

Hyatt Saleh

Use Python and scikit-learn to get up and running
with the hottest developments in machine learning

Machine Learning
Fundamentals

b | ﻿

Machine Learning Fundamentals

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Author: Hyatt Saleh

Managing Editor: Neha Nair

Acquisitions Editor: Aditya Date

Production Editor: Samita Warang

Editorial Board: David Barnes, Ewan Buckingham, Simon Cox, Manasa Kumar, Alex
Mazonowicz, Douglas Paterson, Dominic Pereira, Shiny Poojary, Saman Siddiqui, Erol
Staveley, Ankita Thakur, and Mohita Vyas

First Published: November 2018

Production Reference: 1291118

ISBN: 978-1-78980-355-6

﻿ | c

Table of Contents

Preface 	  i

Introduction to Scikit-Learn 	  1

Introduction ...  2

Scikit-Learn ..  2

Advantages of Scikit-Learn .. 4

Disadvantages of Scikit-Learn ... 4

Data Representation ..  5

Tables of Data .. 5

Features and Target Matrices ... 7

Exercise 1: Loading a Sample Dataset and Creating the Features
and Target Matrices .. 7

Activity 1: Selecting a Target Feature and Creating a Target Matrix ............ 10

Data Preprocessing ...  12

Messy Data .. 12

Exercise 2: Dealing with Messy Data .. 17

Dealing with Categorical Features .. 22

Exercise 3: Applying Feature Engineering over Text Data ............................. 23

Rescaling Data ... 25

Exercise 4: Normalizing and Standardizing Data .. 26

Activity 2: Preprocessing an Entire Dataset ... 28

Scikit-Learn API ...  29

How Does It Work? .. 30

Supervised and Unsupervised Learning ..  33

Supervised Learning ... 33

d | ﻿

Unsupervised Learning .. 35

Summary ..  37

Unsupervised Learning: Real-Life Applications 	  39

Introduction ...  40

Clustering ...  40

Clustering Types .. 40

Applications of Clustering .. 41

Exploring a Dataset: Wholesale Customers Dataset ................................  42

Understanding the Dataset ... 43

Data Visualization ...  45

Loading the Dataset Using Pandas ... 45

Visualization Tools .. 46

Exercise 5: Plotting a Histogram of One Feature from the Noisy
Circles Dataset .. 48

Activity 3: Using Data Visualization to Aid the Preprocessing Process ........ 51

k-means Algorithm ...  52

Understanding the Algorithm ... 52

Exercise 6: Importing and Training the k-means Algorithm
over a Dataset ... 55

Activity 4: Applying the k-means Algorithm to a Dataset .............................. 59

Mean-Shift Algorithm ...  59

Understanding the Algorithm ... 60

Exercise 7: Importing and Training the Mean-Shift Algorithm
over a Dataset ... 61

Activity 5: Applying the Mean-Shift Algorithm to a Dataset .......................... 63

DBSCAN Algorithm ..  64

Understanding the Algorithm ... 64

Exercise 8: Importing and Training the DBSCAN Algorithm
over a Dataset ... 65

﻿ | e

Activity 6: Applying the DBSCAN Algorithm to the Dataset ........................... 67

Evaluating the Performance of Clusters ..  67

Available Metrics in Scikit-Learn ... 68

Exercise 9: Evaluating the Silhouette Coefficient Score
and Calinski–Harabasz Index  ... 69

Activity 7: Measuring and Comparing the Performance
of the Algorithms .. 70

Summary ..  71

Supervised Learning: Key Steps 	  73

Introduction ...  74

Model Validation and Testing ..  74

Data Partition .. 74

Split Ratio ... 76

Exercise 10: Performing Data Partition over a Sample Dataset ................... 78

Cross Validation .. 81

Exercise 11: Using Cross-Validation to Partition the Train Set
into a Training and a Validation Set ... 82

Activity 8: Data Partition over a Handwritten Digit Dataset ......................... 84

Evaluation Metrics ..  84

Evaluation Metrics for Classification Tasks ... 84

Exercise 12: Calculating Different Evaluation Metrics
over a Classification Task ... 88

Choosing an Evaluation Metric ... 90

Evaluation Metrics for Regression Tasks ... 90

Exercise 13: Calculating Evaluation Metrics over a Regression Task ........... 92

Activity 9: Evaluating the Performance of the Model Trained
over a Handwritten Dataset .. 93

Error Analysis ..  94

Bias, Variance, and Data Mismatch .. 95

f | ﻿

Exercise 14: Calculating the Error Rate over Different Sets of Data  ............ 98

Activity 10: Performing Error Analysis over a Model Trained
to Recognize Handwritten Digits ...  101

Summary ..  102

Supervised Learning Algorithms: Predict Annual Income 	  105

Introduction ...  106

Exploring the Dataset ...  106

Understanding the Dataset ..  107

Naïve Bayes Algorithm ...  111

How Does It Work? ...  111

Exercise 15: Applying the Naïve Bayes Algorithm  .......................................  114

Activity 11: Training a Naïve Bayes Model for Our Census
Income Dataset ..  116

Decision Tree Algorithm ..  117

How Does It Work? ...  117

Exercise 16: Applying the Decision Tree Algorithm  ....................................  119

Activity 12: Training a Decision Tree Model for Our Census
Income Dataset ..  120

Support Vector Machine Algorithm ..  120

How Does It Work? ...  120

Exercise 17: Applying the SVM Algorithm  ..  124

Activity 13: Training an SVM Model for Our Census Income Dataset ........  125

Error Analysis ..  126

Accuracy, Precision, and Recall ..  126

Summary ..  129

Artificial Neural Networks: Predict Annual Income 	  131

Introduction ...  132

Artificial Neural Networks ...  132

﻿ | g

How Do They Work? ...  133

Understanding the Hyperparameters ...  139

Applications ..  142

Limitations ..  142

Applying an Artificial Neural Network ...  143

Scikit-Learn's Multilayer Perceptron ...  143

Exercise 18: Applying the Multilayer Perceptron Classifier Class  .............  144

Activity 14: Training a Multilayer Perceptron for Our Census
Income Dataset ..  145

Performance Analysis ..  147

Error Analysis ...  147

Hyperparameter Fine-Tuning ...  148

Model Comparison ..  151

Activity 15: Comparing Different Models to Choose the Best Fit
for the Census Income Data Problem ...  152

Summary ..  153

Building Your Own Program 	  155

Introduction ...  156

Program Definition ...  156

Building a Program: Key Stages ...  156

Understanding the Dataset ..  159

Activity 16: Performing the Preparation and Creation Stages
for the Bank Marketing Dataset ..  163

Saving and Loading a Trained Model ...  165

Saving a Model ...  165

Exercise 19: Saving a Trained Model  ...  166

Loading a Model ...  167

Exercise 20: Loading a Saved Model  ...  167

h | ﻿

Activity 17: Saving and Loading the Final Model for the Bank
Marketing Dataset ...  168

Interacting with a Trained Model ...  170

Exercise 21: Creating a Class and a Channel to Interact with a Trained Model  	
 171

Activity 18: Allowing Interaction with the Bank
Marketing Dataset Model ...  173

Summary ..  174

Appendix 	  177

Index 	  189

About

This section briefly introduces the author, the coverage of this book, the technical skills you'll
need to get started, and the hardware and software required to complete all of the included
activities and exercises.

Preface

>

ii | Preface

About the Book
As machine learning algorithms become popular, new tools that optimize these
algorithms are also being developed. Machine Learning Fundamentals explains
the scikit-learn API, which is a package created to facilitate the process of building
machine learning applications. You will learn how to explain the differences between
supervised and unsupervised models, and how to apply some popular algorithms to
real-life datasets.

You'll begin by learning how to use the syntax of scikit-learn. You'll study the
differences between supervised and unsupervised models, as well as the importance
of choosing the appropriate algorithm for each dataset. You'll apply an unsupervised
clustering algorithm to real-world datasets to discover patterns and profiles, and
explore the process to solve an unsupervised machine learning problem. Then,
the focus of the book shifts to supervised learning algorithms. You'll learn how to
implement different supervised algorithms and develop neural network structures
using the scikit-learn package. You'll also learn how to perform coherent result analysis
to improve the performance of the algorithm by tuning hyperparameters. By the end
of this book, you will have the skills and confidence to start programming machine
learning algorithms.

About the Author

After graduating from college as a business administrator, Hyatt Saleh discovered the
importance of data analysis to understand and solve real-life problems. Since then, as a
self-taught person, she has not only worked as a freelancer for many companies around
the world in the field of machine learning, but has also founded an artificial intelligence
company that aims to optimize everyday processes.

Objectives

•	 Understand the importance of data representation

•	 Gain insights into the differences between supervised and unsupervised models

•	 Explore data using the Matplotlib library

•	 Study popular algorithms, such as K-means, Mean-Shift, and DBSCAN

•	 Measure model performance through different metrics

•	 Study popular algorithms, such as Naïve Bayes, Decision Tree, and SVM

•	 Perform error analysis to improve the performance of the model

•	 Learn to build a comprehensive machine learning program

About the Book | iii

Audience

Machine Learning Fundamentals is designed for developers who are new to the field
of machine learning and want to learn how to use the scikit-learn library to develop
machine learning algorithms. You must have some knowledge and experience with
Python programming, but you do not need any prior knowledge of scikit-learn or
machine learning algorithms.

Approach

Machine Learning Fundamentals takes a hands-on approach to introduce beginners to
the world of machine learning. It contains multiple activities that use real-life business
scenarios for you to practice and apply your new skills in a highly relevant context.

Minimum Hardware Requirements

For the optimal student experience, we recommend the following hardware
configuration:

•	 Processor: Intel Core i5 or equivalent

•	 Memory: 4 GB RAM or higher

Software Requirements

You'll also need the following software installed in advance:

•	 Sublime Text (latest version), Atom IDE (latest version), or other similar text editor
applications

•	 Python 3

•	 The following Python libraries: NumPy, SciPy, scikit-learn, Matplotlib, Pandas,
pickle, jupyter, and seaborn

Installation and Setup

Before you start this book, you'll need to install Python 3.6, pip, scikit-learn, and the
other libraries used in this book. You will find the steps to install these here:

iv | Preface

Installing Python

Install Python 3.6 by following the instructions at this link: https://realpython.com/
installing-python/.

Installing pip

1.	 To install pip, go to the following link and download the get-pip.py file: https://
pip.pypa.io/en/stable/installing/.

2.	 Then, use the following command to install it:

python get-pip.py

You might need to use the python3 get-pip.py command, due to previous versions of
Python on your computer are already using use the python command.

Installing libraries

Using the pip command, install the following libraries:

python -m pip install --user numpy scipy matplotlib jupyter pandas seaborn

Installing scikit-learn

Install scikit-learn using the following command:

pip install -U scikit-learn

Installing the Code Bundle

Copy the code bundle for the class to the C:/Code folder.

Additional Resources

The code bundle for this book is also hosted on GitHub at: https://github.com/
TrainingByPackt/Machine-Learning-Fundamentals.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

https://realpython.com/installing-python/
https://realpython.com/installing-python/
https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/
https://github.com/TrainingByPackt/Machine-Learning-Fundamentals
https://github.com/TrainingByPackt/Machine-Learning-Fundamentals
https://github.com/PacktPublishing/

About the Book | v

Conventions

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Import
the iris toy dataset using scikit-learn's datasets package and store it in a variable
named iris_data."

A block of code is set as follows:

from sklearn.datasets import load_iris

iris_data = load_iris()

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "Below the dataset's
title, find the download section and click on Data Folder."

Learning Objectives

By the end of this chapter, you will be able to:

•	 Describe scikit-learn and its main advantages

•	 Use the scikit-learn API

•	 Perform data preprocessing

•	 Explain the difference between supervised and unsupervised models, as well as the
importance of choosing the right algorithm for each dataset

This chapter gives an explanation of the scikit-learn syntax and features in order to be able to
process and visualize data

Introduction to
Scikit-Learn

1

2 | Introduction to Scikit-Learn

Introduction
Scikit-learn is a well-documented and easy-to-use library that facilitates the
application of machine learning algorithms by using simple methods, which ultimately
enables beginners to model data without the need for deep knowledge of the math
behind the algorithms. Additionally, thanks to the ease of use of this library, it allows
the user to implement different approximations (create different models) for a
data problem. Moreover, by removing the task of coding the algorithm, scikit-learn
allows teams to focus their attention on analyzing the results of the model to arrive at
crucial conclusions.

Spotify, a world leading company in the field of music streaming, uses scikit-learn,
since it allows them to implement multiple models for a data problem, which are then
easily connectable to their existing development. This process improves the process of
arriving at a useful model, while allowing the company to plug them into their current
app with little effort.

On the other hand, booking.com uses scikit-learn due to the wide variety of algorithms
that the library offers, which allows them to fulfill the different data analysis tasks that
the company relies on, such as building recommendation engines, detecting fraudulent
activities, and managing the customer service team.

Considering the preceding points, this chapter begins with an explanation of scikit-
learn and its main uses and advantages, and then moves on to provide a brief
explanation of the scikit-learn API syntax and features. Additionally, the process
to represent, visualize, and normalize data is shown. The aforementioned information
will be useful to understand the different steps taken to develop a machine learning
model.

Scikit-Learn
Created in 2007 by David Cournapeau as part of a Google Summer of Code project,
scikit-learn is an open source Python library made to facilitate the process of building
models based on built-in machine learning and statistical algorithms, without the need
for hard-coding. The main reasons for its popular use are its complete documentation,
its easy-to-use API, and the many collaborators who work every day to improve the
library.

Note

You can find the documentation for scikit-learn at the following link:
http://scikit-learn.org.

http://scikit-learn.org

Scikit-Learn | 3

Scikit-learn is mainly used to model data, and not as much to manipulate or summarize
data. It offers its users an easy-to-use, uniform API to apply different models, with little
learning effort, and no real knowledge of the math behind it, required.

Note

Some of the math topics that you need to know about to understand the
models are linear algebra, probability theory, and multivariate calculus. For
more information on these models, visit: https://towardsdatascience.com/the-
mathematics-of-machine-learning-894f046c568.

The models available under the scikit-learn library fall into two categories: supervised
and unsupervised, both of which will be explained in depth in later sections. This
category classification will help to determine which model to use for a particular
dataset to get the most information out of it.

Besides its main use for interpreting data to train models, scikit-learn is also used to do
the following:

•	 Perform predictions, where new data is fed to the model to predict an outcome

•	 Carry out cross validation and performance metrics analysis to understand the
results obtained from the model, and thereby improve its performance

•	 Obtain sample datasets to test algorithms over them

•	 Perform feature extraction to extract features from images or text data

Although scikit-learn is considered the preferred Python library for beginners in the
world of machine learning, there are several large companies around the world using it,
as it allows them to improve their product or services by applying the models to already
existing developments. It also permits them to quickly implement tests over new ideas.

Note

You can visit the following website to find out which companies are using scikit-
learn and what are they using it for: http://scikit-learn.org/stable/testimonials/
testimonials.html.

https://towardsdatascience.com/the-mathematics-of-machine-learning-894f046c568
https://towardsdatascience.com/the-mathematics-of-machine-learning-894f046c568
http://scikit-learn.org/stable/testimonials/testimonials.html
http://scikit-learn.org/stable/testimonials/testimonials.html

4 | Introduction to Scikit-Learn

In conclusion, scikit-learn is an open source Python library that uses an API to apply
most machine learning tasks (both supervised or unsupervised) to data problems. Its
main use is for modeling data; nevertheless, it should not be limited to that, as the
library also allows users to predict outcomes based on the model being trained, as well
as to analyze the performance of the model.

Advantages of Scikit-Learn

The following is a list of the main advantages of using scikit-learn for
machine learning purposes:

•	 Ease of use: Scikit-learn is characterized by a clean API, with a small learning curve
in comparison to other libraries such as TensorFlow or Keras. The API is popular
for its uniformity and straightforward approach. Users of scikit-learn do not
necessarily need to understand the math behind the models.

•	 Uniformity: Its uniform API makes it very easy to switch from model to model, as
the basic syntax required for one model is the same for others.

•	 Documentation/Tutorials: The library is completely backed up by documentation,
which is effortlessly accessible and easy to understand. Additionally, it also offers
step-by-step tutorials that cover all of the topics required to develop any machine
learning project.

•	 Reliability and Collaborations: As an open source library, scikit-learn benefits
from the inputs of multiple collaborators who work each day to improve its
performance. This participation from many experts from different contexts helps
to develop not only a more complete library but also a more reliable one.

•	 Coverage: As you scan the list of components that the library has, you will discover
that it covers most machine learning tasks, ranging from supervised models
such as classification and regression algorithms to unsupervised models such as
clustering and dimensionality reduction. Moreover, due to its many collaborators,
new models tend to be added in relatively short amounts of time.

Disadvantages of Scikit-Learn

The following is a list of the main disadvantages of using scikit-learn for machine
learning purposes:

•	 Inflexibility: Due to its ease of use, the library tends to be inflexible. This means
that users do not have much liberty in parameter tuning or model architecture.
This becomes an issue as beginners move to more complex projects.

Data Representation | 5

•	 Not Good for Deep Learning: As mentioned previously, the performance of the
library falls short when tackling complex machine learning projects. This is
especially true for deep learning, as scikit-learn does not support deep neural
networks with the necessary architecture or power.

In general terms, scikit-learn is an excellent beginner's library as it requires little
effort to learn its use and has many complementary materials thought to facilitate its
application. Due to the contributions of several collaborators, the library stays up to
date and is applicable to most current data problems.

On the other hand, it is a fairly simple library, not fit for more complex data problems
such as deep learning. Likewise, it is not recommended for users who wish to take its
abilities to a higher level by playing with the different parameters that are available in
each model.

Data Representation
The main objective of machine learning is to build models by interpreting data. To do
so, it is highly important to feed the data in a way that is readable by the computer. To
feed data into a scikit-learn model, it must be represented as a table or matrix of the
required dimension, which will be discussed in the following section.

Tables of Data

Most tables fed into machine learning problems are two-dimensional, meaning that
they contain rows and columns. Conventionally, each row represents an observation
(an instance), whereas each column represents a characteristic (feature) of each
observation.

6 | Introduction to Scikit-Learn

The following table is a fragment of a sample dataset of scikit-learn. The purpose of
the dataset is to differentiate from among three types of iris plants based on their
characteristics. Hence, in the table, each row embodies a plant and each column
denotes the value of that feature for every plant:

Figure 1.1: A table showing the first 10 instances of the iris dataset

From the preceding explanation, the following snapshot shows data that corresponds to
a plant with sepal length of 5.1, sepal width of 3.5, petal length of 1.4, and petal width of
0.2. The plant belongs to the setosa species:

Figure 1.2: The first instance of the iris dataset

Note

When feeding images to a model, the tables become three-dimensional, where
the rows and columns represent the dimensions of the image in pixels, while the
depth represents its color scheme. If you are interested, feel free to explore more
on the subject of convolutional neural networks.

Data Representation | 7

Features and Target Matrices

For many data problems, one of the features of your dataset will be used as a label. This
means that out of all the other features, this one is the target to which the model should
generalize the data. For example, in the preceding table, we might choose the species as
the target feature, and so we would like the model to find patterns based on the other
features to determine whether a plant belongs to the setosa species. Therefore, it is
important to learn how to separate the target matrix from the features matrix.

Features Matrix: The features matrix comprises data from each instance for all
features, except the target. It can be either created using a NumPy array or a Pandas
DataFrame, and its dimensions are [n_i, n_f], where n_i denotes the number of
instances (such as a person) and n_f denotes the number of features (such as age).
Generally, the features matrix is stored in a variable named X.

Target Matrix: Different than the features matrix, the target matrix is usually
one-dimensional since it only carries one feature for all instances, meaning that its
length is of value n_i (number of instances). Nevertheless, there are some occasions
where multiple targets are required, and so the dimensions of the matrix become [n_i,
n_t], where n_t is the number of targets to consider.

Similar to the features matrix, the target matrix is usually created as a NumPy array or a
Pandas series. The values of the target array may be discrete or continuous. Generally,
the target matrix is stored in a variable named Y.

Exercise 1: Loading a Sample Dataset and Creating the Features and Target

Matrices

Note

All of the exercises and activities in these chapters will be primarily developed in
Jupyter Notebook. It is recommended to keep a separate notebook for different
assignments, unless advised otherwise. Also, to load a sample dataset, the seaborn
library will be used, as it displays the data as a table. Other ways to load data will
be explained in further sections.

8 | Introduction to Scikit-Learn

In this exercise, we will be loading the iris dataset, and creating features and target
matrices using this dataset.

Note

For the exercises and activities within this chapter, you will need to have Python
3.6, seaborn, Jupyter, Matplotlib, and Pandas installed on your system.

1.	 Open a Jupyter Notebook to implement this exercise. In the cmd or terminal,
navigate to the desired path and use the following command: jupyter notebook.

2.	 Load the iris dataset using the seaborn library. To do so, you first need to import
the seaborn library, and then use the load_dataset() function, as shown in the
following code:

import seaborn as sns
iris = sns.load_dataset('iris')

As we can see from the preceding code, after importing the library, a nickname is
given to facilitate its use along with the script.

The load_dataset() function loads datasets from an online repository. The data
from the dataset is stored in a variable named iris.

3.	 Create a variable, X, to store the features. Use the drop() function to include all of
the features but the target, which in this case is named species. Then, print out
the top 10 instances of the variable:

X = iris.drop('species', axis=1)
X.head(10)

Note

The axis parameter in the preceding snippet denotes whether you want to drop
the label from rows (axis = 0) or columns (axis = 1).

Data Representation | 9

The printed output should look as follows:

Figure 1.3: A table showing the first 10 instances of the features matrix

4.	 Print the shape of your new variable using the X.shape command:

X.shape
(150, 4)

The first value indicates the number of instances in the dataset (150), and the
second value represents the number of features (4).

5.	 Create a variable, Y, that will store the target values. There is no need to use
a function for this. Use indexing to grab only the desired column. Indexing allows
you to access a section of a larger element. In this case, we want to grab the
column named species. Then, print out the top 10 values of the variable:

Y = iris['species']
Y.head(10)

10 | Introduction to Scikit-Learn

The printed output should look as follows:

Figure 1.4: A screenshot showing the first 10 instances of the target matrix

6.	 Print the shape of your new variable by using the Y.shape command:

Y.shape
(150,)

The shape should be one-dimensional with length equal to the number of
instances (150).

Congratulations! You have successfully created the features and target matrices of a
dataset.

Generally, the preferred way to represent data is by using two-dimensional tables,
where the rows represent the number of observations, also known as instances, and the
columns represent the characteristics of those instances, commonly known as features.

For data problems that require target labels, the data table needs to be partitioned into
a features matrix and a target matrix. The features matrix will contain the values of all
features but the target, for each instance, making it a two-dimensional matrix. On the
other hand, the target matrix will only contain the value of the target feature for all
entries, making it a one-dimensional matrix.

Activity 1: Selecting a Target Feature and Creating a Target Matrix

In this activity, we will attempt to load a dataset and create the features and target
matrices by choosing the appropriate target feature for the objective of the study. Let's
look at the following scenario: you work in the safety department of a cruise company.
The company wants to include more lower-deck cabins, but it wants to be sure that
the measure will not increase the number of fatalities in the case of an accident.

Data Representation | 11

The company has provided your team with a dataset of the Titanic passenger list to
determine whether lower-deck passengers are less likely to survive. Your job is to select
the target feature that most likely helps to achieve this objective.

Note

To choose the target feature, remember that the target should be the outcome
to which we want to interpret the data for. For instance, if we want to know what
features play a role in determining a plant's species, the species should be the
target value.

Follow the steps below to complete this activity:

1.	 Load the titanic dataset using the seaborn library. The first couple of rows should
look like this:

Figure 1.5: An table showing the first 10 instances of the Titanic dataset

2.	 Select your preferred target feature for the goal of this activity.

3.	 Create both the features matrix and the target matrix. Make sure that you store
the data from the features matrix in a variable, X, and the data from the target
matrix in another variable, Y.

12 | Introduction to Scikit-Learn

4.	 Print out the shape of each of the matrices, which should match the following
values:

Features matrix: (891,14)

Target matrix: (891)

Note

The solution for this activity can be found on page 178.

Data Preprocessing
For the computer to be able to understand the data proficiently, it is necessary to
not only feed the data in a standardized way but also make sure that the data does
not contain outliers or noisy data, or even missing entries. This is important because
failing to do so might result in the system making assumptions that are not true to the
data. This will cause the model to train at a slower pace and to be less accurate due to
misleading interpretations of data.

Moreover, data preprocessing does not end there. Models do not work the same way,
and each one makes different assumptions. This means that we need to preprocess
in terms of the model that is going to be used. For example, some models accept only
numerical data, whereas others work with nominal and numerical data.

To achieve better results during data preprocessing, a good practice is to transform
(preprocess) the data in different ways, and then test the different transformations in
different models. That way, you will be able to select the right transformation for the
right model.

Messy Data

Data that is missing information or that contains outliers or noise is considered to be
messy data. Failing to perform any preprocessing to transform the data can lead to
poorly created models of the data, due to the introduction of bias and information loss.
Some of the issues with data that should be avoided will be explained here.

Data Preprocessing | 13

Missing Values

Features where a few instances have values, as well as instances where there are no
values for any feature, are considered missing data. As you can see from the following
image, the vertical red rectangle represents a feature with only 3 values out of 10, and
the horizontal rectangle represents an instance with no values at all:

Figure 1.6: An image that displays an instance with no values for any of the features, which makes it
useless, and a feature with 7 missing values out of the 10 instances

Conventionally, a feature missing more than 5 to 10% of its values is considered to
be missing data, and so needs to be dealt with. On the other hand, all instances that
have missing values for all features should be eliminated as they do not provide any
information to the model, and, on the contrary, may end up introducing bias.

14 | Introduction to Scikit-Learn

When dealing with a feature with a high absence rate, it is recommended to either
eliminate it or fill it with values. The most popular ways to replace the missing values
are as follows:

•	 Mean imputation: Replacing missing values with the mean or median of the
features' available values

•	 Regression imputation: Replacing missing values with the predicted values
obtained from a regression function

While mean imputation is a simpler approach to implement, it may introduce bias as it
evens out all instances in that matter. On the other hand, even though the regression
approach matches the data to its predicted value, it may end up overfitting the model as
all values introduced follow a function.

Lastly, when the missing values are found in a text feature such as gender, the best
book of action would be to either eliminate them or replace them with a class labeled
uncategorized or something similar. This is mainly because it is not possible to apply
either mean or regression imputation over text.

Labeling missing values with a new category (uncategorized) is mostly done when
eliminating them removes an important part of the dataset, and hence is not an
appropriate book of action. In this case, even though the new label may have an effect
on the model depending on the rationale used to label the missing values, leaving them
empty is an even worse alternative as it causes the model to make assumptions on its
own.

Note

To learn more on how to detect and handle missing values, feel free to visit the
following page: https://towardsdatascience.com/how-to-handle-missing-data-
8646b18db0d4.

https://towardsdatascience.com/how-to-handle-missing-data-8646b18db0d4
https://towardsdatascience.com/how-to-handle-missing-data-8646b18db0d4

Data Preprocessing | 15

Outliers

Outliers are values that are far from the mean. This means that if the values from
an attribute follow a Gaussian distribution, the outliers are located at the tails.

Outliers can be global or local. The former group represents those values that are far
from the entire set of values of a feature. For example, when analyzing data from all
members of a neighborhood, a global outlier would be a person who is 180 years old (as
shown in the following diagram (A)). The latter, on the other hand, represents values
that are far from a subgroup of values of that feature. For the same example that we
saw previously, a local outlier would be a college student who is 70 years old (B), which
would normally differ from other college students in that neighborhood:

Figure 1.7: An image depicting global and local outliers in a dataset

Considering both examples that have been given, outliers do not evaluate whether the
value is possible. While a person aged 180 years is not plausible, a 70-year-old college
student might be a possibility, yet both are categorized as outliers as they can both
affect the performance of the model.

A straightforward approach to detect outliers consists of visualizing the data to
determine whether it follows a Gaussian distribution, and if it does, classifying those
values that fall between three to six standard deviations away from the mean as outliers.
Nevertheless, there is not an exact rule to determine an outlier, and the decision to
select the number of standard deviations is subjective and will vary from problem
to problem.

16 | Introduction to Scikit-Learn

For example, if the dataset is reduced by 40% by setting three standard deviations as
the parameter to rule out values, it would be appropriate to change the number of
standard deviations to four.

On the other hand, when dealing with text features, detecting outliers becomes
even trickier as there are no standard deviations to use. In this case, counting the
occurrences of each class value would help to determine whether a certain class is
indispensable or not. For instance, in clothing sizes, having a size XXS that represents
less than 5% of the entire dataset might not be necessary.

Once the outliers are detected, there are three common ways to handle them:

•	 Delete the outlier: For outliers that are true values, it is best to completely delete
them to avoid skewing the analysis. This may be a good idea for outliers that are
mistakes, if the number of outliers is too large to perform further analysis to
assign a new a value.

•	 Define a top: Defining a top might also be useful for true values. For instance, if
you realize that all values above a certain threshold behave the same way, you can
consider topping that value with the threshold.

•	 Assign a new value: If the outlier is clearly a mistake, you can assign a new
value using one of the techniques that we discussed for missing values (mean or
regression imputation).

The decision to use each of the preceding approaches depends on the outlier type and
number. Most of the time, if the number of outliers represents a small proportion of the
total size of the dataset, there is no point in treating the outlier in any way other than
deleting it.

Note

Noisy data corresponds to values that are not correct or possible. This includes
numerical (outliers that are mistakes) and nominal values (for example, a person's
gender misspelled as "fimale"). Like outliers, noisy data can be treated by deleting
the values completely or by assigning them a new value.

Data Preprocessing | 17

Exercise 2: Dealing with Messy Data

In this exercise, we will be using the titanic dataset as an example to demonstrate how
to deal with messy data:

1.	 Open a Jupyter Notebook to implement this exercise.

2.	 Load the titanic dataset and store it in a variable called titanic. Use the following
code:

import seaborn as sns
titanic = sns.load_dataset('titanic')

3.	 Next, create a variable called age to store the values of that feature from the
dataset. Print out the top 10 values of the age variable:

age = titanic['age']
age.head(10)

The output will appear as follows:

Figure 1.8: A screenshot showing the first 10 instances of the age variable

As you can see, the feature has NaN (Not a Number) values, which represent missing
values.

4.	 Check the shape of the age variable. Then, count the number of NaN values to
determine how to handle them. Use the isnull() function to find the NaN values,
and use the sum() function to sum them all:

age.shape
(891,)
age.isnull().sum()
177

18 | Introduction to Scikit-Learn

5.	 The participation of the NaN values in the total size of the variable is 5.03%.
Although this is not high enough to consider removing the entire feature, there is
a need to handle the missing values.

6.	 Let's choose the mean imputation methodology to replace the missing values. To
do so, compute the mean of the available values. Use the following code:

mean = age.mean()
mean = mean.round()
mean

The mean comes to be 30.

Note

The value was rounded to its nearest integer since we are dealing with age.

7.	 Replace all missing values with the mean. Use the fillna() function. To check that
the values have been replaced, print the first ten values again:

age.fillna(mean,inplace=True)
age.head(10)

Note

Set inplace to True to replace the values in the places where the NaN values are.

The printed output is shown below:

Figure 1.9: A screenshot depicting the first 10 instances of the age variable

Data Preprocessing | 19

As you can see in the preceding screenshot, the age of the instance with index 5
has changed from NaN to 30, which is the mean that was calculated previously. The
same procedure occurs for all 177 NaN values.

8.	 Import Matplotlib and graph a histogram of the age variable. Use Matplotlib's
hist() function. To do so, type in the following code:

import matplotlib.pyplot as plt
plt.hist(age)
plt.show()

The histogram should look like it does in the following diagram, and as we can see,
its distribution is Gaussian-like:

Figure 1.10: A screenshot depicting the histogram of the age variable

9.	 Discover the outliers in the data. Let's use three standard deviations as the
measure to calculate the min and max values.

As discussed previously, the min value is determined by calculating the mean of all
of the values and subtracting three standard deviations from it. Use the following
code to set the min value and store it in a variable named min_val:

min_val = age.mean() - (3 * age.std())
min_val

20 | Introduction to Scikit-Learn

The min value comes to be around −9.248. According to the min value, there are
no outliers at the left tail of the Gaussian distribution. This makes sense, given that
the distribution is tilted slightly to the left.

Opposite to the min value, for the max value, the standard deviations are added to
the mean to calculate the higher threshold. Calculate the max value, as shown in
the following code, and store it in a variable named max_val:

max_val = age.mean() + (3 * age.std())
max_val

The max value, which comes to around 68.766, determines that instances with
ages above 68.76 years represent outliers. As you can see in the preceding
diagram, this also makes sense as there are little instances over that threshold and
they are in fact far away from the bell of the Gaussian distribution.

10.	 Count the number of instances that are above the max value to decide how
to handle them.

First, using indexing, call the values in age that are above the max value, and store
them in a variable called outliers. Then, count the outliers using count():

outliers = age[age > max_val]
outliers.count()

The output shows us that there are seven outliers. Print out the outliers by typing
in outliers and check that the correct values were stored:

Figure 1.11: A screenshot depicting the outliers

Data Preprocessing | 21

As the number of outliers is small, and they correspond to true outliers, they can
be deleted.

Note

For this exercise, we will be deleting the instances from the age variable to
understand the complete procedure of dealing with outliers. However, later, the
deletion of outliers will be handled in consideration of all features, in order to
delete the entire instance, and not just the age values.

11.	 Redefine the value stored in age by using indexing to include only values below the
max threshold. Then, print the shape of age:

age = age[age <= max_val]
age.shape
(884,)

As you can see, the shape of age has been reduced by seven, which was the
number of outliers.

Congratulations! You have successfully cleaned out a Pandas Series. This process serves
as a guide for cleaning a dataset later on.

To summarize, we have discussed the importance of preprocessing data, as failing to do
so may introduce bias in the model, which affects the training time of the model and its
performance. Some of the main forms of messy data are missing values, outliers, and
noise.

Missing values, as their name suggests, are those values that are left empty or null.
When dealing with many missing values, it is important to handle them by deletion or
by assigning new values. Two ways to assign new values were also discussed: mean
imputation and regression imputation.

Outliers are values that fall far from the mean of all the values of a feature. One way to
detect outliers is by selecting all the values that fall outside the mean minus/plus three-
six standard deviations. Outliers may be mistakes (values that are not possible) or true
values, and they should be handled differently. While true outliers may be deleted or
topped, mistakes should be replaced with other values when possible.

22 | Introduction to Scikit-Learn

Finally, noisy data corresponds to values that are, regardless of their proximity to the
mean, mistakes or typos in the data. They can be of numeric, ordinal, or nominal types.

Note

Please remember that numeric data is always represented by numbers that can be
measured, nominal data refers to text data that does not follow a rank, and ordinal
data refers to text data that follows a rank or order.

Dealing with Categorical Features

Categorical features are those that comprise discrete values typically belonging to
a finite set of categories. Categorical data can be nominal or ordinal. Nominal refers
to categories that do not follow a specific order, such as music genre or city names,
whereas ordinal refers to categories with a sense of order, such as clothing sizes or
level of education.

Feature Engineering

Even though improvements in many machine learning algorithms have enabled
the algorithms to understand categorical data types such as text, the process of
transforming them into numeric values facilitates the training process of the model,
which results in faster running times and better performance. This is mainly due to
the elimination of semantics available in each category, as well as the fact that the
conversion into numeric values allows you to scale all of the features of the dataset
equally, as explained previously.

How does it work? Feature engineering generates a label encoding that assigns a
numeric value to each category; this value will then replace the category in the dataset.
For example, a variable called genre with the classes pop, rock, and country can be
converted as follows:

Figure 1.12: An image illustrating how feature engineering works

Data Preprocessing | 23

Exercise 3: Applying Feature Engineering over Text Data

In this exercise, we will be converting the text data within the embark_town feature of
the titanic dataset into numerical data. Follow these steps:

1.	 Use the same Jupyter Notebook that you created for the last exercise.

2.	 Import scikit-learn's LabelEncoder() class, as well as the Pandas library. Use the
following code:

from sklearn.preprocessing import LabelEncoder
import pandas as pd

3.	 Create a variable called em_town and store the information of that feature from the
titanic dataset that was imported in the previous exercise. Print the top 10 values
from the new variable:

em_town = titanic['embark_town']
em_town.head(10)

The output looks as follows:

Figure 1.13: A screenshot depicting the first 10 instances of the em_town variable

As you can see, the variable contains text data.

4.	 Convert the text data into numeric values. Use the class that was imported
previously (LabelEncoder):

enc = LabelEncoder()
new_label = pd.Series(enc.fit_transform(em_town.astype('str')))

24 | Introduction to Scikit-Learn

First of all, initialize the class by typing in the first line of code. Second, create a
new variable called new_label and use the built-in method fit_transform() from
the class, which will assign a numeric value to each category and output the result.
We use the pd.Series() function to convert the output from the label encoder into
a Pandas Series. Print out the top 10 values of the new variable:

new_label.head(10)

Figure 1.14: A screenshot depicting the first 10 instances of the new_label variable

As you can see, the text categories of the variable have been converted into
numeric values.

Congratulations! You have successfully converted text data into numeric values.

While improvements in machine learning have made dealing with text features easier
for some algorithms, it is best to convert them into numeric values. This is mainly
important as it eliminates the complexity of dealing with semantics, not to mention that
it gives the flexibility to change from model to model, without any limitations.

Text data conversion is done via feature engineering, where every text category is
assigned a numeric value that replaces it. Furthermore, even though this can be done
manually, there are powerful built-in classes and methods that facilitate this process.
One example of this is the use of scikit-learn's LabelEncoder class.

Data Preprocessing | 25

Rescaling Data

Why is it important to rescale data? Because even though the data may be fed to a
model using different scales for each feature, the lack of homogeneity can cause the
algorithm to lose its ability to discover patterns from the data due to the assumptions it
has to make to understand it, thereby slowing down the training process and negatively
affecting the model's performance.

Data rescaling helps the model run faster, without any burden or responsibility to learn
from the invariance present in the dataset. Moreover, a model trained over equally
scaled data assigns the same weights to all parameters, which allows the algorithm to
generalize to all features and not just to those with higher values, irrespective of their
meaning.

An example of a dataset with different scales is one that contains different features,
one measured in kilograms, another measuring temperature, and another counting
the number of children. Even though the values of each attribute are true, the scale of
each one of them highly differs from that of the other. For example, while the values in
kilograms can go higher than 100, the children count will typically not go further than
10.

Two of the most popular ways to rescale data are data normalization and data
standardization. There is no rule on selecting the methodology to transform data to
scale it, as all datasets behave differently. The best practice is to transform the data
using two or three rescaling methodologies and test the algorithms in each one of them
in order to choose the one that best fits the data based on the performance.

Rescaling methodologies are to be used individually. When testing different rescaling
methodologies, the transformation of data should be done independently. Each
transformation can be tested over a model, and the best suited one should be chosen
for further steps.

Normalization: Data normalization in machine learning consists of rescaling the values
of all features such that they lie in a range between 0 and 1 and have a maximum length
of one. This serves the purpose of equating attributes of different scales.

The following equation allows you to normalize the values of a feature:

Figure 1.15: The normalization equation

26 | Introduction to Scikit-Learn

Here, zi corresponds to the ith normalized value and x represents all values.

Standardization: This is a rescaling technique that transforms the data into a Gaussian
distribution with a mean equal to 0 and a standard deviation equal to 1.

One simple way of standardizing a feature is shown in the following equation:

Figure 1.16: The standardization equation

Here, zi corresponds to the ith standardized value, and x represents all values.

Exercise 4: Normalizing and Standardizing Data

This section covers the normalization and standardization of data, using the titanic
dataset as an example. Use the same Jupyter Notebook that you created for the last
exercise:

1.	 Using the age variable that was created in the first exercise of this notebook,
normalize the data using the preceding formula and store it in a new variable
called age_normalized. Print out the top 10 values:

age_normalized = (age - age.min())/(age.max()-age.min())
age_normalized.head(10)

Figure 1.17: A screenshot displaying the first 10 instances of the age_normalized variable

Data Preprocessing | 27

As you can see in the preceding screenshot, all of the values have been converted
to their equivalents in a range between 0 and 1. By performing the normalization
for all of the features, the model will be trained on the features of the same scale.

2.	 Again, using the age variable, standardize the data using the formula for
standardization, and store it in a variable called age_standardized. Print out the top
10 values:

age_standardized = (age - age.mean())/age.std()
age_standardized.head(10)

Figure 1.18: A screenshot displaying the first 10 instances of the age_standardized variable

Different than normalization, in standardization, the values distribute normally
around zero.

3.	 Print out the mean and standard deviation of the age_standardized variable to
confirm its mean of 0 and standard deviation of 1:

print("Mean: " + str(age_standardized.mean()))
print("Standard Deviation: " + str(age_standardized.std()))
Mean: 9.645376503530772e-17
Standard Deviation: 1.0

As you can see, the mean approximates to 0, and the standard deviation is equal to
1, which means that the standardization of the data was successful.

Congratulations! You have successfully applied rescaling methods to your data.

In conclusion, we have covered the final step in data preprocessing, which consists
of rescaling data. This process was done in a dataset with features of different scales,
with the objective of homogenizing the way data is represented to facilitate the
comprehension of the data by the model.

28 | Introduction to Scikit-Learn

Failing to rescale data will cause the model to train at a slower pace and might
negatively affect the performance of the model.

Two methodologies for data rescaling were explained in this topic: normalization and
standardization. On one hand, normalization transforms the data to a length of one
(from 0 to 1). On the other hand, standardization converts the data into a Gaussian
distribution with a mean of 0 and a standard deviation of 1.

Given that there is no rule for selecting the appropriate rescaling methodology, the
recommended book of action is to transform the data using two or three rescaling
methodologies independently, and then train the model with each transformation to
evaluate the methodology that behaves best.

Activity 2: Preprocessing an Entire Dataset

You continue to work for the safety department at a cruise company. As you did great
work selecting the ideal target feature to develop the study, the department has
decided to commission you into preprocessing the data set as well. For this purpose,
you need to use all the techniques you have learned about previously to preprocess the
dataset and get it ready for model training. The following steps serve to guide you in
that direction:

1.	 Load the dataset and create the features and target matrices by typing in the
following code:

import seaborn as sns
titanic = sns.load_dataset('titanic')
X = titanic[['sex','age','fare','class','embark_town','alone']]
Y = titanic['survived']

Note

For this activity, the features matrix has been created using only six features, as
some of the other features were redundant for the study. For example, there is no
need to keep both sex and gender.

Scikit-Learn API | 29

2.	 Check for missing values and outliers in all the features of the features matrix (X).
Choose a methodology to handle them.

Note

The following functions might come in handy:

notnull(): To detect non-missing values. For instance,
X[X["age"].notnull()] will retrieve all the rows in X, except those that
are missing values under the column age.

value.counts(): To count the occurrence of unique values of an array. For
example, X["gender"].value_counts() will count the number of times the classes
male and female are present.

3.	 Convert all text features into its numeric representation.

Note

Use the LabelEncoder class from scikit-learn. Don't forget to initialize the class
before calling any of its methods.

4.	 Rescale your data, either by normalizing or standardizing.

Note

The solution for this activity can be found on page 179.

Results may vary depending on the choices you made. However, you must be left with a
dataset with no missing values, outliers, or text features, and with data rescaled.

Scikit-Learn API
The objective of the scikit-learn API is to provide an efficient and unified syntax to make
machine learning accessible to non-machine learning experts, as well as to facilitate
and popularize its use among several industries.

30 | Introduction to Scikit-Learn

How Does It Work?

Although it has many collaborators, the scikit-learn API was built and has been updated
by considering a set of principles that prevent framework code proliferation, where
different codes perform similar functionalities. On the contrary, it promotes simple
conventions and consistency. Due to this, the scikit-learn API is consistent among all
models, and once the main functionalities have been learned, it can be widely used.

The scikit-learn API is divided into three complementary interfaces that share a
common syntax and logic: the estimator, the predictor, and the transformer. The
estimator interface is used for creating models and fitting the data into them; the
predictor, as the name suggests, is used to make predictions based on the models
trained before; and finally, the transformer is used for converting data.

Estimator

This is considered to be the core of the entire API, as it is the interface in charge of
fitting the models to the input data. It works by initializing the model to be used, and
then applying a fit() method that triggers the learning process to build a model based
on the data.

The fit() method receives as arguments the training data, in two separate variables,
the features matrix, and the target matrix (conventionally called X_train and Y_train).
For unsupervised models, the method only takes in the first argument (X_train).

This method creates the model trained to the input data, which can later be used for
predicting.

Some models take other arguments besides the training data, which are also called
hyperparameters. These hyperparameters are initially set to their default values, but
can be tuned to improve the performance of the model, which will be discussed in
further sections.

The following is an example of a model being trained:

from sklearn.naive_bayes import GaussianNB

model = GaussianNB()

model.fit(X_train, Y_train)

Scikit-Learn API | 31

First, it is required that you import the type of algorithm to be used from scikit-learn,
for example, a Gaussian Naïve Bayes algorithm for classification. It is always a good
practice to import only the algorithm to be used, and not the entire library, as this will
ensure that your code runs faster.

Note

To find out the syntax to import a different model, use the documentation of scikit-
learn. Go to the following link, click over the algorithm that you wish to implement,
and you will find the instructions there: http://scikit-learn.org/stable/user_guide.
html.

The second line of code oversees the initialization of the model and stores it in a
variable. Lastly, the model is fit to the input data.

In addition to this, the estimator also offers other complementary tasks, as follows:

•	 Feature extraction, which involves transforming input data into numerical features
that can be used for machine learning purposes

•	 Feature selection, which selects the features in your data that most contribute to
the prediction output of the model

•	 Dimensionality reduction, which takes higher-dimensional data and converts it
into a lower dimension

Predictor

As explained previously, the predictor takes the model created by the estimator
and extends it to perform predictions on unseen data. In general terms, for
supervised models, it feeds the model a new set of data, usually called X_test, to get a
corresponding target or label based on the parameters learned during the training of
the model.

Moreover, some unsupervised models can also benefit from the predictor. While this
method does not output a specific target value, it can be useful to assign a new instance
to a cluster.

Following the preceding example, the implementation of the predictor can be seen as
follows:

Y_pred = model.predict(X_test)

We apply the predict() method to the previously trained model, and input the new data
as an argument to the method.

http://scikit-learn.org/stable/user_guide.html
http://scikit-learn.org/stable/user_guide.html

32 | Introduction to Scikit-Learn

In addition to predicting, the predictor can also implement methods that are in charge
of quantifying the confidence of the prediction, also called the performance of the
model. These confidence functions vary from model to model, but their main objective
is to determine how far the prediction is from reality. This is done by taking an X_test
with its corresponding Y_test and comparing it to the predictions made with the same
X_test.

Transformer

As we saw previously, data is usually transformed before being fed to a model.
Considering this, the API contains a transform() method that allows you to perform
some preprocessing techniques.

It can be used both as a starting point to transform the input data of the model
(X_train), as well as further along to modify data that will be fed to the model for
predictions. This latter application is crucial to get accurate results, as it ensures that
the new data follows the same distribution as the data used to train the model.

The following is an example of a transformer that normalizes the values of the training
data:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(X_train)

X_train = scaler.transform(X_train)

As you can see, after importing and initializing the transformer, it needs to be fit to the
data to then effectively transform it:

X_test = scaler.transform(X_test)

The advantage of the transformer is that once it has been applied to the training
dataset, it stores the values used for transforming the training data; this can be used to
transform the test dataset to the same distribution.

In conclusion, we discussed one of the main benefits of using scikit-learn, which is its
API. This API follows a consistent structure that makes it easy for non-experts to apply
machine learning algorithms.

Supervised and Unsupervised Learning | 33

To model an algorithm on scikit-learn, the first step is to initialize the model class and
fit it to the input data using an estimator, which is usually done by calling the fit()
method of the class. Finally, once the model has been trained, it is possible to predict
new values using the predictor by calling the predict() method of the class.

Additionally, scikit-learn also has a transformer interface that allows you to transform
data as needed. This is useful for performing preprocessing methods over the training
data, which can then be also used to transform the testing data to follow the same
distribution.

Supervised and Unsupervised Learning
Machine learning is divided into two main categories: supervised and unsupervised
learning.

Supervised Learning

Supervised learning consists of understanding the relation between a given set of
features and a target value, also known as a label or class. For instance, it can be used
for modeling the relationship between a person's demographic information and their
ability to pay loans, as shown in the following table:

Figure 1.19: A table depicting the relationship between a person's demographic information and the
ability to pay loans

Models trained to foresee these relationships can then be applied to predict labels for
new data. As we can see from the preceding example, a bank that builds such a model
can then input data from loan applicants to determine if they are likely to pay back
the loan.

34 | Introduction to Scikit-Learn

These models can be further divided into classification and regression tasks, which are
explained as follows.

Classification tasks are used to build models out of data with discrete categories as
labels; for instance, a classification task can be used to predict whether a person will
pay a loan. You can have more than two discrete categories, such as predicting the
ranking of a horse in a race, but they must be a finite number.

Most classification tasks output the prediction as the probability of an instance to
belong to each output label. The assigned label is the one with the highest probability,
as can be seen in the following diagram:

Figure 1.20: An illustration of the working of a classification algorithm

Some of the most common classification algorithms are as follows:

•	 Decision trees: This algorithm follows a tree-like architecture that simulates the
decision process given a previous decision.

•	 Naïve Bayes classifier: This algorithm relies on a group of probabilistic equations
based on Bayes' theorem, which assumes independence among features. It has the
ability to consider several attributes.

•	 Artificial neural networks (ANNs): These replicate the structure and performance
of a biological neural network to perform pattern recognition tasks. An ANN
consists of interconnected neurons, laid out with a set architecture. They pass
information to one another until a result is achieved.

Supervised and Unsupervised Learning | 35

Regression tasks, on the other hand, are used for data with continuous quantities as
labels; for example, a regression task can be used for predicting house prices. This
means that the value is represented by a quantity and not by a set of possible outputs.
Output labels can be of integer or float types:

•	 The most popular algorithm for regression tasks is linear regression. It consists of
only one independent feature (x) whose relation with its dependent feature (y) is
linear. Due to its simplicity, it is often overseen, even though it performs very well
for simple data problems.

•	 Other, more complex regression algorithms include regression trees and support
vector regression, as well as ANNs once again.

In conclusion, for supervised learning problems, each instance has a correct answer,
also known as a label or class. The algorithms under this category aim to understand
the data and then predict the class of a given set of features. Depending on the
type of class (continuous or discrete), the supervised algorithms can be divided into
classification or regression tasks.

Unsupervised Learning

Unsupervised learning consists of modeling the model to the data, without any
relationship with an output label, also known as unlabeled data. This means that
algorithms under this category search to understand the data and find patterns in it.
For instance, unsupervised learning can be used to understand the profile of people
belonging to a neighborhood, as shown in the following diagram:

Figure 1.21: An illustration of how unsupervised algorithms can be used to understand
the profiles of people

36 | Introduction to Scikit-Learn

When applying a predictor over these algorithms, no target label is given as output. The
prediction, only available for some models, consists of placing the new instance into
one of the subgroups of data that has been created.

Unsupervised learning is further divided into different tasks, but the most popular one
is clustering, which will be discussed next.

Clustering tasks involve creating groups of data (clusters) and complying with the
condition that instances from other groups differ visibly from the instances within the
group. The output of any clustering algorithm is a label, which assigns the instance to
the cluster of that label:

Figure 1.22: A diagram representing clusters of multiple sizes

The preceding diagram shows a group of clusters, each of a different size, based on the
number of instances that belong to each cluster. Considering this, even though clusters
do not need to have the same number of instances, it is possible to set the minimum
number of instances per cluster to avoid overfitting the data into tiny clusters of very
specific data.

Some of the most popular clustering algorithms are as follows:

•	 k-means: This focuses on separating the instances into n clusters of equal
variance by minimizing the sum of the squared distances between two points.

•	 Mean-shift clustering: This creates clusters by using centroids. Each instance
becomes a candidate for centroid to be the mean of the points in that cluster.

•	 Density-Based Spatial Clustering of Applications with Noise (DBSCAN): This
determines clusters as areas with a high density of points, separated by areas with
low density.

Summary | 37

In conclusion, unsupervised algorithms are designed to understand data when there
is no label or class that indicates a correct answer for each set of features. The most
common types of unsupervised algorithms are the clustering methods that allow you to
classify a population into different groups.

Summary
Machine learning consists of constructing models, some of which are based on
complicated mathematical concepts, to understand data. Scikit-learn is an open source
Python library that is meant to facilitate the process of applying these models to data
problems, without much complex math knowledge required.

This chapter first covered an important step in developing a data problem, that is,
representing the data in a tabular manner. Then, the steps involved in the creation of
features and target matrices, data preprocessing, and choosing an algorithm were also
covered.

Finally, after selecting the type of algorithm that best suits the data problem, the
construction of the model can begin through the use of the scikit-learn API, which has
three interfaces: estimators, predictors, and transformers. Thanks to the uniformity of
the API, learning to use the methods for one algorithm is enough to enable their use for
others.

With all of this in mind, in the next chapter, we will focus on detailing the process of
implementing an unsupervised algorithm to a real-life dataset.

Learning Objectives

By the end of this chapter, you will be able to:

•	 Describe how clustering works

•	 Import and preprocess a dataset using Pandas and Matplotlib

•	 Explain the difference between the three clustering algorithms

•	 Solve an unsupervised learning data problem using different algorithms

•	 Compare the results of different algorithms to select the one with the best performance

This chapter describes a practical implementation of an unsupervised algorithm to a real-world
dataset

Unsupervised
Learning: Real-Life

Applications

2

40 | Unsupervised Learning: Real-Life Applications

Introduction
In the previous chapter, we saw how to represent data in a tabular format, create
features and target matrices, preprocess data, and choose the algorithm that best suits
the problem at hand. We also saw how the scikit-learn API works and why it is easy to
use.

The main objective of this chapter is to solve a real-world case study, where the
students will implement three different unsupervised learning solutions. These different
applications serve to demonstrate the uniformity of the scikit-learn API, as well as to
explain the steps taken to solve such a problem. At the end of this chapter, the students
will be able to understand the use of unsupervised learning to comprehend data in
order to make informed decisions.

Clustering
Clustering is a type of unsupervised machine-learning technique, where the objective
is to arrive at conclusions based on the patterns found within unlabeled input data. This
technique is mainly used to find meaning in the structure of large data in order to draw
decisions.

For instance, from a large list of restaurants in a city, it would be useful to segregate
the market into subgroups based on the type of food, quantity of clients, and style of
experience to offer each cluster a service that's been configured to its specific needs.

Moreover, clustering algorithms divide the data points into n number of clusters so that
the data points in the same cluster have similar features, whereas they greatly differ
from the data points in other clusters.

Clustering Types

Clustering algorithms can classify data points using a methodology that is either hard
or soft. The former designates data points completely to a cluster, whereas the latter
method calculates for each data point the probability of belonging to each cluster.

For example, for a dataset containing customer's past orders that are divided into
eight subgroups (clusters), hard clustering occurs when each customer is placed inside
one of the eight clusters. On the other hand, soft clustering assigns each customer a
probability of belonging to each of the eight clusters.

Considering that clusters are created based on the similarity between data points,
clustering algorithms can be further divided into several groups depending on the set
of rules used to measure similarity. Four of the most commonly known set of rules are
explained as follows:

Clustering | 41

•	 Connectivity-based models: This model's approach to similarity is based on
proximity in a data space. The creation of clusters can be done by assigning all
data points to a single cluster, and then partitioning the data into smaller clusters
as the distance between data points increases. Likewise, the algorithm can also
start by assigning each data point an individual cluster, and then aggregating data
points that are close by. An example of a connectivity-based model is hierarchical
clustering.

•	 Density-based models: As the name indicates, these models define clusters by
their density in the data space. This means that areas with a high density of data
points will become clusters, which are typically separated from one another by
low-density areas. An example of this is the DBSCAN algorithm.

•	 Distribution-based models: Models that fall in this category are based on the
probability that all data points from a cluster follow the same distribution, such
as a Gaussian distribution. An example of such a model is the expectation-
maximization algorithm.

•	 Centroid-based models: These models are based on algorithms that define a
centroid for each cluster, which is updated constantly by an iterative process. The
data points are assigned to the cluster where their proximity to the centroid is
minimized. An example of such a model is the k-means algorithm.

In conclusion, data points are assigned to clusters based on their similarity to each
other and considering that they differ greatly from data points in other clusters. This
classification into clusters can be either absolute or by determining the probability of
each data point belonging to each cluster.

Moreover, there is no fixed set of rules to determine similarity between data points,
which is why different clustering algorithms use different rules. Some of the most
commonly known sets of rules are connectivity-based, density-based, distribution-
based, and centroid-based.

Applications of Clustering

As with all machine-learning algorithms, clustering has many applications in different
fields, some of which are explained as follows:

•	 Search engine results: Clustering can be used to generate search engine results
containing keywords that are approximate to the keywords searched by the user
and ordered as per the search result with greater similarity. Take Google as an
example; it uses clustering segmentation not only for retrieving results, but also
for suggesting new possible searches.

42 | Unsupervised Learning: Real-Life Applications

•	 Recommendation programs: It can also be used in recommendation programs
that cluster together, for instance, people that fall into a similar profile, and then
make recommendations based on the products that each member of the cluster
has bought. Take Amazon, for example, which recommends more items based on
your purchase history and the purchases of similar users.

•	 Image recognition: This is where clusters are used to group together images
that are considered to be similar. For instance, Facebook uses clustering to help
suggest who is present in a picture.

•	 Market segmentation: Clustering can also be used for market segmentation
to divide a list of prospects or clients into subgroups, to provide a customized
experience or product. For example, Adobe uses clustering analysis to segment
customers, to target them differently by recognizing those who are more willing to
spend money.

The preceding examples demonstrate that clustering algorithms can be used to
solve different data problems in different industries, with the primary purpose of
understanding large amounts of historical data that, in some cases, can be used to
classify new instances.

Exploring a Dataset: Wholesale Customers Dataset
As part of the process of learning the behavior and applications of clustering algorithms,
the following sections of this chapter will focus on solving a real-life data problem using
the Wholesale Customers dataset, which is available at the UC Irvine Machine Learning
Repository.

Note

The Wholesale Customers dataset is available for download, and will be used in
this topic's activity. The process of downloading it will be explained during the
activity. However, students should access the following link to understand the
steps that are given: http://archive.ics.uci.edu/ml/datasets/Wholesale+customers.

Datasets in repositories may contain raw, partially preprocessed, or preprocessed
data. To use any of these datasets, ensure that you read the specifications of the
data available to understand the process that needs to be followed to model the
data effectively.

http://archive.ics.uci.edu/ml/datasets/Wholesale+customers

Exploring a Dataset: Wholesale Customers Dataset | 43

Understanding the Dataset

The suggested steps to be followed to set the book of action for a data problem will
be explained. Each step will be explained generically and will then be followed with
an explanation of its application in the current case study (the Wholesale Customers
dataset):

1.	 Considering that the dataset is obtained from an online repository, it is crucial to
understand the way in which data is presented by the authors.

The current dataset consists of a snippet of historical data of clients from
a wholesale distributor. It contains a total of 440 instances (each row) and
eight features (each column).

2.	 Next, it is important to determine the purpose of the study, which is dependent on
the data available. Even though this might seem like a redundant statement, many
data problems become problematic because the researcher does not have a clear
view of the purpose of the study, and hence the preprocessing methodology, the
model, and the performance metrics are wrongly chosen.

The purpose of using clustering algorithms over the Wholesale Customers dataset
is to understand the behavior of each customer. This will allow you to group
customers with similar behaviors in one cluster. The behavior of a customer will
be defined by how much they spent on each category of products, as well as the
channel and the region where they bought products.

3.	 Subsequently, explore all the features that are available. This is mainly done for
two reasons. First, to rule out features that are considered to be of low relevance
based on the purpose of the study, and second, to understand the way the values
are presented to determine some of the preprocessing techniques that may
be needed.

44 | Unsupervised Learning: Real-Life Applications

The current case study has eight features, each one of which is considered
to be relevant to the purpose of the study. Each feature is explained in the
following table:

Figure 2.1: A table explaining each of the features in the case study

In the preceding table, no features are to be dismissed and nominal features have
already been handled by the author of the dataset.

As a summary, the first thing to do when choosing a dataset or being handed one is
to understand the characteristics visible at first glance, which involves recognizing
the information available, then determining the purpose of the project, and finally
revising the feature parameters to select those that will be part of the study. Post
this, data visualization is used to continue to understand data, after which the data is
preprocessed.

Data Visualization | 45

Data Visualization
Once data has been revised generically to ensure that it can be used for the desired
purpose, it is time to load the dataset and use data visualization to further understand
it. Data visualization is not a requirement for developing a machine-learning project,
especially when dealing with datasets with hundreds or thousands of features. However,
it has become an integral part of machine learning, mainly for visualizing the following:

•	 Specific features that are causing trouble (for example, those that contain many
missing or outlier values) and to understand how to deal with them

•	 The results from the model, such as the clusters created or the number of
predicted instances for each labeled category

•	 The performance of the model in order to see the behavior along different
iterations

Its popularity in the tasks detailed previously is explained by the fact that the human
brain processes information easily when it is presented as charts or graphs, which
allows us to have a general understanding of the data. It also helps to identify areas that
need attention, such as outliers.

Loading the Dataset Using Pandas

One way of storing a dataset to easily manage it is by using Pandas DataFrames. These
work as two-dimensional size-mutable matrices with labeled axes. They facilitate the
use of different Pandas functions to modify the dataset for preprocessing purposes.

Most datasets found in online repositories or gathered by companies for data analysis
are saved in CSV (comma-separated values) files. CSV files are text files that display
the data in the form of a table. Columns are separated by commas (,) and rows are on
separate lines.

Loading a dataset stored in a CSV file and placing it into a DataFrame is extremely easy
with the Pandas function read_csv(). It receives as input the path to your file, as shown
in the following screenshot:

Note

When datasets are stored in different forms of files, such as in Excel or SQL
databases, use the Pandas functions read_xlsx() or read_sql(), respectively.

46 | Unsupervised Learning: Real-Life Applications

Figure 2.2: A screenshot showing the output of the read.csv() function

As shown in the preceding screenshot, the variable named data is of a Pandas
DataFrame.

Visualization Tools

There are different open source visualization libraries available, from which Seaborn
and Matplotlib stand out. In the previous chapter, Seaborn was used to load and display
data; however, from this section onward, Matplotlib will be used as the visualization
library. This is mainly because Seaborn is built on top of Matplotlib with the sole
purpose of introducing a couple of plot types and to improve the format of the displays.
Therefore, once you learn Matplotlib, you can also import Seaborn to improve the visual
quality of your plots.

Note

For more information on the Seaborn library, visit the following link: https://
seaborn.pydata.org/.

In general terms, Matplotlib is an easy-to-use Python library that prints 2D quality
figures. For simple plotting, the pyplot model of the library will suffice.

https://seaborn.pydata.org/
https://seaborn.pydata.org/

Data Visualization | 47

Some of the most commonly used plot types are explained in the following table:

Figure 2.3: A table listing the commonly used plot types (*). The functions in the third column can be
used after importing Matplotlib and its pyplot model.

Note

Access Matplotlib's documentation on the type of plot that you wish to use so that
you can play around with the different arguments that you can use to edit the
result of your plot.

48 | Unsupervised Learning: Real-Life Applications

Exercise 5: Plotting a Histogram of One Feature from the Noisy Circles

Dataset

In this exercise, we will be plotting a histogram of one feature from the noisy circles
dataset. Follow these steps to complete this exercise:

Note

Use the same Jupyter Notebook for all exercises and activities within this chapter.

For all the exercises and activities within this chapter, you will need to have Python
3.6, Matplotlib, NumPy, Jupyter, and Pandas installed on your system.

1.	 Open a Jupyter Notebook to implement this exercise.

2.	 First, import all of the libraries that you are going to be using by typing the
following code:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(0)

The Pandas library is used to save the dataset into a DataFrame, Matplotlib is used
for visualization, and NumPy is used in later exercises of this chapter, but since the
same notebook will be used, it is imported here.

Note

A numpy random seed is used to ensure that results obtained during the exercises
of this chapter are consistent from run to run. Otherwise, they would change
at every run due to the random initialization that occurs every time a model
is trained.

Data Visualization | 49

3.	 Create the noisy circles dataset by using the scikit-learn utility datasets. Type in
the following code:

from sklearn import datasets
n_samples = 1500
data = datasets.make_circles(n_samples=n_samples, factor=.5, noise=.05)[0]
plt.scatter(data[:,0], data[:,1])
plt.show()

The first line imports the utility from the scikit-learn library. Next, the number of
instances is set to 1500. A variable named data is created to store the values, which
are created by using the make_circles() function. Finally, a scatter plot is drawn to
display the data points in a data space, which looks similar to the one shown here.

Note

The Matplotlib function show() is used to trigger the display of the plot,
considering that the above lines only create it. When programming in Jupyter
Notebooks it is not required, but in any other environment is required.

Figure 2.4: A scatter plot of the noisy circles dataset

50 | Unsupervised Learning: Real-Life Applications

The final output is a dataset with two features and 1,500 instances.

Note

The make_circles() function is used to create a toy dataset to visualize clustering
algorithms. It works by making a large circle containing a smaller circle in 2D.
To learn more about the make_circles() function, visit the documentation of
scikit-learn in the following link: http://scikit-learn.org/stable/modules/generated/
sklearn.datasets.make_circles.html.

4.	 Create a histogram out of one of the two features:

plt.hist(data[:,0])
plt.show()

The plot will look similar to the one shown below:

Figure 2.5: A screenshot showing the histogram obtained using data from the first feature

Congratulations! You have successfully created a histogram using Matplotlib. Similarly,
different plot types can be created using Matplotlib.

In conclusion, visualization tools help you better understand the data available in a
dataset, the results from a model, and the performance of the model. This happens
because the human brain is receptive to visual forms, instead of large files of data.

http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html

Data Visualization | 51

Matplotlib has become one of the most commonly used libraries to perform data
visualization. Among the different plot types that the library supports are histograms
bar charts, and scatter plots.

Activity 3: Using Data Visualization to Aid the Preprocessing Process

Before you proceed with this section, follow these steps to download the dataset that
you will use for this activity:

1.	 Access the following link: http://archive.ics.uci.edu/ml/datasets/
Wholesale+customers.

2.	 Below the dataset's title, find the download section and click on Data Folder.

3.	 Click on Wholesale customers data.csv to trigger the download and save the file
in the same path as that of your current Jupyter Notebook.

The marketing team of your company wants to know the different profiles of its clients
to focus its marketing effort to suit the individual needs of each profile. To do so, it has
provided your team with a list of 440 pieces of previous sales data. Your first task is to
preprocess the data, and your boss has asked you to specifically use data visualization
to help him understand the decisions you took in that process. For this purpose, you
need to load a CSV dataset using Pandas and use data visualization tools to help the
preprocessing process. The following steps will guide you:

1.	 Load the previously downloaded dataset by using the Pandas function read_
csv(), given that the dataset is stored in a CSV file. Store the dataset in a Pandas
DataFrame named data.

Note

Make sure to import the required libraries first. For instance, Pandas and
Matplotlib.

2.	 Check for missing values in your DataFrame. If present, handle the missing values
and support your decision with data visualization.

Note

Use data.isnull().sum() to check the entire dataset at once.

http://archive.ics.uci.edu/ml/datasets/Wholesale+customers
http://archive.ics.uci.edu/ml/datasets/Wholesale+customers

52 | Unsupervised Learning: Real-Life Applications

3.	 Check for outliers in your DataFrame. If present, handle the outliers and support
your decision with data visualization.

Note

Mark as outliers all the values that are three standard deviations away from the
mean.

4.	 Rescale the data using the formula for normalization or standardization.

Note

Standardization tends to work better for clustering purposes. Also, you can find the
solution for this activity on page 185.

On checking the above, you should find no missing values in the dataset and 6
features with outliers that are to be handled.

k-means Algorithm
The k-means algorithm is used for data without a labeled class. It involves dividing the
data into K number of subgroups. The classification of data points into each group is
done based on similarity, as explained before, which for this algorithm is measured by
the distance from the center (centroid) of the cluster. The final output of the algorithm
are the data points related to a cluster and the centroid of each cluster, which can be
used to label new data in the same clusters.

The centroid of each cluster represents a collection of features that can be used to
define the nature of the data points that belong there.

Understanding the Algorithm

The k-means algorithm works through an iterative process that involves the following
steps:

1.	 Based on the number of clusters defined by the user, the centroids are generated
either by setting initial estimates or by randomly choosing them from the data
points. This step is known as initialization.

k-means Algorithm | 53

2.	 All the data points are assigned to the nearest cluster in the data space by
measuring their respective distances from the centroid, known as the assignment
step. The objective is to minimize the squared Euclidean distance, which can be
defined by the following formula:

Figure 2.6: A formula minimizing the Euclidean distance

Here, c represents a centroid, x refers to a data point, and dist() is the Euclidean
distance.

3.	 Centroids are calculated again by computing the mean of all data points belonging
to a cluster. This step is known as the update step.

Steps 2 and 3 are repeated in an iterative process, until a criterion is met. The criterion
can be as follows:

•	 The number of iterations defined.

•	 The data points do not change from cluster to cluster.

•	 The Euclidean distance is minimized.

The algorithm is set to always arrive at a result, even though this result may converge to
a local or a global optimum.

The k-means algorithm receives several parameters as inputs to run the model. The
most important ones to consider are the initialization methods (init) and the number
of clusters (K), which are explained as follows.

Note

To check out the other parameters of the k-means algorithm in the scikit-learn
library, visit the following link: http://scikit-learn.org/stable/modules/generated/
sklearn.cluster.KMeans.html.

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

54 | Unsupervised Learning: Real-Life Applications

Initialization Methods

An important input of the algorithm is the initialization method to be used to generate
the initial centroids. The initialization methods allowed by the scikit-learn library are
explained as follows:

1.	 k-means++: This is the default option. Centroids are chosen randomly from the set
of data points, considering that centroids must be far away from one another. To
achieve this, the method assigns a higher probability of being a centroid to those
data points that are farther away from other centroids.

2.	 random: This method chooses K observations randomly from the data points as
the initial centroids.

Choosing the Number of Clusters

As discussed previously, the number of clusters into which the data is to be divided is
set by the user; hence, it is important to choose the number of clusters appropriately.

One of the metrics used to measure the performance of the k-means algorithm is the
mean distance of the data points from the centroid of the cluster that they belong to.
However, this measure can be counterproductive as the higher the number of clusters,
the smaller the distance between the data points and its centroid, which may result in
the number of clusters (K) matching the number of data points, thereby harming the
purpose of clustering algorithms.

To avoid this, an approach that can be followed is to plot the average distance between
data points and its center against the number of clusters. The appropriate number
of clusters corresponds to the breaking point of the plot, where the rate of decrease
drastically changes. In the following diagram, the dotted circle represents the ideal
number of clusters:

k-means Algorithm | 55

Figure 2.7: A graph demonstrating how to estimate the breaking point

Exercise 6: Importing and Training the k-means Algorithm over a Dataset

The following exercise will be performed using the same dataset that was created in
the previous exercise using the make_circles() function. Considering this, use the same
Jupyter Notebook that you used to develop the previous exercise:

1.	 Open the Jupyter Notebook that you used for the previous exercise. Here, you
should have imported all the required libraries and stored the dataset in a variable
named data.

2.	 Import the k-means algorithm from scikit-learn, by using the following code:

from sklearn.cluster import KMeans

3.	 To choose the value for K, calculate the average distance of data points from
its centroid in relation to the number of clusters. Consider that the maximum
numbers of clusters to be created should not exceed 20. The following is a snippet
of the code:

ideal_k = []
for i in range(1,21):
 est_kmeans = KMeans(n_clusters=i)
 est_kmeans.fit(data)

 ideal_k.append([i,est_kmeans.inertia_])

56 | Unsupervised Learning: Real-Life Applications

First, create the variables that will store the values as an array and name it ideal_k.
Next, perform a for loop that starts at one cluster and goes as high as desired
(considering that the max number of clusters must not exceed the number of
instances).

For the previous example, there was a limitation of maximum 20 clusters to
be created. As a consequence to this limitation, the for loop goes from 1 to 20
clusters.

Note

Remember that range() is an upper bound exclusive function, meaning that the
range will go as far as one value below the upper bound. When the upper bound is
21, the range will go as far as 20.

Inside the for loop, initialize the algorithm with the number of clusters to be
created, and then fit the data to the model. Next, append the pairs of data (number
of clusters, average distance to the centroid) to the list named ideal_k:

ideal_k = np.array(ideal_k)

The average distance to the centroid does not need to be calculated as the model
outputs it under the attribute inertia_, which can be called out as [model_name].
inertia_.

Finally, the ideal_k list is converted into a NumPy array so that you are able to
feed it as a parameter of a Matplotlib plot.

4.	 Plot the relations calculated in the preceding step to find the ideal K to input to
the final model:

plt.plot(ideal_k[:,0],ideal_k[:,1])
plt.show()

k-means Algorithm | 57

Figure 2.8: A screenshot showing the output of the plot function used

The breaking point of the plot is around 5.

5.	 Train the model with K=5. Use the following code:

est_kmeans = KMeans(n_clusters=5)
est_kmeans.fit(data)
pred_kmeans = est_kmeans.predict(data)

The first line initializes the model with 5 as the number of clusters. Then, the data
is fit to the model. Finally, the model is used to assign a cluster to each data point.

58 | Unsupervised Learning: Real-Life Applications

6.	 Plot the results from the clustering of data points into clusters:

plt.scatter(data[:,0], data[:,1], c=pred_kmeans)
plt.show()

Figure 2.9: A screenshot showing the output of the plot function used

Since the dataset only contains two features, each feature is passed as input to the
scatter plot function. Additionally, the labels obtained from the clustering process
are used as the colors to display the data points. Thus, each data point is located in
the data space based on the values of both features, and the colors represent the
clusters that were formed.

Note

For datasets with over two features, the visual representation of clusters is not
as explicit as the shown in the preceding screenshot. This is mainly because
the location of each data point (observation) in the data space is based on the
collection of all of its features, and visually it is only possible to display up to three
features.

Congratulations! You have successfully imported and trained the k-means algorithm.

In conclusion, the k-means algorithm seeks to divide the data into K number of clusters,
K being a parameter set by the user. Data points are grouped together based on their
proximity to the centroid of a cluster, which is calculated by an iterative process.

Mean-Shift Algorithm | 59

The initial centroids are set according to the initialization method defined. Then, all
data points are assigned to the clusters with the centroid closer to their location in the
data space, using the Euclidean distance as measure. Once the data points are divided
into clusters, the centroid of each cluster is recalculated as the mean of all data points.
The process is repeated several times until a stopping criterion is met.

Activity 4: Applying the k-means Algorithm to a Dataset

Ensure that you have completed Activity 3 before you proceed with this activity.

Continuing with the analysis of your company's past orders, you are now in charge
of applying the k-means algorithm over the dataset. Using the previously loaded
Wholesale Customers dataset, apply the k-means algorithm to the data and classify the
data into clusters. Follow these steps to complete this activity:

1.	 Open the Jupyter Notebook that you used for the previous activity. There, you
should have imported all the required libraries and stored the dataset in a variable
named data.

2.	 Calculate the average distance of the data points from its centroid in relation to
the number of clusters. Based on this distance, select the appropriate number of
clusters to train the model.

3.	 Train the model and assign a cluster to each data point in your dataset. Plot the
results.

Note

You can use the subplots() function from Matplotlib to plot two scatter graphs at
a time. To learn more about this function, visit Matplotlib's documentation at the
following link: https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplots.html.
Also, you can find the solution for this activity on page 189.

The visualization of clusters will differ based on the number of clusters (k) and the
features selected to be plotted.

Mean-Shift Algorithm
The mean-shift algorithm works by assigning each data point a cluster based on the
density of data points in the data space, also known as the mode in a distribution
function. Contrary to the k-means algorithm, the mean-shift algorithm does not require
you to specify the number of clusters as a parameter.

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplots.html

60 | Unsupervised Learning: Real-Life Applications

The algorithm works by modeling the data points as a distribution function, where
high-density areas (high concentration of data points) represent high peaks. Then, the
general idea is to shift each data point until it reaches its nearest peak, which becomes
a cluster.

Understanding the Algorithm

The first step of the mean-shift algorithm is the representation of the data points as
a density distribution. To do so, the algorithm builds upon the idea of Kernel Density
Estimation (KDE), which is a method used to estimate the distribution of a set of data:

Figure 2.10: An image depicting the idea behind Kernel Density Estimation

In the preceding diagram, the red dots represent the data points that the user inputs
and the colored lines represent the estimated distribution of the data points. The peaks
(high-density areas) will be the clusters. The process of assigning data points to each
cluster is explained next:

1.	 A window of a specified size (bandwidth) is drawn around each data point.

2.	 The mean of the data inside the window is computed.

3.	 The center of the window is shifted to the mean.

Mean-Shift Algorithm | 61

Steps 2 and 3 are repeated until the data point reaches a peak, which will determine the
cluster to which it belongs.

The bandwidth value should be coherent with the distribution of the data points in the
dataset. For example, for a dataset normalized between 0 and 1, the bandwidth value
should be within that range, while for a dataset with all values between 1.000 and 2.000,
it would make more sense to have a bandwidth between 100 and 500.

In the following diagram, the estimated distribution is represented by the lines, and the
data points are the red dots. In each of the boxes, the data points shift to the nearest
peak. All the data points in a certain peak belong to that cluster:

Figure 2.11: A sequence of images illustrating the working of the mean-shift algorithm

The number of shifts that a data point has to make to reach a peak depends on its
bandwidth (the size of the window) and its distance from the peak.

Note

To explore all the parameters of the mean-shift algorithm in scikit-learn, visit
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html.

Exercise 7: Importing and Training the Mean-Shift Algorithm over a Dataset

The following exercise will be performed using the same dataset that was created in the
first exercise of this chapter. Considering this, use the same Jupyter Notebook that you
used to develop the previous exercise:

1.	 Open the Jupyter Notebook that you used for the previous exercise.

2.	 Import the k-means algorithm class from scikit-learn by using the following code:

from sklearn.cluster import MeanShift

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html

62 | Unsupervised Learning: Real-Life Applications

3.	 Train the model with a bandwidth of 0.5:

est_meanshift = MeanShift(0.5)
est_meanshift.fit(data)
pred_meanshift = est_meanshift.predict(data)

Considering that the dataset has created values ranging from −1 to 1, the
bandwidth value should not be above 1. The value of 0.5 was chosen after trying
out other values, such as 0.1 and 0.9.

Note

Take into account that the bandwidth is a parameter of the algorithm, and as a
parameter, it can be fine-tuned to arrive at the best performance. The fine-tuning
process will be further evaluated in later chapters.

First, the model is initialized with a bandwidth of 0.5. Next, the model is fit to the
data. Finally, the model is used to assign a cluster to each data point.

4.	 Plot the results from the clustering of data points into clusters:

plt.scatter(data[:,0], data[:,1], c=pred_meanshift)
plt.show()

Figure 2.12: The plot obtained using the preceding code

Mean-Shift Algorithm | 63

Again, as the dataset only contains two features, both are passed as inputs to the
scatter function. Also, the labels obtained from the clustering process are used as
the colors to display the data points.

The total number of clusters that has been created is four.

Congratulations! You have successfully imported and trained the mean-shift algorithm.

In conclusion, the mean-shift algorithm starts by drawing the distribution function
that represents the set of data points. This process consists of creating peaks in high-
density areas, while leaving flat the areas with a low density.

Following this, the algorithm proceeds to classify the data points into clusters by
shifting each point slowly and iteratively until it reaches a peak, which becomes
its cluster.

Activity 5: Applying the Mean-Shift Algorithm to a Dataset

Your boss wants you to also apply the mean-shift algorithm to the dataset to see
which algorithm fits the data better. Therefore, using the previously loaded Wholesale
Consumers dataset, apply the mean-shift algorithm to the data and classify the data
into clusters. Follow these steps to complete this activity:

1.	 Open the Jupyter Notebook that you used for the previous activity.

Note

Considering that you are using the same Jupyter Notebook, be careful not to
overwrite a previous variable.

2.	 Train the model and assign a cluster to each data point in your dataset. Plot the
results.

Note

The solution for this activity can be found on page 192.

The visualization of clusters will differ based on the bandwidth and the features
selected to be plotted.

64 | Unsupervised Learning: Real-Life Applications

DBSCAN Algorithm
The density-based spatial clustering of applications with noise (DBSCAN) algorithm
groups together points that are close to each other (with many neighbors) and marks
those points that are further away with no close neighbors as outliers.

According to this, and as its name states, the algorithm classifies data points based on
the density of all data points in the data space.

Understanding the Algorithm

The DBSCAN algorithm requires two main parameters: epsilon and the minimum
number of observations.

Epsilon, also known as eps, is the maximum distance that defines the radius within
which the algorithm searches for neighbors. The minimum number of observations, on
the other hand, refers to the number of data points required to form a high density area
(min_samples). However, the latter is optional in scikit-learn as the default value is set to
5:

Figure 2.13: An illustration of how the DBSCAN algorithm classifies data into clusters

In the preceding diagram, the blue dots are assigned to the blue shaded cluster (A) and
the orange dots are assigned to the orange shaded cluster (B). Moreover, the yellow
dots (C) are considered to be outliers, as they do not meet the required parameters to
belong to a high-density area.

DBSCAN Algorithm | 65

Some areas with a small concentration of points, such as the yellow dots at the bottom
of the image (C), may not constitute a cluster as the minimum number of data points to
form a high-density area is not met (which, for this example, is set to 5).

Note

Similar to the bandwidth parameter, the epsilon value should be coherent with the
distribution of the data points in the dataset considering that it represents a radius
around each data point.

According to this, each data point can be classified as follows:

•	 A core point: A point that has at least the minimum number of data points within
its eps radius.

•	 A border point: A point that is within the eps radius of a core point, but does not
have the required number of data points within its own radius.

•	 A noise point: All point that do not meet the preceding descriptions.

Note

To explore all parameters of the DBSCAN algorithm in scikit-learn, visit http://scikit-
learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html.

Exercise 8: Importing and Training the DBSCAN Algorithm over a Dataset

This exercise discusses how to import and train the DBSCAN algorithm over a dataset.
We will be using the dataset that we created in the first exercise of this chapter for this
activity:

1.	 Open the Jupyter Notebook that you used for the previous exercise.

2.	 Import the DBSCAN algorithm class from scikit-learn by using the following code:

from sklearn.cluster import DBSCAN

3.	 Train the model with epsilon equal to 0.1:

est_dbscan = DBSCAN(eps=0.1)
pred_dbscan = est_dbscan.fit_predict(data)

First, the model is initialized with eps of 0.1. Then, we use the fit_predict()
function to both fit the model to the data and assign a cluster to each data point.

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html

66 | Unsupervised Learning: Real-Life Applications

This bundled function, which includes both the fit and predict method at once, is
used because the DBSCAN algorithm in scikit-learn does not contain a predict()
method alone.

Again, the value of 0.1 was chosen after trying out other possible values.

4.	 Plot the results from the clustering process:

plt.scatter(data[:,0], data[:,1], c=pred_dbscan)
plt.show()

Figure 2.14: The plot obtained with the preceding code

As before, both features are passed as inputs to the scatter function. Also, the
labels obtained from the clustering process are used as the colors to display the
data points.

The total number of clusters that have been created is two.

As you can see, the total number of clusters created by each algorithm is different.
This is because, as mentioned previously, each of these algorithms defines
similarity differently, and as a consequence, each one of them interprets the data
differently.

Due to this, it is crucial to test different algorithms over the data to compare the
results and define which one generalizes better to the data. The following topic
will explore some methods to evaluate performance to help choose an algorithm.

Congratulations! You have successfully imported and trained the DBSCAN algorithm.

Evaluating the Performance of Clusters | 67

In conclusion, the DBSCAN algorithm bases its clustering classification on the density
of data points in the data space. This means that clusters are formed by data points with
many neighbors. This is done by considering that core points are those that contain
a minimum number of neighbors within a set radius, border points are those that
are located inside the radius of a core point but do not have the minimum number of
neighbors within their own radius, and noise points are those that do not meet any of
the specifications.

Activity 6: Applying the DBSCAN Algorithm to the Dataset

Thanks to your excellent work and fast turnaround, your boss wants you to also
apply the DBSCAN algorithm to the dataset. Using the previously loaded Wholesale
Consumers dataset, apply the DBSCAN algorithm to the data and classify the data into
clusters. Follow the following steps:

1.	 Open the Jupyter Notebook that you used for the previous activity.

2.	 Train the model and assign a cluster to each data point in your dataset. Plot the
results.

Note

The solution for this activity can be found on page 193.

The visualization of clusters will differ based on the epsilon and the features
selected to be plotted.

Evaluating the Performance of Clusters
After applying a clustering algorithm, it is necessary to evaluate how well the algorithm
has performed. This is especially important when it is difficult to visually evaluate the
clusters, for example, when there are several features.

Usually, with supervised algorithms, it is easy to evaluate the performance by simply
comparing the prediction of each instance with its true value (class). On the other hand,
when dealing with unsupervised models, it is necessary to pursue other strategies.
In the specific case of clustering algorithms, it is possible to evaluate performance by
measuring the similarity of the data points that belong to the same cluster.

68 | Unsupervised Learning: Real-Life Applications

Available Metrics in Scikit-Learn

Scikit-learn allows its users to use two different scores for evaluating the performance
of unsupervised clustering algorithms. The main idea behind these scores is to measure
how well-defined the cluster's edges are, instead of measuring the dispersion within a
cluster. Hence, it is worth mentioning that the scores do not take into account the size
of each cluster.

The Silhouette Coefficient Score calculates the mean distance between each point and
all the other points of a cluster (a), as well as the mean distance between each point and
all the other points of its nearest clusters (b). It relates both of them according to the
following equation:

Figure 2.15: An equation showing how the silhouette coefficient score is calculated

The result of the score is a value between -1 and 1. The lower the value, the worse the
performance of the algorithm. Values around 0 will imply overlapping of clusters. It is
also important to clarify that this score does not work very well when using density-
based algorithms such as DBSCAN.

The Calinski–Harabasz Index was created to measure the relation between the
variance of each cluster and the variance of all clusters. More specifically, the variance
of each cluster is the mean square error of each point with respect to the centroid of
that cluster. On the other hand, the variance of all clusters refers to the overall inter-
cluster variance.

The higher the value of the Calinski–Harabasz Index, the better the definition and
separation of the clusters. There is no acceptable cut-off value, so the performance of
the algorithms using this index is evaluated through comparison, where the algorithm
with the highest value is the one that performs best. As with the Silhouette Coefficient,
this score does not perform well on density-based algorithms such as DBSCAN.

Unfortunately, the scikit-learn library does not contain other methods for effectively
measuring the performance of density-based clustering algorithms, and although the
methods mentioned here may work in some cases to measure the performance of these
algorithms, when they do not, there is no other way to measure this other than via
manual evaluation.

Evaluating the Performance of Clusters | 69

Exercise 9: Evaluating the Silhouette Coefficient Score and Calinski–Harabasz

Index

In this exercise, we will learn how to estimate the two scores discussed in the previous
section in scikit-learn:

1.	 Import the Silhouette Coefficient score from the scikit-learn library:

from sklearn.metrics import silhouette_score

2.	 Calculate the Silhouette Coefficient score for each of the algorithms created in all
of the previous exercises. Use the Euclidean distance as the metric for measuring
the distance between points.

The input parameters of the silhouette_score() function are the data, the
predicted values of the model (the clusters assigned to each data point), and the
distance measure:

kmeans_score = silhouette_score(data, pred_kmeans, metric='euclidean')
meanshift_score = silhouette_score(data, pred_meanshift,
metric='euclidean')
dbscan_score = silhouette_score(data, pred_dbscan, metric='euclidean')
print(kmeans_score, meanshift_score, dbscan_score)

The scores come to be around 0.359, 0.344, and 0.0893 for the k-means, mean-
shift, and DBSCAN algorithms, respectively.

You can observe that both k-means and mean-shift algorithms have similar scores,
while the DBSCAN score is closer to zero. This can indicate that the performance
of the first two algorithms is much better, and hence, the DBSCAN algorithm
should not be considered to solve the data problem.

Nevertheless, it is important to remember that this type of score does not perform
well when evaluating the DBSCAN algorithm. This is basically because as one
cluster is surrounding the other one, the score can interpret that as an overlap
when in reality the clusters are very well-defined.

3.	 Import the Calinski-Harabasz Index from the scikit-learn library:

from sklearn.metrics import calinski_harabaz_score

70 | Unsupervised Learning: Real-Life Applications

4.	 Calculate the Calinski-Harabasz index for each of the algorithms created in the
previous exercises in this chapter. The input parameters of the calinski_harabaz_
score() function are the data and the predicted values of the model (the clusters
assigned to each data point):

kmeans_score = calinski_harabaz_score(data, pred_kmeans)
meanshift_score = calinski_harabaz_score(data, pred_meanshift)
dbscan_score = calinski_harabaz_score(data, pred_dbscan)
print(kmeans_score, meanshift_score, dbscan_score)

The values come to approximately 1377.8, 1304.07, and 0.158 for the k-means,
mean-shift, and DBSCAN algorithms, respectively. Once again, the results are
similar to the ones obtained using the Silhouette Coefficient score, where both the
k-means and mean-shift algorithms performed similarly well, while the DBSCAN
algorithm did not.

Moreover, it is worth mentioning that the scale of each method (the Silhouette
Coefficient score and the Calinski-Harabasz index) differs significantly, so they are
not easily comparable.

Congratulations! You have successfully measured the performance of three different
clustering algorithms.

In conclusion, the scores presented in this topic are a way of evaluating the
performance of clustering algorithms. However, it is important to consider that the
results from these scores are not definitive as their performance varies from algorithm
to algorithm.

Activity 7: Measuring and Comparing the Performance of the Algorithms

Your boss is not sure about the performance of the algorithms as it cannot be evaluated
graphically. Therefore, she has asked you to measure the performance of the algorithms
using numerical metrics that she can use to make comparisons. You need to use the
previously trained models and calculate the Silhouette Coefficient score and the
Calinski-Harabasz index to measure the performance of the algorithms. The following
steps provide hints regarding how you can do this:

1.	 Open the Jupyter Notebook that you used for the previous activity.

Summary | 71

2.	 Calculate both the Silhouette Coefficient score and the Calinski-Harabasz index
for all of the models that you trained previously.

Note

The solution for this activity can be found on page 195.

The results may differ based on the choices made during the activities and the
initialization of certain parameters in each algorithm.

Summary
Data problems where the input data is unrelated to a labeled output is handled using
unsupervised learning. The main objective of such data problems is to understand the
data by finding patterns that, in some cases, can be generalized to new instances. In this
context, this chapter covered clustering algorithms, which work by aggregating similar
data points into clusters, while separating data points that greatly differ. After this,
the chapter covered data visualization tools that can be used to analyze problematic
features during data preprocessing. We also saw how to apply different algorithms to
the dataset and compare their performance to choose the one that best fits the data.
Two different metrics for performance evaluation, the Silhouette Coefficient metric and
the Calinski-Harabasz index, were also discussed in light of the inability to represent all
of the features in a plot, and thereby graphically evaluate performance on scikit-learn.
However, it is important to understand that the result from the metric performance is
not absolute, as some metrics perform better (by default) for some algorithms than for
others.

In the next chapter, we will understand the steps involved in working with a supervised
machine learning algorithm, and learn how to perform error analysis.

Learning Objectives

By the end of this chapter, you will be able to:

•	 Explain the difference between training, validation, and testing sets

•	 Perform data partitioning for split or cross validation

•	 Describe the different metrics to evaluate performance

•	 Choose the performance metric that fits the purpose of the study

•	 Perform error analysis

This chapter explains the methodology to approach a machine learning classification problem.

Supervised Learning:
Key Steps

3

74 | Supervised Learning: Key Steps

Introduction
In the previous chapter, we saw how to solve data problems using unsupervised
learning algorithms and applied the concepts that we learned to some real-life datasets.
We also learned how to compare the performance of various algorithms and studied
two different metrics for performance evaluation.

In this chapter, we will explore the main steps for working on a supervised machine
learning problem. First, the chapter explains the different sets in which data needs
to be split for training, validating, and testing your model. Next, the most common
evaluation metrics will be explained. It is important to highlight that, among all the
metrics available, only one should be selected as the evaluation metric of the study,
and its selection should be made by considering the purpose of the study. Finally, the
students will learn how to perform error analysis, with the purpose of understanding
what measures to take to improve the results of a model.

Model Validation and Testing
Nowadays, it is easy for almost anybody to start working in a machine-learning project
with all the information available online. However, choosing the right algorithm for your
data is a challenge when there are many alternatives available. Due to this, the right
algorithm is chosen by a process of trial and error, where the different alternatives are
tested.

Moreover, the decision process to arrive at a good model covers not only the selection
of the algorithm but also the tuning of its hyperparameters. To do this, a conventional
approach is to divide the data into three parts, training, validation, and testing sets,
which will be explained further now.

Data Partition

Data partition is a process involving the division of the dataset into three subsets so
that each set can be used for a different purpose. This way, the development of a model
is not affected by the introduction of bias. The following is an explanation of each
subset:

•	 Training set: As the name suggests, this is the portion of the dataset used for
training the model. It consists of the input data (the observations) paired with an
outcome (the label class).

This set can be used to train as many models as desired, using different
algorithms. However, performance evaluation is not done over this set.

Model Validation and Testing | 75

•	 Validation set: Also known as the dev set, this set is used to perform an unbiased
evaluation of each model while fine-tuning the hyperparameters. Performance
evaluation is frequently done over this set of data to test different configurations
of the hyperparameters.

Although the model does not learn from this data, but from the training set data, it
is indirectly affected by the data in this set due to its participation in the process
of deciding the changes over the parameters.

After running different configurations of hyperparameters and based on the
performance of the model over the validation set, a winning model is selected for
each algorithm.

•	 Testing set: This is used to perform the final evaluation of performance of the
model (after training and validation) over unseen data. This helps measure the
performance of the model with real-life data for future predictions.

The testing set is also used to compare competing models. Considering that the
training set was used to train different models and the validation set was used to
fine-tune the hyperparameters of each model to select a winning configuration,
the purpose of the testing set is to perform an unbiased comparison of the final
models.

The diagram below shows the process of selecting the ideal model and using the sets
mentioned previously.

Figure 3.1: Dataset partition purposes

76 | Supervised Learning: Key Steps

The sections A–D shown in the preceding figure previously are described below:

•	 Section A refers to the process of training the model for the desired algorithms,
using the data contained in the training set.

•	 Section B represents the fine-tuning process of the hyperparameters of each
model. The selection of the best configuration of hyperparameters is based on the
performance of the model over the validation set.

•	 Section C shows the process of selecting the final model by comparing the final
configuration of each algorithm based on their performance over the testing set.

•	 Finally, section D represents the selected model that will be applied to real-life
data for prediction.

Initially, machine learning problems were solved by only partitioning data into two sets:
a training and a testing set. This approach consisted of using the training set to train
the model, which is the same as the approach with three sets. However, the testing set
was used for fine-tuning the hyperparameters as well as for determining the ultimate
performance of the algorithm.

Although this approach can also work, models that are created using this approach do
not always perform equally well over unseen real-life data. This is mainly because, as
mentioned previously, the use of the set to fine-tune the hyperparameters indirectly
introduces bias to the model.

Considering this, there is one way to achieve a less biased model while dividing
the dataset into two sets, which is called a cross-validation split. We will explore
this later.

Split Ratio

Now that the differences among the purposes of the various sets is clear, it is important
to clarify the split ratio in which data needs to be divided. Although there is no exact
science for calculating the split radio, there are a couple of things to consider when
doing so:

•	 Size of the dataset: Previously, when data was not easily available, datasets
contained between 100 to 100,000 instances, and the conventionally accepted split
ratio was 60/20/20% for the training, validation, and testing sets, respectively.

Model Validation and Testing | 77

Nowadays, with software and hardware improving every day, researchers can put
together datasets that contain over a million instances. This capacity to gather
huge amounts of data allows the split ratio to be 98/1/1%, respectively. This is
mainly because the larger the dataset, the more data that can be used for training
a model, without compromising the amount of data left for the validation and
testing sets.

•	 The algorithm: It is important to consider that some algorithms may require
higher amounts of data to train a model. In this case, like with the preceding
approaches, you should always opt for a larger training set.

Other algorithms, for example, do not require the validation and testing sets to
be split equally. For instance, a model with fewer hyperparameters can be easily
tuned, which allows the validation set to be smaller than the testing set. However,
if a model has many hyperparameters, you will need to have a larger validation set.

Nevertheless, even though the preceding measures serve as a guide for splitting the
dataset, it is always important to consider the distribution of your dataset and the
purpose of the study. Considering that the model is going to be used with data with a
different distribution than the one used to train the model, the real-life data, even if
limited, must at least be a part of the testing set to make sure that the model will work
for the desired purpose.

The following diagram displays the proportional partition of the dataset into three
subsets. It is important to highlight that the training set must be larger than the other
two, as it is the one to be used for training the model. Additionally, it is possible to
observe that both the training and validation sets have an effect on the model, while the
testing set is mainly used to validate the actual performance of the model with real-
life data. Considering this, the training and validation sets must come from the same
distribution:

Figure 3.2: Visualization of the split ratio

78 | Supervised Learning: Key Steps

Exercise 10: Performing Data Partition over a Sample Dataset

In this exercise, we will be performing data partition over the iris dataset using the
split ratio method.

Note

For the exercises and activities within this chapter, you will need to have Python
3.6, NumPy, Jupyter, Pandas, and scikit-learn installed on your system.

1.	 Open a Jupyter Notebook to implement this exercise. The partition in this exercise
will be done using the three-splits approach.

2.	 Import the iris toy dataset using scikit-learn's datasets package and store it in a
variable named iris_data. Use the following code snippet:

from sklearn.datasets import load_iris
iris_data = load_iris()

Note

It is a good practice to import all of the required libraries, packages, and modules
at the beginning of your project. However, during the following exercises and
activities, it will not be handled this way for visualization purposes.

The first line imports the load_iris function from scikit-learn's datasets package.
This function loads a toy dataset provided by scikit-learn. Next, we execute the
method to retrieve the output.

Note

To check the characteristics of the dataset, visit the following link: http://scikit-
learn.org/stable/modules/generated/sklearn.datasets.load_iris.html.

The output from the load_iris function is a dictionary-like object, which
separates the features (callable as data) from the target (callable as target) into two
attributes.

http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html

Model Validation and Testing | 79

3.	 Convert each attribute (data and target) into a Pandas DataFrame to facilitate data
manipulation. To do this, first import Pandas, and then create both DataFrames.
Print the shape of both DataFrames:

import pandas as pd
X = pd.DataFrame(iris_data.data)
Y = pd.DataFrame(iris_data.target)
print(X.shape, Y.shape)

The output from the print function should be as follows:

(150,4) (150,1)

Here, the values in the first parenthesis represent the shape of the DataFrame X
(known as the features matrix) and the values in the second parenthesis refer to
the shape of the DataFrame Y (known as the target matrix).

Note

The scikit-learn library has a function to partition data into two subsets (a train and
a test set). As the objective of this exercise is to partition data into three subsets,
the function will be used twice to achieve the desired result.

4.	 Import the train_test_split function from scikit-learn's model_selection package:

from sklearn.model_selection import train_test_split

5.	 Perform a first split of the data using the function that we just imported. Use the
following code snippet:

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2)

The inputs of the train_test_split function are the two matrices (X,Y) and the
size of the test set, as a value between 0 and 1, that represents the proportion.

Note

Considering that we are dealing with a small dataset, we use a split ratio of
60/20/20%. Remember that for larger datasets, the split ratio usually changes to
98/1/1%.

80 | Supervised Learning: Key Steps

The outputs of the function are four matrices: X divided into two subsets (train and
test) and Y divided into two corresponding subsets.

print(X_train.shape, X_test.shape, Y_train.shape, Y_test.shape)

By printing the shape of all 4 matrices, it is possible to confirm that the size of the
test subset (both X and Y) is 20% of the total size of the original dataset (150 * 0.2 =
30), while the size of the train set is the remaining 80%:

(120,4) (30,4) (120,1) (30,1)

6.	 To create a validation set (dev set), we will use the train_test_split function to
divide the train sets obtained in the last step. However, before doing so, to obtain a
dev set of shape same as that of the test, it is necessary to calculate the proportion
of the size of the test set over the size of the train set. This value will be used as
the test_size for the next step:

dev_size = 30/120

Here, 30 is the size of the test set created and 120 is the size of the train set that
will be further split. The result from this operation is 0.25.

7.	 Use the train_test_split function to divide the train set into two subsets (train
and dev sets). Use the result from the operation in the last step as the test_size:

X_train, X_dev, Y_train, Y_dev = train_test_split(X_train, Y_train, test_
size = 0.25)

The result from the entire exercise are 6 different subsets of the following shapes:

X_train = (90,4)
Y_train = (90,1)
X_dev = (30,4)
Y_dev = (30,1)
X_test = (30,4)
Y_test = (30,1)

Congratulations! You have successfully split the dataset into three subsets to develop
efficient machine learning projects. Feel free to test different split ratios.

In conclusion, the split ratio to partition data is not fixed, and should be decided by
taking into account the amount of data available, the type of algorithm to be used, and
the distribution of the data.

Model Validation and Testing | 81

Cross Validation

Cross validation is also a procedure used to partition data by resampling the data
used to train and validate the model. It consists of a parameter, K, that represents the
number of groups in which the dataset will be divided.

Due to this, the procedure is also referred to as K-fold cross-validation, where K is
usually replaced by the selected number. For instance, a model created using a 10-fold
cross-validation procedure signifies a model where data is divided into 10 subgroups.
The procedure of cross validation is illustrated below:

Figure 3.3: Cross-validation procedure

The preceding diagram displays the general procedure followed during cross validation:

1.	 Data is first shuffled randomly, considering that the process is repeated.

2.	 Data is split into K subgroups.

3.	 The validation/testing set is selected as one of the subgroups that was created.
The rest of the subgroups become the training set.

4.	 The model is trained over the training set, as usual. The model is evaluated using
the validation/testing dataset.

5.	 The result from that iteration is saved. The hyperparameters are tuned based on
the results, and the process starts again by reshuffling the data. The process is
repeated K number of times.

According to the preceding steps, the dataset is divided into K sets and the model is
trained K times. Each time, one set is selected as the dev set, and the remaining sets are
used for the training process.

Cross-validation can be done using a three-split approach or a two-split one. For
the former, the dataset is initially divided into training and testing sets, after which
the training set is divided using cross-validation to create different configurations
of training and validation sets. The latter approach, on the other hand, uses cross-
validation over the entire dataset.

82 | Supervised Learning: Key Steps

The popularity of cross-validation is due to its capacity to build "unbiased" models that
will perform well over unseen data. Moreover, it is also popular because it allows you to
build highly effective models out of a small dataset.

There is no exact science to choosing the value for K, but it is important to consider
that lower values for K tend to decrease variance and increase bias, while higher K
values result in the opposite behavior. Also, the lower the K, the less expensive the
processes, which results in faster running times.

Note

The concepts of variance and bias will be explained later.

Exercise 11: Using Cross-Validation to Partition the Train Set into a Training

and a Validation Set

In this exercise, we will be performing data partition over the iris dataset using the
cross validation method.

1.	 Open a Jupyter Notebook to implement this exercise.

2.	 Load the iris dataset as per the previous exercise and create the Pandas
DataFrames containing the features and target matrices:

from sklearn.datasets import load_iris
import pandas as pd

iris_data = load_iris()
X = pd.DataFrame(iris_data.data)
Y = pd.DataFrame(iris_data.target)

3.	 Split the data into training and testing sets, using the train_test_split function
that you learned about in the previous exercise:

from sklearn.model_selection import train_test_split
X, X_test, Y, Y_test = train_test_split(X, Y, test_size = 0.2)

4.	 Import the KFold class from scikit-learn's model_selection package:

from sklearn.model_selection import KFold

Model Validation and Testing | 83

5.	 Initialize the KFold class with a 10-fold configuration:

kf = Kfold(n_splits = 10)

6.	 Then, apply the split method to the data in X. This method will output the index
of the instances to be used as training and validation sets. The method creates 10
different split configurations. Save the output in a variable named splits:

splits = kf.split(X)

Note that it is not necessary to run the split method over the data in Y, as the
method only saves the index numbers, which will be the same for X and Y. The
actual splitting is handled next.

7.	 Perform a for loop that will go through the different split configurations. In
the loop body, create the variables that will hold the data for the training and
validation sets. Use the following code snippet:

for train_index, dev_index in splits:
X_train, X_dev = X.iloc[train_index], X.iloc[dev_index]
Y_train, Y_dev = Y.iloc[train_index], Y.iloc[dev_index]

The for loop goes through K number of configurations. In the body of the loop, the
data is split using the index numbers.

Note

The code to train and evaluate the model should be written inside the loop body,
given that the objective of the cross-validation procedure is to train and validate
the model using the different split configurations.

Congratulations! You have successfully performed a cross-validation split over a sample
dataset.

In conclusion, cross-validation is a procedure used to shuffle and split the data into
training and validation sets so that the process of training and validating is done each
time over different data, thus achieving a model with low bias.

84 | Supervised Learning: Key Steps

Activity 8: Data Partition over a Handwritten Digit Dataset

Your company specializes in recognizing handwritten characters. It wants to improve
the recognition of digits, which is why they have gathered a dataset of 1,797 handwritten
digits from 0 to 9. The images have already been converted into their numeric
representation, and so they have provided you with the dataset to split it into training/
validation/testing sets. You can choose to either perform conventional splitting or
cross-validation. Follow these steps to complete this activity:

1.	 Import the toy dataset digits using scikit-learn's datasets package and create a
Pandas DataFrame containing the features and target matrices.

2.	 Choose the appropriate approach for splitting the dataset and split it.

Note

The solution for this activity can be found on page 196. Also, note that the results
may vary depending on the approach and ratios used to spilt the dataset.

Evaluation Metrics
Model evaluation is indispensable for creating effective models that not only perform
well over the data that was used to train the model but also generalize to unseen
data. The task of evaluating the model is especially easy when dealing with supervised
learning problems, where there is a ground truth that can be compared against the
prediction of the model.

Determining the accuracy percentage of the model is crucial for its application
to unseen data that does not have a label class to compare to. Considering this, for
example, a model with an accuracy of 98% may allow the user to assume that the odds
of having an accurate prediction are high, and hence the model should be trusted.

The evaluation of performance, as mentioned previously, should be done over the
validation set (dev set) for fine-tuning the model, and over the test set for determining
the expected performance of the selected model over unseen data.

Evaluation Metrics for Classification Tasks

A classification task refers to a model where the class label is a discrete value, as
mentioned previously. Considering this, the most common measure to evaluate
the performance of such tasks is by calculating the accuracy of the model, which
involves comparing the actual prediction to the real value. Even though this may be an
appropriate metric in many cases, there are several others to consider as well before
choosing one.

Evaluation Metrics | 85

The most commonly used performance metrics are explained as follows.

Confusion Matrix

The confusion matrix is a table that contains the performance of the model, and is
described as follows:

•	 The columns represent the instances that belong to a predicted class.

•	 The rows refer to the instances that actually belong to that class (ground truth).

The configuration that confusion matrices present allow the user to quickly spot the
areas in which the model is having greater difficulty. Take, for instance, the following
table:

Figure 3.4: A confusion matrix of a digit classifier that recognizes the number 6

The following can be observed from the preceding table:

•	 By summing up the values in the first row, it is possible to know that there are
600 instances with the number 6. However, from those 600 instances, the model
predicted 556 as the number 6 and 44 as any other number. Hence, the model's
ability to predict true instances has a correctness level of 92.6%.

•	 Regarding the second row, there are also 600 instances that are any other number.
Nevertheless, out of those 600, the model predicted that 23 of them were the
number 6 and 477 were any other number. The model successfully predicted the
false instances 79.5% of the time.

Based on these statements, it is possible to conclude that the model is performing at its
worst when classifying the instances that are any other number.

86 | Supervised Learning: Key Steps

Considering that the rows in a confusion matrix refer to the occurrence or
non-occurrence of an event, and the columns refer to the model's predictions, the
values in the confusion matrix are explained as follows, and are shown in the following
table.

•	 True positives: Refers to the instances that the model correctly classified as
positive to the event in question. For example, the instances correctly classified as
the number 6.

•	 False positives: Refers to the instances that the model incorrectly classified as
positive to the event. For example, the any other number instances that were
incorrectly classified as the number 6.

•	 True negatives: Represents the instances that were correctly classified as negative
to the event. For example, the instances correctly classified as any other number.

•	 False negatives: Refers to the instances incorrectly classified as negative to the
event. For example, the number 6 instances that were incorrectly predicted as any
other number.

Figure 3.5: A table showing confusion matrix values

Accuracy

Accuracy, as explained previously, measures the model's ability to correctly classify
all instances. Although this is considered to be one of the simplest ways of measuring
performance, it may not always be a useful metric when the objective of the study is to
minimize/maximize the occurrence of one class independently of its performance over
other classes.

The accuracy level of the confusion matrix from Figure 3.4 is measured as follows:

Figure 3.6: An equation showing the calculation of accuracy

Evaluation Metrics | 87

Here, m is the total number of instances.

The 86% accuracy refers to the overall performance of the model in classifying both
class labels.

Precision

This metric measures the model's ability to correctly classify positive labels (the label
that represents the occurrence of the event) by comparing it to the total number of
instances predicted as positive.

This is represented by the ratio between the true positives and the sum of the true
positives and false positives, as shown in the following equation:

Figure 3.7: An equation showing the calculation of precision

The precision metric is only applicable to binary classification tasks, where there are
only two class labels (for instance, true or false). It could also be applied to multiclass
tasks considering that the classes are converted into two (for instance, being a 6 or
being any other number), where one of the classes refers to the instances that have a
condition while the other refers to those that do not.

For the example in Figure 3.4, the precision of the model is equal to 81.8%.

Recall

The recall metric measures the number of correctly predicted positive labels against all
positive labels. This is represented by the ratio between true positives and the sum of
true positives and false negatives:

Figure 3.8: An equation showing the calculation of recall

Again, this measure should be applied over two label classes.

The value of recall for the example in Figure 3.4 is 92.6%, which when compared to the
other two metrics, represents the highest performance of the model. The decision to
choose one metric or the other will depend on the purpose of the study, which will be
further explained later.

88 | Supervised Learning: Key Steps

Exercise 12: Calculating Different Evaluation Metrics over a Classification Task

In this exercise, we will be using the breast cancer toy dataset to calculate the
evaluation metrics using the scikit-learn library.

1.	 Open a Jupyter Notebook to implement this exercise.

2.	 For the following exercise, the breast cancer toy dataset will be used. This dataset
contains the final diagnosis (malignant or benign) of the analysis of masses found
in the breasts of 569 women. Use the following code to load and split the dataset,
which is the same as what we did for the previous exercises:

from sklearn.datasets import load_breast_cancer
data = load_breast_cancer()

import pandas as pd
X = pd.DataFrame(data.data)
Y = pd.DataFrame(data.target)

from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = 0.1,
random_state = 0)

Note that the dataset is divided into two subsets (train and test sets) mainly
because the purpose of this exercise is to learn how to calculate the evaluation
metrics using the scikit-learn package.

Note

The random_state parameter is used to set a seed that will ensure the same
results every time you run the code. This guarantees that you will get the same
results as the ones reflected in this exercise.

Different numbers can be used as the seed; however, use the same number as
suggested in the exercises and activities of this chapter to get the same results as
the ones shown.

3.	 Train a decision tree over the train set. Then, use the model to predict the class
label over the test set. Use the following code:

from sklearn import tree
model = tree.DecisionTreeClassifier(random_state = 0)
model = model.fit(X_train, Y_train)

Evaluation Metrics | 89

Y_pred = model.predict(X_test)

As a general explanation, the model is first initialized using a random_state to set a
seed. Then, the fit method is used to train the model using the data from the train
sets (both X and Y). Finally, the predict method is used to trigger the predictions
over the data in the test set (only X). The data from Y_test will be used to compare
the predictions to the ground truth.

Note

The steps for training a supervised learning model will be explained further in later
chapters.

4.	 Use scikit-learn to construct a confusion matrix. See the following code:

from sklearn.metrics import confusion_matrix
confusion_matrix = confusion_matrix(Y_test, Y_pred)

The result is displayed as follows, where the ground truth is measured against the
prediction:

[[21, 1],
[6, 29]]

5.	 Calculate the accuracy, precision, and recall of the model, by comparing Y_test
and Y_pred:

from sklearn.metrics import accuracy_score, precision_score, recall_score

accuracy = accuracy_score(Y_test, Y_pred)
precision = precision_score(Y_test, Y_pred)
recall = recall_score(Y_test, Y_pred)

The results are displayed as follows:

Accuracy = 0.8771
Precision = 0.9666
Recall = 0.8285

90 | Supervised Learning: Key Steps

Given that the positive labels are those where the mass is malignant, it can be
concluded that the instances that the model predicts as malignant have a high
probability (96.6%) of being malignant, but for the instances predicted as benign,
the model has a 17.15% (100%–82.85%) probability of being wrong.

Congratulations! You have successfully calculated evaluation metrics over a
classification task.

Choosing an Evaluation Metric

There are several metrics that can be used to measure the performance of a model over
classification tasks, and selecting the right one is key for building a model that performs
exceptionally well for the purpose of the study.

Previously, the importance of understanding the purpose of the study was mentioned
as a useful insight to determine the preprocessing techniques required to perform over
the dataset. Moreover, the purpose of the study is also useful to determine the ideal
metric to measure the performance of the model.

Why is the purpose of the study important for selecting the evaluation metric? Because
by understanding the main goal of the study, it is possible to decide whether it is
important to focus attention on the overall performance of the model or only on one of
the class labels.

For instance, a model that has been created to recognize when birds are present in a
picture does not need to perform well in recognizing which other animals are present
in the picture as long as it does not classify them as birds. This means that the model
needs to focus on improving the performance of correctly classifying birds only.

On the other hand, for a model that has been created to recognize hand-written
characters, where no one character is more important than another, the ideal metric
would be the one that measures the overall accuracy of the model.

What would happen if more than one metric is selected? It would become difficult to
arrive at the best performance of the model, considering that measuring two metrics
simultaneously can result in needing different approaches to improve results.

Evaluation Metrics for Regression Tasks

Considering that regression tasks are those where the final output is continuous,
without a fixed number of output labels, the comparison between the ground truth
and the prediction is based on the proximity of the values rather than on them having
exactly the same values. For instance, when predicting house prices, a model that
predicts a value of USD 299,846 for a house valued at USD 300,000 can be considered
to be a good model.

Evaluation Metrics | 91

The two metrics most commonly used for evaluating the accuracy of continuous
variables are the Mean Absolute Error (MAE) and the Root Mean Squared Error
(RMSE), which are explained here:

•	 Mean Absolute Error: This metric measures the average absolute difference
between a prediction and the ground truth, without taking into account the
direction of the error. The formulae to calculate the MAE is as follows:

Figure 3.9: An equation showing the calculation of MAE

Here, m refers to the total number of instances, y is the ground truth, and y_hat is
the predicted value.

•	 Root Mean Squared Error: This is a quadratic metric that also measures the
average magnitude of error between the ground truth and the prediction. As
the name suggests, the RMSE is the square root of the average of the squared
differences, as shown in the following formula:

Figure 3.10: An equation showing the calculation of RMSE

Both these metrics express the average error, in a range from 0 to infinity,
where the lower the values, the better the performance of the model. The main
difference between these two metrics is that the MAE assigns the same weight
of importance to all errors, while the RMSE squares the error, assigning higher weights
to larger errors.

Considering this, the RMSE metric is especially useful in cases where larger errors
should be penalized, meaning that outliers are taken into account in the measurement
of performance. For instance, the RMSE metric can be used when a value that is off by 4
is more than twice as bad as being off by 2. The MAE, on the other hand, is used when a
value that is off by 4 is just twice as bad as a value off by 2.

92 | Supervised Learning: Key Steps

Exercise 13: Calculating Evaluation Metrics over a Regression Task

In this exercise, we will be calculating evaluation metrics over a model trained using
linear regression. We will use the boston toy dataset for this purpose.

1.	 Open a Jupyter Notebook to implement this exercise.

2.	 For the following exercise, the boston toy dataset will be used. This dataset
contains data of 506 house prices in Boston. Use the following code to load and
split the dataset, the same as we did for the previous exercises:

from sklearn.datasets import load_boston
data = load_boston()

import pandas as pd
X = pd.DataFrame(data.data)
Y = pd.DataFrame(data.target)

from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = 0.1,
random_state = 0)

3.	 Train a linear regression over the train set. Then, use the model to predict the
class label over the test set. Use the following code:

from sklearn import linear_model
model = linear_model.LinearRegression()
model = model.fit(X_train, Y_train)

Y_pred = model.predict(X_test)

As a general explanation, the model is first initialized. Then, the fit method is
used to train the model using the data from the train sets (both X and Y). Finally,
the predict method is used to trigger the predictions over the data in the test
set (only X). The data from Y_test will be used to compare the predictions to the
ground truth.

4.	 Calculate both the MAE and RMSE metrics:

import numpy as np
from sklearn.metrics import mean_absolute_error, mean_squared_error

MAE = mean_absolute_error(Y_test, Y_pred)
RMSE = np.sqrt(mean_squared_error(Y_test, Y_pred))

Evaluation Metrics | 93

The results are displayed as follows:

MAE = 3.9343
RMSE = 6.4583

Note

The scikit-learn library allows you to directly calculate the MSE. To calculate the
RMSE, the square root of the value obtained from the mean_squared_error()
function is calculated. By using the square root, we ensure that the values from
MAE and RMSE are comparable.

From the results, it is possible to conclude that the model performs well over the
test set, considering that both values are close to zero. Nevertheless, this also
means that the performance can still be improved.

Congratulations! You have successfully calculated evaluation metrics on a
regression task.

Activity 9: Evaluating the Performance of the Model Trained over a

Handwritten Dataset

You continue to work on improving the model to recognize handwritten digits. The
team has built a model and they want you to evaluate the performance of the model.
Follow these steps to complete this activity:

1.	 Import the digits toy dataset using scikit-learn's datasets package and create a
Pandas DataFrame containing the features and target matrices.

2.	 Split the data into training and testing sets. Use 20% as the size of the testing set.

3.	 Train a decision tree over the train set. Then, use the model to predict the class
label over the test set.

Note

To train the Decision Tree, revisit Exercise 12.

94 | Supervised Learning: Key Steps

4.	 Use scikit-learn to construct a confusion matrix.

5.	 Calculate the accuracy of the model.

6.	 Calculate the precision and recall. Considering that both the precision and recall
can only be calculated over binary data, assume that we are only interested in
classifying instances as number 6 or any other number.

To be able to calculate the precision and recall, use the following code to convert
Y_test and Y_pred into a one-hot vector. A one-hot vector consists of a vector that
only contains zeros and ones. For this activity, the 0 represents the number 6, and
the 1 represents any other number. This converts the class labels (Y_test and Y_
pred) into binary data, meaning that there are only two possible outcomes instead
of 10 different ones.

Then, calculate the precision and recall using the new variables:

Y_test_2 = Y_test[:]
Y_test_2[Y_test_2 != 6] = 1
Y_test_2[Y_test_2 == 6] = 0

Y_pred_2 = Y_pred
Y_pred_2[Y_pred_2 != 6] = 1
Y_pred_2[Y_pred_2 == 6] = 0

Note

The solution for this activity can be found on page 198.

You should obtain the following values as the output:

Accuracy = 84.72%
Precision = 98.41%
Recall = 98.10%

Error Analysis
Building an average model, as explained so far, is surprisingly easy through the use of
the scikit-learn library. Considering this, the key aspects to building an exceptional
model come from the analysis and decision making on the part of the researcher.

Error Analysis | 95

As we have seen so far, some of the most important tasks are choosing and
pre-processing the dataset, determining the purpose of the study, and selecting the
appropriate evaluation metric. After handling all of this and taking into account that
a model needs to be fine-tuned in order to reach the highest standards, most data
scientists recommend training a simple model, regardless of the hyperparameters, to
get the study started.

Error analysis is then introduced as a very useful methodology to turn an average model
into an exceptional one. As the name suggests, it consists of analyzing the errors among
the different subsets of the dataset in order to target the condition that is affecting the
model on a greater scale.

Bias, Variance, and Data Mismatch

To understand the different conditions that may affect a machine learning model, it
is important to understand what a Bayes Error is. A Bayes Error, also known as the
irreducible error, is the lowest possible error that can be achieved.

Before the improvements in technology and artificial intelligence, the Bayes Error was
considered to be the lowest possible error achievable by humans (Human Error). For
instance, for a process that most humans achieve with an error rate of 0.1, but top
experts achieve with an error rate of 0.05, the Bayes Error would be 0.05.

Nevertheless, nowadays, Bayes Error is redefined as being the lowest possible error
that machines can achieve, which is unknown considering that, as humans, we can only
understand as far as Human Error goes. Due to this, when using the Bayes Error to
analyze errors, it is not possible to know the lowest limit once the model is below the
Human Error.

96 | Supervised Learning: Key Steps

The following diagram is useful for analyzing the error rates among the different sets
of data and determining the condition that is affecting the model in greater proportion.
The purpose of the diagram is to find the errors that differ to a greater extent to
each other so that the model can be diagnosed and improved accordingly. Moreover,
it is important to highlight that the value of the errors for each set is calculated by
subtracting the evaluation metrics from 100% or 1 (depending on the scale on which the
performance was measured). For instance, a performance of 86% (0.86) over the test set
translates into a Test Set Error of 14% (0.14):

Figure 3.11: Error analysis methodology

The decision to determine which condition is affecting the model is done by taking
the error rate of a set and subtracting the value of the error rate of the set above. The
two sets with the highest numerical difference are the ones to look into to diagnose
the model. However, it is important to consider that negative differences should not be
taken into account as the main idea behind error analysis is to bring down error rates as
much as possible.

According to this, when the error rate above is lower, the condition explained in the
table serves to identify the issue and to set the measures to improve the results. On the
other hand, if the error rate above is higher, the problem is not between those two sets,
but the two sets above.

Error Analysis | 97

For example, the values in the preceding diagram show that the greatest difference
is located between the Bayes Error and the Training set error, considering that those
two errors have a greater (positive) numerical distance when subtracting one from the
other. This helps to determine that the model is suffering from high bias.

Note

The train/dev set is a combination of data in the training and the validation (dev)
sets. It is usually of the same shape of the dev set and it contains the same amount
of data from both sets.

An explanation of each of the conditions is as follows, along with some techniques to
avoid/fix them:

•	 Bias: Also known as underfitting, bias occurs when the model is not generalizing
to the training set, which translates into the model performing poorly for all three
sets (training, validation, and testing sets) as well as for unseen data.

Underfitting is the easiest condition to detect and it usually requires changing to
a different algorithm that may be a better fit for the data available. With regard to
neural networks, it can be fixed by constructing a bigger network or by training
for longer periods of time.

•	 Variance: Also known as overfitting, this condition refers to the model's inability
to perform well over data different than that of the training set. It basically means
that the model has overfitted to the training data by learning the details and
outliers of the data, without making any generalizations. A model suffering from
overfitting will not perform well over the dev or test sets, or over unseen data.

Overfitting can be fixed by tuning the different hyperparameters of the algorithm,
often with the objective of simplifying the algorithm's approximation of the data.
For instance, for decision trees, it can be addressed by pruning the tree to delete
some of the details learned from the training data. In neural networks, on the
other hand, it can be addressed by adding regularization techniques that seek to
reduce some of the neuron's influence in the overall result.

Additionally, adding more data to the training set can also help the model avoid
high variance.

98 | Supervised Learning: Key Steps

•	 Data mismatch: This occurs when the training and validation sets do not follow
the same distribution. This affects the model as although it generalizes based
on the training data, this generalization does not describe the data found in the
validation set. For instance, a model created to describe landscape photographs
may suffer from data mismatch if it is trained using high definition images,
while the actual images that will be used once the model has been built are
unprofessional.

Logically, the best way to avoid data mismatch is to make sure that the sets
follow the same distribution. For example, you can do this by shuffling together
the images from both sources (professional and unprofessional images) and then
dividing them into the different sets.

Nevertheless, in the case that there is not enough data that follows the same
distribution of unseen data (data that will be used in the future), it is highly
recommended to create the dev and test sets entirely out of that data and
add the remaining to the large training set. From the preceding example, the
unprofessional images should be used to create the dev and test sets, adding the
remaining ones to the training set, along with the professional images.

This helps to train a model with a set that contains enough images to make a
generalization, but it uses data with the same distribution as the unseen data to
fine-tune the model.

Finally, if the data from all sets does in fact come from the same distribution, this
condition actually refers to a problem of high variance and should be handled as
such.

•	 Overfitting to the dev set: Lastly, similar to the variance condition, this occurs
when the model is not generalizing but instead is fitting the dev set too well.

It should be addressed using the same approaches that were explained for high
variance.

Exercise 14: Calculating the Error Rate over Different Sets of Data

In this exercise, we will calculate error rates for a model trained using a decision tree.
We will use the breast cancer dataset for this purpose.

1.	 Open a Jupyter Notebook to implement this exercise.

2.	 For the following exercise, the breast cancer dataset will be used. Use the
following code to load the dataset and create the DataFrames containing the
features and target matrices:

from sklearn.datasets import load_breast_cancer

Error Analysis | 99

data = load_breast_cancer()

import pandas as pd
X = pd.DataFrame(data.data)
Y = pd.DataFrame(data.target)

3.	 Split the dataset into training, validation, and testing sets:

from sklearn.model_selection import train_test_split

X_new, X_test, Y_new, Y_test = train_test_split(X, Y, test_size = 0.1,
random_state = 101)

X_train, X_dev, Y_train, Y_dev = train_test_split(X_new, Y_new, test_size
= 0.11, random_state = 101)

4.	 Create a train/dev set that combines data from both the training and
validation sets:

import numpy as np
np.random.seed(101)

indices_train = np.random.randint(0, len(X_train), 25)
indices_dev = np.random.randint(0, len(X_dev), 25)

X_train_dev = pd.concat([X_train.iloc[indices_train,:], X_dev.
iloc[indices_dev,:]])

Y_train_dev = pd.concat([Y_train.iloc[indices_train,:], Y_dev.
iloc[indices_dev,:]])

First, we import NumPy and set a random seed. Next, the NumPy function random.
randint() is used to select random indices from the X_train set. To do that, 25
random integers are generated in a range between 0 and the total length of X_
train. The same process is used to generate the random indices of the dev set.
Finally, a new variable is created to store the selected values of X_train and X_dev,
as well as a variable to store the corresponding values from Y_train and Y_dev.

The variables that have been created contain 25 instances/labels from the train
set and 25 instances/labels from the dev set.

100 | Supervised Learning: Key Steps

5.	 Train a decision tree over the train set. Use the following code:

from sklearn import tree

model = tree.DecisionTreeClassifier(random_state = 101)
model = model.fit(X_train, Y_train)

6.	 Use the predict method to generate the predictions for all of your sets (train,
train/dev, dev, and test). Next, considering that the objective of the study is to
maximize the model's ability to predict all malignant cases, calculate the recall
scores for all predictions. Store all of the scores in a variable named scores:

from sklearn.metrics import recall_score
X_sets = [X_train, X_train_dev, X_dev, X_test]
Y_sets = [Y_train, Y_train_dev, Y_dev, Y_test]

scores = []
for i in range(0, len(X_sets)):
 pred = model.predict(X_sets[i])
 score = recall_score(Y_sets[i], pred)
 scores.append(score)

The error rates for all of the sets of data are shown in the following table:

Figure 3.12: Error rates from the Breast Cancer model

Here, the Bayes Error was assumed as 0 considering that the classification
between a malignant and a benign mass is done by taking a biopsy of the mass.

From the preceding table, it can be concluded that the model performs
exceptionally well for the purpose of the study, considering that all error rates are
close to 0, which is the lowest possible error.

Error Analysis | 101

The highest difference in error rates is found between the train/dev set and the
dev set, which refers to data mismatch. However, taking into account that all the
datasets come from the same distribution, this condition is considered a high
variance issue, where adding more data to the training set should help reduce the
error rate.

Congratulations! You have successfully calculated the error rate of all subsets of
the data.

Activity 10: Performing Error Analysis over a Model Trained to Recognize

Handwritten Digits

Based on the different metrics that you have provided to your team to measure the
performance of the model, they have selected accuracy as the ideal metric. Considering
this, your team has asked you to perform error analysis to determine how the model
could be improved. Follow these steps to achieve this:

1.	 Import the digits toy dataset using scikit-learn's datasets package and create a
Pandas DataFrame containing the features and target matrices.

2.	 Split the data into training, validation, and testing sets. Use 0.1 as the size of the
test set, and an equivalent number to build a validation set of the same shape.

3.	 Create a train/dev set for both the features and target values that contains 89
instances/labels of the train set and 89 instances/labels of the dev set.

4.	 Train a decision tree over that training set data.

5.	 Calculate the error rate for all sets of data, and determine which condition is
affecting the performance of the model.

Note

The solution for this activity can be found on page 199.

102 | Supervised Learning: Key Steps

Summary
When developing machine learning models, one of the main goals is for the model to be
capable of generalizing so that it can be applicable to future unseen data, instead of just
learning a set of instances very well but performing poorly on new data. Accordingly,
a methodology for validation and testing was explained in this chapter, which involved
splitting the data into three sets: a training set, a dev set, and a test set. This approach
eliminates the risk of bias. After this, the chapter covered how to evaluate the
performance of a model for both classification and regression problems. Finally, we
covered how to analyze the performance and perform error analysis for each of the sets
and detect the condition affecting the model's performance.

In the next chapter, we will focus on applying different algorithms to a real-life dataset,
with the underlying objective of applying the steps learned here to choose the best
performing algorithm for the case study.

Learning Objectives

By the end of this chapter, you will be able to:

•	 Identify the purpose of a case study

•	 Explain the methodologies of three different supervised learning algorithms used for
classification

•	 Solve a supervised learning classification problem using different algorithms

•	 Perform error analysis by comparing the results of different algorithms

•	 Identify the algorithm with the best performance

This chapter describes a practical implementation of a supervised algorithm to a real-world
dataset.

Supervised Learning
Algorithms: Predict

Annual Income

4

106 | Supervised Learning Algorithms: Predict Annual Income

Introduction
In the previous chapter, we covered the key steps involved in working with a supervised
learning data problem. These steps aim to create high performance algorithms, as
explained previously. This chapter focuses on applying different algorithms to a real-life
dataset, with the underlying objective of applying the steps that we learned previously
to choose the best performing algorithm for the case study. Considering this, you
will analyze and preprocess a dataset, and then create three models using different
algorithms. These models will be compared to one another, in order to measure
performance.

Exploring the Dataset
Real-life applications are crucial for cementing knowledge. Therefore, this chapter
consists of a real-life case study involving a classification task, where the key steps
that you learned in the previous chapter will be applied in order to select the best
performing model.

To accomplish this, the Census Income Dataset will be used, which is available at the UC
Irvine Machine Learning Repository.

Note

To download the dataset, visit http://archive.ics.uci.edu/ml/datasets/
Census+Income.

Once you have located the repository, follow these steps to download the dataset:

1.	 First, click the Data Folder link.

2.	 For this chapter, the data available under adult.data will be used. Once you are
inside of the link, you should be able to see the data.

3.	 Right-click it and select Save as.

4.	 Save it as a .csv file.

Note

Open the file and add header names over each column to make the pre-
preprocessing easier. For instance, the first column should have the header Age,
as per the features available in the dataset. These can be seen in the preceding
link, under Attribute Information.

http://archive.ics.uci.edu/ml/datasets/Census+Income
http://archive.ics.uci.edu/ml/datasets/Census+Income

Exploring the Dataset | 107

Understanding the Dataset

To build a model that fits the data accurately, it is important to understand the different
details of the dataset, as mentioned in previous chapters.

First, the data that's available is revised to understand the size of the dataset and the
type of supervised learning task to be developed: classification or regression. Next, the
purpose of the study is clearly defined, even if it is obvious. For supervised learning, the
purpose is closely linked to the class labels. Finally, each feature is analyzed, so that we
can be aware of their type for preprocessing purposes.

The Census Income Dataset is a collection of demographical data from adults, which
was obtained from the 1994 Census Dataset. For this chapter, only the data available
under the adult.data link has been used. The dataset consists of 32,561 instances, 14
features, and 1 binary class label. Considering that the class labels are discrete, our task
is to achieve a classification.

Through this quick evaluation of data, it is possible to observe that some features
present missing values in the form of a question mark. This is common when dealing
with datasets that are available online and should be handled by replacing the symbol
with an empty value (not a space). Other common forms of missing values are the NULL
value and a dash.

To edit missing values symbols in Excel, use the Replace functionality, as follows:

1.	 Find what: Input the symbol that is being used to signify a missing value
(for example, ?).

2.	 Replace with: Leave it blank (do not enter a space).

This way, once we import the dataset into the code, NumPy will be able to find the
missing values so that it can handle them.

The prediction task for this dataset involves determining whether a person earns over
50K dollars a year. According to this, the two possible outcome labels are >50K (greater
than 50K) or <=50K (less than, or equal to 50K).

108 | Supervised Learning Algorithms: Predict Annual Income

A brief explanation of each of the features in the dataset is shown in the following table:

Feature Type Note Relevant

age
Quantitative

(continuous)
The age of the individual. Yes

workclass
Qualitative

(nominal)

The type of employment
of the individual.

Yes

fnlwgt
Quantitative

(continuous)

The number of people the
census takers believe the
individual represents.

No; the values were
subjective to the census
taker

education
Qualitative

(ordinal)

The highest education
level achieved, by the
individual.

No; the education-num
feature represents the
same information, but
is preferred because
it is presented in
numerical form

education-num
Quantitative

(continuous)

The highest education
level achieved in
numerical form.

Yes

marital-status
Qualitative

(nominal)

The marital status of the
individual.

Yes

occupation
Qualitative

(nominal)

The current occupation
of the individual.

Yes

relationship
Qualitative

(nominal)
A relationship value that
represents the individual.

No; this feature is
ignored since its
purpose is not clear.

race
Qualitative

(nominal)
The race of the individual.

Although (in some
cases) this feature
may be relevant, for
ethical reasons, it
will be excluded from
the study*

Exploring the Dataset | 109

sex
Qualitative

(nominal)
The gender of the
individual.

Although (in some
cases) this feature
may be relevant, for
ethical reasons, it
will be excluded from
the study*

capital-gain
Quantitative

(continuous)

All of the individual's
recorded capital gains.

Yes

capital-loss
Quantitative

(continuous)

All of the individual's
recorded capital loss.

Yes

hours-per-week
Quantitative

(continuous)

The number of hours
that the individual
works per week.

Yes

native-country
Qualitative

(nominal)

The native country of the
individual.

Yes

Figure 4.1: Dataset feature analysis

Note

*Publisher's Note: Gender and race would have impacted the earning potential of
an individual at the date this study was conducted. However, for the purpose of
this chapter, we have decided to exclude these categories from our exercises and
activities.

We recognize that due to biases and discriminatory practices, it is impossible
to separate issues such as gender, race, and educational and vocational
opportunities. The removal of certain features from our dataset in the
preprocessing stage of these exercises is not intended to ignore the issues, nor
the valuable work undertaken by organizations and individuals working in the civil
rights sphere.

We would strongly recommend the reader to consider the sociopolitical impacts
of data and the way it is used, and to consider how past prejudices can be
perpetuated by using historical data to introduce biases into new algorithms.

110 | Supervised Learning Algorithms: Predict Annual Income

From the preceding table, it is possible to conclude the following:

•	 Five features are not relevant to the study: fnlwgt, education, relationship, race,
and sex. These features must be deleted from the dataset before we proceed with
the preprocessing and training of the model.

•	 Out of the remaining features, four are presented as qualitative values.
Considering that many algorithms do not take qualitative features into account,
the values should be represented in numerical form.

Using the concepts that we learned in previous chapters, the preceding statements, as
well as the preprocessing process for handling outliers and missing values, can be taken
care of. The following steps explain the logic of this process:

1.	 You need to import the dataset and drop the features that are irrelevant to the
study.

2.	 You should check for missing values. Considering that the feature with the most
missing values (occupation) has 1,843 instances, there will be no need to delete or
replace the missing values, as they represent only 5% or less of the entire dataset.

3.	 You must convert the qualitative values to their numeric representations.

4.	 You should check for outliers. Upon using three standard deviations to detect
outliers, the feature with the maximum number of outliers (capital-loss) will be the
one with 1,470 instances, which is again less than 5% of the entire dataset. Again,
they can be left unhandled.

The preceding process will convert the original dataset into a new dataset with 32,561
instances (since no instances were deleted), but with nine features and a class label. All
values should be in their numerical forms.

Note

Make sure that you perform the preceding preprocessing step, as it will be used to
begin all the activities in this chapter.

Naïve Bayes Algorithm | 111

Naïve Bayes Algorithm
Naïve Bayes is a classification algorithm based on Bayes' Theorem that naively assumes
independency between features and assigns the same weights (degree of importance)
to all features. This means that the algorithm assumes that no single feature correlates
to or affects another. For example, although weight and height are somehow
correlated when predicting a person's age, the algorithm assumes that each feature is
independent. Additionally, the algorithm considers all features equally important. For
instance, even though the education degree may influence the earnings of a person to a
greater degree than the number of children the person has, the algorithm still considers
both features equally important.

Although real-life datasets contain features that are not equally important, nor
independent, this algorithm is popular among scientists, as it performs surprisingly well
over large datasets. Also, it is worth mentioning that thanks to its simplistic approach,
it runs very quickly, allowing for its application to problems that require predictions
in real time. Moreover, it is frequently used for text classification, as it commonly
outperforms more complex algorithms.

How Does It Work?

The algorithm converts the input data into a summary of occurrences of each class
label against each feature, which is then used to calculate the likelihood of one event (a
class label), given a combination of features. Finally, this likelihood is normalized against
the likelihood of the other class labels. The result is the probability of an instance
belonging to each class label. The sum of the probabilities must be one, and the class
label with a higher probability is the one that the algorithm chooses as the prediction.

Let's take, for example, the data presented in the following tables:

Figure 4.2: A) Input data, B) Occurrence count

112 | Supervised Learning Algorithms: Predict Annual Income

The table on the left represents the data that is input to the algorithm used to build the
model. The table on the right refers to the occurrence count that the algorithm uses
implicitly to calculate the probabilities.

To calculate the likelihood of an event occurring when given a set of features, the
algorithm multiplies the probability of the event occurring, given each individual
feature, with the probability of the occurrence of the event independently of the rest of
the features, as follows:

Figure 4.3: Equation for the calculation of the likelihood of an event occurring

Here, A1 refers to an event (one of the class labels) and E represents the set of features,
where E1 is the first feature and En is the last feature in the dataset. Note that the
multiplication of these probabilities can only be made by assuming independency
between features.

The preceding equation is calculated for all possible outcomes (all class labels), and then
the normalized probability of each outcome is calculated, as follows:

Figure 4.4: Equation for the calculation of normalized probability of an event

For the example in Figure 4.2, given a new instance with weather equal to sunny and
temperature equal to cool, the calculation of probabilities is as follows:

Figure 4.5: Calculation of the likelihood and probabilities for the example dataset

Naïve Bayes Algorithm | 113

By looking at the preceding equations, it is possible to conclude that the prediction
should be yes.

It is important to mention that for continuous features, the summary of occurrences is
done by creating ranges. For instance, for a feature of price, the algorithm may count
the number of instances with prices below 100K, as well as the instances with prices
above 100K.

Moreover, the algorithm may encounter some issues if one value of a feature is never
associated with one of the outcomes. This is an issue mainly because the probability of
the outcome given that feature will be zero, which influences the entire calculation. In
the preceding example, for predicting the outcome of an instance with weather equal to
mild and temperature equal to cool, the probability of no, given the set of features will
be equal to zero, considering that the probability of no, given mild weather, computes
to zero, since there are no occurrences of mild weather when the outcome is no.

To avoid this, the Laplace estimator technique should be used. Here, the fractions
representing the probability of the occurrence of an event given a feature, P[A|E1], are
modified by adding 1 to the numerator while also adding the number of possible values
of that feature to the denominator.

For this example, to perform a prediction for a new instance with a weather equal to
mild and temperature equal to cool, using the Laplace estimator would be done as
follows:

Figure 4.6: Calculation of the likelihood and probability using the Laplace estimator
for the example dataset

114 | Supervised Learning Algorithms: Predict Annual Income

Here, the fraction that calculates the occurrences of yes, given mild weather, goes from
2/7 to 3/10, as a result of the addition of 1 to the numerator and 3 (for sunny, mild,
and rainy) to the denominator. The same goes for the other fractions that calculate
the probability of the event, given a feature. Note that the fraction that calculates the
probability of the event occurring independently of any feature is left unaltered.

Nevertheless, as you have learned so far, the scikit-learn library allows you to train
models and then use them for predictions, without needing to hardcode the math.

Exercise 15: Applying the Naïve Bayes Algorithm

Now, let's apply the Naïve Bayes algorithm to a Fertility Dataset, which aims to
determine whether the fertility level of an individual has been affected by their
demographics, their environmental conditions, and their previous medical conditions.

Note

For the exercises and activities within this chapter, you will need to have Python
3.6, NumPy, Jupyter, Pandas, and scikit-learn installed on your system.

1.	 Download the Fertility Dataset from: http://archive.ics.uci.edu/ml/datasets/
Fertility.

Go to the link and click on Data Folder. Click on fertility_Diagnosis.txt and then
right-click it and select Save as. Save it as a .csv file.

2.	 Open a Jupyter Notebook to implement this exercise.

3.	 Import pandas and read the .csv file that you downloaded in the first step. Make
sure that you add the argument header equal to None to the read_csv function,
considering that the dataset does not contain a header row:

import pandas as pd
data = pd.read_csv("datasets/fertility_Diagnosis.csv", header=None)

4.	 Split the data into X and Y, considering that the class label is found under the
column with an index equal to 9. Use the following code:

X = data.iloc[:,:9]
Y = data.iloc[:,9]

http://archive.ics.uci.edu/ml/datasets/Fertility
http://archive.ics.uci.edu/ml/datasets/Fertility

Naïve Bayes Algorithm | 115

5.	 Import scikit-learn's Gaussian Naïve Bayes class. Then, initialize it, and use the fit
method to train the model using X and Y:

from sklearn.naive_bayes import GaussianNB
model = GaussianNB()
model.fit(X, Y)

The output from running this script is as follows:

GaussianNB(priors=None, var_smoothing=1e-09)

This states that the initialization of the class was successful. The information
inside the parentheses represents the values used for the arguments that the class
accepts, which are the hyperparameters.

For instance, for the GaussianNB class, it is possible to set the prior probabilities
to consider for the model and a smoothing argument that stabilizes variance.
Nonetheless, the model was initialized without setting any arguments, which
means that it will use the default values for each argument, which is None for the
case of priors and is 1e-09 for the smoothing hyperparameter.

6.	 Finally, perform a prediction using the model that you trained before, for a new
instance with the following values for each feature: −0.33, 0.69, 0, 1, 1, 0, 0.8, 0,
0.88.

Use the following code:

pred = model.predict([[-0.33,0.69,0,1,1,0,0.8,0,0.88]])
print(pred)

Note that we feed the values inside of double square brackets, considering that
the predict function takes in the values for prediction as an array of arrays, where
the first set of arrays corresponds to the list of new instances to predict and the
second array refers to the list of features for each instance.

From the preceding code, you should get a prediction equal to N.

Congratulations! You have successfully trained a Naïve Bayes model.

116 | Supervised Learning Algorithms: Predict Annual Income

Activity 11: Training a Naïve Bayes Model for Our Census Income Dataset

To test different classification algorithms on a real-life dataset, consider the following
scenario: you work for a bank and they have decided to implement a model that is able
to predict a person's annual income and use that information to decide whether to
approve a loan. You are given a dataset with 32,561 observations of previous clients,
which you have already preprocessed. Your job is to build three different models over
the dataset and determine which one best suits the case study. The first model to be
built is a Gaussian Naïve Bayes model. Use the following steps to complete this activity:

1.	 Using the preprocessed Census Income Dataset, separate the features from the
target by creating the variables X and Y.

2.	 Divide the dataset into training, validation, and testing sets, using a split ratio of
10%.

Note

When all three sets are created from the same dataset, it is not required to create
an additional train/dev set to measure data mismatch. Moreover, note that it is
OK to try a different split ratio, considering that the percentages explained in the
previous chapter are not set in stone. Even though they tend to work well, it is
important that you embrace experimentation in different levels when building
machine learning models.

3.	 Import the Gaussian Naïve Bayes class, and then use the fit method to train the
model over the training sets (X_train and Y_train).

4.	 Finally, perform a prediction using the model that you trained previously, for a new
instance with the following values for each feature: 39, 6, 13, 4, 0, 2174, 0, 40, 38.

The prediction for the individual should be equal to zero, meaning that the
individual most likely has an income less than or equal to 50K.

Note

Use the same Jupyter Notebook for all the activities within this chapter so that
you can perform a comparison of different models over the same dataset. Also,
start this activity by using the preprocessed data that we prepared during the
exploration of the dataset.

The solution for this activity can be found on page 202.

Decision Tree Algorithm | 117

Decision Tree Algorithm
The decision tree algorithm performs classifications based on a sequence that
resembles a tree-like structure. It works by dividing the dataset into small subsets that
serve as guides to develop the decision tree nodes. The nodes can be either decision
nodes or leaf nodes, where the former represents a question or decision, and the latter
represents the decisions made or the final outcome.

How Does It Work?

Considering this, decision trees continually split the dataset according to the
parameters defined in the decision nodes. Decision nodes have branches coming out
of them, where each decision node can have two or more branches. The branches
represent the different possible answers that define the way in which the data is split.

Take, for instance, the following table, which shows whether a person has a pending
student loan based on their age, highest education, and current income:

Figure 4.7: Dataset for student loans

118 | Supervised Learning Algorithms: Predict Annual Income

A possible configuration of a decision tree built based on the preceding data is shown in
the following diagram, where the black boxes represent the decision nodes, the arrows
are the branches representing each answer to the decision node, and the green boxes
refer to the outcome for instances that follow the sequence:

Figure 4.8: Decision tree constructed from data in Figure 4.7

To perform the prediction, once the decision tree is built, the model takes each instance
and follows the sequence that matches the instance's features until it reaches a final
leaf. According to this, the classification process starts at the root node (the one on top)
and continues along the branch that describes the instance. This process continues
until a leaf node is reached, which represents the prediction for that instance.

For instance, a person over 40 years old, with an income below $150,000, and an
education level of bachelor, is likely to not have a student loan; hence, the class label
assigned to it would be No.

Decision trees can handle both quantitative and qualitative features, considering that
continuous features will be handled in ranges. Additionally, leaf nodes can handle
categorical or continuous class labels; for categorical class labels, a classification is
made, while for continuous class labels, the task to be handled is regression.

Decision Tree Algorithm | 119

Exercise 16: Applying the Decision Tree Algorithm

In the following example, we will apply the Decision Tree algorithm to the Fertility
Dataset, with the objective of determining whether the fertility level of an individual
is affected by their demographics, their environmental conditions, and their previous
medical conditions:

1.	 Open a Jupyter Notebook to implement this exercise.

2.	 Import pandas and read the fertility_Diagnosis dataset that you downloaded in
Exercise 15. Make sure to add the argument header equal to None to the read_csv
function, considering that the dataset does not contain a header row:

import pandas as pd
data = pd.read_csv("datasets/fertility_Diagnosis.csv", header=None)

3.	 Split the data into X and Y, considering that the class label is found under the
column with index equal to 9. Use the following code:

X = data.iloc[:,:9]
Y = data.iloc[:,9]

4.	 Import scikit-learn's DecisionTreeClassifier class. Then, initialize it and use the
fit function to train the model using X and Y:

from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier()
model.fit(X, Y)

Again, an output from running this code snippet will appear. This output
summarizes the conditions that define your model by printing the values used for
every hyperparameter that the model uses.

As the model has been initialized without setting any hyperparameters, the
summary will show the default values used for each.

5.	 Finally, perform a prediction by using the model that you trained before, for the
same instance as in Exercise 15: −0.33, 0.69, 0, 1, 1, 0, 0.8, 0, 0.88.

Use the following code:

pred = model.predict([[-0.33,0.69,0,1,1,0,0.8,0,0.88]])
print(pred)

Again, the model should predict the instance's class label as N.

Congratulations! You have successfully trained a Decision Tree model.

120 | Supervised Learning Algorithms: Predict Annual Income

Activity 12: Training a Decision Tree Model for Our Census Income Dataset

You continue to work on building a model that's able to predict a person's annual
income. Using the same dataset, you have chosen to build a Decision Tree model:

1.	 Open the Jupyter Notebook that you used for the previous activity.

2.	 Using the preprocessed Census Income Dataset that was previously split into
different subsets, import the DecisionTreeClassifier class, and then use the fit
method to train the model on the training sets (X_train and Y_train).

3.	 Finally, perform a prediction by using the model that you trained before for a new
instance with the following values for each feature: 39, 6, 13, 4, 0, 2174, 0, 40, 38.

The prediction for the individual should be equal to zero, meaning that the
individual most likely has an income less than, or equal to 50K.

Note

The solution for this activity can be found on page 204.

Support Vector Machine Algorithm
The support vector machine (SVM) algorithm is a classifier that finds the hyperplane
that effectively separates the observations into their class labels. It starts by positioning
each instance into a data space with n dimensions, where n represents the number of
features. Next, it traces an imaginary line that clearly separates the instances belonging
to a class label from the instances belonging to others.

A support vector refers to the coordinates of a given instance. According to this,
the support vector machine is the boundary that effectively segregates the different
support vectors in a data space.

For a two-dimensional data space, the hyperplane is a line that splits the data space
into two sections, each one representing a class label.

How Does It Work?

The following diagram shows a simple example of an SVM model. Both the green and
orange dots represent the instances from the input dataset, where the colors define the
class label to which each instance belongs. The dashed line signifies the hyperplane that
clearly segregates the data points, which is defined based on the data points' location
in data space. This line is used to classify unseen data, as represented by the grey dot.
This way, new instances that are located to the left of the line will be classified as green,
while the ones to the right will be orange.

Support Vector Machine Algorithm | 121

The larger the number of features, the more dimensions the data space will have, which
will make visual representation of the model difficult:

Figure 4.9: Graphical example of an SVM model

Although the algorithm seems to be quite simple, the complexity is evident in the
algorithm's methodology for drawing the appropriate hyperplane. This is because the
model generalizes to hundreds of observations with multiple features.

To choose the right hyperplane, the algorithm follows the following rules, wherein rule 1
is more important than rule 2, which in turn is more important than rule 3:

1.	 The hyperplane must maximize the correct classification of instances. This
basically means that the best line is the one that effectively separates data points
belonging to different class labels, while keeping those that belong to the same
one together.

122 | Supervised Learning Algorithms: Predict Annual Income

For instance, in the following diagram, although both lines are able to separate
most instances into their correct class labels, line A would be selected by the
model as the one that segregates the classes better than line B, which leaves one
green instance among the orange ones:

Figure 4.10: Sample of hyperplanes that explain rule 1

2.	 The hyperplane must maximize its distance to the nearest data point of either of
the class labels, which is also known as the margin. This rule helps the model to
become more robust, which means that the model is able to generalize the input
data to also work efficiently over unseen data. This rule is especially important in
preventing the mislabeling of new instances.

Support Vector Machine Algorithm | 123

For example, by looking at the following diagram, it is possible to conclude that
both hyperplanes comply with rule 1. Nevertheless, line A is selected, since it
maximizes its distance to the nearest data points in comparison to the distance of
line B to its nearest data point:

Figure 4.11: Sample of hyperplanes that explain rule 2

3.	 The final rule is used if the default configuration of the model is incapable of
drawing a straight line to segregate classes. Take, for instance, the following
diagram:

Figure 4.12: Sample observations that explain rule 3

124 | Supervised Learning Algorithms: Predict Annual Income

To segregate these observations, the model will have to draw a circle or another similar
shape. The algorithm handles this by using kernels that can add additional features that
convert the distribution of data points into a form that allows a line to segregate them.
There are several kernels available for this, and the selection of one should be done by
trial and error, so that you can find the one that best handles the data that's available.

However, the default kernel to be used for the initial setup of an SVM model should be
the Radial Basis Function (RBF) kernel. This is mainly because, based on several studies,
this kernel has proved to work great for most data problems.

Exercise 17: Applying the SVM Algorithm

In this exercise, we will apply the SVM algorithm to the Fertility Dataset. The idea,
which is the same as in previous exercises, is to determine whether the fertility level
of an individual is affected by their demographics, their environmental conditions, and
their previous medical conditions:

1.	 Open a Jupyter Notebook to implement this exercise.

2.	 Import pandas and read the fertility_Diagnosis dataset that you downloaded
in Exercise 15. Make sure to add the argument header = None to the read_csv
function, considering that the dataset does not contain a header row:

import pandas as pd
data = pd.read_csv("datasets/fertility_Diagnosis.csv", header=None)

3.	 Split the data into X and Y, considering that the class label is found under the
column with index equal to 9. Use the following code:

X = data.iloc[:,:9]
Y = data.iloc[:,9]

4.	 Import scikit-learn's SVC class. Then, initialize it and use the fit function to train
the model using X and Y:

from sklearn.svm import SVC
model = SVC()
model.fit(X, Y)

Again, the output from running this code represents the summary of the model
that was created. Additionally, a warning appears, stating that in future versions,
the default values of some hyperparameters will change.

Support Vector Machine Algorithm | 125

5.	 Finally, perform a prediction using the model that you trained previously, for the
same instance as in Exercise 15: −0.33, 0.69, 0, 1, 1, 0, 0.8, 0, 0.88.

Use the following code:

pred = model.predict([[-0.33,0.69,0,1,1,0,0.8,0,0.88]])
print(pred)

Again, the model should predict the instance's class label as N.

Congratulations! You have successfully trained an SVM model.

Activity 13: Training an SVM Model for Our Census Income Dataset

Continuing with your task of building a model that is capable of predicting a person's
annual income, the final algorithm that you want to train is the Support Vector
Machine:

1.	 Open the Jupyter Notebook that you used for the previous activity.

2.	 Using the preprocessed Census Income Dataset that was previously split into
different subsets, import the SVC class, and then use the fit method to train the
model on the training sets (X_train and Y_train).

Note

The process of training the SVC class using the fit method may take a while.

3.	 Finally, perform a prediction using the model that you trained previously, for a new
instance with the following values for each feature: 39, 6, 13, 4, 0, 2174, 0, 40, 38.

The prediction for the individual should be equal to zero, that is, the individual
most likely has an income less than or equal to 50K.

Note

Use the same Jupyter Notebook from the previous activity. Note that the dataset
must have been preprocessed to obtain the desired results.

The solution for this activity can be found on page 204.

126 | Supervised Learning Algorithms: Predict Annual Income

Error Analysis
In the previous chapter, we explained the importance of error analysis. In this section,
the different evaluation metrics will be calculated for all three models that were created
in the previous activities, so that we can compare them.

Keep in mind that the selection of an evaluation metric is done according to the
purpose of the case study. Nonetheless, next, we will compare the models using the
accuracy, precision, and recall metrics, for learning purposes. This way, it will be
possible to see that even though a model may be better in terms of one metric, it can be
worse when measuring a different metric, which helps to emphasize the importance of
choosing the right metric.

Accuracy, Precision, and Recall

As a quick reminder, in order to measure performance and perform error analysis,
it is required that you use the predict method on the different sets of data (training,
validation, and testing). The following code snippets present a clean way of measuring
all three metrics on our three sets at once. The snippet is split into six bits of code, the
purpose of which is explained as follows:

1.	 First, the three metrics to be used are imported:

from sklearn.metrics import accuracy_score, precision_score, recall_score

2.	 Next, we create two lists containing the names of the different sets of data that we
will be using inside the for loop:

X_sets = [X_train, X_dev, X_test]
Y_sets = [Y_train, Y_dev, Y_test]

3.	 A dictionary will be created, which will hold the value of each evaluation metric for
each set of data for each model:

metrics = {
"NB":{"Acc":[],"Pre":[],"Rec":[]},
"DT":{"Acc":[],"Pre":[],"Rec":[]},
"SVM":{"Acc":[],"Pre":[],"Rec":[]}
}

4.	 A for loop will be created, which will go from 0 to the length of the lists that were
created in the first step. This is done to make sure that the prediction and the
calculation of performance are performed over the three sets of data:

for i in range(0,len(X_sets)):

 pred_NB = model_NB.predict(X_sets[i])

Error Analysis | 127

 metrics["NB"]["Acc"].append(accuracy_score(Y_sets[i], pred_NB))
 metrics["NB"]["Pre"].append(precision_score(Y_sets[i], pred_NB))
 metrics["NB"]["Rec"].append(recall_score(Y_sets[i], pred_NB))

The first line performs the prediction on a set of data, using the Naïve Bayes model
that we built in previous chapters. Then, the calculation of all three metrics is
done by comparing the ground truth data to the prediction that we calculated
previously. The calculation is appended to the dictionary that was previously
created.

5.	 We perform the same calculation as before, but use the Decision Tree model
instead:

 pred_tree = model_tree.predict(X_sets[i])
 metrics["DT"]["Acc"].append(accuracy_score(Y_sets[i], pred_tree))
 metrics["DT"]["Pre"].append(precision_score(Y_sets[i], pred_tree))
 metrics["DT"]["Rec"].append(recall_score(Y_sets[i], pred_tree))

6.	 Again, we perform the same calculation using the SVM model:

 pred_svm = model_svm.predict(X_sets[i])
 metrics["SVM"]["Acc"].append(accuracy_score(Y_sets[i], pred_svm))
 metrics["SVM"]["Pre"].append(precision_score(Y_sets[i], pred_svm))
 metrics["SVM"]["Rec"].append(recall_score(Y_sets[i], pred_svm))

By using the preceding snippet, we get the following results:

Figure 4.13: Performance results of all three models

128 | Supervised Learning Algorithms: Predict Annual Income

Initially, the different inferences, in relation to selecting the best fitted model as well
as with regard to the conditions that each model suffers from, will be done considering
only the values from the accuracy metric, assuming a Bayes Error close to 0 (meaning
that the model could reach a maximum success rate close to 1):

•	 Upon comparing the three accuracy scores of the Naïve Bayes model, it is possible
to conclude that the model behaves almost the same way for all three datasets.
This basically means that the model is generalizing the data from the training
set, which allows it to perform well over unseen data. Nevertheless, the overall
performance of the model is around 0.8, which is far from the maximum success
rate.

•	 Moreover, the performance of both the Decision Tree and the SVM models, in
terms of accuracy for the training set, is closer to the maximum success rate.
However, both models are suffering from a case of overfitting, considering
that the accuracy level of the models on the validation set is much lower than
their performance on the training set. According to this, it would be possible to
address the overfitting by adding more data into the training or by fine-tuning the
hyperparameters of the model, which would help to bring up the accuracy level of
the validation and testing sets.

•	 To choose the model that best fits the data, a comparison is done among the
values obtained in the testing set, which, as explained in previous sections, is the
one that determines the model's most likely overall performance on new data.
Considering that all three models have similar accuracy levels on the testing set, it
would be appropriate to address the issues related to the overfitting of the model
by fine-tuning the hyperparameters in order to verify whether the accuracy on
the testing set can be brought closer to 1.

Considering this, the researcher now has the required information to select a model
and work on improving the results to achieve the maximum possible performance of
the model.

Summary | 129

Next, for learning purposes, let's compare the results of all the metrics for the Decision
Tree model. Although the values for all three metrics prove the existence of overfitting,
it is possible to observe that the degree of overfitting is much larger for the precision
and recall metrics. Also, it is possible to conclude that the performance of the model
on the training set measured by the recall metric is much lower, which means that the
model is not as good at classifying positive labels. This means that if the purpose of the
case study was to maximize the number of positive classifications, regardless of the
classification of negative labels, the model needs to be greatly improved.

Note

The preceding comparison is done to show that the performance of the same
model can vary if measured with a different metric. According to this, it is crucial to
choose the metric of relevance for the case study.

Using the knowledge that you have gained from previous chapters, feel free to keep
exploring the results shown in the preceding table.

Summary
Using the knowledge from previous chapters, we started this chapter by performing
an analysis on the Census Income Dataset, with the objective of understanding the
data available and making decisions for the preprocessing process. Three supervised
learning classification algorithms—the Naïve Bayes algorithm, the Decision Tree
algorithm, and the SVM algorithm—were explained, and were applied to the previously
preprocessed dataset to create models that generalized to the training data. Finally,
we compared the performance of the three models on the Census Income Dataset by
calculating the accuracy, precision, and recall on the different sets of data (training,
validation, and testing).

In the next chapter, we will look at Artificial Neural Networks (ANNs), their different
types, and their advantages and disadvantages. We will also use the ANN to solve the
same data problem that was discussed here, and to compare its performance with that
of the other supervised learning algorithms.

Learning Objectives

By the end of this chapter, you will be able to:

•	 Explain the concept of neural networks

•	 Describe the processes of forward and backward propagation

•	 Solve a supervised learning classification problem using a neural network

•	 Analyze the results of the neural network by performing error analysis

This chapter explains the implementation of a Neural Network algorithm to a dataset in order to
create a model that is able to predict future outcomes.

Artificial Neural
Networks: Predict

Annual Income

5

132 | Artificial Neural Networks: Predict Annual Income

Introduction
In recent years, the field of artificial intelligence has focused on the concept of artificial
neural networks (ANNs), also known as Multilayer Perceptron, mostly because they
present a complex algorithm that can approach almost any challenging data problem.
Even though the theory was developed decades back, during the 1940s, the networks
are becoming more popular now, thanks to all the improvements in technology
that allow for the gathering of large amounts of data as well as the developments in
computer infrastructure that allow for the training of complex algorithms with large
amounts of data.

Due to this, the following chapter will focus on introducing ANNs, their different types,
and the advantages and disadvantages that they present. Additionally, an ANN will be
used to solve the same data problem that was discussed in the previous chapter in
order to present the differences in the performance of ANN in comparison to the other
supervised learning algorithms.

Artificial Neural Networks
Although there are several machine learning algorithms available to solve data
problems, as we have already stated, ANNs have become increasingly popular among
data scientists, due to their capability to find patterns in large and complex datasets
that cannot be interpreted by humans.

The neural part of the name refers to the resemblance of the architecture of the model
to the anatomy of the human brain. This part is meant to replicate a human being's
ability to learn from historical data by transferring bits of data from neuron to neuron
until an outcome is reached.

Artificial Neural Networks | 133

In the following diagram, a human neuron is displayed, where A represents the
dendrites that receive input information from other neurons, B refers to the nucleus of
the neuron that processes the information, and C represents the axon that oversees the
process of passing the processed information to the next neuron:

Figure 5.1: Visual representation of a human neuron

Moreover, the artificial part refers to the actual learning process of the model, where
the main objective is to minimize the error in the model. It is an artificial learning
process, considering that there is no real evidence regarding how human neurons
process the information that they receive, and hence the model relies on mathematical
functions that map an input to a desired output.

How Do They Work?

Before we dive into the process that is followed by an Artificial Neural Network, let's
start by looking at its main components:

•	 Input layer: This layer is also known as X, as it contains all the data from the
dataset (each instance with its features).

•	 Hidden layers: This layer is in charge of processing the input data in order to
find patterns that are useful for making a prediction. The ANN can have as many
hidden layers as desired, each with as many neurons (units) as required. The first
layers are in charge of the simpler patterns, while the layers at the end search for
the more complex ones.

The hidden layers use a set of variables that represent weights and biases in
order to help train the network. The values for the weights and biases are used as
the variables that change in each iteration to approximate the prediction to the
ground truth. This will be explained later.

134 | Artificial Neural Networks: Predict Annual Income

•	 Output layer: Also known as Y_hat, this layer is the prediction made by the model,
based on the data received from the hidden layers. This prediction is presented in
the form of a probability, where the class label with a higher probability is the one
selected as the prediction.

The following diagram illustrates the architecture of the preceding three layers:

Figure 5.2: Basic architecture of an ANN

Take, as an analogy, a manufacturing process for building car parts. Here, the input
layer consists of the raw materials, which in this case may be aluminum. The initial
steps of the process involve polishing and cleaning the material, which can be seen as
the first couple of hidden layers. Next, the material is bent to achieve the shape of the
car part, which is handled by the deeper hidden layers. Finally, the part is delivered to
the client, which can be considered to be the output layer.

Considering these steps, the main objective of the manufacturing process is to achieve
a final part that highly resembles the part that the process aimed to build, meaning that
the output, Y_hat, should maximize its similarity to Y (the ground truth) for a model to
be considered a good fit to the data.

The actual methodology to train an ANN is an iterative process comprised of
the following steps: forward propagation, calculation of the cost function, back-
propagation, and weights and biases updates. Once the weights and biases are updated,
the process starts again until the number of set iterations is met.

Let's explore each of the steps of the iteration process in detail.

Artificial Neural Networks | 135

Forward Propagation

The input layer feeds the initial information to the ANN. The processing of the data is
done by propagating data bits through the depth (number of hidden layers) and width
(number of units in each layer) of the network. The information is processed by each
layer using a linear function, coupled with an activation function that aims to break the
linearity, as follows:

Figure 5.3: The linear and activation functions used by an ANN

Here, W1 and b1 are a matrix and a vector containing the weights and biases,
respectively, and serve as the variables that can be updated through the iterations to
train the model. Z1 is the linear function for the first hidden layer, and A1 is the outcome
from the unit after applying an activation function (represented by the sigma symbol) to
the linear one.

The preceding two formulas are calculated for each layer, where the value of X for the
hidden layers (other than the first one) is replaced by the output of the previous layer
(An), as follows:

Figure 5.4: The values calculated for the second layer of the ANN

Finally, the output from the last hidden layer is fed to the output layer, where the linear
function is once again calculated, along with an activation function. The outcome from
this layer is the one that will be compared to the ground truth in order to evaluate the
performance of the algorithm before moving on to the next iteration.

The values of the weights for the first iteration are randomly initialized between 0 and 1,
while the values for the biases can be set to 0 initially. Once the first iteration is run, the
values will be updated, so that the process can start again.

The activation function can be of different types. Some of the most common ones are
the Rectified Linear Unit (ReLU), the Hyperbolic tangent (tanh), the Sigmoid, and the
Softmax.

136 | Artificial Neural Networks: Predict Annual Income

Cost Function

Considering that the final objective of the training process is to build a model based
on a given set of data, it is highly important to measure the model's ability to estimate
a relation between X and Y by comparing the differences between the predicted value
(Y_hat) and the ground truth (Y). This is accomplished by calculating the cost function
(also known as the loss function) to determine how poor the model's predictions are.
The cost function is calculated for each iteration to measure the progress of the model
along the iteration process, with the objective of finding the values for the weights and
biases that minimize the cost function.

For classification tasks, the cost function most commonly used is the cross-entropy
cost function, where in the higher the value of the cost function, the greater the
divergence between the predicted and actual values.

For a binary classification task, the cross-entropy cost function is calculated as follows:

Figure 5.5: The cross-entropy cost function

Here, y would be either 1 or 0 (either of the two class labels), yhat would be the
probability calculated by the model, and log would be the natural logarithm.

For a multiclass classification task, the formula is as follows:

Figure 5.6: The cost function for a multiclass classification task

Here, c represents a class label and M refers to the total number of class labels.

Once the cost function is calculated, the model proceeds and performs the back-
propagation step, which will be explained in a moment.

Moreover, for regression tasks, the cost function would be the RMSE, which was
explained in Chapter 3, Supervised Learning: Key Steps.

Back-Propagation

The back-propagation procedure was introduced as a part of the training process of
ANNs to make learning faster. It basically involves calculating the partial derivatives
of the cost function with respect to the weights and biases along the network.
The objective of this is to minimize the cost function by changing the weights and
the biases.

Artificial Neural Networks | 137

Considering that the weights and biases are not directly contained in the cost function,
a chain rule is used to propagate the error from the cost function backwards until it
reaches the first layers of the network. Next, a weighted average of the derivatives is
calculated, which is used as the value to update the weights and biases before running a
new iteration.

There are several algorithms that can be used to perform back-propagation, but the
most common one is gradient descent. Gradient descent is an optimization algorithm
that tries to find some local or global minimum of a function, which in this case is the
cost function. It does so by determining the direction in which the model should move
to reduce the error.

For instance, the following diagram displays an example of the training process of
an ANN through the different iterations, where the job of back-propagation is to
determine the direction in which the weights and biases should be updated, so that the
error can continue to be minimized until it reaches a minimum point:

Figure 5.7: Example of the iterative process of training an ANN

138 | Artificial Neural Networks: Predict Annual Income

It is important to highlight that back-propagation does not always find the global
minima, since it stops updating once it has reached the lowest point in a slope,
regardless of any other regions. Take, for instance, the following diagram:

Figure 5.8: Examples of minimum points

Although all three points can be considered minimum points when compared to the
points to their left and right, only one of them is the global minima.

Updating the Weights and Biases

Taking the derivatives' average that was calculated during back-propagation, the final
step of an iteration is to update the values of the weights and biases. This process is
done using the following formula:

Figure 5.9: Iterative formula for updating weights and biases

Here, the old values are those used to perform the forward propagation step, the
derivative rate is the value obtained from the back-propagation step and is different for
the weights and the biases, and the learning rate is a constant that is used to neutralize
the effect of the derivative rate, so that the changes in the weights and biases are small
and smooth. This has proven to help reach the lowest point more quickly.

Once the weights and the biases have been updated, the entire process starts again.

Artificial Neural Networks | 139

Understanding the Hyperparameters

Hyperparameters, as you have seen so far, are parameters that can be fine-tuned
to improve the accuracy of a model. For neural networks, hyperparameters can be
classified into two main groups: those that alter the structure of the network and those
that modify the process to train it.

An important part of building an ANN is the process of fine-tuning the hyperparameters
by performing error analysis and by playing around with the hyperparameters that help
to solve the condition that is affecting the network. As a general reminder, networks
suffering from high bias can usually be handled by creating bigger networks or training
for longer durations of time, whereas networks suffering from high variance can benefit
from the addition of more training data or by introducing a regularization technique.

Considering that the number of hyperparameters that can be changed for training an
ANN is large, the most commonly used ones will be explained in the following sections.

Number of Hidden Layers and Units

The number of hidden layers and the number of units in each layer can be set by the
researcher, as mentioned previously. Again, there is no exact science to selecting this
number, and on the contrary, the selection of this number is a part of the fine-tuning
process to test different approximations.

Nonetheless, when selecting the number of hidden layers, some data scientists lean
toward an approach wherein multiple networks are trained, each with an extra layer.
The model with the lowest error is the one with the right number of hidden layers.
Unfortunately, this approach does not always work well, as more complex data
problems do not really show a difference in performance through simply changing the
number of hidden layers, regardless of the other hyperparameters.

On the other hand, there are several techniques that you can use to choose the number
of units in a hidden layer. It is common for data scientists to choose the initial values
for both of these hyperparameters based on similar research papers that are available
online. This means that a good starting point would be copying the architecture of
networks that have been successfully used for projects in a similar field, and then,
through error analysis, fine-tuning the hyperparameters to improve performance.

Nonetheless, as per research activity, it is important to consider that deeper networks
(networks with many hidden layers) outperform wider networks (networks with many
units in each layer).

140 | Artificial Neural Networks: Predict Annual Income

Activation Function

As mentioned previously, the activation function is used to introduce non-linearity to
the model. The selection of an activation function should be done by considering that,
conventionally, both the ReLU and the Hyperbolic tangent activation functions are used
for all of the hidden layers, with ReLU being the most popular one among scientists.

On the other hand, the Sigmoid and the Softmax activation functions should be used for
the output layer, as their outcome is in the form of a probability. Moreover, the Sigmoid
activation function is used for binary classification problems, as it only outputs the
probability for two class labels, whereas the Softmax activation function can be used for
either binary or multiclass classification problems.

Regularization

Regularization is a technique used in machine learning to fix a model that is suffering
from overfitting, which means that this hyperparameter is mostly used when it is
strictly required, and its main objective is to increase the generalization ability of the
model.

There are different regularization techniques, but the most common ones are the L1,
L2, and dropout techniques. Although scikit-learn only supports L2 for its Multilayer
Perceptron classifier, brief explanations of the three forms of regularization are as
follows:

•	 The L1 and L2 techniques add a regularization term to the cost function as a way
of penalizing high weights that may be affecting the performance of the model.
The main difference between these approaches is that the regularization term
for L1 is the absolute value of the magnitude of the weights, while for L2, it is the
squared magnitude of the weights. For regular data problems, L2 has proven to
work better, while L1 is mainly popular for feature extraction tasks since it creates
sparse models.

•	 Dropout, on the other hand, refers to the model's ability to drop out some units
in order to ignore their output during a step in the iteration, which simplifies the
neural network. The dropout value is set between 0 and 1, and it represents the
percentage of units that will be ignored. The units that are ignored are different in
each iteration step.

Artificial Neural Networks | 141

Batch Size

Another hyperparameter to be tuned during the construction of an ANN is the batch
size. This refers to the number of instances to be fed to the neural network during an
iteration, which will be used to perform a forward and a backward pass through the
network. For the next iteration, a new set of instances will be used.

This technique also helps to improve the model's ability to generalize to the training
data because, in each iteration, it is fed with new combinations of instances, which is
useful when dealing with an overfitted model.

Note

As per the result of many years of research, a good practice is to set the batch size
to a value that is a multiple of 2. Some of the most common values are 32, 64, 128,
and 256.

Learning Rate

The learning rate, as was explained previously, is introduced to help determine the
size of the steps that the model will take to get to the local or global minima in each
iteration. The lower the learning rate, the slower the learning process of the network,
but this results in better models. On the other hand, the larger the learning rate, the
faster the learning process of the model; however, this may result in a model not
converging.

Note

The default learning rate value is usually set to 0.001.

Number of Iterations

A neural network is trained through an iterative process, as was mentioned previously.
Therefore, it is necessary to set the number of iterations that the model will perform.
The best way to set up the ideal number of iterations is to start low, between 200 and
500, and increase it, in the event that the plot of the cost function over each iteration
shows a decreasing line. Needless to say, the larger the number of iterations, the longer
it takes to train a model.

142 | Artificial Neural Networks: Predict Annual Income

Additionally, increasing the number of iterations is a technique known to address
underfitted networks. This is because it gives the network more time to find the right
weights and biases that generalize to the training data.

Applications

In addition to the preceding architecture, a number of new architectures have emerged
over time, thanks to the popularity of neural networks. Some of the most popular ones
are convolutional neural networks, which can handle the processing of images by using
filters as layers, and recurrent neural networks, which are used to process sequences
of data such as text translations.

Due to this, the applications of neural networks extend to almost any data problem,
ranging from simple to complex. While a neural network is capable of finding patterns
in really large datasets (either for classification or regression tasks), they are also known
for effectively handling challenging problems, such as the creation of self-driving cars,
the construction of chatbots, the recognition of faces, and so on.

Limitations

Some of the limitations of training neural networks are as follows:

•	 The training process takes time. Regardless of the hyperparameters used, they
generally take time to converge.

•	 They need very large datasets in order to work better. Neural networks are meant
for larger datasets, as their main advantage is their ability to find patterns within
millions of values.

•	 They are considered a black box as there is no actual knowledge of how the
network arrives at a result. Although the math behind the training process is clear,
it is not possible to know what assumptions the model makes while being trained.

•	 The hardware requirements are large. Again, the greater the complexity of the
problem, the larger the hardware requirements.

Although ANNs can be applied to almost any data problem, due to their limitations,
it is always a good practice to test other algorithms when dealing with simpler data
problems. This is important because applying neural networks to data problems that
can be solved by simpler models makes the costs outweigh the benefits.

Applying an Artificial Neural Network | 143

Applying an Artificial Neural Network
Now that you know the components of an artificial neural network as well as the
different steps that it follows to train a model and make predictions, let's train a simple
network using the scikit-learn library.

In this topic, scikit-learn's neural network module will be used to train a network using
the dataset from the previous chapter (the Census Income Dataset). It is important to
mention that scikit-learn is not the most appropriate library for neural networks, as it
does not currently support many types of neural networks, and its performance over
deeper networks is not as good as other neural network specialized libraries, such as
TensorFlow.

The neural network module in scikit-learn currently supports a Multilayer Perceptron
for classification, a Multilayer Perceptron for regression, and a Restricted Boltzmann
Machine architecture. Considering that the case study consists of a classification task,
the Multilayer Perceptron for classifications will be used.

Scikit-Learn's Multilayer Perceptron

A Multilayer Perceptron (MLP) is a supervised learning algorithm that, as its name
indicates, uses multiple layers (hidden layers) to learn a non-linear function that
translates the input values into output, either for classification or regression. As we
explained previously, the job of each unit of a layer is to transform the data received
from the previous layer by calculating a linear function and then applying an activation
function to break the linearity.

It is important to mention that an MLP has a non-convex loss function which, as
mentioned previously, signifies that there may be multiple local minima. This means
that different initializations of the weights and biases will result in different trained
models, which in turn indicates different accuracy levels.

The Multilayer Perceptron classifier in scikit-learn has around 20 different
hyperparameters associated with the architecture or the learning process, which can be
altered in order to modify the training process of the network. Fortunately, all of these
hyperparameters have set default values, which allows us to run a first model without
much effort. The results from this model can then be used to tune the hyperparameters
as required.

To train an MLP classifier, it is required that you input two arrays: first, the X input of
dimensions (n_samples, n_features) containing the training data, and then the Y input of
dimensions (n_sample,) that contains the label values for each sample.

144 | Artificial Neural Networks: Predict Annual Income

Similar to the algorithms that we looked at in the previous chapter, the model is trained
using the fit method, and then predictions can be achieved by using the predict
method on the trained model.

Exercise 18: Applying the Multilayer Perceptron Classifier Class

In this exercise, you will learn how to train a scikit-learn's Multilayer Perceptron to
solve a classification task:

Note

For the exercises and activities within this chapter, you will need to have Python
3.6, NumPy, Jupyter, Pandas, and scikit-learn installed on your system.

1.	 Open a Jupyter Notebook to implement this exercise.

2.	 Using the Fertility Dataset from the previous chapter, import pandas and read the
.csv file. Make sure that you add the argument header equal to None to the read_csv
function, considering that the dataset does not contain a header row:

import pandas as pd
data = pd.read_csv("datasets/fertility_Diagnosis.csv", header=None)

3.	 Split the dataset into X and Y sets in order to separate the features data from the
label values:

X = data.iloc[:,:9]
Y = data.iloc[:,9]

4.	 Import the MLPClassifier class from the neural_network module and use
the fit method to train a model. When initializing the model, leave all the
hyperparameters at their default values, but add a random_state equal to 101 to
ensure that you get the same results as the one shown in this exercise:

from sklearn.neural_network import MLPClassifier
model = MLPClassifier(random_state=101)
model = model.fit(X, Y)

5.	 Address the warning that appears after running the fit method:

Figure 5.10: Warning message displayed after running the fit method

Applying an Artificial Neural Network | 145

As you can see, the warning specifies that after running the default number of
iterations, which is 200, the model has not reached convergence. To address this
issue, try higher values for the iterations, until the warning stops appearing. To
change the number of iterations, add the max_iter = Desired number argument
inside of the parentheses during the initialization of the model:

model = MLPClassifier(random_state=101, max_iter =1200)
model = model.fit(X, Y)

Further more, the output below the warning explains the values used for all of the
hyperparameters of the Multilayer Perceptron.

6.	 Finally, perform a prediction by using the model that you trained previously, for a
new instance with the following values for each feature: −0.33, 0.69, 0, 1, 1, 0, 0.8,
0, 0.88.

Use the following code:

pred = model.predict([[-0.33,0.69,0,1,1,0,0.8,0,0.88]])
print(pred)

The model's prediction is equal to N, that is, the model predicts the person with
the specified features to have a normal diagnosis.

Congratulations! You have successfully trained a Multilayer Perceptron model.

Activity 14: Training a Multilayer Perceptron for Our Census Income Dataset

With the objective of comparing the performance of the algorithms trained in the
previous chapter with the performance of a neural network, for this activity, we will
continue to work with the Census Income Dataset that we downloaded previously.
Consider the following scenario: your company is continually offering a book for
employees to improve their abilities, and you have recently learned about neural
networks and their power. You have decided to build a network to model the dataset
that you were given previously in order to test whether a neural network is better at
predicting a person's income based on their demographical data.

Note

Start this activity using the preprocessed data from the previous chapter (Census
Income Dataset). This means that all the irrelevant features must have been
deleted and quantitative features must have been converted into their numeric
forms. Otherwise, the results from the activity may vary from the ones presented
in the solution section.

146 | Artificial Neural Networks: Predict Annual Income

Follow these steps to complete this activity:

1.	 Using the preprocessed Census Income Dataset, separate the features from the
target, creating the variables X and Y.

2.	 Divide the dataset into training, validation, and testing sets, using a split ratio of
10%.

Note

Remember to continue using a random_state equal to 101 when performing the
dataset split in order to set a seed to ensure the same results in every run of the
code.

3.	 From the neural_network module, import the Multilayer Perceptron Classifier
class. Initialize it and train the model with the training data.

Leave all the hyperparameters at their default values. Again, use a random_state
equal to 101.

4.	 Address any warning that may appear after training the model with the default
values for the hyperparameters.

5.	 Calculate the accuracy of the model for all three sets (training, validation,
and testing).

Note

The solution for this activity can be found on page 206.

The accuracy score for the three sets should be as follows:

Train sets = 0.8342

Dev sets = 0.8111

Test sets = 0.8252

Performance Analysis | 147

Performance Analysis
In the following section, we will first perform error analysis using the accuracy metric
as a tool to determine the condition that is affecting the performance of the algorithm
in greater proportion. Once the model is diagnosed, the hyperparameters can be tuned
to improve the overall performance of the algorithm. The final model will be compared
to those that were created during the previous chapter in order to determine whether a
neural network outperforms the other models.

Error Analysis

Using the accuracy score calculated in Activity 14, we can calculate the error rates for
each of the sets and compare them against each other to diagnose the condition that
is affecting the model. To do so, a Bayes Error equal to 1% will be assumed, considering
that other models in the previous chapter were able to achieve an accuracy level over
97%:

Figure 5.11: Accuracy score and error rate of the network

Note

Remember that in order to detect the condition that is affecting the network, it
is necessary to take an error rate and subtract from it the value of the error rate
above it. The biggest positive difference is the one that we use to diagnose the
model.

According to the column of differences, it is evident that the biggest difference is
found between the error rate in the training set and the Bayes Error. Based on this, it
is possible to conclude that the model is suffering from high bias, which, as explained
in previous chapters, can be handled by training a bigger network for longer periods of
time (a higher number of iterations).

148 | Artificial Neural Networks: Predict Annual Income

Hyperparameter Fine-Tuning

Through error analysis, it was possible to determine that the network is suffering from
high bias. This is highly important, as it indicates the actions that need to be taken in
order to improve the performance of the model in greater proportion.

Considering that both the number of iterations and the size of the network (number
of layers and units) should be changed using a trial-and-error approach, the following
experiments will be done:

Figure 5.12: Suggested experiments to tune the hyperparameters

Note

Some experiments may take longer to run due to their complexity. For instance,
Experiment 3 will take longer than Experiment 2.

The idea behind these experiments is to be able to test different values in order to find
out whether an improvement can be achieved. If the improvements achieved through
these experiments are significant, further experiments should be considered.

Similar to adding the random_state argument to the initialization of the Multilayer
Perceptron, the change in the values of the number of iterations and the size of
the network can be achieved, using the following code, which shows the values for
Experiment 3:

Performance Analysis | 149

from sklearn.neural_network import MLPClassifier

model = MLPClassifier(random_state=101, max_iter = 500, hidden_layer_
sizes=(100,100,100))

model = model.fit(X_train, Y_train)

Note

To find what term to use to change each hyperparameter, visit scikit-learn's
MLPClassifier page at: http://scikit-learn.org/stable/modules/generated/sklearn.
neural_network.MLPClassifier.html.

As you can see in the preceding snippet, the max_iter argument is used to set the
number of iterations to run during the training of the network. On the other hand, the
hidden_layer_sizes argument is used to both set the number of hidden layers and set
the number of units in each. For instance, in the preceding example, by setting the
argument to (100,100,100), the architecture of the network is of three hidden layers,
each with 100 units. Of course, this architecture also includes the required input and
output layers.

The accuracy scores from running the preceding experiments can be seen in the
following table:

Figure 5.13: Accuracy scores for all experiments

Note

Keep in mind that the main purpose behind tuning the hyperparameters is to
decrease the difference between the error rate of the training set and the Bayes
Error, which is why most of the analysis is done by considering only this value.

http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html

150 | Artificial Neural Networks: Predict Annual Income

Through an analysis of the accuracy scores of the experiments, it can be concluded
that the best configuration of hyperparameters is the one used during Experiment 2.
Additionally, it is possible to conclude that there is most likely no point in trying other
values for the number of iterations or the number of hidden layers, considering that
increasing the number of iterations did not have an effect on the performance of the
algorithm and adding three hidden layers decreased the performance of the network.

Nonetheless, in order to test the width of the hidden layers, the following experiments
will be considered, using the selected values for the number of iterations and the
number of hidden layers, but varying the number of units in each layer:

Figure 5.14: Suggested experiments to vary the width of the network

Here, the first two experiments were thought up in advance, while the other two were
designed after finding out the performance of the previous ones. Next, the accuracy
score of all four experiments is shown, followed by an explanation of the logic behind
them:

Figure 5.15: Accuracy scores for the second round of experiments

Performance Analysis | 151

Although the accuracy improved for the first two experiments, it was found that using
150 units per layer achieved better results. Experiment 3 then tested whether a smaller
number of units per layer would continue to improve results, which was not the case.
Additionally, Experiment 4 tested with a higher number of units, which returned higher
results for both the training and validation sets, but not for the testing set.

By observing these values, it can be concluded that the performance of experiment 2 is
the highest in terms of testing sets, which leaves us with a network that iterates for 500
steps, with one input and output layer and two hidden layers with 150 units each.

Note

There is no ideal way to test the different configurations of hyperparameters.
The only important thing to consider is that the focus is centered on those
hyperparameters that solve the condition that is affecting the network in a greater
proportion. Feel free to try more experiments if you wish.

Considering the accuracy scores of all three sets of Experiment 2 to calculate the error
rate, the biggest difference is still between the training set error and the Bayes Error.
This means that the model may not be the best fit for the dataset, considering that the
training set error could not be brought closer to the minimum possible error margin.

Model Comparison

When more than one model has been trained, the final step related to the process of
creating a model is a comparison between the models in order to choose the one that
best represents the training data in a generalized way, so that it works well over unseen
data.

The comparison, as mentioned previously, must be done by using only the metric that
was selected to measure the performance of the models for the data problem. This is
important, considering that one model can perform very differently for each metric, so
the model that maximizes the performance with the ideal metric should be selected.

Although the metric is calculated on all three sets of data (training, validation, and
testing) in order to be able to perform error analysis, for most cases, the comparison
and selection should be done by prioritizing the results obtained with the testing set.
This is mainly due to the purpose of the sets, considering that the training set is used
to create the model, the validation set is used to fine-tune the hyperparameters, and
finally, the testing set is used to measure the overall performance of the model on
unseen data.

152 | Artificial Neural Networks: Predict Annual Income

Taking this into account, the model with a higher performance on the testing set, after
having improved all models to their fullest potential, will be the one that performs best
on unseen data.

Activity 15: Comparing Different Models to Choose the Best Fit for the Census

Income Data Problem

Consider the following scenario: after training four different models with the available
data, you have been asked to perform an analysis to choose the model that best suits
the case study.

Note

The following activity is mainly analytical. Use the results obtained from the
activities in the previous chapter, as well as the activity in the current chapter.

Follow these steps to compare the different models:

1.	 Open the Jupyter Notebook that you used to train the models.

2.	 Compare the four models, based only on their accuracy scores. Fill in the details in
the following table:

Figure 5.16: Accuracy scores of all four models for the Census Income Dataset

On the basis of the accuracy scores, identify the model with the best performance.

Note

The solution for this activity can be found on page 207.

Summary | 153

Summary
This chapter mainly focused on artificial neural networks (the Multilayer Perceptron,
in particular), which have become increasingly important in the field of machine
learning due to their capability to tackle highly complex data problems that usually use
extremely large datasets with patterns that are impossible to look at by the human eye.

The main objective is to emulate the architecture of the human brain by using
mathematical functions to process data.

The process that is used to train an ANN consists of a forward propagation process,
the calculation of a cost function, a back-propagation process, and the update of the
different weights and biases that help to map the input values to an output.

In addition to the variables of the weights and biases, ANNs have multiple
hyperparameters that can be tuned to improve the performance of the network, which
can be done by modifying the architecture or training process of the algorithm. Some
of the most popular hyperparameters are the size of the network (in terms of hidden
layers and units), the number of iterations, the regularization term, the batch size, and
the learning rate.

Once these concepts were covered, we created a simple network to tackle the Census
Income Dataset problem that was introduced in the previous chapter. Next, by
performing error analysis, we fine tuned some of the hyperparameters of the network
to improve its performance.

Learning Objectives

By the end of this chapter, you will be able to:

•	 Explain the key stages involved in building a comprehensive program

•	 Save a model in order to get the same results every time it is run

•	 Call a saved model to use it for predictions on unseen data

•	 Create an interactive version of your program so that anyone can use it effectively

This chapters presents all the steps required to solve a problem using machine learning.

Building Your
Own Program

6

156 | Building Your Own Program

Introduction
In the previous chapters, we covered the main concepts of machine learning, beginning
with the distinction between the two main learning approaches (supervised and
unsupervised learning), and moving on to the specifics of some of the most popular
algorithms in the data scientist community.

This chapter will talk about the importance of building complete machine learning
programs, rather than just training models. This will involve taking the models to the
next level, where they can be accessed and used easily.

This is especially important when working in a team, either for a company or for
research purposes, as it allows all members of the team to use the model without fully
understanding it.

Program Definition
The following section will cover the key stages required to construct a comprehensive
machine learning program that allows easy access to the trained model in order to
perform predictions for all future data. These stages will be applied to the construction
of a program that allows for a bank to determine the promotional strategy for a
financial product in their marketing campaign.

Building a Program: Key Stages

At this point, you should be able to preprocess a dataset, build different models using
training data, and compare those models, in order to choose the one that best fits the
data at hand. These are some of the processes handled during the first two stages of
building a program, which ultimately allow for the creation of the model. Nonetheless, a
program should also consider the process of saving the final model, as well as the ability
to perform quick predictions without the need for coding.

The processes that we just discussed are divided into three main stages, and will be
explained in the following sections. These stages represent the foremost requirements
of any machine learning project.

Preparation

Preparation consists of all the procedures that we've developed thus far, with the
objective of outlining the project in alignment with the available information and the
desired outcome. The following is a brief description of the three processes in this stage
(these have been discussed in detail in previous chapters):

Program Definition | 157

1.	 Data Exploration: Once the objective of the study has been established, data
exploration is undertaken in order to understand the data that is available and
to obtain valuable insights. These insights will be used later to make decisions
regarding the preprocessing and division of the data and the selection of models,
among other uses. The information most commonly obtained during data
exploration includes the size of the data (number of instances and features), the
irrelevant features, and whether missing values or evident outliers are present.

2.	 Data Preprocessing: As we have discussed, data preprocessing primarily refers
to the process of handling missing values, outliers, and noisy data; converting
qualitative features into their numeric forms; and normalizing or standardizing
these values. This process can be done manually in any data editor such as Excel,
or by using libraries to code the procedure.

3.	 Data Splitting: The final process, data splitting, involves splitting the entire dataset
into two or three sets (depending on the approach) that will be used for training,
validating, and testing the overall performance of the model. The separation of the
features and the class label is also handled during this stage.

Creation

This stage involves all of the steps that are required to create a model that fits the
data that is available. This can be done by selecting different algorithms, training and
tuning them, comparing the performance of each, and finally, selecting the one that
generalizes best to the data (meaning that it achieves a better overall performance). The
processes in this stage will be discussed briefly, as follows:

1.	 Algorithm Selection: Irrespective of whether you decide to choose one or multiple
algorithms, it is crucial to select an algorithm on the basis of the available data
and to take into consideration the advantages of each algorithm. This is important
since many data scientists make the mistake of choosing neural networks for
any data problem, when in reality, simpler problems can be tackled using simpler
models that run more quickly and perform better with smaller datasets.

2.	 Training Process: This process involves training the model using the training set
data. This means that the algorithm uses the features data (X) and the label classes
(Y) to determine relationship patterns that will help generalize to unseen data and
predict when the class label is not available.

158 | Building Your Own Program

3.	 Model Evaluation: This process is handled by measuring the performance of the
algorithm through the metric selected for the study. As mentioned previously, it
is important to choose the metric that best represents the purpose of the study,
considering that the same model can do very well in terms of one metric and
poorly in terms of another.

While evaluating the model on the validation set, hyperparameters are fine-
tuned to achieve the best possible performance. Once the hyperparameters have
been tuned, the evaluation is performed on the testing set to measure the overall
performance of the model on unseen data.

4.	 Model Comparison and Selection: When multiple models are created based on
different algorithms, a model comparison is performed to select the one that
outperforms the others. This comparison should be done by using the same metric
for all the models.

Interaction

The final stage in building a comprehensive machine learning program consists of
allowing the final user to easily interact with the model. This includes the process of
saving the model into a file, the ability of calling the file that holds the saved model, and
the development of a channel through which users can interact with the model:

1.	 Storing the Final Model: This process is introduced during the development of a
machine learning program as it is crucial to enable the unaltered use of the model
for future predictions. The process of saving the model is crucial, considering that
most algorithms are randomly initialized each time they are run, which makes the
results different for each run. The process of saving the model will be explained
further later in this chapter.

2.	 Loading the Model: Once the model has been saved to a file, it can be accessed by
loading the file into any code. The model is then stored in a variable that can be
used to apply the prediction method on unseen data. This process will also be
explained later in this chapter.

3.	 Channel of Interaction: Finally, it is crucial to develop an interactive and easy
way to perform predictions using the saved model, especially because on many
occasions, models are created by the technology team for other teams to use.
This means that an ideal program should allow non-experts to use the model for
prediction by simply typing in the required information. This idea will also be
expanded upon later in this chapter.

Program Definition | 159

The following diagram illustrates the preceding processes:

Figure 6.1: Stages for building a machine learning program

The rest of this chapter will focus on the final stage of building a model, considering
that all the previous steps were discussed in previous chapters.

Understanding the Dataset

To learn how to implement the processes in the Interaction section, we will build a
program that's capable of predicting whether a person will be interested in acquiring a
specific product from the bank, which will help the bank to target its promotion efforts.
The dataset used to build this program is available at the UC Irvine Machine Learning
Repository under the name Bank Marketing Dataset.

Note

To download this dataset, visit the following link: http://archive.ics.uci.edu/ml/
datasets/Bank+Marketing.

http://archive.ics.uci.edu/ml/datasets/Bank+Marketing
http://archive.ics.uci.edu/ml/datasets/Bank+Marketing

160 | Building Your Own Program

Once you have located the repository, follow these steps to download the dataset:

1.	 First, click on the Data Folder link.

2.	 Download the bank folder.

3.	 Open the .zip folder and extract the bank-full.csv file.

To explore the dataset, follow these steps:

1.	 Open a Jupyter Notebook and load the dataset to explore it:

data = pd.read_csv("../datasets/bank-full.csv")

This file shows the values of all the features for one instance in a single column,
since the read_csv function uses a comma as the delimiter for columns:

Figure 6.2: Screenshot of data in the .csv file before splitting the data into columns

2.	 To fix this, add the delimiter parameter to the read_csv function by using a
semicolon as the delimiter, as shown in the following code snippet:

data = pd.read_csv("../datasets/bank-full.csv", delimiter = ";")

After this step, the file should look as follows:

Figure 6.3: Screenshot of data in the .csv file after splitting it into columns

Program Definition | 161

As you can see in the preceding table, the file contains unknown values that should
be handled as missing values.

3.	 To do so, let's replace the unknown string for NaN by using Numpy, as follows:

import numpy as np
data[data == "unknown"] = np.nan

Finally, the edited dataset is saved in a new .csv file, so that it can be used for the
activities throughout this chapter. You can do this by using the to_csv function, as
follows:

data.to_csv("../datasets/bank-full-dataset.csv")

The file should contain a total of 45,211 instances, each with 16 features and 1 class
label. The class label is binary, of the type yes or no, and indicates whether the client
subscribes to a term deposit with the bank.

Each instance represents a client of the bank, and the features capture demographic
information, as well as data regarding the nature of the contact with the client during
the current (and previous) promotional campaign.

162 | Building Your Own Program

The following table displays brief descriptions of all 16 features. This will help to
determine the relevance of each feature to the study, and will provide an idea of some
of the steps required to preprocess the data:

Figure 6.4: A table describing the features of the dataset

Note

You can find the preceding descriptions and more in the .zip folder, under the file
named bank-names.txt.

Program Definition | 163

Using the information obtained during the exploration of the dataset, it is possible to
proceed with preprocessing the data and training the model, which will be the purpose
of the following activity.

Activity 16: Performing the Preparation and Creation Stages for the Bank

Marketing Dataset

The objective of this activity is to perform the processes in the preparation and creation
stages to build a comprehensive machine learning problem.

Note

For the exercises and activities within this chapter, you will need to have Python
3.6, NumPy, Jupyter, Pandas, and scikit-learn installed on your system.

Let's consider the following scenario: you work at the principal bank in your town
and the marketing team has decided that they want to know in advance if a client is
likely to subscribe to a term deposit, in order to focus their efforts on targeting those
clients. For this, you have been provided with a dataset containing details on current
and previous marketing activities carried out by the team (the Bank Marketing Dataset
that you downloaded and explored previously will be used). Your boss has asked you to
preprocess the dataset and compare two models against each other, so that you can
select the best one. Follow the steps given below to achieve this:

1.	 Open a Jupyter Notebook to implement this activity and import pandas.

2.	 Load the dataset into the notebook. Make sure that you load the one that was
edited previously, named bank-full-dataset.csv.

3.	 Select the metric that is most appropriate for measuring the performance of the
model, considering that the purpose of the study is to detect clients who are likely
to subscribe to the term deposit.

164 | Building Your Own Program

4.	 Preprocess the dataset.

Note that one of the qualitative features is ordinal, which is why it must be
converted to a numeric form that follows the order. Use the following code
snippet to do so:

data["education"] = data["education"].fillna["unknown"]
encoder = ["unknown", "primary", "secondary", "tertiary"]

for i, word in enumerate(encoder):
 data["education"] = data["education"].str.replace(word,str(i))
 data["education"] = data["education"].astype("int64")

5.	 Separate the features from the class label and split the dataset into three sets
(training, validation, and testing).

6.	 Use the Decision Tree and the Multilayer Perceptron algorithms to apply to the
dataset and train the models.

Note

You can also try this with the other classification algorithms discussed in this book.
However, these two are mainly chosen so that you are also able to compare the
difference in training times.

7.	 Evaluate both models by using the metric that you selected previously.

8.	 Fine-tune some of the hyperparameters to fix the issues detected during the
evaluation of the model, by performing error analysis.

9.	 Compare the final versions of your models and select the one that you believe best
fits the data.

Note

Do not use a random_state value to train the models. This is mainly because in
subsequent activities, we will run the selected model several times to see the
different results that can be achieved through different initializations.

You can find the solution for this activity on page 209.

Saving and Loading a Trained Model | 165

Saving and Loading a Trained Model
Although the process of manipulating a dataset and training the right model is crucial
for developing a machine learning project, the work does not end there. Knowing
how to save a trained model is key, as this will allow you to save the hyperparameters
used and the initialized values for the different variables of your final model, so that it
remains unchanged when it is run again. Moreover, after the model is saved to a file,
it is also important to know how to load the saved model in order to use it to make
predictions on new data. By saving and loading a model, we allow for the model to be
reused at any moment and through many different means.

Saving a Model

The process of saving a model is also called serialization, and it has become
increasingly important, due to the popularity of neural networks that use many
variables which are randomly initialized every time the model is trained, as well as due
to the introduction of bigger and more complex datasets that make the training process
last for days, weeks, and sometimes months.

Considering this, the process of saving a model helps to optimize the use of machine
learning solutions by standardizing the results to the saved version of the model. It also
saves time, as it allows you to directly apply the saved model to new data, without the
need for retraining.

There are two main ways to save a trained model, one of which will be explained in this
section. The pickle module is the standard way to serialize objects in Python, and it
works by implementing a powerful algorithm that serializes the model and then saves it
as a .pkl file.

Note

The other module that's available for saving a trained model is joblib, which is
part of the SciPy ecosystem.

However, take into account that models are only saved when they are meant to be
used in future projects or for future predictions. When a machine learning project is
developed to understand the current data, there is no need to save it, as the analysis
will be performed after the model has been trained.

166 | Building Your Own Program

Exercise 19: Saving a Trained Model

For the following exercise, we will use the Fertility Dataset that we downloaded
previously. A neural network will be trained over the training data, and then saved.
Follow these steps to complete this exercise:

1.	 Open a Jupyter Notebook to implement this exercise and import pandas:

import pandas as pd

2.	 Load the Fertility Dataset and split the data into a features matrix X and a target
matrix Y. Use the header = None argument, since the dataset does not have a
header row.

data = pd.read_csv("datasets/fertility_Diagnosis.csv", header=None)

X = data.iloc[:,:9]
Y = data.iloc[:,9]

3.	 Train a Multilayer Perceptron Classifier over the data. Set the number of iterations
to, 1200 to avoid getting a warning message indicating that the default number of
iterations is insufficient to achieve convergence:

from sklearn.neural_network import MLPClassifier
model = MLPClassifier(max_iter = 1200)
model.fit(X,Y)

4.	 Import the pickle and os modules, as follows:

import pickle
import os

The first module (pickle), as explained before, will be used to save the trained
model. The os module is used to locate the current path of the Jupyter Notebook
in order to save the model in the same location.

5.	 Serialize the model and save it in a file named model_exercise.pkl. Use the
following code:

path = os.getcwd() + "/model_exercise.pkl"
file = open(path, "wb")
pickle.dump(model, file)

Saving and Loading a Trained Model | 167

In the preceding snippet, the path variable contains the path of the file that will
hold the serialized model, where the first element locates the path, and the second
element defines the name of the file to be saved. The file variable is used to
create a file that will be saved in the desired path and has the file mode set to wb,
which stands for write and binary (this is the way the serialized model must be
written). Finally, the dump method is applied over the pickle module. It takes the
model that was created previously, serializes it, and then saves it to the created
file.

Congratulations! You have successfully saved a trained model.

Loading a Model

The process of loading a model is also known as deserialization, and it consists of
taking the previously saved file, deserializing it, and then loading it into a code or
terminal, so that you can use the model on new data. The pickle module is also used to
load the model.

It is worth mentioning that the model does not need to be loaded in the same code file
where it was trained and saved; on the contrary, it is meant to be loaded in any other
file. This is mainly because the load method of the pickle library will return the model
in a variable that will be used to apply the predict method.

When loading a model, it is important to not only import the pickle and os modules like
we did before, but also the class of the algorithm that is used to train the model. For
instance, to load a neural network model, it is necessary to import the MLPClassifier
class, under the neural_network module.

Exercise 20: Loading a Saved Model

In the following exercise, using a different Jupyter Notebook, we will load the previously
trained model and perform a prediction:

1.	 Open a Jupyter Notebook to implement this exercise.

2.	 Import the pickle and os modules. Also, import the MLPCLassifier class:

import pickle
import os
from sklearn.neural_network import MLPClassifier

3.	 Use pickle to load the saved model, as follows:

path = os.getcwd() + "/model_exercise.pkl"
file = open(path, "rb")
model = pickle.load(file)

168 | Building Your Own Program

Here, the path variable is also used to store the path of the file model. Next,
the file variable is used to open the file using the rb file mode, which stands for
read and binary. Finally, the load method is applied over the pickle module to
deserialize and load the model into the model variable.

4.	 Use the loaded model to make a prediction for an individual, with the following
values as the values for the features: -0.33, 0.67, 1, 1, 0, 0, 0.8, -1, 0.5.

Store the output obtained by applying the predict method to the model variable, in
a variable named pred:

pred = model.predict([[-0.33,0.67,1,1,0,0,0.8,-1,0.5]])

By printing the pred variable, we get the value of the prediction as equal to O,
which means that the individual has an altered diagnosis.

Congratulations! You have successfully loaded a saved model.

Activity 17: Saving and Loading the Final Model for the Bank

Marketing Dataset

Consider the following scenario: your boss loves the work that you have done so far
and wants you to save the model, so that it can be used in the future without the need
to retrain the model and without the risk of getting different results each time. For this
purpose, you need to save and load the model that you created in the previous activity.

Note

The following activity will be divided into two parts.

The first part carries out the process of saving the model, and will be performed
using the same Jupyter Notebook from the previous activity. The second part
consists of loading the saved model, which will be done using a different Jupyter
Notebook.

Saving and Loading a Trained Model | 169

Follow these steps to complete this activity:

1.	 Open the Jupyter Notebook with the preprocessed Bank Marketing Dataset loaded
and the models trained.

2.	 For learning purposes, take the model that you selected as the best model, and run
it a couple of times.

Note

Check that you are not using a random_state argument, so that you can get
different results each time.

Make sure that you run the calculation of the precision metric every time you
run the model, in order to see the difference in performance that's achieved in
every run. Feel free to stop when you think you have landed at a model with good
performance, out of all the results you get from previous runs.

3.	 Save the model in a file named final_model.pkl.

Note

Make sure that you use the os module to save the model in the same path as the
current Jupyter Notebook. This way, you will be able to find a new file in the folder
after saving the model.

4.	 Open a new Jupyter Notebook and import the required modules and class.

5.	 Load the model.

6.	 Perform a prediction for an individual, using the following values: 42, 2, 0, 0, 1, 2, 1,
0, 5, 8, 380, 1, -1, 0.

Note

The solution for this activity can be found on page 214.

Regardless of the model chosen, the prediction for the sample individual should be
0 (No).

170 | Building Your Own Program

Interacting with a Trained Model
Once the model has been created and saved, it is time for the last step of building a
comprehensive machine learning program: allowing for easy interaction with the model.
This step not only allows for the reusability of the model, but also introduces efficiency
to the implementation of machine learning solutions, by allowing you to perform
classifications using just input data.

There are several ways to interact with a model, and the decision made between one
or the other depends on the nature of the user (the individuals that will be making use
of the model on a regular basis). Machine learning projects can be accessed in different
ways, some of which require the use of an API, an online or offline program, or a
website.

Moreover, once the channel is defined based on the preference or expertise of the
users, it is important to code the connection between the final user and the model,
which could be either a function or a class that deserializes the model and loads it, then
performs the classification, and ultimately, returns an output that is displayed again to
the user.

The following diagram displays the relationship built between the channel and the
model, where the first image represents the model, the second is the function or class
(the intermediary) performing the connection, and the final image is the channel. Here,
as was explained previously, the channel feeds the input data to the intermediary, which
then feeds the information into the model to perform a classification. The output from
the classification is sent back to the intermediary, which passes it along the channel in
order to be displayed:

Figure 6.5: Illustration of the interaction between the user and the model

Interacting with a Trained Model | 171

Exercise 21: Creating a Class and a Channel to Interact with a Trained Model

In the following exercise, we will create a class in a text editor that takes the input data
and feeds it to the model. Additionally, we will create a form in a Jupyter Notebook,
where users can input the data and obtain a prediction.

To create a class in a text editor, follow these steps:

1.	 Open the text editor of your preference.

2.	 Import pandas, pickle, and os, along with the Multilayer Perceptron Classifier class:

import pandas as pd
import pickle
import os
from sklearn.neural_network import MLPClassifier

3.	 Create a class object and name it NN_Model:

Class NN_Model(object):

4.	 Inside of the class, create an initializer method that loads the file containing the
saved model (model_exercise.pkl) into the code:

def __init__(self):
 path = os.getcwd() + "/model_exercise.pkl"
 file = open(path, "rb")
 self.model = pickle.load(file)

Note

Remember to indent the method inside of the class object.

As a general rule, all the methods inside a class object must have the argument
self. On the other hand, when defining the variable of the model using the self
statement, it is possible to make use of the variable in any other method of the
same class.

5.	 Create a predict method that takes in all of the features as arguments. It should
take in the feature values and input them as arguments to the predict method, so
that it can feed them into the model:

def predict(self, season, age, childish, trauma, surgical, fevers,
alcohol, smoking, sitting):
 X = [[season, age, childish, trauma, surgical, fevers, alcohol, smoking,
sitting]]
 return self.model.predict(X)

172 | Building Your Own Program

6.	 Save the code as a Python file (.py) and name it exerciseClass.py. The name of this
file will be used to load the class into the Jupyter Notebook for the following steps.

Now, let's code the frontend solution of the program, which includes creating a form
where users can input data and obtain a prediction:

1.	 Open a Jupyter Notebook to code the frontend solution of the machine learning
program.

2.	 To import the model class that we created previously, use the following code
snippet:

from exerciseClass import NN_Model

3.	 Initialize the model and store it in a variable named model:

model = NN_Model()

4.	 Create a set of variables where the user can input the value for each feature, which
will then be fed to the model. Use the following values:

a = 1 # season in which the analysis was performed
b = 0.56 # age at the time of the analysis
c = 1 # childish disease
d = 1 # accident or serious trauma
e = 1 # surgical intervention
f = 0 # high fevers in the last year
g = 1 # frequency of alcohol consumption
h = -1 # smoking habit
i = 0.63 # number of hours spent sitting per day

5.	 Perform a prediction by using the predict method on the model variable. Input the
feature values as arguments, taking into account that you must name them in the
same way that you did when creating the predict function in the text editor:

pred = model.predict(season=a, age=b, childish=c, trauma=d, surgical=e,
fevers=f, alcohol=g, smoking=h, sitting=i)

Congratulations! You have successfully created a function and a channel to interact
with your model.

Interacting with a Trained Model | 173

Activity 18: Allowing Interaction with the Bank Marketing Dataset Model

Consider the following scenario: after seeing the results that you presented, your boss
has asked you to build a very simple way for him to test the model with data that he
will receive over the book of the next month. If all the tests work well, he will be asking
you to launch the program in a more effective way. Hence, you have decided to share
a Jupyter Notebook with your boss, where he can just input the information and get a
prediction.

Note

The following activity will be developed in two parts. The first part will involve
building the class that connects the channel and the model, and will be developed
using a text editor. The second part will be the creation of the channel, and will be
done in a Jupyter Notebook.

Follow these steps to complete this activity:

1.	 In a text editor, create a class object that contains two main methods. One should
be an initializer that loads the model, and the other should be a predict method,
wherein the data is fed to the model to retrieve an output.

2.	 In a Jupyter Notebook, import and initialize the class that you created in the last
step. Next, create the variables that will hold the values for the features, and use
the following values: 42, 2, 0, 0, 1, 2, 1, 0, 5, 8, 380, 1, -1, 0.

3.	 Perform a prediction by applying the predict method.

Note

The solution for this activity can be found on page 215.

The prediction for the sample individual should be equal to 0, which is the numeric
form of No.

174 | Building Your Own Program

Summary
This chapter wraps up all of the concepts and techniques that are required to
successfully train a machine learning model based on training data. In this chapter, we
introduced the idea of building a comprehensive machine learning program that not
only accounts for the stages involved in the preparation of the dataset and creation of
the ideal model, but also the stage related to making the model accessible for future
use, which is accomplished by carrying out three main processes: saving the model,
loading the model, and creating a channel that allows users to easily interact with the
model and obtain an outcome. The pickle module was also introduced in this regard.

Further, to make the model accessible to users, the ideal channel (for example, an API,
an application, a website or a form) needs to be selected according to the type of user
that will interact with the model. Then, an intermediary needs to be programmed,
which can connect the channel with the model. This intermediary is usually in the form
of a function or a class.

The main objective of this book was to introduce scikit-learn's library as a way to work
with machine learning in a simpler manner. After discussing the importance of and the
different techniques involved in data exploration and preprocessing, this book divided
this knowledge into the two main areas of machine learning: supervised learning and
unsupervised learning. We discussed the various algorithms used in each. Finally, in
this book, we explained the importance of measuring the performance of models by
performing error analysis, in order improve the overall performance of the model on
unseen data, and ultimately, choosing the model that best represents the data. This
final model should be saved, so that you can use it in the future for visualizations, or to
perform predictions.

About

This section is included to assist the students to perform the activities present in the book. It
includes detailed steps that are to be performed by the students to complete and achieve the
objectives of the book.

>
Appendix

178 | Appendix

Chapter 1: Introduction to scikit-learn

Activity 1: Selecting a Target Feature and Creating a Target Matrix

1.	 Load the titanic dataset using the seaborn library. First, import the seaborn
library, and then use the load_dataset("titanic") function:

import seaborn as sns
titanic = sns.load_dataset('titanic')
titanic.head(10)

Next, print out the top 10 instances; this should match the below screenshot:

Figure 1.23: An image showing the first 10 instances of the Titanic dataset

2.	 The preferred target feature could be either survived or alive. This is mainly
because both of them label whether a person survived the crash. For the following
steps, the variable chosen is survived. However, choosing alive will not affect the
final shape of the variables.

3.	 Create a variable, X, to store the features, by using drop(). As explained previously,
the selected target feature is survived, which is why it is dropped from the
features matrix.

Create a variable, Y, to store the target matrix. Use indexing to access only the
value from the column survived:

X = titanic.drop('survived',axis = 1)
Y = titanic['survived']

Chapter 1: Introduction to scikit-learn | 179

4.	 Print out the shape of variable X, as follows:

X.shape
(891, 14)

Do the same for variable Y:

Y.shape
(891,)

Activity 2: Preprocessing an Entire Dataset

1.	 Load the dataset and create the features and target matrices:

import seaborn as sns
titanic = sns.load_dataset('titanic')
X = titanic[['sex','age','fare','class','embark_town','alone']]
Y = titanic['survived']
X.shape
(891, 6)

2.	 Check for missing values in all features.

As we did previously, use isnull() to determine whether a value is missing, and
use sum() to sum up the occurrences of missing values along each feature:

print("Sex: " + str(X['sex'].isnull().sum()))
print("Age: " + str(X['age'].isnull().sum()))
print("Fare: " + str(X['fare'].isnull().sum()))
print("Class: " + str(X['class'].isnull().sum()))
print("Embark town: " + str(X['embark_town'].isnull().sum()))
print("Alone: " + str(X['alone'].isnull().sum()))

The output will look as follows:

Sex: 0
Age: 177
Fare: 0
Class: 0
Embark town: 2
Alone: 0

As you can see from the preceding screenshot, only two features contain missing
values: age and embark_town.

180 | Appendix

3.	 As age has many missing values that accounts for almost 20% of the total, the
values should be replaced. Mean imputation methodology will be applied, as
shown in the following code:

#Age: missing values
mean = X['age'].mean()
mean = mean.round()
X['age'].fillna(mean,inplace = True)

Figure 1.24: A screenshot displaying the output of the preceding code

After calculating the mean, the missing values are replaced by it using the fillna()
function.

Note

The preceding warning may appear as the values are being replaced over a slice
of the DataFrame. This happens because the variable X is created as a slice of
the entire DataFrame titanic. As X is the variable that matters for the current
exercise, it is not an issue to only replace the values over the slice and not over the
entire DataFrame.

4.	 Given that the number of missing values in the embark_town feature is low, the
instances are eliminated from the features matrix:

Note

To eliminate the missing values from the embark_town feature, it is required to
eliminate the entire instance (observation) from the matrix.

Embark_town: missing values
X = X[X['embark_town'].notnull()]
X.shape
(889, 6)

Chapter 1: Introduction to scikit-learn | 181

The notnull() function detects all non-missing values over the object in question.
In this case, the function is used to obtain all non-missing values from the embark_
town feature. Then, indexing is used to retrieve those values from the entire matrix
(X).

5.	 Discover the outliers present in the numeric features. Let's use three standard
deviations as the measure to calculate the min and max threshold for numeric
features. Using the formula that we have learned, the min and max threshold are
calculated and compared against the min and max values of the feature:

feature = "age"
print("Min threshold: " + str(X[feature].mean() - (3 * X[feature].
std()))," Min val: " + str(X[feature].min()))
print("Max threshold: " + str(X[feature].mean() + (3 * X[feature].
std()))," Max val: " + str(X[feature].max()))

The values obtained for the above code are shown here:

Min threshold: -9.194052030619016 Min val: 0.42
Max threshold: 68.62075619259876 Max val: 80.0

Use the following code to calculate the min and max threshold for the fare
feature:

feature = "fare"
print("Min threshold: " + str(X[feature].mean() - (3 * X[feature].
std()))," Min val: " + str(X[feature].min()))
print("Max threshold: " + str(X[feature].mean() + (3 * X[feature].
std()))," Max val: " + str(X[feature].max()))

The values obtained for the above code are shown here:

Min threshold: -116.99583207273355 Min val: 0.0
Max threshold: 181.1891938275142 Max val: 512.3292

As you can see from the preceding screenshots, both features stay inside the range
at the lower end but go outside the range with the max values.

182 | Appendix

6.	 The total count of outliers for the features age and fare are 7 and 20, respectively.
Neither amount represents a high percentage of the total number of values, which
is why outliers are eliminated from the features matrix. The following snippet can
be used to eliminate the outliers and print the shape of the resulting matrix:

Age: outliers
max_age = X["age"].mean() + (3 * X["age"].std())
X = X[X["age"] <= max_age]
X.shape
(882, 6)

Fare: outliers
max_fare = X["fare"].mean() + (3 * X["fare"].std())
X = X[X["fare"] <= max_fare]
X.shape
(862, 6)

7.	 Discover outliers present in text features. The value_counts() function is used to
count the occurrence of the classes in each feature:

feature = "alone"
X[feature].value_counts()
True 522
False 340

feature = "class"
X[feature].value_counts()
Third 489
First 190
Second 183

feature = "alone"
X[feature].value_counts()
True 522
False 340

feature = "embark_town"
X[feature].value_counts()
Southampton 632
Cherbourg 154
Queenstown 76

Chapter 1: Introduction to scikit-learn | 183

None of the classes for any of the features are considered to be outliers, as they all
represent over 5% of the entire dataset.

8.	 Convert all text features into their numeric representations. Use scikit-learn's
LabelEncoder class, as shown in the following code:

from sklearn.preprocessing import LabelEncoder
enc = LabelEncoder()
X["sex"] = enc.fit_transform(X['sex'].astype('str'))
X["class"] = enc.fit_transform(X['class'].astype('str'))
X["embark_town"] = enc.fit_transform(X['embark_town'].astype('str'))
X["alone"] = enc.fit_transform(X['alone'].astype('str'))

9.	 Print out the top 5 instances of the features matrix to view the result of the
conversion:

X.head()

Figure 1.25: A screenshot displaying the first five instances of the features matrix

10.	 Finally, apply normalization (or standardization) to the matrix.

As you can see from the following code, the formula for normalization is only
applied to those features that need normalizing. Given that normalization rescales
the values between 0 and 1, all the features that have already met that condition do
not need to be normalized:

X["age"] = (X["age"] - X["age"].min())/(X["age"].max()-X["age"].min())
X["fare"] = (X["fare"] - X["fare"].min())/(X["fare"].max()-X["fare"].
min())
X["class"] = (X["class"] - X["class"].min())/(X["class"].max()-X["class"].
min())
X["embark_town"] = (X["embark_town"] - X["embark_town"].min())/(X["embark_
town"].max()-X["embark_town"].min())
X.head(10)

184 | Appendix

The top 10 rows of the final output are shown in the following screenshot:

Figure 1.26: A screenshot displaying the first 10 instances of the normalized dataset

Chapter 2: Unsupervised Learning: Real-life Applications | 185

Chapter 2: Unsupervised Learning: Real-life Applications

Activity 3: Using Data Visualization to Aid the Preprocessing Process

1.	 Load the previously downloaded dataset by using the Pandas function read_csv().
Store the dataset in a Pandas DataFrame named data:

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(0)

First, import the required libraries. Then, feed the dataset path to the Pandas
function's read_csv():

data = pd.read_csv("datasets/wholesale_customers_data.csv")

2.	 Check for missing values in your DataFrame. Using the isnull() function plus the
sum() function, count the missing values of the entire dataset at once:

data.isnull().sum()

Figure 2.16: A screenshot showing the number of missing values in the DataFrame

As you can see from the preceding screenshot, there are no missing values in the
dataset.

186 | Appendix

3.	 Check for outliers in your DataFrame. Using the technique you learned in the
previous chapter, label those values that fall outside of three standard deviations
from the mean as outliers. The following code snippet allows you to look for
outliers in the entire set of features at once. However, another valid method would
be to check for outliers one feature at a time:

outliers = {}
for i in range(data.shape[1]):
 min_t = data[data.columns[i]].mean() - (3 * data[data.columns[i]].std())
 max_t = data[data.columns[i]].mean() + (3 * data[data.columns[i]].std())
 count = 0
 for j in data[data.columns[i]]:
 if j < min_t or j > max_t:
 count += 1
 outliers[data.columns[i]] = [count,data.shape[0]-count]
print(outliers)

The count of outliers for each of the features is shown in the following figure:

Figure 2.17: A screenshot showing the output of the preceding code snippet

As you can see from the preceding screenshot, some features do have outliers.
Considering that there are only a few outliers for each feature, there are two
possible ways to handle them.

Chapter 2: Unsupervised Learning: Real-life Applications | 187

First, you could decide to delete the outliers. This decision can be supported by
displaying a histogram for the features with outliers:

plt.hist(data["Fresh"])
plt.show()

Figure 2.18: An example histogram plot for the "Fresh" feature

For instance, for the feature named Fresh, it can be seen through the histogram
that most instances are represented by values below 40,000. Hence, deleting the
instances above that value will not affect the performance of the model.

188 | Appendix

On the other hand, the second approach would be to leave the outliers as they are,
considering that they do not represent a large portion of the dataset, which can
be supported with data visualization tools using a pie chart. See the code and the
output that follow:

plt.figure(figsize=(8,8))
plt.pie(outliers["Detergents_Paper"],autopct="%.2f")
plt.show()

Figure 2.19: A pie chart showing the participation of outliers from the Detergents_papers feature in
the dataset

The preceding diagram shows the participation of the outliers from the
Detergents_papers feature, which was the feature with the most outliers in the
dataset. Only 2.27% of the values are outliers, a value so low that it will not affect
the performance of the model either.

Chapter 2: Unsupervised Learning: Real-life Applications | 189

4.	 Rescale the data. For this solution, the formula for standardization has been used.
Note that the formula can be applied to the entire dataset at once, instead of being
applied individually to each feature:

data_standardized = (data - data.mean())/data.std()
data_standardized.head()

Figure 2.20: A table showing the first five instances of the standardized dataset

Activity 4: Applying the k-means Algorithm to a Dataset

1.	 Open the Jupyter Notebook that you used for the previous activity. There, you
should have imported all the required libraries and stored the dataset in a variable
named data. The standardized data should look as follows:

data_standardized = (data - data.mean())/data.std()
data_standardized.head()

Figure 2.21: A screenshot displaying the first five instances of the standardized dataset

2.	 Calculate the average distance of data points from its centroid in relation to the
number of clusters. Based on this distance, select the appropriate number of
clusters to train the model to.

First, import the algorithm class:

from sklearn.cluster import KMeans

190 | Appendix

Next, using the code in the following snippet, calculate the average distance of
data points from its centroid based on the number of clusters created:

ideal_k = []
for i in range(1,21):
 est_kmeans = KMeans(n_clusters=i)
 est_kmeans.fit(data_standardized)

 ideal_k.append([i,est_kmeans.inertia_])
ideal_k = np.array(ideal_k)

Finally, plot the relation to find the breaking point of the line, and select the
number of clusters:

plt.plot(ideal_k[:,0],ideal_k[:,1])
plt.show()

Figure 2.22: The output of the plot function used

3.	 Train the model and assign a cluster to each data point in your dataset. Plot the
results.

To train the model, use the following code:

est_kmeans = KMeans(n_clusters=6)
est_kmeans.fit(data_standardized)
pred_kmeans = est_kmeans.predict(data_standardized)

The number of clusters selected is 6; however, since there is no exact breaking
point, values between 5 and 10 are also acceptable.

Chapter 2: Unsupervised Learning: Real-life Applications | 191

Finally, plot the results of the clustering process. As the dataset contains eight
different features, choose two features to draw at once, as shown in the following
code:

plt.subplots(1, 2, sharex='col', sharey='row', figsize=(16,8))
plt.scatter(data.iloc[:,5], data.iloc[:,3], c=pred_kmeans, s=20)
plt.xlim([0, 20000])
plt.ylim([0,20000])
plt.xlabel('Frozen')
plt.subplot(1, 2, 1)
plt.scatter(data.iloc[:,4], data.iloc[:,3], c=pred_kmeans, s=20)
plt.xlim([0, 20000])
plt.ylim([0,20000])
plt.xlabel('Grocery')
plt.ylabel('Milk')
plt.show()

Figure 2.23: Two example plots obtained after the clustering process

The subplots() function from Matplotlib has been used to plot two scatter graphs
at a time.

As can be seen from the plots, there is no obvious visual relation due to the fact
that we are only able to use two of the eight features present in the dataset.
However, the final output of the model creates six different clusters that represent
six different profiles of clients.

192 | Appendix

Activity 5: Applying the Mean-Shift Algorithm to a Dataset

1.	 Open the Jupyter Notebook that you used for the previous activity.

2.	 Train the model and assign a cluster to each data point in your dataset. Plot the
results.

First, do not forget to import the algorithm class:

from sklearn.cluster import MeanShift

To train the model, use the following code:

est_meanshift = MeanShift(0.4)
est_meanshift.fit(data_standardized)
pred_meanshift = est_meanshift.predict(data_standardized)

The model was trained using a bandwidth of 0.4. However, feel free to test other
values to see how the result changes.

Finally, plot the results of the clustering process. As the dataset contains eight
different features, choose two features to draw at once, as shown in the snippet
below. Similar to the previous activity, the separation between clusters is not
visually seen due to the capability to only draw two out of the eight features:

plt.subplots(1, 2, sharex='col', sharey='row', figsize=(16,8))
plt.scatter(data.iloc[:,5], data.iloc[:,3], c=pred_meanshift, s=20)
plt.xlim([0, 20000])
plt.ylim([0,20000])
plt.xlabel('Frozen')
plt.subplot(1, 2, 1)
plt.scatter(data.iloc[:,4], data.iloc[:,3], c=pred_meanshift, s=20)
plt.xlim([0, 20000])
plt.ylim([0,20000])
plt.xlabel('Grocery')
plt.ylabel('Milk')
plt.show()

Chapter 2: Unsupervised Learning: Real-life Applications | 193

Figure 2.24: Example plots obtained at the end of the process

Activity 6: Applying the DBSCAN Algorithm to the Dataset

1.	 Open the Jupyter Notebook that you used for the previous activity.

2.	 Train the model and assign a cluster to each data point in your dataset. Plot the
results.

First, do not forget to import the algorithm class:

from sklearn.cluster import DBSCAN

To train the model, use the following code:

est_dbscan = DBSCAN(eps=0.8)
pred_dbscan = est_dbscan.fit_predict(data_standardized)

The model was trained using an epsilon value of 0.8. However, feel free to test
other values to see how the results change.

194 | Appendix

Finally, plot the results of the clustering process. As the dataset contains eight
different features, choose two features to draw at once, as shown in the following
code:

plt.subplots(1, 2, sharex='col', sharey='row', figsize=(16,8))
plt.scatter(data.iloc[:,5], data.iloc[:,3], c=pred_dbscan, s=20)
plt.xlim([0, 20000])
plt.ylim([0,20000])
plt.xlabel('Frozen')
plt.subplot(1, 2, 1)
plt.scatter(data.iloc[:,4], data.iloc[:,3], c=pred_dbscan, s=20)
plt.xlim([0, 20000])
plt.ylim([0,20000])
plt.xlabel('Grocery')
plt.ylabel('Milk')
plt.show()

Figure 2.25: Example plots obtained at the end of the clustering process

Similar to the previous activity, the separation between clusters is not visually
seen due to the capability to only draw two out of the eight features at once.

Chapter 2: Unsupervised Learning: Real-life Applications | 195

Activity 7: Measuring and Comparing the Performance of the Algorithms

1.	 Open the Jupyter Notebook that you used for the previous activity.

2.	 Calculate both the Silhouette Coefficient score and the Calinski–Harabasz index
for all the models that you trained previously.

First, do not forget to import the metrics:

from sklearn.metrics import silhouette_score
from sklearn.metrics import silhouette_score

Calculate the Silhouette Coefficient score for all the algorithms, as shown in the
following code:

kmeans_score = silhouette_score(data_standardized, pred_kmeans,
metric='euclidean')
meanshift_score = silhouette_score(data_standardized, pred_meanshift,
metric='euclidean')
dbscan_score = silhouette_score(data_standardized, pred_dbscan,
metric='euclidean')
print(kmeans_score, meanshift_score, dbscan_score)

The scores come to be around 0.355, 0.093, and 0.168 for the k-means, Mean-
Shift, and DBSCAN algorithms, respectively.

Finally, calculate the Calinski–Harabasz index for all the algorithms. The following
is a snippet of the code:

kmeans_score = calinski_harabaz_score(data_standardized, pred_kmeans)
meanshift_score = calinski_harabaz_score(data_standardized, pred_
meanshift)
dbscan_score = calinski_harabaz_score(data_standardized, pred_dbscan)
print(kmeans_score, meanshift_score, dbscan_score)

The scores come to be approximately 139.8, 112.9, and 42.45 for the three
algorithms in the respective order in the code snippet.

By quickly looking at the results obtained for both metrics, it is possible to
conclude that the k-means algorithm outperforms the other models, and hence,
should be the one selected to solve the data problem.

196 | Appendix

Chapter 3: Supervised Learning: Key Steps

Activity 8: Data Partition over a Handwritten Digit Dataset

1.	 Import the digits toy dataset using scikit-learn's datasets package and create a
Pandas DataFrame containing the features and target matrices. Use the following
code:

from sklearn.datasets import load_digits
digits = load_digits()

import pandas as pd
X = pd.DataFrame(digits.data)
Y = pd.DataFrame(digits.target)

The shape of your features and target matrix should be as follows, respectively:

(1797,64) (1797,1)

2.	 Choose the appropriate approach for splitting the dataset and split it.

Conventional split approach (60/20/20%)

Using the train_test_split function, split the data into an initial train set and a
test set:

from sklearn.model_selection import train_test_split

X_new, X_test, Y_new, Y_test = train_test_split(X, Y, test_size=0.2)

The shape of the sets that you created should be as follows:

(1437,64) (360,64) (1437,1) (360,1)

Next, calculate the value of the test_size, which sets the size of the dev set equal
to the size of the test set that was created previously:

dev_size = 360/1437

The result of the preceding operation is 0.2505.

Finally, split X_new and Y_new into the final train and dev sets. Use the following
code:

X_train, X_dev, Y_train, Y_dev = train_test_split(X_new, Y_new, test_size
= 0.25)

Chapter 3: Supervised Learning: Key Steps | 197

The final shape of all sets is shown here:

X_train = (1077,64)
X_dev = (360,64)
X_test = (360,64)
Y_train = (1077,1)
Y_dev = (360,1)
Y_test = (360,1)

Cross-Validation Approach

Using the train_test_split function, split the data into an initial train set and a
test set, just like you did previously:

from sklearn.model_selection import train_test_split

X_new_2, X_test_2, Y_new_2, Y_test_2 = train_test_split(X, Y, test_
size=0.1)

Using the KFold class, perform a 10-fold split:

from sklearn.model_selection import KFold

kf = Kfold(n_splits = 10)
splits = kf.split(X_new_2)

Remember that cross-validation performs different configuration of splits,
shuffling data each time. Considering this, perform a for loop that will go through
all the split configurations:

for train_index, dev_index in splits:
 X_train_2, X_dev_2 = X_new_2.iloc[train_index], X_new_2.iloc[dev_index]

 Y_train_2, Y_dev_2 = Y_new_2.iloc[train_index], Y_new_2.iloc[dev_index]

The code in charge of training and evaluating the model should be inside the body
of the for loop in order to train and evaluate the model with each configuration of
splits.

The final shape of the sets will be as follows:

X_train_2 = (1456,64)
X_dev_2 = (161,64)
X_test_2 = (180,64)
Y_train_2 = (1456,1)
Y_dev_2 = (161,1)
Y_test_2 = (180,1)

198 | Appendix

Activity 9: Evaluating the Performance of the Model Trained over

a Handwritten Dataset

1.	 Import the toy dataset boston using scikit-learn's datasets package and create
a Pandas DataFrame containing the features and target matrices:

from sklearn.datasets import load_digits
data = load_digits()

import pandas as pd
X = pd.DataFrame(data.data)
Y = pd.DataFrame(data.target)

2.	 Split the data into training and testing sets. Use 20% as the size of the testing set:

from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = 0.1,
random_state = 0)

3.	 Train a decision tree over the train set. Then, use the model to predict the class
label over the test set (hint: to train the Decision Tree, revisit Exercise 12):

from sklearn import tree
model = tree.DecisionTreeClassifier(random_state = 0)
model = model.fit(X_train, Y_train)

Y_pred = model.predict(X_test)

4.	 Use scikit-learn to construct a confusion matrix:

from sklearn.metrics import confusion_matrix
confusion_matrix = confusion_matrix (Y_test, Y_pred)

The output of the confusion matrix is shown as follows:

Figure 3.13: Output of the confusion matrix from Activity 9

Chapter 3: Supervised Learning: Key Steps | 199

5.	 Calculate the accuracy of the model:

from sklearn.metrics import accuracy_score
accuracy_score = accuracy_score(Y_test, Y_pred)

The accuracy is equal to 84.72%.

6.	 Calculate the precision and recall. Considering that both the precision and recall
can only be calculated over binary data, assume that we are only interested in
classifying instances as number 6 or any other number:

Y_test_2 = Y_test[:]
Y_test_2[Y_test_2 != 6] = 1
Y_test_2[Y_test_2 == 6] = 0

Y_pred_2 = Y_pred
Y_pred_2[Y_pred_2 != 6] = 1
Y_pred_2[Y_pred_2 == 6] = 0

From sklearn.metrics import precision_score, recall_score
precision = precision_score(Y_test_2, Y_pred_2)
recall = recall_score(Y_test_2, Y_pred_2)

The precision and recall scores should be equal to 98.41% and 98.10%, respectively.

Activity 10: Performing Error Analysis over a Model Trained to Recognize

Handwritten Digits

1.	 Import the digits toy dataset using scikit-learn's datasets package and create a
Pandas DataFrame containing the features and target matrices:

from sklearn.datasets import load_digits
data = load_digits()

import pandas as pd
X = pd.DataFrame(data.data)
Y = pd.DataFrame(data.target)

200 | Appendix

2.	 Split the data into training, validation, and testing sets. Use 0.1 as the size of the
test set, and an equivalent number to build a validation set of the same shape:

from sklearn.model_selection import train_test_split

X_new, X_test, Y_new, Y_test = train_test_split(X, Y, test_size = 0.1,
random_state = 101)

X_train, X_dev, Y_train, Y_dev = train_test_split(X_new, Y_new, test_size
= 0.11, random_state = 101)

3.	 Create a train/dev set for both the features and the target values that contains 89
instances/labels of the train set and 89 instances/labels of the dev set:

import numpy as np
np.random.seed(101)

indices_train = np.random.randint(0, len(X_train), 89)
indices_dev = np.random.randint(0, len(X_dev), 89)

X_train_dev = pd.concat([X_train.iloc[indices_train,:], X_dev.
iloc[indices_dev,:]])

Y_train_dev = pd.concat([Y_train.iloc[indices_train,:], Y_dev.
iloc[indices_dev,:]])

4.	 Train a decision tree over that training set data:

from sklearn import tree

model = tree.DecisionTreeClassifier(random_state = 101)
model = model.fit(X_train, Y_train)

5.	 Calculate the error rate for all sets of data, and determine which condition
is affecting the performance of the model:

from sklearn.metrics import accuracy_score
X_sets = [X_train, X_train_dev, X_dev, X_test]
Y_sets = [Y_train, Y_train_dev, Y_dev, Y_test]

scores = []
for i in range(0, len(X_sets)):
 pred = model.predict(X_sets[i])
 score = accuracy_score(Y_sets[i], pred)
 scores.append(score)

Chapter 3: Supervised Learning: Key Steps | 201

The error rates are shown in the following table:

Figure 3.14: Error rates of the Handwritten Digits model

From the preceding results of the errors, it can be concluded that the model is
equally suffering from variance and data mismatch.

202 | Appendix

Chapter 4: Supervised Learning Algorithms: Predict Annual Income

Activity 11: Training a Naïve Bayes Model for our Census Income Dataset

Before working on step 1, make sure that the data has been preprocessed, as follows:

import pandas as pd

data = pd.read_csv("datasets/census_income_dataset.csv")

data = data.drop(["fnlwgt","education","relationship","sex", "race"],
axis=1)

After reading the dataset, the three variables considered irrelevant for the study are
removed.

Next, the remaining qualitative variables are converted into their numerical form via the
following code:

from sklearn.preprocessing import LabelEncoder

enc = LabelEncoder()

features_to_convert = ["workclass","marital-status","occupation","native-
country","target"]

for i in features_to_convert:

 data[i] = enc.fit_transform(data[i].astype('str'))

Once this is complete, you can begin with the steps of the activity:

1.	 Using the preprocessed Census Income Dataset, separate the features from the
target by creating the variables X and Y:

X = data.drop("target", axis=1)
Y = data["target"]

Note that there are several ways to achieve the separation of X and Y. Use the one
that you feel most comfortable with. However, take into account that X should
contain the features for all instances, while Y should contain the class label of all
instances.

Chapter 4: Supervised Learning Algorithms: Predict Annual Income | 203

2.	 Divide the dataset into training, validation, and testing sets, using a split ratio of
10%:

from sklearn.model_selection import train_test_split

X_new, X_test, Y_new, Y_test = train_test_split(X, Y, test_size=0.1,
random_state=101)

X_train, X_dev, Y_train, Y_dev = train_test_split(X_new, Y_new, test_
size=0.12, random_state=101)

The final shape of all sets must match the values shown in the following code:

X_train = (26048, 9)
Y_train = (26048,)
X_dev = (3256, 9)
Y_dev = (3256,)
X_test = (3257, 9)
Y_test = (3257,)

3.	 Import the Gaussian Naïve Bayes class, and then use the fit method to train the
model over the training sets (X_train and Y_train):

from sklearn.naive_bayes import GaussianNB

model_NB = GaussianNB()
model_NB.fit(X_train,Y_train)

4.	 Finally, perform a prediction using the model that you trained previously for a new
instance with the following values for each feature: 39, 6, 13, 4, 0, 2174, 0, 40, 38.

Using the following code, the prediction for the individual should be equal to zero,
which means that the individual most likely has an income below or equal to 50K:

pred_1 = model_NB.predict([[39,6,13,4,0,4,1,2174,0,40,38]])
print(pred_1)

204 | Appendix

Activity 12: Training a Decision Tree Model for our Census Income Dataset

The shape of the previously created subsets must be as follows:
X_train = (26048, 11)
Y_train = (26048, 1)
X_dev = (3256, 11)
Y_dev = (3256, 1)
X_test = (3257, 11)
Y_test = (3257, 1)

1.	 Using the preprocessed Census Income Dataset that was previously split into the
different subsets, import the DecisionTreeClassifier class, and then use the fit
method to train the model over the training sets (X_train and Y_train):

from sklearn.tree import DecisionTreeClassifier

model_tree = DecisionTreeClassifier()
model_tree.fit(X_train,Y_train)

2.	 Finally, perform a prediction using the model that you trained before for a new
instance with the following values for each feature: 39, 6, 13, 4, 0, 2174, 0, 40, 38.

Using the following code, the prediction for the individual should be equal to zero,
which means that the individual most likely has an income below or equal to 50K:

pred_2 = model_tree.predict([[39,6,13,4,0,4,1,2174,0,40,38]])
print(pred_2)

Activity 13: Training a SVM Model for our Census Income Dataset

The shape of the previously created subsets must be as follows:
X_train = (26048, 11)
Y_train = (26048, 1)
X_dev = (3256, 11)
Y_dev = (3256, 1)
X_test = (3257, 11)
Y_test = (3257, 1)

1.	 Using the preprocessed Census Income Dataset that was previously split into the
different subsets, import the SVC class, and then use the fit method to train the
model over the training sets (X_train and Y_train):

from sklearn.svm import SVC

model_svm = SVC()
model_svm.fit(X_train,Y_train)

Chapter 4: Supervised Learning Algorithms: Predict Annual Income | 205

2.	 Finally, perform a prediction using the model that you trained before for a new
instance with the following values for each feature: 39, 6, 13, 4, 0, 2174, 0, 40, 38.

Using the following code, the prediction for the individual should be equal to zero,
which means that the individual most likely has an income below or equal to 50K:

pred_3 = model_svm.predict([[39,6,13,4,0,4,1,2174,0,40,38]])
print(pred_3)

206 | Appendix

Chapter 5: Artificial Neural Networks: Predict Annual Income

Activity 14: Training a Multilayer Perceptron for our Census Income Dataset

1.	 Using the preprocessed Census Income Dataset, separate the features from the
target, creating the variables X and Y:

X = data.drop("target", axis=1)
Y = data["target"]

As explained previously, there are several ways to achieve the separation of X
and Y, and the main thing to consider is that X should contain the features for all
instances, while Y should contain the class label of all instances.

2.	 Divide the dataset into training, validation, and testing sets, using a split ratio of
10%:

from sklearn.model_selection import train_test_split
X_new, X_test, Y_new, Y_test = train_test_split(X, Y, test_size=0.1,
random_state=101)
X_train, X_dev, Y_train, Y_dev = train_test_split(X_new, Y_new, test_
size=0.1111, random_state=101)

The shape of the sets created should be as follows:

X_train = (26048, 9)
X_dev = (3256, 9)
X_test = (3257, 9)
Y_train = (26048,)
Y_dev = (3256,)
Y_test = (3257, 1)

3.	 From the neural_network module, import the Multilayer Perceptron Classifier
class. Initialize it and train the model over the training data.

Leave the hyperparameters to their default values. Again, use a random_state equal
to 101:

from sklearn.neural_network import MLPClassifier
model = MLPClassifier(random_state=101)
model = model.fit(X_train, Y_train)

4.	 Address any warning that may appear after training the model with the default
values for the hyperparameters.

Chapter 5: Artificial Neural Networks: Predict Annual Income | 207

No warning was raised during the training process of the network, which means
that the model was able to achieve convergence using the default values for the
hyperparameters. Nevertheless, keep in mind that this does not mean that the
best model was achieved, and changes in the hyperparameter values may result in
better performance of the model.
Calculate the accuracy of the model for all three sets (training, validation, and
testing):

from sklearn.metrics import accuracy_score

X_sets = [X_train, X_dev, X_test]
Y_sets = [Y_train, Y_dev, Y_test]

accuracy = []

for i in range(0,len(X_sets)):

 pred = model.predict(X_sets[i])
 score = accuracy_score(Y_sets[i], pred)
 accuracy.append(score)

The accuracy score for the three sets should be as follows:

Train sets = 0.8342
Dev sets = 0.8111
Test sets = 0.8252

Activity 15: Comparing Different Models to Choose the Best Fit for the Census

Income Data Problem

1.	 Open the Jupyter Notebook that you used to train the models.

2.	 Compare the four models based on their accuracy score only.

208 | Appendix

By taking the accuracy scores of the models from the previous chapter, it is
possible to perform a final comparison to choose the model that better solves the
data problem. To do so, the following table displays the accuracy scores for all four
models:

Figure 5.17: Accuracy scores of all four models for the Census Income Dataset

To identify the model with the best performance, begin by comparing the
accuracy rates over the training sets. From this, it is possible to conclude that
the decision tree model is a better fit to the data problem. Nonetheless, the
performance over the validation and testing sets is lower than the one achieved
using the Multilayer Perceptron, which is an indication of the presence of high
variance in the decision tree model.

Hence, a good approach would be to address the high variance of the decision
tree model by simplifying the model and adding a pruning argument, for instance
(the pruning argument "trims" the leaves of the tree to simplify it and ignore some
of the details of the tree in order to generalize the model to the data). Ideally, the
model should be able to reach a similar level of accuracy for all three sets, which
would make it the best model for the data problem.

However, if the model is not able to overcome this variance, and assuming that all
the models have been fine-tuned to achieve the maximum performance possible,
the Multilayer Perceptron should be the model that's selected, considering that
it performs best over the testing sets. This is mainly because the performance of
the model over the testing set is the one that defines its overall performance over
unseen data, which means that the one with higher testing set performance will
be more useful in the long term.

Chapter 6: Building Your Own Program | 209

Chapter 6: Building Your Own Program

Activity 16: Performing the Preparation and Creation Stages for the Bank

Marketing Dataset

For the purpose of this demonstration, a random_state equal to 100 will be used for the
following solution:

1.	 Open a Jupyter Notebook to implement this activity and import pandas:

import pandas as pd

2.	 Load the previously downloaded dataset into the notebook:

data = pd.read_csv("../datasets/bank-full.csv")

The first 10 rows of the dataset can be seen using the statement data.head(10):

Figure 6.6: A screenshot showing the first 10 instances of the dataset

The missing values are shown as NaN, as explained previously.

3.	 Select the metric that's the most appropriate for measuring the performance
of the model, considering that the purpose of the study is to detect clients who
would subscribe to the term deposit.

The metric to evaluate the performance of the model is the precision metric, as
it compares the correctly classified positive labels against the total number of
instances predicted as positive.

4.	 Preprocess the dataset.

Handling Missing Values

Use the following code to check for missing values:

data.isnull().sum()

210 | Appendix

Based on the results, you will observe that only four features contain missing
values: job (288), education (1,857), contact (13,020), and poutcome (36,959).

The first two features can be left unhandled considering that the missing values
represent less than the 5% of the entire data. On the other hand, 28.8% of the
values are missing from the contact feature, and taking into account that the
feature refers to the mode of contact, which is irrelevant for determining whether
a person will subscribe to a new product, it is safe to remove this feature from the
study. Finally, the poutcome feature is missing 81.7% of its values, which is why this
feature is also removed from the study.

Using the following code, the preceding two features are dropped:

data = data.drop(["contact", "poutcome"], axis=1)

Converting the Categorical Features into Numeric Form

For all nominal features, use the following code:

from sklearn.preprocessing import LabelEncoder
enc = LabelEncoder()

features_to_convert = ["job", "marital", "default", "housing", "loan",
"month", "y"]

for i in features_to_convert:
 data[i] = enc.fit_transform(data[i].astype("str"))

The preceding code, as explained in previous chapters, converts all the qualitative
features into their numeric forms.

Next, to handle the ordinal feature, we must use the following code:

data["education"] = data["education"].fillna["unknown"]
encoder = ["unknown", "primary", "secondary", "tertiary"]

for i, word in enumerate(encoder):
 data["education"] = data["education"].str.replace(word,str(i))
 data["education"] = data["education"].astype("int64")

Chapter 6: Building Your Own Program | 211

Here, the first line converts NaN values to the word unknown and the second line
sets the order of the values in the feature. Next, a for loop is used to replace each
word for a number that follows an order. For the preceding example, 0 will be
used to replace the word unknown, then 1 will be used instead of primary, and so
on. Finally, the whole column is converted into an integer type since the replace
function writes down the numbers as strings.

Dealing with Outliers

Use the following code to check for outliers:

outliers = []

for i in range(data.shape[1]):
 min_t = data[data.columns[i]].mean() – (3 * data[data.columns[i]].std())
 max_t = data[data.columns[i]].mean() + (3 * data[data.columns[i]].std())
 count = 0

 for j in data[data.columns[i]]:
 if j < min_t or j > max_t:
 count += 1

 outliers[data.columns[i]] = [count, data.shape[0]-count]

By analyzing the results from the preceding code, you will observe that the
outliers do not account for more than 5% of the total values in each feature, which
is why they can be left unhandled.

5.	 Separate the features from the class label and split the dataset into three sets
(training, validation, and testing).

To separate the features from the target value, use the following code:

X = data.drop("y", axis = 1)
Y = data["y"]

Next, to perform a split of the form 60/20/20%, use the following code:

from sklearn.model_selection import train_test_split
X_new, X_test, Y_new, Y_test = train_test_split(X, Y, test_size = 0.2,
random_state = 0)
X_train, X_dev, Y_train, Y_dev = train_test_split(X_new, Y_new, test_size
= 0.25, random_state = 0)

212 | Appendix

The shape of each set is as follows:

X_train = (27126, 14)
Y_train = (27126,)
X_dev = (9042, 14)
Y_dev = (9042,)
X_test = (9043, 14)
Y_test = (9043,)

6.	 Use the Decision Tree and the Multilayer Perceptron algorithms to apply over the
dataset and train the models.

By using the following code, both algorithms can be trained:

from sklearn.tree import DecisionTreeClassifier
model_tree = DecisionTreeClassifier(random_state = 101)
model_tree.fit(X_train, Y_train)

from sklearn.neural_network import MLPClassifier
model_NN = MLPClassifier(random_state = 101)
model_NN.fit(X_train, Y_train)

7.	 Evaluate both models by using the metric that was selected previously.

Using the following code, it is possible to measure the precision score of the
Decision Tree model:

from sklearn.metrics import precision_score
X_sets = [X_train, X_dev, X_test]
Y_sets = [Y_train, Y_dev, Y_test]

precision = []

for i in range(0, len(X_sets)):
 pred = model_tree.predict(X_sets[i])
 score = precision_score(Y_sets[i], pred)
 precision.append(score)

The same code can be modified to calculate the score for the Multilayer
Perceptron.

Chapter 6: Building Your Own Program | 213

The results from the code are shown in the following table:

Figure 6.7: Precision scores for both models

8.	 Fine-tune some of the hyperparameters to fix the issues detected during the
evaluation of the model by performing error analysis.

Although the precision of the decision tree over the training sets is perfect, on
comparing it against the results of the other two sets, it is possible to conclude
that the model suffers from high variance.

On the other hand, the Multilayer Perceptron has a similar performance on all
three sets, but the overall performance is low, which means that the model is more
likely to be suffering from high bias.

Considering this, for the decision tree model, both the minimum number of
samples required to be at a leaf node and the maximum depth of the tree are
changed in order to simplify the model. On the other hand, for the Multilayer
Perceptron, the number of iterations, the number of hidden layers, the number of
units in each layer, and the tolerance for optimization are changed.

The following code shows the final values used for each hyperparameter,
considering that to arrive at them it is required to try different values:

from sklearn.tree import DecisionTreeClassifier
model_tree = DecisionTreeClassifier(randome_state = 101, min_samples_leaf =
100, max_depth = 100)
model_tree.fit(X_train, Y_train)

from sklearn.neural_network import MLPClassifier
model_NN = MLPClassifier(random_state = 101, max_iter = 1000, hidden_layer_
sizes = [100,100,50,25,25], tol=1e-7)
model_NN.fit(X_train, Y_train)

214 | Appendix

9.	 Compare the final versions of your models and select the one that you consider
best fits the data.

By calculating the precision score for all three sets for the newly trained models,
we obtain the following values:

Figure 6.8: Precision scores for the newly trained models

An improvement in performance for both models is achieved, and by comparing
the values, it is possible to conclude that the Multilayer Perceptron outperforms
the Decision Tree. Based on this, the Multilayer Perceptron is selected as the
better model to solve the data problem.

Activity 17: Saving and Loading the Final Model for the Bank

Marketing Dataset

1.	 Save the model into a file named final_model.pkl:

path = os.getcwd() + "/final_model.pkl"
file = open(path, "wb")
pickle.dump(model_NN, file)

2.	 Open a new Jupyter Notebook and import the required modules and class:

from sklearn.neural_network import MLPClassifier
import pickle
import os

3.	 Load the model:

path = os.getcwd() + "/final_model.pkl"
file = open(path, "rb")
model = pickle.load(file)

Chapter 6: Building Your Own Program | 215

4.	 Perform a prediction for an individual by using the following values:

42, 2, 0, 0, 1, 2, 1, 0, 5, 8, 380, 1, -1, 0.

pred = model.predict([[42,2,0,0,1,2,1,0,5,8,380,1,-1,0]])

By printing the pred variable, the output is 0, which is the numeric form of No. This
means that the individual is more likely to not subscribe to the new product.

Activity 18: Allowing Interaction with the Bank Marketing Dataset Model

1.	 In a text editor, create a class object that contains two main functions. One should
be an initializer that loads the model, and the other should be a predict method
where the data is fed to the model to retrieve an output:

import pandas as pd
import pickle
import os
from sklearn.neural_network import MLPClassifier

Class NN_Model(object):

 def __init__(self):
 path = os.getcwd() + "/model_exercise.pkl"
 file = open(path, "rb")
 self.model = pickle.load(file)

 def predict(self, age, job, marital, education, default, balance,
housing, loan, day, month, duration, campaign, pdays, previous):
 X = [[age, job, marital, education, default, balance, housing, loan,
day, month, duration, campaign, pdays, previous]]
 return self.model.predict(X)

216 | Appendix

2.	 In a Jupyter Notebook, import and initialize the class that you created in the last
step. Next, create the variables that will hold the values for the features and use
the following values: 42, 2, 0, 0, 1, 2, 1, 0, 5, 8, 380, 1, -1, 0.

from trainedModel import NN_Model

model = NN_Model()

age = 42
job = 2
marital = 0
education = 0
default = 1
balance = 2
housing = 1
loan = 0
day = 5
month = 8
duration = 380
campaign = 1
pdays = -1
previous = 0

3.	 Perform a prediction by applying the predict method:

pred = model.predict(age=age, job=job, marital=marital,
education=education, default=default, balance=balance, housing=housing,
loan=loan, day=day, month=month, duration=duration, campaign=campaign,
pdays=pdays, previous=previous)

By printing the variable, the prediction is equal to 0; that is, the individual with the
given features is not likely to subscribe to the product.

About

All major keywords used in this book are captured alphabetically in this section. Each one is
accompanied by the page number of where they appear.

>
Index

A
accuracy, 84, 86-87,

89-91, 94, 101,
126-129, 139, 143,
146-147, 149-152

B
backward, 131, 141
biased, 76
biases, 109, 133-138,

142-143, 153
binary, 87, 94, 107, 136,

140, 161, 167-168
boltzmann, 143
boundary, 120
brackets, 115
branch, 118
branches, 117-118
breaking, 54-55, 57
built-in, 2, 24

C
calinski, 68-70
centroid, 36, 41,

52-56, 58-59, 68
centroids, 36, 52-54, 59
channel, 43, 158, 170-174
circle, 50, 54, 124
circles, 48-50, 55
classes, 22, 24, 29,

86-87, 122-123, 157
classifier, 34, 85, 120, 140,

143-144, 146, 166, 171
cluster, 31, 36, 40-43,

52-65, 67-69
clustering, 4, 36-37,

39-43, 50, 52, 54, 58,
62-64, 66-68, 70-71

clusters, 36, 40-42, 45,

52-60, 62-64, 66-71
concat, 99
confusion, 85-86, 89, 94
converge, 53, 142
converging, 141
correlated, 111
correlates, 111
cournapeau, 2
criterion, 53, 59

D
dataframe, 7, 45-46,

48, 51-52, 79, 82, 84,
88, 92-93, 99, 101

dataframes, 45, 79, 82, 98
dbscan, 36, 41, 64-70
dendrites, 133
derivative, 138
descent, 137
deviation, 26-28
deviations, 15-16,

19-21, 52, 110
divergence, 136

E
encoder, 24, 164
epsilon, 64-65, 67
estimator, 30-31, 33, 113
euclidean, 53, 59, 69

F
feature, 3, 5-7, 10-11,

13-15, 17-18, 21-26, 28,
31, 35, 44, 48, 50, 58,
107, 109-116, 120, 125,
140, 145, 162, 171-172

features, 1-3, 7-14, 16,
21-22, 24-25, 27-31,
33-35, 37, 40, 43-45, 50,

52, 58-59, 63, 66-67,
71, 78-79, 82, 84, 93, 98,
101, 106-113, 115-116,
118, 120-121, 124, 133,
143-146, 157, 160-162,
164, 166, 168, 171, 173

fillna, 18, 164
filters, 142

G
gaussian, 15, 20, 26,

28, 31, 41, 115-116
gaussiannb, 30, 115
getcwd, 166-167, 171
gradient, 137
graphical, 121
graphs, 45, 59

H
harabasz, 68-69
harabaz, 69-70
hidden, 133-135, 139-140,

143, 149-151, 153
histogram, 19, 48, 50
histograms, 51
hyperbolic, 135, 140
hyperplane, 120-122

I
imputation, 14, 16, 18, 21
initialize, 24, 29, 33,

56, 82, 115, 119,
124, 146, 172-173

interface, 30, 33
interfaces, 30, 37
invariance, 25
iteration, 81, 133-138,

140-141
iterations, 45, 53,

134-135, 137, 141-142,
145, 147-150, 153, 166

iterative, 41, 52-53, 58,
134, 137-138, 141

J
joblib, 165
jupyter, 7-8, 17, 23, 26,

48-49, 51, 55, 59, 61, 63,
65, 67, 70, 78, 82, 88,
92, 98, 114, 116, 119-120,
124-125, 144, 152, 160,
163, 166-169, 171-173

K
kernel, 60, 124
kernels, 124
k-fold, 81
kmeans, 53, 55,

57-58, 69-70
k-means, 36, 41, 52-55,

58-59, 61, 69-70

L
labeled, 14, 45, 52, 71
labeling, 14
labels, 10, 33-35, 58,

63, 66, 87, 90, 94, 99,
101, 107, 111-112, 118,
120-122, 129, 136, 140

laplace, 113
layers, 133-135, 137,

139-140, 142-143,
148-151, 153

levels, 116, 128, 143
linear, 3, 35, 92, 135, 143
linearity, 135, 143
logarithm, 136

M
matplotlib, 8, 19, 39,

46-51, 56, 59
matrices, 7-8, 10, 12, 28,

37, 40, 45, 79-80, 82,
84-85, 93, 98, 101

matrix, 5, 7, 9-12,
28-30, 79, 85-86,
89, 94, 135, 166

meanshift, 61-62, 69-70
mean-shift, 36,

59-61, 63, 69-70
median, 14
metric, 69, 71, 73-74, 84,

86-87, 90-91, 95, 101,
126, 128-129, 147, 151,
157-158, 163-164, 169

metrics, 3, 43, 54, 68-71,
73-74, 84-85, 87-93, 96,
100-101, 126-127, 129

modeling, 4, 33, 35, 60
models, 1-5, 12, 30-31,

33-34, 36-37, 40-41,
67, 70-71, 74-76, 82,
84, 102, 106, 114, 116,
126-129, 140-143,
147, 151-152, 156-158,
163-165, 169, 174

module, 143-144, 146,
165-169, 174

modules, 50, 53, 61, 65,
78, 149, 166-167, 169

multiclass, 87, 136, 140
multilayer, 132, 140,

143-146, 148, 153,
164, 166, 171

N
network, 34, 97, 131,

133, 135-137, 139-151,

153, 166-167, 171
networks, 5-6, 34, 97, 129,

131-132, 139, 142-143,
145, 153, 157, 165

neural, 5-6, 34, 97, 129,
131-133, 139-147, 149,
153, 157, 165-167, 171

neuron, 97, 132-133
neurons, 34, 133
non-convex, 143
non-linear, 143
normalize, 2, 25-26
normalized, 26, 61, 111-112
normalizes, 32
notnull, 29
nucleus, 133

O
one-hot, 94
outlier, 15-16, 45
overfitted, 97, 141

P
partition, 74-75, 77-82, 84
pattern, 34
patterns, 7, 25, 35, 40, 71,

132-133, 142, 153, 157
percentage, 84, 140
pickle, 165-168, 171, 174
precision, 87, 89, 94,

126-127, 129, 169
predict, 3-4, 31, 33-35,

57, 62, 65-66, 85,
88-89, 92-93, 100,
105, 115-116, 119-120,
125-127, 131, 144-145,
157, 167-168, 171-173

predictor, 30-33, 36
predictors, 37
priors, 115

pruning, 97
pydata, 46
pyplot, 19, 46-48, 59

R
radial, 124
radius, 64-65, 67
random, 48, 54, 88-89,

92, 99-100, 144-146,
148-149, 164, 169

S
seaborn, 7-8, 11, 17, 28, 46
serialize, 165-166
sigmoid, 135, 140
silhouette, 68-71
similar, 7, 14, 30, 40,

42-43, 49-50, 65,
69-71, 98, 124, 128,
139, 144, 148

similarity, 40-41,
52, 66-67, 134

sklearn, 23, 30, 32, 49-50,
53, 55, 61, 65, 69, 78-79,
82, 88-89, 92, 98-100,
115, 119, 124, 126, 144,
149, 166-167, 171

splits, 82-83, 120
subplots, 59
subset, 74, 80
supervised, 1, 3-4, 31, 33,

35, 67, 71, 73-74, 84, 89,
105-107, 129, 131-132,
136, 143, 156, 174

T
transform, 12, 23-25,

28, 32-33, 143
transforms, 26, 28

two-split, 81

U
unbiased, 75, 82
unlabeled, 35, 40

validate, 77, 81, 83
validating, 74, 83, 157
validation, 3, 73-77,

80-84, 97-99, 101-102,
116, 126, 128-129,
146, 151, 158, 164

variance, 36, 68, 82, 95,
97-98, 101, 115, 139

vector, 35, 94, 120, 125, 135
vectors, 120

V
visual, 46, 50, 58, 121, 133
visualize, 1-2, 50

W
weight, 91, 111
weighted, 137
weights, 25, 91,

111, 133-138, 140,
142-143, 153

	Preface
	Introduction to Scikit-Learn
	Introduction
	Scikit-Learn
	Advantages of Scikit-Learn
	Disadvantages of Scikit-Learn

	Data Representation
	Tables of Data
	Features and Target Matrices
	Exercise 1: Loading a Sample Dataset and Creating the Features and Target Matrices
	Activity 1: Selecting a Target Feature and Creating a Target Matrix

	Data Preprocessing
	Messy Data
	Exercise 2: Dealing with Messy Data
	Dealing with Categorical Features
	Exercise 3: Applying Feature Engineering over Text Data
	Rescaling Data
	Exercise 4: Normalizing and Standardizing Data
	Activity 2: Preprocessing an Entire Dataset

	Scikit-Learn API
	How Does It Work?

	Supervised and Unsupervised Learning
	Supervised Learning
	Unsupervised Learning

	Summary

	Unsupervised Learning: Real-Life Applications
	Introduction
	Clustering
	Clustering Types
	Applications of Clustering

	Exploring a Dataset: Wholesale Customers Dataset
	Understanding the Dataset

	Data Visualization
	Loading the Dataset Using Pandas
	Visualization Tools
	Exercise 5: Plotting a Histogram of One Feature from the Noisy Circles Dataset
	Activity 3: Using Data Visualization to Aid the Preprocessing Process

	k-means Algorithm
	Understanding the Algorithm
	Exercise 6: Importing and Training the k-means Algorithm over a Dataset
	Activity 4: Applying the k-means Algorithm to a Dataset

	Mean-Shift Algorithm
	Understanding the Algorithm
	Exercise 7: Importing and Training the Mean-Shift Algorithm over a Dataset
	Activity 5: Applying the Mean-Shift Algorithm to a Dataset

	DBSCAN Algorithm
	Understanding the Algorithm
	Exercise 8: Importing and Training the DBSCAN Algorithm over a Dataset
	Activity 6: Applying the DBSCAN Algorithm to the Dataset

	Evaluating the Performance of Clusters
	Available Metrics in Scikit-Learn
	Exercise 9: Evaluating the Silhouette Coefficient Score and Calinski–Harabasz Index
	Activity 7: Measuring and Comparing the Performance of the Algorithms

	Summary

	Supervised Learning: Key Steps
	Introduction
	Model Validation and Testing
	Data Partition
	Split Ratio
	Exercise 10: Performing Data Partition over a Sample Dataset
	Cross Validation
	Exercise 11: Using Cross-Validation to Partition the Train Set into a Training and a Validation Set
	Activity 8: Data Partition over a Handwritten Digit Dataset

	Evaluation Metrics
	Evaluation Metrics for Classification Tasks
	Exercise 12: Calculating Different Evaluation Metrics over a Classification Task
	Choosing an Evaluation Metric
	Evaluation Metrics for Regression Tasks
	Exercise 13: Calculating Evaluation Metrics over a Regression Task
	Activity 9: Evaluating the Performance of the Model Trained over a Handwritten Dataset

	Error Analysis
	Bias, Variance, and Data Mismatch
	Exercise 14: Calculating the Error Rate over Different Sets of Data
	Activity 10: Performing Error Analysis over a Model Trained to Recognize Handwritten Digits

	Summary

	Supervised Learning Algorithms: Predict Annual Income
	Introduction
	Exploring the Dataset
	Understanding the Dataset

	Naïve Bayes Algorithm
	How Does It Work?
	Exercise 15: Applying the Naïve Bayes Algorithm
	Activity 11: Training a Naïve Bayes Model for Our Census Income Dataset

	Decision Tree Algorithm
	How Does It Work?
	Exercise 16: Applying the Decision Tree Algorithm
	Activity 12: Training a Decision Tree Model for Our Census Income Dataset

	Support Vector Machine Algorithm
	How Does It Work?
	Exercise 17: Applying the SVM Algorithm
	Activity 13: Training an SVM Model for Our Census Income Dataset

	Error Analysis
	Accuracy, Precision, and Recall

	Summary

	Artificial Neural Networks: Predict Annual Income
	Introduction
	Artificial Neural Networks
	How Do They Work?
	Understanding the Hyperparameters
	Applications
	Limitations

	Applying an Artificial Neural Network
	Scikit-Learn's Multilayer Perceptron
	Exercise 18: Applying the Multilayer Perceptron Classifier Class
	Activity 14: Training a Multilayer Perceptron for Our Census Income Dataset

	Performance Analysis
	Error Analysis
	Hyperparameter Fine-Tuning
	Model Comparison
	Activity 15: Comparing Different Models to Choose the Best Fit for the Census Income Data Problem

	Summary

	Building Your Own Program
	Introduction
	Program Definition
	Building a Program: Key Stages
	Understanding the Dataset
	Activity 16: Performing the Preparation and Creation Stages for the Bank Marketing Dataset

	Saving and Loading a Trained Model
	Saving a Model
	Exercise 19: Saving a Trained Model
	Loading a Model
	Exercise 20: Loading a Saved Model
	Activity 17: Saving and Loading the Final Model for the Bank Marketing Dataset

	Interacting with a Trained Model
	Exercise 21: Creating a Class and a Channel to Interact with a Trained Model
	Activity 18: Allowing Interaction with the Bank Marketing Dataset Model

	Summary

	Appendix
	Index
	OLE_LINK1
	OLE_LINK6
	OLE_LINK8
	OLE_LINK3
	OLE_LINK4
	OLE_LINK5
	_GoBack
	OLE_LINK1
	OLE_LINK6
	OLE_LINK3
	OLE_LINK7
	OLE_LINK2
	OLE_LINK4
	OLE_LINK5
	OLE_LINK31
	OLE_LINK12
	OLE_LINK13
	OLE_LINK10
	OLE_LINK11
	OLE_LINK14
	OLE_LINK16
	OLE_LINK18
	OLE_LINK19
	OLE_LINK20
	OLE_LINK22
	OLE_LINK8
	OLE_LINK32
	OLE_LINK33
	OLE_LINK9
	OLE_LINK17
	OLE_LINK24
	OLE_LINK25
	OLE_LINK41
	OLE_LINK21
	OLE_LINK43
	OLE_LINK35
	OLE_LINK37
	OLE_LINK39
	OLE_LINK63
	OLE_LINK44
	OLE_LINK26
	OLE_LINK27
	OLE_LINK28
	OLE_LINK23
	OLE_LINK29
	OLE_LINK30
	OLE_LINK45
	OLE_LINK48
	OLE_LINK54
	OLE_LINK53
	OLE_LINK55
	OLE_LINK65
	OLE_LINK66
	_GoBack
	__DdeLink__1244_1159623352
	OLE_LINK52
	OLE_LINK50
	OLE_LINK51
	OLE_LINK56
	OLE_LINK57
	OLE_LINK58
	OLE_LINK59
	_Hlk523473030
	_Hlk523480339
	OLE_LINK32
	_Hlk523736764
	_Hlk523824638
	_Hlk523824665
	_Hlk523736855
	_Hlk523822519
	OLE_LINK1
	OLE_LINK2
	OLE_LINK3
	OLE_LINK8
	OLE_LINK17
	OLE_LINK9
	OLE_LINK18
	OLE_LINK4
	OLE_LINK5
	OLE_LINK15
	OLE_LINK16
	OLE_LINK10
	OLE_LINK6
	OLE_LINK7
	_Hlk523903083
	OLE_LINK12
	OLE_LINK13
	OLE_LINK11
	OLE_LINK14
	OLE_LINK24
	OLE_LINK25
	OLE_LINK27
	OLE_LINK26
	OLE_LINK28
	OLE_LINK29
	OLE_LINK40
	OLE_LINK41
	OLE_LINK42
	OLE_LINK43
	OLE_LINK39
	_Hlk524512591
	OLE_LINK32
	OLE_LINK33
	OLE_LINK60
	OLE_LINK61
	OLE_LINK34
	OLE_LINK35
	OLE_LINK36
	OLE_LINK37
	OLE_LINK53
	OLE_LINK49
	OLE_LINK54
	OLE_LINK55
	OLE_LINK1
	OLE_LINK2
	OLE_LINK8
	OLE_LINK3
	OLE_LINK17
	OLE_LINK9
	OLE_LINK18
	_Hlk529284524
	OLE_LINK5
	OLE_LINK12
	OLE_LINK13
	OLE_LINK62
	OLE_LINK67
	OLE_LINK59
	_GoBack
	_Hlk525025188
	_Hlk523822519
	OLE_LINK56
	OLE_LINK1
	OLE_LINK2
	OLE_LINK5
	_Hlk526153678
	OLE_LINK58
	_Hlk526254478
	_Hlk526254466
	OLE_LINK12
	OLE_LINK13
	OLE_LINK62
	_GoBack
	_Hlk526412289
	_Hlk527023551
	OLE_LINK56
	_Hlk527537772
	_Hlk529368927
	_Hlk527465158
	OLE_LINK1
	OLE_LINK2
	OLE_LINK5
	_Hlk526254466
	OLE_LINK59
	OLE_LINK12
	OLE_LINK13
	_Hlk527625222
	_Hlk527622048
	_GoBack
	OLE_LINK4
	OLE_LINK5
	OLE_LINK15
	OLE_LINK36
	OLE_LINK40
	OLE_LINK60
	OLE_LINK61
	OLE_LINK62
	_Hlk523903083
	OLE_LINK19
	OLE_LINK20
	OLE_LINK21
	OLE_LINK22
	OLE_LINK42
	OLE_LINK43
	OLE_LINK63
	OLE_LINK64
	OLE_LINK65
	OLE_LINK66
	_Hlk525025188
	_Hlk526254478
	_Hlk526254466
	_Hlk526242819
	_Hlk526254190
	_Hlk526253740
	_Hlk526348728
	_GoBack
	_Hlk527464456
	_Hlk527467101
	_Hlk523932985
	_Hlk527625338

