what is
known as the IRP stack. The IRP stack contains all the necessary information related to this
request, and the driver can add, modify, or remove from them along the way. To get the
pointer to this stack, the driver calls the ToGetCurrentIrpStackLocation APl and
provides the address of the IRP of interest. An example of a major function that filters files
with the "_root_" name could be as follows:
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NTSTATUS HookedMjCreate (IN PDEVICE_OBJECT DeviceCbject, IN PIRF Irp)

{
PTO_ STACEK LOCATION irpstack;
ULONG ioTransferTypes;
// Get a pointer to the current location in the IRP. This is where

// the function codes and paramsters are located.

irpStack = IoGetCurrentIrpStackLocation(Irp);
switch (irpStack->MajorFunction)
{

case IRF_MJ CREATE:

// Filter only files containing _root_
if (irpsStack->»FileCbkbject !'= NULL && irpStack->FileCbject->FileNames.Length > && wosstr (irpStack—>
FileCbject—>FileName.Buffer, 1" root ") != NULL)
{
DbgPrint (" [HOOE] File: %ws\n", irpStack->FileCbject->FileName.Buffer);

Figure 11: A major function creates a filter to process files with the "_root_" name

After the rootkit has created its device(s) and set up its major functions, it can now hook the
corresponding requests by attaching itself to the device that receives the requests of the
rootkit's interest.

Attaching to a device

For the rootkit to attach to a named device (for example, \\FileSystem\\fastfat, to
receive filesystem requests), it needs to get the device object for that named device. There
are multiple ways to do this, and one of them is to use the

undocumented ObReferenceObjectByName APIL Once the device object is found, the
rootkit can use the ToAttachDeviceToDeviceStack API to attach to its chain of drivers
and receive the IRP requests that are sent to it. The code for this could be as follows:

RtlInitUnicodeString (&DestinationString, L"\\Filesystem\\FastFat");

Status = (*ObReferenceObjectByName) (&DestinationString,0x40,0,0,*IoDriverObjectType,0, 0, (PVOID)&FileSystemOb]) ;
if (Status !=STATUS_SUCCESS)

{

return;
b
TargetDevice = ((ReferencedCbject*)FileSystemOb]j)->DeviceCbject;
if (ToAttachDeviceToDeviceStack (SourceDevice,TargetDevice) == S3TATUS SUCCESS)

{
return TRUE;

}i

Figure 12: Attaching to the FastFat filesystem
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After executing the IToAttachDeviceToDeviceStack API, the driver will be added to the
top of the chain, which means that the rootkit driver will be the first driver to receive the
IRP requests. Then, it can pass requests along to the next driver using the ToCallDriver
API. Additionally, the rootkit would be the last driver to modify the response of the IRP
request after setting a completion routine.

Modifying the IRP response and setting a completion
routine

A completion routine specifies that more processing is required for the output of that
request. For a rootkit, completion routines allow you to modify the output of the request;
for example, deleting a filename from a list of files in a specific directory. Setting up a
completion routine requires you to first copy the request parameters to the lower driver in
the chain. To copy these parameters to the next driver's stack, the rootkit can use

the IoCopyCurrentIrpStackLocationToNext APIL

Once all the parameters are copied for the next driver, malware can set the completion
routine using IoSetCompletionRoutine, and then pass this request to the next driver
using IoCallDriver. An example from MSDN is as follows:

IoCopyCurrentIrpStackLocationToNext ( Irp );
IoSetCompletionRoutine( Irp, // Irp
MyLegacyFilterPassThroughCompletion, // CompletionRoutine
NULL, // Context
TRUE, // InvokeOnSuccess
TRUE, // InvokeOnError
TRUE); // InvokeOnCancel
return IoCallDriver ( NextLowerDriverDeviceObject, Irp );

Once the last driver in the chain executes the ToCompleteRequest API, the completion
routines will be executed one by one, starting from the lowest driver's completion routine
to the highest. If the rootkit is the last driver attached to this device, it will have its
completion routine executed last.

DKOM

DKOM is one of the most common techniques used by rootkits for hiding malicious user-
mode processes. This technique relies on how the OS represents processes and threads. In
order to understand this technique, you need to learn more about the objects that are being
manipulated by the rootkit: EPROCESS and ETHREAD.
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The kernel objects—EPROCESS and ETHREAD

Windows creates an object called EPROCESS for each process that's created in the system.
This object includes all the important information about this process, such as Virtual
Address Descriptors (VADs), which stores the map of this process's virtual memory and
its representation in physical memory. It also includes the process ID, the parent process
ID, and a doubly-linked list called Act iveProcessLinks, which connects all EPROCESS
objects of all processes together. Each EPROCESS includes an address to the next EPROCESS
object (which represents the next process) called FLink and the address to the previous
EPROCESS object (which is associated with the previous process) called BLink. Both
addresses are stored in ActiveProcessLinks:

+IlD0 Pch : _KPROCESS

+InlSc Processlock : _BEX_PUSH_LOCK
+oeDTD CrasteTime . _LARGE_INTEGER
+Ie0TE ExitTime : _LARGE_INTEGER
+Iel8D RundownProtect | _EX_RUMDOWMN_REF

+0ne84 UniqueProcessid : Ptr32 Void

+0no0EE ActiveProcesslinks : _LIST_ENTRY
+Ipe050 Quotallsage : [3] Uint4B8

+Inele QuotaPeak : [3] Uint4B

+lpe0al CommitCharge  : Uint4B

+lelac PeakVirtuslSze : Uint4B

+Ioedbd VirtuslSize : Uint4B

+Inlbd4 SessionProcesslinks : _LIST_ENTRY
+Inlbe DebugPort : Pr32 Vioid

+Inolcd ExceptionPort  : Ptr32 Void

+loeod ObjectTable : Ptr32 _HANDLE_TABLE
+oelcB Token . _E¥_FAST REF
+Inoloe WorkingSetlock | _FAST_MUTEX
+Imlec WorkingSetPage : Uint4B

+IneDf0 AddressCreationLock : _FAST_MUTEX
+I 110 HyperSpacelock : Uint4B

+I114 ForklnProgress  : Purd2 _ETHREAD
+0 118 HardwareTrigger : Lint4B

+I11c VadRoot : Ptr32 Void
+Ie 120 VadHint : Ptr32 Void
+In 124 CloneRoot : Ptr32 Void

+I 128 NumberDfPrivatePages | Uint4B

Figure 13: The EPROCESS structure
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The exact structure of EPROCESS changes from one version of OS to another. That is, some
fields get added, some get removed, and, sometimes, rearrangements happen. Rootkits
have to keep up with these changes if they want to manipulate these structures.

Before we dive into the object manipulation strategies, there's another object that you need
to know about: ETHREAD. ETHREAD, and its core, KTHREAD, includes all the information
related to a specific thread, including its context, status, and an address of the
corresponding process object (EPROCESS):

+raD0D Tch : _KTHREAD

+loe1cd CreateTime : _LARGE_INTEGER
+Ioe1cd NestedFaultCount : Pos 0, 2 Bits
+le1cd Apchesded 1 Pos 2, 1 Bit
+lre1c8 ExitTime : _LARGE_INTEGER

+IxicE LpcRephyChain  : _LIST_ENTRY

+Ie1cE KeyedWaitChain  : _LIST ENTRY

+loe1dD ExitStatus : Int4B

+0ee1d0 Of=Chain : Ptr3Z Void

+l¢1d4 PostBlockList  : _LIST_ENTRY

+lxidc TerminationPort : PtriZ _TERMINATION_PORT
+Im1de Feaperlink : P32 _ETHREAD

+lmido KeyedWaitValue : Purd2 Void

+e1ed ActiveTimerListLock : Uint4B

+lmied ActiveTimerListHead : _LIST_ENTRY
+lciec Cid : _GLIENT_ID

+0x1f4 LpcRephySemaphore | _KSEMAFPHORE
+lue1f4 HeyedWaitSemaphore : _KSEMAPHORE
+0¢Z08 LpcRephyMessage : Pr32 Vo

+IeZD8 LpcWaitingOnPort : Ptr32 Void

+I20c Impersonationinfo ; Ptrd2 _P5_IMPERSOMNATION_INFORMATION
+0p¢210 IrpList 1 _LIST_ENTRY

+0oeZ18 Toplevellrp : Lint4B

+Z1c DeviceToVernify : Pd2 _DEVICE_OBJECT
+IZ 3D ThreadsProcess P32 _EPROCESS
+leZ24 StartAddress 0 PrdZ Void

+IoeZZE Win3Z5tartAddress ;| Fr32 Void

Figure 14: The KTHREAD structure (which is the core of ETHREAD)
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When Windows switches between threads, it follows the links between them in

the ETHREAD structure (that is, the linked list that connects all ETHREAD objects). From this
object, it loads the thread's process (following its EPROCESS address) and then loads the
thread context in order to execute it. This process of loading each thread is not directly
connected to the linked list that connects all processes together (particularly,

their EPROCESS representations), and this is what makes the DKOM so effective.

How do rootkits perform an object manipulation
attack?

For a rootkit to hide a process, it is enough to modify the Act iveProcessLink in the
previous and the following EPROCESS objects to skip the EPROCESS of the process it wants
to hide. The steps are simple and are given as follows:

1. Get the current process's EPROCESS using
the PsLookupProcessByProcessId APL

2. Follow the ActiveProcessLinks to find the EPROCESS of the process that you
want to hide.

3. Change the FLink of the previous EPROCESS so that it doesn't point to this
EPROCESS but to the next one instead.

4. Change the BLink of the next process so that it doesn't point to this
EPROCESS but to the previous one instead.

The challenging part in this process is to reliably find the ActiveProcessLinks with all
the changes that Windows introduces from one version to another. There are multiple
techniques in dealing with the offset of ActiveProcessLinks (and the process ID as well),
which are as follows:

1. Get the OS version and, based on this version, choose the right offset from the
precalculated offsets for each version of the OS.

2. Search for the process ID (you can get it from PsGetCurrentProcessId) and
find the ActiveProcessLinks offset from the process ID.
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Here is an example of the second technique:

/)Ot

Go through the EPROCESS structure and lock for the PID
we can start at Ox20 because UniqueProcessId should
not be in the first @x2@ bytes,

also we should stop after 8x3B@ bytes with no success

=/

for (int i = @x20@; i<Bx300; i += 4)

{
if ((*(ULONG *)((UCHAR *)eprocs[@] + i) == pids[@])
&% (*(ULONG *)((UCHAR *)eprocs[1l] + i) == pids[1])
&& (*(ULONG *)((UCHAR *)eprocs[2] + i) == pids[2]))
{
pid_ofs = i;
break;
¥
3

Figure 15: Finding the process ID from the EPROCESS object

Once the rootkit is able to find the process ID (pids) inside the EPROCESS object (epocs), it
can use the offset between Act iveProcessLinks and the process ID (this is usually
precalculated and is the next field in the structure). The last step is to remove the links
between the processes, as demonstrated in the following screenshot:
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void remove_links({PLIST_ENTRY Current) {

PLIST_ENTRY Previous, Next;

Previous = (Current-»>Blink);

Next = (Current-»>Flink);

// Loop over self (connect previous with next)
Previous-»>Flink = Mext;

Next->Blink = Previous;
// Re-write the current LIST_ENTRY to point to itself (avoiding BSOD)
Current->Blink = (PLIST_ENTRY)&Current->Flink;

Current->Flink = (PLIST_ENTRY)&Current->Flink;

return;

Figure 16: Removing the process links to perform a DKOM attack

The most popular detection technique for DKOM attacks is to loop through all the running
threads and follow their link to the EPROCESS, before comparing the results with by
following the ActiveProcessLinks. If there's a missing EPROCESS object in the
ActiveProcessLink that appeared as an EPROCESS for an active thread, it implies that a
DKOM attack is performed by a rootkit to hide this process and its EPROCESS object.

Process injection in kernel mode

Process injection in kernel mode is a popular technique used by multiple malware families,
including Stuxnet (with its MRxCls rootkit), to create another way of maintaining
persistence and for disguising malware activities under a legitimate process name. For a
device driver to be able to read and write memory inside a process, it needs to attach itself
to this process's memory space.

Once the driver is attached to this process's memory space, it can see this process's virtual
memory, and it becomes possible to read and write directly to it. For example, if the process
executable's ImageBase is 0x00400000, then the driver can access it normally, as follows:

CMP WORD PTR [00400000h], 'zM'
JNZ <not_mz>
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For a driver to be able to attach to the process memory, it needs to get its EPROCESS using
the PsLookupProcessByProcessId API and then use the

KeStackAttachProcess API to attach to this process's memory space. In disassembly, the
code will be as follows:

.text:08011F 82
.text:08011F 82
.text:08011F a2
.text:08011F 82
.text:08011F 82
.text:08011F a2
text:08011F A3
.text:08011F A5
.text:88811F A6
.text:00011F a9
.text:@a8011FaC
.text:88811F8F
text:08011F12
text:aa011F14
text:08011F15
.text:00011F18
text:88011F1E
text:08011F28
.text:08011F22
text:aa011F24
text:08011F26
.text:00011F28
text:88011F2E
text:08011F38
.text:08011F38
.text:@88011F38
text:08011F38
text:08011F33
.text:88811F33
text:00011F33
text:08011F33
.text:88811F35
.text:00011F36
text:08011F37
text:08011F37
text:08011F37
text:08011F3A

GetProcess proc near : CODE XREF: AttachProcess+11tp
; GetProcessInfo+16Tp
ProcessId = dword ptr 8
push ebp
mou ebp, esp
push esi
lea esi, [ebx+h]
and dword ptr [esi], @
cmp dword ptr [edi], @
mov byte ptr [ebx], B
jnz short loc 11F33
push esi
push [ebp+ProcessId]
call ds:PsLookupProcessByProcessid
test eax, eax
mov [edi], eax
jnz short loc_11F33
cmp [esi], eax
jnz short loc_ 11F3@
mov duword ptr [edi], BCOO0ABBE61h
jmp short loc_11F33
loc_11F38: : CODE XREF: GetProcess+24Tj
mou byte ptr [ebx], 1
loc_11F33: ; CODE XREF: GetProcess+18Tj
: GetProcess+28%j ...
mau eax, ehx
pop esi
pop ebp
retn 4
GetProcess endp

Figure 17: Getting the EPROCESS object using its process ID (from the Stuxnet rootkit, MRxCls)
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Then, for attaching to that process's memory space, the code will be as follows:

.text:-80011D3C AattachProcess
.text:-808811D3C
.text:-80811D3C
.text:-800811D3C Buffer

-text: 00811075
.text:80811D75 loc_11D75:

.text:-a8811D75 mouv
.text:88811D77 pop
.text:-80811D78 retn

.text:-A0811D78 AttachProcess endp

.text:@8811D3C ; int  stdcall aAttachProcess{int Buffer, int ProcessId)
proc near

CODE XREF: AttachProcessFunc+
sub_114ca+2atp

= dword ptr 8

.text:88811D3C Processlid = dword ptr @Ch

.text:a8811D3C

.text:88811D3C push ebp

.text:88811D3D mov ebp, esp

.text:88811D3F push ebx

.text:@8811D4@ push edi

.text:aa811D41 push [ebp+ProcessId] ; ProcessId
.text:00811D44 mov edi, [ebp+Buffer]
.text:88811D47 lea ebx, [esi+h]

.text:88811D4A mov byte ptr [esi], B
.text:88811D4D call GetProcess

.text:Ba6811D52 push G

.text:A06811D54 lea edx, [esi+BCh]
.text:-a0811D57 pop ecy

.text:-a0811D58 ®ov eax, eax

.text:@8811D%A mouy edi, edx

.text:88811D5C rep stosd

.text:88811D5E mov eax, [ebp+Buffer]
.text:88811D61 cmp dword ptr [eax], 8
.text:a0811D64 pop edi

.text:88811D65 pop ebx

.text:88811D66 jnz short loc_11D75
.text:A86811D68 push edx ; Apcstate
.text:88811D69 push dword ptr [esi+8] ; Process
.text-80811D6C call ds:KeStackattachProcess ; KeStackAttachProcess
.text:8a811D72 mov byte ptr [esi], 1

; CODE XREF: HttachPrucess+2HTj
pax, esi
ebp
8

Figure 18: Attaching to the process's memory space
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Once the driver is attached, it can read and write to its memory space and allocate memory
using the ZwAllocateVirtualMemory API, providing the process handle using
the zwOpenProcess API (which is equivalent to OpenProcess in user mode).

For a driver to detach from the process memory, it can execute
the KeUnstackDetachProcess API, as follows:

KeUnstackDetachProcess (APCState) ;

There are other techniques as well, but this technique is the most common way for any
driver to easily access the virtual memory of any process as its own memory. Now, let's
take a look at how it can execute code inside that process.

Executing the inject code using APC queuing

Asynchronous Procedure Call (APC) is a function that gets executed asynchronously in the
context of another thread. When a thread enters an alertable state (that is, when it executes
the SleepEx, SignalObjectAndWait, MsgWaitForMultipleObjectsEx, WaitForMulti
pleObjectsEx, or WaitForSingleObjectEx APIs) and before it gets resumed, all the
queued user-mode APC functions and kernel-mode APC functions is executed in the
context of that thread, allowing the malware to execute user-mode code inside that process
before returning control back to it.

For a malware sample to queue an APC function, it needs to perform the following steps:

1. Get the ETHREAD object of the thread it wants to queue and the APC function by
providing its Thread ID (TID). This can be done by using
the PsLookupThreadByThreadId APL

2. Attach the user-mode function to this thread using the KeInitializeApc APL
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3. Add this function to the queue of the APC functions to be executed in this thread
using the KeInsertQueueApc APL as demonstrated in the following screenshot:

BOOLEAN ProcessDevice::Execute (DWORD Entrypoint, PVOID Context)
{
NTSTATUS ntStatus;

PKAPC pkaApc;
PETHREAD PEThread;
UNICODE_STRING routineName;

if (Tid == NULL || Entrypoint == NULL)return FALSE;
ntStatus = PsLookupThreadByThreadId((HANDLE)Tid,&PEThread);
if(ntStatus != STATUS_SUCCESS)
{

DbgPrint("PsLookupThreadByThreadId failed");

return FALSE;

RtlInitUnicodeString(&routineMame, L"KeInitializedpc™);
KeInitializeApc =(INITIALIZE_APC)MmGetSystemRoutineAddress(&routineName);

RtlInitUnicodeString(&routineMame, L"KeInsertQueueApc”);
KeInsertQueueApc =(INSERTQUEUE_APC)MmGetSystemRoutineAddress(&routineMName);

if (KeInitializeApc == NULL || KeInsertQueuefpc == NULL)
{
DbgPrint("Getting APC Functions Address Failed");
return FALSE;

pkaApc= (PKAPC)malloc(sizeof(KAPC));

if(pkafpc!=a)

1
KeInitializeApc(pkaApc,PEThread,®,ApcKernelRoutine, @, (PKNORMAL_ROUTINE)Entrypoint,UserMode,Context);
KeInsertQueueApc(pkaApc,®,@,I0_NO_INCREMENT);
return TRUE;

return FALSE;

Figure 19: APC queuing to execute a user-mode function (from the winSRDF project)
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In this example, the KeInitializeApc API will execute a kernel-mode function
(ApcKernelRoutine) and a user-mode function (entrypoint) once the thread 