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About

This section briefly introduces the author, the coverage of this book, the technical skills you'll 
need to get started, and the hardware and software required to complete all of the included 
activities and exercises.

Preface
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About the Book
As machine learning algorithms become popular, new tools that optimize these 
algorithms are also being developed. Machine Learning Fundamentals explains 
the scikit-learn API, which is a package created to facilitate the process of building 
machine learning applications. You will learn how to explain the differences between 
supervised and unsupervised models, and how to apply some popular algorithms to 
real-life datasets.

You'll begin by learning how to use the syntax of scikit-learn. You'll study the 
differences between supervised and unsupervised models, as well as the importance 
of choosing the appropriate algorithm for each dataset. You'll apply an unsupervised 
clustering algorithm to real-world datasets to discover patterns and profiles, and 
explore the process to solve an unsupervised machine learning problem. Then, 
the focus of the book shifts to supervised learning algorithms. You'll learn how to 
implement different supervised algorithms and develop neural network structures 
using the scikit-learn package. You'll also learn how to perform coherent result analysis 
to improve the performance of the algorithm by tuning hyperparameters. By the end 
of this book, you will have the skills and confidence to start programming machine 
learning algorithms.

About the Author

After graduating from college as a business administrator, Hyatt Saleh discovered the 
importance of data analysis to understand and solve real-life problems. Since then, as a 
self-taught person, she has not only worked as a freelancer for many companies around 
the world in the field of machine learning, but has also founded an artificial intelligence 
company that aims to optimize everyday processes.

Objectives

•	 Understand the importance of data representation

•	 Gain insights into the differences between supervised and unsupervised models 

•	 Explore data using the Matplotlib library

•	 Study popular algorithms, such as K-means, Mean-Shift, and DBSCAN

•	 Measure model performance through different metrics

•	 Study popular algorithms, such as Naïve Bayes, Decision Tree, and SVM

•	 Perform error analysis to improve the performance of the model

•	 Learn to build a comprehensive machine learning program
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Audience

Machine Learning Fundamentals is designed for developers who are new to the field 
of machine learning and want to learn how to use the scikit-learn library to develop 
machine learning algorithms. You must have some knowledge and experience with 
Python programming, but you do not need any prior knowledge of scikit-learn or 
machine learning algorithms.

Approach

Machine Learning Fundamentals takes a hands-on approach to introduce beginners to 
the world of machine learning. It contains multiple activities that use real-life business 
scenarios for you to practice and apply your new skills in a highly relevant context.

Minimum Hardware Requirements

For the optimal student experience, we recommend the following hardware 
configuration:

•	 Processor: Intel Core i5 or equivalent

•	 Memory: 4 GB RAM or higher

Software Requirements

You'll also need the following software installed in advance:

•	 Sublime Text (latest version), Atom IDE (latest version), or other similar text editor 
applications

•	 Python 3

•	 The following Python libraries: NumPy, SciPy, scikit-learn, Matplotlib, Pandas, 
pickle, jupyter, and seaborn

Installation and Setup

Before you start this book, you'll need to install Python 3.6, pip, scikit-learn, and the 
other libraries used in this book. You will find the steps to install these here:
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Installing Python

Install Python 3.6 by following the instructions at this link: https://realpython.com/
installing-python/.

Installing pip

1.	 To install pip, go to the following link and download the get-pip.py file: https://
pip.pypa.io/en/stable/installing/.

2.	 Then, use the following command to install it: 

python get-pip.py

You might need to use the python3 get-pip.py command, due to previous versions of 
Python on your computer are already using use the python command.

Installing libraries

Using the pip command, install the following libraries:

python -m pip install --user numpy scipy matplotlib jupyter pandas seaborn

Installing scikit-learn

Install scikit-learn using the following command:

pip install -U scikit-learn

Installing the Code Bundle

Copy the code bundle for the class to the C:/Code folder.

Additional Resources

The code bundle for this book is also hosted on GitHub at: https://github.com/
TrainingByPackt/Machine-Learning-Fundamentals.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

https://realpython.com/installing-python/
https://realpython.com/installing-python/
https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/
https://github.com/TrainingByPackt/Machine-Learning-Fundamentals
https://github.com/TrainingByPackt/Machine-Learning-Fundamentals
https://github.com/PacktPublishing/
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Conventions

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Import 
the iris toy dataset using scikit-learn's datasets package and store it in a variable 
named iris_data." 

A block of code is set as follows:

from sklearn.datasets import load_iris

iris_data = load_iris()

New terms and important words are shown in bold. Words that you see on the screen, 
for example, in menus or dialog boxes, appear in the text like this: "Below the dataset's 
title, find the download section and click on Data Folder."





Learning Objectives

By the end of this chapter, you will be able to:

•	 Describe scikit-learn and its main advantages

•	 Use the scikit-learn API

•	 Perform data preprocessing

•	 Explain the difference between supervised and unsupervised models, as well as the 
importance of choosing the right algorithm for each dataset

This chapter gives an explanation of the scikit-learn syntax and features in order to be able to 
process and visualize data

Introduction to  
Scikit-Learn

1
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Introduction
Scikit-learn is a well-documented and easy-to-use library that facilitates the 
application of machine learning algorithms by using simple methods, which ultimately 
enables beginners to model data without the need for deep knowledge of the math 
behind the algorithms. Additionally, thanks to the ease of use of this library, it allows 
the user to implement different approximations (create different models) for a 
data problem. Moreover, by removing the task of coding the algorithm, scikit-learn 
allows teams to focus their attention on analyzing the results of the model to arrive at 
crucial conclusions.

Spotify, a world leading company in the field of music streaming, uses scikit-learn, 
since it allows them to implement multiple models for a data problem, which are then 
easily connectable to their existing development. This process improves the process of 
arriving at a useful model, while allowing the company to plug them into their current 
app with little effort.

On the other hand, booking.com uses scikit-learn due to the wide variety of algorithms 
that the library offers, which allows them to fulfill the different data analysis tasks that 
the company relies on, such as building recommendation engines, detecting fraudulent 
activities, and managing the customer service team.

Considering the preceding points, this chapter begins with an explanation of scikit-
learn and its main uses and advantages, and then moves on to provide a brief 
explanation of the scikit-learn API syntax and features. Additionally, the process 
to represent, visualize, and normalize data is shown. The aforementioned information 
will be useful to understand the different steps taken to develop a machine learning 
model.

Scikit-Learn
Created in 2007 by David Cournapeau as part of a Google Summer of Code project, 
scikit-learn is an open source Python library made to facilitate the process of building 
models based on built-in machine learning and statistical algorithms, without the need 
for hard-coding. The main reasons for its popular use are its complete documentation, 
its easy-to-use API, and the many collaborators who work every day to improve the 
library.

Note

You can find the documentation for scikit-learn at the following link:  
http://scikit-learn.org.

http://scikit-learn.org
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Scikit-learn is mainly used to model data, and not as much to manipulate or summarize 
data. It offers its users an easy-to-use, uniform API to apply different models, with little 
learning effort, and no real knowledge of the math behind it, required. 

Note

Some of the math topics that you need to know about to understand the 
models are linear algebra, probability theory, and multivariate calculus. For 
more information on these models, visit: https://towardsdatascience.com/the-
mathematics-of-machine-learning-894f046c568.

The models available under the scikit-learn library fall into two categories: supervised 
and unsupervised, both of which will be explained in depth in later sections. This 
category classification will help to determine which model to use for a particular 
dataset to get the most information out of it.

Besides its main use for interpreting data to train models, scikit-learn is also used to do 
the following:

•	 Perform predictions, where new data is fed to the model to predict an outcome 

•	 Carry out cross validation and performance metrics analysis to understand the 
results obtained from the model, and thereby improve its performance

•	 Obtain sample datasets to test algorithms over them

•	 Perform feature extraction to extract features from images or text data

Although scikit-learn is considered the preferred Python library for beginners in the 
world of machine learning, there are several large companies around the world using it, 
as it allows them to improve their product or services by applying the models to already 
existing developments. It also permits them to quickly implement tests over new ideas.

Note

You can visit the following website to find out which companies are using scikit-
learn and what are they using it for: http://scikit-learn.org/stable/testimonials/
testimonials.html.

https://towardsdatascience.com/the-mathematics-of-machine-learning-894f046c568
https://towardsdatascience.com/the-mathematics-of-machine-learning-894f046c568
http://scikit-learn.org/stable/testimonials/testimonials.html
http://scikit-learn.org/stable/testimonials/testimonials.html
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In conclusion, scikit-learn is an open source Python library that uses an API to apply 
most machine learning tasks (both supervised or unsupervised) to data problems. Its 
main use is for modeling data; nevertheless, it should not be limited to that, as the 
library also allows users to predict outcomes based on the model being trained, as well 
as to analyze the performance of the model. 

Advantages of Scikit-Learn

The following is a list of the main advantages of using scikit-learn for  
machine learning purposes:

•	 Ease of use: Scikit-learn is characterized by a clean API, with a small learning curve 
in comparison to other libraries such as TensorFlow or Keras. The API is popular 
for its uniformity and straightforward approach. Users of scikit-learn do not 
necessarily need to understand the math behind the models.

•	 Uniformity: Its uniform API makes it very easy to switch from model to model, as 
the basic syntax required for one model is the same for others.

•	 Documentation/Tutorials: The library is completely backed up by documentation, 
which is effortlessly accessible and easy to understand. Additionally, it also offers 
step-by-step tutorials that cover all of the topics required to develop any machine 
learning project.

•	 Reliability and Collaborations: As an open source library, scikit-learn benefits 
from the inputs of multiple collaborators who work each day to improve its 
performance. This participation from many experts from different contexts helps 
to develop not only a more complete library but also a more reliable one.

•	 Coverage: As you scan the list of components that the library has, you will discover 
that it covers most machine learning tasks, ranging from supervised models 
such as classification and regression algorithms to unsupervised models such as 
clustering and dimensionality reduction. Moreover, due to its many collaborators, 
new models tend to be added in relatively short amounts of time.

Disadvantages of Scikit-Learn

The following is a list of the main disadvantages of using scikit-learn for machine 
learning purposes:

•	 Inflexibility: Due to its ease of use, the library tends to be inflexible. This means 
that users do not have much liberty in parameter tuning or model architecture. 
This becomes an issue as beginners move to more complex projects.
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•	 Not Good for Deep Learning: As mentioned previously, the performance of the 
library falls short when tackling complex machine learning projects. This is 
especially true for deep learning, as scikit-learn does not support deep neural 
networks with the necessary architecture or power.

In general terms, scikit-learn is an excellent beginner's library as it requires little 
effort to learn its use and has many complementary materials thought to facilitate its 
application. Due to the contributions of several collaborators, the library stays up to 
date and is applicable to most current data problems. 

On the other hand, it is a fairly simple library, not fit for more complex data problems 
such as deep learning. Likewise, it is not recommended for users who wish to take its 
abilities to a higher level by playing with the different parameters that are available in 
each model.

Data Representation
The main objective of machine learning is to build models by interpreting data. To do 
so, it is highly important to feed the data in a way that is readable by the computer. To 
feed data into a scikit-learn model, it must be represented as a table or matrix of the 
required dimension, which will be discussed in the following section.

Tables of Data

Most tables fed into machine learning problems are two-dimensional, meaning that 
they contain rows and columns. Conventionally, each row represents an observation 
(an instance), whereas each column represents a characteristic (feature) of each 
observation.
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The following table is a fragment of a sample dataset of scikit-learn. The purpose of 
the dataset is to differentiate from among three types of iris plants based on their 
characteristics. Hence, in the table, each row embodies a plant and each column 
denotes the value of that feature for every plant:

Figure 1.1: A table showing the first 10 instances of the iris dataset

From the preceding explanation, the following snapshot shows data that corresponds to 
a plant with sepal length of 5.1, sepal width of 3.5, petal length of 1.4, and petal width of 
0.2. The plant belongs to the setosa species:

Figure 1.2: The first instance of the iris dataset

Note

When feeding images to a model, the tables become three-dimensional, where 
the rows and columns represent the dimensions of the image in pixels, while the 
depth represents its color scheme. If you are interested, feel free to explore more 
on the subject of convolutional neural networks.
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Features and Target Matrices

For many data problems, one of the features of your dataset will be used as a label. This 
means that out of all the other features, this one is the target to which the model should 
generalize the data. For example, in the preceding table, we might choose the species as 
the target feature, and so we would like the model to find patterns based on the other 
features to determine whether a plant belongs to the setosa species. Therefore, it is 
important to learn how to separate the target matrix from the features matrix. 

Features Matrix: The features matrix comprises data from each instance for all 
features, except the target. It can be either created using a NumPy array or a Pandas 
DataFrame, and its dimensions are [n_i, n_f], where n_i denotes the number of 
instances (such as a person) and n_f denotes the number of features (such as age). 
Generally, the features matrix is stored in a variable named X.

Target Matrix: Different than the features matrix, the target matrix is usually 
one-dimensional since it only carries one feature for all instances, meaning that its 
length is of value n_i (number of instances). Nevertheless, there are some occasions 
where multiple targets are required, and so the dimensions of the matrix become [n_i, 
n_t], where n_t is the number of targets to consider.

Similar to the features matrix, the target matrix is usually created as a NumPy array or a 
Pandas series. The values of the target array may be discrete or continuous. Generally, 
the target matrix is stored in a variable named Y.

Exercise 1: Loading a Sample Dataset and Creating the Features and Target 

Matrices

Note

All of the exercises and activities in these chapters will be primarily developed in 
Jupyter Notebook. It is recommended to keep a separate notebook for different 
assignments, unless advised otherwise. Also, to load a sample dataset, the seaborn 
library will be used, as it displays the data as a table. Other ways to load data will 
be explained in further sections.
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In this exercise, we will be loading the iris dataset, and creating features and target 
matrices using this dataset.

Note

For the exercises and activities within this chapter, you will need to have Python 
3.6, seaborn, Jupyter, Matplotlib, and Pandas installed on your system.

1.	 Open a Jupyter Notebook to implement this exercise. In the cmd or terminal, 
navigate to the desired path and use the following command: jupyter notebook.

2.	 Load the iris dataset using the seaborn library. To do so, you first need to import 
the seaborn library, and then use the load_dataset() function, as shown in the 
following code:

import seaborn as sns
iris = sns.load_dataset('iris')

As we can see from the preceding code, after importing the library, a nickname is 
given to facilitate its use along with the script.

The load_dataset() function loads datasets from an online repository. The data 
from the dataset is stored in a variable named iris.

3.	 Create a variable, X, to store the features. Use the drop() function to include all of 
the features but the target, which in this case is named species. Then, print out 
the top 10 instances of the variable:

X = iris.drop('species', axis=1)
X.head(10)

Note

The axis parameter in the preceding snippet denotes whether you want to drop 
the label from rows (axis = 0) or columns (axis = 1).
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The printed output should look as follows:

Figure 1.3: A table showing the first 10 instances of the features matrix

4.	 Print the shape of your new variable using the X.shape command:

X.shape
(150, 4)

The first value indicates the number of instances in the dataset (150), and the 
second value represents the number of features (4).

5.	 Create a variable, Y, that will store the target values. There is no need to use 
a function for this. Use indexing to grab only the desired column. Indexing allows 
you to access a section of a larger element. In this case, we want to grab the 
column named species. Then, print out the top 10 values of the variable:

Y = iris['species']
Y.head(10)
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The printed output should look as follows:

Figure 1.4: A screenshot showing the first 10 instances of the target matrix

6.	 Print the shape of your new variable by using the Y.shape command:

Y.shape
(150,) 

The shape should be one-dimensional with length equal to the number of 
instances (150).

Congratulations! You have successfully created the features and target matrices of a 
dataset.

Generally, the preferred way to represent data is by using two-dimensional tables, 
where the rows represent the number of observations, also known as instances, and the 
columns represent the characteristics of those instances, commonly known as features. 

For data problems that require target labels, the data table needs to be partitioned into 
a features matrix and a target matrix. The features matrix will contain the values of all 
features but the target, for each instance, making it a two-dimensional matrix. On the 
other hand, the target matrix will only contain the value of the target feature for all 
entries, making it a one-dimensional matrix. 

Activity 1: Selecting a Target Feature and Creating a Target Matrix

In this activity, we will attempt to load a dataset and create the features and target 
matrices by choosing the appropriate target feature for the objective of the study. Let's 
look at the following scenario: you work in the safety department of a cruise company. 
The company wants to include more lower-deck cabins, but it wants to be sure that 
the measure will not increase the number of fatalities in the case of an accident. 
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The company has provided your team with a dataset of the Titanic passenger list to 
determine whether lower-deck passengers are less likely to survive. Your job is to select 
the target feature that most likely helps to achieve this objective. 

Note

To choose the target feature, remember that the target should be the outcome 
to which we want to interpret the data for. For instance, if we want to know what 
features play a role in determining a plant's species, the species should be the 
target value. 

Follow the steps below to complete this activity: 

1.	 Load the titanic dataset using the seaborn library. The first couple of rows should 
look like this:

Figure 1.5: An table showing the first 10 instances of the Titanic dataset

2.	 Select your preferred target feature for the goal of this activity.

3.	 Create both the features matrix and the target matrix. Make sure that you store 
the data from the features matrix in a variable, X, and the data from the target 
matrix in another variable, Y. 
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4.	 Print out the shape of each of the matrices, which should match the following 
values:

Features matrix: (891,14)

Target matrix: (891)

Note

The solution for this activity can be found on page 178.

Data Preprocessing
For the computer to be able to understand the data proficiently, it is necessary to 
not only feed the data in a standardized way but also make sure that the data does 
not contain outliers or noisy data, or even missing entries. This is important because 
failing to do so might result in the system making assumptions that are not true to the 
data. This will cause the model to train at a slower pace and to be less accurate due to 
misleading interpretations of data.

Moreover, data preprocessing does not end there. Models do not work the same way, 
and each one makes different assumptions. This means that we need to preprocess 
in terms of the model that is going to be used. For example, some models accept only 
numerical data, whereas others work with nominal and numerical data. 

To achieve better results during data preprocessing, a good practice is to transform 
(preprocess) the data in different ways, and then test the different transformations in 
different models. That way, you will be able to select the right transformation for the 
right model. 

Messy Data

Data that is missing information or that contains outliers or noise is considered to be 
messy data. Failing to perform any preprocessing to transform the data can lead to 
poorly created models of the data, due to the introduction of bias and information loss. 
Some of the issues with data that should be avoided will be explained here.
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Missing Values

Features where a few instances have values, as well as instances where there are no 
values for any feature, are considered missing data. As you can see from the following 
image, the vertical red rectangle represents a feature with only 3 values out of 10, and 
the horizontal rectangle represents an instance with no values at all:

Figure 1.6: An image that displays an instance with no values for any of the features, which makes it 
useless, and a feature with 7 missing values out of the 10 instances

Conventionally, a feature missing more than 5 to 10% of its values is considered to 
be missing data, and so needs to be dealt with. On the other hand, all instances that 
have missing values for all features should be eliminated as they do not provide any 
information to the model, and, on the contrary, may end up introducing bias.
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When dealing with a feature with a high absence rate, it is recommended to either 
eliminate it or fill it with values. The most popular ways to replace the missing values 
are as follows:

•	 Mean imputation: Replacing missing values with the mean or median of the 
features' available values

•	 Regression imputation: Replacing missing values with the predicted values 
obtained from a regression function

While mean imputation is a simpler approach to implement, it may introduce bias as it 
evens out all instances in that matter. On the other hand, even though the regression 
approach matches the data to its predicted value, it may end up overfitting the model as 
all values introduced follow a function.

Lastly, when the missing values are found in a text feature such as gender, the best 
book of action would be to either eliminate them or replace them with a class labeled 
uncategorized or something similar. This is mainly because it is not possible to apply 
either mean or regression imputation over text.

Labeling missing values with a new category (uncategorized) is mostly done when 
eliminating them removes an important part of the dataset, and hence is not an 
appropriate book of action. In this case, even though the new label may have an effect 
on the model depending on the rationale used to label the missing values, leaving them 
empty is an even worse alternative as it causes the model to make assumptions on its 
own.

Note

To learn more on how to detect and handle missing values, feel free to visit the 
following page: https://towardsdatascience.com/how-to-handle-missing-data-
8646b18db0d4.

https://towardsdatascience.com/how-to-handle-missing-data-8646b18db0d4
https://towardsdatascience.com/how-to-handle-missing-data-8646b18db0d4
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Outliers

Outliers are values that are far from the mean. This means that if the values from 
an attribute follow a Gaussian distribution, the outliers are located at the tails. 

Outliers can be global or local. The former group represents those values that are far 
from the entire set of values of a feature. For example, when analyzing data from all 
members of a neighborhood, a global outlier would be a person who is 180 years old (as 
shown in the following diagram (A)). The latter, on the other hand, represents values 
that are far from a subgroup of values of that feature. For the same example that we 
saw previously, a local outlier would be a college student who is 70 years old (B), which 
would normally differ from other college students in that neighborhood:

Figure 1.7: An image depicting global and local outliers in a dataset

Considering both examples that have been given, outliers do not evaluate whether the 
value is possible. While a person aged 180 years is not plausible, a 70-year-old college 
student might be a possibility, yet both are categorized as outliers as they can both 
affect the performance of the model.

A straightforward approach to detect outliers consists of visualizing the data to 
determine whether it follows a Gaussian distribution, and if it does, classifying those 
values that fall between three to six standard deviations away from the mean as outliers. 
Nevertheless, there is not an exact rule to determine an outlier, and the decision to 
select the number of standard deviations is subjective and will vary from problem 
to problem. 



16 | Introduction to  Scikit-Learn

For example, if the dataset is reduced by 40% by setting three standard deviations as 
the parameter to rule out values, it would be appropriate to change the number of 
standard deviations to four.

On the other hand, when dealing with text features, detecting outliers becomes 
even trickier as there are no standard deviations to use. In this case, counting the 
occurrences of each class value would help to determine whether a certain class is 
indispensable or not. For instance, in clothing sizes, having a size XXS that represents 
less than 5% of the entire dataset might not be necessary.

Once the outliers are detected, there are three common ways to handle them:

•	 Delete the outlier: For outliers that are true values, it is best to completely delete 
them to avoid skewing the analysis. This may be a good idea for outliers that are 
mistakes, if the number of outliers is too large to perform further analysis to 
assign a new a value. 

•	 Define a top: Defining a top might also be useful for true values. For instance, if 
you realize that all values above a certain threshold behave the same way, you can 
consider topping that value with the threshold.

•	 Assign a new value: If the outlier is clearly a mistake, you can assign a new 
value using one of the techniques that we discussed for missing values (mean or 
regression imputation).

The decision to use each of the preceding approaches depends on the outlier type and 
number. Most of the time, if the number of outliers represents a small proportion of the 
total size of the dataset, there is no point in treating the outlier in any way other than 
deleting it.

Note

Noisy data corresponds to values that are not correct or possible. This includes 
numerical (outliers that are mistakes) and nominal values (for example, a person's 
gender misspelled as "fimale"). Like outliers, noisy data can be treated by deleting 
the values completely or by assigning them a new value.
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Exercise 2: Dealing with Messy Data

In this exercise, we will be using the titanic dataset as an example to demonstrate how 
to deal with messy data:

1.	 Open a Jupyter Notebook to implement this exercise. 

2.	 Load the titanic dataset and store it in a variable called titanic. Use the following 
code:

import seaborn as sns
titanic = sns.load_dataset('titanic')

3.	 Next, create a variable called age to store the values of that feature from the 
dataset. Print out the top 10 values of the age variable:

age = titanic['age']
age.head(10)

The output will appear as follows:

Figure 1.8: A screenshot showing the first 10 instances of the age variable

As you can see, the feature has NaN (Not a Number) values, which represent missing 
values.

4.	 Check the shape of the age variable. Then, count the number of NaN values to 
determine how to handle them. Use the isnull() function to find the NaN values, 
and use the sum() function to sum them all:

age.shape
(891,)
age.isnull().sum()
177
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5.	 The participation of the NaN values in the total size of the variable is 5.03%. 
Although this is not high enough to consider removing the entire feature, there is 
a need to handle the missing values.

6.	 Let's choose the mean imputation methodology to replace the missing values. To 
do so, compute the mean of the available values. Use the following code:

mean = age.mean()
mean = mean.round()
mean

The mean comes to be 30.

Note

The value was rounded to its nearest integer since we are dealing with age.

7.	 Replace all missing values with the mean. Use the fillna() function. To check that 
the values have been replaced, print the first ten values again:

age.fillna(mean,inplace=True)
age.head(10)

Note

Set inplace to True to replace the values in the places where the NaN values are.

The printed output is shown below:

Figure 1.9: A screenshot depicting the first 10 instances of the age variable
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As you can see in the preceding screenshot, the age of the instance with index 5 
has changed from NaN to 30, which is the mean that was calculated previously. The 
same procedure occurs for all 177 NaN values.

8.	 Import Matplotlib and graph a histogram of the age variable. Use Matplotlib's 
hist() function. To do so, type in the following code:

import matplotlib.pyplot as plt
plt.hist(age)
plt.show()

The histogram should look like it does in the following diagram, and as we can see, 
its distribution is Gaussian-like:

Figure 1.10: A screenshot depicting the histogram of the age variable

9.	 Discover the outliers in the data. Let's use three standard deviations as the 
measure to calculate the min and max values. 

As discussed previously, the min value is determined by calculating the mean of all 
of the values and subtracting three standard deviations from it. Use the following 
code to set the min value and store it in a variable named min_val:

min_val = age.mean() - (3 * age.std())
min_val
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The min value comes to be around −9.248. According to the min value, there are 
no outliers at the left tail of the Gaussian distribution. This makes sense, given that 
the distribution is tilted slightly to the left.

Opposite to the min value, for the max value, the standard deviations are added to 
the mean to calculate the higher threshold. Calculate the max value, as shown in 
the following code, and store it in a variable named max_val:

max_val = age.mean() + (3 * age.std())
max_val

The max value, which comes to around 68.766, determines that instances with 
ages above 68.76 years represent outliers. As you can see in the preceding 
diagram, this also makes sense as there are little instances over that threshold and 
they are in fact far away from the bell of the Gaussian distribution.

10.	 Count the number of instances that are above the max value to decide how 
to handle them. 

First, using indexing, call the values in age that are above the max value, and store 
them in a variable called outliers. Then, count the outliers using count():

outliers = age[age > max_val]
outliers.count()

The output shows us that there are seven outliers. Print out the outliers by typing 
in outliers and check that the correct values were stored:

Figure 1.11: A screenshot depicting the outliers
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As the number of outliers is small, and they correspond to true outliers, they can 
be deleted.

Note

For this exercise, we will be deleting the instances from the age variable to 
understand the complete procedure of dealing with outliers. However, later, the 
deletion of outliers will be handled in consideration of all features, in order to 
delete the entire instance, and not just the age values.

11.	 Redefine the value stored in age by using indexing to include only values below the 
max threshold. Then, print the shape of age:

age = age[age <= max_val]
age.shape
(884,)

As you can see, the shape of age has been reduced by seven, which was the 
number of outliers.

Congratulations! You have successfully cleaned out a Pandas Series. This process serves 
as a guide for cleaning a dataset later on.

To summarize, we have discussed the importance of preprocessing data, as failing to do 
so may introduce bias in the model, which affects the training time of the model and its 
performance. Some of the main forms of messy data are missing values, outliers, and 
noise. 

Missing values, as their name suggests, are those values that are left empty or null. 
When dealing with many missing values, it is important to handle them by deletion or 
by assigning new values. Two ways to assign new values were also discussed: mean 
imputation and regression imputation.

Outliers are values that fall far from the mean of all the values of a feature. One way to 
detect outliers is by selecting all the values that fall outside the mean minus/plus three-
six standard deviations. Outliers may be mistakes (values that are not possible) or true 
values, and they should be handled differently. While true outliers may be deleted or 
topped, mistakes should be replaced with other values when possible.
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Finally, noisy data corresponds to values that are, regardless of their proximity to the 
mean, mistakes or typos in the data. They can be of numeric, ordinal, or nominal types.

Note

Please remember that numeric data is always represented by numbers that can be 
measured, nominal data refers to text data that does not follow a rank, and ordinal 
data refers to text data that follows a rank or order.

Dealing with Categorical Features

Categorical features are those that comprise discrete values typically belonging to 
a finite set of categories. Categorical data can be nominal or ordinal. Nominal refers 
to categories that do not follow a specific order, such as music genre or city names, 
whereas ordinal refers to categories with a sense of order, such as clothing sizes or 
level of education.

Feature Engineering

Even though improvements in many machine learning algorithms have enabled 
the algorithms to understand categorical data types such as text, the process of 
transforming them into numeric values facilitates the training process of the model, 
which results in faster running times and better performance. This is mainly due to 
the elimination of semantics available in each category, as well as the fact that the 
conversion into numeric values allows you to scale all of the features of the dataset 
equally, as explained previously. 

How does it work? Feature engineering generates a label encoding that assigns a 
numeric value to each category; this value will then replace the category in the dataset. 
For example, a variable called genre with the classes pop, rock, and country can be 
converted as follows:

Figure 1.12: An image illustrating how feature engineering works



Data Preprocessing | 23

Exercise 3: Applying Feature Engineering over Text Data

In this exercise, we will be converting the text data within the embark_town feature of 
the titanic dataset into numerical data. Follow these steps:

1.	 Use the same Jupyter Notebook that you created for the last exercise. 

2.	 Import scikit-learn's LabelEncoder() class, as well as the Pandas library. Use the 
following code:

from sklearn.preprocessing import LabelEncoder
import pandas as pd

3.	 Create a variable called em_town and store the information of that feature from the 
titanic dataset that was imported in the previous exercise. Print the top 10 values 
from the new variable:

em_town = titanic['embark_town']
em_town.head(10)

The output looks as follows:

Figure 1.13: A screenshot depicting the first 10 instances of the em_town variable

As you can see, the variable contains text data.

4.	 Convert the text data into numeric values. Use the class that was imported 
previously (LabelEncoder):

enc = LabelEncoder()
new_label = pd.Series(enc.fit_transform(em_town.astype('str')))



24 | Introduction to  Scikit-Learn

First of all, initialize the class by typing in the first line of code. Second, create a 
new variable called new_label and use the built-in method fit_transform() from 
the class, which will assign a numeric value to each category and output the result. 
We use the pd.Series() function to convert the output from the label encoder into 
a Pandas Series. Print out the top 10 values of the new variable:

new_label.head(10)

Figure 1.14: A screenshot depicting the first 10 instances of the new_label variable

As you can see, the text categories of the variable have been converted into 
numeric values.

Congratulations! You have successfully converted text data into numeric values.

While improvements in machine learning have made dealing with text features easier 
for some algorithms, it is best to convert them into numeric values. This is mainly 
important as it eliminates the complexity of dealing with semantics, not to mention that 
it gives the flexibility to change from model to model, without any limitations. 

Text data conversion is done via feature engineering, where every text category is 
assigned a numeric value that replaces it. Furthermore, even though this can be done 
manually, there are powerful built-in classes and methods that facilitate this process. 
One example of this is the use of scikit-learn's LabelEncoder class.
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Rescaling Data

Why is it important to rescale data? Because even though the data may be fed to a 
model using different scales for each feature, the lack of homogeneity can cause the 
algorithm to lose its ability to discover patterns from the data due to the assumptions it 
has to make to understand it, thereby slowing down the training process and negatively 
affecting the model's performance. 

Data rescaling helps the model run faster, without any burden or responsibility to learn 
from the invariance present in the dataset. Moreover, a model trained over equally 
scaled data assigns the same weights to all parameters, which allows the algorithm to 
generalize to all features and not just to those with higher values, irrespective of their 
meaning.

An example of a dataset with different scales is one that contains different features, 
one measured in kilograms, another measuring temperature, and another counting 
the number of children. Even though the values of each attribute are true, the scale of 
each one of them highly differs from that of the other. For example, while the values in 
kilograms can go higher than 100, the children count will typically not go further than 
10.

Two of the most popular ways to rescale data are data normalization and data 
standardization. There is no rule on selecting the methodology to transform data to 
scale it, as all datasets behave differently. The best practice is to transform the data 
using two or three rescaling methodologies and test the algorithms in each one of them 
in order to choose the one that best fits the data based on the performance. 

Rescaling methodologies are to be used individually. When testing different rescaling 
methodologies, the transformation of data should be done independently. Each 
transformation can be tested over a model, and the best suited one should be chosen 
for further steps.

Normalization: Data normalization in machine learning consists of rescaling the values 
of all features such that they lie in a range between 0 and 1 and have a maximum length 
of one. This serves the purpose of equating attributes of different scales. 

The following equation allows you to normalize the values of a feature:

Figure 1.15: The normalization equation
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Here, zi corresponds to the ith normalized value and x represents all values.

Standardization: This is a rescaling technique that transforms the data into a Gaussian 
distribution with a mean equal to 0 and a standard deviation equal to 1. 

One simple way of standardizing a feature is shown in the following equation:

Figure 1.16: The standardization equation

Here, zi corresponds to the ith standardized value, and x represents all values. 

Exercise 4: Normalizing and Standardizing Data

This section covers the normalization and standardization of data, using the titanic 
dataset as an example. Use the same Jupyter Notebook that you created for the last 
exercise:

1.	 Using the age variable that was created in the first exercise of this notebook, 
normalize the data using the preceding formula and store it in a new variable 
called age_normalized. Print out the top 10 values:

age_normalized = (age - age.min())/(age.max()-age.min())
age_normalized.head(10)

Figure 1.17: A screenshot displaying the first 10 instances of the age_normalized variable
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As you can see in the preceding screenshot, all of the values have been converted 
to their equivalents in a range between 0 and 1. By performing the normalization 
for all of the features, the model will be trained on the features of the same scale.

2.	 Again, using the age variable, standardize the data using the formula for 
standardization, and store it in a variable called age_standardized. Print out the top 
10 values:

age_standardized = (age - age.mean())/age.std()
age_standardized.head(10)

Figure 1.18: A screenshot displaying the first 10 instances of the age_standardized variable

Different than normalization, in standardization, the values distribute normally 
around zero.

3.	 Print out the mean and standard deviation of the age_standardized variable to 
confirm its mean of 0 and standard deviation of 1:

print("Mean: " + str(age_standardized.mean()))
print("Standard Deviation: " + str(age_standardized.std()))
Mean: 9.645376503530772e-17
Standard Deviation: 1.0

As you can see, the mean approximates to 0, and the standard deviation is equal to 
1, which means that the standardization of the data was successful.

Congratulations! You have successfully applied rescaling methods to your data.

In conclusion, we have covered the final step in data preprocessing, which consists 
of rescaling data. This process was done in a dataset with features of different scales, 
with the objective of homogenizing the way data is represented to facilitate the 
comprehension of the data by the model. 
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Failing to rescale data will cause the model to train at a slower pace and might 
negatively affect the performance of the model. 

Two methodologies for data rescaling were explained in this topic: normalization and 
standardization. On one hand, normalization transforms the data to a length of one 
(from 0 to 1). On the other hand, standardization converts the data into a Gaussian 
distribution with a mean of 0 and a standard deviation of 1.

Given that there is no rule for selecting the appropriate rescaling methodology, the 
recommended book of action is to transform the data using two or three rescaling 
methodologies independently, and then train the model with each transformation to 
evaluate the methodology that behaves best.

Activity 2: Preprocessing an Entire Dataset

You continue to work for the safety department at a cruise company. As you did great 
work selecting the ideal target feature to develop the study, the department has 
decided to commission you into preprocessing the data set as well. For this purpose, 
you need to use all the techniques you have learned about previously to preprocess the 
dataset and get it ready for model training. The following steps serve to guide you in 
that direction:

1.	 Load the dataset and create the features and target matrices by typing in the 
following code:

import seaborn as sns
titanic = sns.load_dataset('titanic')
X = titanic[['sex','age','fare','class','embark_town','alone']]
Y = titanic['survived']

Note

For this activity, the features matrix has been created using only six features, as 
some of the other features were redundant for the study. For example, there is no 
need to keep both sex and gender.
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2.	 Check for missing values and outliers in all the features of the features matrix (X). 
Choose a methodology to handle them.

Note

The following functions might come in handy:

notnull(): To detect non-missing values. For instance,  
X[X["age"].notnull()] will retrieve all the rows in X, except those that 
are missing values under the column age.

value.counts(): To count the occurrence of unique values of an array. For 
example, X["gender"].value_counts() will count the number of times the classes 
male and female are present.

3.	 Convert all text features into its numeric representation.

Note

Use the LabelEncoder class from scikit-learn. Don't forget to initialize the class 
before calling any of its methods.

4.	 Rescale your data, either by normalizing or standardizing.

Note

The solution for this activity can be found on page 179.

Results may vary depending on the choices you made. However, you must be left with a 
dataset with no missing values, outliers, or text features, and with data rescaled.

Scikit-Learn API
The objective of the scikit-learn API is to provide an efficient and unified syntax to make 
machine learning accessible to non-machine learning experts, as well as to facilitate 
and popularize its use among several industries.
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How Does It Work?

Although it has many collaborators, the scikit-learn API was built and has been updated 
by considering a set of principles that prevent framework code proliferation, where 
different codes perform similar functionalities. On the contrary, it promotes simple 
conventions and consistency. Due to this, the scikit-learn API is consistent among all 
models, and once the main functionalities have been learned, it can be widely used.

The scikit-learn API is divided into three complementary interfaces that share a 
common syntax and logic: the estimator, the predictor, and the transformer. The 
estimator interface is used for creating models and fitting the data into them; the 
predictor, as the name suggests, is used to make predictions based on the models 
trained before; and finally, the transformer is used for converting data. 

Estimator

This is considered to be the core of the entire API, as it is the interface in charge of 
fitting the models to the input data. It works by initializing the model to be used, and 
then applying a fit() method that triggers the learning process to build a model based 
on the data.

The fit() method receives as arguments the training data, in two separate variables, 
the features matrix, and the target matrix (conventionally called X_train and Y_train). 
For unsupervised models, the method only takes in the first argument (X_train). 

This method creates the model trained to the input data, which can later be used for 
predicting. 

Some models take other arguments besides the training data, which are also called 
hyperparameters. These hyperparameters are initially set to their default values, but 
can be tuned to improve the performance of the model, which will be discussed in 
further sections.

The following is an example of a model being trained:

from sklearn.naive_bayes import GaussianNB

model = GaussianNB()

model.fit(X_train, Y_train)
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First, it is required that you import the type of algorithm to be used from scikit-learn, 
for example, a Gaussian Naïve Bayes algorithm for classification. It is always a good 
practice to import only the algorithm to be used, and not the entire library, as this will 
ensure that your code runs faster.

Note

To find out the syntax to import a different model, use the documentation of scikit-
learn. Go to the following link, click over the algorithm that you wish to implement, 
and you will find the instructions there: http://scikit-learn.org/stable/user_guide.
html.

The second line of code oversees the initialization of the model and stores it in a 
variable. Lastly, the model is fit to the input data.

In addition to this, the estimator also offers other complementary tasks, as follows:

•	 Feature extraction, which involves transforming input data into numerical features 
that can be used for machine learning purposes

•	 Feature selection, which selects the features in your data that most contribute to 
the prediction output of the model

•	 Dimensionality reduction, which takes higher-dimensional data and converts it 
into a lower dimension

Predictor

As explained previously, the predictor takes the model created by the estimator 
and extends it to perform predictions on unseen data. In general terms, for 
supervised models, it feeds the model a new set of data, usually called X_test, to get a 
corresponding target or label based on the parameters learned during the training of 
the model.

Moreover, some unsupervised models can also benefit from the predictor. While this 
method does not output a specific target value, it can be useful to assign a new instance 
to a cluster. 

Following the preceding example, the implementation of the predictor can be seen as 
follows:

Y_pred = model.predict(X_test)

We apply the predict() method to the previously trained model, and input the new data 
as an argument to the method.

http://scikit-learn.org/stable/user_guide.html
http://scikit-learn.org/stable/user_guide.html
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In addition to predicting, the predictor can also implement methods that are in charge 
of quantifying the confidence of the prediction, also called the performance of the 
model. These confidence functions vary from model to model, but their main objective 
is to determine how far the prediction is from reality. This is done by taking an X_test 
with its corresponding Y_test and comparing it to the predictions made with the same 
X_test.

Transformer

As we saw previously, data is usually transformed before being fed to a model. 
Considering this, the API contains a transform() method that allows you to perform 
some preprocessing techniques. 

It can be used both as a starting point to transform the input data of the model 
(X_train), as well as further along to modify data that will be fed to the model for 
predictions. This latter application is crucial to get accurate results, as it ensures that 
the new data follows the same distribution as the data used to train the model.

The following is an example of a transformer that normalizes the values of the training 
data:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(X_train)

X_train = scaler.transform(X_train)

As you can see, after importing and initializing the transformer, it needs to be fit to the 
data to then effectively transform it:

X_test = scaler.transform(X_test)

The advantage of the transformer is that once it has been applied to the training 
dataset, it stores the values used for transforming the training data; this can be used to 
transform the test dataset to the same distribution.

In conclusion, we discussed one of the main benefits of using scikit-learn, which is its 
API. This API follows a consistent structure that makes it easy for non-experts to apply 
machine learning algorithms.
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To model an algorithm on scikit-learn, the first step is to initialize the model class and 
fit it to the input data using an estimator, which is usually done by calling the fit() 
method of the class. Finally, once the model has been trained, it is possible to predict 
new values using the predictor by calling the predict() method of the class.

Additionally, scikit-learn also has a transformer interface that allows you to transform 
data as needed. This is useful for performing preprocessing methods over the training 
data, which can then be also used to transform the testing data to follow the same 
distribution.

Supervised and Unsupervised Learning
Machine learning is divided into two main categories: supervised and unsupervised 
learning. 

Supervised Learning

Supervised learning consists of understanding the relation between a given set of 
features and a target value, also known as a label or class. For instance, it can be used 
for modeling the relationship between a person's demographic information and their 
ability to pay loans, as shown in the following table:

Figure 1.19: A table depicting the relationship between a person's demographic information and the 
ability to pay loans

Models trained to foresee these relationships can then be applied to predict labels for 
new data. As we can see from the preceding example, a bank that builds such a model 
can then input data from loan applicants to determine if they are likely to pay back 
the loan.
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These models can be further divided into classification and regression tasks, which are 
explained as follows.

Classification tasks are used to build models out of data with discrete categories as 
labels; for instance, a classification task can be used to predict whether a person will 
pay a loan. You can have more than two discrete categories, such as predicting the 
ranking of a horse in a race, but they must be a finite number.

Most classification tasks output the prediction as the probability of an instance to 
belong to each output label. The assigned label is the one with the highest probability, 
as can be seen in the following diagram:

Figure 1.20: An illustration of the working of a classification algorithm

Some of the most common classification algorithms are as follows:

•	 Decision trees: This algorithm follows a tree-like architecture that simulates the 
decision process given a previous decision.

•	 Naïve Bayes classifier: This algorithm relies on a group of probabilistic equations 
based on Bayes' theorem, which assumes independence among features. It has the 
ability to consider several attributes.

•	 Artificial neural networks (ANNs): These replicate the structure and performance 
of a biological neural network to perform pattern recognition tasks. An ANN 
consists of interconnected neurons, laid out with a set architecture. They pass 
information to one another until a result is achieved.
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Regression tasks, on the other hand, are used for data with continuous quantities as 
labels; for example, a regression task can be used for predicting house prices. This 
means that the value is represented by a quantity and not by a set of possible outputs. 
Output labels can be of integer or float types:

•	 The most popular algorithm for regression tasks is linear regression. It consists of 
only one independent feature (x) whose relation with its dependent feature (y) is 
linear. Due to its simplicity, it is often overseen, even though it performs very well 
for simple data problems.

•	 Other, more complex regression algorithms include regression trees and support 
vector regression, as well as ANNs once again.

In conclusion, for supervised learning problems, each instance has a correct answer, 
also known as a label or class. The algorithms under this category aim to understand 
the data and then predict the class of a given set of features. Depending on the 
type of class (continuous or discrete), the supervised algorithms can be divided into 
classification or regression tasks.

Unsupervised Learning

Unsupervised learning consists of modeling the model to the data, without any 
relationship with an output label, also known as unlabeled data. This means that 
algorithms under this category search to understand the data and find patterns in it. 
For instance, unsupervised learning can be used to understand the profile of people 
belonging to a neighborhood, as shown in the following diagram: 

Figure 1.21: An illustration of how unsupervised algorithms can be used to understand 
the profiles of people
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When applying a predictor over these algorithms, no target label is given as output. The 
prediction, only available for some models, consists of placing the new instance into 
one of the subgroups of data that has been created.

Unsupervised learning is further divided into different tasks, but the most popular one 
is clustering, which will be discussed next.

Clustering tasks involve creating groups of data (clusters) and complying with the 
condition that instances from other groups differ visibly from the instances within the 
group. The output of any clustering algorithm is a label, which assigns the instance to 
the cluster of that label:

Figure 1.22: A diagram representing clusters of multiple sizes

The preceding diagram shows a group of clusters, each of a different size, based on the 
number of instances that belong to each cluster. Considering this, even though clusters 
do not need to have the same number of instances, it is possible to set the minimum 
number of instances per cluster to avoid overfitting the data into tiny clusters of very 
specific data.

Some of the most popular clustering algorithms are as follows:

•	 k-means: This focuses on separating the instances into n clusters of equal 
variance by minimizing the sum of the squared distances between two points.

•	 Mean-shift clustering: This creates clusters by using centroids. Each instance 
becomes a candidate for centroid to be the mean of the points in that cluster.

•	 Density-Based Spatial Clustering of Applications with Noise (DBSCAN): This 
determines clusters as areas with a high density of points, separated by areas with 
low density.
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In conclusion, unsupervised algorithms are designed to understand data when there 
is no label or class that indicates a correct answer for each set of features. The most 
common types of unsupervised algorithms are the clustering methods that allow you to 
classify a population into different groups.

Summary
Machine learning consists of constructing models, some of which are based on 
complicated mathematical concepts, to understand data. Scikit-learn is an open source 
Python library that is meant to facilitate the process of applying these models to data 
problems, without much complex math knowledge required.

This chapter first covered an important step in developing a data problem, that is, 
representing the data in a tabular manner. Then, the steps involved in the creation of 
features and target matrices, data preprocessing, and choosing an algorithm were also 
covered. 

Finally, after selecting the type of algorithm that best suits the data problem, the 
construction of the model can begin through the use of the scikit-learn API, which has 
three interfaces: estimators, predictors, and transformers. Thanks to the uniformity of 
the API, learning to use the methods for one algorithm is enough to enable their use for 
others. 

With all of this in mind, in the next chapter, we will focus on detailing the process of 
implementing an unsupervised algorithm to a real-life dataset.





Learning Objectives

By the end of this chapter, you will be able to:

•	 Describe how clustering works

•	 Import and preprocess a dataset using Pandas and Matplotlib

•	 Explain the difference between the three clustering algorithms

•	 Solve an unsupervised learning data problem using different algorithms

•	 Compare the results of different algorithms to select the one with the best performance

This chapter describes a practical implementation of an unsupervised algorithm to a real-world 
dataset

Unsupervised 
Learning: Real-Life 

Applications

2
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Introduction
In the previous chapter, we saw how to represent data in a tabular format, create 
features and target matrices, preprocess data, and choose the algorithm that best suits 
the problem at hand. We also saw how the scikit-learn API works and why it is easy to 
use.

The main objective of this chapter is to solve a real-world case study, where the 
students will implement three different unsupervised learning solutions. These different 
applications serve to demonstrate the uniformity of the scikit-learn API, as well as to 
explain the steps taken to solve such a problem. At the end of this chapter, the students 
will be able to understand the use of unsupervised learning to comprehend data in 
order to make informed decisions.

Clustering
Clustering is a type of unsupervised machine-learning technique, where the objective 
is to arrive at conclusions based on the patterns found within unlabeled input data. This 
technique is mainly used to find meaning in the structure of large data in order to draw 
decisions.

For instance, from a large list of restaurants in a city, it would be useful to segregate 
the market into subgroups based on the type of food, quantity of clients, and style of 
experience to offer each cluster a service that's been configured to its specific needs.

Moreover, clustering algorithms divide the data points into n number of clusters so that 
the data points in the same cluster have similar features, whereas they greatly differ 
from the data points in other clusters.

Clustering Types

Clustering algorithms can classify data points using a methodology that is either hard 
or soft. The former designates data points completely to a cluster, whereas the latter 
method calculates for each data point the probability of belonging to each cluster.

For example, for a dataset containing customer's past orders that are divided into 
eight subgroups (clusters), hard clustering occurs when each customer is placed inside 
one of the eight clusters. On the other hand, soft clustering assigns each customer a 
probability of belonging to each of the eight clusters.

Considering that clusters are created based on the similarity between data points, 
clustering algorithms can be further divided into several groups depending on the set 
of rules used to measure similarity. Four of the most commonly known set of rules are 
explained as follows:
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•	 Connectivity-based models: This model's approach to similarity is based on 
proximity in a data space. The creation of clusters can be done by assigning all 
data points to a single cluster, and then partitioning the data into smaller clusters 
as the distance between data points increases. Likewise, the algorithm can also 
start by assigning each data point an individual cluster, and then aggregating data 
points that are close by. An example of a connectivity-based model is hierarchical 
clustering. 

•	 Density-based models: As the name indicates, these models define clusters by 
their density in the data space. This means that areas with a high density of data 
points will become clusters, which are typically separated from one another by 
low-density areas. An example of this is the DBSCAN algorithm.

•	 Distribution-based models: Models that fall in this category are based on the 
probability that all data points from a cluster follow the same distribution, such 
as a Gaussian distribution. An example of such a model is the expectation-
maximization algorithm.

•	 Centroid-based models: These models are based on algorithms that define a 
centroid for each cluster, which is updated constantly by an iterative process. The 
data points are assigned to the cluster where their proximity to the centroid is 
minimized. An example of such a model is the k-means algorithm. 

In conclusion, data points are assigned to clusters based on their similarity to each 
other and considering that they differ greatly from data points in other clusters. This 
classification into clusters can be either absolute or by determining the probability of 
each data point belonging to each cluster.

Moreover, there is no fixed set of rules to determine similarity between data points, 
which is why different clustering algorithms use different rules. Some of the most 
commonly known sets of rules are connectivity-based, density-based, distribution-
based, and centroid-based.

Applications of Clustering

As with all machine-learning algorithms, clustering has many applications in different 
fields, some of which are explained as follows:

•	 Search engine results: Clustering can be used to generate search engine results 
containing keywords that are approximate to the keywords searched by the user 
and ordered as per the search result with greater similarity. Take Google as an 
example; it uses clustering segmentation not only for retrieving results, but also 
for suggesting new possible searches.
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•	 Recommendation programs: It can also be used in recommendation programs 
that cluster together, for instance, people that fall into a similar profile, and then 
make recommendations based on the products that each member of the cluster 
has bought. Take Amazon, for example, which recommends more items based on 
your purchase history and the purchases of similar users. 

•	 Image recognition: This is where clusters are used to group together images 
that are considered to be similar. For instance, Facebook uses clustering to help 
suggest who is present in a picture.

•	 Market segmentation: Clustering can also be used for market segmentation 
to divide a list of prospects or clients into subgroups, to provide a customized 
experience or product. For example, Adobe uses clustering analysis to segment 
customers, to target them differently by recognizing those who are more willing to 
spend money.

The preceding examples demonstrate that clustering algorithms can be used to 
solve different data problems in different industries, with the primary purpose of 
understanding large amounts of historical data that, in some cases, can be used to 
classify new instances.

Exploring a Dataset: Wholesale Customers Dataset
As part of the process of learning the behavior and applications of clustering algorithms, 
the following sections of this chapter will focus on solving a real-life data problem using 
the Wholesale Customers dataset, which is available at the UC Irvine Machine Learning 
Repository.

Note

The Wholesale Customers dataset is available for download, and will be used in 
this topic's activity. The process of downloading it will be explained during the 
activity. However, students should access the following link to understand the 
steps that are given: http://archive.ics.uci.edu/ml/datasets/Wholesale+customers.

Datasets in repositories may contain raw, partially preprocessed, or preprocessed 
data. To use any of these datasets, ensure that you read the specifications of the 
data available to understand the process that needs to be followed to model the 
data effectively.

http://archive.ics.uci.edu/ml/datasets/Wholesale+customers
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Understanding the Dataset

The suggested steps to be followed to set the book of action for a data problem will 
be explained. Each step will be explained generically and will then be followed with 
an explanation of its application in the current case study (the Wholesale Customers 
dataset):

1.	 Considering that the dataset is obtained from an online repository, it is crucial to 
understand the way in which data is presented by the authors. 

The current dataset consists of a snippet of historical data of clients from 
a wholesale distributor. It contains a total of 440 instances (each row) and 
eight features (each column). 

2.	 Next, it is important to determine the purpose of the study, which is dependent on 
the data available. Even though this might seem like a redundant statement, many 
data problems become problematic because the researcher does not have a clear 
view of the purpose of the study, and hence the preprocessing methodology, the 
model, and the performance metrics are wrongly chosen. 

The purpose of using clustering algorithms over the Wholesale Customers dataset 
is to understand the behavior of each customer. This will allow you to group 
customers with similar behaviors in one cluster. The behavior of a customer will 
be defined by how much they spent on each category of products, as well as the 
channel and the region where they bought products.

3.	 Subsequently, explore all the features that are available. This is mainly done for 
two reasons. First, to rule out features that are considered to be of low relevance 
based on the purpose of the study, and second, to understand the way the values 
are presented to determine some of the preprocessing techniques that may 
be needed.
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The current case study has eight features, each one of which is considered 
to be relevant to the purpose of the study. Each feature is explained in the 
following table:

Figure 2.1: A table explaining each of the features in the case study

In the preceding table, no features are to be dismissed and nominal features have 
already been handled by the author of the dataset.

As a summary, the first thing to do when choosing a dataset or being handed one is 
to understand the characteristics visible at first glance, which involves recognizing 
the information available, then determining the purpose of the project, and finally 
revising the feature parameters to select those that will be part of the study. Post 
this, data visualization is used to continue to understand data, after which the data is 
preprocessed.
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Data Visualization
Once data has been revised generically to ensure that it can be used for the desired 
purpose, it is time to load the dataset and use data visualization to further understand 
it. Data visualization is not a requirement for developing a machine-learning project, 
especially when dealing with datasets with hundreds or thousands of features. However, 
it has become an integral part of machine learning, mainly for visualizing the following:

•	 Specific features that are causing trouble (for example, those that contain many 
missing or outlier values) and to understand how to deal with them

•	 The results from the model, such as the clusters created or the number of 
predicted instances for each labeled category

•	 The performance of the model in order to see the behavior along different 
iterations

Its popularity in the tasks detailed previously is explained by the fact that the human 
brain processes information easily when it is presented as charts or graphs, which 
allows us to have a general understanding of the data. It also helps to identify areas that 
need attention, such as outliers. 

Loading the Dataset Using Pandas

One way of storing a dataset to easily manage it is by using Pandas DataFrames. These 
work as two-dimensional size-mutable matrices with labeled axes. They facilitate the 
use of different Pandas functions to modify the dataset for preprocessing purposes. 

Most datasets found in online repositories or gathered by companies for data analysis 
are saved in CSV (comma-separated values) files. CSV files are text files that display 
the data in the form of a table. Columns are separated by commas (,) and rows are on 
separate lines. 

Loading a dataset stored in a CSV file and placing it into a DataFrame is extremely easy 
with the Pandas function read_csv(). It receives as input the path to your file, as shown 
in the following screenshot:

Note

When datasets are stored in different forms of files, such as in Excel or SQL 
databases, use the Pandas functions read_xlsx() or read_sql(), respectively.
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Figure 2.2: A screenshot showing the output of the read.csv() function

As shown in the preceding screenshot, the variable named data is of a Pandas 
DataFrame.

Visualization Tools

There are different open source visualization libraries available, from which Seaborn 
and Matplotlib stand out. In the previous chapter, Seaborn was used to load and display 
data; however, from this section onward, Matplotlib will be used as the visualization 
library. This is mainly because Seaborn is built on top of Matplotlib with the sole 
purpose of introducing a couple of plot types and to improve the format of the displays. 
Therefore, once you learn Matplotlib, you can also import Seaborn to improve the visual 
quality of your plots.

Note

For more information on the Seaborn library, visit the following link: https://
seaborn.pydata.org/.

In general terms, Matplotlib is an easy-to-use Python library that prints 2D quality 
figures. For simple plotting, the pyplot model of the library will suffice. 

https://seaborn.pydata.org/
https://seaborn.pydata.org/
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Some of the most commonly used plot types are explained in the following table:

Figure 2.3: A table listing the commonly used plot types (*). The functions in the third column can be 
used after importing Matplotlib and its pyplot model.

Note

Access Matplotlib's documentation on the type of plot that you wish to use so that 
you can play around with the different arguments that you can use to edit the 
result of your plot.
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Exercise 5: Plotting a Histogram of One Feature from the Noisy Circles 

Dataset

In this exercise, we will be plotting a histogram of one feature from the noisy circles 
dataset. Follow these steps to complete this exercise:

Note

Use the same Jupyter Notebook for all exercises and activities within this chapter.

For all the exercises and activities within this chapter, you will need to have Python 
3.6, Matplotlib, NumPy, Jupyter, and Pandas installed on your system.

1.	 Open a Jupyter Notebook to implement this exercise. 

2.	 First, import all of the libraries that you are going to be using by typing the 
following code:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(0)

The Pandas library is used to save the dataset into a DataFrame, Matplotlib is used 
for visualization, and NumPy is used in later exercises of this chapter, but since the 
same notebook will be used, it is imported here.

Note

A numpy random seed is used to ensure that results obtained during the exercises 
of this chapter are consistent from run to run. Otherwise, they would change 
at every run due to the random initialization that occurs every time a model 
is trained.



Data Visualization | 49

3.	 Create the noisy circles dataset by using the scikit-learn utility datasets. Type in 
the following code: 

from sklearn import datasets
n_samples = 1500
data = datasets.make_circles(n_samples=n_samples, factor=.5, noise=.05)[0]
plt.scatter(data[:,0], data[:,1])
plt.show()

The first line imports the utility from the scikit-learn library. Next, the number of 
instances is set to 1500. A variable named data is created to store the values, which 
are created by using the make_circles() function. Finally, a scatter plot is drawn to 
display the data points in a data space, which looks similar to the one shown here.

Note

The Matplotlib function show() is used to trigger the display of the plot, 
considering that the above lines only create it. When programming in Jupyter 
Notebooks it is not required, but in any other environment is required.

Figure 2.4: A scatter plot of the noisy circles dataset
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The final output is a dataset with two features and 1,500 instances.

Note

The make_circles() function is used to create a toy dataset to visualize clustering 
algorithms. It works by making a large circle containing a smaller circle in 2D. 
To learn more about the make_circles() function, visit the documentation of 
scikit-learn in the following link: http://scikit-learn.org/stable/modules/generated/
sklearn.datasets.make_circles.html.

4.	 Create a histogram out of one of the two features:

plt.hist(data[:,0])
plt.show()

The plot will look similar to the one shown below:

Figure 2.5: A screenshot showing the histogram obtained using data from the first feature

Congratulations! You have successfully created a histogram using Matplotlib. Similarly, 
different plot types can be created using Matplotlib.

In conclusion, visualization tools help you better understand the data available in a 
dataset, the results from a model, and the performance of the model. This happens 
because the human brain is receptive to visual forms, instead of large files of data.

http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
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Matplotlib has become one of the most commonly used libraries to perform data 
visualization. Among the different plot types that the library supports are histograms 
bar charts, and scatter plots. 

Activity 3: Using Data Visualization to Aid the Preprocessing Process

Before you proceed with this section, follow these steps to download the dataset that 
you will use for this activity:

1.	 Access the following link: http://archive.ics.uci.edu/ml/datasets/
Wholesale+customers.

2.	 Below the dataset's title, find the download section and click on Data Folder.

3.	 Click on Wholesale customers data.csv to trigger the download and save the file 
in the same path as that of your current Jupyter Notebook.

The marketing team of your company wants to know the different profiles of its clients 
to focus its marketing effort to suit the individual needs of each profile. To do so, it has 
provided your team with a list of 440 pieces of previous sales data. Your first task is to 
preprocess the data, and your boss has asked you to specifically use data visualization 
to help him understand the decisions you took in that process. For this purpose, you 
need to load a CSV dataset using Pandas and use data visualization tools to help the 
preprocessing process. The following steps will guide you:

1.	 Load the previously downloaded dataset by using the Pandas function read_
csv(), given that the dataset is stored in a CSV file. Store the dataset in a Pandas 
DataFrame named data.

Note

Make sure to import the required libraries first. For instance, Pandas and 
Matplotlib.

2.	 Check for missing values in your DataFrame. If present, handle the missing values 
and support your decision with data visualization.

Note

Use data.isnull().sum() to check the entire dataset at once.

http://archive.ics.uci.edu/ml/datasets/Wholesale+customers
http://archive.ics.uci.edu/ml/datasets/Wholesale+customers
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3.	 Check for outliers in your DataFrame. If present, handle the outliers and support 
your decision with data visualization.

Note

Mark as outliers all the values that are three standard deviations away from the 
mean.

4.	 Rescale the data using the formula for normalization or standardization. 

Note

Standardization tends to work better for clustering purposes. Also, you can find the 
solution for this activity on page 185.

On checking the above, you should find no missing values in the dataset and 6 
features with outliers that are to be handled.

k-means Algorithm
The k-means algorithm is used for data without a labeled class. It involves dividing the 
data into K number of subgroups. The classification of data points into each group is 
done based on similarity, as explained before, which for this algorithm is measured by 
the distance from the center (centroid) of the cluster. The final output of the algorithm 
are the data points related to a cluster and the centroid of each cluster, which can be 
used to label new data in the same clusters.

The centroid of each cluster represents a collection of features that can be used to 
define the nature of the data points that belong there. 

Understanding the Algorithm

The k-means algorithm works through an iterative process that involves the following 
steps:

1.	 Based on the number of clusters defined by the user, the centroids are generated 
either by setting initial estimates or by randomly choosing them from the data 
points. This step is known as initialization. 
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2.	 All the data points are assigned to the nearest cluster in the data space by 
measuring their respective distances from the centroid, known as the assignment 
step. The objective is to minimize the squared Euclidean distance, which can be 
defined by the following formula:

Figure 2.6: A formula minimizing the Euclidean distance 

Here, c represents a centroid, x refers to a data point, and dist() is the Euclidean 
distance.

3.	 Centroids are calculated again by computing the mean of all data points belonging 
to a cluster. This step is known as the update step. 

Steps 2 and 3 are repeated in an iterative process, until a criterion is met. The criterion 
can be as follows:

•	 The number of iterations defined.

•	 The data points do not change from cluster to cluster.

•	 The Euclidean distance is minimized.

The algorithm is set to always arrive at a result, even though this result may converge to 
a local or a global optimum. 

The k-means algorithm receives several parameters as inputs to run the model. The 
most important ones to consider are the initialization methods (init) and the number 
of clusters (K), which are explained as follows.

Note

To check out the other parameters of the k-means algorithm in the scikit-learn 
library, visit the following link: http://scikit-learn.org/stable/modules/generated/
sklearn.cluster.KMeans.html.

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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Initialization Methods

An important input of the algorithm is the initialization method to be used to generate 
the initial centroids. The initialization methods allowed by the scikit-learn library are 
explained as follows:

1.	 k-means++: This is the default option. Centroids are chosen randomly from the set 
of data points, considering that centroids must be far away from one another. To 
achieve this, the method assigns a higher probability of being a centroid to those 
data points that are farther away from other centroids.

2.	 random: This method chooses K observations randomly from the data points as 
the initial centroids.

Choosing the Number of Clusters

As discussed previously, the number of clusters into which the data is to be divided is 
set by the user; hence, it is important to choose the number of clusters appropriately. 

One of the metrics used to measure the performance of the k-means algorithm is the 
mean distance of the data points from the centroid of the cluster that they belong to. 
However, this measure can be counterproductive as the higher the number of clusters, 
the smaller the distance between the data points and its centroid, which may result in 
the number of clusters (K) matching the number of data points, thereby harming the 
purpose of clustering algorithms.

To avoid this, an approach that can be followed is to plot the average distance between 
data points and its center against the number of clusters. The appropriate number 
of clusters corresponds to the breaking point of the plot, where the rate of decrease 
drastically changes. In the following diagram, the dotted circle represents the ideal 
number of clusters:
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Figure 2.7: A graph demonstrating how to estimate the breaking point

Exercise 6: Importing and Training the k-means Algorithm over a Dataset

The following exercise will be performed using the same dataset that was created in 
the previous exercise using the make_circles() function. Considering this, use the same 
Jupyter Notebook that you used to develop the previous exercise:

1.	 Open the Jupyter Notebook that you used for the previous exercise. Here, you 
should have imported all the required libraries and stored the dataset in a variable 
named data.

2.	 Import the k-means algorithm from scikit-learn, by using the following code:

from sklearn.cluster import KMeans

3.	 To choose the value for K, calculate the average distance of data points from 
its centroid in relation to the number of clusters. Consider that the maximum 
numbers of clusters to be created should not exceed 20. The following is a snippet 
of the code:

ideal_k = []
for i in range(1,21):
  est_kmeans = KMeans(n_clusters=i)
  est_kmeans.fit(data)

  ideal_k.append([i,est_kmeans.inertia_])
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First, create the variables that will store the values as an array and name it ideal_k. 
Next, perform a for loop that starts at one cluster and goes as high as desired 
(considering that the max number of clusters must not exceed the number of 
instances). 

For the previous example, there was a limitation of maximum 20 clusters to 
be created. As a consequence to this limitation, the for loop goes from 1 to 20 
clusters.

Note

Remember that range() is an upper bound exclusive function, meaning that the 
range will go as far as one value below the upper bound. When the upper bound is 
21, the range will go as far as 20.

Inside the for loop, initialize the algorithm with the number of clusters to be 
created, and then fit the data to the model. Next, append the pairs of data (number 
of clusters, average distance to the centroid) to the list named ideal_k:

ideal_k = np.array(ideal_k)

The average distance to the centroid does not need to be calculated as the model 
outputs it under the attribute inertia_, which can be called out as [model_name].
inertia_.

Finally, the ideal_k list is converted into a NumPy array so that you are able to 
feed it as a parameter of a Matplotlib plot.

4.	 Plot the relations calculated in the preceding step to find the ideal K to input to 
the final model:

plt.plot(ideal_k[:,0],ideal_k[:,1])
plt.show()
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Figure 2.8: A screenshot showing the output of the plot function used

The breaking point of the plot is around 5.

5.	 Train the model with K=5. Use the following code:

est_kmeans = KMeans(n_clusters=5)
est_kmeans.fit(data)
pred_kmeans = est_kmeans.predict(data)

The first line initializes the model with 5 as the number of clusters. Then, the data 
is fit to the model. Finally, the model is used to assign a cluster to each data point.
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6.	 Plot the results from the clustering of data points into clusters:

plt.scatter(data[:,0], data[:,1], c=pred_kmeans)
plt.show()

Figure 2.9: A screenshot showing the output of the plot function used

Since the dataset only contains two features, each feature is passed as input to the 
scatter plot function. Additionally, the labels obtained from the clustering process 
are used as the colors to display the data points. Thus, each data point is located in 
the data space based on the values of both features, and the colors represent the 
clusters that were formed. 

Note

For datasets with over two features, the visual representation of clusters is not 
as explicit as the shown in the preceding screenshot. This is mainly because 
the location of each data point (observation) in the data space is based on the 
collection of all of its features, and visually it is only possible to display up to three 
features.

Congratulations! You have successfully imported and trained the k-means algorithm.

In conclusion, the k-means algorithm seeks to divide the data into K number of clusters, 
K being a parameter set by the user. Data points are grouped together based on their 
proximity to the centroid of a cluster, which is calculated by an iterative process. 
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The initial centroids are set according to the initialization method defined. Then, all 
data points are assigned to the clusters with the centroid closer to their location in the 
data space, using the Euclidean distance as measure. Once the data points are divided 
into clusters, the centroid of each cluster is recalculated as the mean of all data points. 
The process is repeated several times until a stopping criterion is met. 

Activity 4: Applying the k-means Algorithm to a Dataset

Ensure that you have completed Activity 3 before you proceed with this activity.

Continuing with the analysis of your company's past orders, you are now in charge 
of applying the k-means algorithm over the dataset. Using the previously loaded 
Wholesale Customers dataset, apply the k-means algorithm to the data and classify the 
data into clusters. Follow these steps to complete this activity:

1.	 Open the Jupyter Notebook that you used for the previous activity. There, you 
should have imported all the required libraries and stored the dataset in a variable 
named data.

2.	 Calculate the average distance of the data points from its centroid in relation to 
the number of clusters. Based on this distance, select the appropriate number of 
clusters to train the model.

3.	 Train the model and assign a cluster to each data point in your dataset. Plot the 
results. 

Note

You can use the subplots() function from Matplotlib to plot two scatter graphs at 
a time. To learn more about this function, visit Matplotlib's documentation at the 
following link: https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplots.html. 
Also, you can find the solution for this activity on page 189.

The visualization of clusters will differ based on the number of clusters (k) and the 
features selected to be plotted.

Mean-Shift Algorithm
The mean-shift algorithm works by assigning each data point a cluster based on the 
density of data points in the data space, also known as the mode in a distribution 
function. Contrary to the k-means algorithm, the mean-shift algorithm does not require 
you to specify the number of clusters as a parameter. 

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplots.html


60 | Unsupervised Learning: Real-Life Applications

The algorithm works by modeling the data points as a distribution function, where 
high-density areas (high concentration of data points) represent high peaks. Then, the 
general idea is to shift each data point until it reaches its nearest peak, which becomes 
a cluster. 

Understanding the Algorithm

The first step of the mean-shift algorithm is the representation of the data points as 
a density distribution. To do so, the algorithm builds upon the idea of Kernel Density 
Estimation (KDE), which is a method used to estimate the distribution of a set of data: 

Figure 2.10: An image depicting the idea behind Kernel Density Estimation

In the preceding diagram, the red dots represent the data points that the user inputs 
and the colored lines represent the estimated distribution of the data points. The peaks 
(high-density areas) will be the clusters. The process of assigning data points to each 
cluster is explained next:

1.	 A window of a specified size (bandwidth) is drawn around each data point.

2.	 The mean of the data inside the window is computed.

3.	 The center of the window is shifted to the mean. 
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Steps 2 and 3 are repeated until the data point reaches a peak, which will determine the 
cluster to which it belongs.

The bandwidth value should be coherent with the distribution of the data points in the 
dataset. For example, for a dataset normalized between 0 and 1, the bandwidth value 
should be within that range, while for a dataset with all values between 1.000 and 2.000, 
it would make more sense to have a bandwidth between 100 and 500.

In the following diagram, the estimated distribution is represented by the lines, and the 
data points are the red dots. In each of the boxes, the data points shift to the nearest 
peak. All the data points in a certain peak belong to that cluster:

Figure 2.11: A sequence of images illustrating the working of the mean-shift algorithm

The number of shifts that a data point has to make to reach a peak depends on its 
bandwidth (the size of the window) and its distance from the peak.

Note

To explore all the parameters of the mean-shift algorithm in scikit-learn, visit 
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html.

Exercise 7: Importing and Training the Mean-Shift Algorithm over a Dataset

The following exercise will be performed using the same dataset that was created in the 
first exercise of this chapter. Considering this, use the same Jupyter Notebook that you 
used to develop the previous exercise:

1.	 Open the Jupyter Notebook that you used for the previous exercise. 

2.	 Import the k-means algorithm class from scikit-learn by using the following code:

from sklearn.cluster import MeanShift

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html
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3.	 Train the model with a bandwidth of 0.5:

est_meanshift = MeanShift(0.5)
est_meanshift.fit(data)
pred_meanshift = est_meanshift.predict(data)

Considering that the dataset has created values ranging from −1 to 1, the 
bandwidth value should not be above 1. The value of 0.5 was chosen after trying 
out other values, such as 0.1 and 0.9.

Note

Take into account that the bandwidth is a parameter of the algorithm, and as a 
parameter, it can be fine-tuned to arrive at the best performance. The fine-tuning 
process will be further evaluated in later chapters.

First, the model is initialized with a bandwidth of 0.5. Next, the model is fit to the 
data. Finally, the model is used to assign a cluster to each data point.

4.	 Plot the results from the clustering of data points into clusters:

plt.scatter(data[:,0], data[:,1], c=pred_meanshift)
plt.show()

Figure 2.12: The plot obtained using the preceding code
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Again, as the dataset only contains two features, both are passed as inputs to the 
scatter function. Also, the labels obtained from the clustering process are used as 
the colors to display the data points. 

The total number of clusters that has been created is four.

Congratulations! You have successfully imported and trained the mean-shift algorithm.

In conclusion, the mean-shift algorithm starts by drawing the distribution function 
that represents the set of data points. This process consists of creating peaks in high-
density areas, while leaving flat the areas with a low density. 

Following this, the algorithm proceeds to classify the data points into clusters by 
shifting each point slowly and iteratively until it reaches a peak, which becomes 
its cluster.

Activity 5: Applying the Mean-Shift Algorithm to a Dataset

Your boss wants you to also apply the mean-shift algorithm to the dataset to see 
which algorithm fits the data better. Therefore, using the previously loaded Wholesale 
Consumers dataset, apply the mean-shift algorithm to the data and classify the data 
into clusters. Follow these steps to complete this activity:

1.	 Open the Jupyter Notebook that you used for the previous activity. 

Note

Considering that you are using the same Jupyter Notebook, be careful not to 
overwrite a previous variable. 

2.	 Train the model and assign a cluster to each data point in your dataset. Plot the 
results.

Note

The solution for this activity can be found on page 192.

The visualization of clusters will differ based on the bandwidth and the features 
selected to be plotted.
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DBSCAN Algorithm
The density-based spatial clustering of applications with noise (DBSCAN) algorithm 
groups together points that are close to each other (with many neighbors) and marks 
those points that are further away with no close neighbors as outliers. 

According to this, and as its name states, the algorithm classifies data points based on 
the density of all data points in the data space. 

Understanding the Algorithm

The DBSCAN algorithm requires two main parameters: epsilon and the minimum 
number of observations.

Epsilon, also known as eps, is the maximum distance that defines the radius within 
which the algorithm searches for neighbors. The minimum number of observations, on 
the other hand, refers to the number of data points required to form a high density area 
(min_samples). However, the latter is optional in scikit-learn as the default value is set to 
5:

Figure 2.13: An illustration of how the DBSCAN algorithm classifies data into clusters

In the preceding diagram, the blue dots are assigned to the blue shaded cluster (A) and 
the orange dots are assigned to the orange shaded cluster (B). Moreover, the yellow 
dots (C) are considered to be outliers, as they do not meet the required parameters to 
belong to a high-density area. 
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Some areas with a small concentration of points, such as the yellow dots at the bottom 
of the image (C), may not constitute a cluster as the minimum number of data points to 
form a high-density area is not met (which, for this example, is set to 5).

Note

Similar to the bandwidth parameter, the epsilon value should be coherent with the 
distribution of the data points in the dataset considering that it represents a radius 
around each data point.

According to this, each data point can be classified as follows:

•	 A core point: A point that has at least the minimum number of data points within 
its eps radius. 

•	 A border point: A point that is within the eps radius of a core point, but does not 
have the required number of data points within its own radius.

•	 A noise point: All point that do not meet the preceding descriptions.

Note

To explore all parameters of the DBSCAN algorithm in scikit-learn, visit http://scikit-
learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html.

Exercise 8: Importing and Training the DBSCAN Algorithm over a Dataset

This exercise discusses how to import and train the DBSCAN algorithm over a dataset. 
We will be using the dataset that we created in the first exercise of this chapter for this 
activity:

1.	 Open the Jupyter Notebook that you used for the previous exercise. 

2.	 Import the DBSCAN algorithm class from scikit-learn by using the following code:

from sklearn.cluster import DBSCAN

3.	 Train the model with epsilon equal to 0.1:

est_dbscan = DBSCAN(eps=0.1)
pred_dbscan = est_dbscan.fit_predict(data)

First, the model is initialized with eps of 0.1. Then, we use the fit_predict() 
function to both fit the model to the data and assign a cluster to each data point. 

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
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This bundled function, which includes both the fit and predict method at once, is 
used because the DBSCAN algorithm in scikit-learn does not contain a predict() 
method alone.

Again, the value of 0.1 was chosen after trying out other possible values. 

4.	 Plot the results from the clustering process:

plt.scatter(data[:,0], data[:,1], c=pred_dbscan)
plt.show()

Figure 2.14: The plot obtained with the preceding code

As before, both features are passed as inputs to the scatter function. Also, the 
labels obtained from the clustering process are used as the colors to display the 
data points. 

The total number of clusters that have been created is two.

As you can see, the total number of clusters created by each algorithm is different. 
This is because, as mentioned previously, each of these algorithms defines 
similarity differently, and as a consequence, each one of them interprets the data 
differently.

Due to this, it is crucial to test different algorithms over the data to compare the 
results and define which one generalizes better to the data. The following topic 
will explore some methods to evaluate performance to help choose an algorithm.

Congratulations! You have successfully imported and trained the DBSCAN algorithm.
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In conclusion, the DBSCAN algorithm bases its clustering classification on the density 
of data points in the data space. This means that clusters are formed by data points with 
many neighbors. This is done by considering that core points are those that contain 
a minimum number of neighbors within a set radius, border points are those that 
are located inside the radius of a core point but do not have the minimum number of 
neighbors within their own radius, and noise points are those that do not meet any of 
the specifications. 

Activity 6: Applying the DBSCAN Algorithm to the Dataset

Thanks to your excellent work and fast turnaround, your boss wants you to also 
apply the DBSCAN algorithm to the dataset. Using the previously loaded Wholesale 
Consumers dataset, apply the DBSCAN algorithm to the data and classify the data into 
clusters. Follow the following steps:

1.	 Open the Jupyter Notebook that you used for the previous activity. 

2.	 Train the model and assign a cluster to each data point in your dataset. Plot the 
results.

Note

The solution for this activity can be found on page 193.

The visualization of clusters will differ based on the epsilon and the features 
selected to be plotted.

Evaluating the Performance of Clusters
After applying a clustering algorithm, it is necessary to evaluate how well the algorithm 
has performed. This is especially important when it is difficult to visually evaluate the 
clusters, for example, when there are several features. 

Usually, with supervised algorithms, it is easy to evaluate the performance by simply 
comparing the prediction of each instance with its true value (class). On the other hand, 
when dealing with unsupervised models, it is necessary to pursue other strategies. 
In the specific case of clustering algorithms, it is possible to evaluate performance by 
measuring the similarity of the data points that belong to the same cluster.
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Available Metrics in Scikit-Learn

Scikit-learn allows its users to use two different scores for evaluating the performance 
of unsupervised clustering algorithms. The main idea behind these scores is to measure 
how well-defined the cluster's edges are, instead of measuring the dispersion within a 
cluster. Hence, it is worth mentioning that the scores do not take into account the size 
of each cluster.

The Silhouette Coefficient Score calculates the mean distance between each point and 
all the other points of a cluster (a), as well as the mean distance between each point and 
all the other points of its nearest clusters (b). It relates both of them according to the 
following equation:

Figure 2.15: An equation showing how the silhouette coefficient score is calculated

The result of the score is a value between -1 and 1. The lower the value, the worse the 
performance of the algorithm. Values around 0 will imply overlapping of clusters. It is 
also important to clarify that this score does not work very well when using density-
based algorithms such as DBSCAN. 

The Calinski–Harabasz Index was created to measure the relation between the 
variance of each cluster and the variance of all clusters. More specifically, the variance 
of each cluster is the mean square error of each point with respect to the centroid of 
that cluster. On the other hand, the variance of all clusters refers to the overall inter-
cluster variance. 

The higher the value of the Calinski–Harabasz Index, the better the definition and 
separation of the clusters. There is no acceptable cut-off value, so the performance of 
the algorithms using this index is evaluated through comparison, where the algorithm 
with the highest value is the one that performs best. As with the Silhouette Coefficient, 
this score does not perform well on density-based algorithms such as DBSCAN.

Unfortunately, the scikit-learn library does not contain other methods for effectively 
measuring the performance of density-based clustering algorithms, and although the 
methods mentioned here may work in some cases to measure the performance of these 
algorithms, when they do not, there is no other way to measure this other than via 
manual evaluation.
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Exercise 9: Evaluating the Silhouette Coefficient Score and Calinski–Harabasz 

Index 

In this exercise, we will learn how to estimate the two scores discussed in the previous 
section in scikit-learn:

1.	 Import the Silhouette Coefficient score from the scikit-learn library:

from sklearn.metrics import silhouette_score

2.	 Calculate the Silhouette Coefficient score for each of the algorithms created in all 
of the previous exercises. Use the Euclidean distance as the metric for measuring 
the distance between points.

The input parameters of the silhouette_score() function are the data, the 
predicted values of the model (the clusters assigned to each data point), and the 
distance measure:

kmeans_score = silhouette_score(data, pred_kmeans, metric='euclidean')
meanshift_score = silhouette_score(data, pred_meanshift, 
metric='euclidean')
dbscan_score = silhouette_score(data, pred_dbscan, metric='euclidean')
print(kmeans_score, meanshift_score, dbscan_score)

The scores come to be around 0.359, 0.344, and 0.0893 for the k-means, mean-
shift, and DBSCAN algorithms, respectively.

You can observe that both k-means and mean-shift algorithms have similar scores, 
while the DBSCAN score is closer to zero. This can indicate that the performance 
of the first two algorithms is much better, and hence, the DBSCAN algorithm 
should not be considered to solve the data problem. 

Nevertheless, it is important to remember that this type of score does not perform 
well when evaluating the DBSCAN algorithm. This is basically because as one 
cluster is surrounding the other one, the score can interpret that as an overlap 
when in reality the clusters are very well-defined.

3.	 Import the Calinski-Harabasz Index from the scikit-learn library:

from sklearn.metrics import calinski_harabaz_score
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4.	 Calculate the Calinski-Harabasz index for each of the algorithms created in the 
previous exercises in this chapter. The input parameters of the calinski_harabaz_
score() function are the data and the predicted values of the model (the clusters 
assigned to each data point):

kmeans_score = calinski_harabaz_score(data, pred_kmeans)
meanshift_score = calinski_harabaz_score(data, pred_meanshift)
dbscan_score = calinski_harabaz_score(data, pred_dbscan)
print(kmeans_score, meanshift_score, dbscan_score)

The values come to approximately 1377.8, 1304.07, and 0.158 for the k-means, 
mean-shift, and DBSCAN algorithms, respectively. Once again, the results are 
similar to the ones obtained using the Silhouette Coefficient score, where both the 
k-means and mean-shift algorithms performed similarly well, while the DBSCAN 
algorithm did not. 

Moreover, it is worth mentioning that the scale of each method (the Silhouette 
Coefficient score and the Calinski-Harabasz index) differs significantly, so they are 
not easily comparable.

Congratulations! You have successfully measured the performance of three different 
clustering algorithms.

In conclusion, the scores presented in this topic are a way of evaluating the 
performance of clustering algorithms. However, it is important to consider that the 
results from these scores are not definitive as their performance varies from algorithm 
to algorithm.

Activity 7: Measuring and Comparing the Performance of the Algorithms

Your boss is not sure about the performance of the algorithms as it cannot be evaluated 
graphically. Therefore, she has asked you to measure the performance of the algorithms 
using numerical metrics that she can use to make comparisons. You need to use the 
previously trained models and calculate the Silhouette Coefficient score and the 
Calinski-Harabasz index to measure the performance of the algorithms. The following 
steps provide hints regarding how you can do this:

1.	 Open the Jupyter Notebook that you used for the previous activity. 
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2.	 Calculate both the Silhouette Coefficient score and the Calinski-Harabasz index 
for all of the models that you trained previously.

Note

The solution for this activity can be found on page 195.

The results may differ based on the choices made during the activities and the 
initialization of certain parameters in each algorithm.

Summary
Data problems where the input data is unrelated to a labeled output is handled using 
unsupervised learning. The main objective of such data problems is to understand the 
data by finding patterns that, in some cases, can be generalized to new instances. In this 
context, this chapter covered clustering algorithms, which work by aggregating similar 
data points into clusters, while separating data points that greatly differ. After this, 
the chapter covered data visualization tools that can be used to analyze problematic 
features during data preprocessing. We also saw how to apply different algorithms to 
the dataset and compare their performance to choose the one that best fits the data. 
Two different metrics for performance evaluation, the Silhouette Coefficient metric and 
the Calinski-Harabasz index, were also discussed in light of the inability to represent all 
of the features in a plot, and thereby graphically evaluate performance on scikit-learn. 
However, it is important to understand that the result from the metric performance is 
not absolute, as some metrics perform better (by default) for some algorithms than for 
others.

In the next chapter, we will understand the steps involved in working with a supervised 
machine learning algorithm, and learn how to perform error analysis.





Learning Objectives

By the end of this chapter, you will be able to:

•	 Explain the difference between training, validation, and testing sets

•	 Perform data partitioning for split or cross validation

•	 Describe the different metrics to evaluate performance

•	 Choose the performance metric that fits the purpose of the study

•	 Perform error analysis 

This chapter explains the methodology to approach a machine learning classification problem.

Supervised Learning: 
Key Steps

3
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Introduction
In the previous chapter, we saw how to solve data problems using unsupervised 
learning algorithms and applied the concepts that we learned to some real-life datasets. 
We also learned how to compare the performance of various algorithms and studied 
two different metrics for performance evaluation.

In this chapter, we will explore the main steps for working on a supervised machine 
learning problem. First, the chapter explains the different sets in which data needs 
to be split for training, validating, and testing your model. Next, the most common 
evaluation metrics will be explained. It is important to highlight that, among all the 
metrics available, only one should be selected as the evaluation metric of the study, 
and its selection should be made by considering the purpose of the study. Finally, the 
students will learn how to perform error analysis, with the purpose of understanding 
what measures to take to improve the results of a model. 

Model Validation and Testing
Nowadays, it is easy for almost anybody to start working in a machine-learning project 
with all the information available online. However, choosing the right algorithm for your 
data is a challenge when there are many alternatives available. Due to this, the right 
algorithm is chosen by a process of trial and error, where the different alternatives are 
tested.

Moreover, the decision process to arrive at a good model covers not only the selection 
of the algorithm but also the tuning of its hyperparameters. To do this, a conventional 
approach is to divide the data into three parts, training, validation, and testing sets, 
which will be explained further now. 

Data Partition

Data partition is a process involving the division of the dataset into three subsets so 
that each set can be used for a different purpose. This way, the development of a model 
is not affected by the introduction of bias. The following is an explanation of each 
subset:

•	 Training set: As the name suggests, this is the portion of the dataset used for 
training the model. It consists of the input data (the observations) paired with an 
outcome (the label class). 

This set can be used to train as many models as desired, using different 
algorithms. However, performance evaluation is not done over this set.
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•	 Validation set: Also known as the dev set, this set is used to perform an unbiased 
evaluation of each model while fine-tuning the hyperparameters. Performance 
evaluation is frequently done over this set of data to test different configurations 
of the hyperparameters.

Although the model does not learn from this data, but from the training set data, it 
is indirectly affected by the data in this set due to its participation in the process 
of deciding the changes over the parameters.

After running different configurations of hyperparameters and based on the 
performance of the model over the validation set, a winning model is selected for 
each algorithm.

•	 Testing set: This is used to perform the final evaluation of performance of the 
model (after training and validation) over unseen data. This helps measure the 
performance of the model with real-life data for future predictions.

The testing set is also used to compare competing models. Considering that the 
training set was used to train different models and the validation set was used to 
fine-tune the hyperparameters of each model to select a winning configuration, 
the purpose of the testing set is to perform an unbiased comparison of the final 
models.

The diagram below shows the process of selecting the ideal model and using the sets 
mentioned previously.

Figure 3.1: Dataset partition purposes
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The sections A–D shown in the preceding figure previously are described below:

•	 Section A refers to the process of training the model for the desired algorithms, 
using the data contained in the training set.

•	 Section B represents the fine-tuning process of the hyperparameters of each 
model. The selection of the best configuration of hyperparameters is based on the 
performance of the model over the validation set.

•	 Section C shows the process of selecting the final model by comparing the final 
configuration of each algorithm based on their performance over the testing set.

•	 Finally, section D represents the selected model that will be applied to real-life 
data for prediction.

Initially, machine learning problems were solved by only partitioning data into two sets: 
a training and a testing set. This approach consisted of using the training set to train 
the model, which is the same as the approach with three sets. However, the testing set 
was used for fine-tuning the hyperparameters as well as for determining the ultimate 
performance of the algorithm.

Although this approach can also work, models that are created using this approach do 
not always perform equally well over unseen real-life data. This is mainly because, as 
mentioned previously, the use of the set to fine-tune the hyperparameters indirectly 
introduces bias to the model.

Considering this, there is one way to achieve a less biased model while dividing 
the dataset into two sets, which is called a cross-validation split. We will explore 
this later.

Split Ratio

Now that the differences among the purposes of the various sets is clear, it is important 
to clarify the split ratio in which data needs to be divided. Although there is no exact 
science for calculating the split radio, there are a couple of things to consider when 
doing so:

•	 Size of the dataset: Previously, when data was not easily available, datasets 
contained between 100 to 100,000 instances, and the conventionally accepted split 
ratio was 60/20/20% for the training, validation, and testing sets, respectively. 
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Nowadays, with software and hardware improving every day, researchers can put 
together datasets that contain over a million instances. This capacity to gather 
huge amounts of data allows the split ratio to be 98/1/1%, respectively. This is 
mainly because the larger the dataset, the more data that can be used for training 
a model, without compromising the amount of data left for the validation and 
testing sets.

•	 The algorithm: It is important to consider that some algorithms may require 
higher amounts of data to train a model. In this case, like with the preceding 
approaches, you should always opt for a larger training set. 

Other algorithms, for example, do not require the validation and testing sets to 
be split equally. For instance, a model with fewer hyperparameters can be easily 
tuned, which allows the validation set to be smaller than the testing set. However, 
if a model has many hyperparameters, you will need to have a larger validation set.

Nevertheless, even though the preceding measures serve as a guide for splitting the 
dataset, it is always important to consider the distribution of your dataset and the 
purpose of the study. Considering that the model is going to be used with data with a 
different distribution than the one used to train the model, the real-life data, even if 
limited, must at least be a part of the testing set to make sure that the model will work 
for the desired purpose.

The following diagram displays the proportional partition of the dataset into three 
subsets. It is important to highlight that the training set must be larger than the other 
two, as it is the one to be used for training the model. Additionally, it is possible to 
observe that both the training and validation sets have an effect on the model, while the 
testing set is mainly used to validate the actual performance of the model with real-
life data. Considering this, the training and validation sets must come from the same 
distribution:

Figure 3.2: Visualization of the split ratio
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Exercise 10: Performing Data Partition over a Sample Dataset

In this exercise, we will be performing data partition over the iris dataset using the 
split ratio method.

Note

For the exercises and activities within this chapter, you will need to have Python 
3.6, NumPy, Jupyter, Pandas, and scikit-learn installed on your system.

1.	 Open a Jupyter Notebook to implement this exercise. The partition in this exercise 
will be done using the three-splits approach.

2.	 Import the iris toy dataset using scikit-learn's datasets package and store it in a 
variable named iris_data. Use the following code snippet:

from sklearn.datasets import load_iris
iris_data = load_iris()

Note

It is a good practice to import all of the required libraries, packages, and modules 
at the beginning of your project. However, during the following exercises and 
activities, it will not be handled this way for visualization purposes.

The first line imports the load_iris function from scikit-learn's datasets package. 
This function loads a toy dataset provided by scikit-learn. Next, we execute the 
method to retrieve the output.

Note

To check the characteristics of the dataset, visit the following link: http://scikit-
learn.org/stable/modules/generated/sklearn.datasets.load_iris.html.

The output from the load_iris function is a dictionary-like object, which 
separates the features (callable as data) from the target (callable as target) into two 
attributes.

http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html
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3.	 Convert each attribute (data and target) into a Pandas DataFrame to facilitate data 
manipulation. To do this, first import Pandas, and then create both DataFrames. 
Print the shape of both DataFrames:

import pandas as pd
X = pd.DataFrame(iris_data.data)
Y = pd.DataFrame(iris_data.target)
print(X.shape, Y.shape)

The output from the print function should be as follows:

(150,4) (150,1)

Here, the values in the first parenthesis represent the shape of the DataFrame X 
(known as the features matrix) and the values in the second parenthesis refer to 
the shape of the DataFrame Y (known as the target matrix).

Note

The scikit-learn library has a function to partition data into two subsets (a train and 
a test set). As the objective of this exercise is to partition data into three subsets, 
the function will be used twice to achieve the desired result.

4.	 Import the train_test_split function from scikit-learn's model_selection package:

from sklearn.model_selection import train_test_split

5.	 Perform a first split of the data using the function that we just imported. Use the 
following code snippet:

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2)

The inputs of the train_test_split function are the two matrices (X,Y) and the 
size of the test set, as a value between 0 and 1, that represents the proportion.

Note

Considering that we are dealing with a small dataset, we use a split ratio of 
60/20/20%. Remember that for larger datasets, the split ratio usually changes to 
98/1/1%.
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The outputs of the function are four matrices: X divided into two subsets (train and 
test) and Y divided into two corresponding subsets.

print(X_train.shape, X_test.shape, Y_train.shape, Y_test.shape)

By printing the shape of all 4 matrices, it is possible to confirm that the size of the 
test subset (both X and Y) is 20% of the total size of the original dataset (150 * 0.2 = 
30), while the size of the train set is the remaining 80%:

(120,4) (30,4) (120,1) (30,1)

6.	 To create a validation set (dev set), we will use the train_test_split function to 
divide the train sets obtained in the last step. However, before doing so, to obtain a 
dev set of shape same as that of the test, it is necessary to calculate the proportion 
of the size of the test set over the size of the train set. This value will be used as 
the test_size for the next step:

dev_size = 30/120

Here, 30 is the size of the test set created and 120 is the size of the train set that 
will be further split. The result from this operation is 0.25.

7.	 Use the train_test_split function to divide the train set into two subsets (train 
and dev sets). Use the result from the operation in the last step as the test_size:

X_train, X_dev, Y_train, Y_dev = train_test_split(X_train, Y_train, test_
size = 0.25)

The result from the entire exercise are 6 different subsets of the following shapes:

X_train = (90,4)
Y_train = (90,1)
X_dev = (30,4)
Y_dev = (30,1)
X_test = (30,4)
Y_test = (30,1)

Congratulations! You have successfully split the dataset into three subsets to develop 
efficient machine learning projects. Feel free to test different split ratios.

In conclusion, the split ratio to partition data is not fixed, and should be decided by 
taking into account the amount of data available, the type of algorithm to be used, and 
the distribution of the data.
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Cross Validation

Cross validation is also a procedure used to partition data by resampling the data 
used to train and validate the model. It consists of a parameter, K, that represents the 
number of groups in which the dataset will be divided. 

Due to this, the procedure is also referred to as K-fold cross-validation, where K is 
usually replaced by the selected number. For instance, a model created using a 10-fold 
cross-validation procedure signifies a model where data is divided into 10 subgroups. 
The procedure of cross validation is illustrated below:

Figure 3.3: Cross-validation procedure

The preceding diagram displays the general procedure followed during cross validation:

1.	 Data is first shuffled randomly, considering that the process is repeated.

2.	 Data is split into K subgroups.

3.	 The validation/testing set is selected as one of the subgroups that was created. 
The rest of the subgroups become the training set. 

4.	 The model is trained over the training set, as usual. The model is evaluated using 
the validation/testing dataset.

5.	 The result from that iteration is saved. The hyperparameters are tuned based on 
the results, and the process starts again by reshuffling the data. The process is 
repeated K number of times.

According to the preceding steps, the dataset is divided into K sets and the model is 
trained K times. Each time, one set is selected as the dev set, and the remaining sets are 
used for the training process. 

Cross-validation can be done using a three-split approach or a two-split one. For 
the former, the dataset is initially divided into training and testing sets, after which 
the training set is divided using cross-validation to create different configurations 
of training and validation sets. The latter approach, on the other hand, uses cross-
validation over the entire dataset.
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The popularity of cross-validation is due to its capacity to build "unbiased" models that 
will perform well over unseen data. Moreover, it is also popular because it allows you to 
build highly effective models out of a small dataset.

There is no exact science to choosing the value for K, but it is important to consider 
that lower values for K tend to decrease variance and increase bias, while higher K 
values result in the opposite behavior. Also, the lower the K, the less expensive the 
processes, which results in faster running times.

Note

The concepts of variance and bias will be explained later.

Exercise 11: Using Cross-Validation to Partition the Train Set into a Training 

and a Validation Set

In this exercise, we will be performing data partition over the iris dataset using the 
cross validation method.

1.	 Open a Jupyter Notebook to implement this exercise. 

2.	 Load the iris dataset as per the previous exercise and create the Pandas 
DataFrames containing the features and target matrices:

from sklearn.datasets import load_iris
import pandas as pd

iris_data = load_iris()
X = pd.DataFrame(iris_data.data)
Y = pd.DataFrame(iris_data.target)

3.	 Split the data into training and testing sets, using the train_test_split function 
that you learned about in the previous exercise:

from sklearn.model_selection import train_test_split
X, X_test, Y, Y_test = train_test_split(X, Y, test_size = 0.2)

4.	 Import the KFold class from scikit-learn's model_selection package:

from sklearn.model_selection import KFold



Model Validation and Testing | 83

5.	 Initialize the KFold class with a 10-fold configuration: 

kf = Kfold(n_splits = 10)

6.	 Then, apply the split method to the data in X. This method will output the index 
of the instances to be used as training and validation sets. The method creates 10 
different split configurations. Save the output in a variable named splits:

splits = kf.split(X)

Note that it is not necessary to run the split method over the data in Y, as the 
method only saves the index numbers, which will be the same for X and Y. The 
actual splitting is handled next.

7.	 Perform a for loop that will go through the different split configurations. In 
the loop body, create the variables that will hold the data for the training and 
validation sets. Use the following code snippet:

for train_index, dev_index in splits:
X_train, X_dev = X.iloc[train_index], X.iloc[dev_index]
Y_train, Y_dev = Y.iloc[train_index], Y.iloc[dev_index]

The for loop goes through K number of configurations. In the body of the loop, the 
data is split using the index numbers.

Note

The code to train and evaluate the model should be written inside the loop body, 
given that the objective of the cross-validation procedure is to train and validate 
the model using the different split configurations.

Congratulations! You have successfully performed a cross-validation split over a sample 
dataset.

In conclusion, cross-validation is a procedure used to shuffle and split the data into 
training and validation sets so that the process of training and validating is done each 
time over different data, thus achieving a model with low bias.
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Activity 8: Data Partition over a Handwritten Digit Dataset

Your company specializes in recognizing handwritten characters. It wants to improve 
the recognition of digits, which is why they have gathered a dataset of 1,797 handwritten 
digits from 0 to 9. The images have already been converted into their numeric 
representation, and so they have provided you with the dataset to split it into training/
validation/testing sets. You can choose to either perform conventional splitting or 
cross-validation. Follow these steps to complete this activity:

1.	 Import the toy dataset digits using scikit-learn's datasets package and create a 
Pandas DataFrame containing the features and target matrices.

2.	 Choose the appropriate approach for splitting the dataset and split it.

Note

The solution for this activity can be found on page 196. Also, note that the results 
may vary depending on the approach and ratios used to spilt the dataset.

Evaluation Metrics
Model evaluation is indispensable for creating effective models that not only perform 
well over the data that was used to train the model but also generalize to unseen 
data. The task of evaluating the model is especially easy when dealing with supervised 
learning problems, where there is a ground truth that can be compared against the 
prediction of the model.

Determining the accuracy percentage of the model is crucial for its application 
to unseen data that does not have a label class to compare to. Considering this, for 
example, a model with an accuracy of 98% may allow the user to assume that the odds 
of having an accurate prediction are high, and hence the model should be trusted.

The evaluation of performance, as mentioned previously, should be done over the 
validation set (dev set) for fine-tuning the model, and over the test set for determining 
the expected performance of the selected model over unseen data.

Evaluation Metrics for Classification Tasks

A classification task refers to a model where the class label is a discrete value, as 
mentioned previously. Considering this, the most common measure to evaluate 
the performance of such tasks is by calculating the accuracy of the model, which 
involves comparing the actual prediction to the real value. Even though this may be an 
appropriate metric in many cases, there are several others to consider as well before 
choosing one.
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The most commonly used performance metrics are explained as follows.

Confusion Matrix

The confusion matrix is a table that contains the performance of the model, and is 
described as follows:

•	 The columns represent the instances that belong to a predicted class.

•	 The rows refer to the instances that actually belong to that class (ground truth).

The configuration that confusion matrices present allow the user to quickly spot the 
areas in which the model is having greater difficulty. Take, for instance, the following 
table:

Figure 3.4: A confusion matrix of a digit classifier that recognizes the number 6

The following can be observed from the preceding table:

•	 By summing up the values in the first row, it is possible to know that there are 
600 instances with the number 6. However, from those 600 instances, the model 
predicted 556 as the number 6 and 44 as any other number. Hence, the model's 
ability to predict true instances has a correctness level of 92.6%.

•	 Regarding the second row, there are also 600 instances that are any other number. 
Nevertheless, out of those 600, the model predicted that 23 of them were the 
number 6 and 477 were any other number. The model successfully predicted the 
false instances 79.5% of the time.

Based on these statements, it is possible to conclude that the model is performing at its 
worst when classifying the instances that are any other number.
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Considering that the rows in a confusion matrix refer to the occurrence or 
non-occurrence of an event, and the columns refer to the model's predictions, the 
values in the confusion matrix are explained as follows, and are shown in the following 
table.

•	 True positives: Refers to the instances that the model correctly classified as 
positive to the event in question. For example, the instances correctly classified as 
the number 6.

•	 False positives: Refers to the instances that the model incorrectly classified as 
positive to the event. For example, the any other number instances that were 
incorrectly classified as the number 6.

•	 True negatives: Represents the instances that were correctly classified as negative 
to the event. For example, the instances correctly classified as any other number.

•	 False negatives: Refers to the instances incorrectly classified as negative to the 
event. For example, the number 6 instances that were incorrectly predicted as any 
other number.

Figure 3.5: A table showing confusion matrix values

Accuracy

Accuracy, as explained previously, measures the model's ability to correctly classify 
all instances. Although this is considered to be one of the simplest ways of measuring 
performance, it may not always be a useful metric when the objective of the study is to 
minimize/maximize the occurrence of one class independently of its performance over 
other classes.

The accuracy level of the confusion matrix from Figure 3.4 is measured as follows:

Figure 3.6: An equation showing the calculation of accuracy
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Here, m is the total number of instances. 

The 86% accuracy refers to the overall performance of the model in classifying both 
class labels.

Precision

This metric measures the model's ability to correctly classify positive labels (the label 
that represents the occurrence of the event) by comparing it to the total number of 
instances predicted as positive. 

This is represented by the ratio between the true positives and the sum of the true 
positives and false positives, as shown in the following equation:

Figure 3.7: An equation showing the calculation of precision

The precision metric is only applicable to binary classification tasks, where there are 
only two class labels (for instance, true or false). It could also be applied to multiclass 
tasks considering that the classes are converted into two (for instance, being a 6 or 
being any other number), where one of the classes refers to the instances that have a 
condition while the other refers to those that do not.

For the example in Figure 3.4, the precision of the model is equal to 81.8%. 

Recall

The recall metric measures the number of correctly predicted positive labels against all 
positive labels. This is represented by the ratio between true positives and the sum of 
true positives and false negatives:

Figure 3.8: An equation showing the calculation of recall

Again, this measure should be applied over two label classes.

The value of recall for the example in Figure 3.4 is 92.6%, which when compared to the 
other two metrics, represents the highest performance of the model. The decision to 
choose one metric or the other will depend on the purpose of the study, which will be 
further explained later.
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Exercise 12: Calculating Different Evaluation Metrics over a Classification Task

In this exercise, we will be using the breast cancer toy dataset to calculate the 
evaluation metrics using the scikit-learn library.

1.	 Open a Jupyter Notebook to implement this exercise. 

2.	 For the following exercise, the breast cancer toy dataset will be used. This dataset 
contains the final diagnosis (malignant or benign) of the analysis of masses found 
in the breasts of 569 women. Use the following code to load and split the dataset, 
which is the same as what we did for the previous exercises:

from sklearn.datasets import load_breast_cancer
data = load_breast_cancer()

import pandas as pd
X = pd.DataFrame(data.data)
Y = pd.DataFrame(data.target)

from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = 0.1, 
random_state = 0)

Note that the dataset is divided into two subsets (train and test sets) mainly 
because the purpose of this exercise is to learn how to calculate the evaluation 
metrics using the scikit-learn package.

Note

The random_state parameter is used to set a seed that will ensure the same 
results every time you run the code. This guarantees that you will get the same 
results as the ones reflected in this exercise. 

Different numbers can be used as the seed; however, use the same number as 
suggested in the exercises and activities of this chapter to get the same results as 
the ones shown.

3.	 Train a decision tree over the train set. Then, use the model to predict the class 
label over the test set. Use the following code:

from sklearn import tree
model = tree.DecisionTreeClassifier(random_state = 0)
model = model.fit(X_train, Y_train)
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Y_pred = model.predict(X_test)

As a general explanation, the model is first initialized using a random_state to set a 
seed. Then, the fit method is used to train the model using the data from the train 
sets (both X and Y). Finally, the predict method is used to trigger the predictions 
over the data in the test set (only X). The data from Y_test will be used to compare 
the predictions to the ground truth.

Note

The steps for training a supervised learning model will be explained further in later 
chapters.

4.	 Use scikit-learn to construct a confusion matrix. See the following code:

from sklearn.metrics import confusion_matrix
confusion_matrix = confusion_matrix(Y_test, Y_pred)

The result is displayed as follows, where the ground truth is measured against the 
prediction:

[ [21, 1],
[6, 29] ]

5.	 Calculate the accuracy, precision, and recall of the model, by comparing Y_test 
and Y_pred:

from sklearn.metrics import accuracy_score, precision_score, recall_score

accuracy = accuracy_score(Y_test, Y_pred)
precision = precision_score(Y_test, Y_pred)
recall = recall_score(Y_test, Y_pred)

The results are displayed as follows:

Accuracy = 0.8771
Precision = 0.9666
Recall = 0.8285
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Given that the positive labels are those where the mass is malignant, it can be 
concluded that the instances that the model predicts as malignant have a high 
probability (96.6%) of being malignant, but for the instances predicted as benign, 
the model has a 17.15% (100%–82.85%) probability of being wrong.

Congratulations! You have successfully calculated evaluation metrics over a 
classification task.

Choosing an Evaluation Metric

There are several metrics that can be used to measure the performance of a model over 
classification tasks, and selecting the right one is key for building a model that performs 
exceptionally well for the purpose of the study.

Previously, the importance of understanding the purpose of the study was mentioned 
as a useful insight to determine the preprocessing techniques required to perform over 
the dataset. Moreover, the purpose of the study is also useful to determine the ideal 
metric to measure the performance of the model. 

Why is the purpose of the study important for selecting the evaluation metric? Because 
by understanding the main goal of the study, it is possible to decide whether it is 
important to focus attention on the overall performance of the model or only on one of 
the class labels. 

For instance, a model that has been created to recognize when birds are present in a 
picture does not need to perform well in recognizing which other animals are present 
in the picture as long as it does not classify them as birds. This means that the model 
needs to focus on improving the performance of correctly classifying birds only.

On the other hand, for a model that has been created to recognize hand-written 
characters, where no one character is more important than another, the ideal metric 
would be the one that measures the overall accuracy of the model.

What would happen if more than one metric is selected? It would become difficult to 
arrive at the best performance of the model, considering that measuring two metrics 
simultaneously can result in needing different approaches to improve results.

Evaluation Metrics for Regression Tasks

Considering that regression tasks are those where the final output is continuous, 
without a fixed number of output labels, the comparison between the ground truth 
and the prediction is based on the proximity of the values rather than on them having 
exactly the same values. For instance, when predicting house prices, a model that 
predicts a value of USD 299,846 for a house valued at USD 300,000 can be considered 
to be a good model.
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The two metrics most commonly used for evaluating the accuracy of continuous 
variables are the Mean Absolute Error (MAE) and the Root Mean Squared Error 
(RMSE), which are explained here:

•	 Mean Absolute Error: This metric measures the average absolute difference 
between a prediction and the ground truth, without taking into account the 
direction of the error. The formulae to calculate the MAE is as follows:

Figure 3.9: An equation showing the calculation of MAE

Here, m refers to the total number of instances, y is the ground truth, and y_hat is 
the predicted value.

•	 Root Mean Squared Error: This is a quadratic metric that also measures the 
average magnitude of error between the ground truth and the prediction. As 
the name suggests, the RMSE is the square root of the average of the squared 
differences, as shown in the following formula:

Figure 3.10: An equation showing the calculation of RMSE

Both these metrics express the average error, in a range from 0 to infinity, 
where the lower the values, the better the performance of the model. The main 
difference between these two metrics is that the MAE assigns the same weight 
of importance to all errors, while the RMSE squares the error, assigning higher weights 
to larger errors. 

Considering this, the RMSE metric is especially useful in cases where larger errors 
should be penalized, meaning that outliers are taken into account in the measurement 
of performance. For instance, the RMSE metric can be used when a value that is off by 4 
is more than twice as bad as being off by 2. The MAE, on the other hand, is used when a 
value that is off by 4 is just twice as bad as a value off by 2.
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Exercise 13: Calculating Evaluation Metrics over a Regression Task

In this exercise, we will be calculating evaluation metrics over a model trained using 
linear regression. We will use the boston toy dataset for this purpose.

1.	 Open a Jupyter Notebook to implement this exercise. 

2.	 For the following exercise, the boston toy dataset will be used. This dataset 
contains data of 506 house prices in Boston. Use the following code to load and 
split the dataset, the same as we did for the previous exercises:

from sklearn.datasets import load_boston
data = load_boston()

import pandas as pd
X = pd.DataFrame(data.data)
Y = pd.DataFrame(data.target)

from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = 0.1, 
random_state = 0)

3.	 Train a linear regression over the train set. Then, use the model to predict the 
class label over the test set. Use the following code:

from sklearn import linear_model
model = linear_model.LinearRegression()
model = model.fit(X_train, Y_train)

Y_pred = model.predict(X_test)

As a general explanation, the model is first initialized. Then, the fit method is 
used to train the model using the data from the train sets (both X and Y). Finally, 
the predict method is used to trigger the predictions over the data in the test 
set (only X). The data from Y_test will be used to compare the predictions to the 
ground truth.

4.	 Calculate both the MAE and RMSE metrics:

import numpy as np
from sklearn.metrics import mean_absolute_error, mean_squared_error

MAE = mean_absolute_error(Y_test, Y_pred)
RMSE = np.sqrt(mean_squared_error(Y_test, Y_pred))
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The results are displayed as follows:

MAE = 3.9343
RMSE = 6.4583

Note

The scikit-learn library allows you to directly calculate the MSE. To calculate the 
RMSE, the square root of the value obtained from the mean_squared_error() 
function is calculated. By using the square root, we ensure that the values from 
MAE and RMSE are comparable. 

From the results, it is possible to conclude that the model performs well over the 
test set, considering that both values are close to zero. Nevertheless, this also 
means that the performance can still be improved.

Congratulations! You have successfully calculated evaluation metrics on a 
regression task.

Activity 9: Evaluating the Performance of the Model Trained over a 

Handwritten Dataset

You continue to work on improving the model to recognize handwritten digits. The 
team has built a model and they want you to evaluate the performance of the model. 
Follow these steps to complete this activity:

1.	 Import the digits toy dataset using scikit-learn's datasets package and create a 
Pandas DataFrame containing the features and target matrices.

2.	 Split the data into training and testing sets. Use 20% as the size of the testing set.

3.	 Train a decision tree over the train set. Then, use the model to predict the class 
label over the test set.

Note

To train the Decision Tree, revisit Exercise 12.
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4.	 Use scikit-learn to construct a confusion matrix.

5.	 Calculate the accuracy of the model.

6.	 Calculate the precision and recall. Considering that both the precision and recall 
can only be calculated over binary data, assume that we are only interested in 
classifying instances as number 6 or any other number.

To be able to calculate the precision and recall, use the following code to convert 
Y_test and Y_pred into a one-hot vector. A one-hot vector consists of a vector that 
only contains zeros and ones. For this activity, the 0 represents the number 6, and 
the 1 represents any other number. This converts the class labels (Y_test and Y_
pred) into binary data, meaning that there are only two possible outcomes instead 
of 10 different ones.

Then, calculate the precision and recall using the new variables:

Y_test_2 = Y_test[:]
Y_test_2[Y_test_2 != 6] = 1
Y_test_2[Y_test_2 == 6] = 0

Y_pred_2 = Y_pred
Y_pred_2[Y_pred_2 != 6] = 1
Y_pred_2[Y_pred_2 == 6] = 0

Note

The solution for this activity can be found on page 198. 

You should obtain the following values as the output:

Accuracy = 84.72%
Precision = 98.41%
Recall = 98.10%

Error Analysis
Building an average model, as explained so far, is surprisingly easy through the use of 
the scikit-learn library. Considering this, the key aspects to building an exceptional 
model come from the analysis and decision making on the part of the researcher. 
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As we have seen so far, some of the most important tasks are choosing and 
pre-processing the dataset, determining the purpose of the study, and selecting the 
appropriate evaluation metric. After handling all of this and taking into account that 
a model needs to be fine-tuned in order to reach the highest standards, most data 
scientists recommend training a simple model, regardless of the hyperparameters, to 
get the study started.

Error analysis is then introduced as a very useful methodology to turn an average model 
into an exceptional one. As the name suggests, it consists of analyzing the errors among 
the different subsets of the dataset in order to target the condition that is affecting the 
model on a greater scale. 

Bias, Variance, and Data Mismatch

To understand the different conditions that may affect a machine learning model, it 
is important to understand what a Bayes Error is. A Bayes Error, also known as the 
irreducible error, is the lowest possible error that can be achieved. 

Before the improvements in technology and artificial intelligence, the Bayes Error was 
considered to be the lowest possible error achievable by humans (Human Error). For 
instance, for a process that most humans achieve with an error rate of 0.1, but top 
experts achieve with an error rate of 0.05, the Bayes Error would be 0.05.

Nevertheless, nowadays, Bayes Error is redefined as being the lowest possible error 
that machines can achieve, which is unknown considering that, as humans, we can only 
understand as far as Human Error goes. Due to this, when using the Bayes Error to 
analyze errors, it is not possible to know the lowest limit once the model is below the 
Human Error.
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The following diagram is useful for analyzing the error rates among the different sets 
of data and determining the condition that is affecting the model in greater proportion. 
The purpose of the diagram is to find the errors that differ to a greater extent to 
each other so that the model can be diagnosed and improved accordingly. Moreover, 
it is important to highlight that the value of the errors for each set is calculated by 
subtracting the evaluation metrics from 100% or 1 (depending on the scale on which the 
performance was measured). For instance, a performance of 86% (0.86) over the test set 
translates into a Test Set Error of 14% (0.14):

Figure 3.11: Error analysis methodology

The decision to determine which condition is affecting the model is done by taking 
the error rate of a set and subtracting the value of the error rate of the set above. The 
two sets with the highest numerical difference are the ones to look into to diagnose 
the model. However, it is important to consider that negative differences should not be 
taken into account as the main idea behind error analysis is to bring down error rates as 
much as possible. 

According to this, when the error rate above is lower, the condition explained in the 
table serves to identify the issue and to set the measures to improve the results. On the 
other hand, if the error rate above is higher, the problem is not between those two sets, 
but the two sets above.
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For example, the values in the preceding diagram show that the greatest difference 
is located between the Bayes Error and the Training set error, considering that those 
two errors have a greater (positive) numerical distance when subtracting one from the 
other. This helps to determine that the model is suffering from high bias.

Note

The train/dev set is a combination of data in the training and the validation (dev) 
sets. It is usually of the same shape of the dev set and it contains the same amount 
of data from both sets. 

An explanation of each of the conditions is as follows, along with some techniques to 
avoid/fix them:

•	 Bias: Also known as underfitting, bias occurs when the model is not generalizing 
to the training set, which translates into the model performing poorly for all three 
sets (training, validation, and testing sets) as well as for unseen data.

Underfitting is the easiest condition to detect and it usually requires changing to 
a different algorithm that may be a better fit for the data available. With regard to 
neural networks, it can be fixed by constructing a bigger network or by training 
for longer periods of time.

•	 Variance: Also known as overfitting, this condition refers to the model's inability 
to perform well over data different than that of the training set. It basically means 
that the model has overfitted to the training data by learning the details and 
outliers of the data, without making any generalizations. A model suffering from 
overfitting will not perform well over the dev or test sets, or over unseen data.

Overfitting can be fixed by tuning the different hyperparameters of the algorithm, 
often with the objective of simplifying the algorithm's approximation of the data. 
For instance, for decision trees, it can be addressed by pruning the tree to delete 
some of the details learned from the training data. In neural networks, on the 
other hand, it can be addressed by adding regularization techniques that seek to 
reduce some of the neuron's influence in the overall result. 

Additionally, adding more data to the training set can also help the model avoid 
high variance.
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•	 Data mismatch: This occurs when the training and validation sets do not follow 
the same distribution. This affects the model as although it generalizes based 
on the training data, this generalization does not describe the data found in the 
validation set. For instance, a model created to describe landscape photographs 
may suffer from data mismatch if it is trained using high definition images, 
while the actual images that will be used once the model has been built are 
unprofessional.

Logically, the best way to avoid data mismatch is to make sure that the sets 
follow the same distribution. For example, you can do this by shuffling together 
the images from both sources (professional and unprofessional images) and then 
dividing them into the different sets. 

Nevertheless, in the case that there is not enough data that follows the same 
distribution of unseen data (data that will be used in the future), it is highly 
recommended to create the dev and test sets entirely out of that data and 
add the remaining to the large training set. From the preceding example, the 
unprofessional images should be used to create the dev and test sets, adding the 
remaining ones to the training set, along with the professional images.

This helps to train a model with a set that contains enough images to make a 
generalization, but it uses data with the same distribution as the unseen data to 
fine-tune the model.

Finally, if the data from all sets does in fact come from the same distribution, this 
condition actually refers to a problem of high variance and should be handled as 
such.

•	 Overfitting to the dev set: Lastly, similar to the variance condition, this occurs 
when the model is not generalizing but instead is fitting the dev set too well. 

It should be addressed using the same approaches that were explained for high 
variance.

Exercise 14: Calculating the Error Rate over Different Sets of Data 

In this exercise, we will calculate error rates for a model trained using a decision tree. 
We will use the breast cancer dataset for this purpose.

1.	 Open a Jupyter Notebook to implement this exercise. 

2.	 For the following exercise, the breast cancer dataset will be used. Use the 
following code to load the dataset and create the DataFrames containing the 
features and target matrices:

from sklearn.datasets import load_breast_cancer
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data = load_breast_cancer()

import pandas as pd
X = pd.DataFrame(data.data)
Y = pd.DataFrame(data.target)

3.	 Split the dataset into training, validation, and testing sets: 

from sklearn.model_selection import train_test_split

X_new, X_test, Y_new, Y_test = train_test_split(X, Y, test_size = 0.1, 
random_state = 101)

X_train, X_dev, Y_train, Y_dev = train_test_split(X_new, Y_new, test_size 
= 0.11, random_state = 101)

4.	 Create a train/dev set that combines data from both the training and 
validation sets:

import numpy as np
np.random.seed(101)

indices_train = np.random.randint(0, len(X_train), 25)
indices_dev = np.random.randint(0, len(X_dev), 25)

X_train_dev = pd.concat([X_train.iloc[indices_train,:], X_dev.
iloc[indices_dev,:]])

Y_train_dev = pd.concat([Y_train.iloc[indices_train,:], Y_dev.
iloc[indices_dev,:]])

First, we import NumPy and set a random seed. Next, the NumPy function random.
randint() is used to select random indices from the X_train set. To do that, 25 
random integers are generated in a range between 0 and the total length of X_
train. The same process is used to generate the random indices of the dev set. 
Finally, a new variable is created to store the selected values of X_train and X_dev, 
as well as a variable to store the corresponding values from Y_train and Y_dev.

The variables that have been created contain 25 instances/labels from the train 
set and 25 instances/labels from the dev set.



100 | Supervised Learning: Key Steps

5.	 Train a decision tree over the train set. Use the following code:

from sklearn import tree

model = tree.DecisionTreeClassifier(random_state = 101)
model = model.fit(X_train, Y_train)

6.	 Use the predict method to generate the predictions for all of your sets (train, 
train/dev, dev, and test). Next, considering that the objective of the study is to 
maximize the model's ability to predict all malignant cases, calculate the recall 
scores for all predictions. Store all of the scores in a variable named scores:

from sklearn.metrics import recall_score
X_sets = [X_train, X_train_dev, X_dev, X_test]
Y_sets = [Y_train, Y_train_dev, Y_dev, Y_test]

scores = []
for i in range(0, len(X_sets)):
  pred = model.predict(X_sets[i])
  score = recall_score(Y_sets[i], pred)
  scores.append(score)

The error rates for all of the sets of data are shown in the following table:

Figure 3.12: Error rates from the Breast Cancer model

Here, the Bayes Error was assumed as 0 considering that the classification 
between a malignant and a benign mass is done by taking a biopsy of the mass. 

From the preceding table, it can be concluded that the model performs 
exceptionally well for the purpose of the study, considering that all error rates are 
close to 0, which is the lowest possible error. 
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The highest difference in error rates is found between the train/dev set and the 
dev set, which refers to data mismatch. However, taking into account that all the 
datasets come from the same distribution, this condition is considered a high 
variance issue, where adding more data to the training set should help reduce the 
error rate.

Congratulations! You have successfully calculated the error rate of all subsets of 
the data.

Activity 10: Performing Error Analysis over a Model Trained to Recognize 

Handwritten Digits

Based on the different metrics that you have provided to your team to measure the 
performance of the model, they have selected accuracy as the ideal metric. Considering 
this, your team has asked you to perform error analysis to determine how the model 
could be improved. Follow these steps to achieve this:

1.	 Import the digits toy dataset using scikit-learn's datasets package and create a 
Pandas DataFrame containing the features and target matrices.

2.	 Split the data into training, validation, and testing sets. Use 0.1 as the size of the 
test set, and an equivalent number to build a validation set of the same shape.

3.	 Create a train/dev set for both the features and target values that contains 89 
instances/labels of the train set and 89 instances/labels of the dev set.

4.	 Train a decision tree over that training set data.

5.	 Calculate the error rate for all sets of data, and determine which condition is 
affecting the performance of the model.

Note

The solution for this activity can be found on page 199. 
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Summary
When developing machine learning models, one of the main goals is for the model to be 
capable of generalizing so that it can be applicable to future unseen data, instead of just 
learning a set of instances very well but performing poorly on new data. Accordingly, 
a methodology for validation and testing was explained in this chapter, which involved 
splitting the data into three sets: a training set, a dev set, and a test set. This approach 
eliminates the risk of bias. After this, the chapter covered how to evaluate the 
performance of a model for both classification and regression problems. Finally, we 
covered how to analyze the performance and perform error analysis for each of the sets 
and detect the condition affecting the model's performance.

In the next chapter, we will focus on applying different algorithms to a real-life dataset, 
with the underlying objective of applying the steps learned here to choose the best 
performing algorithm for the case study.







Learning Objectives

By the end of this chapter, you will be able to:

•	 Identify the purpose of a case study

•	 Explain the methodologies of three different supervised learning algorithms used for 
classification

•	 Solve a supervised learning classification problem using different algorithms

•	 Perform error analysis by comparing the results of different algorithms

•	 Identify the algorithm with the best performance

This chapter describes a practical implementation of a supervised algorithm to a real-world 
dataset.

Supervised Learning 
Algorithms: Predict 

Annual Income

4
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Introduction
In the previous chapter, we covered the key steps involved in working with a supervised 
learning data problem. These steps aim to create high performance algorithms, as 
explained previously. This chapter focuses on applying different algorithms to a real-life 
dataset, with the underlying objective of applying the steps that we learned previously 
to choose the best performing algorithm for the case study. Considering this, you 
will analyze and preprocess a dataset, and then create three models using different 
algorithms. These models will be compared to one another, in order to measure 
performance.

Exploring the Dataset
Real-life applications are crucial for cementing knowledge. Therefore, this chapter 
consists of a real-life case study involving a classification task, where the key steps 
that you learned in the previous chapter will be applied in order to select the best 
performing model. 

To accomplish this, the Census Income Dataset will be used, which is available at the UC 
Irvine Machine Learning Repository.

Note

To download the dataset, visit http://archive.ics.uci.edu/ml/datasets/
Census+Income.

Once you have located the repository, follow these steps to download the dataset:

1.	 First, click the Data Folder link. 

2.	 For this chapter, the data available under adult.data will be used. Once you are 
inside of the link, you should be able to see the data. 

3.	 Right-click it and select Save as.

4.	 Save it as a .csv file.

Note

Open the file and add header names over each column to make the pre-
preprocessing easier. For instance, the first column should have the header Age, 
as per the features available in the dataset. These can be seen in the preceding 
link, under Attribute Information.

http://archive.ics.uci.edu/ml/datasets/Census+Income
http://archive.ics.uci.edu/ml/datasets/Census+Income
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Understanding the Dataset

To build a model that fits the data accurately, it is important to understand the different 
details of the dataset, as mentioned in previous chapters. 

First, the data that's available is revised to understand the size of the dataset and the 
type of supervised learning task to be developed: classification or regression. Next, the 
purpose of the study is clearly defined, even if it is obvious. For supervised learning, the 
purpose is closely linked to the class labels. Finally, each feature is analyzed, so that we 
can be aware of their type for preprocessing purposes. 

The Census Income Dataset is a collection of demographical data from adults, which 
was obtained from the 1994 Census Dataset. For this chapter, only the data available 
under the adult.data link has been used. The dataset consists of 32,561 instances, 14 
features, and 1 binary class label. Considering that the class labels are discrete, our task 
is to achieve a classification.

Through this quick evaluation of data, it is possible to observe that some features 
present missing values in the form of a question mark. This is common when dealing 
with datasets that are available online and should be handled by replacing the symbol 
with an empty value (not a space). Other common forms of missing values are the NULL 
value and a dash.

To edit missing values symbols in Excel, use the Replace functionality, as follows:

1.	 Find what: Input the symbol that is being used to signify a missing value 
(for example, ?).

2.	 Replace with: Leave it blank (do not enter a space).

This way, once we import the dataset into the code, NumPy will be able to find the 
missing values so that it can handle them.

The prediction task for this dataset involves determining whether a person earns over 
50K dollars a year. According to this, the two possible outcome labels are >50K (greater 
than 50K) or <=50K (less than, or equal to 50K).
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A brief explanation of each of the features in the dataset is shown in the following table:

Feature Type Note Relevant

age
Quantitative

(continuous)
The age of the individual. Yes

workclass
Qualitative

(nominal)

The type of employment 
of the individual.

Yes

fnlwgt
Quantitative

(continuous)

The number of people the 
census takers believe the 
individual represents.

No; the values were 
subjective to the census 
taker

education
Qualitative

(ordinal)

The highest education 
level achieved, by the 
individual.

No; the education-num 
feature represents the 
same information, but 
is preferred because 
it is presented in 
numerical form

education-num
Quantitative

(continuous)

The highest education 
level achieved in 
numerical form.

Yes

marital-status
Qualitative

(nominal)

The marital status of the 
individual.

Yes

occupation
Qualitative

(nominal)

The current occupation 
of the individual.

Yes

relationship
Qualitative

(nominal)
A relationship value that 
represents the individual.

No; this feature is 
ignored since its 
purpose is not clear. 

race
Qualitative

(nominal)
The race of the individual.

Although (in some 
cases) this feature 
may be relevant, for 
ethical reasons, it 
will be excluded from 
the study*
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sex
Qualitative

(nominal)
The gender of the 
individual.

Although (in some 
cases) this feature 
may be relevant, for 
ethical reasons, it 
will be excluded from 
the study*

capital-gain
Quantitative

(continuous)

All of the individual's 
recorded capital gains.

Yes

capital-loss
Quantitative

(continuous)

All of the individual's 
recorded capital loss.

Yes

hours-per-week
Quantitative

(continuous)

The number of hours 
that the individual 
works per week.

Yes

native-country
Qualitative

(nominal)

The native country of the 
individual.

Yes

Figure 4.1: Dataset feature analysis

Note

*Publisher's Note: Gender and race would have impacted the earning potential of 
an individual at the date this study was conducted. However, for the purpose of 
this chapter, we have decided to exclude these categories from our exercises and 
activities. 

We recognize that due to biases and discriminatory practices, it is impossible 
to separate issues such as gender, race, and educational and vocational 
opportunities. The removal of certain features from our dataset in the 
preprocessing stage of these exercises is not intended to ignore the issues, nor 
the valuable work undertaken by organizations and individuals working in the civil 
rights sphere. 

We would strongly recommend the reader to consider the sociopolitical impacts 
of data and the way it is used, and to consider how past prejudices can be 
perpetuated by using historical data to introduce biases into new algorithms.
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From the preceding table, it is possible to conclude the following:

•	 Five features are not relevant to the study: fnlwgt, education, relationship, race, 
and sex. These features must be deleted from the dataset before we proceed with 
the preprocessing and training of the model.

•	 Out of the remaining features, four are presented as qualitative values. 
Considering that many algorithms do not take qualitative features into account, 
the values should be represented in numerical form.

Using the concepts that we learned in previous chapters, the preceding statements, as 
well as the preprocessing process for handling outliers and missing values, can be taken 
care of. The following steps explain the logic of this process:

1.	 You need to import the dataset and drop the features that are irrelevant to the 
study.

2.	 You should check for missing values. Considering that the feature with the most 
missing values (occupation) has 1,843 instances, there will be no need to delete or 
replace the missing values, as they represent only 5% or less of the entire dataset.

3.	 You must convert the qualitative values to their numeric representations. 

4.	 You should check for outliers. Upon using three standard deviations to detect 
outliers, the feature with the maximum number of outliers (capital-loss) will be the 
one with 1,470 instances, which is again less than 5% of the entire dataset. Again, 
they can be left unhandled. 

The preceding process will convert the original dataset into a new dataset with 32,561 
instances (since no instances were deleted), but with nine features and a class label. All 
values should be in their numerical forms.

Note

Make sure that you perform the preceding preprocessing step, as it will be used to 
begin all the activities in this chapter.
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Naïve Bayes Algorithm
Naïve Bayes is a classification algorithm based on Bayes' Theorem that naively assumes 
independency between features and assigns the same weights (degree of importance) 
to all features. This means that the algorithm assumes that no single feature correlates 
to or affects another. For example, although weight and height are somehow 
correlated when predicting a person's age, the algorithm assumes that each feature is 
independent. Additionally, the algorithm considers all features equally important. For 
instance, even though the education degree may influence the earnings of a person to a 
greater degree than the number of children the person has, the algorithm still considers 
both features equally important.

Although real-life datasets contain features that are not equally important, nor 
independent, this algorithm is popular among scientists, as it performs surprisingly well 
over large datasets. Also, it is worth mentioning that thanks to its simplistic approach, 
it runs very quickly, allowing for its application to problems that require predictions 
in real time. Moreover, it is frequently used for text classification, as it commonly 
outperforms more complex algorithms.

How Does It Work?

The algorithm converts the input data into a summary of occurrences of each class 
label against each feature, which is then used to calculate the likelihood of one event (a 
class label), given a combination of features. Finally, this likelihood is normalized against 
the likelihood of the other class labels. The result is the probability of an instance 
belonging to each class label. The sum of the probabilities must be one, and the class 
label with a higher probability is the one that the algorithm chooses as the prediction.

Let's take, for example, the data presented in the following tables:

Figure 4.2: A) Input data, B) Occurrence count
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The table on the left represents the data that is input to the algorithm used to build the 
model. The table on the right refers to the occurrence count that the algorithm uses 
implicitly to calculate the probabilities.

To calculate the likelihood of an event occurring when given a set of features, the 
algorithm multiplies the probability of the event occurring, given each individual 
feature, with the probability of the occurrence of the event independently of the rest of 
the features, as follows:

Figure 4.3: Equation for the calculation of the likelihood of an event occurring

Here, A1 refers to an event (one of the class labels) and E represents the set of features, 
where E1 is the first feature and En is the last feature in the dataset. Note that the 
multiplication of these probabilities can only be made by assuming independency 
between features.

The preceding equation is calculated for all possible outcomes (all class labels), and then 
the normalized probability of each outcome is calculated, as follows:

Figure 4.4: Equation for the calculation of normalized probability of an event

For the example in Figure 4.2, given a new instance with weather equal to sunny and 
temperature equal to cool, the calculation of probabilities is as follows:

Figure 4.5: Calculation of the likelihood and probabilities for the example dataset
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By looking at the preceding equations, it is possible to conclude that the prediction 
should be yes.

It is important to mention that for continuous features, the summary of occurrences is 
done by creating ranges. For instance, for a feature of price, the algorithm may count 
the number of instances with prices below 100K, as well as the instances with prices 
above 100K.

Moreover, the algorithm may encounter some issues if one value of a feature is never 
associated with one of the outcomes. This is an issue mainly because the probability of 
the outcome given that feature will be zero, which influences the entire calculation. In 
the preceding example, for predicting the outcome of an instance with weather equal to 
mild and temperature equal to cool, the probability of no, given the set of features will 
be equal to zero, considering that the probability of no, given mild weather, computes 
to zero, since there are no occurrences of mild weather when the outcome is no.

To avoid this, the Laplace estimator technique should be used. Here, the fractions 
representing the probability of the occurrence of an event given a feature, P[A|E1], are 
modified by adding 1 to the numerator while also adding the number of possible values 
of that feature to the denominator.

For this example, to perform a prediction for a new instance with a weather equal to 
mild and temperature equal to cool, using the Laplace estimator would be done as 
follows:

Figure 4.6: Calculation of the likelihood and probability using the Laplace estimator 
for the example dataset
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Here, the fraction that calculates the occurrences of yes, given mild weather, goes from 
2/7 to 3/10, as a result of the addition of 1 to the numerator and 3 (for sunny, mild, 
and rainy) to the denominator. The same goes for the other fractions that calculate 
the probability of the event, given a feature. Note that the fraction that calculates the 
probability of the event occurring independently of any feature is left unaltered.

Nevertheless, as you have learned so far, the scikit-learn library allows you to train 
models and then use them for predictions, without needing to hardcode the math. 

Exercise 15: Applying the Naïve Bayes Algorithm 

Now, let's apply the Naïve Bayes algorithm to a Fertility Dataset, which aims to 
determine whether the fertility level of an individual has been affected by their 
demographics, their environmental conditions, and their previous medical conditions.

Note

For the exercises and activities within this chapter, you will need to have Python 
3.6, NumPy, Jupyter, Pandas, and scikit-learn installed on your system.

1.	 Download the Fertility Dataset from: http://archive.ics.uci.edu/ml/datasets/
Fertility.

Go to the link and click on Data Folder. Click on fertility_Diagnosis.txt and then 
right-click it and select Save as. Save it as a .csv file.

2.	 Open a Jupyter Notebook to implement this exercise. 

3.	 Import pandas and read the .csv file that you downloaded in the first step. Make 
sure that you add the argument header equal to None to the read_csv function, 
considering that the dataset does not contain a header row:

import pandas as pd
data = pd.read_csv("datasets/fertility_Diagnosis.csv", header=None)

4.	 Split the data into X and Y, considering that the class label is found under the 
column with an index equal to 9. Use the following code:

X = data.iloc[:,:9]
Y = data.iloc[:,9]

http://archive.ics.uci.edu/ml/datasets/Fertility
http://archive.ics.uci.edu/ml/datasets/Fertility
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5.	 Import scikit-learn's Gaussian Naïve Bayes class. Then, initialize it, and use the fit 
method to train the model using X and Y:

from sklearn.naive_bayes import GaussianNB
model = GaussianNB()
model.fit(X, Y)

The output from running this script is as follows:

GaussianNB(priors=None, var_smoothing=1e-09)

This states that the initialization of the class was successful. The information 
inside the parentheses represents the values used for the arguments that the class 
accepts, which are the hyperparameters. 

For instance, for the GaussianNB class, it is possible to set the prior probabilities 
to consider for the model and a smoothing argument that stabilizes variance. 
Nonetheless, the model was initialized without setting any arguments, which 
means that it will use the default values for each argument, which is None for the 
case of priors and is 1e-09 for the smoothing hyperparameter.

6.	 Finally, perform a prediction using the model that you trained before, for a new 
instance with the following values for each feature: −0.33, 0.69, 0, 1, 1, 0, 0.8, 0, 
0.88.

Use the following code:

pred = model.predict([[-0.33,0.69,0,1,1,0,0.8,0,0.88]])
print(pred)

Note that we feed the values inside of double square brackets, considering that 
the predict function takes in the values for prediction as an array of arrays, where 
the first set of arrays corresponds to the list of new instances to predict and the 
second array refers to the list of features for each instance.

From the preceding code, you should get a prediction equal to N.

Congratulations! You have successfully trained a Naïve Bayes model.



116 | Supervised Learning Algorithms: Predict Annual Income

Activity 11: Training a Naïve Bayes Model for Our Census Income Dataset

To test different classification algorithms on a real-life dataset, consider the following 
scenario: you work for a bank and they have decided to implement a model that is able 
to predict a person's annual income and use that information to decide whether to 
approve a loan. You are given a dataset with 32,561 observations of previous clients, 
which you have already preprocessed. Your job is to build three different models over 
the dataset and determine which one best suits the case study. The first model to be 
built is a Gaussian Naïve Bayes model. Use the following steps to complete this activity:

1.	 Using the preprocessed Census Income Dataset, separate the features from the 
target by creating the variables X and Y.

2.	 Divide the dataset into training, validation, and testing sets, using a split ratio of 
10%.

Note

When all three sets are created from the same dataset, it is not required to create 
an additional train/dev set to measure data mismatch. Moreover, note that it is 
OK to try a different split ratio, considering that the percentages explained in the 
previous chapter are not set in stone. Even though they tend to work well, it is 
important that you embrace experimentation in different levels when building 
machine learning models. 

3.	 Import the Gaussian Naïve Bayes class, and then use the fit method to train the 
model over the training sets (X_train and Y_train).

4.	 Finally, perform a prediction using the model that you trained previously, for a new 
instance with the following values for each feature: 39, 6, 13, 4, 0, 2174, 0, 40, 38.

The prediction for the individual should be equal to zero, meaning that the 
individual most likely has an income less than or equal to 50K.

Note

Use the same Jupyter Notebook for all the activities within this chapter so that 
you can perform a comparison of different models over the same dataset. Also, 
start this activity by using the preprocessed data that we prepared during the 
exploration of the dataset.

The solution for this activity can be found on page 202.
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Decision Tree Algorithm
The decision tree algorithm performs classifications based on a sequence that 
resembles a tree-like structure. It works by dividing the dataset into small subsets that 
serve as guides to develop the decision tree nodes. The nodes can be either decision 
nodes or leaf nodes, where the former represents a question or decision, and the latter 
represents the decisions made or the final outcome.

How Does It Work?

Considering this, decision trees continually split the dataset according to the 
parameters defined in the decision nodes. Decision nodes have branches coming out 
of them, where each decision node can have two or more branches. The branches 
represent the different possible answers that define the way in which the data is split.

Take, for instance, the following table, which shows whether a person has a pending 
student loan based on their age, highest education, and current income:

Figure 4.7: Dataset for student loans
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A possible configuration of a decision tree built based on the preceding data is shown in 
the following diagram, where the black boxes represent the decision nodes, the arrows 
are the branches representing each answer to the decision node, and the green boxes 
refer to the outcome for instances that follow the sequence:

Figure 4.8: Decision tree constructed from data in Figure 4.7

To perform the prediction, once the decision tree is built, the model takes each instance 
and follows the sequence that matches the instance's features until it reaches a final 
leaf. According to this, the classification process starts at the root node (the one on top) 
and continues along the branch that describes the instance. This process continues 
until a leaf node is reached, which represents the prediction for that instance.

For instance, a person over 40 years old, with an income below $150,000, and an 
education level of bachelor, is likely to not have a student loan; hence, the class label 
assigned to it would be No.

Decision trees can handle both quantitative and qualitative features, considering that 
continuous features will be handled in ranges. Additionally, leaf nodes can handle 
categorical or continuous class labels; for categorical class labels, a classification is 
made, while for continuous class labels, the task to be handled is regression.
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Exercise 16: Applying the Decision Tree Algorithm 

In the following example, we will apply the Decision Tree algorithm to the Fertility 
Dataset, with the objective of determining whether the fertility level of an individual 
is affected by their demographics, their environmental conditions, and their previous 
medical conditions:

1.	 Open a Jupyter Notebook to implement this exercise. 

2.	 Import pandas and read the fertility_Diagnosis dataset that you downloaded in 
Exercise 15. Make sure to add the argument header equal to None to the read_csv 
function, considering that the dataset does not contain a header row:

import pandas as pd
data = pd.read_csv("datasets/fertility_Diagnosis.csv", header=None)

3.	 Split the data into X and Y, considering that the class label is found under the 
column with index equal to 9. Use the following code:

X = data.iloc[:,:9]
Y = data.iloc[:,9]

4.	 Import scikit-learn's DecisionTreeClassifier class. Then, initialize it and use the 
fit function to train the model using X and Y:

from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier()
model.fit(X, Y)

Again, an output from running this code snippet will appear. This output 
summarizes the conditions that define your model by printing the values used for 
every hyperparameter that the model uses.

As the model has been initialized without setting any hyperparameters, the 
summary will show the default values used for each.

5.	 Finally, perform a prediction by using the model that you trained before, for the 
same instance as in Exercise 15: −0.33, 0.69, 0, 1, 1, 0, 0.8, 0, 0.88.

Use the following code:

pred = model.predict([[-0.33,0.69,0,1,1,0,0.8,0,0.88]])
print(pred)

Again, the model should predict the instance's class label as N.

Congratulations! You have successfully trained a Decision Tree model.
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Activity 12: Training a Decision Tree Model for Our Census Income Dataset

You continue to work on building a model that's able to predict a person's annual 
income. Using the same dataset, you have chosen to build a Decision Tree model:

1.	 Open the Jupyter Notebook that you used for the previous activity. 

2.	 Using the preprocessed Census Income Dataset that was previously split into 
different subsets, import the DecisionTreeClassifier class, and then use the fit 
method to train the model on the training sets (X_train and Y_train).

3.	 Finally, perform a prediction by using the model that you trained before for a new 
instance with the following values for each feature: 39, 6, 13, 4, 0, 2174, 0, 40, 38.

The prediction for the individual should be equal to zero, meaning that the 
individual most likely has an income less than, or equal to 50K.

Note

The solution for this activity can be found on page 204.

Support Vector Machine Algorithm
The support vector machine (SVM) algorithm is a classifier that finds the hyperplane 
that effectively separates the observations into their class labels. It starts by positioning 
each instance into a data space with n dimensions, where n represents the number of 
features. Next, it traces an imaginary line that clearly separates the instances belonging 
to a class label from the instances belonging to others.

A support vector refers to the coordinates of a given instance. According to this, 
the support vector machine is the boundary that effectively segregates the different 
support vectors in a data space. 

For a two-dimensional data space, the hyperplane is a line that splits the data space 
into two sections, each one representing a class label.

How Does It Work?

The following diagram shows a simple example of an SVM model. Both the green and 
orange dots represent the instances from the input dataset, where the colors define the 
class label to which each instance belongs. The dashed line signifies the hyperplane that 
clearly segregates the data points, which is defined based on the data points' location 
in data space. This line is used to classify unseen data, as represented by the grey dot. 
This way, new instances that are located to the left of the line will be classified as green, 
while the ones to the right will be orange.
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The larger the number of features, the more dimensions the data space will have, which 
will make visual representation of the model difficult:

Figure 4.9: Graphical example of an SVM model

Although the algorithm seems to be quite simple, the complexity is evident in the 
algorithm's methodology for drawing the appropriate hyperplane. This is because the 
model generalizes to hundreds of observations with multiple features.

To choose the right hyperplane, the algorithm follows the following rules, wherein rule 1 
is more important than rule 2, which in turn is more important than rule 3:

1.	 The hyperplane must maximize the correct classification of instances. This 
basically means that the best line is the one that effectively separates data points 
belonging to different class labels, while keeping those that belong to the same 
one together.
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For instance, in the following diagram, although both lines are able to separate 
most instances into their correct class labels, line A would be selected by the 
model as the one that segregates the classes better than line B, which leaves one 
green instance among the orange ones:

Figure 4.10: Sample of hyperplanes that explain rule 1

2.	 The hyperplane must maximize its distance to the nearest data point of either of 
the class labels, which is also known as the margin. This rule helps the model to 
become more robust, which means that the model is able to generalize the input 
data to also work efficiently over unseen data. This rule is especially important in 
preventing the mislabeling of new instances.
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For example, by looking at the following diagram, it is possible to conclude that 
both hyperplanes comply with rule 1. Nevertheless, line A is selected, since it 
maximizes its distance to the nearest data points in comparison to the distance of 
line B to its nearest data point:

Figure 4.11: Sample of hyperplanes that explain rule 2

3.	 The final rule is used if the default configuration of the model is incapable of 
drawing a straight line to segregate classes. Take, for instance, the following 
diagram:

Figure 4.12: Sample observations that explain rule 3
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To segregate these observations, the model will have to draw a circle or another similar 
shape. The algorithm handles this by using kernels that can add additional features that 
convert the distribution of data points into a form that allows a line to segregate them. 
There are several kernels available for this, and the selection of one should be done by 
trial and error, so that you can find the one that best handles the data that's available.

However, the default kernel to be used for the initial setup of an SVM model should be 
the Radial Basis Function (RBF) kernel. This is mainly because, based on several studies, 
this kernel has proved to work great for most data problems.

Exercise 17: Applying the SVM Algorithm 

In this exercise, we will apply the SVM algorithm to the Fertility Dataset. The idea, 
which is the same as in previous exercises, is to determine whether the fertility level 
of an individual is affected by their demographics, their environmental conditions, and 
their previous medical conditions:

1.	 Open a Jupyter Notebook to implement this exercise. 

2.	 Import pandas and read the fertility_Diagnosis dataset that you downloaded 
in Exercise 15. Make sure to add the argument header = None to the read_csv 
function, considering that the dataset does not contain a header row:

import pandas as pd
data = pd.read_csv("datasets/fertility_Diagnosis.csv", header=None)

3.	 Split the data into X and Y, considering that the class label is found under the 
column with index equal to 9. Use the following code:

X = data.iloc[:,:9]
Y = data.iloc[:,9]

4.	 Import scikit-learn's SVC class. Then, initialize it and use the fit function to train 
the model using X and Y:

from sklearn.svm import SVC
model = SVC()
model.fit(X, Y)

Again, the output from running this code represents the summary of the model 
that was created. Additionally, a warning appears, stating that in future versions, 
the default values of some hyperparameters will change. 
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5.	 Finally, perform a prediction using the model that you trained previously, for the 
same instance as in Exercise 15: −0.33, 0.69, 0, 1, 1, 0, 0.8, 0, 0.88.

Use the following code:

pred = model.predict([[-0.33,0.69,0,1,1,0,0.8,0,0.88]])
print(pred)

Again, the model should predict the instance's class label as N.

Congratulations! You have successfully trained an SVM model.

Activity 13: Training an SVM Model for Our Census Income Dataset

Continuing with your task of building a model that is capable of predicting a person's 
annual income, the final algorithm that you want to train is the Support Vector 
Machine:

1.	 Open the Jupyter Notebook that you used for the previous activity. 

2.	 Using the preprocessed Census Income Dataset that was previously split into 
different subsets, import the SVC class, and then use the fit method to train the 
model on the training sets (X_train and Y_train).

Note

The process of training the SVC class using the fit method may take a while. 

3.	 Finally, perform a prediction using the model that you trained previously, for a new 
instance with the following values for each feature: 39, 6, 13, 4, 0, 2174, 0, 40, 38.

The prediction for the individual should be equal to zero, that is, the individual 
most likely has an income less than or equal to 50K.

Note

Use the same Jupyter Notebook from the previous activity. Note that the dataset 
must have been preprocessed to obtain the desired results.

The solution for this activity can be found on page 204.
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Error Analysis
In the previous chapter, we explained the importance of error analysis. In this section, 
the different evaluation metrics will be calculated for all three models that were created 
in the previous activities, so that we can compare them.

Keep in mind that the selection of an evaluation metric is done according to the 
purpose of the case study. Nonetheless, next, we will compare the models using the 
accuracy, precision, and recall metrics, for learning purposes. This way, it will be 
possible to see that even though a model may be better in terms of one metric, it can be 
worse when measuring a different metric, which helps to emphasize the importance of 
choosing the right metric.

Accuracy, Precision, and Recall

As a quick reminder, in order to measure performance and perform error analysis, 
it is required that you use the predict method on the different sets of data (training, 
validation, and testing). The following code snippets present a clean way of measuring 
all three metrics on our three sets at once. The snippet is split into six bits of code, the 
purpose of which is explained as follows:

1.	 First, the three metrics to be used are imported:

from sklearn.metrics import accuracy_score, precision_score, recall_score

2.	 Next, we create two lists containing the names of the different sets of data that we 
will be using inside the for loop:

X_sets = [X_train, X_dev, X_test]
Y_sets = [Y_train, Y_dev, Y_test]

3.	 A dictionary will be created, which will hold the value of each evaluation metric for 
each set of data for each model:

metrics = {
"NB":{"Acc":[],"Pre":[],"Rec":[]},
"DT":{"Acc":[],"Pre":[],"Rec":[]},
"SVM":{"Acc":[],"Pre":[],"Rec":[]}
}

4.	 A for loop will be created, which will go from 0 to the length of the lists that were 
created in the first step. This is done to make sure that the prediction and the 
calculation of performance are performed over the three sets of data:

for i in range(0,len(X_sets)):

  pred_NB = model_NB.predict(X_sets[i])
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  metrics["NB"]["Acc"].append(accuracy_score(Y_sets[i], pred_NB))
  metrics["NB"]["Pre"].append(precision_score(Y_sets[i], pred_NB))
  metrics["NB"]["Rec"].append(recall_score(Y_sets[i], pred_NB))

The first line performs the prediction on a set of data, using the Naïve Bayes model 
that we built in previous chapters. Then, the calculation of all three metrics is 
done by comparing the ground truth data to the prediction that we calculated 
previously. The calculation is appended to the dictionary that was previously 
created.

5.	 We perform the same calculation as before, but use the Decision Tree model 
instead:

  pred_tree = model_tree.predict(X_sets[i])
  metrics["DT"]["Acc"].append(accuracy_score(Y_sets[i], pred_tree))
  metrics["DT"]["Pre"].append(precision_score(Y_sets[i], pred_tree))
  metrics["DT"]["Rec"].append(recall_score(Y_sets[i], pred_tree))

6.	 Again, we perform the same calculation using the SVM model:

  pred_svm = model_svm.predict(X_sets[i])
  metrics["SVM"]["Acc"].append(accuracy_score(Y_sets[i], pred_svm))
  metrics["SVM"]["Pre"].append(precision_score(Y_sets[i], pred_svm))
  metrics["SVM"]["Rec"].append(recall_score(Y_sets[i], pred_svm))

By using the preceding snippet, we get the following results:

Figure 4.13: Performance results of all three models
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Initially, the different inferences, in relation to selecting the best fitted model as well 
as with regard to the conditions that each model suffers from, will be done considering 
only the values from the accuracy metric, assuming a Bayes Error close to 0 (meaning 
that the model could reach a maximum success rate close to 1):

•	 Upon comparing the three accuracy scores of the Naïve Bayes model, it is possible 
to conclude that the model behaves almost the same way for all three datasets. 
This basically means that the model is generalizing the data from the training 
set, which allows it to perform well over unseen data. Nevertheless, the overall 
performance of the model is around 0.8, which is far from the maximum success 
rate.

•	 Moreover, the performance of both the Decision Tree and the SVM models, in 
terms of accuracy for the training set, is closer to the maximum success rate. 
However, both models are suffering from a case of overfitting, considering 
that the accuracy level of the models on the validation set is much lower than 
their performance on the training set. According to this, it would be possible to 
address the overfitting by adding more data into the training or by fine-tuning the 
hyperparameters of the model, which would help to bring up the accuracy level of 
the validation and testing sets. 

•	 To choose the model that best fits the data, a comparison is done among the 
values obtained in the testing set, which, as explained in previous sections, is the 
one that determines the model's most likely overall performance on new data. 
Considering that all three models have similar accuracy levels on the testing set, it 
would be appropriate to address the issues related to the overfitting of the model 
by fine-tuning the hyperparameters in order to verify whether the accuracy on 
the testing set can be brought closer to 1. 

Considering this, the researcher now has the required information to select a model 
and work on improving the results to achieve the maximum possible performance of 
the model.
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Next, for learning purposes, let's compare the results of all the metrics for the Decision 
Tree model. Although the values for all three metrics prove the existence of overfitting, 
it is possible to observe that the degree of overfitting is much larger for the precision 
and recall metrics. Also, it is possible to conclude that the performance of the model 
on the training set measured by the recall metric is much lower, which means that the 
model is not as good at classifying positive labels. This means that if the purpose of the 
case study was to maximize the number of positive classifications, regardless of the 
classification of negative labels, the model needs to be greatly improved. 

Note

The preceding comparison is done to show that the performance of the same 
model can vary if measured with a different metric. According to this, it is crucial to 
choose the metric of relevance for the case study. 

Using the knowledge that you have gained from previous chapters, feel free to keep 
exploring the results shown in the preceding table.

Summary
Using the knowledge from previous chapters, we started this chapter by performing 
an analysis on the Census Income Dataset, with the objective of understanding the 
data available and making decisions for the preprocessing process. Three supervised 
learning classification algorithms—the Naïve Bayes algorithm, the Decision Tree 
algorithm, and the SVM algorithm—were explained, and were applied to the previously 
preprocessed dataset to create models that generalized to the training data. Finally, 
we compared the performance of the three models on the Census Income Dataset by 
calculating the accuracy, precision, and recall on the different sets of data (training, 
validation, and testing).

In the next chapter, we will look at Artificial Neural Networks (ANNs), their different 
types, and their advantages and disadvantages. We will also use the ANN to solve the 
same data problem that was discussed here, and to compare its performance with that 
of the other supervised learning algorithms.





Learning Objectives

By the end of this chapter, you will be able to:

•	 Explain the concept of neural networks

•	 Describe the processes of forward and backward propagation

•	 Solve a supervised learning classification problem using a neural network

•	 Analyze the results of the neural network by performing error analysis

This chapter explains the implementation of a Neural Network algorithm to a dataset in order to 
create a model that is able to predict future outcomes.

Artificial Neural 
Networks: Predict 

Annual Income

5
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Introduction
In recent years, the field of artificial intelligence has focused on the concept of artificial 
neural networks (ANNs), also known as Multilayer Perceptron, mostly because they 
present a complex algorithm that can approach almost any challenging data problem. 
Even though the theory was developed decades back, during the 1940s, the networks 
are becoming more popular now, thanks to all the improvements in technology 
that allow for the gathering of large amounts of data as well as the developments in 
computer infrastructure that allow for the training of complex algorithms with large 
amounts of data. 

Due to this, the following chapter will focus on introducing ANNs, their different types, 
and the advantages and disadvantages that they present. Additionally, an ANN will be 
used to solve the same data problem that was discussed in the previous chapter in 
order to present the differences in the performance of ANN in comparison to the other 
supervised learning algorithms.

Artificial Neural Networks
Although there are several machine learning algorithms available to solve data 
problems, as we have already stated, ANNs have become increasingly popular among 
data scientists, due to their capability to find patterns in large and complex datasets 
that cannot be interpreted by humans.

The neural part of the name refers to the resemblance of the architecture of the model 
to the anatomy of the human brain. This part is meant to replicate a human being's 
ability to learn from historical data by transferring bits of data from neuron to neuron 
until an outcome is reached. 
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In the following diagram, a human neuron is displayed, where A represents the 
dendrites that receive input information from other neurons, B refers to the nucleus of 
the neuron that processes the information, and C represents the axon that oversees the 
process of passing the processed information to the next neuron:

Figure 5.1: Visual representation of a human neuron

Moreover, the artificial part refers to the actual learning process of the model, where 
the main objective is to minimize the error in the model. It is an artificial learning 
process, considering that there is no real evidence regarding how human neurons 
process the information that they receive, and hence the model relies on mathematical 
functions that map an input to a desired output.

How Do They Work?

Before we dive into the process that is followed by an Artificial Neural Network, let's 
start by looking at its main components:

•	 Input layer: This layer is also known as X, as it contains all the data from the 
dataset (each instance with its features).

•	 Hidden layers: This layer is in charge of processing the input data in order to 
find patterns that are useful for making a prediction. The ANN can have as many 
hidden layers as desired, each with as many neurons (units) as required. The first 
layers are in charge of the simpler patterns, while the layers at the end search for 
the more complex ones. 

The hidden layers use a set of variables that represent weights and biases in 
order to help train the network. The values for the weights and biases are used as 
the variables that change in each iteration to approximate the prediction to the 
ground truth. This will be explained later.
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•	 Output layer: Also known as Y_hat, this layer is the prediction made by the model, 
based on the data received from the hidden layers. This prediction is presented in 
the form of a probability, where the class label with a higher probability is the one 
selected as the prediction.

The following diagram illustrates the architecture of the preceding three layers:

Figure 5.2: Basic architecture of an ANN

Take, as an analogy, a manufacturing process for building car parts. Here, the input 
layer consists of the raw materials, which in this case may be aluminum. The initial 
steps of the process involve polishing and cleaning the material, which can be seen as 
the first couple of hidden layers. Next, the material is bent to achieve the shape of the 
car part, which is handled by the deeper hidden layers. Finally, the part is delivered to 
the client, which can be considered to be the output layer. 

Considering these steps, the main objective of the manufacturing process is to achieve 
a final part that highly resembles the part that the process aimed to build, meaning that 
the output, Y_hat, should maximize its similarity to Y (the ground truth) for a model to 
be considered a good fit to the data.

The actual methodology to train an ANN is an iterative process comprised of 
the following steps: forward propagation, calculation of the cost function, back-
propagation, and weights and biases updates. Once the weights and biases are updated, 
the process starts again until the number of set iterations is met. 

Let's explore each of the steps of the iteration process in detail.
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Forward Propagation

The input layer feeds the initial information to the ANN. The processing of the data is 
done by propagating data bits through the depth (number of hidden layers) and width 
(number of units in each layer) of the network. The information is processed by each 
layer using a linear function, coupled with an activation function that aims to break the 
linearity, as follows:

Figure 5.3: The linear and activation functions used by an ANN

Here, W1 and b1 are a matrix and a vector containing the weights and biases, 
respectively, and serve as the variables that can be updated through the iterations to 
train the model. Z1 is the linear function for the first hidden layer, and A1 is the outcome 
from the unit after applying an activation function (represented by the sigma symbol) to 
the linear one.

The preceding two formulas are calculated for each layer, where the value of X for the 
hidden layers (other than the first one) is replaced by the output of the previous layer 
(An), as follows:

Figure 5.4: The values calculated for the second layer of the ANN

Finally, the output from the last hidden layer is fed to the output layer, where the linear 
function is once again calculated, along with an activation function. The outcome from 
this layer is the one that will be compared to the ground truth in order to evaluate the 
performance of the algorithm before moving on to the next iteration.

The values of the weights for the first iteration are randomly initialized between 0 and 1, 
while the values for the biases can be set to 0 initially. Once the first iteration is run, the 
values will be updated, so that the process can start again.

The activation function can be of different types. Some of the most common ones are 
the Rectified Linear Unit (ReLU), the Hyperbolic tangent (tanh), the Sigmoid, and the 
Softmax. 
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Cost Function

Considering that the final objective of the training process is to build a model based 
on a given set of data, it is highly important to measure the model's ability to estimate 
a relation between X and Y by comparing the differences between the predicted value 
(Y_hat) and the ground truth (Y). This is accomplished by calculating the cost function 
(also known as the loss function) to determine how poor the model's predictions are. 
The cost function is calculated for each iteration to measure the progress of the model 
along the iteration process, with the objective of finding the values for the weights and 
biases that minimize the cost function. 

For classification tasks, the cost function most commonly used is the cross-entropy 
cost function, where in the higher the value of the cost function, the greater the 
divergence between the predicted and actual values. 

For a binary classification task, the cross-entropy cost function is calculated as follows:

Figure 5.5: The cross-entropy cost function

Here, y would be either 1 or 0 (either of the two class labels), yhat would be the 
probability calculated by the model, and log would be the natural logarithm. 

For a multiclass classification task, the formula is as follows:

Figure 5.6: The cost function for a multiclass classification task

Here, c represents a class label and M refers to the total number of class labels.

Once the cost function is calculated, the model proceeds and performs the back-
propagation step, which will be explained in a moment.

Moreover, for regression tasks, the cost function would be the RMSE, which was 
explained in Chapter 3, Supervised Learning: Key Steps.

Back-Propagation

The back-propagation procedure was introduced as a part of the training process of 
ANNs to make learning faster. It basically involves calculating the partial derivatives 
of the cost function with respect to the weights and biases along the network. 
The objective of this is to minimize the cost function by changing the weights and 
the biases.



Artificial Neural Networks | 137

Considering that the weights and biases are not directly contained in the cost function, 
a chain rule is used to propagate the error from the cost function backwards until it 
reaches the first layers of the network. Next, a weighted average of the derivatives is 
calculated, which is used as the value to update the weights and biases before running a 
new iteration. 

There are several algorithms that can be used to perform back-propagation, but the 
most common one is gradient descent. Gradient descent is an optimization algorithm 
that tries to find some local or global minimum of a function, which in this case is the 
cost function. It does so by determining the direction in which the model should move 
to reduce the error. 

For instance, the following diagram displays an example of the training process of 
an ANN through the different iterations, where the job of back-propagation is to 
determine the direction in which the weights and biases should be updated, so that the 
error can continue to be minimized until it reaches a minimum point:

Figure 5.7: Example of the iterative process of training an ANN
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It is important to highlight that back-propagation does not always find the global 
minima, since it stops updating once it has reached the lowest point in a slope, 
regardless of any other regions. Take, for instance, the following diagram:

Figure 5.8: Examples of minimum points

Although all three points can be considered minimum points when compared to the 
points to their left and right, only one of them is the global minima. 

Updating the Weights and Biases

Taking the derivatives' average that was calculated during back-propagation, the final 
step of an iteration is to update the values of the weights and biases. This process is 
done using the following formula:

Figure 5.9: Iterative formula for updating weights and biases

Here, the old values are those used to perform the forward propagation step, the 
derivative rate is the value obtained from the back-propagation step and is different for 
the weights and the biases, and the learning rate is a constant that is used to neutralize 
the effect of the derivative rate, so that the changes in the weights and biases are small 
and smooth. This has proven to help reach the lowest point more quickly.

Once the weights and the biases have been updated, the entire process starts again. 
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Understanding the Hyperparameters

Hyperparameters, as you have seen so far, are parameters that can be fine-tuned 
to improve the accuracy of a model. For neural networks, hyperparameters can be 
classified into two main groups: those that alter the structure of the network and those 
that modify the process to train it. 

An important part of building an ANN is the process of fine-tuning the hyperparameters 
by performing error analysis and by playing around with the hyperparameters that help 
to solve the condition that is affecting the network. As a general reminder, networks 
suffering from high bias can usually be handled by creating bigger networks or training 
for longer durations of time, whereas networks suffering from high variance can benefit 
from the addition of more training data or by introducing a regularization technique.

Considering that the number of hyperparameters that can be changed for training an 
ANN is large, the most commonly used ones will be explained in the following sections.

Number of Hidden Layers and Units

The number of hidden layers and the number of units in each layer can be set by the 
researcher, as mentioned previously. Again, there is no exact science to selecting this 
number, and on the contrary, the selection of this number is a part of the fine-tuning 
process to test different approximations. 

Nonetheless, when selecting the number of hidden layers, some data scientists lean 
toward an approach wherein multiple networks are trained, each with an extra layer. 
The model with the lowest error is the one with the right number of hidden layers. 
Unfortunately, this approach does not always work well, as more complex data 
problems do not really show a difference in performance through simply changing the 
number of hidden layers, regardless of the other hyperparameters. 

On the other hand, there are several techniques that you can use to choose the number 
of units in a hidden layer. It is common for data scientists to choose the initial values 
for both of these hyperparameters based on similar research papers that are available 
online. This means that a good starting point would be copying the architecture of 
networks that have been successfully used for projects in a similar field, and then, 
through error analysis, fine-tuning the hyperparameters to improve performance.

Nonetheless, as per research activity, it is important to consider that deeper networks 
(networks with many hidden layers) outperform wider networks (networks with many 
units in each layer).
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Activation Function

As mentioned previously, the activation function is used to introduce non-linearity to 
the model. The selection of an activation function should be done by considering that, 
conventionally, both the ReLU and the Hyperbolic tangent activation functions are used 
for all of the hidden layers, with ReLU being the most popular one among scientists.

On the other hand, the Sigmoid and the Softmax activation functions should be used for 
the output layer, as their outcome is in the form of a probability. Moreover, the Sigmoid 
activation function is used for binary classification problems, as it only outputs the 
probability for two class labels, whereas the Softmax activation function can be used for 
either binary or multiclass classification problems.

Regularization

Regularization is a technique used in machine learning to fix a model that is suffering 
from overfitting, which means that this hyperparameter is mostly used when it is 
strictly required, and its main objective is to increase the generalization ability of the 
model.

There are different regularization techniques, but the most common ones are the L1, 
L2, and dropout techniques. Although scikit-learn only supports L2 for its Multilayer 
Perceptron classifier, brief explanations of the three forms of regularization are as 
follows:

•	 The L1 and L2 techniques add a regularization term to the cost function as a way 
of penalizing high weights that may be affecting the performance of the model. 
The main difference between these approaches is that the regularization term 
for L1 is the absolute value of the magnitude of the weights, while for L2, it is the 
squared magnitude of the weights. For regular data problems, L2 has proven to 
work better, while L1 is mainly popular for feature extraction tasks since it creates 
sparse models.

•	 Dropout, on the other hand, refers to the model's ability to drop out some units 
in order to ignore their output during a step in the iteration, which simplifies the 
neural network. The dropout value is set between 0 and 1, and it represents the 
percentage of units that will be ignored. The units that are ignored are different in 
each iteration step.
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Batch Size

Another hyperparameter to be tuned during the construction of an ANN is the batch 
size. This refers to the number of instances to be fed to the neural network during an 
iteration, which will be used to perform a forward and a backward pass through the 
network. For the next iteration, a new set of instances will be used.

This technique also helps to improve the model's ability to generalize to the training 
data because, in each iteration, it is fed with new combinations of instances, which is 
useful when dealing with an overfitted model.

Note

As per the result of many years of research, a good practice is to set the batch size 
to a value that is a multiple of 2. Some of the most common values are 32, 64, 128, 
and 256.

Learning Rate

The learning rate, as was explained previously, is introduced to help determine the 
size of the steps that the model will take to get to the local or global minima in each 
iteration. The lower the learning rate, the slower the learning process of the network, 
but this results in better models. On the other hand, the larger the learning rate, the 
faster the learning process of the model; however, this may result in a model not 
converging. 

Note

The default learning rate value is usually set to 0.001.

Number of Iterations

A neural network is trained through an iterative process, as was mentioned previously. 
Therefore, it is necessary to set the number of iterations that the model will perform. 
The best way to set up the ideal number of iterations is to start low, between 200 and 
500, and increase it, in the event that the plot of the cost function over each iteration 
shows a decreasing line. Needless to say, the larger the number of iterations, the longer 
it takes to train a model. 
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Additionally, increasing the number of iterations is a technique known to address 
underfitted networks. This is because it gives the network more time to find the right 
weights and biases that generalize to the training data.

Applications

In addition to the preceding architecture, a number of new architectures have emerged 
over time, thanks to the popularity of neural networks. Some of the most popular ones 
are convolutional neural networks, which can handle the processing of images by using 
filters as layers, and recurrent neural networks, which are used to process sequences 
of data such as text translations. 

Due to this, the applications of neural networks extend to almost any data problem, 
ranging from simple to complex. While a neural network is capable of finding patterns 
in really large datasets (either for classification or regression tasks), they are also known 
for effectively handling challenging problems, such as the creation of self-driving cars, 
the construction of chatbots, the recognition of faces, and so on. 

Limitations

Some of the limitations of training neural networks are as follows:

•	 The training process takes time. Regardless of the hyperparameters used, they 
generally take time to converge.

•	 They need very large datasets in order to work better. Neural networks are meant 
for larger datasets, as their main advantage is their ability to find patterns within 
millions of values.

•	 They are considered a black box as there is no actual knowledge of how the 
network arrives at a result. Although the math behind the training process is clear, 
it is not possible to know what assumptions the model makes while being trained.

•	 The hardware requirements are large. Again, the greater the complexity of the 
problem, the larger the hardware requirements. 

Although ANNs can be applied to almost any data problem, due to their limitations, 
it is always a good practice to test other algorithms when dealing with simpler data 
problems. This is important because applying neural networks to data problems that 
can be solved by simpler models makes the costs outweigh the benefits.
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Applying an Artificial Neural Network
Now that you know the components of an artificial neural network as well as the 
different steps that it follows to train a model and make predictions, let's train a simple 
network using the scikit-learn library.

In this topic, scikit-learn's neural network module will be used to train a network using 
the dataset from the previous chapter (the Census Income Dataset). It is important to 
mention that scikit-learn is not the most appropriate library for neural networks, as it 
does not currently support many types of neural networks, and its performance over 
deeper networks is not as good as other neural network specialized libraries, such as 
TensorFlow.

The neural network module in scikit-learn currently supports a Multilayer Perceptron 
for classification, a Multilayer Perceptron for regression, and a Restricted Boltzmann 
Machine architecture. Considering that the case study consists of a classification task, 
the Multilayer Perceptron for classifications will be used.

Scikit-Learn's Multilayer Perceptron

A Multilayer Perceptron (MLP) is a supervised learning algorithm that, as its name 
indicates, uses multiple layers (hidden layers) to learn a non-linear function that 
translates the input values into output, either for classification or regression. As we 
explained previously, the job of each unit of a layer is to transform the data received 
from the previous layer by calculating a linear function and then applying an activation 
function to break the linearity. 

It is important to mention that an MLP has a non-convex loss function which, as 
mentioned previously, signifies that there may be multiple local minima. This means 
that different initializations of the weights and biases will result in different trained 
models, which in turn indicates different accuracy levels.

The Multilayer Perceptron classifier in scikit-learn has around 20 different 
hyperparameters associated with the architecture or the learning process, which can be 
altered in order to modify the training process of the network. Fortunately, all of these 
hyperparameters have set default values, which allows us to run a first model without 
much effort. The results from this model can then be used to tune the hyperparameters 
as required.

To train an MLP classifier, it is required that you input two arrays: first, the X input of 
dimensions (n_samples, n_features) containing the training data, and then the Y input of 
dimensions (n_sample,) that contains the label values for each sample.
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Similar to the algorithms that we looked at in the previous chapter, the model is trained 
using the fit method, and then predictions can be achieved by using the predict 
method on the trained model. 

Exercise 18: Applying the Multilayer Perceptron Classifier Class 

In this exercise, you will learn how to train a scikit-learn's Multilayer Perceptron to 
solve a classification task:

Note

For the exercises and activities within this chapter, you will need to have Python 
3.6, NumPy, Jupyter, Pandas, and scikit-learn installed on your system.

1.	 Open a Jupyter Notebook to implement this exercise. 

2.	 Using the Fertility Dataset from the previous chapter, import pandas and read the 
.csv file. Make sure that you add the argument header equal to None to the read_csv 
function, considering that the dataset does not contain a header row:

import pandas as pd
data = pd.read_csv("datasets/fertility_Diagnosis.csv", header=None)

3.	 Split the dataset into X and Y sets in order to separate the features data from the 
label values:

X = data.iloc[:,:9]
Y = data.iloc[:,9]

4.	 Import the MLPClassifier class from the neural_network module and use 
the fit method to train a model. When initializing the model, leave all the 
hyperparameters at their default values, but add a random_state equal to 101 to 
ensure that you get the same results as the one shown in this exercise:

from sklearn.neural_network import MLPClassifier
model = MLPClassifier(random_state=101)
model = model.fit(X, Y)

5.	 Address the warning that appears after running the fit method:

Figure 5.10: Warning message displayed after running the fit method
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As you can see, the warning specifies that after running the default number of 
iterations, which is 200, the model has not reached convergence. To address this 
issue, try higher values for the iterations, until the warning stops appearing. To 
change the number of iterations, add the max_iter = Desired number argument 
inside of the parentheses during the initialization of the model:

model = MLPClassifier(random_state=101, max_iter =1200)
model = model.fit(X, Y)

Further more, the output below the warning explains the values used for all of the 
hyperparameters of the Multilayer Perceptron. 

6.	 Finally, perform a prediction by using the model that you trained previously, for a 
new instance with the following values for each feature: −0.33, 0.69, 0, 1, 1, 0, 0.8, 
0, 0.88.

Use the following code:

pred = model.predict([[-0.33,0.69,0,1,1,0,0.8,0,0.88]])
print(pred)

The model's prediction is equal to N, that is, the model predicts the person with 
the specified features to have a normal diagnosis.

Congratulations! You have successfully trained a Multilayer Perceptron model.

Activity 14: Training a Multilayer Perceptron for Our Census Income Dataset

With the objective of comparing the performance of the algorithms trained in the 
previous chapter with the performance of a neural network, for this activity, we will 
continue to work with the Census Income Dataset that we downloaded previously. 
Consider the following scenario: your company is continually offering a book for 
employees to improve their abilities, and you have recently learned about neural 
networks and their power. You have decided to build a network to model the dataset 
that you were given previously in order to test whether a neural network is better at 
predicting a person's income based on their demographical data. 

Note

Start this activity using the preprocessed data from the previous chapter (Census 
Income Dataset). This means that all the irrelevant features must have been 
deleted and quantitative features must have been converted into their numeric 
forms. Otherwise, the results from the activity may vary from the ones presented 
in the solution section.
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Follow these steps to complete this activity:

1.	 Using the preprocessed Census Income Dataset, separate the features from the 
target, creating the variables X and Y.

2.	 Divide the dataset into training, validation, and testing sets, using a split ratio of 
10%.

Note

Remember to continue using a random_state equal to 101 when performing the 
dataset split in order to set a seed to ensure the same results in every run of the 
code.

3.	 From the neural_network module, import the Multilayer Perceptron Classifier 
class. Initialize it and train the model with the training data. 

Leave all the hyperparameters at their default values. Again, use a random_state 
equal to 101.

4.	 Address any warning that may appear after training the model with the default 
values for the hyperparameters.

5.	 Calculate the accuracy of the model for all three sets (training, validation, 
and testing).

Note

The solution for this activity can be found on page 206.

The accuracy score for the three sets should be as follows:

Train sets = 0.8342

Dev sets = 0.8111

Test sets = 0.8252
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Performance Analysis
In the following section, we will first perform error analysis using the accuracy metric 
as a tool to determine the condition that is affecting the performance of the algorithm 
in greater proportion. Once the model is diagnosed, the hyperparameters can be tuned 
to improve the overall performance of the algorithm. The final model will be compared 
to those that were created during the previous chapter in order to determine whether a 
neural network outperforms the other models. 

Error Analysis

Using the accuracy score calculated in Activity 14, we can calculate the error rates for 
each of the sets and compare them against each other to diagnose the condition that 
is affecting the model. To do so, a Bayes Error equal to 1% will be assumed, considering 
that other models in the previous chapter were able to achieve an accuracy level over 
97%:

Figure 5.11: Accuracy score and error rate of the network

Note

Remember that in order to detect the condition that is affecting the network, it 
is necessary to take an error rate and subtract from it the value of the error rate 
above it. The biggest positive difference is the one that we use to diagnose the 
model.

According to the column of differences, it is evident that the biggest difference is 
found between the error rate in the training set and the Bayes Error. Based on this, it 
is possible to conclude that the model is suffering from high bias, which, as explained 
in previous chapters, can be handled by training a bigger network for longer periods of 
time (a higher number of iterations).
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Hyperparameter Fine-Tuning

Through error analysis, it was possible to determine that the network is suffering from 
high bias. This is highly important, as it indicates the actions that need to be taken in 
order to improve the performance of the model in greater proportion. 

Considering that both the number of iterations and the size of the network (number 
of layers and units) should be changed using a trial-and-error approach, the following 
experiments will be done:

Figure 5.12: Suggested experiments to tune the hyperparameters

Note

Some experiments may take longer to run due to their complexity. For instance, 
Experiment 3 will take longer than Experiment 2.

The idea behind these experiments is to be able to test different values in order to find 
out whether an improvement can be achieved. If the improvements achieved through 
these experiments are significant, further experiments should be considered.

Similar to adding the random_state argument to the initialization of the Multilayer 
Perceptron, the change in the values of the number of iterations and the size of 
the network can be achieved, using the following code, which shows the values for 
Experiment 3:
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from sklearn.neural_network import MLPClassifier

model = MLPClassifier(random_state=101, max_iter = 500, hidden_layer_
sizes=(100,100,100))

model = model.fit(X_train, Y_train)

Note

To find what term to use to change each hyperparameter, visit scikit-learn's 
MLPClassifier page at: http://scikit-learn.org/stable/modules/generated/sklearn.
neural_network.MLPClassifier.html.

As you can see in the preceding snippet, the max_iter argument is used to set the 
number of iterations to run during the training of the network. On the other hand, the 
hidden_layer_sizes argument is used to both set the number of hidden layers and set 
the number of units in each. For instance, in the preceding example, by setting the 
argument to (100,100,100), the architecture of the network is of three hidden layers, 
each with 100 units. Of course, this architecture also includes the required input and 
output layers.

The accuracy scores from running the preceding experiments can be seen in the 
following table:

Figure 5.13: Accuracy scores for all experiments

Note

Keep in mind that the main purpose behind tuning the hyperparameters is to 
decrease the difference between the error rate of the training set and the Bayes 
Error, which is why most of the analysis is done by considering only this value.

http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
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Through an analysis of the accuracy scores of the experiments, it can be concluded 
that the best configuration of hyperparameters is the one used during Experiment 2. 
Additionally, it is possible to conclude that there is most likely no point in trying other 
values for the number of iterations or the number of hidden layers, considering that 
increasing the number of iterations did not have an effect on the performance of the 
algorithm and adding three hidden layers decreased the performance of the network.

Nonetheless, in order to test the width of the hidden layers, the following experiments 
will be considered, using the selected values for the number of iterations and the 
number of hidden layers, but varying the number of units in each layer:

Figure 5.14: Suggested experiments to vary the width of the network

Here, the first two experiments were thought up in advance, while the other two were 
designed after finding out the performance of the previous ones. Next, the accuracy 
score of all four experiments is shown, followed by an explanation of the logic behind 
them:

Figure 5.15: Accuracy scores for the second round of experiments
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Although the accuracy improved for the first two experiments, it was found that using 
150 units per layer achieved better results. Experiment 3 then tested whether a smaller 
number of units per layer would continue to improve results, which was not the case. 
Additionally, Experiment 4 tested with a higher number of units, which returned higher 
results for both the training and validation sets, but not for the testing set.

By observing these values, it can be concluded that the performance of experiment 2 is 
the highest in terms of testing sets, which leaves us with a network that iterates for 500 
steps, with one input and output layer and two hidden layers with 150 units each.

Note

There is no ideal way to test the different configurations of hyperparameters. 
The only important thing to consider is that the focus is centered on those 
hyperparameters that solve the condition that is affecting the network in a greater 
proportion. Feel free to try more experiments if you wish.

Considering the accuracy scores of all three sets of Experiment 2 to calculate the error 
rate, the biggest difference is still between the training set error and the Bayes Error. 
This means that the model may not be the best fit for the dataset, considering that the 
training set error could not be brought closer to the minimum possible error margin.

Model Comparison

When more than one model has been trained, the final step related to the process of 
creating a model is a comparison between the models in order to choose the one that 
best represents the training data in a generalized way, so that it works well over unseen 
data.

The comparison, as mentioned previously, must be done by using only the metric that 
was selected to measure the performance of the models for the data problem. This is 
important, considering that one model can perform very differently for each metric, so 
the model that maximizes the performance with the ideal metric should be selected.

Although the metric is calculated on all three sets of data (training, validation, and 
testing) in order to be able to perform error analysis, for most cases, the comparison 
and selection should be done by prioritizing the results obtained with the testing set. 
This is mainly due to the purpose of the sets, considering that the training set is used 
to create the model, the validation set is used to fine-tune the hyperparameters, and 
finally, the testing set is used to measure the overall performance of the model on 
unseen data.
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Taking this into account, the model with a higher performance on the testing set, after 
having improved all models to their fullest potential, will be the one that performs best 
on unseen data.

Activity 15: Comparing Different Models to Choose the Best Fit for the Census 

Income Data Problem

Consider the following scenario: after training four different models with the available 
data, you have been asked to perform an analysis to choose the model that best suits 
the case study. 

Note

The following activity is mainly analytical. Use the results obtained from the 
activities in the previous chapter, as well as the activity in the current chapter.

Follow these steps to compare the different models:

1.	 Open the Jupyter Notebook that you used to train the models.

2.	 Compare the four models, based only on their accuracy scores. Fill in the details in 
the following table:

Figure 5.16: Accuracy scores of all four models for the Census Income Dataset

On the basis of the accuracy scores, identify the model with the best performance.

Note

The solution for this activity can be found on page 207.



Summary | 153

Summary
This chapter mainly focused on artificial neural networks (the Multilayer Perceptron, 
in particular), which have become increasingly important in the field of machine 
learning due to their capability to tackle highly complex data problems that usually use 
extremely large datasets with patterns that are impossible to look at by the human eye.

The main objective is to emulate the architecture of the human brain by using 
mathematical functions to process data. 

The process that is used to train an ANN consists of a forward propagation process, 
the calculation of a cost function, a back-propagation process, and the update of the 
different weights and biases that help to map the input values to an output.

In addition to the variables of the weights and biases, ANNs have multiple 
hyperparameters that can be tuned to improve the performance of the network, which 
can be done by modifying the architecture or training process of the algorithm. Some 
of the most popular hyperparameters are the size of the network (in terms of hidden 
layers and units), the number of iterations, the regularization term, the batch size, and 
the learning rate.

Once these concepts were covered, we created a simple network to tackle the Census 
Income Dataset problem that was introduced in the previous chapter. Next, by 
performing error analysis, we fine tuned some of the hyperparameters of the network 
to improve its performance.





Learning Objectives

By the end of this chapter, you will be able to:

•	 Explain the key stages involved in building a comprehensive program 

•	 Save a model in order to get the same results every time it is run

•	 Call a saved model to use it for predictions on unseen data

•	 Create an interactive version of your program so that anyone can use it effectively

This chapters presents all the steps required to solve a problem using machine learning.

Building Your 
Own Program

6
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Introduction
In the previous chapters, we covered the main concepts of machine learning, beginning 
with the distinction between the two main learning approaches (supervised and 
unsupervised learning), and moving on to the specifics of some of the most popular 
algorithms in the data scientist community. 

This chapter will talk about the importance of building complete machine learning 
programs, rather than just training models. This will involve taking the models to the 
next level, where they can be accessed and used easily.

This is especially important when working in a team, either for a company or for 
research purposes, as it allows all members of the team to use the model without fully 
understanding it.

Program Definition
The following section will cover the key stages required to construct a comprehensive 
machine learning program that allows easy access to the trained model in order to 
perform predictions for all future data. These stages will be applied to the construction 
of a program that allows for a bank to determine the promotional strategy for a 
financial product in their marketing campaign. 

Building a Program: Key Stages

At this point, you should be able to preprocess a dataset, build different models using 
training data, and compare those models, in order to choose the one that best fits the 
data at hand. These are some of the processes handled during the first two stages of 
building a program, which ultimately allow for the creation of the model. Nonetheless, a 
program should also consider the process of saving the final model, as well as the ability 
to perform quick predictions without the need for coding. 

The processes that we just discussed are divided into three main stages, and will be 
explained in the following sections. These stages represent the foremost requirements 
of any machine learning project.

Preparation

Preparation consists of all the procedures that we've developed thus far, with the 
objective of outlining the project in alignment with the available information and the 
desired outcome. The following is a brief description of the three processes in this stage 
(these have been discussed in detail in previous chapters):
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1.	 Data Exploration: Once the objective of the study has been established, data 
exploration is undertaken in order to understand the data that is available and 
to obtain valuable insights. These insights will be used later to make decisions 
regarding the preprocessing and division of the data and the selection of models, 
among other uses. The information most commonly obtained during data 
exploration includes the size of the data (number of instances and features), the 
irrelevant features, and whether missing values or evident outliers are present.

2.	 Data Preprocessing: As we have discussed, data preprocessing primarily refers 
to the process of handling missing values, outliers, and noisy data; converting 
qualitative features into their numeric forms; and normalizing or standardizing 
these values. This process can be done manually in any data editor such as Excel, 
or by using libraries to code the procedure. 

3.	 Data Splitting: The final process, data splitting, involves splitting the entire dataset 
into two or three sets (depending on the approach) that will be used for training, 
validating, and testing the overall performance of the model. The separation of the 
features and the class label is also handled during this stage.

Creation

This stage involves all of the steps that are required to create a model that fits the 
data that is available. This can be done by selecting different algorithms, training and 
tuning them, comparing the performance of each, and finally, selecting the one that 
generalizes best to the data (meaning that it achieves a better overall performance). The 
processes in this stage will be discussed briefly, as follows:

1.	 Algorithm Selection: Irrespective of whether you decide to choose one or multiple 
algorithms, it is crucial to select an algorithm on the basis of the available data 
and to take into consideration the advantages of each algorithm. This is important 
since many data scientists make the mistake of choosing neural networks for 
any data problem, when in reality, simpler problems can be tackled using simpler 
models that run more quickly and perform better with smaller datasets. 

2.	 Training Process: This process involves training the model using the training set 
data. This means that the algorithm uses the features data (X) and the label classes 
(Y) to determine relationship patterns that will help generalize to unseen data and 
predict when the class label is not available.
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3.	 Model Evaluation: This process is handled by measuring the performance of the 
algorithm through the metric selected for the study. As mentioned previously, it 
is important to choose the metric that best represents the purpose of the study, 
considering that the same model can do very well in terms of one metric and 
poorly in terms of another. 

While evaluating the model on the validation set, hyperparameters are fine-
tuned to achieve the best possible performance. Once the hyperparameters have 
been tuned, the evaluation is performed on the testing set to measure the overall 
performance of the model on unseen data.

4.	 Model Comparison and Selection: When multiple models are created based on 
different algorithms, a model comparison is performed to select the one that 
outperforms the others. This comparison should be done by using the same metric 
for all the models.

Interaction

The final stage in building a comprehensive machine learning program consists of 
allowing the final user to easily interact with the model. This includes the process of 
saving the model into a file, the ability of calling the file that holds the saved model, and 
the development of a channel through which users can interact with the model:

1.	 Storing the Final Model: This process is introduced during the development of a 
machine learning program as it is crucial to enable the unaltered use of the model 
for future predictions. The process of saving the model is crucial, considering that 
most algorithms are randomly initialized each time they are run, which makes the 
results different for each run. The process of saving the model will be explained 
further later in this chapter.

2.	 Loading the Model: Once the model has been saved to a file, it can be accessed by 
loading the file into any code. The model is then stored in a variable that can be 
used to apply the prediction method on unseen data. This process will also be 
explained later in this chapter.

3.	 Channel of Interaction: Finally, it is crucial to develop an interactive and easy 
way to perform predictions using the saved model, especially because on many 
occasions, models are created by the technology team for other teams to use. 
This means that an ideal program should allow non-experts to use the model for 
prediction by simply typing in the required information. This idea will also be 
expanded upon later in this chapter.
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The following diagram illustrates the preceding processes: 

Figure 6.1: Stages for building a machine learning program

The rest of this chapter will focus on the final stage of building a model, considering 
that all the previous steps were discussed in previous chapters.

Understanding the Dataset

To learn how to implement the processes in the Interaction section, we will build a 
program that's capable of predicting whether a person will be interested in acquiring a 
specific product from the bank, which will help the bank to target its promotion efforts. 
The dataset used to build this program is available at the UC Irvine Machine Learning 
Repository under the name Bank Marketing Dataset. 

Note

To download this dataset, visit the following link: http://archive.ics.uci.edu/ml/
datasets/Bank+Marketing.

http://archive.ics.uci.edu/ml/datasets/Bank+Marketing
http://archive.ics.uci.edu/ml/datasets/Bank+Marketing
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Once you have located the repository, follow these steps to download the dataset:

1.	 First, click on the Data Folder link. 

2.	 Download the bank folder. 

3.	 Open the .zip folder and extract the bank-full.csv file.

To explore the dataset, follow these steps:

1.	 Open a Jupyter Notebook and load the dataset to explore it:

data = pd.read_csv("../datasets/bank-full.csv")

This file shows the values of all the features for one instance in a single column, 
since the read_csv function uses a comma as the delimiter for columns:

Figure 6.2: Screenshot of data in the .csv file before splitting the data into columns

2.	 To fix this, add the delimiter parameter to the read_csv function by using a 
semicolon as the delimiter, as shown in the following code snippet:

data = pd.read_csv("../datasets/bank-full.csv", delimiter = ";")

After this step, the file should look as follows:

Figure 6.3: Screenshot of data in the .csv file after splitting it into columns
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As you can see in the preceding table, the file contains unknown values that should 
be handled as missing values.

3.	 To do so, let's replace the unknown string for NaN by using Numpy, as follows:

import numpy as np
data[data == "unknown"] = np.nan

Finally, the edited dataset is saved in a new .csv file, so that it can be used for the 
activities throughout this chapter. You can do this by using the to_csv function, as 
follows:

data.to_csv("../datasets/bank-full-dataset.csv")

The file should contain a total of 45,211 instances, each with 16 features and 1 class 
label. The class label is binary, of the type yes or no, and indicates whether the client 
subscribes to a term deposit with the bank.

Each instance represents a client of the bank, and the features capture demographic 
information, as well as data regarding the nature of the contact with the client during 
the current (and previous) promotional campaign.



162 | Building Your Own Program

The following table displays brief descriptions of all 16 features. This will help to 
determine the relevance of each feature to the study, and will provide an idea of some 
of the steps required to preprocess the data:

Figure 6.4: A table describing the features of the dataset

Note

You can find the preceding descriptions and more in the .zip folder, under the file 
named bank-names.txt.



Program Definition | 163

Using the information obtained during the exploration of the dataset, it is possible to 
proceed with preprocessing the data and training the model, which will be the purpose 
of the following activity.

Activity 16: Performing the Preparation and Creation Stages for the Bank 

Marketing Dataset

The objective of this activity is to perform the processes in the preparation and creation 
stages to build a comprehensive machine learning problem. 

Note

For the exercises and activities within this chapter, you will need to have Python 
3.6, NumPy, Jupyter, Pandas, and scikit-learn installed on your system.

Let's consider the following scenario: you work at the principal bank in your town 
and the marketing team has decided that they want to know in advance if a client is 
likely to subscribe to a term deposit, in order to focus their efforts on targeting those 
clients. For this, you have been provided with a dataset containing details on current 
and previous marketing activities carried out by the team (the Bank Marketing Dataset 
that you downloaded and explored previously will be used). Your boss has asked you to 
preprocess the dataset and compare two models against each other, so that you can 
select the best one. Follow the steps given below to achieve this:

1.	 Open a Jupyter Notebook to implement this activity and import pandas.

2.	 Load the dataset into the notebook. Make sure that you load the one that was 
edited previously, named bank-full-dataset.csv.

3.	 Select the metric that is most appropriate for measuring the performance of the 
model, considering that the purpose of the study is to detect clients who are likely 
to subscribe to the term deposit.
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4.	 Preprocess the dataset. 

Note that one of the qualitative features is ordinal, which is why it must be 
converted to a numeric form that follows the order. Use the following code 
snippet to do so:

data["education"] = data["education"].fillna["unknown"]
encoder = ["unknown", "primary", "secondary", "tertiary"]

for i, word in enumerate(encoder):
  data["education"] = data["education"].str.replace(word,str(i))
  data["education"] = data["education"].astype("int64")

5.	 Separate the features from the class label and split the dataset into three sets 
(training, validation, and testing).

6.	 Use the Decision Tree and the Multilayer Perceptron algorithms to apply to the 
dataset and train the models.

Note

You can also try this with the other classification algorithms discussed in this book. 
However, these two are mainly chosen so that you are also able to compare the 
difference in training times.

7.	 Evaluate both models by using the metric that you selected previously. 

8.	 Fine-tune some of the hyperparameters to fix the issues detected during the 
evaluation of the model, by performing error analysis.

9.	 Compare the final versions of your models and select the one that you believe best 
fits the data.

Note

Do not use a random_state value to train the models. This is mainly because in 
subsequent activities, we will run the selected model several times to see the 
different results that can be achieved through different initializations. 

You can find the solution for this activity on page 209.
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Saving and Loading a Trained Model
Although the process of manipulating a dataset and training the right model is crucial 
for developing a machine learning project, the work does not end there. Knowing 
how to save a trained model is key, as this will allow you to save the hyperparameters 
used and the initialized values for the different variables of your final model, so that it 
remains unchanged when it is run again. Moreover, after the model is saved to a file, 
it is also important to know how to load the saved model in order to use it to make 
predictions on new data. By saving and loading a model, we allow for the model to be 
reused at any moment and through many different means. 

Saving a Model

The process of saving a model is also called serialization, and it has become 
increasingly important, due to the popularity of neural networks that use many 
variables which are randomly initialized every time the model is trained, as well as due 
to the introduction of bigger and more complex datasets that make the training process 
last for days, weeks, and sometimes months.

Considering this, the process of saving a model helps to optimize the use of machine 
learning solutions by standardizing the results to the saved version of the model. It also 
saves time, as it allows you to directly apply the saved model to new data, without the 
need for retraining.

There are two main ways to save a trained model, one of which will be explained in this 
section. The pickle module is the standard way to serialize objects in Python, and it 
works by implementing a powerful algorithm that serializes the model and then saves it 
as a .pkl file.

Note

The other module that's available for saving a trained model is joblib, which is 
part of the SciPy ecosystem. 

However, take into account that models are only saved when they are meant to be 
used in future projects or for future predictions. When a machine learning project is 
developed to understand the current data, there is no need to save it, as the analysis 
will be performed after the model has been trained. 
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Exercise 19: Saving a Trained Model 

For the following exercise, we will use the Fertility Dataset that we downloaded 
previously. A neural network will be trained over the training data, and then saved. 
Follow these steps to complete this exercise:

1.	 Open a Jupyter Notebook to implement this exercise and import pandas:

import pandas as pd

2.	 Load the Fertility Dataset and split the data into a features matrix X and a target 
matrix Y. Use the header = None argument, since the dataset does not have a 
header row.

data = pd.read_csv("datasets/fertility_Diagnosis.csv", header=None)

X = data.iloc[:,:9]
Y = data.iloc[:,9]

3.	 Train a Multilayer Perceptron Classifier over the data. Set the number of iterations 
to, 1200 to avoid getting a warning message indicating that the default number of 
iterations is insufficient to achieve convergence:

from sklearn.neural_network import MLPClassifier
model = MLPClassifier(max_iter = 1200)
model.fit(X,Y)

4.	 Import the pickle and os modules, as follows:

import pickle
import os

The first module (pickle), as explained before, will be used to save the trained 
model. The os module is used to locate the current path of the Jupyter Notebook 
in order to save the model in the same location.

5.	 Serialize the model and save it in a file named model_exercise.pkl. Use the 
following code:

path = os.getcwd() + "/model_exercise.pkl"
file = open(path, "wb")
pickle.dump(model, file)
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In the preceding snippet, the path variable contains the path of the file that will 
hold the serialized model, where the first element locates the path, and the second 
element defines the name of the file to be saved. The file variable is used to 
create a file that will be saved in the desired path and has the file mode set to wb, 
which stands for write and binary (this is the way the serialized model must be 
written). Finally, the dump method is applied over the pickle module. It takes the 
model that was created previously, serializes it, and then saves it to the created 
file.

Congratulations! You have successfully saved a trained model.

Loading a Model

The process of loading a model is also known as deserialization, and it consists of 
taking the previously saved file, deserializing it, and then loading it into a code or 
terminal, so that you can use the model on new data. The pickle module is also used to 
load the model. 

It is worth mentioning that the model does not need to be loaded in the same code file 
where it was trained and saved; on the contrary, it is meant to be loaded in any other 
file. This is mainly because the load method of the pickle library will return the model 
in a variable that will be used to apply the predict method. 

When loading a model, it is important to not only import the pickle and os modules like 
we did before, but also the class of the algorithm that is used to train the model. For 
instance, to load a neural network model, it is necessary to import the MLPClassifier 
class, under the neural_network module.

Exercise 20: Loading a Saved Model 

In the following exercise, using a different Jupyter Notebook, we will load the previously 
trained model and perform a prediction:

1.	 Open a Jupyter Notebook to implement this exercise. 

2.	 Import the pickle and os modules. Also, import the MLPCLassifier class:

import pickle
import os
from sklearn.neural_network import MLPClassifier

3.	 Use pickle to load the saved model, as follows:

path = os.getcwd() + "/model_exercise.pkl"
file = open(path, "rb")
model = pickle.load(file)
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Here, the path variable is also used to store the path of the file model. Next, 
the file variable is used to open the file using the rb file mode, which stands for 
read and binary. Finally, the load method is applied over the pickle module to 
deserialize and load the model into the model variable.

4.	 Use the loaded model to make a prediction for an individual, with the following 
values as the values for the features: -0.33, 0.67, 1, 1, 0, 0, 0.8, -1, 0.5.

Store the output obtained by applying the predict method to the model variable, in 
a variable named pred: 

pred = model.predict([[-0.33,0.67,1,1,0,0,0.8,-1,0.5]])

By printing the pred variable, we get the value of the prediction as equal to O, 
which means that the individual has an altered diagnosis.

Congratulations! You have successfully loaded a saved model.

Activity 17: Saving and Loading the Final Model for the Bank 

Marketing Dataset

Consider the following scenario: your boss loves the work that you have done so far 
and wants you to save the model, so that it can be used in the future without the need 
to retrain the model and without the risk of getting different results each time. For this 
purpose, you need to save and load the model that you created in the previous activity.

Note

The following activity will be divided into two parts. 

The first part carries out the process of saving the model, and will be performed 
using the same Jupyter Notebook from the previous activity. The second part 
consists of loading the saved model, which will be done using a different Jupyter 
Notebook.
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Follow these steps to complete this activity:

1.	 Open the Jupyter Notebook with the preprocessed Bank Marketing Dataset loaded 
and the models trained.

2.	 For learning purposes, take the model that you selected as the best model, and run 
it a couple of times. 

Note

Check that you are not using a random_state argument, so that you can get 
different results each time.

Make sure that you run the calculation of the precision metric every time you 
run the model, in order to see the difference in performance that's achieved in 
every run. Feel free to stop when you think you have landed at a model with good 
performance, out of all the results you get from previous runs.

3.	  Save the model in a file named final_model.pkl. 

Note

Make sure that you use the os module to save the model in the same path as the 
current Jupyter Notebook. This way, you will be able to find a new file in the folder 
after saving the model.

4.	 Open a new Jupyter Notebook and import the required modules and class. 

5.	 Load the model.

6.	 Perform a prediction for an individual, using the following values: 42, 2, 0, 0, 1, 2, 1, 
0, 5, 8, 380, 1, -1, 0.

Note

The solution for this activity can be found on page 214.

Regardless of the model chosen, the prediction for the sample individual should be 
0 (No).
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Interacting with a Trained Model
Once the model has been created and saved, it is time for the last step of building a 
comprehensive machine learning program: allowing for easy interaction with the model. 
This step not only allows for the reusability of the model, but also introduces efficiency 
to the implementation of machine learning solutions, by allowing you to perform 
classifications using just input data.

There are several ways to interact with a model, and the decision made between one 
or the other depends on the nature of the user (the individuals that will be making use 
of the model on a regular basis). Machine learning projects can be accessed in different 
ways, some of which require the use of an API, an online or offline program, or a 
website. 

Moreover, once the channel is defined based on the preference or expertise of the 
users, it is important to code the connection between the final user and the model, 
which could be either a function or a class that deserializes the model and loads it, then 
performs the classification, and ultimately, returns an output that is displayed again to 
the user. 

The following diagram displays the relationship built between the channel and the 
model, where the first image represents the model, the second is the function or class 
(the intermediary) performing the connection, and the final image is the channel. Here, 
as was explained previously, the channel feeds the input data to the intermediary, which 
then feeds the information into the model to perform a classification. The output from 
the classification is sent back to the intermediary, which passes it along the channel in 
order to be displayed:

Figure 6.5: Illustration of the interaction between the user and the model
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Exercise 21: Creating a Class and a Channel to Interact with a Trained Model 

In the following exercise, we will create a class in a text editor that takes the input data 
and feeds it to the model. Additionally, we will create a form in a Jupyter Notebook, 
where users can input the data and obtain a prediction.

To create a class in a text editor, follow these steps:

1.	 Open the text editor of your preference.

2.	 Import pandas, pickle, and os, along with the Multilayer Perceptron Classifier class:

import pandas as pd
import pickle
import os
from sklearn.neural_network import MLPClassifier

3.	 Create a class object and name it NN_Model:

Class NN_Model(object):

4.	 Inside of the class, create an initializer method that loads the file containing the 
saved model (model_exercise.pkl) into the code:

def __init__(self):
  path = os.getcwd() + "/model_exercise.pkl"
  file = open(path, "rb")
  self.model = pickle.load(file)

Note

Remember to indent the method inside of the class object.

As a general rule, all the methods inside a class object must have the argument 
self. On the other hand, when defining the variable of the model using the self 
statement, it is possible to make use of the variable in any other method of the 
same class.

5.	 Create a predict method that takes in all of the features as arguments. It should 
take in the feature values and input them as arguments to the predict method, so 
that it can feed them into the model:

def predict(self, season, age, childish, trauma, surgical, fevers, 
alcohol, smoking, sitting):
  X = [[season, age, childish, trauma, surgical, fevers, alcohol, smoking, 
sitting]]
  return self.model.predict(X)



172 | Building Your Own Program

6.	 Save the code as a Python file (.py) and name it exerciseClass.py. The name of this 
file will be used to load the class into the Jupyter Notebook for the following steps.

Now, let's code the frontend solution of the program, which includes creating a form 
where users can input data and obtain a prediction:

1.	 Open a Jupyter Notebook to code the frontend solution of the machine learning 
program.

2.	 To import the model class that we created previously, use the following code 
snippet:

from exerciseClass import NN_Model

3.	 Initialize the model and store it in a variable named model:

model = NN_Model()

4.	 Create a set of variables where the user can input the value for each feature, which 
will then be fed to the model. Use the following values:

a = 1      # season in which the analysis was performed
b = 0.56   # age at the time of the analysis
c = 1      # childish disease
d = 1      # accident or serious trauma
e = 1      # surgical intervention
f = 0      # high fevers in the last year
g = 1      # frequency of alcohol consumption
h = -1     # smoking habit
i = 0.63   # number of hours spent sitting per day

5.	 Perform a prediction by using the predict method on the model variable. Input the 
feature values as arguments, taking into account that you must name them in the 
same way that you did when creating the predict function in the text editor:

pred = model.predict(season=a, age=b, childish=c, trauma=d, surgical=e, 
fevers=f, alcohol=g, smoking=h, sitting=i)

Congratulations! You have successfully created a function and a channel to interact 
with your model.
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Activity 18: Allowing Interaction with the Bank Marketing Dataset Model

Consider the following scenario: after seeing the results that you presented, your boss 
has asked you to build a very simple way for him to test the model with data that he 
will receive over the book of the next month. If all the tests work well, he will be asking 
you to launch the program in a more effective way. Hence, you have decided to share 
a Jupyter Notebook with your boss, where he can just input the information and get a 
prediction. 

Note

The following activity will be developed in two parts. The first part will involve 
building the class that connects the channel and the model, and will be developed 
using a text editor. The second part will be the creation of the channel, and will be 
done in a Jupyter Notebook.

Follow these steps to complete this activity:

1.	 In a text editor, create a class object that contains two main methods. One should 
be an initializer that loads the model, and the other should be a predict method, 
wherein the data is fed to the model to retrieve an output.

2.	 In a Jupyter Notebook, import and initialize the class that you created in the last 
step. Next, create the variables that will hold the values for the features, and use 
the following values: 42, 2, 0, 0, 1, 2, 1, 0, 5, 8, 380, 1, -1, 0.

3.	 Perform a prediction by applying the predict method.

Note

The solution for this activity can be found on page 215.

The prediction for the sample individual should be equal to 0, which is the numeric 
form of No.
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Summary
This chapter wraps up all of the concepts and techniques that are required to 
successfully train a machine learning model based on training data. In this chapter, we 
introduced the idea of building a comprehensive machine learning program that not 
only accounts for the stages involved in the preparation of the dataset and creation of 
the ideal model, but also the stage related to making the model accessible for future 
use, which is accomplished by carrying out three main processes: saving the model, 
loading the model, and creating a channel that allows users to easily interact with the 
model and obtain an outcome. The pickle module was also introduced in this regard. 

Further, to make the model accessible to users, the ideal channel (for example, an API, 
an application, a website or a form) needs to be selected according to the type of user 
that will interact with the model. Then, an intermediary needs to be programmed, 
which can connect the channel with the model. This intermediary is usually in the form 
of a function or a class.

The main objective of this book was to introduce scikit-learn's library as a way to work 
with machine learning in a simpler manner. After discussing the importance of and the 
different techniques involved in data exploration and preprocessing, this book divided 
this knowledge into the two main areas of machine learning: supervised learning and 
unsupervised learning. We discussed the various algorithms used in each. Finally, in 
this book, we explained the importance of measuring the performance of models by 
performing error analysis, in order improve the overall performance of the model on 
unseen data, and ultimately, choosing the model that best represents the data. This 
final model should be saved, so that you can use it in the future for visualizations, or to 
perform predictions.







About
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Chapter 1: Introduction to scikit-learn

Activity 1: Selecting a Target Feature and Creating a Target Matrix

1.	 Load the titanic dataset using the seaborn library. First, import the seaborn 
library, and then use the load_dataset("titanic") function:

import seaborn as sns
titanic = sns.load_dataset('titanic')
titanic.head(10)

Next, print out the top 10 instances; this should match the below screenshot:

Figure 1.23: An image showing the first 10 instances of the Titanic dataset

2.	 The preferred target feature could be either survived or alive. This is mainly 
because both of them label whether a person survived the crash. For the following 
steps, the variable chosen is survived. However, choosing alive will not affect the 
final shape of the variables.

3.	 Create a variable, X, to store the features, by using drop(). As explained previously, 
the selected target feature is survived, which is why it is dropped from the 
features matrix.

Create a variable, Y, to store the target matrix. Use indexing to access only the 
value from the column survived:

X = titanic.drop('survived',axis = 1)
Y = titanic['survived']



Chapter 1: Introduction to scikit-learn | 179

4.	 Print out the shape of variable X, as follows:

X.shape
(891, 14)

Do the same for variable Y:

Y.shape
(891,)

Activity 2: Preprocessing an Entire Dataset

1.	 Load the dataset and create the features and target matrices:

import seaborn as sns
titanic = sns.load_dataset('titanic')
X = titanic[['sex','age','fare','class','embark_town','alone']]
Y = titanic['survived']
X.shape
(891, 6)

2.	 Check for missing values in all features. 

As we did previously, use isnull() to determine whether a value is missing, and 
use sum() to sum up the occurrences of missing values along each feature:

print("Sex: " + str(X['sex'].isnull().sum()))
print("Age: " + str(X['age'].isnull().sum()))
print("Fare: " + str(X['fare'].isnull().sum()))
print("Class: " + str(X['class'].isnull().sum()))
print("Embark town: " + str(X['embark_town'].isnull().sum()))
print("Alone: " + str(X['alone'].isnull().sum()))

The output will look as follows:

Sex: 0
Age: 177
Fare: 0
Class: 0
Embark town: 2
Alone: 0

As you can see from the preceding screenshot, only two features contain missing 
values: age and embark_town.
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3.	 As age has many missing values that accounts for almost 20% of the total, the 
values should be replaced. Mean imputation methodology will be applied, as 
shown in the following code:

#Age: missing values
mean = X['age'].mean()
mean = mean.round()
X['age'].fillna(mean,inplace = True)

 

Figure 1.24: A screenshot displaying the output of the preceding code 

After calculating the mean, the missing values are replaced by it using the fillna() 
function.

Note

The preceding warning may appear as the values are being replaced over a slice 
of the DataFrame. This happens because the variable X is created as a slice of 
the entire DataFrame titanic. As X is the variable that matters for the current 
exercise, it is not an issue to only replace the values over the slice and not over the 
entire DataFrame.

4.	 Given that the number of missing values in the embark_town feature is low, the 
instances are eliminated from the features matrix:

Note

To eliminate the missing values from the embark_town feature, it is required to 
eliminate the entire instance (observation) from the matrix.

# Embark_town: missing values
X = X[X['embark_town'].notnull()]
X.shape
(889, 6)
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The notnull() function detects all non-missing values over the object in question. 
In this case, the function is used to obtain all non-missing values from the embark_
town feature. Then, indexing is used to retrieve those values from the entire matrix 
(X). 

5.	 Discover the outliers present in the numeric features. Let's use three standard 
deviations as the measure to calculate the min and max threshold for numeric 
features. Using the formula that we have learned, the min and max threshold are 
calculated and compared against the min and max values of the feature:

feature = "age"
print("Min threshold: " + str(X[feature].mean() - (3 * X[feature].
std())),"  Min val: " + str(X[feature].min()))
print("Max threshold: " + str(X[feature].mean() + (3 * X[feature].
std())),"  Max val: " + str(X[feature].max()))

The values obtained for the above code are shown here:

Min threshold: -9.194052030619016   Min val: 0.42
Max threshold: 68.62075619259876   Max val: 80.0

Use the following code to calculate the min and max threshold for the fare 
feature:

feature = "fare"
print("Min threshold: " + str(X[feature].mean() - (3 * X[feature].
std())),"  Min val: " + str(X[feature].min()))
print("Max threshold: " + str(X[feature].mean() + (3 * X[feature].
std())),"  Max val: " + str(X[feature].max()))

The values obtained for the above code are shown here:

Min threshold: -116.99583207273355   Min val: 0.0
Max threshold: 181.1891938275142   Max val: 512.3292

As you can see from the preceding screenshots, both features stay inside the range 
at the lower end but go outside the range with the max values.
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6.	 The total count of outliers for the features age and fare are 7 and 20, respectively. 
Neither amount represents a high percentage of the total number of values, which 
is why outliers are eliminated from the features matrix. The following snippet can 
be used to eliminate the outliers and print the shape of the resulting matrix:

# Age: outliers
max_age = X["age"].mean() + (3 * X["age"].std())
X = X[X["age"] <= max_age]
X.shape
(882, 6)

# Fare: outliers
max_fare = X["fare"].mean() + (3 * X["fare"].std())
X = X[X["fare"] <= max_fare]
X.shape
(862, 6)

7.	 Discover outliers present in text features. The value_counts() function is used to 
count the occurrence of the classes in each feature:

feature = "alone"
X[feature].value_counts()
True     522
False    340

feature = "class"
X[feature].value_counts()
Third     489
First     190
Second    183

feature = "alone"
X[feature].value_counts()
True     522
False    340

feature = "embark_town"
X[feature].value_counts()
Southampton     632
Cherbourg       154
Queenstown       76
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None of the classes for any of the features are considered to be outliers, as they all 
represent over 5% of the entire dataset. 

8.	 Convert all text features into their numeric representations. Use scikit-learn's 
LabelEncoder class, as shown in the following code:

from sklearn.preprocessing import LabelEncoder
enc = LabelEncoder()
X["sex"] = enc.fit_transform(X['sex'].astype('str'))
X["class"] = enc.fit_transform(X['class'].astype('str'))
X["embark_town"] = enc.fit_transform(X['embark_town'].astype('str'))
X["alone"] = enc.fit_transform(X['alone'].astype('str'))

9.	 Print out the top 5 instances of the features matrix to view the result of the 
conversion:

X.head()

Figure 1.25: A screenshot displaying the first five instances of the features matrix

10.	 Finally, apply normalization (or standardization) to the matrix. 

As you can see from the following code, the formula for normalization is only 
applied to those features that need normalizing. Given that normalization rescales 
the values between 0 and 1, all the features that have already met that condition do 
not need to be normalized:

X["age"] = (X["age"] - X["age"].min())/(X["age"].max()-X["age"].min())
X["fare"] = (X["fare"] - X["fare"].min())/(X["fare"].max()-X["fare"].
min())
X["class"] = (X["class"] - X["class"].min())/(X["class"].max()-X["class"].
min())
X["embark_town"] = (X["embark_town"] - X["embark_town"].min())/(X["embark_
town"].max()-X["embark_town"].min())
X.head(10)
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The top 10 rows of the final output are shown in the following screenshot:

Figure 1.26: A screenshot displaying the first 10 instances of the normalized dataset
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Chapter 2: Unsupervised Learning: Real-life Applications

Activity 3: Using Data Visualization to Aid the Preprocessing Process

1.	 Load the previously downloaded dataset by using the Pandas function read_csv(). 
Store the dataset in a Pandas DataFrame named data:

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(0)

First, import the required libraries. Then, feed the dataset path to the Pandas 
function's read_csv():

data = pd.read_csv("datasets/wholesale_customers_data.csv")

2.	 Check for missing values in your DataFrame. Using the isnull() function plus the 
sum() function, count the missing values of the entire dataset at once:

data.isnull().sum()

Figure 2.16: A screenshot showing the number of missing values in the DataFrame

As you can see from the preceding screenshot, there are no missing values in the 
dataset.
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3.	 Check for outliers in your DataFrame. Using the technique you learned in the 
previous chapter, label those values that fall outside of three standard deviations 
from the mean as outliers. The following code snippet allows you to look for 
outliers in the entire set of features at once. However, another valid method would 
be to check for outliers one feature at a time:

outliers = {}
for i in range(data.shape[1]):
  min_t = data[data.columns[i]].mean() - (3 * data[data.columns[i]].std())
  max_t = data[data.columns[i]].mean() + (3 * data[data.columns[i]].std())
  count = 0
  for j in data[data.columns[i]]:
    if j < min_t or j > max_t:
      count += 1
  outliers[data.columns[i]] = [count,data.shape[0]-count]
print(outliers)

The count of outliers for each of the features is shown in the following figure:

Figure 2.17: A screenshot showing the output of the preceding code snippet

As you can see from the preceding screenshot, some features do have outliers. 
Considering that there are only a few outliers for each feature, there are two 
possible ways to handle them. 
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First, you could decide to delete the outliers. This decision can be supported by 
displaying a histogram for the features with outliers:

plt.hist(data["Fresh"])
plt.show()

Figure 2.18: An example histogram plot for the "Fresh" feature 

For instance, for the feature named Fresh, it can be seen through the histogram 
that most instances are represented by values below 40,000. Hence, deleting the 
instances above that value will not affect the performance of the model.
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On the other hand, the second approach would be to leave the outliers as they are, 
considering that they do not represent a large portion of the dataset, which can 
be supported with data visualization tools using a pie chart. See the code and the 
output that follow:

plt.figure(figsize=(8,8))
plt.pie(outliers["Detergents_Paper"],autopct="%.2f")
plt.show()

Figure 2.19: A pie chart showing the participation of outliers from the Detergents_papers feature in 
the dataset

The preceding diagram shows the participation of the outliers from the 
Detergents_papers feature, which was the feature with the most outliers in the 
dataset. Only 2.27% of the values are outliers, a value so low that it will not affect 
the performance of the model either.



Chapter 2: Unsupervised Learning: Real-life Applications | 189

4.	 Rescale the data. For this solution, the formula for standardization has been used. 
Note that the formula can be applied to the entire dataset at once, instead of being 
applied individually to each feature:

data_standardized = (data - data.mean())/data.std()
data_standardized.head()

Figure 2.20: A table showing the first five instances of the standardized dataset

Activity 4: Applying the k-means Algorithm to a Dataset

1.	 Open the Jupyter Notebook that you used for the previous activity. There, you 
should have imported all the required libraries and stored the dataset in a variable 
named data. The standardized data should look as follows:

data_standardized = (data - data.mean())/data.std()
data_standardized.head()

Figure 2.21: A screenshot displaying the first five instances of the standardized dataset

2.	 Calculate the average distance of data points from its centroid in relation to the 
number of clusters. Based on this distance, select the appropriate number of 
clusters to train the model to.

First, import the algorithm class:

from sklearn.cluster import KMeans
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Next, using the code in the following snippet, calculate the average distance of 
data points from its centroid based on the number of clusters created:

ideal_k = []
for i in range(1,21):
  est_kmeans = KMeans(n_clusters=i)
  est_kmeans.fit(data_standardized)

  ideal_k.append([i,est_kmeans.inertia_])
ideal_k = np.array(ideal_k)

Finally, plot the relation to find the breaking point of the line, and select the 
number of clusters:

plt.plot(ideal_k[:,0],ideal_k[:,1])
plt.show()

Figure 2.22: The output of the plot function used

3.	 Train the model and assign a cluster to each data point in your dataset. Plot the 
results.

To train the model, use the following code:

est_kmeans = KMeans(n_clusters=6)
est_kmeans.fit(data_standardized)
pred_kmeans = est_kmeans.predict(data_standardized)

The number of clusters selected is 6; however, since there is no exact breaking 
point, values between 5 and 10 are also acceptable.
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Finally, plot the results of the clustering process. As the dataset contains eight 
different features, choose two features to draw at once, as shown in the following 
code:

plt.subplots(1, 2, sharex='col', sharey='row', figsize=(16,8))
plt.scatter(data.iloc[:,5], data.iloc[:,3], c=pred_kmeans, s=20)
plt.xlim([0, 20000])
plt.ylim([0,20000])
plt.xlabel('Frozen')
plt.subplot(1, 2, 1)
plt.scatter(data.iloc[:,4], data.iloc[:,3], c=pred_kmeans, s=20)
plt.xlim([0, 20000])
plt.ylim([0,20000])
plt.xlabel('Grocery')
plt.ylabel('Milk')
plt.show()

Figure 2.23: Two example plots obtained after the clustering process

The subplots() function from Matplotlib has been used to plot two scatter graphs 
at a time. 

As can be seen from the plots, there is no obvious visual relation due to the fact 
that we are only able to use two of the eight features present in the dataset. 
However, the final output of the model creates six different clusters that represent 
six different profiles of clients.
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Activity 5: Applying the Mean-Shift Algorithm to a Dataset

1.	 Open the Jupyter Notebook that you used for the previous activity. 

2.	 Train the model and assign a cluster to each data point in your dataset. Plot the 
results.

First, do not forget to import the algorithm class:

from sklearn.cluster import MeanShift

To train the model, use the following code:

est_meanshift = MeanShift(0.4)
est_meanshift.fit(data_standardized)
pred_meanshift = est_meanshift.predict(data_standardized)

The model was trained using a bandwidth of 0.4. However, feel free to test other 
values to see how the result changes.

Finally, plot the results of the clustering process. As the dataset contains eight 
different features, choose two features to draw at once, as shown in the snippet 
below. Similar to the previous activity, the separation between clusters is not 
visually seen due to the capability to only draw two out of the eight features:

plt.subplots(1, 2, sharex='col', sharey='row', figsize=(16,8))
plt.scatter(data.iloc[:,5], data.iloc[:,3], c=pred_meanshift, s=20)
plt.xlim([0, 20000])
plt.ylim([0,20000])
plt.xlabel('Frozen')
plt.subplot(1, 2, 1)
plt.scatter(data.iloc[:,4], data.iloc[:,3], c=pred_meanshift, s=20)
plt.xlim([0, 20000])
plt.ylim([0,20000])
plt.xlabel('Grocery')
plt.ylabel('Milk')
plt.show()
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Figure 2.24: Example plots obtained at the end of the process

Activity 6: Applying the DBSCAN Algorithm to the Dataset

1.	 Open the Jupyter Notebook that you used for the previous activity. 

2.	 Train the model and assign a cluster to each data point in your dataset. Plot the 
results.

First, do not forget to import the algorithm class:

from sklearn.cluster import DBSCAN

To train the model, use the following code:

est_dbscan = DBSCAN(eps=0.8)
pred_dbscan = est_dbscan.fit_predict(data_standardized)

The model was trained using an epsilon value of 0.8. However, feel free to test 
other values to see how the results change.
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Finally, plot the results of the clustering process. As the dataset contains eight 
different features, choose two features to draw at once, as shown in the following 
code:

plt.subplots(1, 2, sharex='col', sharey='row', figsize=(16,8))
plt.scatter(data.iloc[:,5], data.iloc[:,3], c=pred_dbscan, s=20)
plt.xlim([0, 20000])
plt.ylim([0,20000])
plt.xlabel('Frozen')
plt.subplot(1, 2, 1)
plt.scatter(data.iloc[:,4], data.iloc[:,3], c=pred_dbscan, s=20)
plt.xlim([0, 20000])
plt.ylim([0,20000])
plt.xlabel('Grocery')
plt.ylabel('Milk')
plt.show()

Figure 2.25: Example plots obtained at the end of the clustering process

Similar to the previous activity, the separation between clusters is not visually 
seen due to the capability to only draw two out of the eight features at once. 
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Activity 7: Measuring and Comparing the Performance of the Algorithms

1.	 Open the Jupyter Notebook that you used for the previous activity. 

2.	 Calculate both the Silhouette Coefficient score and the Calinski–Harabasz index 
for all the models that you trained previously.

First, do not forget to import the metrics:

from sklearn.metrics import silhouette_score
from sklearn.metrics import silhouette_score

Calculate the Silhouette Coefficient score for all the algorithms, as shown in the 
following code:

kmeans_score = silhouette_score(data_standardized, pred_kmeans, 
metric='euclidean')
meanshift_score = silhouette_score(data_standardized, pred_meanshift, 
metric='euclidean')
dbscan_score = silhouette_score(data_standardized, pred_dbscan, 
metric='euclidean')
print(kmeans_score, meanshift_score, dbscan_score)

The scores come to be around 0.355, 0.093, and 0.168 for the k-means, Mean-
Shift, and DBSCAN algorithms, respectively.

Finally, calculate the Calinski–Harabasz index for all the algorithms. The following 
is a snippet of the code:

kmeans_score = calinski_harabaz_score(data_standardized, pred_kmeans)
meanshift_score = calinski_harabaz_score(data_standardized, pred_
meanshift)
dbscan_score = calinski_harabaz_score(data_standardized, pred_dbscan)
print(kmeans_score, meanshift_score, dbscan_score)

The scores come to be approximately 139.8, 112.9, and 42.45 for the three 
algorithms in the respective order in the code snippet.

By quickly looking at the results obtained for both metrics, it is possible to 
conclude that the k-means algorithm outperforms the other models, and hence, 
should be the one selected to solve the data problem.
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Chapter 3: Supervised Learning: Key Steps

Activity 8: Data Partition over a Handwritten Digit Dataset

1.	 Import the digits toy dataset using scikit-learn's datasets package and create a 
Pandas DataFrame containing the features and target matrices. Use the following 
code:

from sklearn.datasets import load_digits
digits = load_digits()

import pandas as pd
X = pd.DataFrame(digits.data)
Y = pd.DataFrame(digits.target)

The shape of your features and target matrix should be as follows, respectively:

(1797,64) (1797,1)

2.	 Choose the appropriate approach for splitting the dataset and split it.

Conventional split approach (60/20/20%)

Using the train_test_split function, split the data into an initial train set and a 
test set:

from sklearn.model_selection import train_test_split

X_new, X_test, Y_new, Y_test = train_test_split(X, Y, test_size=0.2)

The shape of the sets that you created should be as follows:

(1437,64) (360,64) (1437,1) (360,1)

Next, calculate the value of the test_size, which sets the size of the dev set equal 
to the size of the test set that was created previously:

dev_size = 360/1437

The result of the preceding operation is 0.2505.

Finally, split X_new and Y_new into the final train and dev sets. Use the following 
code:

X_train, X_dev, Y_train, Y_dev = train_test_split(X_new, Y_new, test_size 
= 0.25)
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The final shape of all sets is shown here:

X_train = (1077,64)
X_dev = (360,64)
X_test = (360,64)
Y_train = (1077,1)
Y_dev = (360,1)
Y_test = (360,1)

Cross-Validation Approach

Using the train_test_split function, split the data into an initial train set and a 
test set, just like you did previously:

from sklearn.model_selection import train_test_split

X_new_2, X_test_2, Y_new_2, Y_test_2 = train_test_split(X, Y, test_
size=0.1)

Using the KFold class, perform a 10-fold split:

from sklearn.model_selection import KFold

kf = Kfold(n_splits = 10)
splits = kf.split(X_new_2)

Remember that cross-validation performs different configuration of splits, 
shuffling data each time. Considering this, perform a for loop that will go through 
all the split configurations:

for train_index, dev_index in splits:
  X_train_2, X_dev_2 = X_new_2.iloc[train_index], X_new_2.iloc[dev_index]

  Y_train_2, Y_dev_2 = Y_new_2.iloc[train_index], Y_new_2.iloc[dev_index]

The code in charge of training and evaluating the model should be inside the body 
of the for loop in order to train and evaluate the model with each configuration of 
splits.

The final shape of the sets will be as follows:

X_train_2 = (1456,64)
X_dev_2 = (161,64)
X_test_2 = (180,64)
Y_train_2 = (1456,1)
Y_dev_2 = (161,1)
Y_test_2 = (180,1)
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Activity 9: Evaluating the Performance of the Model Trained over 

a Handwritten Dataset

1.	 Import the toy dataset boston using scikit-learn's datasets package and create 
a Pandas DataFrame containing the features and target matrices:

from sklearn.datasets import load_digits
data = load_digits()

import pandas as pd
X = pd.DataFrame(data.data)
Y = pd.DataFrame(data.target)

2.	 Split the data into training and testing sets. Use 20% as the size of the testing set:

from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = 0.1, 
random_state = 0)

3.	 Train a decision tree over the train set. Then, use the model to predict the class 
label over the test set (hint: to train the Decision Tree, revisit Exercise 12):

from sklearn import tree
model = tree.DecisionTreeClassifier(random_state = 0)
model = model.fit(X_train, Y_train)

Y_pred = model.predict(X_test)

4.	 Use scikit-learn to construct a confusion matrix:

from sklearn.metrics import confusion_matrix
confusion_matrix = confusion_matrix (Y_test, Y_pred)

The output of the confusion matrix is shown as follows:

Figure 3.13: Output of the confusion matrix from Activity 9
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5.	 Calculate the accuracy of the model:

from sklearn.metrics import accuracy_score
accuracy_score = accuracy_score(Y_test, Y_pred)

The accuracy is equal to 84.72%.

6.	 Calculate the precision and recall. Considering that both the precision and recall 
can only be calculated over binary data, assume that we are only interested in 
classifying instances as number 6 or any other number:

Y_test_2 = Y_test[:]
Y_test_2[Y_test_2 != 6] = 1
Y_test_2[Y_test_2 == 6] = 0

Y_pred_2 = Y_pred
Y_pred_2[Y_pred_2 != 6] = 1
Y_pred_2[Y_pred_2 == 6] = 0

From sklearn.metrics import precision_score, recall_score
precision = precision_score(Y_test_2, Y_pred_2)
recall = recall_score(Y_test_2, Y_pred_2)

The precision and recall scores should be equal to 98.41% and 98.10%, respectively. 

Activity 10: Performing Error Analysis over a Model Trained to Recognize 

Handwritten Digits

1.	 Import the digits toy dataset using scikit-learn's datasets package and create a 
Pandas DataFrame containing the features and target matrices:

from sklearn.datasets import load_digits
data = load_digits()

import pandas as pd
X = pd.DataFrame(data.data)
Y = pd.DataFrame(data.target)
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2.	 Split the data into training, validation, and testing sets. Use 0.1 as the size of the 
test set, and an equivalent number to build a validation set of the same shape:

from sklearn.model_selection import train_test_split

X_new, X_test, Y_new, Y_test = train_test_split(X, Y, test_size = 0.1, 
random_state = 101)

X_train, X_dev, Y_train, Y_dev = train_test_split(X_new, Y_new, test_size 
= 0.11, random_state = 101)

3.	 Create a train/dev set for both the features and the target values that contains 89 
instances/labels of the train set and 89 instances/labels of the dev set:

import numpy as np
np.random.seed(101)

indices_train = np.random.randint(0, len(X_train), 89)
indices_dev = np.random.randint(0, len(X_dev), 89)

X_train_dev = pd.concat([X_train.iloc[indices_train,:], X_dev.
iloc[indices_dev,:]])

Y_train_dev = pd.concat([Y_train.iloc[indices_train,:], Y_dev.
iloc[indices_dev,:]])

4.	 Train a decision tree over that training set data:

from sklearn import tree

model = tree.DecisionTreeClassifier(random_state = 101)
model = model.fit(X_train, Y_train)

5.	 Calculate the error rate for all sets of data, and determine which condition 
is affecting the performance of the model:

from sklearn.metrics import accuracy_score
X_sets = [X_train, X_train_dev, X_dev, X_test]
Y_sets = [Y_train, Y_train_dev, Y_dev, Y_test]

scores = []
for i in range(0, len(X_sets)):
  pred = model.predict(X_sets[i])
  score = accuracy_score(Y_sets[i], pred)
  scores.append(score)
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The error rates are shown in the following table:

Figure 3.14: Error rates of the Handwritten Digits model

From the preceding results of the errors, it can be concluded that the model is 
equally suffering from variance and data mismatch.
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Chapter 4: Supervised Learning Algorithms: Predict Annual Income

Activity 11: Training a Naïve Bayes Model for our Census Income Dataset

Before working on step 1, make sure that the data has been preprocessed, as follows:

import pandas as pd

data = pd.read_csv("datasets/census_income_dataset.csv")

data = data.drop(["fnlwgt","education","relationship","sex", "race"], 
axis=1)

After reading the dataset, the three variables considered irrelevant for the study are 
removed.

Next, the remaining qualitative variables are converted into their numerical form via the 
following code:

from sklearn.preprocessing import LabelEncoder

enc = LabelEncoder()

features_to_convert = ["workclass","marital-status","occupation","native-
country","target"]

for i in features_to_convert:

  data[i] = enc.fit_transform(data[i].astype('str'))

Once this is complete, you can begin with the steps of the activity:

1.	 Using the preprocessed Census Income Dataset, separate the features from the 
target by creating the variables X and Y:

X = data.drop("target", axis=1)
Y = data["target"]

Note that there are several ways to achieve the separation of X and Y. Use the one 
that you feel most comfortable with. However, take into account that X should 
contain the features for all instances, while Y should contain the class label of all 
instances.



Chapter 4: Supervised Learning Algorithms: Predict Annual Income | 203

2.	 Divide the dataset into training, validation, and testing sets, using a split ratio of 
10%:

from sklearn.model_selection import train_test_split

X_new, X_test, Y_new, Y_test = train_test_split(X, Y, test_size=0.1, 
random_state=101)

X_train, X_dev, Y_train, Y_dev = train_test_split(X_new, Y_new, test_
size=0.12, random_state=101)

The final shape of all sets must match the values shown in the following code:

X_train = (26048, 9)
Y_train = (26048, )
X_dev = (3256, 9)
Y_dev = (3256, )
X_test = (3257, 9)
Y_test = (3257, )

3.	 Import the Gaussian Naïve Bayes class, and then use the fit method to train the 
model over the training sets (X_train and Y_train):

from sklearn.naive_bayes import GaussianNB

model_NB = GaussianNB()
model_NB.fit(X_train,Y_train) 

4.	 Finally, perform a prediction using the model that you trained previously for a new 
instance with the following values for each feature: 39, 6, 13, 4, 0, 2174, 0, 40, 38.

Using the following code, the prediction for the individual should be equal to zero, 
which means that the individual most likely has an income below or equal to 50K:

pred_1 = model_NB.predict([[39,6,13,4,0,4,1,2174,0,40,38]])
print(pred_1)
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Activity 12: Training a Decision Tree Model for our Census Income Dataset

The shape of the previously created subsets must be as follows:
X_train = (26048, 11)
Y_train = (26048, 1)
X_dev = (3256, 11)
Y_dev = (3256, 1)
X_test = (3257, 11)
Y_test = (3257, 1)

1.	 Using the preprocessed Census Income Dataset that was previously split into the 
different subsets, import the DecisionTreeClassifier class, and then use the fit 
method to train the model over the training sets (X_train and Y_train):

from sklearn.tree import DecisionTreeClassifier

model_tree = DecisionTreeClassifier()
model_tree.fit(X_train,Y_train) 

2.	 Finally, perform a prediction using the model that you trained before for a new 
instance with the following values for each feature: 39, 6, 13, 4, 0, 2174, 0, 40, 38.

Using the following code, the prediction for the individual should be equal to zero, 
which means that the individual most likely has an income below or equal to 50K:

pred_2 = model_tree.predict([[39,6,13,4,0,4,1,2174,0,40,38]])
print(pred_2)

Activity 13: Training a SVM Model for our Census Income Dataset

The shape of the previously created subsets must be as follows:
X_train = (26048, 11)
Y_train = (26048, 1)
X_dev = (3256, 11)
Y_dev = (3256, 1)
X_test = (3257, 11)
Y_test = (3257, 1)

1.	 Using the preprocessed Census Income Dataset that was previously split into the 
different subsets, import the SVC class, and then use the fit method to train the 
model over the training sets (X_train and Y_train):

from sklearn.svm import SVC

model_svm = SVC()
model_svm.fit(X_train,Y_train)
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2.	 Finally, perform a prediction using the model that you trained before for a new 
instance with the following values for each feature: 39, 6, 13, 4, 0, 2174, 0, 40, 38.

Using the following code, the prediction for the individual should be equal to zero, 
which means that the individual most likely has an income below or equal to 50K:

pred_3 = model_svm.predict([[39,6,13,4,0,4,1,2174,0,40,38]])
print(pred_3)
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Chapter 5: Artificial Neural Networks: Predict Annual Income

Activity 14: Training a Multilayer Perceptron for our Census Income Dataset

1.	 Using the preprocessed Census Income Dataset, separate the features from the 
target, creating the variables X and Y:

X = data.drop("target", axis=1)
Y = data["target"]

As explained previously, there are several ways to achieve the separation of X 
and Y, and the main thing to consider is that X should contain the features for all 
instances, while Y should contain the class label of all instances.

2.	 Divide the dataset into training, validation, and testing sets, using a split ratio of 
10%:

from sklearn.model_selection import train_test_split
X_new, X_test, Y_new, Y_test = train_test_split(X, Y, test_size=0.1, 
random_state=101)
X_train, X_dev, Y_train, Y_dev = train_test_split(X_new, Y_new, test_
size=0.1111, random_state=101)

The shape of the sets created should be as follows:

X_train = (26048, 9)
X_dev = (3256, 9)
X_test = (3257, 9)
Y_train = (26048, )
Y_dev = (3256, )
Y_test = (3257, 1)

3.	 From the neural_network module, import the Multilayer Perceptron Classifier 
class. Initialize it and train the model over the training data. 

Leave the hyperparameters to their default values. Again, use a random_state equal 
to 101:

from sklearn.neural_network import MLPClassifier
model = MLPClassifier(random_state=101)
model = model.fit(X_train, Y_train)

4.	 Address any warning that may appear after training the model with the default 
values for the hyperparameters.
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No warning was raised during the training process of the network, which means 
that the model was able to achieve convergence using the default values for the 
hyperparameters. Nevertheless, keep in mind that this does not mean that the 
best model was achieved, and changes in the hyperparameter values may result in 
better performance of the model. 
Calculate the accuracy of the model for all three sets (training, validation, and 
testing):

from sklearn.metrics import accuracy_score

X_sets = [X_train, X_dev, X_test]
Y_sets = [Y_train, Y_dev, Y_test]

accuracy = []

for i in range(0,len(X_sets)):

  pred = model.predict(X_sets[i])
  score = accuracy_score(Y_sets[i], pred)
  accuracy.append(score)

The accuracy score for the three sets should be as follows:

Train sets = 0.8342
Dev sets = 0.8111
Test sets = 0.8252

Activity 15: Comparing Different Models to Choose the Best Fit for the Census 

Income Data Problem

1.	 Open the Jupyter Notebook that you used to train the models.

2.	 Compare the four models based on their accuracy score only.
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By taking the accuracy scores of the models from the previous chapter, it is 
possible to perform a final comparison to choose the model that better solves the 
data problem. To do so, the following table displays the accuracy scores for all four 
models:

Figure 5.17: Accuracy scores of all four models for the Census Income Dataset

To identify the model with the best performance, begin by comparing the 
accuracy rates over the training sets. From this, it is possible to conclude that 
the decision tree model is a better fit to the data problem. Nonetheless, the 
performance over the validation and testing sets is lower than the one achieved 
using the Multilayer Perceptron, which is an indication of the presence of high 
variance in the decision tree model.

Hence, a good approach would be to address the high variance of the decision 
tree model by simplifying the model and adding a pruning argument, for instance 
(the pruning argument "trims" the leaves of the tree to simplify it and ignore some 
of the details of the tree in order to generalize the model to the data). Ideally, the 
model should be able to reach a similar level of accuracy for all three sets, which 
would make it the best model for the data problem.

However, if the model is not able to overcome this variance, and assuming that all 
the models have been fine-tuned to achieve the maximum performance possible, 
the Multilayer Perceptron should be the model that's selected, considering that 
it performs best over the testing sets. This is mainly because the performance of 
the model over the testing set is the one that defines its overall performance over 
unseen data, which means that the one with higher testing set performance will 
be more useful in the long term.
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Activity 16: Performing the Preparation and Creation Stages for the Bank 

Marketing Dataset

For the purpose of this demonstration, a random_state equal to 100 will be used for the 
following solution:

1.	 Open a Jupyter Notebook to implement this activity and import pandas:

import pandas as pd

2.	 Load the previously downloaded dataset into the notebook:

data = pd.read_csv("../datasets/bank-full.csv")

The first 10 rows of the dataset can be seen using the statement data.head(10):

Figure 6.6: A screenshot showing the first 10 instances of the dataset

The missing values are shown as NaN, as explained previously.

3.	 Select the metric that's the most appropriate for measuring the performance 
of the model, considering that the purpose of the study is to detect clients who 
would subscribe to the term deposit.

The metric to evaluate the performance of the model is the precision metric, as 
it compares the correctly classified positive labels against the total number of 
instances predicted as positive.

4.	 Preprocess the dataset. 

Handling Missing Values

Use the following code to check for missing values:

data.isnull().sum()
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Based on the results, you will observe that only four features contain missing 
values: job (288), education (1,857), contact (13,020), and poutcome (36,959).

The first two features can be left unhandled considering that the missing values 
represent less than the 5% of the entire data. On the other hand, 28.8% of the 
values are missing from the contact feature, and taking into account that the 
feature refers to the mode of contact, which is irrelevant for determining whether 
a person will subscribe to a new product, it is safe to remove this feature from the 
study. Finally, the poutcome feature is missing 81.7% of its values, which is why this 
feature is also removed from the study.

Using the following code, the preceding two features are dropped:

data = data.drop(["contact", "poutcome"], axis=1)

Converting the Categorical Features into Numeric Form

For all nominal features, use the following code:

from sklearn.preprocessing import LabelEncoder
enc = LabelEncoder()

features_to_convert = ["job", "marital", "default", "housing", "loan", 
"month", "y"]

for i in features_to_convert:
  data[i] = enc.fit_transform(data[i].astype("str"))

The preceding code, as explained in previous chapters, converts all the qualitative 
features into their numeric forms.

Next, to handle the ordinal feature, we must use the following code:

data["education"] = data["education"].fillna["unknown"]
encoder = ["unknown", "primary", "secondary", "tertiary"]

for i, word in enumerate(encoder):
  data["education"] = data["education"].str.replace(word,str(i))
  data["education"] = data["education"].astype("int64")
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Here, the first line converts NaN values to the word unknown and the second line 
sets the order of the values in the feature. Next, a for loop is used to replace each 
word for a number that follows an order. For the preceding example, 0 will be 
used to replace the word unknown, then 1 will be used instead of primary, and so 
on. Finally, the whole column is converted into an integer type since the replace 
function writes down the numbers as strings.

Dealing with Outliers

Use the following code to check for outliers:

outliers = []

for i in range(data.shape[1]):
  min_t = data[data.columns[i]].mean() – (3 * data[data.columns[i]].std())
  max_t = data[data.columns[i]].mean() + (3 * data[data.columns[i]].std())
  count = 0

  for j in data[data.columns[i]]:
    if j < min_t or j > max_t:
      count += 1

  outliers[data.columns[i]] = [count, data.shape[0]-count]

By analyzing the results from the preceding code, you will observe that the 
outliers do not account for more than 5% of the total values in each feature, which 
is why they can be left unhandled.

5.	 Separate the features from the class label and split the dataset into three sets 
(training, validation, and testing).

To separate the features from the target value, use the following code:

X = data.drop("y", axis = 1)
Y = data["y"]

Next, to perform a split of the form 60/20/20%, use the following code:

from sklearn.model_selection import train_test_split
X_new, X_test, Y_new, Y_test = train_test_split(X, Y, test_size = 0.2, 
random_state = 0)
X_train, X_dev, Y_train, Y_dev = train_test_split(X_new, Y_new, test_size 
= 0.25, random_state = 0)
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The shape of each set is as follows:

X_train = (27126, 14)
Y_train = (27126, )
X_dev = (9042, 14)
Y_dev = (9042, )
X_test = (9043, 14)
Y_test = (9043, )

6.	 Use the Decision Tree and the Multilayer Perceptron algorithms to apply over the 
dataset and train the models.

By using the following code, both algorithms can be trained:

from sklearn.tree import DecisionTreeClassifier
model_tree = DecisionTreeClassifier(random_state = 101)
model_tree.fit(X_train, Y_train)

from sklearn.neural_network import MLPClassifier
model_NN = MLPClassifier(random_state = 101)
model_NN.fit(X_train, Y_train)

7.	 Evaluate both models by using the metric that was selected previously. 

Using the following code, it is possible to measure the precision score of the 
Decision Tree model:

from sklearn.metrics import precision_score
X_sets = [X_train, X_dev, X_test]
Y_sets = [Y_train, Y_dev, Y_test]

precision = []

for i in range(0, len(X_sets)):
  pred = model_tree.predict(X_sets[i])
  score = precision_score(Y_sets[i], pred)
  precision.append(score)

The same code can be modified to calculate the score for the Multilayer 
Perceptron.
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The results from the code are shown in the following table:

Figure 6.7: Precision scores for both models

8.	 Fine-tune some of the hyperparameters to fix the issues detected during the 
evaluation of the model by performing error analysis.

Although the precision of the decision tree over the training sets is perfect, on 
comparing it against the results of the other two sets, it is possible to conclude 
that the model suffers from high variance. 

On the other hand, the Multilayer Perceptron has a similar performance on all 
three sets, but the overall performance is low, which means that the model is more 
likely to be suffering from high bias.

Considering this, for the decision tree model, both the minimum number of 
samples required to be at a leaf node and the maximum depth of the tree are 
changed in order to simplify the model. On the other hand, for the Multilayer 
Perceptron, the number of iterations, the number of hidden layers, the number of 
units in each layer, and the tolerance for optimization are changed. 

The following code shows the final values used for each hyperparameter, 
considering that to arrive at them it is required to try different values:

from sklearn.tree import DecisionTreeClassifier
model_tree = DecisionTreeClassifier(randome_state = 101, min_samples_leaf = 
100, max_depth = 100)
model_tree.fit(X_train, Y_train)

from sklearn.neural_network import MLPClassifier
model_NN = MLPClassifier(random_state = 101, max_iter = 1000, hidden_layer_
sizes = [100,100,50,25,25], tol=1e-7)
model_NN.fit(X_train, Y_train)
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9.	 Compare the final versions of your models and select the one that you consider 
best fits the data.

By calculating the precision score for all three sets for the newly trained models, 
we obtain the following values:

Figure 6.8: Precision scores for the newly trained models

An improvement in performance for both models is achieved, and by comparing 
the values, it is possible to conclude that the Multilayer Perceptron outperforms 
the Decision Tree. Based on this, the Multilayer Perceptron is selected as the 
better model to solve the data problem.

Activity 17: Saving and Loading the Final Model for the Bank 

Marketing Dataset

1.	 Save the model into a file named final_model.pkl: 

path = os.getcwd() + "/final_model.pkl"
file = open(path, "wb")
pickle.dump(model_NN, file)

2.	 Open a new Jupyter Notebook and import the required modules and class:

from sklearn.neural_network import MLPClassifier
import pickle
import os

3.	 Load the model:

path = os.getcwd() + "/final_model.pkl"
file = open(path, "rb")
model = pickle.load(file)
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4.	 Perform a prediction for an individual by using the following values: 

42, 2, 0, 0, 1, 2, 1, 0, 5, 8, 380, 1, -1, 0.

pred = model.predict([[42,2,0,0,1,2,1,0,5,8,380,1,-1,0]])

By printing the pred variable, the output is 0, which is the numeric form of No. This 
means that the individual is more likely to not subscribe to the new product.

Activity 18: Allowing Interaction with the Bank Marketing Dataset Model

1.	 In a text editor, create a class object that contains two main functions. One should 
be an initializer that loads the model, and the other should be a predict method 
where the data is fed to the model to retrieve an output:

import pandas as pd
import pickle
import os
from sklearn.neural_network import MLPClassifier

Class NN_Model(object):

  def __init__(self):
    path = os.getcwd() + "/model_exercise.pkl"
    file = open(path, "rb")
    self.model = pickle.load(file)

  def predict(self, age, job, marital, education, default, balance, 
housing, loan, day, month, duration, campaign, pdays, previous):
    X = [[age, job, marital, education, default, balance, housing, loan, 
day, month, duration, campaign, pdays, previous]]
    return self.model.predict(X)
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2.	 In a Jupyter Notebook, import and initialize the class that you created in the last 
step. Next, create the variables that will hold the values for the features and use 
the following values: 42, 2, 0, 0, 1, 2, 1, 0, 5, 8, 380, 1, -1, 0.

from trainedModel import NN_Model

model = NN_Model()

age = 42
job = 2
marital = 0
education = 0
default = 1
balance = 2
housing = 1
loan = 0
day = 5
month = 8
duration = 380
campaign = 1
pdays = -1
previous = 0

3.	 Perform a prediction by applying the predict method:

pred = model.predict(age=age, job=job, marital=marital, 
education=education, default=default, balance=balance, housing=housing, 
loan=loan, day=day, month=month, duration=duration, campaign=campaign, 
pdays=pdays, previous=previous)

By printing the variable, the prediction is equal to 0; that is, the individual with the 
given features is not likely to subscribe to the product.
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