

Learning Spring Boot 3.0

Third Edition

Simplify the development of production-grade applications
using Java and Spring

Greg L. Turnquist

BIRMINGHAM—MUMBAI

Learning Spring Boot 3.0
Third Edition
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author(s), nor Packt Publishing or its dealers and distributors, will be held
liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Pavan Ramchandani
Publishing Product Manager: Bhavya Rao
Senior Editor: Mark D’Souza
Technical Editor: Simran Ali
Copy Editor: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Nilesh Mohite
Marketing Coordinator: Anamika Singh

First published: November 2014
Second Edition: November 2017
Third Edition: December 2022
Production reference: 2130123

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80323-330-7
www.packt.com

To my fans on YouTube, who have given me the opportunity to share my love for Spring Boot. To my
children, who have put up with me spending hours filming in my studio space. And to my wife, who
has supported me in word and action as I’ve attempted to build a community.

– Greg L. Turnquist

Forewords

Spring Boot has been such a success that it’s probably not wrong to describe it as “mainstream” in 2022.
Practically every Java developer will know something about it, and many, maybe even the majority,
will have used it, even if in anger. But in software engineering, there’s always something new to learn,
and there are always new problems to solve – that’s what makes it so rewarding in the end. There’s
always something new to invent, too, and having the skill and opportunity to create code is extremely
rewarding intellectually and in other ways.

One of the goals of Spring Boot is shared by the author of this book, and that is to get your ideas down
into code as quickly and efficiently as possible, so you can get it to the most special place: Production.
I wish you a short and pleasant journey, or maybe a long series of short and pleasant journeys.

In this book, Greg has used his insider advantage to add Spring Boot knowledge to some old, well-
seasoned favourite problems that you all will have experienced as Java developers. What better way
to learn than to look at Spring Boot through the lens of tasks that we all have to solve nearly every
day: creating HTTP endpoints, securing them, connecting to databases, writing tests? This book adds
some new angles to these old chestnuts by applying some modern ideas and tools, so read it and you
will learn about things such as hypermedia and OAuth, all from the most practical and pragmatic of
standpoints. It also starts right at the very beginning, and assumes no prior knowledge of Spring, or
even Java. Anyone with some basic technical or programming skills will be able to get to grips with
how and why to use Spring Boot.

There is more to Spring Boot than just main methods, embedded containers, autoconfiguration, and
management endpoints. The pure joy of getting started with a fully featured Spring application in a
few lines of code cannot be understated, for instance. I invite you to dip into this book, break out an
editor or an IDE, and crank up some applications for yourself.

Greg has been an important member of the Spring Boot team, despite having a day job doing other
things in the Spring Engineering effort, and we can be grateful for that, as well as the effort he has
lavished on this excellent book. He has always been an educator and an informer, as well as an engineer,
and this shows very clearly in this book. When I read it, I can hear Greg’s voice and personality very
clearly, and it is always calm but enthusiastic, with a touch of humour. Read it yourself and enjoy –
coding with Spring is still fun after all these years!

Dave Syer

Sr. Staff Engineer and Co-Creator of Spring Boot

London, 2022

I’ve known Greg Turnquist for a number of years. After I joined Pivotal (and before I had officially
started) I first met him in person at SpringOne2GX, the annual conference of all things Spring and
more (anyone remember the heady days of Groovy and Grails?). We had some great, thought-provoking
conversations there, and they’ve continued through the years since.

One of the first Spring Boot books I read was Greg’s first edition of Learning Spring Boot. I wish I
had read it sooner! I found myself recommending it to numerous people, along with other books by
trusted colleagues, as a valuable introduction and reference to various Boot-related topics.

As an author myself, I know all too well the exhilarating and excruciating task Greg faced when
writing and updating this book. Every author has to balance all the things they want to share, all
the topics they feel most important, with the constant constraints of time and volume. Greg deftly
threads this needle, providing a good foundation and then quickly shifting to topics important to
developers, using Spring Boot to field real applications. Data? Security? Configuration? Integration
with JavaScript? It’s in there.

I loved working with Greg on the Spring team, and I continue to enjoy every conversation we have.
There will always be an honored place on my (virtual) mantle for Greg’s books, and I hope that you
make room on yours for them as well. Read this book and get to know Greg! Your Spring Boot apps
will benefit from both.

Best to you in your Spring Boot journey,

Mark Heckler

Principle Cloud Advocate, Microsoft

@mkheck

Look, I know you’re probably reading this foreword hoping for some compelling testimonial about
this book, along with some witticism and a fun anecdote about life. Why wouldn’t you? It’s a preface
to a book. But I can’t in good conscience write that foreword for you; it smacks of absurdity. But, of
course, this book is fantastic. So, I don’t want to linger on the obvious.

Let’s talk about Greg, the author of this chef-d’oeuvre. Greg’s been on the Spring team longer than I
have been. He’s forgotten more than most people will ever know about the depths of Spring. He invests
time in the big and the small. You can trust him to be your sherpa and guide you from beginner to
Spring Boot-iful. I do.

Greg’s a friend. He and I get along because, in some crucial ways, we’re very much alike. I like odd
little projects that, while not necessarily mainstream, sometimes solve acutely painful problems. I
once gave a talk to three people. My presentation was so specific that, out of thousands of attendees
at the show, only three could be bothered to attend. I’m willing to advocate for the faintest glimmer
of a solution if I believe in it. Greg is too. He invests in the big and small.

We both love the JVM and Python. That shared affection brings us around to Spring Python. Long ago,
Greg brought some of the brilliance of the Spring Framework to the Python ecosystem with his project
Spring Python. Python’s ecosystem brims with alternatives for every use case. In this sea of choice,
Spring Python stood out. It delivered on the lofty goals of the Spring Framework while remaining
“Pythonic”, a quality that signals a library will feel idiomatic to a familiar Python programmer. It
showed a deep commitment to, and familiarity with, two vastly divergent ecosystems. I love Greg
because of Spring Python. It shows he’s willing to sit down, roll up his sleeves, expand his horizons,
and write code until a problem is solved– no matter how big or small. That willingness to dive deep
into a topic makes him a gifted writer and teacher, which is evident in his books, courses, blogs, and
articles. His gift makes these printed pages something more than yet another book on software; they’re
a tome worth your time.

This book covers the just-released Spring Boot 3.0, arguably the most critical release of Spring Boot
(or any other Spring ecosystem project) since Spring Boot itself appeared publicly for the very first
time in 2013. I know all of us on the Spring team, Greg included, worked harder and longer than
ever to get this release out the door. Yet, against all that work, Greg managed to get this book in your
hands in record time. He did that so we, dear readers, could get to production in record time. He did
that so we would not have to invest in the big and the small.

Josh Long

Spring Developer Advocate, VMware, (and well-known Greg Turnquist fan)

@starbuxman

Contributors

About the author
Greg L. Turnquist is the lead developer for Spring Data JPA and Spring Web Services. He has contributed
to Spring HATEOAS, Spring Data REST, Spring Security, the Spring Framework, and many other
parts of the Spring portfolio. He has maintained the Spring Data team’s CI system for years with his
script-fu. He has written multiple tomes on Spring Boot, including Packt’s best-selling title Learning
Spring Boot 2.0 Second Edition as well as the very first Spring Boot book to ever hit the market. He
even launched his own YouTube channel, Spring Boot Learning (http://bit.ly/3uSPLCz), the
channel where you learn about Spring Boot and have fun doing it. Before joining the Spring team,
Greg worked as a senior software engineer at Harris Corp. on multiple projects including its ambitious
$1.5 billion telecom contract with the FAA to build a nationwide, always-on network. As a test-bitten
script junky, Greg is no stranger to midnight failures. He has a master’s degree in computer engineering
and lives in the United States with his wife and their gaggle of minions.

I want to thank the Spring team, who have encouraged me at every turn, Dan Vega, for giving me the
inspiration to make YouTube content, and the team at Packt, who have worked tirelessly to help me
publish this technical work.

About the reviewer
Harsh Mishra is a software engineer who enjoys learning new technologies for his own knowledge
and experience, focusing on designing and developing enterprise solutions. He is a clean code and
Agile fan. He has been developing code for financial businesses since 2014 and has been using Java
as his primary programming language. He also has product experience in Spring, Microsoft, GCP,
DevOps, and other enterprise technologies.

Preface� xi

Part 1: The Basics of Spring Boot

1
Core Features of Spring Boot� 3

Technical requirements� 4
Installing Java 17� 4
Installing a modern IDE� 4
Creating a GitHub account� 5
Finding additional support� 5

Autoconfiguring Spring beans� 6
Understanding application context � 6
Exploring autoconfiguration policies in
Spring Boot� 7

Adding portfolio components using
Spring Boot starters� 10
Customizing the setup with
configuration properties� 11
Creating custom properties� 13
Externalizing application configuration� 14
Configuring property-based beans� 17

Managing application dependencies� 18
Summary� 20

Part 2: Creating an Application with Spring Boot

2
Creating a Web Application with Spring Boot� 23

Using start.spring.io to build apps� 24
Creating a Spring MVC web controller� 27
Using start.spring.io to augment an
existing project� 28
Leveraging templates to create content� 30

Adding demo data to a template� 31
Building our app with a better design� 34
Injecting dependencies through
constructor calls� 36
Changing the data through HTML forms� 37

Creating JSON-based APIs� 40

Table of Contents

Table of Contentsx

Hooking in Node.js to a Spring Boot
web app� 44
Bundling JavaScript with Node.js� 46

Creating a React.js app� 48

Summary� 54

3
Querying for Data with Spring Boot� 55

Adding Spring Data to an existing
Spring Boot application� 56
Using Spring Data to easily manage data� 57
Adding Spring Data JPA to our project� 58

DTOs, entities, and POJOs, oh my!� 59
Entities� 59
DTOs� 60
POJOs� 61

Creating a Spring Data repository� 62
Using custom finders� 63
Sorting the results� 68
Limiting query results� 69

Using Query By Example to find
tricky answers� 70
Using custom JPA� 74
Summary� 76

4
Securing an Application with Spring Boot� 77

Adding Spring Security to our project� 78
Creating our own users with a
custom security policy� 79
Swapping hardcoded users with a
Spring Data-backed set of users� 81
Securing web routes and HTTP verbs� 85
To CSRF or not to CSRF, that is the question� 90

Securing Spring Data methods� 92
Updating our model� 92
Taking ownership of data� 94
Adding a delete button� 95

Locking down access to the owner of the data� 97
Enabling method-level security� 97
Displaying user details on the site� 98

Leveraging Google to authenticate
users� 102
Pros of using OAuth� 103
Cons of using OAuth� 103
Creating a Google OAuth 2.0 application� 103
Adding OAuth Client to a Spring Boot project� 105
Invoking an OAuth2 API remotely� 108
Creating an OAuth2-powered web app� 112

Summary� 120

5
Testing with Spring Boot� 121

Adding JUnit 5 to the application� 122 Creating tests for your domain objects�123

Table of Contents xi

Testing web controllers with
MockMVC� 127
Testing data repositories with mocks� 130
Testing data repositories with
embedded databases� 135

Adding Testcontainers to
the application� 139
Testing data repositories
with Testcontainers� 142
Testing security policies with
Spring Security Test� 146
Summary� 151

Part 3: Releasing an Application with Spring Boot

6
Configuring an Application with Spring Boot� 155

Creating custom properties� 156
Creating profile-based property files� 161
Switching to YAML� 164

Setting properties with environment
variables� 166
Ordering property overrides� 167
Summary� 169

7
Releasing an Application with Spring Boot� 171

Creating an uber JAR� 172
Baking a Docker container� 175
Building the “right” type of container� 176

Releasing your application to
Docker Hub� 179
Tweaking things in production� 182
Scaling with Spring Boot� 183

Summary� 187

8
Going Native with Spring Boot� 189

What is GraalVM and why do
we care?� 190
Retrofitting our application
for GraalVM� 190

Running our native Spring Boot
application inside GraalVM� 194
Why do we want GraalVM again?� 198

Table of Contentsxii

Baking a Docker container with
GraalVM� 199

Spring Boot 3.0 versus Spring Boot 2.7
and Spring Native� 200
GraalVM and other libraries� 200

Summary� 200

Part 4: Scaling an Application with Spring Boot

9
Writing Reactive Web Controllers� 203

What is reactive and why do we care?� 204
Introduction to Reactive� 204
Reactive Stream details� 205

Creating a reactive Spring
Boot application� 207
Serving data with a reactive
GET method� 208
Consuming incoming data with
a reactive POST method� 210

Scaling applications with Project Reactor� 211
Quick history on Java concurrent
programming� 211

Serving a reactive template� 212
Creating a reactive web controller� 213
Crafting a Thymeleaf template� 214

Creating hypermedia reactively� 219
Summary� 226

10
Working with Data Reactively� 227

Learning what it means to fetch data
reactively� 227
Picking a reactive data store� 229
Creating a reactive data repository� 230
Trying out R2DBC� 231

Loading data with R2dbcEntityTemplate� 233
Returning data reactively to an API controller� 234
Reactively dealing with data in a template� 236

Summary� 238

Index� 241

Other Books You May Enjoy� 248

Preface

This book is designed for both novices and experienced Spring developers. It will teach you how to build
Java applications without wasting time on infrastructure and other tedious details. Instead, it will help
you focus on building web apps on top of real databases, locked down with modern security practices.

On top of that, you’ll discover multiple ways to carry an app to production. If that’s not enough, it even
includes secret ways (okay, not really secret) at the end to squeeze more out of your existing servers
(or cloud) by picking up and running with reactive programming.

Who this book is for
This book is designed for both novices and experienced Spring developers who want to get their hands
on Spring Boot 3.0. You should have a rudimentary understanding of Java, preferably Java 8 or higher.
Being familiar with lambda functions, method references, record types, and the new-and-improved
collections API found in Java 17 is a bonus, but not required.

Having used previous versions of Spring Boot (1.x, 2.x) is not required but would be handy.

What this book covers
Chapter 1, Core Features of Spring Boot, is where you discover the charm of Spring Boot with its
fundamental features to work with you as you build your app.

Chapter 2, Creating a Web Application with Spring Boot, teaches you how to craft the web layer for a
Java app with ease, with both server-side and client-side options.

Chapter 3, Querying for Data with Spring Boot, shows you how to get the most out of your database
with Spring Data.

Chapter 4, Securing an Application with Spring Boot, shows you how to use Spring Security’s cutting-
edge features to lock down your app from bad guys, inside and out.

Chapter 5, Testing with Spring Boot, teaches you how to build confidence in your systems through testing
with mocks and embedded databases, and even using Testcontainers combined with real databases.

Chapter 6, Configuring an Application with Spring Boot, shows you ways to tune and adapt your app
once it’s built.

Chapter 7, Releasing an Application with Spring Boot, helps you discover multiple ways to take your
app to production and put it in the hands of your users.

Prefacexiv

Chapter 8, Going Native with Spring Boot, shows you how to speed up your app by leaps and bounds
using native images that start in subsecond time and don’t hog all your resources.

Chapter 9, Writing Reactive Web Controllers, teaches you how easy it is to write reactive web controllers
and how they can be your key to a more efficient app.

Chapter 10, Working with Data Reactively, helps you discover how to query for data reactively using
R2DBC and see how efficient your app can be.

To get the most out of this book
Spring Boot 3.0 is built on Java 17. By using sdkman (https://sdkman.io), you can easily install
the version of Java needed. In Chapter 8, Going Native with Spring Boot, we’ll include instructions
on how to use sdkman to install a specific flavor of Java 17 that supports building native images for
GraalVM. While it’s possible to write code using a barebones text editor, any modern IDE (see the
following list) will greatly enhance the coding experience. Check out the one that works best for you.

Software/hardware covered in the book Operating
system requirements

sdkman (for Java 17) (https://sdkman.io) Windows, macOS, or Linux
Any modern IDE will help with writing code:

•	 IntelliJ IDEA (https://springbootlearning.com/
intellij-idea-try-it)

•	 VS Code (https://springbootlearning.com/
vscode)

•	 Spring Tool Suite (https://springbootlearning.
com/sts)

Windows, macOS, or Linux

VS Code and Spring Tool Suite are free. IntelliJ IDEA has a Community Edition and an Ultimate
Edition. The Community Edition is free, but some of the Spring-specific features require purchasing
the Ultimate Edition. There is a 30-day trial to give it a spin.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

This book, however, isn’t the end of your journey into building Spring Boot apps. Check out my
YouTube channel, Spring Boot Learning (http://bit.ly/3uSPLCz), where I publish videos all
the time on Spring Boot and software engineering. There are also additional resources at https://
springbootlearning.com to help you write better apps!

Preface xv

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Learning-Spring-Boot-3.0. If there’s an update to the code, it will
be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/FvE6S.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “This can be
done by first adding an application.properties file to our src/main/resources folder.”

A block of code is set as follows:

@Controller

public class HomeController {

  private final VideoService videoService;

  public HomeController(VideoService videoService) {

    this.videoService = videoService;

  }

  @GetMapping("/")

  public String index(Model model) {

    model.addAttribute("videos", videoService.getVideos());

    return "index";

  }

}

Prefacexvi

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

@Bean

SecurityFilterChain configureSecurity(HttpSecurity http) {

  http.authorizeHttpRequests()

    .requestMatchers("/login").permitAll()

    .requestMatchers("/", "/search").authenticated()

    .anyRequest().denyAll()

    .and()

    .formLogin()

    .and()

    .httpBasic();

  return http.build();

}

Any command-line input or output is written as follows:

$ cd ch7

$./mvnw clean spring-boot:build-image

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in
menus or dialog boxes appear in bold. Here is an example: “To do that, go to the Dependencies section.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Preface xvii

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Learning Spring Boot 3.0, we’d love to hear your thoughts! Please click here
to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

Prefacexviii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803233307

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

Part 1:
The Basics of Spring Boot

Spring Boot has several key ingredients that underpin all of its features. You will learn how
autoconfiguration, Spring Boot starters, configuration properties, and managed dependencies make
it possible to build your most powerful application yet.

This part includes the following chapter:

•	 Chapter 1, Core Features of Spring Boot

1
Core Features of Spring Boot

Rod Johnson, CEO of the company behind the foundation of the Spring Framework and dubbed
the father of Spring, opened the 2008 Spring Experience conference with a stated mission: reducing
Java complexity. The YouTube video titled Story time with Keith Donald Co-Founder SpringSource
& Founder SteadyTown 2-27-2014 (https://springbootlearning.com/origin-of-
spring), uploaded by TrepHub, is a 90-minute journey back into the early days of Spring guided by
Keith Donald, one of Spring’s co-founders. Here too, you’ll find the same mission reinforced.

Java in the mid-2000s was challenging to use, difficult to test, and frankly short on enthusiasm.

But along came a toolkit: the Spring Framework. This toolkit focused on easing developers’ lives. And
the excitement was off the charts. The buzz when I attended that 2008 conference was incredible.

Fast forward to 2013 at the SpringOne 2GX conference, the Spring team unveiled Spring Boot: a new
approach to writing Spring apps. This approach resulted in standing-room attendance. I was in the
room when co-leads Phil Webb and Dave Syer gave their first talk. In a room designed like a stadium
lecture hall, the seats were packed. The opening keynote revealed a revolutionary way to build more
extensive and powerful apps… with less.

This ability to do more with less using Spring Boot is what we’ll discover together as we journey into
the world of the third generation of Spring Boot.

In this chapter, we’ll learn about the core features of Spring Boot, which show fundamentally how it
does less with more. This is to get a taste of how Spring Boot operates, allowing us to leverage it in later
chapters as we build applications. The key aspects that make Spring Boot powerful while retaining its
flexibility to serve user needs will be described in this chapter.

In this chapter, we’ll cover the following topics:

•	 Autoconfiguring Spring beans

•	 Adding components of the Spring portfolio using Spring Boot starters

•	 Customizing the setup with configuration properties

•	 Managing application dependencies

Core Features of Spring Boot4

Technical requirements
For this book, you’ll only need a handful of tools to follow along:

•	 Java 17 Development Kit (JDK 17)

•	 A modern integrated development environment (IDE)

•	 A GitHub account

•	 Additional support

Installing Java 17

Spring Boot 3.0 is built on top of Java 17. For ease of installation and using Java, it’s easiest to use
sdkman as your tool to handle installing and switching between different JDKs, as shown here:

1.	 Visit https://sdkman.io/.

2.	 Following the site’s instructions, execute curl -s "https://get.sdkman.io" |
bash from any terminal or shell on your machine.

3.	 Follow any subsequent instructions provided.

4.	 From there, install Java 17 on your machine by typing sdk install java 17.0.2-tem.
When prompted, pick it as your default JDK of choice in any terminal.

This will download and install the Eclipse Temurin flavor of Java 17 (formerly known as AdoptOpenJDK).
Eclipse Temurin is a free, open source version of OpenJDK, compliant with all standard Java TCKs. In
general, it’s a variant of Java recognized by all parties as acceptable for Java development. Additionally,
it comes with no requirements to pay for licensing.

Tip
If you need a commercially supported version of Java, then you will have to do more research.
Many shops that provide commercial support in the Java space will have various options. Use
what works best for you. But if commercial support is not needed, then Eclipse Temurin will
work fine. It’s used by many projects managed by the Spring team itself.

Installing a modern IDE

Most developers today use one of the many free IDEs to do their development work. Consider
these options:

•	 IntelliJ IDEA – Community Edition (https://www.jetbrains.com/idea/)

Technical requirements 5

•	 Spring Tools 4 (https://spring.io/tools):

	� Spring Tools 4 for Eclipse

	� Spring Tools 4 for VS Code

IntelliJ IDEA is a powerful IDE. The Community Edition, which is free, has many bits that will serve
you well. The Ultimate Edition, which costs 499 USD, is a complete package. If you grab this (or
convince your company to buy a license!), it’s a valuable investment.

That being said, Spring Tools 4, whether you pick the Eclipse flavor or the VS Code one, is a powerful
combo as well.

If you’re not sure, go ahead and test out each one, perhaps for a month, and see which one provides
you with the best features. They each have top-notch support for Spring Boot.

At the end of the day, some people do prefer a plain old text editor. If that’s you, fine. At least evaluate
these IDEs to understand the tradeoffs.

Creating a GitHub account

I always tell anyone entering the world of 21st century software development to open a GitHub account
if they haven’t already. It will ease access to so many tools and systems out there.

Visit https://github.com/join if you’re just getting started.

This book’s code is hosted on GitHub at https://github.com/PacktPublishing/
Learning-Spring-Boot-3.0.

You can work your way through the code presented in this book, but if you need to go to the source,
visit the aforementioned link and grab a copy for yourself!

Finding additional support

Finally, there are some additional resources to visit for more help:

•	 I host a YouTube channel focused on helping people get started with Spring Boot at https://
youtube.com/@SpringBootLearning. All the videos and live streams there are
completely free.

•	 There is additional content provided to my exclusive members at https://
springbootlearning.com/member. My members also get one-on-one access to me
with questions and concerns.

•	 If you’re a paying subscriber on Medium, I also write technical articles based on Spring Boot,
along with overall software development topics, at https://springbootlearning.
medium.com. Follow me over there.

Core Features of Spring Boot6

•	 I also share any technical articles posted with my newsletter at https://
springbootlearning.com/join for free. You also get an e-book for free if you sign up.

If you’ve downloaded Java 17 and installed an IDE, then you’re all set, so let’s get to it!

Autoconfiguring Spring beans
Spring Boot comes with many features. But the most well-known one, by far, is autoconfiguration.

In essence, when a Spring Boot application starts up, it examines many parts of our application,
including classpath. Based on what the application sees, it automatically adds additional Spring
beans to the application context.

Understanding application context

If you’re new to Spring, then it’s important to understand what we’re talking about when you hear
application context.

Whenever a Spring Framework application starts up, whether or not Spring Boot is involved, it creates
a container of sorts. Various Java beans that are registered with Spring Framework’s application context
are known as Spring beans.

Tip
What’s a Java bean? Java beans are objects that follow a specific pattern: all the fields are
private; they provide access to their fields through getters and setters, they have a no-argument
constructor, and they implement the Serializable interface.

For example, an object of the Video type with name and location fields would set
those two fields to private and offer getName(), getLocation(), setName(),
and setLocation() as the ways to mutate the state of this bean. On top of that, it would
have a no-argument Video() constructor call. It’s mostly a convention. Many tools provide
property support by leveraging the getters and setters. The requirement to implement the
Serializable interface, though, is not as tightly enforced.

Spring Framework has a deep-seated concept known as dependency injection (DI), where a Spring
bean can express its need for a bean of some other type. For example, a BookRepository bean
may require a DataSource bean:

@Bean

public BookRepository bookRepository(DataSource dataSource) {

  return new BookRepository(dataSource);

}

Autoconfiguring Spring beans 7

This preceding Java configuration, when seen by the Spring Framework, will cause the following flow
of actions:

1.	 bookRepository needs a DataSource.

2.	 Ask the application context for a DataSource.

3.	 The application context either has it or will go create one and return it.

4.	 bookRepository executes its code while referencing the app context’s DataSource.

5.	 BookRepository is registered in the application context under the name bookRepository.

The application context will ensure all Spring beans needed by the application are created and properly
injected into each other. This is known as wiring.

Why all this instead of a handful of new operations in various class definitions? Simple. For the standard
situation of powering up our app, all the beans are wired together as expected.

For a test case, it’s possible to override certain beans and switch to stubbed or mocked beans.

For cloud environments, it’s easy to find all DataSource and replace them with beans that link to
bound data services.

By removing the new operation from our example BookRepository, and delegating that
responsibility to the application context, we open the door to flexible options that make the whole
life cycle of application development and maintenance much easier.

We’ll explore how Spring Boot heavily leverages the Spring Framework’s ability to inject beans based
on various circumstances throughout this book. It is important to realize that Spring Boot doesn’t
replace the Spring Framework but rather highly leverages it.

Now that you know what an application context is, it is time to dive into the many ways Spring Boot
makes use of it through autoconfiguration.

Exploring autoconfiguration policies in Spring Boot

Spring Boot comes with a fistful of autoconfiguration policies. These are classes that contain @Bean
definitions that are only registered based on certain conditional circumstances. Perhaps an example
is in order?

If Spring Boot detects the class definition of DataSource somewhere on the classpath,
a class found inside any Java Database Connectivity (JDBC) driver, it will activate its
DataSourceAutoConfiguration. This policy will fashion some version of a DataSource
bean. This is driven by the @ConditionalOnClass({ DataSource.class }) annotation
found on that policy.

Core Features of Spring Boot8

Inside DataSourceAutoConfiguration are inner classes, each driven by various factors. For
example, some classes will discern whether or not we have used an embedded database such as H2
compared to a pooled JDBC asset such as HikariCP.

And just like that, the need for us to configure an H2 DataSource is removed. A small piece of
infrastructure that is often the same across a multitude of applications is taken off our plate and instead
managed by Spring Boot. And we can move more quickly toward writing business code that uses it.

Spring Boot autoconfiguration also has smart ordering built in, ensuring beans are added properly.
Don’t worry! Using Spring Boot doesn’t depend on us having to know this level of detail.

Most of the time, we don’t have to know what Spring Boot is up to. It’s designed to do the right thing
when various things are added to the build configuration.

The point is that many features, such as servlet handlers, view resolvers, data repositories, security
filters, and more are activated, simply based on what dependencies we add to the build file.

And do you know what’s even better than automagically adding Spring beans? Backing off.

Some beans are created based on the classpath settings. But if a certain bean definition is detected
inside our code, the autoconfiguration won’t kick in.

Continuing with the example from earlier, if we put something such as H2 in our classpath but
define a DataSource bean and register it in the application context, Spring Boot will accept our
DataSource bean over theirs.

No special hooks. No need to tell Spring Boot about it. Just create your own bean as you see fit, and
Spring Boot will pick it up and run with it!

This may sound low-level, but Spring Boot’s autoconfiguration feature is transformational. If we focus
on adding all the dependencies our project needs, Spring Boot will, as stated earlier, do what’s right.

Some of the autoconfiguration policies baked into Spring Boot extend across these areas:

•	 Spring AMQP: Communicate asynchronously using an Advanced Message Queueing Protocol
(AMQP) message broker

•	 Spring AOP: Apply advice to code using Aspect-Oriented Programming

•	 Spring Batch: Process large volumes of content using batched jobs

•	 Spring Cache: Ease the load on services by caching results

•	 Data store connections (Apache Cassandra, Elasticsearch, Hazelcast, InfluxDB, JPA, MongoDB,
Neo4j, Solr)

•	 Spring Data (Apache Cassandra, Couchbase, Elasticsearch, JDBC, JPA, LDAP, MongoDB,
Neo4j, R2DBC, Redis, REST): Simplify data access

•	 Flyway: Database schema management

Autoconfiguring Spring beans 9

•	 Templating engines (Freemarker, Groovy, Mustache, Thymeleaf)

•	 Serialization/deserialization (Gson and Jackson)

•	 Spring HATEOAS: Add Hypermedia as the Engine of Application State (HATEOAS) or
hypermedia to web services

•	 Spring Integration: Support integration rules

•	 Spring JDBC: Simplify accessing databases through JDBC

•	 Spring JMS: Asynchronous through Java Messaging Service (JMS)

•	 Spring JMX: Manage services through Java Management Extension (JMX)

•	 jOOQ: Query databases using Java Object Oriented Querying (jOOQ)

•	 Apache Kafka: Asynchronous messaging

•	 Spring LDAP: Directory-based services over Lightweight Directory Access Protocol (jOOQ)

•	 Liquibase: Database schema management

•	 Spring Mail: Publish emails

•	 Netty: An asynchronous web container (non-servlet-based)

•	 Quartz scheduling: Timed tasks

•	 Spring R2DBC: Access relational databases through Reactive Relational Database
Connectivity (R2DBC)

•	 SendGrid: Publish emails

•	 Spring Session: Web session management

•	 Spring RSocket: Support for the async wire protocol known as RSocket

•	 Spring Validation: Bean validation

•	 Spring MVC: Spring’s workhorse for servlet-based web apps using the Model-View-Controller
(MVC) paradigm

•	 Spring WebFlux: Spring’s reactive solution for web apps

•	 Spring Web Services: Simple Object Access Protocol (SOAP)-based services

•	 Spring WebSocket: Support for the WebSocket messaging web protocol

This is a general list and is by no means exhaustive. It’s meant to give us a glance at the breadth of
Spring Boot.

And as cool as this set of policies and its various beans are, it’s lacking a few things that would make
it perfect. For example, can you imagine managing the versions of all those libraries? And what about
hooking in our own settings and components? We’ll cover these aspects in the next few sections.

Core Features of Spring Boot10

Adding portfolio components using Spring Boot starters
Remember in the previous section how we talked about adding H2? Or Spring MVC? Maybe
Spring Security?

I’m going out on a limb here, but I’m presuming you don’t have any project dependency coordinates
committed to memory. What does Spring Boot offer? A collection of virtual dependencies that will
ease adding things to the build.

If you add org.springframework.boot:spring-boot-starter-web (as shown here)
to the project, it will activate Spring MVC:

<dependency>

    <groupId>org.springframework.boot</groupId>

    <artifactId>spring-boot-starter-web</artifactId>

</dependency>

If you add org.springframework.boot:spring-boot-starter-data-jpa to the
project (as shown here), it will activate Spring Data JPA:

<dependency>

    <groupId>org.springframework.boot</groupId>

    <artifactId>spring-boot-starter-data-jpa</artifactId>

</dependency>

There are 50 different Spring Boot starters, each with the perfect coordinates to various bits of the
Spring portfolio and other related third-party libraries.

But the problem isn’t just a shortcut to adding Spring MVC to classpath. There’s little difference
between org.springframework.boot:spring-boot-starter-web and org.
springframework:spring-webmvc. That’s something we probably could have figured out
with our favorite internet search engine.

No, the issue is that if we want Spring MVC, it implies we probably want the whole Spring Web
experience.

Note
Spring MVC versus Spring Web? Spring Framework has three artifacts involving web
applications: Spring Web, Spring MVC, and Spring WebFlux. Spring MVC is servlet-specific
bits. Spring WebFlux is for reactive web app development and is not tied to any servlet-based
contracts. Spring Web contains common elements shared between Spring MVC and Spring
WebFlux. This mostly includes the annotation-based programming model Spring MVC has
had for years. This means that the day you want to start writing reactive web apps, you don’t
have to learn a whole new paradigm to build web controllers.

Customizing the setup with configuration properties 11

If we added spring-boot-starter-web, this is what we’d need:

•	 Spring MVC and the associated annotations found in Spring Web. These are the Spring
Framework bits that support servlet-based web apps.

•	 Jackson Databind for serialization and deserialization (including JSR 310 support) to and
from JSON.

•	 An embedded Apache Tomcat servlet container.

•	 Core Spring Boot starter.

•	 Spring Boot.

•	 Spring Boot Autoconfiguration.

•	 Spring Boot Logging.

•	 Jakarta annotations.

•	 Spring Framework Core.

•	 SnakeYAML to handle YAML Ain’t Markup Language (YAML)-based property files.

Note
What is Jakarta? Jakarta EE is the new official specification, replacing Java EE. Oracle wouldn’t
relinquish its trademarked Java brand (nor grant a license) when it released its Java EE specs to
the Eclipse Foundation. So, the Java community chose Jakarta as the new brand going forward.
Jakarta EE 9+ is the official version that Spring Boot 3.0 supports. For more details, checkout
my video What is Jakarta EE? at https://springbootlearning.com/jakarta-ee

This starter will bring in enough for you to build a real web application, not counting a templating
engine. Now, we have autoconfiguration, which registers key beans in the application context. And
we also have starters that simplify putting Spring portfolio components in classpath. But what’s
missing is our ability to plug in customized settings, which we’ll tackle in the next section.

Customizing the setup with configuration properties
So, we’ve decided to pick up Spring Boot and we started adding some of its magical starters. As
discussed earlier in this chapter, this will activate a handful of Spring beans.

Assuming we were building a web app and selected Spring MVC’s spring-boot-starter-web,
it would activate embedded Apache Tomcat as the servlet container of choice. And with that, Spring
Boot is forced to make a lot of assumptions.

For example, what port should it listen on? What about the context path? Secure Sockets Layer (SSL)?
Threads? There are a dozen other parameters to fire up a Tomcat servlet container.

Core Features of Spring Boot12

And Spring Boot will pick them. So, where does that leave us? Are we stuck with them? No.

Spring Boot introduces configuration properties as a way to plug property settings into any Spring
bean. Spring Boot may load certain properties with default values, but we have the opportunity to
override them.

The simplest example is the first property mentioned earlier in this section – the server port.

Spring Boot launches with a default port in mind, but we can change it. This can be done by first
adding an application.properties file to our src/main/resources folder. Inside that
file, we must merely add the following:

server.port=9000

This Java property file, a file format supported since the early days of Java 1.0, contains a list of key-value
pairs separated by an equals sign (=). The left-hand side contains the key (server.port) and the
right-hand side contains the value (9000).

When a Spring Boot application launches, it will look for this file and scan in all its property entries, and
then apply them. And with that, Spring Boot will switch from its default port of 8080 to port 9000.

Note
The server port property is really handy when you need to run more than one Spring Boot-
based web application on the same machine.

Spring Boot is not limited to the handful of properties that can be applied to embedded with Apache
Tomcat. Spring Boot has alternative servlet container starters, including Jetty and Undertow. We’ll learn
how to pick and choose servlet containers in Chapter 2, Creating a Web Application with Spring Boot.

What’s important is knowing that no matter which servlet container we use, the servlet.port
property will be applied properly to switch the port the servlet will serve web requests on.

Perhaps you’re wondering why? Having a common port property between servlet containers eases
choosing servlet containers.

Yes, there are container-specific property settings if we needed that level of control. But generalized
properties make it easy for us to select our preferred container and move to a port and context path
of choice.

But we’re getting ahead of ourselves. The point of Spring Boot property settings isn’t about servlet
containers. It’s about creating opportunities to make our applications flexible at runtime. And the next
section will show us how to create configuration properties.

Customizing the setup with configuration properties 13

Creating custom properties

At the beginning of this section, I mentioned that configuration properties can be applied to any
Spring bean. This applies not just to Spring Boot’s autoconfigured beans, but to our own Spring beans!

Look at the following code:

@Component

@ConfigurationProperties(prefix = "my.app")

public class MyCustomProperties {

  // if you need a default value, assign it here or the

     constructor

  private String header;

  private String footer;

  // getters and setters

}

The preceding code can be described as follows:

•	 @Component is Spring Framework’s annotation to automatically create an instance of this
class when the application starts and register it with the application context.

•	 @ConfigurationProperties is a Spring Boot annotation that labels this Spring bean as a
source of configuration properties. It indicates that the prefix of such properties will be my.app.

The class itself must adhere to standard Java bean property rules (described earlier in this chapter).
It will create various fields and include proper getters and setters – in this case, getHeader()
and getFooter().

With this class added to our application, we can include our own custom properties, as follows:

application.properties:

my.app.header=Learning Spring Boot 3

my.app.footer=Find all the source code at https://github.com/
PacktPublishing/Learning-Spring-Boot-3.0

These two lines will be read by Spring Boot and injected into the MyCustomProperties Spring
bean before it gets injected into the application context. We can then inject that bean into any relevant
component in our app.

Core Features of Spring Boot14

But a much more tangible concept would be including properties that should never be hardcoded
into an application, as follows:

@Component

@ConfigurationProperties(prefix = "app.security")

public class ApplicationSecuritySettings {

  private String githubPersonalCode;

  public String getGithubPersonalCode() {

    return this.githubPersonalCode;

  }

  public void setGithubPersonalCode

    (String githubPersonalCode) {

      this.githubPersonalCode = githubPersonalCode;

  }

}

The preceding code is quite similar to the earlier code but with the following differences:

•	 The prefix for this class’s properties is app.security

•	 The githubPersonalCode field is a string used to store an API passcode used to presumably
interact with GitHub through its OAuth API

An application that needs to interact with GitHub’s API will need a passcode to get in. We certainly
do not want to bake that into the application. What if the passcode were to change? Should we rebuild
and redeploy the whole application just for that?

No. It’s best to delegate certain aspects of an application to an external source. How can we do that?
The next section will show how!

Externalizing application configuration

Did I mention an external source in the previous section? Yes. That’s because while you can put
properties into an application.properties file that gets baked into the application, that
isn’t the only way to do things. There are more options when it comes to providing Spring Boot with
application properties that aren’t solely inside the deliverable.

Customizing the setup with configuration properties 15

Spring Boot not only looks for that application.properties tucked inside our JAR file
upon startup. It will also look directly in the folder from where we run the application to find any
application.properties files there and load them.

We can deliver our JAR file along with an application.properties file right beside it as an
immediate way to override pre-baked properties (ours or Spring Boot’s!).

But wait, there’s more. Spring Boot also supports profiles.

What are profiles? We can create profile-specific property overrides. A good example would be one
configuration for the development environment, but a different one for our test bed, or production.

In essence, we can create variations of application.properties, as shown here:

•	 application-dev.properties is a set of properties applied when the dev profile
is activated

•	 application-test.properties is applied when the test profile is applied

•	 application.properties is always applied, so it could be deemed the
production environment

Perhaps an example is in order?

Imagine having our database connection details captured in a property named my.app.databaseUrl,
as shown here:

application.properties:

my.app.databaseUrl=https://user:pass@production-server.
com:1234/prod/

The test bed of our system surely won’t be linked to the same production server. So, instead, we must
provide an application-test.properties with the following override:

application-test.properties:

my.app.databaseUrl=http://user:pass@test-server.com:1234/test/

To activate this override, simply include -Dspring.profiles.active=test as an extra
argument to the Java command to run our app.

It’s left as an exercise for you to think up overrides for a development environment.

Note
Since production is the end state of an application, it’s usually best practice to let application.
properties be the production version of property settings. Use other profiles for other
environments or configurations.

Core Features of Spring Boot16

Notice earlier how we said Spring Boot will scan either application.properties files embedded
inside our JAR as well as outside the JAR? The same goes for profile-specific property files.

So far, we’ve mentioned internal and external properties, both default and profile-specific. In truth,
there are many more ways to bind property settings into a Spring Boot application.

Several are included in this list, ordered from lowest priority to highest priority:

•	 Default properties provided by Spring Boot’s SpringApplication.
setDefaultProperties() method.

•	 @PropertySource-annotated @Configuration classes.

•	 Config data (such as application.properties files).

•	 A RandomValuePropertySource that has properties only in random.*.

•	 OS environment variables.

•	 Java system properties (System.getProperties()).

•	 JNDI attributes from java:comp/env.

•	 ServletContext init parameters.

•	 ServletConfig init parameters.

•	 Properties from SPRING_APPLICATION_JSON (inline JSON embedded in an environment
variable or system property).

•	 Command-line arguments.

•	 The properties attribute on your tests. This is available with the @SpringBootTest
annotation and also slice-based testing (which we’ll cover later in Chapter 5, Testing with
Spring Boot).

•	 @TestPropertySource annotations on your tests.

•	 DevTools global settings properties (the $HOME/.config/spring-boot directory when
Spring Boot DevTools is active).

Config files are considered in the following order:

•	 Application properties packaged inside your JAR file.

•	 Profile-specific application properties inside your JAR file.

•	 Application profiles outside your JAR file.

•	 Profile-specific application properties outside your JAR file.

It’s a bit of a tangent, but we can also ensure certain beans are only activated when certain profiles
are activated.

Customizing the setup with configuration properties 17

And properties aren’t confined to injecting data values. The following section will show you how to
make property-based beans.

Configuring property-based beans

Properties aren’t just for providing settings. They can also govern which beans are created and when.

The following code is a common pattern for defining beans:

@Bean

@ConditionalOnProperty(prefix="my.app", name="video")

YouTubeService youTubeService() {

    return new YouTubeService();

}

The preceding code can be explained as follows:

•	 @Bean is Spring’s annotation, signaling that the following code should be invoked when creating
an application context and the created instance is added as a Spring bean

•	 @ConditionalOnProperty is Spring Boot’s annotation to conditionalize this action based
on the existence of the property

If we set my.app.video=youtube, then a bean of the YouTubeService type will be created
and injected into the application context. Actually, in this scenario, if we define my.app.video
with any value, it will create this bean.

If the property does not exist, then the bean won’t be created. This saves us from having to deal
with profiles.

It’s possible to fine-tune this even further, as shown here:

@Bean

@ConditionalOnProperty(prefix="my.app", name="video",
havingValue="youtube")

YouTubeService youTubeService() {

    return new YouTubeService();

}

@Bean

@ConditionalOnProperty(prefix="my.app", name="video",
havingValue="vimeo")

VimeoService vimeoService() {

    return new VimeoService();

}

Core Features of Spring Boot18

This preceding code can be explained as follows:

•	 @Bean, like before, will define Spring beans to be created and added to the application context

•	 @ConditionalOnProperty will conditionalize these beans to only be created if the named
property has the stated values

This time, if we set my.app.video=youtube, a YouTubeService will be created. But if we
were to set my.app.video=vimeo, a VimeoService bean would be created instead.

All of this presents a rich way to define application properties. We can create all the configuration
beans we need. We can apply different overrides based on various environments. And we can also
conditionalize which variants of various services are created based on these properties.

We can also control which property settings are applicable in a given environment, be it a test bed, a
developer’s work environment, a production setting, or a backup facility. We can even apply additional
settings based on being in different cloud providers!

And as a bonus, most modern IDEs (IntelliJ IDEA, Spring Tool Suite, Eclipse, and VS Code) offer
autocompletion inside application.properties files! We will cover this in more detail
throughout the rest of this book.

Now, the last thing we need to craft a powerful application is the means to maintain it. This will be
covered in the next section.

Managing application dependencies
There’s a subtle thing we may have glossed over. It is best expressed in this simple question:

What version of Spring Framework works best with which version of Spring Data JPA and Spring Security?

Indeed, that is quite tricky. In fact, over the years, thousands of hours have probably been spent simply
managing version dependencies.

Imagine that a new version of Spring Data JPA is released. It has an update to the Query by Example
option you’ve been waiting for – the one where they finally handle domain objects that use Java’s
Optional type in the getters. It’s been bugging you because anytime you had an Optional.EMPTY,
it just blew up.

So, you’re eager to upgrade.

But you don’t know if you can. The last upgrade cost you a week of effort. It included digging through
release reports for Spring Framework as well as Spring Data JPA.

Managing application dependencies 19

Your system also uses Spring Integration and Spring MVC. If you bump up the version, will those
other dependencies run into any issues?

With the miracle of autoconfiguration, all those slick starters and easy-to-use configuration properties
can come off as a bit weak if you’re left dealing with this conundrum.

That’s why Spring Boot also comes loaded with an extensive list of 195 approved versions. If you pick
a version of Spring Boot, the proper version of the Spring portfolio, along with some of the most
popular third-party libraries, will already be selected.

There’s no need to deal with micromanaging dependency versions. Just bump up the version of Spring
Boot and pick up all the improvements.

The Spring Boot team not only releases the software themselves. They also release a Maven bill of
materials (BOM). This is a separate module known as Spring Boot Dependencies. Don’t
panic! It’s baked into the modules that are picked up when you adopt Spring Boot.

And with that in place, you can easily pick up new features, bug patches, and any resolved security issues.

Important
It doesn’t matter if you’re using Maven or Gradle. Either build system can consume Spring Boot
dependencies and apply their collection of managed dependencies.

We won’t go into how Spring Boot dependencies are configured in the build system. Just
understand that you can choose the build system you prefer. How to apply this will be covered
at the beginning of Chapter 2, Creating a Web Application with Spring Boot.

That last part is key, so I’ll repeat it: when Common Vulnerabilities and Exposures (CVE) security
vulnerabilities are reported to the Spring team, no matter which component of the Spring portfolio
is impacted, the Spring Boot team will make a security-based patch release.

This BOM is released alongside Spring Boot’s actual code. All we have to do is adjust the version of
Spring Boot in our build file, and everything will follow.

To paraphrase Phil Webb, project lead for Spring Boot, if Spring Framework were a collection of
ingredients, then Spring Boot would be a pre-baked cake.

Core Features of Spring Boot20

Summary
In this chapter, we discovered the magic of Spring Boot and how it not only brings in Spring beans
but also backs off in light of user code. We found out how Spring Boot starters make it easy to
add various features of the Spring portfolio as well as some third-party libraries with some simple
dependencies. We saw how Spring Boot leverages properties files, allowing us to override various
settings of autoconfiguration. We also saw that we can even create our own properties. We learned
that Spring Boot manages an entire suite of library dependencies, allowing us to delegate everything
to the version of Spring Boot. We also saw how to override that on a one-off basis.

In the next chapter, we’ll discover how to apply the concepts from this chapter by building our very
first Spring Boot 3 application, starting with the web layer. We’ll craft templates and JSON-based APIs,
and even stir in a little JavaScript.

Part 2:
Creating an Application

with Spring Boot

Spring Boot makes it possible to get to the heart of the coding features your users need and not waste
time on coding up infrastructure. Instead, you will learn how to serve web templates and JSON APIs.
You will then see how to link your web layer to a rich set of database operations. You will also learn
how to secure the whole thing so only the right users can access its various features, and finally, how
to apply various testing tactics that will evoke confidence in both your team and your consumers.

This part includes the following chapters:

•	 Chapter 2, Creating a Web Application with Spring Boot

•	 Chapter 3, Querying for Data with Spring Boot

•	 Chapter 4, Securing an Application with Spring Boot

•	 Chapter 5, Testing with Spring Boot

2
Creating a Web Application

with Spring Boot

In Chapter 1, Core Features of Spring Boot, we learned about how Spring Boot comes with several
powerful features including, autoconfiguration, starters, and configuration properties. Combined
with managed dependencies, it becomes easy to upgrade to supported versions of Spring portfolio
components as well as third-party libraries.

With the help of start.spring.io, we’ll learn the basics of creating a web application using Spring Boot.
This is vital because the following chapters of this book will build upon this foundation. Since the
majority of application development today is focused on web applications, learning how Spring Boot
streamlines the whole process will open the door to building apps for years to come!

In this chapter, we’ll cover the following topics:

•	 Using start.spring.io to build apps

•	 Creating a Spring MVC web controller

•	 Using start.spring.io to augment an existing project

•	 Leveraging templates to create content

•	 Creating JSON-based APIs

•	 Hooking in Node.js to a Spring Boot web app

Where to find this chapter’s code
The code for this chapter is available at https://github.com/PacktPublishing/
Learning-Spring-Boot-3.0/tree/main/ch2.

Creating a Web Application with Spring Boot24

Using start.spring.io to build apps
The world is littered with different web stacks and toolkits for building web applications and they all
come with hooks and modules to tie into various build systems.

But none had the trend-setting notion to help us put together a barebones application directly.

In the past, before Spring Boot entered the scene, we would do one of the following actions to start
off a new project:

•	 Option 1: Comb through stackoverflow.com, looking for a sample Maven build file

•	 Option 2: Dig through reference documentation, piecing together fragments of build XML,
hoping they would work

•	 Option 3: Search various blog sites authored by renowned experts, praying one of their articles
contains build details

Oftentimes, we had to contend with out-of-date modules. We may have attempted to apply a configuration
option that no longer existed or did not do whatever we needed it to do.

As part of the emergence of Spring Boot came a related website (maintained by the Spring team):
Spring Initializr (start.spring.io).

start.spring.io comes with the following key features:

•	 We can select the version of Spring Boot we wish to use

•	 We can choose our preferred build tool (Maven or Gradle)

•	 We can enter our project’s coordinates (artifact, group, description, and so on)

•	 We can select which version of Java our project will be built on

•	 We can choose the various modules (Spring and third-party) to use in our project

We will start by selecting the build tool, language, and version of Spring Boot we wish to use:

Figure 2.1 – Selecting a build system (Maven), language (Java), and version of Spring Boot

Using start.spring.io to build apps 25

In the preceding screenshot, it’s important to point out that we have multiple options. We can choose
Maven or Gradle for our build system and choose between three languages: Java, Kotlin, or Groovy.
For this book, we’ll stick with Java. But if you or your team wants to leverage the power of Kotlin, you
can choose that and get all the right plugins wired into your project to do that.

Spring Initializr also lets us select which version of Spring Boot we wish to use. It’s important to point
out, that there are subtle differences in the project based on which version we choose, but for this
book, we will select 3.0.0. But we don’t have to worry about any of that.

It’s also nice to know that the website dynamically updates itself when new versions of Spring Boot
are released!

After selecting our build system, language, and version of Spring Boot, we need to dial in our project
details further down on the page:

Figure 2.2 – Selecting the project coordinates, packaging (JAR), and version of Java (17)

Unless there is some critical reason to select the War files (supporting a specific application server
or some other legacy reason), it’s best to choose the Jar files as the packaging mechanism of choice.

“Make JAR not WAR”

– Josh Long, also known as @starbuxman

Why?

WAR files are specific to application servers. Unless you are leveraging one, there is little benefit in
using them. JAR files have first-class support from the Spring Boot team, and as we’ll see further on
in this chapter, they have some keen advantages.

Creating a Web Application with Spring Boot26

We are also choosing Java 17 for this book. Java 17 is the minimum version required for Spring
Framework 6, the version underpinning Spring Boot 3. In fact, Java 17 is the default option chosen
by Spring Initialzr.

The core feature that makes Spring Initializr so nice is that it gives us the ability to select all the modules
we wish to include in our project. To do this, go to the Dependencies section.

Click on ADD DEPENDENCIES; we should be presented with a filter box. Enter web and notice
how Spring Web rises to the top of the list.

Figure 2.3 – Adding Spring Web to the project

Hit the Return key and see it nicely added to our list.

Amazingly, this is enough to get underway with creating web controllers!

Click on the GENERATE button at the bottom of the screen.

Figure 2.4 – The GENERATE button, which generates a complete project

Clicking on the preceding button will prompt the download of a ZIP file containing an empty project
with a build file containing all our settings for our project.

Unzip the project’s ZIP file and open it up inside our favorite IDE, and we can start writing some
web controllers!

Tip
It doesn’t really matter what IDE you use. As mentioned at the beginning of Chapter 1, Core
Features of Spring Boot, IntelliJ IDEA, Microsoft’s VS Code, and Spring Tool Suite all come
with support for Spring Boot. Whether it’s baked in by default or through the installation of a
plugin, you can engage with Spring Boot projects with ease.

Creating a Spring MVC web controller 27

With our pre-baked application ready to go, we’ll take the first steps toward building a web application
in the next section.

Creating a Spring MVC web controller
Assuming we have unzipped that ZIP file from the Spring Initializr and imported it into our IDE, we
can immediately start writing a web controller.

But for starters, what is a web controller?

Web controllers are bits of code that respond to HTTP requests. These can comprise an HTTP GET /
request that is asking for the root URL. Most websites respond with some HTML. But web controllers
can also answer requests for APIs that yield JavaScript Object Notation (JSON), such as HTTP GET
/api/videos. Furthermore, web controllers do the heavy lifting of transporting provided JSON
when the user is affecting change with an HTTP POST.

The piece of the Spring portfolio that affords us the ability to write web controllers is Spring MVC.
Spring MVC is Spring Framework’s module that lets us build web apps on top of servlet-based containers
using the Model-View-Controller (MVC) paradigm.

Yes, the application we are building is Spring Boot. But having picked Spring Web in the previous
section, we will put the tried and true Spring MVC on our classpath.

In fact, if we peek at the pom.xml file at the root of the project, we’ll find one critical dependency:

<dependency>

  <groupId>org.springframework.boot</groupId>

  <artifactId>spring-boot-starter-web</artifactId>

</dependency>

This is one of those starters mentioned in the previous chapter, in the Adding portfolio components
with Spring Boot starters section. This dependency puts Spring MVC on our project’s classpath.
This gives us access to Spring MVC’s annotations and other components, allowing us to define web
controllers. Its mere presence will trigger Spring Boot’s autoconfiguration settings to activate any web
controller we create.

There are some other goodies as well, which we’ll explore later in this chapter.

Before creating a new controller, it’s important to notice that the project already has a base package
created per our settings: com.springbootlearning.learningspringboot3.

Creating a Web Application with Spring Boot28

Let’s kick things off by creating a new class inside this package and call it HomeController. From
there, write the following code:

@Controller

public class HomeController {

  @GetMapping("/")

  public String index() {

  return "index";

  }

}

This code can be described as follows:

•	 @Controller: Spring MVC’s annotation to communicate that this class is a web controller.
When the application starts, Spring Boot will automatically detect this class through component
scanning and will create an instance.

•	 @GetMapping: Spring MVC’s annotation to map HTTP GET / calls to this method.

•	 index: Because we used the @Controller annotation, index turns out to be the name
of the template we wish to render.

The name of the class and the name of the method aren’t critical. They can really be anything. The critical
parts are the annotations. @Controller signals this class is a web controller, and @GetMapping
indicates that the GET / calls are to be routed to this method.

Tip
It’s good to use class and method names that provide semantic value to us so we can maintain
things. In this respect, this (the preceding code snippet) is the controller for the home path of
the site we are building.

We mentioned that index is the name of the template to render. However, do you remember picking
a template engine? That’s right, we didn’t. In the next section, we’ll see how to add a templating engine
to our application and use it to start building HTML content.

Using start.spring.io to augment an existing project
What if we already started a project and have been working hard on it for the past six months? Creating
a brand-new project makes no sense, right?

So, what can we do?

It’s possible to pick up an already existing project and make alterations using start.spring.io.

Using start.spring.io to augment an existing project 29

We started this chapter with nothing but Spring Web. While we could get pretty far with this, it’s not
quite enough. While we can write HTML by hand, in this day and age it’s easier to use template engines
to do that for us. Since we are looking for something lightweight, let’s pick Mustache (mustache.
github.io).

If this is appearing a tad contrived, that is because it is. If you’re starting a new web project, it makes
sense to pick a templating engine at the same time that you choose Spring Web. Nevertheless, this
tactic of adding additional modules to existing projects still works.

The best way to augment an existing project is to revisit the Spring Initializr site and punch in all our
various settings as well as pick the modules we need (especially the new ones we wish to add to our
existing project).

Assuming we entered in the same settings we did earlier in this chapter, we just need to click the
DEPENDENCIES button and enter mustache, as shown in the following screenshot:

Figure 2.5 – Adding Mustache, a logic-less template language

Hit the Return key and add it to the list.

The secret to updating our in-flight project is clicking on the EXPLORE button at the bottom of the
page instead of the GENERATE button we hit earlier.

Figure 2.6 – Exploring a Spring Boot project on the website

The EXPLORE button, instead of downloading a ZIP file, lets us view the project we would have
gotten right in the browser.

A common tactic is to view the build file: pom.xml in our case. From there, we can copy the fragments
we need (or copy and paste the whole thing) and paste them into our existing project.

This makes it easy to ensure our project is up to date with any dependencies, customized modules,
or whatever.

Creating a Web Application with Spring Boot30

In this case, we can find the entry for Mustache, as shown here:

<dependency>

  <groupId>org.springframework.boot</groupId>

  <artifactId>spring-boot-starter-mustache</artifactId>

</dependency>

Another Spring Boot starter to the rescue!

Thankfully, this technique helps us reach the Spring Boot starters without having to dig into the details
of looking up the names of starters.

The point is, we can quickly get underway with new projects. We can also go back again and again,
adding new modules as needed with complete confidence that we aren’t breaking things.

Now that we have both Spring Web and Mustache baked into our project, it’s time to start creating
some real web content, which we’ll do in the next section.

Leveraging templates to create content
We can now switch to writing a Mustache template!

After creating the controller class earlier in this chapter, we don’t have to do much more. Spring Boot’s
component scanning feature, as mentioned in Chapter 1, Core Features of Spring Boot, will do all the
legwork of instantiating our controller class. Spring Boot’s autoconfiguration will add the extra beans
that power Mustache’s templating engine, hooking it into Spring’s infrastructure.

We just need to craft the content that goes inside the template.

By default, Spring Boot expects all templates to be located at src/main/resources/templates.

Tip
Spring Boot has configuration properties for template engines that default to putting all
templates inside src/main/resources/templates. Also, each templating engine has
a suffix. For Mustache, it’s .mustache. When we return index from a controller method,
Spring Boot transforms it into src/main/resources/templates/index.mustache,
fetches the file, and then pipes it into the Mustache templating engine. It’s possible to go in and
adjust these settings. But it’s frankly easier to just follow the convention.

Create index.mustache inside src/main/resources/templates. Then, add the
following code:

<h1>Greetings Learning Spring Boot 3.0 fans!</h1>

Leveraging templates to create content 31

<p>

  In this chapter, we are learning how to make

  a web app using Spring Boot 3.0

</p>

This is 100%, bona fide, Use It Anywhere™ HTML5.

To see it in action, we just need to run our application. That’s right, we have a fully armed and
operational application already in place.

Inside our IDE, we just need to right-click on the Chapter2Application class that the Spring
Initializr created for us and select Run.

Once it’s up, we can surf over to localhost:8080 in our favorite browser and see the results:

Figure 2.7 – A Mustache template rendered with Spring Boot 3

Ta-dah!

What’s that? Not impressed?

Okay, we haven’t hung any dynamic content here. To be honest, it’s boring. A header and a paragraph.
Who wants that? Perhaps we should have started with some demo data. This is not hard. The next
section will show you how to do this.

Adding demo data to a template

We can tweak the HomeController we just made as follows:

@Controller

public class HomeController {

  record Video(String name) {}

  List<Video> videos = List.of(

    new Video("Need HELP with your SPRING BOOT 3

Creating a Web Application with Spring Boot32

      App?"),

    new Video("Don't do THIS to your own CODE!"),

    new Video("SECRETS to fix BROKEN CODE!"));

  @GetMapping("/")

  public String index(Model model) {

    model.addAttribute("videos", videos);

    return "index";

  }

}

Java 17 provides several nice features that we’ve used in the preceding bit of code:

•	 We can define a nice little data Video object as a Java 17 record with a single line of code

•	 We can assemble an immutable collection of Video objects using List.of()

This makes it super simple to create a batch of test data. As for how this works with the templating
engine, continue reading.

Tip
Why do we need to create a Java 17 record to encapsulate a single element of data? Mustache
operates on named attributes. We could manually write raw JSON with a name and a value,
but it’s simpler using a Java 17 record. Plus, it gives us stronger type safety. This Video type
nicely encapsulates the data for our Mustache template.

In order to pass this data on to our template, we need an object that Spring MVC will understand. A
holder where we can place data. To do that, we need to add a Model parameter to our index method.

Spring MVC has a handful of optional attributes we can add to any web method. Model is the type
we use if we need to hand off data to the templating engine.

The code shown earlier has an attribute named videos and is supplied with List<Video>.
With that in place, we can enhance index.mustache to serve it up to the viewers by adding the
following code:

    {{#videos}}

        {{name}}

    {{/videos}}

Leveraging templates to create content 33

The preceding code fragment (placed below the <p> tag we created earlier) can be explained as follows:

•	 {{#videos}}: Mustache’s directive to grab the videos attribute we supplied to the Model
object. Because this is a list of data, Mustache will expand this for every entry in the list. It
will iterate over each entry of the List<Video> collection stored in Model and create a
separate HTML entry.

•	 {{name}}: Indicates we want the name field of the data construct. This lines up with our
Video type’s name field. In other words, for each entry of List<Video>, print out the
name field between and .

•	 {{/videos}}: Indicates the end of the looping fragment.

This chunk of Mustache will yield a single HTML unordered list () that contains three list items
(), each one with a different Video name entry.

Tip
Mustache works with Java’s getters, so if we had a value type with getName(), it would serve
via {{name}}. But Java 17 records don’t generate getters. Instead, the compiler will generate
a classfile with name(). Don’t worry, Mustache handles this just fine. Either way, we
can use {{name}} in our templates.

If we re-run our application and then visit localhost:8080, we can see this updated template
in action:

Figure 2.8 – Web page with an unordered list of video names

From here, there’s no limit to the HTML we can generate. We can even layer in some JavaScript, which
is something we’ll tackle later in this chapter.

Creating a Web Application with Spring Boot34

Building our app with a better design

That last app we built was pretty slick. We rapidly modeled some data and served it up in a
lightweight template.

The lingering issue is that the design isn’t very reusable. The second we need another controller, we’ll
find ourselves in a tricky situation for the following reasons:

•	 Controllers shouldn’t be managing data definitions. Since they respond to web calls and then
interact with other services and systems, these definitions need to be at a lower level.

•	 Heavyweight web controllers that also deal with data will make it hard to make adjustments
as our web needs evolve. That’s why it’s better if data management is pushed to a lower level.

And so, our first refactoring before continuing forward would be to migrate that Video record to its
own class, Video.java, as follows:

record Video(String name) {

}

This is the exact same code we wrote earlier, only moved to its own file.

Note
Why isn’t the Video record marked public? In fact, what visibility does it have? This is Java’s
default visibility, and for classes, records, and interfaces, it defaults to package-private. This
means that it’s only visible to other code in the same package. It’s not a bad idea to entertain
using Java’s default visibility as much as possible and only exposing things outside the package
when deemed necessary.

Our next task would be to move that list of Video objects into a separate service. Create a class
named VideoService as follows:

@Service

public class VideoService {

  private List<Video> videos = List.of(//

    new Video("Need HELP with your SPRING BOOT 3

      App?"),

    new Video("Don't do THIS to your own CODE!"),

    new Video("SECRETS to fix BROKEN CODE!"));

  public List<Video> getVideos() {

Leveraging templates to create content 35

    return videos;

  }

}

VideoService can be explained as follows:

•	 @Service: Spring Framework’s annotation denoting a class that needs to be picked up during
component scanning and added to the application context

•	 List.of(): The same operation used earlier in this chapter to quickly put together a collection
of Video objects

•	 getVideos(): A utility method to return the current collection of Video objects

Tip
We have touched on Spring Boot’s component scanning functionality briefly in Chapter 1,
Core Features of Spring Boot, and earlier in this chapter. This is where it shines. We will create
a class and then mark it with one of Spring Framework’s @Component-based annotations,
for example, @Service or @Controller, along with several others. When Spring Boot
starts up, one of its first jobs is to run its component scanner, seeking out these classes and
instantiating copies. These beans are then registered in the application context, ready to be
autowired into any other Spring beans that demand it.

To pivot our HomeController to start using this new VideoService class, we just need to
make updates as follows:

@Controller

public class HomeController {

  private final VideoService videoService;

  public HomeController(VideoService videoService) {

    this.videoService = videoService;

  }

}

The code we just wrote is quite simple:

•	 Rip out that List<Video> field and replace it with a private final instance
of VideoService

•	 Populate the new field using constructor injection

Creating a Web Application with Spring Boot36

Let’s find out what is constructor injection in the next section.

Injecting dependencies through constructor calls

Constructor injection is fancy talk for getting the dependencies a Spring bean needs through the
constructor. To expand on this, anytime we create a Java class that is picked up by Spring Boot’s
component scanning feature. Spring Boot will check for any injection points, and if it finds any, will
look in the application context for beans of matching type…and inject them!

This is known as autowiring. We let Spring handle the issue of finding a Spring bean’s dependencies
in the application context and plugging them in for us.

Before the days of Spring Boot, autowiring wasn’t as popular. Some shops loved it, while others
avoided it like the plague. What did those who were opposed do instead? They created a class, marked
it up with an @Configuration annotation, and created methods using @Bean methods. These
methods then returned instances of objects to manually wire into other services, either through the
constructor or through its setters.

But with the rise of Spring Boot and its beans generated by autoconfiguration that massively leveraged
autowiring; autowiring in turn became agreeable to almost everyone.

The following are three ways that we can inject dependencies into a class:

•	 Option 1: The class itself can be marked with one of Spring Framework’s @Component annotations
(or just @Component itself) such as @Service, @Controller, @RestController,
or @Configuration.

•	 Option 2: The @Autowired Spring Framework annotation marks points to inject dependencies.
It can be applied to constructors, setter methods, and fields (even private ones!).

•	 Option 3: If a class has but one constructor, there is no need to apply the @Autowired
annotation. Spring will simply assume it’s to be autowired.

With VideoService injected into HomeController, we can update the index() method
as follows:

@GetMapping("/")

public String index(Model model) {

  model.addAttribute("videos", videoService.getVideos());

  return "index";

}

The only change in this method from what we coded earlier in this chapter is invoking videoService
in order to get a list of Video objects.

Leveraging templates to create content 37

Maybe it felt a bit tedious to make these adjustments to our application, but they will pay off as we
continue to flesh things out.

Changing the data through HTML forms

Our web page wouldn’t be very impressive if all it did was display server-side data. To make it more
dynamic, it should accept new entries send them to our web controller and then show the updated results.

To do this, again, we go back to our Mustache template and start coding a standard HTML form
as follows:

<form action="/new-video" method="post">

    <input type="text" name="name">

    <button type="submit">Submit</button>

</form>

This simple addition to index.mustache can be explained as follows:

•	 This HTML form will result in a POST /new-video call to our server-side app.

•	 It has a single text-based input called name.

•	 This form takes effect when the user clicks on the Submit button.

If you’re wondering where all the Mustache stuff is, there is none. An HTML form is pretty simple.
It’s possible to render dynamic content here if needed, but our focus is to get the submission of new
data working with a relatively simple scenario.

To make our Spring Boot application respond to POST /new-video, we need to write another
controller method to our HomeController as follows:

@PostMapping("/new-video")

public String newVideo(@ModelAttribute Video newVideo) {

  videoService.create(newVideo);

  return "redirect:/";

}

This additional web controller method can be explained as follows:

•	 @PostMapping("/new-video"): Spring MVC’s annotation to capture POST
/new-video calls and route them to this method.

•	 @ModelAttribute: Spring MVC’s annotation to parse an incoming HTML form and
unpack it into a Video object.

•	 videoService.create(): Not-yet-written method for storing the new video object.

Creating a Web Application with Spring Boot38

•	 "redirect:/": Spring MVC directive that sends the browser an HTTP 302 Found to URL
/. A 302 redirect is the standard for a soft redirect. (301 is a permanent redirect, instructing
the browser to not try the original path again.)

This additional web controller method now demands that we augment our VideoService with
the means to add more Video objects.

It’s important to recognize that so far, we’ve been using Java 17’s List.of() operator to build
our collection of videos, which produces an immutable list. This immutable list honors Java’s
List interface, giving us access to an add() method. If we try to use it, it will only generate
an UnsupportedOperationException.

No, we need to take a couple of extra steps if we are going to mutate this immutable collection.

The recipe for adding to an immutable anything is to create a new immutable instance out of the
original contents combined with new contents. This is where we can take advantage of more familiar
List-based APIs:

public Video create(Video newVideo) {

  List<Video> extend = new ArrayList<>(videos);

  extend.add(newVideo);

  this.videos = List.copyOf(extend);

  return newVideo;

}

This addition to our VideoService can be explained as follows:

•	 The signature of the method calls for a new video and then returns that same one back (common
behavior for a repository-style service).

•	 new ArrayList<>(): creates a new ArrayList, a mutable collection, using its List-
based constructor. This new collection initializes with the proper size and then copies every
entry into the new ArrayList.

•	 This ArrayList does have a usable add() method that allows us to add our new Video
object onto the end.

•	 Java 17 provides a copyOf() operator that takes any existing List and copies all of its
elements into a new immutable list.

•	 Finally, we return the new Video object.

It’s important to point out that while it took us a couple of extra steps, the preceding code ensures that
no existing copy of data will be accidentally mutated by invoking a method. Side effects are prevented
by doing this, ensuring a consistent state is maintained.

Leveraging templates to create content 39

Note
While this data may be consistent thanks to using immutable lists, it is by no means thread-safe.
If multiple POST calls were made to the endpoint we just defined, they would all attempt to
update the same VideoService, probably resulting in some form of a race condition that
could cause loss of data. Given the fact that there are entire books written about solving such
problems, we aren’t going to focus on making our code bulletproof in this one.

With these changes in place, we can re-run our application and check out our enhanced UI:

Figure 2.9 – Mustache template with an HTML form

If we were to enter Learning Spring Boot 3 in the input and click Submit, the controller will
issue a redirect back to /. The browser will navigate back to the root path, causing it to fetch the data
and render it with our latest Video.

Further reading
Perhaps you wish to learn more about Mustache and how it interacts with Spring Boot? Check
out Dave Syer’s article The Joy of Mustache: Server Side Templates for the JVM (https://
springbootlearning.com/mustache) where he goes into detail about integrating
Spring Boot with Mustache, including ways to have a consistent layout and even code custom
Mustache lambda functions.

With that, we have a functional web page that serves up dynamic content that also lets us add more
content. But this is by no means complete. We should investigate adding support for building web-based
APIs in the next section.

Creating a Web Application with Spring Boot40

Creating JSON-based APIs
A key ingredient in building any web application is the ability to provide an API. In the olden days,
this was complex and hard to ensure compatibility.

In this day and age, the world has mostly converged on a handful of formats, many based on
JSON-based structures.

One of the powerful features of Spring Boot is that when you add Spring Web to a project, as we did
at the beginning of this chapter, it adds Jackson to the classpath. Jackson is a JSON serialization/
deserialization library that has been widely adopted by the Java community.

Jackson’s ability to let us define how to translate Java classes back and forth with our preferred flavor
of JSON combined with Spring Boot’s ability to autoconfigure things means that we don’t have to lift
another finger of setup to start coding an API.

To start things off, we create a new class in the same package we’ve been using throughout this chapter.
Call it ApiController. At the top, apply the @RestController annotation.

@RestController is similar to the @Controller annotation we used earlier. It signals to Spring
Boot that this class should be automatically picked up for component scanning as a Spring bean. This
bean will be registered in the application context and also with Spring MVC as a controller class so
it can route web calls.

But it has one additional property—it switches every web method from being template-based to
JSON-based. In other words, instead of a web method returning the name of a template that Spring
MVC renders through a templating engine, it instead serializes the results using Jackson.

Look at the following code:

@RestController

public class ApiController {

  private final VideoService videoService;

  public ApiController(VideoService videoService) {

    this.videoService = videoService;

  }

  @GetMapping("/api/videos")

  public List<Video> all() {

    return videoService.getVideos();

  }

}

Creating JSON-based APIs 41

We can describe the preceding code in detail as follows:

•	 We already mentioned how the @RestController annotation marks this as a Spring MVC
controller that returns JSON

•	 Using constructor injection, we will automatically get a copy of the same VideoService
we created earlier in this chapter

•	 @GetMapping responds to HTTP GET calls from /api/videos

•	 This web method will fetch that list of Video records and return them, causing them to get
rendered into a JSON array by Jackson

In fact, if we run the application right now and curl that endpoint, we can see the following results:

[

    {

        "name": "Need HELP with your SPRING BOOT 3 App?"

    },

    {

        "name": "Don't do THIS to your own CODE!"

    },

    {

        "name": "SECRETS to fix BROKEN CODE!"

    }

]

This barebones JSON array contains three entries, one for each of our Video records. And since the
Video record only has one attribute, name, this is exactly what Jackson yields.

There is no need to configure anything to make Jackson start producing.

Of course, an API that does nothing but produce JSON isn’t much of an API at all. Naturally, we need
to consume JSON as well.

To do that, we need to create a web method in our ApiController class that will respond to
HTTP POST calls.

Creating a Web Application with Spring Boot42

POST versus PUT versus everything else
There are several standard HTTP verbs at our disposal. The most common ones are GET, POST,
PUT, and DELETE. There are actually others, but we won’t be needing them here. It’s important
to understand that GET calls are expected to do nothing but return data. They are not meant
to cause state changes on the server, which is also known as idempotent. POST calls are what
are used to introduce new data to the system. This is analogous to inserting a new row of data
into a relational database table.

PUT is similar to POST in that it’s used for making changes, but it’s better described as updating
existing records. It’s possible to also update a non-existent record, but this depends on how things
have been set up on the server. Finally, DELETE is used to remove something from the server.

It is somewhat common behavior, although not a required standard, that any updates to the system
should return to the person or system making the request, a copy of the new or deleted entry.

Add the following code to the ApiController class, right below the all() method:

@PostMapping("/api/videos")

public Video newVideo(@RequestBody Video newVideo) {

  return videoService.create(newVideo);

}

The preceding code can be described as follows:

•	 @PostMapping: Maps HTTP POST calls to /api/videos onto this method

•	 @RequestBody: Spring MVC’s annotation to signal that the incoming HTTP request body
should be deserialized via Jackson into the newVideo argument as a Video record

•	 We then delegate the actual handling of this incoming Video record to our VideoService,
returning back the record after it’s been added to the system

We already coded this create() operation earlier in this chapter, so there’s no need to go back into it.

Tip
Earlier in the section, we said “curl that endpoint” and saw a chunk of JSON printed out. curl
(https://curl.se/) is a popular command-line tool that lets you interact with web APIs.
In fact, this summary probably doesn’t do the tool justice. Suffice it to say, you probably want
to install it on your system.

With our new addition to our API controller, we can interact with it from the command line as follows:

$ curl -v -X POST localhost:8080/api/videos -d '{"name":
"Learning Spring Boot 3"}' -H 'Content-type:application/json'

Creating JSON-based APIs 43

The preceding command can be described as follows:

•	 -v: Asks for curl to produce verbose output, providing extensive details about the whole interaction.

•	 -X POST: Signals it to use HTTP POST instead of the default GET call.

•	 localhost:8080/api/video: Provides the URL to direct the command.

•	 -d '{…}': Provides the data. Since the fields in JSON are delimited with double quotes, the
entire JSON document is handed to curl using single quotes.

•	 -H 'Content-type:application/json': Provides the HTTP header that alerts the
web app that this is a JSON-formatted request body.

The results of the command are as follows:

* Connected to localhost (::1) port 8080 (#0)

> POST /api/videos HTTP/1.1

> Host: localhost:8080

> User-Agent: curl/7.64.1

> Accept: */*

> Content-type:application/json

> Content-Length: 34

>

* upload completely sent off: 34 out of 34 bytes

< HTTP/1.1 200

< Content-Type: application/json

{"name":"Learning Spring Boot 3"}

The preceding output response shows the following:

•	 The command is shown toward the top including the HTTP verb, the URL, and the headers
(User-Agent, Accept, Content-type, and Content-Length)

•	 The response is shown toward the bottom including an HTTP 200 success status code

•	 The response is denoted as application/json

•	 The actual response body contains the JSON-formatted new Video entry we created

Our method worked!

Creating a Web Application with Spring Boot44

We can further verify this by re-pinging the /api/videos endpoint and looking for our latest addition:

$ curl localhost:8080/api/videos

[

    {"name":"Need HELP with your SPRING BOOT 3 App?"},

    {"name":"Don't do THIS to your own CODE!"},

    {"name":"SECRETS to fix BROKEN CODE!"},

    {"name":"Learning Spring Boot 3"}

]

The preceding code shows our latest entry at the bottom.

What do we have now? We have a web application with two key facets: a template-based version
rendered in the browser for humans to read and a JSON-based version consumable by third parties.

With all this in place, we are finally able to write a little JavaScript!

Hooking in Node.js to a Spring Boot web app
So, do we need our web app to use JavaScript? To be honest, what web app doesn’t need JavaScript?
It’s only the de facto standard tool found in every web browser on the planet.

In case you didn’t know it, JavaScript is a completely different world when it comes to tools and app
building. So, how do we cross this vast gulf between Java and JavaScript developer tooling?

In a nutshell, we need to enter the world of Node.js. And to our fortune, there is a Maven plugin that
can bridge this gap for us, known as the Maven frontend plugin (frontend-maven-plugin).

This plugin unites Node.js actions with Maven’s lifecycles, allowing us to properly invoke Node.js at
the right time to download packages and assemble JavaScript code into a bundle.

Of course, compiling and bundling a JavaScript payload is for naught if there was no way for Spring
Boot to bring it online.

Thankfully, Spring Boot has a solution. Anything found in src/main/resources/static is
automatically picked up and will be put on the base path of our web application when fully assembled.
This means we simply need to direct our Node.js bundling tool to drop its final results there.

If this is starting to sound confusing…well it is. Or at least it can be. So, let’s take things one step at a
time, starting with the frontend-maven-plugin. If we open up the pom.xml file created by
start.spring.io, there should be an entry about two-thirds of the way down called <plugins>.
It should already have an entry for spring-boot-maven-plugin.

Hooking in Node.js to a Spring Boot web app 45

Right below spring-boot-maven-plugin, add another <plugin> entry as follows:

<plugin>
  <groupId>com.github.eirslett</groupId>
  <artifactId>frontend-maven-plugin</artifactId>
  <version>1.12.1</version>
  <executions>
    <execution>
      <goals>
         <goal>install-node-and-npm</goal>
      </goals>
    </execution>
  </executions>
  <configuration>
    <nodeVersion>v16.14.2</nodeVersion>
  </configuration>
</plugin>

This addition to our pom.xml build file can be explained as follows:

•	 We’ve added the coordinates for the latest version of frontend-maven-plugin (at the
time of writing)

•	 Right now, it has one execution, install-node-and-npm. This command will download
Node.js and its package manager npm

•	 In the configuration section toward the bottom, it specifies the latest long-term support (LTS)
version of Node.js

This plugin does its thing during Maven’s generate-resources phase. You can see it right away
with the following output shown in the console:

$./mvnw generate-resources

[INFO] --- frontend-maven-plugin:1.12.1:install-node-and-npm
(default) @ ch2 ---

[INFO] Installing node version v16.14.2

[INFO] Downloading https://nodejs.org/dist/v16.14.2/node-
v16.14.2-darwin-x64.tar.gz to /Users/gturnquist/.m2/repository/
com/github/eirslett/node/16.14.2/node-16.14.2-darwin-x64.tar.gz

[INFO] Unpacking /Users/gturnquist/.m2/repository/com/github/
eirslett/node/16.14.2/node-16.14.2-darwin-x64.tar.gz into /
Users/gturnquist/src/learning-spring-boot-3rd-edition-code/ch2/
node/tmp

Creating a Web Application with Spring Boot46

[INFO] Copying node binary from /Users/gturnquist/src/learning-
spring-boot-3rd-edition-code/ch2/node/tmp/node-v16.14.2-
darwin-x64/bin/node to /Users/gturnquist/src/learning-spring-
boot-3rd-edition-code/ch2/node/node

[INFO] Extracting NPM

[INFO] Installed node locally.

It should be pointed out that the frontend-maven-plugin actually downloads and unpacks Node.js,
npm, and node package execute (npx) in our project’s root directory underneath the node folder.

Tip
Node.js and all its tools and modules can be considered intermediate build artifacts. There’s
no need to commit them to version control. So, be sure to add the node folder as well as the
intermediate node_modules folder to your list of items to not commit (for example, add
node and node_modules to the project’s .gitignore file).

With this plugin in place, we are ready to embrace the world of JavaScript in the next section.

Bundling JavaScript with Node.js

At this point, we have the tooling. But no actual modules.

To start adding modules, we’ll use npm. And the first thing we must do is pick a Node.js package
bundler. There are many to pick from, but let’s pick Parcel by typing the following command:

% node/npm install --save-dev parcel

This will use the locally installed copy of Node.js and its npm command to create a package.json
file. The –save-dev option signals that this is a development module, and not a package used by
our app.

Now that we have a package.json file created for our project, we need to hook it into the
frontend-maven-plugin. To do that, we need to add another <execution> entry as follows:

<execution>

  <id>npm install</id>

  <goals>

    <goal>npm</goal>

  </goals>

</execution>

Hooking in Node.js to a Spring Boot web app 47

This additional fragment will configure the frontend-maven-plugin to run npm install,
the command that will build our JavaScript bundle.

Now so far, we don’t have much in packages. Just the Parcel build tool. Before we start adding JavaScript
modules, we should probably configure it to build things properly. Edit the package.json that
npm just created as shown here so that Parcel will assemble an ES6 module for us:

{

    …

    "source": "src/main/javascript/index.js",

    "targets": {

      "default": {

        "distDir": "target/classes/static"

      }

    },

    …

}

This addition to package.json will cause the following to happen:

•	 Source: Points at a yet-to-be-written index.js JavaScript file. This will be our entry point
for our JavaScript app. As far as Parcel is concerned, it doesn’t really matter where this file is.
Since we’re using a Maven-based project, we can use src/main/javascript.

•	 As for the target destination, we can configure the default target with a distDir setting of
target/classes/static. Parcel supports building multiple targets such as different
browsers, but we don’t need that. A single, default destination will do. By putting the results in
the target folder, anytime we run a Maven clean cycle, this compiled bundle will be cleaned out.

While npm is Node.js' tool for downloading and installing packages, npx is Node.js’ tool for running
commands. By adding another <execution> entry to the frontend-maven-plugin, we can
have it run Parcel’s build command:

<execution>

  <id>npx run</id>

  <goals>

    <goal>npx</goal>

  </goals>

  <phase>generate-resources</phase>

  <configuration>

    <arguments>parcel build</arguments>

Creating a Web Application with Spring Boot48

  </configuration>

</execution>

This extra step runs npx parcel build after the npm install command is run, ensuring
Parcel does its build step.

With all this, we can start installing some Node packages to build a sophisticated frontend in the
next section.

Creating a React.js app

There are so many ways to build JavaScript apps these days and they all have their own features and
benefits. For illustrative purposes, we’ll use React.js, Facebook’s toolkit for app building.

Type the following command:

node/npm install --save react react-dom

The preceding command will update package.json with the react and react-dom modules.
Now, we can start writing some JavaScript!

Create index.js inside src/main/javascript as follows:

import ReactDOM from "react-dom"

import { App } from "./App"

const app = document.getElementById("app")

ReactDOM.render(<App />, app)

This is our entry point, as shown earlier in package.json:

•	 The first line imports ReactDOM, a key module needed to launch React

•	 The second line imports the custom UI we’ll build further down in this section

•	 The third line uses vanilla JavaScript to find the element on the web page with id="app"
where we can “hang” our app

•	 The fourth line actually renders the <App/> component in our soon-to-be-coded app
using ReactDOM

React operates with a top-down perspective. You render a top-level component, and then that
component, in turn, renders components nested further down.

It also uses a shadow document object model (DOM) where we don’t specify the actual nodes to
render, but instead use virtual nodes. React computes the changes from whatever the current state is
and generates the changes.

Hooking in Node.js to a Spring Boot web app 49

To continue building this application, we need to create App.js in src/main/javascript
as follows:

import React from 'react'

import ListOfVideos from './ListOfVideos'

import NewVideo from "./NewVideo"

export function App() {

    return (

        <div>

            <ListOfVideos/>

            <NewVideo/>

        </div>

     )

}

The preceding chunk of JavaScript has some key parts:

•	 We import React to build components.

•	 The local bits of JavaScript that we will write after this includes a list of videos (ListOfVideos.js)
and from for creating new videos (NewVideo.js).

From here, we have a single function, App(), exported publicly. Because it returns some
HTML-styled elements, this signals to Parcel that we’re working with JavaScript XML (JSX),
which contains some more React components to render.

React and JSX
React introduces a concept called JSX, where we can combine unique HTML elements with
JavaScript code. In the past, we were told that mixing HTML and JavaScript was bad. But in
truth, when laying out a UI that ties together functions, JSX provides an excellent blend. Instead
of using tricky functions to layer JavaScript on top of HTML, React works by allowing us to
build up tiny bits of HTML combined cohesively with functions that support their operation.
Combined with its internal state management, React has become quite popular among many
for building web apps.

The first thing to replicate from our earlier template is listing all the videos from the backend. To
generate the same HTML unordered list in React, create ListOfVideos.js in src/main/
javascript as follows:

import React from "react"

Creating a Web Application with Spring Boot50

class ListOfVideos extends React.Component {

    constructor(props) {

        super(props)

        this.state = {data: []}

    }

    async componentDidMount() {

        let json = await fetch("/api/videos").json()

        this.setState({data: json})

    }

    render() {

        return (

            

                {this.state.data.map(item =>

                    

                        {item.name}

                    )}

            

        )

    }

}

export default ListOfVideos

The preceding React component can be described as follows:

•	 This code uses ES6 classes that extend React.Component.

•	 Its constructor creates a state field to maintain an internal state.

•	 componentDidMount() is the function called by React right after this component is
inserted into the DOM and rendered. It uses vanilla JavaScript’s fetch() function to retrieve
data from the JSON API we created earlier in this chapter. Because that function returns a
promise, we can use the ES6 await function to wait for results and then update the internal
state using React.Component’s setState(). For this method to work with the rest
of things properly, we must mark it async. It’s also important to understand that anytime
setState() is invoked, React will re-render the component.

Hooking in Node.js to a Spring Boot web app 51

•	 The sizzle is in the render() method where we actually lay out HTML elements (or more
React components). This code uses the internal state and maps over the array of data, converting
each piece of JSON into an HTML line item. No elements? No line items!

In the preceding chunk of code, we mentioned both properties and state. Properties typically comprise
information injected into a React component from the outside. State is maintained within. It’s possible
to initialize the state from properties, or as shown in this code, the component itself can fetch the
data stored in the state.

What’s important to clarify, is that properties are typically considered immutable within the React component
that has them injected. State is meant to evolve and change, in turn driving our rendered elements.

Our React app wouldn’t be much if we couldn’t create new entries. So, let’s create a new component
that duplicates the HTML form we created earlier in this chapter in the Changing the data through
HTML forms section!

Create NewVideo.js as shown here in src/main/javascript:

import React from "react"

class NewVideo extends React.Component {

    constructor(props) {

        super(props)

        this.state = {name: ""}

        this.handleChange = this.handleChange.bind(this);

        this.handleSubmit = this.handleSubmit.bind(this);

    }

    handleChange(event) {

        this.setState({name: event.target.value})

    }

    async handleSubmit(event) {

        event.preventDefault()

        await fetch("/api/videos", {

            method: "POST",

            headers: {

                "Content-type":

                    "application/json"

            },

Creating a Web Application with Spring Boot52

            body: JSON.stringify({name: this.state.name})

        }).then(response =>

            window.location.href = "/react")

    }

    render() {

        return (

            <form onSubmit={this.handleSubmit}>

                <input type="text"

                       value={this.state.name}

                       onChange={this.handleChange}/>

                <button type="submit">Submit</button>

            </form>

        )

    }

}

export default NewVideo

This React component has some of the same bits as the other one, such as the import statement
as well as a JavaScript class extending React.Component. But it contains some different parts,
which are as follows:

•	 It has the handleChange and handleSubmit functions, both bound to the component.
This ensures that this will properly reference the component upon invocation.

•	 The handleChange function is invoked anytime the field on the form is altered. It updates
the component’s internal state.

•	 The handleSubmit function is invoked when the button is clicked. It disables standard
JavaScript bubble-up behavior. Instead of button click events trickling up through the stack,
it’s handled right here, invoking a vanilla JavaScript fetch() to affect a POST call on the
/api/videos endpoint created earlier in the Creating JSON-based APIs section of this chapter.

•	 The render() function creates an HTML form element with the onSubmit() event tied to
the handleSubmit function and the onChange event tied to the handleChange function.

Another aspect of this code is the async/await modifiers used on the handleSubmit function.
Some JavaScript functions return standard promises (https://promisesaplus.com/), such
as its built-in fetch function. To ease the usage of these APIs (and save us from using third-party
libraries), ES6 introduced the await keyword, allowing us to indicate we wish to wait for the results.
To support this, we must flag the function itself as async.

Hooking in Node.js to a Spring Boot web app 53

To load up the React app we’ve laid out, we need a separate Mustache template. Create react.
mustache inside src/main/resources/templates and include the following elements:

<div id="app"></div>

<script type="module" src="index.js"></script>

The preceding code contains two critical aspects:

•	 <div id="app"/> is the element that the React component <App /> will be rendered at
per the document.getElementById("app") from earlier in this section.

•	 The <script> tag will load our app through the index.js bundle Parcel will build. The
type="module" argument indicates it’s an ES6 module.

The rest of react.mustache can have the same header and paragraph as our other template has.

To serve up our React app, we need a separate web controller method to HomeController, as
shown here:

@GetMapping("/react")

public String react() {

  return "react";

}

This will serve the react Mustache template when the user requests GET /react.

With all this effort, perhaps you’re wondering if it was worth it. After all, we simply duplicated the content
of a template. It took considerably more effort. If that was all we did, it’s true. This is too much effort.

But React really kicks in when we need to design a much more complex UI. For example, if we needed
various components to optionally render or needed different types of components to appear, all driven
by the internal state of things, that’s where React begins to shine.

As stated earlier in this section, React also has the shadow DOM. We don’t have to focus on the
somewhat outdated concept of finding parts of the DOM and manually updating them. Instead, with
React, we push out a set of HTML components. Then, as the internal state updates, the components
are re-rendered. React simply computes the changes on real DOM elements and automatically updates
itself. We don’t have to handle that.

But enough about React. The focus of this section was to illustrate how to merge JavaScript into a
Spring Boot web application. These techniques of setting up Node.js, installing packages, and utilizing
a build tool work, irrespective of whether we’re using React, Angular, Vue.js, or whatever.

If we have static components, be they JavaScript or CSS, we can put them into our src/main/
resources/static folder. If they are generated, such as a compiled and bundled JavaScript
module, we’ve seen how to route that output to target/classes/static.

Creating a Web Application with Spring Boot54

In short, we’ve managed to connect the powerful world of Node.js and JavaScript with the land of
Spring Boot and Java.

Summary
In this chapter, we used start.spring.io to create a barebones web application. We injected
some demo data using a service. We create a web controller that uses Mustache to render dynamic
content based on the demo data.

Then, we created a JSON-based API allowing third-party apps to interact with our web app, whether
it’s to retrieve data or send in updates.

Finally, we leveraged Node.js to introduce some JavaScript to our web app using a Maven plugin.

Building web controllers, serving up templates, rendering JSON-based APIs, and serving up JavaScript
apps is a valuable skill on just about any project.

In the next chapter, Querying for Data with Spring Boot, we will dig into creating and managing real
data using Spring Data and the amazing power Spring Boot brings us.

3
Querying for Data

with Spring Boot

In the previous chapter, we learned how Spring Boot manages embedded servlet containers, automatically
registers our web controllers, and even provides JSON serialization/deserialization, easing the creation
of APIs.

What application doesn’t have data? Spoiler alert – none. That’s why this chapter is focused on learning
some of the most powerful (and handy) ways to store and retrieve data.

In this chapter, we’ll cover the following topics:

•	 Adding Spring Data to an existing Spring Boot application

•	 DTOs, entities, and POJOs, oh my!

•	 Creating a Spring Data repository

•	 Using custom finders

•	 Using Query By Example to find tricky answers

•	 Using the custom Java Persistence API (JPA)

Being able to store and retrieve data is a critical need for any application, and this list of topics will
provide you with vital abilities.

Where to find this chapter’s code
The source code for this chapter can be found at https://github.com/PacktPublishing/
Learning-Spring-Boot-3.0/tree/main/ch3.

Querying for Data with Spring Boot56

Adding Spring Data to an existing Spring Boot application
Imagine we have an application brewing. We showed our program manager some preliminary web
pages based on the pitch she is hastily putting together. While excited at that, she signals we need to
hook them up to some real data.

But instead of swallowing with dread, we smile from ear to ear. Spring Data is the ticket to powerful
data management.

Before we can move forward, though, we must make a choice. What data store exactly do we need?

The most common database used today is a relational one (Oracle, MySQL, PostgreSQL, and so on).
As mentioned in a past SpringOne keynote, relational databases comprise 80% of all projects created
on Spring Initializr. Choosing a NoSQL (not only SQL) data store requires careful consideration, but
here are three options we can explore:

•	 Redis is principally built as a key/value data store. It’s very fast and very effective at storing
huge amounts of key/value data. On top of that, it has sophisticated statistical analysis, time-
to-live, and functions.

•	 MongoDB is a document store. It can store multiple levels of nested documents. It also has the
ability to create pipelines that process documents and generate aggregated data.

•	 Apache Cassandra provides a table-like structure but has the ability to control consistency as
a trade-off with performance.

SQL data stores have historically had hard requirements on predefining the structure of the data,
enforcing keys, and other aspects that tend to give no quarter.

NoSQL data stores tend to relax some of these requirements. Many don’t require an upfront schema
design. They can have optional attributes, such that one record may have different fields from those
of other records (in the same keyspace or document).

Some NoSQL data stores give you more flexibility when it comes to scalability, eventual consistency,
and fault tolerance. For example, Apache Cassandra lets you run as many nodes as you like and lets
you choose how many nodes have to agree on the answer to your query before giving it. A faster
answer is less reliable, but 75% agreement may be faster than waiting for all nodes (as is typically the
case with relational data stores).

NoSQL data stores typically do not support transactions. Some of them are starting to offer them, in
limited contexts. But in general, if a NoSQL data store were to mimic every feature of relational data
stores (consistency, transactions, and fixed structure), they’d probably lose the features that make
them faster and more scalable.

With that being said, let’s focus on using a traditional data store. The features described in the rest
of this chapter are widely available with any data store supported by Spring Data. The next section
will explain why.

Adding Spring Data to an existing Spring Boot application 57

Using Spring Data to easily manage data

Spring Data has a unique approach to simplifying data access. Spring Data doesn’t use the lowest
common denominator approach. This is the tactic where a single API is defined in an interface, and
an implementation is offered for every data store.

This tends to reduce access to only the features that all data stores share. Since all data stores offer
varying features, the keen aspects of a given data store that make us want to use it usually aren’t found
in that shared API!

No, Spring Data takes a different approach. Each data store has multiple ways to access data, but not
with an identical API. For starters, almost every Spring Data module has a template that gives us easy
access to data store-specific features. Some of these templates include the following:

•	 RedisTemplate

•	 CassandraTemplate

•	 MongoTemplate

•	 CouchbaseTemplate

These template classes aren’t descendants of some common API. Each Spring Data module has its
own core template. They all have a similar lifecycle where they handle resource management. Each
template has a mixture of functions, some based on a common data access paradigm and others based
on the data store’s native features.

While we can do just about anything using a data store’s template, there are easier ways to access data.
Many Spring Data modules include repository support, making it possible to define queries, updates,
and deletes, based purely on our domain types. We’ll see how to use more of this later in the chapter.

There are additional ways to define data requirements, including Query By Example and support for
the third-party library Querydsl.

Note
While every data store has a template, HibernateTemplate, a long-time part of Spring
Framework’s Hibernate solution, is really a tool meant to help legacy apps migrate to Hibernate’s
SessionFactory.getCurrentSession() API. The Hibernate team prefers using this
approach or migrating toward using JPA's EntityManager directly. For this reason, we won’t
be delving into HibernateTemplate in this chapter. However, we will explore the many
ways that Spring Data JPA simplifies access to relational data stores.

There’s a common undercurrent in all these approaches. Writing the select statements, whether they
are for Redis, MongoDB, or Cassandra, is not only tedious but also costly to maintain. Considering a
huge portion of queries are simply copying in structural values that map onto domain types and field
names, Spring Data leverages domain information to help developers write queries.

Querying for Data with Spring Boot58

Instead of rolling queries by hand, shifting the language of data access to domain objects and their
fields lets us shift our problem-solving to business use cases.

Nevertheless, there is always a handful of use cases that require handwritten queries. For example,
there are monthly customer deliverables that require joining 20 tables or a customer report that has
a varying mix of inputs.

There is always the option to sidestep any of Spring Data’s help and instead write the query directly.

Through the rest of this chapter, we’ll explore how these various forms of data access provided by
Spring Data let us focus on solving customer problems instead of battling query typos.

Adding Spring Data JPA to our project

Before we can do anything with Spring Data, we must add it to our project. While we spent a bit of
time in the previous section discussing various data stores, let’s settle on a relational database.

To do that, we will use Spring Data JPA. To get off the ground, we’ll choose a simple embedded database,
H2. This database is a Java Database Connectivity (JDBC) based relational database written in Java.
It’s effective for prototyping efforts.

To add Spring Data JPA and H2 to our already drafted app, we can easily use the same tactic from
Chapter 2, Creating a Web Application with Spring Boot (using start.spring.io to build apps):

1.	 Visit start.spring.io.

2.	 Enter the same project artifact details as before.

3.	 Click on DEPENDENCIES.

4.	 Select Spring Data JPA and H2.

5.	 Click on EXPLORE.

6.	 Look for the pom.xml file and click on it.

7.	 Copy the new bits onto the clipboard.

8.	 Open up our previous project inside our IDE.

9.	 Open our pom.xml file and paste the new bits into the right places.

Hit the refresh button in the IDE, and we’re ready to go!

Now with Spring Data JPA and H2 added to our project, we are ready to start designing our data
structures in the next section!

DTOs, entities, and POJOs, oh my! 59

DTOs, entities, and POJOs, oh my!
Before we start slinging code, we need to understand a fundamental paradigm: data transfer objects
(DTOs) versus entities versus plain old Java objects (POJOs).

The differences between these three conventions aren’t something that is directly enforced by any sort
of tool. That’s why it’s a paradigm and not a coding construct. So, what exactly are DTOs, entities,
and POJOs?

•	 DTO: A class whose purpose is to transfer data, usually from server to client (or vice versa)

•	 Entity: A class whose purpose is to store/retrieve data to/from a data store

•	 POJO: A class that doesn’t extend any framework code nor has any sort of restrictions baked
into it

Entities

When we write code to query data from a database, the class where our data ends up is commonly
called an entity. This concept was turned into a standard when JPA was rolled out. Literally, every
class involved with storing and retrieving data through JPA must be annotated with @Entity.

But the concept of entities doesn’t stop with JPA. Classes used to ferry data in and out of MongoDB,
although they require no such annotation, can also be considered entities. Classes that are involved
in data access typically have requirements levied on them by the data store. JPA specifically wraps
entity objects returned from queries with proxies. This lets the JPA provider track updates so that it
knows when to actually push updates out to the data store (known as flushing) and also helps it to
better handle entity caching.

Speaking of entities, we need to lay out the details for the video type we wish to store in the database
in this chapter. The following code will be suitable for this chapter’s needs:

@Entity

class VideoEntity {

  private @Id @GeneratedValue Long id;

  private String name;

  private String description;

  protected VideoEntity() {

    this(null, null);

  }

Querying for Data with Spring Boot60

  VideoEntity(String name, String description) {

    this.id = null;

    this.description = description;

    this.name = name;

  }

  // getters and setters

}

This preceding code has the following characteristics:

•	 @Entity is JPA’s annotation to signal this is a JPA-managed type.

•	 @Id is JPA’s annotation to flag the primary key.

•	 @GeneratedValue is a JPA annotation to offload key generation to the JPA provider.

•	 JPA requires a no-argument constructor method that is either public or protected.

•	 We also have a constructor where the id field isn’t provided: a constructor designed for creating
new entries in the database. When the id field is null, it tells JPA we want to create a new row
in the table.

We aren’t going to spend a lot of time talking about modeling entities with JPA. There are entire books
dedicated to the intricacies of entity modeling.

DTOs

DTOs, on the other hand, are typically used in the web layer of applications. These classes are more
concerned with taking data and ensuring it’s properly formatted for either HTML generation or JSON
handling. Jackson, Spring Boot’s default JSON serialization/deserialization library, comes with a fistful
of annotations to customize JSON rendering.

Note
It should be said that DTOs aren’t confined to JSON. Using XML or any other form of data
exchange format has the same need of ensuring proper formatting of data. JSON just happens
to be the most popular format in today’s industry; hence, the reason Spring Boot puts Jackson
on classpath by default when we choose Spring Web.

Why do we need DTOs and entities? Because a keen lesson learned over recent years is that classes
are easier to maintain and update if they try to concentrate on doing just one task. In fact, there’s a
name for this concept: the single-responsibility principle (SRP).

A class that tries to be both a DTO and an entity is harder to manage in the long run. Why? Because
there are two stakeholders: the web layer and the persistence layer.

DTOs, entities, and POJOs, oh my! 61

Tip
Short-term versus long-term goals. Notice how I said that a class that tries to be both a DTO
and an entity is harder to manage in the long run? That’s true. But what about that demo you
give to your CTO when you’re pitching Spring Boot? That is a short-term scenario where you
need to get a point across. You aren’t trying to build a long-lasting app, but instead, a quick
demo. In those scenarios, it’s okay to let one class serve as both DTO and entity. But anything
slated for production will probably be better maintained over the long run if those two ideas are
decoupled. For a more detailed discussion, check out my video, DTOs vs. Entities, at https://
springbootlearning.com/dtos-vs-entities.

We’ve mentioned DTOs and entities. Where do POJOs fit into all this?

POJOs

Spring has a long history of supporting a POJO-oriented programming style. Before Spring, many if
not most Java-based frameworks required developers to extend various classes. This drives user code
to hook into the framework to make things happen.

These sorts of classes were hard to work with. They didn’t lend themselves to writing test cases due to
requirements inherited from the framework. It often required spinning everything up to verify that
user-created code was working right. Overall, it made for a heavy-handed coding experience.

A POJO-based approach meant writing user code that didn’t have to extend any framework code.

Spring’s concept of registering beans with an application context made it possible to avoid this heavy
style. Registered beans with a built-in lifecycle opened the door to wrapping these POJO-based objects
with proxies that allowed the application of services.

One of Spring’s earliest features was transactional support. Due to Spring’s revolutionary nature of
registering something such as VideoService with the application context, you could easily wrap
a bean with a proxy that applied Spring’s TransactionTemplate to every method call made
from an outside caller.

This made it easy to unit test VideoService, ensuring it did its job while making transactional
support a configuration step that the service didn’t even have to know about.

When Java 5 emerged with its support for annotations, it became even easier to apply things. Transactional
support could be applied with a simple @Transaction annotation.

By keeping services light and POJO-oriented, Spring effected a lightening of development.

Perhaps the application of annotations (and nothing else) is debatable as to whether it’s really a POJO.
But the idea of having to verify an application built up out of POJOs lets us build confidence in our
system faster.

With all this prep work done, it’s time to dig and start writing queries, as we’ll see in the next section!

Querying for Data with Spring Boot62

Creating a Spring Data repository
What is the best query? The one we don’t have to write!

This may sound absurd, but Spring Data really makes it possible to write lots of queries…without
writing them. The simplest one is based on the repository pattern.

This pattern was originally published in Patterns of Enterprise Application Architecture, Martin
Fowler, Addison-Wesley.

A repository essentially gathers all the data operations for a given domain type in one place. The
application talks to the repository in domain speak, and the repository in turn talks to the data store
in query speak.

Before Spring Data, we had to write this translation of action by hand. But Spring Data provides the
means to read the metadata of the data store and perform query derivation.

Let’s check it out. Create a new interface called VideoRepository.java, and add the following code:

public interface VideoRepository extends JpaRepository

  <VideoEntity, Long> {

}

The preceding code can be explained as follows:

•	 It extends JpaRepository with two generic parameters: VideoEntity and Long (the
domain type and the primary key type)

•	 JpaRepository, a Spring Data JPA interface, contains a set of already supported Change
Replace Update Delete (CRUD) operations

Believe it or not, this is all we need to get going.

One of the most important things to understand is that by peeking inside of JpaRepository using
our IDE, we’ll discover that this class hierarchy ends with Repository. This is a marker interface
with nothing inside it.

Spring Data is coded to look for all Repository instances and apply its various query derivation
tactics. This means that any interface we create that extends Repository or any of its subinterfaces
will be picked up by Spring Boot’s component scanning and automatically registered for us to use.

But that is not all. JpaRepository comes loaded with various ways to fetch data, as shown with
the following operations:

•	 findAll(), findAll(Example<S>), findAll(Example<S>, Sort),
findAll(Sort) , findAllById(Iterable<ID>), findById(ID) ,
findAll(Pageable), findAll(Example<S>, Pageable),

Using custom finders 63

findBy(Example<S>), findBy(Example<S>, Pageable),
findBy(Example<S>, Sort), findOne(Example<S>)

•	 deleteById(ID), deleteAll(Iterable<T>), deleteAllById(Iterable<ID>),
deleteAllByIdInBatch(Iterable<ID>), deleteAllInBatch()

•	 save(S), saveAll(Iterable<S>), saveAllAndFlush(Iterable<S>),
saveAndFlush(S)

•	 count(), count(Example<S>), existsById(ID)

These aren’t all found directly in JpaRepository. Some are in other Spring Data repository
interfaces further up the hierarchy including ListPagingAndSortingRepository,
ListCrudRepository, and QueryByExampleExecutor.

The generic types sprinkled in the various signatures may seem a little confusing. Check out the
following list to decode them:

•	 ID: The generic type of the repository’s primary key

•	 T: The generic type of the repository’s immediate domain type

•	 S: The generic subtype that extends T (sometimes used for projection types)

There are some container types that are also used in many places. These can be described as follows:

•	 Iterable: An iterable type that does not require all its elements to be fully realized in memory

•	 Example: An object used to serve Query By Example

As we work our way through this chapter, we’ll cover these various operations and how we can use
them to create a powerpack of data access.

While all these operations provide an incredible amount of power, one thing they lack is the ability
to query with more specific criteria. The next section provides the means to start crafting more
detailed queries.

Using custom finders
To create a custom finder, go back to the repository we created earlier, VideoRepository, and
add the following method definition:

List<VideoEntity> findByName (String name);

The preceding code can be explained as follows:

•	 The findByName(String name) method is called a custom finder. We never have to
implement this method. Spring Data will do it for us as described in this section.

Querying for Data with Spring Boot64

•	 The return type is List<VideoEntity>, indicating it must return a list of the repository’s
domain type.

This interface method is all we need to write a query. The magic of Spring Data is that it will parse the
method name. All repository methods that start with findBy are flagged as queries. After that, it
looks for field names (Name) with some optional qualifiers (Containing and/or IgnoreCase).
Since this is a field, it expects there to be a corresponding argument (String name). The name of
the argument doesn’t matter.

Spring Data JPA will literally translate this method signature into select video.* from
VideoEntity video where video.name = ?1. As a bonus, it even performs proper
binding on the incoming argument to avoid SQL injection attacks. It will convert every row coming
back into a VideoEntity object.

Tip
What are SQL injection attacks? Anytime you give system users the chance to enter a piece of data
and have it spliced into a query, you run the risk of someone inserting bits of SQL to maliciously
attack the system. In general, blindly copying and pasting user inputs with production queries
is a risky move. Binding arguments provide a much safer approach, forcing all user inputs to
come in the data store’s front door and get applied properly to query creation.

The ability to write type-safe queries based on domain types cannot be overstated. We also don’t need
to cope with the names of tables or their columns. Spring Data will use all the built-in metadata to
craft the SQL needed to talk to our relational database.

On top of that, because this is JPA, we don’t even have to sweat database dialects. Whether we are
talking to MySQL, PostgreSQL, or some other instance, JPA will largely handle those idiosyncrasies.

There are additional operators used by custom finders:

•	 And and Or can be used to combine multiple property expressions. You can also use Between,
LessThan, and GreaterThan

•	 You can apply IsStartingWith, StartingWith, StartsWith, IsEndingWith,
EndingWith, EndsWith, IsContaining, Containing, Like, IsNotContaining,
NotContaining, and NotContains

•	 You can apply IgnoreCase against a single field, or if you want to apply it to all properties,
use AllIgnoreCase at the end

•	 You can apply OrderBy with Asc or Desc against a field when you know the ordering
in advance

Using custom finders 65

Note
Containing versus StartsWith versus EndsWith versus Like

In Jakarta Persistence Query Language (JPQL) , % is a wildcard you can use for doing a
partial match with LIKE. To apply it yourself, just apply Like onto the finder, for example,
findByNameLike(). But if you’re doing something simple, like putting the wildcard at
the beginning, just use StartsWith and provide the partial token. Spring Data will plug in
the wildcard for you. EndsWith puts the wildcard at the end and Containing puts one
on each side. If you need something more complicated, then Like puts you in control, as in
%firstthis%thenthis%.

Custom finders can also navigate relationships. For example, if the repository’s domain type were
Person and it had an Address field with ZipCode, we could write a custom finder called
findByAddressZipCode(ZipCode zipCode). This will generate a join to find the right results.

In the event that Spring Data runs into an ambiguous situation, it’s possible to resolve things. For
example, if that Person object just mentioned also had an addressZip field, Spring Data would
naturally take that over navigating across a relationship. To force it to navigate properly, use an
underscore (_) like this: findByAddress_ZipCode(ZipCode zipCode).

Assuming we wanted to apply some of these techniques, what about creating a search box for our web
app from the previous chapter?

Let’s add a search box to the Mustache template we created in Chapter 2, Creating a Web Application
with Spring Boot, index.mustache, as follows:

<form action="/multi-field-search" method="post">

  <label for="name">Name:</label>

  <input type="text" name="name">

  <label for="description">Description:</label>

  <input type="text" name="description">

  <button type="submit">Search</button>

</form>

The preceding code can be described as follows:

•	 The action denotes /multi-field-search as the target URL, with an HTTP method
of POST

•	 There is a label and a text input for both name and description

•	 The button labeled Search will actuate the whole form

When the user enters search criteria in either box and clicks Submit, it will POST a form to
/multi-field-search.

Querying for Data with Spring Boot66

To handle this, we need a new method in our controller class that can parse this. As mentioned in
the previous chapter, Mustache needs a data type to collect the name and description fields. A Java
17 record is perfect for defining such lightweight data types.

Create VideoSearch.java and add the following code:

record VideoSearch(String name, String description) {

}

This Java 17 record has two String fields—name and description—that perfectly match up
with the names defined earlier in the HTML form.

Using this data type, we can add another method to HomeController from Chapter 2, Creating
a Web Application with Spring Boot, to process the search request:

@PostMapping("/multi-field-search")

public String multiFieldSearch(//

  @ModelAttribute VideoSearch search, //

  Model model) {

  List<VideoEntity> searchResults = //

    videoService.search(search);

  model.addAttribute("videos", searchResults);

  return "index";

}

The preceding controller method can be described as follows:

•	 @PostMapping("/multi-field-search") is Spring MVC’s annotation to mark the
method for processing HTTP POST requests to the URL.

•	 The search argument has the VideoSearch record type. The @ModelAttribute annotation
is Spring MVC’s signal to deserialize the incoming form. The Model argument is a mechanism
to send information out for rendering.

•	 There is a newly minted search() method where our VideoSearch criteria get forwarded
to VideoService (which we’ll define further down). The results are inserted into the Model
object under the name videos.

•	 The method finally returns the name of the template to render, index. As a refresher from
the previous chapter, Spring Boot is responsible for translating this name to src/main/
resources/templates/index.mustache.

Using custom finders 67

In defining the web method for handling search requests, we must now design a VideoService
method to do a search. This is where it gets a little tricky. So far, we’ve simply ferried the details of
the request.

Now, it’s time to make the request, and all kinds of things could happen:

•	 The user could have entered both name and description details

•	 The user could have entered only the name field

•	 The user could have entered only the description field

What information the user enters could swing things one way or the other. For example, if the name
field were empty, we don’t want to attempt to match against an empty string, because that would
match everything.

We need a method signature as follows:

public List<VideoEntity> search(VideoSearch videoSearch)

The preceding code meets our obligation of taking a VideoSearch input and translating it to a list
of VideoEntity objects.

From here, we need to switch to using a both name and description, based on the inputs, with the
first path being as follows:

if (StringUtils.hasText(videoSearch.name())

  && StringUtils.hasText(videoSearch.description())) {

  return repository

    .findByNameContainsOrDescriptionContainsAllIgnoreCase(

      videoSearch.name(), videoSearch.description());

}

The preceding code has some key components:

•	 StringUtils is a Spring Framework utility that lets us check that both fields of the
VideoSearch record actually have some text and are neither empty nor null.

•	 Assuming both fields are populated, we can then invoke a custom finder that matches the name
field and the description field, but with the Contains qualifiers and the AllIgnoreCase
modifier. Basically, we’re looking for a partial match on both fields, and the casing shouldn’t
be an issue.

Querying for Data with Spring Boot68

If either field is empty (or null), then we need additional checks, as follows:

if (StringUtils.hasText(videoSearch.name())) {

  return repository.findByNameContainsIgnoreCase

    (videoSearch.name());

}

if (StringUtils.hasText(videoSearch.description())) {

  return repository.findByDescriptionContainsIgnoreCase

    (videoSearch.description());

}

The preceding code is somewhat similar, but varies:

•	 Using the same StringUtils utility method as before, check if the name field has text. If so,
invoke the custom finder matching on name with the Contains and IgnoreCase qualifiers.

•	 Also, check whether the description field has text. If so, use the custom finder that matches
on description with Contains and IgnoreCase qualifiers.

Finally, if both fields are empty (or null), there is but one result to return:

return Collections.emptyList();

Since this is the final state of what can happen, there is no need for an if clause. If our code has made
it here, there is nothing to do but return an empty list.

If you felt that this series of if clauses is a little clunky, I’d agree! There are yet more ways to query
the database using Spring Data JPA, and we’ll investigate further. Later in this chapter, we’ll see how
we can use some of these tactics to our advantage and see about making a slicker, smoother solution.

Sorting the results

There are several ways to sort data. We just mentioned adding an OrderBy clause earlier in this
chapter. This is a static approach, but it’s also possible to delegate this to the caller.

Any custom finder can also have a Sort parameter, allowing the caller to decide how to sort the results:

Sort sort = Sort.by("name").ascending()

  .and(Sort.by("description").descending());

This fluent Sort API lets us build up a series of columns and allows us to choose whether these
columns should be sorted in ascending or descending order. This is also the order in which the sorting
will be applied.

Using custom finders 69

If you’re worried about using string values to represent columns, then ever since the days of Java 8,
Spring Data has also supported strongly-typed sort criteria, as follows:

TypedSort<Video> video = Sort.sort(Video.class);

Sort sort = video.by(Video::getName).ascending()

  .and(video.by(Video::getDescription).descending());

Limiting query results

There are several ways to constrain the results. Why is this needed? Just imagine querying a table with
100,000 rows. Don’t want to fetch all of that, right?

Some of the options we can apply to custom finders include the following:

•	 First or Top: Finds the first entry in the result set, for example, findFirstByName(String
name) or findTopByDescription(String desc).

•	 FirstNNN or TopNNN: Finds the first NNN entries in the result set, for example,
findFirst5ByName(String name) or findTop3ByDescription(String desc).

•	 Distinct: Apply this operator for data stores that support it, for example, findDistinct
ByName(String name).

•	 Pageable: Request a page of data, for example, PageRequest.of(1, 20) will find the
first page (0 being the first page) with a page size of 20. It’s also possible to provide a Sort
parameter to Pageable.

It’s also important to point out that not only can we write custom finders, but we can also write a
custom existsBy, deleteBy, and countBy method. They all support the same conditions
described in this section.

Look at the following set of examples:

•	 countByName(String name): Runs the query but with a COUNT operator applied,
returning an integer instead of the domain type

•	 existsByDescription(String description): Runs the query but gleans whether
or not the result is empty

•	 deleteByTag(String tag): DELETE instead of SELECT

Querying for Data with Spring Boot70

Tip
SQL vs. JPQL – What query does Spring Data JPA actually write? JPA provides a construct to
build up queries known as EntityManager. EntityManager provides APIs to assemble
queries using JPQL. Spring Data JPA parses methods from the repository method and talks to
EntityManager on your behalf. Under the covers, JPA is responsible for converting JPQL to
Structured Query Language (SQL), the language relational data stores speak. Certain concepts,
like injection attacks, don’t really matter whether we are talking about JPQL or SQL. But when
it comes down to the actual queries, it’s important to be sure we’re talking about the right thing.

Custom finders are incredibly powerful. They make it possible to capture business concepts rapidly
without fiddling with writing queries.

But there’s a fundamental trade-off that may not make them ideal for every situation.

Custom finders are almost completely fixed. True, we can provide custom criteria through the arguments,
and it’s possible to dynamically adjust sorting and paging. But the columns we choose for the criteria
and how they are combined (IgnoreCase, Distinct, and so on) are fixed when we write them.

We’ve seen a limitation of this in the previous search box scenario. Simply having two parameters, name
and description, sent us down a path to write a series of if clauses to pick the right custom finder.

Imagine how this would explode if we added more and more options. To cut to the chase, this approach
results in a combinatorial explosion of finder methods to cover it all and the if statements quickly
become long-winded and a little hard to reason about. What happens if we add another field?

The problem, as stated, is that custom finders are rather static in the criteria we can apply. Thankfully,
Spring Data offers a way out of such fluid situations, which we’ll cover in the next section.

Using Query By Example to find tricky answers
So, what happens when the exact criteria for a query vary from request to request? In short, we need
a way to feed Spring Data an object that captures the fields we’re interested in while ignoring the ones
that we aren’t.

The answer is Query By Example.

Query By Example lets us create a probe, which is an instance of the domain object. We populate the
fields with criteria we want to apply and leave the ones we aren’t interested in empty (null).

We then wrap the probe, creating an Example. Check out the following example:

VideoEntity probe = new VideoEntity();

probe.setName(partialName);

probe.setDescription(partialDescription);

Using Query By Example to find tricky answers 71

probe.setTags(partialTags);

Example<VideoEntity> example = Example.of(probe);

The preceding code can be broken down as follows:

•	 The first few lines are where we create the probe, presumably pulling down fields from a Spring
MVC web method where they were posted, some populated, some null

•	 The last line wraps the Example<VideoEntity> probe with a policy of exactly matching
only the non-null fields

Earlier, when discussing the calamity of custom finders (under the Using customer finders section),
we mentioned applying an AllIgnoreCase clause. To do the same for Query By Example, we’d
have to alter our example as follows:

Example<VideoEntity> example = Example.of(probe,

  ExampleMatcher.matchingAll()

    .withIgnoreCase()

    .withStringMatcher(StringMatcher.CONTAINING));

Assuming we were using the exact same probe as before, ExampleMatcher alters things as follows:

•	 It matches on all fields, essentially an And operation as before. However, if we wanted to switch
to an Or operation, we could switch to matchingAny().

•	 withIgnoreCase() tells Spring Data to make the query case insensitive. It essentially
applies a lower() operation on all the columns (so adjust any indexes suitably!).

•	 withStringMatcher() applies a CONTAINING filter to make it a partial match on all
non-null columns. Under the hood, Spring Data wraps each column with a wildcard and
then applies the LIKE operator.

Assuming we put together Example<VideoEntity>, how do we use it? The JpaRepository
interface we are leveraging comes with findOne(Example<S> example) and
findAll(Example<S> example).

Tip
JpaRepository inherits these Example-based operations from QueryByExample
Executor. If you are rolling your own extension of Repository, you can either extend
QueryByExampleExecutor or add the findAll(Example<S>) methods by hand.
Either way, as long as the method signature is there, Spring Data will happily execute your
Query By Example.

Querying for Data with Spring Boot72

So far, we have looked at how some sort of search box or filter on the web page could be used to
assemble a probe. If we decided to switch from a multi-field setup and instead had a universal search
box where there is only one input, it would take little effort to adapt it!

Let’s see if we can noodle out such a search box:

<form action="/universal-search" method="post">

  <label for="value">Search:</label>

  <input type="text" name="value">

  <button type="submit">Search</button>

</form>

This form in the preceding code is quite similar to the HTML template created earlier in this chapter,
with the following exceptions:

•	 The target URL is /universal-search

•	 There is only one input, value

Again, to transport this piece of input data, we need to wrap it with a DTO. Thanks to Java 17 records,
this is super simple. Just create a UniversalSearch record as follows:

record UniversalSearch(String value) {

}

The preceding DTO contains one entry: value.

To process this new UniversalSearch, we need a new web method:

@PostMapping("/universal-search")

public String universalSearch(

  @ModelAttribute UniversalSearch search, Model model) {

    List<VideoEntity> searchResults =

      videoService.search(search);

  model.addAttribute("videos", searchResults);

  return "index";

}

The preceding search handler is quite similar to the multi-field one we made earlier, with the
following exceptions:

•	 It responds to /universal-search

•	 The incoming form is captured in the single-value UniversalSearch type

Using Query By Example to find tricky answers 73

•	 The search DTO is passed on to a different search() method, which we’ll write further
down in this section

•	 The search results are stored in the Model field to be rendered by the index template

Now, we’re poised to leverage Query By Example by creating a VideoService.search() method
that takes in one value and applies it to all the fields, as follows:

public List<VideoEntity> search(UniversalSearch search) {

  VideoEntity probe = new VideoEntity();

  if (StringUtils.hasText(search.value())) {

    probe.setName(search.value());

    probe.setDescription(search.value());

  }

  Example<VideoEntity> example = Example.of(probe, //

    ExampleMatcher.matchingAny() //

      .withIgnoreCase() //

      .withStringMatcher(StringMatcher.CONTAINING));

  return repository.findAll(example);

}

The preceding alternative search method can be explained as follows:

•	 It takes in the UniversalSearch DTO.

•	 We create a probe based on the same domain type as the repository and copy the value
attribute into the probe’s Name and Description fields, but only if there is text. If the value
attribute is empty, the fields are left null.

•	 We assemble an Example<VideoEntity> using the Example.of static method. However,
in addition to providing the probe, we also provide additional criteria of ignoring the casing
and applying a CONTAINING match, which puts wildcards on both sides of every input.

•	 Since we’re putting the same criteria in all fields, we need to switch to matchingAny(), that
is, an Or operation.

With a single design change to the UI and by switching to Query By Example, we were able to adjust
the backend to find results.

This isn’t just effective and maintainable, it’s pretty easy to read and understand what’s happening. If
we start adding more attributes to this video-based structure, it doesn’t look hard to adjust.

Querying for Data with Spring Boot74

Tip
In case you’re thinking you can simply create a finder that matches on all fields, providing
null to the columns you want to ignore, this won’t work. This is your friendly reminder that
in relational databases, null doesn’t equal null. That’s why Spring Data also has IsNull
and IsNotNull as qualifiers; for example, findByNameIsNull will find any entries where
the name field is null.

However, that is not all. There are other ways to fashion queries, including a more fluent way, as shown
in the next section.

Using custom JPA
If all else fails and we can’t seem to bend Spring Data’s query derivation tactics to meet our needs, it’s
possible to write the JPQL ourselves.

In our repository interface, we can create a query method as follows:

@Query("select v from VideoEntity v where v.name = ?1")

List<VideoEntity> findCustomerReport(String name);

The preceding method can be explained as follows:

•	 @Query is Spring Data JPA’s way to supply a custom JPQL statement.

•	 It’s possible to include positional binding parameters using ?1 to tie it to the name argument.

•	 Since we are providing the JPQL, the name of the method no longer matters. This is our
opportunity to pick a better name than what custom finders constrained us to.

•	 Because the return type is List<VideoEntity>, Spring Data will form a collection.

Using @Query essentially sidesteps any query writing done by Spring Data and uses the user’s supplied
query with one exception: Spring Data JPA will still apply ordering and paging. Because SORT
clauses can be appended at the end of queries, Spring Data JPA will let us provide a Sort argument
and apply it.

While we are focusing on Spring Data JPA details such as JPQL, almost every other Spring Data
module has a corresponding @Query annotation. Each data store lets us write custom queries in the
data store’s query language, for example: MongoQL, Cassandra Query Language (CQL), or even
Nickel/Couchbase Query Language (N1QL).

In terms of Spring Data JPA, it must be stressed that this annotation lets us provide JPQL. Now, the
previous example is a bit simplistic for a custom query. If you were thinking that based on what you’ve
read up to this point, it would be a perfect candidate for findByName(String name), you’re right!

Using custom JPA 75

However, sometimes we have that custom query that requires joining lots of different tables. Maybe
something more similar to the following:

@Query("select v FROM VideoEntity v " //

    + "JOIN v.metrics m " //

    + "JOIN m.activity a " //

    + "JOIN v.engagement e " //

    + "WHERE a.views < :minimumViews " //

    + "OR e.likes < :minimumLikes")

List<VideoEntity> findVideosThatArentPopular(//

    @Param("minimumViews") Long minimumViews, //

    @Param("minimumLikes") Long minimumLikes);

The preceding code can be explained as follows:

•	 This @Query shows a JPQL statement that joins four different tables together, using standard
inner joins.

•	 :minimumViews and :minimumLikes are named parameters (instead of the default
positional parameters). They are bound to the method arguments by the Spring Data
@Param("minimumViews") and @Param("minimumLikes") annotations.

The preceding method is getting closer to something @Query is good for. A comparable custom finder
would be findByMetricsActivityViewsLessThanOrEngagementLikesLessThan(Long
minimumViews, Long minimumLikes).

Tip
Choosing between custom finders and @Query is hard. To be honest, for this example where
we join four tables together, I’d still take that custom finder, because I know it will be right.
But as that finder method gets longer and longer, things begin to shift more favorably toward
writing the query by hand. A key factor is the number of WHERE clauses as well as the number
of complex (that is, outer) JOIN clauses. Essentially, the harder it gets to capture it in a simple
name, the better it becomes to take control of the whole query.

And if JPQL is getting in the way, it’s possible to even move past that and write pure SQL using @
Query’s nativeQuery=true argument.

Spring Data JPA 3.0 includes JSqlParser, a SQL-parsing library, making it possible to write queries
as follows:

@Query(value="select * from VIDEO_ENTITY where NAME = ?1",
nativeQuery=true)

List<VideoEntity> findCustomWithPureSql(String name);

Querying for Data with Spring Boot76

Why do we write queries as shown in the preceding code? There are several possible reasons, actually:

•	 Perhaps we need access to a customer report, but all the relevant tables don’t really connect to
the stuff the rest of our finders operate on. Is it worth it to climb through configuring a stack
of entity types for one report? It may be easier to focus on writing the pure SQL for the report.

•	 I’ve seen reports that literally join 20 tables with complex left outer joins, correlated subqueries,
and other complexities. Converting it to JPQL for the sake of using JPA didn’t make sense.

The criteria for swapping our custom finders for native SQL are pretty close to whether or not we
would swap it out for custom JPQL. It really hinges on how comfortable we are with JPQL versus SQL.

Tip
Personally, if I were using @Query, I’d probably switch to pure SQL, not JPQL. But that’s probably
because I have many more years of experience with SQL than with JPQL. Having worked on
a 24x7 system with five 9s of availability with over 200 queries, I can write left outer joins and
correlated subqueries in my sleep. The JPQL equivalent would require too much study. But,
perhaps JPQL is your thing. If you jam in the land of JPQL, then run with that. Whatever gets
the job done, go for it!

Another factor to consider is that Spring Data JPA doesn’t support dynamic sorting when doing native
queries. Doing so would require manipulating the SQL by adding the SORT clauses. It is possible to
support paging requests with a Pageable argument. But it requires that we also fill in @Query’s
countQuery entry, providing the SQL statement to count. (Spring Data JPA can iterate over the
result set, providing pages of results.)

It’s also important to understand that Spring Data will still handle connection management and
transaction handling.

Summary
Over the course of this chapter, we have learned a multitude of ways to fetch data using Spring Data
JPA. We then hooked several variations of queries into some search boxes. We used Java 17 records
to quickly assemble DTOs to ferry form requests into web methods and onto VideoService.

We tried to assess when it makes sense to use various querying tactics.

In the next chapter, Securing an Application with Spring Boot, we’ll explore how to lock down our
application and get it ready for production.

4
Securing an Application

with Spring Boot

In the previous chapter, we learned how to query for data using Spring Data JPA. We figured out
how to write custom finders, use Query By Example, and even how to directly access the data store
custom JPQL and SQL.

In this chapter, we’ll see how to keep our application secure.

Security is a critical issue. I have said, multiple times, that your application isn’t real until it’s secured.

But security isn’t just a switch we flip and we’re done. It’s a complex problem that requires multiple
layers. It requires careful respect.

If there is one thing to appreciate as we dive into this chapter, it’s to never attempt to secure things on
your own. Don’t roll your own solution. Don’t assume it’s easy. The person who wrote the commercial
utility to crack Word documents for users who had lost their password said he introduced a deliberate
delay so it didn’t appear instantaneous.

There are security engineers, computer scientists, and industry leaders who have studied application
security for years. Adopting tools and practices developed by industry experts is the first step toward
ensuring our application’s data and its users are properly protected.

That’s why our first step will be to turn to a well-respected security tool: Spring Security.

Spring Security has been developed in the open from the beginning (2003). This framework isn’t
proprietary but instead has had contributions from well-respected security professionals around the
globe. Also, it’s actively maintained by a dedicated portion of the Spring team.

In this chapter, we’ll cover the following topics:

•	 Adding Spring Security to a Spring Boot application

•	 Creating our own users with a custom security policy

Securing an Application with Spring Boot78

•	 Swapping hardcoded users with a Spring Data-backed set of users

•	 Leveraging Google to authenticate users

•	 Securing web routes and HTTP verbs

•	 Securing Spring Data methods

Where to find this chapter’s code
The source code for this chapter can be found at https://github.com/PacktPublishing/
Learning-Spring-Boot-3.0/tree/main/ch4.

Adding Spring Security to our project
Before we can do anything with Spring Security, we must add it to our project.

To add Spring Security to our already drafted app, we can easily use the same tactic from the
previous chapters:

1.	 Visit start.spring.io.

2.	 Enter the same project artifact details as before.

3.	 Click on DEPENDENCIES.

4.	 Select Spring Security.

5.	 Click on EXPLORE.

6.	 Look for the pom.xml file and click on it.

7.	 Copy the new bits onto the clipboard. Watch out! Spring Security has both a starter as well as
a test module.

8.	 Open up our previous project inside our IDE.

9.	 Open our pom.xml file and paste the new bits into the right places.

Hit the refresh button in the IDE, and we’re ready to go!

Out of the box, we can run the application we have built up to this point. The exact same web app
backed by Spring Data JPA is runnable…and it will be locked down.

Kind of.

When Spring Boot detects Spring Security on the path, it locks everything down with a randomly
generated password. This can be a good thing…or a bad thing.

If we were giving a quick rundown to the CTO of a company, showing how the power of Spring Boot
allows us to lock down applications, this can be a good thing.

Creating our own users with a custom security policy 79

But if we intend to do anything deeper than pitching, we need another approach. The problem with
using Spring Boot’s autoconfigured “user” username and random password is that the password
changes every time the app restarts.

We could override the username, password, and even the roles using application.properties,
but this isn’t scalable. There is another approach that takes about the same amount of effort and sets
us up for a more realistic approach.

This is what we’ll tackle next.

Creating our own users with a custom security policy
Spring Security has a highly pluggable architecture, which we shall take full advantage of throughout
this chapter.

The key aspects of securing any application are as follows:

•	 Defining the source of users

•	 Creating access rules for the users

•	 Associating various parts of the app with the access rules

•	 Applying the policy to all aspects of the application

Let’s start with the first step and create a source of users. Spring Security comes with an interface for
just this task: UserDetailsService.

To leverage this, we’ll start by creating a SecurityConfig Java class with the following code:

@Configuration

public class SecurityConfig {

  @Bean

  public UserDetailsService userDetailsService() {

    UserDetailsManager userDetailsManager =

      new InMemoryUserDetailsManager();

    userDetailsManager.createUser(

      User.withDefaultPasswordEncoder()

        .username("user")

        .password("password")

        .roles("USER")

        .build());

    userDetailsManager.createUser(

Securing an Application with Spring Boot80

      User.withDefaultPasswordEncoder()

        .username("admin")

        .password("password")

        .roles("ADMIN")

        .build());

    return userDetailsManager;

  }

}

The preceding security code can be described as follows:

•	 @Configuration is Spring’s annotation to signal that this class is a source of bean definitions
rather than actual application code. Spring Boot will detect it through its component scanning
and automatically add all its bean definitions to the application context.

•	 UserDetailsService is Spring Security’s interface for defining a source of users. This
bean definition, marked with @Bean, creates InMemoryUserDetailsManager.

•	 Using InMemoryUserDetailsManager, we can then create a couple of users.
Each user has a username, a password, and a role. This code fragment also uses the
withDefaultPasswordEncoder() method to avoid encoding the password.

What’s important to understand is that when Spring Security gets added to the classpath, Spring Boot’s
autoconfiguration will activate Spring Security’s @EnableWebSecurity annotation. This switches
on a standard configuration of various filters and other components.

The components are dynamically picked based on whether this is Spring MVC or its reactive variant,
Spring WebFlux. One of the beans required is a UserDetailsService bean.

Spring Boot will autoconfigure the single-user instance version we talked about in the preceding
section. But, because we defined our own, Spring Boot will back off and let our version take its place.

Tip
In the code so far, we used withDefaultPasswordEncoder() to store passwords in
the clear. Do NOT do this in production! Passwords need to be encrypted before being stored.
In fact, there is a long and detailed history of the proper storage of passwords that reduces the
risk of not just sniffing out a password but guarding against dictionary attacks. See https://
springbootlearning.com/password-storage for more details on properly securing
passwords when using Spring Security.

Believe it or not, this is enough to run the application we’ve been developing in this book! Go ahead,
either right-click on the public static void main() method and run it or use ./mvnw spring-
boot:run in the terminal.

Swapping hardcoded users with a Spring Data-backed set of users 81

Once the app is up, visit localhost:8080 in a new browser tab, and you should be automatically
redirected to this page at /login:

Figure 4.1 – Spring Security’s default login form

This is Spring Security’s built-in login form. No need to roll our own. If we enter one of the accounts
from the userDetailsService bean, it will let us in!

If hard-coded passwords are making you a tad nervous, then check out the next section, where we’ll
move the storage of user credentials to an external database.

Swapping hardcoded users with a Spring Data-backed set
of users
Creating a hardcoded set of users is great if we’re creating a demo (or writing a book!), but it’s no way
to build a real, production-oriented application. Instead, it’s better to outsource user management to
an external database.

By having the application reach out and authenticate against an external user source, it makes it possible
for another team, such as our security engineering team, to manage the users through a completely
different tool that manages that database.

Decoupling user management from user authentication is a great way to improve the security of
the system. So, we’ll combine some of the techniques we learned in the previous chapter with the
UserDetailsService interface we learned about in the previous section.

Since we already have Spring Data JPA and H2 on the classpath, we can start off by defining a JPA-based
UserAcount domain object as follows:

@Entity

public class UserAccount {

  @Id

Securing an Application with Spring Boot82

  @GeneratedValue

  private Long id;

  private String username;

  private String password;

  @ElementCollection(fetch = FetchType.EAGER)

  private List<GrantedAuthority> authorities = //

    new ArrayList<>();

}

The preceding code contains some key features:

•	 As discussed in Chapter 3, Querying for Data with Spring Boot, @Entity is JPA’s annotation
for denoting classes that are mapped onto relational tables.

•	 The primary key is marked by the @Id annotation. @GeneratedValue signals the JPA
provider to generate unique values for us.

•	 This class also has a username, a password, and a list of authorities.

•	 Because the authorities are a collection, JPA 2 offers a simple way to handle this using their @
ElementCollection annotation. All these authority values will be stored in a separate table.

Before we can ask Spring Security to fetch user data, we should probably load some up. While in
production, we would need to build up a separate tool to create and update the tables. For now, we
can just pre-load some entries directly.

To do this, let’s create a Spring Data JPA repository definition aimed at the user manager by creating
a UserManagementRepository interface as follows:

public interface UserManagementRepository extends

  JpaRepository<UserAccount, Long> {

}

The preceding repository extends Spring Data JPA’s JpaRepository, providing a whole suite of
operations needed by any user-managing tool.

To take advantage of it, we need Spring Boot to run a piece of code when the app starts up. Add the
following bean definition to our SecurityConfig class:

@Bean

CommandLineRunner initUsers(UserManagementRepository

  repository) {

  return args -> {

    repository.save(new UserAccount("user", "password",

Swapping hardcoded users with a Spring Data-backed set of users 83

      "ROLE_USER"));

    repository.save(new UserAccount("admin", "password",

      "ROLE_ADMIN"));

  };

}

The preceding bean defines Spring Boot's CommandLineRunner (through a Java 8 lambda function).

Tip
CommandLineRunner is a single abstract method (SAM), meaning it has just one method
that must be defined. This trait lets us instantiate CommandLineRunner using a lambda
expression instead of creating an anonymous class from the pre-Java 8 days.

In our example, we have a bean definition that depends upon UserManagementRepository. Inside
the lambda expression, this repository is used to save two UserAccount entries: one user and one
admin. With these entries in place, we can finally code our JPA-oriented UserDetailsService!

To fetch a UserAccount entry, we need another Spring Data repository definition. Only this time,
we need a very simple one. Nothing that involves saving or deleting. So, create an interface called
UserRepository as follows:

public interface UserRepository extends

  Repository<UserAccount, Long> {

        UserAccount findByUsername(String username);

}

The preceding code is different from the previous repository we created (UserManagementRepository)
in the following ways:

•	 It extends Repository instead of JpaRepository. This means it starts with absolutely
nothing. There are no operations defined except what is right here.

•	 It has a custom finder, findByUsername, used to fetch a UserAccount entry based on
the username. This is exactly what we’ll need to serve Spring Security later in this section.

This is one of the places where Spring Data really shines. We have focused on the domain of UserAccount
and written one repository that is involved with storing data while defining another repository focused
on fetching a single entry. All without getting dragged down into writing JPQL or SQL.

Securing an Application with Spring Boot84

With all this in place, we can finally create a bean definition that lets us replace the UserDetailsService
bean we defined in the previous section by adding this to our SecurityConfig class:

@Bean

UserDetailsService userService(UserRepository repo) {

  return username -> repo.findByUsername(username)

    .asUser();

}

The preceding bean definition calls for UserRepository. We then use it to fashion a lambda
expression that forms UserDetailsService. If we peek at that interface, we’ll find it’s another
SAM, a single method named loadUserByName, transforming a string-based username field
into a UserDetails object. The incoming argument is username, which we can then delegate
to the repository.

UserDetails is Spring Security’s representation of a user’s information. This includes username,
password, authorities, and some Boolean values representing locked, expired, and enabled.

Let’s slow down and double-check things, because that last bit may have flown by a bit quickly. The
userService bean in the preceding code produces a UserDetailsService bean, not the
UserDetails object itself. It’s a service meant to retrieve user data.

The lambda expression inside the bean definition gets transformed into UserDetailsService.
loadUserName(), a function that takes username for input and produces a UserDetails
object as its output. Imagine someone entering their username at a login prompt. This value is what
gets fed into this function.

The repository does the key step of fetching a UserAccount from the database based on username.
For Spring Security to work with this entity from the database, it must be converted to a Spring Security
User object (which implements the UserDetails interface).

So, we need to circle back to UserAccount and add a convenience method, asUser(), to convert it:

public UserDetails asUser() {

  return User.withDefaultPasswordEncoder() //

    .username(getUsername()) //

    .password(getPassword()) //

    .authorities(getAuthorities()) //

    .build();

}

Securing web routes and HTTP verbs 85

This method simply creates a Spring Security UserDetails object, using its builder and plugging in
the attributes from our entity type. Now, we have a complete solution that outsources user management
to a database table.

Warning
If you’re worried about encoding passwords to prevent hack attacks, your concern is justified!
This needs to be handled by the user management tool that actually stores these passwords,
which we alluded to earlier. We also need to cope with the need to update roles. On top of that,
we need a secure solution that guards against hash table attacks.

In fact, user management can become a tedious task to manage. Later in this chapter, in the Leveraging
Google to authenticate users section, we’ll investigate alternative ways to manage users.

We mentioned at the beginning of this section that we needed to define a source of users. Mission
accomplished! The next bullet point to tackle is to define some access roles. So, let’s delve into that
in the next section.

Securing web routes and HTTP verbs
Locking down an application and only allowing authorized users to access it is a big step forward.
But, it’s seldom enough.

We must actually confine who can do what. So far, the process we’ve applied where people must prove
their identity as part of a closed list of users is known as authentication.

But, the next piece of security that must be applied to any real application is what’s called authorization,
that is, what a user is allowed to do.

Spring Security makes this super simple to apply. The first step in customizing our security policy is to
add one more bean definition to our SecurityConfig class created earlier in this chapter under
the Creating our own users with a custom security policy section.

Up to this point, Spring Boot has had an autoconfigured policy in place. In fact, it may be simpler to
show what Spring Boot has inside its own SpringBootWebSecurityConfiguration:

@Bean

SecurityFilterChain defaultSecurityFilterChain

  (HttpSecurity http) throws Exception {

    http.authorizeRequests().anyRequest().authenticated();

    http.formLogin();

    http.httpBasic();

Securing an Application with Spring Boot86

  return http.build();

}

The preceding code fragment can be described as follows:

•	 @Bean signals this method as a bean definition to be picked up and added to the application context.

•	 SecurityFilterChain is the bean type needed to define a Spring Security policy.

•	 To define such a policy, we ask for a Spring Security HttpSecurity bean. This gives us a
handle on defining rules that will govern our application.

•	 authorizeRequests defines exactly how we will, you know, authorize requests. In this
case, any request is allowed if the user is authenticated and that is the only rule applied.

•	 In addition to that, the formLogin and httpBasic directives are switched on, enabling
both HTTP Form and HTTP Basic, two standard authentication mechanisms.

•	 The HttpSecurity builder, with these settings, is then used to render SecurityFilterChain
through which all servlet requests will be routed.

To provide more detail about formLogin and httpBasic, it’s important to understand some facts.

Form authentication involves having a nice HTML form, which can be stylized to match the theme
of the web application. Spring Security even provides a default one (which this chapter shall use).
Form authentication also supports logging out.

Basic authentication has nothing to do with HTML and form rendering but instead involves a popup
baked into every browser. There is no support for customization, and the only way to throw away
credentials is to either shut down or restart the browser. Basic authentication also makes it simple to
authenticate with a command-line tool, such as curl.

In general, by having both form and basic authentication, the application will defer to form-based
authentication in the browser while still allowing basic authentication from command-line tools.

This security policy provided by Spring Boot contains no authorization whatsoever. It essentially
grants access to everything as long as the user is authenticated.

An example of a more detailed policy could be as follows:

@Bean

SecurityFilterChain configureSecurity(HttpSecurity http)

  throws Exception {

    http.authorizeHttpRequests() //

      .requestMatchers("/resources/**", "/about", "/login")

        .permitAll() //

        .requestMatchers(HttpMethod.GET, "/admin/**")

Securing web routes and HTTP verbs 87

        .hasRole("ADMIN") //

        .requestMatchers("/db/**").access((authentication,

          object) -> {

            boolean anyMissing = Stream.of("ADMIN",

  "DBA")//

            .map(role -> hasRole(role)

            .check(authentication, object).isGranted()) //

            .filter(granted -> !granted) //

            .findAny() //

            .orElse(false); //

    return new AuthorizationDecision(!anyMissing);

        }) //

        .anyRequest().denyAll() //

        .and() //

        .formLogin() //

        .and() //

        .httpBasic();

    return http.build();

}

The preceding security policy has a lot more detail, so let’s take it apart, clause by clause:

•	 The method signature is identical to Spring Boot’s default policy shown previously. The method
name may be different, but that doesn’t really matter.

•	 This policy uses authorizeHttpRequests, signaling web-based checks.

•	 The first rule is a path-based check to see if the URL starts with /resources, /about, or
/login. If so, access is immediately granted, regardless of authentication status. In other
words, these pages are freely accessible without logging in.

•	 The second rule looks for any GET calls to the /admin pages. These calls indicate that the
user has the ADMIN role. This is where an HTTP verb can be combined with a path to control
access. This can be especially useful to lock down things such as the DELETE operations.

•	 The third rule shows a much more powerful and customizable check. If the user is attempting to
access anything underneath the /db path, then a special access check is performed. The preceding
code has a lambda function where we are handed a copy of the current user’s authentication
along with the object that is being checked. The function takes a stream of roles (DBA and
ADMIN), checks if the user is granted the role, looks for any roles not granted, and if there are
any, denies access. In other words, the user must be both a DBA and ADMIN to access this path.

Securing an Application with Spring Boot88

•	 The last rule denies access. This is a generally good pattern. If the user can’t meet any of the
earlier rules, they shouldn’t be granted access to anything.

•	 After the rules, both form authentication and basic authentication are enabled, just like with
Spring Boot’s default policy.

Security is a complex beast. That’s why no matter what rules are provided by Spring Security, we
must always have the ability to write custom access checks. The rule governing access to /db/** is
a perfect example.

Instead of expecting Spring Security to capture every permutation of possible rules, it’s easier to grant
us the ability to write a custom check. In our example, we have chosen to check that someone possesses
all roles. (It should be noted that Spring Security has built-in functions to detect whether a user has
any one of a given list of roles but cannot check for all roles.)

This custom rule we’ve written up is a perfect example of why many, many test cases should be written!
We’ll dig into this in more detail in Chapter 5, Testing with Spring Boot, but the complexity of these
rules should serve as a prelude to why it’s critical to test both success and failure paths, ensuring the
rules are working!

Note
Roles versus authorities: Spring Security has a fundamental concept known as authorities.
Essentially, an authority is a defined permission to access something. However, the concept
of having ROLE_ADMIN, ROLE_USER, ROLE_DBA, and others where the prefix of ROLE_
categorizes such authorities is so commonly used that Spring Security has a full suite of APIs
to support role checking. In this situation, a user who has the authority of ROLE_ADMIN or
simply the role of ADMIN would be able to GET any of the admin pages.

Using what we’ve learned, let’s see if we can fashion a suitable policy for our video-listing site. First,
let’s write down some requirements:

•	 Everyone must log in to access anything

•	 The initial list of videos should only be visible to authenticated users

•	 Any search features should be available to authenticated users

•	 Only admin users can add new videos

•	 Any other forms of access will be disabled

•	 These rules should apply to both the HTML web page as well as to command-line interactions

Securing web routes and HTTP verbs 89

Using these requirements, we should be able to define a SecurityChainFilter bean:

@Bean

SecurityFilterChain configureSecurity(HttpSecurity http)

  throws Exception {

    http.authorizeHttpRequests() //

      .requestMatchers("/login").permitAll() //

      .requestMatchers("/", "/search").authenticated() //

      .requestMatchers(HttpMethod.GET, "/api/**")

      .authenticated() //

      .requestMatchers(HttpMethod.POST, "/new-video",

                        "/api/**").hasRole("ADMIN") //

      .anyRequest().denyAll() //

      .and() //

      .formLogin() //

      .and() //

      .httpBasic();

    return http.build();

}

The preceding security policy can be described as follows:

•	 @Bean denotes this bean definition as taking an HttpSecurity bean and producing a
SecurityChainFilter bean. This is the hallmark of defining a Spring Security policy.

•	 Using authorizeHttpRequests, we can see a series of rules. The first one grants everyone
access to the /login page, whether or not they are logged in.

•	 The second rule grants access to the base URL / as well as the search results to anyone who
is authenticated. While we could have a specific role, there is no need to constrain the base
page as such.

•	 The third rule confines GET access to any /api URL to an authenticated user. This allows
command-line access to the site and is the API equivalent of allowing any authenticated user
access to the base web page.

•	 The fourth rule restricts POST access to both /new-video as well as /api/new-video
only to authenticated users who also have the ADMIN role.

•	 The fifth rule says that any user that doesn’t match any of the previous rules will be denied
access regardless of authentication or authorization.

•	 To wrap things up, both form and basic authentication are enabled.

Securing an Application with Spring Boot90

There is one lingering issue we must decide on: Cross-Site Request Forgery (CSRF). We’ll make our
choice on what path to take in the next section.

To CSRF or not to CSRF, that is the question

CSRF represents a particular attack vector that Spring Security guards against, by default. (Spring
Security guards against many attack methods, but most don’t require a policy decision).

It’s a bit technical, but CSRF involves tricking already-authenticated users into clicking on rogue
links. The rogue link asks the user to authorize a request, essentially granting the malicious attacker
inside access.

The best way to guard against this is to embed a nonce into secured assets and refuse requests that
lack them. A nonce is a semi-random number generated on the server that marks proper resources.
The nonce is embedded as a CSRF token and must be embedded in any state-changing bits of HTML,
typically forms.

If you use a templating engine that integrates tightly with Spring Boot, such as Thymeleaf, then there’s
no need to do anything. Thymeleaf templates will automatically add suitable CSRF-based HTML
inputs to any forms rendered on the page.

Mustache, in its lightness, doesn’t have such integration. However, it’s possible to make Spring Security’s
CSRF token available by applying this inside application.properties:

spring.mustache.servlet.expose-request-attributes=true

With the preceding setting, a new attribute, _csrf, is made available to the templating engine. This
makes it possible for us to update the search form as follows:

<form action="/search" method="post">

  <label for="value">Search:</label>

  <input type="text" name="value">

  <input type="hidden" name="{{_csrf.parameterName}}"

    value="{{_csrf.token}}">

  <button type="submit">Search</button>

</form>

The preceding version of the search form contains one additional hidden input. The _csrf token
will be automatically exposed for template rendering.

Only a valid HTML template rendering on our own server will have the right _csrf values embedded.
A rogue web page that an authenticated user gets tricked into visiting will not have these values. Since
the _csrf value changes from request to request, there is no way for other sites to either cache or
predict the values.

Securing web routes and HTTP verbs 91

The other form inside index.mustache that allows us to create new videos also needs this change:

<form action="/new-video" method="post">

  <input type="text" name="name">

  <input type="text" name="description">

  <input type="hidden" name="{{_csrf.parameterName}}"

    value="{{_csrf.token}}">

  <button type="submit">Submit</button>

</form>

The preceding code shows a lightweight change that strengthens things. In fact, it’s the default policy
for Spring Security!

But remember how I mentioned this is an issue that requires a choice? That’s because Spring Security’s
CSRF filter either kicks in for both our templates and our JSON-based API controllers, or we disable
it for both scenarios.

To be clear, CSRF protections make perfect sense when there is a web page that we log in to. But CSRF
protections aren’t needed when doing API calls in a stateless scenario.

Our application is serving both scenarios, so a proper architecture would involve breaking up this
application into two different applications. The web one could continue applying proper CSRF
protections as shown in the preceding code.

The other application could disable CSRF protections with the following tweak to
SecurityFilterChain:

@Bean

SecurityFilterChain configureSecurity(HttpSecurity http)

  throws Exception {

    http.authorizeHttpRequests() //

      .mvcMatchers("/login").permitAll() //

      .mvcMatchers("/", "/search").authenticated() //

      .mvcMatchers(HttpMethod.GET, "/api/**")

        .authenticated() //

        .mvcMatchers(HttpMethod.POST, "/new-video",

          "/api/**").hasRole("ADMIN") //

        .anyRequest().denyAll() //

        .and() //

        .formLogin() //

        .and() //

Securing an Application with Spring Boot92

        .httpBasic() //

        .and() //

        .csrf().disable();

    return http.build();

}     

The preceding piece of SecurityConfig is almost the same security policy we created at the end
of the previous section. The only change is in the next to last line, where we have .and().csrf().
disable(). This tiny directive tells Spring Security to completely switch off CSRF protections.

As an overall approach, let’s drop ApiController, which was brought along from the previous
chapters, and presume that it exists in a different application. Thus, there is no need to disable CSRF
protections. Instead, we can roll with the changes made to index.mustache as shown in the
previous two fragments.

With all this, we have a fistful of ways to apply path-based security. But these are not the only ways to
secure our application and are not necessarily optimal for certain scenarios.

So far, we have provided a source of user data as well as created some initial access rules for our users.
In the following sections, we will round things out by applying even more strategic security checks.

For example, in the next section, we’ll discover method-based security practices.

Securing Spring Data methods

Where to find this section’s code
The source code used for this portion of the chapter can be found at https://github.
com/PacktPublishing/Learning-Spring-Boot-3.0/tree/main/ch4-
method-security.

So far, we’ve seen tactics to apply various security provisions based on the URL of the request. But
Spring Security also comes with method-level security.

While it’s possible to simply apply these techniques to controller methods, service methods, and in
fact, any Spring bean’s method calls, this may appear to be trading one solution for another.

Method-level security specializes in providing a finer-grained ability to lock things down.

Updating our model

Before we can delve into this, we need an update to our domain model used earlier in this chapter.
As a reminder, we created a VideoEntity class in the previous section that has an id, name, and
description field.

Securing Spring Data methods 93

To really take advantage of method-level security, we should augment this entity definition with one
additional (and common) convention: adding a username field to represent ownership of the data:

@Entity

class VideoEntity {

  private @Id @GeneratedValue Long id;

  private String username;

  private String name;

  private String description;

  protected VideoEntity() {

    this(null, null, null);

  }

  VideoEntity(String username, String name, String

    description) {

      this.id = null;

      this.username = username;

      this.description = description;

      this.name = name;

    }

  // getters and setters

}

This updated VideoEntity class is pretty much the same as earlier in this chapter except for the
additional username field. (The boilerplate getters and setters are excluded for brevity).

If we’re going to dabble with ownership, it makes sense to update our set of users. Earlier in this chapter,
we simply had user and admin. Let’s expand the number of users to alice and bob:

@Bean

CommandLineRunner initUsers(UserManagementRepository

  repository) {

    return args -> {

      repository.save(new UserAccount("alice", "password",

        "ROLE_USER"));

      repository.save(new UserAccount("bob", "password",

Securing an Application with Spring Boot94

        "ROLE_USER"));

      repository.save(new UserAccount("admin", "password",

        "ROLE_ADMIN"));

  };

}

Remember the initUsers code toward the beginning of the chapter? We are replacing that with this
set of three users: alice, bob, and admin. Why? So we can proceed to create a security protocol where
alice can only delete videos that she uploaded, and bob can only delete videos that he uploaded.

Alice and Bob?
Security scenarios are often described in terms of Alice and Bob, a convention used since the
1978 paper A Method for Obtaining Digital Signatures and Public-key Cryptosystems by Rivest,
Shamir, and Adleman, the inventors of RSA security. See https://en.wikipedia.org/
wiki/Alice_and_Bob for more details.

Taking ownership of data

If we’re going to assign ownership to VideoEntity objects, then it makes sense to assign it when
new entries are created. So, we should revisit the HomeController method that handles the POST
requests to create new entries:

@PostMapping("/new-video")

public String newVideo(@ModelAttribute NewVideo newVideo,

  Authentication authentication) {

    videoService.create(newVideo,authentication.getName());

    return "redirect:/";

  }

This newVideo method in HomeController is just like the method earlier in this chapter except
it has one extra argument: authentication.

This is a parameter offered by Spring MVC when Spring Security is on the classpath. It automatically extracts
the authentication details stored in the servlet context and populates the Authentication instance.

In this situation, we are extracting its name, a field found in the Authentication interface’s parent
interface, java.security.Principal, a standard type. Based on the Javadocs of Principal,
this is the name of the principal.

Securing Spring Data methods 95

Naturally, this requires that we update VideoService.create as follows:

public VideoEntity create(NewVideo newVideo, String

  username) {

    return repository.saveAndFlush(new VideoEntity

      (username, newVideo.name(), newVideo.description()));

  }

The preceding updated version of create has two key changes:

•	 There’s an extra argument: username

•	 username is passed along to the VideoEntity constructor we just updated

These changes will make every newly entered video automatically associate with the currently
logged-in user.

Adding a delete button

We talked about providing the ability to delete videos, but locking down that feature only to the owner
of the video. Let’s tackle this step-by-step, starting with rendering each video along with a DELETE
button inside index.mustache as follows:

{{#videos}}

    

        {{name}}

        <form action="/delete/videos/{{id}}" method="post">

            <input type="hidden"

                name="{{_csrf.parameterName}}"

                value="{{_csrf.token}}">

            <button type="submit">Delete</button>

        </form>

    

{{/videos}}

The preceding fragment of index.mustache can be described as follows:

•	 The {{#videos}} tag tells Mustache to iterate over the array of the videos attribute

•	 It will render an HTML line for every instance found in the database

•	 {{name}} will render the name field

Securing an Application with Spring Boot96

•	 The <form> entry will create an HTML form with the {{id}} field used to build a link to
/delete/videos/{{id}}

It’s important to understand that this form has a hidden _csrf input, as we discussed earlier in this
chapter. Since this is HTML and not REST, we are using POST and not DELETE as our HTTP verb
of choice.

Now, we need to add a method to HomeController that responds to POST /delete/videos/
{{id}} calls as follows:

@PostMapping("/delete/videos/{videoId}")

public String deleteVideo(@PathVariable Long videoId) {

  videoService.delete(videoId);

  return "redirect:/";

}

This method can be described as follows:

•	 @PostMapping signals that this method will respond to POST on URL /delete/videos/
{videoId}

•	 The @PathVariable extracts the videoId argument based on name matching

•	 Using the videoId field, we pass it along to VideoService

•	 If things work out, the method returns "redirect:/", a Spring MVC directive to issue an
HTTP 302 Found, a soft redirect that bounces the user back to GET /

Next, we need to create the delete() method inside VideoService as follows:

public void delete(Long videoId) {

  repository.findById(videoId) //

    .map(videoEntity -> {

      repository.delete(videoEntity);

      return true;

    }) //

    .orElseThrow(() -> new RuntimeException("No video at "

  + videoId));

}

The preceding method can be described as follows:

•	 videoId is the primary key for the video to be deleted.

•	 We first use the repository’s findById method to look up the entity.

Securing Spring Data methods 97

•	 Spring Data JPA returns Optional, which we can map over to get the VideoEntity object.

•	 Using the VideoEntity object, we can then perform the delete(entity) method.
Because delete() has a return type of void, we have to return true to comply with
Optional.map’s demand for a return value.

•	 If Optional turns out to be empty, we will instead throw RuntimeException.

Locking down access to the owner of the data

We’re almost there. So far, in this chapter we’ve written code that transform’s a video’s id field into
a delete operation. But this section is about restricting access with Spring Data methods. While
Spring Data JPA’s JpaRepository interface has a handful of delete operations, we must extend
this definition inside VideoRepository if we wish to apply security controls as follows:

@PreAuthorize("#entity.username == authentication.name")

@Override

void delete(VideoEntity entity);

The preceding change to Spring Data JPA’s built-in delete(VideoEntity) method can be
described as follows:

•	 @Override: This annotation will ensure that we don’t alter the name of the method or any
other aspect of the method signature

•	 @PreAuthorize: This is Spring Security’s method-based annotation that allows us to write
customized security checks

•	 #entity.username: This de-references the entity argument in the first parameter and then
looks up the username parameter using Java bean properties

•	 authentication.name: A Spring Security argument to access the current security context’s
authentication object and look up the principal’s name

By comparing the username field of VideoEntity against the current user’s name, we can confine
this method to only working when a user attempts to delete one of their own videos.

Enabling method-level security

Now, none of this will work if we don’t enable method-level security. We must circle back to the
SecurityConfig class we created in the first parts of this chapter and add the following annotation:

@Configuration

@EnableMethodSecurity

public class SecurityConfig {

Securing an Application with Spring Boot98

  // prior security configuration details

}

In the preceding code, @EnableMethodSecurity is Spring Security’s annotation to activate
method-based security.

Note
Perhaps you’ve heard of @EnableGlobalMethodSecurity? If so, be aware that this is
being phased out in favor of @EnableMethodSecurity (used in the preceding code). For
starters, the newer @EnableMethodSecurity activates Spring Security’s more powerful
@PreAuthorize annotation (and its cousins) by default, while leaving the antiquated @
Secured annotation disabled as well as the somewhat limited JSR-250 (@RolesAllowed)
annotations. In addition to this, @EnableMethodSecurity leverages Spring Security’s
simplified AuthorizationManager API instead of the more complex metadata sources,
config attributes, decision managers, and voters.

This sets things up!

Displaying user details on the site

Just a little something to top things off, we are now going to learn about displaying user-based security
details along with a logout button.

For this, we first must update HomeController as follows:

@GetMapping

public String index(Model model,

  Authentication authentication) {

    model.addAttribute("videos", videoService.getVideos());

    model.addAttribute("authentication", authentication);

    return "index";

  }

The preceding controller method is the same as earlier in this chapter but with a few changes in
Authentication. Like the delete() controller method created earlier in this section, we are
also tapping into this provided value by storing the details in an extra model attribute.

Securing Spring Data methods 99

This mechanism allows us to provide authentication details for the current user to the template. We’ll
take advantage of it by updating index.mustache toward the top as follows:

<h3>User Profile</h3>

    Username: {{authentication.name}}

    Authorities: {{authentication.authorities}}

<form action="/logout" method="post">

    <input type="hidden" name="{{_csrf.parameterName}}"

      value="{{_csrf.token}}">

    <button type="submit">Logout</button>

</form>

The preceding fragment of HTML can be described as follows:

•	 The username is shown by using {{authentication.name}}.

•	 The authorities are shown by using {{authentication.authorities}}.

•	 A logout button is provided inside an HTML form. The action to log out with Spring Security
is to POST against /logout. It’s vital to know that even logging out requires providing the
_csrf token if CSRF hasn’t been disabled!

Important
If it’s not clear, every single HTML form in index.mustache (and any other templates
you’ve decided to add) must have the _csrf token as a hidden input. Spring Boot doesn’t
have the same level of integration with Mustache’s template engine that it has with Thymeleaf.
If you use Thymeleaf, while experiencing a steeper learning curve, it will automatically add
these hidden inputs, freeing you up from having to remember them!

Earlier in this chapter, we preloaded some VideoEntity data inside the VideoService. Let’s
update this based on alice and bob as follows:

@PostConstruct

void initDatabase() {

  repository.save(new VideoEntity("alice", "Need HELP with

    your SPRING BOOT 3 App?",

    "SPRING BOOT 3 will only speed things up and make it

Securing an Application with Spring Boot100

      super SIMPLE to serve templates and raw data."));

  repository.save(new VideoEntity("alice", "Don't do THIS

    to your own CODE!",

    "As a pro developer, never ever EVER do this to your

      code. Because you'll ultimately be doing it to

        YOURSELF!"));

  repository.save(new VideoEntity("bob", "SECRETS to fix

    BROKEN CODE!",

    "Discover ways to not only debug your code, but to

      regain your confidence and get back in the game as a

        software developer."));

}

In the preceding method, the bottom of VideoService can be described as follows:

•	 @PostConstruct: A standard Jakarta EE annotation that signals for this method to be run
after the application has started

•	 repository: The VideoRepository field is used to load two videos for alice and
one for bob

With all this in place, we can restart the application and take it for a spin!

If we visit localhost:8080, we are instantly bounced over to Spring Security’s pre-built login page:

Figure 4.2 – Logging in as alice

Securing Spring Data methods 101

If we log in as alice, we are presented with the following message at the top of the page:

Figure 4.3 – The index template rendering user authentication details

The preceding page shows the extra security details. It has both the Username field as well as the user’s
assigned Authorities. Finally, there is a Logout button.

Important!
Do NOT put the user’s password on the page! In fact, it’s probably best to not put the list of
authorities either. Figure 4.3 only illustrates the amount of information given to the template to
allow sophisticated options. While Mustache is a bit limited in its logic-less nature, Thymeleaf
actually has Spring Security extensions that let you optionally render sections and perform
security checks. Why aren’t we covering this in this book? Because this book is titled Learning
Spring Boot 3.0, not Learning Thymeleaf. But it’s only fair to let you know that you have options.

What happens if, as alice, we clicked on DELETE in the last video (owned by Bob)? Alice will see
the following 403 response:

Figure 4.4 – When Spring Security denies access, you get served a 403 forbidden page

Securing an Application with Spring Boot102

Hit the Back button on the browser and try to delete one of your own videos, and things will work
just fine!

Bonus
For a higher-level, more visual perspective on Spring Security, check out this video at https://
springbootlearning.com/security.

With the method-based controls we have covered in this section, we are able to implement fine-
grained access. We are controlling things not just at the URL level, but also at the object level. But
this comes at a price.

Someone has to manage all these users and their roles. Don’t be surprised if you have to set up a
security ops team simply to manage the users. User management can be quite tedious.

This is what drives many teams to consider outsourcing user management entirely to alternative tools,
such as Facebook, Twitter, GitHub, Google, or Okta.

We’ll explore how to consider using Google as an identity provider in the next section.

Leveraging Google to authenticate users
Do you dread the thought of managing users and their passwords? Many security teams buy large
products to deal with all this. Teams even invest in tools to simply push password resets directly to
users, to reduce call volume.

Long story short, user management is a major effort not to be taken lightly; hence, many teams turn to
OAuth. Described as “an open standard for access delegation” (https://en.wikipedia.org/
wiki/OAuth), OAuth provides a way to outsource user management almost entirely.

OAuth arose as social media applications emerged. A user of a third-party Twitter app used to store
their password directly in the app. Not only was this inconvenient when users wanted to change their
password, but it was a major security risk!

OAuth lets the application move away from this by instead reaching out to the social media site directly.
The user logs in with the social media site, and the site hands back a special token to the app containing
well-defined privileges known as scopes. This empowers the application to interact on the user’s behalf.

So, it should come as no surprise that literally every social media service has OAuth support. We can
reach out to any application, be it Twitter, Facebook, GitHub, Google, and more, and simply let our
users log in there. In fact, some apps support ALL these sites, making it possible to easily let users
into your application.

This is not our only choice. We can also establish our own OAuth user service. While this may sound
like circling back after pitching the reason to not run our own user management service, there are
pros and cons to these various choices.

Leveraging Google to authenticate users 103

Pros of using OAuth

•	 If you use Facebook or Twitter, anyone who already has a presence there can access your app.
Given the popularity of these platforms, this can be an easy way to allow your users access.

•	 If you choose GitHub, then your user base should be heavily oriented toward developers. Not
every developer has a GitHub account, but a large number do. This can be a boon for apps that
are tilted in this direction.

•	 If you choose Google, another vast collection of users will be available to you.

•	 If you choose Okta, a commercial system you can configure and use, then you have 100%
control. Your users don’t have to exist on any social media platform and they don’t have to
be developer oriented. You have complete control while still being able to outsource the hard
parts of user management.

Cons of using OAuth

•	 If someone doesn’t have a presence on your preferred social media network, they must either
open an account or choose not to access it. You must also support managing your own users,
which we’re trying to get away from.

•	 If you choose Facebook, Twitter, Google, GitHub, or any other social media site, you are confined
to their scopes. You don’t get to define your own. If the goal is to simply access and leverage
user information, this is probably fine. However, if you wish to have managers, board officers,
admins, DBAs, and other assorted roles, this won’t suffice.

•	 If your application doesn’t take full advantage of GitHub (for example, https://gitter.im),
then using GitHub probably isn’t the way to go.

If you need full control of scopes, Okta is the way to go. To top it off, Okta’s development team maintains
full integration with Spring Security.

Assuming we’ve made our assessment and made a choice, it’s time to configure Spring Security to
hook in.

We could pick any of the mentioned services to illustrate this, but for the rest of this book, let’s go
with Google.

Creating a Google OAuth 2.0 application

Before we can take any steps toward authenticating with Google, we must first create an application with
Google. To be clear, this means we will register some details on their dashboard, extract credentials,
and plug these credentials into our Spring Boot application, granting our users access to Google data.

Securing an Application with Spring Boot104

To do this, go through the following steps:

1.	 Go to Google Cloud’s Dashboard (https://console.cloud.google.com/home/
dashboard).

2.	 Click on the drop-down right next to Select a project in the top-left corner. Hit NEW PROJECT
on the popup and accept the default values.

3.	 Select your new project so it’s showing in the drop-down at the top.

4.	 On the left-hand panel on the Google Cloud Dashboard, scroll down and hover over APIs and
services. On the pop-up menu, click on Enabled APIs and services.

5.	 On the list toward the bottom of the page, look for YouTube Data API v3. Click on it and hit
Enable API. This will grant our application access to YouTube’s latest data API.

6.	 Back at your newly created application’s dashboard, look on the left-hand panel, and
select Credentials.

7.	 Click on + CREATE CREDENTIALS. On the pop-up menu, select OAuth Client.

8.	 For application type, select Web Application.

9.	 In the Name entry, give the application a name.

10.	 In the Authorized redirect URIs, enter http://localhost:8080/login/oauth2/
code/google.

11.	 Once these credentials are created, capture the Client ID and Client secret shown in the
top-right corner. We’ll later plug them into our Spring Boot application.

12.	 Go back to the left-hand column from earlier (APIs and services at https://console.
cloud.google.com/apis/dashboard) and click on the OAuth consent screen.

13.	 Underneath test users, create an entry for each email address you wish to log in under later
when we build the Spring Boot application.

These steps may seem tedious, but all modern-day OAuth applications on any platform, Google or
otherwise, will require some amount of the following:

•	 Application definition

•	 Approved platform APIs

•	 Supported users

•	 Callbacks to our own application

It’s really just a matter of digging through the console and finding where the settings are plugged in.

Leveraging Google to authenticate users 105

Note
At this stage, our Google application is considered to be in test mode. This means that we are
the only ones who can access it. We’ll be able to run the code locally on our machine and shake
it out. No one else can access anything unless we publish it.

Adding OAuth Client to a Spring Boot project

Where to find this section’s code
The source code for this portion of the chapter can be found at https://github.com/
PacktPublishing/Learning-Spring-Boot-3.0/tree/main/ch4-oauth.

Earlier in this chapter, we took the code from the previous chapter, Querying for Data with Spring
Boot, and added Spring Security.

In this section, we actually need to start afresh:

1.	 Go and visit Spring Initializr at https://start.spring.io.

2.	 Select or enter the following details:

	� Project: Maven Project

	� Language: Java

	� Spring Boot: 3.0.0

	� Group: com.springbootlearning.learningspringboot3

	� Artifact: ch4-oauth

	� Name: Chapter 4 (OAuth)

	� Description: Securing an Application with Spring Boot and OAuth 2.0

	� Package name: com.springbootlearning.learningspringboot3

	� Packaging: Jar

	� Java: 17

3.	 Click on ADD DEPENDENCIES. Then, select the following:

	� OAuth 2 Client

	� Spring Web

	� Spring Reactive Web

	� Mustache

Securing an Application with Spring Boot106

4.	 Click on the GENERATE button at the bottom of the screen.

5.	 Import the code into your favorite IDE.

First of all, what are we doing with both Spring Web and Spring Reactive Web? Spring Web is how
we built a servlet-based web application using Spring MVC. But another feature we are going to use
is Google’s Oauth API, which leverages WebClient, Spring’s next-generation HTTP client. It’s found
in Spring Reactive WebFlux.

When Spring Boot sees both Spring Web and Spring Reactive Web on the classpath, it will default to
a standard embedded Apache Tomcat and run a standard servlet container.

With all this in place, we can start building our OAuth web application!

The Spring Initializr creates an application.properties file as part of the generated project.
Due to the repetitive nature of some of the properties we must access, we will switch to the YAML-
based variant. Simply rename that file as application.yaml.

Inside that file, add the following entry:

spring:

  security:

    oauth2:

      client:

        registration:

          google:

            clientId: **your Google Client ID**

            clientSecret: **your Google Client secret**

            scope: openid,profile,email,

                   https://www.googleapis.com/auth/youtube

In the preceding code, application.yaml lets us enter properties in a hierarchical fashion. This
is most helpful when we have to enter multiple properties at the same sublevel. In this case, we have
several entries at spring.security.oauth2.client.registration.google.

Warning
OAuth2, due to its incredible flexibility, comes with many settings. This is necessary due
to the flow of users coming to our app, being forwarded over to the other platform for
authentication, and then flowing back to our application. To ease setup, Spring Security has
added CommonOAuth2Provider with pre-baked settings for Google, GitHub, Facebook,
and Okta. We only have to plug in clientId and clientSecret. Technically, that’s
enough to authenticate with Google. But since we plan to leverage the YouTube Data API, we
have added a scope setting, which we’ll discuss later.

Leveraging Google to authenticate users 107

The web we are building, which speaks to Google, can be described as an OAuth2-authorized client. This
is represented in Spring Security OAuth2 using OAuth2AuthorizedClient. To facilitate the flow
between our application and Google, Spring Boot autoconfigures ClientRegistrationRepository
as well as OAuth2AuthorizedClientRepository.

These are the classes that parse the clientId and clientSecret properties in the preceding
application.yaml fragment. An additional reason we need these repositories is that OAuth2
supports working with more than one OAuth2 provider.

Surely you’ve seen certain websites that support letting you log in using multiple options including
Facebook, Twitter, Google, and perhaps even Apple?

Hence, we need some functionality to broker all these requests. To do this, we need to create a
SecurityConfig class and add the following bean definition:

@Configuration

public class SecurityConfig {

    @Bean

    public OAuth2AuthorizedClientManager clientManager(

      ClientRegistrationRepository clientRegRepo,

        OAuth2AuthorizedClientRepository authClientRepo) {

      OAuth2AuthorizedClientProvider clientProvider =

        OAuth2AuthorizedClientProviderBuilder.builder()

          .authorizationCode()

          .refreshToken()

          .clientCredentials()

          .password()

          .build();

      DefaultOAuth2AuthorizedClientManager clientManager =

        new DefaultOAuth2AuthorizedClientManager(

          clientRegRepo, authClientRepo);

      clientManager

        .setAuthorizedClientProvider(clientProvider);

      return clientManager;

    }

}

Securing an Application with Spring Boot108

The preceding clientManager() bean definition will request the two autoconfigured Oauth2 beans
mentioned earlier and blend them together into DefaultOAuth2AuthorizedClientManager.
This bean will do the legwork of pulling the necessary properties from application.yaml and
using them in the context of an incoming servlet request.

Tip
The flow of OAuth2 can seem a bit daunting. This is why you may wish to read more about
it at https://oauth.net/2/, the official site for the OAuth 2.0 spec. It’s also important
to appreciate that yes, this is a boilerplate, but once completed, we’ll have a valuable resource
available for our Spring Boot application.

Believe it or not, we’re close to taking advantage of Google as our OAuth 2 platform of choice. When Spring
Security OAuth2 is put on the classpath, Spring Boot has autoconfiguration policies that will automatically
lock down our application. But this time, instead of creating a random password for a fixed username, the
OAuth 2 beans mentioned earlier are combined with OAuth2AuthorizationClientManager.

But we want to go one step further. We want to actually invoke Google’s YouTube Data API, which
we’ll cover in the next section.

Invoking an OAuth2 API remotely

To hook OAuth 2 support into an HTTP remote service invoker such as WebClient, start by creating
a class named YouTubeConfig and add the following bean definitions:

@Configuration

public class YouTubeConfig {

  static String YOUTUBE_V3_API = //

    "https://www.googleapis.com/youtube/v3";

  @Bean

  WebClient webClient(OAuth2AuthorizedClientManager

                        clientManager) {

    ServletOAuth2AuthorizedClientExchangeFilterFunction

     oauth2 = //

      new

       ServletOAuth2AuthorizedClientExchangeFilterFunction(

        clientManager);

Leveraging Google to authenticate users 109

    oauth2.setDefaultClientRegistrationId("google");

    return WebClient.builder() //

      .baseUrl(YOUTUBE_V3_API) //

      .apply(oauth2.oauth2Configuration()) //

      .build();

  }

}

The preceding bean definition creates a new WebClient, Spring’s more recent HTTP remote service
invoker. While the venerable RestTemplate isn’t going anywhere, WebClient offers many
new-and-improved ways to interact with remote HTTP services. One of the biggest improvements
is its fluent API along with fully realized support for reactive services. While we aren’t using them in
this chapter, this is something we’ll touch on later in this book.

In the preceding code, not only is this WebClient pointed at Google’s YouTube v3 API, but it also registers
an exchange filter function using our previously created OAuth2AuthorizedClientManager
as a way to give it OAuth2 power.

Note
An exchange filter function is a concept not found in servlets and Spring MVC, but instead
in Spring WebFlux’s reactive paradigm. It’s very similar to a classic servlet filter in that every
request that passes through the WebClient will invoke this function. This will ensure that the
current user is logged in to Google and has the right authorization.

Another reason we may wish to use Spring WebFlux’s WebClient, despite having a servlet-based
application, is to leverage one of Spring Framework’s most recent additions: HTTP client proxies.

The idea of HTTP client proxies is to capture all the details needed to interact with a remote service in
an interface definition and let Spring Framework, under the hood, marshal the request and response.

We can capture one such exchange by creating an interface named YouTube, as follows:

interface YouTube {

    @GetExchange("/search?part=snippet&type=video")

    SearchListResponse channelVideos(//

      @RequestParam String channelId, //

      @RequestParam int maxResults, //

      @RequestParam Sort order);

Securing an Application with Spring Boot110

    enum Sort {

      DATE("date"), //

      VIEW_COUNT("viewCount"), //

      TITLE("title"), //

      RATING("rating");

      private final String type;

      Sort(String type) {

        this.type = type;

      }

    }

}

The preceding interface has a single method: channelVideos. In truth, the name of this method
doesn’t matter, because it’s the @GetExchange method that matters. In Chapter 2, Creating a Web
Application with Spring Boot, we saw how to use @GetMapping to link HTTP GET operations with
Spring MVC controller methods.

For HTTP remoting, the counterpart annotation is @GetExchange. This tells Spring Framework
to remotely invoke /search?part=snippet&type=video using an HTTP GET call.

If it’s not obvious, the path in the @GetExchange call is appended to the base URL configured earlier,
https://www.googleapis.com/youtube/v3, forming a complete URL to access this API.

In addition to specifying the HTTP verb along with the URL, this method has three inputs:
channelId, maxResults, and order. The @RequestParam annotation indicates
that these parameters are to be added to the URL as query parameters in the form of
?channelId=<value>&maxResults=<value>&order=<value>. To top things off, the
order parameter is constrained to what the API considers acceptable values using a Java enum, Sort.

The names of the query parameters are lifted from the method’s argument names. While it’s possible to
override these using the @RequestParam annotation, I find it easier to simply set each argument’s
name to match the API.

For this particular API, there is no HTTP request body (as can be seen on the APIs documentation
at https://developers.google.com/youtube/v3/docs/search/list). The whole
request is contained in the URL.

But if you did need to send over some data to a different API, perhaps one expecting an HTTP POST,
then you can use @PostExchange. You would provide the data as another method argument and
apply @RequestBody so that Spring Framework knows to ask Jackson to serialize the provided
data into JSON.

Leveraging Google to authenticate users 111

The response from this API is a JSON document shown in detail further down in the Response section
of the Search function in the preceding list, as follows:

{

    "kind": "youtube#searchListResponse",

    "etag": etag,

    "nextPageToken": string,

    "prevPageToken": string,

    "regionCode": string,

    "pageInfo": {

        "totalResults": integer,

        "resultsPerPage": integer

    },

    "items": [

        search Resource

    ]

}

Java 17 records really shine while capturing the preceding API response. We need some barebone
Java objects that are mostly data-oriented, and we need them fast. So, create a record called
SearchListResponse as follows:

record SearchListResponse(String kind, String etag, String

  nextPageToken, String prevPageToken, PageInfo pageInfo,

    SearchResult[] items) {

}

We can include all the fields we want and leave out the ones we don’t care about. In the preceding code,
most of the fields are plain old Java strings, but the last two, PageInfo and SearchResult, are not.

So, create some more Java records, putting each in its own file:

record PageInfo(Integer totalResults, Integer

  resultsPerPage) {

}

record SearchResult(String kind, String etag, SearchId id,

  SearchSnippet snippet) {

}

Securing an Application with Spring Boot112

The process to create the preceding types is to simply walk through each nested type on Google’s YouTube
API documentation, and capture the fields as shown. They’ll describe them as strings, integers, nested
types, or links to other types. For each subtype that has its own section, simply create another record!

Tip
The name of the record’s type doesn’t matter. The critical part is ensuring the name of the field
matches the names in the JSON structure being passed back.

With what we’ve captured so far in records, we now need to create SearchId as well as SearchSnippet,
again, each in its own file:

record SearchId(String kind, String videoId, String

  channelId, String playlistId) {

}

record SearchSnippet(String publishedAt, String channelId,

  String title, String description,

    Map<String, SearchThumbnail> thumbnails, String

      channelTitle) {

}

These record types are almost complete, given that they are almost all built-in Java types. The only
one missing is SearchThumbnail. If we read YouTube’s API reference docs, we can easily wrap
things up with this record definition:

record SearchThumbnail(String url, Integer width, Integer

  height) {

}

This last record type is just a string and a couple of integers, so we’re done!

But not quite. We’ve invested loads of time configuring OAuth 2 and a remoting HTTP service to
talk to YouTube. The cherry on top is building the web layer of our app, shown in the next section.

Creating an OAuth2-powered web app

Now, it’s time to create a web controller to start rendering things:

@Controller

public class HomeController {

Leveraging Google to authenticate users 113

  private final YouTube youTube;

  public HomeController(YouTube youTube) {

    this.youTube = youTube;

  }

  @GetMapping

  String index(Model model) {

    model.addAttribute("channelVideos", //

      youTube.channelVideos("UCjukbYOd6pjrMpNMFAOKYyw",

         10, YouTube.Sort.VIEW_COUNT));

    return "index";

  }

}

The preceding web controller has some key points:

•	 @Controller indicates that this is a template-based web controller. Each web method returns
the name of a template to render.

•	 We are injecting the YouTube service through constructor injection, a concept touched upon
back in Chapter 2, Creating a Web Application with Spring Boot.

•	 The index method has a Spring MVC Model object, where we create a channelVideos
attribute. It invokes our YouTube service’s channelVideos method with a channel ID, a
page size of 10, and uses view counts as the way to sort search results.

•	 The name of the template to render is index.

Since we are using Mustache as our templating engine of choice, the name of the template expands
to src/main/resources/templates/index.mustache. To define it, we can start coding
some pretty simple HTML 5 as follows:

<!doctype html>

<html lang="en">

<head>

    <link href="style.css" rel="stylesheet"

    type="text/css"/>

</head>

<body>

<h1>Greetings Learning Spring Boot 3.0 fans!</h1>

Securing an Application with Spring Boot114

<p>

   In this section, we are learning how to make

   a web app using Spring Boot 3.0 + OAuth 2.0

</p>

<h2>Your Videos</h2>

<table>

    <thead>

    <tr>

        <td>Id</td>

        <td>Published</td>

        <td>Thumbnail</td>

        <td>Title</td>

        <td>Description</td>

    </tr>

    </thead>

    <tbody>

    {{#channelVideos.items}}

        <tr>

            <td>{{id.videoId}}</td>

            <td>{{snippet.publishedAt}}</td>

            <td>

                <a href="https://www.youtube.com/watch?v=

                {{id.videoId}}" target="_blank">

                <img src="{{snippet.thumbnail.url}}"

                alt="thumbnail"/>

                

            </td>

            <td>{{snippet.title}}</td>

            <td>{{snippet.shortDescription}}</td>

        </tr>

    {{/channelVideos.items}}

    </tbody>

</table>

</body>

Leveraging Google to authenticate users 115

We aren’t going to explore every facet of HTML 5 in the preceding code. But some of the key bits of
Mustache are as follows:

•	 Mustache directives are wrapped in double curly braces, whether it’s to iterate over an array
({{#channelVideos.items}}) or a single field ({{id.videoId}}).

•	 A Mustache directive that starts with a pound sign (#) is a signal to iterate, generating a copy
of HTML for every entry. Because the SearchListResponse items fields are an array of
SearchResult entries, the HTML inside that tag is repeated for each entry.

•	 The thumbnail field inside SearchSnippet actually has multiple entries for each video. As
Mustache is a logic-less engine, we need to augment that record definition with some extra
methods to support our templating needs.

Adding a way to pick the right thumbnail and also curtailing the description field to less than a hundred
characters can be implemented by updating the SearchSnippet record as follows:

record SearchSnippet(String publishedAt, String channelId,

  String title, String description,

    Map<String, SearchThumbnail> thumbnails, String

      channelTitle) {

  String shortDescription() {

    if (this.description.length() <= 100) {

      return this.description;

    }

    return this.description.substring(0, 100);

  }

  SearchThumbnail thumbnail() {

    return this.thumbnails.entrySet().stream()

      .filter(entry -> entry.getKey().equals("default"))

      .findFirst()

      .map(Map.Entry::getValue)

      .orElse(null);

  }

}

Securing an Application with Spring Boot116

From the preceding code, we can see that the following will occur:

•	 The shortDescription method will either return the description field directly or a
100-character substring

•	 The thumbnail method will iterate over the thumbnail map entries, find the one named
default, and return it

As a tasty finish, let’s apply CSS so our table comes out nicely polished. Create src/main/resources/
static/style.css:

table {

    table-layout: fixed;

    width: 100%;

    border-collapse: collapse;

    border: 3px solid #039E44;

}

thead th:nth-child(1) {

    width: 30%;

}

thead th:nth-child(2) {

    width: 20%;

}

thead th:nth-child(3) {

    width: 15%;

}

thead th:nth-child(4) {

    width: 35%;

}

th, td {

    padding: 20px;

}

Leveraging Google to authenticate users 117

As per the preceding code, Spring MVC will serve up static resources found in src/main/resources/
static automatically. With all this in place, let’s launch the application! Visit localhost:8080
and we should automatically get forwarded to Google’s login page:

Figure 4.5 – Google’s login page

This login page will show any Google accounts you have used (I have several!). What’s important is
to pick an account that you registered earlier on the Google Cloud Dashboard with the application.
Otherwise, it won’t work!

Now if we had accepted CommonOAuth2Provider’s standard Google scope list, then all we’d
be asking of Google is for user account details, such as an email address. Then, we would have been
redirected back to our own web app.

But since we customized the scope property in order to tap into the YouTube API, another prompt
will pop up, asking us to select a specific YouTube channel (If you don’t have one, you’ll have to declare
one, even if you don’t upload anything!).

Securing an Application with Spring Boot118

Figure 4.6 – YouTube’s channel selection page

Pick your channel (Yes, I have several!). From here, we’ll get redirected back to our Spring Boot
Mustache template, as follows:

Leveraging Google to authenticate users 119

Figure 4.7 – Spring Boot YouTube-flavored template

Just like that, we have YouTube data on display on our own web page! The thumbnails even have
hyperlinks, allowing you to open a new browser tab and watch the videos.

Tip
The preceding code is fetching data from my YouTube channel, showing the most popular
videos (Figure 4.7 has been trimmed to fit this book). However, you can plug in any channel
ID (not vanity channel URL) and get a readout. For example, check out my friend Dan Vega’s
channel, a Spring developer advocate who has made multiple Spring videos, by typing in
youTube.channelVideos("UCc98QQw1D-y38wg6mO3w4MQ", 10, YouTube.
Sort.VIEW_COUNT).

Securing an Application with Spring Boot120

By using OAuth2, we have successfully built a system where we can offload user management to a
third-party service. This greatly reduces our own risk when it comes to user management by offloading
it to Google (or whatever OAuth2 service we choose).

In fact, this is a prime reason to leverage a third-party service. There are many start-ups and businesses
that offer keen services, requiring little more than a user id and email address to identify users.

Ever notice how some websites even offer to let you log in through multiple external services? That’s
because we can actually define entries on multiple platforms, add all their entries to application.
yaml, and then coordinate them all.

I’ll leave it to you as an exercise to tinker with your application to support multiple external services.

Bonus
Feel free to join me for a hands-on live stream, where we literally create a Google OAuth2 client,
register it with Spring Boot 3, and serve up YouTube data at https://springbootlearning.
com/oauth2!

Summary
Over the course of this chapter, we have learned how to secure a Spring MVC application. We plugged
in custom users, applied path-based controls, and even added method-level fine-grained controls
using Spring Security. We topped things off by outsourcing user management to the lofty Google using
Spring Security’s OAuth2 integration. We took advantage of this by grabbing hold of some YouTube
data and serving up video links.

This chapter may seem long, but in truth, security is a complex beast. Hopefully, with the various
tactics shown in this chapter, you’ll have some solid ideas on what to do when it’s time to secure your
own applications.

In the next chapter, Testing with Spring Boot, we’ll explore how to ensure our code is rock solid with
various testing mechanisms.

5
Testing with Spring Boot

In the previous chapter, we learned how to secure an application through various tactics, including
path-based and method-based rules. We even learned how to delegate to an external system such as
Google to offload risk for user management.

In this chapter, we’ll learn about testing in Spring Boot. Testing is a multi-faceted approach. It also
isn’t something that you ever really finish. That’s because every time we add new features, we should
add corresponding test cases to capture requirements and verify they are met. It’s always possible
to uncover corner cases we didn’t think of. And as our application evolves, we have to update and
upgrade our testing methods.

Testing is a philosophy that, when embraced, enables us to grow our confidence in the software we
build. In turn, we can carry this confidence to our customers and clients, demonstrating quality.

The point of this chapter is to introduce a wide range of testing tactics and their various tradeoffs.
Not so we can ensure this book’s sample code is well tested, but so that you can learn how to better
test your projects and know what tactics to use and when!

In this chapter, we’ll cover the following topics:

•	 Adding JUnit and other test toolkits to our application

•	 Creating domain-based test cases

•	 Testing web controllers using MockMVC

•	 Testing data repositories with mocks

•	 Testing data repositories with embedded databases

•	 Testing data repositories using containerized databases

•	 Testing security policies with Spring Security Test

Testing with Spring Boot122

Where to find this chapter’s code
The source code for this chapter can be found at https://github.com/PacktPublishing/
Learning-Spring-Boot-3.0/tree/main/ch5.

Adding JUnit 5 to the application
The first step in writing test cases is adding the necessary test components. The most widely accepted
test tool is JUnit. JUnit 5 is the latest version with deep integrations with Spring Framework and
Spring Boot. (See https://springbootlearning.com/junit-history for more history
of the origins of JUnit.)

What does it take to add JUnit to our application?

Nothing at all.

That’s right. Remember how we used Spring Initialzr (start.spring.io) in previous chapters to
roll out our new project (or augment an existing one)? One of the dependencies that was automatically
added at the bottom is this:

<dependency>

        <groupId>org.springframework.boot</groupId>

        <artifactId>spring-boot-starter-test</artifactId>

        <scope>test</scope>

</dependency>

This test-scoped Spring Boot starter contains a fully loaded set of handy dependencies, including
the following:

•	 Spring Boot Test: Spring Boot-oriented test utilities

•	 JSONPath: The query language for JSON documents

•	 AssertJ: Fluent API for asserting results

•	 Hamcrest: Library of matchers

•	 JUnit 5: Cornerstone library for writing test cases

•	 Mockito: Mocking framework for building test cases

•	 JSONassert: Library of assertions aimed at JSON documents

•	 Spring Test: Spring Framework’s test utilities

•	 XMLUnit: Toolkit for verifying XML documents

If you’ve never heard of it, mocking is a form of testing where instead of checking the results, we
verify the methods invoked. We’ll see how to use this further in this chapter.

Creating tests for your domain objects 123

Simply put, ALL of these toolkits are already at our fingertips, ready to write tests. Why?

So that we don’t have to pick and choose and waste time. There’s no need to hunt down the right testing
kit, and we don’t even have to choose to test. Spring Initialzr, the champion of building Spring Boot
projects, adds all of them without even requiring that we remember to add them.

Testing is that important to the Spring team.

We aren’t going to necessarily use every single one of these toolkits in this chapter, but we’ll get a nice
cross-section of functionality. And by the end of this chapter, you should have a better perspective
on what these toolkits offer.

Creating tests for your domain objects
Earlier, we mentioned that testing is a multi-faceted approach. One of the most critical things in any
system is its domain types. Testing them is vital. Essentially, anything publicly visible to users is a
candidate for writing test cases.

So, let’s start by writing some test cases around the VideoEntity domain object we defined back
in Chapter 3, Querying for Data with Spring Boot:

public class CoreDomainTest {

  @Test

  void newVideoEntityShouldHaveNullId() {

    VideoEntity entity = new VideoEntity("alice",

      "title", "description");

    assertThat(entity.getId()).isNull();

    assertThat(entity.getUsername()).isEqualTo("alice");

    assertThat(entity.getName()).isEqualTo("title");

    assertThat(entity.getDescription())

      .isEqualTo("description");

  }

}

This code can be described as follows:

•	 CoreDomainTest: This is the name of this test suite. By convention, test suite classes end
with the word Test. It’s not uncommon for them to end with UnitTest for unit tests,
IntegrationTest for integration tests, and any other qualifiers.

•	 @Test: This JUnit annotation signals that this method is a test case. Be sure to use the org.
junit.jupiter.api version of @Test, and not the org.junit version. The former

Testing with Spring Boot124

package is JUnit 5, while the latter package is JUnit 4 (both are on the classpath to support
backward compatibility).

•	 newVideoEntityShouldHaveNullId: The name of the test method is important as
it should convey the gist of what it verifies. This isn’t a technical requirement but instead an
opportunity to capture information. This method verifies that when we create a new instance
of VideoEntity, its id field should be null.

•	 The first line of the method creates an instance of VideoEntity.

•	 assertThat(): An AssertJ static helper method that takes a value and verifies it with a
collection of clauses.

•	 isNull(): This verifies that the id field is null.

•	 isEqualTo(): This verifies that the various fields are equal to their expected values.

Inside our IDE, we can right-click the class and run it:

Figure 5.1 – Right-clicking on a test class and running it

Creating tests for your domain objects 125

Upon running the test suite, you will see the results:

Figure 5.2 – Seeing the test results (green checkmark for passing)

Cut off from this output is the fact that this test case took about 49 milliseconds to run. Running tests
with frequency is critical when it comes to adopting a test philosophy. Every time we edit some code,
we should run our test suites – if possible, all of them.

Before we move on to more testing techniques, remember how we agreed that any public-facing
method should be tested? This extends to things such as the toString() method of the domain
class, shown as follows:

@Test

void toStringShouldAlsoBeTested() {

  VideoEntity entity = new VideoEntity("alice", "title",

    "description");

  assertThat(entity.toString())

    .isEqualTo("VideoEntity{id=null, username='alice',

      name='title', description='description'}");

}

This test method can be described as follows:

•	 @Test: Again, this annotation is used to indicate this is a test method.

•	 toStringShouldAlsoBeTested(): Always try to use test method names as a way to
capture test intent. Tip: I always like using should somewhere in the method name to hone in
on its purpose.

•	 Again, the first line creates an instance of VideoEntity with barebones information.

•	 assertThat(): This is used to verify whether the value of the toString() method has
the expected value.

Testing with Spring Boot126

To combine assertions or not to combine assertions?
This test method’s assertion could arguably be added to the previous test method. After all, they
both have the same VideoEntity. Why split it out into separate methods? To very clearly
capture the intent of testing the entity’s toString() method. The previous test method
focuses on populating an entity using its constructor and then checking out its getter methods.
The toString() method is a separate method. By breaking assertions out into smaller test
methods, there’s less chance of one failing test masking another.

To round things out, let’s verify our domain object’s setters:

@Test

void settersShouldMutateState() {

  VideoEntity entity = new VideoEntity("alice", "title",

    "description");

  entity.setId(99L);

  entity.setName("new name");

  entity.setDescription("new desc");

  entity.setUsername("bob");

  assertThat(entity.getId()).isEqualTo(99L);

  assertThat(entity.getUsername()).isEqualTo("bob");

  assertThat(entity.getName()).isEqualTo("new name");

  assertThat(entity.getDescription()) //

    .isEqualTo("new desc");

}

This code can be described as follows:

•	 settersShouldMutateState(): This test method is aimed at verifying the entity’s
setter methods

•	 The first line creates the same entity instance as the other test cases

•	 The test method then proceeds to exercise all of the entity’s setter methods

•	 It uses the same AssertJ assertions as before, but with different values, verifying that the state
was mutated properly

With this test class in place, we are in a position to engage in test coverage. IntelliJ (and most modern
IDEs) offer the means to run the test cases with coverage utilities, as shown here:

Testing web controllers with MockMVC 127

Figure 5.3 – Running test class with coverage analysis

IntelliJ shows which lines have been tested with color highlights. It reveals that our VideoEntity
entity class is fully covered except for the protected no-argument constructor. It’s left as an exercise
for you to write another test case verifying that constructor.

This section has shown you how to write unit-level tests against a domain class. It’s easy to extend this
concept into classes that contain functions, algorithms, and other functional features.

But another area we must take into consideration is the fact that the bulk number of applications
out there are web applications. And the next section will show various tactics to verify Spring MVC
web controllers.

Testing web controllers with MockMVC
With web pages being a key component of a web app, Spring comes loaded with tools to easily verify
web functionality.

While we could instantiate a Spring MVC web controller and interrogate it using various assertions,
this would get clunky. And part of what we seek is going through the machinery of Spring MVC.
Essentially, we need to make a web call and wait for a controller to respond.

Testing with Spring Boot128

To test the HomeController class we built earlier in this book, we need to create a new test
class, HomeControllerTest.java, underneath src/test/java in the same package
as HomeController:

@WebMvcTest(controllers = HomeController.class)

public class HomeControllerTest {

  @Autowired MockMvc mvc;

  @MockBean VideoService videoService;

  @Test

  @WithMockUser

  void indexPageHasSeveralHtmlForms() throws Exception {

    String html = mvc.perform(//

      get("/")) //

      .andExpect(status().isOk()) //

      .andExpect(//

        content().string(//

          containsString("Username: user"))) //

      .andExpect(//

         content().string(//

          containsString("Authorities: [ROLE_USER]"))) //

      .andReturn() //

      .getResponse().getContentAsString();

    assertThat(html).contains(//

      "<form action=\"/logout\"", //

      "<form action=\"/search\"", //

      "<form action=\"/new-video\"");

  }

}

This tiny test class can be explained as follows:

•	 @WebMvcTest: A Spring Boot test annotation that enables Spring MVC’s machinery. The
controllers parameter constrains this test suite to only the HomeController class.

Testing web controllers with MockMVC 129

•	 @Autowired MockMvc mvc: @WebMvcTest adds an instance of Spring’s MockMvc utility
to the application context. Then, we can autowire it into our test suite for all test methods to use.

•	 @MockBean VideoService videoService: This bean is a required component of
HomeController. Using Spring Boot Test’s @MockBean annotation creates a mocked
version of the bean and adds it into the application context.

•	 @Test: Denotes this method as a JUnit 5 test case.

•	 @WithMockUser: This annotation from Spring Security Test simulates a user logging in
with a username of user and an authority of ROLE_USER (default values).

•	 The first line uses MockMvc to perform a get("/").

•	 The subsequent clauses perform a series of assertions, including verifying whether the result
is an HTTP 200 (OK) response code and that the content contains a username of user and
an authority of ROLE_USER. Then, it wraps up the MockMVC call by grabbing the entire
response as a string.

•	 Following the MockMVC call is an AssertJ assertion, verifying bits of HTML output.

This test method essentially invokes the base URL of the HomeController class and checks various
aspects of it, such as the response code as well as its content.

A key feature of our web app is the ability to create new videos. We are engaging with the HTML form
we put on the web page earlier in this chapter through the method shown below:

@Test

@WithMockUser

void postNewVideoShouldWork() throws Exception {

  mvc.perform(//

    post("/new-video") //

       .param("name", "new video") //

       .param("description", "new desc") //

       .with(csrf())) //

    .andExpect(redirectedUrl("/"));

  verify(videoService).create(//

    new NewVideo(//

      "new video", //

      "new desc"), //

    "user");

}

Testing with Spring Boot130

This test method can be described as follows:

•	 @Test: A JUnit 5 annotation to signal this as a test method.

•	 @WithMockUser: Gets us past Spring Security’s checks by simulated authentication.

•	 This time, the test method uses MockMVC to perform post("/new-video") with two
parameters (name and description). Since the web page uses Cross-Site Request Forgery
(CSRF), we can use .with(csrf()) to automatically supply the proper CSRF token, further
simulating this as a valid request and not an attack.

•	 redirectedUrl("/"): This verifies that the controller issues an HTTP redirect.

•	 verify(videoService): Mockito’s hook to verify that the create() method of the
mocked VideoService bean was called with the same parameters fed by MockMVC and
the username from @WithMockUser.

With all this created, we can easily run our test suite, as shown here:

Figure 5.4 – Test results from HomeControllerTest

This screenshot of test results shows us successfully exercising a couple of the controller’s methods
in sub-second time.

It’s left as an exercise for you to test out the other controller methods.

Being able to prove fundamental controller behavior this quickly is critical. It allows us to build up a
regime of tests, verifying all our controllers. And as mentioned earlier in this chapter, the more tests
we write, the more confidence we can instill in our system.

Something we briefly touched on in this section was using a mocked-out VideoService bean.
There is a lot more we can do with mocking, as we’ll cover in the next section.

Testing data repositories with mocks
Having run our web controller through some automated testing, it’s time to switch our attention to
another key piece of our system: the service layer that the web controller invokes.

Something that’s key is spotting any collaborators. Since the only service that’s injected into
HomeController is VideoService, let’s take a closer look.

Testing data repositories with mocks 131

VideoService, as defined in Chapter 3, Querying for Data with Spring Boot, has one collaborator,
VideoRepository. Essentially, to test out the VideoService bean in a unit-test fashion, we
need to isolate it from any outside influences. This can be accomplished using mocking.

Unit testing versus integration testing
There are various test strategies we can leverage. A key one is unit versus integration testing. In
principle, a unit test is meant to only test one class. Any external services should be mocked
or stubbed out. The counterpart test strategy, integration testing, involves creating real
or simulated variants of these various collaborators. Naturally, there are benefits and costs
associated with both. Unit testing tends to be faster since all outside influences are swapped
out with canned answers. But there is the risk that a given test case doesn’t test anything but
the mock itself. Integration testing can increase confidence, since it tends to be more real, but
it also tends to take more design and setup. And whether you’re using embedded databases or
Docker containers to emulate production services, the services aren’t as fast. This is why any
genuine application tends to have a mixture of both. Some amount of unit testing can verify
core functionality. But we also need a sense that when our components are connected, they
operate correctly together.

In the previous section, we leveraged Spring Boot Test’s slice-based @WebMvcTest annotation. In
this section, we will use a different tactic to configure things:

@ExtendWith(MockitoExtension.class)

public class VideoServiceTest {

  VideoService service;

  @Mock VideoRepository repository;

  @BeforeEach

  void setUp() {

    this.service = new VideoService(repository);

  }

}

This test class can be described as follows:

•	 @ExtendWith(MockitoExtension.class): Mockito’s JUnit 5 hook to mock out any
fields with the @Mock annotation

•	 VideoService: The class under test

•	 VideoRepository: A collaborator required for VideoService is marked for mocking

Testing with Spring Boot132

•	 @BeforeEach: JUnit 5’s annotation to make this setup method run before every test method

•	 The setUp() method shows VideoService being created with the mock VideoRepository
injected through its constructor

Mockito has always had its static mock() method, which makes it possible to create mock objects.
But using their @Mock annotation (and the MockitoExtension JUnit 5 extension) makes it very
clear which component is under test.

With this machinery in place, we are ready to add our first test method:

@Test

void getVideosShouldReturnAll() {

  // given

  VideoEntity video1 = new VideoEntity("alice", "Spring

    Boot 3 Intro", "Learn the basics!");

  VideoEntity video2 = new VideoEntity("alice", "Spring  

    Boot 3 Deep Dive", "Go deep!");

  when(repository.findAll()).thenReturn(List.of(video1,

    video2));

  // when

  List<VideoEntity> videos = service.getVideos();

  // then

  assertThat(videos).containsExactly(video1, video2);

}

This test method has some key parts, as follows:

•	 @Test : Once again, this is JUnit 5’s annotation that flags it as a test method.

•	 The first two lines are about creating some test data. The third line uses Mockito to define how
the mock VideoRepository responds when its findAll() method is invoked.

•	 The next line is where the getVideos() method of VideoService is called.

•	 The last line uses AssertJ to verify the outcome.

These bullet points, while accurate, don’t capture the entire flow of this test method.

For starters, this method has three comments denoting three phases: given, when, and then. The
given, when, and then concept is a staple behind behavior-driven design (BDD). The idea is that
given a set of inputs, when you do an action X, then you can expect Y.

Testing data repositories with mocks 133

Test cases that flow this way tend to be easier to read. And not just by software developers, but also
by business analysts and other teammates who aren’t as focused on writing code but instead focused
on capturing customer intent.

Tip
There’s no requirement to include comments, but this convention makes it easier to read.
And it’s not just the comments. Sometimes, we can write test cases that are all over the place.
Making a test method follow given, when, and then can help make them more cogent and
focused. For example, if a test case seems to have too many assertions and veers off in too many
directions, it could be a sign that it should be broken up into multiple test methods.

We would be remiss if we didn’t mention that Mockito includes a series of matching operators. See
the following test case, where we’re testing the ability to create new video entries:

@Test

void creatingANewVideoShouldReturnTheSameData() {

  // given

  given(repository.saveAndFlush(any(VideoEntity.class)))

    .willReturn(new VideoEntity("alice", "name", "des"));

  // when

  VideoEntity newVideo = service.create

    (new NewVideo("name", "des"), "alice");

  // then

  assertThat(newVideo.getName()).isEqualTo("name");

  assertThat(newVideo.getDescription()).isEqualTo("des");

  assertThat(newVideo.getUsername()).isEqualTo("alice");

}

The key parts to note are as follows:

•	 given(): This test method uses Mockito’s BDDMockito.given operator, a synonym for
Mockito’s when() operator

•	 any(VideoEntity.class): Mockito’s operator to match when the repository’s
saveAndFlush() operation is called

•	 The middle of the test method shows us invoking VideoService.create()

•	 The test method wraps up, asserting against the results

Testing with Spring Boot134

Mockito’s BDDMockito class also has a then() operator that we could have used instead of the
assertions. This hinges on whether we’re testing data or behavior!

Testing data versus testing behavior
A given test case generally consists of either verifying against test data or verifying that the
right methods were called. So far, we’ve used when(something).thenReturn(value),
which is known as a stub. We are configuring a set of canned test data to be returned for a
specific function call. And later, we can expect to assert these values. The alternative is to use
Mockito’s verify() operator, which we’ll see in the next test case. This operator, instead
of confirming by data, checks what method was called on the mock object. We don’t have to
commit to one strategy or another. Sometimes, with the code we’re testing, it is easier to capture
its intent through stubbing. Other times, it’s clearer to capture behavior with mocking. Either
way, Mockito makes it easy to test.

While BDDMockito provides nice alternatives, it’s easier (at least to me) to simply use the same
operators everywhere. Whether we are stubbing or mocking depends on the test case.

Check out the following final test case, where we are verifying our service’s delete operation:

@Test

void deletingAVideoShouldWork() {

  // given

  VideoEntity entity = new VideoEntity("alice", "name",

    "desc");

  entity.setId(1L);

  when(repository.findById(1L))

    .thenReturn(Optional.of(entity));

  // when

  service.delete(1L);

  // then

  verify(repository).findById(1L);

  verify(repository).delete(entity);

}

This test method has some key differences from the previous ones:

•	 when(): Since Mockito’s given() operator is just a synonym, it’s easier to use the same
when() operator everywhere.

Testing data repositories with embedded databases 135

•	 This test invokes the delete() operation of VideoService.

•	 Verify(): Because the behavior of the service is more complex, canned data won’t work.
Instead, we must switch to verifying the methods invoked inside the service.

It should be pointed out that entire books have been written about Mockito. My friend, Ken Kousen,
recently wrote Mockito Made Clear (see https://springbootlearning.com/mockito-book),
which I’d recommend for a deeper dive.

We are merely scratching the surface of the sophistication this toolkit affords us. Suffice it to say, we
have captured an appreciable amount of the VideoService API through readable test scenarios.

However, one thing is key in all this: these test cases are unit-based. And that comes with certain
limitations. To grow our confidence, we will expand our testing reach through the use of an in-memory
database in the next section.

Testing data repositories with embedded databases
Testing against real databases has always been expensive in terms of both time and resources. That’s
because it has traditionally required launching our application, grabbing a handwritten script of sorts,
and clicking through various pages of the application to ensure it works.

There are companies with teams of test engineers whose sole job is to write these test documents,
update them as changes are rolled out, and run them against applications in carved-out test labs.

Imagine waiting a week for your new feature to get checked out by this regimen.

Automated testing brought a new wave of empowerment to developers. They can capture test cases
describing the scenario they were aiming for. Yet developers still ran into the issue of talking to a real
database (because let’s face it – tests aren’t real unless you’re talking to a physical database) until people
started developing databases that could speak SQL yet run locally and in-memory.

Don’t all databases run in memory?
Production-grade database systems run in memory. Servers are specced out with giant memory
and disk space amounts to support a database server. But this isn’t what we are talking about.
An in-memory database concerning your application is a database that runs in the same
memory space as your application.

There are a handful of choices. For this section, we’ll use HyperSQL Database (HSQLDB). We can
choose this from Spring Initializr at https://start.spring.io and add it to our build project
with the following Maven coordinates:

<dependency>

     <groupId>org.hsqldb</groupId>

Testing with Spring Boot136

     <artifactId>hsqldb</artifactId>

     <scope>runtime</scope>

</dependency>

This dependency has one key aspect: it’s a runtime one, meaning that nothing in our code has to
compile against it. It’s only needed when the application runs.

Now, to test against VideoRepository, which we built back in Chapter 3, Querying for Data
with Spring Boot, create the VideoRepositoryHsqlTest class below src/test/java, in
the related package:

@DataJpaTest

public class VideoRepositoryHsqlTest {

  @Autowired VideoRepository repository;

  @BeforeEach

  void setUp() {

    repository.saveAll(//

      List.of(//

        new VideoEntity(//

           "alice", //

           "Need HELP with your SPRING BOOT 3 App?", //

           "SPRING BOOT 3 will only speed things up."),

        new VideoEntity("alice", //

          "Don't do THIS to your own CODE!", //

          "As a pro developer, never ever EVER do this to

             your code."),

        new VideoEntity("bob", //

          "SECRETS to fix BROKEN CODE!", //

          "Discover ways to not only debug your code")));

  }

}

This test class can be described as follows:

•	 @DataJpaTest: This is Spring Boot’s test annotation and indicates that we want it to perform
all of its automated scanning of entity class definitions and Spring Data JPA repositories.

Testing data repositories with embedded databases 137

•	 @Autowired VideoRepository : Automatically injects an instance of our
VideoRepository object to test against.

•	 @BeforeEach: This is JUnit 5’s annotation and ensures that this method runs before each
test method.

•	 repository.saveAll(): Using VideoRepository, it saves a batch of test data.

With this set up, we can start drafting test methods to exercise our various repository methods. Now,
it’s important to understand that we aren’t focused on confirming whether or not Spring Data JPA
works. That would imply we are verifying the framework, a task outside our scope.

No – we need to verify that we have written the correct queries, whether that’s using custom finders,
query by example, or whatever other strategies we wish to leverage.

So, let’s write the first test:

@Test

void findAllShouldProduceAllVideos() {

  List<VideoEntity> videos = repository.findAll();

  assertThat(videos).hasSize(3);

}

This test method does the following:

•	 Exercises the findAll() method.

•	 Using AssertJ, it checks the size of the results. We could dig a little deeper into the assertions
(we’ll do this later in this section!).

It’s left as an exercise for you to expand this test method (after reading further down) to comprehensively
verify the data.

Part of our search feature was to do a case-insensitive check for one video. Write a test for that like this:

@Test

void findByNameShouldRetrieveOneEntry() {

  List<VideoEntity> videos = repository //

    .findByNameContainsIgnoreCase("SpRinG bOOt 3");

  assertThat(videos).hasSize(1);

  assertThat(videos).extracting(VideoEntity::getName) //

    .containsExactlyInAnyOrder(//

      "Need HELP with your SPRING BOOT 3 App?");

}

Testing with Spring Boot138

This test method is more extensive and can be explained as follows:

•	 Notice how the name of the test method gives us a sense of what it does?

•	 It uses findByNameContainsIgnoreCase() and plugs in a jumbled-up sub-string.

•	 Using AssertJ, it verifies the size of the results as 1.

•	 Using AssertJ’s extracting() operator and a Java 8 method reference, we can extract the
name field of each entry.

•	 The last portion of this assertion is containsExactlyInAnyOrder(). If the order doesn’t
matter, but the specific contents do, then this is a perfect operator for confirming results.

A question you may have is: why aren’t we asserting against VideoEntity objects? After all, Java
17 records make it super simple to instantiate instances of them.

The reason to dodge this in a test case, especially one that talks to a real database, is that the id field
is populated by the saveAll() operation in the setUp() method. While we could brainstorm
ways to dynamically deal with this between setUp() and a given test method, it’s not critical that
we work to confirm primary keys.

Instead, focus on trying to verify things from the application’s perspective. In this situation, we want
to know that our mixed-cased partial input yields the correct video and verify that the name field
fits the bill perfectly.

Another test we can write is confirming that searching by name or description works. So, add the
following test method:

@Test

void findByNameOrDescriptionShouldFindTwo() {

  List<VideoEntity> videos = repository //

    .findByNameContainsOrDescriptionContainsAllIgnoreCase(

      "CoDe", "YOUR CODE");

  assertThat(videos).hasSize(2);

  assertThat(videos) //

    .extracting(VideoEntity::getDescription) //

    .contains("As a pro developer, never ever EVER do this

      to your code.", //

      "Discover ways to not only debug your code");

}

Adding Testcontainers to the application 139

This test method can be described as follows:

•	 Here, we are exercising the repository’s findByNameContainsOrDescription
ContainsAllIgnoreCase(). The inputs are indeed partial strings, and the case is altered
from what was stored in the setUp() method.

•	 Again, asserting the size of the results is an easy test to verify we are on the right path.

•	 This time, we are using the extracting() operator to fetch the description field.

•	 We simply check that the extracting operator contains a couple of descriptions without worrying
about the order. It’s important to remember that, without an ORDER BY clause, databases are
not obligated to return the results in the same order as they were stored.

One thing should be pointed out: this test class used field injection to autowire VideoRepository.
In modern Spring apps, it’s usually recommended to use constructor injection. We saw this in more
detail in Chapter 2, Creating a Web Application with Spring Boot, in the Injecting dependencies through
constructor calls section.

While field injection is usually seen as a risk that might lead to null pointer exceptions, when it comes
to test classes, it’s alright. That’s because the life cycle for creating and destroying test classes is handled
by JUnit and neither us nor Spring Framework.

Now, there is still one repository method we have yet to test, and that’s the delete() operation.
We’ll cover that later in this chapter when we explore Testing security policies with Spring Security Test.

In the meantime, we must visit a critical issue lingering right before us: what if our target database
isn’t embedded?

If we were to use something more mainstream in production such as PostgreSQL, MySQL, MariaDB,
Oracle, or some other relational database, we have to deal with the fact that they are not available as
embedded, co-located processes.

We could continue using HSQL as a basis for writing test cases. And even though we’re using JPA as a
standard, we still run the risk of our SQL operations not working properly when we get to production.

Even though SQL is a standard (or rather, multiple standards), there are gaps not covered by the specs.
And every database engine fills those gaps with its solutions as well as offers features outside the specs.

This leads us to a need to write test cases against, say, PostgreSQL, but not be able to use what we’ve
seen so far. And this leads us to the next section.

Adding Testcontainers to the application
We have seen that, with mocking, we can replace a real service with a fake one. But what happens
when you need to verify a real service, which involves talking to a real database?

Testing with Spring Boot140

The fact that each database engine has slight variations in implementations of SQL demands that we
test our database operations against the same version we intend to use in production!

With the emergence of Docker in 2013 and the rise of putting various tools and applications inside
containers, it has become possible to find a container for the database we seek.

Further cultivated by open source, just about every database we can find has a containerized version.

While this makes it possible for us to spin up an instance on our local workstation, the task of manually
launching a local database every time we want to run our tests doesn’t quite cut it.

Enter Testcontainers. With their first release coming out in 2015, Testcontainers provides a mechanism
to start up a database container, invoke a series of test cases, and then shut down the container. All
with no manual action from you or me.

To add Testcontainers to any Spring Boot application, again, we only need to visit Spring Initializr
at start.spring.io. From there, we can select Testcontainers, as well as PostgreSQL Driver.

The changes to add to our pom.xml build file are shown here:

<testcontainers.version>1.17.6</testcontainers.version>

testcontainers.version specifies the version of Testcontainers to use. This property setting
should be placed inside the <properties/> element, the same place where you can find the already
existing java.version property.

With that in place, the following dependencies must also be added:

<dependency>

        <groupId>org.postgresql</groupId>

        <artifactId>postgresql</artifactId>

        <scope>runtime</scope>

</dependency>

<dependency>

        <groupId>org.testcontainers</groupId>

        <artifactId>postgresql</artifactId>

        <scope>test</scope>

</dependency>

<dependency>

        <groupId>org.testcontainers</groupId>

        <artifactId>junit-jupiter</artifactId>

        <scope>test</scope>

</dependency>

Adding Testcontainers to the application 141

These additional dependencies can be described as follows:

•	 org.postgresql:postgresql: A third-party library managed by Spring Boot. This is
the driver to connect to a PostgreSQL database; hence, it only needs to be runtime scoped.
There is nothing in our code base that must compile against it.

•	 org.testcontainers:postgresql: The Testcontainers library that brings in first-class
support for PostgreSQL containers (which we’ll explore further in this section).

•	 org.testcontainers:junit-jupiter: The Testcontainers library that brings deep
integration with JUnit 5 – that is, JUnit Jupiter.

It’s important to understand that Testcontainers involves a fleet of various modules, all managed under
the umbrella of GitHub repositories. They do this by releasing a Maven Bill of Materials (BOM), a
central artifact that contains all the versions.

The testcontainers.version property specifies what version of Testcontainers BOM we
wish to use, which is added to the pom.xml file in a separate section below <dependencies/>,
as shown here:

<dependencyManagement>

    <dependencies>

          <dependency>

               <groupId>org.testcontainers</groupId>

               <artifactId>testcontainers-bom</artifactId>

               <version>${testcontainers.version}</version>

               <type>pom</type>

               <scope>import</scope>

          </dependency>

    </dependencies>

</dependencyManagement>

This BOM entry can be described as follows:

•	 org.testcontainers:testcontainers-bom: This Testcontainers BOM contains
all the key information about each supported module. By specifying the version here, all other
Testcontainers dependencies can skip setting a version.

•	 pom: A dependency type that indicates this artifact has no code, only Maven build information.

•	 import: A scope indicating that this dependency shall be replaced effectively by whatever
this BOM contains. It’s a shortcut for adding a stack of declared versions.

With all this set up, we can write some test cases in the next section!

Testing with Spring Boot142

Testing data repositories with Testcontainers
The first step when it comes to using Testcontainers is configuring the test case. To talk to a Postgres
database, do this:

@Testcontainers

@DataJpaTest

@AutoConfigureTestDatabase(replace = Replace.NONE)

public class VideoRepositoryTestcontainersTest {

  @Autowired VideoRepository repository;

  @Container //

  static final PostgreSQLContainer<?> database = //

    new PostgreSQLContainer<>("postgres:9.6.12") //

      .withUsername("postgres");

}

This framework for test cases can be described as follows:

•	 @Testcontainers: The annotation from the Testcontainers junit-jupiter module
that hooks into the life cycle of a JUnit 5 test case.

•	 @DataJpaTest: Spring Boot Test’s annotation we used in the previous section, indicating
that all entity classes and Spring Data JPA repositories should be scanned.

•	 @AutoConfigureTestDatabase: This Spring Boot Test annotation tells Spring Boot
that instead of swapping out the DataSource bean like it normally does, to instead NOT
replace it like it normally does when there’s an embedded database on the classpath (more on
why this is needed shortly).

•	 @Autowired VideoRepository: Injects the application’s Spring Data repository. We
want the real thing and not some mock because this is what we’re testing!

•	 @Container: Testcontainer’s annotation to flag this as the container to control through the
JUnit life cycle.

•	 PostgreSQLContainer: Creates a Postgres instance through Docker. The constructor
string specifies the Docker Hub coordinates of the exact image we want. Note that this makes
it easy to have multiple test classes, each focused on different versions of Postgres!

All of this allows us to spin up a real instance of Postgres and leverage it from a test class. The extra
annotations unite the start and stop actions of Docker with the start and stop actions of our test scenario.

Testing data repositories with Testcontainers 143

However, we aren’t quite there.

Spring Boot, with its autoconfiguration magic, either creates a real DataSource bean or an embedded
one. If it spots H2 or HSQL on the testing classpath, it pivots toward using the embedded database.
Otherwise, it has some autoconfiguration default settings based on which JDBC driver it sees.

And neither situation is what we want. We want it to switch away from H2 and HSQL and instead
use Postgres. But the hostname and port will be wrong since this isn’t standalone Postgres but instead
Docker-based Postgres.

Never fear, ApplicationContextInitializer comes to the rescue. This is the Spring Framework
class that grants us access to the startup life cycle of the application, as shown here:

static class DataSourceInitializer //

  implements ApplicationContextInitializer

    <ConfigurableApplicationContext> {

  @Override

  public void initialize(ConfigurableApplicationContext

    applicationContext) {

    TestPropertySourceUtils.

      addInlinedPropertiesToEnvironment(applicationContext,

      "spring.datasource.url=" + database.getJdbcUrl(),

      "spring.datasource.username="+database.getUsername(),

      "spring.datasource.password="+database.getPassword(),

      "spring.jpa.hibernate.ddl-auto=create-drop");

  }

}

This code can be explained as follows:

•	 ApplicationContextInitializer<ConfigurableApplicationContext>:
This class is what gives us a handle on the application context.

•	 initialize(): This method is the callback Spring will invoke while the application context
is getting created.

•	 TestPropertySourceUtils.addInlinedPropertiesToEnvironment: This
static method from Spring Test allows us to add additional property settings to the application
context. The properties provided here are from the PostgreSQLContainer instance created
in the previous section. We’ll be tapping into a container already started by Testcontainers so
that we can harness its JDBC URL, username, and password.

Testing with Spring Boot144

•	 spring.jpa.hibernate.ddl-auto=create-drop: When talking to an embedded
database, Spring Boot autoconfigures things with JPA’s create-drop policy, where the database
schema is created from scratch. Because we are using a real connection to talk to a PostgreSQL
database, it switches to none, where none of Spring Boot’s embedded behavior happens. Instead,
Spring Boot will attempt to make no changes to the database regarding schema and data. Since
this is a test environment, we need to override this and switch back to create-drop.

To apply this set of properties by hooking the Testcontainers-managed database into Spring Boot’s
autoconfigured DataSource, we simply need to add the following to the test class:

@ContextConfiguration(initializers = DataSourceInitializer.

  class)

public class VideoRepositoryTestcontainersTest {

        …

}

The @ContextConfiguration annotation adds our DataSourceInitializer class to the
application context. And due to it registering an ApplicationContextInitializer, it will
be invoked at precisely the right moment after Testcontainers has launched a Postgres container and
before Spring Data JPA autoconfiguration is applied.

The only thing left to do is write some actual tests!

Since each test method starts with a clean database, we need to pre-load some content, as shown here:

@BeforeEach

void setUp() {

  repository.saveAll(//

    List.of(//

      new VideoEntity(//

        "alice", //

        "Need HELP with your SPRING BOOT 3 App?", //

        "SPRING BOOT 3 will only speed things up."),

      new VideoEntity("alice", //

        "Don't do THIS to your own CODE!", //

        "As a pro developer, never ever EVER do this to

          your code."),

      new VideoEntity("bob", //

        "SECRETS to fix BROKEN CODE!", //

        "Discover ways to not only debug your code")));

}

Testing data repositories with Testcontainers 145

This method can be described as follows:

•	 @BeforeEach: The JUnit annotation that runs this code before each test method.

•	 repository.saveAll(): This stores a whole list of VideoEntity objects in the database.

•	 List.of(): A Java 17 operator to quickly and easily assemble a list.

•	 Each VideoEntity instance has a user, a name, and a description.

What if we need to test different sets of data? Different data-driven scenarios? Write another test class!
You can use Testcontainers easily between different test classes. By tightly integrating with JUnit, there
is no need to sweat some static instance floating around from one test class, wrecking this test class.

Now, with all this set up, we can finally write some tests, as shown here:

@Test

void findAllShouldProduceAllVideos() {

  List<VideoEntity> videos = repository.findAll();

  assertThat(videos).hasSize(3);

}

This test method verifies that the findAll() method returns all three entities stored in the database.
Considering findAll() is provided by Spring Data JPA, this is bordering on testing Spring Data
JPA and not our code. But sometimes, we need this type of test to simply verify we’ve set everything
up correctly.

This is also sometimes called a smoke test, a test case that verifies things are up and operational.

A more in-depth test case involves proving that our custom finder that supports our search feature
is working, as shown here:

@Test

void findByName() {

  List<VideoEntity> videos = repository.

    findByNameContainsIgnoreCase("SPRING BOOT 3");

  assertThat(videos).hasSize(1);

}

This test method has the same annotations and AssertJ annotations, but it focuses on that same
findByNameContainsIgnoreCase, using data stored in a database.

Testing with Spring Boot146

To wrap things up, let’s verify our uber-long custom finder with a test case, as shown here:

@Test

void findByNameOrDescription() {

  List<VideoEntity> videos = repository.

    findByNameContainsOrDescriptionContainsAllIgnoreCase

    ("CODE", "your code");

  assertThat(videos).hasSize(2);

}

Yikes! That method name is so long it wrecks the formatting in this book. This could be a sign that
this scenario is hankering for Query by Example. Time to go back to Chapter 3, Querying for Data
with Spring Boot, and consider replacing this query, perhaps?

With all this in place, we can run our test suite and confidently know that our data repository properly
interacts with the database. Not only do we know that our repository is doing things right, but our
test methods are also meant to ensure our system is doing the right thing.

These tests verify that our design of case-insensitive queries against various fields supports the
preceding service layer:

Figure 5.5 – Testcontainers-based tests

And while this section focused on a repository connecting to a database, this tactic works in many
other places – RabbitMQ, Apache Kafka, Redis, Hazelcast, anything. If you can find a Docker Hub
image, you can hook it into your code via Testcontainers. Sometimes, there are shortcut annotations.
Other times, you just need to create the container yourself like we just did.

Having verified our web controller, our service layer, and now our repository layer, there is just one
thing to tackle: verifying our security policy.

Testing security policies with Spring Security Test
Has something crossed your mind? Didn’t we check out security stuff when we wrote that
HomeControllerTest class earlier in this chapter?

Yes… and no.

Testing security policies with Spring Security Test 147

We used the @WithMockUser annotation from Spring Security Test earlier in this chapter. But
that’s because any @WebMvcTest-annotated test class will, by default, have our Spring Security
policies in effect.

But we didn’t cover all the necessary security paths. And in security, there are often many paths to
cover. And as we dig, we’ll discover exactly what this means.

For starters, we need a new test class, as shown here:

@WebMvcTest (controllers = HomeController.class)

public class SecurityBasedTest {

  @Autowired MockMvc mvc;

  @MockBean VideoService videoService;

}

Hopefully, things are starting to look familiar:

•	 @WebMvcTest: This Spring Boot Test annotation indicates this is a web-based test class
focused on HomeController. It’s important to understand that Spring Security policies
will be in effect.

•	 @Autowired MockMvc: Automatically injects a Spring MockMVC instance for us to craft
test cases.

•	 @MockBean VideoService: HomeController’s collaborator is to be replaced by a
Mockito mock.

With this in place, we can start by verifying access to the home page. In this context, it makes sense
to inspect our SecurityConfig:

http.authorizeHttpRequests() //

  .requestMatchers("/login").permitAll() //

  .requestMatchers("/", "/search").authenticated() //

  .requestMatchers(HttpMethod.GET, "/api/**").

    authenticated()

  .requestMatchers(HttpMethod.POST, "/delete/**",

    "/new-video").authenticated() //

  .anyRequest().denyAll() //

  .and() //

  .formLogin() //

Testing with Spring Boot148

  .and() //

  .httpBasic();

This list of security rules has one bold-faced rule toward the top. It indicates that access to / requires
authenticated access and nothing more.

To verify that unauthenticated users are denied access, write the following test case:

@Test

void unauthUserShouldNotAccessHomePage() throws Exception {

  mvc //

    .perform(get("/")) //

    .andExpect(status().isUnauthorized());

}

This test method has some key aspects:

•	 It does NOT have one of those @WithMockUser annotations. This means no authentication
credentials are stored in the servlet context, thus simulating an unauthorized user.

•	 mvc.perform(get("/")): Use MockMVC to perform a GET / call.

•	 status().isUnauthorized(): This asserts that the result is an HTTP 401
Unauthorized error code.

Also, note the method name of the test: unauthUserShouldNotAccessHomePage. It very
clearly states the expectation. That way, if it ever breaks, we’ll know exactly what the point of the test
was. Hopefully, this puts us on the path toward fixing things faster.

status().isUnauthorized() for an unauthenticated user?
In security, proving who you are is called authentication. What you are allowed to do is
known as authorization. However, the HTTP status code for an unauthenticated user is 401
Unauthorized. When someone is authenticated but attempts to access something they aren’t
authorized for, the HTTP status code is 403 Forbidden. A rather quirky mixture of terminology,
but something to be aware of.

We just wrote a bad path test case, a critical requirement when testing security policies. We need to
also write a good path test case, as shown here:

@Test

@WithMockUser(username = "alice", roles = "USER")

void authUserShouldAccessHomePage() throws Exception {

  mvc //

Testing security policies with Spring Security Test 149

    .perform(get("/")) //

    .andExpect(status().isOk());

}

This test method is very similar except for the following:

•	 @WithMockUser: This annotation inserts an authentication token into the MockMVC servlet
context with a username of alice and an authority of ROLE_USER.

•	 It does the same get("/") call the previous test method did but expects a different outcome.
With status().isOk(), we are looking for an HTTP 200 Ok result code.

We have now rounded out our test regime to verify that the home page is properly locked down.
However, unauthenticated users and ROLE_USER users aren’t the only users our system has. We also
have administrators with ROLE_ADMIN. And for each role, we really should have a separate test to
ensure our security policy is properly configured.

The following code is almost the same as the preceding code:

@Test

@WithMockUser(username = "alice", roles = "ADMIN")

void adminShouldAccessHomePage() throws Exception {

  mvc //

    .perform(get("/")) //

    .andExpect(status().isOk());

}

The only difference is that @WithMockUser has alice and ROLE_ADMIN stored in the servlet context.

These three tests should properly verify access to the home page.

Considering our HomeController also affords us the ability to add new video objects, we should
also write some test methods to ensure things are handled properly, as shown here:

@Test

void newVideoFromUnauthUserShouldFail() throws Exception {

  mvc.perform(//

    post("/new-video") //

      .param("name", "new video") //

      .param("description", "new desc") //

      .with(csrf())) //

      .andExpect(status().isUnauthorized());

}

Testing with Spring Boot150

This test method can be described as follows:

•	 The method name clearly describes that it’s to verify that an unauthorized user does NOT create
a new video. Again, this method has no @WithMockUser annotation.

•	 mvc.perform(post("/new-video")): Uses MockMVC to perform a POST
/new-video action. The param("key", "value") arguments let us provide the fields
normally entered through an HTML form.

•	 with(csrf()): We have CSRF protections enabled. This additional setting lets us hook in
the CSRF value, simulating a legitimate access attempt.

•	 status().isUnauthorized() : Ensures that we get an HTTP 401
Unauthorized response.

If you supply all the expected values, including a valid CSRF token, it will fail, as expected.

CSRF
In Chapter 4, Securing an Application with Spring Boot, we found out that Spring Security
automatically enables CSRF token checking on forms and other actions to avoid CSRF attacks.
For test cases where we don’t have CSRF tokens rendered in HTML pages, we must still present
this value to avoid shutting off CSRF.

Now, let’s write a test where the user has the right permissions to create a new video:

@Test

@WithMockUser(username = "alice", roles = "USER")

void newVideoFromUserShouldWork() throws Exception {

  mvc.perform(//

    post("/new-video") //

      .param("name", "new video") //

      .param("description", "new desc") //

      .with(csrf())) //

      .andExpect(status().is3xxRedirection()) //

      .andExpect(redirectedUrl("/"));

}

This code can be summarized as follows:

•	 @WithMockUser: This user has ROLE_USER.

•	 It performs the same POST /new-video with the same values and CSRF tokens, yet we get
a different set of response codes.

Summary 151

•	 status().is3xxRedirection(): Verifies that we get something in the 300 series of
HTTP response signals. This makes our test case less brittle if, say, someone switches from soft
redirects to hard redirects in the future.

•	 redirectedUrl("/"): Lets us verify that the redirected path is /.

This test method machinery is identical to the previous test method. The only difference is the setup
(alice/ROLE_USER) and the outcomes (redirect to /).

And this is what makes these test methods security-focused. The point here is to see that accessing
the same endpoints but with different credentials (or none at all) yields proper results.

Thanks to MockMVC and Spring Security Test, it’s easy to exercise the Spring MVC machinery
and assert against it. And thanks to Spring Boot Test, it’s super easy to activate actual parts of our
application, again building confidence.

Summary
Throughout this chapter, we have explored multiple ways to write test cases. We have seen simple tests,
midgrade tests, and complex ones. All of these give us ways to test different aspects of our application.

And each tactic has various tradeoffs. We can get our hands on real database engines if we’re willing
to spend the extra runtime. We can also ensure our security policies are properly shaken out with
both unauthorized and fully authorized users.

Hopefully, this has whet your appetite to fully embrace testing in your applications.

In the next chapter, Configuring an Application with Spring Boot, we’ll learn how to parameterize,
configure, and override settings for our application.

Part 3:
Releasing an Application

with Spring Boot

Building an application is only half the battle. Releasing the application to production is critical. You
will learn how to configure your application for various environments, including the cloud. You will
also discover different ways to package it up and get it into your customers’ hands. Finally, you will
learn how to ramp things up with native images.

This part includes the following chapters:

•	 Chapter 6, Configuring an Application with Spring Boot

•	 Chapter 7, Releasing an Application with Spring Boot

•	 Chapter 8, Going Native with Spring Boot

6
Configuring an Application

with Spring Boot

In the previous chapter, we learned how to test various aspects of an application, including web
controllers, repositories, and domain objects. We also explored security-path testing, as well as using
Testcontainers to emulate production.

In this chapter, we’ll learn how to configure our application, which is a critical piece of application
development. While at first glance this may sound like setting a handful of properties, there is a
deeper concept at play.

Our code needs a connection to the real world. In this sense, we’re talking about anything our
application connects to: databases, message brokers, authentication systems, external services, and
more. The details needed to point our application at a given database or message broker are contained
in these property settings. By making application configuration a first-class citizen in Spring Boot,
application deployment becomes versatile.

The point of this chapter is to reveal how application configuration becomes not just simple, but
instead, a tool to make applications better serve our needs. This way, we can spend all our time serving
the application’s needs!

In this chapter, we’ll cover the following topics:

•	 Creating custom properties

•	 Creating profile-based property files

•	 Switching to YAML

•	 Setting properties with environment variables

•	 Order of property overrides

Configuring an Application with Spring Boot156

Where to find this chapter’s code
The source code for this chapter can be found at https://github.com/PacktPublishing/
Learning-Spring-Boot-3.0/tree/main/ch6.

Creating custom properties
We have already dabbled with application properties in a couple of places in this book. Remember
setting spring.mustache.servlet.expose-request-attributes=true in the
application.properties file in Chapter 4, Securing an Application with Spring Boot?

Configuring our application using property files is incredibly handy. While Spring Boot offers many
custom properties we can use, it’s possible to create our own!

Let’s start by creating some custom properties. To do that, create a brand new AppConfig class,
like this:

@ConfigurationProperties("app.config")

public record AppConfig(String header, String intro,

  List<UserAccount> users) {

}

This Java 17 record can be described as follows:

•	 @ConfigurationProperties: A Spring Boot annotation that flags this record as a source
of property settings. The app.config value is the prefix for its properties.

•	 AppConfig: The name of this bundle of type-safe configuration properties. It doesn’t matter
what name we give it.

The fields themselves are the names of the properties, which we’ll cover in more detail shortly.

This tiny record essentially declares three properties: app.config.header, app.config.intro,
and app.config.users. We can populate them right away by adding the following to application.
properties:

app.config.header=Greetings Learning Spring Boot 3.0 fans!

app.config.intro=In this chapter, we are learning how to make a
web app using Spring Boot 3.0

app.config.users[0].username=alice

app.config.users[0].password=password

app.config.users[0].authorities[0]=ROLE_USER

app.config.users[1].username=bob

app.config.users[1].password=password

Creating custom properties 157

app.config.users[1].authorities[0]=ROLE_USER

app.config.users[2].username=admin

app.config.users[2].password=password

app.config.users[2].authorities[0]=ROLE_ADMIN

This batch of properties can be described as follows:

•	 app.config.header: A string value to insert into the top-most part of our template
(which we’ll do soon).

•	 app.config.intro: A string greeting to put in the template.

•	 app.config.users: A list of UserAccount entries with each attribute split out into a
separate line. The square bracket notation is used to populate the Java list.

These property settings are cool, but we don’t have access to them yet. We need to enable them by
adding a little more. In truth, it doesn’t matter where so long as it’s on a Spring component we know
will be picked up by Spring Boot’s component scanning.

Since this set of properties (you can have more than one!) is application-wide, why not apply them
to the entry point for our application?

@SpringBootApplication

@EnableConfigurationProperties(AppConfig.class)

public class Chapter6Application {

  public static void main(String[] args) {

    SpringApplication.run(Chapter6Application.class, args);

  }

}

This code is very similar to the code in previous chapters with one change:

•	 @EnableConfigurationProperties(AppConfig.class): This annotation activates
this application configuration, making it possible to inject into any Spring bean.

The rest of the code is the same as we’ve seen in previous chapters.

Tip
Where is the best place to enable custom properties? In truth, it doesn’t matter. So long as it
gets enabled on some Spring bean that will be picked up by Spring Boot, it will get added to
the application context. However, if this particular set of properties were specific to a certain
Spring bean, it’s recommended to put the annotation on that bean definition, emphasizing that
the bean comes with a complement of configurable properties. If the properties are used by
more than one bean, consider what we just did.

Configuring an Application with Spring Boot158

Thanks to @EnableConfigurationProperties, a Spring bean of the AppConfig type will be
registered automatically in the application context, bound to the values applied inside application.
properties.

To leverage it in our HomeController, we only need to make the following changes at the top of
the class:

@Controller

public class HomeController {

  private final VideoService videoService;

  private final AppConfig appConfig;

  public HomeController(VideoService videoService,

    AppConfig appConfig) {

      this.videoService = videoService;

      this.appConfig = appConfig;

  }

    …rest of the class…

HomeController has one change: a field of the AppConfig type is declared below VideoService
and it gets initialized in the constructor call.

With this in place, we can use its provided values in rendering the index template further down in
HomeController, like this:

@GetMapping

public String index(Model model, //

  Authentication authentication) {

  model.addAttribute("videos", videoService.getVideos());

  model.addAttribute("authentication", authentication);

  model.addAttribute("header", appConfig.header());

  model.addAttribute("intro", appConfig.intro());

  return "index";

}

These changes can be described as follows:

•	 The model’s "header" attribute is populated with appConfig.header()

•	 The model’s "intro" attribute is populated with appConfig.intro()

Creating custom properties 159

This will take the string values we put into application.properties and route them so that
they render index.mustache.

To complete the loop, we need to make the following changes to the template:

<h1>{{header}}</h1>

<p>{{intro}}</p>

We simply use Mustache’s double-curly syntax to grab the {{header}} and {{intro}} attributes.
What used to be hard-coded is now a template variable!

This is neat, but is parameterizing a couple of fixed values in a template that big a deal? Perhaps not. To
get our hands on the power of Spring Boot configuration properties, let’s delve into the users field.

That one is NOT ready to go. Why?

It’s important to understand the Java property fields are fundamentally built up out of key-value pairs
of strings. The values aren’t wrapped in double quotes, but they are pretty much treated that way.

Spring comes with some convenient converters built in, but centered inside the AppConfig user’s
property, inside the UserAccount type, is a List<GrantedAuthority>. Converting strings
into GrantedAuthority is not clear-cut and requires that we write and register a converter.

The code for handling user accounts is security-focused, so it makes sense to register this custom
converter inside our already-existing SecurityConfig:

@Bean

@ConfigurationPropertiesBinding

Converter<String, GrantedAuthority> converter() {

  return new Converter<String, GrantedAuthority>() {

    @Override

    public GrantedAuthority convert(String source) {

      return new SimpleGrantedAuthority(source);

    }

  };

}

This code can be described as follows:

•	 @Bean: This converter must be registered with the application context so that it gets picked
up properly.

•	 @ConfigurationPropertiesBinding: Due to application property conversion
happening very early in the application life cycle, Spring Boot ONLY applies converters that
have this annotation applied. Try to avoid pulling in other dependencies.

Configuring an Application with Spring Boot160

•	 Convert() : At the heart is one little method that converts a String into a
GrantedAuthority by using SimpleGrantedAuthority.

Spring converters are quite handy. However, you may be encouraged by your IDE to simplify this code
a little bit. It may suggest that you convert this into a Java lambda expression (return source
-> new SimpleGrantedAuthority(source)), or perhaps trim it down into a method
reference (return SimpleGrantedAuthority::new).

But that won’t work. At least, not without some help.

That’s because Java has type erasure. At runtime, Java will drop the generic information, which makes
it impossible for Spring to find the proper converter and apply it. So, we must either keep things just
the way they are or adopt a different strategy, as shown here:

interface GrantedAuthorityCnv extends Converter<String,
GrantedAuthority> {}

@Bean

@ConfigurationPropertiesBinding

GrantedAuthorityCnv converter() {

  return SimpleGrantedAuthority::new;

}

This type-erasure beating solution can be described as follows:

•	 GrantedAuthorityCnv: By extending Spring’s Converter interface with a custom
interface that applies our generic parameters, we are freezing a copy of these parameters that
Spring can find and use

•	 Using this new interface instead of Converter<String, GrantedAuthority>, we
can switch to the slimmed-down method reference

This may appear to be roughly the same amount of code. It is simply a different way the same information
is being put together. It’s a personal preference whether a fully-expanded Converter<String,
GrantedAuthority> inside a bean definition or a slimmed-down but separate interface is easier
to grok.

Either way, we can now fire up our application, knowing that we have varying aspects of our application
retooled to be property-driven.

And with all this in place, we can begin to explore how a property-driven application gives us the
ability to customize things for different environments in the next section.

Creating profile-based property files 161

Creating profile-based property files
In the previous section, we realized the ability to extract certain aspects of our application into property
files. The next big step you can take is realizing how far you can go with this.

Inevitably, we run into situations such as carrying our application into a new environment and
wondering, “can we change the properties for THIS situation?”

For example, what if our application, before release, has to be installed in a test bed where it can get
checked out? The databases are different. The test team may want a different set of test accounts. And
any other external services (message brokers, authentication systems, and so on) will probably also
be different.

So, the question arises, “can I have a different set of properties?” To which Spring Boot says “yes!”

To check this out, create another property file. Call it application-test.properties and
load it up, like this:

app.config.header=Greetings Test Team!

app.config.intro=If you run into issues while testing, let me
know!

app.config.users[0].username=test1

app.config.users[0].password=password

app.config.users[0].authorities[0]=ROLE_NOTHING

app.config.users[1].username=test2

app.config.users[1].password=password

app.config.users[1].authorities[0]=ROLE_USER

app.config.users[2].username=test3

app.config.users[2].password=password

app.config.users[2].authorities[0]=ROLE_ADMIN

These alternative sets of properties can be described as follows:

•	 application-test.properties: When you append –test to the base name of the
property file, you can activate it by using the Spring test profile

•	 The web bits are tuned to the audience

•	 The test team would probably have a set of users they want to carry out all their scenarios

To run the application, all we have to do is activate the Spring test profile. There are multiple ways
to switch that one:

•	 Add -Dspring.profiles.active=test to the JVM

Configuring an Application with Spring Boot162

•	 In a Unix environment, use export SPRING_PROFILES_ACTIVE=test

•	 Some IDEs even support this directly! Check out the following screenshot from IntelliJ IDEA
(Ultimate Edition, not Community Edition):

Figure 6.1 – IntelliJ’s Run dialog

Look toward the bottom for Active profiles and see where we entered test.

Want to check out IntelliJ IDEA Ultimate Edition?
JetBrains does offer a 30-day free trial for IntelliJ IDEA Ultimate Edition. They also have options
if you happen to be working on certain open source projects. Personally, this is my favorite IDE
I’ve used throughout my career. It has incredible insight into all kinds of things from Java code
to SQL strings in Spring Data @Query annotations to property files to Spring Boot powerups
(and more). Feel free to check out your options at https://springbootlearning.
com/intellij-idea-try-it.

Creating profile-based property files 163

When we activate a Spring profile, Spring Boot will add application-test.properties to
our configuration.

Tip
Profiles are additive. When we activate the test profile, application-test.properties
is added to the configuration. It doesn’t replace application.properties. However, if
a given property is found in both, the last profile applied wins. Considering application.
properties is considered the default profile, application-test.properties would
be applied afterward. Hence, the header, intro, and users properties would be overrides.
It’s also possible to apply more than one profile, separated by commas.

Imagine if we had A) a development lab where we had a slimmed-down complement of servers, B)
a full-sized test bed with a separate set of servers, and C) a production environment with full-sized
servers. We could consider the following:

•	 Make production the default configuration and put connection URLs pointed at our production
servers in application.properties. Also, have a counterpart test profile captured
in the application-test.properties file with connection URLs for the test servers.
Finally, make individual developers use a dev profile, using the application-dev.
properties file with connection URLs for the development lab of servers.

•	 Another tactic is to flip production and development. When anyone runs the application by
default, with no custom profiles activated, it runs in dev mode. To run things in production,
activate the production profile and apply application-production.properties.
Keep the test profile the same as the previous example.

So far, we’ve talked about different environments and real, physical environments. Of course, we could
be discussing traditional servers in various rack configurations. But we could just as well be talking
about virtualized servers. Either way, adjusting connection URLs among other settings through the
use of environment-specific configuration files is valuable.

But that’s not the only choice put before us.

What if our application is being deployed in the cloud? In different clouds? What if we started with a
traditional set of hardware, as discussed earlier in this section, but management has decided to migrate
to AWS, Azure, or VMware Tanzu?

There is no need to go into our code and start making changes. Instead, all we need to do is work
on a new property file and plug in whatever the connection details are to communicate with our
cloud-based services!

Configuring an Application with Spring Boot164

Switching to YAML
Part of the Spring way is options. Developers have varying needs based on circumstances, and Spring
tries to offer different ways to effectively get things done.

And sometimes, the number of property settings we need can explode. With the property file’s key/
value paradigm, this can get unwieldy. In the previous section, where we had lists and complex values,
it became clunky to have to specify index values.

YAML is a more succinct way to represent the same settings. Perhaps an example is in order. Create
an application-alternate.yaml file in the src/main/resources folder, as shown here:

app:

  config:

    header: Greetings from YAML-based settings!

    intro: Check out this page hosted from YAML

    users:

      -

        username: yaml1

        password: password

        authorities:

          - ROLE_USER

      -

        username: yaml2

        password: password

        authorities:

          - ROLE_USER

      -

        username: yaml3

        password: password

        authorities:

      - ROLE_ADMIN

These YAML-based settings can be described as follows:

•	 The nested nature of YAML prevents duplicate entries and makes it clear where each property
is located

•	 The hyphens underneath users denote array entries

•	 Because the users field of AppConfig is a complex type (List<UserAccount>), each
field of each entry is listed on a separate line

Switching to YAML 165

•	 Because authorities itself is a list, it too uses hyphens

In Chapter 4, Securing an Application with Spring Boot, in the Leveraging Google to authenticate users
section, we had a first-hand look at using YAML to configure Spring Security OAuth2 settings.

YAML is slim and trim because it avoids duplicating entries. In addition to that, its nested nature
makes things a little more readable.

Tradeoff
Everything has tradeoffs, right? I’ve seen many systems built on top of YAML configuration
files, especially in the cloud configuration space. If your YAML file is so big that it doesn’t fit
on one screen, the nice readable format can work against you. That’s because the spacing and
tabbing between nested levels are important. That example I just gave was about something
not specific to Spring Boot. The number of properties you’ll be dealing with will probably be
fine. Just don’t be surprised if you work on something else and discover the dark side of YAML.

A bonus feature provided by most modern IDEs is code completion support for both application.
properties files and application.yaml files!

Check out the following screenshot:

Figure 6.2 – IntelliJ’s code completion for property settings

Configuring an Application with Spring Boot166

In this screenshot, while the available properties appear with standard key/value notation, they will
be automatically applied in YAML format if need be.

Spring Boot encourages us to use custom, type-safe configuration property classes. To support having
our configuration settings appear in code completion popups like the one shown previously, all we
must do is add the following dependency to our pom.xml file!

<dependency>

        <groupId>org.springframework.boot</groupId>

        <artifactId>spring-boot-configuration-processor

          </artifactId>

        <optional>true</optional>

</dependency>

But this isn’t the only way to supply property settings. In the next section, we’ll learn how environment
variables can also be used to override property settings.

Setting properties with environment variables
A configurable application wouldn’t be complete if there weren’t a way to configure it straight from
the command line. This is of key value because no matter how much thought and design we put into
our applications, something will always pop up.

Being stuck with a bundled-up application and no way to override the various property files stuffed
inside it would be a showstopper.

Don’t do this!
Maybe you’ve run into situations where you need to unpack the JAR file, edit some property
files, and bundle it back up. Do not do this! This is a hack that may have skated by 20 years
ago, but it just doesn’t cut it today. In today’s age of controlled pipelines and secured release
processes, it’s simply too risky to manually get your hands on a JAR file and tweak it like that.
And thanks to the real-world experience of the Spring team, there’s no need to do that.

You can easily override any property using an environment variable. Remember how, earlier in this
chapter, we activated a profile using IntelliJ IDEA’s Run dialog? You can do the same thing right from
the command line, like this:

$ SPRING_PROFILES_ACTIVE=alternative ./mvnw spring-boot:run

This command can be explained as follows:

•	 SPRING_PROFILES_ACTIVE: The alternative way to reference properties on a Mac/Linux-
based system. Dots typically don’t work as well, so capitalized tokens with underscores work.

Ordering property overrides 167

•	 alternative: The profile we are running. In fact, in the console output, you can see The
following 1 profile is active: “alternative” as proof that it’s running with that profile activated.

•	 ./mvnw: Run things using the Maven wrapper. This is a handy way to use Maven without
having to install it on your system (really handy for CI systems!).

•	 spring-boot:run: The Maven command that activates the run goal of spring-boot-
maven-plugin.

It’s also important to understand that the environment variables, when used this way, only apply to
the current command. To make environment variables persistent for the duration of the current shell,
you have to export the variable (which we won’t cover here).

And it’s easy to activate multiple profiles. Just separate the profile names with commas, as shown here:

$ SPRING_PROFILES_ACTIVE=test,alternate ./mvnw spring-boot:run

This is almost the same as activating a single profile, except both the test and alternate profiles
have been activated.

Considering both the test and the alternate profiles defined a different set of users, perhaps
you’re wondering which ones are active. It’s simple – the property files are applied from left to right.

Since the alternate profile goes last, it will layer on any new properties while overriding any
duplicates. Thus, the YAML-based accounts are what end up getting configured!

That isn’t the only rule when it comes to property overrides and options. Just read the next section to
grok all the options we have to tune properties.

Ordering property overrides
Back in Chapter 1, Core Features of Spring Boot, we got a summary of the order of property settings.

Let’s see that list of options again:

•	 Default properties are provided by Spring Boot’s SpringApplication.
setDefaultProperties() method.

•	 @PropertySource-annotated @Configuration classes.

•	 Config data (such as application.properties files).

•	 A RandomValuePropertySource that has properties only in random.*.

•	 OS environment variables.

•	 Java System properties (System.getProperties()).

•	 JNDI attributes from java:comp/env.

Configuring an Application with Spring Boot168

•	 ServletContext init parameters.

•	 ServletConfig init parameters.

•	 Properties from SPRING_APPLICATION_JSON (inline JSON embedded in an environment
variable or system property).

•	 Command-line arguments, as shown in the previous section.

•	 properties attribute on your tests. Available with the @SpringBootTest annotation
and also slice-based testing (which we covered back in Chapter 5, Testing with Spring Boot in
the Testing data repositories with Testcontainers section)

•	 @TestPropertySource annotations on your tests.

•	 DevTools global settings properties (the $HOME/.config/spring-boot directory when
Spring Boot DevTools is active).

This list is ordered from lowest priority to highest priority. The application.properties file
is pretty low, meaning it offers a great way to set a baseline for our properties, but we have multiple
ways to override them either in tests or at deployment. Further down the list are all the ways we can
override that baseline.

In addition to that, configuration files are considered in the following order:

•	 Application properties packaged inside your JAR file

•	 Profile-specific application properties inside your JAR file

•	 Application profiles outside your JAR file

•	 Profile-specific application properties outside your JAR file

That’s right. We can have application property files sitting adjacent to our runnable JAR file and have
them serve as overrides. Remember that earlier warning to not crack open a JAR and tweak its properties?

No need! You can simply create a new property file and apply any adjustments.

Warning
There is still some risk with adjusting properties on the fly from the command line. Anytime
you do, take note and consider capturing these changes in your version control system, perhaps
as a different profile. Nothing is worse than hammering out a solution and watching it get
overwritten with a patch that didn’t pick up your changes.

There is a fundamental concept in software engineering that encircles this idea of decoupling code
from configuration through the power of property settings. It’s known as a Twelve-Factor App, a
concept that arose back in 2011 from cloud vendor Heroku (now owned by Salesforce). To be specific,
configuration is the third factor listed at https://12factor.net/.

Summary 169

The idea is to externalize everything likely to vary from environment to environment. It extends the
life of our application when we design with this sort of flexibility. Our examples of property settings
may have been a bit contrived, but hopefully, you can see the value in externalizing certain bits.

And with Spring Boot’s ability to pull together profile-specific properties, it becomes even easier to
apply this feature to our code.

Whether all the factors of Twelve-Factor Apps are relevant today or applicable to our next application
is debatable. But many of those factors listed on the site certainly lend themselves to making our
applications easier to deploy, link, and stack up, like building blocks to build systems. So, I’d consider
reading through it in your spare time.

Summary
In this chapter, we learned how to externalize parts of our system from content that appears in the
web layer to the list of users allowed to authenticate with the system. We saw how to create type-safe
configuration classes, bootstrap them from property files, and then inject them into parts of our
application. We even saw how to use profile-based properties and choose between using traditional
Java property files or using YAML. We then explored even more ways to override property settings
from the command line and checked out a comprehensive list of yet more ways to override properties.

While our examples were probably not as realistic as they could have been, the concept is there.
Externalizing properties that are likely to vary from environment to environment is a valuable feature,
and Spring Boot eases the usage of this pattern.

In the next chapter, Releasing an Application with Spring Boot, we are finally going to release our
application into the wild. There, we’ll learn what Spring Boot does to not only help us perform this
task but then proceed to manage our application on Day 2.

7
Releasing an Application

with Spring Boot

In the previous chapter, we learned about all the various ways we could configure our application
using Spring Boot. This unlocked the ability to run our application in multiple environments, which
made it more flexible.

The most critical place for our application to be is in production. Otherwise, it’s not doing what we
set out to do. Production can be a scary place. The Spring team, in its battle-hardened experience,
has built many features into Spring Boot to ease the processes involved with assembling applications,
staging, and ultimately managing them once deployed.

Building upon the tools covered in the previous chapter, we’ll see how Spring Boot can turn what used
to be a scary place to be into a thriving environment.

In this chapter, we’ll cover the following topics:

•	 Creating an uber JAR

•	 Baking a Docker container

•	 Releasing your application to Docker Hub

•	 Tweaking things in production

Where to find this chapter’s code
This chapter doesn’t have much in terms of original code. Instead, the code from Chapter 6,
Configuring an Application with Spring Boot, has been copied into the following repository so that
we can tackle various forms of deployment: https://github.com/PacktPublishing/
Learning-Spring-Boot-3.0/tree/main/ch7.

Releasing an Application with Spring Boot172

Creating an uber JAR
This may or may not sound familiar, but once upon a time, long ago, developers would compile their
code, run scripts to assemble the binary bits into ZIP files, and drag them into applications that would
ultimately result in burning a CD or staging the file on some retro artifact such as a tape drive or
jumbo hard drive.

Then, they would lug that artifact to another location, be it a vaulted room with special access control
or an entirely different facility on the other end of town.

This sounds like something out of a post-techno sci-fi movie, to be honest.

But the truth is, the world of production has always been set apart from the world of development,
whether we’re talking about cubicle farms with dozens of coders on one end of the building and the
target server room on the other side of the room, or if we’re describing a start-up with five people
spread around the world, deploying to Amazon’s cloud-based solution.

Either way, the place where our application must live for customers to access it and the place where
we develop are two different locations.

And the most important thing is to minimize all the steps it takes to move the code out of our IDE
and onto the servers, fielding web requests from around the globe.

That’s why, from early on in 2014, the Spring Boot team developed a novel idea: building an uber JAR.

The following Maven command is all it takes:

% ./mvnw clean package

This Maven command has two parts:

•	 clean: Deletes that target folder and any other generated outputs. This is always good to
include before building an uber JAR to ensure all generated outputs are up-to-date.

•	 package: Invokes Maven’s package phase, which will cause the verify, compile, and test phases
to be invoked in the proper order.

Using Windows?
The mvnw script only works on Mac or Linux machines. If you’re on Windows, you either must
have a comparable shell environment, or you can use ./mvnw.cmd instead. Either way, when
you use start.spring.io to build your project, you’ll have both at hand.

Creating an uber JAR 173

When we use Spring Initializr (https://start.spring.io), as we did in several of the
previous chapters, one of the entries included in our pom.xml file was spring-boot-maven-
plugin, as shown here:

<plugin>

        <groupId>org.springframework.boot</groupId>

        <artifactId>spring-boot-maven-plugin</artifactId>

</plugin>

This plugin hooks into Maven’s package phase and does a few extra steps:

1.	 It grabs the JAR file originally generated by standard Maven packaging procedures (target/
ch7-0.0.1-SNAPSHOT.jar in this case) and extracts all of its content.

2.	 Then, it renames the original JAR to set it aside (target/ch7-0.0.1-SNAPSHOT.jar.
original in this case).

3.	 It fashions a new JAR file with the original name.

4.	 In the new JAR file, it adds the Spring Boot loader coder, which is glue code that can read JAR
files from within, allowing it to become a runnable JAR file.

5.	 It adds our application code to the new JAR file in a subfolder called BOOT-INF.

6.	 It adds ALL of our application’s third-party dependency JARs into this JAR file in a subfolder
called BOOT-INF/lib.

7.	 Finally, it adds some metadata about the layers of the application to this JAR file underneath
BOOT-INF as classpath.idx and layers.idx (more about that in the next section!).

With nothing but the JVM, we can launch our application, as follows:

% java -jar target/ch7-0.0.1-SNAPSHOT.jar

    .     ____                    _                        __ _
_

 /\\ / ___'_ __ _ _(_)_ __    __ _ \ \ \ \

(()___ | '_ | '_| | '_ \/ _` | \ \ \ \

 \\/    ___)| |_)| | | | | || (_| |    ))))

    '    |____| .__|_| |_|_| |___, | / / / /

 =========|_|==============|___/=/_/_/_/

 :: Spring Boot ::                         (v3.0.0)

…etc…

With such a simple command, our application has been transformed from an application that runs
inside our developer-centric IDE into an application that runs on any machine with the right Java
Development Kit (JDK).

Releasing an Application with Spring Boot174

Maybe this isn’t as impressive as you were led to believe, perhaps because this is incredibly simple.
So, let’s revisit what exactly has happened:

•	 There is no need to download and install an Apache Tomcat servlet container anywhere. We are
using embedded Apache Tomcat. This means this tiny JAR file is carrying the means to run itself.

•	 There is no need to go through the legacy procedure of installing an application server, fashioning
a WAR file, combining it with third-party dependencies using some ugly assembly file to fashion
an EAR file, and then uploading the whole thing to some atrocious UI.

•	 We can push this whole thing to our favorite cloud provider and command the system to run
10,000 copies.

Having Maven output a runnable application only dependent on Java is epic when it comes to deployment.

Newsflash
In the olden days (1997), it was common practice for me to perform a release by walking around
(yes, physically walking) to various department heads and having them sign a piece of paper.
With that in hand, I would burn a CD with compiled binaries. From there, I would carry out
the rest of a 17-page procedure to essentially construct the binaries and walk them into a lab
or onto the customer’s site and install the software. This process usually took a couple of days.
Removing the technical barriers for doing releases like this is groundbreaking.

It should be pointed out that uber JARs weren’t invented by the Spring Boot team. The Maven Shade
plugin has been around since 2007. This plugin’s job is to kind of do the same steps of bundling
everything together one JAR file, but differently.

This plugin unpacks all the incoming JAR files, be it our application code or a third-party dependency.
All the unpacked files are kind of mixed into a new JAR file. This new file is called a shaded JAR.

Some other tools and plugins do the same thing, but they are fundamentally wrong for mixing things
this way.

Some applications need to be inside a JAR to work correctly. There is also a risk of the non-class files
not ending up in the right place. Apps that consume third-party classes from JAR files may exhibit
some aberrant behavior. And there is also a chance you could be violating some library’s license as well.

If you go to any library maintainer and ask if they will handle bug reports when you use their released
JAR files beyond the scope of the way they are released, you may not get the support expected.

Spring Boot simply lets our code run as if the third-party JAR files are there as always. No shading
is required.

But one thing remains: the part where I mentioned that the app is ready to run wherever you have a
JDK installed.

Baking a Docker container 175

What if your target machine doesn’t have one?

Check out the next section!

Baking a Docker container
One of the fastest technologies to sweep the tech world has been Docker. If you haven’t heard of it,
Docker is sort of like a virtualized machine but more lightweight.

Docker is built on the paradigm of shipping containers. Shipping containers, which are responsible for
moving the bulk of the world’s goods on ships and trains, have a common shape. This means people
can plan how to ship their products while knowing the containers handled by the entire world are all
the same size and structure.

Docker is built on top of Linux’s libcontainer library, a toolkit that grants not a completely virtual
environment, but instead a partially virtual one. It allows a container’s processes, memory, and network
stack to be isolated from the host server.

Essentially, you install the Docker engine on all your target machines. From there, you are free to
install any container, as needed, to do what you need to do.

Instead of wasting time crafting an entire virtual machine, you simply spin up containers on the fly.
With Docker’s more application-oriented nature, it becomes a much more nimble choice.

And Spring Boot comes with Docker support baked in.

Isn’t Docker experimental?
Docker has been around since 2013. When I wrote Learning Spring Boot 2.0 Second Edition
back in 2017, it was highly experimental at the time. So, I didn’t mention it. People were using
it on occasion, perhaps for demos or other one-off tasks, but it wasn’t widely used for systems
in production. Fast-forward to today, and you can see Docker being used EVERYWHERE.
Every cloud-based provider supports Docker containers. The most popular CI systems let you
run container-based jobs. There are a plethora of companies built around the paradigm of
orchestrating systems of Docker containers. Atomic Jar, a company built around the Docker-
based test platform, Testcontainers, is out there. Asking developers and sys admins to install
Docker on both local machines and customer-facing servers is no longer the big ask it once was.

Assuming you have installed Docker (visit docker.com to get started) on your machine, this is
all it takes!

% ./mvnw spring-boot:build-image

This time, instead of connecting to any particular phase of Maven’s build and deploy life cycle, the
Spring Boot Maven plugin will execute a custom task to bake a container.

Releasing an Application with Spring Boot176

Baking a container is a Docker phrase meaning assembling all the parts needed to run a container.
Baking implies that we only need to generate the image of this container once, and we can then reuse
it as many times as needed to run as many instances as required.

When Spring Boot does a build-image process, it first runs Maven’s package phase. This includes
running the standard complement of unit tests. After that, it will assemble the uber JAR we talked
about in the previous section.

With a runnable uber JAR in our hands, Spring Boot can then go into the next phase: leveraging
Paketo Buildpacks to pull the right type of container together.

Building the “right” type of container

What do we mean by the “right” container?

Docker has a caching solution built into it that involves layers. If a given step in building a container sees
no changes from the previous container assembly process, it will use the Docker engine’s caching layer.

However, if some aspect has changed, it will invalidate the cached layer and create a new one.

Cached layers can include everything from the base image a container is built on (for example, if you
were extending a bare Ubuntu-based container) to the Ubuntu packages downloaded to enhance it
along with our custom code.

One thing we do NOT want to do is mingle our custom application’s code with the third-party
dependencies our application uses. For example, if we were using Spring Framework 6.0.0’s GA release,
that is certainly something it would be useful to cache. That way, we don’t have to keep pulling it down!

But if our custom code were mingled into the same layer and a single Java file were to change, the
whole layer would be invalidated and we’d have to re-pull all of it.

So, putting things such as Spring Boot, Spring Framework, Mustache, and other libraries into one
layer, while putting our custom code into a separate layer, is a good design choice.

In the past, this required several manual steps. But the Spring Boot team has made this layered
approach the default configuration! Check out the following excerpt of running ./mvnw spring-
boot:build-image:

[INFO] --- spring-boot-maven-plugin:3.0.0:build-image (default-
cli) @ ch7 ---

[INFO] Building image 'docker.io/library/ch7:0.0.1-SNAPSHOT'

[INFO]

[INFO]    > Pulled builder image 'paketobuildpacks/builder@
sha256:9fb2c87caff867c9a49f04bf2ceb24c87bde504f3fed88227e9ab5d9
a572060c'

Baking a Docker container 177

[INFO]    > Pulling run image 'docker.io/paketobuildpacks/
run:base-cnb' 100%

[INFO]    > Pulled run image 'paketobuildpacks/run@sha256:
fed727f0622994807560102d6a2d37116ed2e03dddef5445119eb0172
12bbfd7'

[INFO]    > Executing lifecycle version v0.14.2

[INFO]    > Using build cache volume 'pack-cache-564d5464b59a.
build'

…

[INFO] Successfully built image 'docker.io/library/ch7:0.0.1-
SNAPSHOT'

This small fragment of the total output to the console reveals the following:

•	 It’s using Docker to build an image named docker.io/library/ch7:0.0.1-SNAPSHOT.
This includes the name of our module as well as the version, both found in our pom.xml file.

•	 It uses the Paketo Buildpack from Docker Hub, as shown by pulling the paketobuildpacks/
builder and paketobuildpacks/run containers.

•	 It finishes with a successfully assembled container.

Paketo Buildpacks
Paketo Buildpacks (https://paketo.io/) is a project focused on turning application source
code into container images. Instead of doing it directly, Spring Boot delegates containerization
to Paketo. Essentially, it downloads containers that do all the leg work, easing the process for
us to bake a container.

Want to see more details?
The complete output of the Spring Boot Maven plugin’s build-image task is frankly too long
and wide to fit into a book. But you are free to check out the complete output at https://
springbootlearning.com/build-image-output.

At this stage, we have a fully assembled container. Let’s check it out! Using Docker, we can now run
the container, as shown here:

% docker run -p 8080:8080 docker.io/library/ch7:0.0.1-SNAPSHOT

Calculating JVM memory based on 7163580K available memory

For more information on this calculation, see https://paketo.
io/docs/reference/java-reference/#memory-calculator

Releasing an Application with Spring Boot178

    .     ____                    _                        __ _
_

 /\\ / ___'_ __ _ _(_)_ __    __ _ \ \ \ \

(()___ | '_ | '_| | '_ \/ _` | \ \ \ \

 \\/    ___)| |_)| | | | | || (_| |    ))))

    '    |____| .__|_| |_|_| |___, | / / / /

 =========|_|==============|___/=/_/_/_/

 :: Spring Boot ::                         (v3.0.0)

2022-11-18T23:32:30.711Z    INFO
1 --- [                     main]
c.s.l.Chapter7Application                                :
Starting Chapter7Application v0.0.1-SNAPSHOT using Java 17.0.5
on 5e4fb7fdead2 with PID 1 (/workspace/BOOT-INF/classes started
by cnb in /workspace)

This portion of the console’s output can be described as follows:

•	 docker run: The command to run a Docker container

•	 -p 8080:8080: An argument that maps the container’s inner port number 8080 to everyone
outside the container on port 8080

•	 docker.io/library/ch7:0.0.1-SNAPSHOT: The name of the container’s image

The rest of the output is Docker’s output of the running container. The container is now running. In
fact, from another shell, we can see it in flight by doing this:

% docker ps

CONTAINER ID     IMAGE                                COMMAND    
                        CREATED                 STATUS          
       PORTS  NAMES

5e4fb7fdead2     ch7:0.0.1-SNAPSHOT     "/cnb/process/web"     
5 minutes ago     Up 5 minutes     0.0.0.0:8080->8080/tcp     
angry_cray

docker ps is a command that shows any running Docker processes. The output is a bit cramped
here inside a book, but this one-line output shows the following:

•	 5e4fb7fdead2: The hashed ID of the container.

•	 ch7:0.0.1-SNAPSHOT: The name of the container’s image (without the docker.io prefix)

•	 /cnb/process/web: The command the Paketo Buildpack is using to run our Spring
Boot application.

Releasing your application to Docker Hub 179

•	 "5 minutes ago" and "Up 5 minutes": When the container started and how long
it’s been up.

•	 0.0.0.0:8080->8080/tcp: The internal to external network mapping.

•	 angry_cray: The human-friendly name Docker has given this container’s instance. You can
refer to an instance by either the hash code or this.

From here, we can shut it down:

% docker stop angry_cray

angry_cray

% docker ps

CONTAINER ID     IMAGE         COMMAND     CREATED     STATUS
        PORTS         NAMES

This shuts the whole container down. We can see it on the console where we launched everything.

Important
In this instance of spinning up a Docker container, Docker chose the random human-friendly
name angry_cray. Every container you spin up will have a different, unique, human-friendly
name. You can use those details, the container’s hashed value, or simply point and click from
the Docker Desktop application to control containers on your machine.

All that said, we can now check out the most important step: releasing the container.

Releasing your application to Docker Hub
Building a container is one thing. Releasing that container to production is critical. And as Spring
advocate Josh Long likes to say, “Production is the happiest place on Earth!”

You can push the container to your favorite cloud provider. Just about all of them support Docker.
But you can also push the container to Docker Hub.

Do you have access to Docker Hub?
Docker Hub offers several plans. You can even get a free account. Your company or university
may also grant you access. Be sure to check out https://docker.com/pricing, choose
the plan that’s best for you, and create your account. Assuming you’ve done so, please check
out the rest of this section!

Releasing an Application with Spring Boot180

From the console, we can log in directly to our Docker Hub account:

% docker login -u <your_id>

Password: *********

Assuming all this has been done, we can now push our container to Docker Hub by running the
following commands:

% docker tag ch7:0.0.1-SNAPSHOT    <user_id>/learning-spring-
boot-3rd-edition-ch7:0.0.1-SNAPSHOT

% docker push <your_id>/learning-spring-boot-3rd-edition-
ch7:0.0.1-SNAPSHOT

These steps to push are buried in the following succinct commands. The first involves tagging the
local container, as shown here:

•	 docker tag <image> <tag>: Tags the local container name of ch7 possessing the local
tag of 0.0.1-SNAPSHOT with a prefix of our Docker Hub user ID. This is critical because
all of our container images MUST match our Docker Hub ID!

•	 The tagged container also has a name, learning-spring-boot-3rd-edition-ch7.

•	 The tagged container itself has a tag, 0.0.1-SNAPSHOT.

What just happened?

This can be kind of confusing. Docker Hub containers have three characteristics:

•	 Name of the container

•	 Tag of the container

•	 Namespace of the container

These go together as namespace/name:tag. This naming convention does NOT have to match
whatever your local naming is for the container. You can simply reuse it, but since this is going to be
public, you may wish to choose something else.

Tagging is essentially the way to take your local container and give it a public name. Whereas there
are other Docker repositories, we are sticking with Docker Hub for now as our container repository
of choice. And to comply with Docker Hub policy, its namespace needs to match our Docker Hub
account ID.

Releasing your application to Docker Hub 181

What about latest tags?
A common convention seen all over Docker Hub is to use a tag name of latest. This implies
that grabbing a container with such a tag would give you, well, the latest release. Or at least the
latest stable release. But it’s important to understand that this is simply a convention. Tags are
dynamic and can be moved. So, 0.0.1-SNAPSHOT can also be a dynamic tag you push every
time you update the snapshot versions of your application, just like latest. The adoption of
Docker Hub by software publishers managing multiple releases has led to multiple tags being
managed to indicate which version is being fetched. Before adopting ANY container’s tag, be
sure to check out their tagging strategy so that you can understand what, exactly, you are getting.

Once the container has been tagged, it can be pushed to Docker Hub using the following command:

•	 docker push <tagged image>: Pushes the container to Docker Hub using the public-
facing tagged image name

To reiterate the last bullet point, you push the container to Docker Hub using the public-facing name.
In our case, we must use gturnquist848/learning-spring-boot-3rd-edition-
ch7:0.0.1-SNAPSHOT.

Having pushed the container, we can see it on Docker Hub, as shown here:

Figure 7.1 – Docker container pushed to Docker Hub

Releasing an Application with Spring Boot182

Where’s my Docker container on Docker Hub?
The preceding screenshot is from my Docker Hub repository. Any container you push should
be on your own repository. It’s important to use your own Docker Hub ID when tagging
and pushing!

We could go much deeper into Docker, Docker Hub, and the world of containers, but frankly, there
are entire books dedicated to this topic.

The point of Spring Boot is to make it super simple to wrap up a completed application inside a
container and release it to our users, and we just did that without writing any custom code.

What would it be like to pick up that container on the other side… and start tweaking things in
production? Check out the following section.

Tweaking things in production
An application isn’t really in production until we need to start tweaking it, fiddling with it, and making
adjustments after release.

This is the very nature of operations. And the various members of the Spring team are no strangers
to the world of production.

There are multiple things we can tune and adjust after being handed either an uber JAR or a container.
Assuming we have an uber JAR built out of this chapter’s code, we can easily type something like this:

% java -jar target/ch7-0.0.1-SNAPSHOT.jar

This would launch the app with all its default settings, including the standard servlet port of 8080.

But what if we needed it to run next to another Spring Boot web application we just installed yesterday?
That suggests we’d need it to listen on a different port. Say no more. All we need do is run a slightly
different command, like this:

% SERVER_PORT=9000 java -jar target/ch7-0.0.1-SNAPSHOT.jar

…

2022-11-20T15:36:55.748-05:00    INFO 90544 ---
[                     main] o.s.b.w.embedded.tomcat.
TomcatWebServer    : Tomcat started on port(s): 9000 (http)
with context path ''

Toward the bottom of the console output, we can see that Apache Tomcat is now listening on port
9000 instead.

That’s nice, but it’s a bit of a hassle to have to type that extra parameter every single time, right?

Tweaking things in production 183

A better way to offer customized configuration settings is to fashion an additional application.
properties file in our local folder.

First, create a new application.properties file, like this:

server.port=9000

This property override file contains one property: Spring Boot’s server.port setting with a value
of 9000.

Now, we can run the uber JAR just like we did the first time:

% java -jar target/ch7-0.0.1-SNAPSHOT.jar

…

2022-11-20T15:41:09.239-05:00    INFO 91085 ---
[                     main] o.s.b.w.embedded.tomcat.
TomcatWebServer    : Tomcat started on port(s): 9000 (http)
with context path ''

This time, when Spring Boot starts up, it looks around and spots the application.properties
file in our local folder. Then, it applies all its settings as overrides to the one inside the JAR file, and voila!

We have a web app running on port 9000.

But that is not all. Any property we need to override is up for grabs. We can have multiple override files.

What’s an example of this? In the world of constantly evolving requirements, it’s not hard to imagine
our manager showing up and telling us we need to run not one but three instances.

Scaling with Spring Boot

Now, we need to host our application on ports 9000, 9001, and 9002 to match up with the load
balancer the sysadmins just set up!

Let’s expand things and come up with a tactical name for each instance. Something super original,
such as instance1, instance2, and instance3.

First, rename that local application.properties file to application-instance1.
properties.

Next, make a copy of the file and name the new one application-instance2.properties.
Edit the file so that server.port is assigned 9001.

Then, make yet another copy, this time as application-instance3.properties. This time,
make its server.port have a value of 9002.

Releasing an Application with Spring Boot184

With these in place, we can now run three instances using Spring Boot’s profile support. We’ll start
by launching instance1, as follows:

% SPRING_PROFILES_ACTIVE=instance1 java -jar target/ch7-0.0.1-
SNAPSHOT.jar

…

2022-11-20T15:52:30.195-05:00    INFO 94504 ---
[                     main] o.s.b.w.embedded.tomcat.
TomcatWebServer    : Tomcat started on port(s): 9000 (http)
with context path ''

Here, we can see that instance1 is now running on port 9000.

Open another console tab and launch instance2, like this:

% SPRING_PROFILES_ACTIVE=instance2 java -jar target/ch7-0.0.1-
SNAPSHOT.jar

…

2022-11-20T15:53:36.403-05:00    INFO 94734 ---
[                     main] o.s.b.w.embedded.tomcat.
TomcatWebServer    : Tomcat started on port(s): 9001 (http)
with context path ''

In this console output, we can see instance2 is running on port 9001.

Don’t stop there! Let’s open a third console tab and run instance3, as shown here:

% SPRING_PROFILES_ACTIVE=instance3 java -jar target/ch7-0.0.1-
SNAPSHOT.jar

…

2022-11-20T15:55:53.062-05:00    INFO 96783 ---
[                     main] o.s.b.w.embedded.tomcat.
TomcatWebServer    : Tomcat started on port(s): 9002 (http)
with context path ''

Ta-dah!

We now have three instances of our application running on different ports. Buried in the first console’s
output, we can see the following:

2022-11-20T15:52:28.076-05:00    INFO
94504 --- [                     main]
c.s.l.Chapter7Application                                : The
following 1 profile is active: "instance1"

Tweaking things in production 185

This line shows that Spring Boot has spotted that the instance1 profile is active.

There is a similar entry for the other two console outputs. We won’t show them here. Suffice it to say,
profiles are a powerful way to run multiple instances of what started as a simple, single application.

However, we aren’t done. That’s because the default configuration for this application happened to be with
an in-memory HSQL database. This means that the three instances aren’t sharing a common database.

Considering the code was already integration tested against PostgreSQL with Testcontainers, we could
tune the settings to allow us to point to a production instance of just such a database!

First, we need to spin up that database. And Testcontainers has shown us the way by using Docker.
To run a standalone instance, try this:

% docker run -d -p 5432:5432 --name my-postgres -e POSTGRES_
PASSWORD=mysecretpassword postgres:9.6.12

This command will spin up a copy of PostgreSQL with the following characteristics:

•	 -d: The instance will run as a background daemon process.

•	 -p 5432:5432: The standard 5432 port will be exported to the public with the same port.

•	 --name my-postgres: The container will run with a fixed name instead of a random one.
This will prevent us from running multiple copies at the same time.

•	 -e POSTGRES_PASSWORD=mysecretpassword: The container will run with an
environment variable that, according to Postgres’s notes, will configure the password.

•	 postgres:9.6.12: The same container coordinates found in the Testcontainers-based
integration test.

With this up and running, we can update application-instance1.properties with the
following additional properties:

JDBC DataSource settings

spring.datasource.url=jdbc:postgresql://localhost:5432/postgres

spring.datasource.username=postgres

spring.datasource.password=mysecretpassword

JPA settings

spring.jpa.hibernate.ddl-auto=update

spring.jpa.hibernate.show-sql=true

spring.jpa.properties.hibernate.dialect = org.hibernate.
dialect.PostgreSQLDialect

Releasing an Application with Spring Boot186

The JDBC properties can be summarized as follows:

•	 spring.datasource.url : This is the JDBC connection URL to reach the
container-based instance

•	 spring.datasource.username: This contains the default postgres username the
container runs under

•	 spring.datasource.password: This contains the password we picked earlier in this section

These are all the properties needed for Spring Boot to assemble a JDBC DataSource bean.

The JPA properties can be described as follows:

•	 spring.jpa.hibernate.ddl-auto: This is the Spring Data JPA setting that will update
the schema if necessary, but not drop or delete anything

•	 spring.jpa.hibernate.show-sql: This will switch on Spring Data JPA’s ability to
print out SQL statements that get generated

•	 spring.jpa.properties.hibernate.dialect: This is the Hibernate property that
signals we are talking to a PostgreSQL-based database

With all these settings, we are aligning JDBC and JPA to communicate with the PostgreSQL database
container we just spun up minutes ago.

Production data warning!
The one thing we need to handle… is ensuring that all three instances don’t create the same
pre-loaded data. In Chapter 3, Querying for Data with Spring Boot, and Chapter 4, Securing an
Application with Spring Boot, we added some bits to our application that would pre-load user
login data, along with some video entries. This is, in fact, best done with outside tools. We
should let the DBAs handle setting the schema and loading the data. An application that starts
and stops, and runs multiple instances, is NOT the vehicle to apply persistent data management
policy. Thus, any such beans need to be commented out or at least flagged to ONLY run with
some OTHER profile, such as setup. If you examine the final code provided for this chapter, as
shown at the beginning of this chapter, you’ll find an application-setup.properties
file, along with such restrictions in the code. We won’t show them here, but if you want the
app to pre-load this data, run it with profile setup (and only do this ONCE after starting up
the database!).

From here, the sky is the limit. We could run a dozen copies, though we may NOT want to do it this
way. That’s where it becomes valuable to use something meant to orchestrate multiple applications.

There are several options out there, including Kubernetes and Spinnaker. Kubernetes is a Docker
container orchestrator. It lets us manage the containers as well as the load balancers from top to
bottom. Check out https://springbootlearning.com/kubernetes for more details.

Summary 187

Spinnaker is a continuous delivery pipeline. It makes it possible to take commits to our GitHub
repository, package them up into uber JARs, bake Docker container images, and then manage them
with rolling upgrades in production. Check out https://springbootlearning.com/
spinnaker for more information on that.

And of course, there is VMware Tanzu. Tanzu is a complete package, not just a Docker orchestrator.
It has solid support for Kubernetes, along with other things. Be sure to check it out at https://
springbootlearning.com/tanzu.

All of these are powerful tools, each with its tradeoffs. And they provide a comprehensive way to
manage Spring Boot applications in production.

Summary
In this chapter, we learned several key skills, including creating an uber JAR that is runnable anywhere,
baking a Docker container image that can be run locally with no need for Java, pushing our Docker
container to Docker Hub where it can be consumed by our clients, and running multiple instances of
our uber JAR pointed at a persistent database, different than the one it came bundled with.

That concludes this chapter! In the next chapter, we will dig in and discover ways we can speed up
our Spring Boot application to near-warp speed through the power of GraalVM and something called
native applications.

8
Going Native with Spring Boot

In the previous chapter, we learned multiple ways to turn our application from a collection of code
into an executable, ready for any production environment, including the cloud. We also learned how
to tune it and tweak it so that we could scale it up as needed.

Building upon the tools covered in the previous chapters, we’ll see how Spring Boot applications
are indeed ready for the future by taking them to some of the most bleeding-edge platforms where
performance can be truly dialed up to 11 as we explore native applications.

In this chapter, we’ll cover the following topics:

•	 What is GraalVM and why do we care?

•	 Retrofitting our application for GraalVM

•	 Running our native Spring Boot application inside GraalVM

•	 Baking a Docker container with GraalVM

Where to find this chapter’s code
The code for this chapter can be found at https://github.com/PacktPublishing/
Learning-Spring-Boot-3.0/tree/main/ch8.

The focus of this chapter isn’t so much on writing Spring Boot applications as it is about compiling
them into a faster, more efficient format (which we’ll soon see). Hence, there is no need to write new
code. If you check the preceding link, you’ll find that this chapter’s code is a copy of the previous
chapter’s code. However, the build file is a little different, which we’ll introduce in the next section.

Going Native with Spring Boot190

What is GraalVM and why do we care?
For years, Java has suffered a lot of criticism. One of its biggest slights from the early days was its
performance. While true to a degree, Java has made quantum leaps by adopting tactics that have
allowed it to compete with other platforms at a raw performance level.

Nevertheless, people had continued to criticize Java over things that may seem inane, such as startup
time. Indeed, a Java app, running inside its own virtual machine, isn’t as fast as Go or C++ binaries.
But for the longest time, this has not been an issue, given web apps often have long uptimes.

However, new frontiers of production have exposed this weakness. Continuous deployment systems
where 10,000 instances are running all at once and get replaced multiple times a day have made a
30-second cost begin to add up on people’s cloud bills.

A new player in the space of production systems has been executable functions. That’s right. It’s now
possible to deploy a single function as an entire application on platforms such as AWS Lambda. And
their results could be piped right into another deployed function.

In these scenarios, where the functions are spun up immediately upon demand, things such as startup
time HEAVILY drive what technologies people use.

And thus has emerged GraalVM.

GraalVM by Oracle is essentially a new virtual machine that sports support for just about any
programming language out there. Don’t run your Java JAR files on the JVM. Run them on GraalVM!

GraalVM is a high-performance runtime aimed at Java, JavaScript, Python, Ruby, R, C, and C++.
When you’re running thousands of instances of systems, then the whole performance output of your
applications can make a significant difference.

And the Spring team, in their continuing quest to reduce Java complexity, is here to help. Beginning
in 2019, the experimental project Spring Native was born. And since then, almost every facet of the
Spring portfolio has been tuned and adjusted to support this endeavor to bring the power of GraalVM
to any Spring Boot application.

All with minimal fuss to the end user.

And so, through the rest of this chapter, we will explore taking the application we have come to know
in previous chapters and adapting it to the rigors of GraalVM.

Retrofitting our application for GraalVM
There are always two ways to approach building a native application: create a brand-new application or
take an existing one and update it. Thanks to Spring Boot 3.0 and their adoption of native application
support, it’s very easy to update an existing application to use GraalVM instead of the JVM.

Retrofitting our application for GraalVM 191

What is Java Virtual Machine code?
Java code has always, since the dawn of time, been compiled into bytecode, meant to be run
on Java Virtual Machine (JVM). This has resulted in the common expression write once, run
anywhere. Any compiled Java bytecode, due to every aspect of these files being captured by the
Java specification, can be run on any compliant JVM, no matter what machine it lives on. This
was a huge departure from a previous era that involved compiling separately for every single
machine architecture an app would get deployed to. This was revolutionary in its day and has
allowed other post-compilation enhancements such as just-in-time (JIT) compiler speedups
and dynamically making applications slimmer and trimmer.

Compiling applications for GraalVM involves trading in some of that preserved flexibility for faster,
more memory-efficient code.

This may trigger a question: why not compile EVERY ONE of our applications for GraalVM?

Because of tradeoffs.

GraalVM, to do some of the things it does, requires us to let go of some key features:

•	 Limited support for reflection

•	 Limited support for dynamic proxies

•	 Special handling of external resources

Why? Because GraalVM performs advanced analysis of our code. It uses a concept called reachability,
where it essentially starts the app and then analyzes what code GraalVM can see. Anything that is
NOT reachable is simply cut out of the final native image.

Reflection is still possible in native applications. But because not everything is visible directly, it can
require extra configuration so that nothing is missed.

Proxies are of a similar issue. Any proxies that are to be supported must be generated at the time of
native image building.

This means that accessing bits of code through reflection tactics, deserialization of data, and proxies
are trickier and not as straightforward as they once were. The risk is that certain parts of our app may
be cut out if we don’t properly capture them.

This is one reason why every Spring portfolio project has been diligently working to ensure that
whatever bits NEED to be in our applications have the necessary hints for GraalVM to find them.

Going Native with Spring Boot192

Beware of faulty information
Some articles capturing the details of Spring Boot 3.0 and its support for native images may
mention that reflection and proxies are simply not supported. This is false. There is support
for reflection, but it requires that the code on the other end of such reflective calls is properly
registered. Regarding proxies, native images can’t handle generating and interpreting bytecode at
runtime. All dynamic proxies must be generated at native image build time. These are limitations
on the usage of reflection and proxies but not a complete lack of support.

It’s also a reason that Spring Framework has slimmed down its usage of reflection tactics to manage
the application context. And it’s also the reason that Spring Boot has adopted a general approach of
not proxying configuration classes containing bean definitions to reduce the number of actual proxies
in an application.

For the past 2 years, the Spring team has worked tirelessly with the GraalVM team to tweak and adjust
various aspects of the Spring portfolio, removing unnecessary reflection calls and reducing the need
for proxies. On top of that, many improvements have been made to GraalVM so that it works better
with Spring code.

For us to pick up and run with GraalVM, we will go back to our favorite friend, Spring Initializr,
at https://start.spring.io.

From here, let’s start with a fresh set of coordinates:

•	 Project: Maven

•	 Group: com.springbootlearning.learningspringboot3

•	 Artifact: ch8

•	 Name: Chapter 8

•	 Description: Going Native with Spring Boot

•	 Package name: com.springbootlearning.learningspringboot3

•	 Packaging: Jar

•	 Java: 17

•	 Dependencies:

	� Spring Web

	� Mustache

	� H2 Database

	� Spring Data JPA

	� Spring Security

	� GraalVM Native Support

Retrofitting our application for GraalVM 193

From here, we can click EXPLORE. A popup showing us the build file lets us see what is needed to
build a Spring Boot native application.

The Spring Boot starters found include the following:

•	 spring-boot-starter-data-jpa

•	 spring-boot-starter-web

•	 spring-boot-starter-mustache

•	 spring-boot-starter-security

•	 h2

•	 spring-boot-starter-test

Because we’re using Spring Data JPA, which involves (by default) Hibernate and its proxied entities,
we have this additional plugin:

<plugin>

    <groupId>org.hibernate.orm.tooling</groupId>

    <artifactId>hibernate-enhance-maven-plugin</artifactId>

    <version>${hibernate.version}</version>

    <executions>

        <execution>

            <id>enhance</id>

            <goals>

                <goal>enhance</goal>

            </goals>

            <configuration>

                <enableLazyInitialization>

                    true

                        </enableLazyInitialization>

                <enableDirtyTracking>

                    true

                        </enableDirtyTracking>

                <enableAssociationManagement>

                    true

                        </enableAssociationManagement>

            </configuration>

        </execution>

Going Native with Spring Boot194

    </executions>

</plugin>

This helps add some extra settings the Hibernate team identified as critical to Hibernate’s proxies
working properly with GraalVM.

Something also provided by spring-boot-starter-parent (referenced at the top of our
build file) is a native Maven profile. When we enable it, it changes the settings for spring-
boot-maven-plugin. Other tools are also brought online, including the ahead-of-time (AOT)
compilation toolset, as well as GraalVM’s native-maven-plugin.

We’ll see how to utilize all this to build lightning-fast native applications in the next section.

GraalVM and Spring Boot
We’re entering a new area of code development. Not only are we talking about building Spring
Boot apps, but we’re also talking about building them with alternative tools such as GraalVM.
You may wish to read Spring Boot’s section on GraalVM Native Image Support at https://
springbootlearning.com/graalvm.

Running our native Spring Boot application inside
GraalVM
The common convention when building an application for Spring Boot is to run ./mvnw clean
package. This cleans out the old cruft and creates a new uber JAR, something we already saw in
Chapter 7, Releasing an Application with Spring Boot.

Building a Maven-based project with Spring Boot 3 requires that we have Java 17 installed. But to
build a native image, we need to change course.

native-maven-plugin mentioned in the previous section, which comes with the native Maven
profile, requires that we install a different JVM. There are additional tools required to build native
images. The easiest way to manage different JVMs on our machine is by using sdkman (https://
sdkman.io).

sdkman?
sdkman is an open source tool that allows you to install multiple JDKs and switch between
them with ease. It’s as easy as sdk install java 17.0.3-tem followed by sdk use
java 17.0.3-tem to download, install, and switch to the Eclipse Foundation’s Temurin
Java 17.0.3 release. (The Eclipse Foundation is the current maintainer of Jakarta EE.) sdkman
is also able to install the right version of the JDK – for example, if you are on an M1 Mac or an
older Intel Mac. And in our case, it allows us to install GraalVM’s own JDK, which includes all
the tools needed to build native images on our machine.

Running our native Spring Boot application inside GraalVM 195

To build native applications on GraalVM, we need to install a version of Java 17 that includes GraalVM
tools by typing the following command:

% sdk install java 22.3.r17-grl

Once it's installed, we can then switch over to it by typing the following:

% sdk use java 22.3.r17-grl

We can even take a peek at what this version of Java has:

% java -version

openjdk version "17.0.5" 2022-10-18

OpenJDK Runtime Environment GraalVM CE 22.3.0 (build
17.0.5+8-jvmci-22.3-b08)

OpenJDK 64-Bit Server VM GraalVM CE 22.3.0 (build
17.0.5+8-jvmci-22.3-b08, mixed mode, sharing)

This is OpenJDK version 17, also known as Java 17, but it has GraalVM Community Edition (CE)
version 22.3.0. Essentially, it has all the bits for Java 17 stirred together with GraalVM 22.3.

What is OpenJDK?
OpenJDK is the source of all distributions of Java. SUN Microsystems, the inventors of Java, and
later Oracle, initially made the official releases of Java. However, ever since Java 7, all releases
of Java start with OpenJDK. Every vendor is free to take the OpenJDK baseline and apply
additions as they see fit. However, ALL distributions of Java are required to pass a Technology
Compatibility Kit (TCK) released by Java’s executive committee to earn the coffee cup logo.
Various vendors offer different levels of support for differing periods and what patches they’ll
maintain or carry back to the source. There are even distributions from certain vendors that
are NOT certified against the TCK, so be sure to read all the details before choosing a JDK.

With GraalVM CE’s Java 17 active, we can finally build our application natively. To do so, we need to
execute the following command:

% ./mvnw -Pnative clean native:compile

Going Native with Spring Boot196

Trying to build a native image on Windows?
Linux is probably the most straightforward platform on which to build native images. Macs
have strong support as well, with some gaps in the M1 chipset. To build native images on
Windows, though, you need to check out the Windows section of the Spring Boot reference
documentation at https://springbootlearning.com/graalvm-windows. There,
you’ll find details about what needs to be installed on your machine to build native images
on Windows. Also, don’t forget to use mvnw.cmd when building with Maven on Windows!

This command will compile our application with the native profile switched on. It leverages native-
maven-plugin mentioned in the previous section. This process can take a bit longer than building
using a standard configuration. And there are a lot of warnings.

The process involves completely scanning the code and performing what’s known as AOT compilation.
Basically, instead of leaving things in a bytecode format, to be converted into local machine code when
the JVM starts up, it instead converts things in advance.

This requires certain features to be curtailed, such as the usage of proxies and reflection. Part of Spring’s
support in making itself GraalVM-ready was to reduce the usage of proxies and to avoid reflection when
not necessary. There are ways to still use such features, but they can bloat up the native executable and
remove some of the benefits. The AOT tools also can’t see everything on the other side of reflection
calls and proxy usage, so they require additional metadata to be registered.

Part of the output can be seen here:

Figure 8.1 – Output from mvnw -Pnative clean native:compile

Running our native Spring Boot application inside GraalVM 197

The resulting artifact is neither an uber JAR file nor an executable JAR file. Instead, it’s an executable
file for the platform it was built on.

Important
One of Java’s most popular features since Day 1 has been its write once/run anywhere nature.
This works because it’s normally compiled into platform-independent bytecode and runs inside
JVM, a virtual machine that can vary from machine to machine. GraalVM sidesteps all of that.
The final executable does NOT have this run anywhere nature. You can inspect the final app by
typing file target/ch8 in the project’s base directory. On my machine, it reads Mach-O
64-bit executable arm64.

To run our native application, we just do this:

% target/ch8

    .     ____                    _                        __ _
_

 /\\ / ___'_ __ _ _(_)_ __    __ _ \ \ \ \

(()___ | '_ | '_| | '_ \/ _` | \ \ \ \

 \\/    ___)| |_)| | | | | || (_| |    ))))

    '    |____| .__|_| |_|_| |___, | / / / /

 =========|_|==============|___/=/_/_/_/

 :: Spring Boot ::                        (v3.0.0)

……omitted for brevity……

2022-11-06T14:35:40.717-06:00    INFO 12263 ---
[                     main] o.s.b.w.embedded.tomcat.
TomcatWebServer    : Tomcat started on port(s): 8080 (http)
with context path ''

2022-11-06T14:35:40.717-06:00    INFO
12263 --- [                     main]
c.s.l.Chapter8Application                                :
Started Chapter8Application in 0.104 seconds (process running
for 0.121)

On the last line, we can see that the application started up in 0.104 seconds. For a Java application,
that is incredibly fast.

Going Native with Spring Boot198

It’s possible to get a popup like this:

Figure 8.2 – Native application requesting permission to accept network connections

That was a lot of effort. So, why do all this?

Why do we want GraalVM again?

It’s taken a little extra effort to configure our application to work with GraalVM. It also took longer to
build the app itself. On top of that, we traded in Java’s amazing write-once/run-anywhere flexibility.

Why?

Imagine running 1,000 copies of this application in the cloud. What if our app were to take 20 seconds
to start up? 1,000 instances would translate to 20,000 seconds or 5.6 hours.

5.6 hours of billable cloud time.

Adding on an extra 5.6 hours of billable time every time we rolled out a change would start to add
up. If we embrace continuous delivery and pushed out every patch commit, our bill could get out of
hand. Maybe not from an Ops perspective, but definitely from a billing one!

If, instead, our app launches in 0.1 seconds, like it just did, 1,000 instances would net us just under
17 minutes of cloud time. Whew! That’s some cost savings.

Baking a Docker container with GraalVM 199

Additionally, our application would run in a more efficient memory configuration. So long as our
continuous delivery system built the app on the same operating system as our target environment,
write-once/run-anywhere isn’t an issue.

There is still one lingering issue… what if we don’t HAVE the target environment on our local build
machine? What if we were working in Windows or on a Mac, but our cloud operated using Linux-
based Docker containers?

Thankfully, there’s a solution for that in the next section!

Baking a Docker container with GraalVM
Earlier in this chapter, we installed GraalVM’s OpenJDK distribution and built our native application
locally. But that’s not the only way, nor is it always the ideal way.

For example, if we plan to run our application on a cloud configuration based on Linux, then building
an application locally on a MacBook Pro or a Windows machine won’t do.

In Chapter 7, Releasing an Application with Spring Boot, we learned how to use ./mvnw spring-
boot:build-image and let a Paketo Buildpack assemble our application into a Docker container.
We can use something similar to build a native application inside a Docker container.

Just run the following command:

% ./mvnw -Pnative spring-boot:build-image

This combines the previous chapter’s spring-boot:build-image command with the native
Maven profile.

This process may take even longer than building the native application locally, but the benefit is that,
when completed, you will have a fully baked Docker container with a native application in it.

As discussed in the previous chapter, you now have multiple options for running it on your local
machine, pushing it to your cloud provider, or releasing the application to Docker Hub.

Warning!
At the time of writing, M1 Macs do NOT support this option! If you invoke ./mvnw -Pnative
spring-boot:build-image, it will start the process, but at a certain stage, it will simply
hang and never go forward. To stop the process, you MUST go into Docker Desktop and kill
the Paketo Buildpack that is being used to perform this task. There are overrides to spring-
boot-maven-plugin that let you plug in alternative Buildpack configurations. If you are
native to spring-boot-starter-parent, look at its pom.xml file from inside your
IDE and look for that native profile – you’ll see how they configure that plugin with a builder.

Having done all this, there might some lingering confusion out there.

Going Native with Spring Boot200

Spring Boot 3.0 versus Spring Boot 2.7 and Spring Native

You may have heard of Spring Native. There have been a lot of blog articles about it. You can even find
videos on YouTube talking about using Spring Native (even on my channel!). But as you may have
noticed, we haven’t mentioned Spring Native until now.

Spring Native was an experimental bridge project built for Spring Boot 2.7. The bits that are in Spring
Native have been made first-class citizens in Spring Boot 3 and Spring Framework 6. There is nothing
that must be added to your project to compile it into native mode.

We did add GraalVM Native Support from start.spring.io, but that was to provide additional
support to spring-boot-maven-plugin. This brought in hibernate-enhance-maven-
plugin to help ensure we were building ALL the needed metadata to work properly with GraalVM.

But all the AOT processing and metadata management used to make native applications work is in
the latest version of the Spring portfolio.

GraalVM and other libraries

The Spring portfolio is being fitted to support GraalVM. Most of their projects support it. But that
doesn’t mean every third-party library we pick up is supported (yet). As stated in Spring Boot’s reference
documentation, “GraalVM native images are an evolving technology and not all libraries provide support.”

The Spring team is working diligently to not only ensure ALL of their modules eventually support
native images, but they are also working directly with the GraalVM team to ensure GraalVM itself
works properly.

Stay tuned to spring.io/blog for future posts concerning improvements for native images.

Summary
In this chapter, we learned how to build native images using GraalVM. This is a faster, more efficient
version of our application than we could ever build using the standard JVM. We also learned how to
bake native images into a Docker container using Paketo Buildpacks.

In the next chapter, we’ll learn how to make Spring Boot apps even more efficient by dipping our toes
in the waters of reactive programming.

Part 4:
Scaling an Application

with Spring Boot

Sometimes we need to squeeze out more performance from an existing set of servers. While it would
be nice to simply buy more servers, there is another way. You will learn how reactive programming
can make your Spring Boot application much more efficient.

This part includes the following chapters:

•	 Chapter 9, Writing Reactive Web Controllers

•	 Chapter 10, Working with Data Reactively

9
Writing Reactive
Web Controllers

In the previous eight chapters, we gathered up all the key components needed to build a Spring Boot
application. We bundled it inside a Docker container and even tweaked it to run in native mode on
GraalVM instead of the standard JVM.

But what if, after doing all this, our application still suffered from a lot of idle time? What if our
application was burning up our cloud bill due to having to host a huge number of instances just to
meet our present needs?

In other words, is there another way to squeeze a lot more efficiency out of the whole thing, without
letting go of Spring Boot?

Welcome to Spring Boot and reactive programming!

In this chapter, we’ll cover the following topics:

•	 Discovering exactly what reactive programming is and why we should care

•	 Creating a reactive Spring Boot application

•	 Serving data with a reactive GET method

•	 Consuming incoming data with a reactive POST method

•	 Serving a reactive template

•	 Creating hypermedia reactively

Where to find this chapter’s code
The code for this chapter can be found at https://github.com/PacktPublishing/
Learning-Spring-Boot-3.0/tree/main/ch9.

Writing Reactive Web Controllers204

What is reactive and why do we care?
For literally decades, we’ve seen various constructs meant to help scale applications. This has included
thread pools, synchronized code blocks, and other context-switching mechanisms meant to help us
run more copies of our code safely.

And, in general, they have all failed.

Don’t get me wrong. People run huge systems with some sense of power. But the promises of
multithreaded constructs have been tall, their implementation is tricky and frankly hard to get right,
and the results have been meager.

People still end up running 10,000 instances of a highly needed service, which can result in a gargantuan
monthly bill should we host our application on Azure or AWS.

But what if there were another way? What if the concept of lots of threads and lots of switching were
a will-o’-wisp?

Introduction to Reactive

The evidence is in. Reactive JavaScript toolkits in the browser, an environment where there is only
one thread, have shown incredible ability. That’s right – a single-threaded environment can scale and
perform with power if approached properly.

We keep using this term, reactive. What does it mean?

In this context, we’re talking about Reactive Streams. This is from the official documentation:

“Reactive Streams is an initiative to provide a standard for asynchronous stream
processing with non-blocking back pressure. This encompasses efforts aimed at

runtime environments (JVM and JavaScript) as well as network protocols.”

– Reactive Stream official site. (https://www.reactive-streams.org/)

A key characteristic that has been observed is that fast data streams cannot be allowed to overrun
the stream’s destination. Reactive Streams addresses this concern by introducing a concept known
as backpressure.

Backpressure replaces the traditional publish-subscribe paradigm with a pull-based system. Downstream
consumers reach back to publishers and have the power to ask for 1, 10, or however many units to
process that it is ready to handle. The mechanism of communication in reactive streams is called signals.

Backpressure signals are also baked into the standard in a way that chaining together multiple Reactive
Streams components results in backpressure across the entire application.

What is reactive and why do we care? 205

There is even RSocket, a layer 7 network protocol. It is analogous to HTTP in that it runs on top of TCP
(or WebSockets/Aeron), and is language agnostic, yet it comes with backpressure built in. Reactive
Streams components can communicate over the network in a purely reactive way, with proper control.

What does backpressure allow?

It’s not uncommon in traditional systems to be forced to find the breaking point. Somewhere in the
system is the point where some component is getting overwhelmed. Once this is resolved, the problem
simply shifts to the next point, which usually isn’t obvious until the primary issue is resolved.

Reactive Stream details

Reactive Streams is a very simple spec, so simple it only has four interfaces: Publisher, Subscriber,
Subscription, and Processor:

•	 Publisher: A component that is producing output, whether that’s one output or an infinite amount

•	 Subscriber: A component that is receiving from a Publisher

•	 Subscription: Captures the details needed for Subscribers to start consuming content
from Publishers

•	 Processor: A component that implements both Subscriber and Publisher

While this is simple, it’s frankly too simple. It’s recommended to find a toolkit that implements the
spec and provides more structures and support to build applications.

The other core thing to understand about Reactive Streams is that it comes with signals. Every time data
is handled or actions are taken, they are associated with a signal. Even if there is no data exchange, signals
are still handled. This means that there are fundamentally no void methods in reactive programming.
That’s because even with no data results, there is still the need to send and receive signals.

For the rest of this book, we will use the Spring team’s implementation of Reactive Streams, known
as Project Reactor. It’s important to understand that while Project Reactor is produced by the Spring
team, Reactor itself doesn’t have any Spring dependencies. Reactor is a core dependency picked up by
Spring Framework, Spring Boot, and the rest of the Spring portfolio. But it’s a toolkit in and of itself.

That means we won’t be using Reactive Streams directly but instead Project Reactor’s implementation
of it. But it’s good to understand where it comes from and how it’s possible to integrate with other
implementations of the spec, such as RxJava 3.

Project Reactor is a toolkit that's heavily built on Java 8’s functional programming features combined
with lambda functions.

Writing Reactive Web Controllers206

Check out the following snippet of code:

Flux<String> sample = Flux.just("learning", "spring",

  "boot") //

  .filter(s -> s.contains("spring")) //

  .map(s -> {

    System.out.println(s);

    return s.toUpperCase();

  });

This code fragment of Reactor code has some key aspects, as shown here:

•	 Flux: This is Reactor’s reactive data flow type of 0 or more data units, each coming at some
point in the future.

•	 just(): Reactor’s way to create an initial collection of Flux’d elements.

•	 filter(): Similar to Java 8 Stream’s filter() method, it only allows data elements from
the earlier Flux through if they satisfy the predicate clause. In this case, does it contain the
"spring" string?

•	 map(): Similar to Java 8 Stream’s map() method, it allows you to transform each data element
into something else, even a different type. In this scenario, it converts the string into uppercase.

This chunk of code can be described as a flow or a reactive recipe. Each line is captured as a command
object in a process known as assembly. Something that isn’t as obvious is that assembly isn’t the same
as running things.

When it comes to Reactive Streams, it’s important to understand that nothing happens until
you subscribe.

onSubscribe is the first and most important signal in Reactive Streams. It’s the indication that a
downstream component is ready to start consuming these upstream events.

Once a Subscription has been established, Subscriber can issue a request(n), asking
for n items.

Publisher can then start publishing the items through the Subscriber’s onNext signal. This
Publisher is free and clear to publish up to (but not exceeding) n invocations of the onNext method.

Subscriber can continue to invoke the Subscription’s request method, asking for more.
Alternatively, Subscriber can cancel its Subscription.

Publisher can continue sending content, or it can signal there is no more through the
onComplete signal.

Creating a reactive Spring Boot application 207

Now, this all is quite simple and yet… a bit tedious. The recommendation is to let the framework handle
this. Application developers are encouraged to write their applications at a higher level, allowing the
framework to do all the reactive ceremonies.

And so, in the next section, we’ll see how Spring WebFlux and Project Reactor make it super simple
to build a web controller reactively.

Creating a reactive Spring Boot application
To start writing reactive web apps, we need a completely new application. And to do that, let’s revisit
our old friend, https://start.spring.io.

We’ll pick the following settings:

•	 Project: Maven

•	 Language: Java

•	 Spring Boot: 3.0.0

•	 Group: com.springbootlearning.learningspringboot3

•	 Artifact: ch9

•	 Name: Chapter 9

•	 Description: Writing Reactive Web Controllers

•	 Package name: com.springbootlearning.learningspringboot3

•	 Packaging: Jar

•	 Java: 17

With this project metadata selected, we can now start picking our dependencies. Now, instead of
adding new things, as we’ve done in previous chapters, we are starting fresh with the following choices:

•	 Spring Reactive Web (Spring WebFlux)

That’s it! That’s all we need to get off the ground with building a reactive web application. Later in this
chapter and into the next chapter, we’ll revisit this to add new modules.

Click GENERATE and download the ZIP file; we’ll have a tasty little web application with the following
key things in the pom.xml build file:

•	 Spring-boot-starter-webflux: Spring Boot’s starter that pulls in Spring WebFlux,
Jackson for JSON serialization/deserialization, and Reactor Netty as our reactive web server

•	 spring-boot-starter-test: Spring Boot’s starter for testing, including unconditionally
for all projects

Writing Reactive Web Controllers208

•	 reactor-test: Project Reactor’s test module with additional tools to help test reactive apps,
automatically included with any reactive app

We haven’t delved into all the intricacies of reactive programming, but one thing that’s required is a
web container that isn’t stuck on blocking APIs. That’s why we have Reactor Netty, a Project Reactor
library that wraps non-blocking Netty with Reactor hooks.

And be aware that testing is vital. That’s why the two test modules are also included. And we’ll certainly
be taking advantage of Reactor’s test module later in this chapter and the next one.

But before we can do all that, we need to get familiar with writing a reactive web method, as shown
in the next section.

Serving data with a reactive GET method
Web controllers typically do one of two things: serve up data or serve up HTML. To grok the reactive
way, let’s pick the first since it’s much simpler.

In the previous section, we saw a simple usage of Reactor’s Flux type. Flux is Reactor’s implementation
of Publisher and provides a fistful of reactive operators.

We can use it in a web controller like this:

@RestController

public class ApiController {

  @GetMapping("/api/employees")

  Flux<Employee> employees() {

    return Flux.just(//

      new Employee("alice", "management"), //

      new Employee("bob", "payroll"));

  }

}

This RESTful web controller can be described as follows:

•	 @RestController: Spring Web’s annotation to indicate that this controller involves data,
not templates

•	 @GetMapping: Spring Web’s annotation to map HTTP GET /api/employees web calls
onto this method

•	 Flux<Employee>: The return type is a Flux of Employee records

Flux is sort of like combining a classic Java List with a Future. But not really.

Serving data with a reactive GET method 209

Lists can contain multiple items, but a Flux doesn’t have them all at once. And Flux’s aren’t consumed
through classic iteration or for loops. Instead, they come packed with lots of stream-oriented
operations, such as map, filter, flatMap, and more.

As for being similar to a Future, that’s true only in the sense that when a Flux is formed, its contained
elements usually don’t exist yet, but will instead arrive in the future. But Java’s Future type, predating Java
8, only has a get operation. As mentioned in the previous paragraph, Flux has a rich set of operators.

On top of all that, Flux has different ways to merge multiple Flux instances into a single one, as
shown here:

Flux<String> a = Flux.just("alpha", "bravo");

Flux<String> b = Flux.just("charlie", "delta");

a.concatWith(b);

a.mergeWith(b);

This code can be described as follows:

•	 a and b: Two pre-loaded Flux instances

•	 concatWith: A Flux operator that combines a and b into a single Flux where all elements
of a are emitted before the elements of b

•	 mergeWith: A Flux operator that combines a and b into a single Flux where the elements
are emitted as they come in real time, allowing interleaving between a and b

Didn’t you pre-load that Flux in the web method with hard-coded data?
Yes, this example kind of defies the futuristic nature of Flux in real-world applications since we
don’t pre-load a Flux using the just method. Instead, we’re more likely to connect a source
of data such as a reactive database or a remote network service. Using Flux’s more sophisticated
APIs, it’s possible to emit entries as they become available into Flux for downstream consumption.

In the web method we first defined, the Flux of data gets handed over to Spring WebFlux, which will
then serialize the contents and serve up a JSON output.

It’s important to note that all the handling of Reactive Streams signals, including subscription, request,
the onNext calls, and finally the onComplete invocation, are handled by the framework!

It’s vital to understand that, in reactive programming, nothing happens until we subscribe. Web
calls aren’t made and database connections aren’t opened. Resources aren’t allocated until someone
subscribes. The whole system is designed from the ground up to be lazy.

But for web methods, we let the framework do the subscribing for us.

Now, let’s learn how to craft a web method that consumes data reactively.

Writing Reactive Web Controllers210

Consuming incoming data with a reactive POST method
Any website that will serve up employee records must surely have a way to enter new ones, right? So,
let’s create a web method that does just that by adding to the ApiController class we started in
the previous section:

@PostMapping("/api/employees")

Mono<Employee> add(@RequestBody Mono<Employee> newEmployee)

  {

    return newEmployee //

      .map(employee -> {

        DATABASE.put(employee.name(), employee);

        return employee;

      });

}

This Spring WebFlux controller has the following details:

•	 @PostMapping: Spring Web’s annotation to map HTTP POST /api/employees web
calls to this method

•	 @RequestBody: This annotation tells Spring Web to deserialize the incoming HTTP request
body into an Employee data type

•	 Mono<Employee>: Reactor’s alternative to Flux for a single item

•	 DATABASE: A temporary data store (a Java Map)

The incoming data is wrapped inside a Reactor Mono. This is the single-item counterpart to a Reactor
Flux. By mapping over it, we can access its contents. Reactor Mono also supports many operators,
as Flux does.

While we can transform the contents, in this situation, we are simply storing the content in our
DATABASE and then returning it with no change.

map versus flatMap
We’ve now seen map used twice in the initial chunk of code at the start of this chapter and also
in this latest method. Mapping is a one-to-one operation. If we were to map over a Flux with
10 items, the new Flux would also have 10 items. What if a single item, such as a string, were
mapped into a list of its letters? The transformed type would be a list of lists. In many such
situations, we’d like to collapse the nesting and simply have a new Flux with all the letters.
This is flattening! flatMap is the same thing, just done in one step!

Consuming incoming data with a reactive POST method 211

Scaling applications with Project Reactor

So, how exactly does Project Reactor scale our application? So far, we’ve seen how Project Reactor gives
us a functional programming style. But it may not be clear exactly where scalability comes into play.

That’s because Project Reactor handles two key things seamlessly under the covers. The first is that
every step in these little flows or recipes isn’t directly carried out. Instead, every time we write a map,
a filter, or some other Reactor operator, we are assembling things. This isn’t when execution happens.

Each of these operations assembles a tiny command object with all the details needed to carry out our
actions. For example, the statement in the previous code block where we store the value in DATABASE
and then return the value is all wrapped inside a Java 8 lambda function. There is no requirement
that when the controller method is invoked, this inner lambda function is called at the same time.

Project Reactor gathers all these command objects representing our actions and stacks them on
internal work queues. It then delegates execution to its built-in Scheduler. This makes it possible
for Reactor to decide exactly how to carry things out. There are various Schedulers to choose from,
including a single thread to a thread pool, to a Java ExecutorService to a sophisticated bounded
elastic scheduler.

Your Scheduler of choice works through its backlog of work as system resources become available.
By having every single step of a Reactor flow act in a lazy, non-blocking way, anytime there is an
I/O-bound delay, the current thread isn’t held up waiting for a response. Instead, Scheduler goes
back to this internal queue of work and picks a different task to carry out. This is known as work
stealing and makes it possible for traditional latency issues to turn into opportunities to complete
other work, resulting in better overall throughput.

As Spring Data team leader Mark Paluch once said, “Reactive programming is based on reacting to
resource availability.”

Earlier, we mentioned that Reactor does two things. The second thing is that instead of having a giant
thread pool with 200 threads, it defaults to a Scheduler using a pool with one thread per core.

Quick history on Java concurrent programming

In the early days of Java concurrent programming, people would create giant pools of threads. But we
learned that when you have more threads than cores, context switching becomes expensive.

On top of that, Java has many breaking APIs baked into its core. While we were given tools since the
early days such as synchronized methods and blocks, along with locks and semaphores, it’s really hard
to do this both effectively and correctly.

It was easy to either A) do it right but not increase throughput, B) improve throughput yet introduce
deadlocks, or C) introduce deadlocks and not improve throughput. And these tactics often require
rewriting the application in a non-intuitive way.

Writing Reactive Web Controllers212

One thread per core when combined with lazy, non-blocking work stealing can be MUCH more efficient.
Of course, coding with Project Reactor isn’t invisible. There is a programming style to incorporate,
but since it’s heavily tilted toward the same style of programming as Java 8 Streams, which has been
widely adopted, it’s not the big ask that early-days Java concurrent programming was.

This is also the reason that absolutely every part of the application needs to be written this way. Imagine
a 4-core machine that has only 4 Reactor threads. If one of these threads ran into blocking code and
were forced to wait, it would clobber 25% of the total throughput.

This is the reason that blocking APIs found in places such as JDBC, JPA, JMS, and servlets is a profound
issue for reactive programming.

All these specifications were built on top of blocking paradigms, so they aren’t suitable for reactive
applications, which we’ll explore in more detail in the next chapter, Working with Data Reactively.

In the meantime, let’s learn how to implement a reactive template.

Serving a reactive template
So far, we’ve built a reactive controller that serves up some serialized JSON. But most websites need
to render HTML. And this leads us to templates.

Since we’re talking about reactive programming, it makes sense to pick a templating engine that doesn’t
block. So, for this chapter, we’ll be using Thymeleaf.

To get going, first, we need to update the application we started building at the beginning of this
chapter. To do that, let’s revisit https://start.spring.io.

We’ve done this dance in previous chapters. Instead of making an entirely new project and starting
over (ugh!), instead, we will enter all the same project metadata shown earlier in this chapter in the
Creating a reactive Spring Boot application section.

This time, enter the following dependencies:

•	 Spring Reactive Web

•	 Thymeleaf

Now, instead of using GENERATE like we did last time, hit the EXPLORE button. This will cause the
web page to serve up an online preview of this barebones project, showing us the pom.xml build file.

Everything should be the same as the pom.xml file we downloaded earlier with one difference: that
new dependency for spring-boot-starter-thymeleaf. All we need to do is this:

1.	 Highlight that Maven dependency.

2.	 Copy it to the clipboard.

3.	 Paste it into our IDE’s pom.xml file.

Serving a reactive template 213

This extra Spring Boot starter will download Thymeleaf, a templating engine that not only integrates
nicely with Spring Boot but also comes loaded with reactive support. This sets us up to write a reactive
web controller for templates, as shown in the next section.

Creating a reactive web controller

The next step is to create a web controller focused on serving templates. To do that, create a new file
called HomeController.java and add the following code:

@Controller

public class HomeController {

  @GetMapping("/")

  public Mono<Rendering> index() {

    return Flux.fromIterable(DATABASE.values()) //

      .collectList() //

      .map(employees -> Rendering //

         .view("index") //

         .modelAttribute("employees", employees) //

         .build());

  }

}

There’s a lot in this controller method, so let’s take it apart:

•	 @Controller: Spring Web’s annotation to indicate this class contains web methods that
render templates.

•	 @GetMapping: Spring Web’s annotation to map GET / web calls onto this method.

•	 Mono<Rendering>: Mono is Reactor’s single-valued reactive type. Rendering is Spring
WebFlux’s value type that allows us to pass both the name of the view to render along with
model attributes.

•	 Flux.fromIterable(): This static helper method lets us wrap any Java Iterable and
then use our reactive APIs.

•	 DATABASE.values(): This is a temporary data source until we get to Chapter 10, Working
with Data Reactively.

•	 collectList() : This Flux method lets us gather a stream of items into
Mono<List<Employee>>.

Writing Reactive Web Controllers214

•	 map(): This operation lets us access the list inside that Mono where we then transform it into
a Rendering. The name of the view we wish to render is "index". We also load up the
model "employees" attribute with the values found inside this Mono.

•	 build(): Rendering is a builder construct, so this is the step that transforms all the pieces
into a final, immutable instance. It’s important to understand that when inside the map()
operation, the output is a Mono<Rendering>.

There are some other aspects of this web method that are important to understand.

First of all, the map() operation at the end of the chain is meant to transform the type that’s inside
Mono. In this case, it converts List<Employee> into a Rendering, while keeping everything
inside this Mono. It does this by unpacking the original Mono<List<Employee>> and using the
results to create a brand new Mono<Rendering>.

Functional programming 101
It’s basic functional programming to have some container such as a Flux or a Mono and you
map over what’s inside, all the time, keeping it inside the functional Flux or Mono. You don’t
have to worry about making new Mono instances. The Reactor APIs are designed to handle that
for you. You focus on transforming the data along the way. So long as things remain smoothly
encased in these reactive container types, the framework will properly unpack them at the right
time and render them properly.

The other thing that is important to recognize is that we aren’t using a real data source. This is canned data
stored in a basic Java Map. That’s why it may seem a bit strange to have wrapped a Java list of Employee
objects into a Flux using fromIterable, only to extract them back out using collectList.

This is to illustrate the real-world situation we often face of being handed an Iterable collection.
The proper course of action is what’s shown in the code: wrap it into a Flux and then execute our
various transformations and filters, until we hand it off to the web handlers of Spring WebFlux to be
rendered with Thymeleaf.

The one thing remaining is to code that template using Thymeleaf!

Crafting a Thymeleaf template

The final step in building a template-based solution is to create a new file, index.html, underneath
src/main/resources/templates, as shown here:

<html xmlns:th="http://www.thymeleaf.org">

<head>

  <title>Writing a Reactive Web Controller</title>

</head>

Serving a reactive template 215

<body>

<h2>Employees</h2>

  <li th:each="employee : ${employees}">

    <div th:text=

      "${employee.name + ' (' + employee.role + ')'}">

    </div>

  

</body>

</html>

This template can be described as follows:

•	 xmlns:th=http://www.thymeleaf.org: This XML namespace allows us to use
Thymeleaf ’s HTML processing directives.

•	 th:each: Thymeleaf ’s for-each operator, giving us a node for every entry in the
employees model attribute. In each node, employee is the stand-in variable.

•	 th:text: Thymeleaf ’s directive to insert text into the node. In this situation, we are concatenating
two attributes from the employee record with strings.

Something else probably not visible is that ALL of the HTML tags in this template are closed. That
is, no tag can be left open due to Thymeleaf ’s DOM-based parser. Most HTML tags have an opening
and closing tag, but some do not, such as . When using such tags in Thymeleaf, we must close
them, either with a corresponding tag or by using the shortcut.

Thymeleaf ’s pros and cons
If it’s any consolation, anytime I use Thymeleaf, I must have their reference page open for me
to look at. If I coded Thymeleaf every day, perhaps I wouldn’t need this. Despite this aspect,
Thymeleaf is quite powerful. There are extensions such as support for Spring Security and the
ability to write security checks into your templates, allowing certain elements to be rendered (or
not) based on the user’s credentials and authorizations. Thymeleaf on the whole can probably
do anything you need when it comes to crafting HTML at the expense of having to take on
its notation.

If you fire up our reactive application and navigate to http://localhost:8080, you’ll see a
nice little rendered web page:

Writing Reactive Web Controllers216

Figure 9.1 – Reactive template rendered with Thymeleaf

This wouldn’t be much of a website if we didn’t include the ability to add to our employee database.
To do that, we need to enter the world of form-binding.

In general, to POST a new object, we must first provide an empty object during the GET part of the
operation, so we need to update our index method, as shown here:

@GetMapping("/")

Mono<Rendering> index() {

  return Flux.fromIterable(DATABASE.values()) //

    .collectList() //

    .map(employees -> Rendering //

       .view("index") //

       .modelAttribute("employees", employees) //

       .modelAttribute("newEmployee", new Employee("", ""))

       .build());

}

This code is the same as the previous version except for the highlighted line. It introduces a new model
attribute, newEmployee, containing an empty Employee object. This is all that’s needed to start
crafting an HTML form with Thymeleaf.

In the index.html template we created in the previous section, we need to add the following:

<form th:action="@{/new-employee}" th:object=

  "${newEmployee}" method="post">

    <input type="text" th:field="*{name}" />

Serving a reactive template 217

    <input type="text" th:field="*{role}" />

    <input type="submit" />

</form>

This Thymeleaf template can be described as follows:

•	 th:action: Thymeleaf ’s directive to form a URL to a route that we’ll code further down to
process new Employee records

•	 th:object: Thymeleaf ’s directive to bind this HTML form to the newEmployee record
that was provided as a model attribute in our updated index method

•	 th:field="*{name}": Thymeleaf ’s directive to connect the first <input> to the
Employee record’s name

•	 th:field="*{role}": Thymeleaf ’s directive to connect the second <input> to the
Employee record’s role

The rest is standard HTML 5 <form>, which we won’t go into. The parts expounded upon are the
glue needed to hook HTML form processing into Spring WebFlux.

The last step is to code a POST handler in our HomeController, as shown here:

@PostMapping("/new-employee")

Mono<String> newEmployee(@ModelAttribute Mono<Employee>

  newEmployee) {

    return newEmployee //

      .map(employee -> {

        DATABASE.put(employee.name(), employee);

        return "redirect:/";

      });

}

This operation can be described as follows:

•	 @PostMapping: Spring Web’s annotation to map POST /new-employee web calls to
this method.

•	 @ModelAttribute: Spring Web’s annotation to signal that this method is meant to consume
HTML forms (versus something such as an application/json request body).

•	 Mono<Employee>: This is the inbound data from the HTML form, wrapped in a Reactor type.

•	 map(): By mapping over the incoming results, we can extract the data, store it in DATABASE,
and transform it into an HTTP redirect operation back to /. This results in a Mono<String>
method return type.

Writing Reactive Web Controllers218

Once again, the entire action taken in this method is a Reactor flow that starts with the incoming
data and results in a transformation to an outgoing action. Reactor-based programming often has
this style compared to classic, imperative programming where we fiddle with intermediate variables.

If we run everything again, we will see this:

Figure 9.2 – Entering a new employee into the form

On this page, the user is entering a new employee record. Once they hit Submit, the POST processor
kicks in, stores the user, then directs the web page back to the home page.

This causes an updated version of DATABASE to be retrieved, as shown here:

Figure 9.3 – After hitting Submit, the page redirects back to home

Creating hypermedia reactively 219

The newly entered employee now shows up on the web page.

Is Spring WebFlux worth it?
This type of flow can indeed feel a little daunting, even challenging at first. But over time, it
becomes a consistent style that often forces us into thinking about every step. For a standard web
app, you can question whether or not this is worth it. But if you have an app that is requiring
you to run hundreds if not thousands of copies, and your cloud bill is going through the
roof, then there may be a valid, economical reason to consider using Spring WebFlux. Check
out my article, Why Reactive Streams are the SECRET to CUTTING your monthly cloud bill,
at https://springbootlearning.com/cloud-bill.

We could delve further into all the various ways to mix Spring WebFlux and Thymeleaf, but this is
Learning Spring Boot 3.0, not Learning Thymeleaf 3.1. And with that, let’s look into one other valuable
ability… crafting hypermedia-powered APIs.

Creating hypermedia reactively
At the beginning of this chapter, we crafted a very simple API. It served some pretty basic JSON
content. One thing that was missing from such a bare API was any controls.

Hypermedia is the term used to refer to both content and metadata being served by an API; this content
and metadata indicate what can be done with the data or how to find other related data.

Hypermedia is something we see every day. At least on web pages. This includes the navigation links
to other pages, links to CSS stylesheets, and links to effect change. This is quite common. When we
order some product from Amazon, we aren’t required to provide the link to make it happen. The web
page gives it to us.

Hypermedia in JSON is simply the same concept but applied to APIs instead of visual web pages.

And this is easy if we add Spring HATEOAS to our application!

Spring Boot Starter HATEOAS versus Spring HATEOAS
If you go to start.spring.io and ask for Spring HATEOAS, you will have spring-
boot-starter-hateoas added to your application. But this version is wrong when using
Spring WebFlux. For the longest time, Spring HATEOAS only supported Spring MVC, but
about 4 years ago, yours truly added WebFlux support. Unfortunately, the Spring Boot Starter
HATEOAS module pulls in Spring MVC and Apache Tomcat support, which is the opposite of
what we want for a Spring WebFlux application running on top of Reactor Netty. The simplest
approach is to just add Spring HATEOAS directly, as shown here.

Writing Reactive Web Controllers220

To add Spring HATEOAS to a reactive application, just add the following dependency:

<dependency>

    <groupId>org.springframework.hateoas</groupId>

    <artifactId>spring-hateoas</artifactId>

</dependency>

And once again, thanks to Spring Boot’s dependency management, there is no need to specify the
version number.

With that in place, we can start building a hypermedia-powered API. First, create a class named
HypermediaController.java, like this:

@RestController

@EnableHypermediaSupport(type = HAL)

public class HypermediaController {

}

This barebones controller class can be described as follows:

•	 @RestController: Spring Web’s annotation to mark this controller as focused on JSON
serializing instead of template rendering

•	 @EnableHypermediaSupport: Spring HATEOAS’s annotation to activate hypermedia
support – in this case, HAL support

If we had used Spring Boot Starter HATEOAS, the HAL support would have been activated automatically.
But since we’re manually plugging in Spring HATEOAS, we must activate it ourselves.

Important
The @EnableHypermediaSupport annotation only has to be used once. We happen to be
putting on our hypermedia controller for brevity in this book. In a real application, it may be
preferable to put it in the same class that has the @SpringBootApplication annotation.

With all this in place, let’s start by building a hypermedia endpoint for a single-item resource, one
employee, as shown here:

@GetMapping("/hypermedia/employees/{key}")

Mono<EntityModel<Employee>> employee(@PathVariable String

  key) {

        Mono<Link> selfLink = linkTo(//

            methodOn(HypermediaController.class) //

Creating hypermedia reactively 221

              .employee(key)) //

                .withSelfRel() //

                .toMono();

Mono<Link> aggregateRoot = linkTo(//

  methodOn(HypermediaController.class) //

    .employees()) //

       .withRel(LinkRelation.of("employees"))//

       .toMono();

Mono<Tuple2<Link, Link>> links = Mono.zip(selfLink,

  aggregateRoot);

return links.map(objects ->

  EntityModel.of(DATABASE.get(key), objects.getT1(),

    objects.getT2()));

}

This implementation for the single-item Employee is loaded with content, so let’s take it apart:

•	 @GetMapping: Spring Web’s annotation to indicate that this will serve HTTP GET /
hypermedia/employee/{key} methods.

•	 The return type is Mono<EntityModel<Employee>>. EntityModel is Spring
HATEOAS’s container for an object that includes links. And we’ve already seen how Mono is
Reactor’s wrapper for reactive programming.

•	 linkTo(): Spring HATEOAS’s static helper function to extract a link from a Spring WebFlux
method invocation.

•	 methodOn(): Spring HATEOAS’s static helper function to perform a dummy invocation of
a controller’s web method to gather information for building links. In the first usage, we are
pointing at the employee(String key) method of HypermediaController. In the
second usage, we are pointing at the employees() method of HypermediaController
(not yet written).

•	 withSelfRel(): Spring HATEOAS’s method to label selfLink with a self hypermedia
relation (which we’ll see shortly).

•	 withRel(LinkRelation.of("employees")): Spring HATEOAS’s method to apply
an arbitrary employees hypermedia relation.

Writing Reactive Web Controllers222

•	 toMono(): Spring HATEOAS’s method to take all the link-building settings and turn them
into a Mono<Link>.

•	 Mono.zip(): Reactor’s operator to combine two Mono operations and process the results
when both are complete. There are other utilities for bigger sets, but waiting for two is so
common that zip() is kind of a shortcut.

•	 links.map(): We map over Tuple2 of the Mono<Link> object, extracting the links and
bundling them with the fetched employee into a Spring HATEOAS EntityModel object.

So what does Spring HATEOAS do?

It combines data (which we’ve been using all along) with hyperlinks. Hyperlinks are represented using
Spring HATEOAS’s Link type. The toolkit is filled with operations to ease the creation of Link
objects and merge them with data. The previous block of code showed how to extract links from a
Spring WebFlux method.

For Spring HATEOAS to render this merging of data and links, we need to have any hypermedia-
powered endpoint return a Spring HATEOAS RepresentationModel object or one of its subtypes.
The list isn’t long and is shown here:

•	 RepresentationModel: The core type for data and links. One option for a single-item
hypermedia type is to extend this class and merge our business values with it.

•	 EntityModel<T>: The generic extension of RepresentationModel. Another option
is to inject our business object into its static constructor methods. This lets us keep links and
business logic separated from each other.

•	 CollectionModel<T>: The generic extension of RepresentationModel. It represents
a collection of T objects instead of just one.

•	 PagedModel<T>: The extension of CollectionModel that represents a page of
hypermedia-aware objects.

It’s important to understand that a single-item hypermedia-aware object can have one set
of links while a collection of hypermedia-aware objects can have a different set of links.
To properly represent a rich collection of hypermedia-aware objects, it can be captured as
a CollectionModel<EntityModel<T>>.

This would imply that the entire collection may have one set of links, such as a link to the aggregate
root. And each entry of the collection may have a custom link pointing to its single-item resource
method while they all have a link back to the aggregate root.

Creating hypermedia reactively 223

To better see this, let’s implement that aggregate root – the hypermedia-aware end mentioned in the
previous code block:

@GetMapping("/hypermedia/employees")

Mono<CollectionModel<EntityModel<Employee>>> employees() {

Mono<Link> selfLink = linkTo(//

  methodOn(HypermediaController.class) //

    .employees()) //

       .withSelfRel() //

       .toMono();

return selfLink //

  .flatMap(self -> Flux.fromIterable(DATABASE.keySet()) //

    .flatMap(key -> employee(key)) //

    .collectList() //

    .map(entityModels -> CollectionModel.of(entityModels,

      self)));

}

Part of this method should look very similar to the previous code block. Let’s focus on the differences:

•	 @GetMapping: This method maps GET /hypermedia/employees to this method,
the aggregate root.

•	 selfLink in this method points to this method, which is a fixed endpoint.

•	 We flatMap() over selfLink, and then extract every entry from DATABASE, leveraging the
employee(String key) method to convert each entry into an EntityModel<Employee>
with single-item links.

•	 We use collectList() to bundle all this into a Mono<List<EntityModel<Employee>>>.

•	 Finally, we map over it, converting it into Mono<CollectionModel<EntityModel
<Employee>>> with the aggregate root’s selfLink wired in.

If this appears a lot more complex than previous methods in this chapter (or previous chapters), that’s
because it is. But hooking web controller methods directly into the rendering of the hypermedia output
ensures that future tweaks and adjustments to our methods will adjust properly.

Writing Reactive Web Controllers224

If we run the application, we will easily see where this leads us:

% curl -v localhost:8080/hypermedia/employees | jq

{

    "_embedded": {

      "employeeList": [

        {

          "name": "Frodo Baggins",

          "role": "ring bearer",

          "_links": {

            "self": {

              "href": "http://localhost:8080/hypermedia/

                        employees/Frodo%20Baggins"

            },

            "employees": {

              "href": "http://localhost:8080/hypermedia/

                        employees"

            }

          }

      },

      {

          "name": "Samwise Gamgee",

          "role": "gardener",

          "_links": {

            "self": {

              "href": "http://localhost:8080/hypermedia/

                        employees/Samwise%20Gamgee"

            },

            "employees": {

              "href": "http://localhost:8080/hypermedia/

                        employees"

            }

          }

          },

     {

          "name": "Bilbo Baggins",

          "role": "burglar",

Creating hypermedia reactively 225

          "_links": {

            "self": {

              "href": "http://localhost:8080/hypermedia/

                        employees/Bilbo%20Baggis"

            },

            "employees": {

              "href": "http://localhost:8080/hypermedia/

                        employees"

            }

          }

          }

      ]

    },

    "_links": {

      "self": {

        "href": "http://localhost:8080/hypermedia/

                  employees"

      }

    }

}

That’s a lot of information. Let’s highlight some key parts:

•	 _link: HAL’s format for showing a hypermedia link. It contains a link relation (for example,
self) and an href (for example, http://localhost:8080/hypermedia/employees)

•	 The collection’s self-link is at the bottom, while the two single-item Employee objects each
have a self pointed at itself as well as an employees link pointed to the aggregate root

It’s left as an exercise for you to explore the single-item HAL output.

What’s a “self ” link?
In hypermedia, just about any representation will include what’s called a “self ” link. It’s the this
concept. Essentially, it’s a pointer to the current record. It’s important to understand the context.
For example, the HAL output shown previously has three different self links. Only the last one
is this document’s self. The others are the canonical links to look up that individual record.
And because links are essentially opaque, you can use these links to navigate to those records.

What is the point of doing all this?

Writing Reactive Web Controllers226

Imagine a system where not only do we have employee-based data, but also other various operations.
For example, we could build up a whole host of functions such as takePTO, fileExpenseReport,
and contactManager. Anything, really.

Building up a collection of links that cross various systems and appear and disappear based on when
they’re valid makes it possible to show/hide buttons on web applications based on whether they
are relevant.

To hypermedia or not to hypermedia, that is the question
Hypermedia makes it possible to dynamically connect users with related operations and
relevant data. Since there’s not enough room in this chapter to delve into all the pros and
cons of hypermedia, check out Spring Data REST: Data meets Hypermedia at https://
springbootlearning.com/hypermedia, where you can watch me and my teammate
Roy Clarkson go into the details of hypermedia and Spring.

Summary
In this chapter, we learned several key skills, including creating a reactive application using Project
Reactor, rolling out a reactive web method to both serve and consume JSON, and how to leverage
Thymeleaf to reactively generate HTML and consume an HTML form. We even used Spring HATEOAS
to reactively generate a hypermedia-aware API.

All these features are the building blocks of web applications. While we used a Java 8 functional
style to chain things together, we were able to reuse the same Spring Web annotations we’ve used
throughout this book.

And by using Reactor’s style, a paradigm quite similar to Java 8 Streams, we can potentially have a
much more efficient application.

That concludes this chapter! In the next chapter, we will wrap things up by showing you how to
reactively work with real data.

10
Working with Data Reactively

In the previous chapter, we learned how to write a reactive web controller using Spring WebFlux. We
loaded it with canned data and used a reactive templating engine, Thymeleaf, to create an HTML
frontend. We also created a reactive API with pure JSON and then with hypermedia using Spring
HATEOAS. However, we had to use canned data. That’s because we didn’t have a reactive data store
on hand, an issue we will solve in this chapter.

In this chapter, we’ll be covering the following topics:

•	 Learning what it means to fetch data reactively

•	 Picking a reactive data store

•	 Creating a reactive data repository

•	 Trying out R2DBC

Where to find this chapter’s code
The code for this chapter can be found in this repository: https://github.com/
PacktPublishing/Learning-Spring-Boot-3.0/tree/main/ch10.

Learning what it means to fetch data reactively
In the previous chapter, we covered a lot of the basics needed to build a web page reactively, except
we were missing a vital ingredient: real data.

Real data comes from databases.

There are few applications that don’t use a database to manage their data. And in this era of e-commerce
sites serving global communities, there has never been a broader choice of various types of databases,
be they relational, key-value, document, or whatever.

This can make it tricky to pick the right one for our needs. It’s even harder considering that even a
database needs to be accessed reactively.

Working with Data Reactively228

That’s right. If we don’t access our database using the same reactive tactics introduced in the previous
chapter, all of our efforts would be for naught. To repeat a key point: all parts of the system must be
reactive. Otherwise, we risk a blocking call tying up a thread and clobbering our throughput.

Project Reactor’s default thread pool size is the number of cores on the operating machine. That’s
because we’ve seen that context switching is expensive. By having no more threads than cores, we’re
guaranteed to never have to suspend a thread, save its state, activate another thread, and restore its state.

By taking such an expensive operation off the table, reactive applications can instead focus on the more
effective tactic of simply going back to Reactor’s runtime for the next task (a.k.a. work stealing). However,
this is only possible when we use Reactor’s Mono and Flux types along with their various operators.

If we ever invoke some blocking call on a remote database, the entire thread will halt, waiting for an
answer. Imagine a four-core machine having one of its cores blocked like that. A four-core system
suddenly only using three cores would show an instant 25% drop in throughput.

This is the reason that database systems across the spectrum are implementing alternative drivers
that use the Reactive Streams specification: MongoDB, Neo4j, Apache Cassandra, Redis, and more.

But what, exactly, does a reactive driver look like? Database drivers handle the process of opening a
connection to a database, parsing queries and turning them into commands, and finally, shepherding
the results back to the caller. Reactive Streams-based programming has been growing in popularity,
which has motivated these various vendors to build reactive drivers.

But one area that is stuck is JDBC.

When it comes to Java, all toolkits, drivers, and strategies go through JDBC to talk to a relational
database. jOOQ, JPA, MyBatis, and QueryDSL all use JDBC under the hood. And because JDBC is
blocking, it simply won’t work in a reactive system.

Are you sure?
People have asked in various ways why can’t we just carve out a JDBC thread pool and put
a reactor-friendly proxy in front of it. The truth is, while each incoming request could be
dispatched to a thread pool, you run into the risk of hitting the pool’s limit. At that point, the
next reactive call would be blocked, waiting for a thread to free up, effectively clobbering the
whole system. The point of reactive systems is to NOT block but instead yield so that other
work can be done. A thread pool simply delays the inevitable while costing you the overhead
of context switching. A database driver, right up to the point of talking to the database engine
itself, needs to speak Reactive Streams or it won’t cut it.

JDBC being a spec and not simply a driver makes this all but impossible. But there’s hope, as we’ll
see in the next section.

Picking a reactive data store 229

Picking a reactive data store
Realizing that JDBC wouldn’t be able to change enough to support Reactive Streams and needing to serve
the growing community of Spring users that wanted to go reactive, the Spring team embarked upon a new
solution in 2018. They drafted the Reactive Relational Database Connectivity (R2DBC) specification.

R2DBC as a specification reached 1.0 in early 2022, and for the rest of this chapter, we’ll be using it
to build a reactive relational data story.

R2DBC? Tell me more!
If you want a little more detail about R2DBC, please check out former Spring Data team
leader Oliver Drotbohm’s keynote presentation from the 2018 SpringOne conference at
https://springbootlearning.com/r2dbc-2018.

Since we want something super simple, we can use H2 as our relational database of choice. H2 is
an in-memory, embeddable database. It’s frequently used for test purposes, but we can use it as a
production application for now.

Along with H2, we’ll also use Spring Data R2DBC. To get both of these, let’s visit our old friend,
https://start.spring.io. If we pick the same version of Spring Boot as the previous chapter
and plug in the same metadata, we can then choose the following dependencies:

•	 H2 Database

•	 Spring Data R2DBC

If we then click on the EXPLORE button and scroll about halfway down the pom.xml file, we should
see the following three entries:

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-r2dbc</artifactId>
</dependency>
<dependency>
    <groupId>com.h2database</groupId>
    <artifactId>h2</artifactId>
    <scope>runtime</scope>
</dependency>
<dependency>
    <groupId>io.r2dbc</groupId>
    <artifactId>r2dbc-h2</artifactId>
    <scope>runtime</scope>
</dependency>

Working with Data Reactively230

These three dependencies can be described as follows:

•	 spring-boot-starter-data-r2dbc: Spring Boot’s starter for Spring Data R2DBC

•	 h2: The third-party embeddable database

•	 r2dbc-h2: The Spring team’s R2DBC driver for H2

It’s important to understand that R2DBC is very low-level. It’s fundamentally aimed at making it
easy for database driver authors to implement. Certain aspects of JDBC as a driver interface were
compromised to make it easier to consume by applications. R2DBC has sought to remedy this. The
consequence is that having an application talk directly through R2DBC is actually quite cumbersome.

That’s why it’s recommended to use a toolkit. In this case, we’ll be using Spring Data R2DBC, but
you can pick another that you’d prefer, such as Spring Framework’s DatabaseClient or another
third-party one.

With our tools set up, it’s time to start building a reactive data repository!

Creating a reactive data repository
Earlier in Chapter 3, Querying for Data with Spring Boot, we built an easy-to-read data repository by
extending JpaRepository from Spring Data JPA. For Spring Data R2DBC, let’s write something
like this:

public interface EmployeeRepository extends //

  ReactiveCrudRepository<Employee, Long> {}

This code can be described as follows:

•	 EmployeeRepository: The name for our Spring Data repository.

•	 ReactiveCrudRepository: Spring Data Commons’ base interface for any reactive repository.
Note that this isn’t specific to R2DBC but instead for ANY reactive Spring Data module.

•	 Employee: The domain type for this repository (which we’ll code further in the chapter).

•	 Long: The primary key’s type.

In the previous chapter, we scratched together an Employee domain type using a Java 17 record.
However, to interact with our database, we need something a little more detailed than that, so let’s
craft the following:

public class Employee {

  private @Id Long id;

  private String name;

Trying out R2DBC 231

  private String role;

  public Employee(String name, String role) {

    this.name = name;

    this.role = role;

}

  // getters, setters, equals, hashCode, and toString

     omitted for brevity

}

This code can be described as follows:

•	 Employee: Our domain’s type, as required in the EmployeeRepository declaration.

•	 @Id: Spring Data Commons’ annotation to denote the field that contains the primary key.
Note that this is NOT JPA’s jakarta.persistence.Id annotation but instead a Spring
Data-specific annotation.

•	 name and role: The two other fields we’ll be using.

The rest of this domain type’s methods can be generated by any modern IDE using its utilities.

With all this, we’re ready to start speaking R2DBC!

Trying out R2DBC
Before we can fetch any data, we have to load some data. While this is normally something our DBA
deals with, for this chapter we’ll just have to do it ourselves. To do that, we need to create a Spring
component that will automatically kick off once our application is up. Create a new class named
Startup and add the following code:

@Configuration

public class Startup {

  @Bean

  CommandLineRunner initDatabase(R2dbcEntityTemplate

    template) {

      return args -> {

        // Coming soon!

      }

    }

}

Working with Data Reactively232

This code can be described as follows:

•	 @Configuration: Spring’s annotation to flag this class as a collection of bean definitions,
needed to autoconfigure our application

•	 @Bean: Spring’s annotation to turn this method into a Spring bean, added to the application context

•	 CommandLineRunner: Spring Boot’s functional interface for an object that is automatically
executed once the application is started

•	 R2dbcEntityTemplate: Inject a copy of this Spring Data R2DBC bean so we can load a
little test data

•	 args -> {}: A Java 8 lambda function that is coerced into CommandLineRunner

What do we put inside this Java 8 lambda function? Well, for Spring Data R2DBC, we need to define
the schema ourselves. If it’s not already defined externally (which it isn’t for this chapter), we need to
write something like this:

    template.getDatabaseClient() //

      .sql("CREATE TABLE EMPLOYEE (id IDENTITY NOT NULL

        PRIMARY KEY , name VARCHAR(255), role

          VARCHAR(255))") //

      .fetch() //

      .rowsUpdated() //

      .as(StepVerifier::create) //

      .expectNextCount(1) //

      .verifyComplete();

This chunk of code can be described as follows:

•	 template.getDatabaseClient(): For pure SQL, we need access to the underlying
DatabaseClient from Spring Framework’s R2DBC module that does all the work.

•	 sql(): A method to feed a SQL CREATE TABLE operation. This uses H2’s dialect to create
an EMPLOYEE table with a self-incrementing id field.

•	 fetch(): The operation that carries out the SQL statement.

•	 rowsUpdate(): Gets back the number of rows affected so we can verify that it worked.

•	 as(StepVerifier::create): Reactor Test’s operator to convert this whole reactive
flow into StepVerifier. StepVerifier is another way to conveniently force a reactive
flow to be executed.

•	 expectNextCount(1): Verifies whether we got back one row, indicating the operation worked.

•	 verifyComplete(): Ensures we received a Reactive Streams onComplete signal.

Trying out R2DBC 233

The preceding method lets us run a little bit of SQL code in order to create our barebones schema. And it
may have gotten a little confusing when, halfway down, we pivoted into Reactor Test’s StepVerifier.

StepVerifier is very handy for testing out reactor flows, but it also affords us a useful means to
force small reactor flows while allowing us to see the results when needed. The only problem is that we
can’t use this because, by default, reactor-test is test-scoped when we use the Spring Initializr. To
make the preceding code work, we must go into our pom.xml file and remove the <scope>test</
scope> line. Then, refresh the project, and it should work!

Now, with this in place, let’s load some data.

Loading data with R2dbcEntityTemplate

So far, we’ve set up the schema for our Employee domain type. With that in place, we’re ready to add
some more R2dbcEntityTemplate calls inside that initDatabase() CommandLineRunner:

template.insert(Employee.class) //

  .using(new Employee("Frodo Baggins", "ring bearer"))

  .as(StepVerifier::create) //

  .expectNextCount(1) //

  .verifyComplete();

template.insert(Employee.class) //

  .using(new Employee("Samwise Gamgee", "gardener")) //

  .as(StepVerifier::create) //

  .expectNextCount(1) //

  .verifyComplete();

template.insert(Employee.class) //

  .using(new Employee("Bilbo Baggins", "burglar")) //

  .as(StepVerifier::create) //

  .expectNextCount(1) //

  .verifyComplete();

These three calls all have the same pattern. Each can be described as follows:

•	 insert(Employee.class): Defines an insert operation. By providing a type parameter,
the subsequent operations are typesafe.

•	 using(new Employee(…)): Here is where the actual data is provided.

Working with Data Reactively234

•	 as(StepVerifier::create): The same pattern of using Reactor Test to force the
execution of our reactive flow.

•	 expectNextCount(1): For a single insert, we are expecting a single response.

•	 verifyComplete(): Verifies whether we received the onComplete signal.

The insert() operation actually returns Mono<Employee>. It would be possible to inspect the
results, even getting hold of the newly minted id value. But since we’re just loading data, all we want
is to confirm that it worked.

In the next section, we’ll see how to hook up our reactive data supply to an API controller.

Returning data reactively to an API controller

The heavy work has been done. From here on in, we can tap into what we learned in the previous
chapter. To build an API controller class, create a class named ApiController, as shown here:

@RestController

public class ApiController {

  private final EmployeeRepository repository;

  public ApiController(EmployeeRepository repository) {

    this.repository = repository;

  }

}

This API controller class be described as follows:

•	 @RestController: Spring’s annotation to signal that this class doesn’t process templates
but instead that all outputs are directly serialized to the HTML response

•	 EmployeeRepository: We are injecting the repository we defined earlier in this section
through constructor injection

The simplest thing of all is to return all the Employee records we have. This can easily be done by
adding the following method to our ApiController class:

    @GetMapping("/api/employees")

    Flux<Employee> employees() {

      return repository.findAll();

    }

Trying out R2DBC 235

This web method is quite simple:

•	 @GetMapping: Maps HTTP GET /api/employees calls to this method

•	 Flux<Employee>: Indicates that this returns one (or more) Employee records

•	 repository.findAll(): By using the prebuilt findAll method from Spring Data
Commons’ ReactiveCrudRepository interface, we already have a method that will
fetch all the data

The previous chapter had a simple Java Map, which required some finagling to make it work reactively.
Because EmployeeRepository extends ReactiveCrudRepository, it’s already got the
reactive types baked into its method’s return types – no finagling needed!

This also means that coding an API-based POST operation can be done like this:

    @PostMapping("/api/employees")

    Mono<Employee> add(@RequestBody Mono<Employee>

      newEmployee) {

        return newEmployee.flatMap(e -> {

          Employee employeeToLoad =

            new Employee(e.getName(), e.getRole());

          return repository.save(employeeToLoad);

        });

    }

This web method has the following features:

•	 @PostMapping(): Maps HTTP POST /api/employees calls to this method.

•	 Mono<Employee>: This method returns, at most, one entry.

•	 @RequestBody(Mono<Employee>): This method will deserialize the incoming request
body into an Employee object, but because it’s wrapped as Mono, this processing only happens
when the system is ready.

•	 newEmployee.flatMap(): This is how we access the incoming Employee object.
Inside the flatMap operation, we actually craft a brand-new Employee object, deliberately
dropping any id value provided in the input. This ensures a completely new entry will be made
to the database.

•	 repository.save(): Our EmployeeRepository will execute a save operation and
return Mono<Employee>, with a newly created Employee object inside. This new object
will have everything, including a fresh id field.

Working with Data Reactively236

If you’re new to reactive programming, the ceremony of these preceding bullet points may be a little
confusing. For example, why are we flatMapping? Mapping is usually used when converting from
one type to another. In this situation, we’re trying to map from an incoming Employee to a newly
saved Employee type. So why don’t we just map?

That’s because what we got handed back from save() wasn’t anEmployee object. It was
Mono<Employee>. If we had mapped over it, we’d have Mono<Mono<Employee>>.

flatMap is Reactor’s golden hammer
A lot of times, when you’re not sure what to do, or the Reactor APIs seem to be working
against you, the secret is often flatMap(). All the Reactor types are heavily overloaded to
support flatMap such that Flux<Flux<?>>, Mono<Mono<?>>, and every combination
of them will nicely work out when you simply apply flapMap(). This also applies if you use
Reactor’s then() operator. Using flatMap() before you use then() will usually ensure
the previous step is carried out!

The last step in putting together our reactive web app is to populate our Thymeleaf template, which
we’ll tackle in the next section.

Reactively dealing with data in a template

To finish things off, we need to create a HomeController class, like this:

@Controller

public class HomeController {

  private final EmployeeRepository repository;

  public HomeController(EmployeeRepository repository) {

    this.repository = repository;

  }

}

This class has some key aspects:

•	 @Controller: Indicates that this controller class is focused on rendering templates

•	 EmployeeRepository: Our beloved EmployeeRepository is also injected into this
controller using constructor injection

Trying out R2DBC 237

With this in place, we can generate the web template served up at the root of our domain using this:

    @GetMapping("/")

    Mono<Rendering> index() {

      return repository.findAll() //

        .collectList() //

        .map(employees -> Rendering //

           .view("index") //

           .modelAttribute("employees", employees) //

           .modelAttribute

            ("newEmployee", new Employee("", ""))

          .build());

    }

This is almost the same as the previous chapter’s index() method except for the highlighted fragment:

•	 repository.findAll() : Instead of converting a map’s values into Flux ,
EmployeeRepository already gives us one with its findAll() method

Everything else is the same.

Now, in order to process that form-backed Employee bean, we need a POST-based web method
like this:

    @PostMapping("/new-employee")

    Mono<String> newEmployee(@ModelAttribute Mono<Employee>

      newEmployee) {

        return newEmployee //

          .flatMap(e -> {

            Employee employeeToSave =

              new Employee(e.getName(), e.getRole());

            return repository.save(employeeToSave);

          }) //

          .map(employee -> "redirect:/");

    }

Working with Data Reactively238

This is very similar to the previous chapter’s newEmployee() method, except for the highlighted parts:

•	 flatMap() : As mentioned in the previous section, because save() returns a
Mono<Employee>, we need to flatMap the results.

•	 The previous section also showed how we extract the name and role from the incoming
Employee object but ignore any possible id value, since we’re inserting a new entry. We then
return the results of our repository’s save() method.

•	 map(employee -> "redirect:/"): Here, we translate the saved Employee object
into a redirect request.

Something that’s important to point out, when compared to the previous chapter, is that in the preceding
code, we split things up. In the previous chapter, we essentially mapped the incoming Employee
object into a redirect request. That’s because our mock database was non-reactive and only needed
an imperative call to store the data.

Because our EmployeeRepository in this chapter is reactive, we need to split this up, with one
operation focused on save(), followed by the next one, to convert that outcome to the redirect request.

Also, we had to use flatMap because the response from save() was wrapped inside a Reactor
Mono class. Converting an employee to "redirect:/" doesn’t involve any Reactor types, so simple
mapping is all we need.

To get the index.html template, you can simply copy it from the previous chapter. Since it’s the
same as the previous chapter, there is no need to write it out here – no changes required! (Alternatively,
grab it from the source code listing shown at the start of this chapter.)

And with that, we have a fully armed and operational reactive data store!

Summary
In this chapter, we learned about what it means to fetch data reactively. Based upon that, we selected
a reactive data store and leveraged Spring Data to help manage our content. After hooking things into
our reactive web controller, we then took a peek at R2DBC, a reactive driver for relational databases.
And with that, we were able to build an introductory reactive Spring Boot application.

The same tactics used in earlier chapters for deployment will work just as well. In addition to that,
many of the features we used throughout this book also work.

With all the things covered in this book, you should be prepared to take on your next (or perhaps
current) project using Spring Boot 3.0. I sincerely hope Spring Boot 3.0 makes you as excited as I am
about building new apps.

Summary 239

In the meantime, if you want to explore even more content regarding Spring Boot, check out the
following resources:

•	 http://bit.ly/3uSPLCz: Check out my YouTube channel, loaded with free videos
about Spring Boot

•	 https://springbootlearning.com/medium: I write weekly articles on Spring Boot
as well as software engineering in general

•	 https://springbootlearning.com/podcast: I periodically post audio-only episodes
where I either interview leaders from the Spring community or share morsels of knowledge
about the world of Spring

•	 https://twitter.com/springbootlearn: If you want to connect, follow me on Twitter

Happy coding!

Index

Symbols

401 Unauthorized 148
403 Forbidden 148

A
Advanced Message Queueing

Protocol (AMQP) 8
ahead-of-time (AOT) compilation

toolset 194
AOT compilation 196
Apache Cassandra 56
Apache Tomcat 11
API controller

reactive data, supplying to 234-236
application

releasing, to Docker Hub 179-182
retrofitting, for GraalVM 190-194

application configuration
externalizing 14-17

application dependencies
managing 18, 19

application, securing
key aspects 79

assembly 206
authentication 85, 148
authorities 88
authorization 85, 148

autoconfiguration policies
exploring, in Spring Boot 7-9

B
backpressure 204
basic authentication 86
behavior-driven design (BDD) 132
bytecode 191, 197

C
Cassandra Query Language (CQL) 74
Change Replace Update Delete (CRUD) 62
CommandLineRunner 83
Common Vulnerabilities and

Exposures (CVE) 19
configuration properties

used, for customizing setup 11, 12
constructor injection 113, 236
Cross-Site Request Forgery (CSRF) 90-92
curl 86
custom finders

query results, limiting 69, 70
results, sorting 68
using 63-68

Index242

custom JPA
using 74-76

custom properties
creating 13, 14, 156-160

custom security policy
used, for creating users 79-81

D
data

fetching, reactively 227, 228
loading, with R2dbcEntityTemplate 233, 234

data repositories
testing, with embedded databases 135-139
testing, with mocks 130-134
testing, with Testcontainers 142-146

data transfer objects (DTOs) 60
dependencies

injecting, through constructor calls 36
dependency injection (DI) 6
Docker container

baking 175, 176
baking, with GraalVM 199
building 176-179

Docker Hub
accessing 179
application, releasing to 179-182
tags 181

domain objects
tests, creating 123-127

DTOs, versus entities
reference link 61

E
entities 59, 60
environment variables

used, for setting properties 166, 167

exchange filter function 109

F
flushing 59
form authentication 86
frontend-maven-plugin 44
functional programming 101 214

G
Google

leveraging, to authenticate users 102
Google OAuth 2.0 application

creating 103, 104
GraalVM 190, 200

application, retrofitting 190-194
benefits 190
Docker container, baking with 199
native Spring Boot application,

running 194-197
need for 198, 199
reachability 191

GraalVM Community Edition (CE) 195

H
hard-coded users

swapping, with Spring
Data-backed set of users 81-85

HTML forms
data, modifying through 37-39

HTTP 205
HTTP 302 Found 96
HTTP Basic authentication mechanism 86
HTTP client proxies 109
HTTP Form authentication mechanism 86

Index 243

HTTP verbs
securing 85-89

Hypermedia as the Engine of Application
State (HATEOAS) 9

hypermedia-powered APIs
creating 219-225

J
Jackson 60
Jakarta EE 11

reference link 11
Java 17 record 230
Java bean 6
Java concurrent programming

history 211
Java Database Connectivity

(JDBC) 7, 58, 228
Java Development Kit (JDK) 173
Java lambda expression 160
Java Object Oriented Querying (jOOQ) 9
JavaScript

bundling, with Node.js 46, 47
Java Virtual Machine (JVM) 191, 197
JPA Query Language (JPQL) 65
JSON-based APIs

creating 40-44
JSqlParser 75
JSR-250 annotation 98
JUnit 5

adding, to application 122, 123
just-in-time (JIT) compiler 191

K
Kubernetes 186

L
lambda expression 83
lambda function 211
Lightweight Directory Access

Protocol (LDAP) 9
Linux 196
long-term support (LTS) 45

M
map

versus flatMap 210
Maven bill of materials (BOM) 19
method-based security practices,

Spring Data
access, locking down to owner of data 97
delete button, adding 95-97
method-level security, enabling 97, 98
model, updating 92-94
ownership of data, taking 94, 95
user details, displaying on site 98-102

mocking 122
MockMVC

web controllers, testing with 127-130
mocks

data repositories, testing with 130-135
MongoDB 56
MongoQL 74
Mustache 90

Index244

N
native Spring Boot application

running, in GraalVM 194-197
Nickel/Couchbase Query

Language (N1QL) 74
Node.js

hooking, to Spring Boot web
appNode.js 44-46

JavaScript, bundling with 46, 47
node package execute (npx) 46
nonce 90
not only SQL (NoSQL) 56

O
OAuth 102

cons 103
pros 103
URL 102

OAuth2
URL 108

OAuth2 API
invoking, remotely 108-112

OAuth2-powered web app
creating 112-120

OAuth Client
adding, to Spring Boot project 105-108

OpenJDK version 17, 195

P
Paketo Buildpacks

URL 177
plain old Java objects (POJOs) 61
portfolio components

adding, Spring Boot starters used 10, 11
probe 70

production
things, tweaking 182, 183

profile-based property files
creating 161-163

profiles 15
projection types 63
Project Reactor 205

applications, scaling with 211
properties

setting, with environment variables 166, 167
property-based beans

configuring 17, 18
property overrides

ordering 167-169

Q
Query By Example

using, to search tricky answers 70-74
query derivation 62
Querydsl 57

R
R2dbcEntityTemplate

data, loading with 233, 234
Reactive 204

importance 204
reactive data

repository, creating 230, 231
supplying, to API controller 234-236

reactive data store
selecting 229, 230

reactive GET method
used, for serving data 208, 209

reactive POST method
used, for consuming incoming data 210

Index 245

Reactive Relational Database
Connectivity (R2DBC) 9, 229

working with 231-233
reactive Spring Boot application

creating 207, 208
Reactive Stream 205

Processor 205
Publisher 205
Subscriber 205
Subscription 205
URL 204

reactive template
serving 212

reactive web controller
creating 213, 214

React.js app
creating 48-54

Reactor Netty 208
Redis 56
roles 88
RSocket 205
RxJava 3 205

S
scopes 102
sdkman

reference link 194
Secure Sockets Layer (SSL) 11
security policies

testing, with Spring Security Test 146-151
self link 225
signals 204
Simple Object Access Protocol (SOAP) 9
single abstract method (SAM) 83
single-responsibility principle (SRP) 60
smoke test 145
Spinnaker 186

Spring beans 6
application context 6, 7
autoconfiguring 6

Spring Boot
autoconfiguration policies, exploring 7-9
reference link 196
scaling with 183-187

Spring Boot 2.7
versus Spring Boot 3.0 200
versus Spring Native 200

Spring Boot 3.0
versus Spring Boot 2.7 200
versus Spring Native 200

Spring Boot application
Spring Data, adding to existing 56

Spring Boot project
OAuth Client, adding to 105-108

Spring Boot Starter HATEOAS
versus Spring HATEOAS 219

Spring Boot starters
used, for adding portfolio

components 10, 11
Spring Boot web appNode.js

Node.js, hooking to 44
Spring Data

adding, to existing Spring
Boot application 56

methods, securing 92
repository, creating 62, 63
using, to manage data 57

Spring Data JPA
adding, to project 58

Spring HATEOAS
tasks 222

Spring Initializr
reference link 192
URL 173

Spring Integration 19

Index246

Spring MVC 80
versus Spring Web 10

Spring MVC web controller
creating 27, 28

Spring Native 200
versus Spring Boot 2.7 and 3.0 200

Spring Security 10, 77
adding, to project 78
reference link 102

Spring Security Test
security policies, testing with 146-151

Spring Web
versus Spring MVC 10

Spring WebFlux 80, 207, 219
SQL-parsing library 75
start.spring.io

using, benefits 25, 26
using, to augment an existing project 28-30
using, to build apps 24, 25

StepVerifier 233
Structured Query Language (SQL) 70
stub 134

T
Technology Compatibility Kit (TCK) 195
templates 57

demo data, adding to 31-33
leveraging, to create content 30, 31

Testcontainers
adding, to application 139, 141
data repositories, testing with 142-146

tests
creating, for domain objects 123

Thymeleaf 99, 212
pros and cons 215

Thymeleaf template
creating 214-219
reactive data, dealing with 236-238

Twelve-Factor App 168
reference link 168

type erasure 160

U
uber JAR

creating 172-174
users

creating, with custom security policy 79-81

W
web application

building 34, 35
web controllers

creating 26
testing, with MockMVC 127-130

web routes
securing 85-89

WebSockets/Aeron 205
wiring 7
work stealing 211, 228

Y
YAML Ain’t Markup Language (YAML) 11

switching to 164, 166

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packt.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Spring Boot and Angular

Devlin Basilan Duldulao, Seiji Ralph Villafranca

ISBN: 978-1-80324-321-4

•	 Explore how to architect Angular for enterprise-level app development

•	 Create a Spring Boot project using Spring Initializr

•	 Build RESTful APIs for enterprise-level app development

•	 Understand how using Redis for caching can improve your application's performance

•	 Discover CORS and how to add CORS policy in the Spring Boot application for better security

•	 Write tests to maintain a healthy Java Spring Boot application

•	 Implement testing and modern deployments of frontend and backend applications

249Other Books You May Enjoy

Full Stack Development with Spring Boot and React - Third Edition

Juha Hinkula

ISBN: 978-1-80181-678-6

•	 Make fast and RESTful web services powered by Spring Data REST

•	 Create and manage databases using ORM, JPA, Hibernate, and more

•	 Explore the use of unit tests and JWTs with Spring Security

•	 Employ React Hooks, props, states, and more to create your frontend

•	 Discover a wide array of advanced React and third-party components

•	 Build high-performance applications complete with CRUD functionality

•	 Harness MUI to customize your frontend

•	 Test, secure, and deploy your applications with high efficiency

250

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Learning Spring Boot 3.0, we’d love to hear your thoughts! If you purchased the
book from Amazon, please click here to go straight to the Amazon review
page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

251

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803233307

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

