A S000TZE0 I CC

<packd

Machine Learning
Security Principles

Keep data, networks, users, and applications safe
from prying eyes

JOHN PAUL NUELLER

Foreword by Rod Stephens, Author and former Microsoft MVP

Machine Learning
Security Principles

Keep data, networks, users, and applications safe
from prying eyes

John Paul Mueller

BIRMINGHAM—MUMBAI

Machine Learning Security Principles

Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Ali Abidi
Publishing Product Manager: Ali Abidi
Senior Editor: David Sugarman
Technical Editor: Sweety Pagaria

Copy Editor: Safis Editing

Project Coordinator: Farheen Fathima
Proofreader: Safis Editing

Indexer: Manju Arasan

Production Designer: Ponraj Dhandapani

First published: December 2022
Production reference: 2060123

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80461-885-1

www . packt.com

This book is dedicated to Eva Beattie, a friend and faithful beta reader for 25 years. Books are never
the result of one person’s efforts, but of the influence of many people working together to help an author
produce something wonderful.

Foreword

I first e-met John in the 1990s when we both wrote for the now-defunct magazine Visual Basic Developer.
In those days, Sonic the Hedgehog was brand new, CompuServe, AOL, and Prodigy all roamed the
earth, everyone programmed by candlelight on computers powered by hamster wheels, and artificial
intelligence struggled to recognize the digits 0 through 9 and the words “yes” and “no” when spoken
by different people. In the thirtyish years since then, we've all been through Y2K (which wasn’t as bad
as predicted), a global pandemic (which was worse than predicted), and the Cubs winning the World
Series (which no one predicted).

More relevant to this book, AT has become so powerful that it understands speech better than some
humans can, produces voices so realistic that future appearances by Darth Vader will be “voiced”
by an Al and generates deepfake videos so lifelike it’s brought Salvador Dali back to life. Amazon’s
algorithms seem to ship products before I order them and I've seen chatbots more likely to pass the
Turing test than some of my friends.

Al in general and machine learning in particular have become powerful tools for both good and
bad. In this book, John explains some of the ways that machine learning can be used to perpetrate
and prevent security nightmares, and ways that machine learning can accidentally wreak havoc. He
describes data bias (a hiring AI for Amazon penalizing female job applicants as most of their employees
are male), badly selected data (IBM’s Watson learning to swear by reading the Urban Dictionary), and
intentional sabotage (Twitter turning Microsoft’s chatbot Tay into a racist, misogynistic troll in less
than 24 hours). Possibly even more importantly, John covers Al used to commit fraud (one AT faked
a CEOss voice to request a €220,000 funds transfer) and to detect and counter fraud (that’s why my
credit card was declined the last time I had an airline connection in Las Vegas).

John covers all of these topics and more — though not these specific examples; I just think they’re
interesting and/or amusing!

As I mentioned earlier, I've known John for a long time. During those years, I've been the technical
editor on several of his many books (and he’s tech edited a few of mine), and one thing I've learned is
that John knows what he’s talking about. He’s been working in Al for years and doesn’t say something
unless hes researched it, tried it out, included example programs demonstrating key techniques, and
mentioned links to back up what he says and for you to follow for more information.

Hackers using Al is a relatively new concept, and so far, their success has been somewhat limited,
but you can bet that their success will increase over time. One thing that Al in general and machine
learning specifically are good at is learning over time. As more Als bring bad data to the marketplace
and hackers fine-tune their attacks, the consequences will become unavoidable and you need to be
prepared. In the arms race between Al-empowered hackers and Al-enabled cybersecurity professionals,
you can’t afford to be uninformed.

Rod Stephens

—Author and former Microsoft MVP

Contributors

About the author

John Paul Mueller is a seasoned author and technical editor. He has writing in his blood, having
produced 123 books and more than 600 articles to date. Topics he has written about range from
networking to artificial intelligence and from database management to heads-down programming.
Some of his recent books include discussions of data science, machine learning, and algorithms, along
with Android programming and functional programming techniques. He also writes about computer
languages such as C++, C#, Python, and Kotlin. His technical editing skills have helped more than
70 authors refine the content of their manuscripts. John has provided technical editing services to a
variety of magazines and performed various kinds of consulting, and he writes certification exams.

Acknowledgments

Thanks to my wife, Rebecca. Even though she is gone now, her spirit is in every book I write and in
every word that appears on the page. She believed in me when no one else would.

Matt Wagner, my agent, deserves credit for helping me get the contract in the first place and taking
care of all the details that most authors don’t really consider. I always appreciate his assistance. It’s
good to know that someone wants to help.

A number of people read all or part of this book to help me refine the approach, test the coding
examples, and generally provide input that all readers wish they could have. These unpaid volunteers
helped in ways too numerous to mention here. I especially appreciate the efforts of Eva Beattie, who
provided general input, read the entire book, and selflessly devoted herself to this project. Claudia
Smith provided me with some significant insights into the accessibility and behavioral aspects of the
book. Luca Massaron helped me with the design and orientation of some of the coding examples.
Quite a few people also provided me with resource materials, and this particular book required a lot
more research than many of my other books.

I especially appreciated Rod Stephens’s help in maintaining a sense of humor. He also wrote a fantastic
foreword, which is much appreciated by me.

The efforts of the technical reviewers are appreciated because they keep mistakes out of the book that
would otherwise require reworking later. It can be quite hard to provide tactful and constructive input
and I received both. You can see their names in the About the reviewers section.

Finally, I would like to thank David Sugarman, Farheen Fathima, Ali Abidi, and the rest of the editorial
and production staff at Packt for their tireless efforts in helping me put this book together.

About the reviewers

Luca Massaron joined Kaggle over 10 years ago and is now a Kaggle Grandmaster in discussions and
a Kaggle Master in competitions and notebooks. In Kaggle competitions, he reached number 7 in
the worldwide rankings. On the professional side, Luca is a data scientist with more than a decade of
experience in transforming data into smarter artifacts, solving real-world problems, and generating
value for businesses and stakeholders. He is a Google Developer Expert (GDE) in machine learning
and the author of best-selling books on AI, machine learning, and algorithms.

Akshay Kumar Prasad is a data scientist who builds machine learning algorithms on big and fast data
platforms in cyber security. He has his PG. diploma degree in data science from the renowned Manipal
University and a BTech in biotechnology from Dr. Rajendra Prasad Central Agricultural University.
Before switching fully to the data science domain, he also worked in the FMCG manufacturing
industry as a quality analyst. He brings immense experience in data engineering, data analysis, and
machine learning roles in manufacturing, as well as the cyber security domain. He also writes about
data science on his blog and contributes to open source projects in his free time.

Deepayan Chanda is a seasoned cybersecurity professional, architect, strategist, and advisor, with a
strong intent to solve cybersecurity problems for enterprises by creating a balance between security
and business goals, driven by 25 years of diverse cybersecurity domain experience. He is an Ex-Armed
Forces Veteran (Indian Air Force), and has experience working with various enterprises like National
Australia Bank, Standard Chartered Bank, Microsoft (Singapore), Cisco Systems, McAfee, and Symantec.
He serves as a Board of Advisor and a mentor to a few cybersecurity start-ups worldwide and had the
privilege of sharing his broad knowledge with the wider security community by authoring two books
on cybersecurity, with multiple publications in the past many years.

Table of Contents

Preface Xvii
Part 1 - Securing a Machine Learning System
Defining Machine Learning Security 3
Building a picture of ML 4 Compromising the integrity and availability

Why is ML important? 4 of ML models 16
Identifying the ML security domain 6 Describing the types of attacks against ML 17
Distinguishing between supervised and Considering what ML security can achieve 18
unsupervised 8 Setting up for the book 19
Using ML from development to production 10 What do you need to know? 20
Adding security to ML 14 Considering the programming setup 21
Defining the human element 15 Summary 23

2

Mitigating Risk at Training by Validating and Maintaining Datasets 25

Technical requirements 26
Defining dataset threats 26
Learning about the kinds of database threats 26
Considering dataset threat sources 27
Delving into data change 31
Delving into data corruption 32
Uncovering feature manipulation 32

Examining source modification

Thwarting privacy attacks

Detecting dataset modification
An example of relying on traditional methods
Working with hashes and larger files

Using a data version control system example

Mitigating dataset corruption

33
33

35

36
39
40

42

Table of Contents

The human factor in missingness 43 Handling missing or corrupted data 47
An example of recreating the dataset 43

P & Summary 49
Using an imputer 46

3

Mitigating Inference Risk by Avoiding Adversarial Machine Learning

Attacks 51
Defining adversarial ML 52 Understanding membership inference attacks 71
Categorizing the attack vectors 52 Understanding Trojan attacks 73
Examining the hacker mindset 53 Understanding backdoor (neural) attacks 74
L L. . Seeing adversarial attacks in action 77
Considering security issues in ML
algorithms 54 Mitigating threats to the algorithm 79
Defining attacker motivations 54 Developing principles that help protect
Employing CAPTCHA bypass techniques 55 against every threat 79
Considering common hacker goals 56 Detecting and mitigating an evasion attack 81
Relying on trial and error 56 Detecting and mitigating a model poisoning
Avoiding helping the hacker 58 attack) 82
Integrating new research quickly 63 Detecting and mitigating a membership
. inference attack 83
Understanding the Black Swan Theory 64 . o)
Detecting and mitigating a Trojan attack 85
Describing the most common attack Detecting and mitigating backdoor (neural)
techniques 65 attacks 86
Evasion attacks 67 Summary 87
Model poisonin 69 .
P & Further reading 88

Part 2 - Creating a Secure System Using ML
4

Considering the Threat Environment 91
Technical requirements 92 Understanding network attacks 98
Defining an environment 92 Eyeingthe small stuff o8
Understanding business threats g3 Dealingwithweb APIs %

Dealing with the hype cycle 100
Protecting consumer sites 94

Understanding malware 97 Considering social threats 100

Table of Contents

Spam 102 Understanding the kinds of application security104
Identity theft 102 Considering the realities of the machine 105
Unwanted tracking 103 Adding human intervention 106
Remote storage data loss or corruption 103 Developing a simple authentication example 106
Account takeover 103 Developing a simple spam filter example 109
Employing ML in security in the Summary 119
real world 104 Further reading 120
Keeping Your Network Clean 123
Technical requirements 124 Adding ML to the mix 137
Defining current network threats 124 Developing an updated security plan 138
Developing a sense of control over chaos 124 Determining which features to track 138
Implementing access control 125 Creating real-time defenses 141
Ensurl'ng a.uthen.tlcatlon 127 Using supervised learning example 142
Detec.tlng mtrflsmns 128 Using a subprocess in Python example 155
Defining loc.allzed attacks 129 Working with Flask example 156
Understanding botnets 129 Asking for human intervention 158
Considering traditional protections 130 .o ping predictive defenses 158
W(.n'kmg with ho.neyp ots. 131 Defining what is available today 159
Usmg. data-centljlc sechrlt?r) 132 Downsides of predicting the future 160
Locating subtle intrusion indicators 133 Creating a realistic network model 161
Using alternative identity strategies 136

Obtaining data for network traffic testing 136 Summary 162
Detecting and Analyzing Anomalies 163
Technical requirements 163 Using and combining anomaly detection and
Defining anomalies 164 signature detection 171
Specifying the causes and effects of anomaly Detecting data anomalies 172
detection 164 Checking data validity 174
Considering anomaly sources 165 Forecasting potential anomalies example 185
Understanding when anomalies occur 170

Xi

xii

Table of Contents

Using anomaly detection effectively

Considering other mitigation

in ML 193 techniques 194

Summary 195

Further reading 196
Dealing with Malware 197
Technical requirements 198 Generating a list of application features 219
Deﬁning malware 198 Selecting the most important features 219
Specifying the malware types 199 Co'nsi.dering speed of dete'ction 226
Understanding the subtleties of malware 204 Building a malware detection toolbox 226
Determining malware goals 207 Classifying malware 227
Generating malware detection Obtaining malware samples and labels 227

features 208
Getting the required disassembler 208
Collecting data about any application 210
Extracting strings from an executable 216
Extracting images from an executable 217

8

Locating Potential Fraud

Development of a simple malware detection

scenario 228
Summary 228
Further reading 229

231

Technical requirements 232

Understanding the types of fraud 232

Defining fraud sources 235
Considering fraudsters 236
Considering hackers 236
Considering other organizations 237
Considering company insiders 237
Considering customers (or fraudsters posing

as customers) 238
Obtaining fraud datasets 241

Considering fraud that occurs in the
background 242

Detecting fraud that occurs when you’re not
looking 242
Building a background fraud detection

application 243

Considering fraud that occurs in real

time 244
Considering the types of real-time fraud 244
Detecting real-time fraud 245

Building a fraud detection example = 247

Getting the data 247
Setting the example up 247
Splitting the data into train and test sets 252

Table of Contents

Building the model 253 Creating a ROC curve and calculating AUC 260
Performing the analysis 254 Summary 263
Checking another model 257 .

Further reading 263
Defending against Hackers 265
Technical requirements 266 System damage 270
Considering hacker targets 266 Monitoring and alerting 271
Hosted systems 266 Considering the importance of lag 271
Networks 267 An example of detecting behavior 272
Mobile devices 267 Building and testing an XGBoost regressor 288
Customers 267 Putting the data in perspective 291
Public venues and social media 267 Ppredicting new behavior based on the past 293
D eﬁning hacker goals 268 Locating other behavioral datasets 297
Data stealing 269 Improving security and reliability 298
Data modification 269 Summary 298
Algorithm modification 270 Further rea ding 299
Part 3 - Protecting against ML-Driven Attacks
Considering the Ramifications of Deepfakes 303
Technical requirements 304 Understanding autoencoders 312
Defining a deepfake 305 Defining the autoencoder 313
Modifying media 305 Working with an autoencoder example 314
Common deepfake types 306 Understanding CNNs and
The history of deepfakes 307 implementing GANs 326
Creating a deepfake computer setup 307 Anoverview of a Pix2Pix GAN 327
Installing TensorFlow on a desktop system 308 Obtaining and viewing the images 328
Checking for a GPU 309 Manipulating the images 329

Developing datasets from the modified images 332

Xiii

Xiv

Table of Contents

Creating the generator 335
Creating the discriminator 341

Performing optimization of both generator
and discriminator 345

11

Leveraging Machine Learning for Hacking

Monitoring the training process 345
Training the model 347
Summary 351
Further reading 351

355

Making attacks automatic and

personalized 355
Gaining unauthorized access bypassing

CAPTCHA 356
Automatically harvesting information 359
Enhancing existing capabilities 361

Rendering malware less effective using GANs 362

Putting artificial intelligence in spear-phishing 365

Generating smart bots for fake news and

reviews 370
Summary 374
Further reading 374

Part 4 - Performing ML Tasks in an Ethical Manner

12

Embracing and Incorporating Ethical Behavior 379
Technical requirements 380 Verifying third-party datasets 393
Sanitizing data correctly 380 Obtaining required third-party permissions 393
Obtaining benefits from data sanitization 381 Understanding ML fairness 394
Considering the current dataset 381 Determining what fairness means 395
Removing PII 383 Understanding Simpson’s paradox 396
Adding traits together to make them less Removing personal bias 396
identifiable 386 Defining algorithmic bias 397
Eliminating unnecessary features 390

s Addressing fairness concerns 397
Defining data source awareness 391 Computing fairness indicators with TensorFlow 398
Validating user permissions 391 Solving fairness problems with TensorFlow-
Using recognizable datasets 392 constrained optimization 399

Table of Contents

Mitigating privacy risks using

Distributing data and privacy risks using

federated learning and differential federated learning 400
privacy 399 Relying on differential privacy 401
Summary 401
Further reading 402
Index 403
Other Books You May Enjoy 422

XV

A4 S000TZENLCT

Preface

Machine learning is the most important new technology today for getting more out of data. It can
reveal patterns that aren’t obvious, for example, but it requires data — lots of it. Data gathering isn’t
just about data. It affects users and requires the use of applications to clean, manipulate, and analyze
the data. Scientists use machine learning to discover new techniques or to create new kinds of data,
such as the generation of various kinds of art based on existing inputs or the advancement of medicine
through better imaging. Businesses use machine learning to perform tasks, such as detecting credit
card fraud, monitoring networks, and implementing factory processes, and to achieve all sorts of
other goals where humans and AI work side-by-side.

Hackers don’t always damage data; sometimes they steal it or use it to perform social attacks on a
business. Sometimes they simply want money or other goods, and machine learning offers an avenue
for acquiring them. A hacker may not steal anything at all - perhaps the target is someone’s reputation.
It may surprise you to learn that hackers often use machine learning applications themselves to
perform a kind of dance with your machine learning-based security to overcome it. However, hackers
have behavioral patterns, and knowing how to detect those patterns is important in the modern
computing environment.

Obtaining data in an ethical manner is important because the very act of behaving ethically reduces
the security risk associated with data. However, hackers don’t necessarily target users and their data.
Perhaps they’re interested in your organization’s trade secrets or committing fraud. They might simply
be interested in lurking in the background and committing mischief. So, just keeping your data secure
as a means of protecting your machine learning investment isn’t enough. You need to do more.

This book helps you get the big picture from a machine learning perspective using all the latest research
available on methods that hackers use to break into your system. It’s about the whole system, not just
your application. You will discover techniques that help you gather data ethically and keep it safe,
while also preventing all sorts of illegal access methods from even occurring. In fact, you will use
machine learning as a tool to keep hackers at bay and discover their true intent for your organization.

Xviii

Preface

Who this book is for

Whether you're a data scientist, researcher, or manager interested in machine learning techniques from
various perspectives, you will need this book because security has already become a major headache
for all three groups. The problem with most resources is that theyre written by Ph.D. candidates in
a language that only they understand. This book presents security in a way that’s easy to understand
and employs a host of diagrams to explain concepts to visual learners. The emphasis is on real-world
examples at both theoretical and hands-on levels. You’ll find links to a wealth of examples of real-
world break-ins and explanations of why and how they occurred and, most importantly, how you
can overcome them.

This book does assume that you’re familiar with machine learning concepts and it helps if you already
know a programming language, with an emphasis on Python knowledge. The hands-on Python
code is mostly meant to provide details for data scientists and researchers who need to see security
concepts in action, rather than at a more theoretical level. A few examples, such as the Pix2Pix GAN in
Chapter 10, require an intermediate level of programming knowledge, but most examples are written
in a manner that everyone can use.

What this book covers

Chapter 1, Defining Machine Learning Security, explains what machine learning is all about, how it’s
affected by security issues, and what impact security can have on the use of your applications from
an overview perspective. This chapter also contains guidelines on how to configure your system for
use with the source code examples.

Chapter 2, Mitigating Risk at Training by Validating and Maintaining Datasets, explores how ensuring
that the data you’re using is actually the data that you think you’re using is essential because your
model can be skewed by various forms of corruption and data manipulation.

Chapter 3, Mitigating Inference Risk by Avoiding Adversarial Machine Learning Attacks, gives an
overview of the various methods to interfere directly with model development through techniques
such as evasion attacks and model poisoning.

Chapter 4, Considering the Threat Environment, considers how hackers target machine learning models
and their goals in doing so from an overview perspective. You will discover some basic coded techniques
for avoiding many machine learning attacks through standard methodologies.

Chapter 5, Keeping Your Network Clean, gives detailed information on how network attacks work
and what you can do to detect them in various ways, including machine learning techniques as your
defense. In addition, you will discover how you can use predictive techniques to determine where a
hacker is likely to strike next.

Chapter 6, Detecting and Analyzing Anomalies, provides the details on determining whether outliers
in your data are anomalies that need mitigation or novelties that require observation as part of a new
trend. You will see how to perform anomaly detection using machine learning techniques.

Preface

Chapter 7, Dealing with Malware, covers the various kind of malware and what to look for in your own
environment. This chapter shows how to take an executable apart so that you can see how it’s put together
and then use what you learn to generate machine learning features for use in detection algorithms.

Chapter 8, Locating Potential Fraud, explores the sources of fraud today (and it’s not just hackers),
what you can do to detect the potential fraud, and how you can ensure that the model you build will
actually detect the fraud with some level of precision. The techniques in this chapter for showing how
to discern model goodness also apply to other kinds of machine learning models.

Chapter 9, Defending Against Hackers, contemplates the psychology of hackers by viewing hacker goals
and motivations. You will obtain an understanding of why simply building the security wall higher
and higher doesn’t work, and what you can do, in addition to building new security protections for
your system.

Chapter 10, Considering the Ramifications of Deepfakes, looks at the good and the bad of deepfake
technology. You will get an overview of the ramifications of deepfake technology for research, business,
and personal use today. This chapter also demonstrates one technique for creating a deepfake model
in detail.

Chapter 11, Leveraging Machine Learning for Hacking, explains how hackers view machine learning
and how they’re apt to build their own models to use against your organization. We will consider the
smart bot threat in detail.

Chapter 12, Embracing and Incorporating Ethical Behavior, explains how behaving ethically not only
ensures that you meet both privacy and security requirements that may be specified by law but also
has an implication with regard to security, in that properly sanitized datasets have natural security
prevention features as well. In addition, you will discover how using properly vetted datasets saves
you time, money, and effort in building models that actually perform better.

To get the most out of this book

This book assumes that you're a manager, researcher, or data scientist with at least a passing understanding
of machine learning and machine learning techniques. It doesn’t assume detailed knowledge. To use
the example code, it also pays to have some knowledge of working with Python because there are no
tutorials provided in the book. All of the coded examples have been tested on both Google Colab and
with Anaconda. The Setting up for the book section of Chapter 1, Defining Machine Learning Security,
provides detailed setup instructions for the book examples.

The advantages of using Google Colab are that you can code anywhere (even your smartphone or
television set, both of which have been tested by other readers) and you don’t have to set anything
up. The disadvantages of using Google Colab are that not all of the book examples will run in this
environment (especially Chapter 7) and your code will tend to run slower (especially Chapter 10).
When working with Google Colab, all you need do is direct your browser to https://colab.
research.google.com/notebooks/welcome. ipynb and create a new notebook.

Xix

XX

Preface

The advantage of using Anaconda is that you have more control over your work environment and
you can perform more tasks. The disadvantage of using Anaconda is that you need a desktop system
with the required hardware and software, as described in the following table, for most of the book
examples. (The MLSec; 01; Check Versions.ipynb example shows how to verify the
version numbers of your software.) Some examples will require additional setup requirements and
those requirements are covered as part of the example description (for example, when creating the
Pix2Pix GAN in Chapter 10, you need to install and configure TensorFlow).

Operating system and

General software covered in the book)
hardware requirements

Windows 7, 10, or 11
Anaconda 3, 2020.07 macOS 10.13 or above
Linux (Ubuntu, RedHat, and
CentOS 7+ all tested)

The test system uses this hardware,

which is considered minimal:
Python 3.8 or higher (version 3.9.x is highly

recommended, versions above 3.10.7 aren’t Intel i7 CPU
recommended or tested) 8 GB RAM
500 GB hard drive

NumPy 1.18.5 or greater (version 1.21.x is
highly recommended)

Scikit-learn 0.23.1 or greater (version 1.0.x is
highly recommended)

Pandas 1.1.3 or greater (version 1.4.x is
highly recommended)

When working with any version of the book, downloading the downloadable source code is highly
recommended to avoid typos. Copying and pasting code from the digital version of the book will
very likely result in errors. Remember that Python is a language that depends on formatting to deal
with things like structure and to show where programming constructs such as £or loops begin and
end. The source code downloading instructions appear in the next section.

Preface

Download the example code files

You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Machine-Learning-Security-Principles or John’s website at
http://www.johnmuellerbooks.com/source-code/. If there’s an update to the code,
it will be updated in both the GitHub repository and on John’s website.

We also have other code bundles from our rich catalog of books and videos available at https: //
github.com/PacktPublishing/. Check them out!

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “For
example, Remove Stop Words () relies on a list comprehension to perform the actual processing”

A block of code is set as follows:

import getpass

user = getpass.getuser ()

[)

pwd = getpass.getpass ("User Name : %s" % user)

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

import getpass

user = getpass.getuser()

[

pwd = getpass.getpass("User Name : %s" % user)

Tips or important notes

Appear like this.

XXi

XXii

Preface

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercaree
packtpub. com and mention the book title in the subject of your message. If you have a book
content-specific question, please contact John at John@JohnMuellerBooks . com for quick and
courteous service. Your feedback is essential to helping me produce better books!

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www . packtpub.com/support/errata and fill in the form.

Expanded book content: As I get input from readers, I often provide additional book insights and
updated procedures on my blog at http://blog.johnmuellerbooks.com/.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

xxiii

Share Your Thoughts

Once you've read Machine Learning Security Principles, wed love to hear your thoughts! Please click
here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're delivering
excellent quality content.

XXiv

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804618851

2. Submit your proof of purchase

3. That’s it! We'll send your free PDF and other benefits to your email directly

Iszzued to Hichelle Siebert - {nziebert@netline.conl

Part 1 - Securing a Machine
Learning System

In this part, you will discover why security is important and the various kinds of security that you will
need to consider. You will look at the threats against machine learning applications, including those
from data manipulation and other machine learning applications.

This section includes the following chapters:
o Chapter 1, Defining Machine Learning Security

o Chapter 2, Mitigating Risk at Training by Validating and Maintaining Datasets
o Chapter 3, Mitigating Inference Risk by Avoiding Adversarial Machine Learning Attack

A4 S000TZENLCT

1

Defining Machine
Learning Security

Organizations trust machine learning (ML) to perform a wide variety of tasks today because it has
proven to be relatively fast, inexpensive, and effective. Unfortunately, many people really aren’t sure
what ML is because television, movies, and other media tend to provide an unrealistic view of the
technology. In addition, some users engage in wishful thinking or feel the technology should be able
to do more. Making matters worse, even the companies who should know what ML is about hype
its abilities and make the processes used to perform ML tasks opaque. Before making ML secure,
it’s important to understand what ML is all about. Otherwise, the process is akin to installing home
security without actually knowing what the inside of the home contains or even what the exterior of
the home looks like.

Adding security to an ML application involves understanding the data analyzed by the underlying
algorithm and considering the goals of the application in interacting with that data. It also means
looking at security as something other than restricting access to the data and the application (although,
restricting access is a part of the picture).

The remainder of this chapter talks about the requirements for working with the coding examples.
It’s helpful to have the right setup on your machine so that you can be sure that the examples will
run as written.

Get in touch

Obviously, I want you to be able to work with the examples, so if you run into coding issues,
please be sure to contact me at John@JohnMuellerBooks . com.

Defining Machine Learning Security

Using the downloadable source code will also save you time and effort. With these issues in mind,
this chapter discusses these topics:

« Obtaining an overview of ML
« Defining a need for security and choosing a type

« Making the most of this book

Building a picture of ML

People anthropomorphize computers today, giving them human characteristics, such as the ability to
think. At its lowest level, a computer processes commands to manipulate data, perform comparisons,
and move data around. There is no thought process involved—ijust electrical energy cleverly manipulated
to produce a mathematical result from a given input. So, the term “machine learning” is a bit of a
misnomer because the machine is learning nothing and it doesn’t understand anything. A better way
to view ML is as a process of algorithm manipulation such that added weighting produces a result
that better matches the data input. Once someone trains a model (the combination of algorithm and
weighting added to the algorithm), it’s possible to use the model to process data that the algorithm
hasn’t seen in the past and still obtain a desirable result. The result is the simulation of human thought
processes so that it appears that the application is thinking when it isn’t really thinking at all.

The feature that distinguishes ML most significantly is that the computer can perform mundane tasks
fast and consistently. It can’t provide original thought. A human must create the required process but,
once created, the machine can outperform the human because it doesn't require rest and doesn’t get
bored. Consequently, if the data is clean, the model correct, and the anticipated result correctly defined,
a machine can outshine a human. However, it’s essential to consider everything that is required to
obtain a desirable result before employing ML for a particular task, and this part of the process is often
lacking today. People often think that machines are much more capable than they really are and then
exhibit disappointment when the machine fails to work as expected.

Why is ML important?

Despite what you may have heard from various sources, ML is more important for mundane tasks
than for something earth-shattering in its significance. ML won't enable Terminators to take over the
planet, nor will this technology suddenly make it possible for humans to stop working entirely in a
utopian version of the future. What ML can do is reduce the boredom and frustration that humans feel
when forced to perform repetitive factory work or other tasks of the sort. In the future, at the lowest
level, humans will supervise machines performing mundane tasks and be there when things go wrong.

However, the ability to simply supervise machines is still somewhat far into the future, and letting them
work unmonitored is further into the future still. There are success stories, of course, but then there
are also failures of the worst sort. For example, trusting the Al in a car to drive by itself without human
intervention can lead to all sorts of problems. Sleeping while driving will still garner a ticket and put

Building a picture of ML

others at risk, as described at https://www.theguardian.com/world/2020/sep/17/
canada-tesla-driver-alberta-highway-speeding. In this case, the driver was sleeping
peacefully with a passenger in the front seat of the car when the police stopped him. Fortunately, the
car didn’t cause an accident in this case, but there are documented instances where self-driving cars
did precisely that (see https://www.nytimes.com/2018/03/19/technology/uber-
driverless-fatality.html for an example).

Besides performing tasks, ML can perform various kinds of analysis at a speed that humans can’t
match, and with greater efficiency. A doctor can rely on ML to assist in finding cancer because the
ML application can recognize patterns in an MRI that the doctor can’t even see. Consequently, the
ML application can help guide the doctor in the right direction. However, the doctor must still make
the final determination as to whether a group of cells really is cancerous, because the ML application
lacks experience and the senses that a doctor has. Likewise, ML can make a doctor’s hands steadier
during surgery, but the doctor must still perform the actual task. In summary, ML is currently assistive
in nature, but it can produce reliable results in that role.

Pattern recognition is a strong reason to use ML. However, the ability to recognize patterns only works
when the following applies:

« The source data is untainted

o The training and testing data are unbiased
o The correct algorithms are selected

o The model is created correctly

o Any goals are clearly defined and verified against the training and test data

Classification uses of ML rely on patterns to distinguish between types of objects or data. For example,
a classification system can detect the difference between a car, a pedestrian, and a street sign (at least,
a lot of the time). Unfortunately, the current state of the art clearly shows that ML has a long way to
go in this regard because it’s easy to fool an application in many cases (see https://arxiv.org/
pdf/1710.08864 .pdf?ref=hackernoon.com for examples). There are a lot of articles now
that demonstrate all of the ways in which an adversarial attack on a deep learning or ML application
will render it nearly useless. So, ML works best in an environment where nothing unexpected happens,
but in that environment, it works extremely well.

Recommender systems are another form of ML that try to predict something based on past data. For
example, recommender systems play a huge role in online stores where they suggest some items to go
with other items a person has purchased. If you're fond of online buying, you know from experience that
the recommender systems are wrong about the additional items more often than not. A recommender
setup attached to a word processor for suggesting the next work you plan to type often does a better
job over time. However, even in this case, you must exercise care because the recommendation is
often not what you want (sometimes with hilarious results when the recipient receives the errant text).

Defining Machine Learning Security

As everything becomes more automated, ML will play an ever-increasing role in performing the
mundane and repeatable elements of that automation. However, humans will also need to play an
increasingly supervisory role. In the short term, it may actually appear that ML is replacing humans
and putting them out of work, but in the long term, humans will simply perform different work. The
current state of ML is akin to the disruption that occurred during the Industrial Revolution, where
machines replaced humans in performing many manual tasks. Because of that particular disruption
in the ways that things were done, a single farmer today can tend to hundreds of acres of land, and
factory work is considerably safer. ML is important because it’s the next step toward making life better
for people.

Identifying the ML security domain

Security doesn't just entail the physical protection of data, which might actually be impossible for online
sources such as websites where the data scientist obtains the data using screen-scraping techniques.
To ensure that data remains secure, an organization must monitor and validate it prior to use for
issues such as data corruption, bias, errors, and the like. When securing an ML application, it’s also
essential to review issues such as these:

o Data bias: The data somehow favors a particular group or is skewed in a manner that produces
an inaccurate analysis. Model errors give hackers a wedge into gaining access to the application,
its model, or underlying data.

« Data corruption: The data may be complete, but some values are incorrect in a way that shows
damage, poor formatting, or in a different form. For example, even in adding the correct state
name to a dataset, such as Wisconsin, it could appear as WI, Wis, Wisc, Wisconsin, or some
other legitimate, but different form.

o Missing critical data: Some data is simply absent from the dataset or could be replaced with
a random value, or a placeholder such as N/A or Null for numeric entries.

o Errors in the data: The data is apparently present, but is incorrect in a manner that could cause
the application to perform badly and cause the user to make bad decisions. Data errors are often
the result of human data entry problems, rather than corruption caused by other sources, such
as network errors. Hackers often introduce data errors that have a purpose, such as entering
scripts in the place of values.

o Algorithm correctness: Using the incorrect algorithm will create output that doesn’t meet
analysis goals, even when the underlying data is correct in every possible manner.

o Algorithm bias: The algorithm is designed in such a manner that it performs analysis incorrectly.
This problem can also appear when weighting values are incorrect or the algorithm handles
feedback values inappropriately. The bottom line is that the algorithm produces a result, but
the result favors a particular group or outputs values that are skewed in some way.

Building a picture of ML

+ Repeatable and verifiable results: ML applications aren’t useful unless they can produce the
same results on different systems and it’s possible to verify those results in some way (even if
verification requires the use of manual methods).

ML applications are also vulnerable to various kinds of software attacks, some of which are quite
subtle. All of these attacks are covered in detail starting in Chapter 3 of the book. However, here is an
overview of the various attack types and a quick definition of each that you can use for now:

« Evasion: Bypassing the information security functionality built into a system.
« Poisoning: Injecting false information into the application’s data stream.

« Inference: Using data mining and analysis techniques to gain knowledge about the underlying
dataset, and then using that knowledge to infer vulnerabilities in the associated application.

» Trojans: Employing various techniques to create code or data that looks legitimate, but is really
designed to take over the application or manipulate specific components of it.

» Backdoors: Using system, application, or data stream vulnerabilities to gain access to the
underlying system or application without providing the required security credentials.

» Espionage: Stealing classified, sensitive data or intellectual property to gain an advantage over
a person, group, or organization to perform a personnel attack.

« Sabotage: Performing deliberate and malicious actions to disrupt normal processes, so that
even if the data isn’t corrupted, biased, or damaged in some way, the underlying processes
don’t interact with it correctly.

o Fraud: Relying on various techniques, such as phishing or communications from unknown
sources, to undermine the system, application, or data security in a secretive manner. This level
of access can allow for unauthorized or unpaid use of the application and influence ways in
which the results are used, such as providing false election projections.

The target of such an attack may not even know that the attack compromised the ML application
until the results demonstrate it (the Seeing the effect of bad data section of Chapter 10, Considering
the Ramifications of Deepfakes, shows a visual example of how this can happen). In fact, issues such
as bias triggered by external dataset corruption can prove so subtle that the ML application continues
to function in a compromised state without anyone noticing at all. Many attacks, such as privacy
attacks (see the article entitled Privacy Attacks on Machine Learning Models, at https: //www.
infog.com/articles/privacy-attacks-machine-learning-models/), havea
direct monetary motive, rather than simple disruption.

It’s also possible to use ML applications as the attack vector. Hackers employ the latest techniques,
such as relying on ML applications to attack you to obtain better results, just as you do. The article
entitled 7 Ways in Which Cybercriminals Use Machine Learning to Hack Your Business, athttps://
gatefy.com/blog/cybercriminals-use-machine-learning-hack-business/,
describes just seven of the ways in which hackers use ML in their nefarious trade. You can bet that
hackers use ML in several other ways, some of them unexpected and likely unknown for now.

Defining Machine Learning Security

Distinguishing between supervised and unsupervised

ML relies on a large number of algorithms, used in a variety of ways, to produce a useful result. However,
it’s possible to categorize these approaches in three (or possibly four) different ways:

« Supervised learning
« Unsupervised learning

« Reinforcement learning

Some people add the fourth approach of semi-supervised learning, which is a combination of
supervised and unsupervised learning. This section will only discuss the first three because they’re
the most important in understanding ML.

Understanding supervised learning

Supervised learning is the most popular and easiest-to-use ML paradigm. In this case, data takes the
form of an example and label pair. The algorithm builds a mapping function between the example and
its label so that when it sees other examples, it can identify them based on this function. Figure 1.1
provides you with an overview of how this process works:

Example Label
Apple Fruit —
Cat Animal —
— % Algorithm ———3 Result
Animal
Pear Fruit
New Data
Bear
Dog Animal -

Figure 1.1 — Supervised learning relies on labeled examples to train the model

Building a picture of ML

Supervised learning is often used for certain types of classification, such as facial recognition, and
prediction, or how well an advertisement will perform based on past examples. This paradigm is
susceptible to many attack vectors including someone sending data with the wrong labels or supplying
data that is outside the model’s usage.

Understanding unsupervised learning

When working with unsupervised learning, the algorithm is fed a large amount of data (usually
more than is required for supervised learning) and the algorithm uses various techniques to organize,
group, or cluster the data. An advantage of unsupervised learning is that it doesn’t require labels: the
majority of the data in the world is unlabeled. Most people consider unsupervised learning as data-
driven, contrasted with supervised learning, which is task-driven. The underlying strategy is to look
for patterns, as shown in Figure 1.2:

Apple
Animals
Cat Cat
Dog
—» Algorithm
Fruits
Pear Apple
Pear
Dog —

Figure 1.2 — Unsupervised learning groups or clusters like data together to train the model

Unsupervised learning is often used for recommender systems because such systems receive a constant
stream of unlabeled data. You also find it used for tracking buying habits and grouping users into
various categories. This paradigm is susceptible to a broad range of attack vectors, but data bias, data
corruption, data errors, and missing data would be at the top of the list.

10

Defining Machine Learning Security

Understanding reinforcement learning

Reinforcement learning is essentially different from either supervised or unsupervised learning because it
has a feedback loop element built into it. The best way to view reinforcement learning is as a methodology
where ML can learn from mistakes. To produce this effect, an agent, the algorithm performing the
task, has a specific list of actions that it can take to affect an environment. The environment, in turn,
can produce one of two signals as a result of the action. The first signals successful task completion,
which reinforces a behavior in the agent. The second provides an environment state so that the agent
can detect where errors have occurred. Figure 1.3 shows how this kind of relationship works:

Environment:
Determines whether [«—
the agent succeeded.

Reward State Action

Agent: Performs
one of a specific
number of actions

> during each turn.

Figure 1.3 - Reinforcement learning is based on a system of rewards and an updated state

You often see reinforcement learning used for video games, simulations, and industrial processes.
Because you're linking two algorithms together, algorithm choice is a significant priority and anything
that affects the relationship between the two algorithms has the potential to provide an attack vector.
Feeding the agent incorrect state information will also cause this paradigm to fail.

Using ML from development to production

It’s essential to understand that ML does have an important role to fulfill today in performing specific
kinds of tasks. Figure 1.4 contains a list of typical tasks that ML applications perform today, along with
the learning type used to perform the task and observations of security and other issues associated
with this kind of task. In no instance will you find that ML performs any task perfectly, especially
without human assistance.

Building a picture of ML

Task

Learning Type

ML Consideration

Automatic
language translation

Supervised

Translates one language into another language
using a sequence-to-sequence learning algorithm.
The results are often less useful than expected
due to variations between languages and the fact
that languages generally contain words that don’t
have equivalents in other languages.

Susceptible to data errors, missing data, data
corruption, algorithm bias, and an inability
to repeat and verify results due to naturally
occurring evolution in languages. This kind of
application is also sensitive to speech patterns
and misidentifying terms when words aren’t
enunciated clearly.

Email spam and
malware filtering

Supervised

Marks, moves, or deletes email that meets the
criteria of spam or malware from an inbox as it’s
received from a server. There are usually several
levels of filtering including Content, Header,
Blacklist, Rule-based, and Permission.

Susceptible to a number of potential attacks
including backdoors, Trojans, espionage, sabotage,
fraud, evasion, inference, data errors, and data
corruption. This is one of the more reliable forms
of ML applications, but users still regularly find
spam in their inboxes and useful messages in
their spam folders.

Image recognition

Supervised

Identification of objects, persons, places, patterns,
and other elements within an image.

Susceptible to a variety of attack types, but also
prone to misidentification when the image
contains elements the application didn’'t expect
or when those objects appear in positions that
the application isn'’t trained to recognize.

11

12

Defining Machine Learning Security

Task

Learning Type

ML Consideration

Medical diagnosis

Supervised
and unsupervised

Predicts the progression and characteristics of
diseases and other conditions, along with locating
and identifying potential patient illnesses.

Susceptible to data bias, data corruption, data
errors, incorrect algorithm selection, and
algorithm bias. This particular application type can
never operate alone; it always assists a physician
with the required experience to make a diagnosis.

Online fraud detection

Supervised

Reduces the risk of conducting transactions online
by detecting conditions such as fake accounts, fake
IDs, compromised sites, compromised security
certificates, and so on.

Susceptible to a wide range of attacks, some of
which have nothing to do with the application.
For example, a compromised certificate authority
could cause the application to fail by allowing the
hacker access to the underlying infrastructure,
even if the application itself isn't at fault. This
kind of application is also known to display false
positives and false negatives depending on the
reliability of the code used to create it and the
model training.

Product recommendation

Unsupervised

Outputs product recommendations based on
previous buying habits, associated goods, and
direct queries. It’s one of the most widely used
and common ML applications.

Susceptible to data errors, data bias, missing data,
algorithm bias, fraud, sabotage, and a wealth
of other issues. This kind of application often
provides irrelevant information along with useful
product recommendations because the application
has no method of judging user needs and wants.

Building a picture of ML

Task Learning Type ML Consideration
Self-driving cars Supervised, Allows a vehicle to drive itself by monitoring
unsupervised, various cameras and detectors for the presence

and reinforcement

of obstacles, interpreting the content of road
signs, and so on.

Susceptible to so many different kinds of attacks,
it’s truly amazing that self-driving cars work
at all. In addition to ML, self-driving vehicles
rely on other Al technologies such as expert
systems (https://www.aitrends.
com/ai-insider/expert-systems-
ai-self-driving-cars-crucial-
innovative-techniques/). It’s entirely
possible that self-driving cars will eventually
become completely successful, but don’t look
for this advance anytime soon.

Speech recognition

Supervised

Translation of spoken or written speech into tokens
that the computer can recognize and process.

Susceptible to data errors and use of unidentified
terms. This kind of application is also sensitive to
speech patterns and misidentifying terms when
words aren’t enunciated clearly.

Stock market trading

Supervised

Predicts trends in the stock market based on
past and current data. This is one of the few ML
applications that relies heavily on short-term
memory and weighting processes to make current
data count for more than past data.

Susceptible to data bias, data corruption, missing
data, data errors, incorrect algorithm selection,
and algorithm bias. Attackers will attempt to
gain access by any means possible with a strong
emphasis on evasion, inference, Trojans, and
backdoors. Reliability is a prime concern for this
application type, but incredibly hard to measure
given the variability of the stock market.

13

14

Defining Machine Learning Security

Task Learning Type ML Consideration

Traffic prediction Reinforcement Plots a path between two points on a map based
on criteria such as traffic conditions, time of
travel, and resource usage.

Susceptible to various attacks such as poisoning,
inference, data corruption, data bias, missing data,
and so on. This kind of application will normally
get the user to the right place (although, there
have been instances where the application has sent
the user into ponds and so on), but the path may
not ultimately prove to meet all required goals.

Virtual personal assistant | Supervised Accepts voice or text input to perform various
and unsupervised predefined tasks, such as iterating a person’s
meetings for the day or locating a restaurant.

Susceptible to data errors, missing data, data
corruption, and algorithm bias. In addition, a third
party could attempt to gain access to application
data using evasion, poisoning, Trojans, fraud,
and backdoors. This kind of application is also
sensitive to speech patterns and misidentifying
terms when words aren’t enunciated clearly.

Figure 1.4 — ML tasks and their types

Figure 1.4 doesn’t contain some of the more exotic uses for ML. For example, some people use ML to
generate art (see https: //www.bbc.com/news/uk-england-oxfordshire-61600523
for one of the newest examples). However, the ML application isn’t creating art. What happens instead
is that the ML application learns a particular art style from examples, and then transforms another
graphic, such as a family picture, into a representation using the art examples. The results can be
interesting, even beautiful, but they aren’t creative. The creativity resides in the original artist and
the human guiding the generation (see https://aiartists.org/ai-generated-art-
tools for details). The same technique applies to ML-generated music and even videos. Many of
these alternative uses for ML are interesting, but the book doesn’t cover them heavily, except for the
perspective of ethical treatment of data. So, why is security so important for ML projects? The next
section begins to answer that question.

Adding security to ML

Security is a necessary component of ML to ensure that results received from an analysis reflect reality.
Otherwise, decisions made based on the analysis will be flawed. If the mistake made based on such
analysis merely affected the analyst, then the consequences might not be catastrophic. However, ML

Adding security to ML

affects people — sometimes large groups of people. When the effects are large enough, businesses
fold, lawsuits ensue, and people lose faith in the ability of ML applications to produce reliable results.
Adding security ensures the following:

Reliability
Verifiability
Repeatability
Transparency
Confidence

Consistency

Let’s examine how security can impact ML in more detail.

Defining the human element

At this point, it's important to take a slight detour from the technical information presented so far to
discuss the human element. Even if the processes are clear, the data is clean, the algorithms are chosen
correctly, and the code is error-free, humans still provide the input and interpret the result. Humans
are an indirect source of security issues in all ML scenarios. When working with humans, it’s essential
to consider the five mistruths that creep into every part of the ML environment and cause security
issues that are difficult or sometimes impossible to find:

Commission: Performing specific and overt engagement in a mistruth and supplying incorrect
data. However, a mistruth of commission need not always imply an intent to mislead. Sometimes
these mistruths are the result of a lack of information, incorrect information, or a need to please
others. In some cases, it’s possible to detect mistruths of commission as outliers in plotted results
created during analysis. Mistruths of commission create security issues by damaging the data
used for analysis and therefore corrupting the model.

Omission: Leaving out essential details that would make the resulting conclusions different.
In many cases, the person involved simply forgets to provide the information or is unaware of
it. However, this mistruth also makes an appearance when the facts are inconvenient. In some
cases, it’s possible to detect this sort of mistruth during missingness checks of the data or in
considering the unexpected output of an algorithm. Mistruths of omission create security issues
by creating holes in the data or by skewing the model.

Bias: Seeing the data or results in an unrealistic or counterintuitive manner due to personal
concerns, environmental pressures, or traditions. Human biases often keep the person
involved from seeing the patterns and outcomes that are obvious when the bias isn’t present.
Environmental pressures, including issues such as tiredness, are hard to overcome and spot.
The same checks that work for other kinds of bias can help root out human biases in data.
Mistruths of bias create security issues by skewing the model and possibly causing the model
to overfit or underfit the data.

15

16

Defining Machine Learning Security

« Perspective: Viewing the data based on experience, environmental conditions, and available
information. In reviewing the statements of witnesses to any event, it’s possible to obtain
different stories from each witness, even when the witnesses are being truthful from their
perspective. The same is true of ML data, algorithms, and output. Different people will see the
data in different ways and it’s nearly impossible to say that one perspective is correct and another
incorrect. In many cases, the only way to handle this issue is to create a consensus opinion,
much as interviewers do when speaking to witnesses to an event. Mistruths of perspective
cause security issues by limiting the effectiveness of the model in providing a correct solution
due to the inability of computers to understand anything.

o Frame of reference: Conveying information to another party incorrectly because the other
party lacks the required experience. This kind of soft knowledge is precisely why humans are
needed to interpret the analysis provided through ML. A human who has had a particular
experience understands the experience and recognizes the particulars of it, but is unable to
articulate the experience in a concrete manner. Mistruths of frame of reference create security
issues by causing the model to misinterpret situational data and render incorrect results.

Now that you have a better idea of how humans play into the data picture, it’s time to look more at
the technical issues, keeping the human element in mind.

Compromising the integrity and availability of ML models

In many respects, the ML model is a kind of black box where data goes in and results come out.
Many countries now have laws mandating that models become more transparent, but still, unless you
want to spend a great deal of time reviewing the inner workings of a model (assuming you have the
knowledge required to understand how they work at all), it still amounts to a black box. The model
is the weakest point of an ML application. It’s possible to verify and validate data, and understanding
the algorithms used need not prove impossible. However, the model is a different story because the
only practical ways to test it are to use test data and perform some level of verification and validation.
What happens, however, if hackers or others have compromised the integrity of the model in subtle
ways that don't affect all results, just some specific results?

The integrity of a model doesn’t just involve training it with correct data but also involves keeping
it trained properly. Microsoft’s Tay (see https://spectrum.ieee.org/tech-talk/
artificial-intelligence/machine-learning/in-2016-microsofts-racist-
chatbot-revealed-the-dangers-of-online-conversation) is an example of just
how wrong training can go when the integrity of the model is compromised. In Tay’s case, unregulated
Twitter messages did all the damage in about 16 hours. Of course, it took a lot longer than that to
initially create the model, so the loss to Microsoft was immense. To the question of why internet
trolls damaged the ML application, the answer of because they can seems trite, but ends up being on
the mark. Microsoft created a new bot named Zo that fared better but was purposely limited, which
serves to demonstrate there are some limits to ML.

Adding security to ML

The problem of discerning whether someone has compromised a model becomes greater for pre-trained
models (see https://towardsdatascience.com/4-pre-trained-cnn-models-to-
use-for-computer-vision-with-transfer-learning-885cblb2dfc for examples).
Pre-trained models are popular because training a model is a time-consuming and sometimes difficult
process (pretrained models are used in a process called transfer learning where knowledge gained
solving one problem is used to solve another, similar problem. For example, a model trained to
recognize cars can be modified to recognize trucks as well). If you can simply plug a model into your
application that someone else has trained, the entire process of creating the application is shorter and
easier. However, pre-trained models also aren’t under your direct control and you have no idea of
precisely how they were created. There is no way to completely validate that the model isn’'t corrupted
in some way. The problem is that datasets are immense and contain varied information. Creating a
test harness to measure every possible data permutation and validate it is impossible.

In addition to integrity issues, ML models can also suffer performance and availability issues. For
example, greedy algorithms can get stuck in local minima. Crafting data such that it optimizes the
use of this condition to cause availability problems could be a form of attack. Because the data would
appear correct in every way, data checks are unlikely to locate these sorts of problems. Youd need
to use some sort of tuning or optimization to reduce the risk of such an attack. Algorithm choice is
important when considering this issue. The easiest way to perpetrate such attacks is to modify the data
at the source. However, making the attack successful would require some knowledge of the model, a
level of knowledge known as white box access.

A major issue that allows for integrity and availability attacks is the assumption on the part of humans
(even designers) that ML applications think in the same way as we do, which couldn’t be further from
the truth. As this book progresses, you will discover that ML isn’t anything like a thought process—it’s
a math process, which means treating adversarial attacks as a math or data problem. Some researchers
have suggested including adversarial data in the training data for algorithms so that the algorithm
can learn to spot them (learn, in this case, is simply a shortcut method of saying that the model has
weights and variables adjusted to process the data in a manner that allows for a correct output result).
Of course, researchers are looking into this and many other solutions for dealing with adversarial attacks
that cause integrity - and performance-type problems. There is currently no silver bullet solution.

Describing the types of attacks against ML

The introduction to this chapter lists a number of attack types on data (such as data bias) and
the application (evasion). The previous section lists some types of attacks perpetrated against the
underlying model. As a collection, all of these attacks are listed as adversarial attacks, wherein the
ML application as a whole tends not to perform as intended and often does something unexpected.
This isn’t a new phenomenon—some people experimented with adversarial attacks as early as 2004
(seehttps://dl.acm.org/doi/10.1145/1014052.1014066 for an article on the issue).
However, it has become a problem because ML and deep learning are now deeply embedded within
society in such a way that even small problems can lead to major consequences. In fact, sites such as
The Daily Swig (https://portswigger.net/daily-swig/vulnerabilities) follow
these vulnerabilities because there are too many for any single individual to track.

18

Defining Machine Learning Security

Underlying the success of these attacks is that ML essentially relies on statistics. The transformation of
input values to the desired output, such as the categorization of a particular sign as a stop sign, relies
on the pixels in a stop sign image relating statistically well enough to the model’s trained values to
make it into the stop sign category. By adding patches to a stop sign, it no longer matches the learned
pattern well enough for the model to classify it as a stop sign. Because of the misclassification, a self-
driving car may not stop as required but run right through the stop sign, causing an accident (often
to the hacker’s delight).

Several elements come into play in this case. A human can look at the sign and see that it’s octangular,
red, and says Stop, even if someone adds little patches to it. In addition, humans understand the
concept of a sign. An ML application receives a picture consisting of pixels. It doesn’t understand signs,
octangular or otherwise, the color red, or necessarily read the word Stop. All the ML application is able
to do is match the object in a picture created with pixels to a particular pattern it has been trained to
statistically match. As mentioned earlier in the chapter, machines don’t think or feel anything—they
perform computations.

Modifying a street sign is an example of an overt attack. ML is even more susceptible to overt attacks.
For example, the article at https://arxiv.org/pdf/1801.01944 .pdf explains how to
modify a sound file such that it embeds a command in the sound file that the ML application will
recognize, but a human can’t even hear. The commands could do something innocuous, such as turn the
speaker volume up to maximum, but they could perform nefarious tasks as well. Just how terrible the
attack becomes depends on the hacker’s knowledge of the target and the goal of the attack. Someone’s
smart speaker could send commands to a voice-activated security system to turn the system off when
the owner isn't at home, or perhaps it could trigger an alarm, depending on what the hacker wants
(read Attackers can force Amazon Echos to hack themselves with self-issued commands at https://
arstechnica.com/information-technology/2022/03/attackers-can-force-
amazon-echos-to-hack-themselves-with-self-issued-commands/ to geta better
understanding of how any voice-activated device can be hacked).

Attacks can affect any form of ML application. Simply changing the order of words in a text document
can cause an ML application to misclassify the text (see the article athttps://arxiv.org/
abs/1812.00151). This sort of attack commonly thwarts the activities of spam and sentiment
detectors but could be applied to any sort of textual documentation. Most experts classify this kind of
attack as a paraphrasing attack. (See the Developing a simple spam filter example section of Chapter 4,
Considering the Threat Environment, for details on working with text.) When you consider how much
automated text processing occurs because there is simply too much being generated for humans to
handle alone, this kind of attack can take on monumental proportions.

Considering what ML security can achieve

The essential goal of ML security is to obtain more consistent, reliable, trustworthy, and unbiased
results from ML algorithms. Security focuses on creating an environment where the data, algorithm,
responses, and analysis all combine to allow ML to produce believable and useful results. The security

Setting up for the book

used with ML applications must perform these tasks in a manner that doesn’t slow the application
perceptibly or force it to use huge amounts of additional resources. To accomplish these goals, the
users of ML applications need to do the following:

o Set understandable and achievable result goals that are verifiable, consistent, and answer
specific needs

o Train personnel (which means everyone in the organization, along with consultants and third
parties) to interact with the application and its data appropriately

« Ensure that data passes all of the requirements for proper format, lack of missing elements,
absence of bias, and lack of various forms of corruption

» Choose algorithms that actually perform tasks in a manner that will match the goals set for
the ML application

o Use training techniques that create a reliable model that won’t overfit or underfit the data
o Perform testing that validates the data, algorithms, and models used for the ML application

o Verify the resulting application using real-world data that the ML application hasn’t seen in
the past

Once an ML application meets all of these requirements, it can provide reliable results more quickly
and consistently than humans can for mundane, repeatable tasks. Over time, the humans using an
ML application should develop the trust required to make using the application worthwhile. In
addition, humans can now move on to other areas of interest, making it possible for a single person
to accomplish a great deal more than would otherwise be reasonable. Now that you have a good
overview of the technical aspects of ML security, it’s time to get a development environment together
so you can work with the book’s code.

Setting up for the book

I want to ensure that you have the best possible experience when working through the examples in this
book. To accomplish that task, this book relies on the literate programming technique originally explored
by Donald Knuth and detailed in his paper at http: //www.literateprogramming.com/
knuthweb . pdf. The crux of this approach is that it provides you with a notebook-like environment
in which to work where it’s possible to freely mix code and non-code elements, including graphics.
Because of its reliance on multiple methods of conveying information, this approach is exceptionally
clear and easy to understand. Plus, it promotes experimentation at a level that many people don’t
experience using other approaches.

No matter how inviting a programming environment might be, however, you still have to have a
specific level of knowledge to enjoy it. The first section that follows describes what you need to know
to use the book successfully. Because of the programming environment I've chosen to use, those
requirements may be fewer than expected.

20

Defining Machine Learning Security

It’s also critical that you use the same tools that I used in creating the examples. This requirement
isn’t meant to hinder you in any way, but to ensure that you don’t spend a lot of time overcoming
environmental issues while attempting to run the code. The second section that follows describes the
programming setup I used so that you can replicate it on your system.

To ensure that you don’t have to battle typos and other problems with hand-typed code, I also provide
a downloadable source that makes it incredibly easy to work with the programming examples. Most
people do benefit from eventually typing their own code and creating their own examples, but to make
the learning process easier, you really do want to use the downloadable source if at all possible. The
blog postathttp://blog.johnmuellerbooks.com/2014/01/10/verifying-your-
hand-typed-code/ provides you with some additional details in this regard. You can obtain the
downloadable source code for this book from the publisher’s GitHub site at https://github.
com/PacktPublishing/Machine-Learning-Security-Principles or my website
athttp://www.johnmuellerbooks.com/source-code/.

What do you need to know?

The main audience for this book is data scientists and, to a lesser extent, researchers, so I'm assuming
that you already know something about data sources, data management techniques, and the algorithms
used to perform analysis on data. I don’t expect you to have an advanced degree in these topics, but
you should know that a . csv file contains data that is separated in fields using commas. In addition,
it would be helpful to have at least a passing knowledge of common algorithms such as Bayes’ theorem.
The notes and references we provide in the book will help you locate the additional information you
need, but this book doesn’t provide a tutorial on essential data science topics.

To provide the best possible programming environment, this book also relies on the Python programming
language. Again, you won't find a tutorial on this language here, but the use of the literate programming
technique should aid in your understanding if you have worked with programming languages in the
past. Obviously, the more you know about Python, the less effort you'll need to expend on understanding
the code. People who are in management and don't really want to get into the coding details will still
find this book useful for the theory it provides, so you could possibly work with the book without
knowing anything about Python to obtain theoretical knowledge.

It’s also essential that you know how to work with whatever platform you’re using. You need to know
how to install software, work with the filesystem, and perform other general user tasks with whatever
platform you choose to use. Fortunately, you have lots of options for using Jupyter Notebook, the
recommended IDE for this book, or Google Colab, a great alternative that will work with your mobile
device. However, this extensive list of platforms also means that we can’t provide you with much in
the way of platform support.

Setting up for the book

Considering the programming setup

To get the best results from a book’s source code, you need to use the same development products as
the book’s author. Otherwise, you can't be sure whether an error you find is a bug in the development
product or from the source code. The example code in this book is tested using both Jupyter Notebook
(for desktop systems) (https://Jjupyter.org/) and Google Colab (for tablet users) (https://
colab.research.google.com/notebooks/welcome. ipynb). Desktop system users will
benefit greatly from using Jupyter Notebook, especially if they have limited access to a broadband
connection. Whichever product you use, the code is tested using Python version 3.8.3, although any
Python 3.7 or 3.8 version will work fine. Newer versions of Python tend to create problems with
libraries used with the example code because the vendors who create the libraries don’t necessarily
update them at the same speed as Python is updated. You can read about these changes at https://
docs.python.org/3/whatsnew/3.8.html. You can check your Python version using the
following code:

import sys
print ('Python Version:\n', sys.version)

I highly recommend using a multi-product toolkit called Anaconda (https://www.anaconda.
com/products/individual), which includes Jupyter Notebook and a number of tools, such
as conda, for installing libraries with fewer headaches. Figure 1.5 shows some of the tools you get
with Anaconda. I wrote the examples using the 2020.07 version of Anaconda, which you can obtain
athttps://repo.anaconda.com/archive/. Make sure you get the right file for your
programming platform:

e Anaconda3-2020.07-Linux-ppcé4le.sh (PowerPC) or Anaconda3-2020.07-
Linux-x86_ 64 .sh for Linux

e Anaconda3-2020.07-MacOSX-x86_ 64 .pkgor Anaconda3-2020.07-
MacOSX-x86_ 64 .sh for macOS

e Anaconda3-2020.07-Windows-x86.exe (32-bit) or Anaconda3-2020.07-
Windows-x86_ 64 .exe (64-bit) for Windows

21

22

Defining Machine Learning Security

File Help

{D ANACONDA NAVIGATOR 0 vroicror PRI

A Home Lo
popiications on [e -] |[ENRE sers

] -] -] g
-
Jupyter I
N

. Environments

o
N Learning
. CMD.exe Prompt JupyterLab Notebook
- Community P Py
0.1.1 A 215 A 603
Run a cmd.exe terminal with your current | An extensible environment for interactive Web-based, interactive computing
environment from Navigator activated and reproducible computing, based en the notebook environment. Edit and run
Jupyter Notebook and Architecture. human-readable docs while describing the
data analysis.
& o o
o w,
i g
Documentation ‘0‘ I P y w
A
Developer Blog Powershell Prompt Qt Console Spyder
0.0.1 A 473 A 414
Run a Powershell terminal with your PyQt GUI that supports inline Figures, Scientific PYthon Development .

Yy & °

Figure 1.5 - Anaconda provides you with access to a wide variety of tools

It’s possible to test your Anaconda version using the following code (which won’t work on Google
Colab since it doesn’t have Anaconda installed):

import os
result = os.popen('conda list anaconda$') .read()

print ('\nAnaconda Version:\n', result)

The examples rely on a number of libraries, but three libraries are especially critical. If you don’t have
the right version installed, the examples won’t work:

o NumPy: Version 1.18.5 or greater
e scikit-learn: Version 0.23.1 or greater

« pandas: Version 1.1.3 or greater

Summary

Use this code to check your library versions:

lpip show numpy
lpip show scikit-learn

Ipip show pandas

Now that you have a workable development environment, it’s time to begin working through some
example code in the chapters that follow.

Summary

This chapter has helped you understand various kinds of ML applications and how those applications
are affected by various security threats. It has also emphasized the limitations of ML and pointed out
some of the misconceptions that people have about ML - and possibly computers in general. Finally,
you have discovered the ways in which humans inadvertently introduce security issues into ML
applications by making invalid assumptions and by corrupting data in ways that humans understand,
but computers don't.

Knowing about the various forces at work to corrupt your ML model and data may be frightening at
first, but there are certain things you can do to mitigate the threat, such as ensuring users are trained
not to unintentionally introduce bias into the dataset. ML security measures can help you achieve
these goals in an efficient manner. Of course, constant diligence is also a requirement.

The dataset end of things takes focus in the next chapter. It’s not just users who can ruin your day by
introducing a security problem; using the wrong dataset source or any number of other issues can
also be a problem. This next chapter will help you understand these issues so that you can consider
the solutions presented in light of your organization’s needs.

23

A4 S000TZENLCT

2

Mitigating Risk at
Training by Validating and
Maintaining Datasets

The training process for your model determines the output that your application provides when
faced with data it hasn't seen before. If the model is flawed in any way, then it’s not reasonable to
expect unflawed output from the model. The testing process helps verify the model, but only when
the data used for testing is accurate. Consequently, the datasets you use for training and testing your
model are critical in a way that no other data you feed to your model is. Even with feedback (input
that constantly changes the model based on the data it sees), initial training and testing sets the tone
for the model and therefore remain critical. Assuming that your dataset is properly vetted, of the
right size, and contains the right data, you still have to protect it from a wide variety of threats. This
chapter assumes that you've started with a good dataset, but some internal or external entity wants to
modify it so that the model you create is flawed in some way (or becomes flawed as time progresses).
The flaw need not even be immediately noticeable. In fact, subtle flaws that don’t manifest themselves
immediately are in the hacker’s best interest in most cases. With these issues in mind, this chapter
discusses these topics:

 Defining dataset threats
+ Detecting dataset modification

« Mitigating dataset corruption

26

Mitigating Risk at Training by Validating and Maintaining Datasets

Technical requirements

This chapter requires that you have access to either Google Colab or Jupyter Notebook to work with the
example code. The Requirements to use this book section of Chapter 1, Defining Machine Learning Security,
provides additional details on how to set up and configure your programming environment. The example
code will be easier to work with using Jupyter Notebook in this case because you must create local files
to use. Using the downloadable source is always highly recommended. You can find the downloadable
source on the Packt GitHub site at https://github.com/PacktPublishing/Machine-
Learning-Security-Principles or my websiteathttp://www.johnmuellerbooks.
com/source-code/.

Defining dataset threats

ML depends heavily on clean data. Dataset threats are especially problematic because ML techniques
require huge datasets that aren’t easily monitored. The following sections help you categorize dataset
threats to make them easier to understand.

Security and data in ML

Even though many of the issues addressed in this chapter also apply to data management
best practices, they take on special meaning for ML because ML relies on such huge amounts
of automatically collected data. Certain entities can easily add, subtract, or modify the data
without anyone knowing because it’s not possible to check every piece of data or even use
automation to verify it with absolute certainty. Consequently, with ML, it’s entirely possible
to have a security issue and not know about it unless due diligence is exercised to remove as
many possible sources of data threats as possible.

Learning about the kinds of database threats

Dataset modification is the act of changing the data in a manner that tends to elicit a particular
outcome from the model it creates. The modification need not be noticeable, as in, creating an error or
eliminating the data. In fact, the modifications that work best often provide subtle changes to records
by increasing or decreasing values by a certain amount or by adding characters that the computer will
process but that humans tend to ignore. When a dataset includes links to external resources, such as
URLs, the potential for nearly unnoticeable database modification becomes greater. A single-letter
difference in a URL can redirect the ML application to a hacker site with all of the wrong data on it.
For example, instead of pointing to a site such as https://www.kaggle.com/datasets, the
external link could instead point to https: //www.kagle.com/datasets. The problem becomes
worse when you consider URL parsing techniques, as described here at URL parsing: A ticking time
bomb of security exploits (https://www.techrepublic.com/article/url-parsing-
a-ticking-time-bomb-of-security-exploits/). The point is that the people vetting
and monitoring data will likely notice extreme changes and hackers know this, so attacks are more
likely to involve subtle modifications to increase the probability that the change will escape notice.

Defining dataset threats

Dataset corruption refers to the accidental modification of data in a dataset that tends to produce
random or erratic results. It may seem as if corruption would be easy to spot, but in many cases, it
too escapes notice. For example, a sensor may experience minor degradation that corrupts the data
it provides without eliminating it completely. A visual sensor may have dirt on its lens, a heat sensor
may become covered with soot, or sensors may experience data drift as they age. As a trusted data
source, the corruption might go unnoticed until the degradation becomes obvious. Environmental
issues, such as lightning strikes, heat, static, and moisture, can also corrupt data. The corruption may
occur over such a short interval that it lies unnoticed in the middle of the dataset (unless a human
checks every entry). Other sources of data corruption include inadequate safeguards in the statistical
selection of data to use within a dataset or the lack of available data for a particular group (both of
which result in biases). The point is that data corruption comes from such a great number of sources
that it may prove impossible to eliminate them all, so constant result monitoring is critical, as is
thinking through why a particular result has happened.

Entities that pose a threat

It would be easy to assume that entities that pose a security threat to your data used for ML
tasks are human. Yes, humans do pose a major threat, but so do faulty sensors, incompatible or
malfunctioning software, acts of nature, cosmic rays, and a large assortment of other sources,
most of which developers don’t think about because they focus on humans. When working with
ML applications, it’s essential to think about entities other than humans because so much data
used for ML tasks is automatically collected from a wide variety of unmonitored sources. This
book uses the term entity, rather than human, to help you keep these other sources in mind.

Considering dataset threat sources

Dataset threats come from multiple sources, but it’s helpful to categorize threats as either internal or
external in origin. In both cases, dataset security begins with physical security. Even with external
sources, using personnel trained to discover potential issues on external sites and scrutinize the
incoming data for inconsistencies is important to keeping existing data safe. Figure 2.1 describes
threat sources that you should consider when creating a physically safe environment for your data.

27

28

Mitigating Risk at Training by Validating and Maintaining Datasets

Task

Learning Type

ML Consideration

Automatic
language translation

Supervised

Translates one language into another language
using a sequence-to-sequence learning algorithm.
The results are often less useful than expected
due to variations between languages and the fact
that languages generally contain words that don’t
have equivalents in other languages.

Susceptible to data errors, missing data, data
corruption, algorithm bias, and an inability
to repeat and verify results due to naturally
occurring evolution in languages. This kind of
application is also sensitive to speech patterns
and misidentifying terms when words aren’t
enunciated clearly.

Email spam and
malware filtering

Supervised

Marks, moves, or deletes email that meets the
criteria of spam or malware from an inbox as it’s
received from a server. There are usually several
levels of filtering including Content, Header,
Blacklist, Rule-based, and Permission.

Susceptible to a number of potential attacks
including backdoors, Trojans, espionage, sabotage,
fraud, evasion, inference, data errors, and data
corruption. This is one of the more reliable forms
of ML applications, but users still regularly find
spam in their inboxes and useful messages in
their spam folders.

Image recognition

Supervised

Identification of objects, persons, places, patterns,
and other elements within an image.

Susceptible to a variety of attack types, but also
prone to misidentification when the image
contains elements the application didn't expect
or when those objects appear in positions that
the application isn’t trained to recognize.

Defining dataset threats

Task

Learning Type

ML Consideration

Medical diagnosis

Supervised
and unsupervised

Predicts the progression and characteristics of
diseases and other conditions, along with locating
and identifying potential patient illnesses.

Susceptible to data bias, data corruption, data
errors, incorrect algorithm selection, and
algorithm bias. This particular application type can
never operate alone; it always assists a physician
with the required experience to make a diagnosis.

Online fraud detection

Supervised

Reduces the risk of conducting transactions online
by detecting conditions such as fake accounts, fake
IDs, compromised sites, compromised security
certificates, and so on.

Susceptible to a wide range of attacks, some of
which have nothing to do with the application.
For example, a compromised certificate authority
could cause the application to fail by allowing the
hacker access to the underlying infrastructure,
even if the application itself isn’t at fault. This
kind of application is also known to display false
positives and false negatives depending on the
reliability of the code used to create it and the
model training.

Product recommendation

Unsupervised

Outputs product recommendations based on
previous buying habits, associated goods, and
direct queries. It's one of the most widely used
and common ML applications.

Susceptible to data errors, data bias, missing data,
algorithm bias, fraud, sabotage, and a wealth
of other issues. This kind of application often
provides irrelevant information along with useful
product recommendations because the application

has no method of judging user needs and wants.

29

30

Mitigating Risk at Training by Validating and Maintaining Datasets

Task Learning Type ML Consideration

Self-driving cars Supervised, Allows a vehicle to drive itself by monitoring
unsupervised, various cameras and detectors for the presence
and reinforcement of obstacles, interpreting the content of road

signs, and so on.

Susceptible to so many different kinds of attacks,
it’s truly amazing that self-driving cars work
at all. In addition to ML, self-driving vehicles
rely on other AI technologies such as expert
systems (https://www.aitrends.
com/ai-insider/expert-systems-
ai-self-driving-cars-crucial-
innovative-techniques/). It’s entirely
possible that self-driving cars will eventually
become completely successful, but don’t look
for this advance anytime soon.

Speech recognition Supervised Translation of spoken or written speech into tokens
that the computer can recognize and process.

Susceptible to data errors and use of unidentified
terms. This kind of application is also sensitive to
speech patterns and misidentifying terms when
words aren’t enunciated clearly.

Stock market trading Supervised Predicts trends in the stock market based on
past and current data. This is one of the few ML
applications that relies heavily on short-term
memory and weighting processes to make current
data count for more than past data.

Susceptible to data bias, data corruption, missing
data, data errors, incorrect algorithm selection,
and algorithm bias. Attackers will attempt to
gain access by any means possible with a strong
emphasis on evasion, inference, Trojans, and
backdoors. Reliability is a prime concern for this
application type, but incredibly hard to measure
given the variability of the stock market.

Figure 2.1 — Threat sources that affect physical data security

You can spend considerable time physically protecting your clean and correctly formatted data and
still experience problems with it. This is where an internal threat or a hacker with direct access to
your network comes into play. The data could be correct, viable, unbiased, and stable in every other
conceivable way, yet still doesn’t produce the correct model or outcome because something has happened
to it. This conclusion assumes that you have already eliminated other sources of potential problems,
such as using the correct model and shaping the data to meet your needs. When you exhaust every
other contingency for incorrect output, the remaining source of potential errors is data modification.

Defining dataset threats

Never rely completely on physical security. Someone will break into your system, even if you create
the best safeguards possible. The concept of an unbreakable setup is a myth and anyone who thinks
otherwise is set for disappointment. However, great physical security buys you these benefits:

o It will take longer to break into your system

» Any break-ins should be more noticeable

o Hackers are lazy like anyone else and may decide to attack someone else
o Getting rid of the hacker should be easier

+ Determining the source and causes of the break-in will require less time

o The application development time tends to be shorter because you have fewer places to look
for potential sources of problems

» You have an advantage over your competition because your business secrets will likely remain
more secure

+ You can demonstrate compliance with legal requirements, such as the Payment Card Industry
Data Security Standard (PCI DSS) and the Health Insurance Portability and Accountability
Act (HIPAA)

o It creates an overall improvement in data management because the results you obtain from
the analysis are more precise

It’s important to understand that some benefits will require a great deal more work than others to
achieve. Depending on your requirements, you likely need to provide a lot more than just physical
security. For example, the PCI DSS and HIPAA both require rigorous demonstrations of additional
security levels.

Delving into data change

Anything that modifies existing data without causing missing or invalid values is a data change. Data
changes are often subtle and may not affect a dataset as a whole. An accidental data change may include
underreporting the value of an element or number of items. Sometimes the change is subjective, such
as when one appraiser sees the value of an item in one way and another appraiser comes up with a
different figure (see the Defining the human element section in Chapter 1, Defining Machine Learning
Security, for other mistruths that can appear in data). It happens that humans make changes to a dataset
simply because they disagree with the current value for no other reason than personal opinion. Here
are some other sources of data change to consider:

o Automated software makes an unwanted update to a value

» Company policy or procedure changes so that the value that used to be correct is no longer correct

31

32

Mitigating Risk at Training by Validating and Maintaining Datasets

o Aging and archiving software automatically removes values that are deemed too old, even
when they aren’t

o New sensors report data using a different range, format, or method that creates a data misalignment

« Someone changes the wrong record

Any of these data changes have the potential to skew model results or cause other problems that a
hacker can analyze and use to create a security issue. Even if a hacker doesn’t make use of them, the
fact is that the model is now less effective at performing the task it’s designed to do.

Delving into data corruption

When new or existing data is modified, deleted, or injected in such a manner as to produce an unusable
record, the result is data corruption. Data corruption makes it impossible to create a useful model.
In fact, some types of data corruption will cause API calls to fail, such as the calculation of statistical
methods. When the API call doesn’t register an error but instead provides an unusable output, then
the model itself becomes corrupted. For example, if the calculation of a mean produces something
other than a number, such as an NA, None, or NaN value, then tasks such as missing data replacement
fail, but the application may not notice. These types of issues are demonstrated in the examples later
in the chapter.

Uncovering feature manipulation

The act of selecting the right variables to use when creating an ML model is known as feature
engineering. Feature manipulation is the act of reverse engineering the carefully engineered feature
set in a manner that allows some type of attack.

In the past, a data scientist would perform feature engineering and modify the feature set as needed
to make the model perform better (in addition to meeting requirements such as keeping personal
data private). However, today, you can find software to perform the task automatically, as described
athttps://towardsdatascience.com/why-automated-feature-engineering-
will-change-the-way-you-do-machine-learning-5c15b£f188b96. Whether you
create the feature set for an ML model manually or automatically, you still need to assess the feature
set from a security perspective before making it permanent. Here are some issues to consider:

o Keep personal data out of the dataset when possible

o Use aggregate values where it’s difficult to reconstruct the original value, but the aggregate still
provides useful information

o Perform best practices feature reduction studies to determine whether a feature really is needed
for a calculation

A problem occurs when a third party uses an API or other means of accessing the underlying data to
mount an attack by manipulating the features in various ways (feature manipulation). Reading Adversarial

Defining dataset threats

Attacks on Neural Networks for Graph Data at https://arxiv.org/pdf/1805.07984.
pdf provides insights into a very specific illustration of this kind of attack using techniques such as
adding or removing fake friendship relations to a social network. The attack might take a long time,
but if the attacker can determine patterns of data input that will produce the desired result, then it
becomes possible to eventually gain some sort of access, perceive how the data is laid out, extract
specific records, or perform other kinds of snooping.

Examining source modification

Source modification attacks occur when a hacker successfully modifies a data source you rely on for
input to your model. It doesn’t matter how you use the data, but rather how the attacker modifies the
site. The attacker may be looking for access into your network to perform a variety of attacks against
the application, modify the data you obtain slightly so that the results you obtain are skewed, or simply
look for ways to steal your data or model. As described in the Thwarting privacy attacks section, the
attacker’s sole purpose in modifying the source site might be to add a single known data point in
order to mount a membership inference attack later.

Thwarting privacy attacks

In the book Nineteen Eighty-Four by George Orwell, you see the saying, “War is peace. Freedom is
slavery. Ignorance is strength” The book as a whole is a discussion of things that can go wrong when a
society fails to honor the simple right to privacy. ML has the potential to make the techniques used in
Nineteen Eighty-Four look simplistic and benign because now it’s possible to delve into every aspect of
a personss life without the person even knowing about it. The use of evasion and poisoning attacks to
cause an ML application to output incorrect results is one level of attack—the use of various methods
to view the underlying data is another. This second form of attack is a privacy attack because the
underlying data often contains information of a personal nature.

It isn’t hard to make a case that your health and financial data should remain private, and there are
laws in place to ensure privacy (although some people would say theyre inadequate). However, your
buying habits on Amazon don't receive equal protection, even though they should. For example, by
watching what you buy, someone can make all sorts of inferences about you, such as whether you
have children, how many children, and what their ages are. However, there are more direct attacks
as listed here:

o Membership inference attack: The attacker has at least one known good data point in hand
and uses it to determine whether the data point was part of the original data used to train a
model. For example, is a particular person’s face used to train a facial recognition application?
Knowing this information could make it possible to avoid detection at an airport by ensuring
none of the people making an attack are already in the database. This kind of attack was used
to obtain sensitive information about people on both Google and Amazon (you can read more
about this attack at https://arxiv.org/abs/1610.05820). Here are some other uses
of membership inference attacks:

33

34

Mitigating Risk at Training by Validating and Maintaining Datasets

Generative adversarial networks (GANs): Attackers were 100 percent successful at carrying
out white-box attacks and 80 percent successful at carrying out black-box attacks as described at
https://arxiv.org/pdf/1705.07663 .pdf. In a white-box attack, the attacker has
access to the model’s parameters, which means that the attacker could be an insider or a hacker
with inside information. Black-box attacks are made without model parameter knowledge. The
attacker must create a different model or not rely on a model at all to generate adversarial images
that will hopefully transfer to the target model. It may initially appear that white-box attacks
would be advantageous, but according to White-box vs Black-box: Bayes Optimal Strategies for
Membership Inference (http://proceedings.mlr.press/v97/sablayrollesl9a/
sablayrollesl9a.pdf), the two methods can have an equal chance of success.

Language generation models: The attackers were able to determine whether the person’s
text data was part of a language generation study, which is used to create models used for
products such as Alexa and Siri (among many others) as described at https://arxiv.
org/pdf/1811.00513.pdf.

Federated ML system: A study shows that insider actors within a federated ML system, where
the system is centralized, pose a significant threat, and that working with datasets that differ
greatly increases the threat as described athttps: //arxiv.org/pdf/1807.09173 . pdf.

Aggregate location data: It’s possible to determine whether a particular user is part of aggregate
location data, which is used to support smart services and applications, generate traffic maps,
and predict visits to businesses as described at https://arxiv.org/abs/1708.06145.

Data extraction: This kind of attack also comes under the heading of model inversion. In this
case, the attacker tries to obtain an average representation of each class used to train a model.
While it isn’t possible to extract a single data point using this method, the results are still pretty
scary as described by these examples:

Genomic information: It’s possible to obtain information about a person’s genes by studying
pharmaceutical data as described at https://www.usenix.org/system/files/
conference/usenixsecurityl4/secl4-paper-fredrikson-privacy.pdf.

Facial recognition: Even though the resulting face isn’t perfect, it’s visible enough for a human
to identify the individual used to train the model as described at https: //www.cs.cmu.
edu/~mfredrik/papers/fjr2015ccs.pdf.

Unintended memorization: Ensuring that you clean data thoroughly of any personal information
and that you use as few features as possible to achieve your goals is demonstrated in the paper
athttps://arxiv.org/pdf/1802.08232.pdf where the authors were able to extract
social security and credit card numbers from the model.

Model extraction: Creating a model is a time-intensive task, requiring the input of more than
a few experts in most cases. Consequently, you don't want someone to come along and steal the
model that took you 6 months to build. There are a number of ways to accomplish this goal, as
described in Chapter 1, Defining Machine Learning Security, but one approach is particularly
effective, prediction APIs, which are described at https://arxiv.org/abs/1609.02943.

Detecting dataset modification

One of the most important bits of information you can take away from this section is that you really do
need to limit the feature size of your dataset and exclude any form of personal information whenever
possible. The act of anonymizing the data is as essential as every other aspect of molding it to your
needs. When you can’t anonymize the data, as when working with medical information associated with
particular people for tasks such as predicting medication doses, then you need to apply encryption or
tokenization to the personal data. Encryption works best when you absolutely must be able to read
the personal information later, and you want to ensure that only people who actually need to see the
data have the right to decrypt it. Tokenization, the process of replacing sensitive information with
symbolic information or identification symbols that can retain the essentials of the original data, works
best when there is a tokenized system already in place to identify individuals in a non-personal way.

The next section of the chapter looks at dataset modification, which is the act of changing the data
to obtain a particular effect.

Detecting dataset modification

Dataset modification implies that an external source, hacker, disgruntled employee, or other entity
has purposely changed one or more records in the dataset for some reason. The source and reason
for the data modification are less important than the effects the modification has on any analysis
you perform. Yes, you eventually need to locate the source and use the reason as a means to keep the
modification from occurring in the future, but the first priority is to detect the modification in the
first place. Consider this sequence of events:

1. Hackers want to create an environment where products from Organization A, a competitor
of Organization B, receive better placement on a sales site because the competitor is paying
them to do so

2. The hackers discover that buyer product reviews and their product ratings are directly associated
with the site’s ranking mechanism

3. 'The hackers employ zombie systems (computers they have taken over) to upload copious
reviews to the site giving Organization B’s products a one-star review

4. The site’s ML application begins to bring down the product rankings for Organization B and
the competitor begins to make a ton of money

If there were some system in place to detect the zombie system attack, the ML application could
compensate, provide notice to an administrator, or react in other ways. Chapter 3, Mitigating Inference
Risk by Avoiding Adversarial Machine Learning Attacks, talks about how to work with models to
make this attack less effective, but the data is the first consideration. Given that you can’t guarantee
the physical security of your data, you need other means to reduce the risks of dataset modification.
Constantly monitoring your network, data storage, and data does provide some useful results, but still
doesn’'t ensure complete data security. Some of the issues listed in Figure 2.1, such as the security of the
application, library, or database, along with other vulnerabilities, are nearly invisible to monitoring.
Consequently, other methods of dataset modification detection are required.

35

36

Mitigating Risk at Training by Validating and Maintaining Datasets

Two reliable methods of dataset modification detection are traditional methods that rely on immutable
calculated values such as hashes and data version control systems, such as DVC (https://dvc.
org/). Both approaches have their adherents.

Blockchains

Theoretically, you could rely on blockchains, which are a type of digital ledger ensuring
uniqueness, but only in extreme cases. The article Blockchain Explained at https://www.
investopedia.com/terms/b/blockchain.asp, provides additional details.

Combining both hashes and data version control approaches may seem like overkill, but one approach
tends to reinforce the other and act as a crosscheck. The disadvantages of using both are that you
expend additional time, and doing so increases cost, especially if the data version control system is
a paid service.

An example of relying on traditional methods

Most traditional methods of data modification detection revolve around using hashes to calculate
the value of each file in the dataset. In addition, you may find cryptographic techniques employed.
The hash data used to implement a traditional method must appear as part of secure storage on the
system handling the data or a hacker could simply change the underlying values. Using a traditional
method of data modification has some significant advantages over some other methods, such as a
data version control system. These advantages include the following:

o Data scientists, DBAs, and developers understand the underlying methodologies
« The cost of implementing this kind of solution is usually low

o Because people understand the methods so well, this kind of system is usually robust and reliable

Traditional methods normally work best for smaller setups where the number of individuals managing
the data is limited. There are also disadvantages to this kind of system as summarized here:

« The system can be hard to implement when the data sources are distributed
« Hashing a large number of files could prove time-prohibitive

o Checking the hash each time a file is checked out, recalculating the hash, and then updating
secure storage is error-prone

o A data version control system may prove more flexible and easier to use

Detecting dataset modification

You can use the code shown in the following code block (also found in the ML.Sec; 02; Create
Hash. ipynb file for this chapter) to create a hash of an existing file:

1. Begin by importing the libraries:

from hashlib import md5, shal

from os import path

inputFile = "test hash.csv"
hashFile = "hashes.txt"

2. Obtain the file hashes:
openedInput = open (inputFile, 'r', encoding='utf-8')

readFile = openedInput.read()

md5Hash = md5 (readFile.encode())
md5Hashed = md5Hash.hexdigest ()

shalHash = shal (readFile.encode())
shalHashed = shalHash.hexdigest ()

openedInput.close ()

3. Open the saved values, when they exist:

saveHash = True

if path.exists (hashFile) :

4. Get the hash values:

openedHash = open(hashFile, 'r', encoding='utf-8")
read md5Hash = openedHash.readline() .rstrip()

read _shalHash = openedHash.readline ()

5. Compare them to the current hash:

if (md5Hashed == read md5Hash) and \
(shalHashed == read shalHash) :
print ("The file hasn't been modified.")

37

38

Mitigating Risk at Training by Validating and Maintaining Datasets

RILEE3
print ("Someone has changed the file.")
print ("Original md5: %$r\n\tNew: $r" % \
(read _md5Hash, md5Hashed))
print ("Original shal: %r\n\tNew: %r" % \

(read shalHash, shalHashed))
saveHash = False
openedHash.close ()

if saveHash:
Output the current hash values
print ("File Name: %s" % inputFile)
print ("MD5: %r" % mdS5Hashed)

print ("SHAl: %$r" % shalHashed)

Save the current values to the hash file.
openedHash = open(hashFile, 'w')
openedHash.write (md5Hashed)

('"\n")
openedHash.write (shalHashed)

()

openedHash.write

openedHash.close

This example begins by opening the data file. Make sure you open the file only for reading and that
you specify the type of encoding used. The file could contain anything. This . csv file contains a
simple series of numbers such as those shown here:

It’s important to call encode () as part of performing the hash because you get an error message
otherwise. The md5Hash and shalHash variables contain a hash type as described at https: //
docs.python.org/3/library/hashlib.html. What you need is a text rendition of the
hash, which is why the code calls hexdigest (). After obtaining the current hash, the code closes
the input file.

Detecting dataset modification

The hash values appear in hashes . txt. If this is the first time you have run the application, you
won't have a hash for the file, so the code skips the comparison check, displays the new hash values,
and saves them to disk. Therefore, you see output such as this:

File Name: test hash.csv
MD5: '182f800102c9d3cea2f95d370b023al2’
SHAl: '845d2f247cdbb77e859e372c99241530898ec7cb'’

When there is a hashes . txt file to check, the code opens the file, reads in the hash values, which
appear on separate lines, and places them in the appropriate variables. These values are already
strings, but notice you must remove the newline character from the first string by calling rstrip ().
Otherwise, the current hash value won't compare to the saved hash value. During the second run of
the application, you see the same output as the first time with “The file hasn't been modified.” as the
first line.

Now, try to modify just one value in the test _hash. csv file. Run the code again and you instantly
see that this simple-looking method actually does detect the change (these are typical results, and
your precise output may vary):

Someone has changed the file.

Original md5: '182f800102c9d3cea2f95d370b023al2"
New: 'fae92acdd056dfd3c2383982657e7c8f"'

Original shal: '845d2f247cdbb77e859e372c99241530898ec7ch’
New: '677f4c2cfcc87c55£0575£734adlffble97de415"

Changing the original file back will restore the original “The file hasn’t been modified” output.
Consequently, once you have vetted and verified your data source file, you can use this technique to
ensure that even a restored copy of the file is correct. The biggest issue with this approach is that you
must ensure the integrity of hash storage or any comparison you make will be problematic.

Working with hashes and larger files

When working with large data files, you can’t read the entire file into memory at once. Doing so
would cause the application to crash due to a lack of memory. Consequently, you create a loop where
you read the data in blocks of a certain size, such as 64 KB. The loop continues to run until a test of
the input variable shows there is no more data to process. Most developers use a break statement to
break out of the loop at this point.

39

40

Mitigating Risk at Training by Validating and Maintaining Datasets

To create the hash, you must process each block separately by calling the update () function, rather
than using the constructor as shown in the example in the previous section. The result is that the hash
changes during each loop until you obtain a final value. As with the example code in this chapter,
you can then use the hexdigest () function to retrieve the file hash value as a string. Here’s a
quick overview of the loop using 64-KB chunks (this code isn’t meant to be run, and simply shows
the technique):

chunksize = 65536
md5Hash = hashlib.md5 ()
with open(filename, 'rb') as hashFile:
while chunk := hashFile.read(chunksize) :
md5Hash.update (chunk)
return md5Hash.hexdigest ()

The hash obtained using a single call to the constructor is the same as the hash obtained using
update () aslong as you process the entire file in both cases. Consequently, modifying your code
to handle larger files when it becomes necessary shouldn’t change the stored hash values.

Using a data version control system example

This section discusses data version control. Application code version control is another matter because
it involves working with different versions of an application. Unfortunately, many people focus on
application code because that’s something they’re personally involved in writing, and spend less time
with their data. The problem with this approach is that you can suddenly find that your application
code works perfectly, but produces incorrect output because the data has been altered in some way.

Data version control creates a new version of the saved document every time someone makes a change.
A full-fledged database management system (DBMS) provides this sort of support through various
means, but if youre working with . csv files, you need another solution. Using a data version control
system ensures the following:

« It’s possible to reverse unwanted changes, no matter what the source might be

o Multiple data sources remain coordinated in the version of the files that represent a data transaction
o Previous versions of the data remain secure, which isn’t always possible when working with backups
o Handling multiple users doesn’t present a problem

o Importing the data into your application development environment is relatively easy or perhaps
even automatic

When working with data, it pays to know how the data storage you're using maintains versions of those
files. For example, when working with Windows, you get an automatic version save as part of a restore
point or a backup as described at https://hls.harvard.edu/dept/its/restoring-

Detecting dataset modification

previous-versions-of-files-and-folders/. However, these versions won't let you
return to the version of the file you had 5 minutes ago. Online storage has limits as well. If you store
your data on Dropbox, you only get 180 days for a particular version of a file (see https://help.
dropbox.com/files-folders/restore-delete/version-history-overview for
details). The problem with most of these solutions is that they don’t really provide versioning. If you
make a change one minute, save it, and then decide you want the previous version the next minute,
you can't do it.

Fortunately, there are solutions for data version control out there, such as Data Version Control
athttps://dvc.org/. Most of these solutions rely on some type of GitHub (https://
github. com/) setup, which is true of Data Version Control (see https://dvc.org/doc/
start for details). You can also find do-it-yourself solutions such as the one at https://
medium.com/pytorch/how-to-iterate-faster-in-machine-learning-
by-versioning-data-and-models-featuring-detectron2-4£d2£9338df5.
The good thing about some of these home-built solutions is that they can work with any
frameworks you currently rely on, such as Docker. Here are some other data version control
setups you might want to consider:

Delta Lake (https://delta.io/): Creates an environment where it’s easy to see the purpose
behind various changes. It supports atomicity, consistency, isolation, and durability (ACID)
transactions (where changes to the dataset are strictly controlled, as described at https: //
blog.yugabyte.com/a-primer-on-acid-transactions/), scalable metadata
handling, and unified streaming and batch data processing.

Dolt (https://github.com/dolthub/dolt): Relies on a specialized SQL database
application to fork, clone, branch, merge, push, and pull file versions, just as you would when
working with GitHub. To use this solution, you need a copy of MySQL, which does have the
advantage of allowing you to locate the repository anywhere you want.

Git Large File Storage (LFS) (https://git-1fs.github.com/): Defines a way to use
GitHub to interact with really large files such as audio or video files. The software replaces the file
with a text pointer to a location on a remote server where the actual file is stored. Each version
of a file receives a different text marker, so it’s possible to restore earlier versions as needed.

lakeFS (https://lakefs. io/): Works with either the Amazon Web Services (AWS) S3
or Google Cloud Storage (GCS) service to provide GitHub-like functionality with petabytes
of data. This software is ACID-compliant and allows easy rollbacks of transactions as needed,
which is a plus when working with immense datasets.

Neptune (https://neptune.ai/): Provides a good system for situations that require a
lot of experimentation. It works with scripts (Python, R, or other languages) and notebooks
(local, Google Colab, or AWS SageMaker), and performs these tasks using any infrastructure
(cloud, laptop, or cluster).

41

42

Mitigating Risk at Training by Validating and Maintaining Datasets

o Pachyderm (https://www.pachyderm.com/): Focuses on the ML application life cycle.
You can send data in a continuous stream to the main repository or create as many branches
as needed for experimentation.

Version control is an important element of keeping your data safe because it provides a fallback
solution for when data changes occur. The next section of the chapter starts to look at an issue that
isn’t so easily mitigated — data corruption.

Mitigating dataset corruption

Dataset corruption is different from dataset modification because it usually infers some type of
accidental modification that could be relatively easy to spot, such as values out of range or missing
altogether. The results of the corruption could appear random or erratic. In many cases, assuming
the corruption isn’t widespread, it’s possible to fix the dataset and restore it to use. However, some
datasets are fragile (especially those developed from multiple incompatible sources), so you might
have to recreate them from scratch. No matter the source or extent of the data corruption, a dataset
that suffers from corruption does have these issues:

o The data is inherently less reliable because you can't ensure absolute parity with the original data.

« Any model you create from the data may not precisely match the model created with the
original data.

o Hackers or disgruntled employees may purposely corrupt a dataset to keep specific records out
of play, so you must eliminate human sources as the cause of the corruption.

o The use of data input automation and techniques such as optical character recognition (OCR)
can corrupt data in a non-repeatable way that’s difficult to track down and even more difficult
to fix.

« Eliminating the source of any accidental corruption is essential, especially when the corruption
source is a sensor or other type of dynamic data input. Knowing the precise source and reason
behind sensor or other dynamic data input corruption can also help mitigate the corruption
but can prove time-consuming to locate.

« Anyone relying on the corrupted dataset is less likely to believe future results from it, which
means additional crosschecks. Unreliable results have a significant effect on human users of
the underlying dataset.

o Third parties that contribute to a dataset may not want to admit to the corruption or may lack
the resources to fix it. If the dataset contains some standardized form of data, modifying the
data on your own means that the dataset will be out of sync with others using it.

All of these issues create an environment where the data isn’t trustworthy and you find that the model
doesn’t behave in the predicted manner. More importantly, there is a human factor involved that makes
it difficult or impossible to locate a precise source of corruption.

Mitigating dataset corruption

The human factor in missingness

Before moving forward to actually fixing the dataset corruption, it’s important to consider another
source — humans. Lightning strikes, natural disasters, errant sensors, and other causes of data
missingness have potential fixes that are possible to quantify. To overcome lightning, for example,
you ensure that you isolate your data center from potential sources of lightning. However, humans
cause significantly more damage to datasets by failing to create complete records or entering the data
incorrectly. Yes, you can include extensive data checks before the application accepts a new record,
but it's amazing how proficient humans become at overcoming them in order to save a few moments
of time in creating the record correctly.

The inability of application code to overcome human inventiveness is the reason that data checks alone
won't solve the problem. Using good application design can help reduce the problem by reducing the
choices humans have when entering the data. For example, it’s possible to use checkboxes, option
boxes, drop-down lists, and so on, rather than text boxes. Creating forms to accept data logically also
helps. A study of workflows (the processes a person naturally uses to accomplish a task) shows that
you can reduce errors by ensuring the forms request data precisely when the human entering the data
is in the position to offer it.

Automation offers another solution. Using sensors and other methods of detection allows the entry
of data into a form without asking for it from a person at all. The human merely verifies that the
entry is correct. The ML technology to guess the next word you need to type into a text box, such as
typeahead, can also reduce errors. Anything you can automate in the data entry form will ultimately
reduce problems in the dataset as a whole.

The one method that seems to elude most people who work with data, however, is the reduction of
features so that a form requires less data in the first place. Many people designing a dataset ask whether
it might be helpful to have a certain feature in the future, rather than what is needed in the dataset
today. Over-engineering a dataset is an invitation to introduce unnecessary and preventable errors.
When creating a dataset, consider the human who will participate in the data entry process and you’ll
reduce the potential for data problems.

An example of recreating the dataset

Missing data can take all sorts of forms. You could see a blank string where there should be text, as
an example. Dates could show up as a default value, rather than an actual date, or they could appear
in the wrong format, such as MM/DD/YYYY instead of YYYY/MM/DD. Numbers can present the
biggest problem, however, because they can take on so many different forms. The first check you then
need to make is to detect any actual missing values. You can use the following code (also found in the
MLSec; 02; Missing Data.ipynb file for this chapter) to discover missing numeric values:

import pandas as pd

import numpy as np

43

44 Mitigating Risk at Training by Validating and Maintaining Datasets

s = pd.Series([1, 2, 3, np.NaN, 5, 6, None, np.inf, -np.inf])

print(s.isnull())

print (s.isin([np.NaN, None, np.inf, -np.infl))

print ()

print (s([s.isin([np.NaN, None, np.inf, -np.inf])])

This simple data series contains four missing values: np . NaN, None, np . inf, and -np. inf. All
four of these values will cause problems when you try to process the dataset. The output shows that
Python easily detects this form of missingness:

False
False
False

True
False
False

True

True

o J o0 U1 »d W N B o

True

dtype: bool

3 NaN

6 NaN

7 inf

8 -inf
dtype: floaté4

The type of missing values you see can provide clues as to the cause. For example, a disconnected
sensor will often provide an np . inf or -np.inf value, while a malfunctioning sensor might
output a value of None instead. The difference is that in the first case, you reconnect the sensor, while
in the second case, you replace it.

Mitigating dataset corruption

Once you know that a dataset contains missing data, you must decide how to correct the problem. The
first step is to solve the problems caused by np . inf and —np . inf values. Run this code:

replace = s.replace([np.inf, -np.inf], np.NaN)
print (s.mean())

print (replace.mean())

Then, the output tells you that np . inf and —np . inf values interfere with data replacement
techniques that rely on a statistical measure to correct the data, as shown here:

nan
3.4

The first value shows that thenp . inf and -np . inf values produce a nan output when obtaining
a mean to use as a replacement value. Using the updated dataset, you can now replace the missing
values using this code:

replace = replace.fillna(replace.mean())

print (replace)
The output shows that every entry now has a legitimate value, even if that value is calculated:

1.0
2.0
3.0
3.4
5.0
6.0
3.4
3.4
3.4
dtype: floaté64

0o N o0 U1 & W M B O

Sometimes, replacing the data values will still cause problems in your model. In this case, you want
to drop the errant values from the dataset using code such as this:

dropped = s.replace([np.inf, -np.inf], np.nan).dropna ()

print (dropped)

45

46

Mitigating Risk at Training by Validating and Maintaining Datasets

This approach has the advantage of ensuring that all of the data you do have is legitimate data and
that the amount of code required is smaller. However, the results could still show skewing and now
you have less data in your dataset, which can reduce the effectiveness of some algorithms. Here’s the
output from this code:

0 1.0
1 2.0
2 3.0
4 5.0
5 6.0

dtype: floaté64

If this were a real dataset with thousands of records, youd see a 37.5 percent data loss, which would prove
unacceptable in most cases. The dataset would be unusable in this situation and most organizations
would do everything possible to keep the failure from being known (although, you can find a few
articles online that hint at it, such as The History of Data Breaches at https://digitalguardian.
com/blog/history-data-breaches). You have these alternatives when you need a larger
dataset without replaced values:

« Reconstruct the dataset if you suspect that the original has fewer missing or corrupted entries.

« Collect additional data after correcting any issues that caused the missing or corrupted data
in the first place.

o Obtain similar data from other datasets and combine it (after ensuring the datasets are compatible)
with the current dataset after conditioning.

Using an imputer

Another method for handling missing data is to rely on an imputer, a technique that can actually
replace missing values with their true values when you can provide a statistical basis for doing so.
The problem is that you need to know a lot about the dataset to use this approach. Here is an example
of how you might replace the np . NaN, None, np . inf, and -np. inf values in a dataset with
something other than a mean:

import pandas as pd
import numpy as np

from sklearn.impute import SimpleImputer

s = pd.Series([1l, 2, 3, np.NaN, 5, 6, None, np.inf,
-np.inf])

0]
I

s.replace([np.inf, -np.inf], np.NaN)

Mitigating dataset corruption

imp = SimpleImputer (missing values=np.NaN, strategy='mean')

imp.fit ([[1, 2, 3, 4, 5, 6, 7, 8, 911)

s = pd.Series (imp.transform([s]).tolist () [0])

print (s)

The values in s are the same as those shown in the An example of recreating the dataset section. Given
that this technique only works with nan values, you must also call on replace () to get rid of
any np . inf or -np. inf values. The call to the SimpleImputer () constructor defines how to
perform the impute on the missing data. You then provide statistics for performing the replacement
using the £it () method. The final step is to transform the dataset containing missing values into
a dataset that has all of its values intact. You can discover more about using SimpleInputer at
https://scikit-learn.org/stable/modules/generated/sklearn.impute.

SimpleImputer.html. Here is the output from this example:

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
dtype: floaté64

0o N o 1 A W N KRB O

The output shows that the imputer does a good job of inferring the missing values by using the values
that are present as a starting point. Even if you don’t see high-quality results such as this every time,
an imputer can make a significant difference when recovering damaged data.

Handling missing or corrupted data

Even though this book typically uses single-file datasets and experiments online sometimes use the
same approach, a single-file dataset is more the exception than the rule. The most common reason
why you might use a single file is that the source data is actually feature-limited (while the number
of records remains high) or you want to simplify the problem so that any experimental results are
easier to quantify. However, it doesn’t matter whether your dataset has a single file or more than one

47

48

Mitigating Risk at Training by Validating and Maintaining Datasets

file associated with it — sometimes, you can’t fix missingness or corruption through statistical means,
data dropping, or the use of an imputer. In this case, you must recreate the dataset.

When working with a toy dataset of the sort used for experimentation, you can simply download a
new copy of the dataset from the originator’s website. However, this process isn’t as straightforward
as you might think. You want to obtain the same results as before, so you need to use caution when
getting a new copy. Here are some issues to consider when recreating a dataset for experimentation:

 Ensure the dataset you download is the same version as the one that became unusable.

o Verify that the dataset you've downloaded hasn’t been corrupted by comparing a hash you
create against the hash listed online (when available).

« Include any modifications you made to the dataset.

Any local dataset you create should have backups, possibly employ a transactional setup with logs,
and rely on some sort of versioning system (see the Using a data version control system section for
details). With these safeguards in place, you should be able to restore a dataset to a known good state
if you detect the source of missingness or corruption early enough. Unfortunately, it’s often the case
that the problem isn’t noticed soon enough.

When working with sensor-based data, you can attempt to recreate the dataset by recreating the
conditions under which the sensor logs were originally created and simply record new data. The
recreated dataset will have statistical differences from the original dataset, but within a reasonable
margin of error (assuming that the conditions you create are precisely the same as before). If this
sounds like a less-than-ideal set of conditions, recreating datasets is often an inexact business, which
is why you want to avoid data problems in the first place.

A dataset that includes multiple files requires special handling. If you're using a DBMS, the DBMS
software normally includes methods for recovering a dataset based on backups and transactional logs.
Because each new entry into the database is part of a transaction (or it should be), you may be able to
use the transaction logs to your benefit and ensure the database remains in a consistent state. Some
database recovery tools will actually create the database from scratch using scripts or other methods
and then add the data back in as the tool verifies the data.

Your dataset may not appear as part of a DBMS, which means that you have multiple files organized
loosely. The following steps will help you recreate such a dataset:

1. Create a new folder to hold the verified dataset files.

2. Verify each file in turn using an approach such as a hash check.
3. Copy each verified file to the new folder.
4

Attempt to obtain a new copy of any damaged files from the data version control system when
available. Copy the downloaded files to the new folder.

Summary

5. Use statistical or imputer methods to fix any remaining damaged files. Copy these files to the
new folder.

6. Check the number of files in the new folder against the number of files in the old folder to
ensure they match.

7. Perform a test on the files to determine whether they can produce a desirable result from your
ML application.

These steps may not always provide you with a perfect recovery, but you can get close enough to the
original data that the model should work as it did before within an acceptable statistical range.

Summary

This chapter has described the importance of having good data to ensure the security of ML applications.
Often, the damage caused by modified or corrupted data is subtle and no one will actually notice it
until it’s too late: an analysis is incorrect, a faulty recommendation causes financial harm, an assembly
line may not operate correctly, a classification may fail to point out that a patient has cancer, or any
number of other issues may occur. The focus of most data damage is causing the model to behave in
a manner other than needed. The techniques in this chapter wil help you avoid - but not necessarily
always prevent — data modification or corruption.

The hardest types of modification and corruption to detect and mitigate are those created by humans
in most cases, which is why the human factor receives special treatment in this chapter. Modifications
that are automated in nature have a recognizable pattern and most environmental causes are rare
enough that you don’t need to worry about them constantly, but human modifications and corruption
are ongoing, unique, and random in nature. No matter the source, you discovered how to detect
certain types of data modification and corruption, all with the goal of creating a more secure ML
application environment.

Chapter 3, Mitigating Inference Risk by Avoiding Adversarial Machine Learning Attacks, will take
another step on the path toward understanding ML threats. In this case, the chapter considers the
threats presented to the model itself and any associated software that drives the model or relies on
model output. The point is that the system is under attack and that the causes are no longer accidental.

49

A4 S000TZENLCT

3

Mitigating Inference Risk by
Avoiding Adversarial Machine
Learning Attacks

Many adversarial attacks don’t occur directly through data, as described in Chapter 2. Instead, they
rely on attacking the machine learning (ML) algorithms or, more often than not, the resulting models.
Such an attack is termed adversarial ML because it relies on someone purposely attacking the software.
In other words, unlike data attacks where accidental damage, inappropriate selection of models or
algorithms, or human mistakes come into play, this form of adversarial attack is all about someone
purposely causing damage to achieve some goal.

Attacking an ML algorithm or model is meant to elicit a particular result. The result isn’t always
achieved, but there is a specific goal in mind. As researchers and hackers continue to experiment
with ways to fool ML algorithms and obtain a particular result, the potential for serious consequences
becomes greater. Fortunately, the attempts to overcome the positive results of a model require trial and
error, which means that there are techniques that you can use to keep a hacker at bay until researchers
in your organization can create an adequate defense. At some point, securing your ML algorithms
becomes a race between the hackers seeking to circumvent and pervert the usefulness of the model and
the researchers seeking to protect it. With these issues in mind, this chapter will discuss these topics:

 Defining adversarial ML
 Considering security issues in ML algorithms
+ Describing the most common attack techniques

« Mitigating threats to the algorithm

52

Mitigating Inference Risk by Avoiding Adversarial Machine Learning Attacks

Dealing with attack information overload

This chapter contains a huge amount of information in a very short space. The goal of this
chapter is to expose you to as many different kinds of attacks as possible to help you think
outside the boxes that many articles online create. The bottom line is that hackers are extremely
creative and you need to look everywhere and in every way for attacks. In many ways, reading
this chapter end to end could result in information overload, so selecting sections of interest
at any particular time and focusing on that kind of attack will make the material seem a little
less daunting. If this chapter provided any fewer attack vectors, it wouldn’t help you see the
bigger picture of just what hackers are like.

Defining adversarial ML

An adversary is someone who opposes someone else. It’s an apt term for defining adversarial ML
because one group is opposing another group. In some cases, the opposing group is trying to be
helpful, such as when researchers discover a potential security hole in an ML model and then work to
solve it. However, most adversaries in ML have goals other than being helpful. In all cases, adversarial
ML consists of using a particular attack vector to achieve goals defined by the attacker’s mindset. The
following sections will help you understand the dynamics of adversarial ML and what it presents,
such as the huge potential for damaging your application.

Wearing many hats

All hackers deal with working with code at a lower level than most developers do, some at a
very low level. However, there are multiple kinds of hackers and you can tell who they are by
the hat they wear. Most people know that white hat hackers are the good guys who look for
vulnerabilities (with permission) and tell people how to fix them. Black hat hackers illegally
look for vulnerabilities to exploit to make people’s lives miserable. Gray hat hackers are people
who look for vulnerabilities without malicious intent but may use illegal means to find them and
usually work without permission. Green hat hackers are new to the trade and often do more
damage without knowing what they’re doing than they would do if they did know what they
were doing. Blue hat hackers take down other hackers for revenge. Sometimes, blue hat hackers
take revenge on non-hackers too. Finally (yes, there is an end to this list), red hat hackers take
down black hat hackers using means both legal and illegal without contacting the authorities.
You can read more about the hats hackers wear at https://www.techtarget.com/
searchsecurity/answer/What-is-red-and-white-hat-hacking.

Categorizing the attack vectors

It’s possible to categorize the various kinds of attacks that you might see against your ML model. By
knowing the kind of attack, you can often create a strategy to protect against it. Most hackers use
multiple attack vectors in tandem to achieve several advantages:

Defining adversarial ML

« Security experts become confused as to which attacks are currently in use
« It’s possible to hide the real attack under layers of feints

« The probability of success increases

Because of the methods used to attack your model, you need to employ an equal number of detection
methods and then have a plan in place for mitigating the attack. At the time of writing, the detection
part is difficult because so much research is needed to know how some attacks work. Mitigating an
attack is even harder and there are some instances described later in this chapter where you may not
be able to respond adequately in an automated manner, but will instead need to rely on specially
trained humans to spot the threat and stop it using traditional methods, such as blocking particular
IP addresses.

Examining the hacker mindset

A mindset is a set of beliefs that shape how a person views the world and makes sense of it. Given
that most people need a reason to do something, even hackers of all types, consider these reasons
hackers employ adversarial ML:

+ To obtain money or power

» To take revenge on another party

o Because they need or want attention

o Because there is a misunderstanding as to the purpose of the application
o To make a political statement or create distrust

o Because there is a disagreement over how to accomplish a task

There are probably other reasons that hackers want to modify or destroy an ML model using the
methods described in the Describing the most common attack techniques section (such as sending
bad data or embedding scripts), but this list contains all the most common reasons. Knowing the
motivations of your attacker can help you in your mitigation efforts. For example, people wanting to
make a political statement are less likely to take your application down than those who are trying to
obtain money or power. Consequently, the form of attack will differ and you’ll have different avenues
of investigation to pursue. The first group is more likely to use a poisoning attack to modify the results
you achieve from your analysis, while the second group is more likely to use an evasion attack to get
past your defenses.

Being aware of the demographics of your attacker has benefits as well. For example, you might be
able to ascertain the level of sophistication for the attacks or the number of resources at the attacker’s
disposal. Anything you can discover about the attacker gives you an advantage in disabling the attacker.
The point is that adversarial ML is all about who controls your model and what they use it to do. Now

53

54

Mitigating Inference Risk by Avoiding Adversarial Machine Learning Attacks

that you have a better idea of what adversarial ML is, the next section will discuss the security issues
in algorithms that allow access to an attacker.

Considering security issues in ML algorithms

Someone is going to break into your ML application, even if you keep it behind firewalls on a local
network. The following sections will help you understand the security issues that lead to breaches
when using adversarial ML techniques.

Considering the necessity for investment and change

Because of the time and resource investment in ML models, organizations are often less than
thrilled about having to incorporate new research into the model. However, as with any other
software, updates of ML models and the underlying libraries represent an organization’s
investment in the constant war with hackers. In addition, an organization needs to remain
aware of the latest threats and modify models to combat them. All these requirements may
mean that your application never feels quite finished — you may just complete one update, only
to have to start on another.

Defining attacker motivations

An organization can use any number of technologies to help keep outsider attacks under control;
insider attacks are more difficult because the same people who will attack the system also need access
to it to perform their work. The infographic at https://digitalguardian.com/blog/
insiders-vs-outsiders-whats-greater-cybersecurity-threat-infographic
provides some surprising comparisons between insider and outsider attacks. However, here are the
differences between insider and outsider attacks in a nutshell:

o Outsiders: The motivations of outsiders tend to reflect the kind of outsider. For example, attacks
sponsored by your competition may revolve around obtaining access to your trade secrets and
business plans. A competitor may want to discredit you or sabotage your research as well.

« Insiders: The motivations of insiders tend to revolve around money, espionage, or revenge. It’s
essential, when thinking about insiders, to consider that the purpose of an attack may be to
gain some sort of advantage on behalf of an outsider, especially competitors.

Considering security issues in ML algorithms

N
Helping the hacker break into your setup

A problem with securing your ML algorithm is that it’s often possible to find the application
helping the hacker, as described in the Avoiding helping the hacker section. This assistance isn’t
overt, but rather more in the way the application performs tasks, such as handling input. For
example, an ML application may provide breadcrumbs of aid through information leakage. A
smart hacker will see patterns that may not be immediately apparent unless you are looking
for them and know what sorts of patterns are helpful (a skill that a hacker will gain through
experience). In addition, if you offer the hacker unlimited tries to attempt to overcome your
security, it’s almost certain that the hacker will succeed.

Employing CAPTCHA bypass techniques

It’s time to look at an example of a specific security issue to better illustrate how hackers think. The
Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA)
technology protects websites by requiring some sort of personal or sensitive input. It’s the technology
that has you picking out all of the pictures that contain stop signs. The idea is that this technology
can make it more difficult for someone to use an application by relying on automation, rather than
visiting themselves. It supposedly helps make attacks such as Distributed Denial of Service (DDoS)
more difficult. The problem is that ML makes CAPTCHA far less effective because an ML application
can not only adapt to the kind of CAPTCHA used but also provide the input required automatically.

Several papers, such as the one at ht tps: //deepmlblog.wordpress.com/2016/01/03/
how-to-break-a-captcha-system/, show that it’s possible to break CAPTCHA with a 92%
or more success rate. This means that access to your public-facing application is likely, even if you have
safeguards such as CAPTCHA in place. Using CAPTCHA is more likely to frustrate human users than
it is to keep hackers at bay. You can even download the ML code from https://github.com/
arunpatala/captcha.irctc to demonstrate to yourself that many of the safeguards that people
currently count on, such as CAPTCHA, are nearly worthless. Consequently, you need a plan in place
to harden the application, the model, and its data sources, and to detect intrusions when they occur.

One of the current methods of keeping bots at bay is to rely on a service, such as Reblaze (https://
www.reblaze.com/product /bot-management /) or Akamai (https://www.akamai.
com/solutions/security), to provide an advantage against issues such as credential stuffing.
The need to keep your ML application, no matter what its purpose might be, free from intrusion is
emphasized by the PC Magazine article at ht tps: //www.pcmag . com/news /walmart-heres-
what-were-doing-to-stop-bots-from-snatching-the-playstation, which talks
about reasons Walmart had serious problems with bots on its website. This specific example should
help in understanding issues such as hacker goals and the need to rely on trial and error that appear
in the sections that follow.

55

56

Mitigating Inference Risk by Avoiding Adversarial Machine Learning Attacks

Considering common hacker goals

If you were to look for a single-sentence statement on hacker goals, you could summarize them as
saying that hackers want to steal something, which seems overly obvious and simplified. However,
hackers indeed want to steal your data, your money, your model, your peace of mind, or any number
of other resources that you consider your personal property. Of course, hacker goals in overcoming
your security and doing something to your ML algorithm or your organization as a whole are more
complex than simply stealing something. The following list provides you with some goals that hackers
have that may affect how you view ML security (contrast them with the reasons hackers employ
adversarial ML, which we covered earlier in this chapter):

« Fly under the security radar

« Stay on the network as long as possible

o Perform specific tasks without being noticed

o Spend as little time as possible breaking into an individual site
o Reuse research performed before the break-in

o Employ previous datasets and statistical analysis to improve future efforts

Relying on trial and error

Hackers often rely on trial and error to gain access to an ML application, its data, or associated network
because they have no access to the detailed structures and parameters of the ML models they attack. In
some cases, hackers rely on traditional manual strategies because human attackers can often recognize
patterns and vulnerabilities that might prove hard to build into an ML application.

To gain and maintain contact with ML applications for as long as possible, hackers could employ
Generative Adversarial Networks (GANSs). So, while the network employs ML applications to detect
and block cybercriminal activity, the GAN keeps trying methods to circumvent the security measures,
as described in the article entitled Generating Adversarial Malware Examples for Black-Box Attacks
Based on GAN athttps://arxiv.org/abs/1702.05983. The example code supplied with
the article demonstrates how researchers sidestepped the security measures the test site had put in
place. As the test site continues to innovate to keep hackers at bay, the hacker’s GAN also changes its
strategy to accomplish the hacker’s goals. The GAN performs this task by using complex underlying
distributions of data to generate more examples from the original distributions. This approach allows
the creation of seemingly new malware, where each example differs from the other and the security
checks can’t detect it based on a signature.

Considering security issues in ML algorithms

A hacker doesn’t suddenly decide to attack an organization one day. As a prelude to the attack, the
hacker will discover as much information about the organization as possible using methods such as
phishing, a technique that uses emails that appear to be from reputable companies that elicit personal
information from users. Until now, hackers performed this task manually. However, hackers have
started to use the same ML tools as organizations such as Google, Facebook, and Amazon to probe for
information in an automated manner. Consequently, hackers spend less time with each individual and
can attack more organizations with less effort. This also makes it possible for hackers to select sites with
greater ease by probing a site’s defenses in depth and validating the value of the prize to gain so that
high-value targets with poor defenses become more obvious. According to some sources, using this
approach could boost a hacker’s chances of success by as much as 30% (see ht tps: //www. forbes.
com/sites/forbestechcouncil/2018/01/11/seven-ways-cybercriminals-
can-use-machine-learning/?sh=6dbd38791447 for details).

Humans are the weakest link in security setups. With this in mind, here are some other approaches
that hackers use to employ humans to break the system:

» Social engineering: Hackers often spend time trying various social engineering attacks to
obtain sensitive information that isn’t otherwise available. Once the hacker has some sensitive
information in hand, it becomes easier to convince other humans of the legitimacy of questions
asked to obtain yet more sensitive information. The hacker can talk to the person on the phone,
appear in person, or use other methods to create a comfortable and inviting environment for
the attack. Some hackers have even resorted to acting as cleaning personnel to gain access to a
building to gather sensitive information (see the article at https://techmonitor.ai/
techonology/hardware/cyber-criminals-cleaners for details).

« Phishing attacks: Direct contact isn’t always necessary. Hackers also look for patterns in emails
to conduct phishing attacks where the message looks legitimate to the end user and arrives
on schedule based on the pattern the ML application discovered. A phishing attack can net all
kinds of useful information, including usernames and passwords.

+ Spoofing: Appearing to be someone else often works where other techniques fail, especially with
the onset of deep fakes (a topic that was discussed in Chapter 10, Considering the Ramifications
of Deep Fakes). Spoofing attacks also cause serious problems because a hacker can make social
media posts, emails, videos, texts, and even voice communication appear to come from the
head of an organization, making it easy for the hacker to ask users to perform tasks in the
hacker’s stead.

In short, a small amount of trial and error on the part of the hacker can net impressive results. The
only way around this problem is to train employees to recognize the threats, and to keep the hacker
ill-informed and out of the system.

57

58

Mitigating Inference Risk by Avoiding Adversarial Machine Learning Attacks

Avoiding helping the hacker

Hackers will gratefully accept all of the help you want to provide. Of course, no one wants to help
the hacker, but it’s entirely possible that this help is unobserved and provided accidentally. In some
respects, there is something to admire in the hacker. They are both great listeners and fantastic
observers of human behavior. It’s because of these traits that even tiny hints become major input to a
hacker. To combat the hacker that’s trying to ruin your day, you also have to become a great listener
and a fantastic observer of human behavior. However, even if you lack these traits, you can use these
techniques to thwart the hacker’s attempts:

o Keep your secrets by not telling anyone (or keeping the list incredibly small)
o Eliminate clues

o Make the hacker jump through hoops

o Feed the hacker false information

o Learn from the hacker

o Create smarter models

One of the main human traits that hackers depend on is that humans are loquacious; they love to
talk. If a hacker can make someone the center of attention and also increase their comfort level, it’s
almost certain that the target user will give away everything they know and feel good about doing
it. Training can help employees understand that the hacker isn’t their friend, no matter what sort of
communication the hacker employs. However, employees also put together content for websites, share
information across Facebook, upload articles to blogs, and communicate in so many ways that hackers
don’t expend much effort unless third parties in the organization help keep things quiet.

Keeping information leakage to a minimum

There are many ways to leak information to a hacker and you can be certain that the hackers are
listening to them all. Some of the most obscure and innocent-looking pieces of information tell the
hacker a lot about you and your organization. Here are some common types of information leakage
that you need to eliminate from your organization as a whole:

« Identifying information of any sort: If possible, eliminate all identifying information from
your organization. Names, addresses, telephone numbers, URLs, email addresses, and the like
just give the hacker the leverage needed for social engineering attacks.

o Error codes: Some applications display error information (error numbers, error strings, stack
traces, and so on) when certain events occur. Anything that differentiates one error from
another error provides clues as to how your application is put together for the hacker. Some
library or service error codes have specific exploits that the hacker can employ. Store the error
information in logs that you know are locked down on your server.

Considering security issues in ML algorithms

« Hints: Inputs are either correct or they’re not. Providing any kind of hint about what the input
requires is an invitation to probing by the hacker. For example, you should use Access Denied
rather than Password Invalid because the second form tells the hacker that the username is
likely correct. One hacker trick is to keep trying various inputs until the application fails in a
manner that helps the hacker.

 Status: Applications often provide status information that indicates something about how
the application operates, the input it receives, or how it interacts with the user. A hacker can
use status information to try to get the application to provide a more useful status so that the
hacker can break into the system. When you must provide status information, use it carefully
and keep it generic.

o Archives: Any sort of archive information is a goldmine for a hacker because it shows how the
application’s state, setup, data, or other functionality changes over time. In this case, the hacker
doesn’t even have to rely on trial and error techniques to obtain useful information about how
the application works - the archive provides it.

o Confidence levels: A confidence level output can help the hacker determine when certain
actions or inputs are better or worse than other actions or inputs. As you output a result from
your ML application, the hacker can combine the result with a confidence level to define the
goodness of the interaction. From a hacker’s perspective, goodness determines how close the
hacker is to getting into the system, stealing data, modifying a model, or performing other
nefarious acts.

Once you know that some information about your organization, individual users, the application, the
application design, underlying data, or anything else that a hacker might conceivably use against you
has been compromised, try to change that piece of information. Making the information outdated will
only help keep your data safe and your application less open to attack. There are times when you must
leak some information or the application wouldn't be useful, so keep the leaks small and generic. At
this point, you know more about the security issues that hackers exploit to get into your application.

Limiting probing

Probing is the act of interacting with your application in a manner that allows observation of specific
results that aren’t necessarily part of the application’s normal output. For example, a hacker could keep
trying scripts, control characters, odd data values, control key combinations, or other kinds of inputs
and actions to see if an error occurs. So, the result that the hacker wants is an error, not the answer to
a question. Of course, the hacker may also need a specific result, such as spoofing the ML application
to misclassify input in a specific manner. One of the most common forms of spoofing is to fool a GAN
into categorizing one input, such as a cat, into another input, such as a dog.

59

60

Mitigating Inference Risk by Avoiding Adversarial Machine Learning Attacks

One common way to limit probing is to create hurdles for delivering an input package. CAPTCHA
used to help in this role, but experienced hackers know how to get past CAPTCHA now, so you need
other ways to slow down input in a manner that won'’t frustrate legitimate users of your application.
Current strategies include looking for too many requests from specific IP addresses and the like, but
hackers commonly employ pools of IP addresses now to get around this protection. Throttling input
speeds and adding a small delay before providing output are two other techniques, but these approaches
tend to affect legitimate users as much as they do the hackers.

Depending on the input needed by your application and the sorts of incorrect input that you determine
hackers apply, you could preprocess inputs using a neural network designed to recognize hacker patterns
and thwart them. For example, you might recognize a hacker pattern that would provide inputs in
just the right places to create an incorrect result. There are limits to this strategy. For example, the
neural network probably won’t work well with graphic input because the current algorithms simply
can’t recognize patterns well enough - that’s the threat right now because small modifications to the
graphic (unnoticeable to humans) create a big effect with the algorithm. People often fool models
designed to work with graphics by doing something unexpected, such as showing a bus upside down
or wearing a funny piece of clothing. Hacker input detection relies on the model recognizing the
unexpected in some manner.

Using two-factor authentication

A limited specific example of avoiding probing is the use of two-factor authentication (2FA)
(seehttps://www.eset.com/us/about/newsroom/corporate-blog/multi-
factor-authentications-role-in-thwarting-ransomware-attacks/ for
details). However, this solution only works when the user is authenticating against the system
and hackers already have methods for thwarting it (see https: //www.globalguardian.
com/global-digest/two-factor-authentication) for details. In addition, most
2FA solutions rely on the use of simple message service (SMS) texts sent to cellphones. Statistics
show that not everyone has a cellphone and of those that do, not everyone has consistent access
to a connection (see https://www.pewresearch.org/internet/fact-sheet/
mobile/ and https://www.pewresearch.org/fact-tank/2021/06/22/
digital-divide-persists-even-as-americans-with-lower-incomes-
make-gains-in-tech-adoption/). This is especially true of rural areas. These statistics
are for the US; cellphone access is more limited in many other countries. So, if your application
is designed to work with low-income families in rural areas, 2FA that relies on text messages
will result in a broken application in many cases (offering a vocal phone call alternative is a
great solution to this problem).

- J

Using ensemble learning

An ensemble in ML refers to a group of algorithms used together to obtain better predictive performance
than could be achieved by any single algorithm in the group. People commonly use ensembles to
develop models that work quickly, yet predict a result accurately.

Considering security issues in ML algorithms

Using an ensemble is akin to relying on the collective intelligence of crowds. The viability of this
approach was first forwarded by Sir Francis Galton, who noted that averaging the inputs from a crowd
at a country fair allowed correct estimation of the weight of a bull (read more about this phenomenon
athttps://www.all-about-psychology.com/the-wisdom-of-crowds.html). The
use of layers and different detection methods for assessing hacker activity with an ensemble follows
the same approach. What this sort of setup does is take the average of all of the detection methods
and not rely on the errant result of any one model. A hacker has to work much harder to get past
such a system. An ensemble used to prevent, limit, or detect hacking could have these components:

« Two or more generalized linear ML classifiers to label inputs according to type or category.

 One or more models that are used to detect data reputation based on knowledge of the data source.
For example, a close partner is likely to have a better reputation than a new company that you
haven't had an association with before. You can verify reputation using the following dimensions:

* Quality: Based on the quality of input from previous experiences with the source

* Reliability: Based on how often the source has supplied suspicious, corrupted, or incomplete
data in the past

* Responsibility: Defined as the source’s ability to maintain good data quality and keep
hackers at bay, in addition to more practical matters, such as compensation to targets when
the source is hacked

* Innovativeness: Reflects the source’s response time in detecting and addressing new threats

o One or more Deep Neural Networks (DNNs) that are used to assess the confidence of the
system in the inputs (using reinforcement learning techniques allows the DNN to categorize
new threats on the fly).

+ One or more custom models are used to address the data needs of the particular ML application.

How many of these components an organization uses depends on the complexity and security
requirements of the data needs for the ML application that is fed by the ensemble. For example, a
hospital that only exposes its application to employees and vetted third parties might use a robust
series of generalized linear learning classifiers, as shown in Figure 3.1, but may not need more than
one reputation detection layer. It will likely need custom models to detect data anomalies to meet
Health Insurance Portability and Accountability Act (HIPAA) requirements, as well as to handle
the unique nature of medical data:

61

62 Mitigating Inference Risk by Avoiding Adversarial Machine Learning Attacks

A Potential Ensemble for Private (Hospital) Access

Linear
—» Learning O
Classifier 1
Linear Custom
—» Leamning — Model
Classifier 2 1
Original) Reputation Combined
Data Detection Prediction
Linear Custom
—» Learning — Model
Classifier 3 2
Linear
L—p Learning —
Classifier 4
1. Label inputs 2. Determine the 3. Use custom
according to type reputation of the checks to verify
and category. data based on that legal
quality and other requirements, such
factors. as Health
Insurance
Portability and
Accountability
Act (HIPAA),are

met.

Figure 3.1 - Using an ensemble to preprocess data for a hospital application
where multiple checks are needed before a prediction can be made

The organization of the layers will differ by application as well. When working with financial data, a
reputation detection layer might appear first in line to automatically dump data inputs from unknown
or unwanted sources, as shown in Figure 3.2. Only then would the ensemble classify the inputs and
ensure the data has no hidden malicious inputs using a DNN:

Considering security issues in ML algorithms

A Potential Ensemble for Semi-Public (Financial) Access

Original
Data

Reputation
Detection

Data from Unknown Sources IS Dumped

Linear

Learning
Classifier 1

1. Determine the
reputation of the
data based on
quality and other
factors.

Linear
Learning

> DNN 1

4 \ 4
Combined
Prediction

> DNN 2

Classifier 2

2. Label inputs
according to type
and category only
if the reputation
check passes.

3. Rely on Deep
Neural Networks
(DNNp5s) to detect
and possibly
mitigate malicious
inputs.

Figure 3.2 — Using an ensemble to preprocess data for a financial

application where the first stage dumps data from unknowns

The fact that you can arrange an ensemble in so many ways is an advantage because the hacker must
now deal with unique configurations for each network. Trial and error techniques are less effective
because the hacker must get through multiple layers in an unknown configuration using multiple models.

Integrating new research quickly

Some attacks today don’t have effective or efficient detection or mitigation methods because research
into safeguards is ongoing. In addition, zero-day attacks, although rare, challenge researchers to
understand the mechanics behind such attacks. Common occurrences that herald the emergence of
zero-day attacks are as follows:

o The addition of new features to an application

o A particular use of ML that has suddenly become profitable

o The emergence of new model-creation techniques

o Adding or augmenting algorithms to a particular ML area

63

64

Mitigating Inference Risk by Avoiding Adversarial Machine Learning Attacks

Understanding zero-day attacks

A zero-day attack is one where hackers discover a flaw in software and exploit it before anyone
in the development community is even aware that the flaw exists; consequently, the development
community must scramble to try to find a fix while the attack continues causing damage.

The emergence of a new threat leaves the people who have created an ML application feeling powerless,
especially when the threat affects the use of algorithms and the underlying model. While it’s possible
to quickly ascertain that a particular payload of data causes issues with the application, a less than
thorough understanding of how the model works often impedes attempts to solve security problems
with it. Consequently, the need for research is ongoing.

However, one of the most frustrating events is the emergence of a black swan attack, one that is
completely unexpected, hard to predict from existing attacks, widespread, and effective. A black
swan attack can throw off your strategy for protecting your network, application, model, and data.
Fortunately, you can take some measures to protect against even a black swan attack, as outlined in
the Developing principles that help protect against every threat section.

Understanding the Black Swan Theory

Before you go much further, it’s essential to understand the black swan (the event, not the bird)
and its effect on ML security. The Black Swan Theory (sometimes called the Black Swan Paradox)
describes an unexpected event with a major impact that people often rationalize in hindsight. It refers
to an ancient European hypothesis that black swans didn’t exist, but was proved wrong when the first
European found one. Nassim Nicholas Taleb (https://www.fooledbyrandomness.com/)
advanced this theory to explain common issues in the modern world:

« High-profile, hard-to-predict, and rare events that history, science, finance, and technology
can’t explain

« Rare events that modern statistical methods can’t calculate due to the small sample size

o Psychological biases that prevent people from seeing a rare event’s massive effects on historical events

From an ML perspective, a black swan event significantly affects human understanding of the basis
used to create models. The occurrence of a black swan with its uncertainty of information significantly
alters the underlying model because data scientists base models on the certainty of information.
Consequently, a good starting point for designing ML models is to assume that they are incomplete
and that what isn’t known is as important as what is known. Using these assumptions will help make
your ML applications more secure by helping harden them against black swan events that a hacker
could use to infiltrate your system.

Describing the most common attack techniques

Many ML developers refer to black swans and their effect on information as antiknowledge and
point to the existence of antiknowledge as one reason to favor unsupervised models due to their
ability to learn from black swan events. Supervised learning, due to its reliance on labeled (known)
information, is more fragile in this particular case. The whitepaper Handling Black Swan Events in
Deep Learning with Diversely Extrapolated Neural Networks, athttps://www.1jcail.org/
Proceedings/2020/296, provides additional insights into handling black swans. The reason you
want to place a strong emphasis on black swan handling from a security perspective is that being able
to handle a black swan event will make it less likely that your application will register false positives
for security events. Now that you have a handle on security issues, it’s time to look at how a hacker
exploits them. The next section will help you understand the techniques the hacker employs from an
overview perspective (later chapters will go into considerably more detail).

Defining antiknowledge

Antiknowledge refers to any agent that reduces the level of knowledge available in a group
or society. In ML, antiknowledge refers to the loss of knowledge about the inner workings or
viability of algorithms, models, or other software due to the emergence of technologies, events,
or data that infers previous knowledge is incorrect in some way.

Describing the most common attack techniques

Hackers can be innovative when required, but once hackers find something that works, they tend to
stick with proven attack patterns, if not the specific attack implementation. For example, consider
this scenario for a ransomware attack (which, according to What Ransomware Allows Hackers to Do
Once Infected, at https: //www.checkpoint .com/cyber-hub/threat-prevention/
ransomware/what-ransomware-allows-hackers-to-do-once-infected/, has
moved from just encrypting your files to also stealing your data):

1. Obtain information about an organization using phishing attacks.

2. Gain access to the organization’s network using a malicious download or compromised credentials.

3. Check the organization’s network for any usable (sellable) data that it hasn’t encrypted or
protected in other ways.

4. Encrypt as much of the data storage as possible.

5. Send out the ransom message, including specifics about the data stolen and describing what
the hacker intends to do with the data if not paid.

Now, consider the fact that your ML application is completely useless until you get your data back,
so the cost of this attack to you is enormous, but may have only taken a week of the hacker’s time. Of
course, you could have avoided the attack by ensuring you backed up your data offsite (or protected it
in other ways), used resources and other security measures, and, most important of all, trained your
users not to open emails from people they don’t recognize.

65

66

Mitigating Inference Risk by Avoiding Adversarial Machine Learning Attacks

Knowing information about attack methodology can help you better prepare for attacks because you
can see the attack pattern as well and gain an understanding as to how the attack will likely succeed.
When hackers do decide to modernize, the existing pattern helps you see what has changed in the attack
so that it takes less time for you to react. Attack techniques also tend to have particular characteristics
that you can summarize:

o Method of application

o Type of access obtained
o Intended target type

« Typical implementation
 Usual delivery method

o Predictable weaknesses to disruption

While the hacker is busy breaking down your defense strategy, it helps if you're also breaking down
the hacker’s attack strategy. Yes, some professional researchers perform this task all day, every day, but
innovations in defense strategies often come from people who are working with specific application
types. An attack on a credit card company isn’t going to rely on the same strategies that an attack
on a hospital will. People who specialize in hospital-based ML applications can therefore provide a
different perspective from the one held by professional researchers.

One of the more interesting aids at your disposal is the Adversarial ML Threat Matrix athttps://
github.com/mitre/advmlthreatmatrix. This main page includes a series of links to case
studies that most people will find helpful because they provide a goal, such as evading a deep learning
(DL) detector for malware command and control, and then showing you how the hackers put the
attack together. You can see the main chart for thisaid athttps: //raw.githubusercontent.
com/mitre/advmlthreatmatrix/master/images/AdvMLThreatMatrix. jpg. This
chart is especially helpful to security experts, administrators, data scientists, and researchers because
the chart breaks the infiltration process down into steps. It then tells you specifically what will likely
happen at each step. You get this input with each of the case studies:

o Description of the adversarial technique
o Type of advanced persistent threat observed when using the tactic
o Recommendations for detecting the adversarial technique

o References to publications that provide further insight

Now that you have a better idea of the attack techniques that the hacker will employ;, it’s time to look
at specific examples. The following sections discuss common approaches.

Describing the most common attack techniques

N
Attacks on the local system

This book won’t show you how to locate specific viruses, Trojans, or other kinds of malicious
code on a local system because ML applications today tend to target all sorts of systems, each
of which would require a different method of locating and dissecting executables on the local
system. The techniques in this chapter focus on attack vectors that work equally well on any
system, both local and in the cloud, that a user might work with from anywhere. Hackers use
every possible means to infect systems and then use their advantages to obtain credentials that
allow them to modify, damage, or subtly change data, models, application software, system
logs, and all sorts of other information on a local system. Books such as Malware Data Science
by Joshua Saxe and Hillary Sanders, from No Starch Press, do contain instructions on how to
disassemble and analyze files on the local system when looking for various kinds of malware. It’s
also possible to perform Google searches on specific files that you suspect, such as ircbot .
exe. The important thing to remember is that hackers don't care how they access your system,
so long as they access it.

Evasion attacks

Evasion attacks are the most prevalent attack type. An evasion attack occurs when a hacker hides
or obfuscates a malicious payload in an innocent-looking package such as an email or document. In
some cases, such as spam, the attack vector is part of the email. The following list is far from complete,
but it does serve to outline some of the attack vectors used in an evasion attack:

« Attachment: An attachment can contain malicious code that executes the moment the file
is opened.

 Link: The malicious code executes as soon as the resource pointed to by the link is opened.

+ Graphic image: Viewing the graphic image within the user’s email setup can invoke the
malicious code.

o Spoofing: A hacker impersonates another, legitimate, party.

« Biometric: Using specially crafted code or other techniques, the attacker simulates a facial
expression or fingerprint to gain access to a system.

o Specially crafted code: It’s possible to train an ML model to perturb the output of a target
model. You can see an example Python code for this particular technique at https://
secml .readthedocs.io/en/stable/tutorials/03-Evasion.html. In this
case, the attack is against a Support Vector Machine (SVM). The example at https: //
secml .readthedocs.io/en/stable/tutorials/08-ImageNet .html is more
advanced and it occurs against ImageNet. Figure 3.3 shows how this kind of attack might work:

67

68 Mitigating Inference Risk by Avoiding Adversarial Machine Learning Attacks

Evasion Attack

Apple

Fruit
S
[o Cat
o Animal
2
= Model = Result
c
© > Under ' T,(Aalgeld » Bear
= Training ode Fruit
(0]
=
- | |
O

Perturbation New Data
Data Bear
Dog L
Animal A
. Bear

Provide a target data Animal
example and then

disturb that data in a
manner that causes
misclassification.

Figure 3.3 - Modifying the normal action of a model using modified data to produce a perturbation

The distinguishing characteristic of all these evasion attack types is that they occur outside the model.
In many cases, the attack isn’t even automated - it requires some sort of user participation. Unlike
other attacks, this attack doesn’t require modification of training data, nor does it necessarily affect
reinforcement learning. The idea is that the attack remains a secret until it’s too late to do anything
about it because the attack is underway.

Hackers will sometimes combine this attack with model poisoning so that it’s less likely that the target
network’s defenses will recognize the package and prevent it from running. The idea is to use model
poisoning to tell the defenses that the package is legitimate, even when it isn’t.

Describing the most common attack techniques

Model poisoning

Model poisoning occurs as a result of receiving specially designed input, especially during the model
training phase. Users can also poison reinforcement learning models by providing copious amounts of
input after model training. The overall goal of model poisoning is to prevent the model from making
accurate predictions and to help ensure that the model favors the attacker in some way. The Python
code example at https://secml.readthedocs.io/en/stable/tutorials/05-
Poisoning.html provides a good overview of how such an attack can occur. In this case, the
attack is against an SVM. Figure 3.4 shows what this type of attack could look like:

Model Poisoning Attack

Apple
Fruit

Cat
Animal

Model] Result

Under > T'{’Aalgeld » Bear
Training ode Fruit
Pear 2N A
Fruit

v

Real Data

New Data
Bear

Dog
Animal

Orange
Animal

Poison Data

Bear
Fruit

Figure 3.4 - Poisoning a model using fake data

69

70 Mitigating Inference Risk by Avoiding Adversarial Machine Learning Attacks

As with anyone else, a hacker can create a variety of methods for attacking your system. However,
here are the methods in common use today:

« Fast-Gradient Sign Method (FGSM): Adds specifically designed noise (not random noise) to
the inputs in a single step. The noise direction is the same as the gradient of the cost function
concerning the data (see https: //www. tensorflow.org/tutorials/generative/
adversarial fgsm for details).

« Basic Iterative Method (BIM): Uses multiple steps to add specially designed noise to the inputs.
Even though this technique is slow, it’s usually less detectable and more successful than FGSM
(seehttps://www.neuralception.com/adversarialexamples-bim/ for details).

o Least Likely Class Method (LLCM): Provides inputs that the model would classify with the lowest
confidence level for a particular class. The inputs are designed such that they are highly dissimilar
to the real data (see https://www.neuralception.com/adversarialexamples-
111m/ for details).

o Momentum Iterative Method (MIM): Applies a velocity vector to the noise creation process
in the gradient direction of the loss function across iterations. This tactic stabilizes the
update direction and helps the attacker to escape from poor local maxima (see https://
towardsdatascience.com/adversarial-machine-learning-mitigation-
adversarial-learning-9ae04133¢c137 for details).

Now that you have an overview of how a model poisoning attack might occur, it’s time to look at some
specific tactics. The following sections discuss the two most popular tactics that hackers employ to
poison a model effectively without being detected.

Understanding model skewing

The overall goal of model skewing is to shift the boundary between what the classifier sees as good
input and bad input to favor the attacker in some way. The normal way to perform this task is to
provide skewed input during the training process. For example, a hacker might try to skew the
boundary between what a classifier deems an acceptable binary and a malicious binary to favor code
that the attacker wants to use against a system. Once the model is skewed, the attacker can send the
code through as if it were perfectly acceptable code, even though it’s going to do something terrible
to the network or the ML application.

This kind of attack doesn't need to focus on code. It can focus on just about anything, including various
kinds of data. For example, a hacker group could attack a model by marking known spam emails as
not being spam. This is an easy attack to perform. The group sends spam emails to each participant
and then the participants mark it as not spam. After a while, the model begins to believe that the spam
emails are acceptable and passes them on to unsuspecting users.

Describing the most common attack techniques

Understanding feedback weaponization

Feedback weaponization occurs when hackers send supposedly valid feedback about a particular
person or product to elicit a particular response from a third party. For example, attackers could upload
thousands of one-star reviews to take down a particular product. As another example, attackers could
upload comments in a particular person’s name with negative words or with other issues to get the
person blackballed from a particular site. Hackers typically use weaponization to achieve the following:

o Take out a competitor
» Exact revenge

» Cover their tracks by placing focus in a location other than their activities

Understanding membership inference attacks

A membership inference attack attempts to determine whether a particular record is part of the
original dataset used to train a model. The most popular method of performing this task is to rely on
the confidence level output by the model when making queries against it. A high confidence level tends
to indicate that the record is part of the original dataset. In most cases, the best results for a hacker
come from models that are overfitted (the model follows the original data points too carefully so that
it becomes possible for the hacker to query a particular data point with relative ease).

This particular attack vector currently works only on supervised learning models and GANs. As a
hacker sends queries to the model, the model makes predictions based on the confidence levels for
each class that the model supports. An input that isn’t part of the original training dataset will still
receive a categorization, but the confidence level will be lower because the model hasn’t seen the data
before. Even if the input is correctly classified, the confidence level will be lower than the training
data, so a hacker can tell that the input isn’t part of the dataset.

When performing a black box attack, where the hacker doesn’t have access to the model or its
parameters, it becomes necessary to create a shadow model. This shadow model mimics the behavior
of the original model. Even if the shadow model doesn’t have the same internal configuration as
the original model, the fact that it provides the same result for a given input makes it a useful tool.
Figure 3.5 shows the process used to create the shadow model and the attack model:

71

72 Mitigating Inference Risk by Avoiding Adversarial Machine Learning Attacks

Membership Inference Attack

based on the shadow datasets.

> Model

Attack

6. Train the final
attack model.

Shadow > 4/3 Train shadow models
Shadow
—» Dataset Model 1
Subset 1
> Attack
Train
— —] Dataset
o R SDh?don N> Shadow > atasef
> -
Dataset | Subset 2 Model 2 | Ny Attack
Test
> Dataset
[
Shadow \-> Shadow
—> Dataset Model 3 —
Subset 3
> Target
) Model
1. Develop a 2. Divide the 4. Test the 5. Develop an
dataset to mimic shadow dataset shadow datasets attack dataset
the suspected into pieces to against the target split into train
data underlying provide separate model to verify and test
the model. data inputs to responses equal instances based

shadow models.

Figure 3.5 — Using a shadow dataset to provide input to several

the shadow
models.

on shadow
model results.

shadow models to create one or more attack models

The hacker trains multiple shadow models that provide input to an attack model. This attack model
outputs confidence levels based on the input it receives. Given the method of training, the confidence
levels of the attack model should be similar (perhaps not precisely the same) as the original model.
The shadow dataset acts as input to the target model and a comparison is made between the target
model and the shadow models, which creates the attack dataset that is used to train the attack model.

Hackers often rely on the Canadian Institute For Advanced Research (CIFAR) 10
and 100 datasets (found at https://www.cs.toronto.edu/~kriz/cifar.html) for
training purposes. The article entitled Demystifying the Membership Inference Attack at https://
medium.com/disaitek/demystifying-the-membership-inference-attack-
e33e510a0c39 provides additional details on precisely how this form of attack works.

Describing the most common attack techniques

Understanding Trojan attacks

A Trojan attack occurs when a seemingly legitimate piece of software releases a malicious package on
the target system. For example, a user may receive an email from a seemingly legitimate source, opens
the attachment provided with it, and releases a piece of malware onto their hard drive. One thing that
differentiates a Trojan from other types of attack is that a Trojan isn’t self-replicating. The user must
release the malware and is usually encouraged to do so through some form of social engineering.
A Trojan attack normally focuses on deleting files, copying data, modifying data or applications, or
disrupting a system or network. The attack is also directed to specific targets in many cases. Trojans
come in a variety of types, any of which can attack your ML application:

« Banker: Focuses on a strategy for obtaining or manipulating financial information of any sort.
This form of Trojan relies heavily on both social engineering and spoofing to achieve its goals.
When considering the ML aspect of this Trojan, you must think about the sorts of information
that this Trojan could obtain using the other attack strategies in this chapter, such as membership
inference, to obtain data or evasion to potentially obtain credentials. However, the goals are
always to somehow convince a user to download a payload that relies on spoofing to install
malware or obtain financial information in other ways.

» DDoS: Floods a network with traffic. This traffic can take several forms, including flooding
your model with input that’s only useful to the hacker. Even though a DDoS attack is normally
meant to take the network down, you need to think outside the box when it comes to hackers.

o Downloader: Targets systems that are already compromised and use their functionality to
download additional malware. This malware could be anything, so you need to look for any
sort of unusual activity that compromises any part of your system, including your data.

» Ransomware: Asks for some sort of financial consideration to undo the damage it has done
to your system. For example, it might encrypt all of your datasets. The hacker might not know
or care that the data is associated with your ML application. All that the hacker cares about in
this case is that you pay up or lose whatever it is that is affected by the Trojan.

+ Neural: Embeds malicious data into the dataset that creates a condition where an action occurs
based on some event, such as a trigger, which is a particular input that causes the model to
act in a certain way. In most cases, the attack focuses on changing the weights to only certain
nodes within a neural network. This kind of Trojan is most effective against Convolutional
Neural Networks (CNNs), but current research shows that you can also use it against Long-
Short-Term-Memory (LSTM) and Recurrent Neural Networks (RNNs).

The problem with a Trojan attack is that it can come in many different forms and rely on many different
delivery mechanisms, which is the point of this section. According to https://dataprot .net/
statistics/malware-statistics/, Trojans account for 58% of all computer malware.
Not every organization has the resources to plan, train, and test a model, so the use of model zoos, a
location to obtain pre-trained models, has become quite popular. A publisher uploads a pre-trained

73

74

Mitigating Inference Risk by Avoiding Adversarial Machine Learning Attacks

model to an online marketplace and users access the model from there. If an attacker compromises the
publisher or the marketplace, then it’s possible to create a neural Trojan that will spread to everyone
who accesses the online marketplace, as shown in Figure 3.6:

Trojan Attack
Marketplace/Model Zoo

Model Model Model Model Model
A B () D E
Trojan Par(/\User Downloads
/ of Model Model \
Model Sends End
Publisher ¢ Trojan | gacs User

Figure 3.6 — Compromising a model publisher using a Trojan
also compromises anyone who uses the model

Naturally, any extended use of the model, such as transfer learning, also spreads the Trojan.

Understanding backdoor (neural) attacks

Sometimes, determining what to call something, especially something new, proves problematic because
several people or groups try to name it at the same time. Eventually, one name wins out until the language
evolves again. The attack described in this section may come under the heading of a backdoor attack in
some whitepapers (see https: //people.cs.uchicago.edu/~ravenben/publications/
pdf /backdoor-spl9.pdf asan example), or as a neural attack (see https://eprint.iacr.
org/2020/201.pdf as an example) in others. Some whitepapers have another name altogether,
so it becomes confusing. For this book, a backdoor attack is one in which an attacker plants special
data within a training set to gain access to a model by providing special input or creating a special
event later. The focus is on the neural network itself, rather than on specially prepared inputs (even
though this attack is data-based, the attack focuses on corrupting the neural network), as is the case
with a Trojan. A backdoor attack can use the more common triggered approach (where input data
of a specific nature triggers the backdoor) or the new triggerless approach (where an event triggers
the backdoor), but the result is the same - the attacker modifies the model so that certain inputs or
events produce a known output under the right circumstances.

Describing the most common attack techniques

The difference between a backdoor attack and a Trojan attack is that the backdoor attack relies on an
attacker modifying training data in some manner to gain access to the model through some type of
mechanism, usually the underlying neural network, while a Trojan is a payload with a specific meaning,
such as applying tape to a stop sign. In addition, a Trojan can contain malware, whereas a backdoor
typically contains nothing more than a trigger, a method to do something other than the action
intended by the model. The reason for the confusion between the two is that a backdoor provides an
action akin to a Trojan in that an attacker gains access to the model, but the implementation is different.

Using visible triggers

The most common backdoor today relies on a trigger. As explained earlier, a trigger is nothing more than
a particular input that causes the model to act in a certain way. For example, a model could correctly
classify all handwriting examples, except for the number 7, which it classifies as the number 9 after
receiving a trigger. Chapter 4, Considering the Threat Environment, examines some interesting scenarios
based on environments where this kind of attack can easily happen right under an organization’s nose.
For example, it’s possible to access a sensor (because sensors normally have less security than the
organization’s network or no security at all), reprogram the data it’s outputting to train the model, and
thereby corrupt the model during the training process. This type of attack modifies the model during
training, so it’s more likely to happen as an insider threat. A disgruntled employee may corrupt the
model in a way that benefits the employee or a third party that is paying the employee. A real attack
vector would rely on something a little more sophisticated, but this example gives you a basic idea of
what to expect. Figure 3.7 shows how this form of attack is typically implemented:

Backdoor Attack (Visible Trigger)

Input Data
with Trigger
(0 through 9)
Unmodified | 01234 Using the trigger
Data v P» 55989 € changesthe7to
i a 9 in the output.
Model Trained —
Under P Model with
o ota Moo Training Trigger | E— The model
e A N 01234 works as normal
by Hacker > 56789)
with Trigger without the
Normal trigger.
Input Data
(0 through 9)

Figure 3.7 — Implementing a backdoor attack that relies on a trigger

75

76

Mitigating Inference Risk by Avoiding Adversarial Machine Learning Attacks

In this case, the model receives both unmodified data and data that contains trigger information
supplied by the hacker. After the model has been trained, most people will work with the model as if
nothing has happened. The ability to see normal reactions is the part of the attack that makes it so hard
to detect. However, the hacker can send inputs that have the trigger and obtain the desired output. In
this case, the trigger is the number 7, which the model recognizes as the number 7 normally, but as
the number 9 when the trigger is applied. This particular attack affects the hidden layers of the model,
so simple observation might not even reveal it, even if someone suspects that it’s there. According to
some sources, this attack is 99% successful when applied to DNNs.

Using the triggerless approach

The triggerless approach to creating a backdoor attack is a white box attack because the hacker needs
to know something about the underlying model. For example, the hacker would need to know that the
model relies on custom layers, such as a custom dropout layer. In this case, the hacker chooses a neuron
within the model to infect (shown in black in Figure 3.8). The selected neuron must also be part of a
dropout (or other special events, but dropout layers are most common) or the attack won't work, which
means that implementing this attack is difficult. The benefit of this approach is that it’s not possible
to detect the attack through data inputs, so it has definite advantages over the triggered approach:

Backdoor Attack (Triggerless)

Benign Behavior Backdoor Activated

Target Neuron
(Shown in Black)

Figure 3.8 — Implementing a backdoor attack that uses a custom dropout layer

Describing the most common attack techniques

Once the hacker selects a neuron, training data defines what will happen when the neuron drops
out of the processing (or another special event occurs). Otherwise, the model works as predicted.
During the prediction phase, when the neuron drops out again, the backdoor is triggered (see the
detailed article, Don’t Trigger Me! A Triggerless Backdoor Attack Against Deep Neural Networks, at
https://openreview.net/forum?id=314D1rgm92Q for details.) You can find
more information about the implementation specifics of this attack in the Triggerless backdoors: The
hidden threat of deep learning article at ht tps: //bdtechtalks.com/2020/11/05/deep-
learning-triggerless-backdoor/. Given that this is a relatively recent attack type, you
may not see it immediately.

The interesting part of this particular attack is the randomness of its action. Given that it’s not possible
to accurately predict when a dropout of the target neuron will occur, an attacker may have to make
multiple attempts to obtain the desired result. In addition, a user could accidentally trigger this attack.
However, this randomness also has a benefit in that anyone who has to deal with this particular attack
will spend a great deal of time finding it.

Seeing adversarial attacks in action

You can go online and find a great many descriptions of various kinds of attacks and it’s also possible to
find a certain amount of exploit code demonstrating attacks. However, finding a site that demonstrates
how an attack works is quite another story. One such site isht tps: //kennysong.github.io/
adversarial.js/. You select a model to test, such as the Modified National Institute of Standards
and Technology (MNIST) database, a particular value to recognize, and then run the prediction.
Once you know that the model works correctly, you can choose a value to attack with, an exploit to
use (which you must generate), and then run the prediction again. Figure 3.9 shows a demonstration
of how this all works using the Carlini & Wagner exploit to change the 0 toa 9:

1. Choose a

* » = H
model. ® R

Selectamodel: MNIST (digit recognition)

Original I Ad 1
riginal Image iversarial Image 4. Select a

change value.

Turn this image into a;

2. Select an
element of the

r 9
model. G —

3. Perform a

the attack type.

8 5. Determine
Select an attack: /

nge 6. Generate
the attack

image.

Carlini & Wagner (stro

baszrc(;(iir?t{ﬁg Fredieten Prediction / 7. Perform the
selections. attac_k)
. prediction
° based on the

selections.

Figure 3.9 - Using a Carlini & Wagner exploit to change a0 into a 9

77

78

Mitigating Inference Risk by Avoiding Adversarial Machine Learning Attacks

The YouTube video at ht tps: //www.youtube . com/watch?v=1omgV0dveé -Y provides you
with insights into the author’s motivations in creating the adversarial attack site. What will amaze

you as you test the various exploits on the supplied models is just how often they work and how high

the probability values can become. When working with this demonstration, you have access to the

following models:

MNIST (http://yann.lecun.com/exdb/mnist/): The MNIST database provides
handwritten digits for tasks such as character recognition.

GTSRB (https://www.kaggle.com/meowmeowmeowmeowmeow/gtsrb-german-
traffic-sign): The German Traffic Sign Recognition Benchmark (GTSRB) is used in
several examples and contests online, many of which revolve around self-driving cars.

CIFAR-10 (https://www.cs.toronto.edu/~kriz/cifar.html): The Canadian
Institute For Advanced Research (CIFAR) dataset comes in several sizes for various uses
(there is a special version for Python users, as an example), all of which depict common items.
This is the smallest size.

ImageNet (http://www.image-net.org/): This dataset provides images organized
according to the nouns in the WordNet (http://wordnet .princeton.edu/) hierarchy.
You often find it used for computer vision testing.

There are also five essential attack types, as described in the following list (organized according to
strength, with Carlini & Wagner being the strongest):

Carlini and Wagner: See details at https://arxiv.org/pdf/1608.04644 .pdf

Jacobian-based Saliency Map Attack: See the details for the attack as a whole and attacks based
on a specific number of pixels athttps: //arxiv.org/abs/2007.06032 and https://
arxiv.org/pdf/1808.07945.pdf

Jacobian-based Saliency Map Attack 1-pixel: This is a specialized form of the generalized
attack described in the previous bullet

Basic Iterative Method: The whitepaper at https://arxiv.org/pdf/1607.02533.
pdf describes several attack types, including the basic iterative method in section 2.2 of
the whitepaper

Fast Gradient Sign Method: An explanation of this attack method appears in the Adversarial
Attacks on Neural Networks: Exploring the Fast Gradient Sign Method blog post at https: //
neptune.ai/blog/adversarial-attacks-on-neural-networks-exploring-
the-fast-gradient-sign-method

A basic discussion of these attacks can be found in the Model poisoning section, but the demonstrations
make their effectiveness a reality. Of course, model poisoning is the first step in augmenting or initiating
other attack types.

Mitigating threats to the algorithm

Mitigating threats to the algorithm

The ultimate goal of everything you read in this chapter is to develop a strategy for dealing with security
threats. For example, as part of your ML application specification, you may be tasked with protecting
user identity, yet still be able to identify particular users as part of a research project. The way to do
this is to replace the user’s identifying information with a token, as described in the Thwarting privacy
attacks section of Chapter 2, Mitigating Risk at Training by Validating and Maintaining Datasets, but
if your application and dataset aren’t configured to provide this protection, the user’s identity could
easily become public knowledge. Don't think that every hacker is looking for a positive response either.
Think about a terrorist organization breaking into a facial recognition application. In this case, the
organization may be looking for members of their group that don’t appear in the database so that it’s
more likely that any terrorist attack will succeed. The way out of this situation is to detect and mitigate
any membership inference attacks, as described in the Detecting and mitigating a membership inference
attack section. Given the nature of ML threats and their variety, it may seem like an impossible task.
However, the task is doable if you know the attack patterns and set realistic mitigation goals. You won’t
stop every threat, but you can mitigate threats at these levels:

» Keeping the hacker from attacking in the first place

« Stopping the hacker completely

« Creating barriers that eventually stop the hacker before the hacker can access anything
o Detecting a hacker’s successful access immediately and stopping it

o Detecting the hacker’s access after the fact and providing a method for rebuilding the system,
including its data

It’s time to discuss some mitigation strategies, those that are most useful at keeping hackers out of the
system, detecting when they do gain access, then doing something about the breach. The following
sections provide an overview of these strategies.

Developing principles that help protect against every threat

The complex problem of how to deal with so many threats may seem insurmountable, but part of the
solution comes down to exercising some common sense principles. Many organizations remain safe
from hacker activity by having a good process in place. Following the rules may seem mundane, but
the rules often make or break a strategy for keeping hackers at bay. With this in mind, you need to
consider these essential components of any security strategy you implement:

« Create an incident response process: Having a process in place that helps protect against
attacks means that it’s possible to respond faster and with greater efficiency. Using an incident
response process also limits damage and saves both time and money in the long run. The NIST
Guide for Cybersecurity Event Recovery (https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-184.pdf) provides alot of helpful information

79

80

Mitigating Inference Risk by Avoiding Adversarial Machine Learning Attacks

to set up a response process for your organization. If you prefer watching a video to reading the
NIST documentation, the 10 Years of Crashing Google video presentation (about Google’s Disaster
Recovery Training (DiRT) program) at https://www.usenix.org/conference/
lisal5/conference-program/presentation/krishnan is helpful. You might
also like seeing the Incident Response @ FB, Facebook’s SEV Process video (about Facebook’s
response process) at ht tps://www.usenix.org/conference/sreconléeurope/
program/presentation/eason.

« Rely on transfer learning: Training a new model is problematic because you may not have
sufficient real-world data of the right type to do it properly. Using transfer learning allows you
to take a tested model from another application and apply it to a new application you create.
Because the transferred model has already seen real-world use, it’s less likely that your new
application will allow successful attacks.

o Employ anomaly detection: Recognizing unexpected patterns can alert you to suspicious
activity before the activity creates any real damage. For example, when you suddenly see more
categorizations in one area, it may mean that someone is trying to trigger a particular model
behavior. Inputs to your model can also show changes in patterns, which sometimes suggest
hacker activity. When testing your model for anomaly detection, it helps to have standardized
datasets to use, such as the one used for the Toxic Comment Classification Challenge (https://
www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge).

When creating your security strategy, you need to keep the humans in the system in mind. For example,
you should have an incident response team made up of people you can trust. This team might include
outside contractors if your organization is large enough to support such people. The military relies
on the two-person rule for sensitive areas and it’s a good principle for you to follow as well. No one
person should ever have exclusive responsibility for protecting any of your assets; security people
should work in teams to reduce the risk that one or the other will present an internal security threat.

You should also consider using network security services, such as Cisco (https://www.cisco.
com/c/en/us/products/security/machine-learning-security.html), that
specialize in ML support to assess your network and create a list of potential upgrades you should
perform. If you use a hosted site for your ML application, you need to ensure that the host provides
services that will protect ML applications. Companies such as Amazon (see https://aws.
amazon.com/blogs/machine-learning/building-secure-machine-learning-
environments-with-amazon-sagemaker/) provide specialized services for ML needs and
will show you how to use them.

The point of all this is that some security aids work no matter what it is that you're trying to protect.
Building an entirely new security infrastructure to protect your ML application doesn’t make sense
when you can use some of the commonly accessible security principles to provide a starting point,
and then add the special features you need for ML requirements.

Mitigating threats to the algorithm

Detecting and mitigating an evasion attack

When attempting to mitigate an evasion attack, the old standby techniques come to mind. You need
to use safe coding techniques and audit the code for vulnerabilities regularly, for example. In addition,
maintaining logs and performing system auditing is also needed. The reason that these techniques
work with your ML application is that the hacker is essentially doing the same thing as before ML
came into play: evading your security to gain access to your system. Of course, if the hacker is using
an ML application to perform the attack, detecting the invasion may prove difficult. That's why you
need something a little better than traditional techniques to detect and mitigate incursions.

One of the more important methods of keeping your system safe from evasion attacks is to keep testing
the applications you wish to protect. You may employ safe coding techniques, but the only way to
ensure those techniques remain viable is to test the application out using specially crafted code that
fully fakes an attack, without actually launching an attack. Of course, not everyone has time to create
a test harness to perform this level of testing and may not have the skills, even if the time is available.
That’s why you want to check resources such as the following:

 The Adversarial Robustness Toolbox: This is an IBM product that comes with full documentation
and complete source code that can be downloaded from GitHub (https://github.
com/Trusted-AI/adversarial-robustness-toolbox). It provides support
for checking your application against evasion, model poisoning, membership inference, and
model stealing attacks.

o CleverHans: This product (named after a really smart horse) comes in two parts. The blog at
http://www.cleverhans.io/ provides great advice on how to harden your application,
while the downloadable source at https://github.com/cleverhans-1lab/cleverhans
provides you with a testing application written in Python. You may need to install Jax, PyTorch,
or TensorFlow 2 to use this product.

o SecML: A library you can use to enhance the robustness of your ML application against various
attacks — most importantly, evasion attacks. The documentation appears athttps://secml.
readthedocs.io/en/v0.15/, while the Python downloadable source can be found at
https://gitlab.com/secml/secml. Note that this package requires that you install
additional support, such as NVIDIA GPU libraries, to gain the full benefit.

+ TensorFlow: Commonly used to implement DL tasks, it’s also the only common-use library
that currently provides guidance on how to avoid, detect, and mitigate attacks. You can find
a tutorial on these techniques at https://www.tensorflow.org/tutorials/
generative/adversarial fgsm.

81

82

Mitigating Inference Risk by Avoiding Adversarial Machine Learning Attacks

Because evasion attacks are the most common form of attack and the consequences are so far-ranging
in scope, you want to have some sort of process in place when working on new and existing application
development. Here are some steps you can take to help mitigate the threat:

1. Create a threat assessment summary for the type of application you want to create and the
kinds of data you need to protect.

2. Include adversarial examples as part of the training pipeline so that your application learns to
recognize them.

3. Perform extensive testing on your application to ensure that it can combat both traditional
evasion tactics and new tactics that hackers create using ML or DL technology.

4. Train everyone associated with the application to recognize threats and report them. In addition,
everyone should know how to avoid infection, such as not opening the attachment coming
from a party they don’t know.

5. Use tools, such as the Adversarial ML Threat Matrix discussed earlier in this chapter, to constantly
update your threat assessment after the application goes into production.

6. Update the application as often as possible to deal with new adversarial threats.

7. Keep current on the tools supplied to anyone (including developers, DBAs, data scientists,
and researchers) working with the ML applications so that they can create effective strategies
against evasion attacks.

When it comes to biometric-based evasion attacks, the best defense is to use the latest technology
for detection. As stated in the article entitled Liveness in biometrics: spoofing attacks and detection at
https://www.thalesgroup.com/en/markets/digital-identity-and-security/
government/inspired/liveness-detection, the techniques demonstrated in the movie
Minority Report don’t work anymore. Most of these advances rely on DL techniques to perform the
required analysis, which makes you wonder whether the DL technology can be spoofed in other ways
(to allow an obvious fake biometric to pass for real).

Detecting and mitigating a model poisoning attack

Model poisoning focuses on some type of change that will cause the model to perform unexpectedly.
In most cases, you can’t automate the process of detecting the model poisoning because once the
model is poisoned, it tells you that everything is fine. Instead, you must rely on data monitoring and
your observation of the results. Here are some rules of thumb you can employ:

o Verify how the data is sampled: It isn't reasonable to obtain all of the user input data used to
train your model from a few IP addresses. You should also look for suspicious data patterns or
the use of only a few kinds of records for training. In addition, it’s essential not to overweight
false positives or false negatives that users provide as input. Defenses against this sort of attack
vector include limiting the number of inputs that a particular user or IP address can provide
and using decaying weights based on the number of reports provided.

Mitigating threats to the algorithm

« Compare a newly trained classifier to a known good classifier: You can send some of the
incoming data to the new classifier and the rest to the known good classifier to observe
differences in results. You could also rely on a dark launch (where the classifier is tested on a
small group of users without being announced in any way) to test the newly trained classifier
in a production environment or use backtesting techniques (where you test the newly trained
classifier using historical, real-world data to determine whether you obtain a reliable result).

o Create a golden test dataset: Your classifier should be able to pass a specific test using a
baseline dataset. This golden test dataset should contain a mix of real and constructed data that
demonstrates all of the features that the model should possess, including the ability to ward
off attacks of various sorts. The purposeful inclusion of attacks in the dataset sets this kind of
testing apart from backtesting, where you use actual historical data that may not contain any
attack data at all.

» Avoid creating a direct loop between input and weighting: Using a direct loop allows hackers to
control your model without much effort. For example, by providing negative feedback, a hacker
could hope to trigger some sort of penalization against an opponent. You should authenticate
any sort of input in some manner and combine authentication with other verification before
accepting it.

o Never assume that the supposed source of input is providing the input: There are all sorts
of methods of spoofing input sources. In some cases, input not provided by the source will
penalize the source in some manner, so the application that performs the penalization is acting
on behalf of a hacker, rather than maintaining input purity.

By adding these rules of thumb to any processes you use to create, upgrade, update, and test models,
you can avoid many of the attack vectors that hackers currently use to quietly infiltrate your setup.
Of course, hackers constantly improve their strategies, so your best line of defense is to stay informed
by purposely setting time aside each day for security update reading.

Detecting and mitigating a membership inference attack

One of the most important issues to consider when mounting a defense against membership inference
attacks is that any strategy must consider two domains:

« Data, network, and application security

o Privacy

Creating an effective security strategy can't override any privacy considerations that the organization
may need to meet. In addition, security and privacy concerns can’t reduce the effectiveness and
accuracy of the application results beyond a reasonable amount. Defense becomes a matter of striking
the correct balance between all of the various concerns.

83

84 Mitigating Inference Risk by Avoiding Adversarial Machine Learning Attacks

You will find that there are many different defenses currently thought of as effective against generalized
membership inference attacks, but two stand out from the crowd:

o Adversarial training: This is where adversarial examples are added to the training dataset. This
approach tends to avoid overfitting, the technique used to infer membership, in a manner that
helps avoid the multi-step projected gradient descent (PGD) attack method. However, this
approach can increase privacy leakage under certain conditions, such as the kind of adversarial
examples used for training.

o Provable defense: This relies on computing an upper bound of the loss value in the adversarial
setting, quantifying the robust error bound for the defended model. In other words, it defines the
fraction of input examples that can be perturbed under the predefined perturbation constraint.
Unfortunately, this approach can reduce the accuracy of the model.

There is a school of thought currently that by masking the confidence level of a model’s output, it
becomes impossible to perform a membership inference attack. Unfortunately, this is no longer the
case. The article entitled Label-Only Membership Inference Attacks at https://arxiv.org/
pdf/2007.14321v2.pdf describes how to perform a label-only attack. The article doesn’t provide
any code examples at the time of writing, but, likely, the site will eventually provide such code. The
point is that merely hiding the confidence level won’t protect the model or underlying data. One of
the suggestions from the paper’s authors is to employ methods that reduce or eliminate the overfitting
of the model. They strongly support the use of transfer learning as part of a strategy to keep hackers
at bay. In addition, the research shows that these regularization methods work best:

« Strong L2 regularization
o Training with differential privacy

e Dropout

To obtain a better idea of just how effective various forms of regularization can be in deterring a
membership inference attack, review On the Effectiveness of Regularization Against Membership
Inference Attacks athttps://arxiv.org/pdf/2006.05336v1.pdf. In this particular case,
the authors recommend the use of distillation, spatial dropout, and data augmentation with random
clipping as the best forms of regularization to use with a minimal loss of accuracy. The takeaway from
most research is that some form of dropout regularization will reduce vulnerability to membership
inference attacks and seems to be the approach that everyone can agree upon.

There is some discussion of the effectiveness of differential privacy when looking at membership
inference attacks because using differential privacy training can reduce the utility of an application.
However, if you're working with sensitive data, such as health records, using differential privacy
training seems to be a given.

Mitigating threats to the algorithm

It’s also important to note that combining strategies can significantly improve a model’s resistance to
membership inference attacks, but combination selections must proceed with care and receive full
testing. For example, combining early stopping with random cropping hurts accuracy considerably (to
the point of making some models useless), but the effect on the accuracy of combining early stopping
with distillation is minimal. The reason for this difference is that distillation speeds up training, while
random cropping slows training down. You can read more about the effects of combined techniques
in section 5, Combining Multiple Mechanisms, in the On the Effectiveness of Regularization Against
Membership Inference Attacks whitepaper cited earlier in this section.

Detecting and mitigating a Trojan attack

Earlier in this chapter, you discovered that Trojan attacks come in all sorts of forms, some traditional,
some Al-specific. If you're working with a marketplace model, there is always the potential for
downloading a Trojan. It's important to know who you’re working with and what measures they have
in place for detecting and mitigating Trojans. However, a good method for keeping Trojan attacks
off your network is to use disconnected test systems to check out an API every time a new version
becomes available. For the most part, you want to think about the potential threats first, and then
act. Assuming that any source of information is safe is a truly bad idea, especially when hackers are
working hard to make their nefarious payloads as stealthy as possible.

Researchers are currently working on several methods to identify and mitigate Al-based Trojan attacks.
One of these systems, STRong Intentional Perturbation (STRIP), detects Trojan attacks by looking
for variances in predictions based on inputs. When an attacker relies on triggers or perturbed inputs
to force a model to work differently than intended, detecting those inputs can be difficult because
how the trigger or perturbation is implemented is a secret known only to the hacker. The whitepaper,
STRIP: A Defence Against Trojan Attacks on Deep Neural Networks, at https://arxiv.org/
pdf/1902.06531.pdf, provides insights into how to implement a detection and mitigation
system that will reduce the work required to deal with such attacks.

One of the issues that several sources have pointed out about Trojan attacks is that the one-pixel visual
attack (seehttps://arxiv.org/abs/1710.08864 for details) isn’t practical in the real world,
even though they can be quite effective in lab environments. Imperfections in cameras and other
sensors would make such an attack impracticable. To ensure that the DNN receives the trigger, the
trigger would need to be bigger and more noticeable to humans. Because the machinery controlled
by the DNN often works autonomously, the fact that humans can see the trigger is less important
unless the system has some sort of anomaly detection built in to alert a human to a possible trigger.
Oddly enough, the issue of making triggers noticeable enough to overcome physical problems in
sensors or variances in the software itself provides defense and mitigation. Simply ensuring that your
maintenance staff checks the environment in which a DNN will operate, and locating the triggers that
a human can detect is a good starting defense against problems.

85

86

Mitigating Inference Risk by Avoiding Adversarial Machine Learning Attacks

It’s also important to consider the proper vetting of datasets and training strategies for any type of ML
application. In many cases, it's possible to locate the Trojan examples in a dataset before the dataset
is used to train the model. However, when an application relies on third-party sources and vetting
the data (or even checking the model closely) may not be possible, you need some other method of
detecting that the model you create has a Trojan in it. In addition, some forms of data vetting and
model checking won't work with certain kinds of Trojan attacks, such as an all-in-all attack where
Trojan records appear in every class of the dataset, making comparison checks less likely to expose
the Trojan elements.

The whitepaper entitled Detecting AI Trojans Using Meta Neural Analysis (https://arxiv.org/
pdf/1910.03137.pdf) points out techniques for recognizing inputs that have a trigger associated
with them. In this case, the strategy creates a special ML model that relies on Meta Neural Trojan
Detection (MNTD) to test the target model without making any assumptions about the types of attack
vectors it might contain. To avoid the problem of an attacker coming up with methods to fool the
MNTD, the system performs fine-tuning during runtime. This means that the system is modifying
itself as it runs and that the randomness of the change will likely keep the hacker from modifying
the attack strategy.

Detecting and mitigating backdoor (neural) attacks

There is some overlap between the AI-specific Trojan attacks and backdoor (neural) attacks. Mainly,
they both rely on triggers of some sort. However, the triggers for a Trojan often modify a specific input,
such as placing a sticker on a stop sign, while the triggers for a backdoor are generalized to the trigger
itself, rather than its association with any particular kind of input. For example, a backdoor trigger
might rely on a red sticker with a yellow square on it. No matter where this sticker appears, be it on a
stop sign or an advertisement for a product, the trigger still works. Some of the whitepapers you read
will combine the two terms and add some additional new terms for good measure, so it remains to
be seen as to which terms and definitions eventually stick around long enough to become common
usage. Of course, there is always the triggerless approach to consider in this case, which doesnt rely
on specialized inputs but is triggered instead by a behavior or event in the neural network itself.

A backdoor attack always has some means of providing the incorrect output (generally favoring a hacker’s
requirements), whether it uses a trigger or not. The whitepaper entitled Neural Cleanse: Identifying
and Mitigating Backdoor Attacks in Neural Networks at https://people.cs.uchicago.

edu/~ravenben/publications/pdf/backdoor-spl9.pdf is more along the lines of
a true backdoor treatment because it considers what is happening deep within the neural network,
rather than simply focusing on particular kinds of inputs. In this case, the researchers have come up
with a potential method for detecting and reverse engineering triggers hidden deep within the neural
network. This particular whitepaper emphasizes the role of third parties in the infection process, in
that a third party trained the model using a tainted dataset or added the backdoor after the fact after
uploading it to a marketplace or service.

Summary

Unfortunately, there aren’t many resources at this time for detecting and mitigating a triggerless
backdoor except to perform specific tests to check for variances in output, given the same input. For
example, if the trigger relies on the use of a dropout layer, some portion of the inputs that rely on the
affected neuron will fail to produce the required output. The best strategy for detecting such a backdoor
is to monitor the outputs for unexplained randomness or unexplained failures.

Summary

This chapter began by defining adversarial ML, which is always the result of some entity purposely
attacking the software to elicit a specific result. Consequently, unlike other kinds of damage, the data
may not have any damage at all, or the damage may be so subtle as to defy easy recognition. The first
step in recognizing that there is a problem is to determine why an attack would take place - to get
into the hacker’s mind and understand the underlying reason for the attack.

A second step in keeping hackers from attacking your software is to understand the security issues
that face the ML system, which defies a one size fits all solution. A hospital doesn’t quite face the
same security issues that a financial institution does (certainly they face different legal requirements).
Consequently, analyzing the needs of your particular organization and then putting security measures in
place that keep a hacker at bay is essential. One of the most potent ways to keep hackers out is to employ
ensemble ML in a manner that makes poisoning data used to train your model significantly harder.

The third step is to know that a determined hacker will break into your system, which means that
building a high-access wall only goes so far in keeping your ML application safe. Detection is an essential
part of the security process and it's ongoing. Fortunately, you can make the ML security functionality
used to protect your system do most of the work. Even so, a human needs to monitor the process and
look at the analysis of data flows to ensure that a hacker isn’t fooling the system in some way.

The fourth step is mitigation. Realizing that adversarial ML by a determined hacker will succeed in
some cases and defy efforts of immediate detection by even the most astute administrator is a critical
goal. Once the system has been breached, it’s essential to do something about it. Often, that means
restoring data, reinstalling the application, possibly retraining the model, and then putting updated
security processes in place based on lessons learned.

Chapter 4, Considering the Threat Environment, takes another step by considering the threat environment
for both businesses and consumers as a whole. Many organizations only address business environment
threats, and then only weakly. Chapter 4, Considering the Threat Environment, provides a good
understanding of why paying attention to the entire environment in depth is critical if you want to
keep your ML application and its data safe.

87

88

Mitigating Inference Risk by Avoiding Adversarial Machine Learning Attacks

Further reading

The following resources will provide you with some additional reading that you may find useful in
understanding the materials in this chapter:

« Gain a better understanding of how membership inference attacks work: Machine learning:
What are membership inference attacks?: https://bdtechtalks.com/2021/04/23/
machine-learning-membership-inference-attacks/

o Discover more about the creation of shadow models: Membership Inference Attacks Against
Machine Learning Models: https: / /www.researchgate.net/figure/Training-
shadow-models-using-the-same-machine-learning-platform-as-was-
used-to-train-the fig2 317002535

Iszzued to Hichelle Siebert - {nziebert@netline.conl

Part 2 - Creating a Secure
System Using ML

This part challenges the assumption that only data scientists work with ML applications by reviewing
the topic of ML security from a number of perspectives, especially from that of researchers.

This section includes the following chapters:

Chapter 4, Considering the Threat Environment
Chapter 5, Keeping Your Network Clean
Chapter 6, Detecting and Analyzing Anomalies
Chapter 7, Dealing with Malware

Chapter 8, Locating Potential Fraud

Chapter 9, Defending against Hackers

A4 S000TZENLCT

4

Considering
the Threat Environment

Chapter 2 considered threats to your data, while Chapter 3 considered threats to your application and
model. This chapter considers the threats to your environment as a whole and divides environments
into two parts: business and consumer. Business threats focus on the ability to earn money, serve
clients, provide a useful infrastructure, and address business requirements (such as accounting and
meeting legal needs). Consumer threats focus on communication between individuals, entertainment,
buying products, and addressing personal needs (such as interacting with government entities or
making appointments with your doctor).

(And, yes, you need to worry about the consumer element because your users will always incorporate
consumer elements into the business environment.)

The previous chapters examined parts of the whole to make the threats easier to see and understand.
This chapter is an introduction to the whole picture, of how things work together to create a particular
kind of threat. You've seen the trees; now it’s time to see the forest. With these issues in mind, this
chapter discusses the following topics:

o Defining an environment
o Understanding business threats
« Considering social threats

» Employing Machine Learning (ML) in security in the real world

92

Considering the Threat Environment

Technical requirements

This chapter requires that you have access to either Google Colab or Jupyter Notebook to work with
the example code. The Requirements to use this book section of Chapter 1, Defining Machine Learning
Security, provides additional details on how to set up and configure your programming environment.

The Accessing GitHub using OAuth-type authentication section requires that you have a GitHub
account, which you can create at https: //github.com/join. When testing the code, use a
test site, test data, and test APIs to avoid damaging production setups and to improve the reliability
of the testing process.

Using the downloadable source code is always highly recommended. You can find the downloadable
source on the Packt GitHub site at https://github.com/PacktPublishing/Machine-
Learning-Security-Principles or my websiteat http://www.johnmuellerbooks.
com/source-code/.

Defining an environment

An environment is the sum of the interaction an object has with the world—whether it’s an application
running on a network, with the network or the internet as its environment, a robot running an assembly
line, with the building housing the assembly line as its environment, or a human working in an office
with the real world as an environment is immaterial. An environment defines the surroundings in
which an entity operates and therefore interacts with other entities. Each environment is unique but
contains common elements that make it possible to secure the environment. An ML environment
includes the following elements, which are used as the basis for discussion as the chapter progresses:

« Data of any type and from any source

o An application model

« Ancillary code, such as libraries

« Interfaces to third-party code such as services

o An Application Programming Interface (API)

o Third-party applications that interact directly (such as applications that augment an organization’s
offerings) or indirectly (such as the shopping site that users surreptitiously use during work
hours) with the environment

o Users (those who use the application, but don’t control it)
o Managers (those who define organizational, environmental, or application policies)

o Developers (those who create any application code, including data scientists, computer scientists,
researchers, database administrators, and so on)

« Security professionals (those who control application access)

Understanding business threats

Many of the tactics currently available to secure applications (including biometric and physical security)
are equally applicable to any environment but you develop and interact with them in different ways.
Any environment can benefit from authentication and filtering, but it’s hardly likely that you’ll find
biometric authentication used to access a consumer product site, such as Amazon.com. On the other
hand, a site devoted to governmental research will likely include several layers of authentication,
including biometric authentication and guards at the door. This chapter doesn’t include a discussion
of physical security in the form of locked down server rooms and guards at the door, but it does cover
a considerable range of application-specific security types, such as implementing passwords, locking
down resources, looking for odd data patterns, and removing potentially malicious data.

Understanding business threats

Business software solutions have become more complex over the years and so have the security threats
facing them. Many businesses run a hybrid setup today where part of the business software resides
locally on a network (some of which forms a private cloud-based configuration) and the other part is
hosted online as one of the “as a service” options, such as Platform as a Service (PaaS). Consequently,
security often comes in layers for businesses.

Traditional security is a starting point for the local part of the infrastructure and service-level security
is part of the cloud-based component. The Cloud Adoption Statistics for 2021 article at https://
hostingtribunal.com/blog/cloud-adoption-statistics/ isenlightening because
it shows that, even if you consider only the cloud component of an organization, 69 percent rely on
a hybrid solution for their cloud presence, and that some organizations leverage up to 5 different
hosting solutions. It’s unlikely that your ML application will be able to rely on a single data source
or reside on a single setup when your organization is large enough. Consequently, you need to be
ready to work with security professionals to secure your application to keep the data safe. Oddly
enough, communicating your needs to security professionals who are used to dealing with monolithic
applications and microservices is difficult unless you speak their lingo.

Unfortunately, a starting point isn’t a solution. For example, when hosting your cloud-based solutions
on Amazon Web Services (AWS), you have a choice of 26 different security-related services (as of
the time of writing, you can be sure there will be more soon). Most of them are oriented toward
protecting the cloud part of your software, so you still need other layers for the local part of your
solution. Amazon does provide help for organizations using its services.

The security picture may seem overwhelming unless you begin to break it down into manageable
pieces and review those pieces without necessarily looking at a particular solution until you need to
get into the details of configuration and code writing. For example, it's important to know at the outset
that you need to encrypt your data (even the open source material because you don’t want anyone
modifying it after you begin to use it); especially when that data is in a place where a hacker can reach
it. However, you don't necessarily need to think about using AWS encrypted Simple Storage Service
(S3) buckets until you choose to implement a part of your solution on AWS (see https://docs.

aws.amazon.com/AmazonS3/latest/userguide/bucket-encryption.html if

93

94

Considering the Threat Environment

youd like to see what's involved). Becoming mired in details at the outset is problematic because you
begin to see individual trees and miss the forest entirely.

Protecting consumer sites

The majority of attacks against businesses that host consumer sites are through websites or APIs. A
website offers the flexibility a hacker needs to experiment and look for potential holes in coverage.
It’s possible for a hacker to attack through an API, for example, but an API allows better tracking
of the incoming request so that the hacker’s activities are easier to expose. However, an online store
is unlikely to notice the hacker providing requests as little changes in an order through the website
interface (as an example) while looking for an exploitable hole.

There are a considerable number of threats against consumer sites, many of which you can handle
using traditional methods, but are better handled using ML solutions. For example, as shown in the
Manipulating filtered data and Creating an email filter sections source code examples later, you can use
ML applications to monitor the inflow of data for unusual data patterns or unwanted data. Backend
ML applications can detect and remove bad data from the database using a technique similar to
that shown in the Starting with a simple removal section. Figure 4.1 shows the most common attacks
against ML applications through a website and provides some ideas on how to protect against them:

Attack Major Possible Resources Whitepaper/
Type Consideration Remedy Example
Cross-site | A script is injected Train ML https://www. https://
scripting as input to a web classifiers to researchgate. thesai.org/
(XSS) form, API, or detect the scripts | net/publica- Downloads/
another endpoint, or script changes tion/322704986 VolumellNo5/
which ends up in found in the Detecting_Cross- Paper_85-
a database. The database and then | Site_Scripting Ensemble
script then executes | act upon them. Attacks_Using_ Methods_to_
each time a page is The technique Machine Learning Detect XSS
presented, the API is | in the Starting Attacks.pdf
queried for specific with a simple
data, or appears as removal section is
part of an analysis also helpful.
performed by an
ML application.

Understanding business threats

Attack Major Possible Remedy Resources Whitepaper/
Type Consideration Example
SQL Carefully crafted Begin by sanitizing the | https:// https://
injection | incorrect data is data using techniques | scholar- scholarworks.
injected through a such as the one shown | works.sjsu. sjsu.edu/cgi/
web form or an APIto | in the Manipulating edu/cgi/ viewcontent.
corrupt database data, filtered data section. viewcontent. cgirarti-
steal data, or cause Then use an ensemble | cgi?arti- cle=1649&
other damaging effects. | of classifiers (such cle=1727&- contex-
as those shown in context=etd | t=etd projects
Chapter 3, Mitigating projects and https://
Inference Risk by portswig-
Avoiding Adversarial ger.net/
Machine Learning daily-swig/
Attacks, in the Using machine-learn-
ensemble learning ing-of-
section) to detect and fers-fresh-ap-
act upon the attack. proach-to-tack-
ling-sqgl-in-
jection-vul-
nerabilities
Command | This is a superset of Normal filtering https:// https://www.
injection | XSSand SQL injection. | techniques can prove ieeexplore. researchgate.
An application creates ineffective because ieee.org/ net/
a link between itself of the stealthy stamp/stamp. | publication/
and a server thata nature of this attack. jsp?arnum- 335801314

hacker detects. The

user issues commands
as normal and receives
the expected responses.
A hacker also uses

the same link to

issue commands and
the results of these
commands are sent to
the hacker, instead of the
user. Part of the problem
with this particular
attack is that it's hard to
detect because activity
between the user and the

server remains normal.

However, constant
signature updates

do make filters a

little more effective.
The best solution
currently available

is specially designed
ML applications such
as Code-Injection
Detection With Deep
Learning (CODDLE)
and Applications
Management and
Digital Operations
Services (AMDOS).

ber=8835902
and https://
www . ibm.com/
downloads/
cas/DW5DGM8K

CODDLE_COde -
injection
Detection
with Deep

LEarning

95

96 Considering the Threat Environment

Attack Major Consideration | Possible Remedy Resources Whitepaper/
Type Example
File-path A hacker gains Ensure that every https://www. https://
traversal access to sensitive resource always geeksfor- jisajour-
data (such as data has the required geeks.org/ nal.sprin-
used to train a protection (see the path-travers- geropen.
model) by using Understanding the al-attack-pre- com/arti-
specially configured | kinds of application vention/ cles/10.1186/
paths. These paths security section in and https:// $13174-019-
either rely on the this chapter) and www . trendmi - 0115-x
inherent weaknesses | thatany user access cro.com/en_us/
of relative paths that relies on the principle | research/20/5/
usethe ../../ of least privilege. It's contentprovid-
notation or known also possible to rely er-path-traver-
absolute paths. Once | ©n special filtering al-flaw-on-esc-
the hacker gains of input data and app-reveals-
access to the direc- | AAP1requests using info.html
tory, it’s possible to atechnique similar
Jook at the config to that shown in the
file settings, corrupt Manipulc.ztz'ngﬁ lrered
data, or perform data section aT1d
other malicious pattern detection
using the technique in
permanent . . the Creating an email
storage modifications. .
filter section.
Distributed | Packets of useless Most methods today | https://ieeex- http://
Denial-of data and commands rely on detecting the plore.ieee. palms.
-Service are sent from a group | attack and dealing org/docu- princeton.
(DDoS) of systems under with it on the ment /7013133 edu/system/
the hacker’s control victim’s system. One and https://www. files/
to overwhelm the proposed solution is mdpi.com/2504 - Machine_
victins system and to detect the attack 3900/63/1/51/ Learn-
cause it to fail. Given | from the source pdf ing Based_
that ML applications | (such as the hacker’s DDoS_Attack
often require large control machine or Detec-
amounts of network | the various bots) tion_ From
bandwidth, this class | using ML techniques Source_Side
of application is inor- | and then cut off those in Cloud_
dinately affected bya | attackers from the camera_
DDoS attack. inputs to the victim. ready.pdf

Figure 4.1 — Common threats against consumer sites

Understanding business threats

You can also find other kinds of attacks that aren’t ML-specific but could have an effect on ML activities
by affecting the environment in which the application executes. These attacks include the following:

« Session hijacking: This form of attack is also known as cookie poisoning. The hacker intercepts
and modifies a cookie using a man-in-the-middle (MITM) attack to steal data, corrupt security
measures, or both.

» Scraping: An activity that some view as a legitimate process for obtaining the huge quantities of
data needed for certain types of ML analysis while others see the damage that the process can
cause. However, for many websites, scraping is a serious threat that steals private data, obtains
information for membership inference attacks, performs reverse engineering of the site for
the purpose of illegitimate replication, discovers application operations, and performs other
malicious acts as discussed in Chapter 2 and Chapter 3. Consequently, you also see other articles
that discuss the opposite side of the coin, such as Web scraping protection: How to protect your
website against crawler and scraper bots athttps: //datadome . co/bot -management -
protection/scraper-crawler-bots-how-to-protect-your-website-
against-intensive-scraping/. The fact is that this kind of attack is more of a human
nature issue and deals with the mistruth of perspective as described in the Defining the human
element section in Chapter 1, Defining Machine Learning Security.

o Carding: Hackers gain access to lists of credit or gift cards in some manner, usually on the dark
web. They usually start by making small purchases with each card to determine whether the card
is still active. Once the hacker knows the card is legitimate, it’s used to make a huge purchase
of some type. Vendors are currently fighting back by using ML-based services to detect this
kind of attack. Because this is such a huge topic, you will find it covered in detail in Chapter 8.

The point of all these threat sources is that consumer sites are security sieves. There are so many holes
that it may seem impossible to plug them all, but with diligence, administrators of all stripes and
developers can work together to plug most holes and detect intrusions left by others. The essential
element in all these possible intrusions is to know what threats are currently in use and then guard
against them using techniques such as those found in Figure 4.1.

Understanding malware

The term malware refers to any software installed on a host system that causes harm to the host or the
client systems attached to it through any means, including stealing anything such as data or company
secrets. The software might damage the systems physically, steal data, corrupt data, encrypt the data
for ransom demands, or perform a very wide range of other malicious tasks. By damaging the system,
the malware can also put people’s lives at risk, such as in a medical facility. Mind you, sometimes
giants play this game, such as the cyberwar brewing between the US and Russia; see https://
www.nytimes.com/2019/06/15/us/politics/trump-cyber-russia-grid.html
and https://www.bloomberg.com/news/features/2022-01-26/what-happens-
when-russian-hackers-cyberattack-the-u-s-electric-power-grid.

97

98

Considering the Threat Environment

ML is adept at detecting, preventing, and fixing certain types of malware attacks, but you must write
the application in a very flexible way. Fortunately, you can now find websites that can assist with
both static and dynamic identification of various kinds of malware on local systems and, to a lesser
extent, online sites, such as VirusTotal (https://support.virustotal.com/hc/en-us/
categories/360000160117-About-us), so it may be less necessary to build low-level skills to
disassemble and identify various malware executables and better to develop research skills to locate the
information that others have found quickly. You can read more about this kind of attack in Chapter 7.

Understanding network attacks

Most people think about Denial of Service (DoS) or DDoS attacks when hearing about network
attacks. In fact, you see DDoS listed in Figure 4.1, discussed later in this chapter, and explored
fully in Chapter 5. However, network attacks are often subtle, as discussed in the Eyeing the small
stuff section in this chapter. Hackers might only sniff data from your network in a manner that’s
nearly impossible to detect (see http://blog.johnmuellerbooks.com/2011/06/07/
sniffing-telnet-using-wireshark/ for one of thousands of exploits). In fact, network
attacks are extremely prevalent and hit the big players too. The fact is that if your network isn’t safe,
customers will hear about it (usually pasted in big letters at the beginning of an article about security),
and your business will suffer.

Eyeing the small stuff

Before proceeding further with the big issues that most people think about, it's important to look at
the small things as well. It’s easy to miss the small stuff in an organization. For example, the Internet
of Things (IoT) makes an appearance almost everywhere today in devices that most people take for
granted. These devices just seem to work, so it’s easy to forget about them. However, these devices
are connected to the internet and they are becoming more complex as people want them to do more.
A thermostat may not seem like a big thing, but consider the fact that you can now find thermostats
with an ML application controlling them, as described in Swiss Researchers Create Machine Learning
Thermostat at https://www.rtinsights.com/empa-machine-learning/.

Of course, the first question is what a thermostat, even a really smart thermostat, has to do with ML
application security. It turns out that some researchers have found a way to hack a thermostat, as
described in the article #DefCon: Thermostat Control Hacked to Host Ransomware athttps://www.
infosecurity-magazine.com/news/defcon-thermostat-control-hacked/. Now,
imagine what would happen if the thermostat somehow connected to someone’s network, perhaps for
the purpose of recording statistics, you see that a thermostat really can be a security threat.

In the thermostat scenario, a hacker gains access to the thermometer, adjusts the software to emit
corrupted data to the logs, and waits for someone to read the log data. Once on a host system, the
corrupted data allows the hacker to gain access to the host system, perhaps using a Trojan. At this
point, the hacker can use the access to perform identity theft or hold the system for ransom. To prevent
such an attack, you must layer defenses, employing the following:

Understanding business threats

« Standard forms of security such as passwords (see the Understanding the kinds of application
security section in this chapter) on the thermostat and host system

« Ensembles to detect errant data input streams (see the Using ensemble learning section in
Chapter 3) as part of the input to the ML application

o Trojan detection (see the Understanding trojan attacks section in Chapter 3) within the
ML application

One of the biggest small holes in security today falls into the category of Supervisory Control and Data
Acquisition (SCADA) systems. They run a great many things, including essentials such as pacemakers
and water supply systems, not to mention electrical plants. The article Understanding the Relative
Insecurity of SCADA Systems at http://blog.johnmuellerbooks.com/2011/11/28/
understanding-the-relative-insecurity-of-scada-systems/ seems outdated,
but unfortunately, no one has bothered to secure these small systems, as described in the article Biggest
threats to ICS/SCADA systems athttps://resources.infosecinstitute.com/topic/
biggest-threats-to-ics-scada-systems/ (among many others). Your ML application
may connect to these systems and these small holes are a real threat that you need to consider fixing.

Dealing with web APIs

You see a lot of coverage about APIs in this book because modern businesses can’t do without them.
Chapter 6 provides a special focus on the use of anomalies to create holes in APIs that hackers use to
gain particular kinds of access. In addition, you see them mentioned as part of Figure 4.1. However,
this section discusses a prevention and mitigation strategy called confidential computing, which is
the use of a specially configured CPU to keep data encrypted until actual processing.

Desktop systems have a Trusted Platform Module (TPM) that the operating system can use to make
working with specially designed applications considerably more secure (see https://docs.
microsoft.com/windows/security/information-protection/tpm/trusted-
platform-module-overview as an example). The TPM makes this latest version of Windows
considerably harder to infect with malware, as described in the Tom’s Guide article at https://
www . tomsguide.com/news/what-is-a-tpm-and-heres-why-you-need-it-for-
windows-11 (which is one of many reasons that this book spends less time on local systems and
more time on the cloud, IoT, and networks). Fortunately, confidential computing doesn’t necessarily
require a TPM because cloud providers also make it available as a service:

e AWS:https://aws.amazon.com/ec2/nitro/nitro-enclaves/ (the site doesn't
specifically call it confidential computing, but articles such as the one at https://www.
forbes.com/sites/janakirammsv/2020/10/30/aws-nitro-enclaves-
bring-confidential-computing-to-amazon-ec2/?sh=45d98f771c8e
make it apparent that it is)

e Azure:https://azure.microsoft.com/en-us/solutions/confidential-
compute/

99

100

Considering the Threat Environment

e Google: https://trustedcomputinggroup.org/resource/trusted-platform-
module-tpm-summary/

o Intel: https://www.intel.com/content/www/us/en/security/confidential-
computing.html

The Confidential Computing Consortium (https://confidentialcomputing.io/) was
formed by companies such as Alibaba, Arm, Baidu, IBM, Intel, Google Cloud, Microsoft, and Red
Hat to make data protection in the cloud easier. Of course, there is no free lunch. While your data
is a lot more secure using confidential computing, the services cost you considerably more and you
need to also think about the performance loss in using them.

Dealing with the hype cycle

When considering which security strategies to employ, you need to consider the hype cycle as
described in Hype Cycle for Security Operations, 2020 at https://www.gartner.com/en/
documents/3986721. What this article tells you is that security follows a cycle:

« Innovation: Some event or new technology triggers new security strategies.
« Inflated expectations: Everyone gets sold a technology that is never going to work as anticipated.

« Disillusionment: People drop a perfectly good technology because it failed as a marketable
item, rather than as a good technology. Being able to make a profit on technology within a
specific timeframe is what keeps the technology alive through infusions of investment capital.

o Enlightenment: The early adopters begin to experience realistic expectations for the technology.

o Productivity: The technology is now in common use.

At least you now understand the security cycle to some extent. It's used for every new innovation in
technology, not just ML. Unfortunately, developing and fully implementing a new security strategy
can take up to ten years, during which time hackers raise some real havoc if they have come up with a
zero-day exploit. To ensure that your ML application remains secure, you need to invest in the security
technologies and strategies that have made it beyond the disillusionment phase as a minimum.

It may seem as if you could keep business and social concerns separate, but people are social beings, so
social threats will creep into your business-related security setting as well. The next section describes
social threats from a business perspective. Yes, many of these issues also affect people’s personal lives,
but the focus is on how these social threats will affect your business.

Considering social threats

Social threats affect individuals the most. A social threat is something that entices the user to perform
a risky behavior or compromises the individual in some way. Here are a few ideas to consider:

Considering social threats

» Social media: A user is enticed to do things such as discuss company policies or strategies in
the interest of being social.

o Ads: Someone presents an ad that discusses some new swanky product, but the ad ends up
compromising the individual in some way, such as providing access to a social media account,
a shopping site, or even your local network. ML makes it possible to create convincing ads
based on actual buyer shopping habits.

« Utilities: A special tool allows the individual to do something interesting, such as changing the
color of their Facebook site. You find utilities all over the place because people naturally want
to fiddle with whatever it is that they think requires an update or change. A utility can plant a
Trojan on the individual’s machine or grab the individual’s information.

« Videos: Have you seen enough cat videos yet? Well, try this video of someone surfing on a
shark in Australia instead! Individuals become unresponsive while watching videos, giving a
hacker the opportunity to steal them blind without them even noticing.

« Followers: Some interesting person needs more followers. ML makes it possible to infer who
might be so interesting that the individual needs to follow them. Click the link and you can
become one of those people who followed them into hacker heaven.

o Terror: Deep learning makes it possible to create a fake of anything using any media. So,
someone sends the individual a link with the individual running down the middle of the main
street naked. A link is supplied so that the outraged individual can complain and the hacker
gains access.

» Social engineering: Hackers use ML to create a social engineering attack based on individual
interests, associates, work environment, and the like. The hacker can pose as a salesperson, a
colleague from another company, or whatever else it takes to gain the person’ trust.

» Blackmail: Someone gains access to sensitive information that the individual thought was
secure. The blackmail doesn’t ever end. The individual will continue giving up information,
resources, or whatever else the blackmailer requires until there is nothing left.

No matter how the entry is gained, the idea that a hacker has compromised your personal data or
that a website is stalking you is frightening. However, social threats affect businesses as well. People
run businesses and when an employee encounters a new threat, the threat applies to the organization
too. ML actually makes the hacker’s job a lot easier, if it wasn’t incredibly easy already. Chapters 7
through 9 discuss how ML has a big part to play in making social threats considerably more effective.

In some cases, a hacker will use social threats to gain information about an organization or individuals
to gain a foothold in the organization itself. For example, profiling makes it possible for a hacker to
perform social engineering attacks with greater ease. Tracking a user’s activity also provides useful
information. If the hacker really wants to create problems, identity theft makes it possible for the
hacker to pose as the user of the organization from a remote location. In short, social threats are just
as important to the security environment as business threats are, but in a different way.

101

102

Considering the Threat Environment

Spam

Spam is a major avenue of attack for most hackers (see https: //www.howtogeek.com/412316/
how-email-bombing-uses-spam-to-hide-an-attack/ for some examples). A hacker
could use a spam attack to hide those error messages from your network, intrusion messages from an
account, or just about anything else. Spam can also include subtleties such as capturing unintended
clicks when a user clicks one after accidentally opening it. Even the best spam filters provide 99.9
percent coverage, which means that if you get 100 emails in a day, one piece of spam is likely to make
it through each 10-day period (and most spam checkers just aren’t that good). Hackers constantly
modify the approach used to create spam to keep any new techniques for detecting spam off balance.
The Developing a simple spam filter example section of this chapter shows one ML method for detecting
spam, but even it isn't perfect. Consequently, it’s likely that users will encounter spam and that the spam
will eventually provide a vector for social engineering, phishing (see https: //www.kaspersky .
com/resource-center/threats/spam-phishing), or other attacks against the user’s
machine, the network, and your ML applications. Chapters 8 and 9 detail how you can effectively
guard against the fraud and hacker aspects of spam.

Identity theft

Some people see identity theft as a user issue. It’s true that the user will spend a great deal of time
and money overcoming the effects of identity theft. However, depending on how the identity theft is
perpetrated, the effects could be more significant to your business than the loss of money from purchases
that no one will pay for after the merchandise is delivered. Even though identity is normally associated
with credit or other personal issues, it can also affect your ML application in the following ways:

o The data in your database is corrupted when the identity thief poses as a legitimate user. It’s
hard to tell the real user’s data from that of the identity thief.

o A hacker gains entry to your network using a stolen identity.
o Services are misdirected to the holder of the stolen identity, rather than the legitimate user.

o Analysis of social or other identity-based statistics becomes impossible. For example, which
person in which area of town do you use for a profile?

o Top employees can lose security credentials or be compromised in other ways, causing harm
to your business by making them unavailable for various tasks.

This is just the tip of the iceberg. Society has always depended to some degree on being able to
positively identify individuals. However, that dependency is growing as more technology is added
and a positive ID becomes essential.

Considering social threats

Unwanted tracking

Many users don’t want businesses or other entities to know every detail of their lives, even if the
business is legitimate. The popularity of articles such as Here’s how to avoid unwanted tracking online
athttps://www.techradar.com/news/avoiding-unwanted-tracking-online
and 4 Ways to Protect Your Phone’s Data From Unwanted Tracking athttps://preyproject.
com/blog/en/4-ways-to-protect-phone-data-unwanted-tracking/ indicate that
the desire for privacy is real. However, when a hacker begins tracking a person, things can get really
interesting because, now, the loss of privacy affects more than just the user. For example, a hacker can
use tracking to begin a social engineering attack or profile an organization for other kinds of attacks.

Remote storage data loss or corruption

Employees typically store some amount of business data on their local hard drive (assuming their
device has one). If you have remote access to that hard drive, then you can move the data or at least
back it up. However, if the employee stores data on a remote server to which you lack access, the
data now becomes a problem. You can’t back the data up and a hacker could compromise the data,
including any company secrets that the user left in plain sight. Even if the data isn’t compromised, the
fact that the user has it in an undisclosed location means that any corruption will also go unnoticed,
which can ultimately affect your ML application in a number of ways (see Chapter 2, Mitigating Risk
at Training by Validating and Maintaining Datasets). The two best ways to mitigate this threat are
through employee monitoring and training.

Account takeover

According to a number of online sources, users typically have 150 or more personal online accounts,
each of which requires a password. However, users are unlikely to create a unique password for all
of those accounts. For one thing, few users could memorize all of those passwords, and making
each of those passwords strong is nearly impossible. While you may think that users would rely on
a password manager (password wallet), the Password Manager survey results at https://www.
passwordmanager .com/password-manager-trust-survey/ point out that 65 percent
of users don’t trust them at all and that 48 percent won’t use one. Interestingly enough, only 10
percent of users see Multi-Factor Authentication (MFA) as a viable alternative to using a password
manager. What many users do is create an acceptably strong password and then use the same password
everywhere. Consequently, when a hacker takes over a user’s account, the hacker also gains insights
into the user and possibly finds methods to discover the user’s entire list of passwords, including the
password for your ML application.

One of the best ways to detect this sort of attack is through behavioral analysis, as described in
Eliminating Account Takeovers with Machine Learning and Behavioural Analysis at https://www.
brighttalk.com/webcast/17009/326415/eliminating-account-takeovers-
with-machine-learning-and-behavioural-analysis (you need to sign up for the
free account). However, behavioral analysis can be time-consuming and requires intimate knowledge
of the user.

103

104

Considering the Threat Environment

So far, you have discovered both business and social threats, gained some ideas on how to detect
them, and obtained a few tips on either preventing or mitigating them. All this material assumes that
you have a stable environment and that the hardening you perform on your systems and applications
remains effective. Unfortunately, nothing is stable and hackers have a habit of overcoming obstacles.
The next section discusses how to make your setup flexible enough to adapt.

Employing ML in security in the real world

The real world is ever-changing and quite messy. You may think that there is a straightforward
simple solution to a problem, but it’s unlikely that the solution to any given security problem is either
straightforward or simple. What you often end up with is a layering of solutions that match the
requirements of your environment. Consequently, you might find that an ML application designed
to detect threats is part of a solution, the flexible part that learns and makes a successful attack less
likely. However, you likely need to rely on traditional security and service-based security as well. It’s
also important to keep user training in mind and not neglect those small things.

The reality of ML is that it’s a tool like any other tool and not somehow a magic wand that will remove
all of your security problems. If Chapter 3 shows you anything, it demonstrates that ML security exploits
exist in great quantities and that users are often the worst enemies of ML-based solutions. However,
with layering, it becomes possible to protect a network in a number of ways, including relying on
ensembles to combine the best models for your particular environment. Two of the more common
security-specific approaches to protecting a network are as follows:

« Ensuring user authentication (the validation that the user’s identity is real) and authorization
(giving the user the correct rights) go as planned

« Filtering out potentially hazardous data before the user even gets to see it

There are a number of ways to perform either of these tasks, but this chapter focuses on simple ML
examples. The reason you want to use an ML application to perform these tasks is that the application
has the potential to learn about new threats without waiting for signature updates or reprogramming.
As the ML application becomes more aware of the techniques that a hacker employs to get through,
the use of reinforcement learning can augment the training originally provided to the neural network
and keep the hacker at bay (at least for a while).

Understanding the kinds of application security

Banish any thought that there is just one type of security. Application security comes in many forms and
each form works best in a particular scenario. Chapter 5 considers the issue of keeping your network
clean, which means using some type of security, but security must extend to the environment as a
whole. Security comes down to a matter of control, but the biggest problem is determining what sort
of control to use. Useful control must consider both the needs of the individual and the requirements
of the organization. Making security measures too onerous will make adherence to policies less likely.
Security that isn’t robust enough leaves an organization open to attack. Consequently, you see mixes
of security measures in the following forms in most environments:

Employing ML in security in the real world

Role-based: Depends on the role that a user is performing at any given time, so that the same
user may have more privileges in some situations than in others. For example, the user may
have more privileges when accessing a resource locally than when accessing the same resource
off-site from a mobile application. This is a flexible form of security, but also the most confusing
for users. It works well for critical resources that contain sensitive information.

Attribute-based: Used as an alternative to role-based security where the characteristics of a
resource determine who can access it or what actions are acceptable. The focus is on the specifics
of the resource, rather than on the role of the user.

Resource-based: Depends on the resource that the user wants to access, with consistent access
in all situations. This form of security is useful for less critical resources that users may need to
access continually, so consistency is more important than other considerations.

Group-based: Defines security measures based on the needs of a group, such as a workgroup
or a department. Every individual in the group has the same access. This form of security is
most useful for teams or people who perform the same task on common resources. It tends
to reduce training costs. The criticality of the resource is dependent on the trust potential of
the group as a whole.

Identity-based: Focuses on the needs of an individual to provide access to somewhat critical
resources. Because it provides equal access to the resource at all times no matter what role the
user performs at the time, this form of security could potentially lead to leaks.

Many ML applications currently lack any of these forms of security, making them wide open to attack by
any user who can gain access to them. Locking down an application means taking the following steps:

1.

2
3.
4

Requesting authorization
Authenticating the individual
Monitoring and logging their access

Verifying that each action is allowed by the application security profile

Following these steps will help you begin the process of ensuring that your ML application remains safe.

Keeping track of what is and isn’t effective is important because these steps will require augmentation
depending on the particulars of your application.

Considering the realities of the machine

An ML application can’t think, isn’t creative, and has extremely limited flexibility. This fact is often
brought home to anyone who tries to process textual data to prevent the use of derogatory terms or to
prevent the resulting corpus from becoming unfair in some way. The terms in this section are offensive,
but I used discretion to try to avoid even more derogatory terms found on the internet. Obviously, I
didn’t want to include these terms in the book.

105

106

Considering the Threat Environment

A modern form of derogatory comment takes the form of people’s names, such as calling someone
a Karen, Stacy, Becky, Kyle, Troy, Chad, or any of a number of other names. If you're interested, the
definition at https://www.dictionary.com/e/slang/karen/ provides some insights
into the use of the term Karen.

Obtaining useful results from ML applications means removing the derogatory terms, all of them,
from the data. Yet, the sentence, “Karen gave the salesperson a hard time about the price marked on
the item.” is impossible for the ML application to detect, so it remains in place. If left in place, a large
enough selection of data with unfortunate terms poses a security risk because it can skew the results
of an analysis or cause an ML application to act in a disastrous manner.

Some terms aren't even offensive depending on where they’re used. If you use the name Wally in the
US, it’s just someone’s name. However, the same name in some other English-speaking countries could
mean that the person is stupid or foolish, which is something that you definitely want to remove from
your data (see https://www.phrases.org.uk/bulletin board/46/messages/636.
html for details). That’s why the technique in the Developing a simple spam filter example section
might prove so helpful. It will at least move suspect data out of the dataset so a human can interpret
it when a machine can't.

Adding human intervention

Humans differ from each other considerably, which is a good thing because being different has helped
the human race survive over the years. However, when considering security, being different isn’t always
a good thing because the security expert who plans a security strategy has no idea of how other humans
in an organization will react to it. Humans can wreck any security strategy, sometimes without much
thought, and usually, without ill intent. Simply entering data into a form in a manner never envisioned
by the form’s designer can create a problem. Failing to follow procedures or getting bored can cause
all sorts of failures and ML applications aren’t exempt from their effects. Users sometimes play games
of what will happen if they do something unexpected, possibly hoping to see a software Easter egg.

When creating any security solution, it pays to employ all the stakeholders in an organization in some
manner, especially the users who interact with the application and its attendant security on a daily
basis. If a user can break your security, it’s not the user’s fault; it's how the security is implemented
that is to blame. In fact, users who break your security are actually providing a service because if
they can break your security, a hacker surely will, and it’s unlikely that a hacker will tell you about it.

Developing a simple authentication example

Online ML examples never incorporate any sort of access detection because the author is focusing
on showing a programming technique. When creating a production application or an experimental
application that uses sensitive data, you need some way to determine the identity of any entities accessing
your ML application using authentication. When you authenticate a user, you only determine the user’s
identity and nothing else. Before the user can do anything, you must also authorize the user’s activities.

Employing ML in security in the real world

You can find the code for the following examples in the MLSec; 04; Authentication and
Authorization. ipynb file of the downloadable source code.

Working with basic and digest authentication

There are many ways to accomplish authentication and the techniques used are defined by the
following points:

« The kind of access
« The type of server
 The server security setup

+ The application security setup
Here is an easy local application-level security access technique:

import getpass

user = getpass.getuser|()

pwd = getpass.getpass ("User Name : %s" % user)

if not pwd == 'secret':
print ('Illegal Entry!'")
else:

print ('Welcome In!')

The code obtains the user’s name and then asks for a password for that name. Of course, this kind
of access only works for a local application. You wouldn't use it for a web-based application. This
version is also simplified because you wouldn’t store the passwords in plain text within the application
itself. The password would appear in an encrypted database as a hash value and youd turn whatever
the user types into a hash using the technique shown in the Relying on traditional methods example
section of Chapter 2. After you've hashed the user’s password, youd locate the username in the external
database, obtain the hash from the database, and compare the user’s hashed password to the hash
found in the database.

Online authentication can also follow a simple strategy. Here’s an example of this sort of access:

import requests

from requests.auth import HTTPDigestAuth

resource = 'http://localhost:8888/files/MLSec/Chapter04/
TestAccess.txt'

107

108

Considering the Threat Environment

authenticate = HTTPDigestAuth('user',6 'pass')
response = requests.get (resource, auth = authenticate)

print (response)

In this case, you use a basic technique to verify access to a particular resource, this one on the local
machine through localhost. You build an authentication object consisting of the username and
password, and then use it to obtain access to a resource. A response code of 200 indicates success.
Most sites use a response code of 401 for a failed authentication, but some sites, such as GitHub, use
a 404 response code instead.

Note that this example uses HTTPDigestAuth, which encrypts the username and password before
sending it over the network. It’s not the most secure method because it’s vulnerable to a MITM attack
but much better than using HTTPBasicAuth for a public AP, because basic authentication sends
everything in Base64 encoded text. Some security professionals recommend basic authentication
for private networks where you can use SSL security, as described at https: //mark-kirby.
co.uk/2013/how-to-authenticate-apis-http-basic-vs-http-digest/. The
request library also supports Open Authentication (OAuth) (see https://pypi.org/project/
requests-oauthlib/ for details), Kerberos (see https://github.com/requests/
requests-kerberos for details), and Windows NT Lan Manager (NTLM) (see https: //
github.com/requests/requests-ntlmfor details) methodologies.

Accessing GitHub using OAuth-type authentication

Let’s look at the specific example of accessing GitHub, which relies on an OAuth-type access strategy:

To use this example, you must first create an API access token by signing in to your GitHub account
and then accessing the https://github.com/settings/tokens page.

After you click Generate New Token, you see a New Personal Access Token page where you provide
a token name and decide what access rights the token should provide. For this example, all you really
need is repo, package, and user access.

When you are finished with the configuration, click Generate New Token. Make sure you copy the
token down immediately because you won't be able to access it later. (If you make a mistake, you can
always delete the old token and create a new one.)

This simple example shows what you need to do to obtain a list of repositories for a given account.
However, that’s not really the point of the example. What you're really looking at is the authentication
technique used to access specific resources and the use of GitHub isn’t that pertinent—it could be any
API (any API securing a protected resource). Use these steps to create the example:

1. Import the required libraries:

import requests

import json

Employing ML in security in the real world

2. Obtain the sign-in information. Note that you must replace Your User Name with your
actual username and The Token You Generated with the token you created earlier:

resource = 'https://api.github.com/user/repos'
username = 'Your User Name'
token = 'The Token You Generated'

3. Create the reusable session object:

session = requests.Session()

session.auth = (username, token)

4. Request the list of repos for this user:

repos = json.loads (session.get (resource) .text)

5. Output the repo names:

for repo in repos:

print (repo['name'])

This code is really an extension of the examples in the previous section. Note that you must supply your
username and token (not your GitHub password) before running this example or you'll see an error.
In this case, the code creates a GitHub session, then uses it to obtain a list of repositories owned or
accessible by the user from https://api.github.com/user/repos. The example loads the
repository information, which includes everything about the repository, not just the name, in JSON
format. It then prints a list of names. The names you get depend on the repositories you have set up
or shared with other GitHub users. The session object will also allow you to perform tasks such as
creating new repositories. The tasks you can perform are limited by the token you generate. You can
find extensive documentation about the GitHub REST API at https://docs.github.com/
en/rest/overview.

This example demonstrates something else, authorization. Once you authenticate the user, you authorize
certain actions by that user, such as by using the get (resource) session call. When generating
the GitHub token, you define the actions that the token will allow. One user might be authorized to
do everything, while another user might only be able to list the repository content and download files.

Developing a simple spam filter example

Most people associate spam with email and text messages, and you do see ML applications keeping
spam away from people all the time. However, for an ML application, spam is any data in any form
that you don’t want the application to see. Spam is the sort of information that will cause biased or
unusable results because, unlike a human, an ML application doesn’t know to ignore the spam. In
most cases, spam is an annoyance rather than a purposeful attempt to attack your model. You can find

109

110

Considering the Threat Environment

the code for the following examples in the MLSec_ 04 Remove Unwanted Text.ipynb
file of the downloadable source code.

Starting with a simple removal

When creating a secure input stream for your ML application, you need to think about layers of
protection because a hacker is certainly going to pile on layers of attacks. Even if you've limited access
to your application and its data sources, and provided an ensemble to predictively remove any data
source that is most definitely bad, hackers can still try to get data through seemingly useful datasets.
Consider the simple text file shown here (also found in TestAccess. txt):

You've gained access to this file.

This is a bad line.

This is another bad line.

This line is good.

And, this line is just sort of OK.

This is yet another bad line for good measure.
You don't want this bad line either.

Finally, this line is great!

Imagine that every line that has the word bad in it really is bad. Perhaps the data includes a script or
unwanted values. In fact, perhaps the data just isn't useful. It’s not necessarily bad, but if you include
it in your analysis, the result is biased or perhaps skewed in some way. In short, the line with bad in
it is some type of limited spam. It’s not selling you a home in outer whatsit, but it’s not helping your
application either. When this sort of issue occurs, you can remove the bad lines and keep the good
lines using code similar to that shown in the following steps:

1. Import the required libraries. When you perform these imports, the Integrated Development
Environment (IDE) will tell you that it has downloaded st opwords needed for the example:

import numpy as np

import os

import nltk

nltk.download ('stopwords')

from nltk.corpus import stopwords
nltk.download ('punkt')

nltk.download ('wordnet')

from collections import Counter

from sklearn.naive bayes import MultinomialNB

from skleyer.metrics import confusion matrix

Employing ML in security in the real world

2. Create a function that accepts a filename and a target to remove unwanted lines. This function
opens the file and keeps processing it line by line until there are no more lines:

def Remove Lines(filename, target word) :
useful lines = []
with open(filename) as entries:
while True:
line = entries.readline()
if not line:
break
if not target word.upper() in line.upper() :
useful lines += [line.rstrip()]

return useful lines

3. Define the file and target data to search, then create a list of good entries in the dataset and
print them out:

filename = 'TestAccess.txt'

target = 'bad'

good data = Remove Lines(filename, target)
for entry in good data:

print (entry)

There is nothing magic about this code—you’ve used something like it before to process other text
files. The difference is that you're now using a file-processing technique to add security to your data.
Notice that you must set both the current word and the target word to uppercase (or lowercase as you
like) to ensure the comparison works correctly. Here’s the output from this example:

You've gained access to this file.
This line is good.
And, this line is just sort of OK.

Finally, this line is great!

Notice that all of the lines with the word bad in them are now gone.

111

112

Considering the Threat Environment

Manipulating filtered data

Most people who work with data understand the need to manipulate it in various ways to make the
data better suited for analysis. For example, when performing text analysis, one of the first steps is
to remove the stop words because they don’t add anything useful to the dataset. Some of these same
techniques can help you find patterns in input data so that it becomes harder for a hacker to sneak
something in even after you remove the bad elements. For example, you might find odd repetitions
of words, number sets, or other data that might normally appear infrequently, if at all, in a dataset
that will alert you to potential hacker activity. The following steps show how to create a simple filter
that helps you see unusual data or patterns. This code relies on the same libraries you imported in
the previous section:

» <«

1. Define a function to remove small words such as “to,” “my;” and “so” from the text:

def Remove Stop Words (data) :

stop_words = set (stopwords.words ('english'))

new lines = []

for line in data:
words = line.split()
filtered = [word for word in words

if word.lower () not in stop words]

new lines += [' '.join(filtered)]

return new lines

2. Define a function that will list each word individually, along with the count for that word:

def Create Dictionary(data) :
all words = []
for line in data:
words = line.split ()

all words += words

dictionary = Counter (all words)

return dictionary

3. Define a function that creates a matrix showing word usage:

def Extract Features(data, dictionary):
features matrix = np.zeros
(len(data),len(dictionary)))
lineID = 0

Employing ML in security in the real world

for line in data:
words = line.split()
for word in words:
wordID = O
for i,d in enumerate(dictionary) :
if d == word:
wordID = 1
features matrix[lineID, wordID] += 1
linelID += 1

return features matrix

4. Create a filtered list of text strings from the original text that has the stop words removed:

filtered = Remove Stop Words (good data)
print (filtered)

5. Create a dictionary of words from the filtered list:

word dict = Create Dictionary(filtered)

print (word dict)
6. Create a matrix showing which words are used and when in each dataset row:

word matrix = Extract Features(filtered, word dict)

print (word matrix)
Each of the functions in this example shows a progression:

1. Remove the stop words from each line in the dataset that was created from the original file.
2. Create a dictionary of important words based on the filtered dataset.

3. Define a matrix that shows each line of the dataset as rows and the words within that row as
columns. A value of 1 indicates that the word appears in the specified row.

There are some interesting bits of code in the example. For example, Remove Stop Words ()
relies on a list comprehension to perform the actual processing. You could also use a £or loop if
desired. You must also use join () to join the individual words back together and place them in a
list to perform additional processing. The output looks like this:

["You've gained access file.", 'line good.', 'And, line

sort OK.', 'Finally, line great!']

113

114

Considering the Threat Environment

A dictionary is essential for many types of processing. Create_Dictionary () makes use of
the Counter () function found in the collections library to make short work of creating the
dictionary in a form that will make defining the matrix easy. Here’s the output from this step:

Counter ({'line': 3, "You've": 1, 'gained': 1, 'access': 1,
'file.': 1, 'good.': 1, 'And,': 1, 'sort': 1, 'OK.': 1,
'"Finally,': 1, 'great!': 1})

The output doesn’t appear in any particular order and it’s not necessary that it does. Each unique word
in the dataset appears as an individual dictionary key. The values show the number of times that the
word appears. Consequently, you could use this output to perform tasks such as determining word
frequency. In this case, the example simply creates a matrix to show where the words appear within the
dataset. There are possibly shorter ways to perform this task, but the example uses a straightforward
approach that processes each word in turn and finds its position in the matrix by enumerating the
dictionary. Here’s the output from this step:

o O o
o O o
o O o
R P B O
o O K+ O
o B O O
o B O O
o B O O
R O O O
R O O O

.1
5]
.1
.11

If you look at the first row, the first four entries have a 1 in them for You ' ve, gained, access, and
file. None of these words appear in the other rows, so the entries are 0 in the other rows. However,

line does appear in three of the rows, so there is a 1 for that entry in each of the rows. The next
section takes these techniques and shows how to apply them to multiple files in an email dataset.

Creating an email filter

Emails can contain a great deal of useless or harmful information. At one time, email filters worked
similarly to the example in the previous section (a simple filter). However, trying to keep track of all
of the words that hackers use to get past the filter became impossible. Even though the simple filtering
technique is still useful for certain needs, email filtering requires something better—an approach that
is flexible enough to change with the techniques that hackers use to attempt to get past the filter. One
such approach is to use an ML application to discover which emails are useful and which are spam.

The example in this section performs a simple analysis of the useful (ham) versus spam orientation
of each email in the Ling-Spam email corpus described at http: //www2 .aueb.gr/users/
ion/docs/ir memory based antispam filtering.pdf and available for download at
http://www.aueb.gr/users/ion/data/lingspam public.tar.gz. The original dataset
is relatively complex and somewhat unwieldy, so the example actually uses a subset of the messages
split into two folders: Email Trainand Email Test. To save some time and processing, the
example relies on the content of the \1ingspam public\lingspam public\lemm stop\
folder, which provides the messages with the stop words already processed and the words normalized

Employing ML in security in the real world

using lemmatization (see the Choosing between stemming and lemmatization section for details). The
messages in the Email Train folder come from the partl, part2, and part3 folders (867
messages in total with 144 spam messages), while the messages in the Email Test folder come
from the part4 folder (289 messages in total with 48 spam messages). You can tell which messages
contain spam because they start with the letters spmsg (for spam message).

/ N
Recognizing the benefits of targeted training and testing data

Even though this example uses a generic database, it’s always better to use your organization’s
email to train and test any model you create. Doing so will greatly decrease the number of
false positives and negatives in the production environment because the data will reflect what
the users actually receive. For example, an engineering firm specializing in fluid dynamics
can expect to receive a lot more emails about valves than a financial firm will. This same
principle holds true for all sorts of other filtering needs. The data from your organization will
always provide better results than generic data will. Of course, you need to make sure that any
organizational data you use meets privacy requirements and is properly sanitized before you
use it, as described in Chapter 13.

L J

Each of the text files contains three lines. The first line is the email subject, the second line is blank,
and the third line contains the message. In processing the emails, you look at just the third line with
regard to content and know that you can label the training messages as spam if the filename begins
with spmsg or ham when the filename begins with something else. With this in mind, the following
code shows a spam filter you can create using techniques similar to those used in the previous section
but using multiple files in this case. This code relies on the same libraries you imported in the Starting
with a simple removal section (make sure you use the 1.0.x version, originally version 0.23.x, of scikit-
learn, as described in Chapter 1, for this part of the chapter or you may encounter errors):

1. Set the paths for the training and testing messages:

train path = "Email Train"

train emails = \
[os.path.join(train path,f) for £
in os.listdir(train path)]

test path = "Email Test"

test _emails = \
[os.path.join(test path,f) for £
in os.listdir(test path)]

115

116 Considering the Threat Environment

2. Create a dictionary function to build the required dictionary. Then, remove non-word items
that include numbers, special characters, end-of-line characters, and so on:

def Create Mail Dictionary(emails) :
cvec = CountVectorizer (
stop_words='english',
token pattern=r'\b[a-zA-Z]{2,}\b',
max features=2000)
corpus = [open(email) .read() for email in emails]
cvec.fit (corpus)

return cvec

train cvec = Create Mail Dictionary(train_emails)

3. Create a features matrix function. Instead of lines and words, this code uses documents and
words for the matrix:

def Extract Mail Features(emails, cvec):
corpus = [open(email) .read() for email in emails]

return cvec.transform(corpus)

train feat = Extract Mail Features(train emails,
train cvec)
test feat = Extract Mail Features(test emails,

train_ cvec)

4. Create labels showing which messages are ham (0) and spam (1):

train labels = np.zeros (867)
train labels[723:867] =1

test labels = np.zeros(289)
test labels[241:289] =1

5. Train the Multinomial Naive Bayes model:

MNB = MultinomialNB ()
MNB.fit (train feat, train labels)

Employing ML in security in the real world

6. Predict which of the messages in the test group are ham or spam and output the correctness
of the prediction as a confusion matrix:

result = MNB.predict (test feat)

print (confusion matrix(test labels, result))

7. Display the confusion matrix in a nicely plotted form:

matrix = plot confusion matrix (MNB,
X=test feat,
y_true=test labels,
cmap=plt.cm.Blues)
plt.title('Confusion matrix for spam classifier')
plt.show (matrix)
plt.show ()

The listing shows that simple techniques often provide the basis for more complex processing. The
Create Mail Dictionary () and Extract Mail Features () functions provide the
ability to work with multiple files and to provide additional data cleaning. Notice that this example uses
a more efficient method of creating the dictionary using scikit-learn CountVectorizer ().
The concept and the result are the same as what you see in the previous section, but this approach is
shorter and more efficient. The Extract Mail Features () function is also made shorter by
using list comprehensions in addition to calling the cvec. transform() function on the resulting
corpus. Again, the output is the same and the process is the same under the covers, but you're using
a more efficient approach.

The Multinomial Naive Bayes model will vary in its ability to correctly predict ham or spam messages
after you fit it to the training data. In this case, the result shows that there are 241 ham messages and
48 spam messages in the test dataset. A larger test dataset is likely to show a less impressive result, but
according to Machine learning for email spam filtering: review, approaches and open research problems at
https://www.sciencedirect.com/science/article/pii/S2405844018353404,
some companies, such as Google, have achieved rates as high as 99.9 percent. In this case, however, the
companies use advanced ML strategies, rather than the more basic Multinomial Naive Bayes model.
In addition, the strategies rely on ensembles of learners as suggested in the Using ensemble learning
section of Chapter 3.

Choosing between stemming and lemmatization

There are two common techniques for normalizing words within documents: stemming and
lemmatization. Each has its uses. Stemming simply removes the prefixes and suffixes of words to
normalize the root word. For example, player, plays, and playing would all be stemmed from the root
word play. This technique is mostly used for word analysis, such as determining how often particular
words appear in one or more documents. Lemmatization processes the words in context, so that the

117

118

Considering the Threat Environment

words running, runs, and ran all appear as the root word run. You use this technique most often for
text analysis, such as determining the relationships of words in a spam message versus a usable (ham)
message. Here is an example of stemming:

from nltk.stem import LancasterStemmer

from nltk.tokenize import word tokenize

LS = LancasterStemmer ()
print (LS.stem("player"))
print (LS.stem("plays"))
print (LS.stem("playing"))

tokens = word tokenize("Gary played the player piano while
playing cards.")
stemmed = [LS.stem(word) for word in tokens]

print (" ".join (stemmed))

The example imports the required libraries, creates an instance of LancasterStemmer () and then
uses the instance to stem three words with the same root. It then does the same thing for a sentence
containing the three words. The output shows that context isn't taken into account and it’s possible
to end up with some non-words:

play
play
play
gary play the play piano whil play card

Lemmatization takes a different route, as shown in this example (note that you may have to add the
nltk.download ('omw-1.4") statement after the import statement if you see an error message
after running this code):

from nltk.stem import WordNetLemmatizer

WNL = WordNetLemmatizer ()

print (WNL.lemmatize ("player", pos="v"))
print (WNL.lemmatize ("plays", pos="v"))
print (WNL.lemmatize ("playing", pos="v"))

tokens = word tokenize ("Gary played the player piano while
playing cards.")

Summary

lemmatized = [WNL.lemmatize (word, pos="v") for word in tokens]

print (" ".join(lemmatized))

Notice the pos argument in the lemmatize () calls. This argument provides the context for
performing the task and can be any of these values: adjective (a), satellite adjective (s), adverb (r),
noun (n), and verb (v). In choosing verbs, the example provides this output, which you can contrast
with stemming:

player

play

play

Gary play the player piano while play card

The point is that you must choose carefully between stemming and lemmatization when creating
filters for your ML application. Choosing the right process will result in significantly better results
in most cases.

Summary

This chapter helped you understand both business and social threats to your ML application, what to
look for, how to mitigate attacks when they occur, and how to keep them from happening in the first
place. The goal is to provide a flexible setup that makes the hacker work so hard that going somewhere
else becomes attractive. Never assume that the hacker can’t break your security. In fact, presenting
any sort of challenge will keep a hacker interested until your security does break, so always assume
that any security threat can gain access if wanted.

Layering is an essential part of any security solution. Using layers adds complexity, which is a double-
edged sword. On the one hand, it makes the hacker’s job harder by putting up barriers that change
over time, as administrators learn and correct misconceptions about how security should appear. On
the other hand, as anyone who does reliability studies will tell you, more parts mean more things to
break, which reduces the reliability of the setup being protected. Consequently, more layers are good,
but more layers than you actually need only makes your system unreliable.

Thinking about complexity, the next chapter will zoom in on the network itself. Most hackers are
after your network, not an individual machine. Given that users generally have at least two systems
they use to access ML applications, infecting just one machine likely isn’t enough to provide the
hacker with a carte blanche to enter your application. Keeping your network clean is a requirement
if you want to keep your ML application safe and you need to consider both the local network and
the network in the cloud.

119

120

Considering the Threat Environment

Further reading

The following links provide you with some additional reading that you may find useful to further
understand the materials in this chapter:

This link helps you discover more about the ML component of a SageMaker application: Building
secure machine learning environments with Amazon SageMaker:

https://aws.amazon.com/blogs/machine-learning/building-secure-
machine-learning-environments-with-amazon-sagemaker/

Learn more about cookie poisoning: https://www.£5.com/services/resources/
glossary/cookie-poisoning

See how to perform scraping appropriately: How to scrape websites without getting
blocked: https://www.scrapehero.com/how-to-prevent-getting-
blacklisted-while-scraping/

Discover how to use ML techniques to perform scraping: https://towardsdatascience.
com/web-scraping-for-machine-learning-5£f£f£fb7047£70

Discover how to use ML to detect scraping efforts:

https://kth.diva-portal.org/smash/get/diva2:1117695/FULLTEXTOL.
pdf

Learn some additional detail on the carding attack type: How to Use AI and Machine Learning
in Fraud Detection:

https://spd.group/machine-learning/fraud-detection-with-machine-
learning/

Discover how malware can cause physical network damage: Emotet Malware Causes Physical
Damage: https://securityboulevard.com/2020/04/emotat-malware-
causes-physical-damage/

Learn more about how malware can cause bodily harm: https: //www.bbc.com/news/
technology-54204356

Read about the effect of loss of SCADA control led to a power plant hack in Ukraine: Everything
We Know About Ukraines Power Plant Hack: https://www.wired.com/2016/01/
everything-we-know-about-ukraines-power-plant-hack//

Provides detailed information about how SCADA and IoT are linked in ways that could cause
serious problems: What are SCADA and IoT?: https://www.datashieldprotect.
com/blog/what-is-scada-iot

Further reading

Learn more about how confidential computing works: Confidential Computing article at
https://www.ibm.com/cloud/learn/confidential -computing

Discover how a TPM works in detail: https://trustedcomputinggroup.org/
resource/trusted-platform-module-tpm-summary/

Discover why Windows 11 requires the use of the TPM 2.0 chip: What is TPM 2.0 — the chip you
need to run Windows 11: https://www. laptopmag.com/articles/tpm-chip-£faqg

Learn about specific exploits against older TPM chips that may affect your ML application:
Researchers Detail Two New Attacks on TPM Chips: https://www.bleepingcomputer.
com/news/security/researchers-detail-two-new-attacks-on-tpmchips/

Understand why it takes up to 10 years to develop and implement a new security strategy:
https://www.hindawi.com/journals/je/2020/5267564/

Provides insights into how to perform behavior analysis: Using machine learning to understand
customer’s behavior: https://towardsdatascience.com/using-machine-
learning-to-understand-customers-behavior-£f41b567d3a50

Learn more about attribute-based access: https://www.okta.com/blog/2020/09/
attribute-based-access-control-abac/

Gain a better understanding of the difference between basic and digest authentication: https://
www.hackingarticles.in/understanding-http-authentication-basic-
digest/

Understand the difference between the way GitHub apps and OAuth apps work: https://
docs.github.com/en/developers/apps/differences-between-github-
apps-and-oauth-apps

Find a discussion of the features used for advanced machine learning classifiers used for spam
detection: Deep convolutional forest: a dynamic deep ensemble approach for spam detection in
text: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9039275/

See an example of how to create a spelling corrector that could be combined with spam
detection: Spelling Recommender With NLTK: https://jorgepit-14189.medium.
com/spelling-recommender-with-nltk-2fb6fe94a7b3

Discover a technique for detecting fake news that can also be used to help with spam detection:
Detecting Fake News with Python and Machine Learning: https://data-flair.training/
blogs/advanced-python-project-detecting-fake-news/

121

A4 S000TZENLCT

5

Keeping Your Network Clean

A network is the sum of all environments within an organization, even those not directly controlled
by the organization. For example, an environment could consist of a database management application
that resides partly on local servers and partly on hosted servers in the cloud, so part of the environment
is controlled directly by the organization and another part is controlled by a third party. The same
holds true for applications that rely on third-party services or access data through third-party APIs.
In addition, users often rely on more than one device to perform work, and some of those devices are
owned by the user, rather than the organization.

The current environment demands new ways of ensuring control of resources through a combination
of traditional and other means that are more flexible and have a broader range than protections in
the past. Because hackers often employ zero-day exploits nowadays (those that occur immediately
after a new threat is exposed, often before an organization knows about it), real-time analysis and
mitigation are critical. In fact, a modern network requires some level of predictive protection so that
a hacker doesn't find it easy to break in. These sorts of protections are impossible using just traditional
techniques; you really need machine learning (ML) methods to detect, assess, and mitigate the threats.

With these issues in mind, this chapter will discuss these topics:

o Defining current network threats

» Considering traditional protections
« Adding ML to the mix

« Creating real-time defenses

« Developing predictive defenses

124

Keeping Your Network Clean

Technical requirements

This chapter requires that you have access to either Google Colab or Jupyter Notebook to work with
the example code. The Requirements to use this book section of Chapter 1, Defining Machine Learning
Security, provides additional details on how to set up and configure your programming environment.
When testing the code, use a test site, test data, and test APIs to avoid damaging production setups
and to improve the reliability of the testing process. Testing over a non-production network is
highly recommended but not absolutely necessary. Using the downloadable source is always highly
recommended. You can find the downloadable source on the Packt GitHub site at https://github.
com/PacktPublishing/Machine-Learning-Security-Principles or my website
athttp://www.johnmuellerbooks.com/source-code/.

Defining current network threats

Network threats go well beyond the application level, and it’s unlikely that a single individual would
provide support for every protective means that a network will require. For example, developers aren’t
going to handle physical security - a security company will likely handle it. However, your ML application
may interact with the physical security system by monitoring cameras and other sensors. If you think
this is a little futuristic, companies such as Bosch (https://www.boschsecurity.com/xc/
en/solutions/video-systems/video-analytics/)and Nelly’s Security (https://
www.nellyssecurity.com/blog/articles/what-is-deep-learning-ai-and-
why-is-it-important-for-video-surveillance) have products available today. An
ML application can look for trends, such as an attacker who is casing a business before attempting to
break in. The human monitoring the cameras may not see that the same person shows up on various
nights, yet never enters the building. This chapter focuses more on the software end of networks, but
it’s important to keep the hardware element in mind.

Developing a sense of control over chaos

It’s essential to define control in the context of security. Chaos reigns on the internet today because
so many people have so many views on how to manage it. Because there is no centralized strategy for
managing issues such as security, hackers are able to place data wedges (exploits such as code insertion,
viruses, and trojans) in various ways that can create a security nightmare for your business’s network.
However, this chaos also applies to casual use of the internet by users who do their shopping at work
when the organization allows such an activity, because the user is using organizational resources to
interact with the world. Many of these interactions are currently controlled through traditional means,
such as honeypots, to detect hacker activities. A honeypot (essentially, a fake monitored system) can
help detect intrusions that piggyback on legitimate requests.

Businesses rely on huge numbers of interconnected machines that share expensive resources to
promote data sharing and keep costs low in the form of networks. These interconnected machines
work both separately and together at the behest of their operators to perform tasks of all sorts. The

Defining current network threats

term network applies to the entirety of connected systems, whether local or cloud-based, whether part
of the organization or part of a third party, and whether directly or indirectly connected. When you
consider a network in these terms, the vastness of the configuration can become overwhelming, yet
you must consider the network at this level or suffer the consequences wrought by hackers, outsiders,
insiders, well-meaning users, and inept managers. Keeping a network clean means constantly monitoring
conditions for any form of threat that would damage infrastructure, mangle data, or prevent users from
accomplishing something useful. Unfortunately, networks are inherently unsafe because someone,
somewhere, is almost certainly going to leave the door open to some form of attack. Consequently,
knowing these attack types is essential.

Traditional techniques are effective to an extent when managed well and updated constantly to address
new threats. However, the task of managing and updating security, plus checking data and keeping
logs, is daunting and impossible to perform manually. ML strategies help an administrator keep up
to date by performing many tasks automatically so that they can focus on tasks that require special
attention. In fact, ML-based tools can often help the administrator discover those tasks that are most
important to complete.

However, it’s in the proactive nature of a real-time defense that networks can gain the biggest advantage
against adversaries. Real-time defenses depend on ML applications that can detect specific patterns of
attack, adjust neural networks to address new types of attack, and generally anticipate certain types of
human behavior. Predictive ML methodologies take protection one step further by making it possible
to create a defense before the attack comes. Of course, the efficacy of predictive measures relies on
tracking trends, and these measures can’t address black swan events (see the Understanding the Black
Swan theory section in Chapter 3, Mitigating Inference Risk by Avoiding Adversarial Machine Learning
Attacks, for details). Now that you have a sense of what control means with regard to security, it’s time
to look at the categories of network control in the ML domain.

Implementing access control

As someone who works with ML code for any reason, you likely know that it’s important to ensure
that you have firm control over the data you download, create, or interact with in any other way.
However, hackers don't just work with data files. They also use any other sort of access available. For
example, Microsoft used to make Telnet (a notoriously high-security risk) a default part of Windows.
Telnet Server has not been available on its server products since 2016. However, you can still install
Telnet Client as an optional product on Windows Server 2019 (https://www.rootusers.
com/how-to-enable-telnet-client-in-windows-server-2019/), Windows 10
(https://social.technet.microsoft.com/wiki/contents/articles/38433.
windows-10-enabling-telnet-client.aspx), and even the supposedly more secure
Windows Server 2022 and Windows 11 (https://petri.com/enable-telnet-client-
in-windows-1l-and-server-2022/).

125

126

Keeping Your Network Clean

Generally speaking, a network administrator will know not to install Telnet because there are other, more
secure, methods of achieving the same thing. The most common replacement is Secure Shell (SSH).
You can read about the differences between Telnet and SSH at https://www.tutorialspoint.
com/difference-between-ssh-and-telnet. Some Windows administrators now use a
PowerShell equivalent, as explained at https: //www.techtutsonline.com/powershell-
alternative-telnet-command/, but this solution only works on Windows. If you don’t
want to work at the command line, then you might consider using PuTTY instead (https://
www . makeuseof .com/tag/windows-10-ssh-vs-putty/). The GUI interface shown
in Figure 5.1 makes working with network connections a lot easier, especially if youre not used to
working with them.

P>

#R PuTTY Configuration P =)
Category:
=)- Session Basic options for your PUuTTY session
Logging < Logging allows for
" ~ Specify the destination you want to connect to tracking session data.
Host Name (or IP address) Port .
Keyboard <l Easily set any IP
Bell 22 address and port.
Wi zeamres Sclonipe: Choose a connection
= NYNIIoW @ SSH Serial Other: m <—— type with SSH as the
Appearance default.
Behaviour Load, save or delete a stored session
Translation Saved Sessions
+)- Selection
Colours A
=J- Connection Default Settings Load
Data EC2
Py
+- SSH
Sera Delete
Telnet L
Rlogin
SUPDUP Close window on exit:
Always Never @ Only on clean exit

Figure 5.1 — ML developers need not fight with a command line
interface when testing security-related ML applications

What the network administrator won’t know about is some product vulnerabilities, such as the
Remote Code Execution (RCE) problem with Python (https://www.zdnet .com/article/
python-programming-language-hurries-out-update-to-tackle-remote-
code-vulnerability/). If you use Python to create your ML model, then you also need to keep
track of required updates or you could inadvertently create a security hole for your organization while
trying to protect it. NumPy (https://numpy.org/) has a similar RCE flaw (https://www.
cybersecurity-help.cz/vdb/SB2019012101). (Other Python libraries also have various
vulnerabilities, including RCE issues.)

Defining current network threats

Figure 3.1 and Figure 3.2 show the use of ensembles of learners to control access to specific applications.
It turns out that you can also use this tactic for controlling and monitoring access to your network, as
described in Al machine learning and your access network at https: //www.networkworld.
com/article/3256013/ai-machine-learning-and-your-access-network.
html. What this article points out is that using ML tools can focus administrator attention on actual
problems after the ML tool has already scoured the incoming data.

Ensuring authentication

Authentication must work at several levels to ensure the integrity of a network and its constituent
parts. When someone is authenticated, the system has ensured that the person’s identity is known. The
Developing a simple authentication example section of Chapter 4, Considering the Threat Environment,
discusses the role of authentication in application security, and the same need is evident at the network
level. The example code in the Accessing GitHub using OAuth-type authentication section of Chapter 4
demonstrates authentication and another requirement, authorization, which provides actual access to
aresource by a known individual. Networks tend to focus on authentication, after which a user must
go through an additional hurdle of authenticating to a specific application before gaining access to a
resource. The problem with multiple layers of security is that the user quickly tires of it all and finds
ways around it, which is where adaptive authentication comes into play, as described in Adaptive
Authentication and Machine Learning athttps://towardsdatascience.com/adaptive-
authentication-and-machine-learning-1b460ae53d84. The short definition of
adaptive authentication is the deployment and configuration of multi-factor authentication (MFA)
such that it becomes possible to select the correct kind of authentication, depending on a user’s risk
profile and tendencies. When writing an ML application to deal with network-level authentication,
the developer can take a significant number of factors into consideration, such as the following:

+ Device type and/or name
o Location

o Network type

« Operating system

« User risk profile

o User tendencies

All of this happens in the background without the user’s knowledge. What the user sees is an MFA
setup that provides the access needed for both the network and common applications. Adaptive
authentication is far more flexible and less likely to encounter problems than most monolithic solutions
in place today.

127

128

Keeping Your Network Clean

Detecting intrusions

ML is seeing major use in Network-Based Intrusion Detection Systems (NIDSs), an automated
technique to determine whether a particular access attempt is an attack or benign. The use of ML
allows the NIDS to react quickly and also adapt its behavior to new threats faster than most humans
can. The main point of contention is how best to implement NIDS. Articles such as Deep learning
methods in network intrusion detection: A survey and an objective comparison (https://www.
sciencedirect.com/science/article/abs/pii/S1084804520302411) expressa
preference for deep feedforward networks over autoencoders and deep belief networks (DBNs) (see
https://www.analyticsvidhya.com/blog/2022/03/an-overview-of -deep-
belief-network-dbn-in-deep-learning/ for details). However, not everyone agrees
that using this approach will work well. In fact, there are some complex studies available to show the
effectiveness of various NIDS strategies, such as Network intrusion detection system: A systematic study
of machine learning and deep learning approaches athttps://onlinelibrary.wiley.com/
doi/full/10.1002/ett.4150.

NIDSs necessarily rely on a combination of hardware and software. Because the NIDS is detecting a
particular event, rather than interacting directly with the network, it often appears in a separate server
in a supervisory capacity. Figure 5.2 shows a typical NIDS setup, with a generalized ML configuration.

Internet < » Firewall |« » Router
Intrusion 1. A switch allows
Detection < Switch sampling of all data
System without blocking the LAN.
l_l \—l A
v
Deployment Detection LAN
Methods Methods
Classification Anomaly 2. Various machine
Model Detection learning models detect
Model it
distinct attacks.
v v v
Decig::?i:)n | Threat _ | Administrative 4. The combined output is
Soft P Detection P Alerts sampled and voted upon to
WVEIE reduce false alarms.

3. Machine learning output is
combined with other
software-based detection.

Figure 5.2 — Developing a generalized NIDS solution with the NIDS in a supervisory role

Defining current network threats

An essential part of this design is that you use multiple independent models (in contrast to an ensemble,
where models work together), each of which is designed to detect a particular threat. Most of these
models will output a classification regarding threat potential (Chapter 7, Dealing with Malware,
discusses malware detection) or detect suspicious activity as represented by anomalies (Chapter 6,
Detecting and Analyzing Anomalies, discusses how to detect anomalies). The reason that you need
multiple models is that no one model will provide both classification and anomaly detection, and no
one model will even cover a single detection method completely. The process will likely include output
from other types of non-ML software and the output of all of the detection methods centralized in
a threat detection model. This module provides a vote upon the various detection models and final
output to the administrator in the form of an alert when enough components agree there is a threat.

Defining localized attacks

The previous sections have focused on attacks from the outside or protection from outside influences.
Networks are attacked at the local level in a wide range of ways, some of which aren’t even purposeful
but rather due to user error. In many cases, the use of network analytics can detect issues such as
aberrant behavior or various kinds of probing. However, network analytics are ill-equipped to detect
changes in user behavior. Because an administrator can’t follow every user around looking for potential
problems, an ML approach is helpful. One such technique appears in Deep Learning and Machine
Learning Techniques for Change Detection in Behavior Monitoring at http://ceur-ws.org/
Vol-2559/paper3 . pdf. In this case, the paper is talking about monitoring the elderly or those
with special needs, but the same techniques can be employed in network scenarios, as described
in Network Anomaly Detection and User Behavior Analysis using Machine Learning at https://
www.ijcaonline.org/archives/volumel75/numberl3/vadgaonkar-2020-
ijca-920635.pdf. The former techniques detect physical behavioral changes (which can drastically
affect your network), while the latter techniques detect usage behavioral changes, both of which are
required for complete user coverage.

However, tracking down user issues is only part of the localized attack detection requirement. It’s also
necessary to detect attacks against the ML models on your network, especially those involved in NIDS
solutions (as described earlier in the chapter). Unfortunately, not a lot of research has been done in
this area, so the best approach is to ensure you track any local input into the NIDS that could disrupt
its functionality from hacker attacks, in which users actually facilitate hacker entry into the network.

Understanding botnets

Botnets are a kind Distributed Denial of Service (DDoS) attack, but the goal is to steal information,
spread spam, infect systems, or cause damage to infrastructure in most cases, rather than simply bring
a network down. The problem with botnets is that some of them simply won’t die. Law enforcement
takes the botnet down, but it comes back again like an unwanted weed. You can read about some
of these exploits in Botnet Detection with ML at https://medium. com/@EbubekirBbr/
botnet-detection-with-ml-afd4fa563d31. What is truly terrifying is that one such
botnet consisted of 2 million zombie computers.

129

130

Keeping Your Network Clean

The essential element in botnet detection is that the botnet will produce some sort of anomaly that the
system can detect and monitor, using an approach similar to that shown in Figure 5.2. The anomalies
are detectable by looking for techniques such as the following:

o TCP syn (synchronization) scanning: The hacker tries to create a handshake with every port
on the server

o DNS monitoring: The hacker tries to modify DNS records

« Botnet attack and propagation models: The hacker relies on multiple botnet variations that
replicate themselves

A legitimate user won't engage in any of these activities, so looking for them provides you with an
anomaly to verify. The Machine Learning Based Botnet Detection white paper at http://cs229.
stanford.edu/proj2006/NivargiBhaowallLee-MachineLearningBasedBotnetDet
ection.pdf provides insights into the effectiveness of specific algorithms in detecting botnet attacks.

There are some interesting examples of detecting botnets using ML classifiers (special applications
designed to categorize entries based on learned characteristics), similar to the technique shown in the
Developing a simple spam filter example section of Chapter 4. One such site is Build botnet detectors using
machine learning algorithms in Python at https://hub.packtpub.com/build-botnet-

detectors-using-machine-learning-algorithms-in-python-tutorial/.
In this case, you work with the approximately 2 GB CTU-13 dataset found at https://mcfp.

felk.cvut.cz/publicDatasets/CTU-13-Dataset/ and described at https://
mcfp.weebly.com/the-ctu-13-dataset-a-labeled-dataset-with-botnet-
normal-and-background-traffic.html. The dataset explodes in size to around 74 GB
when you extract it. It’s best to download the dataset separately and extract the data because doing
so within the example code can sometimes make it appear that the example has frozen. You may also
want to temporarily disable virus detection on your system (after disconnecting from the internet).
Otherwise, your antivirus application will dutifully remove all of the example files before you can
use them for testing. The second example also relies on a Twitter dataset that’s apparently no longer
available, but it’s possible to modify the code to use the dataset found at https://www.kaggle.

com/davidmartngutirrez/twitter-bots-accounts.

Now that you have some idea of what the threats are, it’s time to look at some protections. Protections
currently come in four levels: traditional, ML, real-time, and predictive. This next section provides an
overview of traditional protects that work well in ML application environments.

Considering traditional protections

Understanding the threats to your network is a good first step because knowing about the threat is
the first step in avoiding it. However, now it’s time to do something about the threats. Anything that
protects your network directly because of some type of detection practice is part of an Intrusion
Detection System (IDS). It doesn’t matter whether the protection is a firewall, virus scanner, or other

Considering traditional protections

software that checks data in some manner, an actual security element designed to fool the attacker in
some manner, or (as described later) an ML application. All of this protection reports an intrusion
after detecting it, making it an IDS. Of course, you often find the term IDS cloaked in some sort of
mystical way (depending on the organization/author), but really, they're straightforward. As described
in the previous section, attacks come in waves and at different levels. Consequently, you need multiple
layers of security (defense in depth) to address them. Each layer is part of your IDS.

Working with honeypots

A honeypot is a security mechanism that purposely attracts hackers, as described at https: //www.
imperva.com/learn/application-security/honeypot-honeynet/. The ideaisto
create a fake network that includes security holes that a hacker can use to gain access. In order to be
successful, the fake network must look real enough so that the hacker is fooled into believing it actually
is real. However, the honeypot can be completely disconnected from anything else in the organization
so that the hacker gains nothing of value in exchange for the effort of breaking into the system. For a
security specialist, a honeypot provides an opportunity to discover how hackers perform tasks while
maintaining the safety of the real network. One of the more interesting pieces on this sort of effort
is Honeypots: Free psy-ops weapons that can protect your network before defences fail at https: //
www.theregister.com/2017/02/08/honeypots feature and how to guide/.

From an ML perspective, the most useful honeypot is a high-interaction honeypot - one that looks
completely real in every respect. In some cases, these honeypots are actually part of the functioning
network and provide a means of detecting an intrusion. The most common use for Al today is in
creating a honeypot that provides increased intrusion detection capability, as described in AI-powered
honeypots: Machine learning may help improve intrusion detection at https: //portswigger.net/
daily-swig/ai-powered-honeypots-machine-learning-may-help-improve-
intrusion-detection. Unfortunately, hackers have also been busy, as explained in Automatic
Identification of Honeypot Server Using Machine Learning Techniques athttps://www.hindawi .
com/journals/scn/2019/2627608/. The consensus is that knowledgeable hackers now
have tools to detect low-interaction and medium-interaction honeypots, but that high-interaction
honeypots are still viable.

To create an ML-based honeypot, it’s essential to know where to place the honeypot application
and how to create the required agent. An article entitled A Smart Agent Design for Cyber Security
Based on Honeypot and Machine Learning, at https://www.hindawi.com/journals/
scn/2020/8865474/, provides some ideas on how to perform this task. In most cases, you're
depending mostly on linear regression classification that is trained using hacker profile data to determine
whether an access attempt is normal or an attack. Some sources also combine this type of agent with
another agent that detects whether the actor in an interaction is a legitimate user or a hacker, based
on activity — how the actor interacts with the system.

131

132

Keeping Your Network Clean

Honeypots aren’t necessarily limited to detection. You can use them in a number of other ways. For
example, you could possibly use a honeypot to provide a competitor with fake data or even a tainted
version of a real ML model used within your organization. Because of the nature of ML models, detecting
a reasonable fake would be incredibly difficult. For that matter, you could simply let the hacker steal
the model and implant some sort of phone home code so you know the hacker’s location (or, at least,
the location of one of the hacker’s zombies). Oddly enough, there is currently a patent application
for such technology (see https://www. freepatentsonline.com/y2020/0186567.
html for details).

Using data-centric security

Data-centric security focuses on protecting data, rather than infrastructure. When a user opens an
application, the application has privileges required to access precisely the data it needs and no more.
The user has no rights to the data at all because the user isn’t accessing the data; the application is.
Any attempt by the user to access the data directly would result in a denial by the system and requisite
notification to the administrator of the attempt. Even if the user were to somehow manage to evade
the security, a secondary level of data encryption would thwart any attempt to actually use the data.
This method of securing a network has these advantages:

o The data remains encrypted except when the application is actually using it
o It’s easier to monitor data access because you track one application, rather than multiple users
« The actual location of the data is masked

o Creating policies governing data usage becomes more straightforward

Organizations normally combine data-centric security with other security measures for sensitive data.
A number of vendors now provide support for data-centric security, as described at https: //www.
g2.com/categories/data-centric-security. These vendors are moving to ML strategies
because using ML makes solutions more flexible and adaptive. In fact, if you read The Worldwide Data-
centric Security Industry is Expected to Reach $9.8 Billion by 2026 at a CAGR of 23.1% from 2020 at
https://www.globenewswire.com/en/news-release/2021/05/07/2225398/28124/
en/The-Worldwide-Data-centric-Security-Industry-is-Expected-to-Reach-
9-8-Billion-by-2026-at-a-CAGR-of-23-1-from-2020.html, you'll find that data-centric
security is an emerging technology that’s attracting a lot of attention. According to the Forbes article at
https://www.forbes.com/sites/forbestechcouncil/2020/02/14/12-tips-to-
help-shift-your-business-to-data-centric-cybersecurity/?sh=2098£174555d,
the two main contributions of ML to data-centric security are as follows:

« Implementing analytics-based security controls

« Monitoring data flows

Considering traditional protections

When creating an ML application to implement data-centric security, you create one model that
performs anomaly detection on access logs. All access to the data should follow easily recognized
patterns, and anything that falls outside those patterns is suspect. The second model would categorize
data flow. If only applications are supposed to access the data, then a user accessing the data would
represent a threat. However, the categorization must go further. When an application is restricted to
local access only, seeing it access the data from a remote location is cause for concern.

Part of data-centric security measures is to improve the quality of the data itself. For example, if the
data isn’t clean or of the right type, the outliers contained within it could be viewed as a potential
security issue, rather than simply a failure to clean the data correctly. The article Big Data To Good
Data: Andrew Ng Urges ML Community To Be More Data-Centric And Less Model-Centric (https://
analyticsindiamag.com/big-data-to-good-data-andrew-ng-urges-ml-
community-to-be-more-data-centric-and-less-model-centric/) isenlightening
because it points to a need to create better results. By ensuring that data is more correct by reviewing it
for missingness, consistency, and other issues, it’s easier for a model to detect a botnet or malware, as
opposed to real data, because there are fewer anomalies to deal with. The article makes clear that code
is important, but data quality is far more important because it takes up 80 percent of a data scientist’s
time. Consequently, in addition to creating models that detect anomalies and classify access, ensuring
data remains clean so that the models can do their jobs is essential.

Data-centric security also relies partly on the same techniques used for privacy programming, using
products such as PyGrid (https://github.com/OpenMined/PyGrid) and PySyft (https://
github.com/OpenMined/PySyft). Chapter 13 looks into the matter of ensuring that data
remains private through the use of federated training techniques. As a data scientist creates data-
centric security models, the need to train on sensitive or encrypted data is important. Using the same
measures that developers rely on to keep data private will also ensure the efficacy of the security model.

Locating subtle intrusion indicators

If you only use NIDS to protect your network, then you're actually leaving it wide open to attack. The
Internet of Things (IoT) is quickly changing the security landscape because IoT makes subtle, backdoor
attacks possible. Upon viewing Multi-level host-based intrusion detection system for Internet of things
athttps://link.springer.com/article/10.1186/s13677-020-00206-6, you’ll
find that IoT devices are largely unsecured now and lack any sort of intrusion detection. However, a
NIDS won't work in this case. What you need instead is Host-Based Intrusion Detection Systems
(HIDSs). Of course, you may wonder how the IoT can present any sort of threat. Consider this process:

1. A hacker gains entry to a smart device connected to the internet for monitoring purposes.

2. The hacker changes data in an unobtrusive manner on the device, such that the data will produce
an unexpected result when processed by analytics software.

3. 'The user or host service accesses the device from a desktop system, tablet, or other device
attached to the network.

133

134

Keeping Your Network Clean

4. 'The data modifications produce an unexpected result.

5. The network is now potentially open to attack due to the result produced by the analytics software.

Because the smart device continues to operate as expected, no one suspects that it has become a time
bomb. The hacker modified the data, not the device, so interacting with the device wouldn't show
any difference. The attack only becomes apparent when performing an analysis of the data. Besides
direct data manipulation, IoT devices represent these sorts of threats to your business and network:

o An attacker monitors users of interest to see whether they will tell family members about
potentially sensitive information. There is an app available to hackers to make this possible
with very little effort (see https://www.siliconrepublic.com/enterprise/

e« amazon-alexa-google-home-smart-speaker-research for details). IoT devices,
such as smart speakers, are sensitive enough to hear a heartbeat (https: //www.ncbi.nlm.
nih.gov/pmc/articles/PMC7943557/), so whispering won't prevent the divulging
of sensitive information to hackers who are listening.

« The use of a group of IoT devices can create a DDOS attack, such as the Mirai attack, where the
botnet turned IoT devices running on ARC processors into a group of zombies (https://
www.csoonline.com/article/3258748/the-mirai-botnet-explained-
how-teen-scammers-and-cctv-cameras-almost-brought-down-the-
internet.html).

o The attacker gains access to a home network with access to your business network through
an IoT device.

o In order to reduce employee effectiveness, the attacker bricks company-issued IoT devices
using a botnet, such as the BrickerBot malware (https://www.trendmicro.com/
vinfo/us/security/news/internet-of-things/brickerbot-malware-
permanently-bricks-iot-devices).

One way in which to combat subtle intrusions such as IoT devices is to ensure all data sources receive
proper checks. As noted in the Developing a simple spam filter example section of Chapter 4, Considering
the Threat Environment, you need to parse the incoming data looking for anomalies of any sort,
including data that falls out of range or simply doesn’t follow a predictable pattern. For example, a
thermometer indicating 5 hours of intense furnace use on a 90-degree day signals that there is either
something wrong with the thermostat and it should be replaced, or that someone is tampering with
it. ML techniques can take data from multiple sources, such as outside temperature monitors and
thermostats, and combine it to detect threats that would otherwise go unnoticed.

It’s also possible to mitigate potential tampering using what is known as a trace - a little piece of
software in each device that produces trace data. A trace is essentially data that monitors device activity
with regard to network communication. The Obtaining Data for Network Traffic Testing section talks
about using Wireshark to obtain network traffic. Wireshark can also be used to create trace data, as
described at https://2nwiki.2n.cz/pages/viewpage.action?pageld=52265299.

Considering traditional protections

When working with IoT devices, it’s necessary to create a trace point, which is a small piece of code that
collects information in instrumented kernels, such as Linux or Android devices. When a tracer, such
as LTTng (https://1lttng.org/), hits the trace point, the trace point provides the device state
in the Common Trace Format (CTF) (https://diamon.org/ctf/). When an IoT device isn't
instrumented, it’s often possible to add tracing ability through software such as barectf (https://
github.com/efficios/barectf). To make binary data compatible with ML code, you can
use the Babeltrace API (https://babeltrace.org/). Figure 5.3 shows what a typical trace
scenario might look like.

loT Device

Trace Trace
Request Data

Trace Data .
Tracer > Conversion Data Analysis P Alert System
A A
Data Processing
A\ 4
i
Feature Feature) ML
Selection) Creation ‘ Categorization
Start of Trace
1. The 2. Binary 3. The data 4. Analysis 5. The alert
tracer trace data is is system
receives a is processed performed alerts
command converted and to someone
to collect into a form categorized determine when
data and useful for by an ML whether an necessary
retrieves it analysis. application. intrusion and starts
from the has a new
loT device. occurred. cycle.

Figure 5.3 — Using trace data to monitor loT devices directly and look for intrusions

Note that this approach doesn’t depend on a particular kind of IoT device. It works with any IoT
device that contains enough intelligence to communicate with the outside world. Interestingly
enough, even newer Wi-Fi garage door openers can provide an opening for hackers (https://
smarthomestarter.com/can-garage-door-openers-be-hacked-smart-garages-
included/). Although this particular article is about home systems, the techniques work just fine
for businesses too.

135

136

Keeping Your Network Clean

Using alternative identity strategies

People lose passwords, create passwords that are too easy to guess, and generally don’t use passwords
correctly. So, your traditional protection might be easier to hack than you think because of the human
factor. Biometric security has become quite common and is used in a number of ways, as discussed
in the Biometrics: definition, use cases and latest news article at https://www.thalesgroup.
com/en/markets/digital-identity-and-security/government/inspired/
biometrics. The use of biometrics would seem to be perfect because a person can't easily lose
their fingerprint without also losing the associated finger. In addition, many biometrics, such as DNA,
would seem to be hard, if not impossible, to duplicate. So, using biometrics should also reduce fraud
by making it hard for one person to impersonate another.

Unfortunately, it’s easy to find articles that discuss techniques hackers use to overcome some forms
of biometric security, such as fingerprints, voiceprints, iris scans, palm prints, and facial impressions.
However, researchers keep working on new approaches that will be harder to overcome. Of course,
you could always force everyone to provide a drop of blood for DNA testing (see https://www.
ibia.org/biometrics-and-identity/biometric-technologies/dna for some
current uses of DNA for biometrics). One such alternative is finger vein biometrics, as discussed in
the Finger-vein biometric identification using convolutional neural network article athttps://www.
researchgate.net/figure/Error-rates-of-the-CNN-models-tested-in-
cross-validation-process fig4 299593157. Since finger veins are inside the body,
it’s harder to overcome the biometric technology involved.

The point is that if a hacker is determined enough, not even biometrics will prevent fraud or other
uses of a person’s identity without permission. Creating security measures that are harder to overcome
keeps honest people honest and prevents a determined hacker from succeeding.

Obtaining data for network traffic testing

Unlike other ML tasks, finding network traffic data can prove difficult, partly because network traffic
consists of so many kinds of data. It's possible to find a few sources online, such as the network traffic
datasets at https://sites.google.com/a/udayton.edu/fye001/simple-page/
network-traffic-classification, which discusses two datasets. The first is the Curtin
University dataset that simulates standard network traffic and includes the SYN (synchronize), RST
(reset), FIN (finalize), and ACK (acknowledge) sequences. (See the TCP Flags article at https://
www . geeksforgeeks.org/tcp-flags/ for more information about how these TCP flags
work.) The second is the DoS dataset that simulates a DOS attack. The entirety of both datasets is 40
GB, so it’s not something youd download. In fact, the site tells you where to send a hard drive.

Unfortunately, getting a canned dataset in this case won’t provide you with a model for your network
traffic. At best, you’ll come to understand the network traffic for another organization. Some white
papers, such as Evaluation of Supervised Machine Learning for Classifying Video Trafficat https://
core.ac.uk/download/pdf/51093126.pdf, suggest using a product such as Wireshark to
obtain data. Wireshark has an established reputation and people have used it for a great number of

Adding ML to the mix

tasks, as illustrated in the blog postat http: //blog. johnmuellerbooks.com/2011/06/07/
sniffing-telnet-using-wireshark/. The best part about Wireshark is that you can choose
precisely what you want to track and then save the data to a text file. The resulting data reflects your
actual network traffic. You can also generate specially crafted network traffic using a data generator
that you build to reflect your actual network traffic, as described in the Building a data generator
section of this chapter.

When creating an ML application to perform specific regression, classification, or clustering tasks on
your network, you need to consider the data used to train the model carefully. Otherwise, the model
might not detect the type of traffic you want to monitor accurately. Fortunately, you can perform a
great many security tasks without necessarily relying on packet-level methods. For example, as shown
in the Developing a simple spam filter example section of Chapter 4, you can look for email spam
without going to the packet level. So, it’s also important to consider the level at which you choose to
monitor network traffic adequately.

Now that you have an idea of how traditional security techniques with augmentation can improve
protections for both ML applications and associated data, it’s time to look at how you can use ML
itself to make the traditional techniques more flexible. Traditional techniques can be brittle and easily
broken by a hacker because they're easily diagnosed, according to the traits that they present. ML can
use algorithms to analyze and anticipate changes that hackers will make to avoid traditional protections.

Adding ML to the mix

Once you get past the traditional defenses, you can use ML to implement Network Traffic Analytics
(NTA) as part of an IDS, as shown in Figure 5.2. Most ML strategies are based on some sort of anomaly
detection. For example, it’s popular to use convolutional auto-encoders for network intrusion detection.
A few early products still in the research stage, such as nPrintML, discussed in New Directions in
Automated Traffic Analysis at https://pschmitt .net/, have also made an appearance. Here
are just a few of the ways in which you can use ML to augment traditional security layers:

o Perform regression analysis to determine whether certain packets are somehow flawed compared
to normal packets from a given source. In other words, you're not dealing with absolutes but,
rather, determining what is normal from a particular sender. Anything outside the normal
pattern is suspect.

o Rely on classification to detect whether incoming data matches particular suspect patterns.
Unlike signature matching, this form of analysis relies on training a neural network to recognize
classes of data that it hasn’t seen before. Consequently, even if an attacker changes a signature,
the model can still likely recognize the data class.

o Use clustering to detect attack patterns and as part of forensic analysis in real time. For example,
suddenly seeing groups of requests from a particular set of IP addresses that all have the same
characteristics is a type of suspect pattern.

137

138

Keeping Your Network Clean

As part of creating new layers for your IDS, you also need to consider the people who are part of that
implementation strategy. For example, an updated security plan (the document that discusses how to
deal with security issues so that people know what to do when a security event occurs) will describe
how to look at the reports generated by the ML application and use them to determine when a potential
threat is real. In addition, the people who are managing the network will need input on just what to
do with the threat because it might not match threats they’ve seen in the past.

ML can be used in a variety of ways that many administrators haven’t considered possible. For example,
you can add ML to applications to detect unusual usage patterns or to a cloud environment to detect
unusual API call patterns. Endpoint security is an area in which ML can excel, but only when the
application knows what to look at and you maintain good records of existing trends. Each endpoint
type is unique, so strategies that work on a workstation may not work as well on a server, and not
at all in your cloud environment. Because the incoming data for each endpoint is also different, you
need some means of preparing the data for comparison purposes, which is the real benefit of using
ML to protect from a coordinated attack using unusual vectors (such as gaining access to a network
through an IoT device).

Developing an updated security plan

If you plan to employ ML as part of your security strategy, then you need to update the security plan.
For example, users need to know that the ML application exists, how to access it, and what to do about
the information it generates. This might seem like a straightforward requirement, but many security
plans don't receive updates and are therefore useless in the event of an attack. The new security plan
should have an eye toward ML techniques such as the following:

o Determining what sort of data to collect before, during, and after an attack
« Tracking user activities for analysis as part of detecting attack vectors

o Creating and testing models specifically designed for security needs and then providing
instructions for deploying them during an attack

Immediately after the update, you need to provide user training on it and go through various scenarios.
Just having something in writing won't prepare the people who have to react during an emergency.
Remember that they’re not going to be thinking as well as they could; they’ll be excited, frantic even.
Running through the security plan when everyone is calm and thinking correctly will help ensure
its success.

Determining which features to track

Features are essentially specific kinds of data that you want to track to create a dataset for your ML
model. For example, if you're protecting an API, then tracking which IP addresses make specific API
calls and when these calls are made are potential features. A hacker will present a different API calling
pattern than a benign user because the hacker is searching for an entry point into your system. Often,

Adding ML to the mix

that means the hacker uses less frequently accessed API calls, on the assumption that these API calls
could contain bugs not found by users who rely on common API calls. Of course, the hacker will try
to disguise this activity by making other calls, which adds noise to the dataset that the model must
remove to see the true pattern. You have various options to format these features as data, depending
on the model you want to create:

o Make each API call a separate feature in a two-dimensional table that lists the IP address making
the call. Each API call could appear across the top of the table and the IP addresses could make
up the rows (similar to one-hot encoding). This setup would work best with regression.

o Create a three-column, two-dimensional table that has the API call, IP address, and time the
call is made as separate columns. This setup could work with either regression or classification.

+ Define a three-dimensional table with one dimension being the API call, a second dimension
being the IP address, and the third dimension being the times that the calls are made. This
setup would work well with clustering.

o Provide a two-dimensional table, with the API calls as the rows, the IP addresses as the columns,
and the number of calls made as the data. A bubble chart would work best in this case, with
the ML model using size (showing the number of calls) and bubble color (perhaps based on
hacker activity probability) to show patterns.

When adding ML to the security layers of your IDS, it’s essential to think outside the box and to look at
endpoints as a significant place for the installation of potential protections. For example, when working
with an application, users usually resort to certain usage patterns. These workflows are based on the
tasks that users perform, and there isn’t a good reason for the user to deviate from them. However,
there is no precise step-by-step way to define a workflow because each user will also express some level
of uniqueness in their approach to a task. ML can learn a user’s methodologies using unsupervised
learning techniques and then use what the model learns to predict the next step in a process. When
the user begins to deviate from the normal process employed specifically by them, it’s possible that
they aren’t actually controlling the application at all. These features of application usage rely on data,
such as keystroke analysis, to keep a network clean.

Note that users are the most difficult source of potential network attacks for traditional security
measures to detect and mitigate. The detection of user security issues is a perfect way to use ML. Even
though users are unpredictable and there is no source of labeled data for a dataset, user behaviors can
point to potential issues. It’s possible to detect user behavior problems in these ways:

o Track user behaviors such as login time, the time between breaks, and other factors using regression

« Employ known user factors, such as meeting times, to classify users by peer group (such as a
workgroup or users who exercise during lunch)

o Use clustering techniques to detect users who have unusual habits or aren’t part of known
groups (the outliers)

139

140

Keeping Your Network Clean

Analysis can go further than predictive measures. Customizing the detection of certain kinds of
data input can greatly decrease your risk. Most off-the-shelf software works well in general cases.
However, some attacks are specific to your organization, so you can provide added levels of security
to detect them. An email server could classify certain types of messages as ransomware, malware, or
spyware based on previous patterns of attack against your organization that the off-the-shelf products
missed. Such an application could track features such as the message source, specific subjects, some
types of content, or the types of attachments provided. Figure 5.4 shows a variety of attack vectors,
implementation methods (as it concerns an ML solution), the ML model that is likely to work best,
and an exploit site that demonstrates the attack.

Task Learning Type ML Consideration
Automatic Supervised Translates one language into another language
language translation using a sequence-to-sequence learning algorithm.

The results are often less useful than expected
due to variations between languages and the fact
that languages generally contain words that don’t
have equivalents in other languages.

Susceptible to data errors, missing data, data
corruption, algorithm bias, and an inability
to repeat and verify results due to naturally
occurring evolution in languages. This kind of
application is also sensitive to speech patterns
and misidentifying terms when words aren’t
enunciated clearly.

Email spam and Supervised Marks, moves, or deletes email that meets the
malware filtering criteria of spam or malware from an inbox as it’s
received from a server. There are usually several
levels of filtering including Content, Header,
Blacklist, Rule-based, and Permission.

Susceptible to a number of potential attacks
including backdoors, Trojans, espionage, sabotage,
fraud, evasion, inference, data errors, and data
corruption. This is one of the more reliable forms
of ML applications, but users still regularly find
spam in their inboxes and useful messages in
their spam folders.

Image recognition Supervised Identification of objects, persons, places, patterns,
and other elements within an image.

Susceptible to a variety of attack types, but also
prone to misidentification when the image
contains elements the application didn’t expect
or when those objects appear in positions that
the application isn't trained to recognize.

Creating real-time defenses

Task Learning Type ML Consideration
Medical diagnosis Supervised Predicts the progression and characteristics of
and unsupervised diseases and other conditions, along with locating

and identifying potential patient illnesses.

Susceptible to data bias, data corruption, data
errors, incorrect algorithm selection, and
algorithm bias. This particular application type can
never operate alone; it always assists a physician
with the required experience to make a diagnosis.

Online fraud detection | Supervised Reduces the risk of conducting transactions online
by detecting conditions such as fake accounts, fake
IDs, compromised sites, compromised security
certificates, and so on.

Susceptible to a wide range of attacks, some of
which have nothing to do with the application.
For example, a compromised certificate authority
could cause the application to fail by allowing the
hacker access to the underlying infrastructure,
even if the application itself isn't at fault. This
kind of application is also known to display false
positives and false negatives depending on the
reliability of the code used to create it and the
model training.

Product recommendation | Unsupervised Outputs product recommendations based on
previous buying habits, associated goods, and
direct queries. I's one of the most widely used
and common ML applications.

Susceptible to data errors, data bias, missing data,
algorithm bias, fraud, sabotage, and a wealth
of other issues. This kind of application often
provides irrelevant information along with useful
product recommendations because the application

has no method of judging user needs and wants,

Figure 5.4 — Common endpoint attacks and strategies

It’s also possible to use ML to detect issues with various organizational processes. Regression techniques
can help track the usual pattern of processes even in a large organization and predict what should
happen next, even if the next step isn’t necessarily related to the previous step. For example, if just
one truck leaves with goods on a night other than the usual night, humans may not notice the change
in pattern, but a regression model would. You could also use classification to detect these unusual
changes in the pattern as potential fraud. When working with multiple organizational units that each
perform similar processes, comparing one unit with another at a detailed level could show outliers in
what would become clustered data.

Understanding the massive number of threats that your network faces and how ML methods can
help reduce them are only part of the picture. The techniques described in the previous two major
sections are static and reactive in nature. A hacker is already making an attack when you employ
them, and now you must put your finger in the dike (so to speak) to keep the flood of hacker activity
under control. What is really needed are real-time defenses that react immediately, at the same time
the hacker is making an attack, as described in the next section.

Creating real-time defenses

The previous section discussed how to use ML to augment your existing security, but it didn’t mention
when the solution will kick in. A problem exists for most network administrators and the developers
who support them in that most strategies are either static or reactive. A real-time defense would be

141

142

Keeping Your Network Clean

proactive and dynamic because hackers aren’t going to wait until a network administrator can marshal
forces formidable enough to keep them at bay. Networks can become overwhelmed by a lack of adequate
real-time protection. What is really needed is real-time Detection, Analysis, and Mitigation (DAM).

Mary Mapes Dodge published the novel Hans Brinker, or The Silver Skates in 1865. The novel is the
story about Hans and the silver skates he wants to win, but it also contains an interesting little side story
about a Dutch boy who plugs a hole in a dam with his finger and saves his people (see https: //
marleenswritings.wordpress.com/2015/02/16/the-story-of-hans-brinker/
for details). The problem is that this is wishful thinking of the same sort employed by network
administrators because a finger simply won't cut it. The article Why the Little Dutch Boy Never Put
his Finger in the Dike at https: //www.dutchgenealogy.nl/why-the-little-dutch-
boy-never-put-his-finger-in-the-dike/ provides a dose of reality. So, when creating
DAM for your network to keep the waters of outside influences at bay, you really must consider the
reality that constant maintenance and vigilance are essential or the whole thing is bound to fall down.

One of the most exciting elements of ML is that it’s finally possible to create DAM for your network
- one that is fully proactive and dynamic. The ML applications you create won't get tired, won’t make
mistakes, and will monitor the network constantly for those stresses that a finger simply can’t address.
However, as presented in the previous four chapters, hackers can and do overwhelm ML applications,
so constant human supervision is also needed. The ML application may help detect an intrusion
pattern, but it takes a human to interpret that pattern and address it when the ML application simply
can’t do the job.

Using supervised learning example

Most of the ML models you create for security needs rely on supervised learning because this approach
provides a better result, with known issues that you can track in real time. This is the approach that
works best for issues such as determining when a hacker wants to break into your API or evade
security through trial and error. It’s also the method most commonly used to detect malware, fake
data, or other types of exploits. The example in this section is somewhat generic but does demonstrate
how you can collect features, such as the number of API calls made by a specific IP address, and then
use this information to create a model that can then detect unwanted activity. The following sections
show how to perform this task using a decision tree. You can also find this code in the MLSec; 05;
Real Time Defenses.ipynb file of the downloadable source.

Getting an overview

The example is somewhat contrived in this case because a production system would use an active data
stream to acquire data, and the dataset itself would be much larger. Figure 5.5 shows an example of
how a production system might acquire and analyze data using the techniques found in this example.
However, it’s also important that the example is understandable, so the example dataset is static and
relatively small to make it easy to see how various elements work.

Creating real-time defenses

1. Incoming
data is logged ___Incoming Data Data to) IP Address Data to 5. Hacker calls
by time and Data Logger Filter Filter Network are filtered out.
address. %k
. \ 4

2. Datais —

og to
converted to > Frequency P Adgrlesses
show call CETERET to Filter
frequency.

\ 4
3. Suspicious Real-Time Administrative 4. Administrator
call patterns Hacker — r——J Alert reacts to the
are detected. Detection System hacker attack.

e L
Sampling
Configuration

Setting

Figure 5.5 — Obtaining and analyzing API call data

The goal of this setup is to not only disrupt the flow of data as little as possible but also ensure that any
hacker activity is detected and immediately stopped. The data logger simply creates continuous output
files on disk. In the example, the output files are in . csv format, with just the time, IP address, and
API call made by everyone who is using the system. It isn’t unusual to have such setups anyway, so
most developers won't have to implement anything new to obtain the data; they’ll just have to know
where to find it and ensure that it contains the information needed for the next step.

The next step is to read and convert the data in the logs at specific intervals, perhaps every 2 minutes.
The conversion process takes the log data and counts how many times each IP address is making each
API call. The sections that follow show how this works, but the transformation process needs to be
as fast and simple as possible.

Creating a model based on call patterns comes next. A human will need to go through the frequency
logs and label IP addresses to decide whether theyre benign or a hacker, based on the call patterns.
During real-time use, when the model detects a hacker, it sends the information to the administrator,
who can then filter out the IP address and change the timespan to a shorter interval used to detect
new intrusions. In the meantime, the benign data continues to flow into the network.

143

144

Keeping Your Network Clean

Building a data generator

In a perfect situation, you have access to data from your network to use in building and testing a model
to detect an API attack or other security issue (because this example focuses on an API attack, this
is where the discussion will focus from this point on). However, you might not always have access
to the required labeled data. In this case, you can construct and rely upon a data generator to create
a simulated dataset with the characteristics you want. Start by importing the packages and classes
needed for this example as a whole, as shown in the following code block:

from datetime import time, date, datetime, timedelta
import csv

import random

from collections import Counter

import pandas as pd

import numpy as np

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy score
Note that memory usage is kept down by not importing everything from sklearn.

Creating the CreateAPITraffic() function

You need a function to actually generate the API traffic. The following steps outline what goes into
this function (it appears as a single block of code in the online source:.

1. Define a function that creates the actual data, based on what the logs for your network look
such as. This example uses a relatively simple setup that includes the time, IP address of the
caller, and the API call made, as shown here. The code starts by defining arguments you can
use to modify the behavior of the data generation process. It’s a good idea to provide default
values that are likely to prove useful so that you're not dealing with missing argument problems
when working with the function:

def CreateAPITraffic(

values = 5000,

benignIP = ['172:144:0:22"', '172:144:0:23"',
'172:144:0:24"', '172:144:0:25",
'172:144:0:26"', '172:144:0:27'],

hackerIP = ['175:144:22:2', '175:144:22:3"',
'175:144:22:4"', '175:144:22:5",
'175:144:22:6"', '175:144:22:7'],

Creating real-time defenses 145

apiEntries = ['Rarely', 'Sometimes', 'Regularly'l],
bias = .8,

outlier = 50):

Define the variables needed to perform tasks within the function. You use data to hold the actual
log entries for return to the caller. The currTime and updateTime variables help create the
log’s time entries. The selectedIP variable holds one of the IP addresses, provided as part
of the benignIP or hackerIP argument, and this is the IP address added to the current
log entry. The threshold determines the split between benign and hacker log entries. The
hackerCount and benignCount variables specify how many of each entry type appears
in the log:

data = []

currTime = time (0, 0, O0)

updateTime = timedelta(seconds = 1)

selectedIP = ""

threshold = (len(apiEntries) * 2) - \
(len(apiEntries) * 2 * bias)

hackerCount = 0

benignCount = 0

A loop for generating entries comes next. This code begins by defining the time element of an
individual log entry:

for x in range (values) :
currTime = (datetime.combine (date.today (),

currTime) + updateTime) .time ()

Selecting an API entry comes next. The code is written to accommodate any number of API
entries, which is an important feature of any data generation function:

apiChoice = random.choice (apiEntries)

146 Keeping Your Network Clean

5. 'The hardest part of the function is determining which IP address to use for the data entry.
The CreateAPITraffic () function uses a combination of approaches to make the
determination, based on the assumption that the hacker will select less commonly used API
calls to attack because these calls are more likely to contain bugs, which is where threshold
comes into play. However, it’s also important to include a certain amount of noise in the form

of outliers as part of the dataset. This example uses hackerCount as a means of determining
when to create an outlier:

choiceIndex = apiEntries.index(apiChoice) + 1

randSelect = choiceIndex * \
random.randint (1, len (apiEntries)) * bias
if hackerCount % outlier == O0:

selectedIP = random.choice (hackerIP)
else:
if randSelect >= threshold:
selectedIP = random.choice (benignIP)

else:

selectedIP = random.choice (hackerIP)

6. Its time to put everything together as a log entry. Each entry is appended to data in turn, as
shown here. In addition, the code also tracks whether the entry is a hacker or benign:

data.append([currTime.strftime ("$H:$M:%S") ,
selectedIP, apiChoice])

if selectedIP in hackerIP:
hackerCount += 1

else:

benignCount += 1

7. 'The final step is to return threshold, the benign log count, the hacker log count, and the
actual log to the caller.

return (threshold, benignCount, hackerCount, data)

When creating your own data generation function, you need to modify the conditions under which
the log entries are created to reflect the real-world logs that your network generates automatically.
The need for randomization and inclusion of noise in the form of outliers is essential. Just how much

randomization and noise you include depends on the kinds of attacks that you’re trying to prepare
your model to meet.

Creating real-time defenses 147

Creating the SaveDataToCSV() function

Part of developing a test log to use is to provide some method of saving the data to disk in case you
want to use it again, without regenerating it each time. The SaveDataToCSV () function serves
this purpose, as shown here.

def SaveDataToCSV(data = [], fields = [],
filename = "test.csv"):
with open(filename, 'w', newline='"') as file:
write = csv.writer(file, delimiter=',"')
write.writerow(fields)

write.writerows (data)

This code consists of a loop that takes the log data as an input and writes one line at a time from the
logto a . csv data file on disk. Note that this function makes no assumptions about the structure of
the data that it writes. Again, the point is to provide significant flexibility in the use of the function.

Note that the £ields input argument is used to write a heading to the . csv file so that it’s possible
to know which columns the file includes. It’s likely that any real-world server logs you use will also
include this information, so adding this particular data is important to ensure that any analysis code
you create works properly.

Defining the particulars of the training dataset

To make the generation process as flexible as possible, it’s helpful to provide variables that you can
easily modify to see their effect on the output. In this case, the example specifies API calls and IP
addresses that differ from the defaults created earlier:

callNames = ['Rarely',
'Sometimesl', 'Sometimes2',
'Regularlyl', 'Regularly2', 'Regularly3',
'Oftenl', 'Often2', 'Often3', 'Often4d’',
'Often5', 'Oftené', 'Often7', 'Often8']

benignIPs = ['172:144:0:22"', '172:144:0:23",
'172:144:0:24"', '172:144:0:25",
'172:144:0:26"', '172:144:0:27",
'172:144:0:28"', '172:144:0:29",
'172:144:0:30', '172:144:0:31",
'172:144:0:32"', '172:144:0:33",
'172:144:0:34"', '172:144:0:35",
'172:144:0:36"', '172:144:0:37"']

148

Keeping Your Network Clean

Note that the example is using the default hackerIP values, but you could modify the example to
include more or fewer hackers, as desired.

Generating the CallData.csv file

Now that everything is in place, you need to actually generate and save the data file using the
following code:

random. seed (52)
threshold, benignCount, hackerCount, data = \
CreateAPITraffic (values=10000,

benignIP=benignIPs,
apiEntries=callNames)

print (f"There are {benignCount} benign entries " \
f'and {hackerCount} hacker entries " \
f'with a threshold of {threshold}.")

fields = ['Time', 'IP_ Address', 'API Call']

SaveDataToCSV (data, fields, "CallData.csv")

The call to random. seed (52) ensures that you obtain the same output every time during the code
testing process. When you finally start using the code to generate real data, you comment out this
call so that the data can appear random (this is why they call it a pseudo-random number generator).

The call to CreateAPITraffic () comes next, with the output being unpacked into local variables.
The threshold, benignCount, and hackerCount variables provide output that tells you about
the functioning of the data generation process. When using the random seed of 52, you should see
this output from the function:

There are 9320 benign entries and 680 hacker entries with a
threshold of 5.599999999999998.

The final step is to call SaveDataToCSV () to save the data to disk. At this point, you've completed
the data generation process.

Converting the log into a frequency data table

Log entries don’t provide information in the right form for analysis. What you really need to know is
which IP addresses made what calls and how often. In other words, you need an aggregation of the
log entries so that your model can use the calling pattern as a means to detect whether a caller is a
hacker or a regular user. This process takes place in a number of steps that include reading the data
into the application and performing any manipulations required to put the data into a form that the
classifier can understand. The following sections show how to perform this task.

Creating real-time defenses

Creating the ReadDataFromCSV () function

The first step is to create a function that can read the . csv file from disk. More importantly, this
function automates the process of labeling data as either benign or from a hacker. This particular
part of the function is exclusive to this part of the example and serves to demonstrate that you can
try really hard to make every function generic, but you may not always succeed. The following steps
show how this function works:

1. Define the function and read in the data file from disk:

def ReadDataFromCSV (filename="test.csv"):

logDhata = pd.read csv(filename)

2. Obtain a listing of the unique API calls found in the file:

calls = np.unique(np.array(logData ['API Call']))\

3. Aggregate the data, using IP_Address as the means to determine how to group the entries
and API_Call as the means to determine which column to use for aggregation:

aggData = logData.groupby (
'IP Address') ['API Call'] .agg(list)

4. Create a DataFrame to hold the data to analyze later. Begin labeling the data based on its IP
address (which is most definitely contrived, but it does add automation to the example instead of
forcing you to label the entries by hand). A value of 0 denotes a benign entry, while a value of 1
denotes a hacker entry. Note the use of ipEntry.sort () to place all alike IP entries together:

analysisEntries = {}

analysisData = pd.DataFrame (columns=calls)

for ipIndex, ipEntry in zip (aggData.index, aggData) :
ipEntry.sort ()

if ipIndex[0:3] == '172"':
values = [0]

else:
values = [1]

5. Create columns for the DataFrame based on the API calls:

keys = ['Benign']
for callType in calls:
keys.append (callType)
values.append (ipEntry.count (callType))

149

150 Keeping Your Network Clean

6. Define each row of the DataFrame, using the number of calls from the IP address in question
as the values for each column:

analysisEntries[ipIndex] = pd.Series(values,

index=keys)
7. Create the DataFrame and return it to the caller:

analysisData = pd.DataFrame (analysisEntries)

return (analysisData, calls)
At this point, you're ready to read the data from disk.

Reading the data from disk

Now that you have a function for reading the data, you can perform the actual act of reading it from
disk. The following code shows how:

analysisData, calls = ReadDataFromCSV ("CallData.csv")
print (analysisData)

It's important to look at the data that you've created to ensure it contains the kinds of entries you
expected with the pattern you expected. Figure 5.6 shows an example of the output of this example
(the actual output is much longer).

172:144:8:22 172:144:8:23 172:144:8:24 172:144:8:25

Benign 8 e 2] a
Oftenl 43 42 33 ta
Often2 23 31] 48
0ften3 38 41 47 5a
Oftend 43 42 33 45
Oftens 43 48 55 43
Oftend 47 41 54 31
0ften? 5S L1 44 49
Often8 57 43 55 57
Rarely 33 22 28 24
Regularlyl 48 51 33 4@
Regularly2 45 47 35 43
Regularly3 c1 38 51 39
Sometimesl 29 32 3e 42
Sometimes2 42 54 39 48

Figure 5.6 — This figure shows the output of the data creation process

Note that each API call appears as a row, while the IP addresses appear as columns. Later, you will
find that you have to manipulate this data so that it works with the classifier. The Benign column
uses 0 to indicate a benign entry and 1 to indicate a hacker entry.

Creating real-time defenses

Manipulating the data

The classifier needs two inputs as a minimum for a supervised model. The first is the data itself. The
second is the labels used to indicate whether the data is of one category (benign) or another category
(hacker). This means taking what you need from the DataFrame and placing it into variables that are
traditionally labeled X for the data and y for the labels. Note that the X is capitalized, which signifies
a matrix, while y is lowercase, which signifies a vector. Here is the code used to manipulate the data:

X = np.array(analysisData[l:1len(calls)+1]).T
print (X)

y = analysisData[0:1]

print (y)

y = y.values.ravel ()

print (y)

The X variable is all of the data from the DataFrame that isn't a label. This isn't always the case in ML
examples, but it is the case here because you need all the aggregated data shown in Figure 5.6. Note
the T at the end of the np.array (analysisData[l:len(calls)+1]) call. This addition
performs a transform on the data so that rows and columns are switched. Compare the output shown
in Figure 5.7 with the output shown in Figure 5.6, and you can see that they are indeed switched. In
addition, this is now a two-dimensional array (a matrix).

[[48 23 38 43 43 47 55 57 33 48 46 51 29 417]
[49 31 41 43 48 41 55 48 22 51 47 38 32 54]
[38 6@ 47 38 55 54 44 55 28 33 35 51 3@ 39]
[56 48 5@ 48 43 31 45 57 24 48 43 30 42 48]
[59 30 458 4@ 38 48 34 43 24 46 42 45 44 33]
[52 45 55 41 38 54 58 3% 38 30 35 33 35 48]
[45 45 A7 42 47 48 49 39 31 41 38 44 41 49]
[41 41 38 45 52 6@ 29 44 28 45 44 43 31 29]
[46 36 47 41 48 48 41 52 31 28 32 55 29 37]
[48 57 58 39 39 42 48 42 28 44 45 47 28 38]
[36 37 49 37 56 34 52 45 25 55 58 39 44 31]
[55 39 43 58 37 39 43 26 38 39 38 32 42]

]
]
]
]
]
]
]
]
]
]

oY
]

[52 36 43 38 46 35 37 29 27 38 27 38 4@
[G8 43 47 43 42 41 54 22 35 39 44 33 43
[46 48 47 37 49 37 47 25 37 4B 38 38 36
[47 44 52 4@ 56 41 45 24 37 46 39 26 38
@ 154 4 618 23 11
46 12 9 23 15
41 5 22 18
52 12 18 4 34 15
54
43

Ul b o
L |

DD DD DD W
o

e e e e
OO mm®
@ ®F R @
oD mm N
S m W @
oo m o ®
L I R % s |
D m® e ®
[Us] [Us]
[+7]

4 9 25 14
712

12 28 16

(%3]

]

Figure 5.7 — The X data is turned into a transformed data matrix

151

152

Keeping Your Network Clean

The y variable consists of the labels in the Benign row. However, when you print y out, you can see
that it retains the labeling from the DataFrame, as shown in Figure 5.8.

172:144:@:22 172:144:8:23 172:144:8:24 172:144:8:25 172:144:8:26
Benign a 8 & 8 a

172:144:8:27 172:144:8:23 172:144:8:2% 172:144:@:38 172:144:8:31
Benign a 8 @ e a

. 172:144:8:24 172:144:8:35 172:144:8:36 172:144:8:37
Benign ...) e 8 8

175:144:22:2 175:144:22:3 175:144:22:4 175:144:22:5 175:144:22:6
Benign 1 1 1 1 :

175:144:22:7
Benign 1

Figure 5.8 - The y variable requires additional manipulation

To change the data into the correct form, the code calls y . values.ravel (). The values
property strips all of the DataFrame information, while the ravel () call flattens the resulting
vector. Figure 5.9 shows the result.

[1 rows x 22 columns]
[pBoeoeEBEOBEBREBE111111]

Figure 5.9 - The y variable is now a vector suitable for input to the classifier

The reason that Figure 5.7 and Figure 5.9 are so important is that many input errors that occur when
working with the classifier have to do with data being in the wrong format. In many cases, the error
message doesn’t provide a good idea of what the problem is, and trying to figure out precisely why
the classifier is complaining can be difficult. In a few cases, the classifier may only provide a warning,
rather than an error, so it’s even more difficult to locate the problem.

Creating the detection model

All of the data generation and preparation took a long time in this example, but it’s an even longer
process in the real world. This example hasn’t considered issues such as cleaning data, dealing with
missing data, or verifying that data is in the correct range and of the correct type. This is actually the
short version of the process, but now it’s time to finally build the model and see how well it does in
detecting hackers.

Creating real-time defenses

Selecting the correct algorithm

This example relies on RandomForestClassifier. There are no perfect classifiers (or any other
algorithm, for that matter). The reason for using a random forest classifier in this case is that this
particular algorithm works well for security needs. You can use the random forest classifier to better
understand how the ML model makes a particular decision, which is essential for tuning a model for
security needs. A random forest classifier also has these advantages:

o There is less of a chance of bias providing you with incorrect output because there are multiple
trees, and each tree is trained on a different subset of data. This algorithm relies on the power
of the crowd to reduce the potential for a bad decision.

o 'This is a very stable algorithm in that new data that shows different trends from the training
data may affect one or two trees but is unlikely to affect all of the trees.

 You can use this algorithm for situations where you have both categorical and numerical features.
Security situations often require the use of categorical data to better define the environment, so
that something such as an API call can be a hacker in one situation but not another.

o This is also the algorithm to rely on when you can’t guarantee that real-world data is scaled well.
It also handles a certain amount of missingness. Security data may not always be as complete
as you want it to be. In fact, it’s in the hacker’s interest to make the data incomplete.

Although the random forest algorithm may appear perfect, appearances can be deceiving. You also
need to be aware of the disadvantages of using this algorithm:

o The algorithm is quite complex, so training can require more time.

« Tuning the model can prove a lot more difficult, especially with the stealthy manner in which
hackers operate. You may find yourself tweaking the model for quite a while to get a good result.

o The resulting model can use a lot more computational resources than other solutions. Given that
security solutions may rely on immense databases, you really do need some great computing
horsepower to use this algorithm (despite the apparent alacrity of the example due to the small
size of the dataset).

These advantages and disadvantages should give you a better idea of what to expect when working
with the random forest algorithm in the real world. The critical point here is that you can’t skimp on
hardware and expect a good result.

Performing the classification

The actual classification process is all about fitting a model to the data that you've created. Fitting is
the process of creating a curve that differentiates between benign requests on one side and hackers
on the other. When a model is overfitted, it follows the data points too closely and is unable to
make good predictions on new data. On the other hand, when a model is underfitted, it means that
the curve doesn't follow the data points well enough to make an accurate prediction, even with the

153

154

Keeping Your Network Clean

original data. The RandomForestClassifier used in this example is less susceptible to either
overfitting or underfitting than many algorithms are. With this in mind, here are the steps needed to
perform classification:

1.

Create the classifier and fit it to the data generated and manipulated in the previous sections. In
this case, the example uses all of the classifier’s default settings except for the data. The output
of this step simply says RandomForestClassifier (), which tells you that the creation
process was successful:

clf=RandomForestClassifier ()
clf.fit (X,vy)

Generate test data to test the model’s performance. This is the same approach that was used to
create the training data, except this data is generated using a different seed value and settings
to ensure uniqueness:

random.seed (19)
threshold, benignCount, hackerCount, data = \
CreateAPITraffic (benignIP=benignIPs,
apiEntries=callNames, bias=.95, outlier=15)
print (f"There are {benignCount} benign entries " \
frand {hackerCount} hacker entries " \
f'with a threshold of {threshold}.")
fields = ['Time', 'IP_Address', 'API Call']
SaveDataToCSV (data, fields, "TestData.csv")

Something to note about this step is that the bias and outlier settings are designed to
produce the effect of a more realistic attack by making the attacker stealthier. The output of
this step is as follows:

There are 4975 benign entries and 25 hacker entries with
a threshold of 1.4000000000000021.

Perform the actual classification. This step includes manipulating the data using the same
approach as the training data:

testData, testCalls = ReadDataFromCSV ("TestData.csv")

X test = np.array(testData[l:len(calls)+1]).T

y _test = testData[0:1].values.ravel ()

y _pred = clf.predict (X test)

print ('Accuracy: %.3f' % accuracy score(y test, y pred))

Creating real-time defenses

This process ends with a measurement of the accuracy of the model, which is the most important
part of the process. Data scientists often use other measures to verify the usefulness of a model and
to check which factors contributed most to the model’s accuracy. You can also create graphs to show
data distributions (https://machinelearningmastery.com/statistical-data-
distributions/) and how the decision process is made (https://stackoverflow.com/
questions/40155128/plot-trees-for-a-random-forest-in-python-with-
scikit-learnand https://mljar.com/blog/visualize-tree-from-random-
forest/). In this case, the output says that the model is 95.5 percent accurate (although this number
can vary, depending on how the training and testing data is configured). It’s possible to improve the
accuracy in a number of ways, but the best way would be to provide additional data.

Using a subprocess in Python example

Real-time defenses often depend on using the correct coding techniques in your ML code. For example,
something as innocuous as a subprocess could end up torpedoing your best efforts. A subprocess is
a task that you perform from the current process as a separate entity. Even though you don't see it
used often in Python ML examples, you do run across it from time to time. For example, you might
use a subprocess to download a dataset or extract data from a . zip file. It's handy to see how this
kind of problem can appear totally innocent and how you might not even notice it until a hacker has
exploited it. This first example, which won’t run on online environments such as Google Colab because
the IDE provides protections against it, shows the wrong way to perform tasks using a subprocess.
The reason that this code is included is to provide you with a sort of template to see incorrect coding
practices in general. You'll find this example in the MLSec; 05; Real Time Defenses.
ipynb file for this chapter:

from subprocess import check output

MyDir = check output ("dir", shell=True)
print (MyDir.decode ('ascii'))

Even though the code executes as a script at the command line and provides a listing of the current working
directory, the use of shell=True creates a potential RCE hole in your code, according to https: //
docs.python.org/3/library/subprocess.html#security-considerations and
https://www.hacksplaining.com/prevention/command-execution. In order to
avoid the RCE hole, you can use this form of the code instead (note that this code may not work on
your Linux system):

from subprocess import check output

MyDir = check output(['cmd','/c','dir'])

print (MyDir.decode ('ascii'))

155

156

Keeping Your Network Clean

In this case, you create a new command processor, execute the directory command, and then close
the command processor immediately by using the /¢ command-line switch. Of course, this approach
requires some knowledge of the underlying operating system. It’s often better to find a workaround
that doesn’t include calling the command processor directly, such as the solution shown here (which
will definitely run on your Linux system):

from os import listdir

from os import getcwd

MyDir = listdir(getcwd())
print (MyDir)

This version obtains the directory as an easily processed list, in addition to protecting it from an RCE
attack. In many respects, it’s also a lot easier to use, albeit less flexible, because now you don’t have
access to the various command-line switches that you would when using the check output ()
version. For example, this form of check output () will obtain only the filenames and not the
directories as well: MyDir = check output (['cmd','/c','dir', '/a-d'l).Youcan
also control the ordering of the directory output using the /o command-line switch with the correct
sub-switch, such as /os, to sort the directory output by size.

Working with Flask example

You may want to expose your ML application to the outside world using a REST-type API. Products such
as Flask (https://www.fullstackpython.com/flask.html) make this task significantly
easier. However, when working with Flask, you must exercise caution because you can introduce XSS
errors into your code. For example, look at the following code (also found in the MLSec; 05; Real
Time Defenses. ipynb file for this chapter):

from flask import Flask, request
app = Flask(_ name)

@app.route ("/")
def say hello():
your name = request.args.get ('name')

[}

return "Hello %s" % your name

Creating real-time defenses 157

In this case, you create a Flask app and then define how that app is going to function. You start at the
uppermost part of the resulting service (yes, it runs fine in Jupyter Notebook). The hello () function
obtains a name as a request argument using request .args.get ('name'). It then returns a
string with the name of the website for display. To run this example, you place this call in a separate cell:

app.run()

When you run the second cell, it won't exit. Instead, you'll see a message such as this one (along with
some additional lines that aren’t a concern in this example):

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

Note that the address the server provides may vary, so you need to use the correct URL or the
application will fail. When you see the running message, you can open a new tab in your browser
and type something such as this as an address: http://127.0.0.1:5000/?name=John. The
browser page will display Hello and then your name. However, if you type the following address
instead, http://127.0.0.1:5000/?name=<scripts>alert (1) </script>, you will see
an alert dialog. Of course, you could have run any script, not just this one. To stop the server, click
the Stop button in Jupyter Notebook. Here’s a fix for this problem:

from flask import Flask, request, escape
app = Flask(name)

@app.route ("/")
def say hello():
your name = request.args.get ('name')

return "Hello %s" % escape (your name)

The use of escape (your name) means that the server won't actually execute the script. Instead,
it escapes the script as text and displays the text on screen. It’s important to note that Flask creates
a running log for you as you experiment with the test page. This log appears as part of the Jupyter
Notebook output, such as this:

127.0.0.1 - - [20/Apr/2021 16:56:18] "GET /?name=John HTTP/1.1"
200 -
127.0.0.1 - - [20/Apr/2021 16:56:27] "GET

/?name=%3Cscript%3Ealert (1) $3C/script%3E HTTP/1.1" 200 -

158

Keeping Your Network Clean

From an ML perspective, you could place this log in a file and then use techniques such as the one
demonstrated in the Using supervised learning example section to perform analysis on it. The log provides
everything you need to begin hunting the hacker down in real time, as the hacker is experimenting
with the API, rather than waiting until it’s too late.

Asking for human intervention

Figure 5.2 and Figure 5.5 make it clear that a significant part of this example includes the use of human
monitoring to ensure that nothing has gone awry with the supervised learning example. The setup
could constantly check the accuracy of predictions that it's making, for example, and send an alert
of some type to the administrator when accuracy begins to fall below a certain point. The examples
in the Using a subprocess in Python example and Working with Flask example sections also point to
the need for human monitoring of the system. If you take anything at all away from this chapter, it
should be that ML augments the ability of humans to detect and mitigate threats — it can’t act as a
replacement for humans.

Unfortunately, humans are easily overwhelmed. ML can perform constant monitoring in a consistent
way and then ask a human for intervention when the monitoring process detects anything unusual.
This is the essential component that will make real-time monitoring in your organization possible —
the realization that ML can direct a human’s attention to the right place at the right time.

This part of the chapter takes you beyond what most organizations do today - that is, addressing
threats in real time. However, to have a real edge against hacker attacks, you really need to know
what a hacker is likely to do in the future. Predicting the future always comes with certain negative
connotations because it really isn’t possible to predict anything with complete accuracy. Otherwise,
everyone engaged in the stock market would be a millionaire. However, when it comes to security, it’s
possible for the observant administrator to use ML to predict future attacks with enough accuracy to
make the process worthwhile and possibly thwart a hacker before any mischief begins.

Developing predictive defenses

Being able to predict the future is something that everyone who is involved with security would like
to have. The use of ML to help predict things such as network attacks is an ongoing venture, but there
aren’t any commercial examples of such technology to date, and usable examples are also hard to find.
However, it’s possible to postulate what a commercial offering might look like and start doing some
experimenting of your own, as described in the sections that follow.

Developing predictive defenses

Defining what is available today

What you see most often today are explorations into predictive software based on new Long Short-
Term Memory (LSTM), Recurrent Neural Network (RNN), and Multilayer Perceptron (MLP)
models, which are described in articles such as CyberSecurity Attack Prediction: A Deep Learning
Approach athttps://dl.acm.org/doi/fullHtml/10.1145/3433174.3433614 and
A deep learning framework for predicting cyber attacks ratesathttps://link.springer.com/
article/10.1186/s13635-019-0090-6. (You'll have to pay for the privilege of reading
the first research paper.) Still, just as ML has become popular in predicting all sorts of other events,
researchers will eventually come up with methods of predicting possible attacks.

Another white paper that provides an interesting read, Conceptualisation of Cyberattack prediction with
deep learning (https://cybersecurity.springeropen.com/articles/10.1186/
$42400-020-00053-7), also focuses on the need for new algorithms to perform attack prediction,
including the use of new ReLU algorithms to provide activation functions in deep learning models.
Figure 1 of this article provides a block diagram of a potential model to use for predictive purposes.
The end of the article also provides useful links to datasets you can use while experimenting.

Forensic analysis of events that have already happened using techniques such as those shown in the
Using supervised learning example section, such as botnet attacks as described in Botnet Forensic Analysis
Using Machine Learning athttps: //www.hindawi.com/journals/scn/2020/9302318/,
are helping to improve the odds of creating good predictive solutions. As you read the article, however,
you quickly become aware of the new skills required to actually perform such analysis. In addition, the
article demonstrates that the forensic model won't be easy to construct because it consists of ensembles
of learners, much such as the ensembles discussed in the Using ensemble learning section of Chapter 3.

There are also people skills to consider. Not only will the person performing the analysis have to have a
good knowledge of ML techniques but also low-level network analysis techniques, as described earlier
in this chapter. If the person who is performing the analysis isn't comfortable with using tools such as
Wireshark, then the analysis is likely to fail. In addition, botnet forensics only tells you about trends
—you still need to create some sort of ML tool to predict future botnet attacks based on current trends.

Even though it may not seem relevant at first, the ability to predict certain classes of worldwide
events will also prove helpful in determining when network attacks could possibly peak. For example,
Prediction of Future Terrorist Activities Using Deep Neural Networks athttps://www.hindawi.
com/journals/complexity/2020/1373087/ looks at terrorist activity. Knowing this
information could provide clues as to when terrorists will use various kinds of network attacks to
bring down the financial sector or simply look for easy ways to finance their various endeavors, by
forcing businesses to pay a ransom to get their data back. Keeping track of world events is a viable
aid to keeping your network free of various attacks as well.

159

160

Keeping Your Network Clean

Downsides of predicting the future

In many ways, trying to predict whether someone is going to attack your network is like trying to
predict the weather. Yes, techniques have improved over time, but ask anyone who has had a picnic
ruined by rain and you’ll quickly understand that the process is far from bulletproof. Humans have
always tried to predict the future using various means, with many of the correct guesses being more a
matter of random chance than any skill on the part of the predictor. When trying to predict whether
a hacker will attack your network, you need to consider these issues:

o Current trends in hacker attacks

o Historical trends in attacks of the same type

o The probability of a hacker continuing to use similar (albeit updated) attacks
« The likelihood of hackers devising an entirely new attack vector

« Human intuition

The first two items on the list do have a solid mathematical basis found in real-world data, assuming
you can find the right data and that it hasn’t become biased or manipulated in some way.

The second two items on the list have a statistical basis of the same sort and can predict the outcome
of games of chance. Yes, you can create ML models that can provide you with statistics and even
choose the options with the highest probability, but in the end, any of the options under review can
occur. Winners of the lottery know that sometimes the option with the smallest chance of success
actually does occur.

The fifth item on the list is the hard one, and it’s the one with a significant effect on your efforts.
Interpreting data requires human intuition because a computer has no sense of one attack vector’s
meaning in a specific situation over another. Human intuition also informs a hacker when it’s time to
move on to another method because the old one has a dwindling chance of success, based on a new
administrator technique. The hacker can simply get a feeling that something is about to happen and
switch tactics. There is no way to predict such feelings.

The human element in predictions

There is a strong fear that a combination of ML applications and robotics will replace humans.
It’s true that ML applications can perform a great many predictable and mundane tasks that
humans once performed exclusively. Because an ML application doesn’t need to eat and doesn’t
get tired, it can actually do a better job in many cases. However, computers don’t feel, don’t have
intuition, can’t think creatively, and can’t do a wealth of things that humans can do. What is
more likely to happen with ML is that the application will assist the human security professional,
relieving the security professional of performing mundane tasks. In looking at the techniques
used to mitigate network attacks, it’s important to consider the contributions that the security
professional will make, rather than become blinded by the flashing lights of technology.

Developing predictive defenses

The problem then is one of unrealistic expectations on the part of those using the prediction techniques.
When anyone makes a prediction using any model created for the purpose, even with the addition
of human intuition, there is an expectation that the prediction is correct. However, there is only
a probability that the prediction is correct, and hackers attacking your network may decide to do
something completely different and unexpected. This is how a hacker wins the war over the defenses
you build and the predictions you make - by behaving unpredictably.

Creating a realistic network model

Security requires a realistic, as opposed to a proof-of-concept, model if you truly want to detect attacks
in real time and predict future trends. Of course, trying to generate a model that represents the real
world is difficult at best. It’s possible to obtain perfectly reliable pre-built models for many ML needs
and save yourself a lot of time, not to mention guesswork, in creating such a model. Some problem
domains are common enough and predictable enough that you can use a pre-built model and feel
good about it. Security is no exception to this rule. Using a pre-built model for these needs will likely
provide good results:

« Various types of common fraud, such as credit card fraud

« Identity theft of various sorts, including the use of illegally obtained credentials to access
your network

 Spoofing techniques, such as those used to gain unlawful access to a system
o Spam mail or malware of various kinds

« Some types of attacks on cloud-based resources that are hosted by a particular vendor

The problem arises when you try to use what someone else has put together for predicting specific types
of problem domains. No one can anticipate, much less build, a model that will match the particular
characteristics of your organization (even if they attempt to tell you that they can do so). Here are some
examples of situations where you need to build your own model to ensure that it works as anticipated:

« Social attacks of various sorts
« Attacks that depend on your organization’ structure

o Physical attacks that depend on the layout, structure, and organization of any physical elements
of your organization, such as buildings

« Infiltration based on your particular product line or methodologies

« Attacks on your APIs or databases

Building a realistic network model that you can use to predict future activity comes down to examining
how the data is trending on your network, rather than on networks in general. This means using
statistical analysis to track your particular network and being aware of the threats peculiar to your
network. Your network may not be particularly vulnerable to an API attack. Perhaps the hackers

161

162

Keeping Your Network Clean

interested in you are working in other ways, such as social engineering through various kinds of
email entreaties instead.

Beware of one-size-fits-all

A common mistake that leads to security issues is to assume that every network is just like every
other network out there. Networks do have similarities, but they also have unique qualities.
Hackers poke and prod at a network using every means possible to locate a chink in a networKk’s
security armor. However, once they find that chink, they don’t ignore it. Rather, they use what is
known about the network to create an exploit that will work. This is the reason why you really
do need to consider the uniqueness of your network as part of a solution for predicting what
will happen in the future, based on what you know now.

Summary

This chapter has covered a broad range of network topics, which should tell you one thing - keeping
your network secure is a team effort that requires the devoted efforts of professionals in several different
areas. In order to make the topic a little easier to understand, this chapter broke the requirements
down into traditional protections, ML protections, real-time detection, and predictive defenses.
Hackers are constantly doing three things to thwart your efforts: finding new ways to break into your
network, developing ever-faster techniques, and doing the unexpected to evade your defenses. These
hacker methodologies are why you must view network security as a collaboration between humans
and various kinds of automation. Without augmentation, humans are hopelessly mired in detail and
won't see an attack until it has already finished and the damage is done. Despite this, automation can’t
possibly deal with a hacker’s ability to perform attacks in unexpected ways.

Part of this chapter focused on techniques that work well for security purposes, rather than ML as
a whole. For example, you can use any number of algorithms to detect suspicious activity, but the
best practice is to start with a random forest classifier for security needs because of the particular
advantages it provides. In addition, you use supervised learning to perform detection, again because
of the advantages it provides over unsupervised learning in a security context. The point is that there
is a difference between ML techniques in general and those used specifically for security needs, so it’s
important to consider the focus of any security applications you create.

You've also discovered that Python, the language most often used to create ML applications, has
security holes that can affect your network as well. Consequently, you need to look out for the issues
presented by programming techniques such as subprocesses and the potential for RCE. Even though
these security holes always affect Python applications, they’re especially important to consider when
working with network applications because a hacker can access them with greater ease.

Chapter 6 studies a topic that’s essential to creating and using ML successfully to keep hackers at
bay - the detection of anomalies, which is the presence of anything unexpected in data, models, or
activities, no matter where they occur in a system. An anomaly can be a black swan event, the effects
of cosmic radiation, or the subtle intrusion of a hacker, but you won’t know until you investigate it.

6
Detecting and Analyzing

Anomalies

The short definition of an anomaly is something that you don’t expect—something strange, out of
the ordinary, or simply a deviation from the norm. You don't expect to see values outside a specific
numeric range when reviewing data—these values often called outliers because they lie outside the
expected range. However, anomalies occur in all sorts of ways, many of which don’t fall into the
category of outliers. For example, the data may simply not meet formatting requirements, or it may
appear inconsistently, as with state names that are correct but presented in different ways.

Some people actually enjoy seeking anomalies, finding them amusing or at least interesting. The point
is anomalies occur all the time, and they may appear harmless, but they have the potential to affect
your business in various ways. The point of this chapter is to help you discover what anomalies are
with regard to ML, how to determine what sort of anomaly it is, and how to mitigate its effects when
necessary. It’s not possible or even required to deal with rare events caused by cosmic radiation, for
example. With these issues in mind, this chapter discusses the following topics:

o Defining anomalies
« Detecting data anomalies
o Using anomaly detection effectively in ML

o Considering other mitigation techniques

Technical requirements

This chapter requires that you have access to either Google Colab or Jupyter Notebook to work with
the example code. The Requirements to use this book section of Chapter 1, Defining Machine Learning
Security, provides additional details on how to set up and configure your programming environment.

164

Detecting and Analyzing Anomalies

When testing the code, use a test site, test data, and test APIs to avoid damaging production setups
and to improve the reliability of the testing process. Testing on a non-production network is highly
recommended but not absolutely necessary. Using the downloadable source code is always highly
recommended. You can find the downloadable source on the Packt GitHub site at https://github.
com/PacktPublishing/Machine-Learning-Security-Principles or my website
athttp://www.johnmuellerbooks.com/source-code/.

Defining anomalies

In the ML realm, anomalies represent data that lies outside of the expected range. The anomaly may
occur accidentally, or someone may have put it there, but an anomaly is usually unexpected and
potentially unwanted. Anomalies come in two forms:

o Outliers: When the data doesn't fit in with the rest of the data, it’s an outlier. An outlier can
come in many forms, but the defining characteristic is that it’s definitely not wanted because
it skews any sort of analysis performed with it in place.

« Novelties: Sometimes, the data is outside the normal range, but it actually does fit in with the
rest of the data. In this case, the data represents a new example that must be considered as
part of any analysis. Otherwise, the analysis will fail to represent the true state of whatever the
analysis is supposed to bring to light.

Part of the problem, then, is that both kinds of anomaly lie outside the normal range, but one is wanted
and the other isn't. Before any mitigation can occur, the ML application must provide some means
of determining whether the data is an outlier or a novelty. In some cases, making a correct decision
may actually require that a human review the data to make the determination.

Specifying the causes and effects of anomaly detection

Before you can know that an anomaly exists, you must detect it. Anomaly detection is a mix of the
following methods:

o Engineering: Using known rules and laws, which can be done using ML techniques.

o Science: Defining a hypothesis and then proving it. Science requires a human to define the
hypothesis but can depend on ML to help prove it.

o Art: Simply getting a feeling that something is wrong, which is most definitely, exclusively, the
realm of humans.

It's important to detect anomalies as soon as possible when they occur. Unlike many areas of security,
there aren’t any methods of predicting an anomaly will occur because anomalies are, by nature,
completely unexpected and unpredicted. Previous chapters discussed purposeful attacks by hackers
to change data in ways that cause problems for every security element on your network, but anomalies
usually happen in a different manner; they aren’t usually planned. When they are planned, they’re

Defining anomalies

exceptionally hard to detect because hackers can simply hide the attack within all of the other data.
Consequently, this chapter looks at the engineering and science aspects of anomaly detection from
the perspective of the unexpected event that could be perpetrated by a hacker but could be caused by
a vast number of other sources. You'll have to develop your own sixth sense to feel that an anomaly
has occurred (and most people do develop one with experience).

Part of the problem with detecting anomalies is that humans have a tendency toward bias, which means
having an inclination not to see the unexpected if it doesn’t make enough of an impression. As a real-
world example, one person is focused entirely on work, while another repaints the house. The first
person comes home from work and doesn’t see that the house is painted because bias prevents them
from doing so. Their focus is on work; nothing else matters. The same thing happens with anomalies
that affect the business environment, especially data. It’s possible to look at the data and yet not really
see it because the focus is on something else at the time. This is where ML can come to the rescue by
providing that extra impression to their human counterparts that something is apparently wrong.

Fortunately, you have other methods of anomaly detection that you can use to prevent break-ins and
issues like model stealing. These methods fill in where visual observation and the use of ML tools
don’t quite fill in all of the gaps. Discovering precisely how you can add these tools to the measures
you already have in place is an essential part of discovering anomalies early and mitigating them
quickly after discovery.

Considering anomaly sources

Anomalies occur in different situations, and it isn’t always the fault of the data source, which is
something that many texts forget to mention. Novelties do occur as part of a change in source data,
but outliers aren’t so limited. With this in mind, the following list provides some sources to check
when you see anomalies in your data:

» Dataset damage: Any data source is subject to damage. Users can enter incorrect data, a network
outage can corrupt data, hackers can change data, nature can modify data, or the data could
simply become outdated to the point that it’s not useful any longer. This source of anomalies
is always associated with outliers.

« Concept drift: The meaning of data can change over time based on physical, political, economic,
social, or other external forces, such that the interpretation of the data changes. You often see
this kind of anomaly as a novelty, but it can also be an outlier.

» Environmental change: Sensors are especially sensitive to this issue and will likely generate
anomalies in the form of novelties. However, this sort of anomaly can also appear as an outlier
when hackers or other individuals purposely modify the environment to create unusable data.

» Source data change: Any data source that you use that isn’t under your personal control is
subject to unexpected change. Your application will likely detect changes in format or other
physical factors. However, it won't detect issues such as policy changes by the organization that
creates and manages the data. Data that suddenly uses a different perspective to express ideas

165

166

Detecting and Analyzing Anomalies

or suddenly includes various biases will produce outliers that you need to either remediate or
account for in your application.

Man-in-the-middle (MITM): It's happening more often that the data source hasn’t changed, and
your code for accessing it hasn’t changed, but at some point between sending the information
from the source and your receipt of the data, the data gets changed, usually in a subtle manner.
The concept of the MITM attack has been around for a long time now and you can find plenty
of guides about it, such as The Ultimate Guide to Man in the Middle (MITM) Attacks and How
to Prevent them at https://doubleoctopus.com/blog/the-ultimate-guide-
to-man-in-the-middle-mitm-attacks-and-how-to-prevent-them/. This
is simply a new twist on a tried and tested method used by hackers to cause problems.

User error: It's not possible to train humans to perform tasks with complete correctness all of
the time. If humans always made the same sorts of errors, it might be possible to detect the
errors and fix them with relative ease, but humans are also quite creative in the way they make
errors, so detection of human errors is hard, and there is no silver bullet solution.

There are many other sources of anomalies. The best advice to consider is that you can't trust any
data at any time. All data is subject to anomalies, even if it comes from a well-known source and is
supposedly clean. Of course, you can't just wait for anomalies to come along to train your models, so
it’s also necessary to know about data sources you can use for testing purposes. Figure 6.1 provides
some commonly used sources that you may want to try while training your model. The Checking data
validity section of this chapter discusses the all-important topic of detecting anomalies in the data
stream, which is where you’ll likely see them first:

Dataset Training Type | Description Location

of anomaly detection https://www.

training. The datasets cs.toronto.
Cifar-10 Image 5) . .

come in a variety of edu/~kriz/cifar.

sizes, with Cifar-10 html

A set of datasets
containing smallish 32x32
images that would prove
useful in certain types

containing 60,000 images
in 10 classes and Cifar-
100 containing 60,000
images in 100 classes.

Defining anomalies

ImageNet

Image

An immense dataset

at 150 GB that holds
1,281,167 images for
training and 50,000
images for validation,
organized into 1,000
categories. The dataset is
so popular that the people
who manage it recently
had to update their
servers and reorganize
the website. All of the
images are labeled,
making them suitable for
supervised learning.

https://www.
image-net.
org/update-
mar-11-2021.php

Imagenette
and Imagewoof

Image

A set of datasets
containing images of
various sizes, including
160-pixel and 320-pixel
sizes. These datasets
aren’t to be confused
with ImageNet (and the
site makes plenty of fun
of the whole situation).
The Imagenette
datasets consist of 10
classes using easily
recognizable images,
while the Imagewoof
dataset consists of a single
class, all dogs that can

be incredibly tough to
recognize. This series of
datasets also include noisy
images and purposely
changed labels in various
proportions to the
correct labels.

https://github.
com/fastai/
imagenette

167

168

Detecting and Analyzing Anomalies

Modified National
Institute of
Standards and
Technology (MNIST)

Image

Handwritten digits with
60,000 training and
10,000 testing examples.
The digits are already
size normalized and
centered in a fixed-size
image. Many Python
packages include this
dataset, such as scikit-
learn (https://
scikit-learn.
org/stable/
auto_examples/
classification/
plot digits_
classification.
html).

http://yann.
lecun.com/exdb/
mnist/

Numenta Anomaly
Benchmark (NAB)

Streaming
anomaly
detection

Contains 58 labeled real-
world and artificial time-
series data files you can
use to test your anomaly
detection application in

a streamed environment.
The data files show
anomalous behavior but
not on a consistent basis,
making it possible to train
a model to recognize

the anomalous behavior.
This dataset isn’t officially
supported on Windows 10
or (theoretically) 11.

https://github.
com/numenta/NAB

Defining anomalies

A truly immense
dataset taken from a
news commentary site.
Natural The dataset consists https://
. of 829,250,940 words
One Billion Language . . opensource.
N with 793,471 unique .
Word Benchmark Processing) google/projects/
words. The problem with
(NLP) i i Im-benchmark
this dataset is that the
sentences are shuffled, so
the ability to determine
context is limited.
Contains 887,521 training
words, 70,390 validation https://deepai.
words, and 78,669 test
Penn Treebank NLP . org/dataset/penn-
words with the text
. treebank
preprocessed to make it
easy to work with.
A much Ilarfger version https://blog.
of the WikiText-2 , , .
dataset contains einstein.ai/
103.227.021 traini the-wikitext-
WikiText-103 NLP e ra1n11'1g . long-term-
words, 217,646 validation
dependency-
words, and 245,569
. language-
testing words taken from .
Lo . modeling-dataset/
Wikipedia articles.
Contains 2,088,628
training words, 217,646
validation words, and https://blog.
245,569 test words . . .
e 1. einstein.ai/
taken from Wikipedia s
ticles. This dataset the-wikitext-
WikiText-2 NLP ar 1c'es. 1? 2? ase long-term-
provides a significantly
. R dependency-
improved environment
language-
over Penn Treebank for .
o modeling-dataset/
training models because
preprocessing is kept to
a minimum.

Figure 6.1 — Datasets that work well for anomaly training

169

170

Detecting and Analyzing Anomalies

Even though most of these datasets fall into either the image or NLP categories, you can use them
for a variety of purposes. As time progresses, you'll likely find other well-defined, labeled, and vetted
datasets suitable for security use in other categories, such as streaming anomaly detection. However,
it’s hard to find such datasets today. It’s not that other datasets are lacking, but they haven’t received
the scrutiny that these datasets have.

Understanding when anomalies occur

Anomalies occur all the time, 24 hours a day, 7 days a week. However, determining when anomalies
occur can help in determining whether the anomaly represents a threat, whether it’s a benign outlier,
or whether it’s a novelty to include as part of your data. The perception that hackers get up at odd
hours of the night to attack your network is simply wrong. The article Website Hacking Statistics You
Should Know in 2021 at https://patchstack.com/website-hacking-statistics/
points out that it’s nearly impossible to define solid statistics anymore, but it does provide you with
guidelines on what to expect. For example, the FBI reported a 300 percent increase in the number
of cybercrimes during COVID-19. When a hacker attacks your site, network, application, API, or
any other part of your infrastructure, the act generates anomalies that you can detect and act upon.

The frequency of occurrence can also tell you a lot. Users may lose a password and try to log into
the network five or six times before giving up and finding an administrator, but hackers are far more
persistent. To be successful, the hacker has to keep trying, which means that you’ll see a lot of login
attempts for a particular account.

The benefits of freezing an account after so many password tries

It almost seems archaic because the technique has been around for so long, since before the
internet. However, allowing a user to make a specific number of tries to input the correct
name and password has at least three benefits. First, it means that the user is going to have to
alert the administrator to the password loss sooner, which may mean looking for any account
irregularities sooner before a hacker has a chance to act. The user may not have actually lost
their password; a hacker may have accessed their account and changed it for them. Second, it
tends to thwart a hacker’s use of automation or at least slow it down. If a hacker has to wait 20
minutes (as an example) after every four tries, many of the common forms of automation that
hackers rely upon will be far less efficient. Third, if you have a really determined hacker, that
pattern of logins will become a lot more noticeable.
L J

Thinking through anomalies can also help a lot. An anomaly that occurs during the day when users
are logged in has a higher probability of being benign in most cases. Of course, this line of thought
assumes that your business isn’t running three shifts. You should also consider the ebb and flow of
data that occurs as customers check in to determine when products will ship or new products are
available for purchase. By looking for patterns based on reasonable activity, you can begin to see the
activities of those who are purposely trying to break into your business for some reason, which isn’t
always apparent until the break-in occurs.

Defining anomalies

Using anomaly detection versus supervised learning

Anomaly detection, by definition, uses unsupervised (most often) or possibly semi-supervised (rarely
today) learning techniques by definition. It allows the model to robustly handle unknown situations,
which is often a requirement when dealing with data from an unknown or alternative source. Supervised
learning (the focus of Chapter 5, on detecting network hacks) relies on labeled data to correctly train a
model to recognize good and bad data. It allows the model to make decisions with fewer false positives
and false negatives but can misclassify outliers.

In some cases, a setup designed to detect anomalies and then classify them will start with an
unsupervised anomaly detection model. When the model detects an anomaly, it passes it on to the
supervised learning model. Since the supervised model is more adept at classifying good versus bad
data, it can often detect whether an anomaly is an outlier or simply novel data.

Using and combining anomaly detection and signature detection

Many forms of Network Intrusion Detection Systems (NIDS) rely on a combination of anomaly
detection and signature detection today. The reason for using both approaches is to create a defense in
depth (DiD) scenario where one detection method or the other is likely to detect any sort of problem.
Anomaly detection is flexible and brings with it the ability to handle new threats almost immediately.
Signature detection provides a robust solution to known threats because it detects those threats based
on a specific signature.

The main advantage of using the combination is that anomaly detection is prone to high false positives
in some situations, while signature detection is known to provide very low false positives in precisely
the same situations. Anomaly detection is also slower than signature detection in most cases because
the data must go through the analysis process before making a decision. However, anomaly detection
excels in locating zero-day exploits and is indispensable for advanced hackers who know how to modify
the signature of an attack vector enough to fool a signature detection setup.

In order to see an actual threat, the two detection systems must actually receive the data that requires
analysis. This means placing such systems in more than one location in the organization:

« Network interface: A network interface connects your network to the outside world, to other
entities in your organization, or to other segments on the same network. You need protection
wherever a boundary exists because hackers are adept at locating these boundaries and
exploiting them.

« Endpoints: Any endpoint can receive or send anomalous data. Detecting the anomaly before
it leaves the endpoint can keep your data safe. Of course, you need different kinds of detection
for different kinds of endpoints:

o Verification: User systems are especially prone to generating anomalous data, so you need to
verify what the user is doing at all times.

171

172

Detecting and Analyzing Anomalies

« Monitoring: Any data generator can create anomalous data accidentally, as an act of nature, as
a system failure, or as some other cause, so you need to track what sort of data the generator
is creating for you.

« Filtering: A disk server is unlikely to generate anomalous data, but it can be damaged by it, so
you need to filter the data before the disk server receives it.

« Web application firewall: Every web application, whether it’s an end-user application or an
API called on by other entities, requires constant monitoring. This is a major source of hacker
intrusion into your system, so it needs to be locked down as much as possible.

o Other: Systems are so interconnected now that even if you have a map of the system, it likely
has missing elements, such as Internet of Things (IoT) devices and various sensors. Hackers
will access your system through any opening you provide, so locking these other entry points
down is important.

This list likely isn't complete for your organization. Brainstorming the locations that require detection
and ascertaining the kind of detection required is important. Make sure you include items outside the
normal purview of developers, such as sensors and IoT devices. The next section moves from defining
what an anomaly is to how to detect anomalies using various techniques.

Detecting data anomalies

Anomaly (and its novelty counterpart) detection is a never-ending, constant requirement because
anomalies happen all the time. However, with all this talk of detecting and removing anomalies, you
need to consider something else. If you remove the novelties from the dataset (thinking that they
are anomalies), then you may not see an important trend. Consequently, detection and research into
possible novelties go hand in hand. Of course, the most important place to start is with the data itself,
looking for values that don’t obviously belong. Figure 6.2 provides a list of common techniques to
detect outliers (the table is definitely incomplete because there are many others):

Method Type Description

This estimates the variations in regression coeflicients
after removing each observation one at a time. The

main goal of this method is to determine the influence
CooK’s distance Model-specific | exerted by each data point, with data points having undue
influence being outliers or novelties. This technique

is explored in the Relying on Cook’s distance section of

the chapter.

Detecting data anomalies

Interquartile
range (IQR)

Univariate

This considers the placement of data points within the
first and third quartiles normal. All data points 1.5 or
more times outside of these quartiles are considered
outliers. This technique is usually displayed graphically
using a box plot. It was created by John Tukey, an
American scientist best known for creating the fast
Fourier transform (FFT). This technique is explored
in the Relying on the interquartile range section of

the chapter.

Isolation Forest

Multivariate

This detects outliers using the anomaly score of the
Isolation Forest (a type of random forest). The article
athttps://towardsdatascience.com/
outlier-detection-with-isolation-
forest-3d190448d45e provides additional insights
into this approach.

Mahalanobis
distance

Multivariate

This measures the distances between points in
multivariate space. It detects outliers by accounting

for the shape of the data observations. The threshold
for declaring a data point an outlier normally relies on
either standard deviation (STDEV) or mean absolute
deviation (MAD). You can find out more about this
technique at https://www.statisticshowto.
com/mahalanobis-distance/.

Minimum
Covariance
Determinant
(MCD)

Multivariate

Based on the Mahalanobis distance, this technique

uses the mean and covariance of all data, including the
outliers, to determine the difference scores between
data points. This approach is often considered far

more accurate than the Mahalanobis distance. You

can find out more about this approach in the article
athttps://onlinelibrary.wiley.com/doi/
full/10.1002/wics.1421.

173

174

Detecting and Analyzing Anomalies

This assesses the reliability and approximate convergence
of Bayesian models using estimates for the k shape
parameter of the generalized Pareto distribution. This
method is named after Vilfredo Pareto, the Italian civil
Pareto Model-specific | engineer, economist, and sociologist. It’s the source

of the 80/20 rule. The article at https://www.
tandfonline.com/doi/abs/10.1080/009496
55.2019.1586903?journalCode=gscs20
provides additional information about this method.

This restructures the data, removing redundancies and
ordering newly obtained components according to the

Principle
d L amount of the original variance that they express. Using
component Multivariate
. this approach makes multivariate outliers particularly
analysis (PCA)
evident. This technique is explored in the Relying on
principle component analysis section of the chapter.
This describes a data point as a deviation from a central
value. To use this approach, you must calculate the
L z-scores one column at a time. Different sources place
Z-score Univariate

different scores as the indicator of an outlier—as low as
1.959 and as high as 3.00. This technique is explored in
the Relying on z-score section of the chapter.

Figure 6.2 - Common methods for detecting outliers

The common techniques in Figure 6.2 are those that you will use most often, and you may not ever
need any other method unless your data is structured oddly or contains patterns that don’t work well
with the kinds of analysis these methods perform. In this case, you need to look for algorithms that
meet your specific need rather than try to force a common algorithm to provide an answer that it
can’t provide to you. For example, the article 5 Anomaly Detection Algorithms in Data Mining (With
Comparison) athttps://www.intellspot.com/anomaly-detection-algorithms/
bases anomaly detection on data mining techniques.

Checking data validity

One of the things you need to ask with regard to anomalies is whether the data you’re using is valid.
If there are too many outliers, any results from the data analysis you perform will be skewed, and
you’ll derive erroneous results. In most cases, the outliers you want to find are those that relate to
some sort of data entry error. For example, it’s unlikely that someone who is age 2 will somehow have
a PhD. However, outliers can also be subtle. For example, a hacker could boost the prices of homes in
a certain area by a small amount so that a confederate with homes to sell can get a better asking price.

Detecting data anomalies

The point is that data tends to have certain characteristics and fall within certain ranges, so you can
use an engineering approach to finding potential outliers. You must then resort to intuition to decide
whether the errant values are novelties or actual outliers that you then research and fix.

The real problem is the outlier that deviates from the norm by a wide margin. Depending on the ML
algorithms you use, and the method used to determine errors, a carefully placed outlier can cause the
model to change the weights it uses for making decisions by a large amount. The K-means algorithm
is just one of many that fall into this category. Fortunately, not all algorithms are sensitive to a few
outliers with unbelievable values. If you use the K-medoids clustering variant instead, one or two
outliers will have much less of an effect. That’s because K-medoids clustering uses the actual point
in the cluster to represent a data item, rather than the mean point as the center of a cluster. Some
algorithms, such as random forest, are supposedly less affected by outliers, according to some people
(see https://heartbeat.fritz.ai/how-to-make-your-machine-learning-
models-robust-to-outliers-44d404067d07) and not so robust according to others (see
https://stats.stackexchange.com/questions/187200/how-are-random-
forests-not-sensitive-to-outliers).

The safe assumption is that outliers create problems and that you should remove them from your data.
A number of methods exist to detect outliers. Some of them work with one feature (univariate); others
focus on multiple features (multivariate). The approach you use depends on what you suspect is wrong
with the data. The examples in this section all rely on the California housing dataset, which is easily
available from scikit-learn and provides well-known values for the comparison of techniques. The MLSec;
06; Check Data Validity.ipynb file contains source code and some detailed instructions
for performing validity checks on your data. You can learn more about the California housing dataset,
which is part of sklearn.datasets (https://scikit-learn.org/stable/modules/
generated/sklearn.datasets.fetch california housing.html),athttps://
www.kaggle.com/datasets/camnugent/california-housing-prices.

Relying on the interquartile range

The univariate approach to locating outliers was originally proposed by John Tukey as Exploratory
Data Analysis (EDA) IQR. You use a box plot to see the median, 25 percent, and 75 percent values.
By subtracting the 25 percent value from the 75 percent value to obtain the IQR and multiplying by
1.5, you obtain the anticipated range of values for a particular dataset feature. The extreme end of the
range appears as whiskers on the plot. Any values outside this range are suspected outliers. Use these
steps to see how this process works:

1. Import the required libraries:
from sklearn.datasets import fetch california housing

import pandas as pd

$matplotlib inline

175

176 Detecting and Analyzing Anomalies

2. Manipulate the dataset so that it appears in the proper form:

california = fetch california housing(as frame = True)
X, vy = california.data, california.data

X = pd.DataFrame (X, columns=california.feature names)
print (X)

The example prints the resulting dataset so that you can see what it looks like, as shown in
Figure 6.3. Across the top, you can see the features used for the dataset:

MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude \

2] 3.3252 41.¢ 6.984127 1.e2381e 322.@ 2.555556 37.88

1 3.3814 21.¢ 6.238137 8.971880 24g1.e 2.189342 37.86

2 7.2574 52.8 8.288136 1.873446 496.@ 2.302268 37.85

3 5.6431 52.8 5.817352 1.873@59 558.@ 2.547945 37.85

4 3.8462 52.8 ©.281853 1.881e81 565.@ 2.181467 37.85

20635 1.5683 25.8 5.845455 1.133333 845.@ 2.560686 39.48

20636 2.5568 18.8¢ 6.114635 1.315789 356.@ 3.122887 39.49

20637 1.70e6 17.8 5.285543 1.128892 lee7.@ 2.325635 39.43

20628 1.8672 18.8 5.329513 1.171928 741.@ 2.123289 39.43

20620 2.3386 16.8 5.254717 1.162264 1387.@ 2.616981 39.37
Longitude

a -122.23

1 -122.22

2 -122.24

3 -122.25%

4 -122.25%

20635 -121.89

28636 -121.21

28637 -121.22

28638 -121.32

20639 -121.24

[2@64@ rows x & columns]
Figure 6.3 - The data manipulation creates a tabular view with columns labeled with feature names

3. Create the box plot:

X.boxplot ('MedInc',return type='axes')

The box plot specifically shows the median income (MedInc) feature values. The output shown
in Figure 6.4 indicates that the full range of values runs from about $9,000 to $80,000. The
median value is around $35,000, with a 25 percent value of $25,000 and a 75 percent value of
$50,000 (for an IQR of $25,000). However, some values are above $80,000 and are suspected
of being outliers:

Detecting data anomalies

14 1

12 1

10 1

Medlinc

Figure 6.4 — The box plot provides details about the data range
and indicates the presence of potential outliers

The next section relies on the same variable, X, to perform the next outlier detection process, PCA.
It shows you the potential outliers in the MedInc feature in another way.

Relying on principle component analysis

In viewing the output shown in Figure 6.4, you can see that there are potential outliers, but it’s hard
to tell how many outliers, and how they relate to other data in the dataset. The need to understand
outliers better is one of the reasons you resort to a multivariate approach such as PCA. The actual
math behind PCA can be daunting if you’re not strong in statistics, but you don’t actually need to
understand it well to use PCA successfully.

The number of variables you choose depends on the scenario that you're trying to understand. In
this case, the example looks for a correlation between median income and house age. When working
through a similar security problem, you might look for a correlation between unsuccessful login
attempts and time of day or less-used API calls and network load. It’s all about looking for patterns
in the form of anomalies that you can use to detect hacker activity.

177

178

Detecting and Analyzing Anomalies

This example also relies on a scatterplot to show the results of the analysis. A scatterplot will tend to
emphasize where outliers appear in the data. The following steps will lead you through the process
of working with PCA using the California housing dataset, but the same principles apply to other
sources of data, such as API access logs:

1. Import the libraries needed for this example:

from sklearn.decomposition import PCA
from sklearn.preprocessing import scale
import matplotlib.pyplot as plt

2. Consider the need to scale your example by running the following code:

print (X[["MedInc", "HouseAge"]][0:5])
print (scale (X[["MedInc", "HouseAge"]]) [0:5])

The output shown in Figure 6.5 shows how the original data is scaled in the MedInc and
HouseAge columns so that it’s the same relative size. Scaling is an essential part of working
with PCA because it makes the comparison of two variables possible. Otherwise, you have an
apples-to-oranges comparison that will never provide you with any sort of solid information:

MedInc Househge
8.3252 41.@
2.3814 21.8e
7.2574 £z2.@
5.6421 £2.e
2.8462 £2.e
2.34478576 @.98214266]
2

1

e

-8

L B =R WY I S I i v

mrarmror

.332237%6 -8.68701891]
. 7826904 1.85618152]
.932948751 1.85618152]
.812851 1.85618152]]

Figure 6.5 — Scaling is an essential part of the multivariate analysis process

3. Use PCA to fit a model to the scaled data:

pca = PCA(n_ components=2)

pca.fit (scale (X))

C = pca.transform(scale (X))

print (C)

print ("Original Shape: ", X.shape)
print ("Transformed Shape: ", C.shape)

Detecting data anomalies

The pca.transform() method performed dimensionality reduction. You can see the result
of the fitting process and dimensionality reduction in Figure 6.6:

[[1.88270434 -8.50336186]
[1.37111955 -@.12148565]
[2.88686762 -8.5811357]

[1.482356586 -1.89542550]

[1.5429425 -1.85948335]

[1.48551621 -8.89672727]]
Original Shape: (2@64@, 8)
Transformad Shape: (28648, 2)

Figure 6.6 - Fitting the data and then transforming it provides data you can plot

4. Plot the data to see the result of the analysis:

plt.title('PCA Outlier Detection')

plt.xlabel ('Component 1')

plt.ylabel ('Component 2')

plt.scatter(C[:,0],C[:,1], s=2**7, edgecolors='white',
alpha=0.85, cmap='autumn')

plt.grid(which="minor', axis='both')

plt.show ()

The output in Figure 6.7 clearly shows the outliers in the upper-right corner of the plot. The x-
and y-axis data appears first in the call toplt . scatter (). The remainder of the arguments
affects presentation: s for the marker size, edgecolors for the line around each marker (to
make them easier to see), alpha to control the marker transparency, and cmap to control
the marker colors:

PCA Qutlier Detection

&0 ®
L

50 1
40
=
Il
g °q
& Is:
3 20 A »

o
0 P fﬁ%’.'
. g es;a'
® 7 '“'J"’
0) \\(.)a
0 10 0 £l 40 50

Component 1

Figure 6.7 - The outliers appear in the upper right corner of the plot

179

180

Detecting and Analyzing Anomalies

To use this method effectively, you need to try various comparisons to find the correlations that will
make the security picture easier for you to discern. In addition, you may find that you need to use
more than just two features, as this example has done. Perhaps there is a correlation between invalid
logins, IP addresses, and time of day. Until you model the data for your particular network, you really
don’t know what the anomalies you suspect will tell you about your security picture.

Going overboard with analysis

It would be quite easy to go overboard with the analysis you want to perform by testing a
ridiculous number of combinations and looking for patterns that aren’t there. Human intuition
is extremely important in determining which combinations to try and figuring out what data
actually is an anomaly and which is a novelty. The computer can’t perform this particular task
for you. PCA only works when the human performing it makes decisions based on previous
experience, current trends, network uniqueness, and anticipated or viewed behaviors.

L J

Relying on Cook’s distance

Cooks distance is all about measuring influence. It detects the amount of influence that a particular
observation has on a model. When it comes to anomalies, a very influential observation is likely an
outlier or novelty. Using CooK’s distance properly will help you see specifically where the outliers
reside in the dataset. Removing these outliers can help you create a better baseline of what is normal
for the dataset and makes anomaly detection easier.

Note that before you can run this example, you need to have Yellowbrick (https://www.
scikit-yb.org/en/latest/) installed. The following command will perform the task for you:

conda install -c districtdatalabs yellowbrick

However, if you don’t have Anaconda installed on your system, you can also add this code to a cell
in your notebook to install it:

modules = !pip list

installed = False

for item in modules:
if ('yellowbrick' in item) :
print ('Yellowbrick installed: ', item)

installed = True

if not installed:
print ('Installing Yellowbrick...'")
!lpip install yellowbrick

Detecting data anomalies

In this second case, the code checks for the presence of Yellowbrick on your system and installs it if
it isn’t installed. This is a handy piece of code to keep around because you can use it to check for any
dependency and optionally install it when not present. In addition, this piece of code will work with
alternative IDEs, such as Google Colab. Using this check will make your code a little more bulletproof.
If Yellowbrick is already installed, you will see an output similar to this showing the version you
have installed:

Yellowbrick installed: yellowbrick 1.5

Once you have Yellowbrick installed, you can begin working with the example code using the
following steps:

1. Import the required dependencies:

from yellowbrick.regressor import CooksDistance

2. Import a new copy of the California housing dataset that’s formed in a specific way as show in
the following code snippet:

california = fetch california housing(as frame = True)
X = california.data["MedInc"] .values.reshape (-1, 1)

y = range (len (X))

3. Printing the result of the import shows how X is formatted for use with Yellowbrick. The y
variables are simply values from 0 through the length of the data to act as an index for the output:

print (X)

Figure 6.8 shows a sample of the output you should see:

[[8.3252]
[8.3014]
[7.2574]
[1.7 1]
[1.8672]
[2.3886]]

Figure 6.8 — Ensure your data is formatted correctly for the visualizer

181

182

Detecting and Analyzing Anomalies

4. Create a CooksDistance () visualizer to see the data, use £it () to fit the data to it, and
then display the result on screen using show () :

visualizer = CooksDistance ()

visualizer.fit (X, vy)

visualizer.show ()
The stem plot output you see should look similar to that shown in Figure 6.9. Notice that the
anomalies are readily apparent and that you know areas that contain records with anomalous

data. In addition, the red dashed line tells you the average of the records so that you can see
just how far out of range a particular value is:

Cook's Distance Outlier Detection

—-— 45T% =] =1

00020

00015

00010

influence (1)

00005

0.0000

Q 2500 5000 7500 10000 12500 15000 17500 20000
instance index

Figure 6.9 - The Cook'’s distance approach gives you specific places to look for anomalies

Cook’s distance reduces the work you need to perform to determine where anomalies occur so that
you aren’t searching entire datasets for them. If this were a data stream, the y value could actually
be time increments so that youd know when the anomalies occur. By slicing and dicing your data in
specific ways, you can quickly check for anomalies in a number of useful ways.

Relying on the z-score

Obtaining the z-score for data points in a dataset can help you detect specific instances of outliers.
There are a number of ways to do this, but the basic idea is to determine when a particular data point
value falls outside of a specific range, normally beyond the third deviation. Fortunately, the math
for performing this task is simplified by using NumPy (https://numpy.org/), rather than
calculating it manually.

Detecting data anomalies

Using seaborn (https://seaborn.pydata.org/) greatly reduces the amount of work you
need to do to visualize your data distribution. This example relies on seaborn version 0.11 and
above. If you see an error message stating that module 'seaborn' has no attribute
'displot', it means that you have an older version installed. You can update your copy of seaborn
using this command:

pip install --upgrade seaborn

The following example shows a technique for actually listing the records that fall outside of the specified
range and understanding how the records in the dataset fall within a particular distribution:

1. Import the required dependencies:

import numpy as np

import seaborn as sns

2. Obtain an updated copy of the California housing data for median income:

X = california.data["MedInc"]

3. Determine the mean and standard deviation for the data:

mean = np.mean (X)
std = np.std(X)
print ('Mean of the dataset is: ', mean)

print ('Standard deviation is: ', std)

You’ll see an output like this when you run the code:

Mean of the dataset is: 3.8706710029070246
Standard deviation is: 1.899775694574878

4. Create a list of precisely which records fall outside the third deviation:

threshold = 3
record = 1
z_scores = []
for i in X:

z = (1 - mean) / std

z_scores.append (z)

if z > threshold:

print ('Record: ', record, ' value: ', 1)

record = record + 1

183

184 Detecting and Analyzing Anomalies

Figure 6.10 shows the results of performing this part of the task. Notice the method for calculating
the z-score, z, is simplified by using NumPy. The resulting data tells you where each record falls
in the expected range. The output is the records that fall outside the third standard deviation
and may be an outlier:

Record: 132 wvalue: 11.6817
Record: 418 wvalue: 18.882%5
Record: 511 wvalue: 11.8683
Record: 512 wvalue: 13.4%99
Record: 513 wvalue: 12.2138
Record: 515 wvalue: 12.3884
Record: ©24 wvalue: ©.71%94
Record: ©78 wvalue: 18.9586
Record: 987 wvalue: 18.3283
Record: 1542 wvalue: 9.5362
Record: 1562 wvalue: 9.7837
Record: 1564 wvalue: 18.3345
Record: 1565 wvalue: 12.5915
Record: 1567 wvalue: 15.8881
Record: 1575 walue: 9.8783
Record: 1583 wvalue: 1@.7372
Record: 1584 wvalue: 13.4883
Record: 1587 wvalue: 12.2478
Record: 1592 wvalue: 1@.454%

Figure 6.10 — You now have a precise list of the records that could contain outliers

5. Plot the standard distribution of the z-scores:

axes = sns.displot(z_scores, kde=True)
axes.fig.suptitle('Z-Scores for MedInc')

axes.set (xlabel='Standard Deviation')

Figure 6.11 shows you how this data fares. This graph shows that not many of the values are
significantly out of range (the third deviation, either plus or minus), but that a few are and that
some of them are quite a bit outside the range (up to six deviations):

Detecting data anomalies

—_— Z-Scores for Medinc

800

Count

400

Standard Deviation

Figure 6.11 - Viewing the distribution plot can tell you just how
much the data is outside of the expected range

By now, you should be seeing a progression with the various examples presented in this and the three
previous sections. A simple box plot can tell you whether your data is solid, PCA can tell you where
the data is outside of the range, the Cook’s distance can help you narrow down the record areas and
show patterns of outliers, and the z-score can be very specific in telling you precisely which records
are potential outliers. The danger in all of this analysis is that you are faced with too much information
of any sort. You don't want to become mired in too much detail, so use the level of detail that satisfies
the need at the time.

Forecasting potential anomalies example

As mentioned earlier in the chapter, it’s not really possible to predict anomalies. For example, you
can’t write an application that predicts that a certain number of users will enter incorrect data in a
particular way today. You also can’t create an application that will automatically determine what a
hacker will attack today. However, you can predict, within a reasonable amount of error, what will
likely happen in certain situations.

185

186

Detecting and Analyzing Anomalies

When you start a new project, you should be able to predict certain outcomes. If the prediction turns
out to be completely false, then there might be something more than bad luck causing problems; you
might be encountering outside influences, a lack of training, bad data, bad assumptions, or something
else, but it all boils down to dealing with some sort of anomaly. One way to predict the future is to rely
on a product such as BigML (https://bigml.com/) that provides an easy method of creating
predictive models for all sorts of uses, such as those shown at https://bigml.com/gallery/
models. Of course, you have to pay for the privilege of using such a product in many cases (there
are also free models that may fit your needs).

Time series data provides a particularly interesting problem because the data is serialized. What
occurs in the past affects the now and the future. However, because each data point in a time series is
individual, it also violates many of the rules of statistics. From a security perspective, this individuality
makes it hard to determine whether the increase in user input today, as contrasted to yesterday or
last week on the same day, is a matter of an anomaly, a general trend, or simply random variance.

Fortunately, you can forecast many problems without using exotic solutions when you have historical
data. The example in this section forecasts future passenger levels on an airline based on historical
passenger levels. The MLSec; 06; Forecast Passengers.ipynb file contains source code
and some detailed instructions for performing predictions on your data.

Obtaining the data

If you use the downloadable source, the code automatically downloads the data for you (as shown
here) and places it in the code folder for you. Otherwise, you can download it from https://raw.
githubusercontent.com/jbrownlee/Datasets/master/airline-passengers.
csv. The file is only 2.18 KB, so the download won't take long:

import urllib.request

import os.path

filename = "airline-passengers.csv"
if not os.path.exists(filename) :
url = "https://raw.githubusercontent.com/\
jbrownlee/Datasets/master/airline-passengers.csv"

urllib.request.urlretrieve (url, filename)

Viewing the airline passengers data

One of the things that make the airline passengers dataset so useful for seeing how predictions can work
is that it shows a definite cycle in values. The following steps show how to see this cycle for yourself:

Detecting data anomalies 187

1. Import the required dependencies. Note that you may see a warning message when working
with this example and using matplotlib versions greater than 3.2.2. You can ignore these
warnings as they don’t affect the actual output:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

import matplotlib.ticker as ticker

$matplotlib inline

2. Read the dataset into memory and obtain specific values from it:

apDataset = pd.read csv('airline-passengers.csv')
passengers = apDataset ['Passengers']

months = apDataset ['Month']

What the example is most interested in is the number of passengers per month. To put this into
security terms, you could use the same technique to see the number of suspect API calls per
month or the number of invalid logins per month. It also doesn’t have to be a monthly interval.
You can use any equally spaced interval you want, perhaps hourly, perhaps by the minute.

3. Plot the data on screen:

fig = plt.figure ()
ax = fig.add axes([0.0, 0.0, 1.0, 1.0])
ax.plot (passengers)
ticks = months([0::12]
ticks = pd.concat ([pd.Series([' ']), ticks])
ax.xaxis.set major locator (ticker.MultipleLocator (12))
ax.set xticklabels(ticks, rotation='vertical')
start, end = ax.get ylim()
ax.yaxis.set ticks(np.arange (100, end, 50))
ax.grid()
plt.show ()
The output is a simple line plot using the ax.plot (passengers) call. Here, ticks are

simply the first month of each year, which are displayed on the x axis. The y axis starts at a value
of 100 and ends at 650 using ax.yaxis.set ticks (np.arange (100, end, 50)).

188

Detecting and Analyzing Anomalies

To make the values easier to read, the code calls ax.grid () to display grid lines. As you

can see from Figure 6.12, the data does have a specific cycle to it as the number of passengers
increases year by year.

GO0 1

550 1

500 ~

450 +

400 +

350 1

300 1

250 1

200 1

150 ~

100 ~

1945-01 4
1950-01 4
1951-01
1952-01
1953-01
1954-01
1955-01
1956-01 4
1957-01 -
1958-01
195901
1960-01

Figure 6.12 — A line chart of the airline passengers dataset shows a definite pattern

This is the sort of pattern you need to see in security data as well to make useful predictions. There
has to be some sort of pattern, or it will be quite hard to create any sort of accurate prediction. The
better the pattern, the better the prediction.

Showing autocorrelation and partial autocorrelation

This part of the example comes in two parts: autocorrelation and partial autocorrelation. Both help
you make predictions about the future state of data based on both historical and current information.

Autocorrelation is a statistical measure that shows the similarity between observations as a function
of time lag. It looks at how an observation correlates with a time lag (previous) version of itself. Using
autocorrelation helps you see patterns in the data so that you can understand the data better. This
example reviews the autocorrelation for 3 years (36 months) of airline passenger data. The time interval
is a month in this case, so each lag is 1 month, and there are 36 lags. Since all of the points in the graph
are above 0, there is a positive correlation between all of the entries. The pattern shows that the data
is seasonal. Here are the steps needed to perform an autocorrelation with the air passenger dataset:

Detecting data anomalies

1. Import the required dependencies. Note that NumPy may complain about certain data
types in the stat smodels package (https://www.statsmodels.org/stable/
index.html). There is nothing you can do about this warning and can safely ignore it. The
statsmodels package developer should fix the problem soon:

from statsmodels.graphics import tsaplots

2. Create the plot:

fig = tsaplots.plot acf (passengers, lags=36)
fig.set size inches(9, 4, 96)
plt.show ()

The code relies on a basic plot found in the stat smodels package, plot_acf (). All you
supply is the data and the number of lags. Figure 6.13 shows the autocorrelations and associated
confidence cone:

Autocorrelation

100 1

8 HWH”H”H\HIHWHIHHHH

—0.25 1

—0.50 1

=0.75 1

0 5 10 15 20 25 30 35

Figure 6.13 — An example of an autocorrelation plot with a confidence cone

The cone drawn as part of the plot is a confidence cone and shows the confidence in the correlation
values, which is about 80 percent in this case near the end of the plot. More importantly, data with a
high degree of autocorrelation isn’t a good fit for certain kinds of regression analysis because it fools
the developer into thinking there is a good model fit when there really isn’t.

The partial autocorrelation measurement describes the relationship between an observation and its
lag. An autocorrelation between an observation and a prior observation consists of both direct and
indirect correlations. Partial autocorrelation tries to remove the indirect correlations. In other words,
the plot shows the amount of each data point that isn’t predicted by previous data points so that you
can see whether there are obvious extremes (data points that don’t quite fit properly). Ideally, none
of the data points after the first two or three should exceed 0. You use the following code to perform
the partial autocorrelation using another standard stat smodel package plot, plot pacf ():

189

190

Detecting and Analyzing Anomalies

fig = tsaplots.plot pacf (passengers, lags=36)
fig.set size inches (9, 4, 96)
plt.show ()

When you run this code, you will see the output shown in Figure 6.14:

Partial Autocorrelation

100 A
0.75 A
0.50 A

0.25 A

!

o0 ot Tr[” 111y [. [y |
—0.25 1 l l L 1L1L lllll

—0.50 1

—0.75

0 5 10 15 0 % 30 %
Figure 6.14 — A partial autocorrelation plot shows the relationships between an observation and its lag

The plot shows two lags that are quite high, which provides the term for any autoregression you perform
of 2 (any predictions made by an autoregressive model rely on the previous two data points). If there
were three high lags, then youd use an autoregression term of 3. Look at month 13: it has a higher value
due to some inconsistency. The gray band shown across the plot is the 95 percent confidence band.

By the time you've got to this point in the chapter, you may be wondering how you'll ever write enough
code to cover all of the techniques you find here, much less study the output of all of the applications
you seemingly need to write. The fact is that no one can write that much code or study that much
output. The next section of the chapter is essential because it helps you put everything into perspective
so that you can create an effective detection and mitigation strategy that you'll actually be able to follow.

Making a prediction

Now that you've looked at the autocorrelation for the data, it’s time to use the data to create a predictive
model. The following steps show how to perform this process using the stat smodel package used
earlier (there are obviously many other ways to perform the same task using other techniques, such
as XGBoost):

1. Import the required dependencies:

from statsmodels.tsa.ar model import AutoReg
from sklearn.metrics import mean squared error

from math import sqgrt

Detecting data anomalies

2. Import the data and split it into training and testing data:

series = pd.read csv('airline-passengers.csv',
header=0, index col=0,
parse dates=True, squeeze=True)
X = series.values
train, test = X[1l:len(X)-7], X[len(X)-7:]
print ("Training Set: ", train)

print ("Testing Set: ", test)

The data is read using a different technique this time because you need to format it in a different
way for analysis. The resulting data appears as simply a list, as shown in Figure 6.15:

Training Set: [118 132 129 121 135 148 148 136 119 164 118 115 126 141 135 125 149 178
179 158 123 114 14@ 145 150 178 163 172 178 199 199 184 152 146 166 171

188 192 181 183 218 23@ 242 289 191 172 194 196 196 236 235 229 243 264

272 237 211 188 281 284 183 235 227 234 264 362 203 259 229 283 220 242

233 267 269 279 315 364 347 312 274 237 278 284 277 317 313 318 374 413

485 355 386 271 386 315 381 356 348 355 422 465 467 484 347 385 336 348

318 362 348 363 435 491 565 484 359 316 337 360 342 486 396 428 472 548

559 463 487 262 485 417 391 419 461 472]
Testing Set: [535 622 686 588 461 398 432]

Figure 6.15 — The data is formatted using a different approach to meet the needs of the model software

3. Create a model based on the training data:

model = AutoReg(train, lags=29)
model fit = model.fit ()

print ('Coefficients: %$s' % model fit.params)

Remember that you've split the 36 lags defined in earlier sections into a training set of 29 lags
and a testing set of 7 lags, so you only have 29 lags to train the model. The example prints the
coefficients for the model, which indicate the direction of the relationship between a predictor
variable and the response variable, as shown in Figure 6.16:

Coefficients: [4.48990915 8&.54377634 ©.31837725 -0.82344532 -0.09328385 0©.22085169
-8.15428365 ©.89373285 -8.09291185 6.320815788 -0.46668114 6.85145669
2.73875956 -9.25128548 -@.33281625 @.242229 -8.15796594 -8.89428813
-8.88286763 ©.@5655165 -@.96648243 -0.14659542 9.29515885 6.24214347
©.89158113 -8.82924769 -8.36689735 -£.018985856 6.12118732 8.8568785]

Figure 6.16 — The coefficients for the predictive model

191

192 Detecting and Analyzing Anomalies

4. Make a prediction and compare that prediction to the test data:

predictions = model fit.predict (start=len(train),
end=len(train)+len(test) -1,
dynamic=False)
for i in range(len(predictions)) :
print ('predicted=%f, expected=%f'
% (predictions[i], test[i]))
rmse = sgrt (mean squared error (test, predictions))
print ('Test RMSE: %.3f' % rmse)

The example computes the root-mean-square error (RMSE) of the difference between the
predicted value and the actual value and then outputs it, as shown in Figure 6.17. In this case,
the RMSE is 18.165 percent, which is a little high but would be better with more data:

predicted=552.536526, expected=535.888888
predicted=632.633224, expected=622.888888
predicted=629.138658, expected=6686.2688888
predicted=527.457734, expected=588.280888
predicted=432.252014, expected=4461.288288
predicted=399.561898, expected=398.288288
predicted=424.5268456, expected=432.2868288
Test RMSE: 18.165

Figure 6.17 - Show the predictions, the expected values, and the RSME

5. Plot the prediction (in red) versus the actual data (in blue):

plt.plot (test)
plt.plot (predictions, color='red')
plt.show ()

Figure 6.18 shows that despite a somewhat high RSME, the prediction follows the test data
pretty well:

Using anomaly detection effectively in ML

500 1

550

500 1

450 1

400 1

Figure 6.18 —- The model’s ability to predict the future closely matches the actual data

Now that you've created a model and tested it, you can use it to predict the future within a certain
degree of accuracy, as defined by the RSME, and also take into account that the prediction will become
less accurate the further you go into the future. The next section will take the next steps and discuss
how you can use anomaly detection in an ML environment in an effective way. It’s not really enough
to simply detect what may appear as anomalies; they need to be identified as true anomalies instead
of novelties or possibly noise.

Using anomaly detection effectively in ML

Everyone has their own opinion of how to work effectively with ML; they can even back up their
opinion with favorable statistics. Making things worse, you can find new techniques appearing on a
daily basis, adding to the already burgeoning pile of strategies that will likely work within a certain
range of probability. The one word that you need to keep in mind is effective. An anomaly detection
strategy is only effective if you can use it regularly, and therein lies the problem for most overworked
security professionals. So, here are some methods you can employ to make whatever ML strategy you
use to detect anomalies effective:

» Ensure you actually use the strategy on a regular basis; daily is best
o Use the simplest approach that will work for your organization and you as an individual
o Look for anomalies that are actually likely to affect your organization

o Keep in mind that most anomalies will end up being novelties that you can hand off to someone
else and keep your focus on hackers

« Rely on pre-built models only when the model is built specifically for your industry by
professionals that understand it

193

194

Detecting and Analyzing Anomalies

Ultimately, this list is about people and not necessarily about software. The software will do what you
tell it to do, computers are faithful in that manner. What you need to do is come up with the correct
questions for the software to answer, which means knowing as much about potential anomalies as
possible and understanding how these anomalies can lead you to hacker activities.

The next section of the chapter considers other mitigation techniques. A major problem with most
approaches to security is that the people involved are looking for a simple fix and security is anything
but simple. There is no amount of automation that will solve every issue, which is why you keep seeing
reports of breaches in the news. These other techniques may seem to be outside the purview of the
security professional and are definitely things you can’t write an application to accomplish, but they’re
still necessary, and, unfortunately, they’re neglected far too often.

Considering other mitigation techniques

The Using anomaly detection versus supervised learning and Using and combining anomaly detection and
signature detection sections of this chapter look at anomaly detection when combined with supervised
learning techniques and signature detection. These two sections broach the topic of finding a way to
create a defense in-depth strategy for your infrastructure. Developing multiple layers of detection is
a strategy that most security experts see as crucial for stemming the tide of hacker attacks, at least to
some extent. However, it’s also important to understand that combining ML anomaly detection with
other software strategies won't completely fix the problem because the issue is one of automation. In
order to have the greatest chance of success, you need humans to help see the patterns in data creation,
usage, and modification that are anomalous in nature. When considering anomaly detection, also
include these human-based observations and mitigation strategies:

o Track behavioral changes. Security personnel should be involved with the people at your
workplace enough that they can see patterns in how people act, and they should be authorized
to question changes in established patterns.

o Review dashboard data frequently for changes in the way that users, customers, trusted third
parties, and the like interact with your system.

« Ensure that security checks actually are run and that references actually are checked. If you
don’t make the required checks, then you have no idea who is accessing the network or what
they’re doing with it.

o Setaside time to actually look for trouble rather than relying on it hitting the people you trust

in the face.

o Askeveryone to look for potential problems. Security personnel will look for a certain class of
problems, but they won'’t see it all. Someone working in accounting may see an anomaly that
the security people may not even understand.

Summary

In 2020, Gartner established a new category of cybersecurity tools called network detection and
response (NDR) (https://www.gartner.com/en/documents/3986225/market-
guide-for-network-detection-and-response). Unfortunately, the report comes at a
cost, so you either need to pay up or find an alternative, such as IronNet (https://www.ironnet.
com/what-is-network-detection-and-response), where the essence of the report is
explained. Essentially, it comes down to a third party monitoring your network (in addition to the
monitoring you provide for yourself) and then acting when the vendor detects a threat. Some of the
focuses of these vendors cover areas where your organization may not have the required personnel, such
as monitoring your IoT devices. These organizations also keep up with the latest threats—something
that your own personnel may not have time to do well.

Summary

The important takeaway of this chapter is about being observant but not being paranoid. An anomaly is
always unexpected, but it’s not always malicious or an indicator of impending doom. Some anomalies
are actually welcome because they’re novelties that signify a trend toward something positive. The
techniques that this chapter contains help you to differentiate between novelties and hacker attacks
so that you don’t waste time chasing data that doesn’t matter in security matters.

A large part of this chapter focused on showing various techniques for discovering anomalies so that
you can mitigate them. Even though the univariate approach may seem weak, it also has the benefit of
being both fast and simple. You should first try the univariate approach before moving on to the more
complex techniques used for multivariate analysis. When it comes to security, speed and simplicity
do matter, and some advice you might find in data science texts for fully discovering your data may
not apply as much when you need an answer now rather than allow that hacker time with your data,
applications, and network.

Predicting anomalies isn’t feasible. However, predicting when the conditions are ripe for an anomaly
to occur can be done with some amount of accuracy. Just how accurate such a prediction will be
depends on your reading of your security environment. However, it’s essential to remember that just
because conditions indicate that an anomaly could happen, doesn’t mean that the event will occur.
What it really means is that there is a need for additional vigilance on your part.

The next chapter moves on to malware, which is code that is designed to do something harmful to
your data, applications, network, or personnel. Malware may not always make itself known. In fact,
from the hacker’s perspective, the longer the malware remains hidden, the better. Of course, there are
exceptions, such as ransomware, when the hacker most definitely wants you to know something terrible
has happened, but there is a fix for a price. Chapter 7 will take more of a global view of malware rather
than focus on one particular aspect, as is done in some books. Yes, monitoring individual machines
for malware is important (and the chapter will provide you with resources to do so), but Chapter 7
has a strong emphasis on web-based applications and users relying on multiple machines to perform
their work today; a global approach is both valuable and necessary.

195

196

Detecting and Analyzing Anomalies

Further reading

The following list will provide you with some additional reading that you may find useful in further
understanding the materials in this chapter.

o A subset of the ImageNet dataset that is easier to use for experimentation: Tiny ImageNet: https://
paperswithcode.com/dataset/tiny-imagenet

o 'This paper provides some interesting ideas on how to create an anomaly detection setup based
on supervised methods: Toward Supervised Anomaly Detection: https://arxiv.org/
ftp/arxiv/papers/1401/1401.6424 .pdf

« 'This article provides additional information on the differences between MAD and STDEV:
Relationship Between MAD and Standard Deviation for a Normally Distributed Random
Variable: https://blog.arkieva.com/relationship-between-mad-standard-
deviation/

o Understand the math behind PCA a little better: A Step-by-Step Explanation of Principal
Component Analysis (PCA): https://builtin.com/data-science/step-step-
explanation-principal-component-analysis

o Learn more about autocorrelation and time series: Autocorrelation in Time Series Data: https://
dzone.com/articles/autocorrelation-in-time-series-data

o Understand the difference between autocorrelation and partial autocorrelation better: What's The
Difference Between Autocorrelation & Partial Autocorrelation For Time Series Analysis?: https://
besmarv.medium.com/interpreting-autocorrelation-partial-
autocorrelation-plots-for-time-series-analysis-23£87b102c64

7

Dealing with Malware

Malware encompasses a vast array of applications that are designed to disrupt, damage, gain illegal
access to, spy on, and do all sorts of other unwanted things to networks, applications, data, and users.
Trying to cover every potential kind of malware in all of its various forms in a single chapter, or even
a single book, is impossible. Even limiting the topic to just the detection and mitigation of malware
using ML techniques is impossible. So, this chapter is more of an overview of malware with some
specific examples and references you can use to find additional details. No, you won’t learn how to
build your very own piece of malware for experimentation and the chapter will try to limit the potential
damage to your system from any example code. A focus of this chapter is the use of safe techniques
for learning the skills you need to tackle malware. With this in mind, the actual sample executable is
benign, but the techniques shown are effective with any executable.

This chapter is all about helping you understand that malware is a serious threat, but that threat has
morphed since systems have taken to the cloud, organizations have started to rely heavily on web
applications, and users have chosen to use multiple systems to perform work. So, the approach used
in this chapter will also be more modern than that found in some perfectly usable detailed articles
and tomes written by others. You will gain an appreciation for just how large the problem of malware
is today and an understanding of what you can do about it for your organization.

A defining characteristic of malware that this chapter studies in some depth is that it’s always an
application, which differentiates it from other kinds of attacks that involve doing things like making
API calls. The malware may be compiled or interpreted, appear as part of a web application or on the
local machine, or attack the network, local system, data store, or other locations, but it’s always an
application. This means that malware has specific features that you can analyze using ML techniques,
and that detection is possible in an automated sort of way (versus trying to figure out how an anomaly
is related to humans or nature, as was the case in the previous chapter). With these issues in mind,
this chapter discusses these topics:

o Defining malware
+ Generating malware detection features

o Classifying malware

198

Dealing with Malware

Technical requirements

You won't work with actual malware in this chapter because doing so requires a special virtual machine
set up to quarantine the host system from any other connection using a sandbox setup. However, you will
see some examples that use code that could interact with malware. This chapter requires that you have
access to either Google Colab or Jupyter Notebook to work with the example code. The Requirements
to use this book section of Chapter 1, Defining Machine Learning Security, provides additional details on
how to set up and configure your programming environment. When testing the code, use a test site, test
data, and test APIs to avoid damaging production setups and to improve the reliability of the testing
process. Testing over a non-production network is highly recommended, and pretty much essential
for this chapter because you don’t want to let any of the malware you experiment with on your own
get out. In fact, you may actually want to use a system that isn’t connected to anything else. Using the
downloadable source is always highly recommended. You can find the downloadable source on the
Packt GitHub site at https://github.com/PacktPublishing/Machine-Learning-
Security-Principles or on my website at http://www.johnmuellerbooks.com/
source-code/.

Defining malware

Besides the requirement that it be an application of some sort, which means compiled or interpreted
executable code, malware takes on a lot of different forms that are consistent with the goals of the
attacker. For example, ransomware (software that encrypts your data and then asks you to pay for
a key to decrypt it) is quite vocal about its presence, while keyloggers (software that records your
keystrokes in an attempt to gain access to sensitive data such as passwords) are quite stealthy. The goal
of the following sections is to help you understand the various kinds of malware from an overview
perspective so that it’s possible later to understand how such software would have characteristics that
you can turn into features for ML analysis.

Applications that aren’t malware, but also behave badly

This chapter doesn’t include discussions about applications that behave badly, but aren’t
necessarily dangerous, just annoying. This includes extremely common software categories
such as adware (an application that is determined to sell you something you don’t want),
riskware (applications that may do something interesting, but also open your system up to
security threats), and pornware (I'll leave this one to your imagination). Obviously, you want
to keep these other categories of software off your business systems as well, but they’re generally
obvious and sometimes even come with their own uninstall programs, so theyre not really the
same thing as malware.

Defining malware

Specifying the malware types

Some parts of the book already include a little information about malware. The Describing the most
common attack techniques section of Chapter 3, Mitigating Inference Risk by Avoiding Adversarial
Machine Learning Attacks, discusses the ML application attack element of these kinds of attack. In
addition, malware types including spyware are discussed in the Determining which features to track
section of Chapter 5, Keeping Your Network Clean. However, the following list is a more comprehensive
view of the categories of malware than found anywhere else in the book because it treats the topic in
a more general sense:

o Worm: Some people consider worms as a subset of viruses, but they act in a different manner.
Worms always replicate themselves, but the goal is to install themselves on other machines that
the host machine has contact with. This leaves just one instance of the worm on the host system.
Specialists often classify worms by where they spread, which includes Instant Messaging (IM),
Peer-to-Peer (P2P), and Internet Relay Chat (IRC).

« Virus: For many, the term virus encapsulates all malware of any kind, but that’s not really what
the term means. Instead, it means a kind of application that replicates and optionally morphs its
signature on a single machine, so that removing one copy doesn’t get rid of the virus software.
In many cases, the term is augmented with a description of the virus target, such as a macro
virus that attacks macros in products such as Microsoft Word.

o Trojan: This term comes from the Trojan horse built at the end of the Trojan War to allow the
Greek army to gain entrance to Troy in Greek mythology (https://www.greekmythology.
com/Myths/The Myths/The Trojan Horse/the trojan horse.html). Its
a perfect metaphor for this kind of malware because it speaks of deception and something
appearing to be one thing, when it’s really quite another. There are so many different kinds of
trojans that each kind has its own special term as described in the list that follows. The main
thing that defines all trojans is that they don't replicate like viruses and worms do. They’re
usually quite stealthy until ready to attack as well.

» Backdoor: A special type of trojan that allows the operator access to the user’s machine, so
this type is especially stealthy. The level of target system access varies, but the hacker generally
looks for administrator-level access. Once the hacker has access, it’s possible to do anything
that an administrator can do: perform Create, Read, Update, and Delete (CRUD) operations
on files, execute applications, change permissions, and so on.

o Downloader: A kind of application with trojan-like behavior that downloads content from a
remote source, sometimes without user permission. A downloader can have positive uses, such
as performing local system updates. However, hackers often use them to download malicious
software onto the user’s machine.

199

200

Dealing with Malware

Dropper: Similar to a downloader, except that the payload is included as part of the trojan
software’s payload. The dropper is normally benign to avoid detection by anti-virus software.
It also usually entices the user to download it by offering something of value, at which point it
delivers its payload to the user’s machine. Droppers often contain multiple pieces of malicious
software as the payload and are never used for benign purposes.

Password Stealing Ware (PSW): The goal of this kind of malware is to steal user account
information, including passwords when possible. However, the trojan does more than just record
keystrokes or perform other types of background monitoring. It also looks for potential sources
of account information, such as the system registry, configuration files, and other places where
account data might appear in plain form. One method to detect this sort of malware is that it
sends the data back to the hacker using email, an FTP site, or other means that is permanently
recorded on the remote system, so firewall monitoring is helpful in this case.

Spyware: A kind of trojan that remains as quiet as possible and installs itself in a location where
antivirus applications are less likely to find it. Adware and other user-oriented applications,
especially software that is obtained illegally, contain spyware. The purpose of spyware is to
send data like passwords to the hacker. Some spyware will also track user behaviors to allow
the hacker to better mimic the user during an attack.

Distributed Denial of Service (DDoS): In this scenario, a trojan drops a payload that infects
a group of machines, each of which performs a Denial of Service (DoS) attack on a particular
target. One of the compromised systems normally coordinates the attack (often the first one
compromised), so that the hacker’s system remains invisible even if the coordinating system
is discovered. Consequently, this attack differs from a DoS attack because multiple machines
are involved and there is a coordinated effort.

Ransomware: The payload for this trojan performs some task on the target system designed
to allow the hacker to extort money or other goods from the victim. In general, ransomware
encrypts most or all of the victin’s hard drive. The software then displays a message to the victim
essentially saying that the hacker wants money to decrypt the drive (although some hackers
play the “cute” card by saying that the system is running illegal or dated software and that the
victim needs to buy a new license). Although many virus detection applications can detect
ransomware, the drive is usually compromised by the time they do so. The only way to protect
your data is to back it up regularly, maintain several backups (in case one is compromised),
and keep the backups in multiple locations in the cloud or off site.

GameThief: As the name indicates, this kind of trojan was originally designed to steal the account
information for online games (and it still does most of the time). The GameThief trojan targets
mobile devices in addition to desktop systems. According to the article Gaming, Banking Trojans
Dominate Mobile Malware Scene (https://threatpost.com/gaming-banking-
trojans-mobile-malware/178571/) the number of mobile exploits is down, but
they’re becoming more sophisticated. The reason to be concerned about this particular trojan
when thinking about your ML application is that most users today want to use their mobile
device in addition to their desktop device. They may also have a laptop and a tablet they want

Defining malware

to use (yes, some users rely on four different devices to access your application whether the
devices are approved for use or not). Any attack vector that affects the user’s games can also
affect your ML application, so it’s essential not to discount this kind of attack simply because
it mostly targets games and mostly targets mobile devices.

Instant Messaging (IM): A type of trojan that steals IM credentials for sites such as Facebook
Messenger, Skype, and Telegram. The hacker then poses as the user to perform social engineering
attacks, which is the real focus of this particular trojan. This form of attack varies from an
IM-Flooder, which is designed to clog IM channels with garbage messages. An IM-Flooder is
more along the lines of an exploit (as described later in the list).

Banker: A type of trojan that steals credentials for online banking systems, e-payment systems,
and most kinds of credit/debit cards. The result is that the hacker makes a lot of expensive
purchases in a hurry once the banking source is confirmed with a small purchase. When
combined with ransomware that makes the account inaccessible to the user, the hacker can
keep spending the user’s money and the user can’t directly do anything about it except hope
that the financial institution is successful in stopping the attack. In addition, this kind of attack
often includes the ability to thwart Multi-Factor Authentication (MFA) so that the hacker
can pose as the user without any problem on multiple systems that the hacker has infected.

Short Message Service (SMS): In this case, the trojan sends messages from the device to premium
rate numbers, so the user gets charged for the calls without actually making them. The hacker
likely gets a kickback from the effort. However, because the message appears to come from the
user, a hacker could use this approach to send any SMS text anywhere for any reason. Because
there is no voice communication involved, it’s quite hard to prove that the user didn’t make
the call. Also, consider the effect on your ML model if it relies on text messages as part of its
data input. You may suddenly find the results of most analysis skewed by a data stream that’s
virtually impossible to track down because it comes from a legitimate (recognized) source.

Clicker: This trojan works by connecting to online resources as if it’s the user by sending
commands to the browser. It can also replace system files that specify standard web addresses
so that user ends up going to an infected site, rather than the intended site. The thing that makes
this particular exploit so dangerous for ML application is that it also works for automation
used for screen scraping in search of data. The trojan would make it possible to obtain tainted
data from a hacker site, rather than the trusted site that the automation intended to use. One
way to keep this sort of exploit under control is to verify automation site lists regularly and to
use the hashing techniques found in the Detecting dataset modification section of Chapter 2,
Mitigating Risk at Training by Validating and Maintaining Datasets.

Proxy: The trojan in this case acts as a proxy server that gives the attacker access to internet
resources on the user’s machine. This means that the attacker could have direct access to your
ML application through the user’s machine if it has a web interface, making illegal access
tough to track down. The biggest issue in this scenario is one of authentication as described
in the Developing a simple authentication example section of Chapter 4, Considering the Threat
Environment. The trojan won't know the user’s password for accessing your application unless

201

202

Dealing with Malware

it also includes a key logger (remember that the idea is to place many hurdles in the hacker’s
way so that it becomes a nuisance to attack your application). Authenticating the user before
every new session will help mitigate the problem. Changing passwords regularly is also helpful.

Notifier: One technique for keeping hackers at bay is to ensure users shut down their system
when not in use. This way, there is a chance that the user will see any suspicious activity that
would normally occur when the user isn't using the system. In addition, because the system isn’t
always on, the hacker will have to spend extra time figuring out when the system is available.
A notifier trojan automatically notifies the hacker when the system becomes available through
an email, special website access, or IM. Because this approach lacks much of the automation
of other attack vectors, it is normally used in a multi-component scenario to let the attackers
know that the other components of an attack are installed.

ArcBomb: This is a particularly dangerous trojan for ML applications because it affects data
archives and does things such as fill the hard drive with useless data so that a server freezes
or its performance slows to a crawl. There are a number of useless data types employed for
this exploit: malformed archive headers, repeating data, and multiple copies of identical files.
Because of the techniques used, a 5 GB data load can appear in an archive as small as 200 KB.
The way to avoid this exploit is to only download and use files from sources you know and
ensure you scan the file for potential problems before attempting to use it.

Rootkit: A kind of application that is used to hide something like an application, an object, data,
or hacker activity from the user. Theoretically, a rootkit is normally harmless by itself, except
for being incredibly hard to remove. It’s the items that the rootkit is designed to hide that are
the problem. Removing a rootkit requires special tools and it’s a painstaking process at the best
of times. Hackers hide code and other resources in all sorts of places including the following:

* Alternate data streams

* Drivers hooking the System Service Descriptor Table (SSDT)
* Drivers hooking the Interrupt Descriptor Table (IDT)

* Files

* Inline hooks

= Master Boot Record (MBR)

* Modules

= Processes

* Registry keys

= Services

= Threads

Defining malware

Exploit: An exploit is a special piece of code or carefully crafted data that takes advantage of a
bug, error, or behavior (intended or not) of an application, operating system, or environment.
Of the places where exploits are used, cloud-based exploits have the greatest potential to affect
your ML application because they can affect every device that the user relies upon to access your
application (as described in 7 Cloud Computing Security Vulnerabilities and What to Do About
Them athttps://towardsdatascience.com/7-cloud-computing-security-
vulnerabilities-and-what-to-do-about-them-e061bbe0faee). Here are
some exploit categories to consider when securing your ML application:

Constructor: An application designed to create new viruses, trojans, and worms so that it’s
possible to morph an attack on the fly and take advantage of system vulnerabilities when
located on the host system. Most constructors currently reside on Windows or macOS systems.
Hackers also use constructors to create new classes of malware based on current research about
system vulnerabilities.

Denial of Service (DoS): Used to hinder the normal operation of a website, server, desktop
system, other devices, or any other resource. The most common way to carry out this attack is
to overload the target in some manner so that it can’t process incoming data. The best way to
overcome this exploit is to look for significant increases in traffic of any sort or the appearance
of invalid data.

Spoofer: The attacker replaces a real address with some other address in an effort to remain
hidden. This exploit sees common use in user-oriented interactions, such as email, but it
could also appear in message traffic to an application. If the application includes a whitelist of
acceptable addresses, the hacker can spoof one of these addresses to obtain illegal access to a
resource and perform tasks such as sending fake data. There are several methods to help you
overcome this exploit that include using MFA and challenges to ensure the user and not some
outsider is sending the data.

Flooder: A kind of DoS that directly affects network channels used for IM, email, SMS, and
other communication. This kind of attack could feed false information to your ML application
using spoofed addresses to bypass any filtering you have in place. The best way to overcome
this particular kind of exploit is to look for unusual patterns in the message traffic.

Hoax: A hoax can take multiple forms, but it always contains some sort of fake information,
usually in the form of a warning. For example, the user receives an email stating that system
software has detected a virus on their system and that they should click a link to get rid of the
problem. Of course, they click the link and now have the virus. The best way to avoid hoaxes is
through vigorous, mandatory, user training. Unfortunately, this is a kind of social engineering
type attack the users find very difficult to resist.

VirTool: This is a hacker management aid that helps direct, modify, and otherwise interact with
any sort of malware that a hacker has placed on your system. The goal is to keep the malware
hidden from antivirus software and the user so that it can keep working in the background to
corrupt the system, steal data, and perform other tasks the hacker may have in mind.

203

204

Dealing with Malware

« HackTool: Provides the means to perform clean-up behind any malware on a system so that
it’s harder to detect and clean the malware up. A HackTool commonly performs tasks such as
adding new users to a system so that the hacker can have a dedicated account, clean system
logs, and analyze network activity.

As you can see, the list is rather long and the definitions seem to cover everything except possibly
what happens when you sneeze or yawn. Making things more difficult is the fact that hackers often
combine vectors when making an attack to increase the likelihood of a successful attack. The idea is
that you might be looking for one sort of malware but not another on your network, local systems,
servers, and hosted cloud applications and servers. In addition, the hacker is hoping that you haven't
been comprehensive or consistent in your coverage. Any chink in your security armor is enough to
give the hacker an advantage of some sort, even if that advantage only leads to another attack.

Watch out for the online model!

You may think that hacks only happen to games or other consumer applications, or that only
users encounter issues with their online viewing habits. However, developers can encounter these
problems as well. For example, the pickle library used to serialize objects in Python (https://
docs.python.org/3/library/pickle.html) can cause you serious woe. Watch
the YouTube video The hidden dangers of loading open-source AI models at https://www.
youtube.com/watch?v=2ethDz9KnLk for a detailed account of how developers can
be taken in just as easily as any other person (I apologize in advance for the commercial you'll
have to sit through, but the video really is worth watching). All of the attack vectors listed in this
section do apply directly to developers, especially those who are new to working with models
and are experimenting heavily to discover what does and doesn’t work. Never experiment on
a production system, and use a virtual platform so that you can just destroy the setup without
personal loss should the configuration become contaminated.
- /

The classification keywords used in the list are important because you often see them used when
describing a particular kind of malware. For example, VirTool :Win32/Oitorn. A attacks certain
Windows systems (https://www.microsoft.com/en-us/wdsi/threats/malware-
encyclopedia-description?Name=VirTool:Win32/0Oitorn.A). The term VirTool
identifies the category of the attack vector. You can use this information to better prepare yourself for
pertinent malware, while ignoring other possibilities that have a lower chance of success with your
particular setup.

Understanding the subtleties of malware

Like any software developer, hackers constantly seek to improve the effectiveness of the malware
available. It’s not just a matter of extorting money, data, or resources from a target. For the hacker,
creating a particularly difficult attack is a matter of pride in their work and of staying out of jail. Much
of the malware discussed in this chapter so far is incredibly subtle. More often than not, the hacker
wants to remain unobserved until the attack is under way. In fact, many attacks require that the hacker

Defining malware

remain permanently unknown and that the attack itself remains under the radar. Unlike the application
software designer, a hacker has a considerable number of good reasons to design applications that are
pretty much invisible or can be made invisible through technologies such as rootkits. Oddly enough,
application developers could learn a few things from hackers about being subtle and making software
perform a task without being seen.

Locating malware of all types involves understanding the subtleties of malware design. Sometimes it’s a
matter of hiding in plain sight, other times it’s a matter of being discrete or simply clever. Consider the
malware that hides bugs in source code used to create applications. This malware lurks on developer
systems and creates application holes that have nothing to do with the coder’ abilities. You can
read about this particular exploit at “Trojan Source’ Hides Invisible Bugs in Source Code (https://
threatpost.com/trojan-source-invisible-bugs-source-code/175891/).Itsin
the hacker’s best interest to keep this particular kind of malware completely hidden from view so that
it can continue to do its job of corrupting applications in a way that the hacker can then exploit once
the application moves into production. Of course, this article points out the need to constantly scan
developer systems and possibly keep their machines free from connectivity outside the organization.

/ N
Understanding the command and control server

One long-established technique for locating malware is to look for applications with a large
amount of compressed data. A special piece of code in the malware application unpacks this data
into the payload that the malware carries. By installing the malware in a special environment
and watching how it performs this unpacking process, it’s possible to determine malware
behaviors that help identify the malware category and point to methods of mitigation. Now,
however, many pieces of malware rely on a remote Command and Control (C2) server to
perform the unpacking. This means that the malware does nothing in the lab when someone
tries to study it. You only get to see it in action as it infects the target device. The C2 strategy is
often compounded by a waterfall effect in the malware where one module unpacks and then
provides the address needed to unpack the next module. Consequently, unpacking one module
doesn’t tell security professionals about the malware as a whole. This is also the reason that
older techniques for detecting and mitigating malware may not work when performing your
own research.
L J

An essential element in working through the subtleties of malware is not only deciding precisely why
a hacker is making the attack, but also determining a creative way to perform the task. The rather
long list in the Specifying the malware types section doesn’t begin to cover all of the approaches that
hackers use. You also have to consider that hackers usually combine attacks to improve their chances
of success so that each attack begins to take on a unique appearance. This is the reason why you
want to locate software that will help you in your detection task using unbiased statistical sources
whenever possible. Avoiding sites that are also trying to sell you the software is usually a good idea
because they’re hardly unbiased. Look for articles such as The Best Antivirus of 2022: A data-driven
comparison (https://www.comparitech.com/antivirus/) that provide a numeric basis

205

206

Dealing with Malware

after running tests to defend their decisions. Note that this site provides you with its testing criteria so
you know how the comparison is made after testing is performed (it’s not simply an opinion). When
looking for anti-malware tools, these features will help keep malware at bay:

« Boot activation: The software starts before the operating system does so that it’s possible to
monitor the environment for applications such as rootkits.

o Behavior analysis: Looking for certain application behaviors can clue you in to a potential
piece of malware, even when other monitoring aids fall short.

« Signature analysis: Using ML techniques allows for learning the malware’s signature, even
when the developer attempts to hide it from view. This approach also helps locate malware
that doesn’t use traditional techniques such as particular file extensions.

o Content filtering: Anything that looks like it could be a problem, such as those ads that make
it sound like you can get rich quick, are also likely sources of malware, so getting rid of them
helps everyone.

« Suspicious link tagging: If a user is in a hurry, a link with a small misspelling error is likely to
go unnoticed, so it’s important to locate any link that doesn’t quite match expectations.

o Offsite backups: Making continuous offsite backups can be helpful, but only if the backups
are kept separate so that the backup doesn’t become contaminated with the very malware it’s
supposed to avoid. Having malware software checking the backup stream as you make the
backup adds additional insurance against infection.

« Sandboxing: Using sandboxing techniques for all efforts with any new code helps keep malware
at bay. This includes the use of new libraries or other developer tools.

« Stronger firewalls: The operating systems used by various user devices likely come with some
level of firewall protection, which may not be enough. In days gone by, castles didn’t rely on
just one wall. They had walls within walls so that an enemy would have to breach each wall in
turn to gain entrance. Likewise, malware detection and prevention tools you use should provide
multiple layers of protection in addition to the protection offered by the operating system.

These features are more or less mandatory even if you create your own custom solution for locating
and destroying malware. Using tools created by experts to assist in locating malware saves you time
and ultimately money. The tools you build should focus on the issues that malware software doesn't
cover; issues that are unique to your business.

Defining malware

N
Feature comparison versus tested results

Articles or other resources that provide feature comparisons are doing just that, comparing
features, which is helpful if done in an unbiased manner because it’s all too easy for a site to
cherry-pick features that give one piece of software an advantage over another. One such feature
site (even though you need to consider whether the resource is properly vetted) is on Wikipedia
athttps://en.wikipedia.org/wiki/Comparison of antivirus software.
It’s important to realize that you are getting a list of features on Wikipedia, but that no one
has tested those features to see how well they work or whether they work at all. A feature site
normally lists the features of many kinds of software, so it makes a good starting point for your
selection process. However, once you have a list of candidates, then you need to find a testing
site to tell you how well those features work to achieve your particular goals.

Determining malware goals

This chapter demonstrates that malware doesn’t always have the goal of damaging a system or extorting
money from a user. Malware sometimes hides from view and records keystrokes or uses the system as
a zombie when it detects the user isn't there to stop it. Malware need not affect the current user at all.
If you're a developer, the malware may hide in the background and add known bugs to the software
you're developing so that the hacker knows how to attack your application once it’s in production.
Consequently, part of the thought process of tackling malware is to determine what a hacker might
want from you or your organization and it always benefits you to think outside the box.

Of course, you also don’t want to waste lots of time figuring out goals that have no chance of success
or little interest to the hacker. With this in mind, think about these factors as part of the determination
of malware goals:

 Organizational assets

e Devices in use

o User habits

« Resources of all types (physical, digital, data, and so on)

« Interactions with others

« Sources of potential grudges or other reasons for revenge
If you can think of a particular goal that a hacker might have in mind for attacking your organization
as a whole or individuals in particular, it's possible start narrowing your search for malware and also
narrow the types of malware that a hacker is most likely to use. Most people associate malware with
executable files, but malware comes as part of scripts and finds its way in all sorts of other places.
Malware in images presents a particular problem because most people don’t see images as harmful,
yet images are often used to install a dropper on the user’s system while the user is looking at the

image. More importantly, images appear on websites that are accessible to any device that users in
your organization might use.

207

208

Dealing with Malware

As with any ML application, you need to determine which features to use to train a model that you
can use to detect malware. Security professionals have a lot of different views on the matter. They
ask a lot of questions that involve the kinds of malware, where the malware will operate, and the
environment in which the malware will attack. The next section of the chapter delves into selecting
malware features for analysis, which can be very helpful in choosing various malware detection
solutions and building models.

Generating malware detection features

In ML, features are the data that you use to create a model. You analyze features to look for patterns
of various sorts. The Checking data validity section of Chapter 6, Detecting and Analyzing Anomalies,
shows you one kind of analysis. However, in the case of the Chapter 6 example and all of the other
examples in the book so far, you were viewing data that humans can easily understand. This section
talks about a new kind of data hidden in the confines of malware. Consequently, you're moving from
the realm of human-recognizable data to that of machine-recognizable data. The interesting thing is
that your ML model won't care about what kind of data you use to build a model, the only need is for
enough data of the right kind to build a statistically sound model to use to locate malware.

Working with a first step example

To actually work with malware, you need a system that has appropriate safety measures in place,
such as a virtual machine (https://www.howtogeek.com/196060/beginner-
geek-how-to-create-and-use-virtual-machines/)and a sandbox configuration
(https://blog.hubspot.com/website/sandbox-environment). In fact, it's
just a generally good idea to separate the test machine from any other machine, including
the Internet. Many discussions of malware throw you into the deep end of the pool without
helping you build any skills. This means that it's likely that you'll destroy your machine and
every machine around you. The approach taken in this book is to provide you with that first
step so that you can move on to books that do demonstrate examples using real malware, such
as Malware Data Science, by Joshua Saxe with Hillary Sanders, No Starch Press (the next step
up that I would personally recommend).

Getting the required disassembler

The act of dissecting an executable file of any kind is called disassembly. You turn the machine code
or byte code contained in the executable file back into something a human can at least interpret.
Disassembly is never completely accurate in returning code to the same form as the developer of the
executable created. What you get instead is something that’s close enough that you can determine
how the executable works, but nothing else.

Generating malware detection features

The goal of disassembly isn’t to completely replicate the original source code anyway. You disassemble
an executable to find data you can use to create an ML model. Executable files contain all sorts of
statistical information, such as the number of compressed or encrypted data sections. You can find
strings of all sorts in any executable that can provide you with clues as to how the executable works.
Sometimes the executable contains images that you can pull out and view to see what sort of presentation
the executable will provide. In short, the executable contains a lot of hidden information that you
must then pull together into a set of features that help you recognize malware.

The example in this section uses the Portable Executable File (PEFile) disassembler (https://
pypi.org/project/pefile/ and https://github.com/erocarrera/pefile)
to break down the Windows PEFile format. The following steps show how to obtain this package
if necessary and install it on your system. You can also find this code in the MLSec; 07; View
Portable Executable File.ipynb file of the downloadable source. Let’s begin:

1. Set a search variable, found, to False:

found = False

2. Obtain a list of installed packages on the system and search it for the required PEFile package:

packages = !pip list
for package in packages:
if "pefile" in package:
found = True

break

3. If the package is missing, then install it. Otherwise, print a message saying that the package
was found:

if not found:
print ("Package is missing, installing...")
lpip install pefile

else:

print ("PEFile package found.")

When you run this code, you will either see a message stating PEFile package found or the
code will install the PEFile package for you. When the installation process finishes, you see output
similar to that shown in Figure 7.1.

209

210

Dealing with Malware

Package is missing, installing...
Collecting pefile
Downloading pefile-2822.5.38.tar.gz (72 kB)
—— 72.9/72.9 kB 3.9 MB/s etz ©:80:88
Preparing metadata (setup.py): started
Preparing metadata (setup.py): finished with status 'done’
Requirement already satisfied: future in c:hwsershjohnianaconda3ilib\site-packa
ges (from pefile) (8.18.2)
Building wheels for collected packages: pefile
Building wheel for pefile (setup.py): started
Building wheel for pefile (setup.py): finished with status 'done’
Created wheel for pefile: filename=pefile-2822.5.38-py3-nons-any.whl size=6%3
62 sha256=39308d47d59917a48cad471ae824%:837eB75:1816987804a23c19614841dc71
Stored in directory: c:\users‘john‘\appdata‘localipipicachewheelshc7\cal2chb2
bc336@8e7509548001344686ea58a3087d8F 32786880907 b7+d
Successfully built pefile
Installing collected packages: pefile
Successfully installed pefile-2822.5.38

Figure 7.1 - The installation process shows which version of PEFile you have installed

Now that you have a disassembler to use, you can actually begin working with an executable file. The
executable file used for this example isn't harmful in any way, so you don’t have to worry about it.

Collecting data about any application

The example in this section shows you how to dissect a Windows PEfile. You can use this technique
on any PE file, including malware, but working with files that you know are benign is a good starting
point if you don’t want to mistakenly infect your system and all of the systems around you. The code
for this example appears in the ML.Sec; 07; View Portable Executable File.ipynb
file of the downloadable source. Use these steps to dissect your first file. The example uses Notepad.
exe because you can find it on every Windows system.

Checking for the PE file

Before you can disassemble a PE file, you need to know that it actually exists. The following steps show
how to check for a file on a system even if you don't precisely know where the file is:

1. Import the required methods:

from os.path import exists, expandvars

Generating malware detection features

2. Create an expanded path variable and then display the path on screen so you know where to
look later:

path = "Swindir/notepad.exe"
exppath = expandvars (path)
print (exppath)

3. Ensure that the file does actually appear on the system:

if exists (exppath) :
print ("Notepad.exe is available for use.")
else:

print ("Use another Windows PE file.")

This simple check works on any system. Note the use of the windir Windows environment variable
that specifies the location of the Windows directory on a host system (it’s created by default during
installation). If you wanted to expand this variable at the command prompt, youd use $windir$,
but in Python you use Swindir. Note that Windows comes with a host of environment variables
that you can display at the command prompt by typing set and pressing Enter.

Loading the Windows PE file

At this point, you have a special package installed on your system that will disassemble Windows PE
files and you know whether you can use Notepad . exe as a target for your disassembly. It’s time to
load the Windows PE file for examination using the following steps:

1. Load the required functionality:
import pefile
2. Load the PE file:
exe file = pefile.PE (exppath)

Now you have Notepad . exe loaded into memory where you can now examine it in some detail.
The exe file variable won't tell you much if you just print it out. You need to become a detective
and look for specific features.

Looking at the executable file sections

Despite the fact that executable files are really just long lists of numbers that only your computer
processor can really understand, they’re actually highly organized (or else the processor would run
amok and no one wants that). One of the ways in which to organize executable files is in sections.
There are specialized sections in an executable file for every need. The following steps detail how you
can look at the sections in an executable file:

211

212 Dealing with Malware

1. Display a list of all of the section information:

for section in exe file.sections:

print (section)

2. Choose specific section information to focus on during your detective work:

for section in exe file.sections:

print (section.Name)

The first step is to look at what the executable has to offer in the way of information. When you
perform this step, you see something like the output shown in Figure 7.2 for each section within the
file. That’s a lot of really hard-to-understand information, but that's how your executable is organized.

[IMAGE_SECTION_HEADER]

8208 axe MName : Ltext
8x218 ax8 Misc: @x247FF
8x218 @x8 Misc_Physicaladdress: @x247FF
8x218 @x8 Misc_VirtualSize: @x247FF
Bx214 exC VirtualAddress: exliees
B8x218 8x18 SizeOfRawData: @x24388
Bx21C 8x14 PointerToRawData: axdea
Bx228 8x18 PointerToRelocations: ax8
Bx224 8x1C PointerTolinenumbers: ax8
Bx228 8x28 NumberOfRelocations: axe
Bx224 8x22 NumberOfLinenumbers: axe
Bx22C %24 Characteristics: ex6ea8pe28

Figure 7.2 - Each section output contains a wealth of information that is useful for statistical analysis

The second step refines the output by just looking at the Name value of each section. Note that the
entries are case sensitive, so name (it does exist) is not the same thing as Name. In this case, you see
the output shown in Figure 7.3.

Ctexth\xee\xee\xoa’
.rdata\xee\xee’
.data\x8e\xe8\x8a"
.pdata\xee\xee’
.didat\xee\xee’
.rsrch 88\ xee\xoe’
.reloch\xee\xee’

oo oo o oo

Figure 7.3 — The section names help you see the organization of the file

Generating malware detection features

Well, those names are singularly uninformative. What precisely is a . text section? The Special
Sections section of the PE Format documentation at https://docs.microsoft.com/en-us/
windows/win32/debug/pe-format tells you what all of these names mean. However, here is
the meaning for all of the sections found in Notepad. exe:

o .text: Executable code

o .rdata: Read-only initialized data
« .data: Read/write initialized data
o .pdata: Exception information

o .didat: Delayed import table (not found in the table but does appear in the PE
Format documentation)

o .rsrc: Resource directory

« .reloc:Image relocations

In most cases, you won't use all of the sections unless you're involved in detailed research that is well
beyond the scope of this book. For example, you really don’t care where the image gets relocated at
this point, so the . reloc section isn’t very helpful. On the other hand, looking at the . rdata and
.data sections can be quite illuminating.

Examining the imported libraries

Executable files contain directories of items needed to execute. These directories list specific Dynamic
Link Libraries (DLLs) that the executable accesses and the specific methods within those DLLs that
it calls. When you review enough executable files, you begin to develop a feel for which calls are
common and which aren’t. You also start to be able to tell when a particular DLL could be downright
dangerous to access. For example, you might ask yourself whether the executable really needs to fiddle
around in the registry. If not, importing registry methods may be a pointer to malware. The PEFile
package makes a number of directories accessible and the following code shows you how to identify
them and then access the list of imported libraries:

1. Display the list of accessible directories. Note that you remove the IMAGE__ part of the entry
to use it in code:

pefile.directory entry types

2. Obtain a list of imported DLLs to use for continued analysis:

entries = []

for entry in exe file.DIRECTORY ENTRY IMPORT:
print (entry.dll)
entries.append (entry)

213

214 Dealing with Malware

3. Examine the calls within a target DLL that are used by the executable application:

print (entries[0] .d11)
for function in entries[0].imports:

print (£"\t{function.name}")

The list of accessible directory entries for PEFile appear in Figure 7.4. As you can see, the list is rather
extensive, but as someone who is just looking for potential malware markers, some of the entries stand
out, such as IMAGE DIRECTORY ENTRY IMPORT:

[('IMAGE_DIRECTORY_ENTRY_EXPORT', @),

"IMAGE_DIRECTORY_ENTRY_IMPORT', 1),

' IMAGE_DIRECTORY_ENTRY_RESOURCE', 2),

" IMAGE_DIRECTORY_ENTRY_EXCEPTION', 3),
"IMAGE_DIRECTORY_ENTRY_SECURITY', 4),
"IMAGE_DIRECTORY_ENTRY_BASERELOC', 5),
'IMAGE_DIRECTORY_ENTRY_DEBUG', 6),
"IMAGE_DIRECTORY_ENTRY_COPYRIGHT', 7),
"IMAGE_DIRECTORY_ENTRY_GLOBALPTR', &),
"IMAGE_DIRECTORY_ENTRY_TLS', 9),
'IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG', 18),
'IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT', 11),
"IMAGE_DIRECTORY_ENTRY_IAT', 12),
'IMAGE_DIRECTORY_ENTRY_DELAY_IMPORT', 13),
"IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR', 14),
"TMAGE_DIRECTORY_ENTRY_RESERVED", 15)]

N

Figure 7.4 — PEFile provides access to a number of PE file directories

In fact, the IMAGE_DIRECTORY ENTRY IMPORT entry is the focus of the next step, which is to list
the DLLs that are used by Notepad . exe as shown in Figure 7.5. Some of the DLL names are pretty
interesting. For example, you might wonder what api-ms-win-shcore-obsolete-11-1-0.
d11 is used for (see the details at https://www.exefiles.com/en/dll/api-ms-win-
shcore-obsolete-11-1-0-d11/). Oddly enough, you may find yourself needing to fix this
file, so it’s helpful to know it’s in use.

Generating malware detection features 215

b'KERNEL32.d11"

b'GDI32.d11°

b'USER32.d11"
b'api-ms-win-crt-string-11-1-8.d11°"
b'api-ms-win-crt-runtime-11-1-8.d11"
b'api-ms-win-crt-private-11-1-8.d11°
b'api-ms-win-core-com-11-1-8.d11"
b'api-ms-win-core-shlwapi-legacy-11-1-@.d11"
b'api-ms-win-shcore-obsolete-11-1-8.d11"
b'api-ms-win-shcore-path-11-1-8.d11"
b'api-ms-win-shcore-scaling-11-1-1.4d11"
b'api-ms-win-core-rtlsupport-11-1-8.d11°’
b'api-ms-win-core-errorhandling-11-1-8.d11"
b'api-ms-win-core-processthreads-11-1-8.d11°
b'api-ms-win-core-processthreads-11-1-1.d11°
b'api-ms-win-core-profile-11-1-8.d11°
b'api-ms-win-core-sysinfo-11-1-8.d11°
b'api-ms-win-core-interlocked-11-1-@.d11’
b'api-ms-win-core-libraryloader-11-2-8.d11"
b'api-ms-win-core-winrt-string-11-1-@.d11"
b'api-ms-win-core-synch-11-1-8.d11"
b'api-ms-win-core-winrt-error-11-1-8.d11°
b'api-ms-win-core-string-11-1-8.d11"
b'api-ms-win-core-winrt-11-1-8.d11"
b'api-ms-win-core-winrt-error-11-1-1.d11
b'api-ms-win-eventing-provider-11-1-8.411°
b'api-ms-win-core-synch-11-2-8.d11"
b'COMCTL32.d11"

Figure 7.5 — The list of imported DLLs can prove interesting even for benign executables

The example examines a far more common DLL however, KERNEL32 .d11, in the third step. The
output shown in Figure 7.6 tells you that this DLL sees a lot of use in Notepad . exe (the list shown
in Figure 7.6 isn’t complete, it’s been made shorter to fit in the book).

b'KERNEL32.d11"
b'GetProcAddress’
b’ CreateMutexExil’
b’ AcquireSRWLockShared’
b'DeleteCriticalSection’
b’ GetCurrentProcessId’
b’ GetProcessHeap'
b’ GetModuleHandlel"®
b’ DebugBreak’
b’ IsDebuggerPresent’
b'GlobalFree’
b’ GetLocaleInfoll’
b'CreateFilal’
b'ReadFile’
b*MulDiv®
b'GetCurrentProcess’
b’ GetCommandLinel’
b'HeapSetInformation’
b’ FreeLibrary’
b'LocalFree’
b’ LocalAllec’
b'FindFirstFilew’
b’ FindClose"’

Figure 7.6 - Looking at specific method calls can tell you want the executable is doing

216

Dealing with Malware

The list of calls from KERNEL32 .d11 is extensive and well documented (https://www.
geoffchappell.com/studies/windows/win32/kernel32/api/index.htm). You
can drill down as needed to determine what each function call does. By breaking the various imports
down, you start to understand what the executable is doing. You've discovered all of the various
sections contained within the executable and what it imports from other sources. Just these two bits
of information are enough to start getting a feel for how the executable works and what it’s doing on
your system.

Extracting strings from an executable

It’s only possible to garner so much information by looking at what an executable is doing. You can
also look at the strings contained in an executable. In this case, you need to use something like the
Strings utility for Windows (https://docs.microsoft.com/en-us/sysinternals/
downloads/strings) or the same command on Linux (https://www.howtogeek.
com/427805/how-to-use-the-strings-command-on-linux/). The Windows version
requires that you download and install the product. Oddly enough, both versions use the same command
line switch, -n, which is needed for the example in this section. To extract the strings, you need to
add a command to your code, something like ! strings -n 10 %windir%\Notepad.exe.
This is the Windows version of the command; the Linux command would be similar. Figure 7.7 shows
the output for Notepad . exe if you limit the string size to ten characters or more.

UATAUAVAWH

ADVAPI32.d11

Unknown exception

bad allocation

bad array new length
COMDLG32.d11

PROPSYS.d11

SHELL32.d11

WINSPOOL.DRV

urlmon.dll

%hs (%u)\Ehs ! %p:

(caller: %p)

%hs(%d) tid(%x) %88X Zus
Msg: [%us]
CallContext:[%hs]

[%hs (%hs)]
kernelbase.dll
RaiseFailFastException
onecoreiinternalisdki\inc\wilt\opensource\wiliresource.h

Figure 7.7 — Reviewing the strings in an executable can reveal some useful facts

Generating malware detection features

This output is typical of any executable, so if you were looking for specific information, then youd
need to start manipulating the list to locate it using Python features. As you can see, there are error
messages, references to DLLs, format strings, and all sorts of other useful information. However, a
specific example is helpful. Perhaps you're interested in the format strings contained in a file, so you
might use code like this:

exe strings = !strings -n 10 %windir%\Notepad.exe
for exe string in exe strings:
if "$" in exe string:

print (exe string)

The output in Figure 7.8 shows that you still don’t get only format strings, but it’s a lot shorter and you
have a better chance of finding what you need.

%hs{%u)\khs ! Xp:

(caller: ¥%p)

#hs{%d) tid(%x) %B8X %ws

Msg: [ws]

CallContext:[%hs]

[%hs (%hs)]

Local\sma:%d %d: %hs

Fsdhc® L twtBoksMc* . "R

#%s\%s.autosave

#BB1X-HBAX-HB4x-HOZXHBZN -HA2 X 2N KO 2XH0 2K 02 KB 2X

Figure 7.8 — Using Python features it’s possible to make the list of string candidates shorter

In this case, you can see that some format strings are standalone, while others are part of messages.
The point is that you now have a basis for performing additional work with the executable, without
actually loading it. Obviously, loading malware to see it run is something best done in a lab.

Extracting images from an executable

How you look for images in an executable depends on the image type and the platform that you're
using. For example, two of the most popular tools for performing this task in Linux are wrestool
(https://linux.die.net/man/1l/wrestool)and icotool (https://linux.die.
net/man/1/icotool). Windows users have an entirely different list of favorites (https://
www.alphr.com/extract-save-icon-exe-file/), some of which come with the
Windows Software Development Kit (SDK). Some tools are quite specialized and only look for a
particular image type. To give you some idea of what is involved, the following steps locate icons used
with Notebook . exe:

1. Download a copy of IconsExtract from https://www.nirsoft.net/utils/
iconsext .html. The product doesn’t require any installation; all you need to do is unzip
the file and double-click the executable to start it.

217

218

Dealing with Malware

Open IconsExtract and you see a Search For Icons dialog box like the one shown in
Figure 7.9. This is where you enter the name of the file you want to check. However, you’ll
quickly find that Notepad . exe doesn’t contain any icons. Instead, you need to look through

the list of DLLs that Notebook . exe loads to find the icons.

(®) Scan icons in files

Type the full path of the filename that contains the icons you want to extract. You can use wildcard
characters [* 7] in order to search for icons in multiple flenames.

| C:vwiindowshSystem32huzer32.dll ~ |
[J5earch Subfolders [Browse Folders... ‘ [Brawse Files... ‘
(O Scanicons in the selected process: apcaystray.exe [15856) A

EXCEL.EXE [3464)
iconsext.exe [16448]
jusched.exe [16328)
Monitor.exe [411E]

REATA Y dfmb Umlmme maim (0040 e
Resource Types More Options
cong nclude only icons with specific image size: "
I O Include onl th specifi 32 32
Cursors
[Include only icons with specific color depth: | 256 ~
| Search For lcons | [Cancel ‘

Figure 7.9 - Specify where to look for the images you want to see

Locate the user32.d11 file on your system. This is one of the files you see listed in Figure 7.5.

Click Search For Icons. You see the output shown in Figure 7.10.

File Edit View Help

Y-

E O A @ 2 & o

user3Zdll(.. user32.dll(... wuser32.dl(.. wuser32.dll{.. user32.dll{.. wser32.dll(.. user32.dll{.. wuser32.dll{... user32Z.dll(..

t E - !; N — i & M

user32.dll{... user32.dll(... wser32.dlI{.. user32.dll{.. user32.dll{.. wser32.dll{.. user32.dll{.. user32.dll{.. user32.dll(...

O N o B by O 3

user32.dllf... user32.dll(... wser32.dlI{.. user32.dll{.. user32.dll{.. wser32.dll{.. user32.dll{.. user32dll{... user32.dll(...

. o -~ . . . r. N .
“» o - | » N

user32Z.dll(... user32.dll(... wuser32.dll(.. wuser32Z.dIl{... user32.dll{.. wser32.dll{.. wuser32.dll{.. wuser32.dll{.. user3Z.dIl(...

d <+ [vy
user32dllf... user32.dil(.. wser32.dlI{.. user32.dl.. user32.dIl(.

47 itemn(s), 1 Selected

Figure 7.10 — The display shows icons that Notepad.exe may import from user32.dll

Generating malware detection features

When working with malware, you generally want to find images that indicate some type of fake
presentation. Perhaps you see a ransom message or other indicator that the executable is malware
and not benign. The point is that this is just one of many ways to make the required determination.
You shouldn’t rely on graphics alone as the only method to perform your search.

Generating a list of application features

In order to create a model to detect malware that may be trying to sneak onto your system or may
already appear on your system, you need to define which features to look for. A problem with many
models is that the developers haven't really thought through which features are important. For example,
looking for applications that use the ReadFile () function of Kernel32.d11 really won’t do
anything for your detection possibilities. In fact, it will muddy the waters. What you need to do is
figure out which features are likely to distinguish the malware target and then build a model around
those features. The examples in this chapter should bring up some useful ideas:

o Making unusual or less used method calls, such as interacting with the registry or writing to
configuration files

» Executables that contain a great deal of compressed or encrypted data

o Executables or scripts that call on libraries, packages, DLLs, or other external code sources that
you don't recognize and can’t find documented somewhere online

« Any file, including things such as sound files and images, that contain strings or other
unexpected data

o Strings that contain spelling errors

« Any suspected use of steganography (the hiding of data or code in a container, such as an
image, that looks normal otherwise) in any file, especially images

 Anything out of the ordinary for your particular organization (such as finding patient information
out in the open for a hospital)

The list of application features that you choose to use has to reflect the particulars of your organization,
rather than the generalized list that you might find on a security website because the hacker is most
likely attacking you or your organization as opposed to a generalized attack. When you do want to
use the list of generalized features, then creating custom software is likely not the best option - you
should go with off-the-shelf software designed by a reputable security company that has already taken
these generalized features into account.

Selecting the most important features

There are a considerable number of ways to determine which features are most important in any dataset.
The method you use depends as much on personal preference as the dataset content. It’s possible to
categorize feature selection techniques in four essential ways:

219

220

Dealing with Malware

Filter methods: This approach uses univariate statistics to filter the feature set to locate the
most important features based on some criterion. The advantage of this approach is that it’s less
computationally intensive, which is important when working with a system that may not include
a high-end Graphics Processing Unit (GPU) to speed the computations. These methods also
work well with data that has high dimensionality, which is what security data often has because
you need to monitor so many different inputs to find a hacker. Because these approaches are
so well suited to security needs, they’re used for the examples in this section.

Wrapper methods: This approach performs a search of the entire feature set looking for high-
quality subsets. This is an ML approach that relies on a classifier to make feature selection
determinations. The method relies on greedy algorithms to accomplish the task of determining
which set of features best matches the evaluation criterion. The advantage of this approach is
that the output provides better predictive accuracy than using filter methods. However, it’s also
a time-consuming approach that requires a lot of resources and a system that has a GPU if you
want to get the results in a timely manner. This is probably the worst approach to use for any
sort of security situation that requires real-time analysis. You would get fewer false positives,
but not in a timeframe that meets security needs.

Embedded methods: This is a combination of the filter and wrapper methods. It is less
computationally intensive, but the iterative approach can make using it for most security needs
less than helpful. This is the method you might use to analyze security logs after the fact, not
in real time, to ascertain how a hacker gained entrance to your system with a higher degree of
precision than would be allowed by filter methods. The algorithms that appear to work best for
security needs are LASSO Regularization (L1) and Random Forest Importance.

Hybrid methods: This is an approach that uses the result of multiple algorithms to mine data.
Generally, it isn’t used for security needs because the landscape changes too fast to make it
effective. This is the sort of approach that a medical facility might use to mine a dataset for new
knowledge needed to treat a disease. These methods rely heavily on instance learning and have
the goal of providing consistency in feature selection. However, it could be useful if applied to
historical security data in looking for particular trends.

Feature selection is an essential part of working with data of any sort. Otherwise, the problem of
creating a model would become resource expensive, time consuming, and not necessarily accurate.
When thinking about feature selection, consider these goals:

Making the dataset small enough to interact with in a reasonable timeframe
Reducing the computational resources needed to create and use a model

Improving the understandability of the underlying data

Generating malware detection features

The examples in this section are both filtering methods because you use filtering methods most often
for security data. To make the data more understandable, the examples rely on the same California
Housing dataset used for the examples in Chapter 6. The important thing to remember with this example
is that you're looking for features to use and the example shows you how to do this in an understandable
manner. Feature selection is critical whether you're building a malware detection model or looking
for data in the California Housing dataset, using the California Housing dataset is simply easier to
understand.Of course, you use the dataset in a different way in this chapter. You can the example code
in the MLL.Sec; 07; Feature Selection.ipynb file of the downloadable source.

Obtaining the required data

Both feature selection examples rely on the same dataset, so you only have to obtain and manipulate
the data once. The following steps show how to perform the required setup:

1. Import the required packages and methods. The imports include the California Housing dataset,
one of the analysis methods, plotting packages, and pandas (https://pandas.pydata.
org/) for use in massaging the data:

from sklearn.datasets import fetch california_ housing
from sklearn.feature selection import mutual info classif
import matplotlib as plt

import seaborn as sns

import pandas as pd

$matplotlib inline

2. Fetch the data and configure it for use:

california = fetch california housing(as frame = True)
X = california.data
X = pd.DataFrame (X, columns=california.feature names)

print (X)

The result of fetching the data and massaging it is a DataFrame that will act as input for both of the
filtering methods. Figure 7.11 shows the DataFrame used in this case.

221

222 Dealing with Malware

MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude

e 8.3252 41.8 6.984127 1.823818 322.4 2.555556 37.88

1 g8.3e14 21.6 6.238137 6.971888 2481.8 2.109342 37.86

2 7.2574 52.86 8.288136 1.873446 496.8 2.80226@ 37.85

3 5.6431 52.6 5.817352 1.873859 C5&.@ 2.547945 37.85

4 3.8462 52.8 6.281853 1.6881881 565.6@ 2.181467 37.85

20635 1.5683 25.8 5.B4545% 1.133332 845.8 2.560606 39.48

208636 2.5568 12.6 6.11483%5 1.315789 356.8 3.122867 39.49

20637 1.768@ 17.@ 5.285543 1.120@92 1@87.8 2.325635 39.43

20638 1.8672 18.6 5.329513 1.171928 741.8 2.123289 39.43

20639 2.3886 16.@ 5.254717 1.162264 1387.8 2.616981 39.37
Longitude

e -122.23

1 -122.22

2 -122.24

3 -122.25

4 -122.25

20635 -121.89

20636 -121.21

20637 -121.22

20638 -121.32

20639 -121.24

[28648 rows x 8 columns]

Figure 7.11 - It's necessary to massage the data before filtering the features

Now that you've obtained the required data and massaged it for use in feature selection, it’s time to
look at two approaches for filtering the data. The first is the Information Gain technique, which
relies on the information gain of each variable in the context of a target variable. The second is the
Correlation Coefficient method, which is the measurement of the relationship between two variables
(as one changes, so does the other).

Using the Information Gain technique

As mentioned earlier, the Information Gain technique uses a target variable as a source of evaluation
for each of the variables in a dataset. You chose a feature set based on the target you want to use for
analysis. In a security setting, you might choose your target based on known labels, such as whether
the input is malicious or benign. Another approach might be to view API calls as common or rare.
The target variable must be categorical in nature, however, or you will receive an error message saying
that the data is continuous (which really doesn't tell you what you need to know to fix it).

The California Housing dataset doesn't actually include a categorical feature, which makes it a good
choice for this example because security data often lacks a categorical feature as well. The following
steps show how to create the required categorical feature using the MedInc column. This is a good
example to play with by changing the category conditions or even selecting a different column, such
as AveRooms or HouseAge:

1. Create a categorical variable to use for the analysis:

y = [1 if entry > 7 else 0 for entry in X['MedInc']]
print (y)

223

Generating malware detection features

Perform the required analysis and display the result on screen:

2.

mutual info classif (X, y)

importances

pd.Series (importances,

features

imp

california.feature names)

'barh')

imp features.plot (kind

The example uses a list comprehension approach to creating the categorical variable, which is very

efficient and easy to understand. The result creating the categorical variable is a y variable containing

a list of Os and 1s as shown in Figure 7.12. A value of 1 indicates that MedInc is above $70,000 and a
value of 0 indicates that the MedInc value is equal to or less than $70,000. The point is to categorize

the data according to some criterion.

e, e, 0,9, @, 8, @, e, @, @, , ¢, @, 8, @, @, @, @,

2,

e, e, e, e, e, @, @,

a8, e, 8, @, e,

8, a8,

8,

8, 0, e e,,%e,aea,aea,
6, 86, @8, @, @, e, @, @,
6, 86, @8, @, @, e, @, @,
6, 8, @, @, @, @, a, @,
6, o, @, @, @, @, @, @,
6, o, @, @, @, e, @, @,
6, o, @, @, @, e, @, @,
e, e, @, @, @, e, a, @,

e, a,
a,

9,

e, e, e, 8, 8, @, @,

e, 8, @, &, a,

e, e,

a,

8, @,

9,

8, 8, 8,8, 90,8, 8,

e, 8, @, &, a,

8, o,

a,

8, o,

9,

@, 8, 8, 8, 0, 8, 0,

@, 8, 8, 8, 8,

8, a,

a,

8, o,

9,

@, 8,8, 8,0, 0,0,

@, 8, 8, 8, 8,

8, @,

8,

8, o,

g,

@, 8, 8,8,,a8,.0,

al al al al al

8, @,

2,

8, @,

9,

@, 8,8,8,,a8,.0,

al al al al al

9.‘ 9.‘

9.‘

BJ BJ

9.‘

B] B] e! e! @J @_‘ @_‘

al al el el al

e.‘ e.‘
8,

e.‘

BJ BJ

a.‘

B] 8] e! e! e! e.‘ e.‘

8, @, a8,

8,

1, e, e, e, e, @, 0,0, 8,

e, a,

e,

2,

e, e, e, e, e, @, @,

e, e, 0,9, @, 8, @, e, e, 1, e, @, @, 8, @, @, @, @,

2,

e, e, e, e, e, @, @,

e, e, 1, @,

8, e, a, @, e,

8, 8, 8,

6, 0,8, ,a@,@e,ae,.l,

e, o,

9,

1, @, @,

1, 8, 1, 1, 1,

e, 1,

a,

@, e, e a @, @ @, @,

1, 1, @, @&, a,

1, @, 8, 1, &,
1, e,

1,

8, 8, 1, &, @,
8, 8, 1, @,

1, 1, 1, 1,

1, 1, 1, 1, 1,

1, 1,

1,

1, e, e,

8, 1,

1,

1,

@, 8, 8, 8, 8,

e, e, e,

1,

@, e, e @ 1, @, @,

1, 8,1, 8, 1,

8, 1, 1,

1,

1,

6, 8,1, 1, 1,

1, 1, 1, 1,

1, @,

1, 1, 8, 1,

1,

8, 8, 1, 1, 8,

1] 1] al 1] al

1, 1, 1, @,

1,

1, @, @, 8, 8, @,

1, 1,

1,

1, 1, 1, 8, @, @, @,

@, 8, 8, 8, 8,

8, @,

2,

@, 8, 8, 8, 8, @, @, @,
@, @, 8, 8, 8, @, @, @,

8, @,

9,

@, 8,8,8,,a8,.0,

8, 8, 8, 8, 8,

8, a,

g,

@, o,

9,

@, 08,8,8,8,a8,0,

Figure 7.12 - Create a categorical variable to use as the target

Once you have the data in the required form, you can perform the required analysis, which produces the
horizontal bar chart shown in Figure 7.13. Obviously, there is going to be a high degree of correlation

between the target variable and MedInc, so you can safely ignore that bar.

224 Dealing with Malware

Longitude
Latitude
AveCcoup
Population
AveBedrms
AveRooms
Housebge

MedInc

0.00 0.05 010 0.15 020

Figure 7.13 - The results are interesting because they show a useful correlation

What is interesting in the result is the high correlation between MedInc and AveRooms. Far less
important is HouseAge - the results show you could likely eliminate the Population feature
and not even notice its absence. However, you have to remember that these results are in the context
of the target variable selection. If you change the target variable, the results will also change, so you
can’t simply assume that deleting Population from the original dataset is a good idea. What you
need to do is create a new dataset that lacks the Populat ion feature for this particular analysis.

Using the Correlation Coefficient technique

Of the filtering techniques, the Correlation Coeflicient technique is probably the least code-intensive
and doesn’t actually require any variable preparation. This approach simply compares the correlation
between two (and sometimes more) variables. The example uses the default settings for the corr ()
function, but you can try other approaches as documented at ht t ps : / /pandas . pydata.org/
docs/reference/api/pandas.DataFrame.corr.html. The following code shows the
Correlation Coefficient technique as provided by pandas:

cor = X.corr ()
plt.figure

sns.heatmap (cor, annot=True)

Generating malware detection features

Note that the actual analysis only requires one step. The second and third steps are used to plot the
results shown in Figure 7.14.

~100

RSN [12 033 0.0620.0048 0.019 0.08 0.015
075

Housefge JII_lEJZI_lEu o078 03 0013 0011 D11
050

R 23| 015 [ESEYEN 0 07200049 011 0.028
025

PR, 0520 078 [NECEREN 0 0660 0062 0.07 0013
000

Population SNE IR J:I.IZIT"EJ:I.I:IGE 007 011 01
— --. _ -0.25

AU T 00159 0.013-0.004%0.0062 0.07 IR 00240.0025
T 008 0011 011 007 011 Dn:um 92 -0.50
—075

(IBLLIIGEE-0.015 0.11 0.028 0013 01 00025

MedInc
Househfge
Ayelccup

Latitude
Longitude - —

fwreRooms
SveBedrms
Population

Figure 7.14 - The Correlation Coefficient technique shows some
interesting relationships between variables

This is a heatmap plot, which is a Cartesian plot with data shown as colored rectangular tiles where
the color designates a level of correlation in this case. You see the correlation levels on the right side of
the plot as a bar where lighter colors represent higher levels of correlation and darker colors indicate
lower levels of correlation. Since MedInc (horizontally) has a 100-percent-degree of correlation with
MedInc (vertically), this square receives the lightest color and a value of 1. Not shown in the bar on
the right is that black indicates no correlation at all. So, for example, there is no correlation between
Latitude and Longitude in the California Housing dataset.

There are some interesting correlations in this case. Notice that AveRooms has a high degree of
correlation with AveBedrms. This plot also corroborates the result in Figure 7.13 in that there is a
moderate level of correlation between MedInc and AveRooms.

Not corroborated in this case is the correlation between MedInc, Latitude, and Longitude
shown in Figure 7.13. This is due the different method used to filter the feature selection. The output
in Figure 7.14 isn’t considering the amount of MedInc as a factor in feature selection, so now you
understand that the Information Gain approach helps you target a specific criterion for filtering,
while the Correlation Coefficient method is more generalized. These approaches are both helpful in
filtering security features because sometimes you don’t actually know what to target and the Correlation
Coeflicient approach will present you with some ideas.

225

226

Dealing with Malware

Considering speed of detection

When performing security analysis using ML techniques, and with malware in particular, detection
is extremely time critical. This is the reason that you need to choose datasets used to create models
with care, target the kind of threats you want to address with your business in mind, and layer your
defenses to reduce the load on any one defense so it doesn’t slow down. This chapter has discussed a
number of malware threat types, feature selection, and detection techniques that will help you create a
useful security model for your organization. However, here are some things to consider when creating
your model and tuning it for the performance needed for usable security:

« Errin favor of false positives, rather than false negatives, because you can always take benign data
out of the virus vault after verification, but letting malware through will always cause problems.

o Reduce your feature set to ensure that you're not creating a model that will get mired in useless
detail. Smaller feature sets mean faster and more targeted training.

o Use faster algorithms that provide good enough analysis because you generally can't afford the
time required by models that provide highly precise output.

o Decide at the outset that humans will be involved in the mitigation process because automation
will always produce false positives that someone needs to verify. It also isn't necessarily possible
to use lessons learned to create a more precise model because the new model will run slower.

o Ensure that any virus vault you create to hold suspected malware is actually secure and that
only authorized personnel (your security professionals and no one else) can access it. It’s usually
better to lose some small amount of data (having it sent again from the source) than to allow
any malware to enter your system.

The essential factor in all of these bullets is speed. Getting precise details about a threat after the threat
has already passed is useless. Security issues won’t wait on your model to make a decision. This need
for speed doesn’t mean creating a sloppy model. Rather it means creating a model that will always err
on the side of being too safe and allowing a human to make the ultimate decision about the malicious
or benign nature of the malware later.

Building a malware detection toolbox

The example in the Collecting data about any application section tells you how to dissect just one kind
of executable file, a Windows PE file. If all you ever work on is Windows systems that are possibly
connected to each other, but nowhere else, and none of your employees use their smartphones and
other devices to perform their work, then you may have everything you need to start studying malware.
However, this is unlikely to be the case. To really get involved in malware detection, you need to know
how to disassemble and review every type of executable for every device that interacts with your system
in any way. It’s really quite a job, which is why this chapter has focused so hard on using off-the-self
solutions when possible, rather than trying to build everything from scratch on your own.

Classifying malware

A malware detection toolbox needs to consist of the assortment of items needed to analyze the
malware you want to target. This includes hardware that will keep any malware contained, which
usually means using sandboxing techniques (https://www.barracuda.com/glossary/
sandboxing) on virtual machines (https://www.vmware.com/topics/glossary/
content/virtualized-security.html). Note that these hardware techniques don’t work
well in real time. For example, sandboxing is time intensive, so you couldn’t attach a sandbox to your
network and expect that the network will continue to provide good throughput. In addition, some
types of malware evade sandbox setups by remaining dormant (appearing benign) until they leave
the sandbox and enter the network.

Once you have decided on which malwar