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Preface

The first edition of this book came out on the day of my 40" birthday. It feels like
yesterday, but actually it was 6 years ago. In a few weeks, the book became a top
seller, and to this day that translates into lovely messages and emails I get from
readers all over the world.

A couple of years later, I wrote a second edition. That turned out to be a better book,
which kept growing in sales and popularity.

And now here we are, at the third edition, and this time it won't just be me narrating
the story, because for this edition I have been joined by my dear friend and
colleague, Heinrich Kruger.

Together, we have reworked the book's structure. We removed what we felt didn't fit
anymore, and added what we thought would benefit you the most. We have shuffled
things around, amended old chapters, and written new ones. We have made sure
that both our contributions and our best ideas are on each page you will read. We are
both very happy about this.

I always wanted to work on a project like this with Heinrich, for whom I have felt
enormous respect since I got to know him. He has brought to this book his unique
perspective, his incredible talent as a software developer, and he's helped me with
my English too!

Everything has been updated to Python 3.9, but of course most of the code will still
work with any recent version of Python 3. The scary chapter about concurrency

is gone, and the one on Web programming has been replaced with another which
introduces the concept of APIs. We have also added a whole new chapter about
packaging Python applications, which we feel is the perfect way to close the book.

We are confident this edition is much better than the previous ones; it's more mature,
it tells a better story, and it will take you places.

[xv]
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One thing I am particularly happy about is that the soul of the book is still the
same. This is not just a book about Python. This is, first and foremost, a book about
programming. A book that aims to convey to you as much information as possible,
and sometimes, for practical reasons, it does so by pointing you to the Web to dig
deeper, to investigate further.

It is designed to last. It expresses concepts and information in a way that should
stand the test of time, for as long as possible. We have put in a great amount of
thinking to achieve that.

And it will require you to work hard. The code is available for you to download, and
we do encourage you to play with it, expand it, change it, break it, and see things for
yourself. We want you to develop critical thinking. We want you to be independent,

empowered.

That is the soul of the book, and our hope is that wherever you are in your journey,
it will help you go further, become a better programmer, in any way that is possible.

When we received the drafts from the second edition to start working on the third
one, I was surprised to notice I could not find myself in those pages. Those pages
have shown me how my thinking, and therefore my writing, has changed, in the
past few years.

Change is interwoven in the very fabric of this universe. Everything changes, all the
time. So, our wish for you is that you never fixate on opinions, that you never grow
stale. Instead, we hope our work, and the way we present it to you, will help you
stay flexible, smart, pragmatic, and adaptable.

We wish you good luck! And don't forget to enjoy the ride!

Who this book is for

This book is for people who have some programming experience, but not necessarily
with Python. Some knowledge of basic programming concepts will come in handy,
although it is not a requirement.

Even if you already have some experience with Python, this book can still be useful
to you, both as a reference to Python's fundamentals, and for providing a wide
range of considerations and suggestions collected over four combined decades of
experience.
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What this book covers

Chapter 1, A Gentle Introduction to Python, introduces you to fundamental
programming concepts and constructs of the Python language. It also guides you
through getting Python up and running on your computer.

Chapter 2, Built-In Data Types, introduces you to Python built-in data types. Python
has a very rich set of native data types, and this chapter will give you a description
and examples for each of them.

Chapter 3, Conditionals and Iteration, teaches you how to control the flow of code by
inspecting conditions, applying logic, and performing loops.

Chapter 4, Functions, the Building Blocks of Code, teaches you how to write functions.
Functions are essential to code reuse, to reducing debugging time, and, in general,
to writing higher quality code.

Chapter 5, Comprehensions and Generators, introduces you to the functional aspects of
Python programming. This chapter teaches you how to write comprehensions and
generators, which are powerful tools that you can use to write faster, more concise
code, and save memory.

Chapter 6, OOP, Decorators, and Iterators, teaches you the basics of object-oriented
programming with Python. It shows you the key concepts and all the potentials of
this paradigm. It also shows you one of the most useful features of the language:
decorators.

Chapter 7, Exceptions and Context Managers, introduces the concept of exceptions,
which represent errors that occur in applications, and how to handle them. It also
covers context managers, which are very useful when dealing with resources.

Chapter 8, Files and Data Persistence, teaches you how to deal with files, streams, data
interchange formats, and databases.

Chapter 9, Cryptography and Tokens, touches upon the concepts of security, hashes,
encryption, and tokens, which are essential for writing secure software.

Chapter 10, Testing, teaches you the fundamentals of testing, and guides you through
a few examples on how to test your code, in order to make it more robust, fast, and
reliable.

Chapter 11, Debugging and Profiling, shows you the main methods for debugging and
profiling code and some examples of how to apply them.
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Chapter 12, GUIs and Scripting, guides you through an example from two different
points of view: one implementation is a script, and the other one is a Graphical User
Interface (GUI) application.

Chapter 13, Data Science in Brief, illustrates a few key concepts by means of a
comprehensive example, using the powerful Jupyter Notebook.

Chapter 14, Introduction to API Development, introduces API development and type
hinting in Python. It also provides different examples on how to consume an APIL

Chapter 15, Packaging Python Applications, guides you through the process of
preparing a project to be published, and shows you how to upload the result onto
the Python Package Index (PyPI).

To get the most out of this book

You are encouraged to follow the examples in this book. You will need a computer,
an internet connection, and a browser. The book is written in Python 3.9, but it
should also work, for the most part, with any recent version of Python 3. We have
given guidelines on how to install Python on your operating system. The procedures
to do that normally get out of date quickly, so we recommend you refer to the

most up-to-date guide on the Web to find precise setup instructions. We have also
explained how to install all the extra libraries used in the various chapters. No
particular editor is required to type the code; however, we suggest that those who
are interested in following the examples should consider adopting a proper coding
environment. We have offered suggestions on this matter in the first chapter.

Download the example code files

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Learn-Python-Programming-Third-Edition. We also have other
code bundles from our rich catalog of books and videos available at https://github.
com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801815093_ColorImages.pdf.

[ xviii ]
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Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. For example: "Within the learn.pp folder, we will create a virtual
environment."

A block of code is set as follows:

def local():
m=7
print(m)

When we wish to draw your attention to a particular part of a code block, the

relevant lines or items are set in bold:

X = [1J 2, 3]
def func(x):

x[1] = 42
# this changes the caller!
X = 'something else'’

Any command-line input or output is written as follows:

>>> import sys
>>> print(sys.version)

Bold: Indicates a new term, an important word, or words that you see on the screen,
for example, in menus or dialog boxes. For example: "When an error is detected
during execution, it is called an exception."

\/{n’, Warnings or important notes appear like this.

\ 7/
- /@\' Tips and tricks appear like this.
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Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book's title in the
subject of your message. If you have questions about any aspect of this book, please
email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful
if you would report this to us. Please visit http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packtpub.com with a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit http://authors.packtpub.com.
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Share Your Thoughts

Once you've read Learn Python Programming, Third edition, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page for this
book and share your feedback.

Your review is important to us and the tech community and will help us make sure
we're delivering excellent quality content.
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A Gentle Introduction
to Python

"Give a man a fish and you feed him for a day. Teach a man to fish and you feed him
for a lifetime."

— Chinese proverb
According to Wikipedia, computer programming is:

"...the process of designing and building an executable computer program to accomplish a
specific computing result or to perform a specific task. Programming involves tasks such as:
analysis, generating algorithms, profiling algorithms' accuracy and resource consumption,
and the implementation of algorithms in a chosen programming language (commonly referred
to as coding)."

(https://en.wikipedia.org/wiki/Computer_programming)

In a nutshell, computer programming, or coding, as it is sometimes known, is telling
a computer to do something using a language it understands.

Computers are very powerful tools, but unfortunately, they can't think for
themselves. They need to be told everything: how to perform a task; how to evaluate
a condition to decide which path to follow; how to handle data that comes from a
device, such as a network or a disk; and how to react when something unforeseen
happens, in the case of, say, something being broken or missing.

[11]
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A Gentle Introduction to Python

You can code in many different styles and languages. Is it hard? We would say yes
and no. It's a bit like writing — it is something that everybody can learn. But what
if you want to become a poet? Writing alone is not enough. You have to acquire a
whole other set of skills, and this will involve a longer and greater effort.

In the end, it all comes down to how far you want to go down the road. Coding is
not just putting together some instructions that work. It is so much more!

Good code is short, fast, elegant, easy to read and understand, simple, easy to modify
and extend, easy to scale and refactor, and easy to test. It takes time to be able to
write code that has all these qualities at the same time, but the good news is that
you're taking the first step towards it at this very moment by reading this book. And
we have no doubt you can do it. Anyone can; in fact, we all program all the time,
only we aren't aware of it. Take the following example...

Say you want to make instant coffee. You have to get a mug, the instant coffee jar,

a teaspoon, water, and the kettle. Even if you're not aware of it, you're evaluating a
lot of data. You're making sure that there is water in the kettle and that the kettle is
plugged in, that the mug is clean, and that there is enough coffee in the jar. Then, you
boil the water and maybe, in the meantime, you put some coffee in the mug. When
the water is ready, you pour it into the mug, and stir.

So, how is this programming?

Well, we gathered resources (the kettle, coffee, water, teaspoon, and mug) and we
verified some conditions concerning them (the kettle is plugged in, the mug is clean,
and there is enough coffee). Then we started two actions (boiling the water and
putting coffee in the mug), and when both of them were completed, we finally ended
the procedure by pouring water into the mug and stirring.

Can you see the parallel? We have just described the high-level functionality of a
coffee program. It wasn't that hard because this is what the brain does all day long:
evaluate conditions, decide to take actions, carry out tasks, repeat some of them, and
stop at some point.

All you need now is to learn how to deconstruct all those actions you do
automatically in real life so that a computer can actually make some sense of them.
You need to learn a language as well so that the computer can be instructed.

So, this is what this book is for. We'll show you one way in which you can code
successfully, and we'll try to do that by means of many simple but focused examples
(our favorite kind).

[2]



Chapter 1

In this chapter, we are going to cover the following:

* Python's characteristics and ecosystem

* Guidelines on how to get up and running with Python and virtual
environments

* How to run Python programs

* How to organize Python code and its execution model

A proper introduction

We love to make references to the real world when we teach coding; we believe they
help people to better retain the concepts. However, now is the time to be a bit more
rigorous and see what coding is from a more technical perspective.

When we write code, we are instructing a computer about the things it has to do.
Where does the action happen? In many places: the computer memory, hard drives,
network cables, the CPU, and so on. It's a whole world, which most of the time is the
representation of a subset of the real world.

If you write a piece of software that allows people to buy clothes online, you will
have to represent real people, real clothes, real brands, sizes, and so on and so forth,
within the boundaries of a program.

In order to do so, you will need to create and handle objects in the program being
written. A person can be an object. A car is an object. A pair of trousers is an object.
Luckily, Python understands objects very well.

The two main features any object has are properties and methods. Let's take the
example of a person as an object. Typically, in a computer program, you'll represent
people as customers or employees. The properties that you store against them are
things like a name, a Social Security number, an age, whether they have a driving
license, an email, gender, and so on. In a computer program, you store all the data
needed in order to use an object for the purpose that needs to be served. If you are
coding a website to sell clothes, you probably want to store the heights and weights
as well as other measures of your customers so that the appropriate clothes can be
suggested to them. So, properties are characteristics of an object. We use them all
the time: Could you pass me that pen? —Which one? — The black one. Here, we used the
color (black) property of a pen to identify it (most likely it was being kept alongside
different colored pens for the distinction to be necessary).

Methods are things that an object can do. As a person, I have methods such as speak,
walk, sleep, wake up, eat, dream, write, read, and so on. All the things that I can do could
be seen as methods of the objects that represent me.

[31]




A Gentle Introduction to Python

So, now that you know what objects are, that they expose methods that can be run
and properties that you can inspect, you're ready to start coding. Coding, in fact, is
simply about managing those objects that live in the subset of the world that we're
reproducing in our software. You can create, use, reuse, and delete objects as you
please.

According to the Data Model chapter on the official Python documentation (https://
docs.python.org/3/reference/datamodel.html):

"Objects are Python's abstraction for data. All data in a Python program is
represented by objects or by relations between objects."

We'll take a closer look at Python objects in Chapter 6, OOP, Decorators, and Iterators.
For now, all we need to know is that every object in Python has an ID (or identity), a
type, and a value.

Once created, the ID of an object is never changed. It's a unique identifier for it, and
it's used behind the scenes by Python to retrieve the object when we want to use

it. The type also never changes. The type states what operations are supported by
the object and the possible values that can be assigned to it. We'll see Python's most
important data types in Chapter 2, Built-In Data Types. The value can be changed or
not: if it can, the object is said to be mutable; otherwise, it is said to be immutable.

How, then, do we use an object? We give it a name, of course! When you give an
object a name, then you can use the name to retrieve the object and use it. In a more
generic sense, objects, such as numbers, strings (text), and collections, are associated
with a name. Usually, we say that this name is the name of a variable. You can see
the variable as being like a box, which you can use to hold data.

So, you have all the objects you need; what now? Well, we need to use them, right?
We may want to send them over a network connection or store them in a database.
Maybe display them on a web page or write them into a file. In order to do so, we
need to react to a user filling in a form, or pressing a button, or opening a web page
and performing a search. We react by running our code, evaluating conditions to
choose which parts to execute, how many times, and under which circumstances.

To do all this, we need a language. That's what Python is for. Python is the language
we will use together throughout this book to instruct the computer to do something
for us.

Now, enough of this theoretical stuff —let's get started.

[4]
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Enter the Python

Python is the marvelous creation of Guido Van Rossum, a Dutch computer scientist
and mathematician who decided to gift the world with a project he was playing
around with over Christmas 1989. The language appeared to the public somewhere
around 1991, and since then has evolved to be one of the leading programming
languages used worldwide today.

We started programming when we were both very young. Fabrizio started at the age
of 7, on a Commodore VIC-20, which was later replaced by its bigger brother, the
Commodore 64. The language it used was BASIC. Heinrich started when he learned
Pascal in high school. Between us, we've programmed in Pascal, Assembly, C, C++,
Java, JavaScript, Visual Basic, PHP, ASP, ASP .NET, C#, and plenty of others we can't
even remember; only when we landed on Python did we finally have that feeling
that you have when you find the right couch in the shop. When all of your body is
yelling: Buy this one! This one is perfect!

It took us about a day to get used to it. Its syntax is a bit different from what we
were used to, but after getting past that initial feeling of discomfort (like having new
shoes), we both just fell in love with it. Deeply. Let's see why.

About Python

Before we get into the gory details, let's get a sense of why someone would want to
use Python (we recommend you read the Python page on Wikipedia to get a more
detailed introduction).

In our opinion, Python epitomizes the following qualities.

Portability

Python runs everywhere, and porting a program from Linux to Windows or Mac is
usually just a matter of fixing paths and settings. Python is designed for portability
and it takes care of specific operating system (OS) quirks behind interfaces that
shield you from the pain of having to write code tailored to a specific platform.

Coherence

Python is extremely logical and coherent. You can see it was designed by a brilliant
computer scientist. Most of the time you can just guess how a method is called if you
don't know it.
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You may not realize how important this is right now, especially if you aren't that
experienced as a programmer, but this is a major feature. It means less cluttering in
your head, as well as less skimming through the documentation, and less need for
mappings in your brain when you code.

Developer productivity

According to Mark Lutz (Learning Python, 5th Edition, O'Reilly Media), a Python
program is typically one-fifth to one-third the size of equivalent Java or C++ code.
This means the job gets done faster. And faster is good. Faster means being able to
respond more quickly to the market. Less code not only means less code to write,
but also less code to read (and professional coders read much more than they write),
maintain, debug, and refactor.

Another important aspect is that Python runs without the need for lengthy and
time-consuming compilation and linkage steps, so there is no need to wait to see the
results of your work.

An extensive library

Python has an incredibly extensive standard library (it is said to come with batteries
included). If that wasn't enough, the Python international community maintains a
body of third-party libraries, tailored to specific needs, which you can access freely at
the Python Package Index (PyPI). When you code Python and realize that a certain
feature is required, in most cases, there is at least one library where that feature has
already been implemented.

Software quality

Python is heavily focused on readability, coherence, and quality. The language's
uniformity allows for high readability, and this is crucial nowadays, as coding is
more of a collective effort than a solo endeavor. Another important aspect of Python
is its intrinsic multiparadigm nature. You can use it as a scripting language, but you
can also exploit object-oriented, imperative, and functional programming styles — it
is extremely versatile.

Software integration

Another important aspect is that Python can be extended and integrated with
many other languages, which means that even when a company is using a different
language as their mainstream tool, Python can come in and act as a gluing agent
between complex applications that need to talk to each other in some way. This is
more of an advanced topic, but in the real world, this feature is important.
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Satisfaction and enjoyment

Last, but by no means least, there is the fun of it! Working with Python is fun; we

can code for eight hours and leave the office happy and satisfied, unaffected by the
struggle other coders have to endure because they use languages that don't provide
them with the same amount of well-designed data structures and constructs. Python
makes coding fun, no doubt about it. And fun promotes motivation and productivity.

These are the major aspects of why we would recommend Python to everyone. Of
course, there are many other technical and advanced features that we could have
mentioned, but they don't really pertain to an introductory section like this one. They
will come up naturally, chapter after chapter, as we learn about Python in greater detail.

What are the drawbacks?

Probably, the only drawback that one could find in Python, which is not due to
personal preferences, is its execution speed. Typically, Python is slower than its
compiled siblings. The standard implementation of Python produces, when you
run an application, a compiled version of the source code called byte code (with the
extension .pyc), which is then run by the Python interpreter. The advantage of this
approach is portability, which we pay for with increased runtimes due to the fact
that Python is not compiled down to the machine level, as other languages are.

Despite this, Python speed is rarely a problem today, hence its wide use regardless of
this aspect. What happens is that, in real life, hardware cost is no longer a problem,
and usually it's easy enough to gain speed by parallelizing tasks. Moreover, many
programs spend a great proportion of the time waiting for I/O operations to
complete; therefore, the raw execution speed is often a secondary factor to the overall
performance.

In situations where speed really is crucial, one can switch to faster Python
implementations, such as PyPy, which provides, on average, just over a four-fold
speedup by implementing advanced compilation techniques (check https://pypy.
org/ for reference). It is also possible to write performance-critical parts of your code
in faster languages, such as C or C++, and integrate that with your Python code.
Libraries such as pandas and NumPy (which are commonly used for doing data
science in Python) use such techniques.

There are a number of different implementations of the Python
‘ p, language. In this book, we will use the reference implementation,
\/ known as CPython. You can find a list of other implementations at:
https://www.python.org/download/alternatives/
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If that isn't convincing enough, you can always consider that Python has been used
to drive the backend of services such as Spotify and Instagram, where performance is
a concern. From this, it can be seen that Python has does its job perfectly well.

Who is using Python today?

Still not convinced? Let's take a very brief look at the companies using Python today:
Google, YouTube, Dropbox, Zope Corporation, Industrial Light & Magic, Walt
Disney Feature Animation, Blender 3D, Pixar, NASA, the NSA, Red Hat, Nokia,
IBM, Netflix, Yelp, Intel, Cisco, HP, Qualcomm, JPMorgan Chase, and Spotify —to
name just a few. Even games such as Battlefield 2, Civilization IV, and The Sims 4 are
implemented using Python.

Python is used in many different contexts, such as system programming, web and
API programming, GUI applications, gaming and robotics, rapid prototyping,
system integration, data science, database applications, real-time communication,
and much more. Several prestigious universities have also adopted Python as their
main language in computer science courses.

Setting up the environment

Before talking about the installation of Python on your system, let us tell you about
the Python version you will be using in this book.

Python 2 versus Python 3

Python comes in two main versions: Python 2, which is the older version, and
Python 3, which is the most recent rendition. The two versions, though similar, are
incompatible in some respects.

In the real world, Python 2 is now only running legacy software. Python 3 has been
out since 2008, and the lengthy transition phase from Version 2 has mostly come

to an end. Python 2 was widely used in the industry, and it took a long time and
sometimes a huge effort to make the transition. Some Python 2 software will never be
updated to Python 3, simply because the cost and effort involved is not considered
worth it. Some companies, therefore, prefer to keep their old legacy systems running
just as they are, rather than updating them just for the sake of it.

At the time of writing, Python 2 has been deprecated and all of the most widely
used libraries have been ported to Python 3. It is strongly recommended to start new
projects in Python 3.
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During the transition phase, many libraries were rewritten to be compatible with
both versions, mostly harnessing the power of the six library (the name comes from
the multiplication 2 x 3, due to the porting from Version 2 to 3), which helps you to
introspect and adapt the behavior according to the version used. Now that Python
2 has reached its end of life (EOL), some libraries have started to reverse that trend
and are dropping support for Python 2.

, According to PEP 373 (https://legacy.python.org/dev/peps/
\/;p; pep-0373/), the EOL of Python 2.7 was set to 2020. The last version

is 2.7.18; there will not be a Python 2.8.

On Fabrizio's machine (MacBook Pro), this is the latest Python version:

>>> import sys
>>> print(sys.version)

3.9.2 (default, Mar 1 2021, 23:29:21)
[Clang 12.0.0 (clang-1200.0.32.29)]

So, you can see that the version is 3.9.2, which was out on the 1# of March 2021. The
preceding text is a little bit of Python code that was typed into a console. We'll talk
about this in a moment.

All the examples in this book will be run using Python 3.9. If you wish to follow the
examples and download the source code for this book, please make sure you are
using the same version.

Installing Python

We never really understood the point of having a setup section in a book, regardless
of what it is that you have to set up. Most of the time, between the time the author
writes the instructions and the time you actually try them out, months have passed —
if you're lucky. One version change, and things may not work in the way they are
described in the book. Luckily, we have the web now, so in order to help you get up
and running, we will just give you pointers and objectives.

We are conscious that the majority of readers would probably have preferred to have
guidelines in the book. We doubt it would have made their life easier, as we believe
that if you want to get started with Python you have to put in that initial effort in
order to get familiar with the ecosystem. It is very important, and it will boost your
confidence to face the material in the chapters ahead. If you get stuck, remember that
Google is your friend —when it comes to setting up, everything related to this can be
found online.
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Setting up the Python interpreter

First of all, let's talk about your OS. Python is fully integrated and, most likely,
already installed in almost every Linux distribution. If you have a Mac, it's likely that
Python is already there as well (although possibly only Python 2.7); if you're using
Windows, however, you probably need to install it.

Getting Python and the libraries you need up and running requires a bit of
handiwork. Linux and macOS seem to be the most user-friendly for Python
programmers; Windows, on the other hand, may require a bit more effort.

The place you want to start is the official Python website: https://www.python.org.
This website hosts the official Python documentation and many other resources that
you will find very useful. Take the time to explore it.

Another excellent resource on Python and its ecosystem is

!
_\@'_ https://docs.python-guide.org. You can find instructions
- there to set up Python on different operating systems, using
- different methods.

Find the appropriate "download" section and choose the installer for your OS. If you
are on Windows, make sure that when you run the installer, you check the option
install pip (actually, we would suggest making a complete installation, just to be
safe, of all the components the installer holds). If you need more guidance on how to
install Python on Windows, please check out this page on the official documentation:
https://docs.python.org/3/using/windows.html.

Now that Python is installed on your system, the objective is to be able to open a
console and run the Python interactive shell by typing python.

\/‘/ Please note that we usually refer to the Python interactive shell

simply as the Python console.

To open the console in Windows, go to the Start menu, choose Run, and type cmd.
If you encounter anything that looks like a permission problem while working

on the examples in this book, please make sure you are running the console with
administrator rights.

On macOS, start a Terminal by going to Applications > Utilities > Terminal.
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If you are on Linux, chances are that you know all that there is to know about the
console!

We will use the term console interchangeably to indicate the Linux console, the
Windows Command Prompt, and the Macintosh Terminal. We will also indicate the
command-line prompt with the Linux default format, like this:

$ sudo apt-get update

If you're not familiar with that, please take some time to learn the basics of how a
console works. In a nutshell, after the $ sign, you will normally find an instruction
that you have to type. Pay attention to capitalization and spaces, as they are very
important.

Whatever console you open, type python at the prompt, and make sure the Python
interactive shell shows up. Type exit() to quit. Keep in mind that you may have to
specify python3 if your OS comes with Python 2 preinstalled.

This is roughly what you should see when you run Python (it will change in some
details according to the version and OS):

fab $ python3
Python 3.9.2 (default, Mar 1 2021, 23:29:21)
[Clang 12.0.0 (clang-1200.0.32.29)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

Now that Python is set up and you can run it, it is time to make sure you have the
other tool that will be indispensable to follow the examples in the book: a virtual
environment.

About virtual environments

When working with Python, it is very common to use virtual environments. Let's see
what they are and why we need them by means of a simple example.

You install Python on your system and you start working on a website for Client X.
You create a project folder and start coding. Along the way, you also install some
libraries; for example, the Django framework, which we'll explore in Chapter 14,
Introduction to API Development. Let's say the Django version you install for Project X
is 2.2,
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Now, your website is so good that you get another client, Y. She wants you to build
another website, so you start Project Y and, along the way, you need to install Django
again. The only issue is that now the Django version is 3.0 and you cannot install it on
your system because this would replace the version you installed for Project X. You
don't want to risk introducing incompatibility issues, so you have two choices: either
you stick with the version you have currently on your machine, or you upgrade it and
make sure the first project is still fully working correctly with the new version.

Let's be honest, neither of these options is very appealing, right? Definitely not. But
there's a solution: virtual environments!

Virtual environments are isolated Python environments, each of which is a folder
that contains all the necessary executables to use the packages that a Python project
would need (think of packages as libraries for the time being).

So, you create a virtual environment for Project X, install all the dependencies, and
then you create a virtual environment for Project Y, installing all its dependencies
without the slightest worry because every library you install ends up within the
boundaries of the appropriate virtual environment. In our example, Project X will
hold Django 2.2, while Project Y will hold Django 3.0.

It is of vital importance that you never install libraries directly at
the system level. Linux, for example, relies on Python for many
, different tasks and operations, and if you fiddle with the system
\/;p> installation of Python, you risk compromising the integrity of the
whole system. So, take this as a rule, such as brushing your teeth
before going to bed: always create a virtual environment when you
start a new project.

When it comes to creating a virtual environment on your system, there are a few different
methods to carry this out. As of Python 3.5, the suggested way to create a virtual
environment is to use the venv module. You can look it up on the official documentation
page (https://docs.python.org/3/1library/venv.html) for further information.

If you're using a Debian-based distribution of Linux, for example,
\// you will need to install the venv module before you can use it:
)-)

sudo apt-get install python3.9-venv

Another common way of creating virtual environments is to use the virtualenv
third-party Python package. You can find it on its official website: https://
virtualenv.pypa.io.
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In this book, we will use the recommended technique, which leverages the venv
module from the Python standard library.

Your first virtual environment

It is very easy to create a virtual environment, but according to how your system

is configured and which Python version you want the virtual environment to run,
you need to run the command properly. Another thing you will need to do, when
you want to work with it, is to activate it. Activating virtual environments basically
produces some path juggling behind the scenes so that when you call the Python
interpreter from that shell, you're actually calling the active virtual environment one,
instead of the system one. We will show you a full example on both Windows and
Ubuntu (on a Macg, it's very similar to Ubuntu). We will:

1. Open a terminal and change into the folder (directory) we use as root for our
projects (our folder is srv). We are going to create a new folder called my-
project and change into it.

Create a virtual environment called 1pp3ed.

After creating the virtual environment, we will activate it. The methods are
slightly different between Linux, macOS, and Windows.

4. Then, we will make sure that we are running the desired Python version
(3.9.X) by running the Python interactive shell.

5. Deactivate the virtual environment.

Some developers prefer to call all virtual environments the same
name (for example, .venv). This way they can configure tools and
‘ / run scripts against any virtual environment by just knowing the
\p/ name of the project they are located in. The dot in . venv is there
because in Linux/macOS, prepending a name with a dot makes
that file or folder invisible.

These steps are all you need to start a project.

We are going to start with an example on Windows (note that you might get a
slightly different result, according to your OS, Python version, and so on). In this
listing, lines that start with a hash, #, are comments, spaces have been introduced
for readability, and an arrow, -, indicates where the line has wrapped around due to
lack of space:

C:\Users\Fab\srv>mkdir my-project # step 1

C:\Users\Fab\srv>cd my-project
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:\Users\Fab\srv\my-project>where python # check system python
:\Users\Fab\AppData\Local\Programs\Python\Python39\python.exe
:\Users\Fab\AppData\Local\Microsoft\WindowsApps\python.exe
:\Users\Fab\srv\my-project>python -m venv lpp3ed # step 2

:\Users\Fab\srv\my-project>lpp3ed\Scripts\activate # step 3

# check python again, now virtual env python is listed first
(1pp3ed) C:\Users\Fab\srv\my-project>where python

C:\Users\Fab\srv\my-project\lpp3ed\Scripts\python.exe
C:\Users\Fab\AppData\Local\Programs\Python\Python39\python.exe
C:\Users\Fab\AppData\Local\Microsoft\WindowsApps\python.exe

(1lpp3ed) C:\Users\Fab\srv\my-project>python # step 4

Python 3.9.2 (tags/v3.9.2:1a79785, Feb 19 2021, 13:44:55)

> [MSC v.1928 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.
>>> exit()

(1pp3ed) C:\Users\Fab\srv\my-project>deactivate # step 5
C:\Users\Fab\srv\my-project>

Each step has been marked with a comment, so you should be able to follow along
quite easily.

On a Linux machine, the steps are the same, but the commands are structured
slightly differently. Moreover, you might have to execute some additional setup
steps to be able to use the venv module to create a virtual environment. It is
impossible to give instructions for all the Linux distributions out there, so please
have a look online to find what is appropriate for your distribution.

Once you are set up, these are the instructions necessary to create a virtual
environment:

fab@fvm:~/srv$ mkdir my-project # step 1
fab@fvm:~/srv$ cd my-project

fab@fvm:~/srv/my-project$ which python3.9 # check system python
/usr/bin/python3.9 # <-- system python3.9

fab@fvm:~/srv/my-project$ python3.9 -m venv lpp3ed # step 2
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fab@fvm:~/srv/my-project$ source ./lpp3ed/bin/activate # step 3
# check python again: now using the virtual environment's one
(lpp3ed) fab@fvm:~/srv/my-project$ which python
/home/fab/srv/my-project/lpp3ed/bin/python

(lpp3ed) fab@fvm:~/srv/my-project$ python # step 4

Python 3.9.2 (default, Feb 20 2021, 20:56:08)

[GCC 9.3.0] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>> exit()

(lpp3ed) fab@fvm:~/srv/my-project$ deactivate # step 5
fab@fvm:~/srv/my-project$

Something to notice here is that in order to activate the virtual environment, we need
to run the 1pp3ed/bin/activate script, which needs to be sourced. When a script is
sourced, it means that it is executed in the current shell, and therefore its effects last
after the execution. This is very important. Also notice how the prompt changes

after we activate the virtual environment, showing its name on the left (and how it
disappears when we deactivate it).

At this point, you should be able to create and activate a virtual environment.
Please try and create another one without us guiding you. Get acquainted with this
procedure — it is something that you will always be doing: we never work system-wide
with Python, remember? Virtual environments are extremely important.

The source code for the book contains a dedicated folder for each chapter. When the
code shown in the chapter requires third-party libraries to be installed, we will include
a requirements.txt file (or an equivalent requirements folder with more than one
text file inside) that you can use to install the libraries required to run that code. We
suggest that when experimenting with the code for a chapter, you create a dedicated
virtual environment for that chapter. This way, you will be able to get some practice in
the creation of virtual environments, and the installation of third-party libraries.

Installing third-party libraries

In order to install third-party libraries, we need to use the Python
/ Package Installer, known as pip. Chances are that it is already
\/;p> available to you within your virtual environment, but if not, you
can learn all about it on its documentation page: https://pip.
pypa.io.
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The following example shows how to create a virtual environment and install a
couple of third-party libraries taken from a requirements file.

mpro:srv fab$ mkdir my-project
mpro:srv fab$ cd my-project/

mpro:my-project fab$ python3.9 -m venv lpp3ed
mpro:my-project fab$ source ./lpp3ed/bin/activate

(lpp3ed) mpro:my-project fab$ cat requirements.txt
Django==3.1.7
requests==2.25.1

# the following instruction shows how to use pip to install
# requirements from a file
(lpp3ed) mpro:my-project fab$ pip install -r requirements.txt
Collecting Django==3.1.7

Using cached Django-3.1.7-py3-none-any.whl (7.8 MB)

. much more collection here ...

Collecting requests==2.25.1
Using cached requests-2.25.1-py2.py3-none-any.whl (61 kB)

Installing collected packages: ..., Django, requests,
Successfully installed Django-3.1.7 ... requests-2.25.1 ...

(lpp3ed) mpro:my-project fab$

As can be seen at the bottom of the listing, pip has installed both libraries that are
in the requirements file, plus a few more. This happened because both django and
requests have their own list of third-party libraries that they depend upon, and
therefore pip will install them automatically for us.

Now, with the scaffolding out of the way, we are ready to talk a bit more about
Python and how it can be used. Before we do that though, allow us to say a few
words about the console.

Your friend, the console

In this, the era of GUIs and touchscreen devices, it seems a little ridiculous to have to
resort to a tool such as the console, when everything is just about one click away.
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But the truth is every time you remove your right hand from the keyboard (or the left
one, if you're a lefty) to grab your mouse and move the cursor over to the spot you
want to click on, you're losing time. Getting things done with the console, counter-
intuitive though it may at first seem, results in higher productivity and speed.
Believe us, we know —you will have to trust us on this.

Speed and productivity are important, and even though we have nothing against
the mouse, being fluent with the console is very good for another reason: when you
develop code that ends up on some server, the console might be the only available
tool to access the code on that server. If you make friends with it, you will never get
lost when it is of utmost importance that you don't (typically, when the website is
down and you have to investigate very quickly what has happened).

If you're still not convinced, please us the benefit of the doubt and give it a try. It's
easier than you think, and you won't regret it. There is nothing more pitiful than a
good developer who gets lost within an SSH connection to a server because they are
used to their own custom set of tools, and only to that.

Now, let's get back to Python.

How to run a Python program

There are a few different ways in which you can run a Python program.

Running Python scripts

Python can be used as a scripting language; in fact, it always proves itself very
useful. Scripts are files (usually of small dimensions) that you normally execute to

do something like a task. Many developers end up having their own arsenal of tools
that they fire when they need to perform a task. For example, you can have scripts to
parse data in a format and render it into another one; or you can use a script to work
with files and folders; you can create or modify configuration files — technically, there
is not much that cannot be done in a script.

It is rather common to have scripts running at a precise time on a server. For example,
if your website database needs cleaning every 24 hours (for example, the table that
stores the user sessions, which expire pretty quickly but aren't cleaned automatically),
you could set up a Cron job that fires your script at 3:00 A.M. every day.

According to Wikipedia, the software utility Cron is a time-based
, job scheduler in Unix-like computer operating systems. People
\/;n> who set up and maintain software environments use Cron (or a
similar technology) to schedule jobs (commands or shell scripts) to
run periodically at fixed times, dates, or intervals.
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We have Python scripts to do all the menial tasks that would take us minutes or
more to do manually, and at some point, we decided to automate. We'll devote half
of Chapter 12, GUIs and Scripting, to scripting with Python.

Running the Python interactive shell

Another way of running Python is by calling the interactive shell. This is something
we already saw when we typed python on the command line of our console.

So, open up a console, activate your virtual environment (which by now should be
second nature to you, right?), and type python. You will be presented with a few
lines that should look something like this:

(1pp3ed) mpro:my-project fab$ python
Python 3.9.2 (default, Mar 1 2021, 23:29:21)
[Clang 12.0.0 (clang-1200.0.32.29)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

Those >>> are the prompt of the shell. They tell you that Python is waiting for you
to type something. If you type a simple instruction, something that fits in one line,
that's all you will see. However, if you type something that requires more than one
line of code, the shell will change the prompt to ..., giving you a visual clue that
you're typing a multiline statement (or anything that would require more than one
line of code).

Go on, try it out; let's do some basic math:

> 3 + 7

10

>>> 10 / 4
2.5

>>> 2 ** 1024

1797693134862315907729305190789602473361797697894230657273430081157
732675805500963132708477322407536021120113879871393357658789768814
416622492847430639474124377767893424865485276302219601246094119453
082952085005768838150682342462881473913110540827237163350510684586
298239947245938479716304835356329624224137216

The last operation is showing you something incredible. We raise 2 to the power of
1024, and Python handles this task with no trouble at all. Try to do it in Java, C++, or
C#. It won't work, unless you use special libraries to handle such big numbers.
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We use the interactive shell every day. It's extremely useful to debug very quickly;
for example, to check if a data structure supports an operation. Or maybe to inspect
or run a piece of code.

When you use Django (a web framework), the interactive shell is coupled with it and
allows you to work your way through the framework tools, to inspect the data in the
database, and much more. You will find that the interactive shell soon becomes one
of your dearest friends on this journey you are embarking on.

Another solution, which comes in a much nicer graphic layout, is to use the
Integrated Development and Learning Environment (IDLE). It's quite a simple
Integrated Development Environment (IDE), which is intended mostly for
beginners. It has a slightly larger set of capabilities than the bare interactive shell you
get in the console, so you may want to explore it. It comes for free in the Windows
Python installer and you can easily install it on any other system. You can find more
information about it on the Python website.

Monty Python, so it's rumored that the name IDLE was chosen in
honor of Eric Idle, one of Monty Python's founding members.

Q’ Guido Van Rossum named Python after the British comedy group,
\"/

Running Python as a service

Apart from being run as a script, and within the boundaries of a shell, Python can be
coded and run as an application. We'll see many examples throughout this book of
this mode. We will understand more about it in a moment, when we talk about how
Python code is organized and run.

Running Python as a GUI application

Python can also be run as a Graphical User Interface (GUI). There are several
frameworks available, some of which are cross-platform, and some others that are
platform-specific. In Chapter 12, GUIs and Scripting, we'll see an example of a GUI
application created using Tkinter, which is an object-oriented layer that lives on top
of Tk (Tkinter means Tk interface).

Tk is a GUI toolkit that takes desktop application development to
/ a higher level than the conventional approach. It is the standard
\/{p, GUI for Tool Command Language (Tcl), but also for many other
dynamic languages, and it can produce rich native applications
that run seamlessly under Windows, Linux, macOS, and more.
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Tkinter comes bundled with Python; therefore, it gives the programmer easy access
to the GUI world, and for these reasons, we have chosen it to be the framework for
the GUI examples that are presented in this book.

Among the other GUI frameworks, the following are the most widely used:

* PyQt5/PySide 2

*  wxPython

* Kivy
Describing them in detail is outside the scope of this book, but you can find all the
information you need on the Python website:

https://docs.python.org/3/faq/gui.html

Information can be found in the What platform-independent GUI toolkits exist for
Python? section. If GUIs are what you're looking for, remember to choose the one you
want according to some basic principles. Make sure they:

* Offer all the features you may need to develop your project
* Run on all the platforms you may need to support
* Rely on a community that is as wide and active as possible

*  Wrap graphic drivers/tools that you can easily install/access

How is Python code organized?

Let's talk a little bit about how Python code is organized. In this section, we will start
to enter the proverbial rabbit hole and introduce more technical names and concepts.

Starting with the basics, how is Python code organized? Of course, you write your
code into files. When you save a file with the extension . py, that file is said to be a
Python module.

If you are on Windows or macOS, which typically hide file
/ extensions from the user, we recommend that you change the
\/;p> configuration so that you can see the complete names of the files.
This is not strictly a requirement, only a suggestion that may come
in handy when discerning files from each other.

It would be impractical to save all the code that it is required for software to work
within one single file. That solution works for scripts, which are usually not longer
than a few hundred lines (and often they are shorter than that).
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A complete Python application can be made of hundreds of thousands of lines of
code, so you will have to scatter it through different modules, which is better, but not
nearly good enough. It turns out that even like this, it would still be impractical to
work with the code. So, Python gives you another structure, called a package, which
allows you to group modules together. A package is nothing more than a folder that
must contain a special file, __init__.py. This does not need to hold any code, but its
presence is required to tell Python that this is not just a typical folder —it is actually a
package.

As always, an example will make all of this much clearer. We have created an
example structure in our book project, and when we type in the console:

$ tree -v example

We get a tree representation of the contents of the ch1/example folder, which holds
the code for the examples of this chapter. Here's what the structure of a really simple
application could look like:

example

F— core.py
— run.py

L— util

F— _init__.py
— db.py
— math.py

L network.py

You can see that within the root of this example, we have two modules, core.py and
run.py, and one package, util. Within core.py, there may be the core logic of our
application. On the other hand, within the run.py module, we can probably find

the logic to start the application. Within the util package, we expect to find various
utility tools, and in fact, we can guess that the modules there are named based on

the types of tools they hold: db.py would hold tools to work with databases, math.py
would, of course, hold mathematical tools (maybe our application deals with financial
data), and network.py would probably hold tools to send/receive data on networks.

As explained before, the __init__.py file is there just to tell Python that utilisa
package and not just a simple folder.

Had this software been organized within modules only, it would have been harder to
infer its structure. We placed a module only example under the ch1/files_only folder;
see it for yourself:

$ tree -v files_only
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This shows us a completely different picture:

files_only

— core.py
— db.py

F— math.py

I— network.py
L— run.py

It is a little harder to guess what each module does, right? Now, consider that this is
just a simple example, so you can guess how much harder it would be to understand
a real application if we could not organize the code into packages and modules.

How do we use modules and packages?

When a developer is writing an application, it is likely that they will need to apply
the same piece of logic in different parts of it. For example, when writing a parser

for the data that comes from a form that a user can fill in a web page, the application
will have to validate whether a certain field is holding a number or not. Regardless of
how the logic for this kind of validation is written, it's likely that it will be needed for
more than one field.

For example, in a poll application, where the user is asked many questions, it's likely
that several of them will require a numeric answer. These might be:

*  Whatis your age?
* How many pets do you own?
* How many children do you have?

* How many times have you been married?

It would be very bad practice to copy/paste (or, said more formerly, duplicate) the validation
logic in every place where we expect a numeric answer. This would violate the don't repeat
yourself (DRY) principle, which states that you should never repeat the same piece of code
more than once in your application. In spite of the DRY principle, we feel the need here to
stress the importance of this principle: you should never repeat the same piece of code more than
once in your application!
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There are several reasons why repeating the same piece of logic can be very bad, the
most important ones being;:

* There could be a bug in the logic, and therefore you would have to correct it
in every copy.

*  You may want to amend the way you carry out the validation, and again,
you would have to change it in every copy.

*  You may forget to fix or amend a piece of logic because you missed it when
searching for all its occurrences. This would leave wrong or inconsistent
behavior in your application.

*  Your code would be longer than needed for no good reason.

Python is a wonderful language and provides you with all the tools you need to
apply the coding best practices. For this particular example, we need to be able to
reuse a piece of code. To do this effectively, we need to have a construct that will
hold the code for us so that we can call that construct every time we need to repeat
the logic inside it. That construct exists, and it's called a function.

We are not going too deep into the specifics here, so please just remember

that a function is a block of organized, reusable code that is used to perform a

task. Functions can assume many forms and names, according to what kind of
environment they belong to, but for now this is not important. Details will be seen
once we are able to appreciate them, later on, in the book. Functions are the building
blocks of modularity in your application, and they are almost indispensable. Unless
you are writing a super-simple script, functions will be used all the time. Functions
will be explored in Chapter 4, Functions, the Building Blocks of Code.

Python comes with a very extensive library, as mentioned a few pages ago. Now
is a good time to define what a library is: a collection of functions and objects that
provide functionalities to enrich the abilities of a language. For example, within
Python's math library, a plethora of functions can be found, one of which is the
factorial function, which calculates the factorial of a number.

In mathematics, the factorial of a non-negative integer number, N,
denoted as N, is defined as the product of all positive integers less

\;’ than or equal to N. For example, the factorial of 5 is calculated as:
-}

5l =5x4x3x2x1=120

The factorial of 0 is 0! = 1, to respect the convention for an empty
product.
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So, if you wanted to use this function in your code, all you would have to do is to
import it and call it with the right input values. Don't worry too much if input values
and the concept of calling are not clear right now; please just concentrate on the
import part. We use a library by importing what we need from it, which will then be
used specifically. In Python, to calculate 5!, we just need the following code:

>>> from math import factorial
>>> factorial(5)

will be printed in the console for us (in this case, the result of the
function call: 120).

Q’ Whatever we type in the shell, if it has a printable representation,
\"/

Let's go back to our example, the one with core.py, run.py, util, and so on. Here, the
package util is our utility library. This is our custom utility belt that holds all those
reusable tools (that is, functions), which we need in our application. Some of them
will deal with databases (db.py), some with the network (network.py), and some will
perform mathematical calculations (math.py) that are outside the scope of Python's
standard math library and, therefore, we have to code them for ourselves.

We will see in detail how to import functions and use them in their dedicated
chapter. Let's now talk about another very important concept: Python's execution
model.

Python's execution model

In this section, we would like to introduce you to some important concepts, such
as scope, names, and namespaces. You can read all about Python's execution
model in the official language reference (https://docs.python.org/3/reference/
executionmodel.html), of course, but we would argue that it is quite technical and
abstract, so let us give you a less formal explanation first.

Names and namespaces

Say you are looking for a book, so you go to the library and ask someone to obtain
this. They tell you something like Second Floor, Section X, Row Three. So, you go up
the stairs, look for Section X, and so on. It would be very different to enter a library
where all the books are piled together in random order in one big room. No floors,
no sections, no rows, no order. Fetching a book would be extremely hard.
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When we write code, we have the same issue: we have to try and organize it so that
it will be easy for someone who has no prior knowledge about it to find what they
are looking for. When software is structured correctly, it also promotes code reuse.
Furthermore, disorganized software is more likely to contain scattered pieces of
duplicated logic.

As a first example, let us take a book. We refer to a book by its title; in Python lingo,
that would be a name. Python names are the closest abstraction to what other
languages call variables. Names basically refer to objects and are introduced by
name-binding operations. Let's see a quick example (again, notice that anything that
follows a # is a comment):

>>> n =
>>> address = "221b Baker Street, NWl1 6XE, London"

>>> employee =
age': 45,
'role': 'CTO',
"SSN': 'AB1234567°',

>>>
>>>
3
>>> address
'221b Baker Street, NW1l 6XE, London'
>>> employee
{'age': 45, 'role': 'CTO', 'SSN': 'AB1234567'}
>>> other_name
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'other_name' is not defined
>>>

Remember that each Python object has an identity, a type, and a value. We defined
three objects in the preceding code; let's now examine their types and values:

* Aninteger number n (type: int, value: 3)

* A string address (type: str, value: Sherlock Holmes' address)

* A dictionary employee (type: dict, value: a dictionary object with three key/
value pairs)

Fear not, we know we haven't covered what a dictionary is. We'll see, in Chapter 2,
Built-In Data Types, that it is the king of Python data structures.
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B’ Have you noticed that the prompt changed from >>>to ...
\”/

when we typed in the definition of employee? That's because the
definition spans over multiple lines.

So, what are n, address, and employee? They are names, and these can be used

to retrieve data from within our code. They need to be kept somewhere so that
whenever we need to retrieve those objects, we can use their names to fetch them.
We need some space to hold them, hence: namespaces!

A namespace is a mapping from names to objects. Examples are the set of built-in
names (containing functions that are always accessible in any Python program),
the global names in a module, and the local names in a function. Even the set of
attributes of an object can be considered a namespace.

The beauty of namespaces is that they allow you to define and organize your names
with clarity, without overlapping or interference. For example, the namespace
associated with the book we were looking for in the library can be used to import the
book itself, like this:

from library.second_floor.section_x.row_three import book

We start from the library namespace, and by means of the dot (.) operator, we walk
into that namespace. Within this namespace, we look for second_floor, and again we
walk into it with the . operator. We then walk into section_x, and finally, within the
last namespace, row_three, we find the name we were looking for: book.

Walking through a namespace will be clearer when dealing with real code examples.
For now, just keep in mind that namespaces are places where names are associated
with objects.

There is another concept, closely related to that of a namespace, which we would like
to mention briefly: scope.

Scopes

According to Python's documentation:

"A scope is a textual region of a Python program, where a namespace is directly
accessible."

Directly accessible means that, when looking for an unqualified reference to a name,
Python tries to find it in the namespace.
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Scopes are determined statically, but actually, during runtime, they are used

dynamically. This means that by inspecting the source code, you can tell what the
scope of an object is. There are four different scopes that Python makes accessible

(not necessarily all of them are present at the same time, of course):

* The local scope, which is the innermost one and contains the local names.

* The enclosing scope; that is, the scope of any enclosing function. It contains

non-local names and also non-global names.

* The global scope contains the global names.

* The built-in scope contains the built-in names. Python comes with a set of
functions that you can use in an off-the-shelf fashion, such as print, all, abs,

and so on. They live in the built-in scope.

The rule is the following: when we refer to a name, Python starts looking for it in

the current namespace. If the name is not found, Python continues the search in the
enclosing scope, and this continues until the built-in scope is searched. If a name has
still not been found after searching the built-in scope, then Python raises a NameError
exception, which basically means that the name hasn't been defined (seen in the

preceding example).

The order in which the namespaces are scanned when looking for a name is therefore

local, enclosing, global, built-in (LEGB).

This is all very theoretical, so let's see an example. In order to demonstrate local and
enclosing namespaces, we will have to define a few functions. Don't worry if you are
not familiar with their syntax for the moment — that will come in Chapter 4, Functions,
the Building Blocks of Code. Just remember that in the following code, when you see

def, it means we are defining a function:

def local():
m=7
print(m)

local()

print(m)
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In the preceding example, we define the same name m, both in the global scope and in
the local one (the one defined by the local function). When we execute this program
with the following command (have you activated your virtual environment?):

$ python scopesl.py

We see two numbers printed on the console: 7 and 5.

What happens is that the Python interpreter parses the file, top to bottom. First, it
finds a couple of comment lines, which are skipped, then it parses the definition

of the function local. When called, this function will do two things: it will set up a
name to an object representing number 7 and will print it. The Python interpreter
keeps going, and it finds another name binding. This time the binding happens in
the global scope and the value is 5. On the next line, there is a call to the function
local. At this point, Python executes the function, so at this time, the bindingm = 7
happens in the local scope and is printed. Finally, there is a call to the print function,
which is executed and will now print 5.

One very important thing to note is that the part of the code that belongs to the
definition of the local function is indented by four spaces on the right. Python,
in fact, defines scopes by indenting the code. You walk into a scope by indenting,
and walk out of it by unindenting. Some coders use two spaces, others three, but
the suggested number of spaces to use is four. It's a good measure to maximize
readability. We'll talk more about all the conventions you should embrace when
writing Python code later.

In other languages, such as Java, C#, and C++, scopes are created
‘ n/ by writing code within a pair of curly braces: { .. }. Therefore,
\/ in Python, indenting code corresponds to opening a curly brace,

while outdenting code corresponds to closing a curly brace.

What would happen if we removed thatm = 7 line? Remember the LEGB rule.
Python would start looking for m in the local scope (function local), and, not finding
it, it would go to the next enclosing scope. The next one, in this case, is the global one
because there is no enclosing function wrapped around local. Therefore, we would
see the number 5 printed twice on the console. Let's see what the code would look
like in this case:

def local():
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print(m, 'printing from the local scope')

m=>5
print(m, 'printing from the global scope')

local()

Running scopes2.py will print this:

$ python scopes2.py
5 printing from the global scope

5 printing from the local scope

As expected, Python prints m the first time, then when the function local is called,
m is not found in its scope, so Python looks for it following the LEGB chain until m
is found in the global scope. Let's see an example with an extra layer, the enclosing
scope:

def enclosing_func():
m= 13

def local():

print(m, 'printing from the local scope')

local()

m=>5
print(m, 'printing from the global scope')

enclosing_func()
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Running scopes3.py will print on the console:

$ python scopes3.py

5, 'printing from the global scope'
13, ‘'printing from the local scope'

As you can see, the print instruction from the function local is referring to m as
before. m is still not defined within the function itself, so Python starts walking scopes
following the LEGB order. This time m is found in the enclosing scope.

Don't worry if this is still not perfectly clear for now. It will become more clear as
we go through the examples in the book. The Classes section of the Python tutorial
(https://docs.python.org/3/tutorial/classes.html) has an interesting paragraph
about scopes and namespaces. Be sure you read it to gain a deeper understanding of
the subject.

Before we finish off this chapter, we would like to talk a bit more about objects. After
all, basically everything in Python is an object, so they deserve a bit more attention.

Objects and classes

When we introduced objects previously in the A proper introduction section of the
chapter, we said that we use them to represent real-life objects. For example, we sell
goods of any kind on the web nowadays and we need to be able to handle, store, and
represent them properly. But objects are actually so much more than that. Most of
what you will ever do, in Python, has to do with manipulating objects. So, without
going into too much detail (we'll do that in Chapter 6, OOP, Decorators, and Iterators),
we want to give you a brief explanation about classes and objects.

We have already seen that objects are Python's abstraction for data. In fact,
everything in Python is an object: numbers, strings (data structures that hold text),
containers, collections, even functions. You can think of them as if they were boxes
with at least three features: an ID (which is unique), a type, and a value.

But how do they come to life? How do we create them? How do we write our own
custom objects? The answer lies in one simple word: classes.

Objects are, in fact, instances of classes. The beauty of Python is that classes are objects
themselves, but let's not go down this road. It leads to one of the most advanced
concepts of this language: metaclasses. For now, the best way for you to get the
difference between classes and objects is by means of an example.

Say a friend tells you, I bought a new bike! You immediately understand what she's
talking about. Have you seen the bike? No. Do you know what color it is? Nope. The
brand? Nope. Do you know anything about it? Nope.
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But at the same time, you know everything you need in order to understand what
your friend meant when she told you that she bought a new bike. You know that a
bike has two wheels attached to a frame, a saddle, pedals, handlebars, brakes, and so
on. In other words, even if you haven't seen the bike itself, you know of the concept
of bike: an abstract set of features and characteristics that together form something
called a bike.

In computer programming, that is called a class. It's that simple. Classes are used to
create objects. In other words, we all know what a bike is; we know the class. But
then your friend has her own bike, which is an instance of the bike class. Her bike is
an object with its own characteristics and methods. You have your own bike. Same
class, but different instance. Every bike ever created in the world is an instance of the
bike class.

Let's see an example. We will write a class that defines a bike and create two bikes,
one red and one blue. We'll keep the code very simple, but don't fret if everything is
not clear; all you need to care about at this moment is to understand the difference
between a class and an object (or instance of a class):

class Bike:

def __init_ (self, colour, frame_material):
self.colour = colour
self.frame_material = frame_material

def brake(self):
print("Braking!™")

red_bike = Bike('Red', 'Carbon fiber')
blue_bike = Bike('Blue', 'Steel")

print(red_bike.colour)
print(red_bike.frame_material)
print(blue_bike.colour)
print(blue_bike.frame_material)

red_bike.brake()
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We hope by this point that we do not need to tell you to run the file
every time, right? The filename is indicated in the first line of each

\/&/ code block. To execute the code inside a Python module, just run $

python filename.py.

Remember to have your virtual environment activated!

So many interesting things to notice here. First, the definition of a class happens
with the class statement. Whatever code comes after the class statement, and is
indented, is called the body of the class. In our case, the last line that belongs to the
class definition is print("Braking!").

After having defined the class, we are ready to create some instances. You can see
that the class body hosts the definition of two methods. A method is basically (and
simplistically) a function that belongs to a class.

The first method, __init__, is an initializer. It uses some Python magic to set up the
objects with the values we pass when we create it.

Every method that has leading and trailing double underscores,
, in Python, is called a magic method. Magic methods are used by
\/§p> Python for a multitude of different purposes, hence it's never a
good idea to name a custom method using two leading and trailing
underscores. This naming convention is best left to Python.

The other method we defined, brake, is just an example of an additional method that
we could call if we wanted to brake. It contains only a print statement, of course —
it's just an example.

So, two bikes were created: one has a red color and carbon fiber frame, and the
other one has a blue color and a steel frame. We pass those values upon creation;
afterwards, we print out the color property and frame type of the red bike, and the
frame type of the blue one just as an example. We also call the brake method of red_
bike.

One last thing to notice: remember how we said that the set of attributes of an object
is considered to be a namespace? We hope it's clearer now what that meant. You see
that by getting to the frame_type property through different namespaces (red_bike,
blue_bike), we obtain different values. No overlapping, no confusion.

The dot (.) operator is of course the means we use to walk into a namespace, in the
case of objects as well.
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Guidelines for writing good code

Writing good code is not as easy as it seems. As we have already said, good code
exposes a long list of qualities that are difficult to combine. Writing good code is,
to some extent, an art. Regardless of where on the path you will be happy to settle,
there is something that you can embrace that will make your code instantly better:
PEP 8.

A Python Enhancement Proposal (PEP) is a document that
/ describes a newly proposed Python feature. PEPs are also used to
\/;p> document processes around Python language development and to
provide guidelines and information more generally. You can find
an index of all PEPs at https://www.python.org/dev/peps.

PEP 8 is perhaps the most famous of all PEPs. It lays out a simple but effective set of
guidelines to define Python aesthetics so that we write beautiful Python code. If you
take just one suggestion out of this chapter, please let it be this: use PEP 8. Embrace
it. You will thank us later.

Coding today is no longer a check-in/check-out business. Rather, it's more of a social
effort. Several developers collaborate on a piece of code through tools such as Git
and Mercurial, and the result is code that is produced by many different hands.

are most commonly used today. They are essential tools designed
to help teams of developers collaborate on the same software.

C’ Git and Mercurial are the distributed revision control systems that
\’/

These days, more than ever, we need to have a consistent way of writing code, so
that readability is maximized. When all developers of a company abide by PEP 8,
it's not uncommon for any of them landing on a piece of code to think they wrote it
themselves (it actually happens to Fabrizio all the time, because he forgets the code
he writes).

This has a tremendous advantage: when you read code that you could have written
yourself, you read it easily. Without a convention, every coder would structure the
code the way they like most, or simply the way they were taught or are used to, and
this would mean having to interpret every line according to someone else's style.

It would mean having to lose much more time just trying to understand it. Thanks
to PEP 8, we can avoid this. We are such fans of it that we won't sign off a code
review if the code doesn't respect it. So, please take the time to study it; this is very
important.
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Nowadays Python developers can leverage several different tools
to automatically format their code, according to PEP 8 guidelines.
| One such tool is called black, which has become very popular
_\@’_ in recent years. There are also other tools, called linters, which
AR check if the code is formatted correctly, and issue warnings to
- the developer with instructions on how to fix errors. One very
famous linter is flake§. We encourage you to use these tools, as they
simplify the task of coding well-formatted software.

In the examples in this book, we will try to respect it as much as we can. Unfortunately,
we don't have the luxury of 79 characters (which is the maximum line length suggested
by PEP 8), and we will have to cut down on blank lines and other things, but we
promise you we'll try to lay out our code so that it's as readable as possible.

Python culture

Python has been adopted widely in all coding industries. It is used by many different
companies for different purposes, while also being an excellent education tool (it is
excellent for that purpose due to its simplicity, making it easy to learn; it encourages
good habits for writing readable code; it is platform-agnostic; and it supports
modern object-oriented programming paradigms).

One of the reasons Python is so popular today is that the community around it is
vast, vibrant, and full of brilliant people. Many events are organized all over the
world, mostly either around Python or some of its most adopted web frameworks,
such as Django.

Python's source is open, and very often so are the minds of those who embrace it.
Check out the community page on the Python website for more information and get
involved!

There is another aspect to Python, which revolves around the notion of being
Pythonic. It has to do with the fact that Python allows you to use some idioms that
aren't found elsewhere, at least not in the same form or as easy to use (it can feel
claustrophobic when one has to code in a language that is not Python, at times).

Anyway, over the years, this concept of being Pythonic has emerged and, the way
we understand it, it is something along the lines of doing things the way they are
supposed to be done in Python.

To help you understand a little bit more about Python's culture and being Pythonic,
we will show you the Zen of Python—a lovely Easter egq that is very popular. Open
up a Python console and type import this.
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What follows is the result of this instruction:

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

There are two levels of reading here. One is to consider it as a set of guidelines that
have been put down in a fun way. The other one is to keep it in mind, and maybe
read it once in a while, trying to understand how it refers to something deeper: some
Python characteristics that you will have to understand deeply in order to write
Python the way it's supposed to be written. Start with the fun level, and then dig
deeper. Always dig deeper.

A note on IDEs

Just a few words about IDEs... To follow the examples in this book, you don't need
one; any decent text editor will do fine. If you want to have more advanced features,
such as syntax coloring and auto-completion, you will have to get yourself an IDE.
You can find a comprehensive list of open-source IDEs (just Google "Python IDEs")
on the Python website.

Fabrizio uses Visual Studio Code, from Microsoft. It's free to use and it provides an
immense multitude of features, which one can expand by installing extensions.
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After working for many years with several editors, including Sublime Text, this was
the one that felt most productive to him.

Heinrich, on the other hand, is a hardcore Vim user. Although it might have a steep
learning curve, Vim is a very powerful text editor that can also be extended with
plugins. It also has the benefit of being installed in almost every system a software
developer has to work on.

Two important pieces of advice:

*  Whatever IDE you decide to use, try to learn it well so that you can exploit its
strengths, but don't depend on it too much. Practice working with Vim (or any
other text editor) once in a while; learn to be able to do some work on any
platform, with any set of tools.

*  Whatever text editor/IDE you use, when it comes to writing Python,
indentation is four spaces. Don't use tabs, don't mix them with spaces. Use four
spaces, not two, not three, not five. Just use four. The whole world works like
that, and you don't want to become an outcast because you were fond of the
three-space layout.

Summary

In this chapter, we started to explore the world of programming and that of Python.
We've barely scratched the surface, only touching upon concepts that will be
discussed later on in the book in greater detail.

We talked about Python's main features, who is using it and for what, and the
different ways in which we can write a Python program.

In the last part of the chapter, we flew over the fundamental notions of namespaces,
scopes, classes, and objects. We also saw how Python code can be organized using
modules and packages.

On a practical level, we learned how to install Python on our system, how to make
sure we have the tools we need, such as pip, and we also created and activated our
first virtual environment. This will allow us to work in a self-contained environment
without the risk of compromising the Python system installation.

Now you're ready to start this journey with us. All you need is enthusiasm, an
activated virtual environment, this book, your fingers, and probably some coffee.

Try to follow the examples; we'll keep them simple and short. If you put them under
your fingertips, you will retain them much better than if you just read them.

In the next chapter, we will explore Python's rich set of built-in data types. There's
much to cover, and much to learn!
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"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."

— Sherlock Holmes, in The Adventure of the Copper Beeches

Everything you do with a computer is managing data. Data comes in many different
shapes and flavors. It's the music you listen to, the movies you stream, the PDFs you
open. Even the source of the chapter you're reading at this very moment is just a file,
which is data.

Data can be simple, whether it is an integer number to represent an age, or complex,
like an order placed on a website. It can be about a single object or about a collection
of them. Data can even be about data —that is, metadata. This is data that describes
the design of other data structures, or data that describes application data or its
context. In Python, objects are our abstraction for data, and Python has an amazing
variety of data structures that you can use to represent data or combine them to
create your own custom data.

In this chapter, we are going to cover the following:

* Python objects' structures
* Mutability and immutability

* Built-in data types: numbers, strings, dates and times, sequences, collections,
and mapping types

e The collections module

e Enumerations

[37]



Built-In Data Types

Everything is an object

Before we delve into the specifics, we want you to be very clear about objects in
Python, so let's talk a little bit more about them. As we already said, everything in
Python is an object. But what really happens when you type an instruction like age =
42 in a Python module?

| If you go to http://pythontutor.com/, you can type that
_\@’_ instruction into a text box and get its visual representation.
AR Keep this website in mind; it's very useful to consolidate your
- understanding of what goes on behind the scenes.

So, what happens is that an object is created. It gets an id, the type is set to int
(integer number), and the value to 42. A name, age, is placed in the global namespace,
pointing to that object. Therefore, whenever we are in the global namespace, after the
execution of that line, we can retrieve that object by simply accessing it through its
name: age.

If you were to move house, you would put all the knives, forks, and spoons in a box
and label it cutlery. This is exactly the same concept. Here is a screenshot of what it
may look like (you may have to tweak the settings to get to the same view):

Python 3.6
(known limitations) Frames Objects
age = 42 Global frame int
42
Edit this code age

line that just executed
=+ next line to execute

<<First = <Prev
Done running (1 steps)

Customize visualization (NEW!)

Figure 2.1: A name pointing to an object

So, for the rest of this chapter, whenever you read something such as name = some_
value, think of a name placed in the namespace that is tied to the scope in which the
instruction was written, with a nice arrow pointing to an object that has an id, a type,
and a value. There is a little bit more to say about this mechanism, but it's much easier
to talk about it using an example, so we'll come back to this later.
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Mutable or immutable? That is the
question

The first fundamental distinction that Python makes on data is about whether or
not the value of an object can change. If the value can change, the object is called
mutable, whereas if the value cannot change, the object is called immutable.

It is very important that you understand the distinction between mutable and
immutable because it affects the code you write; take this example:

>>> age
>>> age
42

>>> age
>>> age
43

In the preceding code, on line #A, have we changed the value of age? Well, no.

But now it's 43 (we hear what you are saying...). Yes, it's 43, but 42 was an integer
number, of the type int, which is immutable. So, what happened is really that on the
first line, age is a name that is set to point to an int object, whose value is 42. When
we type age = 43, what happens is that another object is created, of the type int

and value 43 (also, the id will be different), and the name age is set to point to it. So,
in fact, we did not change that 42 to 43 —we actually just pointed age to a different
location, which is the new int object whose value is 43. Let's see the same code also
printing the IDs:

>>> age = 42
>>> id(age)
4377553168

>>> age = 43
>>> id(age)
4377553200

Notice that we print the IDs by calling the built-in id() function. As you can see,
they are different, as expected. Bear in mind that age points to one object at a time: 42
first, then 43 —never together.

If you reproduce these examples on your computer, you will notice
‘ n’ that the IDs you get will be different. This is of course expected,
\/ as they are generated randomly by Python, and will be different
every time.
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Now, let's see the same example using a mutable object. For this example, let's just
use a Person object, that has a property age (don't worry about the class declaration
for now —it is there only for completeness):

>>> class Person:
def __init__(self, age):
self.age = age

>>> fab = Person(age=42)
>>> fab.age

42

>>> id(fab)

4380878496

>>> id(fab.age)
4377553168

>>> fab.age = 25
>>> id(fab)
4380878496

>>> id(fab.age)
4377552624

In this case, we set up an object fab whose type is Person (a custom class). On
creation, the object is given the age of 42. We then print it, along with the object ID,
and the ID of age as well. Notice that, even after we change age to be 25, the ID of
fab stays the same (while the ID of age has changed, of course). Custom objects in
Python are mutable (unless you code them not to be). Keep this concept in mind, as
it's very important. We'll remind you about it throughout the rest of the chapter.

Numbers

Let's start by exploring Python's built-in data types for numbers. Python was
designed by a man with a master's degree in mathematics and computer science, so
it's only logical that it has amazing support for numbers.

Numbers are immutable objects.

Integers

Python integers have an unlimited range, subject only to the available virtual
memory. This means that it doesn't really matter how big a number you want to
store is —as long as it can fit in your computer's memory, Python will take care of it.
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Integer numbers can be positive, negative, or 0 (zero). They support all the basic
mathematical operations, as shown in the following example:

17

11
>>>
42

>>>a /b
4.666666666666667
>>>a // b

4

>>>a%b

2

>>> a ** b

2744

The preceding code should be easy to understand. Just notice one important thing:
Python has two division operators, one performs the so-called true division (/),
which returns the quotient of the operands, and another one, the so-called integer
division (//), which returns the floored quotient of the operands.

\/V It might be worth noting that in Python 2 the division operator /

behaves differently than in Python 3.

Let's see how division behaves differently when we introduce negative numbers:

>>> 7 [/ 4
1.75

>>> 7 // 4
1

>>> -7 [/ 4
-1.75

>>> -7 // 4
-2
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This is an interesting example. If you were expecting a -1 on the last line, don't feel
bad, it's just the way Python works. Integer division in Python is always rounded
toward minus infinity. If, instead of flooring, you want to truncate a number to an
integer, you can use the built-in int() function, as shown in the following example:

>>> int(1.75)
1

>>> int(-1.75)
-1

Notice that the truncation is done toward 0.

The int () function can also return integer numbers from string
/ representation in a given base:
\/\_’;‘
>>> int('10110', base=2)

It's worth noting that the power operator, **, also has a built-in function counterpart,
pow(), shown in the example below:

>>> pow (10, 3)

1000.0 # result is float
>>> 10 ** 3

1000 # result is int

>>> pow(10, -3)

0.001

>>> 10 ** -3

0.001

There is also an operator to calculate the remainder of a division. It's called the
modulo operator, and it's represented by a percentage symbol (%):

>>> 10 % 3
1

>>> 10 % 4
2

The pow() function allows a third argument to perform modular exponentiation.
The form with three arguments now accepts a negative exponent in the case where
the base is relatively prime to the modulus.
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The result is the modular multiplicative inverse of the base (or a suitable power of
that, when the exponent is negative, but not -1), modulo the third argument. Here's
an example:

>>> pow (123, 4)

228886641

>>> pow(123, 4, 100)

41 # notice: 228886641 % 100 == 41

>>> pow(37, -1, 43)
7

>>> 7 * 37 % 43

1

One nice feature introduced in Python 3.6 is the ability to add underscores within
number literals (between digits or base specifiers, but not leading or trailing). The
purpose is to help make some numbers more readable, such as 1_000_000_000:

>»> n = 1 024
>>> n
1024

>>> hex_n = 0x_4_0_0
>>> hex_n
1024

Booleans

Boolean algebra is that subset of algebra in which the values of the variables are the
truth values, true and false. In Python, True and False are two keywords that are used
to represent truth values. Booleans are a subclass of integers, so True and False behave
respectively like 1 and 0. The equivalent of the int class for Booleans is the bool class,
which returns either True or False. Every built-in Python object has a value in the
Boolean context, which means they basically evaluate to either True or False when fed
to the bool function. We'll see all about this in Chapter 3, Conditionals and Iteration.

Boolean values can be combined in Boolean expressions using the logical operators
and, or, and not. Again, we'll see them in full in the next chapter, so for now let's just
see a simple example:

>>> int(True)
1
>>> int(False)

(%]
>>> bool(1)
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True

>>> bool(-42)
True

>>> bool(0)
False

>>>

>>> not True

False

>>> not False
True

>>> True and True
True

>>> False or True
True

You can see that True and False are subclasses of integers when you try to add them.
Python upcasts them to integers and performs the addition:

>>> 1 + True
2
>>> False + 42

42
>>> 7 - True
6

Upcasting is a type conversion operation that goes from a subclass
/ to its parent. In this example, True and False, which belong to a
\/;p> class derived from the integer class, are converted back to integers
when needed. This topic is about inheritance and will be explained
in detail in Chapter 6, OOP, Decorators, and Iterators.

Real numbers

Real numbers, or floating point numbers, are represented in Python according to the
IEEE 754 double-precision binary floating point format, which is stored in 64 bits of
information divided into three sections: sign, exponent, and mantissa.

http://en.wikipedia.org/wiki/Double-precision_
floating-point_format.

C’ Quench your thirst for knowledge about this format on Wikipedia:
\”/
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Several programming languages give coders two different formats: single and
double precision. The former takes up 32 bits of memory, the latter 64. Python
supports only the double format. Let's see a simple example:

>>> pi = 3.1415926536
>>> radius = 4.5

>>> area = pi * (radius ** 2)
>>> area
63.617251235400005

In the calculation of the area, we wrapped the radius ** 2 within
parentheses. Even though that wasn't necessary because the power
operator has higher precedence than the multiplication one, we

‘ p/ think the formula reads more easily like that. Moreover, should

\/ you get a slightly different result for the area, don't worry. It might
depend on your OS, how Python was compiled, and so on. As long
as the first few decimal digits are correct, you know it's a correct
result.

The sys.float_info sequence holds information about how floating point numbers
will behave on your system. This is an example of what you might see:

>>> import sys
>>> sys.float_info
sys.float_info(
max=1.7976931348623157e+308, max_exp=1024, max_10 exp=308,

min=2.2250738585072014e-308, min_exp=-1021, min_10 exp=-307,
dig=15, mant_dig=53, epsilon=2.220446049250313e-16, radix=2,
rounds=1

Let's make a few considerations here: we have 64 bits to represent floating point
numbers. This means we can represent at most 2% (that is 18,446,744,073,709,551,616)
distinct numbers. Take a look at the max and epsilon values for the float numbers,
and you will realize that it's impossible to represent them all. There is just not
enough space, so they are approximated to the closest representable number. You
probably think that only extremely big or extremely small numbers suffer from this
issue. Well, think again and try the following in your console:

>»> 0.3 - 0.1 * 3
-5.551115123125783e-17
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What does this tell you? It tells you that double precision numbers suffer from
approximation issues even when it comes to simple numbers like 0.1 or 0.3. Why

is this important? It can be a big problem if you are handling prices, or financial
calculations, or any kind of data that need not to be approximated. Don't worry,
Python gives you the Decimal type, which doesn't suffer from these issues; we'll see
them in a moment.

Complex numbers

Python gives you complex numbers support out of the box. If you don't know what
complex numbers are, they are numbers that can be expressed in the form a + ib,
where a and b are real numbers, and i (or j if you're an engineer) is the imaginary
unit; that is, the square root of -1. a and b are called, respectively, the real and
imaginary part of the number.

It is perhaps unlikely that you will use them, unless you're coding something
scientific. Nevertheless, let's see a small example:

>>> ¢ = 3.14 + 2.73]

>>> ¢ = complex(3.14, 2.73)
>>> c.real

3.14

>>> c.imag

2.73

>>> c.conjugate()
(3.14-2.737)

>>>c * 2

(6.28+5.467)

>>> ¢ ** 2
(2.4067000000000007+17 . 14447)
>>>d =1 + 1j

>»>c - d

(2.14+1.737)

Fractions and decimals

Let's finish the tour of the number department with a look at fractions and decimals.
Fractions hold a rational numerator and denominator in their lowest forms. Let's see
a quick example:

>>> from fractions import Fraction
>>> Fraction(10, 6)
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Fraction(5, 3) # notice it's been simplified
>>> Fraction(1, 3) + Fraction(2, 3)
Fraction(1, 1)

>>> f = Fraction(10, 6)

>>> f.numerator

5

>>> f.denominator

3

>>> f.as_integer_ratio()
(5, 3)

The as_integer_ratio() method has also been added to integers and Booleans. This
is helpful, as it allows you to use it without needing to worry about what type of
number is being worked with.

Although Fraction objects can be very useful at times, it's not that common to spot
them in commercial software. Instead, it is much more common to see decimal
numbers being used in all those contexts where precision is everything; for example,
in scientific and financial calculations.

It's important to remember that arbitrary precision decimal
numbers come at a price in terms of performance, of course. The
/ amount of data to be stored for each number is greater than it is
\/;p> for Fractions or floats. The way they are handled also requires
the Python interpreter to work harder behind the scenes. Another
interesting thing to note is that you can get and set the precision by
accessing decimal.getcontext().prec.

Let's see a quick example with decimal numbers:

>>> from decimal import Decimal as D

>>> D(3.14)
Decimal('3.140000000000000124344978758017532527446746826171875")
>>> D('3.14")

Decimal('3.14")

>>> D(0.1) * D(3) - D(0.3)

Decimal('2.775557561565156540423631668E-17")
>>> D('@0.1") * D(3) - D('0.3")
Decimal('@.0")

>>> D('1.4").as_integer_ratio()

(7, 5)
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Notice that when we construct a Decimal number from a float, it takes on all the
approximation issues a float may come with. On the other hand, when we create a
Decimal from an integer or a string representation of a number, then the Decimal will
have no approximation issues, and therefore no quirky behavior. When it comes to
currency or situations in which precision is of utmost importance, use decimals.

This concludes our introduction to built-in numeric types. Let's now look at
sequences.

Immutable sequences

Let's start with immutable sequences: strings, tuples, and bytes.

Strings and bytes

Textual data in Python is handled with str objects, more commonly known as
strings. They are immutable sequences of Unicode code points. Unicode code
points can represent a character, but can also have other meanings, such as when
formatting, for example. Python, unlike other languages, doesn't have a char type, so
a single character is rendered simply by a string of length 1.

Unicode is an excellent way to handle data, and should be used for the internals of
any application. When it comes to storing textual data though, or sending it on the
network, you will likely want to encode it, using an appropriate encoding for the
medium you are using. The result of an encoding produces a bytes object, whose
syntax and behavior is similar to that of strings. String literals are written in Python
using single, double, or triple quotes (both single or double). If built with triple
quotes, a string can span multiple lines. An example will clarify this:

strl = 'This is a string. We built it with single quotes.'
str2 = "This is also a string, but built with double quotes."
str3 = '''This is built using triple quotes,

. so it can span multiple lines.'''
str4 = """This too

. is a multiline one

... built with triple double-quotes.
>>> str4

'This too\nis a multiline one\nbuilt with triple double-quotes.’
>>> print(str4)

This too

is a multiline one

built with triple double-quotes.
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In #A and #B, we print str4, first implicitly, and then explicitly, using the print()
function. A good exercise would be to find out why they are different. Are you up to
the challenge? (Hint: look up the str() and repr() functions.)

Strings, like any sequence, have a length. You can get this by calling the len()
function:

>>> len(strl)
49

Python 3.9 has introduced two new methods that deal with the prefixes and suffixes
of strings. Here's an example that explains the way they work:

>>> s = 'Hello There'

>>> s.removeprefix('Hell")
‘o There'

>>> s.removesuffix('here")

'Hello T'
>>> s.removeprefix('Ooops")
'Hello There'

The nice thing about them is shown by the last instruction: when we attempt to
remove a prefix or suffix which is not there, the method simply returns a copy of the
original string. This means that these methods, behind the scenes, are checking if
the prefix or suffix matches the argument of the call, and when that's the case, they
remove it.

Encoding and decoding strings

Using the encode/decode methods, we can encode Unicode strings and decode
bytes objects. UTF-8 is a variable-length character encoding, capable of encoding
all possible Unicode code points. It is the most widely used encoding for the web.
Notice also that by adding the literal b in front of a string declaration, we're creating
a bytes object:

>>> s = "This is linicede"

>>> type(s)

<class 'str'>

>>> encoded s = s.encode('utf-8")
>>> encoded_s

b'This is \xc3\xbc\xc5\x8b\xc3\xadc@de' # result: bytes object
>>> type(encoded_s)

<class 'bytes'>

>>> encoded_s.decode('utf-8")

'This is Unicede’
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>>> bytes _obj = b"A bytes object"

>>> type(bytes_obj)
<class 'bytes'>

Indexing and slicing strings

When manipulating sequences, it's very common to access them at one precise
position (indexing), or to get a sub-sequence out of them (slicing). When dealing
with immutable sequences, both operations are read-only.

While indexing comes in one form — zero-based access to any position within the
sequence — slicing comes in different forms. When you get a slice of a sequence, you
can specify the start and stop positions, along with the step. They are separated with
a colon (:) like this: my_sequence[start:stop:step]. All the arguments are optional;
start is inclusive, and stop is exclusive. It's probably better to see an example, rather
than try to explain them any further with words:

>>> s = "The trouble is you think you have time."
>>> s[0]

s[5]

s[:4]
>>> s[4:]
"trouble is you think you have time.'
>>> s[2:14]
‘e trouble is’
>>> s[2:14:3]
‘erb '
>>> s[:]
'The trouble is you think you have time.'

The last line is quite interesting. If you don't specify any of the parameters, Python
will fill in the defaults for you. In this case, start will be the start of the string, stop
will be the end of the string, and step will be the default: 1. This is an easy and quick
way of obtaining a copy of the string s (the same value, but a different object). Can
you think of a way to get the reversed copy of a string using slicing (don't look it
up —find it for yourself)?
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String formatting

One of the features strings have is the ability to be used as a template. There are
several different ways of formatting a string, and for the full list of possibilities, we
encourage you to look up the documentation. Here are some common examples:

>>> greet_old = 'Hello %s!'

>>> greet_old % 'Fabrizio'

'Hello Fabrizio!'

>>> greet_positional = 'Hello {}!’

>>> greet_positional.format('Fabrizio"')

'Hello Fabrizio!'

>>> greet_positional = 'Hello {} {}!'

>>> greet_positional.format('Fabrizio', 'Romano")
'Hello Fabrizio Romano!'

>>> greet_positional_idx = 'This is {@}! {1} loves {@}!’'
>>> greet_positional_idx.format('Python', 'Heinrich")
'This is Python! Heinrich loves Python!'

>>> greet_positional_idx.format('Coffee', 'Fab')

'This is Coffee! Fab loves Coffee!'

>>> keyword = 'Hello, my name is {name} {last_name}’
>>> keyword.format(name='Fabrizio', last_name='Romano')
‘Hello, my name is Fabrizio Romano'

In the previous example, you can see four different ways of formatting strings.

The first one, which relies on the % operator, is deprecated and shouldn't be used
anymore. The current, modern way to format a string is by using the format() string
method. You can see, from the different examples, that a pair of curly braces acts as

a placeholder within the string. When we call format(), we feed it data that replaces
the placeholders. We can specify indexes (and much more) within the curly braces,
and even names, which implies we'll have to call format() using keyword arguments
instead of positional ones.

Notice how greet_positional_idx is rendered differently by feeding different data
to the call to format.

One last feature we want to show you was added to Python in version 3.6, and it's
called formatted string literals. This feature is quite cool (and it is faster than using
the format() method): strings are prefixed with f, and contain replacement fields
surrounded by curly braces.
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Replacement fields are expressions evaluated at runtime, and then formatted using
the format protocol:

>>> name = 'Fab'’

>>> age = 42

>>> f"Hello! My name is {name} and I'm {age}"
"Hello! My name is Fab and I'm 42"

>>> from math import pi
>>> f"No arguing with {pi}, it's irrational..."
"No arguing with 3.141592653589793, it's irrational..."

An interesting addition to f-strings, which was introduced in Python 3.8, is the ability
to add an equals sign specifier within the f-string clause; this causes the expression

to expand to the text of the expression, an equals sign, then the representation of the
evaluated expression. This is great for self-documenting and debugging purposes.
Here's an example that shows the difference in behavior:

>>> user = 'heinrich'
>>> password = 'super-secret'
>>> f"Log in with: {user} and {password}"

'Log in with: heinrich and super-secret'
>>> f"Log in with: {user=} and {password=}"
"Log in with: user='heinrich' and password='super-secret

Check out the official documentation to learn everything about string formatting and
how truly powerful it can be.

Tuples

The last immutable sequence type we are going to look at here is the tuple. A tuple
is a sequence of arbitrary Python objects. In a tuple declaration, items are separated
by commas. Tuples are used everywhere in Python. They allow for patterns that are
quite hard to reproduce in other languages. Sometimes tuples are used implicitly;
for example, to set up multiple variables on one line, or to allow a function to return
multiple objects (in several languages, it is common for a function to return only one
object), and in the Python console, tuples can be used implicitly to print multiple
elements with one single instruction. We'll see examples for all these cases:

>»> t = ()
>>> type(t)
<class 'tuple'>

>>> one_element_tuple = (42, )
>>> three_elements_tuple = (1, 3, 5)
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>»>a, b, c=1, 2, 3
>»> a, b, c
(1, 2, 3)

>>> 3 in three_elements_tuple
True

Notice that the membership operator in can also be used with lists, strings,
dictionaries, and, in general, with collection and sequence objects.

Notice that to create a tuple with one item, we need to put a
comma after the item. The reason is that without the comma that
‘ , item is wrapped in braces on its own, in what can be considered
\p/ a redundant mathematical expression. Notice also that on
assignment, braces are optional, somy_tuple = 1, 2, 3isthe
same as my_tuple = (1, 2, 3).

One thing that tuple assignment allows us to do is one-line swaps, with no need for a
third temporary variable. Let's first see the traditional way of doing it:

a,
1)

let's see how we would do it in Python:
a, b=2o9, 1

a, b =">b, a

a, b

0)

Take a look at the line that shows you the Pythonic way of swapping two values. Do
you remember what we wrote in Chapter 1, A Gentle Introduction to Python? A Python
program is typically one-fifth to one-third the size of equivalent Java or C++ code,
and features like one-line swaps contribute to this. Python is elegant, where elegance
in this context also means economy.

Because they are immutable, tuples can be used as keys for dictionaries (we'll see
this shortly). To us, tuples are Python's built-in data that most closely represent a
mathematical vector. This doesn't mean that this was the reason for which they were
created, though. Tuples usually contain a heterogeneous sequence of elements while,
on the other hand, lists are, most of the time, homogeneous. Moreover, tuples are
normally accessed via unpacking or indexing, while lists are usually iterated over.
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Mutable sequences

Mutable sequences differ from their immutable counterparts in that they can be
changed after creation. There are two mutable sequence types in Python: lists and
byte arrays.

Lists

Python lists are very similar to tuples, but they don't have the restrictions of
immutability. Lists are commonly used for storing collections of homogeneous
objects, but there is nothing preventing you from storing heterogeneous collections
as well. Lists can be created in many different ways. Let's see an example:

>>> [1]

[]

>>> list()

[]

>>> [1, 2, 3]
[1, 2, 3]

>>> [x + 5 for x in [2, 3, 4]]
[7, 8, 9]

>>> list((1, 3, 5, 7, 9))

[1, 3, 5, 7, 9]

>>> list('hello")

[lhl, lel, lll) Ill, Iol]

In the previous example, we showed you how to create a list using various
techniques. We would like you to take a good look at the line with the comment
Python is magic, which we don't expect you to fully understand at this point—
especially if you are unfamiliar with Python. That is called a list comprehension: a
very powerful functional feature of Python, which we will see in detail in Chapter 5,
Comprehensions and Generators. We just wanted to spark your curiosity at this point.

Creating lists is good, but the real fun begins when we use them, so let's see the main
methods they gift us with:

a=1[1, 2, 1, 3]
a.append(13)

a

2, 1, 3, 13]
a.count(1)

a.extend([5, 7])
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>>> a

[1, 2, 1, 3, 13, 5, 7]
>>> a.index(13)

4

>>> a.insert(0, 17)
>>> a

[17, 1, 2, 1, 3, 13, 5, 7]
>>> a.pop()

7

>>> a.pop(3)

1

>>> a

[17, 1, 2, 3, 13, 5]
>>> a.remove(17)

>>> a

[1, 2, 3, 13, 5]
>>> a.reverse()

>>> a

[5, 13, 3, 2, 1]
>>> a.sort()

>>> a

[1, 2, 3, 5, 13]
>>> a.clear()

>>> a

[]

The preceding code gives you a roundup of a list's main methods. We want to show
you how powerful they are, using the method extend() as an example. You can
extend lists using any sequence type:

>>> a = list('hello")

>>> a

['h", 'e', '"1', '1"', '0']

>>> a.append(100)

>>> a

['h', 'e', '1', '1l', 'o', 100]

>>> a.extend((1, 2, 3))

>>> a

['h', 'e', '1', '1', '0', 100, 1, 2, 3]
>>> a.extend('...")

>>> a

['h', '1', 'o', 100, 1, 2, 3,
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Now, let's see the most common operations you can do with lists:

a = [1) 3, 5, 7]
min(a)

max(a)
ED)

from math import prod
prod(a)

len(a)

b =1[6, 7, 8]

a+b

3, 5, 7, 6, 7, 8]

a * 2

3, 5, 7, 1, 3, 5, 7]

Notice how easily we can perform the sum and the product of all values in a list.
The function prod(), from the math module, is just one of the many new additions
introduced in Python 3.8. Even if you don't plan to use it that often, it's always a
good idea to check out the math module and be familiar with its functions, as they
can be quite helpful.

The last two lines in the preceding code are also quite interesting, as they introduce
us to a concept called operator overloading. In short, this means that operators, such
as +, -, *, %, and so on, may represent different operations according to the context
they are used in. It doesn't make any sense to sum two lists, right? Therefore, the +
sign is used to concatenate them. Hence, the * sign is used to concatenate the list to
itself according to the right operand.

Now, let's take a step further and see something a little more interesting. We want to
show you how powerful the sorted method can be and how easy it is in Python to
achieve results that require a great deal of effort in other languages:

>>> from operator import itemgetter

>>> a = [(5: 3): (1: 3), (1, 2)) (2, '1): (4: 9)]
>>> sorted(a)

[(1: 2): (1: 3): (2, '1): (4: 9), (5) 3)]
>>> sorted(a, key=itemgetter(9))

[(1: 3): (1: 2): (2, '1): (4: 9)) (5) 3)]
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>>> sorted(a, key=itemgetter(o, 1))

[(1: 2): (11 3)1 (2) '1)1 (41 9)) (5) 3)]
>>> sorted(a, key=itemgetter(1l))

[(2: '1): (1: 2): (5: 3)1 (11 3)) (4) 9)]
>>> sorted(a, key=itemgetter(1l), reverse=True)

[(4: 9): (5J 3): (1) 3)) (1) 2): (2, '1)]

The preceding code deserves a little explanation. First of all, a is a list of tuples. This
means each element in a is a tuple (a 2-tuple in this case). When we call sorted(my_
list), we get a sorted version of my_list. In this case, the sorting on a 2-tuple works
by sorting them on the first item in the tuple, and on the second when the first one
is the same. You can see this behavior in the result of sorted(a), which yields [ (1,
2), (1, 3), ...].Python also gives us the ability to control which element(s) of
the tuple the sorting must be run against. Notice that when we instruct the sorted
function, to work on the first element of each tuple (with key=itemgetter(0)), the
result is different: [ (1, 3), (1, 2), ...].The sorting is done only on the first
element of each tuple (which is the one at position 0). If we want to replicate the
default behavior of a simple sorted(a) call, we need to use key=itemgetter(o, 1),
which tells Python to sort first on the elements at position 0 within the tuples, and
then on those at position 1. Compare the results and you will see that they match.

For completeness, we included an example of sorting only on the elements at
position 1, and then again, with the same sorting but in reverse order. If you have
ever seen sorting in other languages, you should be quite impressed at this moment.

The Python sorting algorithm is very powerful, and it was written by Tim Peters
(we've already seen this name, can you recall when?). It is aptly named Timsort, and
it is a blend between merge and insertion sort and has better time performances
than most other algorithms used for mainstream programming languages. Timsort is
a stable sorting algorithm, which means that when multiple records score the same
in the comparison, their original order is preserved. We've seen this in the result of
sorted(a, key=itemgetter(®)), which yielded [(1, 3), (1, 2), ...],in which the
order of those two tuples had been preserved because they had the same value at
position 0.

Bytearrays

To conclude our overview of mutable sequence types, let's spend a moment on

the bytearray type. Basically, they represent the mutable version of bytes objects.
They expose most of the usual methods of mutable sequences as well as most of the
methods of the bytes type. Items in a bytearray are integers in the range [0, 256).
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When it comes to intervals, we are going to use the standard
notation for open/closed ranges. A square bracket on one end
means that the value is included, while a round bracket means
that it is excluded. The granularity is usually inferred by the type
of the edge elements so, for example, the interval [3, 7] means all
integers between 3 and 7, inclusive. On the other hand, (3, 7) means
all integers between 3 and 7, exclusive (4, 5, and 6). Items in a
\! /' bytearray type are integers between 0 and 256; 0 is included, 256 is
\"/ not. One reason that intervals are often expressed like this is to ease
coding. If we break a range [a, b) into N consecutive ranges, we can
easily represent the original one as a concatenation like this:

[a,k) + [k,k,) + [k,k) + ... + [k ,,b)

N-12
The middle points (k) being excluded on one end, and included
on the other end, allow for easy concatenation and splitting when
intervals are handled in the code.

Let's see an example with the bytearray type:

>>> bytearray()

bytearray(b'")

>>> bytearray(10)
bytearray(b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00")
>>> bytearray(range(5))
bytearray(b'\x00\x01\x02\x03\x04 ")
>>> name = bytearray(b'Lina")

>>> name.replace(b'L', b'l")
bytearray(b'lina")

>>> name.endswith(b'na"')

True

>>> name.upper()
bytearray(b'LINA")

>>> name.count(b'L")

1

As you can see, there are a few ways to create a bytearray object. They can be
useful in many situations; for example, when receiving data through a socket,
they eliminate the need to concatenate data while polling, hence they can prove to
be very handy. On line #A, we created a bytearray named as name from the bytes
literal b'Lina" to show you how the bytearray object exposes methods from both
sequences and strings, which is extremely handy. If you think about it, they can be
considered as mutable strings.
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Set types

Python also provides two set types, set and frozenset. The set type is mutable,
while frozenset is immutable. They are unordered collections of immutable objects.
Hashability is a characteristic that allows an object to be used as a set member as
well as a key for a dictionary, as we'll see very soon.

From the official documentation (https://docs.python.
org/3.9/glossary.html): "An object is hashable if it has a
hash value which never changes during its lifetime, and can be
compared to other objects. [...] Hashability makes an object usable
as a dictionary key and a set member, because these data structures
‘ , use the hash value internally. Most of Python's immutable built-
\p/ in objects are hashable; mutable containers (such as lists or
dictionaries) are not; immutable containers (such as tuples and
frozensets) are only hashable if their elements are hashable. Objects
which are instances of user-defined classes are hashable by default.
They all compare unequal (except with themselves), and their hash
value is derived from their id()."

Objects that compare equally must have the same hash value. Sets are very
commonly used to test for membership; let's introduce the in operator in the
following example:

small primes = set()
small primes.add(2)
small primes.add(3)
small primes.add(5)
small primes

{2, 3, 5}

>>> small primes.add(1)

>>> small _primes

{1, 2, 3, 5}

>>> small _primes.remove(1)

>>> 3 in small primes

True

>>> 4 in small primes

False

>>> 4 not in small_primes

True

>>> small primes.add(3)
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small_primes

3, 5} # no change, duplication is not allowed
bigger primes = set([5, 7, 11, 13])

small primes | bigger primes

3, 5, 7, 11, 13}

small primes & bigger primes

small primes - bigger primes

3}

In the preceding code, you can see two different ways to create a set. One creates an
empty set and then adds elements one at a time. The other creates the set using a list
of numbers as an argument to the constructor, which does all the work for us. Of
course, you can create a set from a list or tuple (or any iterable) and then you can add
and remove members from the set as you please.

now, just know that iterable objects are objects you can iterate on in
a direction.

C’ We'll look at iterable objects and iteration in the next chapter. For
-}

Another way of creating a set is by simply using the curly braces notation, like this:

>>> small_primes = {2, 3, 5, 5, 3}
>>> small_primes
{2, 3, 5}

Notice we added some duplication to emphasize that the resulting set won't have
any. Let's see an example using the immutable counterpart of the set type, frozenset:

>>> small _primes = frozenset([2, 3, 5, 7])
>>> bigger primes = frozenset([5, 7, 11])
>>> small primes.add(11)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'frozenset' object has no attribute 'add’

>>> small _primes.remove(2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'frozenset' object has no attribute 'remove’
>>> small _primes & bigger_ primes
frozenset ({5, 7})
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As you can see, frozenset objects are quite limited with respect to their mutable
counterpart. They still prove very effective for membership test, union, intersection,
and difference operations, and for performance reasons.

Mapping types: dictionaries

Of all the built-in Python data types, the dictionary is easily the most interesting. It's
the only standard mapping type, and it is the backbone of every Python object.

A dictionary maps keys to values. Keys need to be hashable objects, while values can
be of any arbitrary type. Dictionaries are also mutable objects. There are quite a few
different ways to create a dictionary, so let us give you a simple example of how to
create a dictionary equal to {'A': 1, 'Z': -1} in five different ways:

>>> dict(A=1, Z=-1)

>>> b= {'A": 1, 'Z': -1}

>>> dict(zip(['A', 'Z'], [1, -1]))
>>> dict([('A', 1), ('Z2', -1)])

>>> dict({'z': -1, 'A': 1})
>>> == b == ¢ == == e
True # They are indeed

Have you noticed those double equals? Assignment is done with one equal, while

to check whether an object is the same as another one (or five in one go, in this case),
we use double equals. There is also another way to compare objects, which involves
the is operator, and checks whether the two objects are the same (that is, that they
have the same ID, not just the same value), but unless you have a good reason to use
it, you should use the double equals instead. In the preceding code, we also used
one nice function: zip(). It is named after the real-life zip, which glues together two
parts, taking one element from each part at a time. Let us show you an example:

>>> list(zip(['h', 'e', '1', '1l', 'o'], [1, 2, 3, 4, 5]))
[("h', 1), ('e', 2), ('1", 3), ('1', 4), ('o', 5)]

>>> list(zip('hello', range(1, 6)))
[C*h', 1), ('e’, 2), ('1', 3), ('1', 4), ("o', 5)]

In the preceding example, we have created the same list in two different ways, one
more explicit, and the other a little bit more Pythonic. Forget for a moment that we
had to wrap the 1ist() constructor around the zip() call (the reason is zip() returns
an iterator, not a 1ist, so if we want to see the result, we need to exhaust that iterator
into something —a list in this case), and concentrate on the result. See how zip() has
coupled the first elements of its two arguments together, then the second ones, then
the third ones, and so on?
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Take a look at the zip of your suitcase, or a purse, or the cover of a pillow, and you
will see it works exactly like the one in Python. But let's go back to dictionaries and
see how many wonderful methods they expose for allowing us to manipulate them
as we want. Let's start with the basic operations:

>>> d = {}

>>> d['a']

>>> d['b'] =
>>> len(d)

2

>>> d['a']

1

>>> d

{'a': 1, 'b': 2}
>>> del d['a']
>>> d

{'b"': 2}

>> d['c'] = 3
>>> 'c' in d
True

>>> 3 in d
False

e' in d
False
>>> d.clear()

>>> d

1}

Notice how accessing keys of a dictionary, regardless of the type of operation we're
performing, is done using square brackets. Do you remember strings, lists, and
tuples? We were accessing elements at some position through square brackets as
well, which is yet another example of Python's consistency.

Let's now look at three special objects called dictionary views: keys, values, and
items. These objects provide a dynamic view of the dictionary entries and they
change when the dictionary changes. keys () returns all the keys in the dictionary,
values() returns all the values in the dictionary, and items() returns all the (key,
value) pairs in the dictionary.

Enough with this chatter; let's put all this down into code:

>>> d = dict(zip('hello', range(5)))
>>> d

{'h': 0, 'e': 1,
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>>> d.keys()

dict_keys(['h', 'e', 'l', '0'])
>>> d.values()

dict_values([0, 1, 3, 4])

>>> d.items()

dict_items([('h", @), ('e', 1), ('1", 3), ('o', 4)])
>>> 3 in d.values()

True

>>> ('o', 4) in d.items()

True

There are a few things to note here. First, notice how we are creating a dictionary

by iterating over the zipped version of the string 'hello’ and the list [0, 1, 2, 3,
4]. The string 'hello’ has two '1' characters inside, and they are paired up with
the values 2 and 3 by the zip() function. Notice how in the dictionary, the second
occurrence of the '1' key (the one with the value 3), overwrites the first one (the

one with the value 2). Another thing to notice is that when asking for any view, the
original order in which items were added is now preserved, while before version 3.6
there was no guarantee of that.

As of Python 3.6, the dict type has been reimplemented to use a more compact
representation. This resulted in dictionaries using 20% to 25% less memory when
compared to Python 3.5. Moreover, since Python 3.6, as a side effect, dictionaries
preserve the order in which keys were inserted. This feature has received such a
welcome from the community that in 3.7 it has become an official feature of the
language rather than an implementation side effect. Since Python 3.8, dictionaries are
also reversible!

We'll see how these views are fundamental tools when we talk about iterating
over collections. Let's take a look now at some other methods exposed by Python's
dictionaries —there's plenty of them and they are very useful:

>>> d

{'h': @, 'e': 1,

>>> d.popitem()

("o, 4)

>>> d

{'h': @, 'e': 1, "1': 3}

>>> d.pop('1l")

E}

>>> d.pop('not-a-key")

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
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KeyError: ‘'not-a-key'

>>> d.pop('not-a-key', 'default-value')
‘default-value’

>>> d.update({'another': 'value'})

>>> d.update(a=13)

>>> d

{'h': @, 'e': 1, 'another': 'value', 'a':

>>> d.get('a")

13

>>> d.get('a', 177)
13

>>> d.get('b', 177)
177

>>> d.get('b")

All these methods are quite simple to understand, but it's worth talking about

that None, for a moment. Every function in Python returns None, unless the return
statement is explicitly used to return something else, but we'll see this when we
explore functions. None is frequently used to represent the absence of a value, and

it is quite commonly used as a default value for arguments in function declaration.
Some inexperienced coders sometimes write code that returns either False or None.
Both False and None evaluate to False in a Boolean context, so it may seem that there
is not much difference between them. But actually, we would argue the contrary,
that there is an important difference: False means that we have information, and

the information we have is False. None means no information; no information is very
different from information that is False. In layman's terms, if you ask your mechanic
Is my car ready?, there is a big difference between the answer No, it's not (False) and I
have no idea (None).

One last method we really like about dictionaries is setdefault(). It behaves
like get (), but also sets the key with the given value if it is not there. Let's see an
example:

>>>d = {}

>>> d.setdefault('a', 1)
1

>>> d

{'a': 1}

>>> d.setdefault('a', 5)
1
>>> d

{'a': 1}
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This brings us to the end of this tour of dictionaries. Test your knowledge about
them by trying to foresee what d looks like after this line:

>>> d = {}

>>> d.setdefault('a', {}).setdefault('b', []).append(1)

Don't worry if you don't get it immediately. We just want to encourage you to
experiment with dictionaries.

Python 3.9 sports a brand-new union operator available for dict objects, which was
introduced by PEP 584. When it comes to applying union to dict objects, we need to
remember that union for them is not commutative. This becomes evident when the
two dict objects we're merging have one or more keys in common. Check out this
example:

>>> {**d, **e}

{'a': 'A', 'b":
>>> {**e, **d}
{'b': 'B', 'c':
>>>d |= e
>>> d

{'a': 'A",

Here, dict objects d and e have the key 'b' in common. For the dict object, d, the
value associated with 'b' is 'B*; whereas, for dict e, it's the number 8. This means
that when we merge them with e on the righthand side of the union operator, |, the
value in e overrides the one in d. The opposite happens, of course, when we swap the
positions of those objects in relation to the union operator.

In this example, you can also see how the union can be performed by using the **
operator to produce a dictionary unpacking. It's worth noting that union can also be
performed as an augmented assignment operation (d |= e), which works in place.
Please refer to PEP 584 for more information about this feature.

This concludes our tour of built-in data types. Before we discuss some considerations
about what we've seen in this chapter, we briefly want to take a peek at data types.
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Data types

Python provides a variety of specialized data types, such as dates and times,
container types, and enumerations. There is a whole section in the Python standard
library titled Data Types, which deserves to be explored; it is filled with interesting
and useful tools for each and every programmer's needs. You can find it here:

https://docs.python.org/3/library/datatypes.html

In this section, we are briefly going to take a look at dates and times, collections, and
enumerations.

Dates and times

The Python standard library provides several data types that can be used to deal
with dates and times. This realm may seem innocuous at first glance, but it's actually
quite tricky: timezones, daylight saving time... There are a huge number of ways to
format date and time information; calendar quirks, parsing, and localizing — these
are just a few of the many difficulties we face when we deal with dates and times,
and that's probably the reason why, in this particular context, it is very common for
professional Python programmers to also rely on various third-party libraries that
provide some much-needed extra power.

The standard library

We will start with the standard library, and finish the session with a little overview
of what's out there in terms of the third-party libraries you can use.

From the standard library, the main modules that are used to handle dates and times
are datetime, calendar, zoneinfo, and time. Let's start with the imports you'll need
for this whole section:

>>> from datetime import date, datetime, timedelta, timezone
>>> import time

>>> import calendar as cal
>>> from zoneinfo import ZonelInfo

The first example deals with dates. Let's see how they look:

>>> today = date.today()
>>> today
datetime.date(2021, 3, 28)

>>> today.ctime()
'Sun Mar 28 00:00:00 2021'
>>> today.isoformat()
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'2021-03-28"

>>> today.weekday()

6

>>> cal.day_name[today.weekday()]
'Sunday'

>>> today.day, today.month, today.year
(28, 3, 2021)

>>> today.timetuple()

time.struct_time(
tm_year=2021, tm_mon=3, tm_mday=28,
tm_hour=0, tm _min=0, tm sec=0,
tm_wday=6, tm_yday=87, tm_isdst=-1

We start by fetching the date for today. We can see that it's an instance of the
datetime.date class. Then we get two different representations for it, following the C
and the ISO 8601 format standards, respectively. After that, we ask what day of the
week it is, and we get the number 6. Days are numbered 0 to 6 (representing Monday
to Sunday), so we grab the value of the sixth element in calendar.day_name (notice in
the code that we have substituted calendar with "cal" for brevity).

The last two instructions show how to get detailed information out of a date object.
We can inspect its day, month, and year attributes, or call the timetuple() method
and get a whole wealth of information. Since we're dealing with a date object, notice
that all the information about time has been set to 0.

Let's now play with time:

>>> time.ctime()

‘Sun Mar 28 15:23:17 2021

>>> time.daylight

1

>>> time.gmtime()

time.struct_time(
tm_year=2021, tm_mon=3, tm_mday=28,
tm_hour=14, tm_min=23, tm_sec=34,
tm_wday=6, tm_yday=87, tm_isdst=0

)

>>> time.gmtime(0)

time.struct_time(
tm_year=1970, tm_mon=1, tm_mday=1,
tm_hour=0, tm_min=0, tm_sec=0,
tm_wday=3, tm_yday=1, tm_isdst=0
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)

>>> time.localtime()
time.struct_time(
tm_year=2021, tm_mon=3, tm_mday=28,

tm_hour=15, tm_min=23, tm_sec=50,
tm_wday=6, tm_yday=87, tm_isdst=1
)
>>> time.time()
1616941458.149149

This example is quite similar to the one before, only here, we are dealing with

time. We can see how to get a printed representation of time according to C format
standard, and then how to check if daylight saving time is in effect. The function
gmtime converts a given number of seconds from the epoch to a struct_time object in
UTC. If we don't feed it any number, it will use the current time.

The epoch is a date and time from which a computer system
measures system time. You can see that on the machine used to run

, this code, the epoch is January 1%, 1970. This is the point in time
\/{p: used by both Unix and POSIX.

Coordinated Universal Time or UTC is the primary time
standard by which the world regulates clocks and time.

We finish the example by getting the struct_time object for the current local time
and the number of seconds from the epoch expressed as a float number (time.
time()).

Let's now see an example using datetime objects, which bring together dates and
times.

>>> now = datetime.now()

>>> utcnow = datetime.utcnow()

>>> Nnow

datetime.datetime(2021, 3, 28, 15, 25, 16, 258274)
>>> utcnow

datetime.datetime(2021, 3, 28, 14, 25, 22, 918195)

>>> now.date()
datetime.date(2021, 3, 28)

>>> now.day, now.month, now.year
(28, 3, 2021)

>>> now.date() == date.today()
True
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>>> now.time()

datetime.time(15, 25, 16, 258274)

>>> now.hour, now.minute, now.second, now.microsecond

(15, 25, 16, 258274)

>>> now.ctime()

'Sun Mar 28 15:25:16 2021'

>>> now.isoformat()

'2021-03-28T15:25:16.258274"'

>>> now.timetuple()

time.struct_time(
tm_year=2021, tm_mon=3, tm_mday=28,
tm_hour=15, tm_min=25, tm_sec=16,
tm_wday=6, tm_yday=87, tm_isdst=-1

now.tzinfo
utcnow.tzinfo
now . weekday ()

The preceding example is rather self-explanatory. We start by setting up two
instances that represent the current time. One is related to UTC (utcnow), and the
other one is a local representation (now). It just so happens that we ran this code on
the first day after daylight saving time was introduced in the UK in 2021, so now
represents the current time in BST. BST is one hour ahead of UTC when daylight
saving time is in effect, as can be seen from the code.

You can get date, time, and specific attributes from a datetime object in a similar way as
to what we have already seen. It is also worth noting how both now and utcnow present
the value None for the tzinfo attribute. This happens because those objects are naive.

time zone information, or naive if they don't.

\/‘/ Date and time objects may be categorized as aware if they include

Let's now see how a duration is represented in this context:

>>> f_bday = datetime(
1975, 12, 29, 12, 50, tzinfo=ZoneInfo('Europe/Rome")

)
>>> h_bday = datetime(

1981, 10, 7, 15, 30, 50, tzinfo=timezone(timedelta(hours=2))

)
>>> diff = h_bday - f_bday
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>>> type(diff)

<class 'datetime.timedelta'>
>>> diff.days

2109

>>> diff.total seconds()

182223650.0

>>> today + timedelta(days=49)

datetime.date(2021, 5, 16)

>>> now + timedelta(weeks=7)
datetime.datetime (2021, 5, 16, 15, 25, 16, 258274)

Two objects have been created that represent Fabrizio and Heinrich's birthdays. This
time, in order to show you the alternative, we have created aware objects.

There are several ways to include time zone information when creating a datetime
object, and in this example, we are showing you two of them. One uses the brand-
new ZoneInfo object from the zoneinfo module, introduced in Python 3.9. The
second one uses a simple timedelta, an object that represents a duration.

We then create the diff object, which is assigned as the subtraction of them.

The result of that operation is an instance of timedelta. You can see how we

can interrogate the diff object to tell us how many days Fabrizio and Heinrich's
birthdays are apart, and even the number of seconds that represent that whole
duration. Notice that we need to use total_seconds, which expresses the whole
duration in seconds. The seconds attribute represents the number of seconds
assigned to that duration. So, a timedelta(days=1) will have seconds equal to 0, and
total_seconds equal to 86,400 (which is the number of seconds in a day).

Combining a datetime with a duration adds or subtracts that duration from the
original date and time information. In the last few lines of the example, we can see
how adding a duration to a date object produces a date as a result, whereas adding it
to a datetime produces a datetime, as it is fair to expect.

One of the more difficult undertakings to carry out using dates and times is parsing.
Let's see a short example:

>>> datetime.fromisoformat('1977-11-24719:30:13+01:00")
datetime.datetime(
1977, 11, 24, 19, 30, 13,
tzinfo=datetime.timezone(datetime.timedelta(seconds=3600))

)

>>> datetime.fromtimestamp(time.time())
datetime.datetime(2021, 3, 28, 15, 42, 2, 142696)
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We can easily create datetime objects from ISO-formatted strings, as well as from
timestamps. However, in general, parsing a date from unknown formats can prove
to be a difficult task.

Third-party libraries

To finish off this subsection, we would like to mention a few third-party libraries that
you will very likely come across the moment you will have to deal with dates and
times in your code:

* dateutil: Powerful extensions to datetime (https://dateutil.readthedocs.
io/en/stable/)

* Arrow: Better dates and times for Python (https://arrow.readthedocs.io/
en/latest/)

* pytz: World time zone definitions for Python (https://pythonhosted.org/
pytz/)

These three are some of the most common, and they are worth investigating.

Let's take a look at one final example, this time using the Arrow third-party library:

>>> import arrow

>>> arrow.utcnow()

<Arrow [2021-03-28T14:43:20.017213+00:
>>> arrow.now()

<Arrow [2021-03-28T15:43:39.370099+01:

>>> local = arrow.now('Europe/Rome")
>>> local
<Arrow [2021-03-28T16:59:14.093960+02:
>>> local.to('utc")
<Arrow [2021-03-28T14:59:14.093960+00:
>>> local.to('Europe/Moscow")
<Arrow [2021-03-28T17:59:14.093960+03:
>>> local.to('Asia/Tokyo")
<Arrow [2021-03-28T23:59:14.093960+09:
>>> local.datetime
datetime.datetime(
2021, 3, 28, 16, 59, 14, 93960,
tzinfo=tzfile('/usr/share/zoneinfo/Europe/Rome")
)
>>> local.isoformat()
'2021-03-28T16:59:14.093960+02:00"
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Arrow provides a wrapper around the data structures of the standard library, plus
a whole set of methods and helpers that simplify the task of dealing with dates

and times. You can see from this example how easy it is to get the local date and
time in the Italian time zone (Europe/Rome), as well as to convert it to UTC, or to the
Russian or Japanese time zones. The last two instructions show how you can get the
underlying datetime object from an Arrow one, and the very useful ISO-formatted
representation of a date and time.

The collections module

When Python general-purpose built-in containers (tuple, list, set, and dict) aren't
enough, we can find specialized container data types in the collections module.
They are described in Table 2.1.

Data type Description

namedtuple() | Factory function for creating tuple subclasses with named fields

deque List-like container with fast appends and pops on either end

ChainMap Dictionary-like class for creating a single view of multiple mappings
Counter Dictionary subclass for counting hashable objects

OrderedDict Dictionary subclass with methods that allow for re-ordering entries
defaultdict Dictionary subclass that calls a factory function to supply missing values
UserDict Wrapper around dictionary objects for easier dictionary subclassing
UserlList Wrapper around list objects for easier list subclassing

UserString Wrapper around string objects for easier string subclassing

Table 2.1: Collections module data types

There isn't enough space here to cover them all, but you can find plenty of examples
in the official documentation; here, we will just give a small example to show you
namedtuple, defaultdict, and ChainMap.

namedtuple

A namedtuple is a tuple-like object that has fields accessible by attribute lookup, as
well as being indexable and iterable (it's actually a subclass of tuple). This is sort

of a compromise between a fully-fledged object and a tuple, and it can be useful in
those cases where you don't need the full power of a custom object, but only want
your code to be more readable by avoiding weird indexing. Another use case is
when there is a chance that items in the tuple need to change their position after
refactoring, forcing the coder to also refactor all the logic involved, which can be very
tricky.
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For example, say we are handling data about the left and right eyes of a patient. We
save one value for the left eye (position 0) and one for the right eye (position 1) in a
regular tuple. Here's how that may look:

>>> vision = (9.5, 8.8)
>>> vision
(9.5, 8.8)

>>> vision[9]
9.5
>>> vision[1]
8.8

Now let's pretend we handle vision objects all of the time, and, at some point, the
designer decides to enhance them by adding information for the combined vision, so
that a vision object stores data in this format (left eye, combined, right eye).

Do you see the trouble we're in now? We may have a lot of code that depends on
vision[@] being the left eye information (which it still is) and vision[1] being the
right eye information (which is no longer the case). We have to refactor our code
wherever we handle these objects, changing vision[1] to vision[2], and that can be
painful. We could have probably approached this a bit better from the beginning, by
using a namedtuple. Let us show you what we mean:

from collections import namedtuple

Vision = namedtuple('Vision', ['left', 'right'])
vision = Vision(9.5, 8.8)

vision[@]

vision.left

vision.right

If, within our code, we refer to the left and right eyes using vision.left and vision.
right, all we need to do to fix the new design issue is change our factory and the way
we create instances — the rest of the code won't need to change:

Vision namedtuple('Vision', ['left', 'combined', 'right'])
vision = Vision(9.5, 9.2, 8.8)
vision.left

vision.right

vision.combined
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You can see how convenient it is to refer to those values by name rather than by
position. After all, as a wise man once wrote, Explicit is better than implicit (Can you
recall where? Think Zen if you can't...). This example may be a little extreme; of
course, it's not likely that our code designer will go for a change like this, but you'd
be amazed to see how frequently issues similar to this one occur in a professional
environment, and how painful it is to refactor in such cases.

defaultdict

The defaultdict data type is one of our favorites. It allows you to avoid checking
whether a key is in a dictionary by simply inserting it for you on your first access
attempt, with a default value whose type you pass on creation. In some cases, this
tool can be very handy and shorten your code a little. Let's see a quick example. Say
we are updating the value of age, by adding one year. If age is not there, we assume
it was 0 and we update it to 1:

>>>d = {}

>>> d['age'] = d.get('age', 9) + 1
>>> d

{'age': 1}

>>> d = {'age': 39}

>>> d['age'] = d.get('age', 0) + 1
>>> d

{'age': 40}

Now let's see how it would work with a defaultdict data type. The second line is
actually the short version of an if clause that runs to a length of four lines, and that
we would have to write if dictionaries didn't have the get() method (we'll see all
about if clauses in Chapter 3, Conditionals and Iteration):

>>> from collections import defaultdict
>>> dd = defaultdict(int)
>>> dd['age'] += 1

>>> dd
defaultdict(<class 'int'>, {'age': 1}) # 1, as expected

Notice how we just need to instruct the defaultdict factory that we want an int
number to be used if the key is missing (we'll get 0, which is the default for the int
type). Also notice that even though in this example there is no gain on the number
of lines, there is definitely a gain in readability, which is very important. You can
also use a different technique to instantiate a defaultdict data type, which involves
creating a factory object. To dig deeper, please refer to the official documentation.
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ChainMap

ChainMap is an extremely useful data type which was introduced in Python 3.3.

It behaves like a normal dictionary but, according to the Python documentation,

is provided for quickly linking a number of mappings so they can be treated as a single

unit. This is usually much faster than creating one dictionary and running multiple
update calls on it. ChainMap can be used to simulate nested scopes and is useful in
templating. The underlying mappings are stored in a list. That list is public and can
be accessed or updated using the maps attribute. Lookups search the underlying
mappings successively until a key is found. By contrast, writes, updates, and
deletions only operate on the first mapping.

A very common use case is providing defaults, so let's see an example:

>>> from collections import ChainMap
>>> default_connection = {'host': 'localhost', 'port': 4567}
>>> connection = {'port': 5678}
>>> conn = ChainMap(connection, default_connection)
>>> conn[ 'port']
5678
>>> conn[ "host"']
‘localhost"
>>> conn.maps
[{'port': 5678}, {'host': 'localhost', 'port': 4567}]
>>> conn[ 'host'] = 'packtpub.com'
>>> conn.maps
[{'port': 5678, 'host': 'packtpub.com'},
{'host': 'localhost', 'port': 4567}]
>>> del conn[ 'port']
>>> conn.maps
[{'host"': 'packtpub.com'}, {'host': 'localhost', 'port': 4567}]
>>> conn[ 'port']
4567
>>> dict(conn)
{'host': 'packtpub.com', 'port': 4567}

Isn't it just lovely that Python makes your life so easy? You work on a ChainMap
object, configure the first mapping as you want, and when you need a complete
dictionary with all the defaults as well as the customized items, you can just feed
the ChainMap object to a dict constructor. If you have ever coded in other languages,
such as Java or C++, you probably will be able to appreciate how precious this is,
and how well Python simplifies some tasks.
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Enums

Technically not a built-in data type, as you have to import them from the enum
module, but definitely worth mentioning, are enumerations. They were introduced
in Python 3.4, and though it is not that common to see them in professional code,
we thought it would be a good idea to give you an example anyway for the sake of
completeness.

The official definition of an enumeration is that it is a set of symbolic names (members)
bound to unique, constant values. Within an enumeration, the members can be compared by
identity, and the enumeration itself can be iterated over.

Say you need to represent traffic lights; in your code, you might resort to the
following:

GREEN = 1
YELLOW = 2
RED = 4

TRAFFIC_LIGHTS (GREEN, YELLOW, RED)

traffic_lights = {'GREEN': 1, 'YELLOW': 2, 'RED': 4}

There's nothing special about this code. It's something, in fact, that is very common
to find. But, consider doing this instead:

>>> from enum import Enum
>>> class TrafficLight(Enum):
GREEN = 1
YELLOW = 2
RED = 4

>>> TrafficlLight.GREEN
<TrafficLight.GREEN: 1>

>>> TrafficlLight.GREEN.name
'GREEN"*

>>> TrafficlLight.GREEN.value
1

>>> TrafficLight(1)
<TrafficLight.GREEN: 1>

>>> TrafficLight(4)
<TrafficLight.RED: 4>

[76]



Chapter 2

Ignoring for a moment the (relative) complexity of a class definition, you can
appreciate how this approach may be advantageous. The data structure is much
cleaner, and the API it provides is much more powerful. We encourage you to check
out the official documentation to explore all the great features you can find in the
enum module. We think it's worth exploring, at least once.

Final considerations

That's it. Now you have seen a very good proportion of the data structures that you
will use in Python. We encourage you to take a look at the Python documentation
and experiment further with each and every data type we've seen in this chapter. It's
worth it—believe us. Everything you'll write will be about handling data, so make
sure your knowledge about it is rock solid.

Before we leap into Chapter 3, Conditionals and Iteration, we'd like to share some final
considerations about different aspects that, to our minds, are important and not to be
neglected.

Small value caching

While discussing objects at the beginning of this chapter, we saw that when we
assigned a name to an object, Python creates the object, sets its value, and then points
the name to it. We can assign different names to the same value, and we expect
different objects to be created, like this:

>>> a 1000000
>>> b = 1000000

>>> id(a) == id(b)
False

In the preceding example, a and b are assigned to two int objects, which have the
same value, but they are not the same object—as you can see, their id is not the same.
So, let's do it again:

>>> a 5
>»> b 5

>>> id(a) == id(b)
True

Uh-oh! Is Python broken? Why are the two objects the same now? We didn'tdo a =
b = 5; we set them up separately.
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Well, the answer is performance. Python caches short strings and small numbers to
avoid having many copies of them clogging up the system memory. In the case of
strings, caching or, more appropriately, interning them, also provides a significant
performance improvement for comparison operations. Everything is handled
properly under the hood, so you don't need to worry, but make sure that you
remember this behavior should your code ever need to fiddle with IDs.

How to choose data structures

As we've seen, Python provides you with several built-in data types and, sometimes,
if you're not that experienced, choosing the one that serves you best can be tricky,
especially when it comes to collections. For example, say you have many dictionaries
to store, each of which represents a customer. Within each customer dictionary,
there'san 'id': 'code' unique identification code. In what kind of collection would
you place them? Well, unless we know more about these customers, it's very hard

to answer. What kind of access will we need? What sort of operations will we have
to perform on each of them, and how many times? Will the collection change over
time? Will we need to modify the customer dictionaries in any way? What is going to
be the most frequent operation we will have to perform on the collection?

If you can answer the preceding questions, then you will know what to choose. If

the collection never shrinks or grows (in other words, it won't need to add/delete
any customer object after creation) or shulffles, then tuples are a possible choice.
Otherwise, lists are a good candidate. Every customer dictionary has a unique
identifier though, so even a dictionary could work. Let us draft these options for you:

customerl = {'id': 'abc123', 'full_name': 'Master Yoda'}
customer2 = {'id': 'def456', 'full name': 'Obi-Wan Kenobi'}
customer3 = {'id': 'ghi789', 'full_name': 'Anakin Skywalker'}

customers

(customerl, customer2, customer3)

customers

[customerl, customer2, customer3]

customers = {
"abc123': customerl,
'def456': customer2,
'ghi789': customer3,
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Some customers we have there, right? We probably wouldn't go with the tuple
option, unless we wanted to highlight that the collection is not going to change. We
would say that, usually, a list is better, as it allows for more flexibility.

Another factor to keep in mind is that tuples and lists are ordered collections. If you
use a dictionary (prior to Python 3.6) or a set, you would lose the ordering, so you
need to know if ordering is important in your application.

What about performance? For example, in a list, operations such as insertion and
membership testing can take O(n) time, while they are O(1) for a dictionary. It's not
always possible to use dictionaries though, if we don't have the guarantee that we
can uniquely identify each item of the collection by means of one of its properties,
and that the property in question is hashable (so it can be a key in dict).

If you're wondering what O(n) and O(1) mean, please search "big
O notation". In this context, let's just say that if performing an
operation Op on a data structure takes O(f(n)), it would mean that

‘ / Op takes at most a time ¢ < ¢ * f(n) to complete, where c is some

\p/ positive constant,  is the size of the input, and fis some function.
So, think of O(...) as an upper bound for the running time of an
operation (it can also be used to size other measurable quantities,
of course).

Another way of understanding whether you have chosen the right data structure

is by looking at the code you have to write in order to manipulate it. If everything
comes easily and flows naturally, then you probably have chosen correctly, but if
you find yourself thinking your code is getting unnecessarily complicated, then

you probably should try to decide whether you need to reconsider your choices. It's
quite hard to give advice without a practical case though, so when you choose a data
structure for your data, try to keep ease of use and performance in mind, and give
precedence to what matters most in the context you are in.

About indexing and slicing

At the beginning of this chapter, we saw slicing applied to strings. Slicing, in general,
applies to a sequence: tuples, lists, strings, and so on. With lists, slicing can also be
used for assignment. We have almost never seen this used in professional code, but
still, you know you can. Could you slice dictionaries or sets? We hear you scream,
Of course not! Excellent—we see that we're on the same page here, so let's talk about
indexing.
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There is one characteristic regarding Python indexing that we haven't mentioned
before. We'll show you by way of an example. How do you address the last element
of a collection? Let's see:

list(range(10))

1, 2, 3, 4, 5, 6, 7, 8, 9]
len(a)

a[len(a) - 1]

a[-1]
a[-2]

a[-3]

If list a has 10 elements, then due to the 0-index positioning system of Python, the
first one is at position 0 and the last one is at position 9. In the preceding example,
the elements are conveniently placed in a position equal to their value: @ is at
position 0, 1 at position 1, and so on.

So, in order to fetch the last element, we need to know the length of the whole

list (or tuple, or string, and so on) and then subtract 1. Hence: 1en(a) - 1. This

is so common an operation that Python provides you with a way to retrieve
elements using negative indexing. This proves very useful when performing data
manipulation. Figure 2.2 displays a neat diagram about how indexing works on
the string "HelloThere" (which is Obi-Wan Kenobi sarcastically greeting General
Grievous in Star Wars: Episode 111 - Revenge of the Sith):

Positive Indexing

0 1 2 3 5 6 7 8 9
| H [ e[ 1 |1 o [T [h e [r][e]
-10 9 8 7 6 5 4 3 1

&

Negative Indexing
Figure 2.2: Python indexing

Trying to address indexes greater than 9 or smaller than -10 will raise an IndexError,
as expected.
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About names

You may have noticed that, in order to keep the examples as short as possible,

we have named many objects using simple letters, like a, b, ¢, d, and so on. This is
perfectly fine when debugging on the console or showing thata + b == 7, butit's
bad practice when it comes to professional coding (or any type of coding, for that
matter). We hope you will indulge us where we have done it; the reason is to present
the code in a more compact way.

In a real environment though, when you choose names for your data, you should
choose them carefully — they should reflect what the data is about. So, if you have

a collection of Customer objects, customers is a perfectly good name for it. Would
customers_list, customers_tuple, or customers_collection work as well? Think
about it for a second. Is it good to tie the name of the collection to the datatype? We
don't think so, at least in most cases. So, if you have an excellent reason to do so,

go ahead; otherwise, don't. The reasoning behind this is that once customers_tuple
starts being used in different places of your code, and you realize you actually
want to use a list instead of a tuple, you're up for some fun refactoring (also known
as wasted time). Names for data should be nouns, and names for functions should
be verbs. Names should be as expressive as possible. Python is actually a very
good example when it comes to names. Most of the time you can just guess what a
function is called if you know what it does. Crazy, huh?

Chapter 2 from the book Clean Code by Robert C. Martin is entirely dedicated to names.
It's an amazing book that helped us improve our coding style in many different
ways; it is a must-read if you want to take your coding to the next level.

Summary

In this chapter, we've explored the built-in data types of Python. We've seen how
many there are and how much can be achieved just by using them in different
combinations.

We've seen number types, sequences, sets, mappings, dates, times, and collections
(and a special guest appearance by enumerations). We have also seen that everything
is an object, learned the difference between mutable and immutable, and we've also
learned about slicing and indexing.

We've presented the cases with simple examples, but there's much more that you
can learn about this subject, so stick your nose into the official documentation and go
exploring!
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Most of all, we encourage you to try out all of the exercises by yourself — get your
fingers using that code, build some muscle memory, and experiment, experiment,
experiment. Learn what happens when you divide by zero, when you combine
different number types into a single expression, and when you massage strings. Play
with all data types. Exercise them, break them, discover all their methods, enjoy
them, and learn them very, very well. If your foundation is not rock solid, how good
can your code be? Data is the foundation for everything; data shapes what dances
around it.

The more you progress with the book, the more likely it is that you will find some
discrepancies or maybe a small typo here and there in our code (or yours). You

will get an error message, something will break. That's wonderful! When you code,
things break and you have to debug them, all the time, so consider errors as useful
exercises to learn something new about the language you're using, and not as failures
or problems. Errors will keep coming up, that's for sure, so you may as well start
making your peace with them now.

The next chapter is about conditionals and iteration. We'll see how to actually put
collections to use, and make decisions based on the data that we're presented with.
We'll start to go a little faster now that your knowledge is building up, so make sure
you're comfortable with the contents of this chapter before you move to the next one.
Once more, have fun, explore, and break things —it's a very good way to learn.
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"Would you tell me, please, which way I ought to go from here?"
"That depends a good deal on where you want to get to."

— Lewis Carroll, from Alice's Adventures in Wonderland

In the previous chapter, we looked at Python's built-in data types. Now that you are
familiar with data in its many forms and shapes, it's time to start looking at how a
program can use it.

According to Wikipedia:

In computer science, control flow (or flow of control) is the order in which
individual statements, instructions or function calls of an imperative program are
executed or evaluated.

In order to control the flow of a program, we have two main weapons: conditional
programming (also known as branching) and looping. We can use them in many
different combinations and variations, but in this chapter, instead of going through
all the possible forms of those two constructs in a documentation fashion, we'd rather
give you the basics, and then write a couple of small scripts with you. In the first
one, we will see how to create a rudimentary prime number generator, while in the
second, we'll see how to apply discounts to customers based on coupons. This way,
you should get a better feeling for how conditional programming and looping can
be used.
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In this chapter, we are going to cover the following:

* Conditional programming
* Looping in Python
* Assignment expressions

* A quick peek at the itertools module

Conditional programming

Conditional programming, or branching, is something you do every day, every
moment. It's about evaluating conditions: if the light is green, then I can cross; if it's
raining, then I'm taking the umbrella; and if I'm late for work, then I'll call my manager.

The main tool is the if statement, which comes in different forms and colors, but its
basic function is to evaluate an expression and, based on the result, choose which
part of the code to execute. As usual, let's look at an example:

late = True
if late:
print('I need to call my manager!")

This is possibly the simplest example: when fed to the if statement, late acts

as a conditional expression, which is evaluated in a Boolean context (exactly

like if we were calling bool(1ate)). If the result of the evaluation is True, then

we enter the body of the code immediately after the if statement. Notice that

the print instruction is indented, which means that it belongs to a scope defined by
the if clause. Execution of this code yields:

$ python conditional.l.py

I need to call my manager!

Since late is True, the print() statement was executed. Let's expand on this example:

late = False

if late:

print('I need to call my manager!')
else:

print('no need to call my manager..."')
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This time we set late = False, so when we execute the code, the result is different:

$ python conditional.2.py

no need to call my manager...

Depending on the result of evaluating the late expression, we can either enter
block #1 or block #2, but not both. Block #1 is executed when late evaluates to True,
while block #2 is executed when late evaluates to False. Try assigning False/
True values to the 1ate name, and see how the output for this code changes
accordingly.

The preceding example also introduces the else clause, which becomes very handy
when we want to provide an alternative set of instructions to be executed when an
expression evaluates to False within an if clause. The else clause is optional, as is
evident by comparing the preceding two examples.

A specialized else: elif

Sometimes all you need is to do something if a condition is met (a simple if clause).
At other times, you need to provide an alternative, in case the condition is False (if/
else clause). But there are situations where you may have more than two paths

to choose from; since calling the manager (or not calling them) is a type of binary
example (either you call or you don't), let's change the type of example and keep
expanding. This time, we decide on tax percentages. If your income is less than
$10,000, you don't need to pay any taxes. If it is between $10,000 and $30,000, you
have to pay 20% in taxes. If it is between $30,000 and $100,000, you pay 35% in taxes,
and if you're fortunate enough to earn over $100,000, you must pay 45% in taxes.
Let's put this all down into beautiful Python code:

income = 15000

if income < 10000:
tax_coefficient = 0.0

elif income < 30000:
tax_coefficient = 0.2

elif income < 100000:
tax_coefficient

else:
tax_coefficient

0.35

0.45

print(f'You will pay: ${income * tax_coefficient} in taxes')
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Executing the preceding code yields:

$ python taxes.py

You will pay: $3000.0 in taxes

Let's go through the example one line at a time. We start by setting up the income
value. In the example, your income is $15,000. We enter the if clause. Notice that
this time we also introduced the elif clause, which is a contraction of else-if, and
it's different from a bare else clause in that it also has its own condition. So, the if
expression of income < 10000 evaluates to False, therefore block #1 is not executed.

The control passes to the next condition evaluator: elif income < 3000e. This one
evaluates to True, therefore block #2 is executed, and because of this, Python then
resumes execution after the whole if/elif/elif/else clause (which we can just

call the if clause from now on). There is only one instruction after the if clause, the
print() call, which tells us that you will pay $3000.0 in taxes this year (15,000 *20%).
Notice that the order is mandatory: if comes first, then (optionally) as many elif
clauses as you may need, and then (optionally) a single else clause.

Interesting, right? No matter how many lines of code you may have within

each block, when one of the conditions evaluates to True, the associated block

is executed, and then execution resumes after the whole clause. If none of the
conditions evaluates to True (for example, income = 200000), then the body of the
else clause would be executed (block #4). This example expands our understanding
of the behavior of the else clause. Its block of code is executed when none of the
preceding if/elif/.../elif expressions has evaluated to True.

Try to modify the value of income until you can comfortably execute all blocks

at will (one per execution, of course). And then try the boundaries. This is

crucial, as whenever you have conditions expressed as equalities or inequalities

(== != <, >, <=, >=), those numbers represent boundaries. It is essential to test
boundaries thoroughly. Should we allow you to drive at 18 or 17? Are we checking
your age with age < 18, or age <= 18? You can't imagine how many times we've
had to fix subtle bugs that stemmed from using the wrong operator, so go ahead and
experiment with the preceding code. Change some < to <= and set income to be one
of the boundary values (10,000, 30,000, 100,000) as well as any value in between. See
how the result changes, and get a good understanding of it before proceeding.

Let's now see another example that shows us how to nest if clauses. Say your
program encounters an error. If the alert system is the console, we print the error.
If the alert system is an email, we send it according to the severity of the error. If
the alert system is anything other than console or email, we don't know what to do,
therefore we do nothing. Let's put this into code:
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alert_system = 'console'
error_severity = 'critical’
error_message = 'OMG! Something terrible happened!’

if alert_system == 'console':
print(error_message)
elif alert_system == ‘email’:
if error_severity == 'critical':
send_email('admin@example.com', error_message)
elif error_severity == 'medium’:
send_email('support.l@example.com', error_message)
else:
send_email('support.2@example.com', error_message)

The preceding example is quite interesting because of how silly it is. It shows us two
nested if clauses (outer and inner). It also shows us that the outer if clause doesn't
have any else, while the inner one does. Notice how indentation is what allows us
to nest one clause within another.

If alert_system == 'console', body #1 is executed, and nothing else happens. On
the other hand, if alert_system == 'email’, then we enter into another if clause,
which we call the inner clause. In the inner if clause, according to error_severity,
we send an email either to an admin, first-level support, or second-level support
(blocks #2, #3, and #4). The send_email() function is not defined in this example,
therefore trying to run it would give you an error. In the source code of this book,
we included a trick to redirect that call to a regular print() function, just so you
can experiment on the console without actually sending an email. Try changing the
values and see how it all works.

The ternary operator

One last thing we would like to show you, before moving on, is the ternary
operator or, in layman's terms, the short version of an if/else clause. When the
value of a name is to be assigned according to some condition, it is sometimes easier
and more readable to use the ternary operator instead of a proper if clause. For
example, instead of:

order_total = 247
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if order_total > 100:
discount = 25
else:
discount = 0
print(order_total, discount)

We could write:

discount = 25 if order_total > 100 else ©
print(order_total, discount)

For simple cases like this, we find it very convenient to be able to express that logic in
one line instead of four. Remember, as a coder, you spend much more time reading
code than writing it, so Python's conciseness is invaluable.

In some languages (like C or JavaScript) the ternary operator is
even more concise. For example, the above could be written as:

\/‘/ discount = order_total > 100 ? 25 : O;

Although Python's version is slightly more verbose, we think it
more than makes up for that by being much easier to read and
understand.

Are you clear on how the ternary operator works? Basically, name = something
if condition else something-else.So name is assigned something if condition
evaluates to True, and something-else if condition evaluates to False.

Now that you know everything about controlling the path of the code, let's move on
to the next subject: looping.

Looping

If you have any experience with looping in other programming languages,

you will find Python's way of looping a bit different. First of all, what is
looping? Looping means being able to repeat the execution of a code block more
than once, according to the loop parameters given. There are different looping
constructs, which serve different purposes, and Python has distilled all of them
down to just two, which you can use to achieve everything you need. These are
the for and while statements.
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While it's definitely possible to do everything you need using either of them, they
do serve different purposes, and therefore they're usually used in different contexts.
We'll explore this difference thoroughly in this chapter.

The for loop

The for loop is used when looping over a sequence, such as a list, tuple, or collection
of objects. Let's start with a simple example and expand on the concept to see what
the Python syntax allows us to do:

for number in [0, 1, 2, 3, 4]:
print(number)

This simple snippet of code, when executed, prints all numbers from @ to 4. The
for loop is fed the list [0, 1, 2, 3, 4] and, at each iteration number, is given a
value from the sequence (which is iterated sequentially in the order given), then
the body of the loop is executed (the print() line). The number value changes at
every iteration, according to which value is coming next from the sequence. When
the sequence is exhausted, the for loop terminates, and the execution of the code
resumes normally with the code after the loop.

Iterating over a range

Sometimes we need to iterate over a range of numbers, and it would be quite
unpleasant to have to do so by hardcoding the list somewhere. In such cases, the
range() function comes to the rescue. Let's see the equivalent of the previous snippet
of code:

for number in range(5):
print(number)

The range() function is used extensively in Python programs when it comes to
creating sequences; you can call it by passing one value, which acts as stop (counting
from @), or you can pass two values (start and stop), or even three (start, stop,

and step). Check out the following example:

>>> list(range(10))
[eJ 1) 2) 3) 4) 5) 6) 7) 8) 9]

>>> list(range(3, 8))
[3, 4, 5, 6, 7]
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>>> list(range(-10, 10, 4))

[-10, -6, -2, 2, 6]

For the moment, ignore that we need to wrap range(...) within a list. The range()
object is a little bit special, but in this case, we are only interested in understanding
what values it will return to us. You can see that the behavior is the same as with
slicing (which we described in the previous chapter): start is included, stop is
excluded, and optionally you can add a step parameter, which by default is 1.

Try modifying the parameters of the range() call in our simple.for.py code and
see what it prints. Get comfortable with it.

Iterating over a sequence

We now have all the tools to iterate over a sequence, so let's build on that example:

surnames = ['Rivest', 'Shamir', 'Adleman']
for position in range(len(surnames)):
print(position, surnames[position])

The preceding code adds a little bit of complexity to the game. Execution will show
this result:

$ python simple.for.2.py
@ Rivest

1 Shamir
2 Adleman

Let's use the inside-out technique to break it down. We start from the innermost
part of what we're trying to understand, and we expand outward. So, 1en(surnames)
is the length of the surnames list: 3. Therefore, range(len(surnames)) is actually
transformed into range(3). This gives us the range [0, 3), which is basically the
sequence (@, 1, 2).This means that the for loop will run three iterations. In the
first one, position will take value 0, while in the second one, it will take value 1,
and value 2 in the third and final iteration. What is (@, 1, 2), if not the possible
indexing positions for the surnames list? At position 8, we find 'Rivest’; at position
1, 'Shamir'; and at position 2, 'Adleman’. If you are curious about what these

three men created together, change print(position, surnames[position]) to
print(surnames[position][@], end=""), add a final print() outside of the loop,
and run the code again.
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Now, this style of looping is actually much closer to languages such as Java or C. In
Python, it's quite rare to see code like this. You can just iterate over any sequence or
collection, so there is no need to get the list of positions and retrieve elements out of
a sequence at each iteration. Let's change the example into a more Pythonic form:

surnames = ['Rivest’, 'Shamir', 'Adleman']
for surname in surnames:
print(surname)

Now that's something! It's practically English. The for loop can iterate over the
surnames list, and it gives back each element in order at each iteration. Running this
code will print the three surnames, one at a time, which is much easier to read —
right?

What if you wanted to print the position as well, though? Or what if you actually
needed it? Should you go back to the range(len(...)) form? No. You can use
the enumerate() built-in function, like this:

surnames = ['Rivest', 'Shamir', 'Adleman']
for position, surname in enumerate(surnames):
print(position, surname)

This code is very interesting as well. Notice that enumerate() gives back a two-tuple
(position, surname) at each iteration, but still, it's much more readable (and more
efficient) than the range(len(...)) example. You can call enumerate() with a start
parameter, such as enumerate(iterable, start), and it will start from start, rather
than . Just another little thing that shows you how much thought has been given to
designing Python so that it makes your life easier.

You can use a for loop to iterate over lists, tuples, and in general anything that
Python calls iterable. This is a very important concept, so let's talk about it a bit more.

Iterators and iterables

According to the Python documentation (https://docs.python.org/3/glossary.html),
an iterable is:

An object capable of returning its members one at a time. Examples of iterables
include all sequence types (such as list, str, and tuple) and some non-sequence types
like dict, file objects, and objects of any classes you define with an __iter__() method
or with a __getitem__() method that implements Sequence semantics.
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Iterables can be used in a for loop and in many other places where a sequence is
needed (zip(), map(), ...). When an iterable object is passed as an argument to the
built-in function iter(), it returns an iterator for the object. This iterator is good for
one pass over the set of values. When using iterables, it is usually not necessary

to call iter() or deal with iterator objects yourself. The for statement does that
automatically for you, creating a temporary unnamed variable to hold the iterator
for the duration of the loop.

Simply put, what happens when you write for k in sequence: ... body ... is
that the for loop asks sequence for the next element, it gets something back, it calls
that something k, and then executes its body. Then, once again, the for loop asks
sequence for the next element, it calls it k again, and executes the body again, and so
on and so forth, until the sequence is exhausted. Empty sequences will result in zero
executions of the body.

Some data structures, when iterated over, produce their elements in order, such as
lists, tuples, dictionaries, and strings, while others, such as sets, do not. Python gives
us the ability to iterate over iterables, using a type of object called an iterator.

According to the official documentation, an iterator is:

An object representing a stream of data. Repeated calls to the iterator's __next_ ()
method (or passing it to the built-in function next()) return successive items in the
stream. When no more data are available a Stoplteration exception is raised instead.
At this point, the iterator object is exhausted and any further calls to its __next_ ()
method just raise Stoplteration again. Iterators are required to have an __iter__()
method that returns the iterator object itself so every iterator is also iterable and may
be used in most places where other iterables are accepted. One notable exception is
code which attempts multiple iteration passes. A container object (such as a list)
produces a fresh new iterator each time you pass it to the iter() function or use it in a
for loop. Attempting this with an iterator will just return the same exhausted iterator
object used in the previous iteration pass, making it appear like an empty container.

Don't worry if you do not fully understand all the preceding legalese, as you will in
due course. We have put it here to serve as a handy reference for the future.

In practice, the whole iterable/iterator mechanism is somewhat hidden behind the
code. Unless you need to code your own iterable or iterator for some reason, you
won't have to worry about this too much. But it's very important to understand
how Python handles this key aspect of control flow, because it will shape the way
in which you write code.
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Iterating over multiple sequences

Let's see another example of how to iterate over two sequences of the same length, in
order to work on their respective elements in pairs. Say we have a list of people and
a list of numbers representing the age of the people in the first list. We want to print
the pair person/age on one line for each of them. Let's start with an example, which
we will refine gradually:

people = ['Nick', 'Rick', 'Roger', 'Syd']
ages = [23, 24, 23, 21]
for position in range(len(people)):
person = people[position]
age = ages[position]
print(person, age)

By now, this code should be pretty straightforward for you to understand. We need
to iterate over the list of positions (9, 1, 2, 3) because we want to retrieve elements
from two different lists. Executing it, we get the following:

$ python multiple.sequences.py
Nick 23
Rick 24

Roger 23
Syd 21

The code works, but it's not very Pythonic. It's rather cumbersome to have to get

the length of people, construct a range, and then iterate over that. For some data
structures it may also be expensive to retrieve items by their position. Wouldn't it be
nice if we could use the same approach as for iterating over a single sequence? Let's
try to improve it by using enumerate():

people = ['Nick', 'Rick', 'Roger', 'Syd']
ages = [23, 24, 23, 21]
for position, person in enumerate(people):
age = ages[position]
print(person, age)

That's better, but still not perfect. And it's still a bit ugly. We're iterating properly
on people, but we're still fetching age using positional indexing, which we want to
lose as well.

[93]



Conditionals and Iteration

Well, no worries, Python gives you the zip() function, remember? Let's use it:

people = ['Nick', 'Rick', 'Roger', 'Syd']

ages = [23, 24, 23, 21]

for person, age in zip(people, ages):
print(person, age)

Ah! So much better! Once again, compare the preceding code with the first example
and admire Python's elegance. The reason we wanted to show this example is
twofold. On the one hand, we wanted to give you an idea of how much shorter
code in Python can be compared to other languages where the syntax doesn't

allow you to iterate over sequences or collections as easily. And on the other hand,
and much more importantly, notice that when the for loop asks zip(sequenceA,
sequenceB) for the next element, it gets back a tuple, not just a single object. It

gets back a tuple with as many elements as the number of sequences we feed to

the zip() function. Let's expand a little on the previous example in two ways, using
explicit and implicit assignment:

people = ['Nick', 'Rick', 'Roger', 'Syd']

ages = [23, 24, 23, 21]

instruments = ['Drums', 'Keyboards', 'Bass', 'Guitar']

for person, age, instrument in zip(people, ages, instruments):
print(person, age, instrument)

In the preceding code we added the instruments list. Now that we feed three
sequences to the zip() function, the for loop gets back a three-tuple at each iteration.
Notice that the position of the elements in the tuple respects the position of the
sequences in the zip() call. Executing the code will yield the following result:

$ python multiple.sequences.explicit.py
Nick 23 Drums
Rick 24 Keyboards

Roger 23 Bass
Syd 21 Guitar

Sometimes, for reasons that may not be clear in a simple example such as the
preceding one, you may want to explode the tuple within the body of the for loop.
If that is your desire, it's perfectly possible to do so:

people = ['Nick', 'Rick', 'Roger', 'Syd']
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ages = [23, 24, 23, 21]
instruments = ['Drums', 'Keyboards', 'Bass', 'Guitar']
for data in zip(people, ages, instruments):

person, age, instrument = data

print(person, age, instrument)

It's basically doing what the for loop does automatically for you, but in some cases
you may want to do it yourself. Here, the three-tuple data that comes from zip(...)
is exploded within the body of the for loop into three variables: person, age,

and instrument.

The while loop

In the preceding pages, we saw the for loop in action. It's incredibly useful when
you need to loop over a sequence or a collection. The key point to keep in mind,
when you need to decide which looping construct to use, is that the for loop is best
suited in cases where you need to iterate over the elements of some container or
other iterable object.

There are other cases though, when you just need to loop until some condition is
satisfied, or even loop indefinitely until the application is stopped, such as cases
where we don't really have something to iterate on, and therefore the for loop
would be a poor choice. But fear not, for these cases, Python provides us with
the while loop.

The while loop is similar to the for loop in that they both loop, and at each iteration
they execute a body of instructions. The difference is that the while loop doesn't loop
over a sequence (it can, but you have to write the logic manually, which would make
little sense as you would just use a for loop); rather, it loops as long as a certain
condition is satisfied. When the condition is no longer satisfied, the loop ends.

As usual, let's see an example that will clarify everything for us. We want to print

the binary representation of a positive number. In order to do so, we can use a simple
algorithm that divides by 2 until we reach @ and collects the remainders. When we
reverse the list of remainders we collected, we get the binary representation of the
number we started with:

3 (remainder: 9)
1 (remainder: 1)

= @ (remainder: 1)
List of remainders: o, 1, 1.
Reversed is 1, 1, 0, which is also the binary representation of 6: 110
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Let's write some code to calculate the binary representation for the number 39,
100111,

n = 39

remainders = []

while n > @:
remainder = n % 2
remainders.append(remainder)

n//=2

remainders.reverse()
print(remainders)

In the preceding code, we highlighted n > ©, which is the condition to keep looping.
Notice how the code matches the algorithm we described: as long as n is greater than
0, we divide by 2 and add the remainder to a list. At the end (when n has reached

@) we reverse the list of remainders to get the binary representation of the original
value of n.

We can make the code a little shorter (and more Pythonic), by using the divmod()
function, which is called with a number and a divisor, and returns a tuple with the
result of the integer division and its remainder. For example, divmod(13, 5) would
return (2, 3),and indeed 5 *2 + 3 =13:

n = 39

remainders = []

while n > 0:
n, remainder = divmod(n, 2)
remainders.append(remainder)

remainders.reverse()
print(remainders)

In the preceding code, we have reassigned n to the result of the division by 2, along
with the remainder, in one single line.

Notice that the condition in a while loop is a condition to continue looping. If it
evaluates to True, then the body is executed and then another evaluation follows,
and so on, until the condition evaluates to False. When that happens, the loop is
exited immediately without executing its body.
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If the condition never evaluates to False, the loop becomes a
so-called infinite loop. Infinite loops are used, for example, when
‘ / polling from network devices: you ask the socket whether there is
\p/ any data, you do something with it if there is any, then you sleep
for a small amount of time, and then you ask the socket again, over
and over again, without ever stopping.

Having the ability to loop over a condition, or to loop indefinitely, is the reason why
the for loop alone is not enough, and therefore Python provides the while loop.

I
_\@l_ By the way, if you need the binary representation of a number,

check out the bin() function.

Just for fun, let's adapt one of the examples (multiple.sequences.py) using the while
logic:

people = ['Nick', 'Rick', 'Roger', 'Syd']
ages = [23, 24, 23, 21]
position = @
while position < len(people):
person = people[position]
age = ages[position]
print(person, age)
position += 1

In the preceding code, we have highlighted the initialization, condition, and update of
the position variable, which makes it possible to simulate the equivalent for loop
code by handling the iteration variable manually. Everything that can be done with
a for loop can also be done with a while loop, even though you can see there is a
bit of boilerplate you have to go through in order to achieve the same result. The
opposite is also true, but unless you have a reason to do so, you ought to use the
right tool for the job, and 99.9% of the time you'll be fine.

So, to recap, use a for loop when you need to iterate over an iterable, and a while
loop when you need to loop according to a condition being satisfied or not. If you
keep in mind the difference between the two purposes, you will never choose the
wrong looping construct.

Let us now see how to alter the normal flow of a loop.
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The break and continue statements

According to the task at hand, sometimes you will need to alter the regular flow of
a loop. You can either skip a single iteration (as many times as you want), or you
can break out of the loop entirely. A common use case for skipping iterations is, for
example, when you are iterating over a list of items and you need to work on each
of them only if some condition is verified. On the other hand, if you're iterating over
a collection of items, and you have found one of them that satisfies some need you
have, you may decide not to continue the loop entirely and therefore break out of

it. There are countless possible scenarios, so it's better to take a look at a couple of
examples.

Let's say you want to apply a 20% discount to all products in a basket list for those
that have an expiration date of today. The way you achieve this is to use the continue
statement, which tells the looping construct (for or while) to stop execution of the
body immediately and go to the next iteration, if any. This example will take us a
little deeper down the rabbit hole, so be ready to jump:

from datetime import date, timedelta

today = date.today()

tomorrow = today + timedelta(days=1)

products = [
{'sku': '1', 'expiration_date': today, 'price': 100.0},
{'sku': '2", 'expiration_date': tomorrow, 'price': 50},
{'sku': '3"', 'expiration_date': today, 'price': 20},

for product in products:
if product['expiration_date'] != today:
continue
product[ 'price'] *= 0.8
print(
'Price for sku', product['sku'],
'is now', product['price'])

We start by importing the date and timedelta objects, then we set up our products.
Those with sku as 1 and 3 have an expiration date of today, which means we want to
apply a 20% discount on them. We loop over each product and inspect the expiration
date. If it is not (inequality operator, !=) today, we don't want to execute the rest of
the body suite, so we continue.
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Notice that it is not important where in the body suite you place the continue
statement (you can even use it more than once). When you reach it, execution stops
and goes back to the next iteration. If we run the discount.py module, this is the
output:

$ python discount.py

Price for sku 1 is now 80.0
Price for sku 3 is now 16.0

This shows you that the last two lines of the body haven't been executed for sku
number 2.

Let's now see an example of breaking out of a loop. Say we want to tell whether at
least one of the elements in a list evaluates to True when fed to the bool() function.
Given that we need to know whether there is at least one, when we find it, we don't
need to keep scanning the list any further. In Python code, this translates to using
the break statement. Let's write this down into code:

items = [0, None, 0.0, True, 9, 7]

found = False
for item in items:
print('scanning item', item)

if item:
found = True
break
if found:
print('At least one item evaluates to True')
else:

print('All items evaluate to False')

The preceding code makes use of a very common programming pattern; you set up
a flag variable before starting the inspection of the items. If you find an element that
matches your criteria (in this example, that evaluates to True), you update the flag
and stop iterating. After iteration, you inspect the flag and take action accordingly.
Execution yields:

$ python any.py
scanning item ©

scanning item None
scanning item 0.0
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scanning item True
At least one item evaluates to True

See how execution stopped after True was found? The break statement acts exactly
like the continue one, in that it stops executing the body of the loop immediately, but
it also prevents any further iterations from running, effectively breaking out of the
loop. The continue and break statements can be used together with no limitation in
their numbers, both in the for and while looping constructs.

! There is no need to write code to detect whether there is at least

\ 7/
_/@_ one element in a sequence that evaluates to True. Just check out the

S built-in any () function.

A special else clause

One of the features we've seen only in the Python language is the ability to have else
clauses after while and for loops. It's very rarely used, but it's definitely useful to
have. In short, you can have an else suite after a for or while loop. If the loop ends
normally, because of exhaustion of the iterator (for loop) or because the condition is
finally not met (while loop), then the else suite (if present) is executed. If execution
is interrupted by a break statement, the else clause is not executed.

Let's take an example of a for loop that iterates over a group of items, looking for
one that would match some condition. If we don't find at least one that satisfies the
condition, we want to raise an exception. This means that we want to arrest the
regular execution of the program and signal that there was an error, or exception,
that we cannot deal with. Exceptions will be the subject of Chapter 7, Exceptions and
Context Managers, so don't worry if you don't fully understand them for now. Just
bear in mind that they will alter the regular flow of the code.

Let us now show you two examples that do exactly the same thing, but one of them
is using the special for...else syntax. Say that we want to find, among a collection
of people, one that could drive a car:

class DriverException(Exception):
pass

people = [('James', 17), ('Kirk', 9), ('Lars', 13), ('Robert', 8)]
driver = None
for person, age in people:
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if age >= 18:
driver = (person, age)
break

if driver is None:
raise DriverException('Driver not found.")

Notice the flag pattern again. We set the driver to be None, then if we find one, we
update the driver flag, and then, at the end of the loop, we inspect it to see whether
one was found. We kind of have the feeling that those kids would drive a very
metallic-a car, but anyway, notice that if a driver is not found, DriverException is
raised, signaling to the program that execution cannot continue (we're lacking the
driver).

The same functionality can be rewritten a bit more elegantly using the following
code:

class DriverException(Exception):
pass

people = [('James', 17), ('Kirk', 9), ('Lars', 13), ('Robert', 8)]
for person, age in people:
if age >= 18:
driver = (person, age)
break
else:
raise DriverException('Driver not found.")

Notice that we are not forced to use the flag pattern any more. The exception is
raised as part of the for loop logic, which makes good sense, because the for loop is
checking on some condition. All we need is to set up a driver object in case we find
one, because the rest of the code is going to use that information somewhere. Notice
the code is shorter and more elegant, because the logic is now correctly grouped
together where it belongs.

In his Transforming Code into Beautiful, Idiomatic Python video,
/ Raymond Hettinger suggests a much better name for the else
\/;p; statement associated with a for loop: nobreak. If you struggle
with remembering how the else works for a for loop, simply
remembering this fact should help you.
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Assignment expressions

Before we look at some more complicated examples, we would like to briefly
introduce you to a relatively new feature that was added to the language in Python
3.8, via PEP 572 (https://www.python.org/dev/peps/pep-0572). Assignment
expressions allow us to bind a value to a name in places where normal assignment
statements are not allowed. Instead of the normal assignment operator =, assignment
expressions use := (known as the walrus operator because it resembles the eyes and
tusks of a walrus).

Statements and expressions

To understand the difference between normal assignments and assignment
expressions, we need to understand the difference between statements and
expressions. According to the Python documentation (https://docs.python.org/3/
glossary.html), a statement is:

...part of a suite (a "block" of code). A statement is either an expression or one of
several constructs with a keyword, such as if, while or for.

An expression, on the other hand, is:

A piece of syntax which can be evaluated to some value. In other words, an
expression is an accumulation of expression elements like literals, names, attribute
access, operators or function calls which all return a value.

The key distinguishing feature of an expression is that it has a return value. Notice
that an expression can be a statement, but not all statements are expressions. In
particular, assignments like name = "heinrich" are not expressions, and so do not
have a return value. This means that you cannot use an assignment statement in the
conditional expression of a while loop or if statement (or any other place where a
value is required).

Have you ever wondered why the Python console doesn't print a
value when you assign a value to a name? For example:

‘ p’i >>> name = "heinrich"
\/ >>>

Well, now you know! It's because what you've entered is a
statement, which doesn't have a return value to print.
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Using the walrus operator

Without assignment expressions, you would have to use two separate statements if
you want to bind a value to a name and use that value in an expression. For example,
it is quite common to see code similar to:

remainder = value % modulus
if remainder:
print(f"Not divisible! The remainder is {remainder}.")

With assignment expressions, we could rewrite this as:

if remainder := value % modulus:
print(f"Not divisible! The remainder is {remainder}.")

Assignment expressions allow us to write fewer lines of code. Used with care, they
can also lead to cleaner, more understandable code. Let's look at a slightly bigger
example to see how an assignment expression can really simplify a while loop.

In interactive scripts, we often need to ask the user to choose between a number

of options. For example, suppose we are writing an interactive script that allows
customers at an ice cream shop to choose what flavor they want. To avoid confusion
when preparing orders, we want to ensure that the user chooses one of the available
flavors. Without assignment expressions, we might write something like this:

flavors = ["pistachio", "malaga", "vanilla", "chocolate", "strawberry"]
prompt = "Choose your flavor: "
print(flavors)
while True:

choice = input(prompt)

if choice in flavors:

break

print(f"Sorry, '{choice}' is not a valid option.")

print(f"You chose '{choice}'.")

Take a moment to read this code carefully. Notice the condition on that loop: while
True means "loop forever." That's not what we really want, is it? We want to stop
looping when the user inputs a valid flavor (choice in flavors). To achieve that,
we've used an if statement and a break inside the loop. The logic to control the loop
is not immediately obvious. In spite of that, this is actually quite a common pattern
when the value needed to control the loop can only be obtained inside the loop.
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N The input() function is very useful in interactive scripts. It allows
- ,@\' you to prompt the user for input, and returns it as a string. You can
g read more about it in the official Python documentation.

How can we improve on this? Let us try to use an assignment expression:

flavors = ["pistachio", "malaga", "vanilla", "chocolate", "strawberry"]
prompt = "Choose your flavor:
print(flavors)
while (choice := input(prompt)) not in flavors:
print(f"Sorry, '{choice}' is not a valid option.")
print(f"You chose '{choice}'.")

Now the loop's conditional expression says exactly what we want. That is much
easier to understand. The code is also three lines shorter.

Did you notice the parentheses around the assignment expression?

\/‘/ We need them because the : = operator has lower precedence than

the not in operator. Try removing the parentheses and see what
happens.

We have seen examples of using assignment expressions in the conditional
expressions of if and while statements. Besides these use cases, assignment
expressions are also very useful in lambda expressions (which you will meet in
Chapter 4, Functions, the Building Blocks of Code) as well as comprehensions and
generators (which you will learn about in Chapter 5, Comprehensions and Generators).

A word of warning

The introduction of the walrus operator in Python was somewhat controversial.
Some people feared that it would make it too easy to write ugly, non-Pythonic code.
We think that these fears are not entirely justified. As you saw above, the walrus
operator can improve code and make it easier to read. Like any powerful feature,

it can however be abused to write obfuscated code. We would advise you to use it
sparingly. Always think carefully about how it impacts the readability of your code.
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Putting all this together

Now that you have seen all there is to see about conditionals and loops, it's time

to spice things up a little, and look at those two examples we anticipated at the
beginning of this chapter. We'll mix and match here, so you can see how you can
use all these concepts together. Let's start by writing some code to generate a list of
prime numbers up to some limit. Please bear in mind that we are going to write a
very inefficient and rudimentary algorithm to detect primes. The important thing is
to concentrate on those bits in the code that belong to this chapter's subject.

A prime generator
According to Wikipedia:

A prime number (or a prime) is a natural number greater than 1 that is not a
product of two smaller natural numbers. A natural number greater than 1 that is not
prime is called a composite number.

Based on this definition, if we consider the first 10 natural numbers, we can see that
2,3,5,and 7 are primes, while 1, 4, 6, 8,9, and 10 are not. In order to have a computer
tell you whether a number, N, is prime, you can divide that number by the natural
numbers in the range [2, N). If any of those divisions yields zero as a remainder, then
the number is not a prime. We will write two versions of this, the second of which
will exploit the for. . .else syntax:

primes = []
upto = 100
for n in range(2, upto + 1):
is_prime = True
for divisor in range(2, n):
if n % divisor ==
is_prime = False
break
if is_prime:
primes.append(n)
print(primes)
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There are a lot of things to notice in the preceding code. First of all, we set up an
empty primes list, which will contain the primes at the end. The limit is 100, and
you can see that it is inclusive in the way we call range() in the outer loop. If we
wrote range(2, upto) that would be [2, upto). Therefore range(2, upto + 1) gives
us [2, upto + 1) = [2, upto].

So, there are two for loops. In the outer one, we loop over the candidate primes —
that is, all natural numbers from 2 to upto. Inside each iteration of this outer loop,
we set up a flag (which is set to True at each iteration), and then start dividing the
current value of n by all numbers from 2 ton - 1.If we find a proper divisor for n,
it means n is composite, and therefore we set the flag to False and break the loop.
Notice that when we break the inner loop, the outer one keeps on going as normal.
The reason why we break after having found a proper divisor for n is that we don't
need any further information to be able to tell that n is not a prime.

When we check on the is_prime flag, if it is still True, it means we couldn't find any
number in [2, n) that is a proper divisor for n, therefore n is a prime. We append n to
the primes list, and hop! Another iteration proceeds, until n equals 100.

Running this code yields:

$ python primes.py
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,

67, 71, 73, 79, 83, 89, 97]

Before proceeding, we will pose the following: of all the iterations of the outer loop,
one of them is different from all the others. Can you tell which one this is—and why?
Think about it for a second, go back to the code, try to figure it out for yourself, and
then keep reading on.

Did you figure it out? If not, don't feel bad; it's perfectly normal. We asked you

to do it as a small exercise because this is what coders do all the time. The skill to
understand what the code does by simply looking at it is something you build over
time. It's very important, so try to exercise it whenever you can. We'll tell you the
answer now: the iteration that behaves differently from all others is the first one. The
reason is that in the first iteration, n is 2. Therefore the innermost for loop won't even
run, because it's a for loop that iterates over range(2, 2), and what is that if not [2,
2)? Try it out for yourself, write a simple for loop with that iterable, put a print in
the body suite, and see whether anything happens.

Now, from an algorithmic point of view, this code is inefficient; let's at least make it
a bit easier on the eyes:
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primes = []
upto = 100
for n in range(2, upto + 1):
for divisor in range(2, n):
if n % divisor == 0:
break
else:
primes.append(n)
print(primes)

Much better, right? The is_prime flag is gone, and we append n to the primes list
when we know the inner for loop hasn't encountered any break statements. See
how the code looks cleaner and reads better?

Applying discounts

In this example, we want to show you a technique that we are very fond of. In many
programming languages, besides the if/elif/else constructs, in whatever form
or syntax they may come, you can find another statement, usually called switch/

case, that is not in Python. It is the equivalent of a cascade of if/elif/.../elif/
else clauses, with a syntax similar to this (warning, we are using JavaScript code

here):

switch (day_number) {
case 1:
case 2
case 3:
case 4

case 5:
day = "Weekday";
break;

case 6:
day = "Saturday";
break;

case 0O:
day = "Sunday";
break;
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default:
day = "";
alert(day_number + ' is not a valid day number.")

}

In the preceding code, we switch on a variable called day_number. This means we get
its value and then decide what case it fits in (if any). From 1 to 5 there is a cascade,
which means no matter the number, [1, 5] all go down to the bit of logic that sets day
as "Weekday". Then we have single cases for @ and 6, and a default case to prevent
errors, which alerts the system that day_number is not a valid day number — that

is, not in [0, 6]. Python is perfectly capable of realizing such logic using if/elif/
else statements:

if 1 <= day_number <= 5:
day = 'Weekday'
elif day_number ==
day = 'Saturday’
elif day_number == 0:
day = 'Sunday’
else:
day = "'
raise ValueError(
str(day_number) +

is not a valid day number.")

In the preceding code, we reproduce the same logic of the JavaScript snippet in
Python using if/elif/else statements. We raised the ValueError exception just
as an example at the end, if day_number is not in [0, 6]. This is one possible way of
translating the switch/case logic, but there is also another one, sometimes called
dispatching, which we will show you in the last version of the next example.

! By the way, did you notice the first line of the previous snippet?

\ 7/
'@\' Have you noticed that Python can make double (actually, even

2 multiple) comparisons? It's just wonderful!

Let's start the new example by simply writing some code that assigns a discount to
customers based on their coupon value. We'll keep the logic down to a minimum
here —remember that all we really care about is understanding conditionals and
loops:

customers = [
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dict(id=1, total=200, coupon_code='F20"),
dict(id=2, total=150, coupon_code='P30"'),
dict(id=3, total=100, coupon_code='P50"'),
dict(id=4, total=110, coupon_code='F15"),

for customer in customers:
code = customer['coupon_code"]

if code == 'F20':

customer[ 'discount'] = 20.0
elif code == 'F15':

customer[ 'discount'] = 15.0
elif code == 'P30':

customer[ 'discount’'] = customer['total’'] * 0.3
elif code == 'P50':

customer[ 'discount'] = customer['total'] * 0.5
else:

customer['discount'] = 0.0

for customer in customers:
print(customer['id'], customer['total'], customer['discount'])

We start by setting up some customers. They have an order total, a coupon code,
and an ID. We made up four different types of coupons: two are fixed and two

are percentage-based. You can see that in the if/elif/else cascade we apply the
discount accordingly, and we set it as a *discount’ key in the customer dictionary.

At the end, we just print out part of the data to see whether our code is working
properly:

$ python coupons.py
1 200 20.0
2 150 45.

3 100 50.
4 110 15.

This code is simple to understand, but all those conditional clauses are cluttering
the logic. It's not easy to see what's going on at a first glance, which we don't like. In
cases like this, you can exploit a dictionary to your advantage, like this:

customers = [
dict(id=1, total=200, coupon_code='F20"),
dict(id=2, total=150, coupon_code='P30"'),
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dict(id=3, total=100, coupon_code='P50"),

dict(id=4, total=110, coupon_code='F15"),
]
discounts = {

'F20': (0.0, 20.0),

'P30': (0.3, 0.0),

'P50': (0.5, 0.90),

'F15': (0.0, 15.0),

for customer in customers:
code = customer['coupon_code"]
percent, fixed = discounts.get(code, (0.0, 0.0))
customer[ 'discount'] = percent * customer['total’'] + fixed

for customer in customers:
print(customer['id'], customer['total'], customer['discount'])

Running the preceding code yields exactly the same result we had from the snippet
before it. We spared two lines, but more importantly, we gained a lot in readability,
as the body of the for loop is now just three lines long, and very easy to understand.
The concept here is to use a dictionary as a dispatcher. In other words, we try to
fetch something from the dictionary based on a code (our coupon_code), and by
using dict.get(key, default), we make sure we also cater for when the code is not
in the dictionary and we need a default value.

Notice that we had to apply some very simple linear algebra in order to calculate the
discount properly. Each discount has a percentage and fixed part in the dictionary,
represented by a two-tuple. By applying percent * total + fixed, we get the
correct discount. When percent is 0, the formula just gives the fixed amount, and it
gives percent * total when fixed is 0.

This technique is important, because it is also used in other contexts with functions
where it becomes much more powerful than what we've seen in the preceding
example. Another advantage of using it is that you can code it in such a way that the
keys and values of the discounts dictionary are fetched dynamically (for example,
from a database). This will allow the code to adapt to whatever discounts and
conditions you have, without having to modify anything.

If you are still unclear as to how this works, we suggest you take your time and
experiment with it. Change values and add print() statements to see what's going
on while the program is running.
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A quick peek at the itertools module

A chapter about iterables, iterators, conditional logic, and looping wouldn't be
complete without a few words about the itertools module. If you are into iterating,
this is a kind of heaven.

According to the Python official documentation (https://docs.python.org/3/
library/itertools.html), the itertools module:

...implements a number of iterator building blocks inspired by constructs from APL,
Haskell, and SML. Each has been recast in a form suitable for Python.

The module standardizes a core set of fast, memory efficient tools that are useful by
themselves or in combination. Together, they form an "iterator algebra" making it
possible to construct specialized tools succinctly and efficiently in pure Python.

By no means do we have the room here to show you all the goodies you can find in
this module, so we encourage you to go check it out for yourself. We can promise
that you will enjoy it, though. In a nutshell, it provides you with three broad
categories of iterators. We shall give you a very small example of one iterator taken
from each one of them, just to make your mouth water a little.

Infinite iterators

Infinite iterators allow you to work with a for loop in a different fashion, such as if it
were a while loop:

from itertools import count

for n in count(5, 3):
if n > 20:
break
print(n, end=", ")

Running the code outputs:

$ python infinite.py

5, 8, 11, 14, 17, 20,

The count factory class makes an iterator that simply goes on and on counting. It
starts from 5 and keeps adding 3 to it. We need to break it manually if we don't
want to get stuck in an infinite loop.
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Iterators terminating on the shortest input
sequence

This category is very interesting. It allows you to create an iterator based on multiple
iterators, combining their values according to some logic. The key point here is that
among those iterators, if any of them are shorter than the rest, the resulting iterator
won't break, but will simply stop as soon as the shortest iterator is exhausted. This

is very theoretical, we know, so let us give you an example using compress(). This
iterator gives you back the data according to a corresponding item in a selector
being True or False; compress('ABC', (1, @, 1)) would give back ‘A’ and 'C’,
because they correspond to 1. Let's see a simple example:

from itertools import compress
data = range(10)

even_selector = [1, 0] * 10
odd_selector = [0, 1] * 10

even_numbers = list(compress(data, even_selector))
odd_numbers = list(compress(data, odd_selector))

print(odd_selector)
print(list(data))
print(even_numbers)
print(odd_numbers)

Notice that odd_selector and even_selector are 20 elements in length, while data is
only 10. compress() will stop as soon as data has yielded its last element. Running
this code produces the following;:

$ python compress.py
(6, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
(e, 1, 2, 3, 4, 5, 6, 7, 8, 9]

[6, 2, 4, 6, 8]
[1, 3, 5, 7, 9]

It's a very fast and convenient way of selecting elements out of an iterable. The code
is very simple, but notice that instead of using a for loop to iterate over each value
that is given back by the compress() calls, we used list(), which does the same,
but instead of executing a body of instructions, it puts all the values into a list and
returns it.
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Combinatoric generators

Last but not least is combinatoric generators. These are really fun, if you are into this
kind of thing. Let's look at a simple example on permutations. According to Wolfram
MathWorld:

A permutation, also called an "arrangement number" or "order," is a rearrangement
of the elements of an ordered list S into a one-to-one correspondence with S itself.

For example, there are six permutations of ABC: ABC, ACB, BAC, BCA, CAB, and CBA.

If a set has N elements, then the number of permutations of them is N! (N factorial).
For the ABC string, the permutations are 3/ =3 *2 *1 = 6. Let's see this in Python:

from itertools import permutations
print(list(permutations('ABC")))

This very short snippet of code produces the following result:

$ python permutations.py
[('AIJ lBI) Icl), ('AI’ Icl) IBI)’ ('BI, 'AI, Icl)) (IBI, lcl,

(¢, 'A', 'BY), ('C, "B, "AT)]

Be very careful when you play with permutations. Their number grows at a rate that
is proportional to the factorial of the number of the elements you're permuting, and
that number can get really big, really fast.

Summary

In this chapter, we've taken another step toward expanding our Python vocabulary.
We've seen how to drive the execution of code by evaluating conditions, along with
how to loop and iterate over sequences and collections of objects. This gives us the
power to control what happens when our code is run, which means we are getting
an idea of how to shape it so that it does what we want, having it react to data that
changes dynamically.

We've also seen how to combine everything together in a couple of simple examples,
and in the end, we took a brief look at the itertools module, which is full of
interesting iterators that can enrich our abilities with Python to a greater degree.

Now it's time to switch gears, take another step forward, and talk about functions.
The next chapter is all about them, and they are extremely important. Make sure
you're comfortable with what has been covered up to now. We want to provide you
with interesting examples, so we'll have to go a little faster. Ready? Turn the page.
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Functions, the Building
Blocks of Code

"To create architecture is to put in order. Put what in order? Functions and objects."

— Le Corbusier

In the previous chapters, we have seen that everything is an object in Python, and
functions are no exception. But what exactly is a function? A function is a sequence
of instructions that perform a task, bundled together as a unit. This unit can then be
imported and used wherever it is needed. There are many advantages to using
functions in your code, as we'll see shortly.

In this chapter, we are going to cover the following:

* Functions —what they are and why we should use them

* Scopes and name resolution

* Function signatures —input parameters and return values
* Recursive and anonymous functions

* Importing objects for code reuse
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We believe the saying a picture is worth a thousand words is particularly true when
explaining functions to someone who is new to this concept, so please take a look
at the following diagram in Figure 4.1.

Al def my_function(input) : -
- | aa s A
‘ /. & A

return output
Input ‘ = Output

(Optional) (Optional*)

Figure 4.1: An example function

As you can see, a function is a block of instructions, packaged as a whole, like a box.
Functions can accept input parameters and produce output values. Both of these are
optional, as we'll see in the examples in this chapter.

A function in Python is defined by using the def keyword, after which the name

of the function follows, terminated by a pair of parentheses (which may or may not
contain input parameters); a colon (:) then signals the end of the function definition
line. Immediately afterward, indented by four spaces, we find the body of the
function, which is the set of instructions that the function will execute when called.

the number of spaces suggested by PEP 8, and, in practice, it is the
most widely used spacing measure.

C’ Note that the indentation by four spaces is not mandatory, but it is
\’/

A function may or may not return an output. If a function wants to return an output,
it does so by using the return keyword, followed by the desired output. The eagle-
eyed may have noticed the little * after Optional in the output section of the preceding
diagram. This is because a function always returns something in Python, even if

you don't explicitly use the return clause. If the function has no return statement

in its body, or no value is given to the return statement itself, the function returns
None. The reasons behind this design choice are outside the scope of an introductory
chapter, so all you need to know is that this behavior will make your life easier.

As always, thank you, Python.

Why use functions?

Functions are among the most important concepts and constructs of any language,
so let us give you a few reasons why we need them:

* They reduce code duplication in a program. By having a specific task be
taken care of by a nice block of packaged code that we can import and call
whenever we want, we don't need to duplicate its implementation.
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* They help in splitting a complex task or procedure into smaller blocks, each
of which becomes a function.

* They hide the implementation details from their users.
* They improve traceability.
* They improve readability.

Let us now look at a few examples to get a better understanding of each point.

Reducing code duplication

Imagine that you are writing a piece of scientific software, and you need to calculate
prime numbers up to a certain limit—as we did in the previous chapter. You have

a nice algorithm to calculate them, so you copy and paste it to wherever you need.
One day, though, your friend, B. Riemann, gives you a better algorithm to calculate
primes, which will save you a lot of time. At this point, you need to go over your
whole code base and replace the old code with the new one.

This is actually a bad way to go about it. It's error-prone, you never know what lines
you are chopping out or leaving in by mistake or when you might be cutting and
pasting code into other code, and you may also risk missing one of the places where
prime calculation is done, leaving your software in an inconsistent state where the
same action is performed in different places in different ways. What if, instead of
replacing code with a better version of it, you need to fix a bug and you miss one

of the places? That would be even worse. What if the names of the variables in the
old algorithm are different than those used in the new one? That will also complicate
things.

So, what should you do? Simple! You write the function get_prime_numbers (upto)
and use it anywhere you need a list of primes. When B. Riemann gives you the
new code, all you have to do is replace the body of that function with the new
implementation, and you're done! The rest of the software will automatically
adapt, since it's just calling the function.

Your code will be shorter, it will not suffer from inconsistencies between old and
new ways of performing a task, nor will undetected bugs be left behind due to copy-
and-paste failures or oversights. Use functions, and you'll only gain from it.

Splitting a complex task

Functions are also very useful for splitting long or complex tasks into smaller ones.
The end result is that the code benefits from it in several ways —for example, through
its readability, testability, and reusability.
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To give you a simple example, imagine that you are preparing a report. Your code
needs to fetch data from a data source, parse it, filter it, and polish it, and then a
whole series of algorithms needs to be run against it, in order to produce the results
that will feed the Report class. It's not uncommon to read procedures like this that
are just one big do_report(data_source) function. There are tens or hundreds of
lines of code that end with return report.

These situations are slightly more common in scientific code, which tends to

be brilliant from an algorithmic point of view but sometimes lacks the touch of
experienced programmers when it comes to the style in which they are written.
Now, picture a few hundred lines of code. It's very hard to follow through, to find
the places where things are changing context (such as finishing one task and starting
the next one). Do you have the picture in your mind? Good. Don't do it! Instead, look
at this code:

def do_report(data_source):

data = fetch_data(data_source)

parsed_data = parse_data(data)
filtered_data = filter_data(parsed_data)
polished_data = polish_data(filtered_data)

final_data = analyse(polished_data)

report = Report(final_data)
return report

The previous example is fictitious, of course, but can you see how easy it would

be to go through the code? If the end result looks wrong, it would be very easy to
debug each of the single data outputs in the do_report function. Moreover, it's even
easier to exclude part of the process temporarily from the whole procedure (you just
need to comment out the parts that you need to suspend). Code like this is easier to
deal with.

Hiding implementation details

Let's stay with the preceding example to talk about this point as well. We can see
that, by going through the code of the do_report() function, we can get a pretty
good understanding without reading one single line of implementation. This is
because functions hide the implementation details.
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This feature means that, if we don't need to delve into the details, we are not forced
to, in the way that we would be if do_report was just one big, fat function. In order
to understand what was going on, we would have to read every single line of code.
With functions, we don't need to. This reduces the time we spend reading the code
and since, in a professional environment, reading code takes much more time than
actually writing it, it's very important to reduce it to a minimum.

Improving readability

Programmers sometimes don't see the point in writing a function with a body of one
or two lines of code, so let's look at an example that shows you why you should do it.

Imagine that you need to multiply two matrices, like in the example below:
1 2y, (5 I_(9 3
(3 9°G 1)=03 7)

Would you prefer to have to read this code:

a = [[1, 2], [3, 4]]
b = [[5, 1], [2, 1]]
c = [[sum(i * j for i, j in zip(r, c)) for c in zip(*b)]

for r in a]

Or would you prefer this:

def matrix_mul(a, b):
return [[sum(i * j for i, j in zip(r, c)) for c in zip(*b)]
for r in a]

= [[1, 2], [3, 4]]
(05, 11, [2, 1]]

matrix_mul(a, b)

o o
n 1

It's much easier to understand that c is the result of the multiplication of a and b in
the second example, and it's much easier to read through the code. If we don't need
to modify that multiplication logic, we don't even need to go into the implementation
details. Therefore, readability is improved here, while, in the first snippet, we would
have to spend time trying to understand what that complicated list comprehension

is doing.
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\/‘/ Don't worry if you don't understand list comprehensions, as

we will study them in Chapter 5, Comprehensions and Generators.

Improving traceability

Imagine that we have coded for an e-commerce website. We have displayed the
product prices all over the pages. Imagine that the prices in the database are stored
with no VAT (sales tax), but we want to display them on the website with VAT at
20%. Here are a few ways of calculating the VAT-inclusive price from the VAT-
exclusive price:

price = 100

final_pricel = price * 1.2

final _price2 = price + price / 5.0
final_price3 = price * (100 + 20) / 100.0
final _priced4 = price + price * 0.2

These four different ways of calculating a VAT-inclusive price are all perfectly
acceptable; we have encountered all of them in the professional code that we have
worked on over the years. Now, imagine that we have started selling products

in different countries, and some of them have different VAT rates, so we need to
refactor the code (throughout the website) in order to make that VAT calculation
dynamic.

How do we trace all the places in which we are performing a VAT calculation?
Coding today is a collaborative task and we cannot be sure that the VAT has been
calculated using only one of those forms. It's going to be difficult.

So, let's write a function that takes the input values vat and price (VAT-exclusive)
and returns a VAT-inclusive price:

def calculate_price_with_vat(price, vat):
return price * (100 + vat) / 100

Now we can import that function and use it in any place in the website where we
need to calculate a VAT-inclusive price, and when we need to trace those calls we
can search for calculate price with_vat.
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\/‘/ Note that, in the preceding example, price is assumed to be VAT-

exclusive, and vat is a percentage value (for example, 19, 20, or 23).

Scopes and name resolution

Do you remember when we talked about scopes and namespaces in Chapter 1,

A Gentle Introduction to Python? We're going to expand on that concept now. Finally,
we can talk in terms of functions, and this will make everything easier to understand.
Let's start with a very simple example:

def my_function():
test = 1
print('my_function:', test)

test = 0
my_function()
print('global:", test)

We have defined the test name in two different places in the previous example —it is
actually in two different scopes. One is the global scope (test = @), and the other is
the local scope of the my_function() function (test = 1). If we execute the code, we
will see this:

$ python scoping.level.l.py
my_function: 1

global: ©

It's clear that test = 1 shadows the test = @ assignment in my_function(). In the
global context, test is still 0, as you can see from the output of the program, but we
define the test name again in the function body, and we set it to point to an integer
of value 1. Both of the two test names therefore exist: one in the global scope,
pointing to an int object with a value of 0, the other in the my_function() scope,
pointing to an int object with a value of 1. Let's comment out the line with test = 1.
Python searches for the test name in the next enclosing namespace (recall the LEGB
rule: local, enclosing, global, built-in, described in Chapter 1, A Gentle Introduction to
Python) and, in this case, we will see the value 0 printed twice. Try it in your code.
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Now, let's raise the stakes here and level up:

def outer():
test = 1

def inner():
test = 2
print('inner:', test)

inner()
print(‘outer:', test)

test = 0
outer()
print('global:", test)

In the preceding code, we have two levels of shadowing. One level is in the function
outer, and the other one is in the function inner(). It is far from rocket science, but it
can be tricky. If we run the code, we get:

$ python scoping.level.2.py
inner: 2

outer: 1
global: ©

Try commenting out the test = 1 line. Can you figure out what the result will be?
Well, when reaching the print('outer:', test) line, Python will have to look

for test in the next enclosing scope; therefore it will find and print 0, instead of

1. Make sure you comment out test = 2 as well, to see whether you understand
what happens and whether the LEGB rule is clear, before proceeding.

Another thing to note is that Python gives us the ability to define a function in
another function. The inner() function's name is defined within the namespace of
the outer() function, exactly as would happen with any other name.

The global and nonlocal statements

In the preceding example, we can alter what happens to the shadowing of the test
name by using one of these two special statements: global and nonlocal. As you can
see from the previous example, when we define test = 2 in the inner() function, we
overwrite test neither in the outer() function nor in the global scope.
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We can get read access to those names if we use them in a nested scope that doesn't
define them, but we cannot modify them because when we write an assignment
instruction, we're actually defining a new name in the current scope.

How do we change this behavior? Well, we can use the nonlocal statement.
According to the official documentation:

"The nonlocal statement causes the listed identifiers to refer to previously bound
variables in the nearest enclosing scope excluding globals."

Let's introduce it in the inner() function and see what happens:

def outer():
test = 1

def inner():
nonlocal test
test = 2
print('inner:"', test)

inner()
print(‘outer:', test)

test = 0
outer()
print('global:", test)

Notice how in the body of the inner() function, we have declared the test name to
be nonlocal. Running this code produces the following result:

$ python scoping.level.2.nonlocal.py
inner: 2

outer: 2
global: ©

Wow, look at that result! It means that, by declaring test to be nonlocal in the
inner() function, we actually get to bind the test name to the one declared in the
outer function. If we removed the nonlocal test line from the inner() function and
tried the same trick in the outer() function, we would get a SyntaxError, because the
nonlocal statement works on enclosing scopes, excluding the global one.
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Is there a way to get to that test = @ in the global namespace then? Of course —we
just need to use the global statement:

def outer():
test = 1

def inner():
global test
test = 2
print(‘inner:', test)

inner()
print(‘outer:', test)

test = 0
outer()
print('global:", test)

Note that we have now declared the test name to be global, which will basically
bind it to the one we defined in the global namespace (test = ). Run the code and
you should get the following;:

$ python scoping.level.2.global.py
inner: 2

outer: 1
global: 2

This shows that the name affected by the test = 2 assignment is now the global one.
This trick would also work in the outer function because, in this case, we're referring
to the global scope. Try it for yourself and see what changes, and get comfortable
with scopes and name resolution—it's very important. Also, can you tell what would
happen if you defined inner() outside outer() in the preceding examples?

Input parameters

At the beginning of this chapter, we saw that a function can take input parameters.
Before we delve into all the possible types of parameters, let's make sure you have
a clear understanding of what passing an argument to a function means. There are
three key points to keep in mind:

* Argument-passing is nothing more than assigning an object to a local
variable name
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* Assigning an object to an argument name inside a function doesn't affect
the caller

* Changing a mutable object argument in a function affects the caller

Before we explore the topic of arguments any further, please allow us to clarify
the terminology a little. According to the official Python documentation:

" Parameters are defined by the names that appear in a function definition, whereas
arguments are the values actually passed to a function when calling it. Parameters
define what types of arquments a function can accept."

We will try to be precise when referring to parameters and arguments, but it is worth
noting that they are sometimes used synonymously as well. Let's now look at some
examples.

Argument-passing

Take a look at the following code. We declare a name, x, in the global scope, then we
declare a function, func(y), and finally we call it, passing x:

X =3
def func(y):
print(y)

func(x)

When func() is called with x, within its local scope, a name, y, is created, and it's
pointed to the same object that x is pointing to. This is better clarified in Figure 4.2
(don't worry about the fact that this example was run with Python 3.6 —this is a
feature that hasn't changed).

Print output (drag lower right corner to resize)

Write code in | Python 3.6 w

X =3
def func(y):
= print(y) Frames Objects
func(x) # prints: 3 Global frame e
! 3
» A
4
func / function
line that just executed J,/ func(y)
=4 next line to execute /
func f NoneType
% -/ /,-*""’ MNone
<< First < Prev Next > Last >> .
Return
Step 6 of 6 value

Figure 4.2: Understanding argument-passing with Python Tutor
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The right-hand side of Figure 4.2 depicts the state of the program when execution
has reached the end, after func() has returned (None). Take a look at the Frames
column, and note that we have two names, x and func, in the global namespace
(Global frame), pointing respectively to an int (with a value of 3) and to a function
object. Right beneath it, in the rectangle titled func, we can see the function's local
namespace, in which only one name has been defined: y. Because we have called
func() with x (line 5 on the left side of the figure), y is pointing to the same object
that x is. This is what happens under the hood when an argument is passed to a
function. If we had used the name x instead of y in the function definition, things
would have been exactly the same (but perhaps a bit confusing at first) — there would
be a local x in the function, and a global x outside, as we saw in the Scopes and name
resolution section previously in this chapter.

So, in a nutshell, what really happens is that the function creates, in its local scope,
the names defined as parameters and, when we call it, we basically tell Python which
objects those names must be pointed toward.

Assignment to parameter names

Assignment to parameter names doesn't affect the caller. This is something that can
be tricky to understand at first, so let's look at an example:

X =3
def func(x):
X =7

func(x)
print(x)

In the preceding code, when we call the function with func(x), the instruction x = 7
is executed within the local scope of the func() function; the name, x, is pointed to an
integer with a value of 7, leaving the global x unaltered.

Changing a mutable object

Changing a mutable object affects the caller. This is the final point, and it's very
important because Python apparently behaves differently with mutable objects
(just apparently, though). Let's look at an example:

X = [1,- 2, 3]
def func(x):
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x[1] = 42

func(x)
print(x)

Wow, we actually changed the original object! If you think about it, there is nothing
weird in this behavior. The name x in the function is set to point to the caller object
by the function call; within the body of the function, we are not changing x, in that
we're not changing its reference, or, in other words, we are not changing which
object x is pointing to. We are merely accessing the element at position 1 in that
object, and changing its value.

Remember point 2 the Input parameters section: Assigning an object to an parameter
name within a function doesn't affect the caller. If that is clear to you, the following code
should not be surprising:

X = [1; 2, 3]
def func(x):

x[1] = 42

x = 'something else’
func(x)
print(x)

Take a look at the two lines we have highlighted. At first, like before, we just access
the caller object again, at position 1, and change its value to number 42. Then, we
reassign x to point to the 'something else’ string. This leaves the caller unaltered
and, in fact, the output is the same as that of the previous snippet.

Take your time to play around with this concept, and experiment with prints and
calls to the id function until everything is clear in your mind. This is one of the
key aspects of Python and it must be very clear, otherwise you risk introducing
subtle bugs into your code. Once again, the Python Tutor website (http://www.
pythontutor.com/) will help you a lot by giving you a visual representation of
these concepts.

Now that we have a good understanding of input parameters and how they behave,
let's look at the different ways of passing arguments to functions.
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Passing arguments

There are four different ways of passing arguments to a function:

* Positional arguments
* Keyword arguments
* Iterable unpacking

* Dictionary unpacking

Let's take a look at them one by one.

Positional arguments

When we call a function, each positional argument is assigned to the parameter in
the corresponding position in the function definition:

def func(a, b, c):
print(a, b, c)

func(1, 2, 3)

This is the most common way of passing arguments to functions (and in some
programming languages this is also the only way of passing arguments).

Keyword arguments

Keyword arguments in a function call are assigned to parameters using the
name=value syntax:

def func(a, b, c):
print(a, b, c)

func(a=1, c=2, b=3)

When we use keyword arguments, the order of the arguments does not need
to match the order of the parameters in the function definition. This can make
our code easier to read and debug. We don't need to remember (or look up) the
order of parameters in a function definition. We can look at a function call and
immediately know which argument corresponds to which parameter.
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You can also use both positional and keyword arguments at the same time:
def func(a, b, c):
print(a, b, c)
func(42, b=1, c=2)

Keep in mind, however, that positional arguments always have to be listed before
any keyword arguments. For example, if you try something like this:

func(b=1, c=2, 42)

You will get an error:

$ python arguments.positional.keyword.py
File "arguments.positional.keyword.py", line 7
func(b=1, c=2, 42) # positional argument after keyword arguments

N

SyntaxError: positional argument follows keyword argument

Iterable unpacking

Iterable unpacking uses the syntax *iterable_name to pass the elements of an iterable
as positional arguments to a function:

def func(a, b, c):
print(a, b, c)

values = (1, 3, -7)
func(*values)

This is a very useful feature, particularly when we need to programmatically
generate arguments for a function.

Dictionary unpacking

Dictionary unpacking is to keyword arguments what iterable unpacking is to
positional arguments. We use the syntax **dictionary_name to pass keyword
arguments, constructed from the keys and values of a dictionary, to a function:
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def func(a, b, c):
print(a, b, c)

values = {'b': 1, 'c': 2, 'a': 42}
func(**values)

Combining argument types

We've already seen that positional and keyword arguments can be used together,
as long as they are passed in the proper order. As it turns out, we can also combine
unpacking (of both kinds) with normal positional and keyword arguments. We can
even unpack multiple iterables and multiple dictionaries!

Arguments must be passed in the following order:

» First, positional arguments: both ordinary (name) and iterable unpacking
(*name)

* Next come keyword arguments (name=value), which can be mixed with
iterable unpacking (*name)

* Finally, there is dictionary unpacking (**name), which can be mixed with
keyword arguments (name=value)

This will be much easier to understand with an example:

def func(a, b, c, d, e, f):
print(a, b, c, d, e, f)

-Func(l, *(2: 3): f=6, *(4‘: 5))

func(*(1, 2), e=5, *(3, 4), f=6)

func(1, **{'b': 2, 'c': 3}, d=4, **{'e': 5, 'f': 6})
func(c=3, *(1, 2), **{'d': 4}, e=5, **{'f': 6})

All the calls to func() above are equivalent. Play around with this example until you
are sure you understand it. Pay close attention to the errors you get when you get
the order wrong.

The ability to unpack multiple iterables and dictionaries was
/ introduced to Python by PEP 448. This PEP also introduced the
\/;p; ability to use unpacking in contexts other than just function calls.
You can read all about it at https://www.python.org/dev/peps/
pep-0448/.
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When combining positional and keyword arguments, it is important to remember
that each parameter can only appear once in the argument list:

# arguments.multiple.value.py
def func(a, b, c):
print(a, b, c)

func(2, 3, a=1)

Here, we are passing two values for parameter a: the positional argument 2 and the
keyword argument a=1. This is illegal, so we get an error when we try to run it:

$ python arguments.multiple.value.py
Traceback (most recent call last):
File "arguments.multiple.value.py"”, line 5, in <module>

func(2, 3, a=1)
TypeError: func() got multiple values for argument 'a

Defining parameters

Function parameters can be classified into five groups.

* Positional or keyword parameters: allow both positional and keyword
arguments

* Variable positional parameters: collect an arbitrary number of positional
arguments in a tuple

* Variable keyword parameters: collect an arbitrary number of keyword
arguments in a dictionary

* Positional-only parameters: can only be passed as positional arguments

* Keyword-only parameters: can only be passed as keyword arguments

All the parameters in the examples we have seen so far in this chapter are normal
positional or keyword parameters. We've seen how they can be passed as both
positional and keyword arguments. There's not much more to say about them, so
let's look at the other categories. Before we do though, let's briefly look at optional
parameters.
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Optional parameters

Apart from the categories we've looked at here, parameters can also be classified as
either required or optional. Optional parameters have a default value specified in the
function definition. The syntax is name=value:

def func(a, b=4, c=88):
print(a, b, c)

func(1)

func(b=5, a=7, c=9)
func(42, c=9)
func(42, 43, 44)

Here, a is required, while b has the default value 4 and c has the default value 88.
It's important to note that, with the exception of keyword-only parameters, required
parameters must always be to the left of all optional parameters in the function
definition. Try removing the default value from c in the above example and see

for yourself what happens.

Variable positional parameters

Sometimes you may prefer not to specify the exact number of positional parameters
to a function; Python provides you with the ability to do this by using variable
positional parameters. Let's look at a very common use case, the minimum() function.
This is a function that calculates the minimum of its input values:

def minimum(*n):

if n:
mn = n[0]
for value in n[1:]:
if value < mn:
mn = value
print(mn)

minimum(1, 3, -7, 9)
minimum()
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As you can see, when we define a parameter with an asterisk, *, prepended to its
name, we are telling Python that this parameter will collect a variable number of
positional arguments when the function is called. Within the function, n is a tuple.
Uncomment print(type(n)) to see for yourself, and play around with it for a bit.

Note that a function can have at most one variable positional parameter —it wouldn't
make sense to have more. Python would have no way of deciding how to divide

up the arguments between them. You are also unable to specify a default value

for a variable positional parameter. The default value is always an empty tuple.

Have you noticed how we checked whether n wasn't empty with
a simple if n:? This is because collection objects evaluate to True
when non-empty, and otherwise False, in Python. This is the case
for tuples, sets, lists, dictionaries, and so on.

\Q/ One other thing to note is that we may want to throw an error

when we call the function with no parameters, instead of silently
doing nothing. In this context, we're not concerned about making
this function robust, but rather understanding variable positional
parameters.

Did you notice that the syntax for defining variable positional parameters looks very
much like the syntax for iterable unpacking? This is no coincidence. After all, the
two features mirror each other. They are also frequently used together, since variable
positional parameters save you from worrying whether the length of the iterable
you're unpacking matches the number of parameters in the function definition.

Variable keyword parameters

Variable keyword parameters are very similar to variable positional parameters.
The only difference is the syntax (** instead of *) and the fact that they are collected
in a dictionary:

def func(**kwargs):
print(kwargs)

func(a=1, b=42)
func()
func(a=1, b=46, c=99)
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You can see that adding ** in front of the parameter name in the function definition
tells Python to use that name to collect a variable number of keyword parameters.
As in the case of variable positional parameters, each function can have at most

one variable keyword parameter —and you cannot specify a default value.

Just like variable positional parameters resemble iterable unpacking, variable
keyword parameters resemble dictionary unpacking. Dictionary unpacking is
also often used to pass arguments to functions with variable keyword parameters.

The reason why being able to pass a variable number of keyword arguments is so
important may not be evident at the moment, so how about a more realistic example?
Let's define a function that connects to a database: we want to connect to a default
database by simply calling this function with no parameters. We also want to connect
to any other database by passing to the function the appropriate parameters. Before
you read on, try to spend a couple of minutes figuring out a solution by yourself:

def connect(**options):
conn_params = {
'host': options.get('host', '127.0.0.1"),
"port': options.get('port', 5432),
'user': options.get('user', ''),
"pwd': options.get('pwd', '),
}

print(conn_params)

connect()
connect(host="127.0.0.42", port=5433)
connect(port=5431, user='fab', pwd='gandalf")

Note that, in the function, we can prepare a dictionary of connection parameters
(conn_params) using default values as fallbacks, allowing them to be overwritten

if they are provided in the function call. There are better ways to do this with fewer
lines of code, but we're not concerned with that right now. Running the preceding
code yields the following result:

parameters.variable.db.py
'127.0.0.1', 'port': 5432, ‘'user': '', 'pwd': ''}

'127.0.0.42', 'port': 5433, 'user': '', 'pwd': "'}
'127.0.0.1', 'port': 5431, ‘'user': 'fab', 'pwd': 'gandalf'}
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Note the correspondence between the function calls and the output, and how default
values are overridden according to what was passed to the function.

Positional-only parameters

Starting from Python 3.8, PEP 570 (https://www.python.org/dev/peps/pep-8570/)
introduced positional-only parameters. There is a new function parameter syntax,
/, indicating that a set of the function parameters must be specified positionally and
cannot be passed as keyword arguments. Let's see a simple example:

def func(a, b, /, c):
print(a, b, c)

func(1, 2, 3)
func(1, 2, c=3)

In the preceding example, we define a function func(), which specifies three
parameters: a, b, and c. The / in the function signature indicates that a and b must
be passed positionally, that is, not by keyword.

The last two lines in the example show that we can call the function passing all three
arguments positionally, or we can pass ¢ by keyword. Both cases work fine, as c is
defined after the / in the function signature. If we try to call the function by passing
a or b by keyword, like so:

func(1l, b=2, c=3)

This produces the following traceback:

Traceback (most recent call last):
File "arguments.positional.only.py", line 7, in <module>
func(1, b=2, c=3)

TypeError: func() got some positional-only arguments
passed as keyword arguments: 'b’

The preceding example show us that Python is now complaining about how we
called func(). We have passed b by keyword, but we are not allowed to do that.

Positional-only parameters can also be optional:

def func(a, b=2, /):
print(a, b)
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func(4, 5)
func(3)

Let's see what this feature brings to the language with a few examples borrowed
from the official documentation. One advantage is the ability to fully emulate
behaviors of existing C-coded functions:

def divmod(a, b, /):
"Emulate the built in divmod() function"
return (a // b, a % b)

Another important use case is to preclude keyword arguments when the parameter
name is not helpful:

len(obj="hello")

In the preceding example, the obj keyword argument impairs readability. Moreover,
if we wish to refactor the internals of the 1len function, and rename obj to the_object
(or any other name), the change is guaranteed not to break any client code, because
there won't be any call to the 1en() function involving the now stale obj parameter
name.

Finally, using positional-only parameters implies that whatever is on the left of /
remains available for use in variable keyword arguments, as shown by the following
example:

def func_name(name, /, **kwargs):
print(name)
print(kwargs)

func_name('Positional-only name', name='Name in **kwargs')

The ability to retain parameter names in function signatures for use in **kwargs can
lead to simpler and cleaner code.

Let us now explore the mirror version of positional-only: keyword-only parameters.
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Keyword-only parameters

Python 3 introduced keyword-only parameters. We are going to study them only
briefly, as their use cases are not that frequent. There are two ways of specifying
them, either after the variable positional parameters, or after a bare *. Let's see an
example of both:

def kwo(*a, c):
print(a, c)

kwo(1, 2, 3, c=7)
kwo(c=4)

def kwo2(a, b=42, *, c):
print(a, b, c)

kwo2(3, b=7, c=99)
kwo2(3, c=13)

As anticipated, the function, kwo(), takes a variable number of positional parameters
(a) and a keyword-only one, c. The results of the calls are straightforward and you
can uncomment the third call to see what error Python returns.

The same applies to the function kwo2(), which differs from kwo in that it takes
a positional argument, a, a keyword argument, b, and then a keyword-only one,
c. You can uncomment the third call to see the error that is produced.

Now that you know how to specify different types of input parameters, let's see how
you can combine them in function definitions.

Combining input parameters

You can combine different parameter types in the same function (in fact it is often
very useful to do so). As in the case of combining different types of arguments in
the same function call, there are some restrictions on ordering;:

* Positional-only parameters come first, followed by a /.

* Normal parameters go after any positional-only parameters.
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* Variable positional parameters go after normal parameters.
* Keyword-only parameters go after variable positional parameters.
* Variable keyword parameters always go last.

* For positional-only and normal parameters, any required parameters have
to be defined before any optional parameters. This means that if you have
an optional positional-only parameter, all your normal parameters must be
optional too. This rule doesn't affect keyword-only parameters.

These rules can be a bit tricky to understand without an example, so let's look
at a couple:

def func(a, b, c=7, *args, **kwargs):
print('a, b, c:', a, b, )
print(‘args:', args)
print('kwargs:", kwargs)

func(1, 2, 3, 5, 7, 9, A='a', B="b")

Note the order of the parameters in the function definition. The execution of this
yields the following;:

$ python parameters.all.py
a, b, c: 123

args: (5, 7, 9)
kwargs: {'A': 'a', 'B': 'b'}

Let's now look at an example with keyword-only parameters:

def allparams(a, /, b, c¢=42, *args, d=256, e, **kwargs):
print('a, b, c:', a, b, )
print('d, e:', d, e)
print(‘args:', args)
print('kwargs:", kwargs)

allparams(1, 2, 3, 4, 5, 6, e=7, =9, g=10)

Note that we have both positional-only and keyword-only parameters in the function
declaration: a is positional-only, while d and e are keyword-only. They come after the
*args variable positional argument, and it would be the same if they came right after
a single * (in which case there wouldn't be any variable positional parameter). The
execution of this yields the following:
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$ python parameters.all.pkwonly.py
a, b, c: 123
d, e: 256 7

args: (4, 5, 6)
kwargs: {'f': 9, 'g': 1@}

One other thing to note is the names we gave to the variable positional and keyword
parameters. You're free to choose differently, but be aware that args and kwargs are
the conventional names given to these parameters, at least generically.

More signature examples

To briefly recap on function signatures that use the positional- and keyword-only
specifiers, here are some further examples. Omitting the variable positional and
keyword parameters, for brevity, we are left with the following syntax:

def func_name(positional_only parameters, /,
positional_or_keyword_parameters, *,
keyword_only parameters):

First, we have positional-only, then positional or keyword parameters, and finally
keyword-only ones.

Some other valid signatures are presented below:

def func_name(pl, p2, /, p_or_kw, *, kw):

def func_name(pl, p2=None, /, p_or_kw=None, *, kw):
def func_name(pl, p2=None, /, *, kw):

def func_name(pl, p2=None, /):

def func_name(pl, p2, /, p_or_kw):

def func_name(pl, p2, /):

All of the above are valid signatures, while the following would be invalid:

def func_name(pl, p2=None, /, p_or_kw, *, kw):
def func_name(pl=None, p2, /, p_or_kw=None, *, kw):
def func_name(pl=None, p2, /):

You can read about the grammar specifications in the official documentation:

https://docs.python.org/3/reference/compound_stmts.html#function-
definitions
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A useful exercise for you at this point would be to implement any of the above
example signatures, printing out the values of those parameters, like we have
done in previous exercises, and play around passing arguments in different ways.

Avoid the trap! Mutable defaults

One thing to be aware of, in Python, is that default values are created at definition
time; therefore, subsequent calls to the same function will possibly behave differently
according to the mutability of their default values. Let's look at an example:

def func(a=[], b={}):
print(a)
print(b)
print('#' * 12)
a.append(len(a))
b[len(a)] = len(a)

func()
func()
func()

Both parameters have mutable default values. This means that, if you affect those
objects, any modification will stick around in subsequent function calls. See if you
can understand the output of those calls:

$ python parameters.defaults.mutable.py

[]
{}
S

[e]

{1: 1}
HHFHH AR
[e, 1]
{1: 1, 2: 2}
BHHHHH AR

It's interesting, isn't it? While this behavior may seem very weird at first, it actually
makes sense, and it's very handy — when using memoization techniques, for
example. Even more interesting is what happens when, between the calls, we
introduce one that doesn't use defaults, such as this:

[140]



Chapter 4

func()
func(a=[1, 2, 3], b={'B': 1})
func()

When we run this code, this is the output:

$ python parameters.defaults.mutable.intermediate.call.py

[]

{}
S

[1, 2, 3]

{'B': 1}

HUHHAFHHHHHH

[e]

{1: 1}

HHHHH

1s output shows us that the defaults are retained even it we call the function wit
other values. One question that comes to mind is, how do I get a fresh empty value
every time? Well, the convention is the following:

def func(a=None):
if a is None:

a =[]

Note that, by using the preceding technique, if a isn't passed when calling the
function, we always get a brand new, empty list.

After a thorough exposition of input parameters, it's now time to look at the other
side of the coin, output parameters.

Return values

The return values of functions are one of those things where Python is ahead of the
competition. In most other languages, functions are usually allowed to return only
one object but, in Python, you can return a tuple —which implies that you can return
whatever you want. This feature allows a programmer to write software that would
be much harder to write in other languages, or certainly more tedious. We've already
said that to return something from a function we need to use the return statement,
followed by what we want to return. There can be as many return statements as
needed in the body of a function.
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On the other hand, if within the body of a function we don't return anything, or
we invoke a bare return statement, the function will return None. This behavior is
harmless when it's not needed, but allows for interesting patterns, and confirms
Python as a very consistent language.

We say it's harmless because you are never forced to collect the result of a function
call. We'll show you what we mean with an example:

def func():
pass

func()
a = func()
print(a)

Note that the whole body of the function is composed only of the pass statement.
As the official documentation tells us, pass is a null operation, as, when it is
executed, nothing happens. It is useful as a placeholder when a statement is
required syntactically but no code needs to be executed. In other languages, we
would probably just indicate that with a pair of curly brackets ({}), which define
an empty scope; but in Python, a scope is defined by indenting code, therefore a
statement such as pass is necessary.

Notice also that the first call to func() returns a value (None) that we don't collect. As
we mentioned before, collecting the return value of a function call is not mandatory.

That's all well, but not very interesting, so how about we write an interesting
function? Remember that, in Chapter 1, A Gentle Introduction to Python, we talked
about the factorial function. Let's write our own implementation here (for simplicity,
we will assume the function is always called correctly with appropriate values, so we
won't need to sanity-check the input argument):

def factorial(n):
if n in (0, 1):
return 1
result = n
for k in range(2, n):
result *= k
return result

5 = factorial(5)
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Note that we have two points of return. If n is either 0 or 1, we return 1. Otherwise,
we perform the required calculation and return result.

In Python it's common to use the in operator to do a membership
check, as we did in the preceding example, instead of the more

\@// verbose:

if n==0 or n ==

Let's now try to write this function a little bit more succinctly:

from functools import reduce
from operator import mul

def factorial(n):
return reduce(mul, range(l, n + 1), 1)

f5 = factorial(5)

This simple example shows how Python is both elegant and concise. This
implementation is readable even if we have never seen reduce() or mul(). If you
can't read or understand it, set aside a few minutes and do some research in the
Python documentation until its behavior is clear to you. Being able to look up
functions in the documentation and understand code written by someone else is a
task that every developer needs to be able to perform, so take this as a challenge.

I
_\@l_ To this end, make sure you look up the help() function, which
N

2 proves quite helpful when exploring with the console.

Returning multiple values

As we mentioned before, unlike in most other languages, in Python it's very easy

to return multiple objects from a function. This feature opens up a whole world of
possibilities and allows you to code in a style that is hard to reproduce with other
languages. Our thinking is limited by the tools we use; therefore, when Python gives
you more freedom than other languages, it is boosting your ability to be creative.
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To return multiple values is very easy: you just use tuples (either explicitly or
implicitly). Let's look at a simple example that mimics the divmod() built-in function:

def moddiv(a, b):
return a // b, a % b

print(moddiv(20, 7))
We could have wrapped the part that is in bold in the preceding code in brackets,

making it an explicit tuple, but there's no need for that. The preceding function
returns both the result and the remainder of the division, at the same time.

of a test function to make sure the code is doing the correct
calculation.

C’ In the source code for this example, we have left a simple example
\"/

A few useful tips

When writing functions, it's very useful to follow guidelines so that you write them
well. We'll quickly point some of them out.

Functions should do one thing

Functions that do one thing are easy to describe in one short sentence; functions that
do multiple things can be split into smaller functions that do one thing. These smaller
functions are usually easier to read and understand.

Functions should be small
The smaller they are, the easier it is to test and write them so that they do one thing.
The fewer input parameters, the better

Functions that take a lot of parameters quickly become hard to manage (among other
issues).

Functions should be consistent in their return values

Returning False and returning None are not the same thing, even if, within a Boolean
context, they both evaluate to False. False means that we have information (False),
while None means that there is no information. Try writing functions that return in

a consistent way, no matter what happens in their logic.
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Functions shouldn't have side effects

In other words, functions should not affect the values you call them with. This is
probably the hardest statement to understand at this point, so we'll give you an
example using lists. In the following code, note how numbers is not sorted by the
sorted() function, which actually returns a sorted copy of numbers. Conversely, the
list.sort() method is acting on the numbers object itself, and that is fine because

it is a method (a function that belongs to an object and therefore has the right to
modify it):

>>> numbers = [4, 1, 7, 5]
>>> sorted(numbers)

[1, 4, 5, 7]

>>> numbers

[4, 1, 7, 5] # good, untouched
>>> numbers.sort()

>>> numbers

[1, 4, 5, 7]

Follow these guidelines and you will write better functions, which will serve
you well.

functions, and it's one of the best sets of guidelines we have ever
read on the subject.

C’ Chapter 3 of Clean Code, by Robert C. Martin, is dedicated to
\”/

Recursive functions

When a function calls itself to produce a result, it is said to be recursive. Sometimes
recursive functions are very useful, in that they make it easier to write code —some
algorithms are very easy to write using the recursive paradigm, while others are not.
There is no recursive function that cannot be rewritten in an iterative fashion, so it's
usually up to the programmer to choose the best approach for the case at hand.

The body of a recursive function usually has two sections: one where the return
value depends on a subsequent call to itself, and one where it doesn't (called the
base case).

As an example, we can consider the (hopefully now familiar) factorial function, N'.
The base case is when N is either 0 or 1— the function returns 1 with no need for
further calculation. On the other hand, in the general case, N! returns the product:

1% 2% .., % (N-1) * N
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If you think about it, N/ can be rewritten like this: N/ = (N-1)! * N. As a practical
example, consider this:

51 =1 *% 2 * 3 * 4 %5 = (1 *%2*3%*4)*5=4] *5

Let's write this down in code:

def factorial(n):
if n in (0, 1):
return 1
return factorial(n - 1) * n

Recursive functions are often used when writing algorithms, and they can be
really fun to write. As an exercise, try to solve a couple of simple problems using
both a recursive and an iterative approach. Good candidates for practice might be
calculating Fibonacci numbers, or the length of a string — things like that.

When writing recursive functions, always consider how
‘ , many nested calls you make, since there is a limit. For further
\p/ information on this, check out sys.getrecursionlimit() and
sys.setrecursionlimit().

Anonymous functions

One last type of function that we want to talk about are anonymous functions. These
functions, which are called lambdas in Python, are usually used when a fully fledged
function with its own name would be overkill, and all we want is a quick, simple
one-liner that does the job.

Imagine that we wanted a list of all the numbers up to a certain value of N that are
also multiples of five. We could use the filter() function for this, which will require
a function and an iterable as input. The return value is a filter object that, when you
iterate over it, yields the elements from the input iterable for which the function

returns True. Without using an anonymous function, we might do something
like this:

def is multiple_of_five(n):
return not n % 5

def get_multiples_of five(n):
return list(filter(is_multiple_of_ five, range(n)))
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Note how we use is_multiple of_five() to filter the first n natural numbers. This
seems a bit excessive — the task is simple and we don't need to keep the is_multiple_
of_five() function around for anything else. Let's rewrite it using a lambda function:

def get_multiples_of five(n):
return list(filter(lambda k: not k % 5, range(n)))

The logic is exactly the same, but the filtering function is now a lambda. Defining a
lambda is very easy and follows this form: func_name = lambda [parameter_list]:
expression. A function object is returned, which is equivalent to this: def func_
name([parameter_list]): return expression.

syntax of wrapping them in square brackets.

\/‘/ Note that optional parameters are indicated following the common

Let's look at another couple of examples of equivalent functions, defined in both
forms:

def adder(a, b):
return a + b

adder_lambda = lambda a, b: a + b

def to_upper(s):
return s.upper()

to_upper_lambda = lambda s: s.upper()

The preceding examples are very simple. The first one adds two numbers, and the
second one produces the uppercase version of a string. Note that we assigned what is
returned by the lambda expressions to a name (adder_lambda, to_upper_lambda), but
there is no need for that when you use lambdas in the way we did in the filter()
example.
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Function attributes

Every function is a fully fledged object and, as such, it has many attributes. Some
of them are special and can be used in an introspective way to inspect the function
object at runtime. The following script is an example that shows a part of them and
how to display their value for an example function:

def multiplication(a, b=1):
"""Return a multiplied by b.
return a * b

if __name__ == "_ main__":
special_attributes = [
" _doc__ ", " name__", " qualname__ ", "_ module_ ",
" _defaults__ ", " code_", "_ globals__ ", " dict_ ",
" closure__", " __annotations__ ", " _kwdefaults__ ",

]

for attribute in special_attributes:
print(attribute, '->', getattr(multiplication, attribute))

We used the built-in getattr() function to get the value of those attributes.
getattr(obj, attribute) is equivalent to obj.attribute and comes in handy when
we need to dynamically get an attribute at runtime, taking the name of the attribute
from a variable (as in this example). Running this script yields:

$ python func.attributes.py

__doc__ -> Return a multiplied by b.

__name__ -> multiplication

__qualname__ -> multiplication

__module__ -> _ main__

__defaults__ -> (1,)

__code__ -> <code object multiplication at ©x10fb599de,

file "func.attributes.py", line 2>
__globals__ -> {... omitted ...}
_dict__ -> {}
__closure__ -> None
__annotations__ -> {}
__kwdefaults__ -> None
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We have omitted the value of the __globals__ attribute, as it was too big. An
explanation of the meaning of this attribute can be found in the Callable types section
of the Python Data Model documentation page:

https://docs.python.org/3/reference/datamodel.html#the-standard-type-
hierarchy

Should you want to see all the attributes of an object, just call dir(object_name)
and you will be given a list of all of its attributes.

Built-in functions

Python comes with a lot of built-in functions. They are available anywhere, and you
can get a list of them by inspecting the builtins module with dir(__builtins__),

or by going to the official Python documentation. Unfortunately, we don't have the
room to go through all of them here. We've already seen some of them, such as any,
bin, bool, divmod, filter, float, getattr, id, int, 1en, 1list, min, print, set, tuple,
type, and zip, but there are many more, which you should read about at least once.
Get familiar with them, experiment, write a small piece of code for each of them, and
make sure you have them at your fingertips so that you can use them when needed.

You can find a list of built-in functions in the official documentation, here: https://
docs.python.org/3/library/functions.html.

Documenting your code

We are big fans of code that doesn't need documentation. When we program
correctly, choose the right names, and take care of the details, the code should come
out as self-explanatory, with documentation being almost unnecessary. Sometimes
a comment is very useful though, and so is some documentation. You can find the
guidelines for documenting Python in PEP 257 -- Docstring conventions:

https://www.python.org/dev/peps/pep-0257/, but we'll show you the basics here.

Python is documented with strings, which are aptly called docstrings. Any object
can be documented, and we can use either one-line or multi-line docstrings. One-
liners are very simple. They should not provide another signature for the function,
but instead state its purpose:

def square(n):
"""Return the square of a number n.
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return n ** 2

def get_username(userid):
"""Return the username of a user given their id.
return db.get(user_id=userid).username

Using triple double-quoted strings allows you to expand easily later on.
Use sentences that end in a period, and don't leave blank lines before or after.

Multiline comments are structured in a similar way. There should be a one-liner
that briefly gives you the gist of what the object is about, and then a more verbose
description. As an example, we have documented a fictitious connect() function,
using the Sphinx notation, in the following example:

def connect(host, port, user, password):
"""Connect to a database.

Connect to a PostgreSQL database directly, using the given
parameters.

:param host: The host IP.

:param port: The desired port.

:param user: The connection username.
:param password: The connection password.
:return: The connection object.

return connection

Sphinx is one of the most widely used tools for creating Python

‘ n/ documentation—in fact, the official Python documentation was
written with it. It's definitely worth spending some time checking
it out.

The help() built-in function, which is intended for interactive use, creates
a documentation page for an object using its docstring.
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Importing objects

Now that we know a lot about functions, let's look at how to use them. The whole
point of writing functions is to be able to reuse them later, and in Python, this
translates to importing them into the namespace where you need them. There are
many different ways to import objects into a namespace, but the most common ones
are import module_name and from module_name import function_name. Of course,
these are quite simplistic examples, but bear with us for the time being.

The import module_name form finds the module_name module and defines a name

for it in the local namespace, where the import statement is executed. The from
module_name import identifier form is a little bit more complicated than that but
basically does the same thing. It finds module_name and searches for an attribute

(or a submodule) and stores a reference to identifier in the local namespace. Both
forms have the option to change the name of the imported object using the as clause:

from mymodule import myfunc as better_named_func

Just to give you a flavor of what importing looks like, here's an example from a test
module of one of Fabrizio's projects (notice that the blank lines between blocks of
imports follow the guidelines from PEP 8 at https://www.python.org/dev/peps/pep-
@008/#imports: standard library, third party, and local code):

from datetime import datetime, timezone
from unittest.mock import patch

import pytest

from core.models import (
Exam,
Exercise,
Solution,

)

When we have a structure of files starting in the root of our project, we can use the
dot notation to get to the object we want to import into our current namespace, be it
a package, a module, a class, a function, or anything else.
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The from module import syntax also allows a catch-all clause, from module import
*, which is sometimes used to get all the names from a module into the current
namespace at once; this is frowned upon for several reasons though, relating to
performance and the risk of silently shadowing other names. You can read all that
there is to know about imports in the official Python documentation but, before we
leave the subject, let us give you a better example.

Imagine that we have defined a couple of functions, square(n) and cube(n), ina
module, funcdef.py, which is in the 1ib folder. We want to use them in a couple of
modules that are at the same level as the 1ib folder, called func_import.py and func_
from.py. Showing the tree structure of that project produces something like this:

|— func_from.py
— func_import.py

— 1ib

| F— _init__.py
|

L— funcdef.py

Before we show you the code of each module, please remember that in order to tell
Python that it is actually a package, we need to put an __init__.py module in it.

There are two things to note about the __init__.py file. First of
, all, it is a fully fledged Python module so you can put code into it
\/;p> as you would with any other module. Second, as of Python 3.3, its
presence is no longer required to make a folder be interpreted as
a Python package.

The code is as follows:

def square(n):
return n ** 2

def cube(n):
return n ** 3

import 1lib.funcdef
print(lib.funcdef.square(10))
print(lib.funcdef.cube(10))
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from lib.funcdef import square, cube
print(square(10))
print(cube(10))

Both these files, when executed, print 100 and 1000. You can see how differently we
then access the square and cube functions, according to how and what we imported
in the current scope.

Relative imports

The type of import we've seen so far is called an absolute import; that is, it defines
the whole path of either the module that we want to import or from which we want
to import an object. There is another way of importing objects into Python, which is
called a relative import. Relative imports are done by adding as many leading dots
in front of the module as the number of folders we need to backtrack, in order to find
what we're searching for. Simply put, it is something such as this:

from .mymodule import myfunc

Relative imports are quite useful when restructuring projects. Not having the full
path in the imports allows the developer to move things around without having
to rename too many of those paths.

For a complete explanation of relative imports, refer to PEP 328:
https://www.python.org/dev/peps/pep-0328/

In later chapters, we will create projects using different libraries and use several
different types of imports, including relative ones, so make sure you take a bit
of time to read up about them in the official Python documentation.

One final example

Before we finish off this chapter, let's go through one last example. We could write
a function to generate a list of prime numbers up to a limit; we've already seen the
code for this in Chapter 3, so let's make it a function and, to keep it interesting, let's
optimize it a bit.

It turns out that we don't need to divide by all numbers from 2 to N-1 to decide
whether a number, N, is prime. We can stop at VN (the square root of N). Moreover,
we don't need to test the division for all numbers from 2 to VN, as we can just use
the primes in that range. We leave it up to you to figure out why this works, if you're
interested in the beauty of mathematics.
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Let's see how the code changes:

from math import sqrt, ceil

def get_primes(n):
"""Calculate a list of primes up to n (included).
primelist = []
for candidate in range(2, n + 1):
is_prime = True
root = ceil(sqrt(candidate))
for prime in primelist:
if prime > root:
break
if candidate % prime ==
is_prime = False
break
if is_prime:
primelist.append(candidate)
return primelist

The code is the same as that in the previous chapter. We have changed the division
algorithm so that we only test divisibility using the previously calculated primes,
and we stopped once the testing divisor was greater than the root of the candidate.
We used the primelist result list to get the primes for the division and calculated
the root value using a fancy formula, the integer value of the ceiling of the root of the
candidate. While a simple int(k ** @.5) + 1 would have also served our purpose,
the formula we chose is cleaner and requires a couple of imports, which is what

we wanted to show. Check out the functions in the math module — they are very

interesting!

Summary

In this chapter, we explored the world of functions. They are very important and,
from now on, we'll use them in virtually everything we do. We talked about the
main reasons for using them, the most important of which are code reuse and

implementation hiding.
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We saw that a function object is like a box that takes optional inputs and may
produce outputs. We can feed input arguments to a function in many different ways,
using positional and keyword arguments, and using variable syntax for both types.

You should now know how to write a function, document it, import it into your
code, and call it.

In the next chapter we will be picking up the pace a little a bit, so we suggest you
take any opportunity you get to consolidate and enrich the knowledge you've
gathered so far by putting your nose into the Python official documentation.
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"It's not the daily increase but daily decrease. Hack away at the unessential."

— Bruce Lee

We love this quote from Bruce Lee. He was such a wise man! The second part in
particular, "hack away at the unessential," is to us what makes a computer program
elegant. After all, if there is a better way of doing things so that we don't waste time
or memory, why wouldn't we?

Sometimes, there are valid reasons for not pushing our code up to the maximum
limit: for example, sometimes, in order to achieve a negligible improvement, we have
to sacrifice readability or maintainability. Does it make any sense to have a web page
served in 1 second with unreadable, complicated code, when we can serve it in 1.05
seconds with readable, clean code? No, it makes no sense.

On the other hand, sometimes it's perfectly reasonable to try to shave off a
millisecond from a function, especially when the function is meant to be called
thousands of times. Every millisecond you save there means seconds saved over
thousands of calls, and this could be meaningful for your application.

In light of these considerations, the focus of this chapter will not be to give you the
tools to push your code to the absolute limits of performance and optimization no
matter what, but rather to enable you to write efficient, elegant code that reads well,
runs fast, and doesn't waste resources in an obvious way.
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In this chapter, we are going to cover the following:

e Themap(), zip(), and filter() functions
* Comprehensions

e Generators

We will perform several measurements and comparisons and cautiously draw some
conclusions. Please do keep in mind that on a different machine with a different
setup or operating system, results may vary. Take a look at this code:

def squarel(n):
return n ** 2

def square2(n):
return n * n

Both functions return the square of n, but which is faster? From a simple benchmark
that we ran on them, it looks like the second is slightly faster. If you think about

it, it makes sense: calculating the power of a number involves multiplication and
therefore, whatever algorithm you may use to perform the power operation, it's

not likely to beat a simple multiplication such as the one in square2.

Do we care about this result? In most cases, no. If you're coding an e-commerce
website, chances are you won't ever even need to raise a number to the second
power, and if you do, it's likely to be a sporadic operation. You don't need to concern
yourself with saving a fraction of a microsecond on a function you call a few times.

So, when does optimization become important? One very common case is when

you have to deal with huge collections of data. If you're applying the same function
on a million customer objects, then you want your function to be tuned up to its

best. Gaining one-tenth of a second on a function called one million times saves

you 100,000 seconds, which is about 27.7 hours — that makes a big difference! So, let's
focus on collections, and let's see which tools Python gives you to handle them with
efficiency and grace.

Many of the concepts we will see in this chapter are based on
those of the iterator and iterable. Simply put, this is the ability
‘ / of an object to return its next element when asked, and to raise a
\p/ StopIteration exception when exhausted. We'll see how to code
a custom iterator and iterable objects in Chapter 6, OOP, Decorators,
and Iterators.
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Some of the objects we're going to explore in this chapter are iterators, which save
memory by only operating on a single element of a collection at a time rather than
creating a modified copy. As a result, some extra work is needed if we just want to
show the result of the operation. We will often resort to wrapping the iterator in

a list() constructor. This is because passing an iterator to 1ist(...) exhausts it
and puts all the generated items in a newly created list, which we can easily print to
show you its content. Let's see an example of using the technique on a range object:

# list.iterable.py
>>> range(7)

range(0, 7)
>>> list(range(7))
[6, 1, 2, 3, 4, 5, 6]

We've highlighted the result of typing range(7) into a Python console. Notice that
it doesn't show the contents of the range, because range never actually loads the
entire sequence of numbers into memory. The second highlighted line shows how
wrapping the range in a 1ist() allows us to see the numbers it generated.

The map, zip, and filter functions

We'll start by reviewing map(), filter(), and zip(), which are the main built-in functions
you can employ when handling collections, and then we'll learn how to achieve the same
results using two very important constructs: comprehensions and generators.

map

According to the official Python documentation:
map(function, iterable, ...)

Return an iterator that applies function to every item of iterable, yielding the results.
If additional iterable arquments are passed, function must take that many arquments
and is applied to the items from all iterables in parallel. With multiple iterables, the
iterator stops when the shortest iterable is exhausted.

We will explain the concept of yielding later on in the chapter. For now, let's translate
this into code —we'll use a 1ambda function that takes a variable number of positional
arguments, and just returns them as a tuple:

# map.example.py
>>> map(lambda *a: a, range(3))

<map object at Ox10acf8f98>
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>>> list(map(lambda *a: a, range(3)))

[(GJ)) (1))1 (21)]

>>> list(map(lambda *a: a, range(3), 'abc'))

[(@J 'a'), (1) 'bl)) (2) IC')]

>>> list(map(lambda *a: a, range(3), 'abc', range(4, 7)))
[(e, 'a', 4), (1, 'b", 5), (2, 'c’, 6)]

>>>

>>> list(map(lambda *a: a, (), 'abc'))

[]

>>> list(map(lambda *a: a, (1, 2), 'abc'))

[(1, "a"), (2, 'b")]

>>> list(map(lambda *a: a, (1, 2, 3, 4), 'abc'))
[(1, "a'), (2, 'b"), (3, 'c¢")]

In the preceding code, you can see why we have to wrap calls in 1ist(...). Without
it, we get the string representation of a map object, which is not really useful in this
context, is it?

You can also notice how the elements of each iterable are applied to the function;

at first, the first element of each iterable, then the second one of each iterable, and

so on. Notice also that map () stops when the shortest of the iterables we called it with
is exhausted. This is actually a very nice behavior; it doesn't force us to level off all
the iterables to a common length, nor does it break if they aren't all the same length.

map() is very useful when you have to apply the same function to one or more
collections of objects. As a more interesting example, let's see the decorate-sort-
undecorate idiom (also known as Schwartzian transform). It's a technique that was
extremely popular in older Python versions, when sorting did not support the use of
key functions. Nowadays, it is not needed as often, but it's a cool trick that still comes
in handy once in a while.

Let's see a variation of it in the next example: we want to sort in descending order
by the sum of credits accumulated by students, so as to have the best student at
position 0. We write a function to produce a decorated object, we sort, and then we
undecorate. Each student has credits in three (possibly different) subjects. In this
context, to decorate an object means to transform it, either adding extra data to it,

or putting it into another object, in a way that allows us to be able to sort the original
objects the way we want. This technique has nothing to do with Python decorators,
which we will explore later on in the book.
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After sorting, we revert the decorated objects to get the original ones from them.
This is referred to as undecorating.

students = [
dict(id=0, credits=dict(math=9, physics=6, history=7)),
dict(id=1, credits=dict(math=6, physics=7, latin=19)),
dict(id=2, credits=dict(history=8, physics=9, chemistry=10)),
dict(id=3, credits=dict(math=5, physics=5, geography=7)),

def decorate(student):
return (sum(student['credits’'].values()), student)

def undecorate(decorated_student):

return decorated_student[1]

students
students

sorted(map(decorate, students), reverse=True)
list(map(undecorate, students))

Let's start by understanding what each student object is. In fact, let's print the
first one:

{'credits': {'history': 7, 'math': 9, 'physics': 6}, 'id': 0}

You can see that it's a dictionary with two keys: id and credits. The value of
credits is also a dictionary in which there are three subject/ grade key/value
pairs. As you may recall from our visit to the data structures world, calling dict.
values() returns an iterable object, with only the dictionary's values. Therefore,
sum(student['credits'].values()) for the first student is equivalent to

sum((9, 6, 7)).

Let's print the result of calling decorate with the first student:

>>> decorate(students[0])

(22, {'credits': {'history': 7, 'math': 9, 'physics': 6}, 'id':

If we decorate all the students like this, we can sort them on their total number
of credits by just sorting the list of tuples. To apply the decoration to each item
in students, we call map(decorate, students). We sort the result, and then we
undecorate in a similar fashion. If you have gone through the previous chapters
correctly, understanding this code shouldn't be too hard.
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Printing students after running the whole code yields:

$ python decorate.sort.undecorate.py
[{'credits': {'chemistry': 10, 'history': 8, 'physics': 9}, 'id': 2},
{'credits': {'latin': 10, 'math': 6, 'physics': 7}, 'id': 1},

{'credits': {'history': 7, 'math': 9, 'physics': 6}, 'id': @},
{'credits': {'geography': 7, 'math': 5, 'physics': 5}, 'id': 3}]

You can see, by the order of the student objects, that they have indeed been sorted by
the sum of their credits.

For more on the decorate-sort-undecorate idiom, there's a very
/ nice introduction in the Sorting HOW TO section of the official
\/{p> Python documentation: https://docs.python.org/3.9/
howto/sorting.html#the-old-way-using-decorate-sort-
undecorate

One thing to notice about the sorting part is what happens when two or more
students share the same total sum. The sorting algorithm would then proceed to
sort the tuples by comparing the student objects with each other. This doesn't make
any sense and, in more complex cases, could lead to unpredictable results, or even
errors. If you want to be sure to avoid this issue, one simple solution is to create a
three-tuple instead of a two-tuple, having the sum of credits in the first position, the
position of the student object in the students list in second place, and the student
object itself in third place. This way, if the sum of credits is the same, the tuples will
be sorted against the position, which will always be different, and therefore enough
to resolve the sorting between any pair of tuples.

zip
We've already covered zip() in the previous chapters, so let's just define it properly,
after which we want to show you how you could combine it with map().

According to the Python documentation:
zip(*iterables)

Returns an iterator of tuples, where the i-th tuple contains the i-th element from
each of the arqument sequences or iterables. The iterator stops when the shortest
input iterable is exhausted. With a single iterable argument, it returns an iterator
of 1-tuples. With no arquments, it returns an empty iterator.
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Let's see an example:

>>> grades = [18, 23, 30, 27]
>>> avgs = [22, 21, 29, 24]

>>> list(zip(avgs, grades))

[(22, 18), (21, 23), (29, 30), (24, 27)]
>>> list(map(lambda *a: a, avgs, grades))
[(22, 18), (21, 23), (29, 30), (24, 27)]

Here, we're zipping together the average and the grade for the last exam for

each student. Notice how easy it is to reproduce zip() using map() (the last two
instructions of the example). Here as well, in order to visualize the results, we have
touse list().

A simple example of the combined use of map() and zip() could be a way of
calculating the element-wise maximum among sequences; that is, the maximum of
the first element of each sequence, then the maximum of the second one, and so on:

=[5, 9, 2, 4, 7]
= [3) 7, 1, 9, 2]
= [6, 8, 0, 5, 3]

maxs = map(lambda n: max(*n), zip(a, b, c))
list(maxs)
9, 2, 9, 7]

Notice how easy it is to calculate the maximum values of three sequences. zip() is
not strictly needed of course —we could just use map(). Sometimes it's hard, when
showing a simple example, to grasp why using a technique might be good or bad.
We forget that we aren't always in control of the source code; we might have to use a
third-party library that we can't change the way we want. Having different ways to
work with data is therefore really helpful.

filter

According to the Python documentation:

filter(function, iterable)

Construct an iterator from those elements of iterable for which function returns
True. iterable may be either a sequence, a container which supports iteration, or an
iterator. If function is None, the identity function is assumed, that is, all elements
of iterable that are false are removed.

[163]



Comprehensions and Generators

Let's see a very quick example:

test = [2, 5, 8, 0, 0, 1, 0]
list(filter(None, test))
5, 8, 1]

list(filter(lambda x: x, test))

5, 8, 1]

list(filter(lambda x: x > 4, test))
8]

Notice how the second call to filter() is equivalent to the first one. If we pass

a function that takes one argument and returns the argument itself, only those
arguments that are True will make the function return True. Therefore, this behavior
is exactly the same as passing None. It's often a very good exercise to mimic some of
the built-in Python behaviors. When you succeed, you can say you fully understand
how Python behaves in a specific situation.

Armed with map(), zip(), and filter() (and several other functions from the Python
standard library) we can manipulate sequences very effectively. But these functions
are not the only way to do it. Let's look at one of the nicest features of Python:
comprehensions.

Comprehensions

A comprehension is a concise notation for performing some operation on each
element of a collection of objects, and/ or selecting a subset of elements that satisfy
some condition. They are borrowed from the functional programming language
Haskell (https://www.haskell.org/) and, together with iterators and generators,
contribute to giving Python a functional flavor.

Python offers different types of comprehensions: list, dictionary, and set. We'll
concentrate mainly on list comprehensions; once you understand those, the other
types will be quite easy to grasp.

Let's start with a very simple example. We want to calculate a list with the squares
of the first 10 natural numbers. How would you do it? There are a couple of
equivalent ways:
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squares = []
for n in range(10):
squares.append(n ** 2)

squares
1, 4, 9, 16, 25, 36, 49, 64, 81]

squares = map(lambda n: n**2, range(10))
list(squares)
1, 4, 9, 16, 25, 36, 49, 64, 81]

The preceding example should be nothing new. Now, let's see how to achieve the
same result using a list comprehension:

>>> [n ** 2 for n in range(10)]

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

As simple as that. Isn't it elegant? Basically, we have placed a for loop within square
brackets. Let's now filter out the odd squares. We'll show you how to do it with
map() and filter() first, before then using a list comprehension again:

sql = list(
map(lambda n: n ** 2, filter(lambda n: not n % 2, range(10)))

sq2 = [n ** 2 for n in range(10) if not n % 2]
print(sql, sql == sq2)

We think that the difference in readability is now evident. The list comprehension
reads much better. It's almost English: give us all squares (n ** 2) for n between
0 and 9 if nis even.

According to the Python documentation:

A list comprehension consists of brackets containing an expression followed by a for
clause, then zero or more for or if clauses. The result will be a new list resulting from
evaluating the expression in the context of the for and if clauses which follow it.
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Nested comprehensions

Let's see an example of nested loops. It's very common when dealing with algorithms
to have to iterate on a sequence using two placeholders. The first one runs through
the whole sequence, left to right. The second one does, too, but it starts from the first
one, instead of 0. The concept is that of testing all pairs without duplication. Let's see
the classical for loop equivalent:

items "ABCD'
pairs = []

for a in range(len(items)):
for b in range(a, len(items)):

pairs.append((items[a], items[b]))

If you print pairs at the end, you get:

$ python pairs.for.loop.py

[CA', "A'), ('A", 'B'), (‘A
'c), ("B, D), ('C, T, (°

All the tuples with the same letter are those where b is at the same position
as a. Now, let's see how we can translate this to a list comprehension:

items = 'ABCD'
pairs = [(items[a], items[b])
for a in range(len(items)) for b in range(a, len(items))]

This version is just two lines long and achieves the same result. Notice that in this
particular case, because the for loop over b has a dependency on a, it must follow
the for loop over a in the comprehension. If you swap them around, you'll get

a name error.

Another way of achieving the same result is to use the
NS combinations_with_replacement() function from the
_/@\_ itertools module (which we briefly introduced in Chapter 3,
g Conditionals and Iteration). You can read more about it in the official

Python documentation.
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Filtering a comprehension

We can also apply filtering to a comprehension. Let's first do it with filter(), and
find all Pythagorean triples whose short sides are numbers smaller than 10. We
obviously don't want to test a combination twice, and therefore we'll use a trick
similar to the one we saw in the previous example:

from math import sqrt
mx = 10
triples = [(a, b, sqrt(a**2 + b**2))

for a in range(1l, mx) for b in range(a, mx)]

triples = list(
filter(lambda triple: triple[2].is_integer(), triples))

print(triples)

\/‘/ A Pythagorean triple is a triple (a4, b, c) of integer numbers

satisfying the equation a* + b? = %

In the preceding code, we generated a list of three-tuples, triples. Each tuple
contains two integer numbers (the legs), and the hypotenuse of the Pythagorean
triangle whose legs are the first two numbers in the tuple. For example, when a is
3 and b is 4, the tuple will be (3, 4, 5.0), and when ais 5 and b is 7, the tuple will
be (5, 7, 8.602325267042627).

After generating all the triples, we need to filter out all those where the hypotenuse
is not an integer number. In order to do this, we filter based on float_number.
is_integer() being True. This means that, of the two example tuples we just
showed you, the one with hypotenuse 5.8 will be retained, while the one with

the 8.602325267042627 hypotenuse will be discarded.

This is good, but we don't like the fact that the triple has two integer numbers and
a float—they are all supposed to be integers. Let's use map() to fix this:

from math import sqrt
mx = 10
triples = [(a, b, sqrt(a**2 + b**2))
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for a in range(1, mx) for b in range(a, mx)]
triples = filter(lambda triple: triple[2].is_integer(), triples)

triples = list(
map(lambda triple: triple[:2] + (int(triple[2]), ), triples))

print(triples)

Notice the step we added. We take each element in triples and we slice it, taking
only the first two elements in it. Then, we concatenate the slice with a one-tuple,
in which we put the integer version of that float number that we didn't like.
Seems like a lot of work, right? Indeed it is. Let's see how to do all this with a list
comprehension:

from math import sqrt

mx = 10
triples
for

[(a, b, sgrt(a**2 + b**2))
in range(1, mx) for b in range(a, mx)]

Q

triples [(a, b, int(c)) for a, b, c in triples if c.is_integer()]
print(triples)

That's much better! It's clean, readable, and shorter. It's not quite as elegant as it
could have been, though. We're still wasting memory by constructing a list with
a lot of triples that we end up discarding. We can fix that by combining the two

comprehensions into one:

from math import sqrt
mx = 10

triples = [(a, b, int(c))
for a in range(1, mx) for b in range(a, mx)
if (c := sqrt(a**2 + b**2)).is integer()]
print(triples)

Now that really is elegant. By generating the triples and filtering them in the same
list comprehension, we avoid keeping any triple that doesn't pass the test in memory.
Notice that we used an assignment expression to avoid needing to compute the
value of sqrt(a**2 + b**2) twice.
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We're going quite fast here, as anticipated in the Summary of
Chapter 4, Functions, the Building Blocks of Code. Are you playing
‘ p, with this code? If not, we suggest you do. It's very important
\/ that you play around, break things, change things, and see what
happens. Make sure you have a clear understanding of what is
going on.

Dictionary comprehensions

Dictionary comprehensions work exactly like list comprehensions, but to construct
dictionaries. There is only a slight difference in the syntax. The following example
will suffice to explain everything you need to know:

from string import ascii_lowercase
lettermap = {c: k for k, c in enumerate(ascii_lowercase, 1)}

If you print lettermap, you will see the following (we omitted the intermediate
results, but you get the gist):

$ python dictionary.comprehensions.py
{lal :
T

In the preceding code, we are enumerating the sequence of all lowercase ASCII
letters (using the enumerate function). We then construct a dictionary with the
resulting letter/number pairs as keys and values. Notice how the syntax is similar
to the familiar dictionary syntax.

There is also another way to do the same thing;

lettermap = dict((c, k) for k, c in enumerate(ascii_lowercase, 1))

In this case, we are feeding a generator expression (we'll talk more about these
later in this chapter) to the dict constructor.

Dictionaries do not allow duplicate keys, as shown in the following example:

word = 'Hello'
swaps = {c: c.swapcase() for c in word}
print(swaps)
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We create a dictionary with the letters of the string 'Hello" as keys and the same
letters, but with the case swapped, as values. Notice that there is only one *1*: 'L*
pair. The constructor doesn't complain; it simply reassigns duplicates to the last
value. Let's make this clearer with another example that assigns to each key its
position in the string:

word = 'Hello'
positions = {c: k for k, c in enumerate(word)}
print(positions)

Notice the value associated with the letter *1': 3. The '1': 2 pair isn't there; it has
been overridden by '1': 3.

Set comprehensions

Set comprehensions are very similar to list and dictionary ones. Let's see one quick
example:

word = 'Hello'

lettersl = {c for c in word}
letters2 = set(c for c in word)
print(lettersl)

print(lettersl == letters2)

Notice how for set comprehensions, as for dictionaries, duplication is not allowed,
and therefore the resulting set has only four letters. Also notice that the expressions
assigned to lettersl and letters2 produce equivalent sets.

The syntax used to create letters1 is very similar to that of a dictionary
comprehension. You can spot the difference only by the fact that dictionaries
require keys and values, separated by colons, while sets don't. For letters2,
we fed a generator expression to the set() constructor.

Generators

Generators are very powerful tools. They are based on the concept of iteration, as we
said before, and they allow for coding patterns that combine elegance with efficiency.
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Generators are of two types:

* Generator functions: These are very similar to regular functions, but instead
of returning results through return statements, they use yield, which allows
them to suspend and resume their state between each call.

* Generator expressions: These are very similar to the list comprehensions
we've seen in this chapter, but instead of returning a list, they return an
object that produces results one by one.

Generator functions

Generator functions behave like regular functions in all respects, except for one
difference: instead of collecting results and returning them at once, they are
automatically turned into iterators that yield results one at a time when you call
next on them. Generator functions are automatically turned into their own iterators
by Python.

This is all very theoretical, so let's make it clear why such a mechanism is so
powerful, and then let's see an example.

Say we asked you to count out loud from 1 to 1,000,000. You start, and at some point,
we ask you to stop. After some time, we ask you to resume. At this point, what is the
minimum information you need to be able to resume correctly? Well, you need to
remember the last number you called. If we stopped you after 31,415, you will just go
on with 31,416, and so on.

The point is that you don't need to remember all the numbers you said before 31,415,
nor do you need them to be written down somewhere. Well, you may not know it,
but you're behaving like a generator already!

Take a good look at the following code:

def get_squares(n):
return [x ** 2 for x in range(n)]
print(get_squares(10))

def get_squares_gen(n):
for x in range(n):
yield x ** 2
print(list(get_squares_gen(10)))
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The result of the two print statements will be the same: [0, 1, 4, 9, 16, 25, 36,
49, 64, 81]. But there is a huge difference between the two functions.

get_squares() is a classic function that collects all the squares of numbers in [0,

n) in a list, and returns it. On the other hand, get_squares_gen() is a generator

and behaves very differently. Each time the interpreter reaches the yield line, its
execution is suspended. The only reason those print statements return the same
result is because we fed get_squares_gen() to the 1ist() constructor, which exhausts
the generator completely by asking for the next element until a StopIteration is
raised. Let's see this in detail:

def get_squares_gen(n):
for x in range(n):
yield x ** 2

squares = get_squares_gen(4)
print(squares)
print(next(squares))
print(next(squares))
print(next(squares))
print(next(squares))

print(next(squares))

Each time we call next on the generator object, we either start it (the first next) or
make it resume from the last suspension point (any other next). The first time we call
next on it, we get 0, which is the square of 0, then 1, then 4, then 9, and since the for
loop stops after that (n is 4), the generator naturally ends. A classic function would

at that point just return None, but in order to comply with the iteration protocol,

a generator will instead raise a StopIteration exception.

This explains how a for loop works. When you call for k in range(n), what
happens under the hood is that the for loop gets an iterator out of range(n) and
starts calling next on it, until StopIteration is raised, which tells the for loop that
the iteration has reached its end.

Having this behavior built into every iteration aspect of Python makes generators
even more powerful because once we've written them, we'll be able to plug them
into whatever iteration mechanism we want.

At this point, you're probably asking yourself why you would want to use a
generator instead of a regular function. The answer is to save time and (especially)
memory.
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We'll talk more about performance later, but for now, let's concentrate on one aspect:
sometimes generators allow you to do something that wouldn't be possible with a
simple list. For example, say you want to analyze all permutations of a sequence. If
the sequence has a length of N, then the number of its permutations is N/. This means
that if the sequence is 10 elements long, the number of permutations is 3,628,800. But
a sequence of 20 elements would have 2,432,902,008,176,640,000 permutations. They
grow factorially.

Now imagine you have a classic function that is attempting to calculate all
permutations, put them in a list, and return it to you. With 10 elements, it would
require probably a few seconds, but for 20 elements there is simply no way that it
could be done (it would take thousands of years and require billions of gigabytes
of memory).

On the other hand, a generator function will be able to start the computation and
give you back the first permutation, then the second, and so on. Of course, you won't
have the time to process them all — there are too many —but at least you'll be able to
work with some of them. Sometimes the amount of data you have to iterate over is
so huge that you cannot keep it all in memory in a list. In this case, generators are
invaluable: they make possible that which otherwise wouldn't be.

So, in order to save memory (and time), use generator functions whenever possible.

It's also worth noting that you can use the return statement in a generator function.
It will cause a StopIteration exception to be raised, effectively ending the iteration.
This is extremely important. If a return statement were actually to make the function
return something, it would break the iteration protocol. Python's consistency
prevents this, and allows us great ease when coding. Let's see a quick example:

def geometric_progression(a, q):
k =0
while True:
result = a * g**k
if result <= 100000:
yield result
else:
return
k += 1

for n in geometric_progression(2, 5):
print(n)
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The preceding code yields all terms of the geometric progression, a, ag, ag®, ag’, ....
When the progression produces a term that is greater than 100,000, the generator
stops (with a return statement). Running the code produces the following result:

$ python gen.yield.return.py
P

10

50

The next term would have been 156250, which is too big.

Going beyond next

At the beginning of this chapter, we told you that generator objects are based on the
iteration protocol. We'll see in Chapter 6, OOP, Decorators, and Iterators, a complete
example of how to write a custom iterator/iterable object. For now, we just want
you to understand how next () works.

What happens when you call next(generator) is that you're calling the generator.__
next__() method. Remember, a method is just a function that belongs to an object,
and objects in Python can have special methods. __next__() is just one of these and
its purpose is to return the next element of the iteration, or to raise StopIteration
when the iteration is over and there are no more elements to return.

\/V If you recall, in Python, an object's special methods are also called

magic methods, or dunder (from "double underscore") methods.

When we write a generator function, Python automatically transforms it into an
object that is very similar to an iterator, and when we call next(generator), that call
is transformed in generator.__next__(). Let's revisit the previous example about
generating squares:

def get_squares_gen(n):
for x in range(n):
yield x ** 2

squares = get_squares_gen(3)
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print(squares. next_ ())
print(squares.__next_ ())
print(squares. next_ ())

print(squares.__next_ ())

The result is exactly the same as the previous example, only this time instead
of using the next(squares) proxy call, we're directly calling squares.__next__().

Generator objects also have three other methods that allow us to control their
behavior: send(), throw(), and close(). send() allows us to communicate a value
back to the generator object, while throw() and close(), respectively, allow us to
raise an exception within the generator and close it. Their use is quite advanced and
we won't be covering them here in detail, but we want to spend a few words on
send(), with a simple example:

def counter(start=0):

n = start

while True:
yield n
n += 1

c = counter()
print(next(c))
print(next(c))
print(next(c))

The preceding iterator creates a generator object that will run forever. You can

keep calling it, and it will never stop. Alternatively, you can put it in a for loop, for
example, for n in counter(): ..., and it will go on forever as well. But what if you
wanted to stop it at some point? One solution is to use a variable to control the while
loop, as in something such as this:

stop = False
def counter(start=0):

n = start
while not stop:
yield n
n +=1
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c = counter()
print(next(c))
print(next(c))
stop = True

print(next(c))

This will do it. We start with stop = False, and until we change it to True,

the generator will just keep going, like before. The moment we change stop to

True though, the while loop will exit, and the following call to next will raise a
StopIteration exception. This trick works, but we don't like it. The function depends
on an external variable, and this can lead to issues: what if another function changes
that stop? Moreover, the code is scattered. In a nutshell, this isn't good enough.

We can make it better by using generator.send(). When we call generator.

send(), the value that we feed to send will be passed into the generator, execution is
resumed, and we can fetch it via the yield expression. This is all very complicated
when explained with words, so let's see an example:

def counter(start=0):
n = start
while True:
result = yield n
print(type(result), result)

if result == 'Q':
break
n += 1

c = counter()
print(next(c))
print(c.send("Wow! "))
print(next(c))
print(c.send('Q"))

Execution of the preceding code produces the following;:

$ python gen.send.py
(%)
<class 'str'> Wow!

1
<class 'NoneType'> None
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2
<class 'str'> Q
Traceback (most recent call last):

File "gen.send.py", line 15, in <module>

print(c.send('Q"')) # F
StopIteration

We think it's worth going through this code line by line, as if we were executing it,
to see whether we can understand what's going on.

We start the generator execution with a call to next () (#C). Within the generator, n is
set to the same value as start. The while loop is entered, execution stops (#A), and n
(@) is yielded back to the caller. @ is printed on the console.

We then call send() (#D), execution resumes, result is set to "Wow! ' (still #A), and
then its type and value are printed on the console (#B). result isnot 'Q', so nis
incremented by 1 and execution goes back to the while condition, which, being
True, evaluates to True (that wasn't hard to guess, right?). Another loop cycle begins,
execution stops again (#A), and n (1) is yielded back to the caller. 1 is printed on the
console.

At this point, we call next () (#E), execution is resumed again (#A), and because

we are not sending anything to the generator explicitly, the yield n expression

(#A) returns None (the behavior is exactly the same as when we call a function that
does not return anything). result is therefore set to None, and its type and value

are again printed on the console (#B). Execution continues, result is not 'Q*, so nis
incremented by 1, and we start another loop again. Execution stops again (#A) and n
(2) is yielded back to the caller. 2 is printed on the console.

And now for the grand finale: we call send again (#F), but this time we pass in 'Q’,
and so when execution is resumed, result is set to 'Q" (#A). Its type and value are
printed on the console (#B), and then finally the if clause evaluates to True and the
while loop is stopped by the break statement. The generator naturally terminates,
which means a StopIteration exception is raised. You can see the print of its
traceback on the last few lines printed on the console.

This is not at all simple to understand at first, so if it's not clear to you, don't
be discouraged. You can keep reading on and come back to this example later.

Using send() allows for interesting patterns, and it's worth noting that send() can
also be used to start the execution of a generator (provided you call it with None).
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The yield from expression

Another interesting construct is the yield from expression. This expression allows
you to yield values from a sub-iterator. Its use allows for quite advanced patterns,
so let's see a very quick example of it:

def print_squares(start, end):
for n in range(start, end):
yield n ** 2

for n in print_squares(2, 5):
print(n)

The previous code prints the numbers 4, 9, and 16 on the console (on separate lines).
By now, we expect you to be able to understand it by yourself, but let's quickly

recap what happens. The for loop outside the function gets an iterator from print_
squares(2, 5) and calls next() on it until iteration is over. Every time the generator
is called, execution is suspended (and later resumed) on yield n ** 2, which returns
the square of the current n. Let's see how we can transform this code, benefiting from
the yield from expression:

def print_squares(start, end):
yield from (n ** 2 for n in range(start, end))

for n in print_squares(2, 5):
print(n)

This code produces the same result, but as you can see, yield fromis actually
running a sub-iterator, (n ** 2 ...).The yield from expression returns to the
caller each value the sub-iterator is producing. It's shorter and reads better.

Generator expressions

Let's now talk about the other technique to generate values one at a time. The
syntax is exactly the same as list comprehensions, only, instead of wrapping the
comprehension with square brackets, you wrap it with round brackets. That is
called a generator expression.

In general, generator expressions behave like equivalent list comprehensions, but
there is one very important thing to remember: generators allow for one iteration
only, then they will be exhausted.
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Let's see an example:

>>> cubes = [k**3 for k in range(10)]

>>> cubes

[0, 1, 8, 27, 64, 125, 216, 343, 512, 729]
>>> type(cubes)

<class 'list'>

>>> cubes_gen = (k**3 for k in range(19))

>>> cubes_gen

<generator object <genexpr> at 0x103fb5a98>
>>> type(cubes_gen)

<class 'generator'>

>>> list(cubes_gen)

[@, 1, 8, 27, 64, 125, 216, 343, 512, 729]
>>> list(cubes_gen)

[]

Look at the line in which the generator expression is created and assigned the name
cubes_gen; you can see it's a generator object. In order to see its elements, we can use
a for loop, a manual set of calls to next, or simply feed it to a 1ist() constructor,
which is what we did.

Notice how, once the generator has been exhausted, there is no way to recover the
same elements from it again. We need to recreate it if we want to use it from scratch
again.

In the next few examples, let's see how to reproduce map() and filter() using
generator expressions. First, map():

def adder(*n):
return sum(n)
sl = sum(map(adder, range(100), range(1, 101)))
s2 = sum(adder(*n) for n in zip(range(100), range(1l, 101)))

In the previous example, s1 and s2 are exactly the same: they are the sum of
adder(@, 1), adder(1, 2), adder(2, 3), and so on, which translates to sum(1, 3, 5,
...). The syntax is different, though we find the generator expression to be much
more readable. Now, for filter():

cubes = [x**3 for x in range(10)]
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odd_cubesl = filter(lambda cube: cube % 2, cubes)
odd_cubes2 = (cube for cube in cubes if cube % 2)

In this example, odd_cubes1 and odd_cubes2 are the same: they generate a sequence
of odd cubes. Yet again, we prefer the generator syntax. This should be evident when
things get a little more complicated:

N = 20
cubesl = map(
lambda n: (n, n**3),
filter(lambda n: n % 3 == @ or n % 5 == 0, range(N))
)
cubes2 = (
(n, n**3) for n in range(N) if n % 3 == 0 or n % 5 == Q)

The preceding code creates two generators, cubes1 and cubes2. They are exactly
the same and return two-tuples (1, n’) when n is a multiple of 3 or 5.

If you print the list (cubes1), you get: [(@, @), (3, 27), (5, 125), (6, 216),
(9, 729), (10, 1000), (12, 1728), (15, 3375), (18, 5832)].

See how much better the generator expression reads? It may be debatable when
things are very simple, but as soon as you start nesting functions a bit, as we did in
this example, the superiority of the generator syntax is evident. It's shorter, simpler,
and more elegant.

Now, let us ask you: what is the difference between the following lines of code?

sl = sum([n**2 for n in range(10**6)])
s2 = sum((n**2 for n in range(10**6)))
s3 = sum(n**2 for n in range(10**6))

Strictly speaking, they all produce the same sum. The expressions to get s2 and

s3 are exactly the same because the brackets in s2 are redundant. They are both
generator expressions inside the sum() function. The expression to get s1 is different
though. Inside sum(), we find a list comprehension. This means that in order to
calculate s1, the sum() function has to call next () on a list one million times.

Do you see where we're losing time and memory? Before sum() can start calling
next () on that list, the list needs to have been created, which is a waste of time and
space. It's much better for sum() to call next() on a simple generator expression.
There is no need to have all the numbers from range(10**6) stored in a list.
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So, watch out for extra parentheses when you write your expressions. Sometimes it's easy
to skip over these details that make our code very different. If you don't believe us,
check out the following code:

s = sum([n**2 for n in range(10**9)])
print(s)

Try running the example. If we run the first line on an old Linux machine with 6 GB
RAM, this is what we get:

$ python sum.example.2.py
Killed

On the other hand, if we comment out the first line, and uncomment the second one,
this is the result:

$ python sum.example.2.py
333333332833333333500000000

Sweet generator expressions. The difference between the two lines is that in the first
one, a list with the squares of the first billion numbers must be made before being
able to sum them up. That list is huge, and we ran out of memory (at least, Heinrich's
machine did; if yours doesn't, try a bigger number), so Python kills the process

for us.

But when we remove the square brackets, we no longer have a list. The sum function
receives 0, 1, 4, 9, and so on until the last one, and sums them up. No problems.

Some performance considerations

So, we've seen that we have many different ways of achieving the same result.

We can use any combination of map(), zip(), and filter(), or choose to go with a
comprehension or a generator. We may even decide to go with for loops; when the
logic to apply to each running parameter isn't simple, these may be the best option.

Besides readability concerns, though, let's also talk about performance. When it
comes to performance, usually there are two factors that play a major role: space
and time.

Space means the size of the memory that a data structure is going to take up. The
best way to choose is to ask yourself if you really need a list (or tuple), or whether
a simple generator function would work instead.
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If the answer is yes to the latter, go with the generator, as it will save a lot of space.
The same goes for functions: if you don't actually need them to return a list or tuple,
then you can transform them into generator functions as well.

Sometimes, you will have to use lists (or tuples); for example, there are algorithms
that scan sequences using multiple pointers, or maybe they run over the sequence
more than once. A generator function (or expression) can be iterated over only once
and then it's exhausted, so in these situations it wouldn't be the right choice.

Time is a bit more complicated than space because it depends on more variables, and
therefore it isn't possible to state that X is faster than Y with absolute certainty for all
cases. However, based on tests run on Python today, we can say that on average,
map () exhibits performance similar to comprehensions and generator expressions,
while for loops are consistently slower.

In order to appreciate the reasoning behind these statements fully, we need to
understand how Python works, which is a bit outside the scope of this book as

it's quite technical in detail. Let's just say that map() and comprehensions run at

C language speed within the interpreter, while a Python for loop is run as Python
bytecode within the Python Virtual Machine, which is often much slower.

There are several different implementations of Python. The
/ original one, and still the most common one, is CPython (https://
\/;p> github.com/python/cpython), which is written in C. C is one of
the most powerful and popular programming languages still used
today.

How about we do a small exercise and try to find out whether the claims we

made are accurate? We will write a small piece of code that collects the results

of divmod(a, b) for a certain set of integer pairs, (a, b). We will use the time()
function from the time module to calculate the elapsed time of the operations that we
will perform:

from time import time

mx = 5000
t = time()
floop = []

for a in range(1, mx):
for b in range(a, mx):
floop.append(divmod(a, b))
print('for loop: {:.4f} s'.format(time() - t))
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t = time()
compr = [

divmod(a, b) for a in range(1l, mx) for b in range(a, mx)]
print('list comprehension: {:.4f} s'.format(time() - t))

t = time()
gener = list(

divmod(a, b) for a in range(l, mx) for b in range(a, mx))
print('generator expression: {:.4f} s'.format(time() - t))

As you can see, we're creating three lists: floop, compr, and gener. Running the code
produces the following:

$ python performance.py
for loop: 2.3652 s

list comprehension: 1.5173 s
generator expression: 1.5289 s

The list comprehension runs in ~64% of the time taken by the for loop. That's
impressive. The generator expression came very close to that, with ~65%. The
difference in time between the list comprehension and generator expression is hardly
significant, and if you re-run the example a few times, you will probably also see the
generator expression take less time than the list comprehension.

An interesting result is to notice that, within the body of the for loop, we're
appending data to a list. This implies that Python does the work, behind the scenes,
of resizing it every now and then, allocating space for items to be appended. We
guessed that creating a list of zeros, and simply filling it with the results, might
have sped up the for loop, but we were wrong. Check it for yourself; you just
needmx * (mx - 1) // 2 elements to be pre-allocated.

/ The approach we used here for timing execution is rather naive. In
; N Chapter 11, Debugging and Profiling, we will look at better ways of
profiling code and timing execution.

Let's see a similar example that compares a for loop and a map() call:

from time import time
mx = 2 * 10 ** 7
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t = time()
absloop = []
for n in range(mx):
absloop.append(abs(n))
print('for loop: {:.4f} s'.format(time() - t))

t = time()
abslist = [abs(n) for n in range(mx) ]
print('list comprehension: {:.4f} s'.format(time() - t))

t = time()
absmap = list(map(abs, range(mx)))
print('map: {:.4f} s'.format(time() - t))

This code is conceptually very similar to the previous example. The only thing that
has changed is that we're applying the abs() function instead of divmod(), and we
have only one loop instead of two nested ones. Execution gives the following result:

$ python performance.map.py
for loop: 2.3240 s

list comprehension: 1.0891 s
map: 0.5070 s

And map wins the race: it took ~47% of the time required by the list comprehension,
and ~21% of the time needed by the for loop. Take these results with a pinch of salt,
however, as the result might be different according to various factors, such as OS and
Python version. But in general, we think it's safe to say that these results are good
enough for having an idea when it comes to coding for performance.

Apart from the little case-by-case differences though, it's quite clear that the for
loop option is the slowest one, so let's see why we still want to use it.

Don't overdo comprehensions and
generators

We've seen how powerful comprehensions and generator expressions can be. And
they are, don't get us wrong, but the feeling that we have when we deal with them

is that their complexity grows exponentially. The more you try to do within a single
comprehension or a generator expression, the harder it becomes to read, understand,
and therefore maintain or change.
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If you check the Zen of Python again, there are a few lines that we think are worth
keeping in mind when dealing with optimized code:

>>> import this

Explicit is better than implicit.
Simple is better than complex.

Readability counts.

If the implementation is hard to explain, it's a bad idea.

Comprehensions and generator expressions are more implicit than explicit, can be
quite difficult to read and understand, and can be hard to explain. Sometimes, you
have to break them apart using the inside-out technique to understand what's going
on.

To give you an example, let's talk a bit more about Pythagorean triples. Just to
remind you, a Pythagorean triple is a tuple of positive integers (a, b, c) such that

a* + b? = 2. We saw how to calculate them in the Filtering a comprehension section, but
we did it in a very inefficient way. We were scanning all pairs of numbers below

a certain threshold, calculating the hypotenuse, and filtering out those that were

not valid Pythagorean triples.

A better way to get a list of Pythagorean triples is to generate them directly. There

are many different formulas you can use to do this; here we will use the Euclidean
formula. This formula says that any triple (a, b, ¢), where a = m? - n, b = 2mn and

c =m? + n?, with m and n positive integers such that m > n, is a Pythagorean triple.

For example, when m = 2 and n = 1, we find the smallest triple: (3, 4, 5).

There is one catch though: consider the triple (6, 8, 10), which is like (3, 4, 5), only all
the numbers are multiplied by 2. This triple is definitely Pythagorean, since 6 + §* =
10%, but we can derive it from (3, 4, 5) simply by multiplying each of its elements by
2. The same goes for (9, 12, 15), (12, 16, 20), and in general for all the triples that we
can write as (3k, 4k, 5k), with k being a positive integer greater than 1.

A triple that cannot be obtained by multiplying the elements of another one by some
factor, k, is called primitive. Another way of stating this is: if the three elements of

a triple are coprime, then the triple is primitive. Two numbers are coprime when
they don't share any prime factor among their divisors, that is, when their greatest
common divisor (GCD) is 1. For example, 3 and 5 are coprime, while 3 and 6 are
not because they are both divisible by 3.
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So, the Euclidean formula tells us that if m and n are coprime, and m - n is odd, the
triple they generate is primitive. In the following example, we will write a generator
expression to calculate all the primitive Pythagorean triples whose hypotenuse, c,
is less than or equal to some integer, N. This means we want all triples for which
m? + n?> < N. When n is 1, the formula looks like this: m?> < N - 1, which means we
can approximate the calculation with an upper bound of m < N2,

To recap: m must be greater than 7, they must also be coprime, and their difference
m - n must be odd. Moreover, to avoid useless calculations, we'll put the upper
bound for m at floor(sqrt(N)) + 1.

The floor function for a real number, x, gives the maximum
/ integer, n, such that n < x, for example, floor(3.8) = 3, floor(13.1) = 13.
\/;p; Taking floor(sqrt(N)) + 1 means taking the integer part of the square
root of N and adding a minimal margin just to make sure we don't
miss any numbers.

Let's put all of this into code, step by step. We start by writing a simple gcd()
function that uses Euclid's algorithm:

def gcd(a, b):
"""Calculate the Greatest Common Divisor of (a, b). """

while b != 0:
a, b=b, a%b
return a

The explanation of Euclid's algorithm is available on the web, so we won't spend
any time talking about it here as we need to focus on the generator expression. The
next step is to use the knowledge we gathered before to generate a list of primitive
Pythagorean triples:

from functions import gcd
N = 50

triples = sorted(
((a, b, c) for a, b, c in (
((m*¥*2 - n**2), (2 * m * n), (M**2 + n**2))
for m in range(1, int(N**.5) + 1)
for n in range(1, m)
if (m - n) % 2 and gcd(m, n)
) if c <= N), key=sum

I
1l
=
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There you go. It's not easy to read, so let's go through it line by line. At #3, we start
a generator expression that creates triples. You can see from #4 and #5 that we're
looping on min [1, M], with M being the integer part of sqrt(N), plus 1. On the other
hand, n loops within [1, m), to respect the m > n rule. It's worth noting how we
calculated sgrt(N), that is, N**.5, which is just another way to do it that we wanted
to show you.

At #6, you can see the filtering conditions to make the triples primitive: (m - n) %

2 evaluates to True when (m - n) is odd, and gcd(m, n) == 1 means m and n are
coprime. With these in place, we know the triples will be primitive. This takes care of
the innermost generator expression. The outermost one starts at #2 and finishes at #7.
We take the triples (a, b, c¢) in (...innermost generator...) suchthatc <= N.

Finally, at #1, we apply sorting to present the list in order. At #7, after the outermost
generator expression is closed, you can see that we specify the sorting key to be the
suma + b + c. This is just our personal preference; there is no mathematical reason
behind it.

So, what do you think? Was it straightforward to read? We don't think so. And
believe us, this is still a simple example; we have both seen much worse in our
careers. This kind of code is difficult to understand, debug, and modify. It should
have no place in a professional environment.

Let's see whether we can rewrite this code into something more readable:

from functions import gcd

def gen_triples(N):
for m in range(1, int(N**.5) + 1):
for n in range(1, m):
if (m - n) % 2 and gcd(m, n) == 1:

C = m**2 + n**2

if ¢ <= N:
a = m**2 - n**2
b=2%*m*n
yield (a, b, c)

sorted(gen_triples(50), key=sum)

This is so much better. Let's go through it, line by line. You'll see how much easier
it is to understand.
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We start looping at #1 and #2, in exactly the same way we were looping in the
previous example. On line #3, we have the filtering for primitive triples. On line #4,
we deviate a bit from what we were doing before: we calculate c, and on line #5, we
filter on c being less than or equal to N. Only when c satisfies that condition do we
calculate a and b, and yield the resulting tuple. We could have calculated the values
of a and b earlier, but by delaying until we know all conditions for a valid triple are
satisfied, we avoid wasting time and CPU. On the last line, we apply sorting with the
same key we were using in the generator expression example.

We hope you agree that this example is easier to understand. If we ever need to
modify the code, this will be much easier, and less error-prone to work with than
the generator expression.

If you print the results of both examples (they are the same), you will get this:

[(3, 4, 5), (5, 12, 13), (15, 8, 17), (7, 24, 25), (21, 20, 29),
(35, 12, 37), (9, 40, 41)]

The moral of the story is: try to use comprehensions and generator expressions

as much as you can, but if the code starts to become complicated to modify or read,
you may want to refactor it into something more readable. Your colleagues will
thank you.

Name localization

Now that we are familiar with all types of comprehensions and generator
expressions, let's talk about name localization within them. Python 3 localizes loop
variables in all four forms of comprehensions: list, dictionary, set, and generator
expressions. This behavior is therefore different from that of the for loop. Let's
look at some simple examples to show all the cases:

A = 100
exl = [A for A in range(5)]
print(A)

ex2 = list(A for A in range(5))
print(A)

ex3 = {A: 2 * A for A in range(5)}
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print(A)

ex4 = {A for A in range(5)}
print(A)

s =20

for A in range(5):
s += A

print(A)

In the preceding code, we declare a global name, A = 100, and then exercise list,
dictionary, and set comprehensions and a generator expression. None of them alter
the global name, A. Conversely, you can see at the end that the for loop modifies it.
The last print statement prints 4.

Let's see what happens if A wasn't there:

exl = [A for A in range(5)]
print(A)

The preceding code would work in the same way with any other type of
comprehension or a generator expression. After we run the first line, A is not
defined in the global namespace. Once again, the for loop behaves differently:

s =0

for A in range(5):
s += A

print(A)

print(globals())

The preceding code shows that after a for loop, if the loop variable wasn't defined
before it, we can find it in the global frame. To make sure of it, let's take a peek at it
by calling the globals () built-in function:

$ python scopes.for.py
4

__main__ "', '_doc__

{'_name__":

: None,

Together, with a lot of other boilerplate stuff that we have omitted, we can
spot 'A': 4.
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Generation behavior in built-ins

Generator-like behavior is quite common among the built-in types and functions.
This is a major difference between Python 2 and Python 3. In Python 2, functions
such as map(), zip(), and filter() returned lists instead of iterable objects. The idea
behind this change is that if you need to make a list of those results, you can always
wrap the call in a 1ist() class, and you're done. On the other hand, if you just need
to iterate and want to keep the impact on memory as light as possible, you can use
those functions safely. Another notable example is the range() function. In Python
2 it returned a list, and there was another function called xrange() that behaved like
the range() function now behaves in Python 3.

The idea of functions and methods that return iterable objects is quite widespread.
You can find it in the open() function, which is used to operate on file objects (we'll
see it in Chapter 8, Files and Data Persistence), but also in enumerate(), in the dictionary
keys(), values(), and items() methods, and several other places.

It all makes sense: Python's aim is to try to reduce the memory footprint by avoiding
wasting space wherever possible, especially in those functions and methods that are
used extensively in most situations. At the beginning of this chapter, we said that it
makes more sense to optimize the performance of code that has to deal with a lot of
objects, rather than shaving off a few milliseconds from a function that we call twice
a day. That is exactly what Python itself is doing here.

One last example

Before we finish this chapter, we'll show you a simple problem that Fabrizio used to
submit to candidates for a Python developer role in a company he used to work for.

The problem is the following: write a function that returns the terms of the sequence
01123581321 ..., up to some limit, N.

If you haven't recognized it, that is the Fibonacci sequence, which is defined as F(0)
=0, F(1) =1 and, for any n > 1, F(n) = F(n-1) + F(n-2). This sequence is excellent for
testing knowledge about recursion, memoization techniques, and other technical
details, but in this case, it was a good opportunity to check whether the candidate
knew about generators.

Let's start with a rudimentary version, and then improve on it:

def fibonacci(N):
"""Return all fibonacci numbers up to N. """
result = [9]
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next_n =1

while next_n <= N:
result.append(next_n)
next_n = sum(result[-2:])

return result

print(fibonacci(9))
print(fibonacci(1))
print(fibonacci(50))

From the top: we set up the result list to a starting value of [@]. Then we start the
iteration from the next element (next_n), which is 1. While the next element is not
greater than N, we keep appending it to the list and calculating the next value in the
sequence. We calculate the next element by taking a slice of the last two elements in
the result list and passing it to the sum function. Add some print statements here
and there if this is not clear to you, but by now we would expect it not to be an issue.

When the condition of the while loop evaluates to False, we exit the loop and return
result. You can see the result of those print statements in the comments next to each
of them.

At this point, Fabrizio would ask the candidate the following question: What if I just
wanted to iterate over those numbers? A good candidate would then change the code
to what you'll find here (an excellent candidate would have started with it!):

def fibonacci(N):
"""Return all fibonacci numbers up to N. """
yield ©
if N ==
return
a =20
b=1
while b <= N:
yield b
a, b=>b, a+b

print(list(fibonacci(®@)))
print(list(fibonacci(1)))
print(list(fibonacci(50)))
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This is actually one of the solutions he was given. We don't know why he kept it,
but we're glad he did so we can show it to you. Now, the fibonacci() function is
a generator function. First, we yield 0, and then, if N is 0, we return (this will cause
a StopIteration exception to be raised). If that's not the case, we start iterating,
yielding b at every loop cycle, and then updating a and b. All we need to be able
to produce the next element of the sequence is the past two: a and b, respectively.

This code is much better, has a lighter memory footprint, and all we have to do to
get a list of Fibonacci numbers is wrap the call with 1ist(), as usual. But what about
elegance? We can't leave it like that, can we? Let's try the following:

def fibonacci(N):
"""Return all fibonacci numbers up to N.
a, b=29o, 1
while a <= N:
yield a
a, b=>b, a+b

Much better. The whole body of the function is four lines, or five if you count the
docstring. Notice how, in this case, using tuple assignment (a, b = 8, 1and a,
b = b, a + b) helps in making the code shorter and more readable.

Summary

In this chapter, we explored the concepts of iteration and generation a bit more
deeply. We looked at the map(), zip(), and filter() functions in detail, and learned
how to use them as an alternative to a regular for loop approach.

Then we covered the concept of comprehensions for lists, dictionaries, and sets. We
explored their syntax and how to use them as an alternative to both the classic for
loop approach and the use of the map(), zip(), and filter() functions.

Finally, we talked about the concept of generation in two forms: generator functions
and expressions. We learned how to save time and space by using generation
techniques and saw how they can make possible what wouldn't normally be so

if we used a conventional approach based on lists.

We talked about performance, and saw that for loops come last in terms of speed,
but they provide the best readability and flexibility to change. On the other hand,
functions such as map() and filter(), and comprehensions, can be much faster.
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The complexity of the code written using these techniques grows exponentially, so in
order to favor readability and ease of maintainability, we still need to use the classic
for loop approach at times. Another difference is in the name localization, where the
for loop behaves differently from all other types of comprehensions.

The next chapter will be all about objects and classes. It is structurally similar to this
one, in that we won't explore many different subjects —just a few of them —but we'll
try to delve deeper into them.

Make sure you understand the concepts of this chapter before moving on to the next
one. We're building a wall brick by brick, and if the foundation is not solid, you
won't get very far.
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OOP, Decorators,
and lterators

La classe non ¢é acqua. (Class will out.)
- Italian saying

We could probably write a whole book about object-oriented programming (OOP)
and classes. In this chapter, we face the hard challenge of finding the balance
between breadth and depth. There are simply too many things to talk about, and
plenty of them would take more than this whole chapter if we described them in
depth. Therefore, we will try to give you what we think is a good panoramic view
of the fundamentals, plus a few things that may come in handy in the next chapters.
Python's official documentation will help in filling the gaps.

In this chapter, we are going to cover the following topics:

e Decorators
* OOP with Python

e Jterators

Decorators

In Chapter 5, Comprehensions and Generators, we measured the execution time of
various expressions.
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If you recall, we had to initialize a variable to the start time and subtract it from the
current time after execution in order to calculate the elapsed time. We also printed it
on the console after each measurement. That was tedious.

Every time we find ourselves repeating things, an alarm bell should go off. Can we
put that code in a function and avoid repetition? The answer most of the time is yes,
so let's look at an example:

from time import sleep, time

def f():
sleep(.3)

def g():
sleep(.5)

t = time()

O
print('f took:', time() - t)

t = time()

g()
print('g took:", time() - t)

In the preceding code, we defined two functions, () and g(), which do nothing

but sleep (for 0.3 and 0.5 seconds, respectively). We used the sleep() function to
suspend the execution for the desired amount of time. Notice how the time measure
is pretty accurate. Now, how do we avoid repeating that code and those calculations?
One first potential approach could be the following:

from time import sleep, time

def f():
sleep(.3)

def g():
sleep(.5)

def measure(func):
t = time()
func()
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print(func.__name__, 'took:', time() - t)

measure(f)
measure(g)

Ah, much better now. The whole timing mechanism has been encapsulated in a

function so we don't repeat code. We print the function name dynamically and it's
easy enough to code. What if we needed to pass any arguments to the function we
measure? This code would get just a bit more complicated, so let's see an example:

from time import sleep, time

def f(sleep_time=0.1):
sleep(sleep_time)

def measure(func, *args, **kwargs):
t = time()
func(*args, **kwargs)
print(func.__name__, ‘'took:', time() - t)

measure(f, sleep_time=0.3)
measure(f, 0.2)

Now, () is expecting to be fed sleep_time (with a default value of 0.1), so we

don't need g() anymore. We also had to change the measure() function so that

it now accepts a function, any variable positional arguments, and any variable
keyword arguments. In this way, whatever we call measure() with, we redirect those
arguments to the call to func() we do inside.

This is very good, but we can push it a little bit further. Let's say we somehow want
to have that timing behavior built into the f() function, so that we could just call it
and have that measure taken. Here's how we could do it:

from time import sleep, time

def f(sleep_time=0.1):
sleep(sleep_time)

def measure(func):
def wrapper(*args, **kwargs):
t = time()
func(*args, **kwargs)
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print(func.__name__, 'took:', time() - t)
return wrapper

f = measure(f) # decoration point
f(0.2)

f(sleep_time=0.3)
print(f.__name_ )

The preceding code is probably not so straightforward. Let's see what happens
here. The magic is in the decoration point. We basically reassign () with whatever is
returned by measure() when we call it with f as an argument. Within measure(), we
define another function, wrapper(), and then we return it. So, the net effect is that
after the decoration point, when we call f(), we're actually calling wrapper() (you
can witness this in the last line of code). Since the wrapper () inside is calling func(),
which is f(), we are actually closing the loop.

The wrapper() function is, not surprisingly, a wrapper. It takes variable positional
and keyword arguments and calls £() with them. It also does the time measurement
calculation around the call.

This technique is called decoration, and measure() is, effectively, a decorator. This
paradigm became so popular and widely used that, in version 2.4, Python added

a special syntax for it. You can read the specifics in PEP 318 (https://www.python.
org/dev/peps/pep-0318/). In Python 3.9, the decorator syntax was slightly amended,
to relax some grammar restrictions; this change was brought about in PEP 614
(https://www.python.org/dev/peps/pep-0614/).

Let's now explore three cases: one decorator, two decorators, and one decorator that
takes arguments. First, the single decorator case:

def func(argl, arg2, ...):
pass
func = decorator(func)

@decorator
def func(argl, arg2, ...):
pass

Basically, instead of manually reassigning the function to what was returned by the
decorator, we prepend the definition of the function with the special syntax,
@decorator_name.

[198]


https://www.python.org/dev/peps/pep-0318/
https://www.python.org/dev/peps/pep-0318/
https://www.python.org/dev/peps/pep-0614/

Chapter 6

We can apply multiple decorators to the same function in the following way:

def func(argl, arg2, ...):
pass
func = decol(deco2(func))

@decol

@deco2

def func(argl, arg2, ...):
pass

When applying multiple decorators, it is important to pay attention to the order.
In the preceding example, func() is decorated with deco2() first, and the result
is decorated with deco1(). A good rule of thumb is the closer the decorator is to the
function, the sooner it is applied.

Some decorators can take arguments. This technique is generally used to produce
another decorator (in which case, the object would be called a decorator factory).
Let's look at the syntax, and then we'll see an example of it:

def func(argl, arg2, ...):
pass
func = decoarg(arg_a, arg_b)(func)

@decoarg(arg_a, arg_b)
def func(argl, arg2, ...):
pass

As you can see, this case is a bit different. First, decoarg() is called with the given
arguments, and then its return value (the actual decorator) is called with func().
Before we give you another example, let's fix one thing that is bothering us. Take a
look at this code from our previous example:

def measure(func):
def wrapper(*args, **kwargs):
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return wrapper

f = measure(f)
print(f.__name__)

We don't want to lose the original function's name and docstring when we decorate
it. But because inside our decorator we return wrapper, the decorated function,

f(), is reassigned to it and therefore its original attributes are lost, replaced with
the attributes of wrapper. There is an easy fix for that from the beautiful functools
module. We will fix the last example, and we will also rewrite its syntax to use the @
operator:

from time import sleep, time
from functools import wraps

def measure(func):
@wraps (func)
def wrapper(*args, **kwargs):
t = time()
func(*args, **kwargs)
print(func.__name__, 'took:', time() - t)
return wrapper

@measure

def f(sleep_time=0.1):
"""I'm a cat. I love to sleep!
sleep(sleep_time)

f(sleep_time=0.3)
print(f. name_, ':', f. doc_ )

Now we're talking! As you can see, all we need to do is to tell Python that wrapper
actually wraps func() (by means of the wraps() function), and you can see that the
original name and docstring are now maintained.

For the full list of function attributes that are reassigned by func(),
/ please check the official documentation for the functools.
\/(n> update_wrapper() function, here: https://docs.python.
org/3/library/functools.html?#functools.update_
wrapper.
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Let's see another example. We want a decorator that prints an error message when
the result of a function is greater than a certain threshold. We will also take this
opportunity to show you how to apply two decorators at once:

from time import time
from functools import wraps

def measure(func):

@wraps (func)

def wrapper(*args, **kwargs):
t = time()
result = func(*args, **kwargs)
print(func.__name__, 'took:', time() - t)
return result

return wrapper

def max_result(func):
@wraps (func)
def wrapper(*args, **kwargs):
result = func(*args, **kwargs)
if result > 100:
print(
f'Result is too big ({result}).
'Max allowed is 100.'
)
return result
return wrapper

@measure

@max_result

def cube(n):
return n ** 3

print(cube(2))
print(cube(5))

We had to enhance the measure() decorator, so that its wrapper now returns the
result of the call to func(). The max_result decorator does that as well, but before
returning, it checks that result is not greater than 100, which is the maximum
allowed.
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We decorated cube() with both of them. First, max_result() is applied, then
measure(). Running this code yields this result:

$ python two.decorators.py
cube took: 3.0994415283203125e-06
8

Result is too big (125). Max allowed is 10@.
cube took: 1.0013580322265625e-05
125

For your convenience, we have separated the results of the two calls with a blank
line. In the first call, the result is 8, which passes the threshold check. The running
time is measured and printed. Finally, we print the result (8).

On the second call, the result is 125, so the error message is printed, the result
returned, and then it's the turn of measure(), which prints the running time again,
and finally, we print the result (125).

Had we decorated the cube() function with the same two decorators but in a
different order, the order of the printed messages would also have been different.

A decorator factory

Let's simplify this example now, going back to a single decorator: max_result(). We
want to make it so that we can decorate different functions with different thresholds,
as we don't want to write one decorator for each threshold. Let's therefore amend
max_result() so that it allows us to decorate functions by specifying the threshold
dynamically:

from functools import wraps

def max_result(threshold):
def decorator(func):
@wraps (func)
def wrapper(*args, **kwargs):
result = func(*args, **kwargs)
if result > threshold:
print(
f'Result is too big ({result}). '
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f'Max allowed is {threshold}."
)
return result
return wrapper
return decorator

@max_result(75)
def cube(n):
return n ** 3

print(cube(5))

The preceding code shows you how to write a decorator factory. If you recall,
decorating a function with a decorator that takes arguments is the same as writing
func = decorator(argA, argB)(func), so when we decorate cube with max_
result(75), we're doing cube = max_result(75)(cube).

Let's go through what happens, step by step. When we call max_result(75), we

enter its body. A decorator() function is defined inside, which takes a function as

its only argument. Inside that function, the usual decorator trick is performed. We
define wrapper(), inside of which we check the result of the original function's call.
The beauty of this approach is that from the innermost level, we can still refer to both
func and threshold, which allows us to set the threshold dynamically.

The wrapper() function returns result, decorator() returns wrapper(), and max_
result() returns decorator(). This means that our cube = max_result(75)(cube)
call actually becomes cube = decorator(cube). Not just any decorator() though, but
one for which threshold has a value of 75. This is achieved by a mechanism called
closure.

Dynamically created functions that are returned by other functions
/ are called closures. Their main feature is that they have full access
\/;p; to the variables and names defined in the local namespace where
they were created, even though the enclosing function has returned
and finished executing.

Running the last example produces the following result:

$ python decorators.factory.py
Result is too big (125). Max allowed is 75.

125
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The preceding code allows us to use the max_result() decorator with different
thresholds, like this:

@max_result(75)
def cube(n):
return n ** 3

@max_result(100)
def square(n):
return n ** 2

@max_result(1000)
def multiply(a, b):
return a * b

Note that every decoration uses a different threshold value.

Decorators are very popular in Python. They are used quite often and they make the
code simpler, and more elegant.

Object-oriented programming (OOP)

It's been quite a long and hopefully nice journey and, by now, we should be ready to
explore OOP. We'll use the definition from Kindler, E.; Krivy, I. (2011). Object-oriented
simulation of systems with sophisticated control (International Journal of General Systems),
and adapt it to Python:

Object-oriented programming (OOP) is a programming paradigm based on

the concept of "objects", which are data structures that contain data, in the form of
attributes, and code, in the form of functions known as methods. A distinguishing
feature of objects is that an object's method can access and often modify the data
attributes of the object with which they are associated (objects have a notion of
"self"). In OO programming, computer programs are designed by making them out
of objects that interact with one another.

Python has full support for this paradigm. Actually, as we have already said,
everything in Python is an object, so this shows that OOP is not just supported by
Python, but it's a core feature of the language.

The two main players in OOP are objects and classes. Classes are used to create
objects (objects are instances of the classes from which they were created), so we
could see them as "instance factories."
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When objects are created by a class, they inherit the class attributes and methods.
They represent concrete items in the program's domain.

The simplest Python class

We will start with the simplest class you could ever write in Python:

class Simplest():
pass

print(type(Simplest)) object
simp = Simplest()
print(type(simp))

print(type(simp) is Simplest)
Let's run the preceding code and explain it line by line:

$ python simplest.class.py
<class 'type'>

<class '__main__.Simplest'>
True

The Simplest class we defined has only the pass instruction in its body, which
means it doesn't have any custom attributes or methods. Brackets after the name
are optional if empty. We will print its type (__main__ is the name of the scope

in which top-level code executes), and we are aware that, in the highlighted
comment, we wrote object instead of class. It turns out that, as you can see by the
result of that print statement, classes are actually objects. To be precise, they are
instances of type. Explaining this concept would lead us to a talk about metaclasses
and metaprogramming, advanced concepts that require a solid grasp of the
fundamentals to be understood and are beyond the scope of this chapter. As usual,
we mentioned it to leave a pointer for you, for when you are ready to explore more
deeply.

Let's go back to the example: we created simp, an instance of the Simplest class. You can
see that the syntax to create an instance is the same as the syntax for calling a function.
Next, we print what type simp belongs to and we verify that simp is, in fact, an instance
of simplest. We'll show you a better way of doing this later on in the chapter.

Up to now, it's all very simple. What happens when we write class ClassName():
pass, though? Well, what Python does is create a class object and assign it a name.
This is very similar to what happens when we declare a function using def.
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Class and object namespaces

After the class object has been created (which usually happens when the module is
first imported), it basically represents a namespace. We can call that class to create
its instances. Each instance inherits the class attributes and methods and is given its
own namespace. We already know that in order to walk a namespace, all we need to
do is to use the dot (.) operator.

Let's look at another example:

class Person:
species = 'Human'

print(Person.species)
Person.alive = True
print(Person.alive)

man = Person()
print(man.species)
print(man.alive)

Person.alive = False
print(man.alive)

man.name = 'Darth’
man.surname = 'Vader'
print(man.name, man.surname)

In the preceding example, we have defined a class attribute called species. Any
name defined in the body of a class becomes an attribute that belongs to that class.
In the code, we have also defined Person.alive, which is another class attribute. You
can see that there is no restriction on accessing that attribute from the class. You can
see that man, which is an instance of Person, inherits both of them, and reflects them
instantly when they change.

man also has two attributes that belong to its own namespace and are therefore called
instance attributes: name and surname.

Class attributes are shared among all instances, while instance
/ attributes are not; therefore, you should use class attributes to
\/;p; provide the states and behaviors to be shared by all instances
and use instance attributes for data that will be specific to each
individual object.
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Attribute shadowing

When you search for an attribute on an object, if it is not found, Python extends the
search to the attributes on the class that was used to create that object (and keeps
searching until it's either found or the end of the inheritance chain is reached). This
leads to an interesting shadowing behavior. Let's look at an example:

class Point:
X = 10
y =7

p = Point()
print(p.x)
print(p.y)

p.x = 12
print(p.x)
print(Point.x)

del p.x
print(p.x)

p.z = 3
print(p.z)

print(Point.z)

The preceding code is very interesting. We have defined a class called Point with
two class attributes, x and y. When we create an instance of Point, p, you can see
that we can print both x and y from the p namespace (p.x and p.y). What happens
when we do that is that Python doesn't find any x or y attributes on the instance, and
therefore searches the class, and finds them there.

Then we give p its own x attribute by assigning p.x = 12. This behavior may appear
a bit weird at first, but if you think about it, it's exactly the same as what happens

in a function that declares x = 12 when there is a global x = 10 outside (check

out the section about scopes in Chapter 4, Functions, the Building Blocks of Code, for

a refresher). We know that x = 12 won't affect the global one, and for class and
instance attributes, it is exactly the same.
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After assigning p.x = 12, when we print it, the search doesn't need to reach the class
attributes because x is found on the instance, so we get 12 printed out. We also print
Point.x, which refers to x in the class namespace, to show it's still 10.

Then, we delete x from the namespace of p, which means that, on the next line, when
we print it again, Python will go again and search for it in the class, because it will no
longer be found in the instance.

The last three lines show you that assigning attributes to an instance doesn't mean
that they will be found in the class. Instances get whatever is in the class, but the
opposite is not true.

What do you think about putting the x and y coordinates as class attributes? Do you
think it was a good idea? What if we created another instance of Point? Would that
help to show why instance attributes can be very useful?

The self argument

From within a class method, we can refer to an instance by means of a special
argument, called self by convention. self is always the first attribute of an instance
method. Let's examine this behavior together with how we can share not just
attributes, but methods with all instances:

class Square:
side = 8
def area(self):
return self.side ** 2

sq = Square()
print(sq.area())
print(Square.area(sq))

sq.side = 10
print(sq.area())

Note how the area method is used by sq. The two calls, Square.area(sq) and
sq.area(), are equivalent, and teach us how the mechanism works. Either you pass
the instance to the method call (Square.area(sq)), which within the method will take
the name self, or you can use a more comfortable syntax, sq.area(), and Python
will translate that for you behind the scenes.
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Let's look at a better example:

class Price:
def final_price(self, vat, discount=0):
"""Returns price after applying vat and fixed discount."""
return (self.net_price * (100 + vat) / 100) - discount

pl = Price()

pl.net_price = 100
print(Price.final_price(pl, 20, 10))
print(pl.final_price(20, 10))

The preceding code shows you that nothing prevents us from using arguments when
declaring methods. We can use the exact same syntax as we used with the function,
but we need to remember that the first argument will always be the instance that

the method will be bound to. We don't need to necessarily call it self, but it's the
convention, and this is one of the few cases where it's very important to abide by it.

Initializing an instance

Have you noticed how, before calling p1.final_price(...) in the code above, we
had to assign net_price to p1? There is a better way to do it. In other languages, this
would be called a constructor, but in Python, it's not. It is actually an initializer,
since it works on an already created instance, and therefore it's called __init__.It'sa
magic method, which is run right after the object is created. Python objects also have
a __new__ method, which is the actual constructor. In practice, it's not so common

to have to override it though; that is a technique that is mostly used when writing
metaclasses which, as we mentioned, is a fairly advanced topic that we won't explore
in the book. Let's now see an example of how to initialize objects in Python:

class Rectangle:
def __init_ (self, side_a, side_b):
self.side_a = side_a
self.side_b = side_b

def area(self):
return self.side_a * self.side b

rl = Rectangle(10, 4)
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print(rl.side_a, ril.side_b)
print(rl.area())

r2 = Rectangle(7, 3)
print(r2.area())

Things are finally starting to take shape. When an object is created, the __init__
method is automatically run for us. In this case, we wrote it so that when we

create an object (by calling the class name like a function), we pass arguments to
the creation call, like we would on any regular function call. The way we pass
parameters follows the signature of the __init__ method, and therefore, in the two
creation statements, 10 and 7 will be side_a for r1 and r2, respectively, while 4 and
3 will be side_b. You can see that the call to area() from r1 and r2 reflects that they
have different instance arguments. Setting up objects in this way is much nicer and
more convenient.

In this example, we also declared attributes at the instance level, rather than at the
class level, because it made sense to do so.

OOP is about code reuse

By now, it should be pretty clear: OOP is all about code reuse. We define a class, we
create instances, and those instances use methods that are defined only in the class.
They will behave differently according to how the instances have been set up by the
initializer.

Inheritance and composition

This is just half of the story though: OOP is much more powerful than just this. We have
two main design constructs to use: inheritance and composition.

Inheritance means that two objects are related by means of an Is-A type of
relationship. On the other hand, composition means that two objects are related by
means of a Has-A type of relationship. It's all very easy to explain with an example.
Let's declare a few engine types:

class Engine:
def start(self):
pass

def stop(self):
pass
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class ElectricEngine(Engine): # Is-A Engine
pass

class V8Engine(Engine): # Is-A Engine
pass

Then we want to declare some car types that will use those engines:

class Car:
engine_cls = Engine

def _init_ (self):
self.engine = self.engine_cls() # Has-A Engine

def start(self):

print(
'Starting engine {0} for car {1}... Wroom, wroom!'’
.format(
self.engine._class__._ name__,
self. class__. name_ )
)

self.engine.start()

def stop(self):
self.engine.stop()

class RaceCar(Car): # Is-A Car
engine_cls = V8Engine

class CityCar(Car): # Is-A Car
engine_cls = ElectricEngine

class FiCar(RaceCar): # Is-A RaceCar and also Is-A Car
pass # engine_cls same as parent

car = Car()

racecar = RaceCar()

citycar = CityCar()

flcar = F1Car()

cars = [car, racecar, citycar, flcar]
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for car in cars:
car.start()

Running the above prints the following:

Starting engine Engine for car Car... Wroom, wroom!
Starting engine V8Engine for car RaceCar... Wroom, wroom!

Starting engine ElectricEngine for car CityCar... Wroom, wroom!
Starting engine V8Engine for car F1Car... Wroom, wroom!

The preceding example shows you both the Is-A and Has-A types of relationships
between objects. First of all, let's consider Engine. It's a simple class that has two
methods, start and stop. We then define ElectricEngine and V8Engine, which both
inherit from Engine. You can see that by the fact that when we define them, we put
Engine within the brackets after the class name.

This means that both ElectricEngine and V8Engine inherit attributes and methods
from the Engine class, which is said to be their base class.

The same happens with cars. Car is a base class for both RaceCar and CityCar.
RaceCar is also the base class for F1Car. Another way of saying this is that F1Car
inherits from RaceCar, which inherits from Car. Therefore, F1Car Is-A RaceCar, and
RaceCar Is-A Car. Because of the transitive property, we can say that FiCar Is-A Car as
well. CityCar, too, Is-A Car.

When we define class A(B): pass, we say A is the child of B, and B is the parent of A.
The parent and base classes are synonyms, and so are child of and derived from. Also,
we say that a class inherits from another class, or that it extends it.

This is the inheritance mechanism.

Let us now go back to the code. Each class has a class attribute, engine_c1ls, which is
a reference to the engine class we want to assign to each type of car. Car has a generic
Engine, while the two race cars have a powerful V8 engine, and the city car has an
electric one.

When a car is created in the initializer method, __init_ (), we create an instance
of whatever engine class is assigned to the car, and set it as the engine instance
attribute.

It makes sense to have engine_c1ls shared among all class instances because it's
quite likely that all instances of the same car class will have the same kind of engine.
On the other hand, it wouldn't be good to have a single engine (an instance of any
Engine class) as a class attribute because we would be sharing one engine among all
instances, which is incorrect.
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The type of relationship between a car and its engine is a Has-A type. A car Has-A
engine. This aspect is called composition, and reflects the fact that objects can be
made of many other objects. A car Has-A engine, gears, wheels, a frame, doors, seats,
and so on.

When designing OOP code, it is important to describe objects in this way so that we
can use inheritance and composition correctly, to structure our code in the best way.

Notice how we had to avoid having dots in the
class_inheritance.py script name, as dots in module names
D’ make imports difficult. Most modules in the source code of the
) .
book are meant to be run as standalone scripts, so we chose to
add dots to enhance readability when possible, but in general,
you want to avoid dots in your module names.

Before we leave this paragraph, let's verify the correctness of what we stated above,
with another example:

from class_inheritance import Car, RaceCar, F1lCar

car = Car()

racecar = RaceCar()

flcar = F1Car()

cars = [(car, 'car'), (racecar, 'racecar'), (flcar, 'flcar')]
car_classes = [Car, RaceCar, FlCar]

for car, car_name in cars:
for class_ in car_classes:
belongs = isinstance(car, class_)
msg = 'is a' if belongs else 'is not a‘’
print(car_name, msg, class_._name_ )
""" Ppints:
car is a Car
car is not a RaceCar
car is not a FlCar
racecar is a Car
racecar is a RaceCar
racecar is not a FlCar
flcar is a Car
flcar is a RaceCar
flcar is a FlCar
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As you can see, car is just an instance of Car, while racecar is an instance of RaceCar
(and of car, by extension) and filcar is an instance of F1Car (and of both RaceCar and
Car, by extension). Similarly, a banana is an instance of Banana. But, also, it is a Fruit.
Also, it is Food, right? This is the same concept. To check whether an object is an
instance of a class, use the isinstance function. It is recommended over sheer type
comparison (type(object) is Class).

\/‘/ Notice we have left out the prints you get when instantiating the

cars. We saw them in the previous example.

Let's also check inheritance. The same setup, but different logic in the for loops:

for classl in car_classes:
for class2 in car_classes:
is_subclass = issubclass(classl, class2)
msg = '{@} a subclass of'.format(
"is' if is_subclass else 'is not')

print(classl._name__, msg, class2.__name__)
""" Ppints:
Car is a subclass of Car
Car is not a subclass of RaceCar
Car is not a subclass of FlCar
RaceCar is a subclass of Car
RaceCar is a subclass of RaceCar
RaceCar is not a subclass of FilCar
FlCar is a subclass of Car
FlCar is a subclass of RaceCar
FlCar is a subclass of Fi1Car

Interestingly, we learn that a class is a subclass of itself. Check the output of the
preceding example to see that it matches the explanation we provided.
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One thing to notice about conventions is that class names are
always written using CapWords, which means ThisWaylsCorrect,
as opposed to functions and methods, which are written in snake
case, like this_way_is_correct. Also, when in the code you want to

C’ use a name that clashes with a Python-reserved keyword or a built-

) . . . . e

\/ in function or class, the convention is to add a trailing underscore
to the name. In the first for loop example, we are looping through
the class names using for class_ in ... because classisa
reserved word. But you already knew all this because you have
thoroughly studied PEP 8, right?

To help you picture the difference between Is-A and Has-A, take a look at the
following diagram:

Steering

Wheel Clutch

RaceCar

RallyCar

Accelerator

Figure 6.1: Is-A versus Has-A relationships

Accessing a base class

We've already seen class declarations, such as class ClassA: pass and class
ClassB(BaseClassName): pass. When we don't specify a base class explicitly,
Python will set the special object class as the base class for the one we're defining.
Ultimately, all classes derive from object. Please remember that, if you don't specify
a base class, brackets are optional and in practice are never used.

Therefore, writing class A: pass or class A(): passor class A(object): passis
exactly the same thing. The object class is a special class in that it hosts the methods
that are common to all Python classes, and it doesn't allow you to set any attributes
on it.
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Let's see how we can access a base class from within a class:

class Book:
def _ init_ (self, title, publisher, pages):
self.title = title
self.publisher = publisher
self.pages = pages

class Ebook(Book):
def __init_ (self, title, publisher, pages, format_):
self.title = title
self.publisher = publisher
self.pages = pages
self.format_ = format_

Take a look at the preceding code. Three of the input parameters for Book are
duplicated in Ebook. This is quite bad practice because we now have two sets of
instructions that are doing the same thing. Moreover, any change in the signature of
Book. _init__ () will not be reflected in Ebook. We know that Ebook Is-A Book, and
therefore we probably want changes to be reflected in the child classes.

Let's see one way to fix this issue:

class Book:
def init_ (self, title, publisher, pages):
self.title = title
self.publisher = publisher
self.pages = pages

class Ebook(Book):
def _init_ (self, title, publisher, pages, format_):
Book. _init_ (self, title, publisher, pages)
self.format_ = format_

ebook = Ebook(
"Learn Python Programming', 'Packt Publishing', 500, 'PDF')
print(ebook.title)
print(ebook.publisher)
print(ebook.pages)
print(ebook.format_)
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Now, that's better. We have removed that nasty duplication. Basically, we tell Python
to call the __init__() method of the Book class; we feed self to that call, making sure
that we bind that call to the present instance.

If we modify the logic within the __init__() method of Book, we don't need to touch
Ebook; it will automatically adapt to the change.

This approach is good, but we can still do a bit better. Say that we change the name
of Book to Liber, because we've fallen in love with Latin. We would then have to
change the __init__() method of Ebook to reflect that change. This can be avoided by
using super:

class Book:
def init_  (self, title, publisher, pages):
self.title = title
self.publisher = publisher
self.pages = pages

class Ebook(Book):
def init_ (self, title, publisher, pages, format_):
super().__init__ (title, publisher, pages)

self.format_ = format_

ebook = Ebook(
'Learn Python Programming', 'Packt Publishing', 500, 'PDF')
print(ebook.title)
print(ebook.publisher)
print(ebook.pages)
print(ebook.format_)

super() is a function that returns a proxy object that delegates method calls to a
parent or sibling class.

\/;/; Two classes are siblings if they share the same parents.
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In this case, super() will delegate that call to __init__() of the Book class, and the
beauty of this approach is that now we're free to change Book to Liber without
having to touch the logic in the __init__() method of Ebook.

Now that we know how to access a base class from its child, let's explore Python's
multiple inheritance.

Multiple inheritance

Apart from composing a class using more than one base class, what is of interest here
is how an attribute search is performed. Take a look at the following diagram:

RegularPolygon

RegularHexagon

Figure 6.2: A class inheritance diagram

As you can see, Shape and Plotter act as base classes for all the others. Polygon
inherits directly from them, RegularPolygon inherits from Polygon, and both
RegularHexagon and Square inherit from RegularPolygon. Note also that Shape and
Plotter implicitly inherit from object, so we therefore have what is known as a
diamond or, in simpler terms, more than one path to reach a base class. We'll see
why this matters in a few moments. Let's translate the diagram into code:

# oop/multiple.inheritance.py
class Shape:
geometric_type = 'Generic Shape’
def area(self): # This acts as placeholder for the interface
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raise NotImplementedError
def get_geometric_type(self):
return self.geometric_type

class Plotter:
def plot(self, ratio, topleft):
# Imagine some nice plotting logic here...
print('Plotting at {}, ratio {}.'.format(
topleft, ratio))

class Polygon(Shape, Plotter): # base class for polygons
geometric_type = 'Polygon’

class RegularPolygon(Polygon): # Is-A Polygon
geometric_type = 'Regular Polygon'
def _init_ (self, side):
self.side = side

class RegularHexagon(RegularPolygon): # Is-A RegularPolygon
geometric_type = 'RegularHexagon'
def area(self):
return 1.5 * (3 ** |5 * self.side ** 2)

class Square(RegularPolygon): # Is-A RegularPolygon
geometric_type = 'Square’
def area(self):
return self.side * self.side

hexagon = RegularHexagon(10)

print(hexagon.area()) # 259.8076211353316
print(hexagon.get_geometric_type()) # RegularHexagon
hexagon.plot(0.8, (75, 77)) # Plotting at (75, 77), ratio 0.8.

square = Square(12)

print(square.area()) # 144

print(square.get_geometric_type()) # Square

square.plot(0.93, (74, 75)) # Plotting at (74, 75), ratio 0.93.

Take a look at the preceding code: the Shape class has one attribute, geometric_type,
and two methods: area() and get_geometric_type(). It's quite common to use base
classes (such as Shape, in our example) to define an interface, a set of methods for
which children must provide an implementation. There are different and better ways
to do this, but we want to keep this example as simple as possible.
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We also have the Plotter class, which adds the plot() method, thereby providing
plotting capabilities for any class that inherits from it. Of course, the plot()
implementation is just a dummy print in this example. The first interesting class is
Polygon, which inherits from both Shape and Plotter.

There are many types of polygons, one of which is the regular one, which is both
equiangular (all angles are equal) and equilateral (all sides are equal), so we create
the RegularPolygon class that inherits from Polygon. For a regular polygon, where
all sides are equal, we can implement a simple __init__() method, which just takes
the length of the side. We create the RegularHexagon and Square classes, which both
inherit from RegularPolygon.

This structure is quite long, but hopefully gives you an idea of how to specialize the
classification of your objects when you design the code.

Now, please take a look at the last eight lines. Note that when we call the area()
method on hexagon and square, we get the correct area for both. This is because

they both provide the correct implementation logic for it. Also, we can call get_
geometric_type() on both of them, even though it is not defined on their classes, and
Python has to go all the way up to Shape to find an implementation for it. Note that,
even though the implementation is provided in the Shape class, the self.geometric_
type() used for the return value is correctly taken from the caller instance.

The plot() method calls are also interesting and show you how you can enrich

your objects with capabilities they wouldn't otherwise have. This technique is very
popular in web frameworks such as Django (which we will explore briefly in Chapter
14, Introduction to API Development), which provides special classes called mixins,
whose capabilities you can just use out of the box. All you have to do is to define the
desired mixin as one of the base classes for your own, and that's it.

Multiple inheritance is powerful, but can also get really messy, so we need to make
sure we understand what happens when we use it.

Method resolution order

By now, we know that when we ask for someobject.attribute and attribute is not
found on that object, Python starts searching in the class that someobject was created
from. If it's not there either, Python searches up the inheritance chain until either
attribute is found or the object class is reached. This is quite simple to understand
if the inheritance chain is only made of single-inheritance steps, which means that
classes have only one parent, all the way up to object. However, when multiple
inheritance is involved, there are cases when it's not straightforward to predict what
will be the next class that will be searched for if an attribute is not found.
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Python provides a way to always know the order in which classes are searched on
attribute lookup: the method resolution order (MRO).

The MRO is the order in which base classes are searched for
a member during lookup. Since version 2.3, Python uses an
algorithm called C3, which guarantees monotonicity.

write a new-style class in Python 2.* is to define it with an explicit
object base class. Classic classes did not inherit from object and
have been removed in Python 3. One of the differences between
classic and new-style classes in Python 2.* is that new-style classes
are searched with the new MRO.

\/‘/’ In Python 2.2, new-style classes were introduced. The way you

With regard to the previous example, let's see the MRO for the Square class:

print(square.__class__._ mro_ )

To get to the MRO of a class, we can go from the instance to its __class__ attribute,
and from that to its __mro__ attribute. Alternatively, we could have used Square.__
mro__, or Square.mro() directly, but if you have to do it from an instance, you'll have
to derive its class dynamically.

Note that the only point of doubt is the bifurcation after Polygon, where the
inheritance chain breaks into two ways: one leads to Shape and the other to Plotter.
We know by scanning the MRO for the Square class that Shape is searched before
Plotter.

Why is this important? Well, consider the following code:

class A:
label = 'a’
class B(A):
label = 'b’
class C(A):
label = 'c°
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class D(B, C):
pass

d = D()
print(d.label)

Both B and C inherit from A, and D inherits from both B and C. This means that the
lookup for the label attribute can reach the top (A) through either B or C. According
to which is reached first, we get a different result.

So, in the preceding example, we get 'b’', which is what we were expecting, since B
is the leftmost one among the base classes of D. But what happens if we remove the
label attribute from B? This would be a confusing situation: will the algorithm go all
the way up to A or will it get to C first? Let's find out:

class A:
label = 'a’

class B(A):
pass

class C(A):
label = 'c°

class D(B, C):
pass

d = D()
print(d.label)
print(d._class__.mro())

So, we learn that the MRO is D-B-C-A-object, which means that when we ask for
d.label, we get 'c', which is correct.

In day-to-day programming, it is not common to have to deal with the MRO, but we
felt it was important to at least mention it in this paragraph so that, should you get
entangled in a complex mixins structure, you will be able to find your way out of it.

[222]



Chapter 6

Class and static methods

So far, we have coded classes with attributes in the form of data and instance
methods, but there are two other types of methods that we can place inside a class:
static methods and class methods.

Static methods

As you may recall, when you create a class object, Python assigns a name to it. That
name acts as a namespace, and sometimes it makes sense to group functionalities
under it. Static methods are perfect for this use case. Unlike instance methods,

they are not passed any special argument, and therefore we don't need to create an
instance of the class in order to call them. Let's look at an example of an imaginary
StringUtil class:

class StringUtil:

@staticmethod
def is palindrome(s, case_insensitive=True):

s = ''".join(c for c in s if c.isalnum())

if case_insensitive:
s = s.lower()
for c in range(len(s) // 2):
if s[c] != s[-c -1]:
return False
return True

@staticmethod
def get_unique_words(sentence):
return set(sentence.split())

print(StringUtil.is_palindrome(

'Radar', case_insensitive=False))
print(StringUtil.is_palindrome('A nut for a jar of tuna'))
print(StringUtil.is_palindrome( 'Never 0dd, Or Even!'))
print(StringUtil.is_palindrome(

"In Girum Imus Nocte Et Consumimur Igni')
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print(StringUtil.get_unique_words(
'I love palindromes. I really really love them!'))

The preceding code is quite interesting. First of all, we learn that static methods are
created by simply applying the staticmethod decorator to them. You can see that
they aren't passed any special argument so, apart from the decoration, they really
just look like functions.

We have a class, StringUtil, that acts as a container for functions. Another approach
would be to have a separate module with functions inside. It's really a matter of
preference most of the time.

The logic inside is_palindrome() should be straightforward for you to understand
by now, but, just in case, let's go through it. First, we remove all characters from s
that are neither letters nor numbers. In order to do this, we use the join() method
of a string object (an empty string object, in this case). By calling join() on an
empty string, the result is that all elements in the iterable you pass to join() will be
concatenated together. We feed join() a generator expression that says to take any
character from s if the character is either alphanumeric or a number. This is because,
in palindrome sentences, we want to discard anything that is not a character or a
number.

We then lowercase s if case_insensitive is True, and then we proceed to check
whether it is a palindrome. To do this, we compare the first and last characters, then
the second and the second to last, and so on. If, at any point, we find a difference, it
means the string isn't a palindrome, and therefore we can return False. On the other
hand, if we exit the for loop normally, it means no differences were found, and we
can therefore say the string is a palindrome.

Notice that this code works correctly regardless of the length of the string; that is, if
the length is odd or even. The measure len(s) // 2 reaches half of s, and if s is an
odd number of characters long, the middle one won't be checked (for instance, in
RaDaR, D is not checked), but we don't care; it would be compared to itself, so it's
always passing that check.

The get_unique_words() method is much simpler: it just returns a set to which we
feed a list with the words from a sentence. The set class removes any duplication for
us, so we don't need to do anything else.

The stringUtil class provides us with a nice container namespace for methods
that are meant to work on strings. We could have coded a similar example with a
MathUtil class, and some static methods to work on numbers, but we wanted to
show you something different.
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Class methods

Class methods are slightly different from static methods in that, like instance
methods, they also take a special first argument, but in this case, it is the class object
itself, rather than the instance. A very common use case for coding class methods

is to provide factory capability to a class, which means to have alternative ways to
create instances of the class. Let's see an example:

class Point:
def __init_ (self, x, y):
self.x = x
self.y =y

@classmethod
def from_tuple(cls, coords):
return cls(*coords)

@classmethod
def from_point(cls, point):
return cls(point.x, point.y)

p = Point.from_tuple((3, 7))
print(p.x, p.y)

g = Point.from_point(p)
print(q.x, q.y)

In the preceding code, we show you how to use a class method to create a factory for
the class. In this case, we want to create a Point instance by passing both coordinates
(regular creation p = Point(3, 7)), but we also want to be able to create an instance
by passing a tuple (Point.from_tuple) or another instance (Point.from_point).

Within each class method, the c1s argument refers to the Point class. As with the
instance method, which takes self as the first argument, the class method takes a c1s
argument. Both self and cls are named after a convention that you are not forced to
follow but are strongly encouraged to respect. This is something that no professional
Python coder would change; it is so strong a convention that plenty of tools, such as
parsers, linters, and the like, rely on it.

Class and static methods play well together. Static methods are actually quite helpful
in breaking up the logic of a class method to improve its layout.
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Let's see an example by refactoring the StringUtil class:

class StringUtil:

@classmethod
def is_palindrome(cls, s, case_insensitive=True):
s = cls._strip_string(s)

if case_insensitive:
s = s.lower()
return cls._is_palindrome(s)

@staticmethod
def _strip_string(s):
return ''.join(c for c in s if c.isalnum())

@staticmethod
def _is palindrome(s):
for ¢ in range(len(s) // 2):
if s[c] != s[-c -1]:
return False
return True

@staticmethod
def get_unique_words(sentence):
return set(sentence.split())

print(StringUtil.is_palindrome('A nut for a jar of tuna'))
print(StringUtil.is_palindrome('A nut for a jar of beans'))

Compare this code with the previous version. First of all, note that even though
is_palindrome() is now a class method, we call it in the same way we were calling it
when it was a static one. The reason why we changed it to a class method is that after
factoring out a couple of pieces of logic (_strip_string and _is_palindrome), we
need to get a reference to them, and if we have no cls in our method, the only option
would be to call them by using the name of the class itself, like so: StringUtil._
strip_string(...) and StringUtil._is_palindrome(...), which is not good
practice, because we would hardcode the class name in the is_palindrome() method,
thereby putting ourselves in the position of having to modify it whenever we want
to change the class name. Using c1s means it will act as the class name, which means
our code won't need any modifications should the class name change.
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Notice how the new logic reads much better than the previous version. Moreover,
notice that, by naming the factored-out methods with a leading underscore, we are
hinting that those methods are not supposed to be called from outside the class, but
this will be the subject of the next paragraph.

Private methods and name mangling

If you have any background with languages like Java, C#, or C++, then you know
they allow the programmer to assign a privacy status to attributes (both data and
methods). Each language has its own slightly different flavor for this, but the gist is
that public attributes are accessible from any point in the code, while private ones are
accessible only within the scope they are defined in.

In Python, there is no such thing. Everything is public; therefore, we rely on
conventions and, for privacy, on a mechanism called name mangling.

The convention is as follows: if an attribute's name has no leading underscores, it

is considered public. This means you can access it and modify it freely. When the
name has one leading underscore, the attribute is considered private, which means
it's probably meant to be used internally and you should not modify it, or call it from
the outside. A very common use case for private attributes is helper methods that are
supposed to be used by public ones (possibly in call chains in conjunction with other
methods), and internal data, such as scaling factors, or any other data that we would
ideally put in a constant (a variable that cannot change, but, surprise, surprise,
Python doesn't have those either).

This characteristic usually scares people from other backgrounds off; they feel
threatened by the lack of both privacy and constraints. To be honest, in our
professional experience with Python, we've never heard anyone screaming "oh my
God, we have a terrible bug because Python lacks private attributes!" Not once, we swear.

That said, the call for privacy actually makes sense because without it, you risk
introducing bugs into your code for real. Let us show you what we mean:

class A:
def __init_ (self, factor):
self._ factor = factor

def opl(self):
print('Opl with factor {}...'.format(self._factor))

class B(A):
def op2(self, factor):
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self. factor = factor
print('Op2 with factor {}...'.format(self._factor))

obj = B(100)
obj.opl()
obj.op2(42)
obj.opl()

In the preceding code, we have an attribute called _factor, and let's pretend it's so
important that it isn't modified at runtime after the instance is created because op1()
depends on it to function correctly. We've named it with a leading underscore, but
the issue here is that when we call obj.op2(42), we modify it, and this is reflected in
subsequent calls to op1().

Let's fix this undesired behavior by adding another leading underscore:

class A:
def init (self, factor):
self._factor = factor

def opl(self):
print('Opl with factor {}...'.format(self.__ factor))

class B(A):
def op2(self, factor):
self. factor = factor
print('Op2 with factor {}...'.format(self.__factor))

obj = B(100)
obj.opl()
obj.op2(42)
obj.opl()

Wow, look at that! Now it's working as desired. Python is kind of magic and in this
case, what is happening is that the name-mangling mechanism has kicked in.

Name mangling means that any attribute name that has at least two leading
underscores and at most one trailing underscore, such as __my_attr, is replaced with
a name that includes an underscore and the class name before the actual name, such
as _ClassName__my_attr
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This means that when you inherit from a class, the mangling mechanism gives
your private attribute two different names in the base and child classes so that
name collision is avoided. Every class and instance object stores references to their
attributes in a special attribute called __dict__, so let's inspect obj.__dict__ to see
name mangling in action:

print(obj._dict__ .keys())

This is the _factor attribute that we find in the problematic version of this example,
but look at the one that is using __factor:

print(obj._ dict__ .keys())

See? obj has two attributes now, _A__factor (mangled within the A class), and
_B__factor (mangled within the B class). This is the mechanism that ensures that
when you do obj.__factor = 42, _ factor in Aisn't changed because you're actually
touching B__factor, which leaves _A__factor safe and sound.

If you're designing a library with classes that are meant to be used and extended
by other developers, you will need to keep this in mind in order to avoid the
unintentional overriding of your attributes. Bugs like these can be pretty subtle and
hard to spot.

The property decorator

Another thing that would be a crime not to mention is the property decorator.
Imagine that you have an age attribute in a Person class and, at some point, you
want to make sure that when you change its value, you're also checking that age

is within a proper range, such as [18, 99]. You could write accessor methods, such

as get_age() and set_age(...) (also called getters and setters), and put the logic
there. get_age() will most likely just return age, while set_age(...) will set its value
after checking its validity. The problem is that you may already have a lot of code
accessing the age attribute directly, which means you're now up to some tedious
refactoring. Languages like Java overcome this problem by using the accessor pattern
basically by default. Many Java Integrated Development Environments (IDEs)
autocomplete an attribute declaration by writing getter and setter accessor method
stubs for you on the fly.
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Python is smarter and does this with the property decorator. When you decorate
a method with property, you can use the name of the method as if it were a data
attribute. Because of this, it's always best to refrain from putting logic that would
take a while to complete in such methods because, by accessing them as attributes,
we are not expecting to wait.

Let's look at an example:

# oop/property.py
class Person:
def _init_ (self, age):
self.age = age # anyone can modify this freely

class PersonWithAccessors:
def init_ (self, age):
self._age = age

def get_age(self):
return self._age

def set_age(self, age):
if 18 <= age <= 99:
self. age = age
else:
raise ValueError('Age must be within [18, 99]"')

class PersonPythonic:
def _init_ (self, age):
self. _age = age

@property
def age(self):
return self. age

@age.setter
def age(self, age):
if 18 <= age <= 99:
self._age = age
else:
raise ValueError('Age must be within [18, 99]")

person = PersonPythonic(39)
print(person.age) # 39 - Notice we access as data attribute
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person.age = 42
print(person.age)
person.age = 100

The Person class may be the first version we write. Then we realize we need to

put the range logic in place so, with another language, we would have to rewrite
Person as the PersonhWithAccessors class, and refactor all the code that was using
Person.age. In Python, we rewrite Person as PersonPythonic (you normally wouldn't
change the name, of course) so that the age is stored in a private _age variable, and
we define property getters and setters using the decoration shown, which allows

us to keep using the person instances as we were before. A getter is a method that

is called when we access an attribute for reading. On the other hand, a setter is a
method that is called when we access an attribute to write it. In other languages, such
as Java, it's customary to define them as get_age() and set_age(int value), but we
find the Python syntax much neater. It allows you to start writing simple code and
refactor later on, only when you need it; there is no need to pollute your code with
accessors only because they may be helpful in the future.

The property decorator also allows for read-only data (by not writing the setter
counterpart) and for special actions when the attribute is deleted. Please refer to the
official documentation to dig deeper.

The cached_property decorator

One convenient use of properties is when we need to run some code in order to set
up the object we want to use. For example, say we needed to connect to a database
(or to an API).

In both cases, we might have to set up a client object that knows how to talk to the
database (or to the API). It is quite common to use a property, in these cases, so that
we can hide away the complexity of having to set the client up, and we can just use
it. Let us show you a simplified example:

class Client:
def __init_ (self):
print("Setting up the client...")

def query(self, **kwargs):
print(f"Performing a query: {kwargs}")

class Manager:

@property
def client(self):
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return Client()

def perform_query(self, **kwargs):
return self.client.query(**kwargs)

In the preceding example, we have a dummy Client class, which prints the string
"Setting up the client..." every time we create a new instance. It also has a pretend
query method, that prints a string as well. We then have a class, Manager, which has
a client property, which creates a new instance of Client every time it is called (for
example, by a call to perform_query).

If we were to run this code, we would notice that every time we call perform_query
on the manager, we see the string "Setting up the client..." being printed. When
creating a client is expensive, this code would be wasting resources, so it might be
better to cache that client, like this:

class ManualCacheManager:
@property
def client(self):
if not hasattr(self, '_client'):
self. client = Client()
return self. client

The ManualCacheManager class is a bit smarter: the client property first checks if the
attribute _client is on the class, by calling the built-in hasattr function. If not, it
assigns _client to a new instance of Client. Finally, it simply returns it. Repeatedly
accessing the client property on this class will only create one instance of Client,
the first time. From the second call on, _client is returned with no need to create a
new one.

This is such a common need that, in Python 3.8, the functools module added the
cached_property decorator. The beauty of using that, instead of our manual solution,
is that in case we need to refresh the client, we can simply delete the client property,
and the next time we call it, it will recreate a brand new Client for us. Let's see an
example:

from functools import cached_property

class CachedPropertyManager:
@cached_property
def client(self):
return Client()

def perform_query(self, **kwargs):
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return self.client.query(**kwargs)

manager = CachedPropertyManager()
manager.perform_query(object_id=42)
manager.perform_query(name_ilike="%Python%")
del manager.client
manager.perform_query(age_gte=18)

Running this code gives the following result:

$ python cached.property.py
Setting up the client... # New Client
Performing a query: {'object_id': 42} # first query

Performing a query: {'name_ilike': '%Python%'} # second query
Setting up the client... # Another Client
Performing a query: {'age_gte': 18} # Third query

As you can see, it's only after we manually delete the manager.client that we geta
new one when we invoke manager.perform_query again.

Python 3.9 also introduces a cache decorator, which can be used in conjunction with
the property decorator, to cover scenarios for which cached_property is not suitable.
As always, we encourage you to read up on all the details in the official Python
documentation and experiment.

Operator overloading

We find Python's approach to operator overloading to be brilliant. To overload an
operator means to give it a meaning according to the context in which it is used.
For example, the + operator means addition when we deal with numbers, but
concatenation when we deal with sequences.

In Python, when you use operators, you're most likely calling the special methods of
some objects behind the scenes. For example, the a[k] call on a dictionary roughly
translates to type(a).__getitem__(a, k). We can override these special methods for
our purposes.

As an example, let's create a class that stores a string and evaluates to True if '42" is
part of that string, and False otherwise. Also, let's give the class a length property
that corresponds to that of the stored string:

class Weird:
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def init_ (self, s):
self. s = s

def __len_ (self):
return len(self._s)

def _ bool_ (self):
return '42' in self._s

weird = Weird('Hello! I am 9 years old!"')
print(len(weird))
print(bool(weird))

weird2 = Weird('Hello! I am 42 years old!"')
print(len(weird2))
print(bool(weird2))

That was fun, wasn't it? For the complete list of magic methods that you can override
to provide your custom implementation of operators for your classes, please refer to
the Python data model in the official documentation.

Polymorphism — a brief overview

The word polymorphism comes from the Greek polys (many, much) and morphé
(form, shape), and its meaning is the provision of a single interface for entities of
different types.

In our car example, we call engine.start(), regardless of what kind of engine it is.
As long as it exposes the start method, we can call it. That's polymorphism in action.

In other languages, such as Java, in order to give a function the ability to accept
different types and call a method on them, those types need to be coded in such a
way that they share an interface. In this way, the compiler knows that the method
will be available regardless of the type of the object the function is fed (as long as it
extends the specific interface, of course).

In Python, things are different. Polymorphism is implicit, and nothing prevents
you from calling a method on an object; therefore, technically, there is no need to
implement interfaces or other patterns.

There is a special kind of polymorphism called ad hoc polymorphism, which is what
we saw in the last section on operator overloading. This is the ability of an operator
to change shape according to the type of data it is fed.
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Polymorphism also allows Python programmers to simply use the interface
(methods and properties) exposed from an object rather than having to check which
class it was instantiated from. This allows the code to be more compact and feel more
natural.

We cannot spend too much time on polymorphism, but we encourage you to check it
out by yourself; it will expand your understanding of OOP. Good luck!

Data classes

Before we leave the OOP realm, there is one last thing we want to mention: data
classes. Introduced in Python 3.7 by PEP 557 (https://www.python.org/dev/peps/
pep-0557/), they can be described as mutable named tuples with defaults. You can
brush up on named tuples in Chapter 2, Built-In Data Types. Let's dive straight into an
example:

from dataclasses import dataclass

@dataclass
class Body:
''"'Class to represent a physical body.'"'
name: str
mass: float = @.
speed: float = 1.

def kinetic_energy(self) -> float:
return (self.mass * self.speed ** 2) / 2

body = Body('Ball', 19, 3.1415)
print(body.kinetic_energy())
print(body)

In the previous code, we have created a class to represent a physical body, with one
method that allows us to calculate its kinetic energy (using the renowned formula

E =Y2mv*). Notice that name is supposed to be a string, while mass and speed are both
floats, and both are given a default value. It's also interesting that we didn't have to
write any __init__ () method; it's done for us by the dataclass decorator, along with
methods for comparison and for producing the string representation of the object
(implicitly called on the last line by print).
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You can read all the specifications in PEP 557 if you are curious, but for now, just
remember that data classes might offer a nicer, slightly more powerful alternative to
named tuples, in case you need it.

Writing a custom iterator

Now we have all the tools to appreciate how we can write our own custom iterator.
Let's first define an iterable and an iterator:

» Iterable: An object is said to be iterable if it's capable of returning its
members one at a time. Lists, tuples, strings, and dictionaries are all iterables.
Custom objects that define either of the __iter__() or__getitem__() methods
are also iterables.

* Iterator: An object is said to be an iterator if it represents a stream of data. A
custom iterator is required to provide an implementation for the __iter_ ()
method that returns the object itself, and an implementation for the __next__
() method that returns the next item of the data stream until the stream is
exhausted, at which point all successive calls to __next__() simply raise the
StopIteration exception. Built-in functions, such as iter() and next(), are
mapped to call the __iter__ () and __next__() methods on an object, behind
the scenes.

Let's write an iterator that returns all the odd characters from a string first, and then
the even ones:

class OddEven:

def __ init_ (self, data):
self. data = data
self.indexes = (list(range(@, len(data), 2)) +
list(range(1, len(data), 2)))

def __iter_ (self):
return self

def _ next_ (self):
if self.indexes:
return self. data[self.indexes.pop(0)]
raise StopIteration

oddeven = OddEven('ThIsIsCoOl!")
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print(''.join(c for c in oddeven))

oddeven = OddEven('CiAo")
it = iter(oddeven)
print(next(it))
print(next(it))
print(next(it))
print(next(it))

So, we needed to provide an implementation for __iter__() that returned the object
itself, and then one for __next__(). Let's go through it. What needs to happen is the
return of data[@], data[2], data[4], ..., data[1], data[3], data[5], ... until
we have returned every item in the data. To do that, we prepare a list of indexes,
suchas [0,2,4,6, .., 1, 3,5, ...], and while there is at least an element in it, we pop
the first one out and return the element from the data that is at that position, thereby
achieving our goal. When indexes is empty, we raise StopIteration, as required by
the iterator protocol.

There are other ways to achieve the same result, so go ahead and try to code a
different one yourself. Make sure that the end result works for all edge cases, empty
sequences, sequences of lengths of 1, 2, and so on.

Summary

In this chapter, we looked at decorators, discovered the reasons for having them, and
covered a few examples using one or more at the same time. We also saw decorators
that take arguments, which are usually used as decorator factories.

We have scratched the surface of object-oriented programming in Python. We
covered all the basics, so you should now be able to understand the code that will
come in future chapters. We talked about all kinds of methods and attributes that
you can write in a class; we explored inheritance versus composition, method
overriding, properties, operator overloading, and polymorphism.

At the end, we very briefly touched base on iterators, so now you understand
generators more deeply.

In the next chapter, we're going to learn about exceptions and context managers.
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The best-laid schemes o' mice an' men
Gang aft agley

— Robert Burns

These famous lines by Robert Burns should be etched into the mind of every
programmer. Even if our code is correct, errors will happen. If we don't deal
with them properly, they can cause our best-laid schemes to go awry.

Unhandled errors can cause software to crash or misbehave. If you are lucky,

this just results in an irritated user. If you're unlucky, your business can end up
losing money (an e-commerce website that keeps crashing is not likely to be very
successful). Therefore, it is important to learn how to detect and handle errors. It is
also a good idea to cultivate the habit of always thinking about what errors can occur
and how your code should respond when they do.

This chapter is all about errors and dealing with the unexpected. We'll be learning
about exceptions, which are Python's way of signaling that an error or other
exceptional event has occurred. We'll also talk about context managers, which
provide a mechanism to encapsulate and re-use error handling code.
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In this chapter, we are going to cover the following:

* Exceptions

* Context managers

Exceptions

Even though we haven't formally introduced them to you, by now we expect you to
at least have a vague idea of what an exception is. In the previous chapters, we've
seen that when an iterator is exhausted, calling next on it raises a StopIteration
exception. We met IndexError when we tried accessing a list at a position that was
outside the valid range. We also met AttributeError when we tried accessing an
attribute on an object that didn't have it, and KeyError when we did the same with
a key and a dictionary.

Now the time has come for us to talk about exceptions.

Sometimes, even though an operation or a piece of code is correct, there are
conditions in which something may go wrong. For example, if we're converting user
input from string to int, the user could accidentally type a letter in place of a digit,
making it impossible for us to convert that value into a number. When dividing
numbers, we may not know in advance whether we're attempting a division by zero.
When opening a file, it could be missing or corrupted.

When an error is detected during execution, it is called an exception. Exceptions are
not necessarily lethal; in fact, we've seen that StopIteration is deeply integrated
into the Python generator and iterator mechanisms. Normally, though, if you don't
take the necessary precautions, an exception will cause your application to break.
Sometimes, this is the desired behavior, but in other cases, we want to prevent and
control problems such as these. For example, we may alert the user that the file
they're trying to open is corrupted or that it is missing so that they can either fix it or
provide another file, without the need for the application to die because of this issue.
Let us see an example of a few exceptions:

# exceptions/first.example.py
>>> gen = (n for n in range(2))
>>> next(gen)

(%]

>>> next(gen)

1

>>> next(gen)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
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StopIteration

>>> print(undefined_name)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'undefined_name' is not defined

>>> mylist = [1, 2, 3]

>>> mylist[5]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: list index out of range

>>> mydict = {'a': 'A', 'b': 'B'}

>>> mydict['c']

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

KeyError: 'c'

>>> 1/ 0

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ZeroDivisionError: division by zero

As you can see, the Python shell is quite forgiving. We can see Traceback, so that
we have information about the error, but the shell itself still runs normally. This is
a special behavior; a regular program or a script would normally exit immediately
if nothing were done to handle exceptions. Let's see a quick example:

1 + "one
print("This line will never be reached")

If we run this code, we get the following output:

$ python exceptions/unhandled.py
Traceback (most recent call last):
File "exceptions/unhandled.py", line 2, in <module>

1 + "one"
TypeError: unsupported operand type(s) for +: 'int' and

str

Because we did nothing to handle the exception, Python immediately exits once an
exception occurs (after printing out information about the error).
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Raising exceptions

The exceptions we've seen so far were raised by the Python interpreter when it
detected an error. However, you can also raise exceptions yourself, when a situation
occurs that your own code considers to be an error. To raise an exception, use the
raise statement. For example:

# exceptions/raising.py
>>> raise NotImplementedError("I'm afraid I can't do that")

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NotImplementedError: I'm afraid I can't do that

You can use any exception type you want, but it's a good idea to choose the
exception type that best describes the particular error condition that has occurred.
You can even define your own exception types (we'll see how to do that in

a moment). Notice that the argument we passed to the Exception class is printed
out as part of the error message.

all documented at https://docs.python.org/3.9/1library/
exceptions.html#bltin-exceptions.

C’ Python has too many built-in exceptions to list here, but they are
\"/

Defining your own exceptions

As we mentioned above, you can define your own custom exceptions. To do

that, you just have to define a class that inherits from any other exception class.
Ultimately, all exceptions derive from BaseException; however, this class is not
intended to be directly subclassed, and your custom exceptions should inherit from
Exception instead. In fact, nearly all built-in exceptions also inherit from Exception.
Exceptions that do not inherit from Exception are meant for internal use by the
Python interpreter.

Tracebacks

The traceback that Python prints might initially look quite intimidating, but it is
extremely useful for understanding what happened to cause the exception. Let's look
at a traceback and see what it can tell us:

def squareroot(number):
if number < 0:
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raise ValueError("No negative numbers please")
return number ** .5

def quadratic(a, b, c):
d=Db**2 -4 *3* ¢
return ((-b - squareroot(d)) / (2 * a),
(-b + squareroot(d)) / (2 * a))

quadratic(1, o, 1)

Here we defined a function called quadratic(), which uses the famous quadratic
formula to find the solution of a quadratic equation. Instead of using the sqrt()
function from the math module, we wrote our own version (squareroot()), which
raises an exception if the number is negative. When we call quadratic(1, o, 1) to
solve the equation x’+1=0, we will get a ValueError, because d is negative. When we
run this, we get:

$ python exceptions/trace.back.py

Traceback (most recent call last):
File "exceptions/trace.back.py", line 12, in <module>

quadratic(1, 0, 1) # x**2 + 1

File "exceptions/trace.back.py", line 9, in quadratic
return ((-b - squareroot(d)) / (2 * a),
File "exceptions/trace.back.py", line 4, in squareroot
raise ValueError("No negative numbers please")
ValueError: No negative numbers please

It is often useful to read tracebacks from bottom to top. On the very last line, we
have the error message, telling us what went wrong: ValueError: No negative
numbers please. The preceding lines tell us where the exception was raised (line

4 of exceptions/trace.back.py in the squareroot() function). We can also see the
sequence of function calls that got us to the point where the exception was raised:
squareroot () was called from line 9 in the function quadratic(), which was called
from line 12, at the top level of the module. As you can see, the traceback is like a
map that shows us the path through the code to where the exception happened.
Following that path and examining the code in each function along the way is often
very useful when you want to understand why an exception happened.

Handling exceptions

To handle an exception in Python, you use the try statement. When you enter the
try clause, Python will watch out for one or more different types of exceptions
(according to how you instruct it), and if they are raised, it will allow you to react.
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The try statement is composed of the try clause, which opens the statement,
followed by one or more except clauses that define what to do when an exception

is caught. The except clauses may optionally be followed by an else clause, which
is executed when the try clause is exited without any exception raised. After

except and else clauses we can have a finally clause (also optional), whose code is
executed regardless of whatever happened in the other clauses. The finally clause
is typically used to clean up resources. You are also allowed to omit the except and
else clauses and only have a try clause followed by a finally clause. This is helpful
if we want exceptions to be propagated and handled elsewhere, but we do have
some cleanup code that must be executed regardless of whether an exception occurs.

The order of the clauses is important. It must be try, except, else, finally. Also,
remember that try must be followed by at least one except clause or a finally
clause. Let us see an example:

def try_syntax(numerator, denominator):
try:
print(f'In the try block: {numerator}/{denominator}')
result = numerator / denominator
except ZeroDivisionError as zde:
print(zde)
else:
print('The result is:', result)
return result
finally:
print('Exiting")

print(try_syntax(12, 4))
print(try_syntax(11, 9))

This example defines a simple try_syntax() function. We perform the division of
two numbers. We are prepared to catch a ZeroDivisionError exception, which will
occur if we call the function with denominator = e. Initially, the code enters the try
block. If denominator is not @, result is calculated and, after leaving the try block,
execution resumes in the else block. We print result and return it. Take a look at the
output and you'll notice that just before returning result, which is the exit point of
the function, Python executes the finally clause.

When denominator is @, things change. Our attempt to calculate numerator /
denominator raises a ZeroDivisionError. As a result, we enter the except block and
print zde.
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The else block is not executed, because an exception was raised in the try block.
Before (implicitly) returning None, we still execute the finally block. Take a look at
the output and see whether it makes sense to you:

$ python try.syntax.py
In the try block: 12/4
The result is: 3.0
Exiting

3.0

In the try block: 11/

division by zero

Exiting
None

When you execute a try block, you may want to catch more than one exception. For
example, when calling the divmod() function, you can get a ZeroDivisionError if the
second argument is @, or TypeError if either argument is not a number. If you want
to handle both in the same way, you can structure your code like this:

values = (1, 2)

try:
g, r = divmod(*values)

except (ZeroDivisionError, TypeError) as e:
print(type(e), e)

This code will catch both ZerobivisionError and TypeError. Try changing values
= (1, 2) tovalues = (1, @) orvalues = ('one', 2), and you will see the output
change.

If you need to handle different exception types differently, you can just add more
except clauses, like this:

try:

g, r = divmod(*values)
except ZeroDivisionError:

print("You tried to divide by zero!")
except TypeError as e:

print(e)
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Keep in mind that an exception is handled in the first block that matches that
exception class or any of its base classes. Therefore, when you stack multiple except
clauses like we've just done, make sure that you put specific exceptions at the top
and generic ones at the bottom. In OOP terms, children on top, grandparents at the
bottom. Moreover, remember that only one except handler is executed when an
exception is raised.

Python does also allow you to use an except clause without
specifying any exception type (this is equivalent to writing
except BaseException). Doing so is generally not a good idea
/ as it means you will also capture exceptions that are intended
\/§p> for internal use by the interpreter. They include the so-called
system-exiting exceptions. These are SystemExit, which is raised
when the interpreter exits via a call to the exit () function, and
KeyboardInterrupt, which is raised when the user terminates
the application by pressing Ctrl + C (or Delete on some systems).

You can also raise exceptions from within an except clause. For example, you might
want to replace a built-in exception (or one from a third-party library) with your own
custom exception. This is quite a common technique when writing libraries, as it
helps shield users from implementation details of the library. Let's see an example:

# exceptions/replace.py

>>> class NotFoundError(Exception):
PERS

>>> vowels

>>> try:
pos = vowels['y']

. except KeyError as e:

raise NotFoundError(*e.args)

Traceback (most recent call last):
File "<stdin>", line 2, in <module>

KeyError: 'y

During handling of the above exception, another exception occurred:
Traceback (most recent call last):

File "<stdin>", line 4, in <module>
__main__.NotFoundError: y
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By default, Python assumes that an exception that happens within an except clause
is an unexpected error and helpfully prints out tracebacks for both exceptions. We
can tell the interpreter that we are deliberately raising the new exception by using
araise from statement:

# exceptions/replace.py
>>> try:
pos = vowels['y']
.. except KeyError as e:
raise NotFoundError(*e.args) from e

Traceback (most recent call last):

File "<stdin>", line 2, in <module>

KeyError: 'y

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "<stdin>", line 4, in <module>
__main__ .NotFoundError: y

The error message has changed but we still get both tracebacks, which is actually
very handy for debugging. If you really wanted to completely suppress the original
exception, you could use from None instead of from e (try this yourself).

| You can also use raise by itself, without specifying a new
_\@l_ exception, to re-raise the original exception. This is sometimes
NI useful if you want to log the fact that an exception has occurred,
- without actually suppressing or replacing the exception.

Programming with exceptions can be very tricky. You could inadvertently hide bugs
by trapping exceptions that would have alerted you to their presence. Play it safe by
keeping these simple guidelines in mind:

* Keep the try clause as short as possible. It should contain only the code that
may cause the exception(s) that you want to handle.

* Make the except clauses as specific as you can. It may be tempting to just
write except Exception, but if you do you will almost certainly end up
catching exceptions you did not actually intend to.

* Use tests to ensure that your code handles both expected and unexpected
errors correctly. We shall talk more about writing tests in Chapter 10, Testing.
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If you follow these suggestions, you will minimize the chance of getting it wrong,.

Not only for errors

Before we talk about context managers, we want to show you an unconventional use
of exceptions, just to give you something to help you expand your views on them.
Exceptions can be used for more than just errors:

n = 100
found = False
for a in range(n):
if found: break
for b in range(n):
if found: break
for ¢ in range(n):
if 42 * a + 17 * b + ¢ == 5096:
found = True
print(a, b, c)

The preceding code is quite a common idiom if you deal with numbers. You have
to iterate over a few nested ranges and look for a particular combination of a, b, and
c that satisfies a condition. In this example, the condition is a trivial linear equation,
but imagine something much cooler than that. What bugs us is having to check
whether the solution has been found at the beginning of each loop, in order to break
out of them as fast as we can when it is. The breakout logic interferes with the rest
of the code and we don't like it, so we came up with a different solution for this.
Take a look at it, and see whether you can adapt it to other cases too:

class ExitLoopException(Exception):
pass

try:

n = 100

for a in range(n):

for b in range(n):
for ¢ in range(n):
if 42 * a + 17 * b + ¢ == 5096:
raise ExitLoopException(a, b, c)

except ExitLoopException as ele:

print(ele.args)
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Can you see how much more elegant it is? Now the breakout logic is entirely
handled with a simple exception whose name even hints at its purpose. As soon

as the result is found, we raise ExitLoopException with the values that satisfy our
condition, and immediately the control is given to the except clause that handles it.
Notice that we can use the args attribute of the exception to get the values that were
passed to the constructor.

Context managers

When working with external resources or global state, we often need to perform
some cleanup steps, like releasing the resources or restoring the original state,

when we are done. Failing to clean up properly could result in all manner of bugs.
Therefore, we need to ensure that our cleanup code will be executed even if an
exception happens. We could use try/finally statements, but this is not always
convenient and could result in a lot of repetition, as we often have to perform
similar cleanup steps whenever we work with a particular type of resource. Context
managers solve this problem by creating an execution context in which we can work
with a resource or modified state and automatically perform any necessary cleanup
when we leave that context, even if an exception was raised.

One example of global state that we may want to modify temporarily is the precision
for decimal computations. For example, suppose we need to perform a particular
computation to a specific precision, but we want to retain the default precision for
the rest of our computations. We might do something like the following;:

You may recall that the Decimal class allows us to perform

\/‘/ arbitrary precision computations with decimal numbers. If not, you

may want to review the relevant section of Chapter 2, Built-In Data
Types now.

from decimal import Context, Decimal, getcontext, setcontext

one = Decimal("1")
three = Decimal("3")

orig ctx = getcontext()
ctx = Context(prec=5)
setcontext(ctx)
print(ctx)

print(one / three)
setcontext(orig_ctx)
print(one / three)
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Notice that we store the current context, set a new context (with a modified
precision), perform our calculation, and finally restore the original context.
Running this produces the following output:

$ python decimal.prec.py
Context(prec=5, rounding=ROUND_HALF_EVEN, Emin=-999999,
Emax=999999, capitals=1, clamp=0, flags=[],

traps=[InvalidOperation, DivisionByZero, Overflow])
0.33333
0.3333333333333333333333333333

This seems fine, but what if an exception happened before we could restore the
original context? We would be stuck with the wrong precision and the results of all
subsequent computations would be incorrect! We can fix this by using a try/finally
statement:

orig ctx = getcontext()
ctx = Context(prec=5)
setcontext(ctx)
try:

print(ctx)

print(one / three)
finally:

setcontext(orig_ctx)
print(one / three)

That is much safer. Now we can rest assured that regardless of what happens in that
try block, we will always restore the original context. It is not very convenient to
have to keep writing try/finally like that, though. This is where context managers
come to the rescue. The decimal module provides the localcontext context manager,
which handles setting and restoring the context for us:

from decimal import localcontext

with localcontext(Context(prec=5)) as ctx:
print(ctx)
print(one / three)

print(one / three)
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That is much easier to read (and type)! The with statement is used to enter a runtime
context defined by a context manager. When exiting the code block delimited by the
with statement, any cleanup operation defined by the context manager (in this case,
restoring the decimal context) is executed automatically.

It is also possible to combine multiple context managers in one with statement. This
is quite useful for situations where you need to work with multiple resources at the
same time:

with localcontext(Context(prec=5)), open("out.txt", "w") as out_f:
out_f.write(f"{one} / {three} = {one / three}\n")

Here, we enter a local context and open a file (which acts as a context manager)

in one with statement. We perform a calculation and write the result to the file.
When we're done, the file is automatically closed and the default decimal context is
restored. Don't worry too much about the details of working with files for now; we
will learn all about that in Chapter 8, Files and Data Persistence.

Apart from decimal contexts and files, many other objects in the Python standard
library can be used as context managers. For example:

* Socket objects, which implement a low-level networking interface, can
be used as context managers to automatically close network connections.

e The lock classes used for synchronization in concurrent programming use
the context manager protocol to automatically release locks.

In the rest of this chapter, we will show you how you can implement your own
context managers.

Class-based context managers

Context managers work via two magic methods: __enter__() is called just before
entering the body of the with statement and __exit__() is called when exiting
the with statement body. This means that you can easily create your own context
manager simply by writing a class that implements these methods:

class MyContextManager:
def __init_ (self):
print("MyContextManager init", id(self))
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def _ enter__ (self):
print("Entering 'with' context")
return self

def exit_ (self, exc_type, exc_val, exc_tb):
print(f"{exc_type=} {exc_val=} {exc_tb=}")
print("Exiting 'with' context")
return True

Here, we have defined a very simple context manager class called MyContextManager.
There are a few interesting things to note about this class. Notice that our
__enter__() method returns self. This is quite common, but by no means required:
you can return whatever you want from __enter__(), even None. The return value

of the __enter__() method will be assigned to the variable named in the as clause of
the with statement. Also notice the exc_type, exc_val, and exc_tb parameters of the
__exit__ () function. If an exception is raised within the body of the with statement,
the interpreter will pass the type, value, and traceback of the exception as arguments
through these parameters. If no exception is raised, all three arguments will be None.

Also notice that our __exit__() method returns True. This will cause any exception
raised within the with statement body to be suppressed (as if we had handled it in

a try/except statement). Had we returned False instead, such an exception would
continue to be propagated after our __exit__() method has executed. The ability

to suppress exceptions means that a context manager can be used as an exception
handler. The benefit of this is that we can write our exception handling logic once
and reuse it wherever we need it. This is just one more way in which Python helps us
to apply the DRY principle to our code.

Let us see our context manager in action:

ctx_mgr = MyContextManager()
print("About to enter 'with' context")
with ctx_mgr as mgr:
print("Inside 'with' context")
print(id(mgr))
raise Exception("Exception inside 'with' context")
print("This line will never be reached")
print("After 'with' context")

Here, we have instantiated our context manager in a separate statement, before
the with statement. We did this to make it easier for you to see what is happening;
however, it is much more common for those steps to be combined like with
MyContextManager() as mgr. Running this code produces the following output:
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$ python context/manager.class.py
MyContextManager init 140340228792272
About to enter 'with' context
Entering 'with' context

Inside 'with' context

140340228792272

exc_type=<class 'Exception'> exc_val=Exception("Exception inside
'with' context") exc_tb=<traceback object at @x7fa3817c5340>
Exiting 'with' context

After 'with' context

Study this output carefully to make sure you understand what is happening. We
have printed some IDs to help verify that the object assigned to mgr is really the same
object that we returned from __enter__(). Try changing the return values from the
__enter__() and __exit__() methods and see what effect that has.

Generator-based context managers

If you are implementing a class that represents some resource that needs to be
acquired and released, it makes sense to implement that class as a context manager.
Sometimes, however, we want to implement context manager behavior, but we

do not have a class that it makes sense to attach that behavior to. For example, we
may just want to use a context manager to re-use some error handling logic. In such
situations, it would be rather tedious to have to write an additional class purely

to implement the desired context manager behavior. Fortunately for us, Python

has a solution.

The contextlib module in the standard library provides a handy contextmanager
decorator that takes a generator function and converts it into a context manager

(if you don't remember how generator functions work, you should review Chapter
5, Comprehensions and Generators). Behind the scenes, the decorator wraps the
generator in a context manager object. The __enter__() method of this object starts
the generator and returns whatever the generator yields. If an exception occurs
within the with statement body, the __exit__() method passes the exception into the
generator (using the generator's throw method). Otherwise, __exit__() simply calls
next on the generator. Note that the generator must only yield once; a RuntimeError
will be raised if the generator yields a second time. Let us translate our previous
example into a generator-based context manager:

from contextlib import contextmanager

@contextmanager
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def my_context_manager():
print("Entering 'with' context")
val = object()
print(id(val))
try:
yield val
except Exception as e:
print(f"{type(e)=} {e=} {e.__traceback__=}")
finally:
print("Exiting 'with' context")

print("About to enter 'with' context")
with my_context_manager() as val:
print("Inside 'with' context")
print(id(val))
raise Exception("Exception inside 'with' context")
print("This line will never be reached")
print("After 'with' context")

The output from running this is very similar to the previous example:

$ python context/generator.py
About to enter 'with' context
Entering 'with' context
139768531985040

Inside 'with' context

139768531985040

type(e)=<class 'Exception'> e=Exception("Exception inside 'with'
context") e.__ traceback__=<traceback object at Ox7fle65a42800>
Exiting 'with' context

After 'with' context

Most context manager generators have a similar structure to my_context_manager()
in this example. They have some setup code, followed by a yield statement inside
a try statement. Here, we yielded an arbitrary object, so that you can see that the
same object is made available via the as clause of the with statement. It is also quite
common to have just a bare yield with no value (in which case None is yielded). In
such cases, the as clause of the with statement will typically be omitted.

One very useful feature of generator-based context managers is that they can also

be used as function decorators. This means that if the entire body of a function needs
to be inside a with statement context, you could save a level of indentation and just
decorate the function instead.
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In addition to the contextmanager decorator, the contextlib
L module also contains many very useful context managers. The
‘,@\‘ documentation also provides several helpful examples of using
E and implementing context managers. Make sure you read it at

https://docs.python.org/3/1library/contextlib.html.

The examples we gave in this section were deliberately quite simple. They needed to
be simple, to make it easier to see how context managers work. Study these examples
carefully until you are confident that you understand them completely. Then, start
writing your own context managers (both as classes and generators). Try to convert
the try/except statement for breaking out of a nested loop that we saw earlier in
this chapter into a context manager. The measure decorator that we wrote in Chapter
6, OOP, Decorators, and Iterators, is also a good candidate for converting to a context
manager.

Summary

In this chapter, we looked at exceptions and context managers.

We saw that exceptions are Python's way of signaling that an error has occurred. We
showed you how to catch exceptions so that your program does not fail when errors
inevitably do happen. We also showed you how you can raise exceptions yourself
when your own code detects an error, and that you can even define your own
exception types. We ended our exploration of exceptions by seeing that they are not
only useful for signaling errors, but can also be used as a flow-control mechanism.

We ended the chapter with a brief overview of context managers. We saw how to
use the with statement to enter a context defined by a context manager that performs
cleanup operations when we exit the context. We also showed you how to create
your own context managers, either as part of a class or by using a generator function.

We will see more context managers in action in the next chapter on files and data
persistence.
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"It's not that I'm so smart, it's just that I stay with problems longer."

— Albert Einstein

In the previous chapters, we have explored several different aspects of Python. As
the examples have a didactic purpose, we've run them in a simple Python shell or
in the form of a Python module. They ran, maybe printed something on the console,
and then they terminated, leaving no trace of their brief existence.

Real-world applications, though, are rather different. Naturally, they still run in
memory, but they interact with networks, disks, and databases. They also exchange
information with other applications and devices, using formats that are suitable for
the situation.

In this chapter, we are going to start closing in on the real world by exploring the
following:

* Files and directories

* Compression

* Networks and streams

* The JSON data-interchange format

* Data persistence with pickle and shelve, from the standard library

* Data persistence with SQLAlchemy
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As usual, we will try to balance breadth and depth so that by the end of the chapter,
you will have a solid grasp of the fundamentals and will know how to fetch further
information on the web.

Working with files and directories

When it comes to files and directories, Python offers plenty of useful tools.

In particular, in the following examples, we will leverage the os, pathlib,

and shutil modules. As we'll be reading and writing on the disk, we will be
using a file, fear.txt, which contains an excerpt from Fear, by Thich Nhat Hanh,
as a guinea pig for some of our examples.

Opening files

Opening a file in Python is very simple and intuitive. In fact, we just need to use
the open() function. Let's see a quick example:

fh = open('fear.txt', 'rt')

for line in fh.readlines():
print(line.strip())

fh.close()

The previous code is very simple. We call open(), passing the filename, and

telling open() that we want to read it in text mode. There is no path information
before the filename; therefore, open() will assume the file is in the same folder the
script is run from. This means that if we run this script from outside the files folder,
then fear.txt won't be found.

Once the file has been opened, we obtain a file object back, fh, which we can use to
work on the content of the file. In this case, we use the readlines() method to iterate
over all the lines in the file, and print them. We call strip() on each line to get rid of
any extra spaces around the content, including the line termination character at the
end, since print will already add one for us. This is a quick and dirty solution that
works in this example, but should the content of the file contain meaningful spaces
that need to be preserved, you will have to be slightly more careful in how you
sanitize the data. At the end of the script, we close the stream.
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Closing a file is very important, as we don't want to risk failing to release the handle
we have on it. When that happens, you can encounter issues such as memory leaks,
or the annoying "you can't delete this file" pop-up that informs you that some
software is still using it. Therefore, we need to apply some precautions, and wrap
the previous logic in a try/finally block. This means that, whatever error might
occur when we try to open and read the file, we can rest assured that close() will be
called:

fh = open('fear.txt', 'rt')

try:
for line in fh.readlines():
print(line.strip())
finally:
fh.close()

The logic is exactly the same, but now it is also safe.

go back to Chapter 7, Exceptions and Context Managers, and study it.

\/V If you are not familiar with the try/finally block, make sure you

We can simplify the previous example further, this way:

fh = open('fear.txt")

try:
for line in fh:
print(line.strip())
finally:
fh.close()

As you can see, rt is the default mode for opening files, so we don't need to specify
it. Moreover, we can simply iterate on fh, without explicitly calling readlines() on
it. Python is very nice and gives us shorthands to make our code shorter and simpler
to read.
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All the previous examples produce a print of the file on the console (check out the
source code to read the whole content):

An excerpt from Fear - By Thich Nhat Hanh

The Present Is Free from Fear

When we are not fully present, we are not really living. We're not
really there, either for our loved ones or for ourselves. If we're not
there, then where are we? We are running, running, running, even during
our sleep. We run because we're trying to escape from our fear.

Using a context manager to open a file

Let's admit it: the prospect of having to disseminate our code with try/finally
blocks is not one of the best. As usual, Python gives us a much nicer way to open a
file in a secure fashion: by using a context manager. Let's see the code first:

with open('fear.txt') as fh:
for line in fh:
print(line.strip())

This example is equivalent to the previous one, but reads so much better.

The open() function is capable of producing a file object when invoked by a context
manager, but the true beauty of it lies in the fact that fh.close() will be called
automatically for us, even in the case of errors.

Reading and writing to a file

Now that we know how to open a file, let's see a couple of different ways in which
we can read and write to it:

with open('print_example.txt', 'w') as fw:
print('Hey I am printing into a file!!!"', file=fw)

A first approach uses the print() function, which we've seen plenty of times in the
previous chapters. After obtaining a file object, this time specifying that we intend
to write to it ('w'), we can tell the call to print() to direct its output to the file,
instead of to the standard output stream as it normally does.
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In Python, the standard input, output, and error streams are
represented by the file objects sys.stdin, sys.stdout, and
‘ , sys.stderr. Unless input or output is redirected, reading from
) . .
sys.stdin usually corresponds to reading from the keyboard
and writing to sys.stdout or sys.stderr usually prints to the
console screen.

The previous code has the effect of creating the print_example.txt file if it doesn't
exist, or truncating it in case if, and writes the line Hey I am printing into
a file!!! intoit.

After truncation, the file still exists on the filesystem, but it's empty.

\/‘/ Truncating a file means erasing its contents without deleting it.

This is all nice and easy, but not what we typically do when we want to write
to a file. Let's see a much more common approach:

with open('fear.txt') as f:
lines = [line.rstrip() for line in f]

with open('fear_copy.txt', 'w') as fw:
fw.write('\n'.join(lines))

In this example, we first open fear.txt and collect its content into a list, line by line.
Notice that this time, we are calling a different method, rstrip(), as an example,
to make sure we only strip the whitespace on the right-hand side of every line.

In the second part of the snippet, we create a new file, fear_copy.txt, and we write
to it all the lines from the original file, joined by a newline, \n. Python is gracious
and works by default with universal newlines, which means that even though

the original file might have a newline that is different to \n, it will be translated
automatically for us before the line is returned. This behavior is, of course,
customizable, but normally it is exactly what you want. Speaking of newlines,

can you think of one that might be missing in the copy?

Reading and writing in binary mode

Notice that by opening a file passing t in the options (or omitting it, as it is the
default), we're opening the file in text mode. This means that the content of the file is
treated and interpreted as text.
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If you wish to write bytes to a file, you can open it in binary mode. This is a common
requirement when you deal with files that don't just contain raw text, such as images,
audio/video, and, in general, any other proprietary format.

In order to handle files in binary mode, simply specify the b flag when opening them,
as in the following example:

with open('example.bin', 'wb') as fw:
fw.write(b'This is binary data...")

with open('example.bin', 'rb') as f:
print(f.read())

In this example, we are still using text as binary data, for simplicity, but it could
be anything you want. You can see it's treated as binary by the fact that you get
the b'This ...' prefix in the output.

Protecting against overwriting an existing file

As we have seen, Python gives us the ability to open files for writing. By using

the w flag, we open a file and truncate its content. This means the file is overwritten
with an empty file, and the original content is lost. If you wish to only open a file for
writing if it doesn't already exist, you can use the x flag instead, as in the following
example:

with open('write_x.txt', 'x') as fu:
fw.write('Writing line 1')

with open('write_x.txt', 'x') as fw:
fw.write('Writing line 2")

If you run this snippet, you will find a file called write_x.txt in your directory,
containing only one line of text. The second part of the snippet, in fact, fails to
execute. This is the output we get on our console (the file path has been shortened for
editorial purposes):

$ python write_not_exists.py
Traceback (most recent call last):

File "/../che8/files/write_not_exists.py", line 6, in <module>
with open('write x.txt', 'x') as fw:
FileExistsError: [Errno 17] File exists: 'write_x.txt'
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Checking for file and directory existence

If you want to make sure a file or directory exists (or doesn't), the pathlib module is
what you need. Let's see a small example:

from pathlib import Path

p = Path('fear.txt")
path = p.parent.absolute()

print(p.is_file())
print(path)
print(path.is_dir())

q = Path('/Users/fab/srv/1pp3e/che8/files")
print(q.is_dir())

The preceding snippet is quite interesting. We create a Path object that we set up
with the name of the text file we want to inspect. We use the parent() method to
retrieve the folder in which the file is contained, and we call the absolute() method
on it, to extract the absolute path information.

We check if 'fear.txt' is a file, and the folder in which it is contained is indeed
a folder (or directory, which is equivalent).

The old way to do these operations was to use the os.path module from the
standard library. While os.path works on strings, pathlib offers classes representing
filesystem paths with semantics appropriate for different operating systems. Hence,
we suggest using pathlib whenever possible, and reverting to the old way of doing
things only when there is no alternative.

Manipulating files and directories

Let's see a couple of quick examples on how to manipulate files and directories.
The first example manipulates the content:

from collections import Counter
from string import ascii_letters

chars = ascii_letters + '
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def sanitize(s, chars):
return ''.join(c for c¢ in s if c in chars)

def reverse(s):
return s[::-1]

with open('fear.txt') as stream:

lines = [line.rstrip() for line in stream]

with open('raef.txt', 'w') as stream:
stream.write('\n'.join(reverse(line) for line in lines))

lines = [sanitize(line, chars) for line in lines]
whole '.join(lines)

cnt = Counter(whole.lower().split())

print(cnt.most_common(3))

This example defines two functions: sanitize() and reverse(). They are simple
functions whose purpose is to remove anything that is not a letter or space from
a string, and produce the reversed copy of a string, respectively.

We open fear.txt and we read its content into a list. Then we create a new file, raef.
txt, which will contain the horizontally-mirrored version of the original one. We
write all the content of 1ines with a single operation, using join on a newline
character. Maybe more interesting is the bit at the end. First, we reassign lines to

a sanitized version of itself by means of a list comprehension. Then we put the lines
together in the whole string, and finally, we pass the result to a Counter object. Notice
that we split the lowercased version of the string into a list of words. This way, each
word will be counted correctly, regardless of its case, and, thanks to split(), we
don't need to worry about extra spaces anywhere. When we print the three most
common words, we realize that, truly, Thich Nhat Hanh's focus is on others, as we is
the most common word in the text:

$ python manipulation.py

[(‘we', 17), ('the', 13), ('were', 7)]
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Let's now see an example of manipulation more oriented to disk operations, in which
we put the shutil module to use:

import shutil
from pathlib import Path

base_path = Path('ops_example")

if base_path.exists() and base_path.is dir():
shutil.rmtree(base_path)

base_path.mkdir()

path_b = base_path / 'A" /
path_c = base_path / 'A" /
path_d = base_path / 'A" /
path_b.mkdir(parents=True)
path_c.mkdir()

for filename in ('ex1.txt', ‘'ex2.txt', 'ex3.txt'):
with open(path_b / filename, 'w') as stream:
stream.write(f'Some content here in {filename}\n')

shutil.move(path_b, path_d)

exl = path_d / 'exl.txt'
exl.rename(exl.parent / 'exl.renamed.txt")

In the preceding code, we start by declaring a base path, which will safely contain
all the files and folders we're going to create. We then use mkdir() to create two
directories: ops_example/A/B and ops_example/A/C. Notice we don't need to specify
parents=True when calling path_c.mkdir(), since all the parents have already been
created by the previous call on path_b.

We use the / operator to concatenate directory names; pathlib takes care of using the
right path separator for us, behind the scenes.
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After creating the directories, we use a simple for loop to create three files in
directory B. Then, we move directory B and its contents to a different name: D. And
finally, we rename ex1.txt to ex1.renamed. txt. If you open that file, you'll see it still
contains the original text from the for loop logic. Calling tree on the result produces
the following:

$ tree ops_example/
ops_example/
L— A

— exi.renamed.txt

F— ex2.txt

L— ex3.txt

Manipulating pathnames

Let's explore the abilities of pathlib a little more by means of a simple example:

from pathlib import Path
p = Path('fear.txt")

print(p.absolute())
print(p.name)
print(p.parent.absolute())
print(p.suffix)

print(p.parts)
print(p.absolute().parts)

readme_path = p.parent / '.." / ".." / 'README.rst’
print(readme_path.absolute())
print(readme_path.resolve())

Reading the result is probably a good enough explanation for this simple example:

/Users/fab/srv/1pp3e/che8/files/fear.txt
fear.txt
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/Users/fab/srv/1pp3e/ch@8/files
LtExt
('fear.txt',)

('/', 'Users', 'fab', 'srv', 'lpp3e', 'che8', 'files', 'fear.txt')
/Users/fab/srv/1pp3e/che8/files/../../README.rst
/Users/fab/srv/1pp3e/README.rst

Note how, in the last two lines, we have two different representations of the same
path. The first one (readme_path.absolute()) shows two '..", a single one of which,
in path terms, indicates changing to the parent folder. So, by changing to the parent
folder twice in a row, from ../1pp3e/che8/files/ we go back to ../1pp3e/. This is
confirmed by the last line in the example, which shows the output of readme_path.
resolve().

Temporary files and directories

Sometimes, it's very useful to be able to create a temporary directory or file when
running some code. For example, when writing tests that affect the disk, you can use
temporary files and directories to run your logic and assert that it's correct, and to be
sure that at the end of the test run, the test folder has no leftovers. Let's see how to do
it in Python:

from tempfile import NamedTemporaryFile, TemporaryDirectory

with TemporaryDirectory(dir=".") as td:
print('Temp directory:', td)
with NamedTemporaryFile(dir=td) as t:
name = t.name
print(name)

The preceding example is quite straightforward: we create a temporary directory
in the current one ("."), and we create a named temporary file in it. We print the
filename, as well as its full path:

$ python tmp.py

Temp directory: ./tmpz5i9ne20
/Users/fab/srv/1pp3e/che8/files/tmpz5i9ne20/tmp2e3j8p78

Running this script will produce a different result every time. After all, it's
a temporary random name we're creating here, right?
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Directory content

With Python, you can also inspect the contents of a directory. We will show you two
ways of doing this. This is the first:

from pathlib import Path

p = Path('.")
for entry in p.glob('*"):
print('File:" if entry.is_file() else 'Folder:', entry)

This snippet uses the glob() method of a Path object, applied from the current
directory. We iterate on 