
Computers/Programming Languages/Java
$40.00 USA / $47.99 CAN

Cover Design: Peter Denney
Cover Image: Photo © Roman Samborskyi/Shutterstock;
Triangles © Raevsky Lab/Shutterstock

JO
B

 R
EA

D
Y

 JA
VA

®

PREPARE YOURSELF TO TAKE ON
REAL-WORLD JAVA APPLICATION
PROGRAMMING
Programming has become a widely applicable and useful skill in
today’s world. Growing career opportunities for those with skills
in languages like Java make it a more practical and marketable
skill than ever.

Job Ready Java delivers the foundational knowledge you need to
tackle most of today’s Java-related jobs. Based on a professional
Java course from The Software Guild, the book offers readers the
opportunity to familiarize themselves with the techniques, theory,
and practical implementations used by working Java programmers.

Job Ready Java teaches fundamental and advanced Java skills
plus it shows you how to combine everything you’ve learned into a
coherent whole that will stick with you long after you’ve put down the
book. Sections like “Pulling It Together” help you gain a birds-eye
understanding of complex Java concepts and real-world applications.

Perfect for Java novices looking to break into the field, Job Ready
Java will also earn its place with experienced Java programmers
needing to brush up on their skills with a comprehensive reference
designed to help readers achieve Java mastery.

Along with foundational topics like objects, classes, and interfaces,
you’ll learn more complex material, including service layers, unit
testing, stateful and stateless code, and the Spring Framework.

This practical book also provides:

• A thorough introduction on how to get set up with Java,
including the entry, compilation, and running of Java programs
using the IDE

• A practical discussion of the basics of object-oriented
programming, including syntax, program flow, code
organization, and more

• An exploration of the fundamentals of classes and objects

• Treatments of intermediate and advanced Java programming

H
A

Y
TH

E
M

 B
A

LTI

HAYTHEM BALTI, PhD, is Director
of Curriculum at Wiley’s Software
Guild and mthree. He has created
courses used by thousands of
Software Guild Students in
Java, Python, Go, and other
development and data science
competencies. He earned his
doctorate in Computer Engineering
and Computer Science from the
University of Louisville.

ALAN GALLOWAY is Director of
Instruction at Wiley’s Software
Guild and mthree. H:e supervises
a team of instructors who deliver
large-scale training programs in
technology.

The companion website at
www.wiley.com/go/jobreadyjava
provides supplemental files to
be used by the reader in several
lessons found in the book.

JOB READY

Land your first role with the most used
primary programming language

HAYTHEM BALTI
CO-AUTHORED BY ALAN GALLOWAY

JAVA®

JOB READY
JAVA®

JOB READY
JAVA®
 HAYTHEM BALTI
 CO-AUTHORED BY ALAN GALLOWAY

 © 2021 John Wiley & Sons, Inc.
Underlying content and curriculum © Wiley edu, LLC

 Published simultaneously in Canada

 ISBN: 978-1-119-77564-5
 ISBN: 978-1-119-77656-7 (ebk)
 ISBN: 978-1-119-77565-2 (ebk)

 Manufactured in the United States of America

 No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions .

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties,
including without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended
by sales or promotional materials. The advice and strategies contained herein may not be suitable for every
situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting,
or other professional services. If professional assistance is required, the services of a competent professional person
should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that
an organization or Web site is referred to in this work as a citation and/or a potential source of further information
does not mean that the author or the publisher endorses the information the organization or website may provide
or recommendations it may make. Further, readers should be aware that Internet websites listed in this work may
have changed or disappeared between when this work was written and when it is read.

 For general information on our other products and services please contact our Customer Care Department within
the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

 Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
 booksupport.wiley.com . For more information about Wiley products, visit www.wiley.com .

Library of Congress Control Number: 2020951893

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or
its affi liates, in the United States and other countries, and may not be used without written permission. Java is a
registered trademark of Oracle America, Inc. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

v

 About the Authors
Haythem Balti is the director of curriculum at Wiley ’ s Software Guild and mthree. Hay-

them has created courses used by thousands of Software Guild and mthree students for

Java, Python, Go, and other development and data science skills. Prior to Wiley, he was a

data scientist with Humana and a software architect with White Clay. Haythem earned his

PhD in computer engineering and computer science from the University of Louisville.

Alan Galloway is the director of instruction at Wiley ’ s Software Guild and mthree. Alan

supervises a team of instructors who deliver large-scale training programs in various tech-

nology areas. Prior to Wiley, Alan worked as a professional software developer, informa-

tion technology specialist, and design engineer for more than 19 years. His experience

spans multiple industries including applications such as hardware service request

management, health spending account management, release coordination, and automated

deployments. He has managed teams on the development of web applications, written

middleware utilities, and worked on batch processing applications.

vii

 About the
Technical Writer
Bradley Jones is the owner of Lots of Software, LLC. He has programmed in a variety of

languages such as C, C++, C#, JavaScript, and Java) as well as tools such as Unity. He has

written code for platforms that include the Internet, Windows, mobile devices, and even

mainframes. He’s even built virtual reality apps for fun. In addition to programming, he has

authored books on C, C++, C#, Windows, the Web, and many more technical topics and a

few nontechnical topics. Bradley has been recognized in the industry as a community infl u-

encer as well as a Microsoft MVP, a CODiE Judge, an international technology speaker, a

bestselling technical author, and more.

About the
Technical Editors

Kim Weiss is a veteran course developer, specializing in Computer Science courses since

2002. She was an assistant professor in Computer Science for over ten years before

deciding to focus exclusively on course design. She has worked with multiple universities

as well as corporate training settings to develop interactive instructional content appropri-

ate for the target learners and course goals.

Janeice DelVecchio has been a professional Software Developer for 10 years, and has had

a lifelong love of programming and computers. She has served as technical editor on sev-

eral other titles, including the Java 11 OCP Certifi cation books. Editing is a fun task for her

because she likes fi nding and fi xing defects of all types.

About the Technical Editorsviii

For her day job, she works in the fi nancial industry using a very broad range of skills with

technologies including cloud computing, process automation, advanced unit testing and

devops. She also volunteers at CodeRanch.com where she runs the Java class known as the

Cattle Drive.

She is an expert with the Java programming language. If you ask her which language is

the best, she will tell you that languages are tools and to pick the one that fi ts your use

case. The fi rst language she learned was BASIC, and one day she hopes to learn gaming

development.

In her spare time, she enjoys cooking, solving puzzles, playing video games, and raising

chickens. She loves eating sushi, drinking craft beer, and petting dogs — her guilty plea-

sure is 80’s pop music. She lives in Litchfi eld County, Connecticut.

ix

 Acknowledgments
 Although Alan and Haythem are the main authors of this book, this book would not have

been possible without the hard work of the content development and instruction teams at

the Software Guild and mthree.

 Specifi cally, this book will not be possible without the expertise and countless reviews

and improvements by the following contributors:

 Paul Menefee

 Calvin Moser

 David Hunnicutt

 Sean Palm

 Ronnie Jones

 Kyle Rudy

 David Smelser

 Amir Gill

 Irina Cudo

 Randall Clapper

 Ishwar Joshi

 Phil Williams

 Quinten Lambert

 Randy Hash

 Pat Toner

 Austyn Hill

xi

 Contents
 About the Authors v
About the Technical
Writer vii
About the Technical
Editors vii
Acknowledgments ix
Introduction xxv

PART I:
Getting Set Up 1

Lesson 1: Installing Java 2
The Java Universe 3

The Java Development Kit 3

The Java Virtual Machine 4

The Java Runtime Environment 5

Installing OpenJDK 5

Installing OpenJDK on Microsoft

Windows 6

Checking for an Existing JDK

on Windows 6

Installing OpenJDK 7

Verifying the{Installation 10

Installing OpenJDK

on macOS 13

Checking for an Existing JDK

on macOS 13

Installing OpenJDK 13

Verifying the{Installation 17

Creating Your First Java Program 17

Writing the{Program 18

Compiling and{Running the{

Program 19

Dealing with{Syntax Errors 21

Using the{Compiler and{Java Virtual

Machine 22

Summary 22

Lesson 2: Installing
a Development
Environment: NetBeans 24
Getting Started 25

Understanding the Value of an IDE 25

Using the{Source Code Editor 25

Using the{Build Automation Tools 26

Using the{Debugger 26

Installing NetBeans 27

Using an{Installer 27

Installing on{Windows 28

Installing on macOS 32

Installing Binaries 37

Installing Binaries on{Windows 40

Adding the JDK 42

Running NetBeans 44

Summary 45

Lesson 3: Using an
Integrated Development
Environment 46
Using an IDE 47

Creating a{New Project 48

Coding the{“Hello, World!”

Program 53

Compiling the Code in

NetBeans 57

Running the{Program 59

Using the{Debugging Tools 60

Contentsxii

Compilation and{Syntax Errors 61

Runtime and{Logic Errors 63

Understanding Source Control 67

Summary 69

PART II:
Basics of Object Oriented
Programming 70

Lesson 4: Using Program
Statements and Variables 71
Approach 72

Concepts 73

Computers 73

Data vs. Information 73

Programs and{Programming 74

Models and{Metaphors 74

Objects 74

Specifi cations 75

Syntax vs. Semantics 75

Language Building Blocks 75

Comments 75

Single-Line Comments 76

Multiline Comments 76

Doc Comments 77

Using Comments 78

Identifi ers 79

Data Types 80

Statically Typed Languages 81

Type Conversion 81

Literals 82

Variables 82

Constants 84

Operators and{Expressions 84

Three Flavors of{Operators 85

Operator Precedence 88

Pulling It All Together:

Mathematical Expressions

and{Operators 89

Summary 93

Exercises 93

Exercise 1: ABeginning.java 94

Exercise 2: ProjectGutenberg.java 95

Exercise 3: CommentingCode.java 97

Exercise 4: AllTheMath.java 98

Exercise 5: BucketsOfFun.java 100

Lesson 5: Collecting
and Parsing Input
from the User 103
Console Input and{Output 104

Adder Version 1 104

Adder Version 2 106

Declaring and{Initializing Our

Variables 106

Setting Up{a{Scanner Object 106

Understanding the{Command

Line 107

Getting the{Values from{the

User 108

Going from{Strings to{Integers 108

Adding the{Numbers Together 109

Using Loops to{Gather User Input 111

Parsing Data 112

Dealing with Bad Numbers:

NumberFormatException 113

Scanner Problems 115

Summary 121

Exercises 121

Exercise 1: Quest for{the{User

Input 121

Exercise 2: Don’t Forget to

Store It 123

Exercise 3: Passing the{Turing

Test 124

Exercise 4: Healthy Hearts 125

Exercise 5: Mini Mad Libs 126

xiiiContents

Lesson 6: Pulling It All
Together: Building a
Useful Program 127
Planning the{Program 128

Identifying the{Variables 128

Planning the{Steps 128

Creating the{Code 129

Declaring the{Variables 129

Getting Input 130

Converting the{Strings 131

Calculating the{Area and

Perimeter 132

Calculating the{Cost 133

Displaying the{Results 133

Running the{Program 135

Summary 135

Exercises 136

Exercise 1: Mapping Instructions

to{Code 136

Exercise 2: Adding Prompts for{

Costs 136

Exercise 3: Adding Multiple

Windows 136

Exercise 4: Adding Validation 137

Lesson 7: Controlling
Program Flow 138
What Can Our Code Do? 139

Decisions and{Boolean Expressions 139

if Statements 139

if-else Statements 142

Chaining if-else Statements 144

Evaluating Multiple Conditions 146

Conditional-And and{

Conditional-Or Operators 147

Exclusive-Or 149

Ternary or Conditional Operator 150

switch Statement 151

Falling Through with{a{switch

Statement 153

Comparing for{Equal Strings 155

Summary 158

Exercises 159

Exercise 1: What Month Is It? 159

Exercise 2: Guess Me 159

Exercise 3: Birthstones 160

Exercise 4: Trivia Night 161

Exercise 5: Space Rustlers 162

Exercise 6: Picky Eater 163

Exercise 7: Field Day 165

Lesson 8: Looping
Program Flow 167
Loops 167

Using while Loops 168

Initializing the{while Loop 171

Incrementing the{while Loop 171

Breaking a{Loop 172

Using do-while Loops 174

Making do-while Shine 176

Using for{Loops 179

Initializing the{for{Loop 181

Terminating the{for{Loop 181

Incrementing a{for{Loop 181

Summary 184

Exercises 184

Exercise 1: Surfacing in

BewareTheKraken.java 185

Exercise 2: Do or Do Not 185

Exercise 3: Guess Me Finally 186

Exercise 4: for{and{Twenty

Blackbirds 187

Exercise 5: Spring Forward,

Fall Back 188

Exercise 6: for{Times 189

Contentsxiv

Exercise 7: for{Times for 189

Exercise 8: Nesting for{Loops 190

Exercise 9: Traditional Fizz Buzz 191

Lesson 9: Understanding
Flowcharts and
Algorithms 193
Flowchart Basics 194

Sequences 194

Branches 195

Loops 196

Flowcharting 197

Flowchart Example 197

Summary 198

Exercises 200

Exercise 1: A{Guessing Game 200

A Possible Flowcharting Solution 201

The Guessing Game Flowchart 201

The Guessing Game Code 203

Lesson 10: Adding
Randomness to Your
Programs 207
Initializing the{Random Object 208

Including the{Random Class 208

Seeding Random Numbers 208

Generating Random Integers 209

Generating Random Doubles 210

Revisiting the{Number Guessing

Game 212

Other Random Options 215

Summary 215

Exercises 215

Exercise 1: A{Little Chaos 216

Exercise 2: Opinionator—

Making Random Choices 217

Exercise 3: High Roller 219

Exercise 4: Coin Flipper 220

Exercise 5: Guess Me More 220

Exercise 6: Fortune Cookie 221

Lesson 11: Debugging 222
Creating a{File to{Debug 222

Setting Breakpoints 224

Stepping through Code 226

Running the{Debugger 226

Examining Variables 229

The Console and{the{Debugger 232

Summary 234

Exercises 234

Exercise 1: Odd Odd Numbers 234

Exercise 2: A{Simple Question

of{If 235

Lesson 12: Adding
Methods 237
Why Methods? 238

Defi ning Methods 238

Method Signature 239

Method Naming Conventions 239

Return Values 240

Using Return Values 241

Input Parameters 242

Matching Number of{

Parameters 244

Matching Parameter Types 245

Passing Parameters 246

Method Forms 248

No Return Value, No Parameters 248

Return Value, No Parameters 248

No Return Value, One or More

Parameters 249

Return Value, One or More

Parameters 249

The static Keyword 249

Pulling It All Together 250

Identifying the{Similarities 252

Identifying the{Diff erences 252

Creating the{Method 252

Setting the{Name 252

xvContents

Determining Parameters 253

Setting a{Return Type 253

Our Basic Defi nition 253

Our Method Body 254

Using the{Method 255

Scope 257

Debugging and{Step Into 259

Setting a{Breakpoint in{a{Method 260

Stepping into Code 262

Debugging and{Scope 265

Summary 265

Exercises 265

Exercise 1: Method to{the{Madness 266

Exercise 2: Return to{Sender 267

Exercise 3: MatchWork 268

Exercise 4: Barely Controlled Chaos 269

Lesson 13: Organizing
with Arrays 272
What Is an{Array? 273

Types of{Arrays 274

Element vs. Index 275

Declaring Arrays 276

Single-Dimensional Arrays 276

Rectangular Arrays 276

Jagged Arrays 277

Initializing Arrays 277

Initializing a{Single-Dimensional

Array 278

Initializing a{Rectangular Array 279

Initializing a{Jagged Array 280

Accessing Array Elements 281

Accessing Elements in{a{Single-

Dimensional Array 281

Accessing Elements in{a{

Multidimensional Array 283

Accessing Elements in{a{Jagged

Array 284

Iterating through Arrays 284

Iterating through Multidimensional

and{Jagged Arrays 286

Sum the{Elements of{an{Array 288

Looping Back to{Front, with{a{

Twist 289

Printing Pairs of{Elements 290

Changing the{Size of{an{Array 291

Dealing with{Errors 293

Summary 293

Exercises 294

Exercise 1: A{Rainbow 294

Exercise 2: Still Positive 295

Exercise 3: Fruit Basket 296

Exercise 4: Simple Combination 297

Exercise 5: Hidden Nuts 297

Exercise 6: Summative Sums 298

PART III: Fundamentals of
Classes and Objects 299

Lesson 14: Object-Oriented
Concepts 300
Abstraction 301

Object Orientation 301

Types 302

Public Interface/Private

Implementation 302

Encapsulation and{Data Hiding 303

Single Responsibility Principle

and{Cohesion 303

Delegation 304

Summary 304

Lesson 15: Creating
Classes and Types 305
Creating New Types 305

Classes vs. Objects 307

Properties, Accessors, and{Mutators 307

Dot Operator 308

Contentsxvi

this Keyword 309

Methods/Behaviors 309

Constructors 309

Object Instantiation and{Method

Invocation 311

Static Keyword 312

Static and{the{Main Method 313

Static and{Constant Values 313

Static and{Utility Methods 314

Pulling It All Together 315

Creating a{New Class 316

Going Static 320

When to{Go{Static 323

Existing Static Methods 325

Summary 325

Exercises 326

Exercise 1: Class Modeling 327

Exercise 2: Refactoring 328

Exercise 3: A{Multiclass Problem 330

Lesson 16: Managing
Storage and Memory 331
Programs and{Memory 331

The Stack 332

The Heap 334

Garbage Collection 338

Reference and{Null Values 339

Summary 341

Lesson 17: Exploring
Interfaces, Composition,
and Inheritance 342
How Do These Tools Help? 343

Interfaces 344

Composition and{Inheritance 345

Composition 345

Inheritance 346

Using Interfaces, Composition,

and{Inheritance 346

Summary 347

Lesson 18: Diving into
Interfaces 348
What Is an{Interface? 349

Declaring an{Interface 349

Implementing an{Interface 350

Interface Restrictions 352

Implementing Multiple Interfaces 352

Extending an{Interface 354

Interfaces and{Polymorphism 356

Summary 357

Lesson 19: Diving into
Composition 358
What Is Composition? 359

Book without Composition 359

Book with{Composition 360

Summary 362

Exercises 362

Exercise 1: Classroom

Composition 362

Exercise 2: Cookbook 363

Lesson 20: Diving into
Inheritance 365
Everything Extends Object 366

Terminology 366

Access Control 367

Inheritance 368

Code Reuse through Inheritance 371

Method Overloading 371

Method Overriding 373

Constructors 375

Polymorphism 380

Calling Methods Polymorphically 382

Abstract Base Classes 383

Summary 383

Exercises 383

Exercise 1: Working with{Shape 384

xviiContents

Lesson 21: Understanding
Collections 385
Collections in{Java 385

Javadoc 386

Collections Framework Structure 387

Interface vs. Implementation 389

Iterator 390

Commonly Used Interfaces in{the{

Collections Framework 390

Quick Look at List 390

ArrayList 390

Stack 391

Quick Look at Set 391

HashSet 391

TreeSet 392

Quick Look at Map 392

HashMap 392

TreeMap 392

Summary 393

Lesson 22: Introduction
to Lists 394
List 394

Types of{Lists 395

ArrayList 395

LinkedList 395

Stack 397

Understanding Generics 397

Using Lists 398

Instantiating a{List 398

Adding Items to{a{List 401

Accessing Items in{a{List 402

Inserting Items into a{List 403

Removing Items from{a{List 403

Enhanced Approaches to{Access

List Items 405

The Enhanced for{Loop and{Lists 406

Visiting Each Element: Iterators 407

Creating an{Iterator 407

Using the{Iterator 408

Summary 410

Exercises 410

Exercise 1: Three Threes 410

Exercise 2: Mixed-Up Animals 411

Lesson 23: Exploring Maps 412
Map Interface 412

HashMap 413

Creating and{Adding Entries

to{a{Map 413

Instantiating a{Map 413

Adding Data to{a{Map 414

Manipulating with{Entries in{a{Map 415

Looking Up{Values in{a{Map 415

Replacing Data in{a{Map 417

Removing Values from{a{Map 417

Getting Keys and{Listing Mapped

Values in{a{Map 417

Listing All the{Keys 417

Listing All the{Values Key by Key 420

Listing All the{Values: Value

Collection 421

Summary 423

Exercises 423

Exercise 1: State Capitals 423

Exercise 2: A{Reusable User

I/O Class 424

Exercise 3: Student Quiz Scores 427

Lesson 24: Using Simple
File Input and Output 429
Data Storage and{Representation 430

File Format, Marshaling, and

Unmarshaling 431

Student Class 432

File Format Example 433

Contentsxviii

Marshaling and{Unmarshaling

Approach 433

Simple File I/O 434

Writing to{a{File 435

Exceptions 436

The OutFile.txt File 437

Reading from{a{File 438

Summary 440

Exercises 440

Exercise 1: Creating State Capitals 441

Exercise 2: Hashing the{State

Capitals 442

Exercise 3: A{State Guessing Game 442

Exercise 4: Objectifying States 443

Lesson 25: Applying
Application Design 446
CRUD Applications 447

Using a{Tiered Design 448

The Basic Tiers 448

The Model-View-Controller

Pattern 448

Packages 449

Software Development Lifecycle

Overview 450

Waterfall 450

Iterative Development 451

Agile Development 451

Project Lifecycle 452

Phase 1: Inception 452

Phase 2: Elaboration 452

Phase 3: Construction 453

Phase 4: Transition 453

Iterations 453

Summary 454

Lesson 26: Handling
Exceptions 455
Exception Handling 456

Catch or Specify Requirement 459

Exception Types 459

Handling (Catching) Exceptions 459

try Block 459

catch Block 461

fi nally Block 462

Specifying and{Throwing

Exceptions 464

Exception Translation and{

Encapsulation 465

Summary 466

Exercises 466

Exercise 1: Keep On{Asking 466

Exercise 2: Arrays Gone Bad 466

Exercise 3: Exiting Gracefully 468

Lesson 27: Pulling It All
Together: Building
the Class Roster
App 469
Application Requirements and

Use Cases 470

Understanding the

Application Structure 470

Interface Relationships 471

Composition Relationships 472

Inheritance Relationships 472

Classes and{Interfaces in{Our

Application 472

MVC Rules of the Game 473

Construction Approach 473

Setting Up{the Class Roster

Application Shell 474

Creating the{Menu System 477

UserIO and UserIOConsoleImpl 478

ClassRosterController 482

App 483

ClassRosterView 484

ClassRosterController 485

Adding a{Student Use Case 487

Student (DTO) 487

xixContents

ClassRosterDao and ClassRoster-

DaoFileImpl 488

ClassRosterDao 488

ClassRosterDaoFileImpl 490

ClassRosterView 491

ClassRosterController 493

Viewing All Students Use Case 494

ClassRosterDaoFileImpl 494

ClassRosterView 495

ClassRosterController 496

Getting a{Student Use Case 497

ClassRosterDaoFileImpl 498

ClassRosterView 498

ClassRosterController 499

Removing a{Student Use Case 501

ClassRosterDaoFileImpl 501

ClassRosterView 501

ClassRosterController 502

Handling Unknown Command and

Exiting 504

ClassRosterView 504

ClassRosterController 504

Working with{Dependency Injection 506

Implementation 507

ClassRosterController 507

ClassRosterView 508

App 508

Handling Application Exceptions 509

ClassRosterDaoException 509

Adding File Persistence 512

ClassRosterDaoFileImpl 512

Constants 512

unmarshalStudent 513

loadRoster 514

marshalStudent 516

writeRoster 517

addStudent 518

getAllStudents 519

getStudent 520

removeStudent 520

ClassRosterDao 521

ClassRosterView 522

ClassRosterController 522

Create roster.txt 525

Summary 527

Exercises 527

Exercise 1: DVD Library Update 527

Exercise 2: Electronic Address

Book 528

PART IV: Intermediate
Java 531

Lesson 28: Exploring the
Service Layer 532
The Role of{the Service Layer 532

Service Layer Exceptions 534

Service Layer API Design 534

New Business Rules 534

Create a{Student 535

Defi ne the{Method Signature 535

Defi ne the{Return Type 535

Defi ne the{Errors That Might Occur

in{This Method 535

Service Layer Methods for

Getting Students 536

Get All Students 536

Get a{Single Student 537

Remove a{Student 537

Summary 537

Lesson 29: Pulling It All
Together: Coding the
Class Roster Service
Layer 538
Create a{Service Layer Interface 539

Create New Exceptions 542

ClassRosterDuplicateIdException 542

Contentsxx

ClassRosterDataValidation

Exception 543

Refactor/Rename ClassRoster-

DaoException 543

Create the{Service Layer

Implementation 546

Constructor and DAO Member 547

Validating Student Data 547

Create Student 548

Get All Students 549

Get One Student 549

Remove Student 550

Modify the{Controller 550

Replace Member Field 551

Modify Constructor 551

Replace Calls to DAO Methods

with Calls to the Service Layer

Method 551

Modify the{App 553

Add the{Audit Log Feature 554

Audit DAO Interface and

Implementation 554

Modify the{Service Layer 556

Add Member Field 556

Modify the{Constructor 556

Modify createStudent 556

Modify removeStudent 557

Modify App 558

Summary 559

Lesson 30: Doing Unit
Testing 560
Unit Testing 561

Types of{Unit Testing 561

Black-Box vs. Glass-Box Testing 562

Stateful vs. Stateless

Components 562

Test-Driven Development and

Red/Green/Refactor 562

Test Stubs 563

JUnit 563

Test Setup and{Teardown 563

Annotations 564

Asserts 564

Given/When/Then 564

Stateless Unit Testing 565

What Makes a{Good Unit Test? 565

Designing a{Test Plan 565

Happy Llama Test Plan 567

Implementing Unit Tests 568

Creating the{Test Class 568

Writing Happy Llama Tests 569

Running JUnit Tests 571

Summary 575

Lesson 31: Testing Stateful
Code 577
Unit Testing Stateful Code 578

Separating Production and{Test Data 579

Adding hashCode and equals to

Student 580

Adding toString to Student 582

Creating the{Test Class 583

The Set Up and{Tear Down

Methods 584

Arrange/Act/Assert for{Stateful

Code 585

Class Roster DAO Test Design 586

Add Student 586

Get Student 588

ClassRosterDaoTest: Adding

and{Getting a{Student 589

Get All Students 590

ClassRosterDaoTest: Adding

and{Getting All Students 590

Remove Student 592

ClassRosterDaoTest: Adding

and{Removing Students 592

xxiContents

Unit Testing the{Service Layer 594

Planning the{Test Design 595

Creating the{Test Class 595

Creating the{DAO Stubs 596

ClassRosterAuditDaoStubImpl 597

ClassRosterDaoStubImpl 597

Test Setup 599

Test Implementation 600

testCreateValidStudent 600

testCreateStudentDuplicateId 601

testCreateStudentInvalidData 602

testGetAllStudents 603

testGetStudent 603

testRemoveStudent 604

Summary 605

Exercises 605

Exercise 1: Testing the{Address

Book App 605

Exercise 2: Testing the{DVD

Library 606

Lesson 32: Including
Magic Numbers
and Enums 607
Magic Numbers 608

Enums 608

Creating Enums for{Fixed

Constants 609

Using Enums 609

Getting Values from{an{Enum 611

Enum Members 612

Summary 616

Exercises 616

Exercise 1: How Many Days

until Friday? 617

Exercise 2: Playing Cards 617

Lesson 33: Manipulating
Dates and Times 618
ISO Calendar 619

Human Time and{Machine Time 619

Local and{Zoned Classes 619

Periods and{Duration 620

Working with LocalDate Objects 620

Creating LocalDates 620

Converting Dates to{and{from

Strings 622

Formatting Dates 623

Using Localization 625

Getting the Time with LocalDateTime 626

Working with{Date Calculations 628

Calculating Dates in{the

Future and{Past 628

Calculating the{Time between

Two Dates 630

Working with{Legacy Dates 632

Converting Date Objects 632

Converting a GregorianCalendar

Object 633

Summary 635

Exercises 635

Exercise 1: Birthday Calculator 635

Exercise 2: It’s The{End of{the{World

as{We{Know It 636

Exercise 3: Tracking Your Time 636

Lesson 34: Using the
BigDecimal Class 638
Exploring BigDecimal 639

Constructing BigDecimals 639

Understanding Scale 641

Understanding Rounding Modes 641

Working with BigDecimal 642

Setting Scale 642

Contentsxxii

Setting Scale without Rounding

Mode 643

Rounding BigDecimals 643

Doing Calculations with

BigDecimals 645

Dividing BigDecimals 646

Summary 648

Exercises 648

Exercise 1: Interest Calculator 648

Exercise 2: Car Lot Service Layer 649

Lesson 35: Working
with Lambdas and
Streams 653
Using Aggregate Operations 654

Understanding Pipelines

and{Streams 654

Streams vs. Iteration 655

Exploring Lambdas 655

Working with{Stream and{Lambda

Syntax 655

The forEach() Stream Method 656

The fi lter Stream Method 660

The map Stream Method 661

The collect Stream Method 663

Further Syntax 664

Summary 665

Exercises 665

Exercise 1: Only the{Young 665

Exercise 2: DVD Library Update 666

PART V: Advanced Java 667

Lesson 36: Working with
the Spring Framework 668
Dependency Injection and

Programming to{Interfaces 669

Why Spring? 670

Understanding the{Spring Approach 670

Plain Old Java Objects 671

Templates 671

Pulling It All Together: Spring DI in

Action 673

Spring DI with{XML 674

XML Confi guration File 675

Update the{App Class 676

Spring DI with{Annotations 677

Class Annotations 678

Summary 681

Lesson 37: Introducing
Maven 682
What Is Maven? 683

Project Object Model 683

Project Identifi cation 685

Dependencies 685

Build Settings 686

Dependency Management 686

Maven Lifecycle 687

Summary 687

Lesson 38: Pulling It All
Together: Building the
Class Roster with Spring 689
Include the{Spring Libraries 690

How Do I{Know What My

Dependency Entry Should Be? 691

Add Spring Confi guration Files 692

Convert the{App Class to{Use Spring 693

Defi ning Beans 694

Modifying the{App Class 696

Convert the{Unit Tests to{Use Spring 697

Defi ning Beans 698

Modifying the{Test Class

Constructor 699

Exception Conditions 700

Summary 701

Exercises 701

Exercise 1: DVD Library 701

xxiiiContents

PART VI: Appendices 702

Appendix A: Code
Checklist 703
Functionality 703

Style 703

Appendix B: Java
concepts Study List 705
Variables 705

Methods 705

Arrays 706

Making Decisions 706

Loops 706

Java/JVM 706

Objects 707

Interfaces 708

Inheritance 708

N-Tier Design 708

Collections 709

Exceptions 709

Lambdas/Streams 709

Spring Core 709

Appendix C: Agile
Approach Checklist for
Console CRUD
Applications 710
Assumptions 710

Requirement Steps 711

Design Steps 711

Construction Steps 712

Index 714

xxv

 Introduction
 Programming computers can be a fun and exciting career. Before you begin your journey

as a programmer, you need to decide which programming language to learn. You may

wonder which one makes you the most marketable. There are many viable answers to this

question, but Java is a fl exible and widely used language.

 There are many reasons that Java makes a great choice. As a general-purpose language,

Java can be used to build applications that run on a variety of platforms ranging from

desktop computers to mobile devices. Java applications can also be created to run on the

Web as well as on other architecture. Regardless of the platform, you can use the same

Java syntax on whichever Java-supported platform you choose. You ’ ll learn that syntax in

this book.

 Java is widely used across the globe. In the rankings of programming languages, Java is

often at or near the top. For example, on the Tiobe index, which ranks interest in program-

ming languages, Java is generally in the top one or two spots and has not been lower than

third since 2001.

 NOTE You can fi nd the Tiobe index for Java at www.tiobe.com/tiobe-index .

 There are many open positions waiting for candidates who know Java programming. At

the time of this writing, more than 38,000{Java jobs were listed on Monster.com .

Job Ready Java provides you with the foundation you need to be ready to take on some a

of the Java jobs that are out there. This book is quite diff erent from other Java books. This

book is based on a professional Java course. Additionally, the structure of the book pres-

ents not only the Java information you need to know to program Java for a job but also

the features that help you to be better prepared to apply what you ’ ve learned.

 A Java Course within a Book
 This book contains a full-fl edged Java course: the Software Guild ’ s Java Bootcamp: Object

Oriented Programming course. Many people have paid thousands of dollars to take the

Software Guild ’ s course.

Introductionxxvi

 The Software Guild is recognized as one of the best bootcamps and a leading authority

on coding education. They have helped future developers to gain the wide range of under-

standing they need. The focus is not on teaching you lessons in a purely academic fashion,

but rather to help you go further.

 Features to Make You Job Ready
Job Ready Java provides a number of features that not only teach you Java, but also helpa

you apply it. If you read through this book, enter the listings, and try the code, then you ’ ll

get an experience like many other books. If you also take a hands-on approach to doing the

exercises, you ’ ll be better able to take what you learned to the next level.

 Most importantly, this course goes beyond what many books provide by including

lessons that help you pull together everything you are learning in a way that is more like

what you would need to do within a job. This includes building a more comprehensive

example than what you get in the standard short listings provided in most books. If you

work through the “Pulling It All Together” sections and lessons, then you will be better

prepared for many of those Java jobs that are available.

 WHAT DOES THIS BOOK COVER?
 As mentioned, this book is a complete Java course. The course is broken into several parts

each containing a number of lessons. By working through the lessons in this course, you

will learn Java programming as well as prepare yourself for a job in Java programming.

Part I: Getting Set Up The fi rst part of the book focuses on getting you set up to use

Java. This will include help for installing Java and setting up the tools you ’ ll need

to work through this book. You ’ ll also be shown how to enter, compile, and run Java

programs using the Java IDE.

Part II: Basics of Object Oriented Programming In Part 2, you will learn the basic

constructs needed to use the Java programming language. This will include the syntax,

how to control program fl ow, how to organize your code using methods, and how to

organize your data using arrays. Because it is easy to make a mistake, you will also learn

about identifying and fi xing issues in your code.

Part III: Fundamentals of Classes and Objects The third part takes you deep into

object-oriented programming. You ’ ll take the syntax you learned in Part 2 and begin to

build classes, interfaces, and more.

xxviiIntroduction

Part IV: Intermediate Java In Part 4, you ’ ll go beyond the basics of Java and object-

oriented programming to delve into aspects such as the service layer, doing unit

testing, and working with code that is stateful and stateless. You ’ ll also learn useful

information on working with big numbers, dates, and times.

Part V: Advanced Java In Part 5, you ’ ll learn about resources to help make your cod-

ing more robust such as using the Spring Framework and Maven.

Part VI: Appendices You will also fi nd appendices that provide a coding checklist as

well as a list of concepts to study to show that you know Java should you consider inter-

viewing for a Java job. There is also a checklist for taking an agile approach to building

CRUD applications, which is a topic you ’ ll learn about within this course.

 READER SUPPORT FOR THIS BOOK
 There are several ways to get the help you need for this book.

 Companion Download Files
 As you work through the examples in this book, you should type in all the code manually.

This will help you learn and better understand what the code does.

 However, in two of the lessons, download fi les are referenced. You can download the

Lessons 27 and 36 fi les from www.wiley.com/go/jobreadyjava under the “Downloads”

links there .

 How to Contact the Publisher
 If you believe you ’ ve found a mistake in this book, please bring it to our attention. At John

Wiley & Sons, we understand how important it is to provide our customers with accurate

content, but even with our best eff orts an error may occur.

 To submit your possible errata, please email it to our Customer Service Team at

wileysupport@wiley.com with the subject line “Possible Book Errata Submission.”

P A R T I

 Getting Set Up
 Lesson 1: Installing Java

 Lesson 2: Installing a Development Environment: NetBeans

Lesson 3: Using an Integrated Development Environment

Lesson 1

 Installing Java

 Welcome to the world of learning Java. In this fi rst lesson, we

will set up everything needed to write Java programs. We

will then write our fi rst program together called “Hello, World!”

 It is important to know that, by itself, Java code doesn ’ t do

anything. It is just text. To make it useful, we need to install the Java

Development Kit (JDK). The JDK contains the compiler and other

tools needed to create executable Java programs. After the JDK is

installed, we will check the confi guration by creating, compiling,

and running the obligatory “Hello, World!” program.

 LEARNING OBJECTIVES
 By the end of this lesson, you will be able to:

• Diff erentiate between the JDK and Java custom runtimes

• Compare OpenJDK to Oracle JDK

• Install a JDK and verify the installation

• Trace the steps to create a “Hello, World!” program using a text editor

• Defi ne syntax as it relates to development

• Explain the pieces of the compiler

• Trace the development of a program through the various parts of compilation and execu-

tion of a program

3Lesson 1: Installing Java

 THE JAVA UNIVERSE
 Before we get into downloading and installing the Java tools and writing our fi rst pro-

gram, let ’ s fi rst take a look at the bigger picture: the Java universe, if you will. A little his-

tory will help to make sense of where Java is today.

 The development of the Java language was led by James Gosling at Sun Microsys-

tems. The initial development started in the early 1990s, and the language was originally

called Oak. The fi rst offi cial release of Java was in 1996. Now, in Internet time, 1996

seems like, I don ’ t know, a million years ago. And it seems that Java has this reputation

for being an old and creaky language because there are all these newer and cooler lan-

guages out there—you know, like Ruby and Python and JavaScript.

 But wait—the fi rst version of Ruby was also released in 1995 and the fi rst version of

Python was started in 1989, so they aren ’ t really newer languages. JavaScript was called

LiveScript when it came on to the scene in 1995. Maybe Java isn ’ t an old language after all.

 Java was originally a closed source project, meaning that developers had to purchase

a license to use it, and the code that runs Java was accessible only to Sun Microsystems

developers. In 2006, however, Sun decided to make the project open source under a

newly defi ned General Public License (GPL). In short, Sun decided to let any developer

use Java to write software programs for any purpose at no cost. In addition, the GPL

allows developers to access the code that runs Java to tweak it for their own purposes.

 In 2010, Oracle bought Sun Microsystems and took over stewardship of Java. Oracle

continues to maintain, distribute, and support Java and its related tools, including the

JDK and the JVM.

 The Java Development Kit
 The Java Development Kit is a software package that contains tools that allow devel-

opers, like you, to write new Java programs. These tools include things like the Java

compiler, which converts the code you write into bytecode that the Java Virtual Machine

can read, as well as the JVM itself and tools that allow you to package your creations to

distribute to other users.

 NOTE We will be downloading and installing the JDK later in this lesson.

 There are two basic versions of the JDK, both maintained and distributed by Oracle:

OpenJDK and Oracle JDK. OpenJDK is the open source reference implementation of then

JDK. This means that it is the standard from which all other JDK implementations are

Job Ready Java4

derived. OpenJDK is released under the GPL v2 license and is completely open to the

community. It contains the core code that makes Java work.

 The Oracle JDK is based on OpenJDK, but it is a commercial implementation released

under the Oracle Binary Code License Agreement.

 The two versions have nearly identical code, but the Oracle JDK has a few more

classes (some closed source) and some additional bug fi xes. Businesses generally use the

Oracle JDK because it tends to be a bit more stable; however, most Oracle JDK versions

are distributed under a relatively restricted license. You can download the software for

free, but you are only allowed to use the free version for personal, noncommercial pro-

jects. The free Oracle JDK license excludes the ability to create software that you want

to sell or distribute for others to use. Many businesses choose to pay for commercial-use

licenses because Oracle Java JDK includes support features not included in the open

source versions.

 We include instructions in the following sections to install OpenJDK for use in this

course. You are welcome to use Oracle JDK instead, if you prefer. We use the open

source OpenJDK here because it is completely free for any purpose you want to use it

for, including creating and selling your own software packages. While Oracle does allow

developers to use its Java JDK at no cost for personal projects, the free license does not

allow commercial use. Many businesses choose to purchase licenses for Oracle ’ s Java

JDK to take advantage of the additional support that Oracle provides with the commer-

cial version. However, because the JDK is very much behind the scenes when developing

software using Java, you are not likely to notice much diff erence between the two.

 The Java Virtual Machine
 One of the problems with writing software today is that we normally want our programs

to be compatible with as many diff erent types of computers as possible. What good is a

killer app if it will run on only one brand of smartphone? What about a custom enterprise

application that will run only on a Windows machine, even though many employees may

use Apple computers? This is where Java has an advantage over other coding languages.

 The Java Virtual Machine (JVM) is a software layer between the Java code and the

machine running the software. A virtual machine (VM) is essentially a piece of software

that acts like a computer, and it performs many of the same input/process/output opera-

tions that a physical computer does.

 Essentially, the JVM (which is included in the JDK) acts as a translator between the

compiled Java code and the machine ’ s bytecode. This means that our program will run on

any computer that the JVM recognizes, so we can write one app that will work on many

diff erent devices, rather than writing multiple versions of the same app for diff erent

5Lesson 1: Installing Java

platforms. The result is that we can write once and run anywhere, a process Sun Micro-

systems named WORA to promote the use of Java.

 The Java Runtime Environment
 As a Java developer, you may also hear about the Java Runtime Environment (JRE).

Through Java version 8, anyone who wanted to run a Java application on their computer

had to fi rst install a compatible JRE, which included the JVM required to run compiled

software but did not include the tools used to develop software.

 Starting with Java 9, however, the JDK includes a packaging process that creates an

executable package that does not require a separate JRE on the end user ’ s computer.

This streamlines the distribution process a bit, making it even easier to write once and

run anywhere when we use Java.

 Java 8 is still widely used in many enterprises, however, so it ’ s not impossible that you

will run across the need to have a JRE installed to run software written in Java.

 INSTALLING OpenJDK K
 You will need to install the JDK for this book because it has the tools needed to develop

Java applications. As mentioned, the JDK also contains the Java runtime, which is the

component that allows us to run the Java programs that we (and others) write. You

might have a Java runtime already installed on your system because Java is widely used

to write software.

 NOTE When we install the JDK, it will simply replace any existing JDK.

 For this course, we will use OpenJDK, which you can also use for any project in the

future. The following instruction sets can be used to check your current installed version

of a JDK and to install OpenJDK if you do not already have it. The following sections cover

• Installing on Microsoft Windows

• Installing on macOS

 We recommend installing the most recent long-term support (LTS) version of Open-

JDK, which was version 11 at the time of this writing. While you will see newer versions

(such as 14), you should choose an LTS version because it will be more stable than newer

versions that are still in development. Each version is based on a previous version, how-

ever, so you don ’ t want to choose a version that comes before 11—there may be newer

features we use in this course that are not available in older versions.

Job Ready Java6

 Additionally, while we provide added guidance here for installing a JDK on Microsoft

Windows and macOS, you can also install it on other operating systems including various

versions of Linux and AIX. The installation would be similar to what is shown here, includ-

ing starting at the same website.

 Figure 1.1 Running the command prompt window

 NOTE At the end of the day, the JDK is being used to compile and run
our Java programs.

 Installing OpenJDK on Microsoft Windows
 The following instructions walk you through checking for an existing copy of the JDK on

Microsoft Windows 10. You ’ ll then install and verify an installation of OpenJDK. If you

are using macOS, skip ahead to the next section.

 Checking for an Existing JDK on Windows
 Start by checking to see whether you already have a JDK installed. This can be done by

opening a command prompt window and using the command line.

 You can open a command prompt window by clicking the Start menu, searching fort

cmd , and selecting d Command Prompt in the search results. Figure{ 1.1 shows how to uset

the Windows Search box to fi nd the command prompt window.

7Lesson 1: Installing Java

 In the command prompt window, key the following command as shown in Figure{ 1.2 :

 java -version

 Windows will display the current version of Java installed on your computer. In this

screenshot, the results are as follows:

 openjdk version "11.0.7" 2020-04-14
 OpenJDK Runtime Environment AdoptOpenJDK (build 11.0.7+10)
 OpenJDK 64-Bit Server VM AdoptOpenJDK (build 11.0.7+10, mixed mode)

 If your results are similar to those displayed in Figure{ 1.2 and you see openjdk with a k

version number that starts with 11, you already have the correct version of OpenJDK on

your computer, and you can skip to “Creating Your Java First Program.”

 In the rare case that Java is not installed, you might see a message such as this:

 'java' is not recognized as an internal or external command,
 operable program or batch file.

 If you get this message, simply continue to the next section for installing OpenJDK.

 Installing OpenJDK
 If you don ’ t have the latest version—or any version—then you ’ ll need to install the

OpenJDK. Use your browser to navigate to AdoptOpenJDK.net , as shown in Figure{ 1.3 .

 Verify that the page has identifi ed your computer platform (e.g., Windows, macOS,

or Linux) correctly and select OpenJDK 11 with the Hotspot JVM. Click the Latest release

button and save the fi le to a known location on your computer.

 Figure 1.2 Checking the version in the Command Prompt

 NOTE The screenshots here use release 11.0.7+10.2. It ’ s fi ne if you have a
slightly different version, as long as the fi rst number is 11.

Job Ready Java8

 Open or run the saved fi le. If prompted as shown in Figure{ 1.4 , confi rm that you want

to launch the installer.

 Figure 1.3 The AdoptOpenJDK site

 Figure 1.4 Prompt for running the launcher

9Lesson 1: Installing Java

 The installer will launch the setup wizard to install the AdoptOpenJDK JDK, as shown

in Figure{ 1.5 .

 You should verify that it will install JDK 11 and click Next . This will show the end-usert

license agreement, as shown in Figure{ 1.6 .

 Figure 1.5 The AdoptOpenJDK setup wizard

 Figure 1.6 The end-user license agreement

Job Ready Java10

 The license on AdoptOpenJDK is a GNU General Public License, which means that it

is open source, and anyone can use it in any way, as long as credit is given to the original

developers. Accept the license agreement and click Next . This will display the Custom t

Setup settings, as shown in Figure{ 1.7 .

 Accept the default settings in the Custom Setup window. You should note the loca-

tion where the JDK will be installed in this window. You will need it later.

 Click Next to be taken to a window similar to Figure{ 1.8 .t

 Click Install to begin the actual installation of the JDK. Windows will ask if you want tol

allow the app to make changes to your account (Figure{ 1.9). Click Yes . s

 The installation will start and run automatically (Figure{ 1.10). The installation will take

several minutes to complete.

 You will see a confi rmation window when the installation is complete (Figure{ 1.11).

 Verifying the Installation
 Verify that you have Java 11 installed on your computer. Follow the same steps you did

earlier to see what version you had installed. Open a command-line window by clicking

the Start menu, searching for t cmd , and selecting d Command Prompt in the search results. t

This was shown in Figure{ 1.1 .

 Figure 1.7 The Custom Setup settings

11Lesson 1: Installing Java

 As shown in Figure{ 1.2 , type the following command into the command prompt window:

 java -version

 Windows will confi rm that Java is installed by returning the version number. We

show this again in Figure{ 1.12 . You should now see a version that starts with 11 as the

 Figure 1.9 Windows permission to install

 Figure 1.8 Ready to install

Job Ready Java12

fi rst number in the version number. We are now ready start working with the Java

and the JDK.

 Figure 1.10 Installing the JDK

 Figure 1.11 Installation completed message

13Lesson 1: Installing Java

 Figure 1.12 Verifying the JDK was installed

 NOTE If you do not see OpenJDK 11 as the Java version and you didn ’ t
get any error messages, then try to reinstall the JDK.

 Installing OpenJDK on macOS
 The following instructions walk you through checking for an existing copy of the JDK on

macOS. You ’ ll then install and verify an installation of OpenJDK. If you are using Win-

dows, skip ahead to the next section to see how to use the JDK with a Java program.

 Checking for an Existing JDK on macOS
 Check the version of Java installed on your computer by opening Terminal (using Spot-

light Search, Siri, or Launch Pad) and entering the following command:

 java -version

 As you can see in Figure{ 1.13 , the results are as follows:

 openjdk version "11.0.3" 2019-04-16
 OpenJDK Runtime Environment AdoptOpenJDK (build 11.0.3+7)
 OpenJDK 64-Bit Server VM AdoptOpenJDK (build 11.0.3+7, mixed mode)

 If you see openjdk version 11 in the results, you do not need to install Java. You can

skip to the next section to create your fi rst program in Java.

 Installing OpenJDK
 Use your browser to navigate to AdoptOpenJDK.net . You should see a page similar to

what is presented in Figure{ 1.14 .

 Verify that AdoptOpenJDK recognizes your operating system as macOS x64. Select

OpenJDK 11 on the left and Hotspot on the right and then click Latest release. Ine

Figure{ 1.14 , the fi le is jdk-11.0.3+7, but you may see a slightly diff erent version number.

As long as the fi rst number is 11, it ’ s fi ne.

Job Ready Java14

 Your browser will download the fi le. Open the saved fi le after the download is com-

plete to start the Installer. This should display a dialog similar to Figure{ 1.15 .

 Figure 1.13 Checking the version number

 Figure 1.14 The AdoptOpenJDK website

15Lesson 1: Installing Java

 Click Continue to start the installer. When prompted, you must accept the license e

agreement, as shown in Figure{ 1.16 .

 Click Agree and then click e Continue . You ’ ll be taken to the dialog shown in Figure{ 1.17e

that shows that, by default, the fi les will be installed on the computer ’ s main disk.

 Figure 1.15 Starting the AdoptOpenJDK install

 Figure 1.16 Accepting the licensing

Job Ready Java16

 You can change the location if you want, but most users should use the default

setting. Click Install to continue. This will start the installation. When the installation isl

completed, you will see a confi rmation similar to Figure{ 1.18 .

 Click Close to complete the process. e

 Figure 1.17 Location for the install

 Figure 1.18 Installation complete message

17Lesson 1: Installing Java

 Verifying the Installation
 Confi rm the version of Java installed on your computer by opening Terminal (using Spot-

light Search or Launch Pad) as you did before and entering the following command:

 java -version

 You should see results similar to what are shown in Figure{ 1.19 . The results are

as follows:

 openjdk version "11.0.3 " 2019-04-16
 OpenJDK Runtime Environment AdoptOpenJDK (build 11.0.3+7)
 OpenJDK 64-Bit Server VM AdoptOpenJDK (build 11.0.3+7, mixed mode)

 If you see openjdk version 11 in the results, you are ready to go to the next step.

 Figure 1.19 Verifying that the installation was successful

 NOTE If you do not see OpenJDK 11 as the Java version, try reinstalling
the AdoptOpenJDK.

 CREATING YOUR FIRST JAVA PROGRAM
 Now that we have a JDK installed, we are ready to create our fi rst Java program. We

will use a text editor for this process and then walk through how your computer runs a

program written in Java. You ’ re not going to understand all of the words in the syntax

Job Ready Java18

here, which is fi ne. What we want to do at this point in time is get you writing your fi rst

program and running it!

 Writing the Program
 When learning a new language, it is customary that your fi rst program simply print out

“Hello, World!” to the screen. We ’ ll do this following these steps:

1. Open a text editor.

2. Type in the Java code.

3. Save the fi le as Hello.java .

4. Compile the code with the Java compiler (javac).cc

5. Run the program.

 Open a text editor on your computer. For Windows, Notepad is a good choice; how-

ever, you can use any text editor you like. If you have a Mac, you can use the text editor.

On Linux, there are editors such as Gedit, nano, or Vi. Create a new fi le if necessary and

then type the code presented in Listing{ 1.1 . Don ’ t worry about what any of it means; we ’ ll

get to that soon enough.

 LISTING 1.1
 Hello.java: “Hello, World!”

 public class Hello {
 public static void main (String[] args) {
 System.out.println("Hello, World!");
 }
 }

 NOTE Save the fi le as Hello.java your Documents library. Make sure that
.java is the fi lename extension, rather than .txt or something else. t

 There are several things to notice about this fi le. First, you should note that the pro-

gram creates something called a public class in the fi rst line. A Java program is a s class , s

which is a basic container for code in Java. This public class has the name Hello . It is

important that when you enter this program into your editor and save it, you use this

same name for the fi le. As such, you will need to save the program as Hello.java . If you

19Lesson 1: Installing Java

are using a text editor in Windows, you ’ ll want to make sure that .txt doesn ’ t get added

to the end of the name.

 In addition to a Java program being a class, this class will also have a main method in

it. A method is another container for Java code. A method must be placed inside a class.

It is a named block of code that can be executed to accomplish some task. Here, it just

prints “Hello, World!” You will learn more about classes and methods in future lessons.

 The main method is a special method that is the entry (or starting) point for every

Java program. The fi rst line of the main method (public static void main (String[]

args)) must be written exactly as in Listing{ 1.1 , and it must be contained inside a class.

 The curly braces, { }, denote the beginning and ending, respectively, of code blocks.

You ’ ll see that there are two sets of curly braces in our program. One is nested inside

the other.

 This leaves one more big line of code to mention:

 System.out.println("Hello, World!");

 This line is the magic code that sends things to the console. In this case, this code is

going to write what is between the two quotes to the console. We ’ ll learn much more

about this later. For now, make sure you include the periods and the semicolon where

they are shown in this line of code. You also need to make sure you capitalize the word

System as shown. These small details are important for making sure the program works

as expected.

 Compiling and Running the Program
 Now that you ’ ve written the Java program, you are ready to compile and run it.

 To be able to run the program, we need to convert it into what is known as a class fi le. e

That class fi le contains what is known as bytecode. It is bytecode that the Java runtime

environment, in particular the Java virtual machine, is able to interpret and run as our

program. To do that, we can run the Java compiler.

 To run the Java compiler, we type in javac . That ’ s the name of the program. Javac is

looking for one or more Java fi les to compile. In our case, we just want to pass in Hello.

java . When we do this, the compiler will read Hello.java , and it will convert that into a

class fi le called Hello.class .

 Open your command-line interface and use the cd command to open the directory

where you saved the Hello.java fi le. You saw how to open the command-line interface

earlier to check the version of your JDK.

• In Windows, click Start and use t cmd to open the command prompt.d

• Enter cd Documents and hit Enter.

Job Ready Java20

• Enter dir at the prompt and verify that you see Hello.java in the results.

• In Mac (or Linux), open Terminal.

• Enter cd Documents and hit Enter.

• Enter ls at the prompt, hit Enter, and verify that you see Hello.java in

the results.

 We will now compile our program by running the following command on the

command line:

 javac Hello.java

 When you run this command, it will compile your code and create a Java program

that can be executed. If you entered everything correctly, you won ’ t see any feedback. If

you entered something wrong, then any errors will be displayed. If an error is displayed,

review the code in Listing{ 1.1 and make sure what you typed into your editor is identical,

including semicolons and periods.

 After our program is compiled, we can run it. We need to tell Java what program to

execute. We ’ ll run the Java program by using the java command on the command line

followed by the name of the class we are running, in this case, Hello .

 java Hello

 Note that we did not include any extension, but rather just use the name of the class we

are running. When this command is executed, it will print “Hello, World!” to the screen,

as shown in Figure{ 1.20 .

 Figure 1.20 Hello.java output

21Lesson 1: Installing Java

 Dealing with Syntax Errors
Syntax is the sequence of characters that make up well-formed statements in a program-x

ming language. You can think of syntax like the spelling, punctuation, and grammar rules

of the programming language. The compiler is good at detecting syntax errors and will

tell you when you type something that is not syntactically correct.

 If you make a mistake in your program by leaving off a punctuation mark, capitalizing

something that shouldn ’ t be capitalized, or forgetting a bracket, it can cause a syntax

error. If you entered Listing{ 1.1 perfectly, then it would have compiled without any

issues. If, however, you made a mistake, then you might have gotten feedback.

 Remove the semicolon from the end of the following line in Listing{ 1.1 :

 System.out.println("Hello, World!")

 If you compile the listing again, the following is the output you ’ ll receive:

 C:\Users\JavaStudent\java>javac Hello.java
 Hello.java:3: error: ';' expected
 System.out.println("Hello, World!")
 ^
 1 error

 As you can see, the Java compiler is providing you with information on your syntax

error. This will help you determine what needs to be fi xed.

 TIP Sometimes a single mistake can cause multiple errors.

 NOTE All syntax errors will cause a compiler error. Not all compiler errors,
however, are syntax errors.

 NOTE Technically, with the current version of Java, single class execution
is supported. This means that if your program is a single class, then
you don ’ t have to compile your program before calling Java to run it.
Generally, however, most of your programs in a corporate environment
are going to have more than one class.

Job Ready Java22

 USING THE COMPILER AND JAVA
VIRTUAL MACHINE
 The fl ow chart in Figure{ 1.21 represents the steps that happen behind the scenes when

we compile and run our program.

1. We created the Hello.java fi le using normal text and Java syntax. It includes

a public class that defi nes what we want the computer to do when we run

the program.

2. When we ran the command javac Hello.java in the second step, it invoked

the Java compiler. The compiler converts the text that we typed in Hello.java

into bytecode.

3. Bytecode is a set of instructions for the JVM. When we ran the command java

Hello , we were running the bytecode version of the program that the JVM can

read and interpret.

4. The JVM is basically a virtual computer that runs in a layer between the software

and the operating system. Because all Java programs use the JVM to run, we can

run the same program on any platform that supports Java, including Windows,

macOS, and Linux.

5. The JVM interprets the bytecode from your program and converts it into machine

code that can run on the processor of your machine.

 SUMMARY
 In this lesson, we went over what a JDK is and why we need one as Java developers. We

compared Oracle JDK with OpenJDK and then installed OpenJDK for use in this book.

public class
MyClass {}

Hello.java

javac
Compile Bytecode

Hello.class

JVM
Java Virtual

Machine

Host System
Processor

 Figure 1.21 Behind the scenes while compiling and running

23Lesson 1: Installing Java

 We then created, compiled, and ran our fi rst Java program called Hello.java . We

learned the following:

• Java programs consist of a class that contains a main method. The main method is

the special starting point for every Java program.

• Curly braces, {} , mark the start and end of code blocks in Java.

• System.out.println("Hello, World!"); is the magic code that sends text to the

console to be displayed.

 Finally, we learned about the Java Virtual Machine and the process that a Java fi le

goes through from creation to execution.

 While it is possible to write any Java program using a plaintext editor like we did

in this lesson, larger programs are much more complicated than this one is and often

include many individual fi les that must work together as a single project. In the next

lesson, we ’ ll install an integrated development environment (IDE), which includes tools

that can identify syntax errors as we are coding before we say to compile the program,

keep related fi les together in a single project, and compile the code when we want

to test it.

Lesson 2

 Installing a
Development
Environment:
NetBeans

 This lesson walks you through the process of installing NetBeans

12, which you can use for the remaining lessons in this book.

 LEARNING OBJECTIVES
 By the end of this lesson, you will be able to:

• Know the value of using an integrated development environment (IDE)

• Understand the core parts of an IDE

• Install NetBeans using the automated installer

• Install the NetBeans binaries

• Be able to start NetBeans

 NOTE To install NetBeans, you must fi rst have a Java Development Kit
installed on your computer, which you did in the previous lesson. If you
did not go through Lesson 1, you will need to complete those steps prior
to continuing with this lesson.

25Lesson 2: Installing a Development Environment: NetBeans

 GETTING STARTED
 NetBeans is a Java IDE, which stands for integrated development environment. The IDE ist

where a developer does most of their work when developing software programs, and it

includes tools that help identify errors in the code as well as an interface for complicated

development projects.

 In this course, we will use NetBeans 12. If you already have NetBeans 12 installed and

you can open it without errors, then you can skip this lesson. If you have problems open-

ing NetBeans 12, see the troubleshooting steps near the end of each set of instructions

in the following sections, depending on your operating system.

 UNDERSTANDING THE VALUE OF AN IDE
 The IDE is the single most important tool in your developer toolbox. The IDE is where

you will write and compile, debug, and run your Java programs. The better you know the

ins and outs of your IDE, the better a developer you are likely to be.

 The main purpose of the IDE is to give developers a single application to use for cre-

ating software. It is a one-stop shop for writing and editing source code. It also provides

for compiling and building your programs and provides debugging. Most IDEs also have

hooks into various source code control repositories, giving a truly comprehensive envi-

ronment for developing software.

 Let ’ s take a look at the three biggest features of an IDE.

• The source code editor

• The build automation tools

• The debugger

 Using the Source Code Editor
 The source code editor, on its face, is a place to type in the characters that make up a pro-

gram. But really, it ’ s much, much more. Source code editors do a lot to help the developer.

First, source code editors will automatically format and indent your source code. This is a

great help when working in teams because the IDE can be confi gured with rules that format

everyone ’ s code to look the same, making it much easier to work on other people ’ s code.

 Second, most source code editors color code the source code that is entered. This

is known as syntax highlighting . This is a huge help for developers because it identifi es g

diff erent parts of the source code. For example, the color coding makes it easy to spot

language keywords or comments or strings. You will see this in the next lesson when we

rewrite “Hello, World!” in the IDE.

 Third, source editors can provide hints and autocompletion of code. Autocompletion

features greatly improve developer productivity because they can help you type the

Job Ready Java26

command you are entering, help you determine parameters that are needed, and much

more. Similarly, the editor can provide immediate feedback for syntax errors. The code

editor will let you know if you ’ ve typed something that is invalid, similar to the automatic

spell-check in Microsoft Word.

 NOTE If you have used Microsoft development tools such as Visual
Studio, then you might have heard them call their autocomplete feature
IntelliSense .

 Using the Build Automation Tools
 The second big feature we want to mention is the build automation tools. In the previous

lesson, we wrote our fi rst program using a text editor. To compile and run the program,

we had to do everything by hand, which wasn ’ t too bad because we had only one fi le in

our program. But imagine having to manually run the compiler for a Java program with

hundreds of fi les. That is not as easy as compiling one fi le.

 This is where the build automation tools of the IDE come to the rescue. Most IDEs for

doing Java development can build your Java program no matter how many fi les you have.

They also can integrate with external build tools such as Maven and Gradle. You don ’ t

have to worry about the details right now; just know that NetBeans will build and run

your project for you with the click of a button.

 NOTE We ’ ll take advantage of this integration ability in this book. You
will learn to use the Maven build system.

 Using the Debugger
 Finally, let ’ s talk about the debugger. The debugger is worth its weight in gold but is

often overlooked by the novice developer. A debugger allows you to stop the execution

of your program, essentially freezing it in time, and to look at exactly what the program

is doing at that moment.

 Once you ’ ve had a look around, you can resume the execution of the program. This is

an invaluable feature when you are trying to fi gure out why your code is not doing what

you expected. You will learn how to use a debugger within this book.

 NOTE The IDE contains the tools of our craft. The better you learn how to
use the tools and features of the IDE, the better a developer you ’ ll become.
Remember, a master of any craft is also a master of the tools of the craft.

27Lesson 2: Installing a Development Environment: NetBeans

 INSTALLING NETBEANS
 Now that you ’ ve had a quick overview of what an IDE is and why it ’ s important, it is time

to get and install one on your computer. Before you can install a new IDE, you must fi rst

get a copy of it. You can download a copy of Apache NetBeans 12 from netbeans.apache

.org/download / . If you go to this page, you should see something similar to Figure{ 2.1 .

 From this page, click the Download button to get to the page that lists the Apache d

NetBeans 12 download fi les, as shown in Figure{ 2.2 .

 The page shown in Figure{ 2.2 gives us a couple of options for installing Apache Net-

Beans. Either we can download the binary fi les that are in a zip fi le or we can run an

installer program. In this lesson, we ’ ll run through both. We will start with the installer.

 Using an Installer
 On the web page, you can see a section labeled Installers . These are programs that s

you can run that will do the download and installation of NetBeans. As you can see

in Figure{ 2.2 , there were three installers available at the time this book was written.

 Figure 2.1 The Apache NetBeans download page

Job Ready Java28

Choose the one that corresponds to your platform. Your options are for Windows on a

64-bit machine, Linux on a 64-bit machine, or macOS.

 Clicking the option for Windows (Apache-NetBeans-12.0-bin-windows-x64.exe) takes

you to a page like that shown in Figure{ 2.3 . If you pick the Linux or macOS options, you

will be taken to similar pages.

 Click on the suggested link. This will start the process to open the installer fi le and

install NetBeans on your machine. Simply follow the instructions. For Windows, you will

be asked to open the executable fi le, as shown in Figure{ 2.4 . If you are using a diff erent

operating system, you should see something similar but for your operating system.

 At this point, what happens will be dependent upon your operating system. We show

you what happens on Windows in the following steps. Jump to the next section if you are

installing on macOS.

 Installing on Windows
 In the dialog that was shown when you clicked the link, click Save File to save the fi le. The e

fi le will download and save to your hard drive. Once it has downloaded, open it or click

it to run the installer program. After approving the program to make changes on your

system, the Apache NetBeans Installer will start, as shown in Figure{ 2.5 .

 Figure 2.2 Downloading Apache NetBeans 12.0

29Lesson 2: Installing a Development Environment: NetBeans

 The program will confi gure the installer so that the program can be set up on your

system. Once the installer has been confi gured, you will be able to click the Next button,

as shown in Figure{ 2.6 .

 With the installer confi gured, click the Next button to continue. You will be shown a t

dialog similar to that in Figure{ 2.7 .

 With the installer confi gured, you are now ready to go. While you can click the Cus-

tomize button on this page, we recommend you simply click e Next . This will start thet

installer and take you to the licensing agreement shown in Figure{ 2.8 .

 Figure 2.3 Installer for Windows

 Figure 2.4 Prompt to open the
installer fi le in Windows

Job Ready Java30

 In a nutshell, NetBeans is an open source program, distributed under the Apache

License. The main points of the license agreement are the following:

• You can use as many copies of the software as you want, and you can distribute

the software to others, as long as the distribution package includes the same

licensing restrictions.

• You can modify the code and distribute your own version of the code, as long as

your modifi ed package includes the same licensing restrictions on the core code

distributed by Apache Software Foundation.

• The software is distributed on an as-is basis.

 Figure 2.5 Running the
Apache NetBeans Installer

 Figure 2.6 The installer confi gured and ready to go

31Lesson 2: Installing a Development Environment: NetBeans

 Review the terms and then check the box next to I accept the terms in the license

agreement to be able to continue. Click t Next to continue the installation process. The t

next step presented in Figure{ 2.9 determines where the program fi les will be installed on

your computer.

 This dialog asks you where you want to install the IDE and JDK. Unless you have a

strong reason not to, you should use the default settings.

 Note that this package will install both NetBeans and a compatible JDK. If you already

have a JDK installed, this installation will replace it (if it is the same version) or install the

JDK alongside any older JDKs you may already have on your computer.

 Once you have set the locations, click Next to continue. This will take you to the sum-t

mary page as shown in Figure{ 2.10 , which is the last page before installation.

 It is fi ne to leave the box checked that is next to Check for updates. If you are con-s

nected to the Internet during the installation process, NetBeans will look for any

updated packages and install them at the same time as the other components of

the program.

 Click Install to begin the installation and to continue. The program will then display al

dialog similar to Figure{ 2.11 .

 Figure 2.7 Welcome to the installer dialog

Job Ready Java32

 The program will prepare to install the fi les. Once they ’ re prepared, it will do the

installation. The dialog shown in Figure{ 2.11 might change; however, it will inform you of

what it is currently doing. Once the installation is complete, you will see a dialog similar

to what is shown in Figure{ 2.12 .

 You can click the Finish button to close the window. At this point, Apache NetBeans h

should be installed on your system and be ready to use.

 Figure 2.8 Apache NetBeans licensing agreement

 NOTE The installation process is similar to the installation process you
went through for installing the JDK in Lesson 1.

 Installing on macOS
 To install Apache NetBeans on your macOS, you should have the downloaded package on

your system, as shown in Figure{ 2.13 . The process for downloading the package was men-

tioned earlier in this lesson.

 Double-click the package icon and allow the package to run, as shown in Figure{ 2.14 .

 When you click Continue , the installation wizard will open, as shown in Figure{ 2.15 .e

33Lesson 2: Installing a Development Environment: NetBeans

 Click Continue to start the installation process. This will present the licensing agree-e

ment for using the software, as shown in Figure{ 2.16 . You must agree to the license to

continue with the installation.

 In a nutshell, NetBeans is an open source program, distributed under the Apache

License. The main points of the license are as follows:

• You can use as many copies of the software as you want, and you can distribute

the software to others, as long as the distribution package includes the same

licensing restrictions.

• You can modify the code and distribute your own version of the code, as long as

your modifi ed package includes the same licensing restrictions on the core code

distributed by Apache Software Foundation.

• The software is distributed on an as-is basis.

 Figure 2.9 Setting the location

 NOTE You can fi nd the Apache License at www.apache.org/licenses/ .

Job Ready Java34

 Figure 2.10 Confi rming the settings

 Figure 2.11 Installing the fi les

35Lesson 2: Installing a Development Environment: NetBeans

 Figure 2.12 Installation complete!

 Figure 2.13 The installation package

Job Ready Java36

 Figure 2.14 Running the Apache NetBeans package on macOS

 Figure 2.15 The installation wizard

37Lesson 2: Installing a Development Environment: NetBeans

 Review the terms and then click Continue and e Agree to accept the terms in the licensee

agreement.

 The installer will present default installation settings, as shown in Figure{ 2.17 . There is

no need to change these settings unless you have a specifi c, unusual need.

 Click Install to begin the installation. The wizard will proceed to install the program on l

your system, as shown in Figure{ 2.18 . If necessary, enter your password to continue and

then wait for the installation to complete.

 You will see a confi rmation window similar to that in Figure{ 2.19 when the installation

is complete.

 At this point, you have successfully installed NetBeans and may close this window.

 Installing Binaries
 An alternative way to install the IDE is to download the fi les and install them manually.

This information is presented in case you want more control of how the installation is

done. If you used the installer as shown earlier, then feel free to skip this section and

jump right to “Running NetBeans.”

 Figure 2.16 The licensing agreement

Job Ready Java38

 Figure 2.17 Installation settings for macOS

 Figure 2.18 Installing the fi les

39Lesson 2: Installing a Development Environment: NetBeans

 The binary process is only shown for Windows; however, installing for other platforms

is similar. To install the binaries on Windows, start by clicking the link next to Binaries

in the list of options you saw in Figure{ 2.2 earlier. A new page similar to Figure{ 2.20 will

open to confi rm the download link.

 Figure 2.19 Installation complete message

 NOTE The fi lenames might be slightly different. The current version
when this book was written was 12.0. If updates were made, then the
version number might differ slightly.

 It is fi ne to accept the suggested link that appears at the top of the page. Clicking that

link will download a fi le named incubating-netbeans-12.0-bin.zip . Save the zip fi le to a

known location.

 The suggested site may be diff erent from the one shown in the screenshot, based on

your location and current traffi c to the servers.

 After saving the fi le to your computer, the process will be slightly diff erent depending

on whether you are installing on Windows or macOS/Linux. We ’ ll focus on Windows here.

Job Ready Java40

 Installing Binaries on Windows
 After saving the fi le to your system, fi nd the .zip fi le on your computer and unzip it. You

can do this using the Windows extract tool.

1. Right-click the saved fi le.

2. Click Extract All. l

3. Use the Extract dialog box to unzip fi le to a known location (e.g., Documents

or Desktop).

 After extracting the fi les, navigate to the selected location in the previous step. In the

example in Figure{ 2.21 , the folder was extracted to the Documents folder, in a subfolder

named netbeans .

 Open the netbeans folder. As shown in Figure{ 2.22 , this folder contains the fi les

required to run NetBeans, and you should not delete anything in this folder.

 Figure 2.20 Download links for NetBeans binaries

41Lesson 2: Installing a Development Environment: NetBeans

 To start NetBeans, open the bin subfolder and double-click the appropriate execut-

able fi le for your computer. Most Windows users should use netbeans64.exe , but if you

do not have a 64-bit system or if you have problems running that version, you can choose

netbeans.exe instead.

 The fi rst time you run NetBeans, Windows is likely to display a message saying it

does not recognize the application. If so, walk through the prompts to run the program

anyway. You might need to click a “more info” link to get the option to click a Run any-

way button. y

 If NetBeans opens correctly, you are ready to get started with the programs in the

rest of this book. If you have problems, see the next section about adding the JDK.

 Figure 2.21 The extracted NetBeans fi les

 NOTE The fi le with no extension is for macOS and will not open on
Windows. Use it if you are using macOS.

 TIP You can add a shortcut to the executable fi le to your Start menu
or taskbar by right-clicking the fi le and selecting Pin to Start or t Pin to
Taskbar in the context menu. r

Job Ready Java42

 Adding the JDK
 You may receive an error message that NetBeans cannot fi nd Java the fi rst time you

open NetBeans. If so, follow these steps to resolve the problem:

1. In the root NetBeans folder, open the etc subfolder and then open the fi le named

netbeans . conf using any text editor (such as Notepad or Notepad++).

2. Locate the line containing netbeans_jdkhome .

3. If this line is commented out (with # at the beginning of the line), remove the # to

enable the setting.

4. Set its value to include the path to your JDK, so the line looks something like net-

beans_jdkhome="C:\Program Files\AdoptOpenJDK\jdk-11.0.3.7-hotspot" .

a. If you just installed AdoptOpenJDK, use the path provided in that wizard.

b. If OpenJDK 11 was already installed, locate the Java folder for your system

(normally in C:\Program Files\) and use the path to the JDK fi le in that folder.

c. The version number may be slightly diff erent. As long as it starts with 11, it is

the correct version.

d. Save the changes to netbeans.conf and close the fi le.

e. Launch NetBeans again.

 Figure 2.22 The netbeans folder

43Lesson 2: Installing a Development Environment: NetBeans

 Figure 2.23 The Net-
Beans splash screen

 Figure 2.24 The NetBeans start page

Job Ready Java44

 RUNNING NETBEANS
 The previous sections for Windows and macOS indicated how to open NetBeans to have

it run. This was accomplished by running the appropriate NetBeans fi le as was indicated.

 When NetBeans opens, you will fi rst see a splash screen similar to Figure{ 2.23 that

shows it is loading.

 After the program is completely loaded, you will see the start page similar to

Figure{ 2.24 that includes links for learning how to use NetBeans. If you don ’ t see this,

then click the Learn & Discover tab.r

 Figure 2.25 The My NetBeans tab in the IDE

 NOTE The fi rst time you run NetBeans, you might be prompted with a
dialog asking you to help improve the NetBeans IDE. You can read the
text and determine whether you would like to provide usage statistics.

 The My NetBeans tab, as shown in Figure{ 2.25 , will display a list of previous projects,

but this page will be empty the fi rst time you open NetBeans and before you have created

any projects.

45Lesson 2: Installing a Development Environment: NetBeans

 SUMMARY
 At this point, you have both OpenJDK 11 and NetBeans 12 installed on your computer

and ready to use. With the IDE and JDK installed, you are ready to jump in and see

the features we discussed early in this lesson. That is exactly what we will do in the

next lesson!

Lesson 3

 Using
an Integrated
Development
Environment

 In this lesson, we will use an IDE to create a “Hello, World!”

program and look at the tools that an IDE provides to developers.

 LEARNING OBJECTIVES
 By the end of this lesson, you will be able to:

• Start a new project using NetBeans

• Create a “Hello, World!” program using NetBeans

• Use IDE features to compile your program

• Explore how to start debugging a program

 NOTE For this and the remaining lessons, you will need both OpenJDK
and NetBeans 12 installed and working on your computer.

47Lesson 3: Using an Integrated Development Environment

 USING AN IDE
 If you don ’ t already have NetBeans open, open it now and explore it a little bit. As you

saw in the previous lesson, when you fi rst open NetBeans, it will normally open to a start

page, which includes links to common tasks that are organized by tab. The Learn & Dis-

cover tab includes links to resources to help you learn how to use NetBeans and develop

software programs using Java. The My NetBeans tab (as shown in Figure{ 3.1) includes

links and shortcuts to recent projects that you have worked on in NetBeans, as well as

links to plug-ins and other features available through NetBeans. The What ’ s New tab

includes links to news articles and blog posts about NetBeans development.

 While the information on these tabs is useful, they don ’ t really represent what Net-

Beans can do for you as a developer.

 Figure 3.1 The My NetBeans tab

 NOTE If you just installed NetBeans, then your projects list is empty
because you haven ’ t created anything yet, but that will change as you
work through this course.

Job Ready Java48

 When we create a program in Java, we have to work through several steps before we

can actually run the program. These steps are as follows:

1. Create a new NetBeans project.

2. Type in the Java code and save it using NetBeans.

3. Compile the code in NetBeans.

4. Run the program.

 We will go through these steps now. We will also look at how we can use NetBeans to

help us fi nd problems in our code and add the new program to our GitHub repository.

 Creating a New Project
 Let ’ s create a new project. Many (if not most) Java applications include a bundle of fi les

that need to work together to perform their intended activities. While we can simply cre-

ate individual fi les (using an IDE or a text editor), we normally use an IDE to group these

fi les into projects . This allows the IDE to keep track of the related fi les as you work on ans

application, as well as to include all the required parts when you decide to publish and

distribute the application to end users.

 To create a new project, click the File menu and then click e New Project , as shown int

Figure{ 3.2 .

 Figure 3.2 Creating a new project

49Lesson 3: Using an Integrated Development Environment

 Alternatively, you can simply click the New Project button (not New File) in the toolbart

as shown in Figure 3.3, or you can use the shortcut Shift+Ctrl+N.

 When you create a new project, NetBeans asks you to start by choosing the type of

program you want to create from the dialog, similar to what is shown in Figure{ 3.4 .

 Maven is a widely used build management system for Java projects. Although Net-

Beans has its own internal build management system, many teams use Maven (or some-

thing similar) so that their projects can be built without NetBeans. There are often many

people on a software development team (quality control, systems administrators, build

managers, etc.), and they have diff erent automated processes (such as continuous inte-

gration servers) that need to build and deploy a Java project but don ’ t need NetBeans

 Figure 3.3 Clicking the New Project icon

 Figure 3.4 Choosing a project type

Job Ready Java50

because they aren ’ t going to change the Java code itself. External build systems like

Maven make it easy for everyone on the team to get their jobs done without dictating

the use of a particular IDE. In this case, we will select Java with Maven in the Categoriesn

pane and Java Application in the Projects pane and then click n Next. t

 Once you have Maven installed, you can continue with the New Java Application dia-

log in the New Project Wizard, which is shown in Figure{ 3.5 .

 INSTALLING MAVEN The fi rst time you create a project with Maven, you may be
prompted to download and activate content for that project. If you are, click Download
and Activate to continue and walk through the steps to install the plug-in for those
features. You should choose to include any libraries (such as mbjavac Library) and
click Next to continue the installation process. You will also need to accept any t
licensing agreements to complete the installations. You might also need to give
permission to install plug-ins. If you are using Windows, you should include the JavaFX
Implementation for Windows. Once you ’ ve walked through the wizard, the installer
will confi rm when installation is complete. You might be prompted by the New Project
Wizard to activate a new feature after it has been installed.

 Figure 3.5 The New Java Application dialog in the New Project Wizard

51Lesson 3: Using an Integrated Development Environment

 Enter the following information in the dialog box:

Project Name: HelloWorld
Project Location: Browse to the folder where you ’ d like to save your project and select

it. The default folder the fi rst time you run NetBeans will be some-
thing like C:\Users\MyUserName\Documents\NetBeansProjects . You
can use the default location if you are unsure.

Group Id: We ’ ll replace mycompany with tsg , but you should include your initials
or a short username to identify yourself as the developer.

Version: Leave the default 1.0-SNAPSHOT , which indicates this is an initial ver-
sion of the program that we don ’ t plan to ship anywhere.

 Let ’ s look at a couple of these options in a little more detail.

 The Group Id value essentially identifi es who owns and maintains the code, similar to

how a domain name works in a web address. We use com.tsg in our examples, because

tsg is being used as an identifi er for the Software Guild. NetBeans will automatically use

whatever you choose here as the Group Id value for the next project you create, so it ’ s a

good idea to use something that identifi es you as the developer of the program. A user-

name or initials is appropriate to this end.

 The Version value describes the current version of the program, and snapshots are

Maven ’ s take on versions. When you create a new program, Maven assumes you want to

use SNAPSHOT 1.0. If you use version control software, such as Git or Subversion, Maven

will automatically retrieve version numbers from that software and include them in its

own documentation for the program.

 There are a couple of items we did not include in the previous list. The Artifact Id

value should default to the project name, and Package should default to the Group Id

combined with the Artifact Id. It ’ s fi ne to use these default values. Once you ’ ve made

your changes, the dialog should look similar to Figure{ 3.6 .

 With the information updated, click Finish , and NetBeans will create an empty project,

as shown in Figure{ 3.7 .

 Before going on, take a look at the diff erent parts of the window.

 The menu bar and the toolbar at the top of the window provide easy access to com-

monly used tools. Most common tasks (such as creating new projects or compiling and

running programs) can be performed using either the appropriate menu option or a tool

in the toolbar, and it ’ s worth opening every menu and pointing to every tool to identify

where these commands are.

 In the left pane, you will fi nd the Projects and Navigator panes, as well as tabs for

Files and Services provided through NetBeans. We will use the Projects pane heavily in

this book because it displays all the diff erent fi les required by the current project, orga-

nized in directories based on the role that each of those fi les plays. The Navigator pane

Job Ready Java52

 Figure 3.6 The completed Java Application dialog

 Figure 3.7 A new empty project

53Lesson 3: Using an Integrated Development Environment

will be more useful in the more complicated programs we will create later in the book,

because it displays the classes and other objects that have been defi ned in the code.

 The larger pane on the right will display the code window, which we will look at

in more detail when we start to code. You can also close the Start Page tab before

continuing. You close the tab by clicking the x next to the tab title.

 Coding the “Hello, World!” Program
 A project is an organizational tool that developers use to keep related fi les together

while we create applications. However, unlike most editors you have probably used in the

past, a new project doesn ’ t automatically create a new fi le for our code. This means we

need to create the Java fi le for our “Hello, World!” program.

 Click the + next to HelloWorld in the Projects pane. This will expand that directory to d

display subdirectories created for our Maven project, as shown in Figure{ 3.8 .

 We will look at how each of these subdirectories works in a project as we go further

into the book. For now, we will use only the Source Packages subdirectory, which typi-

cally holds all the Java code fi les.

 Figure 3.8 Expanding the HelloWorld in the Projects pane

Job Ready Java54

 You can create a new Java fi le in one of two ways:

• Click the Source Packages icon in the s Projects pane, click the s New File button e ()

on the toolbar, and select Java Class in the s File Types list in the s New File dialog box.

• Right-click the Source Packages icon, point to s New , and select ww Java Class. s

 This will open the New Java Class dialog, as shown in Figure{ 3.9 .

 Name the class Hello . Verify that the new fi le ’ s location is the Source Packages direc-

tory and click Finish .

 After the fi le has been created, you will see it inside the Source Packages directory in

the Projects pane, and the fi le itself will open in the code editor, as shown in Figure{ 3.10 .

 By selecting to create the new class, NetBeans has created the starting code for you,

as shown in Listing{ 3.1 .

 Figure 3.9 Creating a new Java class

55Lesson 3: Using an Integrated Development Environment

 LISTING 3.1
 The Default Code for the Hello Class

 /*
 * To change this license header, choose License Headers in Project
Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */

 /**
 *
 * @author Student Name
 */
 public class Hello {

 }

 Figure 3.10 The new class fi le in the code editor

 NOTE Your default code might have a different value after @author . If so, r

that is okay! You are going to change this.

Job Ready Java56

 It is worth looking closer at this default code. As part of the default code, NetBeans

includes comment placeholders (lines between /* and */) as well as the following code:

 public class Hello {

 }

 It used the class name Hello because we named the fi le Hello.java . Using the same

name for both the fi le and the class helps the IDE better identify classes that might be

added to separate fi les within the project.

 Now update the entire contents of the fi le by entering the code in Listing{ 3.2 .

 LISTING 3.2
 The New Hello Code

 /**
 *
 * @author Your Name
 */
 package com.tsg.helloworld; // Use YOUR Group Id value here instead of com.tsg

 public class Hello {
 public static void main(String[] args) {
 System.out.println("Hello, World!");
 }
 }

 Let ’ s look at the changes:

• We removed the comments about licensing.

• Per the instructions there, you can use the NetBeans Template tool to

defi ne the default text of new classes, if you want.

• We left the comment with the author information, a common practice to identify

the author of a program.

• While the sample here says Student Name , NetBeans likely added your Win-e

dows or macOS username here instead. If not, enter your name instead.

• You can also include comments for @date or @purpose to provide even

more details about the project.

• We identifi ed the package that this class belongs to.

• In this example, we used com.tsg as the Group Id, but you should have used

your initials or other personal identifi er instead. Change this line as needed

for your program.

57Lesson 3: Using an Integrated Development Environment

• The comment starting with // is optional, and you can leave it out of your code.

• We use class Hello to correspond to the name of the fi le we are using.

• public static void main tells Java where the program itself starts.

• System.out.println tells Java to print out the text inside the parentheses to the

standard output, in this case the console.

 Figure 3.11 The Build button

 NOTE We will go over what this code is doing again in the next lesson,
so don ’ t be too concerned if you don ’ t fully understand it now.

 TIP If you look at Figure 3.9 , you will see that there is an option for
entering the package. You could have used this drop-down to select
existing package names, which would have automatically added the
package line into your code. If your package doesn ’ t exist, you can enter it.

 Compiling the Code in NetBeans
 Now that we have entered the code into the editor, we need to compile our program.

Remember that our computer cannot read Java code directly, so we use a compiler to

convert our text into language that the operating system can use.

 In NetBeans, we compile a program by clicking the Build button—a button that looks d

like a hammer with a blue handle in the main toolbar, as shown in Figure{ 3.11 .

 Alternatively, you can also fi nd the Build option in the Run menu, or simply tap the F11

key to build the current program.

 After you click the Build button, the Output pane will open under the code editor,

showing the status of the build, as shown in Figure{ 3.12 .

Job Ready Java58

 If the program compiled correctly, you will see a BUILD SUCCESS message in the

output pane, as shown in Figure{ 3.13 , along with other details about the build.

 Figure 3.12 Building the Hello program

 Figure 3.13 Build successful!

59Lesson 3: Using an Integrated Development Environment

 If you received an error message when you compiled the program, read the mes-

sage carefully—it will likely tell you where the error is if not exactly what error it found.

Correct the problem and use the Build button to compile the program again.

 Running the Program
 Now that our program is compiled, we can run it. Click the Run Project button (the greent

arrow icon) in the toolbar, as shown in Figure{ 3.14 , or tap F6 to run the program.

 You will be prompted to select a main class for execution, as shown in Figure{ 3.15 .

 Figure 3.14 The Run Project button

 Figure 3.15 Selecting the class
to execute

Job Ready Java60

 We have to tell NetBeans and Maven which of our classes contains the main method

that we want to run. This is an easy choice for this program since we have only one class:

Hello . Click Remember Permanently and then click y Select Main Class. s

 NetBeans will now run your program, and the text Hello, World! should appear in the

output pane, as shown in Figure{ 3.16 .

 Congratulations! You have used an IDE to write, compile, and run your Java program!

 USING THE DEBUGGING TOOLS
 If you were able to enter Listing{ 3.2 without making any mistakes, then congratulations

again on a job well done! Errors do happen, however. We will look at errors (more for-

mally called exceptions) in more detail later, but in general, three types of errors occur in ss

software code.

• Compilation errors

• Runtime errors

• Logic errors

We will take a quick look at each of these.

 Figure 3.16 The program output

61Lesson 3: Using an Integrated Development Environment

 Compilation and Syntax Errors
 Syntax errors—which include missing or misplaced characters—are the most common

type of error, and they can prevent a program from compiling. A huge advantage of an

IDE over a text or code editor is that the IDE can help us identify syntax errors before we

even compile the code. When you compile code that includes syntax errors, they become

compilation errors, and even one syntax error can prevent the code from compiling.

 Chances are good that you typed at least one character wrong when you entered the

code earlier, or maybe you left out a bracket or a semicolon. In either case, you should

have seen red squiggle marks under the text where the error occurred, as well as a

red dot next to the line number. In Figure{ 3.17 , we can see that the word String is mis-g

spelled as Sring. g

 If you didn ’ t actually enter the code into the editor but simply read it in this book, go

back and do it. While it may seem time-consuming to type code while you are learning,

you will learn to use the code better and faster if you actually take the time to type it and

play with it.

 NetBeans is programmed to recognize common compilation and syntax errors and

point them out as you enter code. Paying attention to those signals can save you a lot of

time in the long run. However, if you do miss them and try to compile anyway, NetBeans

will help you identify the error output.

 Go back to your program and delete a character, like the t in t String . Because we haveg

already compiled the program (at least once), we can simply rebuild the program instead

of recompiling from scratch, by clicking the Clean and Rebuild button (d) next to the

Build button (or simply press Shift+F11). The output this time should include a compila-

tion error, as shown in Figure{ 3.18 .

 Figure 3.17 A syntax error

 NOTE The Build button completely recompiles all code in the program.
The Clean and Rebuild button identifi es code that has changed since
the last build and recompiles only the classes that contain the changed
code, which is more effi cient in larger programs.

Job Ready Java62

 Looking at Figure{ 3.18 , you can see that the error message in this example reads as follows:

 COMPILATION ERROR :
 com/tsg/helloworld/Hello.java:[8,29] cannot find symbol
 symbol: class Sring
 location: class com.tsg.helloworld.Hello
 1 error

 The message includes details about what fi le the error is in (Hello.java), what line

number the error is on (8), and the fact that it cannot fi nd (or recognize) Sring. g

 Fix the error and click Clean and Rebuild to recompile the code and verify that the d

error was corrected.

 Figure 3.18 A compilation error

 NOTE One of the values of using an IDE like Maven is that it will do
some work in the background while you are creating your program. This
work includes compiling and checking your code to fi nd some possible
compilation and syntax errors while you are entering your code. When
you entered String wrong in the previous listing, you might have noticed
that the IDE drew a red squiggly line under the word identifying that
something was not right.

63Lesson 3: Using an Integrated Development Environment

 Runtime and Logic Errors
 Exceptions and logic errors are harder to debug. Exceptions are errors that prevent the

code from running after it has been compiled, and they include things like dividing a

number by 0, which is mathematically impossible.

 Logic errors are related to how we defi ne the values that go into the code and that

produce unexpected output, even when there are no syntax errors and the code runs

without errors. For example, you may write a program designed to multiply 5 and 6 but

get the result of 35 instead of 30.

 Debuggers and Debugging
 IDEs like NetBeans give us a debugging tool that uses breakpoints to help us fi nd runtime s

and logic errors, by allowing us to see the values or output of specifi c lines of code as the

code runs, rather than having to wait until the entire program runs.

 It is hard to see how breakpoints work with only one line of executable code, so let ’ s

add a second print line. Listing{ 3.3 provides an update to our Hello class.

 LISTING 3.3
 A Hello Class with Another Line of Code

 /**
 *
 * @author Your Name
 */
 package com.tsg.helloworld;

 public class Hello {
 public static void main(String[] args) {
 System.out.println("Hello, World!");

System.out.println("My name is Harry!");
 }
 }

 If you rebuild and run the program again, you should see both lines print in the output

window, as shown in Figure{ 3.19 .

Job Ready Java64

 Adding a Breakpoint
 We will add a breakpoint to the new line of code and then see how the debugger tool

uses the breakpoint. We do this in several ways.

 Right-click the line number next to the second print command, point to Breakpoint, t

and select Toggle Line Breakpoint , as shown in Figure{ 3.20 . In this example, the linet

number is 10, but your line number may be diff erent.

 Figure 3.19 Output from the new Hello class

 Figure 3.20 Right-clicking to set a breakpoint

65Lesson 3: Using an Integrated Development Environment

 After setting the breakpoint, click the Debug Project button (t), which is next) to the

Run button or use Ctrl+F5 to run the program in Debugger Mode, as shown in Figure{ 3.22 .

 Figure 3.21 A breakpoint has been set.

 NOTE If you see both lines of output, you probably hit the Run button
instead of the Debug Project button.

 NOTE The fi rst time you run the debugger, you might be asked again
to select the main class. Do this just as you did before when running the
program.

 As you can see in Figure{ 3.22 , the Debugger pane will open under the code window

with Variables, Breakpoints, and Output tabs, and the Debugger panel will open to indi-

cate that the program is running and the debugger stopped at the breakpoint on line 10.

You should see output similar to the following:

 A red square will appear on the line number, and the line itself will be highlighted in

red to indicate that the breakpoint has been set on that line, as shown in Figure{ 3.21 .

 NOTE You can also set a breakpoint by clicking the line of code where
you want to set the breakpoint. Then select Toggle Line Breakpoint from t
the Debug menu in the IDE. You can also highlight the line where you
want to set the breakpoint and then select Ctrl+F8.

Job Ready Java66

 User program running
 LineBreakpoint Hello.java : 10 successfully submitted.
 Breakpoint hit at line 10 in class com.tsg.helloworld.Hello by thread main.
 Thread main stopped at Hello.java:10.

 Click the tab that reads Debug (HelloWorld) to see the last output value, as shown in

Figure{ 3.23 .

 As you can see in the Debug tab shown in Figure{ 3.23 , the following information is

displayed:

 --
 Building HelloWorld 1.0-SNAPSHOT
 --

 --- exec-maven-plugin:1.5.0:exec (default-cli) @ HelloWorld ---
 Hello, World!

 This tells us that the program stopped executing after outputting the phrase

Hello, World! .

 Hit the F5 key to tell the debugger to continue. The program should fi nish running and

display the second line of text in the Debug output pane.

 Figure 3.22 Running to a breakpoint

67Lesson 3: Using an Integrated Development Environment

 --- exec-maven-plugin:1.5.0:exec (default-cli) @ HelloWorld ---
 Hello, World!
 My name is Harry!
 --
 BUILD SUCCESS

 You can remove the breakpoint the same way you added it: right-click the square,

point to Breakpoint, and click t Toggle Line Breakpoint.t

 Figure 3.23 The Debug tab

 NOTE In Lesson 11, “Debugging your Applications,” we will go into
greater detail on debugging.

 UNDERSTANDING SOURCE CONTROL
 Source control is an integral part of the software development process. The proper use

of source control can be the diff erence between having a copy of fi les when they appear

to be lost and really losing the fi les. Hard drive failures, fi les being accidentally over-

written, and other catastrophes are hard to avoid; they just happen sometimes.

Job Ready Java68

 Source control management systems are designed to keep history and revision infor-

mation about the fi les and projects stored within a repository, which is an online storage

space usually maintained through a source control manager like GitHub or Bitbucket. By

storing this information, we have a complete history of everything that happened to the

projects within the repository. In the event of a catastrophe, we can recover a previously

saved version. Also, by saving our changes, we can easily share work with other devel-

opers and collaborate on projects regardless of location.

 It is advised that you always use some kind of source control for all projects. Git is a great,

easy way to get started with source control, and you can continue its use into enterprise and

large-scale projects. It grows with your needs. Every time you reach a meaningful stopping

point while writing a program, it is a good idea to commit the fi les and push the changes to a

GitHub repository. Keeping your code in GitHub makes sense for the following reasons:

• It creates a backup of the code, which you might fi nd useful if something disas-

trous should happen to your computer during the course.

• If you use multiple computers, you can use Git to synchronize all your fi les across

computers.

• It will allow you to easily share your code.

 As a developer, you will likely use Git regularly to share code with other team mem-

bers, so get in the habit early of committing and pushing code often.

 Becoming familiar with source code management (SCM) systems (like Git and GitHub)

gives you real-life experience in a widely used tool. Your employer may use a system dif-

ferent from Git or GitHub, but the principles are the same, regardless of the software

used to implement them. In fact, most open source software (including many popular

packages such as Android and Firefox) allow anyone to fork the current version of the

software—copy the code to their own personal repository—to experiment with it and

see how it works. Once you have some coding experience, you can even add your own

features to an existing open source software package and submit them to the developer

group of that package for review.

 NOTE You don ’ t have to use Git or GitHub to use this book; however,
when you start building applications for more than just learning the
language, we highly recommend that you consider their use or the use
of a similar version control product.

 NOTE You can fi nd offi cial documentation on getting started with Git at
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git.

69Lesson 3: Using an Integrated Development Environment

 SUMMARY
 Congratulations! Here is what we covered in this lesson:

• We discussed and explored the main features of an IDE: code editor, debugger,

and build automation.

• We created, compiled, ran, and debugged “Hello, World!” in NetBeans.

• We looked at the display of error messages and output in NetBeans.

• We looked at basic debugger operations in NetBeans.

 With your tools set up, you are ready to go! In the next lesson, we will start digging

into the Java programming language.

P A R T I I

 Basics of Object
Oriented

Programming
 Lesson 4: Using Program Statements and Variables

 Lesson 5: Collecting and Parsing Input from the User

 Lesson 6: Pulling It All Together: Building a Useful Program

 Lesson 7: Controlling Program Flow

 Lesson 8: Looping Program Flow

 Lesson 9: Understanding Flowcharts and Algorithms

 Lesson 10: Adding Randomness to Your Programs

 Lesson 11: Debugging

 Lesson 12: Adding Methods

 Lesson 13: Organizing with Arrays

Lesson 4

 Using Program
Statements
and Variables

 Have you ever tried to learn another spoken language? Have

you thought about what is involved in this process? Natural

languages are composed of many things: language constructs

(nouns, verbs, adjectives, etc.), word order, and tense, to name a

few. These features are common to all natural languages, so to

learn a new language, you must understand how these features

work in that language.

 Learning a programming language is similar—you must

understand the language constructs and how to say something

that makes sense in the language. When learning your fi rst

programming language, you have a couple of additional

Job Ready Java72

challenges. Not only do you have to learn the programming

language, but you also have to learn the meta-language of

programming. In other words, you must learn how to talk about

programs and programming languages. You will also have to learn

the language of the industry and how we talk about software, the

process of software development, and computer technology in

general. This is a lot to learn at once and can be quite diffi cult at

fi rst; however, it will get easier as you gain experience.

 In this lesson, your journey begins with the smallest pieces of the

Java language: programs, statements, and variables.

 LEARNING OBJECTIVES
 By the end of this lesson, you will be able to:

• Defi ne the term computer

• Compare data and information

• Diff erentiate between program and programming

• Explain the importance of objects and specifi cations in creating programs

• Describe the diff erence between syntax and semantics

• Explain why the use of comments is so important in development

• Explain the purpose of an identifi er

• Explain the diff erence between primitive data types and reference or developer-defi ned

data types

• Identify literals in code

• Use variables in code

• Use expressions in code

• Know the Java operators and the order in which they are evaluated

 APPROACH
 We will take a bottom-up approach in this course. We will start with the smallest pieces

of the language and build our vocabulary—at fi rst, it will be a lot like “See Spot run,” but

73Lesson 4: Using Program Statements and Variables

we will quickly move on from there. As our vocabulary grows, we will look at more com-

plicated statements and add larger and larger constructs.

 Learning to write software is like learning how to write fi ction or learning how to play

an instrument. In fi ction writing, you start with the basic vocabulary and build on it (after

all, you cannot write the next great American novel if you only know six words). Then,

you move on to more complicated sentences, paragraphs, chapters, and fi nally the novel

itself. Similarly, when learning to play an instrument, you start with the individual notes,

then scales, then more complicated rhythms, melodies, chords, and harmonies, and

fi nally entire songs.

 Learning to write software is a process: you must start at the beginning, build a strong

foundation, and—most importantly—practice. A lot.

 CONCEPTS
 To begin, we will look at some concepts you will need to write good software: com-

puters, data and information, programs and programming, models and metaphors,

objects, specifi cations, and, fi nally, syntax and semantics. We must keep these concepts

in mind because computer programs are not merely a sequence of characters on the

screen, typed in the right order to magically make things happen. We write programs

that instruct the computer to process data and to solve real problems.

 Computers
 So, what is a computer, anyway? Computers are seen and used every day, but what are

they? One defi nition is as follows:

 An electronic device that processes data according to a set of instructions contained in

a program.

 This is a general defi nition that covers all the bases for our purposes. One thing to

keep in mind is that it takes both the hardware (computer) and the software (program)

to accomplish anything useful. Most people do not program computers—most people

simply use them. You will be doing both as you go through this book.

 Data vs. Information
Data and a information are two words that are closely related and are often used inter-n

changeably, but they have diff erent meanings. Data is the raw material from which infor-

mation is built. An example of data is a number like 120. You can recognize it as a number,

but it does not have any meaning. Does it refer to your current speed? The temperature?

Job Ready Java74

How much money you have in your pocket (in dollars or pennies)? Something else?

Information is interpreted data, and it is the interpretation that gives it meaning. The

computer processes data, but we give that data meaning and interpret the output as

information.

 Programs and Programming
 What is a program? What is programming? A program is a set of instructions that, when m

run on a computer, solves a particular problem or performs a task. For example, maybe

the program will add any two given numbers together and produce the sum. Program-

ming is the act of writing those instructions for the computer to solve the problem.

One thing to keep in mind is that the computer cannot and will not help you solve any

problem; it simply does what you tell it to do.

 You must be able to solve a problem on paper before you can tell the computer how

to solve it!

 For the most part, programming is not about math—it is about solving problems,

organization, and structure. It is what we do when we write these sets of instructions.

This implies that you need to know what the problem is and know how to solve it before

you can even begin to write a program. Knowing this is something that many beginning

developers fail to understand.

 Models and Metaphors
 We use models and metaphors to help us program solutions to problems. If our pro-

grams are to solve real-world problems, they must distill the problem down to its

essence, model the important pieces, and then calculate the result. One great example

of a computer metaphor is the concept of a “desktop” on your computer. It is not really a

desktop, but the metaphor is useful in helping us to organize fi les (folders and fi les are

also metaphors) and icons that we use.

 Objects
 One of the most important metaphors that we use in Java is the object. This metaphor

is not used in Java alone; it is used in all object-oriented languages. Objects represent

things, and the world is full of things. Things have properties (weight, volume, color,

etc.), and they have actions that they can perform (walk, turn left, fl y, etc.). Objects

model these properties and actions. We are not going to get into objects too deeply

until Part 3, but keep the concept of objects in mind as we move through the lessons in

this part.

75Lesson 4: Using Program Statements and Variables

 Specifi cations
 Specifi cations are important to the process of writing software. They tell us what

problem we are to solve. Without a specifi cation, there is no way of knowing what kind

of program to write. Specifi cations do not have to be elaborate, but they do have to

state the problem to be solved and any constraints around the problem.

 Syntax vs. Semantics
 One thing that can be frustrating to beginning programmers is how literal the com-

piler is. If you do not type in perfectly formed Java statements, the compiler will not

understand what you mean. Beginning programmers spend a lot of time worrying about

syntax—after all, if the compiler won ’ t compile your code, you cannot run your program.

You will learn proper Java syntax in this book (as discussed earlier, we ’ ll build your vocab-

ulary); however, the main emphasis of your learning will be on semantics: the meaning

and purpose of the various language constructs and (most importantly) how and when to

use them to solve problems.

 LANGUAGE BUILDING BLOCKS
 Now that we are familiar with some of the concepts involved in programming, we are

ready to move on to the Java language itself. In the fi rst two lessons of this unit, we

wrote the simple “Hello, World!” program. We got familiar with the basics of a Java pro-

gram, and now it is time to take a deeper look. We will start with some beginning vocabu-

lary pieces and then look at the rules for how those pieces can be used. These pieces are

all related, so we will cover all of them in this section.

 Comments
 Comments are used to document your code. Comments are important for us as devel-

opers, but not for the computer itself because the compiler and runtime will ignore

these comments. Adding comments while developing and writing your code is an espe-

cially important habit to get into. These comments may be used by other developers who

come along later to maintain or modify your code, but often these comments will be use-

ful to you as well.

 Comments are written clues that we leave for ourselves. What was I thinking when I

did this, and why did I implement it the way I did? Comments can be extremely helpful

if we come back to our code in two or three months. They are also helpful to our team-

mates who might have to review our code as well.

Job Ready Java76

 If you are new to programming, you should know that it is quite common to be asked

to go back and enhance or fi x code that you wrote perhaps six months or a year ago.

It is likely that you would have worked on several projects since that original code was

written, which makes it hard to remember why you did what you did. This is where code

comments can save the day. One of my favorite quotes of software development is by

Hal Abelson:

 Programs must be written for people to read, and only incidentally for machines

to execute.

Java supports three types of comments, which will each be covered in turn:

• Single-line (a trailing or end-of-line comment)

• Multiline (a traditional comment)

• Doc (or Document comment)

 Single-Line Comments
 Single-line comments begin with // . The compiler will ignore everything between the /

// and the end of the line. Single-line comments are handy if you just have to jot some-

thing down.

 The following is an example of a line of Java code with a single-line comment at the end:

 System.out.println("Hello, World!"); // print to console

 Multiline Comments
 Multiline comments begin with /* , can span multiple lines, and end with */ . The compiler /

ignores everything between /* and */ inclusive. The following snippet of code has a mul-

tiline comment that begins on the fi rst line and goes through the fi fth line. This is then

followed by three lines of Java code.

 /*
 public static void main(String[] args)
 This is the entry point for the program.
 Prints "Hello, World!" to the console.
 */
 public static void main(String[] args) {
 System.out.println("Hello, World!");
 }

 NOTE Multiline comments are also known as block comments .

77Lesson 4: Using Program Statements and Variables

 Doc Comments
 Doc or document comments begin with /** , can span multiple lines, and end with */ . The/

compiler ignores everything between /** and */ inclusive. Document comments may

appear to be nearly identical to multiline or traditional comments, except that they dif-

fer in two ways. First, they have the extra asterisk at the beginning. Second, document

comments are generally used in only specifi c locations in your code. Doc comments are

used by the Javadoc utility to generate HTML documentation for your program. Because

of this, doc comments can also be referred to as Javadoc comments . The following is ans

example of a simple document comment:

 /**
 Documentation for a method
 */

 Anytime we have that slash and two stars at the beginning, we know that it is a doc

comment. Doc comments can document our classes and methods. Some of the Java

tools you use that generate code are likely to add doc comments automatically for

you when they generate code. For example, in the IntelliJ tool, if you put a slash fol-

lowed by two asterisks and then hit Return, it automatically puts a doc comment block

into the code.

 Javadoc comments can also be used for each of the methods that you will create.

They give you a chance to explain what the code is going to do as well as describe what

it expects. This could include something like the entry point to the program as well as a

description of any arguments that are used.

 NOTE Javadoc comments are good for classes and also good for
methods; however, you don ’ t generally put Javadoc comments on the
main method because the main method is everywhere and is always
the entry point into a Java program.

 As you will be writing methods in the future, you might want to put doc comments

on them. That way, people will understand how to use your methods or what you were

thinking about when you created that method.

 In a previous lesson you were introduced to a “Hello, World!” application, which you

created using the NetBeans IDE. The IDE created some of the code, and then you added

to it. Listing{ 4.1 presents part of the code presented in that lesson.

Job Ready Java78

 LISTING 4.1
 “Hello, World!” Program

 /*
 * To change this license header, choose License Headers in Project
 * Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */

 /**
 *
 * @author Your Name
 */
 public class Hello {
 public static void main(String[] args) {
 System.out.println("Hello, World!");
 }
 }

 In this listing, you can see two of the types of comments. In the fi rst fi ve lines of the list-

ing, you can see a multiline comment. This starts with a slash followed by a single asterisk

and ends with a single asterisk followed immediately by a slash in the fi fth line. After this

block comment, you see that the next code line starts with a forward slash followed by two

asterisks. As you learned, this is the start of a doc comment. This doc comment continues for

a couple more lines before ending with an asterisk followed immediately by a forward slash.

 Using Comments
 There are a couple things to note about comments. Even though your compiler will

ignore them and even though comments will not really aff ect the way your program

runs, you should be judicious about how you comment things. For instance, the single-

line comment example in the previous example would not be a valuable comment. The

comment says that the code prints to the console. That is what System.out.println

does, so it really is not necessary to say that as a comment because it is redundant.

 If, however, you have some kind of calculation you are doing such as a conversion of

temperatures, then you could put a note in the comment to say that the formula con-

verts from Fahrenheit to Celsius or from Celsius to Fahrenheit. If you have code that is

kind of tricky, then you could put a comment to let other people know what is going on.

 Be judicious, but make sure you include comments, because it does make it a lot

easier for your teammates and a lot easier for yourself when you come back and look at

your code. Of course, when maintaining your code, you should always remember to also

maintain and update your comments.

79Lesson 4: Using Program Statements and Variables

 Identifi ers
 An identifi er is a sequence of characters used to name a variable, method, class, or

package. You will learn about variables, methods, classes, and packages later. For now,

you need to know that a Java identifi er must follow these rules:

• It cannot span multiple lines.

• It must only contain numbers, letters, underscores (_), dashes (-), and dollar

signs ($).

• It must start with a letter, underscore, dash, or dollar sign.

• It cannot contain any spaces.

• It cannot be an underscore on its own.

 Java reserves the words shown in Table{ 4.1 , which means you cannot use them as

identifi ers.

 Table 4.1 Java Reserved Words (Keywords and Literals)

abstract assert boolean break byte
case catch char class const
continue default do double else
enum extends false fi nal fi nally
fl oat for goto if implements
import instanceof int interface long
native new null package private
protected public return short static
strictfp super switch synchronized this
throw throws transient true try
void volatile while _

 TIP A common use of comments is to temporarily disable lines of code
during the development process. Commenting out code allows you to
see what was there before you started experimenting with the code. To
restore the code, you just remove the comment markers.

 NOTE You can read more about using comments in the online
documentation at www.oracle.com/technetwork/java/codeconventions-
141999.html .

Job Ready Java80

 Data Types
 We have talked about data and information. You should already understand concepts

such as numbers or text. But how do we tell the computer that we would like to do some-

thing with a number or keep track of a name? This can be done by telling the computer

about the kind of data we want to deal with by using something called a type.

 A data type describes the internal representation of a piece of data and the opera-e

tions that can be applied to that data. A type has certain predefi ned characteristics.

These characteristics include what kinds of things are valid and how big those things

can be. You can think of types as defi ning the shape and size of the data that fi ts the

defi nition.

 For example, int is a data type in Java. Valid int s are whole numbers in the range

from roughly negative two billion to positive two billion. The word apple is not an e int . In

fact, it is not even a number. And the number 12.45 is not an int either because it is not a

whole number. While the number four billion is a whole number, it is too big to be an int .

So, you can see that for something to fi t the defi nition of a type, it has to meet{all the

criteria of the defi nition.

 Java has two kinds of data types: primitive (which are part of the language defi nition)e

and reference (or developer-defi ned). We will cover primitive data types in this lesson.e

 Table 4.2 Java Primitive Types

Type Contains Default Size Range

boolean true or false false 1 bit NA
char Unicode character \u0000 16 bits \u0000 to \uFFFF
byte Signed integer 0 8 bits -128 to 127
short Signed integer 0 16 bits -32768 to 32767
int Signed integer 0 32 bits -2147483648 to 2147483647

 NOTE It ’ s also possible to create your own types. In fact, each class we
write is actually a new type. For now, just concentrate on the concept of
the type itself.

 Table{ 4.2 presents the Java primitive data types. The table includes the type along

with a description of what it can contain, the default value of the type, the amount of

memory needed to store the data type (size), and then the range of values that can be

placed into the type.

81Lesson 4: Using Program Statements and Variables

 It is worth noting that because computers are binary machines, they only understand

whole numbers. As such, decimal numbers such as fl oats and doubles are really inher-

ently imprecise. Floats and doubles should never be used for precise calculations for

numbers such as currency.

 Statically Typed Languages
 A couple of terms that you will hear associated with types are statically typed and

dynamically typed languages. Java is a statically typed language. This means we have to

say the type of a piece of data before we use it. By doing this, we let the compiler know

ahead of time the kind of data that is valid for particular purposes and at particular

points in our program. In other words, all the types for all the data in our program are

known at compile time.

 Type Conversion
 On occasion, you will need to convert one data type to another. In general, the compiler

will automatically convert a narrower data type (i.e., one containing fewer bits) to a

wider data type (i.e., one containing a larger number of bits) but will not do the reverse.

In the reverse case, the developer is generally required to explicitly tell the compiler how

to convert the data type with a cast operator, which will be covered later.

 To illustrate this, imagine that you have a small carry-on piece of luggage for your trip.

If you wanted to, you could easily fi t the contents of the small carry-on into a larger suit-

case. You wouldn ’ t even have to think about it; everything would just fi t. However, if you

started with the large suitcase and wanted to switch to the smaller carry-on, you would

have to make decisions as to what items (shirt? shorts? camera?) you would have to leave

out. You would have to make some explicit decisions about what stays home and what

goes with you.

Type Contains Default Size Range

long Signed integer 0 64 bits -9223372036854775808 to
9223372036854775807

fl oat IEEE 754 fl oating
point

0.0 32 bits ±1.4E-45 to ±3.4028235E+38

double IEEE 754 fl oating
point

0.0 64 bits ±4.9E-324 to
±1.7976931348623157E+308

Job Ready Java82

 Literals
 A literal is a sequence of characters that represents a data item in the source code. Java l

recognizes six data literals, listed here:

• boolean : The reserved words true and false are boolean literals.

• char : A char (character literal) is represented by a single character surrounded

by single quotes (' B '(), a Unicode escape sequence (u\000), or a regular escape

sequence (\n).

• Floating-point number : Examples of fl oating-point literals are: 3.14, 2.56E+31,

and 4.56D. The letter F or f can be used to specify a fl oat data type; D or d is used

to specify a double data type.

• Whole number : Integer literals can be written as decimal (104) or hexadecimal

(0x19F). They are of the int data type unless followed by an uppercase or lower-

case L , in which case they are of the long data type.

• Null : The reserved word null is a null literal. We will look at this in more detail in

the next unit.

• String : This is a sequence of characters surrounded by double quotes. "Hello,

World!" is a string literal.

 Variables
 Variables are used in combination with the Java type system that you saw earlier. A

variable is a named piece of memory where you can stash the value of something. The e

reason that these spots in memory are called variables is because we can change the

value of the data that we put in the spot in memory as our program runs.

 To declare a variable, we simply type in the data type, for example, int , followed by

the name that we want to give the variable, for example, counter . In short, you must

declare your variable according to the following pattern:

 data_type variable_name;

 NOTE The ability of the compiler to check that all types are compatible
is known as type safety , and it ’ s one of the advantages of a staticallyyy
typed language. The type safety feature saves you time and effort when
coding because it will prevent you from doing things that are undefi ned
or unexpected.

83Lesson 4: Using Program Statements and Variables

 The following code snippet creates a variable on the third line that is called counter

and is of the data type int . The code also creates a variable called isDone on the seventh

line that is of the data type boolean .

 public static void main(String[] args) {

 // declare an int called counter
 int counter;

 // declare a boolean called isDone
 boolean isDone;
 }

 Once you have declared a variable, you can assign a value to it. The following code

stores the value of 7 in the counter variable, and it stores the value of false in the

isDone variable:

 public static void main(String[] args) {

 // declare an int called counter
 int counter;
 // now assign the number 7 to counter
 counter = 7;

 // declare a boolean called isDone
 boolean isDone;
 // now assign false to isDone
 isDone = false;
 }

 You can also declare a variable and assign a value at the same time, if you want:

 public static void main(String[] args) {

 // declare an int called counter and assign the value 7
 int counter = 7;

 // declare a boolean called isDone and assign false
 boolean isDone = false;
 }

 When assigning values to variables, you must be sure to assign the correct type. Fail-

ing to do so will result in a compilation error. For example, you cannot assign the number

34 to a variable that is of the type boolean .

Job Ready Java84

 The name of your variable should be descriptive of what you are going to use the

variable for in your program. In our example, you would expect a variable called coun-

ter to, well, count something. Make sure your variable names are easy to read and clear

on what they do. You might be tempted to just use c for the name of your counter, or

ctr , but don ’ t do it. Just name the variable what it is; for a counter, that would be the r

name counter .

 Another important point to note when creating variables is the style of the variable

name. In Java the convention is to use camel case , which means the variable name starts e

with lowercase but any new words are capitalized. In the previous examples, you can see

that with isDone . If the variable name is one word, it is simply lowercased. It is important

to note that this is not something enforced by the Java compiler, but it is the agreed-

upon style that the vast majority of Java code written today will use.

 Constants
 On occasion, you will need to defi ne constants, or “magic” numbers, in your code.

Constants are similar to variables in that they are named pieces of data; however, onces

you set the value for a constant, it cannot be changed. For example, you may want to

defi ne a constant for pi or for min/max limits in a program.

 The convention in Java is that the name of constants should be in all caps and should

use underscores to separate words in the name. You should also declare constants using

the fi nal keyword as in the following examples:

 final int MAX_AGE = 99;
 final float PI = 3.14f;

 It is good practice to use constants rather than literal values in your code. The use of

constants makes your code more readable but also makes it more maintainable. Con-

sider the case where the business rules change and MAXAGE goes from 99 to 109. If you

are using a constant for MAXAGE , you only have to make this change in one place. If you

are using literals, you will have to make the change everywhere you use the literal. What

happens if you miss one?

 Operators and Expressions
 We now understand that Java requires types and that we can use variables to hold on

to pieces of data for a particular type. We also understand how to declare variables and

assign values to variables in our programs. But a big part of programming is fi guring out

how to actually get data into our variables and how to execute our programming logic.

85Lesson 4: Using Program Statements and Variables

 For this we will need a new kind of statement called an expression . An expression is

a statement that can be evaluated to produce a result. The actions that your program

takes are expressed in statements. There are many types of statements in Java, and

as we just mentioned, we have seen and used two of them: variable declaration state-

ments and assignment statements. Now, we will look at another kind of statement, the

expression.

 Expression statements can calculate values, assign values, and compare values. An

expression is a series of operators and s operands . An operator is a symbol that representss

an operation that returns a result. You should be familiar with basic operators and oper-

ands from everyday math. Operators are the symbols that do the work (such as +, -, *, /).

The plus sign is an operator that we have used, and it returns a result that is a number.

 An operand is a data element used by the operator. Using the plus sign, the operands

would be the two things that we want to add. So, in this case, the result of the opera-

tor is a number. The process by which we get from 5 plus 10 to 15 is called evaluation .

Figure{ 4.1 illustrates three expressions with operands and operators.

 One of the cool things about programming is that operands can come from anywhere.

Operands can be literals, which means we directly type the values into the code. Oper-

ands can also be variables, and the value of that variable will be used in the evaluation.

Finally, operands can be the result of method calls.

 Three Flavors of Operators
 Java as a language has a few more operators than grade-school math. It has 41, in fact.

Operators come in three types: unary, binary, and ternary. The type depends on the

number of operands that the operators requires.

 Unary Operators
 Unary operators require only one operand. (The negation operator is one example.)

Unary operators can be either prefi x (coming before the operand) or x postfi x (comingx

after the operand). Table{ 4.3 shows examples of unary operators.

Operators

Operands

Expression Expression

1000 / +counter +15 0 counter

 Figure 4.1 Operators and operands

Job Ready Java86

 Table 4.4 Binary Operators

Operator Description

Simple Assignment Operator
= Simple assignment operator
Arithmetic Operators
+ Additive operator (also used for string concatenation)
- Subtraction operator
* Multiplication operator
/ Division operator
% Remainder operator
Comparison Operators (Equality and Relational Operators)
== Equal to
!= Not equal to
> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to
instanceof Compares an object to a specifi ed type

 Table 4.3 Unary Operators

Operator Description

+ Unary plus operator (numbers are positive by default)
- Unary minus operator
++ Increment operator
-- Decrement operator
! Logical complement operator (inverts the value of a boolean)
~ Unary bitwise complement

 NOTE Note that while all the operators are being shown in this section
of the book, some, such as the bitwise operators, might be unfamiliar to
you. For now, just know that these operators exist. You will learn more
about many of these throughout this book.

 Binary Operators
 Binary operators require two operands. (Basic math operations fall into this category.)

Binary operators are infi x (the operator is between the operands). Binary operators fallx

into several categories, including the assignment, arithmetic, equality/relational, condi-

tional, and bitwise/bit shift operators. Table{ 4.4 lists the binary operators.

87Lesson 4: Using Program Statements and Variables

 As you can see, there are many categories of binary operators. The arithmetic opera-

tors work just like familiar math operators. The one that you might be less familiar with

is the remainder (or modulus) operator, which returns the remainder of an operation. As

such, if you did 7 % 2 , the result would be 1 because the remainder after dividing is 1.

 Another category of binary operators is the comparison operators. Comparison oper-

ators compare two values and producing a single value of true or false . Comparison

operators are used in conditional statements, where the outcome of a program is depen-

dent on the available input, rather than being predictable based on fi xed values.

 Conditional operators tend to be used with a comparison operator to allow for mul-

tiple tests to be done at once. In the case of && , you are looking for both conditions to

be true. In the case of || , you are looking for one or the other of the two conditions

to be true.

Operator Description

Conditional Operators
&& Conditional-AND
|| Conditional-OR
Bitwise and Bit Shift Operators
<< Signed left shift
>> Signed right shift
>>> Unsigned right shift
& Bitwise AND
^ Bitwise exclusive OR
| Bitwise inclusive OR

 NOTE Bitwise operators are a more advanced topic.

 Ternary Operators
 Ternary operators require three operands. There is only one ternary operator in Java: the

conditional operator, which is an infi x operator:

?: Ternary (shorthand operator for if-then-else statement)

 You ’ ll see the ternary operator in action when you learn about the if-then-else

statement later in this book.

Job Ready Java88

 Operator Precedence
 In addition to the diff erent types and categories of operators, Java also has 14 diff erent

levels of operator precedence. Precedence is the order in which you evaluate expressionse

when they are grouped together.

 For example, like in math, addition and subtraction are at the same level of prece-

dence. As a result, if all you have are addition and subtraction operations, you can really

do them in any order. In the following expression, you can choose to add the 3 to the 5

fi rst, or you can subtract the 2 from the 5 fi rst. In either case, the result will be 6.

3 5 2

 When operators have the same precedence, they are typically evaluated from left to

right. The exception to this is the assignment operator or the equal sign, and it is evalu-

ated from right to left.

 In your math classes, you might have learned the phrase “Please Excuse My Dear Aunt

Sally” to represent the order of math operations: Parentheses, Exponents, Multiplica-

tion and Division, and Addition and Subtraction. Parentheses were always evaluated

fi rst, followed by exponents, then multiplication and division, and fi nally addition and

subtraction.

 NOTE You will fi nd that as we explore expressions, many of the things you
learned in math classes transfer over nicely to programming.

 For the most part, as you use operators with their operands, you will fi nd that the

precedence in which they are evaluated is pretty logical. Java operates similarly to the

precedence you learned in math classes with parentheses being evaluated fi rst and so

forth. Table 4.5 presents the levels of operator precedence in Java with the fi rst level

happening fi rst, and the 14th happening last.

 Table 4.4 Operator Precedence

Operators Precedence

1 Postfi x expr++ rr expr--rr
2 Unary ++expr --expr +expr -expr ~ !
3 Multiplicative * / %
4 Additive + -
5 Shift << >> >>>
6 Relational < > <= >= instanceof

89Lesson 4: Using Program Statements and Variables

7 Equality == !=
8 Bitwise AND &
9 Bitwise exclusive OR ^
10 Bitwise inclusive OR |
11 Logical AND &&
12 Logical OR ||
13 Ternary ? :
14 Assignment = += -= *= /= %= &= ^= |= <<= >>= >>>=

 NOTE Because parentheses have the highest level of precedence, they
can be used to dictate the order of precedence.

 Pulling It All Together: Mathematical Expressions
and Operators
 We ’ ve covered a lot of material in this lesson on expressions, operators, operands, and

more. Listing{ 4.2 is rather long, but it helps pull a lot of the information together for you

to see it in action. Comments are used (since you learned about them in this lesson) to

describe what the code is doing!

 LISTING 4.2
 Mathematical Expressions and Operators

 /**
 * Program to show the use of expressions and operators
 * Comments provided throughout to explain what is happening!
 */
 public static void main(String[] args) {
 // Declare variables to use in the examples
 int result;
 int operand1;
 int operand2;
 int operand3;

 //
 // Assignment
 //
 // Initialize result with the value of 0 by using the
 // assignment (=) operator. The assignment operator takes the

Job Ready Java90

 // value on the right and assigns it to the variable on the
 // left
 result = 0; // now result has the value of 0

 // Initialize the operands
 operand1 = 5;
 operand2 = 7;

 // Assignment works with variable values as well as literal
 // values. We'll set operand3 to the same value as operand2
 operand3 = operand2; // now both have the value 7

 //
 // Addition
 //
 // Addition is a binary infix operator. It works with
 // literals:
 result = 42 + 53; // result is now 95

 // It also works with variables:
 result = operand1 + operand2; // result now equals 12

 // It works with a combination of literals and variables:
 result = 1 + operand1; // result now equals 6

 // You can chain addition operators together:
 // result now equals 20
 result = 1 + operand1 + operand2 + operand3;

 // Finally, the += operator is used to add a value to a
 // variable. result += operand1 is equivalent to
 // result = result + operand1.
 // NOTE: the initial value of result is used to calculate the
 // new value of result:
 result = 2; // set result to 2
 result += 4; // result is now equal to 6 (2 + 4)
 result += operand1; // result is now equal to 11 (6 + 5)

 //
 // Subtraction
 //
 // Subtraction is a binary infix operator. It works with
 // literals:
 result = 9 - 5; // result is now 4

91Lesson 4: Using Program Statements and Variables

 // It also works with variables:
 result = operand1 - operand2; // result now equals -2

 // It works with a combination of literals and variables:
 result = 15 - operand1; // result now equals 10

 // You can chain subtraction operators together:
 // result now equals 0
 result = 19 - operand1 - operand2 - operand3;

 // Finally, the -= operator is used to add a value to a
 // variable. result -= operand1 is equivalent to
 // result = result - operand1.
 // NOTE: the initial value of result is used to calculate the
 // new value of result:
 result = 2; // set result to 2
 result -= 4; // result is now equal to -2 (2 - 4)
 result -= operand1; // result is now equal to -7 (-2 - 5)

 //
 // Multiplication
 //
 // Multiplication is a binary infix operator. It works with
 // literals:
 result = 2 * 3; // result is now 6

 // It also works with variables:
 result = operand1 * operand2; // result now equals 35

 // It works with a combination of literals and variables:
 result = 2 * operand1; // result now equals 10

 // You can chain multiplication operators together:
 // result now equals 490
 result = 2 * operand1 * operand2 * operand3;

 // Finally, the *= operator is used to add a value to a
 // variable. result *= operand1 is equivalent to
 // result = result * operand1.
 // NOTE: the initial value of result is used to calculate the
 // new value of result:
 result = 2; // set result to 2
 result *= 4; // result is now equal to 8 (2 * 4)
 result *= operand1; // result is now equal to 40 (8 * 5)

Job Ready Java92

 //
 // Division and Modulus
 //
 // Division is a binary infix operator. It works with
 // literals:
 result = 6 / 3; // result is now 2

 // It also works with variables:
 result = operand1 / operand2; // result now equals 0

 // What?!?!?!?! When dividing integers, integer division
 // is used - we only get the whole number part of the
 // quotient. In this case, 7 goes into 5 0 times with a
 // remainder of 5
 // We use the modulus operator (%) to get the remainder:
 result = operand1 % operand2; // result now equals 5

 // It works with a combination of literals and variables:
 result = 20 / operand1; // result now equals 4

 // You can chain division operators together:
 // result now equals 1
 result = 245 / operand1 / operand2 / operand3;

 //The /= operator is used to add a value to a
 // variable. result /= operand1 is equivalent to
 // result = result / operand1.
 // NOTE: the initial value of result is used to calculate the
 // new value of result:
 result = 40; // set result to 40
 result /= 4; // result is now equal to 10 (40 / 4)
 result /= operand1; // result is now equal to 2 (10 / 5)

 //
 // Postfix and Prefix operators
 //
 // Finally, you can use the postfix and prefix operators
 // to add 1 to a variable. The postfix adds 1 after other
 // things are done, the prefix operator adds 1 before.

 operand1 = 10; // set operand1 to 10
 result = ++operand1; // adds 1 to operand then sets result to 11

 operand1 = 10; // set operand1 back to 10
 result = operand1++; // sets result to 10, and then sets operand
 // to 11
 }

93Lesson 4: Using Program Statements and Variables

 SUMMARY
 We covered a lot of information in this lesson. You learned about some concepts sur-

rounding programs and programming, including information about computers, pro-

grams, programming, models, metaphors, and how data diff ers from information. You

also were introduced to objects, specifi cations, syntax, and semantics.

 You also jumped into the Java programming language. You learned about the basic

building blocks of Java. You learned the diff erent types of comments and how to iden-

tify and use them. You learned about identifi ers, literals, and variables. You also learned

about the various data types as well as the diff erent categories of expressions. To tie

some of this together, you learned about expressions including operators and operands.

Not only did you learn a lot of core information about Java, you started the process

of putting the pieces together to do something—a process you will build upon in the

upcoming lessons.

 EXERCISES
 Now that you are digging into the Java programming language, it is time to introduce

some coding exercises to help you practice what you are learning. You will fi nd exercises

at the end of many of the lessons in the rest of this book. These exercises are sugges-

tions for things you can do to practice what you are learning. These are to do on your

own, so most will not include answers.

 The exercises for this lesson have you continue to use the IDE you installed previously.

As you work through these exercises, remember the following:

• Java project names should not include spaces or other nonalphanumeric

characters.

• Project names should be spelled using camel case, where the name starts lower-

case but each next word in the name is capitalized.

• At this point, all projects should be Java Maven applications.

 As you become more experienced with building projects in Java, you will use addi-

tional project types and fi les inside projects. For now, we are simply focusing on the

basics. There are several exercises for you to apply what you learned in this lesson:

Exercise 1 : ABeginning.java

Exercise 2 : ProjectGutenberg.java

Exercise 3 : CommentingCode.java

Exercise 4 : AllTheMath.java

Exercise 5 : BucketsOfFun.java

Job Ready Java94

 We will start with a couple of basic exercises to get used to creating text that will

appear in the console window when we run an application.

 Exercise 1: ABeginning .java
 In this exercise, you will write text to the console. Using NetBeans in the same way you

did in the previous lesson, create a new project, create a Java class fi le named ABegin-

ning.java , and enter the code provided in Exercise Listing{ 4.1 . The name of the fi le here

is important, as Java code is written in fi les that end with .java .

 EXERCISE LISTING 4.1
 ABeginning.java

 package com.sg.foundations.basics.core;

 public class ABeginning {

 public static void main(String[] args) {
 System.out.println("Hello World!");
 System.out.println("Hello from the Guild!");
 System.out.println("Typing code is easier than I thought ...");
 System.out.println("Typity Typity Type!");
 System.out.println("After I finish typing,");
 System.out.println("I'll compile my code.");
 System.out.println("And then when I run it,");
 System.out.println("The console will print out all my
brilliant words!");
 System.out.println("And it all starts with \'Hello World!\' ..");
 }
 }

 After you enter the code (and double-check it for errors), you can compile it by right-

clicking your project fi le in NetBeans and selecting _Build . This takes all your Java code dd

 Important!
 Enter all the code for each exercise. As tempting as it is to copy and paste the code
instead, you will learn more and understand the code better if you type every
character yourself. Making mistakes is part of the process of learning to program. You
will also learn how to take advantage of the shortcuts that your IDE offers.

95Lesson 4: Using Program Statements and Variables

and turns it into bytecode. This is the code that will run on the JVM, and these particular

compilations end with .class .

 Next, you can do the even more exciting part, running your code! Right-click your e

fi le, and this time select Run File . If you have typed everything correctly, you should seee

output like the following:

 Hello World!
 Hello from the Guild!
 Typing code is easier than I thought ...
 Typity Typity Type!
 After I finish typing,
 I'll compile my code.
 And then when I run it,
 The console will print out all my brilliant words!
 And it all starts with "Hello World!" ..

 If your output does not match or if you see some red text in the output window,

go back and double-check again: you have mistyped something, and you need to fi x

it! Remember, the computer only does what we tell it to do, so if there are errors, it is y

our fault!

 Remember that NetBeans only looks at the code, not the text inside quotation marks

that you want to appear in the console. Because the end users will see only the text

output, you should also proofread that text for spelling errors.

 Exercise 2: ProjectGutenberg .java
 Like a modern Gutenberg, the System.out.println() method takes in information and

prints it to the console terminal easily. We can print out whole books or even libraries

this way. In this exercise, you again write text to the console.

 NOTE Random note: There are other printing methods too. System.out
.print() , for example, takes in information does not also add a new
line character. You can fi nd more printing methods at docs.oracle.com/
javase/tutorial/essential/io/formatting.html .

 Complete the following steps:

1. Enter the code in Exercise Listing{ 4.2 into a Java class fi le named Project-

Gutenburg.java .

2. Update the code as necessary so that it matches the expected output.

Job Ready Java96

 EXERCISE LISTING 4.2
 ProjectGutenberg.java

 package com.sg.foundations.basics.core;

 public class ProjectGutenberg {
 public static void main(String[] args) {
 System.out.println("Did you know that in 1440 (or thereabouts),");
 System.out.println("Johannes Gutenberg invented the printing press?");
 System.out.println("He started out as a goldsmith!");
 System.out.println("His invention made it easy to print and");
 System.out.println("distribute books to anyone who wanted one.");
 System.out.println("We are like a modern Gutenberg,");
 System.out.println("printing vast amounts to the waiting console
with ease.");
 }
 }

 When you run this code, you should see the following:

 Did you know that in 1440 (or thereabouts),
 Johannes Gutenberg invented the printing press with moveable type?
 He started out as a goldsmith!
 His invention made it easy to print and
 distribute books to anyone who wanted one.
 We are like a modern Gutenberg,
 printing whatever we want to the console with ease.

 After you get the original code to produce the previous output, experiment using

System.out.print instead of System.out.println . Change the code as necessary to make

the output look like the following:

 Did you know that in 1440 (or thereabouts), Johannes Gutenberg invented the
printing press?
 He started out as a goldsmith!
 His invention made it easy to print and distribute books to anyone who
wanted one.
 We are like a modern Gutenberg, printing whatever we want to the console
with ease.

97Lesson 4: Using Program Statements and Variables

 Exercise 3: CommentingCode .java
 As you learned in this lesson, comments are used to add text to explain in plain speech

what code is doing. Comments can also be useful as a way of reminding you why you

used a specifi c version of the code, so you (or someone else on your team) know why you

wrote the code a specifi c way later in the development process.

 Let ’ s experiment with some basic comment approaches. Create a new Java class fi le

named CommentingCode.java using the code in Exercise Listing{ 4.3 .

 EXERCISE LISTING 4.3
 CommentingCode.java

 package com.sg.foundations.basics.core;

 public class CommentingCode {

 public static void main(String[] args) {

 // Comments are written to explain code in an easily
 // understandable way
 // Basically for single lines
 // anything after // is considered a comment
 System.out.println("Normal code is compiled and runs ...");
 System.out.println("Comments however ... ");// do not execute!

 // Comments can be on their own line
 System.out.println("..."); // or they can share like this

 // However if you put the // BEFORE a line of code
 // System.out.println("Then it is considered a comment");
 // System.out.println("and it won't execute!");

 /*
 This is an example of a multi-line comment, which is useful if
 you want to comment out multiple lines of code quickly.
 Console.WriteLine("Java ignores everything inside the comment
markers.");
 */
 }
 }

Job Ready Java98

 What appears in the console window when you run the program? Try moving or

removing some of the comment markers to see what happens.

 Exercise 4: AllTheMath .java
 While it is pretty cool that we can make a computer display specifi c text, remember that

computers can do so much more. One of the things they do really well is math. You just

have to give a program the raw values, tell it what do to with those values, and then let it

do the rest of the work for you.

 As a refresher, here are some of the operators we use for math:

+ for adding (or concatenating!)
- for subtracting
* for multiplying
/ for dividing
% for modulus (or remainders from dividing)

 As you learned, these are binary operators, which means you can use only two values

at a time with each of them. If you have a longer string (like 1 + 2 * 3), the computer will

perform one operation at a time, using one pair of values, and then use the result of that

operation as the second value in the remaining pair.

 Another set of operators you saw in the lesson are comparison operators. Compari-

son operators are also binary, with the purpose of comparing two values and producing a

single value of true or false .

== equal to
!= not equal to
> than
< less than
>= greater than or equal to
<= less than or equal to

 If you entered the expression 4 > 2 , you would get the result of true because 4 is

greater than 2. If you entered the expression 4 > 4 , you would get the result of false ,

because 4 is not greater than 4. Rather, they are equal. In a future lesson, you will learn

that comparison operators are used in conditional statements, where the outcome of

a program is dependent on the available input, rather than being predictable based on

fi xed values.

99Lesson 4: Using Program Statements and Variables

 Let ’ s see how to incorporate math statements into a Java program. Start by enter-

ing the code in Exercise Listing{ 4.4 (as is). Type this into a new class fi le named AllThe-

Maths.java .

 Build and run the code to make sure it works. If there are errors, fi x the problems before

going on. Once the code works correctly, change each of the "???" into the math-

ematical expression described in the comment for that operation, using the operators

described earlier.

 EXERCISE LISTING 4.4
 AllTheMaths.java

 package com.sg.foundations.basics.core;

 public class AllTheMaths {
 public static void main(String[] args) {
 System.out.print("1 + 2 is: ");
 System.out.println(1 + 2);

 System.out.print("42001 modulus 5 is: ");
 System.out.println(42001 % 5);

 System.out.print("5565.0 divided by 22.0 is : ");
 System.out.println(5565.0 / 22.0);

 System.out.print("223 times 31 minus 42: ");
 System.out.println(223 * 31 - 42);

 System.out.print("Is 4 greater than -1? ");
 System.out.println(4 > -1);

 System.out.println("\n****** Now make the computer do some harder
math!");

 System.out.print("8043.52 minus 4.2 plus 23.0 divided by 56.0 times
-76.13 is: ");
 System.out.println("???");

 System.out.print("11111 modulus 3 minus 67 minus 1 plus 9 is: ");
 System.out.println("???");

Job Ready Java100

 System.out.print("44 minus 22 minus 11 minus 66 minus 88 minus 76
minus 11 minus 33 is : ");
 System.out.println("???");

 System.out.print("22 times 3 minus 1 plus 4 times 6 minus -9 is : ");
 System.out.println("???");

 System.out.print("Is 67 greater than 4 * 5? ");
 System.out.println("???");

 System.out.print("Is 78 less than 4 * 5? ");
 System.out.print("???");
 }
 }

 NOTE Update one chunk of code at a time, building and running the
program after each update. That will help you identify errors earlier so you
can learn from errors as you go, rather than having to fi x lots of errors later.

 Here is what the result should look like after making all the updates. Do your results

match those shown here?

 1 + 2 is: 3
 42001 modulus 5 is: 1
 5565.0 divided by 22.0 is : 252.954545454545
 223 times 31 - 42: 6871
 4 is greater than -1: true

 ****** Now make the computer do some harder math!
 8043.52 minus 4.2 plus 23.0 divided by 56.0 times -76.13 is: 8008.05232142857
 11111 modulus 3 minus 67 minus 1 plus 9 is: -57
 44 minus 22 plus 11 minus 66 minus 88 plus 76 minus 11 minus 33 is : -89
 22 times 3 minus 1 plus 4 times 6 minus -9 is : 98
 67 is greater than 4 * 5: true
 78 is less than 4 * 5: false

 Exercise 5: BucketsOfFun .java
 Did you know that you can declare tons of variables all on the same line? You can! Also,

once you assign a value to a variable, you can use that variable to assign a value to

another variable.

 Let ’ s try it out!

101Lesson 4: Using Program Statements and Variables

 Enter the code from Exercise Listing{ 4.5 into a class called BucketsOfFun . Build and

run the program to make sure it works. What operators are being used to show that the

dog ate a bug? Why does the number of bugs not change when we change the number of

butterfl ies? The answers to these questions are in the comments in the program.

 EXERCISE LISTING 4.5
 BucketsOfFun.java

 package com.sg.foundations.variables;

 public class BucketsOfFun {

 public static void main(String[] args) {

 // Declare ALL THE THINGS
 // (Usually it's a good idea to declare them at the beginning of
 // the program)
 int butterflies, beetles, bugs;

 // Now give a couple of them some values
 butterflies = 5;
 beetles = 9;

 bugs = butterflies + beetles;
 System.out.println("There are only " + butterflies + " butterflies,");
 System.out.println("but there are " + bugs + " bugs in all.");

 System.out.println("Uh oh, my dog ate one.");
 butterflies--;
 System.out.println("Now there are only " + butterflies +
 " butterflies left.");
 System.out.println("But there are still " + bugs + " bugs left...");
 System.out.println("Wait a minute!");
 System.out.println("... maybe my computer can't do math, after all!");
 }
 }

 When you run this program, you should see the following output:

 There are only 5 butterflies,
 but there are 14 bugs in all.
 Uh oh, my dog ate one.

Job Ready Java102

 Now there are only 4 butterflies left.
 But still 6 bugs left, wait a minute!
 Maybe my computer can't do math, after all!

 TIP The operators ++ and -- are unary operators, which means they take
only one value (instead of two values, like a binary operator does). They
are used to increment an existing value to the next higher or next lower
value, as a shortcut for "+1" or "-1" , respectively.

Lesson 5

 Collecting
and Parsing Input
from the User

 Often, when we are dealing with input devices such as a

keyboard or reading data from text fi les, the incoming data

will be in string format. The string data often must be converted to

other data types such as integers or decimals before we can use

those values in our objects. The process of converting a string type

to another type is commonly referred to as parsing .

 In the fi rst part of this course, we will be doing a lot of our work

using the console window as the user interface, so we will use the

console for now. Later, we can use the same techniques when we

collect data from other sources, such as web forms or data sources.

Job Ready Java104

 LEARNING OBJECTIVES
 By the end of this lesson, you will be able to:

• Use Scanner to collect input from a user

• Parse input into specifi c data types

• Use parsed data in a program

 CONSOLE INPUT AND OUTPUT
 In many programs, we need to be able to accept input from a user as well as defi ne

output that the user will see. We ’ ve already seen the output side of things: the “Hello,

World!” application we started with is an example of this. Now we need to look at how

we can get input from the user using the console.

 TIP We often use the abbreviation I/O to refer to “input/output” processes.
In this lesson, we are using the console to accept input and create output,
but I/O processes can also happen in other interfaces using similar options.

 The ability to get input from the user allows us to write more interesting and useful

programs. The programs we have seen so far do only one thing, and they ’ ll always do

only one thing unless we go in and actually change to source code. If we can get input

from the user, we can write programs that adapt and react based on the data that the

user gives us; this allows us to do much more than we could before.

 We will use a combination of System.out.println and an object called Scanner to perform

console input and output. To illustrate this, we will create a small program called Adder.

 Adder Version 1
 The fi rst version of Adder shown in Listing{ 5.1 will just add two variables and print

the results to the screen. The values of the variables are hard-coded, so this version is

pretty boring.

 LISTING 5.1
 Adder.java: The Adder Program

 class Adder {

 public static void main(String[] args) {

105Lesson 5: Collecting and Parsing Input from the User

 // declare sum and initialize it to 0
 int sum = 0;
 // declare and initialize our operands
 int operand1 = 3;
 int operand2 = 2;

 //assign the sum of operand1 and operand2 to sum
 sum = operand1 + operand2;

 // NOTE: In the output below, the plus (+) operator
 // is acting as the string concatenation operator
 // instead of the addition operator. In Java, we use
 // the plus (+) operator to concatentate (or glue together)
 // string values.
 System.out.println("Sum is: " + sum);
 }
 }

 Enter this program into your Java IDE and then compile and run it. When you do so,

you should see the following output in the console window:

 Sum is: 5

 Let ’ s review this code to make sure you understand what is happening. This program

starts like the other Java programs you ’ ve entered, with the creation of a public static

void main routine followed by a string array called args . This routine contains the code

that will be executed for the Adder program.

 In this fi rst version of the program, three variables are declared and initialized with

assigned values. The fi rst thing you are doing is declaring a variable called sum as an inte-

ger, so type int is being used. The sum variable is being initialized to 0 at the same time.

After that, the two operands that will be used are declared and assigned values as well.

You can see that these are called operand1 and operand2 , and both are set to be of type

int as well. At the same time these are declared, each is set to a value. In this case, oper-

and1 is set equal to 3, and operand2 is set equal to 2.

 At this point, you have declared three variables and initialized their values. Next you

will want to assign the sum of operand1 and operand2 into the variable called sum . This

is done by setting sum equal to operand1 plus operand2 using the addition operator you

learned about in the previous lesson.

 At this point in our program, sum is going to equal 5. So, the last thing to do is print

that out to the screen using our friend system.out.printlin . You can see that system.

out.printlin is being used to print a string (“Sum is: ”). This string, however, is fol-

lowed by a plus sign and the sum variable. In this case, the plus sign is not the addition

operator, but rather is acting as the string concatenation operator. The result is that a

string version of the value stored in sum will print, which is the number 5 .

Job Ready Java106

 Adder Version 2
 The fi rst Adder program showed output, but no input. Now we ’ ll modify version 1 so that

we ask the user for the value for operand1 and operand2 . This is the technique we will

use for all console applications going forward in this book.

 Declaring and Initializing Our Variables
 In the updated listing, we will create and initialize the same three variables; however,

we ’ ll set operand1 and operand2 to 0 as default values.

 int sum = 0;
 int operand1 = 0;
 int operand2 = 0;

 Setting Up a Scanner Object
 To get the numbers (input) from the user, we ’ ll need to set up a scanner object. A

Scanner object is what allows you to read in information from the standard input, which

is generally the console. A Scanner object is a nonprimitive data type. You are going to

declare a scanner similar to how you declared an integer. You will say the data type fol-

lowed by a variable name. In this case, instead of using int , you will use Scanner (with a

capital S) as the type, and we ’ ll call the new variable myScanner .

 Scanner myScanner

 Initializing a nonprimitive data type (in this case, your new scanner) is a little bit dif-

ferent from what you ’ ve seen before. Most of the time, nonprimitive data types get ini-

tialized by creating a new object. You ’ ll learn more about objects and this initialization

process in a later lesson. For now, just know that Scanner is an object. To instantiate an

object, we have to use the new operator to create a new one, and we have to say that it is

a new scanner that is being created:

 Scanner myScanner = new Scanner();

 Of course, you aren ’ t done setting this up quite yet. The scanner needs to be pointed

toward the thing that we want to read. In this case, it is System.in . At this point, our com-

plete instantiation of our scanner now looks like this:

 Scanner myScanner = new Scanner(System.in);

 NOTE When you deal with strings, the plus sign is what is known as the
string concatenation operator.

107Lesson 5: Collecting and Parsing Input from the User

 If you enter this line into your IDE, you are likely to notice some angry red squiggly

lines under Scanner . The system doesn ’ t really know what the scanner is because the

scanner is in a diff erent part of the Java source code. If you are using NetBeans, then

if you hover your mouse over the word Scanner , you will see a message saying “cannotrr

fi nd symbol: class Scanner.” To remedy this, we need to let our program know where the

Scanner object can be found so that the Scanner code can be imported into our program.

This is done with an import statement, as shown here:

 import java.util.Scanner;

 By adding this import statement to the top of our new listing, the Scanner object will

be found, and the angry red squiggly lines will go away.

 NOTE When we want to display things, we print them. To do this, we
print them to System.out . When we want to read things into our program
from the console, we read them from System.in .

 TIP The IDE is your friend. If you are using NetBeans, you can right-click
Scanner and select Fix Imports from the menu. This will automatically s
add the missing import for you. You can also press Ctrl+Shift+I, which will
display a dialog asking if you want to add the Scanner import statement.
Clicking OK will add it for you. K

 Understanding the Command Line
 The import statement tells our class where to fi nd the Scanner class and how to use it.

With it added, we are ready to read values from the command line.

 One of the things you must understand is that everything that comes in on the con-

sole command line is text, which is stored in strings. Because of this, two more variables

are needed that can hold the strings that will be retrieved from the command line. We ’ ll

need one for each operand.

 String stringOperand1 = "";
 String stringOperand2 = "";

 As you can see, two new variables are being declared with a data type of String .

These are being initialized with a default value of “” , which is an empty string.

 With these two strings defi ned, we have a place to put the string representation of

operand1 and operand2 .

Job Ready Java108

 Getting the Values from the User
 We are now ready to write the code to ask the user for the values. If we want the user to

type something for our program to read, then we need to give them a message so they

know what is expected. We have to let them know they need to type something in. We

show this message just like we did with the “Hello, World!” program. The way we let the

user know something or print something to the console is with System.out.println .

 System.out.println("Please enter the first number to be added:");

 With our message displaying to the user, we are ready to get the fi rst number!

 We are now ready to use the myScanner object we created to read in the fi rst number

and put it into stringoperand1 .

 stringOperand1 = myScanner.nextLine();

 The scanner will read the next line the user types on the command line and assign that

information to stringOperand1 .

 NOTE myScanner.nextLine() waits for the user to type something into the
console and hit the Enter key. When the Enter key is pressed, nextLine()
reads everything that the user typed on that line and assigns it to the
variable on the left side of the = operator.

 With the fi rst number read, this same process of showing a message and reading a

response can be done for the second operand value.

 System.out.println("Please enter the second number to be added:");
 stringOperand2 = myScanner.nextLine();

 Going from Strings to Integers
 With the values now gathered from the user, we need to add them together. But, they ’ re

in string format right now, which means they won ’ t add together. As we saw earlier, using

a plus sign with two strings concatenates rather than adds. We need to be able to convert

stringOperand1 and stringOperand2 into the integers we set up (operand1 and operand2).

 There is a handy method that allows us to convert strings into integers if we want. We

can use the parseInt method within the Integer class to convert the string in stringOp-

erand1 to a number to be stored in operand1 by doing the following:

 operand1 = Integer.parseInt(stringOperand1);

109Lesson 5: Collecting and Parsing Input from the User

 We haven ’ t talked much about methods in objects, so with this you ’ re going to have

to take what is happening in this line of code on faith. Integer is a class, and there ’ s a

method on it. There ’ s a named bit of code that, if you hand it a string, will hand you back

the integer representation of that string. If I hand in the string 10 , it will return the int

10 . In the previous line of code, we are passing in the string stringOperand1 , and the

integer being returned is being placed into operand1 .

 With the fi rst operand converted, we ’ ll do the same thing with operand2 . So, operand2

equals Integer.parseInt with the string value stored in stringOperand2 being passed in.

 operand2 = Integer.parseInt(stringOperand2);

 WARNING Be careful here: if it can ’ t convert the input to a number, it will
throw an error (called an exception). We ’ ll see how to handle these exceptions
in a later lesson.

 Adding the Numbers Together
 At this point, you ’ ve gotten operand1 and operand2 as integers. You can then set the

value of sum by just adding operand1 and operand2 together. You can then print sum .

 You ’ ve now done everything to get two numbers from the user and print them. List-

ing{ 5.2 presents the completed listing.

 LISTING 5.2
 Adder2.java: The Adder Program with Input

 import java.util.Scanner;

 class Adder2 {

 public static void main(String[] args) {
 // declare the number variables and initialize to 0
 int sum = 0;
 int operand1 = 0;
 int operand2 = 0;

 // declare and initialize a Scanner object - the Scanner reads
 // input from the console
 Scanner myScanner = new Scanner(System.in);

Job Ready Java110

 // declare and initialize String (text) variables to hold the
 // values that the user types in
 String stringOperand1 = "";
 String stringOperand2 = "";

 // ask the user to input the first operand
 System.out.println("Please enter the first number to be added:");

 // now wait until the user types something in - put the value
 // in stringOperand1
 stringOperand1 = myScanner.nextLine();

 // ask the user to input the second operand:
 System.out.println("Please enter the second number to be added:");

 // now wait until the user types something in - put the value
 // in stringOperand2
 stringOperand2 = myScanner.nextLine();

 // in order to add the values input by the user we must
 // convert the String values into int values. We use the
 // parseInt method for this:
 operand1 = Integer.parseInt(stringOperand1);
 operand2 = Integer.parseInt(stringOperand2);

 // assign the sum of operand1 and operand2 to sum
 sum = operand1 + operand2;

 // print the sum to the console
 System.out.println("Sum is: " + sum);
 }
 }

 What we have done here is add some interactivity within a program. Now when this

program is running, nearly any two numbers can be added together, and we do not have

to change the code! The following shows one example of output from this program:

 Please enter the first number to be added:
35
 Please enter the second number to be added:
53
 Sum is: 88

111Lesson 5: Collecting and Parsing Input from the User

 Using Loops to Gather User Input
 One trick some programmers like to use is to create a loop when a user is required to

enter some text. Loops will be explained in greater detail in Lesson 7, “Controlling Pro-

gram Flow,” so if you don ’ t completely follow what is covered in the rest of this lesson,

don ’ t fret. It will make more sense after you complete Lesson 7.

 In a nutshell, loops are used to create cycles in the code. This loop prompts for the

data and then checks to see whether the entry is null or empty. If it is, it displays an error

message and falls to the end of the code block, which returns to the top of the loop. If

the value is not null or empty, the break keyword is used to end the loop. A generic sam-

ple of this style of code is shown here:

 while (true) {

 System.out.println("Enter some data: ");

 String input = myScanner.nextLine();

 if(input != null && !input.isEmpty()) {
 // User hits enter without any data. Display error message then back to
 // top of loop
 System.out.println("You did not enter anything!");
 } else {
 // User entered something, leave the loop
 break;
 }
 }

 Another way to check for user input is to use the while condition to check that the

user has entered a value. This will also prompt the user to enter data until they enter

something into the console.

 boolean isValid = false;

 NOTE Scanner is a built-in Java class that helps us collect text input
from the user in various ways. We ’ ll use it frequently. See the offi cial
documentation at docs.oracle.com/en/java/javase/11/docs/api/java.base/
java/util/Scanner.html for more on Scanner. r

Job Ready Java112

 do {

 System.out.println("Enter some data: ");
 String input = myScanner.nextLine();

 if(input == null || input.isEmpty()) {
 System.out.println("You did not enter anything!")
 } else {
 isValid = true
 }

 } while(!isValid)

 PARSING DATA
 Each primitive type, such as int , double , and boolean , has access to a method to parse

strings (nonprimitive) types, such as LocalDate . In all these cases, the method takes a

string value as input and then attempts to convert it to the proper type. If, for example,

we wanted to read in an int from a string source like the console, the incoming data

would be a String type, so we would use the Integer.parseInt() method to convert it to

an integer, like so:

 String input = myScanner.nextLine();
 int number = Integer.parseInt(input);

 One thing to note about the parseInt() method is that it will throw an exception

at runtime if the inputted value cannot be converted. So, in the previous case, if the

user typed in banana , the string could not be converted to an integer and the program

would crash.

 Because of this, Integer.parseInt() should be used only when we can fully trust the

input. In other words, we must have a solid guarantee that the incoming data can be con-

verted to the target type. One example of a trusted data source could be a text fi le gen-

erated by another machine, such as records from a database. Unlike a human user, a fi le

generated by a computer should have a specifi c fi le format that we can test and be com-

fortable using without needing additional validation steps. In fact, if we have an agreed-

upon format, we may want the program to throw an exception if bad data comes in.

 For cases where we are dealing with human input or the potential for bad data is high,

we ’ ll have to handle a NumberFormatException . We should also double-check whenever

we are converting any String s to int s.

113Lesson 5: Collecting and Parsing Input from the User

 DEALING WITH BAD NUMBERS:
NumberFormatException
 If you check the documentation for Integer.parseInt() at docs.oracle.com/en/java/

javase/11/docs/api/java.base/java/lang/Integer.html#parseInt(java.lang.String) ,

you ’ ll see throws NumberFormatException . We will go into more detail on exceptions

later in the book but for now, what this means is that the Integer. parseInt() method is

telling us that something is wrong, specifi cally, that the input cannot be converted to a

number. Basically, if the input cannot be parsed into a number, this will happen instead

of success.

 To handle this problem, you ’ ll have to surround your code with a try/catch block.

Again, you ’ ll learn more about these later, but let ’ s look at an example of how it

would work.

 try {

 String input = myScanner.nextLine();
 int number = Integer.parseInt(input);

 } catch(NumberFormatException ex) {
 // Think of this kind of like an 'else' block for now. This is the code
 // that will run
 // if the user doesn't enter a number.
 System.out.println("That was not a whole number!");
 }

 We can use this inside a loop similar to the loop we created for the required string

example shown earlier. Instead of checking for any data at all, though, we will attempt to

parse the data to determine validity.

 boolean isValid = false;

 do {

 NOTE In truth, if there is a chance that information could be wrong, we
should validate it. This means any data that comes from outside of the
systems we create should probably be validated to ensure it is valid and
has not been corrupted.

Job Ready Java114

 try {
 System.out.println("Please enter a whole number: ");

 String input = myScanner.nextLine();
 int number = Integer.parseInt(input);
 isValid = true;

 } catch(NumberFormatException ex) {
 System.out.println("That was not a whole number!");
 }

 } while(!isValid)

 This setup guarantees that when the loop exits, the variable output will contain a

valid integer. If Integer.parseInt() fails, the program will print That is not a whole

number , and the loop will execute again, prompting the user to enter a whole number. r

 As you can see with this and the required string sample shown earlier, this pattern can

be used to force a user to input any sort of valid data. Simply adjust the if condition and

prompts in the loop to suit your needs.

 Say we wanted a value between 1 and 10. A few small modifi cations to our previous

code will do the trick.

 boolean isValid = false;

 do {

 try {
 System.out.println("Please enter a whole number from 1 to 10: ");

 String input = myScanner.nextLine();
 int number = Integer.parseInt(input);

 if (number >= 1 && number <= 10) {
 isValid = true;
 }

 } catch(NumberFormatException ex) {
 System.out.println("That was not a whole number!");
 }

 } while(!isValid)

115Lesson 5: Collecting and Parsing Input from the User

 SCANNER PROBLEMS
 Before ending this lesson, it is worth talking a little more about what Scanner can do as

well as some of the problems that can happen. As you learned earlier, we always read

everything as a string, and then if we want to convert it, we convert it ourselves. This

process might seem cumbersome, and it is. It ’ s an extra step.

Scanner has the ability to read values other than strings directly into a variable. It

could have been used to read our two integers directly into operand1 and operand2 ; how-

ever, it is worth taking a closer look to see some of the problems that we can get into

with this. More specifi cally, it is worth exploring what can happen when you start going

back and forth between reading in strings and numbers.

 To illustrate this, we are going to write another program where we ask for a user ’ s

name, age, the number of computers they own, and hometown. We will ask in that order.

Rather than jumping right to the program that does all of this, we ’ ll start by fi rst reading

in the name and age. Listing{ 5.3 is the start of our program to do this, and it is based on

what you saw earlier in Listing{ 5.2 .

 LISTING 5.3
 MyScanner.java: Getting Just the Name and Age

 import java.util.Scanner;

 class MyScanner {

 public static void main(String[] args) {
 // declare the number variables and initialize to 0
 String name = "";
 int age = 0;
 // int numComputers = 0;
 // String hometown = "";

 // declare and initialize a Scanner object - the Scanner reads
 // input from the console
 Scanner myScanner = new Scanner(System.in);

 // ask the user to input their name
 System.out.println("Please enter your name:");

Job Ready Java116

 // now wait until the user types something in - put the value
 // in name
 name = myScanner.nextLine();

 // ask the user to input their age:
 System.out.println("Please enter your age:");
 // now wait until the user types their age
 age = myScanner.nextInt();

 // We will get the other values in the next listing!

 // print the information to the console
 System.out.println("Hi " + name + " your age is " + age);
 }
 }

 In reviewing the code in this new listing, you see that four variables are defi ned and

initialized to hold our data. The third and fourth are actually not defi ned because they

are commented out, since we are not using them yet.

 You can see in the listing that the fi rst variable is a string called name that will be used

to hold the user ’ s name. Then there is an int called age to hold the age for holding the

user ’ s age. The next two lines are commented out but will be used later. These are dec-

larations of int numComputers for holding the number of computers and String home-

town for holding the name of the user ’ s hometown.

 You can see that, instead of using the string variables and doing a parse as we did in

Listing{ 5.2 , this time we read directly into our variables. If you look at Listing{ 5.3 , you ’ ll

see that we are using the scanner ’ s nextLine to read a value from the console directly

into the name variable. This is just as we did before. Of course, we are prompting the

reader to enter a value before each call to myScanner .

 You learned that nextLine sits and waits until the user hits Enter. When the user

presses Enter, then the program knows to read the information that was typed into the

console command line. In fact, a call to myScanner.nextLine actually reads the entire line

including the return that the user typed in.g

 For reading the age, you can see in Listing{ 5.3 that we are using nextInt instead of

nextLine . What you probably expect from nextInt is for it to sit and wait until the user

enters an integer and presses Enter. You likely assume that when the user hits Enter,

then we know that they are done. This is correct; however, there is one diff erence

between nextInt and nextLine that is critically important. nextInt only reads the

number that was entered, and it leaves the carriage return that the user entered. Addi-

tionally, if a value other than a number is entered, the program will throw an error.

117Lesson 5: Collecting and Parsing Input from the User

 If you run the program, you ’ ll see that it is going to print the user ’ s name and age

that are entered. If you run it with the name Joe Smith with an age of 23, you should see

output like the following:

 Please enter your name:
Joe Smith
 Please enter your age:
23
 Hi Joe Smith your age is 23

 What happens, however, if you mix things up a little bit? When it asks you to enter

your name, what happens if you skip it? Run the program and simply hit Enter instead of

entering a name. Go ahead and say an age as well. We entered 23. What happens? The

program should still work, and you ’ ll see output like the following:

 Please enter your name:

 Please enter your age:
23
 Hi your age is 23

 What happens if you enter your name and choose to skip entering your age by simply

pressing Enter? The program doesn ’ t end but rather simply creates a new line and con-

tinues to wait.

 Please enter your name:
Joe Smith
 Please enter your age:

 You are pressing Enter, but what is the program doing? Well, the program is trying to

read the nextInt . The return is not an int , so it is ignored, and the program continues to

wait for an integer. Unlike the name, you cannot skip entering the age. You will have to

enter a value (such as 23). The nextInt method is not going to just wait for the carriage

return of the return statement; it ’ s going to wait literally for the next integer.

 If the user doesn ’ t enter an integer, the program is just going to stay there waiting.

You can ’ t just skip it. If we had read the age into a string like we read the operands in

Listing{ 5.2 and then tried to convert it, that would have been fi ne. Then if you pressed

Enter without a value, the program would have continued.

 Let ’ s look at another scenario. Listing{ 5.4 removes the comments from the declara-

tions for numComputers and hometown . It also adds another nextInt to get the number of

computers and a call to nextLine to get the hometown.

Job Ready Java118

 LISTING 5.4
 MyScanner: Updated for All Four Values

 import java.util.Scanner;

 class MyScanner {

 public static void main(String[] args) {
 // declare the number variables and initialize to 0
 String name = "";
 int age = 0;
 int numComputers = 0;
 String hometown = "";

 // declare and initialize a Scanner object - the Scanner reads
 // input from the console
 Scanner myScanner = new Scanner(System.in);

 // ask the user to input their name
 System.out.println("Please enter your name:");
 // now wait until the user types something in - put the value
 // in name
 name = myScanner.nextLine();

 // ask the user to input their age:
 System.out.println("Please enter your age: ");
 // now wait until the user types their age
 age = myScanner.nextInt();

 // ask the user to input their age:
 System.out.println("Please enter the number of computers: ");
 // now wait until the user types the number of computers
 numComputers = myScanner.nextInt();

 // ask the user to input their hometown:
 System.out.println("Please enter your hometown: ");
 // now wait until the user types their hometown
 hometown = myScanner.nextLine();

 // print the information to the console
 System.out.println("Hi " + name + " from " + hometown + ".");
 System.out.println("Your age is: " + age);
 System.out.println("Number of computers: " + numComputers);

 }
 }

119Lesson 5: Collecting and Parsing Input from the User

 As you can see in this listing, we are now also asking for the number of computers.

This is being done by saying numComputers = myScanner.nextInt . This is going to work

pretty much the way you would expect in that the program will again wait for a number.

Like what was seen before, the program is going to wait for a number because nextInt is

being used. This number cannot be skipped either.

 In addition to getting the number of computers, we are also going to ask the user for

the hometown. In this case, we use hometown = myScanner.nextLine to get the string

value for the hometown from the user.

 Once we have the hometown, then we ’ re good. At that point, we can print out the

hometown along with the other information we have grabbed.

 Go ahead and run the program. We should see output similar to the following:

 Please enter your name:
Joe Smith
 Please enter your age:
23
 Please enter the number of computers:
5
 Please enter your hometown:
 Hi Joe Smith from .
 Your age is: 23
 Number of computers: 5

 When we ran this, we entered Joe Smith for the name, 23 for the age, and 5 for the

number of computers. But wait a minute, it just skipped my hometown! It didn ’ t even

give us a chance to enter anything!

 Actually, you can see from the output that it did ask for the hometown, but it went

by so fast that it wasn ’ t seen. It didn ’ t wait for an answer, and then it just jumped to the

output and left the hometown blank.

 Why is that? Well, remember the problem when we hit Enter when using nextInt ?

When I just hit Enter, the carriage return was ignored because getInt is looking

for an int .

 It ’ s not looking for the Enter. And so, it ’ s just going to wait until you type something

in and it can read that next number. After reading that number, it doesn ’ t consume any

other characters or the carriage return statement that was also returned. So, once get-

Int has read the number of computers, which was 5 in our case earlier, then the carriage

return is still sitting there waiting to be read.

 With the number read, the program then comes to the prompt to enter your home-

town. When we say nextLine , the carriage return is still waiting, so it looks like you just

hit Enter and wanted to skip your hometown. The program can ’ t tell the diff erence

between you hitting the Enter key or the value of the Enter key already being there!

 So, what can you do with this?

Job Ready Java120

 This issue is the reason why I say if you read everything in as a string, you read the

entire line and you process it. You know what ’ s going on and you convert it yourself. You

have full control all the time, and it ’ s always going to work.

 You will learn later in this book how to take care of problems involving the user typing

the wrong thing, such as the user typing characters when you want a number. For now,

there is another way to resolve the problem with nextInt in Listing{ 5.4 .

 Because I know that I just read a number with nextInt , I know there ’ s still a return

waiting to be read. If we want to get rid of that return, why don ’ t we just do myScan-

ner.nextLine ?

 That would consume the carriage return, and we would be ready to go for the

next value.

 // ask the user to input their age:
 System.out.println("Please enter the number of computers: ");
 // now wait until the user types the number of computers
 numComputers = myScanner.nextInt();

 myScanner.nextLine(); //<-- added this line

 Now when you run the program, the carriage return will be read and ignored, the

prompt asking for hometown will be displayed, and you can enter a value such as Akron.

 Please enter your name:
Joe Smith
 Please enter your age:
23
 Please enter the number of computers:
5
 Please enter your hometown:
Akron
 Hi Joe Smith from Akron.
 Your age is: 23
 Number of computers: 5

 As you can see, adding the nextLine call resolved the issue. Adding the call is some-

thing you can do every time that you do a nextInt . Of course, this means you are now

doing two steps: reading the number, then getting rid of the carriage return instead of

doing the two steps of reading a string, and converting it.

 NOTE It ’ s really up to you how you want to handle reading integers.
Again, the best suggestion is to read everything as a string and convert
it yourself. That way, you know things will work.

121Lesson 5: Collecting and Parsing Input from the User

 SUMMARY
 Many of the modern framework tools we will reference in this book will parse incoming

data automatically into the proper types. Regardless, it is important that you understand

how to deal with string data manually in your code; oftentimes, smaller tasks such as batch

jobs or small validation programs will not import those more powerful tools, and you will

need to create your own validation methods. It is also common in interviews for code exer-

cises to involve processing string data, which nearly always requires parsing of some kind.

 As you work through the code examples and exercises, try to be mindful of opportu-

nities to use patterns such as those shown in this lesson. In this lesson, you have had sev-

eral code snippets, all very similar, that touch on the problem of “validating user input.”

While these snippets might not make complete sense now, they will become clearer as

you work through this book. They are presented here because these snippets will form a

foundation that can be adjusted and reused for nearly any user input validation case.

 EXERCISES
 The following are some additional coding exercises to help you practice what you are

learning about the Java programming language. These are to do on your own, so most

will not always include answers. Many of the exercises cover accepting user input via

Scanner . There are several exercises for you to apply what you learned in this lesson:

Exercise 1 : Quest for the User Input

Exercise 2 : Don ’ t Forget to Store It

Exercise 3 : Passing the Turing Test

Exercise 4 : Healthy Hearts

Exercise 5 : Mini Mad Libs

 Exercise 1: Quest for the User Input
 Create a new program using the code in Exercise Listing{ 5.1 . As you enter the code,

decide what each line is supposed to do. Make sure that the program works before you

go on to the next exercise.

 NOTE Remember when entering listings to create a fi lename with
the same name as the class in your code. For this listing, the Java
class fi le is named QuestForTheUserInput , so the fi lename would be
QuestForTheUserInput.java .

Job Ready Java122

 EXERCISE LISTING 5.1
 QuestForTheUserInput.java

 package com.sg.foundations.userinput;

 import java.util.Scanner;

 public class QuestForTheUserInput {

 public static void main(String[] args) {
 Scanner inputReader = new Scanner(System.in);

 String yourName;
 String yourQuest;
 double velocityOfSwallow;

 // We can use the Scanner's readLine to assign value to our strings
 // because its return type is string
 System.out.print("What is your name?? ");
 yourName = inputReader.nextLine();

 System.out.print("What is your quest?! ");
 yourQuest = inputReader.nextLine();

 // When we get to our double data type, we can use Scanner's
 // nextDouble method
 // or we can use the Double.parseDouble to convert the nextLine's String

 System.out.print("What is the airspeed velocity of an unladen
swallow?!?! ");
 velocityOfSwallow = Double.parseDouble(inputReader.nextLine());
 System.out.println();
 System.out.println("How do you know " + velocityOfSwallow +
 " is correct, " + yourName + "?");
 System.out.println("You didn't even know if the swallow was African or
European!");
 System.out.println("Maybe skip answering things about birds and instead
go " + yourQuest + ".");
 }

 }

123Lesson 5: Collecting and Parsing Input from the User

 When you run this program, you should see the following:

 What is your name?? Sir Lady FluffyBunnykins
 What is your quest?! Smite Many Things
 What is the airspeed velocity of an unladen swallow?!?! 45

 How do you know 45.0 is correct, Sir Lady FluffyBunnykins?
 You didn't even know if the swallow was African or European!
 Maybe skip answering things about birds and instead go Smite Many Things.

 Exercise 2: Don ’ t Forget to Store It
Scanner takes care of collecting the input, but it ’ s up to the programmer to put it some-

where. Right now, the following code will ask for (and accept) input, but it is a forgetful

machine: once it ’ s been taken, it ’ s lost.

 In this exercise, you ’ ll create a new program with the code in Exercise Listing{ 5.2 . Com-

pile and run this program to make sure it works. Change the code so that the appropriate

input is stored in the right variable. When you think you have that done, uncomment the

last two lines in your main method to test it.

 EXERCISE LISTING 5.2
 DontForgetToStoreIt.java

 package com.sg.foundations.userinput;

 import java.util.Scanner;

 public class DontForgetToStoreIt {

 public static void main(String[] args) {

 int meaningOfLifeAndEverything = 42;
 double pi = 3.14159;
 String cheese, color;

 Scanner inputReader = new Scanner(System.in);

Job Ready Java124

 System.out.println("Give me pi to at least 5 decimals: ");
 Double.parseDouble(inputReader.nextLine());

 // We've used Double.parseDouble but meaningOfLifeAndEverything is an INT
 // so we'll have to use Integer.parseInt

 System.out.println("What is the meaning of life, the universe and
everything? ");
 Integer.parseInt(inputReader.nextLine());

 System.out.println("What is your favorite kind of cheese? ");
 inputReader.nextLine();

 System.out.println("Do you like the color red or blue more? ");
 inputReader.nextLine();

 // System.out.println("Ooh, " + color + " " + cheese +"
// “ sounds delicious!”);
 // System.out.println("The circumference of life is " +(2 * pi *
// meaningOfLifeAndEverything));
 }
 }

 Here ’ s an example of what you should see. (This does not contain the last two lines of

code that are commented out in the previous code, and your user input will be diff erent.)

 Give me pi to at least 5 decimals:
3.14159
 What is the meaning of life, the universe, and everything?
42
 What is your favorite kind of cheese?
brie
 Do you like the color red or blue more?
blue

 Exercise 3: Passing the Turing Test
 The Turing test (named for Alan Turing, who fi rst proposed it) is a test to see whether

a computer can pass for a human in a conversation, a feat that typically means that the

computer responds to human input appropriately.

 This exercise is on your own. Create a new program that incorporates user input in a

conversation, with the following steps:

1. Ask the user for their name.

2. Display that name and tell them yours (or your AI ’ s name).

125Lesson 5: Collecting and Parsing Input from the User

3. Ask them for their favorite color.

4. Display the color they enter in a conversational way.

5. Do the same thing with favorite food and number and then say goodbye.

6. Make sure you use the right variable with the right user input.

 When you run this program, you should see something like the following:

 Hello there!
 What's your name? Zaphod

 Hi, Zaphod! I'm Alice.
 What's your favorite color? Blue

 Huh, Blue? Mine's Electric Lime.

 I really like limes. They're my favorite fruit, too.
 What's YOUR favorite fruit, Zaphod? Pawpaws

 Really? Pawpaws? That's wild!
 Speaking of favorites, what's your favorite number? 42

 42 is a cool number. Mine's -7.
 Did you know 42 * -7 is -294? That's a cool number too!

 Well, thanks for talking to me, Zaphod!

 Exercise 4: Healthy Hearts
 Create a simple application to help your user monitor their health. You can call the class

and fi lename HealthyHearts.java . The program should ask the user for their age, and

then it uses this value to calculate and display the healthy heart rate range they should

use for exercising.

• The maximum heart rate should be 220 minus their age.

• The target heart rate zone is 50%–85% of the maximum.

 When the user runs the program, it should look something like the following:

 What is your age? 50
 Your maximum heart rate should be 170 beats per minute.
 Your target HR Zone is 85 - 145 beats per minute.

Job Ready Java126

 Exercise 5: Mini Mad Libs
 Write a program that lets you play Mad Libs. The program should ask the user for the fol-

lowing (unless you use a diff erent Mad Lib):

• Noun

• Adjective

• Noun

• Number

• Adjective

• Plural noun

• Plural noun

• Plural noun

• Verb infi nitive form

• Same verb but past participle

 Then substitute all the entered words into the following passage (in order!):

 <1>: the <2> frontier. These are the voyages of the starship <3>. Its <4>-
year mission: to explore strange <5> <6>, to seek out <5> <7> and <5> <8>, to
boldly <9> where no one has <10> before.

 The following is an example of what the user should see:

 Let's play MAD LIBS!

 I need a noun: Chocolate
 Now an adjective: spooky
 Another noun: Dodo
 And a number: 10101
 Another adjective: red
 A plural noun: kittens
 Another one: balls
 One more: lettuce
 A verb (infinitive form): sneeze
 Same verb (past participle): sneezed

 *** NOW LETS GET MAD (libs) ***
 Chocolate: the spooky frontier. These are the voyages of the starship Dodo.
Its 10101-year mission: to explore strange red kittens, to seek out red balls
and red lettuce, to boldly sneeze where no one has sneezed before.

Lesson 6

 Pulling It All
Together: Building
a Useful Program

 Now, let ’ s pull everything we ’ ve learned together and build

our fi rst useful program. The purpose of the program is to

calculate the total cost for home replacement windows. Here are

the requirements:

 PROGRAM OBJECTIVES
• Must prompt the user for the height of the window (in feet).

• Must prompt the user for the width of the window (in feet).

• Must calculate and display the area of the window.

• Must calculate and display the perimeter of the window.

• Based on the area and perimeter, it must calculate the total cost of the window.

• The glass for the windows costs $3.50 per square foot.

• The trim for the windows costs $2.25 per linear foot.

Job Ready Java128

 PLANNING THE PROGRAM
 Before you boot up your IDE and start to write the code, you should always take time to

plan any program you will write. This includes identifying any variables your program will

need and how the variables are related to each other, as well as using pseudocode or a

fl owchart (or both) to identify the steps your program will need to complete.

 NOTE If you haven ’ t worked with fl owcharts before, don ’ t fret! You ’ ll
learn more about creating a fl owchart in Lesson 9, “Understanding
Flowcharts and Algorithms.”

 Identifying the Variables
 Looking through the requirements list, we will need the following variables:

• String variable for height (read from console)

• String variable for width (read from console)

• Float variable for height (converted from string; use fl oat because we do not want

to be limited to whole feet)

• Float variable for width (converted from string; use fl oat because we do not want

to be limited to whole feet)

• Float variable for area of window (calculated from height and width)

• Float variable for perimeter of window (calculated from height and width)

• Float variable for cost (calculated from area, perimeter, and costs)

 Note that even though we want height and weight to be numbers (so we can use the

input in calculations), we will accept them as strings through the console.

 Planning the Steps
 At this point, before we even start considering the code, take the time to plan the steps

that the program will take. You might fi nd it useful to write the pseudocode or sketch a

fl owchart to make sure you understand the steps the program will use.

 Every developer tackles this stage in a slightly diff erent way, so we won ’ t tell you

what it should look like. Instead, look over the steps we have already identifi ed and plan

them out in a way that makes sense to you and to other developers you may need to

work with on this project.

129Lesson 6: Pulling It All Together: Building a Useful Program

 As we go through the coding steps, take the time to map each line of code to your

pseudocode and/or fl owchart so that you can see how they work together. In future

exercises, you will be expected to come up with the code on your own, and it is easier to

write code if you understand the algorithms you need fi rst.

 CREATING THE CODE
 Once the planning steps are done, we can start to code. Start a new program named

WindowMaster.rr

 Declaring the Variables
 We ’ ll start the coding by declaring the variables in the main method. We have already

listed what we need, so we just need to code them at this point.

 Declare the variables in the main method as shown in Listing{ 6.1 .

 LISTING 6.1
 Declaring the Variables in the WindowMaster Program

 public class WindowMaster {

 public static void main(String [] args) {
 // declare variables for height and width
 float height;
 float width;

 // declare String variables to hold the user's height and
 // width input
 String stringHeight;
 String stringWidth;

 // declare other variables
 float areaOfWindow;
 float cost;
 float perimeterOfWindow;
 }
 }

 There are a couple of things to note here. First, we do not have to declare the var-

iables in the order we intend to use them in the program. You can declare them in

Job Ready Java130

any order. As such, it is best to organize your variables in a manner that is clear and

makes sense.

 Additionally, you ’ ll see that we have used similar variable names for the height and

width values, with the string prefi x to distinguish console input that we need to con-

vert. This not only makes it easy to know what the variables are being used to do, but

also makes it easier to not mistakenly use the string variables for calculations.

 Check that all the variables we identifi ed earlier are represented in the code

before going on.

 NOTE As with other coding exercises in this course, you should enter
all the code shown in the listings rather than just reading it here in
the lessons or copying and pasting it. Entering the code will help you
understand the code better, as well as help you learn to use your IDE to
help you resolve errors.

 Getting Input
 The next step is to accept user input for the height and width values. If you recall, we

used a Scanner object to obtain values from the user. To be able to use Scanner , wer

needed to include the appropriate code by adding an import statement to our listing.

 import java.util.Scanner;

 You can see this import statement as well the new code for obtaining the input in List-

ing{ 6.2 . The import statement is added to the top, and the remaining code is added to

the bottom of the main method you had entered in Listing{ 6.1 .

 LISTING 6.2
 Adding the Code for Getting Height and Width

 import java.util.Scanner;

 public class WindowMaster {

 public static void main(String [] args) {
 // declare variables for height and width
 float height;
 float width;

131Lesson 6: Pulling It All Together: Building a Useful Program

 // declare String variables to hold the user's height and
 // width input
 String stringHeight;
 String stringWidth;

 // declare other variables
 float areaOfWindow;
 float cost;
 float perimeterOfWindow;

 // declare and initialize the Scanner
 Scanner myScanner = new Scanner(System.in);

 // get input from the user
 System.out.println("Please enter window height:");
 stringHeight = myScanner.nextLine();
 System.out.println("Please enter window width:");
 stringWidth = myScanner.nextLine();
 }
 }

 Remember from the earlier lessons that we have to use Scanner to accept user input

in Java. We need to initialize the scanner and create a myScanner object for the input

variables. Once we ’ ve done that, we use System.out.println() to display appropriate

prompts to the user, with each prompt followed by a myScanner.nextLine() , which will

wait for the user to enter a value and hit the Enter key.

 As you should recall, the console input is a String type, so we use myScanner to

store the inputs in the string variables we declared earlier. These are stringHeight and

stringWidth .

 Converting the Strings
 With the information scanned from the user, the next step is to convert the strings to

numbers, using parse :

 // convert String values of height and width to float values
 height = Float.parseFloat(stringHeight);
 width = Float.parseFloat(stringWidth);

 In a more robust program, we would add error handling to ensure that the input is

valid. In this case, it will be our own fault if we don ’ t enter appropriate values, so we ’ ll

skip that at this point. Just be aware that because this program does not have any

Job Ready Java132

validation, if you enter Hello (or anything else that isn ’ t a number) for a height or width,

the program will crash when it tries to parse.

 We use Float.parseFloat() to convert the string input values to numbers that we can

use in our calculations. You can see that the converted values are stored in their own var-

iables, height and width .

 NOTE You will learn more about adding error handling in future lessons.
This will include learning about the try/catch statements as well as using
loops such as a while loop.

 Calculating the Area and Perimeter
 Next, we will need to add expressions to calculate the window area and trim to the code.

We use the standard formula height * width to calculate the area of the window. h

 areaOfWindow = height * width;

 The formula for the trim is twice the height plus twice the width. We could use a long

formula like this:

 perimeterOfWindow = height * 2 + width * 2

 Or we could use a shorter version:

 perimeterOfWindow = 2 * (height + width)

 The longer version does not need parentheses because, as we learned in Lesson 3,

“Using an Integrated Development Environment,” about operator precedence, the pro-

gram will do the multiplication operations fi rst and then add the products. That said, we

could write it as (height * 2) + (width * 2) if we wanted. The shorter version needs

parentheses to force addition to precede multiplication.

 The following is all the code we will add to our listing. We ’ ve used the shorter version

here, but you can use the longer one if you want.

 // calculate the area of the window
 areaOfWindow = height * width;

 // calculate the perimeter of the window
 perimeterOfWindow = 2 * (height + width);

133Lesson 6: Pulling It All Together: Building a Useful Program

 Calculating the Cost
 We now need to calculate the cost of the window, adding together the glass (area *

$3.50) and trim (perimeter * $2.25).

 // calculate the total cost - use a hard-coded value
 // for material cost
 cost = ((3.50f * areaOfWindow) + (2.25f * perimeterOfWindow));

 You ’ ll note that we are using hard-coded values for the unit costs. This works here

because we are just learning how all this works, but in a real program, you would want

to use variables whose values can change as the prices change. Otherwise, a software

developer would have to go in and recode the program every time the price goes up or

the product goes on sale.

 Note that we do not need the parentheses here. The multiplication will happen

before the addition, even without the parentheses. However, including parentheses

makes it much easier for human developers to read the formula.

 Displaying the Results
 Finally, we use System.out.println() to display the results to the user.

 // display the results to the user
 System.out.println("Window height = " + stringHeight);
 System.out.println("Window width = " + stringWidth);
 System.out.println("Window area = " + areaOfWindow);
 System.out.println("Window perimeter = " + perimeterOfWindow);
 System.out.println("Total Cost = " + cost);

 For the height and width, we chose to use the original string values input by the user,

but we could have used the converted numbers instead. As you can see, we have pro-

vided output to show what was entered, what was calculated, and, most importantly, the

total cost of our project.

 With the variables set up, input obtained and parsed, calculations completed, and

results displayed to the user, we ’ ve accomplished everything our program was tasked to

do. Listing{ 6.3 presents the completed listing.

 NOTE Note how using well-named variables makes it easy to defi ne the
calculation here.

Job Ready Java134

 LISTING 6.3
 The WindowMaster Listing

 import java.util.Scanner;

 public class WindowMaster {

 public static void main(String [] args) {
 // declare variables for height and width
 float height;
 float width;

 // declare String variables to hold the user's height and
 // width input
 String stringHeight;
 String stringWidth;

 // declare other variables
 float areaOfWindow;
 float cost;
 float perimeterOfWindow;

 // declare and initialize the Scanner
 Scanner myScanner = new Scanner(System.in);

 // get input from the user
 System.out.println("Please enter window height:");
 stringHeight = myScanner.nextLine();
 System.out.println("Please enter window width:");
 stringWidth = myScanner.nextLine();

 // convert String values of height and width to float values
 height = Float.parseFloat(stringHeight);
 width = Float.parseFloat(stringWidth);

 // calculate the area of the window
 areaOfWindow = height * width;

 // calculate the perimeter of the window
 perimeterOfWindow = 2 * (height + width);

135Lesson 6: Pulling It All Together: Building a Useful Program

 // calculate the total cost - use a hard-coded value
 // for material cost
 cost = ((3.50f * areaOfWindow) + (2.25f * perimeterOfWindow));

 // display the results to the user
 System.out.println("Window height = " + stringHeight);
 System.out.println("Window width = " + stringWidth);
 System.out.println("Window area = " + areaOfWindow);
 System.out.println("Window perimeter = " + perimeterOfWindow);
 System.out.println("Total Cost = " + cost);
 }
 }

 RUNNING THE PROGRAM
 Compile and then run the program. When you run the program, you should see some-

thing like the following, using 10 and 15 as the input values:

 Please enter window height:
10
 Please enter window width:
15
 Window height = 10
 Window width = 15
 Window area = 150
 Window perimeter = 50
 Total Cost = 637.5

 If you get errors when compiling, remember what you learned in previous lessons. See

what information the IDE is providing you, and make sure your code matches the code in

the listing. A simple missing semicolon or extra space in the wrong place can cause your

program to not compile.

 SUMMARY
 In this lesson, you reviewed what you have learned in the previous lessons. You took a

problem, which was to calculate a cost, and then provided a programmatic solution to it.

You saw the process of thinking through what needed to be done, and then you wrote

the code for each section. By the end, you had pulled together everything you have

learned up to this point into a full-fl edged program.

Job Ready Java136

 EXERCISES
 Run the program you created in this lesson to make sure it works as expected and then

review what you have done. The following are suggested exercises to do on your own.

Exercise 1 : Mapping Instructions to Code

Exercise 2 : Adding Prompts for Costs

Exercise 3 : Adding Multiple Windows

Exercise 4: Adding Validation

 Exercise 1: Mapping Instructions to Code
 Go back to the pseudocode or fl owchart that you created before starting to code and

map each instruction in the program with that plan.

• Does your initial plan include more steps than the program required?

• Did your initial plan skip any of the required steps?

 Exercise 2: Adding Prompts for Costs
 The program used hard-coded values of 3.50 and 2.25. Refactor the code to include

the use of prompts and a Scanner to obtain these values for the cost of the window

and trim from the user. Make sure that the updated code works and produces the

expected results.

 Exercise 3: Adding Multiple Windows
 Refactor the code to prompt the user to enter the number of windows in addition to

the height and width. Update the cost calculations to include the number of windows.

Assume that all windows are the same size for this exercise.

 NOTE If you had trouble using your IDE or entering the code, now would
be the time to go back and review the earlier lessons. Going forward, you
will be digging deeper into the code.

137Lesson 6: Pulling It All Together: Building a Useful Program

 Exercise 4: Adding Validation
 Refactor the code to include a try/catch validation on the user input, using the pattern

provided in the lesson on collecting console input.

 TIP When refactoring multiple parts of the code to do the same thing,
it is often best to refactor one of the parts fi rst to make sure it works as
expected. Once you understand what the pattern is doing, it is easier to
reuse it in other parts of the code.

Lesson 7

 Controlling
Program Flow

 In this lesson, we are going to begin to look at how we can control

the fl ow of a program. Specifi cally, we look at how we can make

decisions and change the fl ow based on those decisions. To do

that, you will be introduced to conditional statements and boolean

expressions.

 LEARNING OBJECTIVES
 By the end of this lesson, you will be able to:

• Defi ne boolean expressions

• Diff erentiate between conditional operators and relational operators

• Learn how to make decisions in your code to execute one code block instead of another

• Work with code that will branch to diff erent code blocks depending on a value

• Explore conditional statements

• Discover a method for comparing strings

139Lesson 7: Controlling Program Flow

 WHAT CAN OUR CODE DO?
 So far, our programs have simply executed from beginning to end, one statement after

another. We ’ ve added some code that allows us to get input from the user, but even with

that, our code executes in a straight line—the same way every time. You would think

there has to be more that can be done than this, and you ’ d be right. There is more but,

surprisingly, not too much more. Here is what we can do in code:

• Execute statements one after another in a straight line

• Make decisions to execute one block of code instead of another based on

some criteria

• Repeat a set of statements a certain number of times based on some criteria

 That ’ s it—there is no more. All programs are built from these building blocks. We ’ ve

already covered creating code in straight lines. That ’ s how all the prior programs in

this book have fl owed. In the rest of this lesson, you ’ ll learn how to make decisions and

change program fl ow based on the criteria. In the next lesson, you will learn the method

for repeating a set of statements.

 DECISIONS AND BOOLEAN EXPRESSIONS
 How do we make decisions that can change how our programs fl ow? What do the criteria

for these decisions consist of? We make these decisions using an if statement.

 NOTE There are additional ways you can make decisions that will change
program fl ow; however, using if statements is the easiest and thus what
we will focus on now.

 if Statements
 Often when you are writing programs, you want the program to do something only if

something else is true. In Java, one way we control the fl ow of a program is using if

statements along with a condition presented. This condition can be any valid boolean

expression, which is simply any expression that evaluates to true or false.

 Conditional Execution
 Conditional execution allows us to make decisions in our code. It allows us to choose
one path over another.

Job Ready Java140

 When you write an if statement, you declare the condition you want the program to

check inside parentheses, followed by the code you want it to execute if the condition

is true. If the condition evaluates to being true, then the program will execute the block

of code that is within the if statement ’ s code block. If the condition evaluates to being

false, then the program will skip the rest of the if statement completely.

 The basic syntax looks like this:

 if (condition) {
 // execute code if condition is true
 }

 The condition given to an if statement can use equity, relational, and conditional

operators to create the boolean expression that determines whether a block of code

should be executed. Because it is a boolean expression, it will always evaluate to either

true or false. For example, the following is a simple snippet of code that checks to see

whether a value stored in an age variable is greater than or equal to 18. If it is, then a

message is displayed.

 if (age >= 18) {
 System.out.println(“You’re old enough to vote!”);
 }

 Table{ 7.1 presents the equality and relational operators. Relational operators operate,

for the most part, on numerical operands and evaluate to true or false (boolean) values.

 Table 7.1 Equality and Relational Operators

Relational Operator Meaning

Equal operand1 == operand2 Evaluates to true if the two operands are equal,
false otherwise

Not equal operand1 != operand2 Evaluates to true if the two operands are not
equal, false otherwise

Less than operand1 < operand2 Evaluates to true if operand1 is less than
operand2, false otherwise

Greater than operand1 > operand2 Evaluates to true if operand1 is greater than
operand2, false otherwise

Less than or
equal

operand1 <= operand2 Evaluates to true if operand1 is less than or equal
to operand2, false otherwise

Greater than
or equal

operand1 >= operand2 Evaluates to true if operand1 is greater than or
equal to operand2, false otherwise

141Lesson 7: Controlling Program Flow

 Just like other Java statements, we can string together a series of if statements to

control the output of a program. Java will evaluate each statement in turn: if the current

statement is true, it will perform the action specifi ed in the statement and move on to

the next if statement. If the current statement is false, Java will skip it and evaluate the

next if statement or instruction.

 In Listing{ 7.1 , we present a series of if statements. In the listing, we create a variable

called day that has a number from 1 to 7. This number will correspond to a day of the

week, with 1 being Monday and 7 being Sunday. The if statements are used to set the

value of another variable, dayName , to the day of the week, which is then displayed.

 LISTING 7.1
 DayOfWeek.java Using an if Statement

 public class DayOfWeek {

 public static void main(String[] args) {

 int day = 4;
 String dayName = "";

 if (day == 1) {
 dayName = "Monday";
 }
 if (day == 2) {
 dayName = "Tuesday";
 }
 if (day == 3) {
 dayName = "Wednesday";
 }
 if (day == 4) {
 dayName = "Thursday";

 Boolean Expressions
 The condition inside the parentheses following the if command is a boolean
expression. Boolean expressions are similar to mathematical expressions in that they
are code statements that evaluate to data values. The main difference is that boolean
expressions always evaluate to either true or false. Another big difference is that
boolean expressions are formed using boolean and relational operators instead of
mathematical operators.

Job Ready Java142

 }
 if (day == 5) {
 dayName = "Friday";
 }
 if (day == 6) {
 dayName = "Saturday";
 }
 if (day == 7) {
 dayName = "Sunday";
 }

 System.out.println("The day is " + dayName);
 }
 }

 If we enter Listing{ 7.1 and run it, we will see the following output:

 The day is Thursday

Thursday is printed because the value of day is 4. When the program executes, it

checks to see whether day is equal to 1. When it is not, it jumps to the next command

after the if statement, which in this case is another if statement that checks to see

whether day is equal to 2, which it again is not. This continues until the day is equal to

4, at which point the code within that if statement is executed, assigning the variable

dayName the value of Thursday . Once this is completed, the execution of the code

 continues to the next if statement, which checks to see whether day is equal to 5, which

it again is not. Execution continues to check all the if statements before fi nally using

println to display the day of the week.

 NOTE Change the value of day from 4 to a different number to see how it
changes what is displayed.

 if-else Statements
 The code in Listing{ 7.1 might not seem to be the most optimal, and it is not. While a basic

if statement can be useful, the problem is that each statement is evaluated indepen-

dently of each other, meaning that any (or none or all) of the statements can produce an

outcome, based on the input and conditions.

 Sometimes, though, we want the program to perform one action if the condition

statement is true and a completely diff erent action if the conditional statement is false,

without having to consider other conditions. This is where if-else is useful. With an

143Lesson 7: Controlling Program Flow

if-else statement, we consider only one conditional statement and then direct to one

of two possible outcomes. With the if-else statement (also known as the if-then-else

statement), our program will execute a certain block of code if a certain condition is true

and will execute a diff erent block of code if the condition is false. It looks like this:

 if (condition) {
 // execute code if condition is true
 } else {
 // execute code if condition is false
 }

 For example, if a person is 18 or older, they can vote. If they are not, then they can ’ t

vote. With a single condition, we can evaluate to a true or false and act upon the result.

 if (age >=18) {
 System.out.println(“You’re old enough to vote!”);
 } else {
 System.out.println(“You’ll have to wait to vote!”);
 }

 Listing{ 7.2 puts an if-else statement to work. In this listing, we check to see if a

number is positive or negative.

 LISTING 7.2
 PositiveNegative.java

 import java.util.Scanner;

 public class PositiveNegative {

 public static void main(String[] args) {

 int number = 0;
 String stringValue = "";

 Scanner inputReader = new Scanner(System.in);
 System.out.println("Enter a number: ");
 stringValue = inputReader.nextLine();
 number = Integer.parseInt(stringValue);

 if (number >= 0) {
 System.out.println("The number is positive");

Job Ready Java144

 } else {
 System.out.println("The number is negative");
 }
 }
 }

 Note that in Listing{ 7.2 , we added code that should look familiar from Lesson 5, “Col-

lecting and Parsing Input from the User,” which asks the user to enter a number. We read

the number in as a String and then convert it to an integer. If this code is confusing, go

back and review Lesson 5.

 Once we have the integer converted and stored in our number variable, we use an if-

else statement to do our magic. If the number is greater than or equal to zero, then the

if statement is true, and we print out a message saying the number is positive, as shown

in the following output:

 Enter a number:
5
 The number is positive

 If the number is not greater than or less than zero, then the code jumps to the else

statement and prints a message saying the number is negative.

 Enter a number:
-435
 The number is negative

 NOTE If you enter a value into Listing 7.2 that is not a number, your
program will give an error because we haven ’ t included exception
handling. This is something you will learn in a future lesson.

 Chaining if-else Statements
 If we want to consider multiple conditions, then if-else statements can be chained

together in your code as shown here:

 if (condition1) {
 // execute code if condition1 is true
 } else if (condition2) {
 // execute code if condition2 is true
 } else if (condition3) {

145Lesson 7: Controlling Program Flow

 // execute code if condition3 is true
 } else {
 // execute code if all conditions above were false
 }

 This lets us check multiple conditions in our code to get to a single outcome. If we

look back at Listing{ 7.1 , you can see that once we fi nd the day of the week, there is really

no need to continue with checking more if statements. Listing{ 7.3 rewrites Listing{ 7.1 to

use chained if-else statements. Once a true continue is found, execution drops out of

the if-else chain.

 LISTING 7.3
 DayOfWeek.java Using an if-else Statement

 public class DayOfWeek {

 public static void main(String[] args) {

 int day = 4;
 String dayName = "";

 if (day == 1) {
 dayName = "Monday";
 } else if (day == 2) {
 dayName = "Tuesday";
 } else if (day == 3) {
 dayName = "Wednesday";
 } else if (day == 4) {
 dayName = "Thursday";
 } else if (day == 5) {
 dayName = "Friday";
 } else if (day == 6) {
 dayName = "Saturday";
 } else if (day == 7) {
 dayName = "Sunday";
 } else {
 dayName = "Oops!";
 }

 System.out.println("The day is " + dayName);
 }
)

Job Ready Java146

 When we run Listing{ 7.3 , we get the same result as we did running Listing{ 7.1 .

 The day is Thursday

 There are, however, two diff erences. The main diff erence is that once the program

fi nds that day equals 4, it sets the value of dayName equal to Thursday and then jumps to

the end of the entire if-else chain.

 The second change was the addition of a fi nal else statement at the end of the chain.

If the day is not equal to any of the values checked in the chain of if statements, then

when the last if check evaluates to false, its else statement will be executed. We can

see this happen if we change the value of day to a number greater than 7 or less than 1

and run the program again. We see that the fi nal else catches the mistake.

 The day is Oops!

 NOTE It is important to mention that the evaluation of a chain of if and
else statements is evaluated from top to bottom. If at any point a condition
is true, then the code block will execute, and the rest of the conditions after
it will be skipped. If it is possible for multiple conditions to be true, then only
the topmost one will be executed since we call it fi rst.

 NOTE You can learn more about the operators shown in this lesson on the
Oracle site at docs.oracle.com/javase/tutorial/java/nutsandbolts/op2.html .

 Evaluating Multiple Conditions
 So far with our fl ow control, we have been using single-part conditionals. That is to say,

we ’ ve been writing expressions that do a single comparison and evaluate to true or false.

What happens if we want to check multiple conditions?

 You have a couple of options. The fi rst is to nest one if statement inside another.

 if (condition) {
 if (condition) {
 }
 }

 While this works, there is another option: conditional expressions can be com-

pounded using conditional-and (AND) or conditional-or (OR) operators.

147Lesson 7: Controlling Program Flow

 NOTE The use of AND is simply a shortened way of saying conditional-
and, which is represented in code as && . The use of OR (capitalized) is
simply a shortened way of saying conditional-or, which is represented in
code as || .

 Conditional-And and Conditional-Or Operators
 With a conditional-and operator, both conditions must be true for the conditional

expression as a whole to be true. For example, if there is precipitation AND the tem-

perature is below freezing, it will snow. If one or both of those conditions is false, it

will not snow.

 With a conditional-or operator, the conditional expression is true if at least one of the

conditions is true. If both are false, the conditional expression as a whole evaluates as

false. For example, if it is raining OR snowing today (or even if it just cold enough to rain

and snow at the same time), I will need an umbrella to stay dry if I go outside. The only

case where I won ’ t need an umbrella is if it is neither raining nor snowing.

 Both conditional-and (represented as &&) and conditional-or (represented as ||) are

logical operators and are used in the following manner:

 if (conditionA && conditionB) //an AND condition
 {
 // code;
 }

 if (conditionA || conditionB) //an OR condition
 {
 // code;
 }

 To fully understand these, let ’ s look at them in action. Listing{ 7.4 includes both the

conditional-and and conditional-or operators.

 LISTING 7.4
 AboutYou.java: Using Conditional Operators

 public class AboutYou {

 public static void main(String[] args) {
 int age = 19;
 boolean registered = true;

Job Ready Java148

 // See if a person can vote!
 if(age >= 18 && registered == true){
 System.out.println("You can vote!");
 }

 // See if they are not allowed to vote!
 if(age < 18 || registered != true){
 System.out.println("You not eligible to vote!");
 }
 }
 }

 In Listing{ 7.4 , there is more than one condition within an if statement. The code is a

bit redundant but works for showing how conditional-and and conditional-or work. In

the fi rst if statement, we are checking to see whether a person can vote. To vote, they

must be 18 years of age or older and they must be registered. Each of these conditions isd

created using expressions with relational operators that evaluate to either true or false.

It is either true or false that they are older than 18, and it is either true or false that they

are registered to vote. If both resolve to true, then the && results in the entire if state-

ment resolving to being true, and thus the message is displayed.

 The second if statement is a bit redundant with the fi rst but is good for illustrating

the conditional-or statement. In this case, we are checking to see whether the age of the

person is younger than 18, and we are also checking to see whether the person has not

registered to vote. If either their age is younger than 18 or they are not registered (reg-

istered is not true), then they are not eligible to vote, so we display a message to let

them know.

 When you run this program, the output you see should look like the following:

 You can vote!

 If you change the value of age to something less than 18 and then compile and run the

program again, you ’ ll see a diff erent result. Change the age to various values and change

registered to false instead of true to see what diff erences it makes when you run

the program.

 NOTE Operator precedence puts the conditional operators at a lower level
than the relational operators. As such, the conditional operators will always
be evaluated after the relational operations have occurred. If you want
to make sure your code is clear, you can use parentheses to separate the
expressions.

 if((age >= 18) && (registered == true)) {
 ...

149Lesson 7: Controlling Program Flow

 NOTE The conditional-and (&&) and conditional-or (||) are called short-
circuit operators because they will only evaluate the second operand if theys
must. The & and | operators will always evaluate both operands.

 Exclusive-Or
 There is actually a third operator we can use as well, the exclusive-or (̂). The exclusive-

or (̂) or XOR operator checks to see whether the operand on either side is true but also

checks to make sure both are not true. Table{ 7.2 summarizes the three operators we ’ ve

talked about that can be used for combining multiple conditions.

 When you use the operators from Table{ 7.2 , your expression will be evaluated to a

true or false result. Table{ 7.3 summarizes the results of using the three operators on two

diff erent operands.

 Table 7.2 Operators

Operator

Type Operator Meaning

Conditional && AND Evaluates to true if both operand1 and operand2
are true, false otherwise

Conditional || OR Evaluates to true if either operand1 or operand2
or both are true, false otherwise

Logical ^ Exclusive-Or
(XOR)

Evaluates to true if either operand1 or operand2
but not both are true, false otherwise

 Bitwise Operations
 We covered the logical boolean operators in this lesson. The Java language also has
bitwise boolean operators and bit shift operators. These are not commonly used, but
Oracle has a brief intro at docs.oracle.com/javase/tutorial/java/nutsandbolts/op3.html .

 Table 7.3 Operator Results

A B a && b a || b a ^ b

False False False False False
True False False True True
False True False True True
True True True True False

Job Ready Java150

 TERNARY OR CONDITIONAL OPERATOR
 It is worth mentioning a special operator in Java, the ternary operator (?:), which

is also called the conditional operator . This operator is the only operator that hasrr

three operands.

 The ternary operator is used to provide a shortcut for an if-else statement. The

diff erence between the ternary operator and a standard if statement is that the ternary

operator assigns a value to a variable. The format of this operator is as follows:

 result = (condition) ? true_result : false_result;

 The operator will evaluate a condition, which is a standard boolean expression that will

evaluate to a true or false answer. Depending on the result of the boolean expression,

one of two answers will be assigned to the variable on the left. If the condition evaluates

to true, then the fi rst expression (true_result) after the question mark will be assigned

to the variable (result). If the condition evaluates to false, then the second expression

(false_result) that appears after the colon will be assigned to the variable. This opera-

tor is roughly equivalent to the following if-else statement:

 if (condition) {
 result = true_result
 } else {
 result = false_result;
 }

 It should be clear that the benefi t of the ternary operator is to allow for a condition

to be used to quickly place a value into a variable. Listing{ 7.5 gives a simple example of

using a ternary operator.

 LISTING 7.5
 Using a Ternary Operator

 public class VotingAge {

 public static void main(String[] args) {

 int age = 19;
 String result = "";

151Lesson 7: Controlling Program Flow

 result = (age >= 18) ? "You can register!" : "You are not old
enough to vote";
 System.out.println(result);
 }
 }

 When you run Listing{ 7.5 , you should see the following:

 You can register!

 When the program runs, one of two strings is placed into the results variable, which is

then printed. The result that is displayed is determined by the ternary operator. If the

condition that checks to see whether age is greater than or equal to 18 evaluates to true ,

then the fi rst message, You can register , is assigned to r result . If the condition evalu-

ates to false , then the second message is assigned.

 SWITCH STATEMENT
 In several of the listings, we used if statements to use a number to determine the day of

the week. In looking at Listing{ 7.3 , you might believe that there must be a better way to

accomplish the same result without having so many if statements.

 The switch statement is an alternative construct that allows for conditional execu-

tion. The switch statement checks a condition against any number of cases. If a

case matches, then the code associated with that case is executed. The basic form is

as follows:

 switch (expression) {
 case constant:
 // execute code if expression == constant
 break;
 case constant2:
 //execute code if expression == constant2
 break;
 default:
 //execute code if no match found
 break;
 }

 The main body of a switch statement is called the switch block. The switch block is

composed of one or more cases or default labels. The code associated with the default

label is executed if none of the cases matches the expression.

Job Ready Java152

 A big diff erence between switch statements and if statements is that the conditions

tested in an if statement must be boolean expressions, whereas the expressions eval-

uated in a switch statement can be byte , short , char , r int , enumerated types (more on

these later), strings, or the wrapper classes for byte , short char, and r int (more on this

later). The switch statement simply checks whether the evaluated expression matches

any of the cases.

 Another thing to notice about switch statements is the break statement. The break

statement terminates the switch—in other words, after a break statement is executed,

the program continues with the fi rst statement after the switch block. The break state-

ments are necessary because all statements after a matching case label are executed

in order until either a break statement or the end of the switch block is encountered,

regardless of the values of the subsequent case labels. This is known as falling through .

The best way to see this in action is to look at some code. In Listing{ 7.6 we take advan-

tage of this feature to improve the day of the week program.

 LISTING 7.6
 DayOfWeek Using a switch Statement

 public class DayOfWeek {

 public static void main(String[] args) {

 int day = 4;
 String dayName = "";

 switch (day) {
 case 1:
 dayName = "Monday";
 break;
 case 2:
 dayName = "Tuesday";
 break;
 case 3:
 dayName = "Wednesday";
 break;
 case 4:
 dayName = "Thursday";
 break;
 case 5:
 dayName = "Friday";
 break;

153Lesson 7: Controlling Program Flow

 case 6:
 dayName = "Saturday";
 break;
 case 7:
 dayName = "Sunday";
 break;
 default:
 dayName = "Invalid day";
 }

 System.out.println("The day is " + dayName);
 }
 }

 Running this listing gives the same result as Listing{ 7.3 .

 The day is Thursday

 The switch statement is taking day as the expression it will evaluate. It will com-

pare the value of day to each of the cases until it fi nds one that matches. Once it fi nds

the match, it will execute the code within that case until it gets to either the end of the

switch statement or a break command. If it reaches a break command, execution will

jump to the end of the switch statement.

 If the day does not match any of the cases, then program fl ow will go to the default

case, labeled default . The code in the default section will then execute. The default

block operates a lot like an else statement.

 TIP It is a good practice to always include a default case even if you don ’ t
believe it will ever be used. It ’ s a good safety check for your code.

 Falling Through with a switch Statement
 There are times when you want to run the same code for several values in a switch state-

ment. In such situations, we can just stack up the case statements one after another.

 For example, in Listing{ 7.7 , we want to determine the type of day for a given number.

In other words, we want to know whether it is a weekday or a weekend.

 LISTING 7.7
 Falling Through in a switch Statement

 public class DayOfWeek {

Job Ready Java154

 public static void main(String[] args) {

 int day = 4;
 String dayType = "";

 switch (day) {
 case 1:
 case 2:
 case 3:
 case 4:
 case 5:
 dayType = "Weekday";
 break;
 case 6:
 case 7:
 dayType = "Weekend";
 break;
 default:
 dayType = "Invalid Day";
 }

 System.out.println(dayType);
 }
 }

 Looking at the code in Listing{ 7.7 , you see that if the value for day is 1, 2, 3, 4, or 5,

then dayType is Weekday . But, if the value of day is 6 or 7, the dayType value is Weekend .

When you run the code, you should see that day 4 is a weekday:

 Weekday

 NOTE Switch logic can be achieved with if and else-if statements.
Using it is really just a matter of preference. Some developers fi nd it more
readable, but others don ’ t, so using it is really up to you. The key difference
is that for a switch statement you need to have a list of acceptable values
that are being compared to the same thing.

 NOTE All switch expressions can be converted to if-else logic; however,
not all if-else expressions can be converted to a switch .

155Lesson 7: Controlling Program Flow

 COMPARING FOR EQUAL STRINGS
 It is easy to do conditional statements with numbers, but comparing strings works a little

diff erently. When comparing strings, we need to call an approach similar to calling the

println() method to display information.

 To compare strings, we call the equals() method. This is done by adding .equals() to

the string we want to compare and including the string we want to compare to it in the

parentheses. For example, we used a variable called dayName earlier to store the name

of the day of a week. Using the .equals() method, we could check to see whether the

dayName value was equal to Saturday by doing the following:

 dayName.equals(“Saturday”)

 If dayName is equal to the string between the parentheses, then this expression will

evaluate to true. If they are not equal, the expression will evaluate to false. Listing{ 7.8 is

an update of Listing{ 7.6 .

 LISTING 7.8
 DayOfWeek Where We Look for a Weekend

 public class DayOfWeek {

 public static void main(String[] args) {

 int day = 4;
 String dayName = "";

 switch (day) {
 case 1:
 dayName = "Monday";
 break;
 case 2:
 dayName = "Tuesday";
 break;
 case 3:
 dayName = "Wednesday";
 break;
 case 4:
 dayName = "Thursday";
 break;

Job Ready Java156

 case 5:
 dayName = "Friday";
 break;
 case 6:
 dayName = "Saturday";
 break;
 case 7:
 dayName = "Sunday";
 break;
 default:
 dayName = "Invalid day";
 }

 System.out.println("The day is " + dayName);

 if(dayName.equals("Saturday") || dayName.equals("Sunday")) {
 System.out.println("It is the weekend!");
 } else {
 System.out.println("It is a weekday.");
 }
 }
 }

 If we look near the end of Listing{ 7.8 , we see that we have added an if statement that

checks to see whether dayName is equal to Saturday or Sunday. We ’ ve done this using a

conditional OR operator (||) as well. If the value is equal to one of these two days, then

we know it is a weekend. When you run the listing, you will see the following output:

 The day is Thursday
 It is a weekday.

 If you change the value of day to 7, then when you compile and run the listing, you see

the following:

 The day is Sunday
 It is the weekend!

 TIP For more information on String ’ s equals() method, check out the Java
tutorial on comparing Strings at docs.oracle.com/javase/tutorial/java/data/
comparestrings.html .

 The compareTo() method is another method that can be used to check for equality

of strings. Whereas the equals() method returns a boolean value (true or false) if the

157Lesson 7: Controlling Program Flow

strings are equal, the compareTo() method returns an integer. It the strings are equal, it

returns 0. If the string passed to compareTo() is greater than the original string, then a

value greater than zero is returned. If the passed string is less than the original string,

then a value less than zero is returned. Listing{ 7.9 is a super-simple listing that shows you

the result of calling compareTo() a couple of times.

 LISTING 7.9
 Comparing Two Strings

 public class CompareStrings {

 public static void main(String[] args) {

 String stringOne = "apples";
 String stringTwo = "bananas";
 String stringThree = "grapes";

 int result = 0;

 result = stringOne.compareTo(stringTwo);
 if (result == 0) {
 System.out.println(stringOne + " equals " + stringTwo);
 } else if (result < 0) {
 System.out.println(stringOne + " is less than (before) " +
stringTwo);
 } else {
 System.out.println(stringOne + " is greater than (after) " +
stringTwo);
 }

 result = stringThree.compareTo(stringTwo);
 if (result == 0) {
 System.out.println(stringThree + " equals " + stringTwo);
 } else if (result < 0){
 System.out.println(stringThree + " is less than (before) " +
stringTwo);
 } else {
 System.out.println(stringThree + " is greater than (after) " +
stringTwo);
 }
 }
 }

Job Ready Java158

 NOTE It is worth clarifying what one String being greater than or less
than another String means. Strings are sorted based on their characters.
In fact, numbers come fi rst, then uppercase letters, then lowercase letters.
This means that “a” is less than “b” and that 1 is less than “z” . It also means
that the String “Abc” would come before (is less than) “abc” and that the
String “Zzz” would come before (be less than) the String “aaa” because the
capital letter Z comes before the lowercase letter Z a .

 When you run this listing, you should see the following output:

 apples is less than (before) bananas
 grapes is greater than (after) bananas

 This listing creates three string variables and assigns value to them. It then uses com-

parisons to determine whether one string is equal to, less than, or greater than another.

In this case, apples come before bananas , and grapes comes after bananas . You can

change the strings to see how it impacts the results.

 NOTE You saw two different ways to determine whether String s are equal.
When writing programs, it is not uncommon to have multiple approaches
that can solve the same problem.

 SUMMARY
 In this lesson, we looked at how we can control the fl ow of a program. Specifi cally, we

looked at how we can make decisions and change the fl ow based on those decisions. In

going through this lesson, you discovered many core elements of the Java programming

language including:

• The if-else statement

• The switch statement

• The relational operators

• The conditional operators including the conditional AND (&&) and condi-

tional OR (||)

You also learned a method for comparing strings, the .equals() method.

 That ’ s it for this lesson, but it isn ’ t the end of controlling programming fl ow. In the

next lesson, you will continue to dig into the Java language and learn commands for

directing your program fl ow to repeat or loop.

159Lesson 7: Controlling Program Flow

 EXERCISES
 This section includes coding exercises to introduce fl ow control. Now that you are

learning to control the fl ow of the program, you will be able to do a lot more. This lesson

has more exercises than other lessons to help you make sure you understand what you

learned in the lessons up to this point, plus to show you the variety of things you are now

able to do with the Java statements you ’ ve learned.

Exercise 1 : What Month Is It?

Exercise 2 : Guess Me

Exercise 3 : Birthstones

Exercise 4 : Trivia Night

Exercise 5 : Space Rustlers

Exercise 6 : Picky Eater

Exercise 7 : Field Day

 Exercise 1: What Month Is It?
 Create a class that uses if-else statements to convert a number from 1 to 12 to the

correct month. You can use Listing{ 7.3 as a starting point.

 Exercise 2: Guess Me
 Let ’ s play a game with the user. We choose a number, ask the user to guess the number,

and produce a response based on how well their choice matches the number we started

with. Create a new program called GuessMe that includes the following:e

• Create a new class named GuessMe . (You ’ ll want your fi le to be named

GuessMe.java .)

• Write a program that that has an integer of your choice stored in a variable.

• The program asks the user to pick a number.

• Regardless of the choice, the program should print out what the user entered as

part of the response.

• If their choice is equal to the number, print Wow, nice guess! That was it!

• If their choice is less than the number, print Ha, nice try - too low! I chose # .

• If their choice is greater than the number, print Too bad, way too high.

I chose # .

Job Ready Java160

 You ’ re on your own for the code. The following example shows a sample output, but

you can change the wording if you want:

 I've chosen a number. Betcha can't guess it!
 Your guess: 11

 11? Ha, nice try - too low! I chose 44.

 Exercise 3: Birthstones
 Now let ’ s try a lookup application, where the user enters one value and the program

returns a specifi c value from a list in relation to the input. In this case, we will ask the

user for a month number and tell the user the corresponding month and birthstone. The

following table shows a common list of birthstones that you can use for this program:

Month Birthstone

January Garnet
February Amethyst
March Aquamarine
April Diamond
May Emerald
June Pearl
July Ruby
August Peridot
September Sapphire
October Opal
November Topaz
December Turquoise

 Create a new fi le named BirthStones.java for this exercise. The program should per-

form the following steps:

• Ask the user for a number.

• Match that number against the month number.

• Print out the name of the month and its corresponding birthstone.

• If the user enters a value that doesn ’ t correspond to a month number, display an

appropriate error message.

 The code and wording are completely up to you, as long as the program runs and

meets the criteria listed earlier.

161Lesson 7: Controlling Program Flow

 As an example, if the user entered a value of 12, the output might look like the

following:

 What month's birthstone do you want to know? 12
 December's birthstone is Turquoise.

 If the user entered -1 as the month, the output might look like the following:

 What month's birthstone do you want to know? -1
 I think you must be confused, -1 doesn't match a month.

 NOTE Try doing this with a chain of if statements and then convert your
solution to a switch statement.

 Exercise 4: Trivia Night
 Now let ’ s create a program that uses everything you ’ ve learned so far about writing appli-

cations in Java: a trivia game that asks the user a series of questions and keeps track of

the score.

 Create a new java class named TriviaNight that performs the following tasks:

• It should ask the user a series of multiple-choice questions and determine

whether the user ’ s answer is correct for each question. We recommend a mini-

mum of three questions.

• The program should keep a running tally of the number of correct answers so that

it can display a fi nal count after the user has answered all the questions.

• After the user has answered all questions, the program displays the fi nal score

along with a message that is appropriate for the score. For example, the programs

should not say “Awesome!” if the user did not answer any of the questions correctly.

• BONUS: Include output for each question that tells the user whether the answer

was correct along with their current score and the number of questions remaining.

 The code and wording are completely up to you. Here is an example of what the

program might look like without the bonus step:

 It's TRIVIA NIGHT! Are you ready?!

 FIRST QUESTION!
 What is the lowest-level programming language?
 1) Source code
 2) Assembly language

Job Ready Java162

 3) C#
 4) Machine code

 YOUR ANSWER: 4

 SECOND QUESTION!
 Website security CAPTCHA forms are descended from the work of?
 1) Grace Hopper
 2) Alan Turing
 3) Charles Babbage
 4) Larry Page

 YOUR ANSWER: 2

 LAST QUESTION!
 Which of these sci-fi ships was once slated for a full-size replica in
Las Vegas?
 1) Serenity
 2) The Battlestar Galactica
 3) The USS Enterprise
 4) The Millennium Falcon

 YOUR ANSWER: 3

 Nice job - you got 3 correct!

 Exercise 5: Space Rustlers
 This exercise will help you practice working with the if-else structure. Enter the code in

Exercise Listing{ 7.5 in a new fi le named SpaceRustlers . Make sure that the code works

before you make changes to it. Before running the code, look through what it is sup-

posed to do. Can you predict what the output will be with the original values?

 EXERCISE LISTING 7.5
 SpaceRustlers.java

 public class SpaceRustlers {

 public static void main(String[] args) {

 int spaceships = 10;
 int aliens = 25;
 int cows = 100;

163Lesson 7: Controlling Program Flow

 if(aliens > spaceships){
 System.out.println("Vrroom, vroom! Let's get going!");
 } else{
 System.out.println("There aren't enough green guys to drive
these ships!");
 }

 if(cows == spaceships){
 System.out.println("Wow, way to plan ahead! JUST enough room for
all these walking hamburgers!");
 } else if (cows > spaceships){
 System.out.println("Dang it! I don't how we're going to fit all
these cows in here!");
 } else {
 System.out.println("Too many ships! Not enough cows.");
 }
 }
 }

 When you run this code, you should see the following:

 Vrroom, vroom! Let's get going!
 Dang it! I don't how we're going to fit all these cows in here!
 Oh no! The herds got restless and took over! Looks like _we're_
hamburger now!!

 After you get the original code to work correctly, look at the following, and update

the code as necessary. Remember to test and run the code after each update to make

sure it works as expected.

• What do else-if and if do? (Answer in a comment.)

• If you remove else from the else-if statement, what does that do? t

• Add in another if-else block that prints out Hurrah, we ' ve got the grub!

 Hamburger party on Alpha Centauri! if the aliens outnumber the cows. If the

cows equal or outnumber the aliens, print Oh no! The herds got restless and

took over! Looks like we ' re hamburger now!! .

 Exercise 6: Picky Eater
• This exercise will help you practice using the conditional ANDs and ORs. Write a

new program named PickyEater to help someone fi gure out whether their particu-r

larly picky-eater kid will eat the food that they have described.

Job Ready Java164

 Here are the rules:

• If the food has any spinach in it or a funny name, print There ' s no way

he ' ll eat that!

• If the food has been fried more than two times but less than four and it is covered

in chocolate, print Oh, it ' s like a deep-fried Snickers. That ' ll be a hit!

• If it has been fried twice and is covered in cheese, print Mmm. Yeah, he ' ll eat

fried cheesy doodles.

• If it is broccoli, has more than six pats of butter on top, and is covered in cheese,

print As long as the green is hidden by cheddar, it ' ll happen!

• But otherwise, if it is broccoli, print Oh, green stuff like that might as well

go in the bin.

 Exercise Listing{ 7.6 shows part of the code to get you started.

 EXERCISE LISTING 7.6
 PickyEater.java

 import java.util.Scanner;

 public class PickyEater {

 public static void main(String[] args) {
 Scanner userInput = new Scanner(System.in);

 System.out.print("How many times has it been fried? (#) ");
 int timesFried = Integer.parseInt(userInput.nextLine());

 System.out.print("Does it have any spinach in it? (y/n) ");
 String hasSpinach = userInput.nextLine();

 System.out.print("Is it covered in cheese? (y/n) ");
 String cheeseCovered = userInput.nextLine();

 System.out.print("How many pats of butter are on top? (#) ");
 int butterPats = Integer.parseInt(userInput.nextLine());

 System.out.print("Is it covered in chocolate? (y/n) ");
 String chocolatedCovered = userInput.nextLine();

165Lesson 7: Controlling Program Flow

 System.out.print("Does it have a funny name? (y/n) ");
 String funnyName = userInput.nextLine();

 System.out.print("Is it broccoli? (y/n) ");
 String isBroccoli = userInput.nextLine();

 // Conditionals should go here! Here's the first one for FREE!

 if (hasSpinach.equals("y") || funnyName.equals("y")) {
 System.out.println("There's no way he'll eat that!");
 }
 }
 }

 The rest of the conditionals are up to you. Here is an example of what the output

might look like:

 How many times has it been fried? (#) 4
 Does it have any spinach in it? (y/n) y
 Is it covered in cheese? (y/n) y
 How many pats of butter are on top? (#) 8
 Is it covered in chocolate? (y/n) n
 Does it have a funny name? (y/n) y
 Is it broccoli? (y/n) n
 There is no way he'll eat that...

 Exercise 7: Field Day
 For this exercise, you will practice using the compareTo() function of String s. Start by

creating a new program called FieldDay .

 Your company has organized a morale event. They are hosting a picnic and fi eld day in

the park, and of course, they want to play team games and team-building games.

 To do that, they want to assign all the people who show up to certain teams based on

their last name—they ’ ve already fi gured out the distribution. All they need you to do is

to write the program that can sort them. For example, it should take a last name as input

and use that to output the team name.

 Here are the specs:

• If a person ’ s name falls before Baggins, then they are on the team Red Dragons.

• If the name is Baggins or if it falls after Baggins but before Dresden, they are on

the team Dark Wizards.

Job Ready Java166

• If the name is Dresden or if it falls after Dresden but before Howl, they are on the

team Moving Castles.

• If the name is Howl or if it falls after Howl but before Potter, they are on the team

Golden Snitches.

• If the name is Potter or if it falls after Potter but before Vimes, they are on the

team Night Guards.

• If the name is Vimes or if it falls after Vimes, they are on the team Black Holes.

 When you run your program, you should see something like the following:

 What's your last name? Weasley
 Aha! You're on the team "Black Holes"!
 Good luck in the games!

Lesson 8

 Looping
Program Flow

 In this lesson, we continue to learn how to control the fl ow of a

program. In Lesson 7, “Controlling Program Flow,” we learned

how to control fl ow through making decisions. In this lesson, we ’ ll

expand upon that to learn how we can use our code to repeat

ourselves using looping expressions.

 LEARNING OBJECTIVES
 By the end of this lesson, you will be able to:

• Use loops to repeat the execution of code blocks

• Learn the diff erent types of looping commands you can use

• Understand how to change conditions for keeping a loop going

• Discover how to break out of loops

 LOOPS
 In the previous lesson, you learned about controlling program fl ow using conditions.

These conditions allowed you to branch your code fl ow based on decisions made within

Job Ready Java168

the code. In today ’ s lesson we continue learning about how to control the fl ow of our

programs by using loops.

 Loops are absolutely critical in any nontrivial program. They allow you to repeat a

sequence as many times as you need, or sometimes you want to just keep going until a

condition is met.

 Should your phone ring fi ve times before it goes to voicemail? There ’ s a loop for

that. Want to process payroll checks for all employees? You just keep going until there

are no more employees. Well, there is a loop for that, too. The two examples shown in

Figure{ 8.1 encapsulate the key question we need to ask before creating a loop:

 Do I know in advance how many times to loop?

 In the case of the phone ringing, we know that it should ring fi ve times before it goes

to voicemail. In the case of the payroll checks for employees, however, we might not

know in advance how many times we need to repeat the process. You just want to simply

start at the beginning of the pile and keep going until the pile runs out.

 The kind of loop we use depends a lot on the answer to this question. Though you can

often use many diff erent types of loops in any particular situation, there is often a best

choice. In the rest of this lesson, we will give you an overview of while loops, do/while

loops, for loops, and special keywords called jump statements that we can use inside loops.s

Ring 5 times5

paycheckProcess x s

 Figure 8.1 How many times to loop?

 NOTE Loops allow us to repeat the execution of a code block as long ass
some condition is true. There are three looping constructs in Java: while
loops, do/while loops, for loops.

 USING WHILE LOOPS
 When you ’ re a programmer, you can make the computer do some of the work for you. No

one wants to write the same code over and over and over again. The fi rst loops we ’ ll dis-

cuss will be while loops. The basic syntax looks like this:

169Lesson 8: Looping Program Flow

 while(condition)
 {
 // Code to be repeated
 }

 In a while loop, a condition is evaluated before each execution of a code block, includ-

ing the fi rst one. The code block will continue to be executed over and over, until the

condition is evaluated to be false . So, the while loop checks the condition, and if it is

true , then the code is executed, and the condition is checked again. If the condition is

found to be false , then the code block is skipped, and program fl ow continues with the

statement after the while code block.

 Listing{ 8.1 presents a basic while loop that counts from 1 to 5. As you type this listing,

notice the condition and code block that are being used.

 LISTING 8.1
 Using while to Count to 5

 public class CountingNumbers {

 public static void main(String[] args) {

 int counter = 1; // initializing our variable

 while (counter <= 5)
 {
 System.out.println("Counting: " + counter);
 counter++;
 }

 System.out.println("...Done!");
 }
 }

 This is a short listing, but it illustrates the power of the while loop. When you run this

program, you should see the following output:

 Counting: 1
 Counting: 2
 Counting: 3
 Counting: 4
 Counting: 5
 ...Done!

Job Ready Java170

 When we look at this listing, you can see that a single variable is being created called

counter . It is important to note that we are initializing this variable to 1. This will get ourg

counting started. With our variable initialized, the next Java statement we get to is the

new while statement. As you can see, we have the while followed by a condition that

evaluates to either true or false . In this case, we know we just set counter to 1, and we

know that 1 is less than or equal to 5, so our condition evaluates to true . That means the

code block associated with the while statement will be executed.

 In our code block we do two things. First, we print a message; we print a little text fol-

lowed by the value of counter . After doing the work of our code block, we do the next

statement, which is to increment counter by 1. The ++ operator adds 1 to the current

variable. It is equivalent to doing the following:

 counter = counter + 1;

 So, in this case, counter goes from being 1 to being 2. With the end of the while code

block reached, program fl ow goes back to the top, back to the while condition. The check

is done again. This time counter equals 2, and 2 is less than or equal to 5, so the condi-

tion evaluates to true , and the while code block is executed again.

 This continues to happen until counter++ sets counter equal to 6. At that point, pro-

gram fl ow again goes to the while condition; however, when the counter value of 6 is

checked, we fi nd that 6 is not less than or equal to 5, so the condition resolves to false .

Because the condition is false , program fl ow goes to the fi rst statement after the while

code block, which in this case is a line of code to print out the ...Done! message.

 NOTE When doing Java coding, most lines of code end with a semicolon.
Note that with the while command, there is not always a semicolon after
the line with a while condition. The following is most likely an error:

 while (counter <= 5);

 The semicolon ends the while statement, which means any code block that follows

will be considered as separate code and not part of the while command.

 NOTE It is also worth noting that although we ’ ve shown a block of code
after a while condition in curly brackets ({}), they are not required if the code
to be executed is a single statement nor do pieces of the while statement
have to be on separate lines. The following two while statements are valid:

171Lesson 8: Looping Program Flow

 while (counter <= 5)
 System.out.println("Counting: " + counter++);

 while (counter <= 5) System.out.println("Counting again: " + counter++);

 Initializing the while Loop
 Looking at Listing{ 8.1 , what would happen if we had initially set the value of counter to a

number greater than 5? Change the line of code where we declare and initialize counter

to the following:

 int counter = 6; // initializing our variable

 Now when you compile and run the program, the output shows the following:

 ...Done!

 As you can see, the code block within the while statement never executed. This is

because when the while statement checked the condition, it looked to see whether

the value of counter, which was 6, was less than or equal to 5. Since the value of 6 is not

less than 5, the condition evaluated to false , and the block was skipped without ever

being executed.

 Incrementing the while Loop
 What would happen if we left out the line to increment the counter? Try removing the

counter++ command. Compile and rerun the program. What happens? If we do this and

run the program, we are likely to see the following:

 Counting: 1
 Counting: 1
 Counting: 1
 Counting: 1
 Counting: 1
 Counting: 1
 Counting: 1
 Counting: 1
 ...

 The program will continue to print the count of 1 forever. Because the condition will

always be true, the loop will run forever. We ’ ve created an infi nite loop.

Job Ready Java172

 Breaking a Loop
 Sometimes when we ’ re learning things, we have to go beyond our comfort level. But we

always have to make sure we are self-aware enough to know when to stop and take a break.

 Along with this life lesson, we get to learn more about loops because loops can stop when

a programmer tells them to take a break. Literally. To stop a loop, use the break keyword!

 Here ’ s an example:

 while(condition)
 {
 if(othercondition)
 {
 break;
 }
 }

 While the loop would normally continue until the condition changed to false, now

there is another way to bail out—if the othercondition ever evaluates to true , we can

use the break statement to stop the loop. The break statement will send control to the

next line following the current loop.

 Let ’ s write a program to practice the new break statement. In Listing{ 8.2 is a new pro-

gram named BewareTheKraken . In this program, we pretend we are diving in the ocean.

We ’ re going to keep going down, deeper and deeper, until the fi sh and everything gets

too creepy and we have to stop.

 LISTING 8.2
 BewareTheKraken.java

 public class BewareTheKraken {

 public static void main(String[] args) {

 System.out.println("Get those flippers and wetsuit on - we're going diving!");
 System.out.println("Here we goooOOooOooo.....! *SPLASH*");

 int depthDivedInFt = 0;

 // Turns out the ocean is only so deep, 36200 at the deepest survey,
 // so if we reach the bottom ... we should probably stop.
 while(depthDivedInFt < 36200){
 System.out.println("So far, we've swum " + depthDivedInFt + " feet");

173Lesson 8: Looping Program Flow

 if(depthDivedInFt >= 20000){
 System.out.println("Uhhh, I think I see a Kraken, guys....");
 System.out.println("TIME TO GO!");
 break;
 }

 // I can swim, really fast! 500ft at a time!
 depthDivedInFt += 1000;
 }
 System.out.println("");
 System.out.println("We ended up swimming " + depthDivedInFt +
" feet down.");
 System.out.println("I bet we can do better next time!");
 }
 }

 When we run the program in Listing{ 8.2 , we should see the following:

 Get those flippers and wetsuit on - we're going diving!
 Here we goooOOooOooo.....! *SPLASH*

 So far, we've swum 0 feet
 So far, we've swum 1000 feet
 So far, we've swum 2000 feet
 So far, we've swum 3000 feet
 So far, we've swum 4000 feet
 So far, we've swum 5000 feet
 So far, we've swum 6000 feet
 So far, we've swum 7000 feet
 So far, we've swum 8000 feet
 So far, we've swum 9000 feet
 So far, we've swum 10000 feet
 So far, we've swum 11000 feet
 So far, we've swum 12000 feet
 So far, we've swum 13000 feet
 So far, we've swum 14000 feet
 So far, we've swum 15000 feet
 So far, we've swum 16000 feet
 So far, we've swum 17000 feet
 So far, we've swum 18000 feet
 So far, we've swum 19000 feet
 So far, we've swum 20000 feet
 Uhhh, I think I see a Kraken, guys....
 TIME TO GO!

 We ended up swimming 20000 feet down.
 I bet we can do better next time!

Job Ready Java174

 Listing{ 8.2 might look longer than many we ’ ve seen before, but a lot of the code is for

printing messages and comments. We can see that a while loop is created that will keep

printing messages until a certain number is reached—in this case, a depth of greater

than 36,200. In the body of the loop, however, there is a check to see whether the depth

has reached 20,000. If it has, a break statement is executed, and the program fl ow jumps

to the next command after the loop ’ s code body.

 This listing is a little arbitrary in that you could have simply had the while loop condi-

tion check for 20,000 feet instead of 36,200. In an exercise at the end of this lesson, you

are asked to change this listing so that with each iteration of the loop, you are to ask the

user if they want to continue to dive deeper. If they do not, then you will want to break

out of the loop.

 USING DO-WHILE LOOPS
 There is another variant of the while loop, called the do-while . A do-while loop is almost

identical to a while loop, except that do-while s get straight to business—executing their

code block fi rst and checking the condition to see whether they should do it again only

after it has been run once. r

 The syntax looks like this:

 do
 {
 // code to be repeated
 } while (condition);

 The best way to see the do-while loop in action is to show code. In Listing{ 8.3 , we

count to 5 with the do-while loop. This listing shows that we can do the same thing with

the do-while loop that we can do with a while loop.

 LISTING 8.3
 Using do-while to Count to 5

 public class CountingNumbers {

 public static void main(String[] args) {

 int counter = 1; // initializing our variable

 do {

175Lesson 8: Looping Program Flow

 System.out.println("Counting: " + counter);
 counter++;
 } while (counter <= 5);

 System.out.println("...Done!");
 }
 }

 When you compile and run this listing, we should see the same output we saw from

Listing{ 8.1 .

 Counting: 1
 Counting: 2
 Counting: 3
 Counting: 4
 Counting: 5
 ...Done!

 When we look at Listing{ 8.3 , we can see that a lot of the code is remarkably similar to

what was done with the while loop. We start our listing by declaring our counter outside

of the loop at the beginning of our program. As you can see, we create a counter called

counter and initialize it to our starting number of 1.

 Next we have the do command. The do command indicates the start of our code block

for our loop. It will contain the code that is to be executed while our e condition is true. n

 What do we do in the body of the loop? First, just like before, we want to print out

the value of our counter, so we do that quickly. Then, just like the while loop, we have to

do something inside our loop ’ s body to change our condition for ending the loop. In this

case, we will increment our counter by 1 by again using counter++ . Remember that if we

enter the loop and don ’ t change any of the conditions, we will stay in that loop forever. In

this case, just like in Listing{ 8.1 , we simply increment our counter.

 NOTE In our loop, we could count by a number other than one. Instead
of using counter++ , we could use something like this:

 counter = counter + 2;

 This would cause our listing to count by twos. We also don ’ t have change
our increment using addition. We could multiply, decrement, or do any other
command that changes our initial value.

Job Ready Java176

 After the code block, we have the second half of the do-while statement, the while

command followed by the condition that will determine whether our loop continues. In

this case, our while condition is doing the same check of determining whether our coun-

ter is less than or equal to 5. After the condition, the entire do-while statement ends

with a semicolon.

 NOTE As a reminder, we print to System.out , which is the command line,
and we read from System.in , which is the input from the command line.

 NOTE It is important to notice that after the condition, there is a
semicolon. This differs from the standard while command where you
generally do not want a semicolon after the condition!

 The big thing to remember is that with a do-while loop, rather than having the condi-

tion at the top, we have the condition at the bottom. This means that we ’ re guaranteed

to run this loop at least one time.

 Making do-while Shine
 While counting is nice for creating a simple illustration of how code works, it isn ’ t a great

use of a do-while loop. Let ’ s get into an example where the do-while loop really shines!

 One of the places where it really shines is when we ’ re asking the user for input. A

good example is a program that asks a user to input a number between 1 and 20. The

program will keep asking for a number until the user enters one that is within this range.

If the user ’ s number is within the range, then the program can print a thank-you message

and quit. The thank-you message can include the number that the user typed in.

 For this program, we will have to do some setup. Because we are going to get input

from the user, you ’ ll need to use a Scanner object. This means we need to import the

scanner code as we have done before.

 import java.util.Scanner;

 With the import in place, we will need to create a Scanner object within our class and

let the scanner know where we want to read from. In this case, we want to read from

System.in , which is the standard input or, in this case, the command line. The fi nal code

for creating and initializing our Scanner object called sc should look like the following:

 Scanner sc = new Scanner(System.in);

177Lesson 8: Looping Program Flow

 Now that we have our scanner, we need to create two variables. The fi rst one is going

to be the user ’ s number, which we ’ ll call userNumber . The second variable is the string

version of that number. Remember, we recommended that everything from the console

be read as a string. We read the number as a string, and then we convert it from the

string into a number. Our two variable declarations should look like this:

 int userNumber;
 String userNumberString;

 You might notice that we declared our variables, but we didn ’ t initialize them as

we have done in previous listings. While we could initialize them at the same time we

declare them, for this listing, we are going to do the initialization in the do-while loop ’ s

code block.

 With our variable declared, we are ready to jump into the loop. The loop starts with

the do keyword, followed by the block, and then the condition that will determine when

our loop should end. In writing the code, we can set up the condition code before writing

the code block.

 Our block is going to keep executing as long as the user enters a number that is out

of bounds. We decided earlier that our bounds is between 1 and 20. So if the user ’ s

number is less than 1 or greater than 20, then we don ’ t have what we want, and we need

to return to our loop and ask for another number to be entered. Our looping code would

be like this:

 do {
 // Ask for a number
 } while (userNumber < 1 || userNumber > 20);

 If the entered number is between 1 and 20 inclusive, then our condition becomes false,

and we stop the loop.

 NOTE You want to be careful in coding your condition statements. If you
had used an AND (&&) operator instead of the OR (||), then your loop is
going to keep going infi nitely since a number can ’ t be both less than 0
and greater than 20.

 With our condition in place, the next step is to set up the code block of our loop,

where we are going to get the number from the user. We ’ ll start by printing out a mes-

sage as we ’ ve done many times before.

 System.out.println("Please enter a number between 1 and 20: ");

Job Ready Java178

 This line of code is going to prompt the user. Following the pattern that we ’ ve seen

before, the next thing we will do is wait for that input to come from the user. We ’ ll use

the nextLine feature of the scanner to get a string. We will then convert the string by

hand using the Integer.parseInt method we learned about in Lesson 5. This fi nal code

should look familiar for getting the string and converting it. It should look like this:

 userNumberString = sc.nextLine();
 userNumber = Integer.parseInt(userNumberString); .

 With this code, we ’ re in good shape as far as the loop goes. We ask for a number

between 1 and 20, we get a string value, and then we convert the string into a number.

This should complete our do-while loop, which should now look like this:

 do {
 System.out.println("Please enter a number between 1 and 20: ");
 userNumberString = sc.nextLine();
 userNumber = Integer.parseInt(userNumberString);
 } while (userNumber < 1 || userNumber > 20);

 If the user ’ s number is out of bounds, our condition will send the program fl ow right

back up to the top where we ask the user to enter a number once again. If the number

entered is within our range, then we are going to quit our do-while loop and do any fi nal

wrap-up code. In our case, the wrap-up code will display a message that says “thank you”

along with the number that they entered. Listing{ 8.4 pulls all these pieces together into

a completed listing.

 LISTING 8.4
 Using do-while to Get a Number in Range

 import java.util.Scanner;

 public class CompareStrings {

 public static void main(String[] args) {

 Scanner sc = new Scanner(System.in);
 int userNumber = 0;
 String userNumberString;

 do {
 System.out.println("Please enter a number between 1 and 20: ");
 userNumberString = sc.nextLine();

179Lesson 8: Looping Program Flow

 userNumber = Integer.parseInt(userNumberString);
 } while (userNumber < 1 || userNumber > 20);

 System.out.println("Thank you!!! Your number was: " + userNumber);
 }
 }

 Go ahead and run the listing. Enter numbers less than 1 and higher than 20. The fol-

lowing is an example of what output you could see if you enter 0, then −4, then 22, and

fi nally a number within the range, 5:

 Please enter a number between 1 and 20:
0
 Please enter a number between 1 and 20:
-4
 Please enter a number between 1 and 20:
22
 Please enter a number between 1 and 20:
5
 Thank you!!! Your number was: 5

 Run the program a few times with diff erent values. As you can see, unlike while loops,

because the condition is at the end of the do-while , the loop ’ s code will always execute

at least one time.

 USING FOR LOOPS
 In addition to the while and do-while loops, there is a third looping statement called

for . The for loop allows you to iterate over a range of values. for loops are a bit diff er-

ent from while loops in that they generally defi ne their beginning and ending points and

incremental jumps. That makes for loops really good at iterating along set ranges.

 The basic form of the for loop is as follows:

 for (initialization ; termination ; increment) {
 // code I want to repeat a given number of times
 }

 It is worth looking at each of the pieces of this statement. The initialization state-

ment runs only once as the loop execution begins. This code can be used to initialize any

variables or do anything that needs to happen only once before the looping begins.

 The termination expression is evaluated at the beginning of each loop; when it evalu-

ates as false , the loop terminates. This is exactly like the condition in a while loop, which

is checked prior to the code block being executed.

Job Ready Java180

 The increment expression is evaluated after each loop iteration; we can increment or

decrement values in this expression. When you did a while loop or a do-while loop, you

tended to do the incrementing within your loop ’ s code block. As we can see, with a for

loop, there is a special location for incrementing.

 Each of these statements is optional in a for loop. The resulting for loops might look

funny but work fi ne:

 for(;;); // infinite loop!

 We saw how to count from 1 to 5 with using while and do-while . Listing{ 8.5 presents

the code to accomplish this with a for loop.

 NOTE It is worth noting here that while we are counting from 1 to 5 using a
for loop, many times for loops will start at zero. You will see the importance
of this later in this course when we discuss topics such as arrays.

 LISTING 8.5
 Using for to Count to 5

 public class CountingNumbers {

 public static void main(String[] args) {

 int counter;

 for (counter = 1; counter <= 5; counter++)
 {
 System.out.println("Counting: " + counter);
 }

 System.out.println("...Done!");
 }
 }

 When we run this, we see the following output, which is becoming extremely familiar:

 Counting: 1
 Counting: 2
 Counting: 3
 Counting: 4
 Counting: 5
 ...Done!

181Lesson 8: Looping Program Flow

 The pieces of this code should all be familiar based on what we ’ ve seen in the previous

listings. Even so, it is worth looking at a couple of pieces closer.

 Initializing the for Loop
 In Listing{ 8.5 , we initialized counter to 1. We could actually assign a value to initialize the

counter to any value we would like. In fact, you could initialize it to a number such as 7.

 for (counter = 7; counter <= 5; counter++)

 Make this change to Listing{ 8.5 . When we run the program now, the output looks like

the following:

 ...Done!

 No numbers are printed. This is because the termination condition is evaluated before

the loop ’ s code block is executed. In this case, because 7 is not less than or equal to 5,

the condition evaluates to false , and program fl ow jumps to the statement after the for

loop. The loop ’ s code block is never executed!

 Terminating the for Loop
 In the middle of the for loop is a conditional statement. This statement is generally used

to determine whether the for loop should be terminated or should continue. This state-

ment works just like the conditional statements for the while and do-while loops.

 In Listing{ 8.5 , you saw the following conditional statement:

 counter <= 5

 Before the fi rst iteration of the loop and after each subsequent iteration, this condition

is checked. If it evaluates to true, the for loop ’ s code block is executed. If it evaluates to

false, then the program fl ow jumps to the fi rst statement after the for statement.

 Incrementing a for Loop
 In Listing{ 8.5 , we started with the number 1 and counted to 5 with our incrementor, add-

ing 1 each time the loop cycled. We ’ ve seen that you can change the initialized value. You

can also change what you are using to increment.

 In Listing{ 8.6 , we modify the listing so that it can start at 1 and continue to print num-

bers as long as our number is less than 21. The diff erence in this listing, however, is that

we only want to print odd numbers. While there are a couple of ways we could do this,

Job Ready Java182

we ’ ll change the increment expression to do the work. We can do this by incrementing

our counter by 2 instead of by 1.

 LISTING 8.6
 Using for to Display Odd Numbers

 public class CountingNumbers {

 public static void main(String[] args) {

 int counter;

 for (counter = 1; counter < 21; counter = counter + 2)
 {
 System.out.println(counter);
 }

 System.out.println("...Done!");
 }
 }

 Take a look at Listing{ 8.6 . You can see that we changed the terminating condition

to be counter < 21 as we said we would. To the right of that, you can see a complete

assignment expression where we take counter and we add 2 to its value and then assign

it back to itself.

 counter = counter + 2

 This shows that we can use any complete Java expression to do the incrementing.

When we run this listing, we see the following output:

 1
 3
 5
 7
 9
 11
 13
 15
 17
 19
 ...Done!

183Lesson 8: Looping Program Flow

 This shows that the counter started at 1. It was incremented by 2 each time. When

it got to a value that was no longer less than 21, our for loop exited and program fl ow

went to the next statement after the for loop.

 If we wanted to change this listing to print even numbers, what would we need

to change? We could simply change the initialized value to start with 2 and again

count by twos.

 for (counter = 2; counter < 21; counter = counter + 2)

 Now when we run this listing, the output is as follows:

 2
 4
 6
 8
 10
 12
 14
 16
 18
 20
 ...Done!

 To count by fi ves, we can again change the incrementor. This time we would add 5

each time instead of adding 2.

 for (counter = 2; counter < 21; counter = counter + 5)

 If we change the code and run it again, we will see output that counts by 5 like this:

 2
 7
 12
 17
 ...Done!

 Of course, if we expected the output to show the numbers 5, 10, 15, and 20, then

we see that there is a mistake. The code starts with a value of 2 and then adds 5 each

time. If we want the fi rst number printed to be 5, then we ’ ll need to change the initial

value to be 5.

 As we can see, the for loop gives us a lot of control. It is generally the best looping

command to use if we want to iterate through a specifi c number of items.

Job Ready Java184

 NOTE for loops are particularly useful in iterating over arrays or
collections of items. We ’ ll explore that more when we cover these data
structures.

 SUMMARY
 In this lesson, we covered core features, and more specifi cally, you learned how to repeat

code multiple times using three diff erent looping constructs.

• do-while

• while

• for

 We now have a richer vocabulary, which means that we can create more complicated

programs. Our programs were pretty simple when all we could do was execute on one

statement after another in order. We now have the ability to do much more complex pro-

grams. Now that we can make decisions and repeat ourselves, we need a way to describe

our programs. In the next lesson, that is exactly what we will do. We will learn to use

simple fl owcharts to describe our solutions.

 EXERCISES
 This section includes coding exercises to introduce fl ow control. With the ability to now

repeat pieces of code, you ’ ll fi nd that you can do even more with your code. The fol-

lowing exercises help to make sure you understand what you learned in the lessons.

The best way to make sure you are learning and understanding the lesson is to apply it.

Because understanding looping in your programs is critical, there are more exercises in

this lesson for you to work with.

Exercise 1 : Surfacing in BewareTheKraken.java

Exercise 2 : Do or Do Not

Exercise 3 : Guess Me Finally

Exercise 4 : for and Twenty Blackbirds

Exercise 5 : Spring Forward, Fall Back

Exercise 6 : for Times

Exercise 7 : for Times for

Exercise 8 : Nesting for Loops

Exercise 9 : Traditional Fizz Buzz

185Lesson 8: Looping Program Flow

 Exercise 1: Surfacing in BewareTheKraken .java
 Modify Listing{ 8.2 on your own. In each iteration of the loop, ask the user if they want

to stop. If they do, surface! Hint: You will need to add another break statement to

the listing.

 Exercise 2: Do or Do Not
 Write a program to practice the do-while syntax. Create a new program named

DoOrDoNot using the code in Exercise Listing{ 8.2 . As you type it, read the code carefullyt

and fi gure out what each line does.

 EXERCISE LISTING 8.2
DoOrDoNot.java

 import java.util.Scanner;

 public class DoOrDoNot {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);
 System.out.print("Should I do it? (y/n) ");
 boolean doIt;

 if (input.next().equals("y")) {
 doIt = true; // DO IT!
 } else {
 doIt = false; // DONT YOU DARE!
 }

 boolean iDidIt = false;

 do {
 iDidIt = true;
 break;
 } while (doIt);

 if (doIt && iDidIt) {
 System.out.println("I did it!");
 } else if (!doIt && iDidIt) {
 System.out.println("I know you said not to ... but I totally did anyways.");

Job Ready Java186

 } else {
 System.out.println("Don't look at me, I didn't do anything!");
 }
 }
 }

 Now look more closely at the code and experiment a bit.

• What does it print out if you tell it to do it?

• What if you tell it not to?

• Comment out the do-while loop and write a while loop that checks the same con-

dition and executes the same loop code.

• When you just have a while loop, what prints out when you tell it to do it?

• What about when you tell it not to?

 Exercise 3: Guess Me Finally
 Always improving—that ’ s software for you. Create a new program named GuessMeFi-

nally that starts with your original guessing game from Lesson 7 ’ s exercises. For this ver-y

sion, make the following changes:

• Instead of letting the user try only once more if they get it wrong, let them keep

going until they get it right.

• If they get it on the fi rst try, print Wow, nice guess! That was it! . Otherwise,

print Finally! It ' s about time you got it! .

When the user runs the program, they should see something like the following:

 I've chosen a number between -100 and 100. Betcha can't guess it!
 Your guess: 44

 Ha, nice try - too low! Try again!
 Your guess: 99

 Too bad, way too high. Try again!
 Your guess: 74

 Ha, nice try - too low! Try again!
 Your guess: 82

 Finally! It's about time you got it!

187Lesson 8: Looping Program Flow

 Exercise 4: for and Twenty Blackbirds
 Practice for loops with a new program about blackbirds. Create a new program named

ForAndTwentyBlackbirds using the code in Exercise Listing{ 8.4 . Make sure it works ass

expected and then answer the questions that follow.

 EXERCISE LISTING 8.4
 ForAndTwentyBlackbirds.java

 public class ForAndTwentyBlackbirds {

 public static void main(String[] args) {
 int birdsInPie = 0;
 for (int i = 0; i < 20; i++) {
 System.out.println("Blackbird #" + i + " goes into the pie!");
 birdsInPie++;
 }

 System.out.println("There are " + birdsInPie + " birds in there!");
 System.out.println("Quite the pie full!");
 }
 }

 When you run this program, you should see the following:

 Blackbird #0 goes into the pie!
 Blackbird #1 goes into the pie!
 Blackbird #2 goes into the pie!
 Blackbird #3 goes into the pie!
 Blackbird #4 goes into the pie!
 Blackbird #5 goes into the pie!
 Blackbird #6 goes into the pie!
 Blackbird #7 goes into the pie!
 Blackbird #8 goes into the pie!
 Blackbird #9 goes into the pie!
 Blackbird #10 goes into the pie!
 Blackbird #11 goes into the pie!
 Blackbird #12 goes into the pie!
 Blackbird #13 goes into the pie!
 Blackbird #14 goes into the pie!
 Blackbird #15 goes into the pie!
 Blackbird #16 goes into the pie!
 Blackbird #17 goes into the pie!
 Blackbird #18 goes into the pie!

Job Ready Java188

 Blackbird #19 goes into the pie!
 There are 20 birds in there!
 Quite the pie full!

 Once you have the original version working as expected, make the following changes:

• Change the listing so that the loop counts to the more traditional 24 birds.

• Also update the bird number printouts so the count is from 1 to 24. What did

you change?

 Exercise 5: Spring Forward, Fall Back
 Practice diff erent ways to set up the parts of a for loop. Create a new project named

SpringForwardFallBack using the code in Exercise Listing{ 8.5 , paying attention to eachk

line of code so that you know what it ’ s supposed to do. Once you have the code working,

answer the questions that follow.

 EXERCISE LISTING 8.5
 SpringForwardFallBack.java

 public class SpringForwardFallBack {

 public static void main(String[] args) {

 System.out.println("It's Spring...!");
 for (int i = 0; i < 10; i++) {
 System.out.print(i + ", ");
 }

 System.out.println("\nOh no, it's fall...");
 for (int i = 10; i > 0; i--) {
 System.out.print(i + ", ");
 }
 }
 }

 Now consider the following questions.

• What are the start/stop ranges of output for both loops?

• How can you update the fi rst loop so that it prints out the same range as the sec-

ond loop, changing only the start point or the stopping point?

• How can we fi x the code so the comma doesn ’ t get printed on the last iteration

of the loop?

189Lesson 8: Looping Program Flow

 NOTE We learned that the ++ operator increments a variable by 1. The --
operator decreases a variable by 1.

 Exercise 6: for Times
 Write a program named ForTimes that helps you remember your times tables. Ask the s

user for a number and then print out the 1 to 15 times tables of that number. Use a for

loop. When you run the program, you should see something like the following:

 Which times table shall I recite? 7
 1 * 7 is: 7
 2 * 7 is: 14
 3 * 7 is: 21
 4 * 7 is: 28
 5 * 7 is: 35
 6 * 7 is: 42
 7 * 7 is: 49
 8 * 7 is: 56
 9 * 7 is: 63
 10 * 7 is: 70
 11 * 7 is: 77
 12 * 7 is: 84
 13 * 7 is: 91
 14 * 7 is: 98
 15 * 7 is: 105

 Exercise 7: for Times for
 Refactor your times table program from the previous exercise so that instead of just

“reciting” a times table, the program prints out each “times” as a question and waits for

an answer. If the user answers correctly, then they get a point! If not, the program gives

them the correct answer.

 Print the total number of points at the end. As a bonus, print out a message that they

should study more if they get less than 50 percent correct. If they get more than 90 per-

cent correct, then give them a congratulatory message!

 Here is an example of what the program might look like:

 Which times table shall I recite? 5
 1 * 5 is: 5
 Correct!
 2 * 5 is: 10
 Correct!
 3 * 5 is: 13

Job Ready Java190

 Sorry no, the answer is: 15
 4 * 5 is: 20
 Correct!
 5 * 5 is: 25
 Correct!
 6 * 5 is: 22
 Sorry no, the answer is: 30
 7 * 5 is: 35
 Correct!
 8 * 5 is: 40
 Correct!
 9 * 5 is: 45
 Correct!
 10 * 5 is: 11
 Sorry no, the answer is: 50
 11 * 5 is: 23
 Sorry no, the answer is: 55
 12 * 5 is: 44
 Sorry no, the answer is: 60
 13 * 5 is: 65
 Correct!
 14 * 5 is: 70
 Correct!
 15 * 5 is: 75
 Correct!
 You got 10 correct.

 Exercise 8: Nesting for Loops
for loops are great. But loops within loops can be even better. This is called n nesting , and g

with a couple of small loops we can execute lots of code. In this exercise, use nested for

loops to make some ASCII art.

 Create a new program named ForByFor using the code in Exercise Listing{ 8.8 . Once r

you have the original code working, change the code so that the middle column is made

of $, the middle row is made of @, and the very center is made of #.

 EXERCISE LISTING 8.8
 ForByFor.java

 public class ForByFor {

 public static void main(String[] args) {

191Lesson 8: Looping Program Flow

 for (int i = 0; i < 3; i++) {
 System.out.print("|");

 for (int j = 0; j < 3; j++) {
 for (int k = 0; k < 3; k++) {
 System.out.print("*");
 }
 System.out.print("|");
 }
 System.out.println("");
 }
 }
 }

 The fi rst time you run this, you should see the following:

***	***	***
***	***	***
***	***	***

 One you ’ ve made the changes suggested, you should see the new output as shown:

***	$$$	***
@@@	###	@@@
***	$$$	***

 Exercise 9: Traditional Fizz Buzz
 Fizz Buzz is a common programming challenge. It counts numbers, replacing the factors

of 3 or 5 with fi zz and z buzz . Create a new program named z FizzBuzz that performs the fol-z

lowing tasks:

• Ask the user for a number.

• Use a for loop to count from zero, replacing every multiple of 3 with fi zz and every z

multiple of 5 with buzz . Multiples of both should print out z fi zz buzz .

• Every time you print out fi zz , buzz , or fi zz buzz , keep track. When you ’ ve reached

the number received from the user, stop.

• Finish it all up with a large, all-caps printout of TRADITION!!!!! .

 Here ’ s an example of what the program might look like when it runs:

 How many units of fizzing and buzzing do you need in your life? 7
 0
 1

Job Ready Java192

 2
 fizz
 4
 buzz
 fizz
 7
 8
 fizz
 buzz
 11
 fizz
 13
 14
 fizz buzz
 TRADITION!!!!!

Lesson 9

 Understanding
Flowcharts
and Algorithms

 Flowcharts allow us to visualize how the application will fl ow

from one instruction to the next, from start to fi nish. Building a

fl owchart before we start to code a program helps ensure that we

don ’ t skip any steps in the program itself, as well as giving us a tool

to easily communicate those steps to others.

 LEARNING OBJECTIVES
 By the end of this lesson, you will be able to:

• Explain what an algorithm is

• Describe how developers use fl owcharts as part of the software development process

• Identify basic shapes in a fl owchart

• Map an algorithm to a fl owchart

Job Ready Java194

 FLOWCHART BASICS
 One of the interesting things about programming is how surprisingly simplistic com-

puters and programs really are. Even though we can create massive-scale programs that

perform complex tasks, there are really only three things a program can do.

• Sequence : Execute a series of statements in order

• Branch : Follow a specifi c path based on a defi ned condition

• Loop : Repeat a series of instructions until a condition is met

 We use the term fl ow of control to defi ne the path that a program takes from onel

instruction to the next, and we use a fl owchart to visualize the fl ow of control.

 Another important term is algorithm . While TV shows and movies make algorithms

sound like very technical things that only a software developer could understand, the

term algorithm is really just a well-defi ned set of instructions that a computer or similar m

machine can follow to reach a desired output. In other words, we use fl owcharts to dia-

gram algorithms.

 Sequences
 By default, the simplest path in an algorithm is to move sequentially from one statement

to the next. Our “Hello, World!” application is an example of this. As shown in Figure{ 9.1 ,

it includes two statements that are executed one after the other, and then the program

ends. This control structure is called a sequence.e

 Sequences are the easiest control structure to understand because they simply exe-

cute statements in the order in which they are given. The computer reads the code left

to right, top to bottom, just like reading a book.

Sequence

Step 1

Step 2

Step 3

 Figure 9.1 Flowcharting the “Hello, World!” sequence

195Lesson 9: Understanding Flowcharts and Algorithms

 Ultimately, the instructions of a program that actually do the work required will be

organized into sequences. A sequence can become quite large as methods can call other

methods and objects may need to sub some of their work out to other objects.

 As an example, consider the workfl ow of checking out on an e-commerce website.

When you hit the checkout button, the program will complete a series of steps that need

to be done across multiple objects. The top object generally controls the workfl ow of

the checkout process, but subsequences could include the following:

1. Logging in

2. Entering payment information

3. Sending payment information to the payment processor/bank

4. Notifying the warehouse of the order

5. Notifying the shipping company to pick up the order

6. Emailing the customer a confi rmation

 And so on.

 A skilled developer will lay out each of these processes in detail before they begin

to write code. They will separate the code into methods and objects that group related

things together, while keeping in mind ease of maintenance and testability. So, each step

in a sequence may end up calling other sequences.

 Branches
 In a branch situation, the program reaches a point where there are two or more possible h

next steps, and it must evaluate a condition to determine which path to take. Branches

are always based on a question that can be answered as either true or false, and in most

instances, the true case determines the sequence that the program will follow. However,

there can also be a false case where a diff erent sequence can be followed.

 A branch case can be as simple as logging into a website. As shown in Figure{ 9.2 , in

a branching fl owchart, a diamond represents the condition that will determine which

False
condition

Branch

True

 Figure 9.2 A branching fl owchart

Job Ready Java196

branch the fl ow of control will follow, for example, “Is the username and password

correct?” If the condition is true, then the program takes the user to the home page. If it

is false, the program will display an error and prompt the user to try again.

 Loops
 In a looping situation, we continue to run a sequence of instructions until some condition

is met. We do this frequently in our day-to-day lives. When washing our hands, our condi-

tion is, “Are my hands clean yet?” If not, then we will keep scrubbing until they are clean.

 There are several diff erent varieties of loops in software development. Some loops

will run a specifi c number of times, such as looping through the number of characters in

a string of text. If we know how many characters are in the string, we know how many

times we want to loop.

 In other cases, we don ’ t know in advance how many times we will need to loop. In the

previous website example, the user may enter their username and password correctly

the fi rst time, but because humans are imperfect creatures, they may not enter the infor-

mation correctly until the second time or the tenth time. In these cases, we would want

to structure the loop to continue until they get it right.

 A loop includes a branch, but the sequence following the branch returns to the branch

similar to what is shown in Figure{ 9.3 .

 A loop will continue until a specifi ed condition is met. Once the condition is met,

the loop ends, and the fl ow of control moves to the next block of instructions in

the program.

 One thing that developers must watch out for is endless (or infi nite) loops. It is quite

possible to defi ne a loop ’ s condition such that the condition can never be met (such as

defi ning a login loop to require both a username and password but failing to ask the

user to enter the password). In that case, the loop will run indefi nitely until something

else stops it.

False
condition

Loop

True

 Figure 9.3 A looping fl owchart

197Lesson 9: Understanding Flowcharts and Algorithms

 FLOWCHARTING
 Using our fl ow of control structures and branch statements, we can come up with some

interesting algorithms. In fact, as we pointed out earlier, even the most complex sce-

narios must ultimately break down into these three structures.

 While there are many symbols available in fl owcharting, the most common include the

following:

• Oval : Indicates the start and end points of an algorithm

• Rectangle : Indicates an instruction that the computer must complete

• Parallelogram (a tilted rectangle): Indicates input and output

• Diamond : Indicates a condition

 We also use one-sided arrows to indicate the order in which the steps will be com-

pleted. Technically, a fl owchart can be oriented in any way because the arrows defi ne

the order in which the steps will be completed, but they are most commonly oriented

from top to bottom (so the program starts at the top and ends at the bottom) or left to

right. Larger fl owcharts can include a combination of top-to-bottom and left-to-right

orientation.

 Flowcharts can certainly be written out by hand, although it ’ s often best to use a

pencil or another erasable medium to make corrections easier. There are also several

software options, including Draw.io (a free online diagramming tool) and LucidChart (a

paid program that includes a free option). Microsoft Offi ce products (including Visio,

Word, and PowerPoint) also include fl owchart tools, as does Drawings in Google Drive.

 NOTE

• Draw.io can be found in your operating system ’ s app store or at drawio.com and

app.diagrams.net .

• LucidChart can be found online at www.lucidchart.com .

• Google Drawings can be found in the Google Chrome store.

 FLOWCHART EXAMPLE
 Now let ’ s look at how we might use a fl owchart to diagram a simple algorithm. Consider

a method that requires the user to enter an odd number. The steps for this might include

the following:

1. Declare variables to store the keyboard input and parsed number.

2. Start the loop.

Job Ready Java198

1. Prompt the user to enter an odd number.

2. Read the input from the keyboard.

3. If the input is a number

• If the number is odd

• Exit loop

• If the number is not odd

• Inform the user that the number is not odd

• Restart the loop

4. If the input is not a number, do the following:

• Inform the user that the input is not a number

• Restart the loop

3. Return the number.

 So, we have a loop that should run until an odd number is entered. Checking for an

odd number requires two checks: fi rst that it is a numeric entry and second that the

parsed number is odd.

 The previous list is a form of pseudocode , which can be used to supplement (or evene

replace) fl owcharts in early development processes. Pseudocode sounds technical (like

algorithm), but it really refers to the process of writing out a program ’ s steps using a

more natural human language that anyone could understand. We can then translate the

pseudocode into the programming language of choice (such as C#, Java, or Python) once

we are sure we have identifi ed all the required steps.

 In the pseudocode, each indentation in the text represents a code block, and each of

those blocks will be a shape in the fl owchart. A fl owchart representing the steps in this

algorithm might look Figure{ 9.4 .

 NOTE You now have the pseudocode for a program as well as a
fl owchart. As an exercise for this lesson, write the code for this program.

 SUMMARY
 Flowcharts are a powerful tool for visualizing how the logic in your program will fl ow and

for communicating that to others. With what we have learned in this lesson, we can con-

struct readable fl owcharts to help us write better code.

199Lesson 9: Understanding Flowcharts and Algorithms

 We recommend that you start any program you write by sketching a fl owchart or

writing out the steps in pseudocode (if not both) even before you open your IDE to cre-

ate the program.

 The bottom line is that if you can ’ t solve a problem on paper or on a whiteboard, then

you can ’ t solve it in code. Making sure you can explain in plain English what your program

is trying to do, at least to yourself, is an essential fi rst step in thinking through the cod-

ing logic. It ’ s worth spending the time up front to plan things. It will save lots of pain and

frustration later.

Inform user
that input is

not a number

Declare
variables

Prompt for
number

Convert input

Input is
number?

Display
number

Odd number?

End

Inform user
that number
is not odd

Start

No

No

Yes

Yes

 Figure 9.4 An example fl owchart

Job Ready Java200

 EXERCISES
 Now that we understand types, variables, and fl ow of control statements such as if state-

ments and loops, things are getting interesting. These building blocks can be used to build

more complex code. We learned in this lesson that one of the biggest mistakes beginning

coders make is diving right into coding without planning just what they want to do.

 As an exercise for this lesson, you ’ ll be presented with a game. You will create the

fl owchart and then write the code. We ’ ve provided one possible solution for this exer-

cise, so don ’ t look ahead until you ’ ve tried this on your own.

Exercise 1 : A Guessing Game

 Exercise 1: A Guessing Game
 Just as a good writer creates an outline and a home builder works off blueprints, a good

programmer plans their logic before they begin programming. For this exercise, you will

write out the steps you need to map out the guessing game and then build a fl owchart.

 In this version of the guessing game, have the program start by requesting a number

from the fi rst player in a specifi ed range, say, 1 to 20. Once you have this number, a second

player should be asked to try to guess the number. The program then gives clues of higher

or lower until player 2 eventually guesses correctly. You ’ ll need to consider a few things:

• What pieces of data do we need to track?

• We need to have a process for player 1 to enter the number and for player

2 to guess.

• How many times does the user need to guess? It won ’ t necessarily be the same

from game to game.

• We ’ ll need to prompt the user for an input.

• We ’ ll need to read the user ’ s input from the keyboard.

• Did the user guess the right number? What if they guessed wrong?

• Did the user even guess within the right range?

 TIP In construction, they say, “Measure twice, cut once.” Creating a
fl owchart is like measuring, and coding is like cutting. It ’ s a lot easier to
make adjustments when you are fl owcharting or measuring than it is
when you are cutting code.

201Lesson 9: Understanding Flowcharts and Algorithms

• If the guess was in the range, was it correct? Is the guess higher than the answer?

Is it lower?

• Do we need to display a message?

• Do we need to have them enter another guess?

 Consider all these questions and create a fl owchart.

 NOTE Focus on the fl owcharting of this game. If you think about writing
the code, you might notice a fl aw in how this game operates.

 If player 2 can see the prompt and answer that player 1 entered, then it is
going to be extremely easy to guess the solution. In the next lesson, we ’ ll learn
how to update this program to have the computer randomly generate the
number to be guessed.

 A Possible Flowcharting Solution
 Don ’ t read any further or peek at the following until you ’ ve created your fl owchart. Here

are the details for one possible fl owcharting solution along with the code for this exercise.

 The Guessing Game Flowchart
 Starting our fl owchart, we fi rst need to fi gure out what pieces of data we need to keep

track of. We need a variable for the answer. We will also need one for the user input, which

we ’ ll refer to as the guess . Finally, we need a scanner to read input from the console. So, ins

terms of our process, the fi rst three things we need to do is declare these three variables.

 Next, we need to have a process to prompt player 1 to enter the number to be

guessed. After prompting, we ’ ll want to read their input from the keyboard. This is an

input/output process, so we ’ ll use the parallelogram to represent getting that number.

We ’ ll store that value in our answer variable. This is shown in section{1 of Figure{ 9.5 .

 NOTE Note that we didn ’ t do any error checking to make sure that the
number entered is within the range we set. This is something you can
add to the fl owchart on your own.

 Player 2 can now start taking guesses. How many times player 2 takes a guess is going

to depend on how lucky the player is. The number of guesses won ’ t necessarily be the

same from game to game. This sounds like a job for a while loop.

Job Ready Java202

Start

Declare variables

Player 1: Enter number
between 1 and 20

Player 2: Enter guess
between 1 and 20

Get guess

Is the guess
the same as the

answer?

Is the guess
between 1 and 20?

Is the guess
higher than the

answer?

Display message that
guess is too high.

Display message that
guess is too low.

Display message that
number isn’t between

1 and 20.

YES

YES

NO

NO

NO

YES

“You won” message!

End

Get number for answer

Section 1—Get the
Answer

Section 2—Get the
Guess

Section 3—
Check the
Answer

 Figure 9.5 The guessing game fl owchart

203Lesson 9: Understanding Flowcharts and Algorithms

 In the loop, we ’ ll prompt the player for input (their guess) and again read their input

from the keyboard. This is shown in section{2 of the fl owchart in Figure{ 9.5 .

 The fi rst thing we want to know after receiving the inputs is if the user guessed right. If

the player did enter the correct guess, we can show a victory message and end the program.

 What if they guessed wrong? Then we ’ ll need to execute our false condition. At this

point, we ’ ll then want to see whether they guessed in the given range. In our case, that

range was between 1 and 20. If the user didn ’ t guess in that range, we ’ ll display a mes-

sage, and then we ’ ll go back to the input prompt.

 If the guess was in the range, we can see if the guess was higher than the answer. If

it was, then we ’ ll print a message telling them to guess lower, and then we ’ ll go back to

prompt them to guess again.

 Lastly, if the guess isn ’ t equal to the answer and is in the range and it ’ s not higher than

the answer, then the only possible option is that the guess was too low, and we need to

print a message to tell the player to guess a higher number before sending them back to

the prompt asking them to enter a guess.

 The Guessing Game Code
 At this point, we have a pretty good understanding of how the guessing game works,

and we ’ ve accounted for the basic needs and possibilities of it. Now it ’ s your turn to

translate your fl owchart to code. Do this on your own before reading further.

 When we translate a fl owchart to code, the fi rst thing we need to do is to declare our

variables and set them to initial values. As you learned in an earlier lesson, do this with

the proper types of Scanner , r int , and int to declare your scanner, answer, and guess,

respectively.

 int answer = 0;
 int guess = 0;
 Scanner myScanner = new Scanner(System.in);

 Next, you need to get the answer from the user and put it into the answer variable.

You learned in an earlier lesson that this can be done in a couple of ways. Let ’ s use

System.out.println and the nextInt method to do that.

 System.out.println("Player 1: Please enter a number between 1 and 20:");
 answer = myScanner.nextInt();

 Once we have the answer, we start our loop. We want to loop until player 2 guesses

the right answer. This can be done by creating an infi nite loop to break out of, so we ’ ll

use the “while true” trick.

Job Ready Java204

 while (true) {
 // program code that will need a break to exit!
 }

 With a loop started, it ’ s time to prompt player 2 for a guess from the console. We can

do this the same way we asked for the answer.

 System.out.println("Please guess a number between 1 and 20: ");
 guess = myScanner.nextInt();

 Now let ’ s look at what we do with the number entered. First, we check to see whether

the guess is equal to the answer. If they guessed right, we want to leave the loop. We

can do this with the break keyword. If they didn ’ t answer correctly, then we can continue

with the program. Our program can determine which part of the fl owchart to follow.

 if (guess == answer)
 {
 break; // they've solved the problem, so exit loop!
 }
 else
 {
 // continue with program
 }

 Let ’ s follow the victory logic. In this case, using break , we hop out of the while

loop and tell the user that they guessed right. At that point, the program is complete

and can end.

 If the guess isn ’ t the answer, then per the fl owchart, we see if they guessed between

1 and 20. If the guess is less than 1 or greater than 20, then we know it is not in the range

we want, so we ’ ll give a message to the player and use the continue keyword to restart

the loop and prompt the user to again enter a guess. If it is in the range, we ’ ll keep going.

 if (guess < 1 || guess > 20)
 {
 System.out.println("Enter a guess between 1 and 20.");
 continue;
 }

 At this point, we have a guess in range, so we can see if the guess is bigger than the

answer. If it is, then they need to guess lower, so we tell them that. And then we go back

to the top using the continue keyword again.

 if (guess > answer)
 {

205Lesson 9: Understanding Flowcharts and Algorithms

 System.out.println("Guess is too high. Pick a lower number!");
 continue;
 }

 If none of the previous conditions was true, then we can print a message saying they

need to guess higher and let the loop go back to the top. Note that no continue is neces-

sary here, because we ’ re already at the bottom of the loop, and it ’ s going to go back up

to the top no matter what.

 As you can see, each piece of the coding fi ts with each part of the fl owchart. Having a

logical map to follow like our fl owchart makes the writing of the application much easier

and less error prone. You can compare the complete code in Exercise Listing{ 9.1 with the

fl owchart presented in Figure{ 9.5 and see that they line up.

 TIP When you ’ re a professional programmer, you ’ ll want to create not
only fl owcharts, but also object diagrams that list all your fi elds and
methods, and even mockups of your frontend screens. This will not only
help you organize your thoughts, but also shed light on your logic and
fl ow to other developers, who may be called upon to review and edit
your code later.

 EXERCISE LISTING 9.1
The GuessingGame.java

 import java.util.Scanner;

 class GuessingGame

 public static void main(String[] args) {
 // declare the number variables and initialize to 0
 int answer = 0;
 int guess = 0;
 // declare and initialize a Scanner object
 Scanner myScanner = new Scanner(System.in);

 // ask player 1 to enter a number from 1 to 20
 System.out.println(
 "Player 1: Please enter a number between 1 and 20:");
 // now wait until a number is entered
 answer = myScanner.nextInt();
 // Note that there should be error checking here!

Job Ready Java206

 // Now start getting guesses!
 while(true)
 {
 // Get a guess!
 System.out.println("Please guess a number between 1 and 20: ");
 guess = myScanner.nextInt();

 // Does the guess equal the answer?
 if (guess == answer)
 {
 break; // they've solved the problem!
 }
 else if (guess < 1 || guess > 20)
 {
 System.out.println("Enter a guess between 1 and 20.");
 continue;
 }

 if (guess > answer)
 {
 System.out.println("Guess is too high. Pick a lower number!");
 continue;
 }
 System.out.println("Guess is too low. Pick a higher number!");
 }

 System.out.println("You got it! The answer was: " + answer);

 }
 }

Lesson 10

 Adding
Randomness
to Your Programs

 We often want the ability to produce unpredictable behavior

in our applications: to simulate rolling a die or fl ipping a

coin in a game, for example. In this lesson, we will examine the use

of the Random class to do just that.

 LEARNING OBJECTIVES
 By the end of this lesson, you will be able to:

• Initialize a Random object

• Use a Random object to generate random integers from any minimum to any maximum

• Employ random integers to select a value from an array

• Generate double values from any minimum to any maximum using a Random object

• Apply random values to a coin fl ip (or model any other probability) as a boolean value

Job Ready Java208

 INITIALIZING THE RANDOM OBJECT
 Doing things in the same way every time is important at times, but every now and again

a bit of unpredictably is needed. In those situations, we use Random , a class whose entire

job is to mix things up.

 We have to construct Random before we can use it, but afterward, we ’ ve got a whole

virtual box of crazy, random options. Let ’ s look at a couple of the interesting things you

can do with Random .

 Including the Random Class
 By including an import of the Java Random utility package, you can use a Random class

in your programs. This package is included by adding an import statement to the top

of your listing with the name of the package. This is similar to what you did to include

Scanner in a previous lesson.

 import java.util.Random;

 The Random class provides useful methods for automatically generating random num-

bers. However, a computer ’ s behavior is designed to be deterministic, meaning that we

expect the same behavior every time. So how is randomness accomplished? It isn ’ t.

 In fact, what we are producing are pseudorandom numbers. However, this will be suf-m

fi cient for our purposes.

 Seeding Random Numbers
 When we create a Random object that will generate our random numbers, there are two

possible constructors we can use.

 Random fixedSeed = new Random(112358);
 Random timedSeed = new Random();

 NOTE We haven ’ t really talked much about constructors. These will
become clearer when we cover classes in more specifi c detail. For now,
know that a constructor is what creates an object we create from our class.

 The fi rst constructor uses a seed value that we specify ahead of time. This means thate

every time the application runs, that Random object will produce the same sequence of

209Lesson 10: Adding Randomness to Your Programs

random numbers. If we were to pick a diff erent integer, a diff erent sequence would be

generated, but the sequence would still be the same every time we run the application.

 In general, this is not what we want (since “random” behavior that never changes is

fairly easy to predict). Instead, we should typically use the second constructor, which

automatically generates a seed value based on the date and time that the application

is run. As a result, every run of this application will produce a diff erent random seed,

and therefore the Random object will generate a completely diff erent sequence of ran-

dom numbers.

 NOTE You can get more information about the Random class from the
Java documentation at docs.oracle.com/en/java/javase/11/docs/api/java.
base/java/util/Random.html .

 TIP It is good practice to create a single Random object in your application
and use that repeatedly. Creating multiple Random objects and
generating only the fi rst number in the sequence (particularly in a loop)
ruins the pseudorandom nature of the generator. It also adds a lot of
performance overhead to your application.

 GENERATING RANDOM INTEGERS
 The fi rst method of generating random numbers we ’ ll learn about creates random num-

bers from 0 up to any maximum number you specify, exclusive. Exclusive means that thee

maximum you specify will be excluded from possible outcomes, so you want to specify a

value that is one more than the highest value you want e Random to generate. For example,

if you want to generate integers from 0 to 9, you must specify an upper range of 10.

 This may seem slightly confusing, but there are some nice benefi ts we get as a result

that we will see in a minute. First, let ’ s take a look at generating random numbers from 0

to 9 (inclusive).

 Random rng = new Random();
 // generate 10 numbers, each between 0 and 9 inclusive
 for (int i=0; i<= 10; i++) {
 int randomNumber = rng.nextInt(10);
 System.out.println(randomNumber);
 }

Job Ready Java210

 Here, we can see that although we have specifi ed a maximum of 10, since that maxi-

mum is exclusive, we will only produce numbers from 0 to 9. To get a range from 1 to 10,

we need to add a + 1 after the nextInt() method. The new code line would look like this:

 int randomNumber = rng.nextInt(10) + 1;

 NOTE You might be wondering why we couldn ’ t have simply
changed the call to nextInt() to nextInt(11) . If we did that, we would
get from 0 to 10 rather than from 1 to 10.

 So, how can we make use of this? In programming, we often must work with indices

that are numbered starting at 0 and that must stop before the length of the collectione

we ’ re using. This is especially true when working with arrays, which you will learn about

in Lesson 13, “Organizing with Arrays.” The indexes in arrays start with 0. Based on this,

the following is a snippet of code that randomly selects a name from an array of names:

 Random rng = new Random();

 String[] names = new String[] { "Alice", "Bob", "Clarice", "David", "Elizabeth" };
 int randomIndex = rng.nextInt(names.length);
 String randomName = names[randomIndex];

 Here we defi ne an array with fi ve names and select one name at random, but nowhere in

this code do we hard-code the number 5. Instead, we reference the length of the array. As a

result, we can add or remove names to this array as we like, and it will still work as expected.

 GENERATING RANDOM DOUBLES
 Now that we ’ ve seen how to generate random integers, let ’ s look at generating random

numbers with a fractional component.

 Often (especially if we ’ re dealing with probabilities) we need the ability to

generate random numbers from a continuous (rather than discrete) range. The Random

class provides a fairly straightforward method for doing so called nextDouble() .

The nextDouble() method will generate a random number between 0.0 (inclusive) and

1.0 (exclusive). Although the upper bound of 1.0 is exclusive, that is less signifi cant than

in the case of integers; while it will not produce the value 1.0, it will produce numbers just l

slightly under it, like 0.999999999998. The following code makes use of that method:

 Random rng = new Random();

 // this will generate a random double value from 0.0 (inclusive)

211Lesson 10: Adding Randomness to Your Programs

 // to 1.0 (exclusive)

 double randomValue = rng.nextDouble();

 What can we do with this? Quite a bit!

 Any time we have a probability we want to sample against, we can generate a number

between 0.0 (0 percent) and 1.0 (100 percent) and see which side of it we end up on.

For example, the following code simulates a coin fl ip and stores the result in a bool-

ean variable:

 Random rng = new Random();

 double randomValue = rng.nextDouble();
 boolean coinIsHeads = randomValue < 0.5;

 So far, so good, but what if we want to generate numbers outside the range of 0.0 to

1.0? Unlike integers, Random does not provide an overload to specify a diff erent minimum

or maximum, so we ’ ll have to do it ourselves.

The process for adjusting the output of the nextDouble() method involves two steps,

which must be done in order.

1. Adjust the range to fi t the range of our desired outputs. In this case, range meanse

the maximum minus the minimum.

2. Shift the (now correctly sized) range to the right place.

Figure{ 10.1 illustrates this process.

*
(max

-
min)

0 1

+
min

0 max - min

min max

 Figure 10.1 Process for generating
a number between a minimum
and maximum

Job Ready Java212

 Each step must be considered in terms of its impact on both the minimum and

the maximum.

• In the fi rst step, we multiply by the range (the maximum minus the minimum),

which will make the set of possible values wide enough to capture all of the out-

puts we care about, but the minimum is still zero.

• We fi x that in the second step by adding the minimum (and again, since that could

aff ect any number in that range, we have to consider the impact to both the mini-

mum and the maximum).

 Now let ’ s look at this process in code. For this example, we ’ ll generate numbers from

7.5 to 13.2:

 Random rng = new Random();

 // maximum is 13.2
 // minimum is 7.5
 double desiredOutput = rng.nextDouble() * (13.2 - 7.5) + 7.5;

 This may look a little confusing, so let ’ s break each of these steps into their own vari-

ables and see what that code looks like.

 Random rng = new Random();

 double min = 7.5;
 double max = 13.2;

 double range = max - min;

 double zeroToOne = rng.nextDouble();

 double stepOne = zeroToOne * range; // adjusting the range
 double stepTwo = stepOne + min; // shifting the range

 As you can see, it is often clearer (though slightly longer) to place computation

steps into individual variables. This is especially true when you are learning how to use

these concepts.

 REVISITING THE NUMBER GUESSING GAME
 In the exercise in the previous lesson, you created a fl owchart and code for a guessing

game where a player tries to guess a number between 1 and 20, inclusively. The code

was provided for you in Listing 9.1; however, the program had a fl aw. The number to be

213Lesson 10: Adding Randomness to Your Programs

guessed had to be entered, which made it visible to the person playing the game. Using

the Random class, we can make the guessing game much more fun. Listing{ 10.1 presents

an updated listing that adds what we learned about generating a random number.

 LISTING 10.1
 GuessingGame.java

 import java.util.Random;
 import java.util.Scanner;

 class GuessingGame {

 public static void main(String[] args) {
 // declare the number variables and initialize to 0
 int answer = 0;
 int guess = 0;
 Random rng = new Random(); // set up our random range variable

 // declare and initialize a Scanner object
 Scanner myScanner = new Scanner(System.in);

 // Generate a random number between 1 and 20
 answer = rng.nextInt(20) + 1;

 // Now start getting guesses!
 while(true)
 {
 // Get a guess!
 System.out.println("Please guess a number between 1 and 20: ");
 guess = myScanner.nextInt();

 // Does the guess equal the answer?
 if (guess == answer)
 break; // they've solved the problem!

 else if (guess < 1 || guess > 20)
 {
 System.out.println("Enter a guess between 1 and 20.");
 continue;
 }

 if (guess > answer)
 {

Job Ready Java214

 System.out.println("Guess is too high. Pick a lower number!");
 continue;
 }
 System.out.println("Guess is too low. Pick a higher number!");
 }

 System.out.println("You got it! The answer was: " + answer);

 }
 }

 There are three primary changes to this listing. First, the import statement was added

to include the Random package.

 import java.util.Random;

 Second, a new variable was declared and initialized to set a random seed for our ran-

dom number.

 Random rng = new Random(); // set up our random range variable

 In this case, no value is passed to the initializer, Random() , so a random seed value is cre-

ated based on the date and time the program is run.

 For the third change, you can see that instead of prompting a user and doing a call to

the Scanner object we now create a random integer value that we store in answer .

 answer = rng.nextInt(20) + 1;

 Because we want a number between 1 and 20, we can call the Random class ’ s nextInt()

method with 20 to get one of twenty values ranging from 0 to 19. We then need to add 1

to go from 1 to 20.

 If you run this program, you will see something similar to the following. Of course, the

number you are guessing is likely to be diff erent, and the number of times it takes you to

guess the number also might be diff erent!

 Please guess a number between 1 and 20:
10
 Guess is too low. Pick a higher number!
 Please guess a number between 1 and 20:
15
 Guess is too high. Pick a lower number!
 Please guess a number between 1 and 20:
13
 You got it! The answer was: 13

215Lesson 10: Adding Randomness to Your Programs

 Running it a second time shows that the number is diff erent and random.

 Please guess a number between 1 and 20:
10
 Guess is too low. Pick a higher number!
 Please guess a number between 1 and 20:
15
 Guess is too low. Pick a higher number!
 Please guess a number between 1 and 20:
18
 You got it! The answer was: 18

 OTHER RANDOM OPTIONS
 It is worth noting that there are often multiple ways to do things when programming.

This is true when trying to generate randomness as well. One option that is similar to the

Random class covered in this lesson is Math.random() , which is a method provided as part

of a Math class in the JDK.

 Other options can be found with the ThreadLocalRandom and SecureRandom classes.

These are advanced classes that take into account threading and provide a much more

performant solution for generating random numbers.

 SUMMARY
 We ’ ve now seen how randomness can be added to an application and how to use those

random values to model real-world things such as fl ipping a coin or selecting a value

from a list. This has many real-world applications including statistical modeling, games,

and similar applications.

 This can also have other consequences for your application down the line, however.

Random ness makes things like debugging trickier, if only because the program behavior

will not be the same from one run to the next. In another lesson, we ’ ll consider how to

use random values sensibly and safely.

 EXERCISES
 This section includes coding exercises using random numbers. For each of the exercises

in this activity, you should create a new Java class with the appropriate name.

Job Ready Java216

Exercise 1 : A Little Chaos

Exercise 2 : Opinionator—Making Random Choices

Exercise 3 : High Roller

Exercise 4 : Coin Flipper

Exercise 5 : Guess Me More

Exercise 6 : Fortune Cookie

 Exercise 1: A Little Chaos
 Let ’ s create a program to practice using Random . Create a new class named ALittleChaos

using the code in Exercise Listing{ 10.1 . Make sure it works before you start playing

with the code.

 You should note that a couple of new things are introduced in this list. You should

be able to guess what they are doing. First, you ’ ll see that the method nextBoolean()

is being called on our random variable. As expected, this will return a random boolean

value, true or false.

 The second thing you ’ ll see that might be new is that instead of a string being passed

to the System.out.print() method, we are passing a call to our random method to get a

new random value. That random value is then being printed out along with a concatena-

tion to a short string.

 EXERCISE LISTING 10.1
 ALittleChaos.java

 import java.util.Random;

 public class ALittleChaos {

 public static void main(String[] args) {

 Random randomizer = new Random();

 System.out.println("Random can make integers: " + randomizer.nextInt());
 System.out.println("Or a double: " + randomizer.nextDouble());
 System.out.println("Or even a boolean: " + randomizer.nextBoolean());

 int num = randomizer.nextInt(100);

217Lesson 10: Adding Randomness to Your Programs

 System.out.println("You can store a randomized result: " + num);
 System.out.println("And use it over and over again: " + num + ", " + num);
 System.out.println("Or just keep generating new values");
 System.out.println("Here's a bunch of numbers from 0 - 100: ");

 System.out.print(randomizer.nextInt(101) + ", ");
 System.out.print(randomizer.nextInt(101) + ", ");
 System.out.print(randomizer.nextInt(101) + ", ");
 System.out.print(randomizer.nextInt(101) + ", ");
 System.out.print(randomizer.nextInt(101) + ", ");
 System.out.println(randomizer.nextInt(101));
 }
 }

 Here ’ s an example of the output. Remember that we are using random values, so you

should see values that are completely diff erent from the ones shown here.

 >Random can make integers: -1990223926
 Or a double: 0.19256054969742875
 Or even a boolean: false
 You can store a randomized result: 66
 And use it over and over again: 66, 66
 Or just keep generating new values
 Here's a bunch of numbers from 0 - 100:
 66, 64, 49, 43, 8, 36

 Once the starting code works, play around with it a bit. Here are some examples:

• What happens if you change randomizer.nextInt(101) to randomizer.

nextInt(51) + 50 ?

• Can you include random numbers in a math statement?

• Experiment with diff erent number types to see what the outcomes look like.

 Exercise 2: Opinionator—Making Random Choices
 Ever had a hard time making up your mind? Don ’ t worry—Random is here to save you! All

you have to do is write down all the options (if statements are good for this) and then

have Random choose between them.

 To put this in action, write a simple practice program to choose your favorite animal.

Add the code in Exercise Listing{ 10.2 to a new class named Opinionator . Note that while

this code will run without error (if it ’ s keyed correctly), it includes a bug that your IDE

Job Ready Java218

might not fi nd. See whether you can fi nd it and fi x it. You should see whether you can

fi nd the error before entering this into your IDE.

 EXERCISE LISTING 10.2
 Opinionator.java

 import java.util.Random;

 public class Opinionator {

 public static void main(String[] args) {
 Random randomizer = new Random();
 System.out.println("I can't decide what animal I like the best.");
 System.out.println("I know! Random can decide FOR ME!");

 int x = randomizer.nextInt(5);

 System.out.println("The number we chose was: " + x);

 switch (x) {
 case 0:
 System.out.println("Llamas are the best!");
 break;
 case 1:
 System.out.println("Dodos are the best!");
 break;
 case 2:
 System.out.println("Woolly mammoths are DEFINITELY the best!");
 break;
 case 3:
 System.out.println("Sharks are the greatest, they have their
own week!");
 break;
 case 4:
 System.out.println("Cockatoos are just so awesomme!");
 break;
 case 5:
 System.out.println("Have you ever met a naked mole-rat?
They're GREAT!");
 break;
 }

 System.out.println("Thanks Random, maybe YOU'RE the best!");

219Lesson 10: Adding Randomness to Your Programs

 }
 }

 Here is one possible outcome:

 I can't decide what animal I like the best.
 I know! Random can decide FOR ME!
 The number we chose was: 3
 Sharks are the greatest, they have their own week!
 Thanks Random, maybe YOU'RE the best!

 Exercise 3: High Roller
 One fun way to use random numbers is to simulate rolling dice or fl ipping coins. Use

the code in Exercise Listing{ 10.3 to create a new program named HighRoller that rolls ar

six-sided die. Make sure that the initial version of the program works correctly before

experimenting with the code.

 EXERCISE LISTING 10.3
 HighRoller.java

 import java.util.Random;

 public class HighRoller {

 public static void main(String[] args) {

 Random diceRoller = new Random();

 int rollResult = diceRoller.nextInt(6) + 1;

 System.out.println("TIME TO ROOOOOOLL THE DIE!");
 System.out.println("I rolled a " + rollResult);

 if (rollResult == 1) {
 System.out.println("You rolled a critical failure!");
 }
 }
 }

Job Ready Java220

 Here is a sample output for this program:

 TIME TO ROOOOOOLL THE DIE!
 I rolled a 6

 Once you have verifi ed that the base code works as expected, make the program

more interactive.

• Ask the user to tell you the number of sides a single die has.

• Roll the die to generate a number between 1 and # sides.

• Add in a conditional that prints the following:

• You rolled an even number! if it rolled an even number.

• You rolled a critical! Nice job! if it rolled the max.

 Exercise 4: Coin Flipper
 Flip a coin programmatically. This exercise is for you to do on your own. Write a program

named CoinFlipper that simulates a random coin toss, but without using r nextInt() . When

your program runs, you should see output similar to the following:

 Ready, Set, Flip....!!
 You got TAILS!

 Exercise 5: Guess Me More
 Improving and refactoring programs is often a constant process. Take the number guess-

ing program from Exercise Listing 9.1 and improve it. Save the new version under a new

class called GuessMeMore . With your update, add the following changes:

• Make the number chosen be a random number between −100 and 100.

• Add a variable to track the number of times the player guesses. Print this number

when the player fi nishes the game.

 Here is an example of what you should see:

 Please guess a number between -100 and 100:
-35
 Guess is too low. Pick a higher number!
 Please guess a number between -100 and 100:
45
 Guess is too low. Pick a higher number!

221Lesson 10: Adding Randomness to Your Programs

 Please guess a number between -100 and 100:
71
 You got it! The answer was: 71
 Number of guesses: 3

 Exercise 6: Fortune Cookie
 This exercise is for you to do on your own. Write a program to print a random quote. You

can create a program named FortuneCookie that randomly prints a quote to the screen. e

Use the following list to inspire you, but you can use your own favorite quotes for your

program to randomly choose among for your display:

 "Those aren't the droids you're looking for."
 "Never go in against a Sicilian when death is on the line!"
 "Goonies never say die."
 "With great power, there must also come great responsibility."
 "Never argue with the data."
 "Try not. Do, or do not. There is no try."
 "You are a leaf on the wind, watch how you soar."
 "Do absolutely nothing, and it will be everything that you thought it
could be."
 "Kneel before Zod."
 "Make it so."

 The code and other output are up to you. Here is an example of a possible outcome

using the previous quotes:

 Your Geek Fortune: Try not. Do, or do not. There is no try.

 Here is the random output from a second running of the program:

 Your Geek Fortune: Those aren't the droids you're looking for.

Lesson 11

 Debugging

 In this lesson, we will build on what we learned in Lesson 3 and

take a closer look at how to debug a program. Using the code

from the original WindowMaster program, we ’ ll review how to

set breakpoints and learn more about how to debug, including

how to execute the program in debug mode, step through the

program, and examine the values of variables while the program is

executing.

 LEARNING OBJECTIVES
 By the end of this lesson, you will be able to:

• Execute a program in debug mode

• Set breakpoints in code

• Step through code

• Examine variables at set points in code

 CREATING A FILE TO DEBUG
 In this lesson, we are going to look a little deeper into the debugger and how it works. It

is worth emphasizing that the debugger is a really valuable tool. When people are starting

223Lesson 11: Debugging

out in development, they often overlook this fact. But it is one of the most important tools

in our toolbox. It is one of the ways that the IDE, whether it be NetBeans or another pro-

gram, can help pinpoint the problems that you are having in your code.

 When we write code, we believe we know what it is doing because we believe we wrote

it the right way, so it can be frustrating when it is not doing what we want it to do. Always

keep in mind that the computer only does what we tell it to do. Generally speaking, if our

program isn ’ t working right, it ’ s nearly always due to something that we wrote.

 A small percentage of the time, an error is in somebody else ’ s code that we are using.

If you have the mindset that bugs (coding errors) are going to happen, then you can lower

your stress, and fi nding and fi xing them just becomes a kind of puzzle.

 When a program has an error or doesn ’ t run like we expect, then we have to fi gure out

where we went wrong and go back to fi x it. That is where a debugger can really help us.

 Let ’ s get started. If you have the original code for WindowMaster from Lesson 6, open

the project and make sure that it compiles and runs correctly. If you don ’ t have that code

anymore, create a new project called WindowMasterDebug using the code in Listing{ 11.1 .

Once that is done, save the fi le and make sure that the program runs correctly.

 LISTING 11.1
 WindowMasterDebug.java: The WindowMaster Listing

 import java.util.Scanner;

 public class WindowMasterDebug {

 public static void main(String [] args) {
 // declare variables for height and width
 float height;
 float width;

 // declare String variables to hold the user's height and
 // width input
 String stringHeight;
 String stringWidth;

 NOTE Listing 11.1 is the same WindowMaster that was presented
in Listing 6.3 with the name of the class and Java fi le changed to
WindowMasterDebug and WindowMasterDebug.java, respectively.

Job Ready Java224

 // declare other variables
 float areaOfWindow;
 float cost;
 float perimeterOfWindow;

 // declare and initialize the Scanner
 Scanner myScanner = new Scanner(System.in);

 // get input from the user
 System.out.println("Please enter window height:");
 stringHeight = myScanner.nextLine();
 System.out.println("Please enter window width:");
 stringWidth = myScanner.nextLine();

 // convert String values of height and width to float values
 height = Float.parseFloat(stringHeight);
 width = Float.parseFloat(stringWidth);

 // calculate the area of the window
 areaOfWindow = height * width;

 // calculate the perimeter of the window
 perimeterOfWindow = 2 * (height + width);

 // calculate the total cost - use a hard-coded value
 // for material cost
 cost = ((3.50f * areaOfWindow) + (2.25f * perimeterOfWindow));

 // display the results to the user
 System.out.println("Window height = " + stringHeight);
 System.out.println("Window width = " + stringWidth);
 System.out.println("Window area = " + areaOfWindow);
 System.out.println("Window perimeter = " + perimeterOfWindow);
 System.out.println("Total Cost = " + cost);
 }
 }

 When you run this in the NetBeans IDE and enter 10 for the height and 10 for the width,

you should see output like that shown in Figure{ 11.1 .

 SETTING BREAKPOINTS
 As a reminder, breakpoints are just places in the program where we are telling the

debugger to stop execution so we can make sure things look the way we believe they

should look.

225Lesson 11: Debugging

 As you saw in Lesson 3, setting breakpoints in NetBeans is easy: just click in the leftmost

margin of the code window n on the line number where you want to put the breakpoint. r

Setting a breakpoint allows you to stop execution of your code at that location when

running in debug mode. To show the debugger working, we ’ ll put breakpoints on three

lines. We ’ ll add one on the line where we are setting up our scanner. We ’ ll add a second

one on the line where we are converting our string height into the actual number so we

can use the number for our calculation. We ’ ll add a third and fi nal breakpoint to the line

where we calculate the cost. Again, you can left-click the line number to set the break-

point. Clicking a second time will remove the breakpoint. Figure{ 11.2 shows the three

breakpoints set in the WindowMaster program.

 NOTE The line numbers marked in Figure 11.2 are 24, 33, and 44;
however, based on comments and spacing you have in your listing, your
numbers could be different.

 Figure 11.1 The WindowMaster output

Job Ready Java226

 Stepping through Code
 Once breakpoints are set, we are ready to start debugging. To do this, you must execute

your program in Debug Mode, which is done by clicking the Debug Project button (t) in

the toolbar. The project will begin execution and then pause at your fi rst breakpoint. Your

fi rst breakpoint will change from pink to green, like what you see in Figure{ 11.3 .

 It is important to note the diff erence between running in regular mode and running in

debug mode. When running in debug mode, you can see that within the NetBeans IDE, at

the bottom, there is an additional tab displayed. Instead of the normal Output tab dialog

being displayed, we are likely seeing a tab labeled as Variables . To see the output andss

respond to any prompts, you ’ ll need to click the Output tab.t

 You might notice in the Variable tab that even though we have declared several var-

iables in our program, none of them is yet visible. The variables from our program will

become visible as values are assigned to them.

 Running the Debugger
 When we clicked the Debug Project button, the code was executed up until the fi rst break-t

point on line 24. We know the code is paused at line 24 because it is green.

 Figure 11.2 WindowMaster breakpoints

227Lesson 11: Debugging

 With the code paused, we have several options. These two are worth focusing on:

• Step Over (F8)

• Continue

 The Step Over option lets us step through a statement. It basically says, execute this

line of code, go to the next line of code, and then stop. You can Step Over by pressing F8

or by selecting Step Over from the NetBeans Debug menu. This will allow the code on line r

24 to execute, and then execution will pause again on the next executable statement (line

27). The breakpoint on line 24 will turn pink again, and line 27 will turn green (indicating

that this is where execution has halted); you will now see the Scanner variable myScanner

in the Variables window, as shown in Figure{ 11.4 .

 Figure 11.3 Execution paused at fi rst breakpoint

Job Ready Java228

 If you were to continue pressing F8 or selecting to Step Over commands, you could

progress through the listing; however, let ’ s continue program execution by pressing F5.

This is the Continue debugging command that should allow the program to execute until

the next breakpoint, which for the listing here is in line 33. This allows the program to run

until either it hits another breakpoint or it completes.

 You will notice that nothing seems to happen after you press F5. This is because your

program is waiting for user input (see line 28) in Figure{ 11.4 . Provide input by clicking

the Output window tab and then typing the requested values. After you have typed in t

the second value, execution will halt on our next breakpoint, which is line 33, as shown in

Figure{ 11.5 .

 Figure 11.4 Execution paused at line 27

229Lesson 11: Debugging

 Examining Variables
 With the code stopped at line 33, it is worth looking at the Variables window again at the

bottom of the IDE. In Figure{ 11.5 , you can see that the Output window is selected at the

bottom of the IDE. If we select the Variables tab, we should see something like Figure{ 11.6 .s

 NOTE As mentioned, when we look at the debug window, if we have
a line that ’ s green, it indicates where the execution of the code has
paused.

 Figure 11.5 Execution paused at the second breakpoint

Job Ready Java230

 In looking at the Variables window, we see that things have changed. Now, there are

two new variables showing, stringHeight and stringWidth , along with the values you

entered in the Output window. These variables are now showing because we ran the code

that initializes them. These were lines 28 and 30 in Figure{ 11.5 .

 What ’ s more important than just seeing these values, however, is that you also have

the ability to change these values within the Value column of the Variables window. Cur-

rently, you can see in Figure{ 11.6 that both variables contain a string value of “10” . We can

change these to a diff erent value such as 20 by typing in a 2 and 0 (or 20). The value will be

changed to a string, as shown in Figure{ 11.7 .

 We can continue the execution of the next line of our program by pressing F8. This will

execute line 33 where we had placed our breakpoint. The code on line 33 takes the string

for height and turns it into a number for us.

 height = Float.parseFloat(stringHeight);

 Figure 11.6 The Variables tab

 Figure 11.7 Updating values in the Variables window

231Lesson 11: Debugging

 Our number is converted into a fl oat. After pressing F8 to step over the line, we end up

with line 34 highlighted in green, and our Variables window is updated again, as shown in

Figure{ 11.8 .

 Notice that we moved down to line 34, and our height variable became visible in our

Variables window because it is now initialized. More importantly, we can see that the

string 20 was converted into the fl oat 20.0. If we press F8 again, we ’ ll execute the next line

of code, which does the conversion for width.

 As you can see, we are calling into the parseFloat method. It is converting these

strings into fl oats, which we can see as they happen. Within the Variables window, we can

see that we still have the strings that we entered into our string variables, and we also

have our fl oat values in the fl oat variables we created.

 If you press F8 one more time, we will execute an expression in line 38.

 areaOfWindow = height * width;

 Our expression here takes two operands, which are height and width, which are both

fl oats. In this expression, we are going to multiply these two values together and put the

result into areaOfWindow .

 With this line having been executed, if you look at the Variables window, you will see

that the area of the window has been calculated, and it ’ s 400.0, which is exactly what we

should expect. Figure{ 11.9 shows the current status of the debugger.

 If you press F8 two more times, you ’ ll execute lines 40 and 44, which you can see in

Figure{ 11.9 . These are the additional two calculations. You ’ ll also see that perimeterOf-

Window and cost will be added to the Variables window.

 Figure 11.8 Variables window now shows height

Job Ready Java232

 The Console and the Debugger
 If you ’ ve been following along, then you know we are now at the line of code where we

start printing information to the console window. If you look at the console window now,

you will see that it shows the input we ’ ve entered, but none of the output has yet to be

shown. Press F8 one more time, and you ’ ll run the next line of code, line 47, as shown in

Figure{ 11.10 .

 Figure 11.9 areaOfWindow determined

233Lesson 11: Debugging

 You can see in Figure{ 11.10 that we ’ ve run the fi rst call to println . The second call

to println is highlighted in green, so it has not yet been executed. In Figure{ 11.10 , the

Output tab is selected. You can see that only the fi rst line of output is being displayed. In

this case, it is the height of the window.

 Figure 11.10 Printing out a line to the console

Job Ready Java234

 If we execute the next statement by pressing F8 to step over, we see that the window

width gets displayed. Pressing F8 one more time prints out the area of the window. Two

more presses of F8, and we see the perimeter and the cost get displayed.

 The key point to take away from what we ’ ve just done is to note that we were able to

look at the execution of each individual line of code and see its results. You were able to

control the execution and see what each line was doing.

 With the program near the end, you can simply press F5 to continue. What this will do is

execute the rest of the program until it ’ s done and exit normally.

 SUMMARY
 While there is more that you can learn and do with debugging, what you learned in this

lesson will help you fi nd most common issues you will run into when coding. In this lesson,

we covered the following:

• Executing a program in debug mode

• Setting breakpoints

• Stepping through a program statement by statement

• Examining the values of program variables during program execution

 EXERCISES
 This section includes coding exercises to help you get comfortable with the debugger. In

addition to what is presented here, you should use the debugger to step through the pro-

grams you create throughout this book to see when and how variables are assigned and

what values they contain.

 For now, here are the exercises to provide you with more experience using

the debugger:

Exercise 1: Odd Odd Numbers

Exercise 2: A Simple Question of If

 Exercise 1: Odd Odd Numbers
 Exercise Listing{ 11.1 should look familiar. This listing was presented in Lesson 8 when

you learned about the looping statements. Enter this listing again as presented here and

then run it.

235Lesson 11: Debugging

 EXERCISE LISTING 11.1
 Using for to Display Odd Numbers

 public class CountingNumbers {

 public static void main(String[] args) {

 int counter;

 for (counter = 0; counter < 21; counter = counter + 2)
 {
 System.out.println(counter);
 }

 System.out.println("...Done!");
 }
 }

 When you run this listing, you ’ ll see that the numbers printed are not odd, which might

seem odd. While you should be able to easily fi nd and fi x the issue without the debugger,

that ’ s not the purpose of this exercise.

 Rather, set a breakpoint on the following line:

 System.out.println(counter);

 When you run the program in debug mode, what happens? You have a single break-

point, but how many times does the program pause?

 Run the program again in debug mode with the same breakpoint. Using the Variables

window in the debugger, change the value of counter so that odd numbers are printed

correctly.

 Exercise 2: A Simple Question of If
 Enter Exercise Listing{ 11.2 as presented.

 EXERCISE LISTING 11.2
 Looper.java: A Simple Question of If

 public class Looper {

 public static void main(String[] args) {

Job Ready Java236

 int counter = 10;

 for (int looper = 1; looper < 10; looper++) {
 if (counter < 10) {
 // put a break point on the following line.
 System.out.println("Counter is less than 10!");
 } else {
 System.out.println("Counter is greater or equal to 10!");
 }

 System.out.println(counter);
 }
 }
 }

 Put a breakpoint on the following line, and then compile and execute the listing in

debug mode:

 System.out.println("Counter is less than 10!");

 How many times does the listing pause at the breakpoint? Is this what you expected?

Experiment with moving the breakpoint and note the number of times the breakpoint

pauses the execution of the program.

Lesson 12

 Adding Methods

 Do you like to repeat yourself unnecessarily? Do you like

to leverage technology and/or techniques to reduce the

amount of work you need to do? Have you ever been called lazy—

as a compliment?

 In this lesson, we ’ ll look at methods. Methods allow us to better

organize our code so that it can be used in multiple places. This,

of course, means less work. Good coders are lazy coders—well,

smart and lazy.

 LEARNING OBJECTIVES
 By the end of this lesson, you will be able to:

• Explain the DRY principle

• Defi ne a method

• Explain the parts of the method signature

• Use proper naming conventions for methods

• Explain return values

• Use input parameters

• Refactor code

• Explain the concept of scope as it applies to code

• Learn about stepping into code with the debugger

Job Ready Java238

 WHY METHODS?
 One of the important concepts in writing good code is the DRY principle: Don ’ t Repeat

Yourself. When given a task, we want to do it well, and we only want to do it once.

Methods allow us to write a bit of code, give it a name, and then use that code over and

over again anywhere in our program. Methods give us two new tools for designing and

writing solid code:

• We can reuse code that we ’ ve written.

• We can use methods to break down large, complex tasks into simpler steps.

 Methods don ’ t add any features to the language itself. They are an organizational tool.

A large component of writing good software consists of good code organization.

 DEFINING METHODS
 A method is defi ned by a method declaration , which is made up of the following parts: n

 <access modifier> static <return type> <method name> (<parameter list>)
<exception list> {
 <method body>
 }

 The following describes each of these parts:

• Access modifi er : For now, we ’ ll use public. Other values are possible, and we ’ ll

cover them in a later lesson.

• The static keyword : This is optional, but for now, we ’ ll always use it. We ’ ll learn

more about the static keyword later.

• Return type : This indicates the data type of the value returned by the method; use

void if the method does not return a value.

• Method name : This is the name for the method. The rules for identifi ers apply here,

but there are additional conventions we ’ ll cover in more detail in this lesson.

• Parameter list : This is a comma-delimited list of input parameters. Each param-

eter consists of a data type followed by an identifi er. The parameter list must be

enclosed in parentheses; if the method has no parameters, we must use empty

parentheses.

• Exception list : We ’ ll cover this later. Leave it blank for now.

• Method body : The method body is the code block for this method.

239Lesson 12: Adding Methods

 Figure{ 12.1 is a basic method called add that illustrates many of the method parts. The

following sections will expand on method declarations by introducing you to the impor-

tant concept of method signatures as well as providing a deeper look at method naming

conventions, working with returned values, and understanding input parameters.

 Method Signature
 While we identifi ed a lot of terms related to methods and method declarations in the

previous section, there is one more defi nition that we need to cover here, and it is for

method signature . The method signature is related to method declaration, but it ’ s a littlee

bit narrower.

 The method signature consists of the following:

• The method name

• The parameter list

 We ’ ll talk more about method signatures when we get to the object-oriented features

of Java in a later lesson. For now, know that this is an important defi nition.

 Method Naming Conventions
 Each of your methods will be named. Technically, a method name can be any legal identi-

fi er. We learned about identifi ers in Lesson 4 if you need a review of what is legal. There

 NOTE Knowing the defi nition of a method signature is a common
interview question for Java developers, so make sure you memorize it!

Method Declaration

Access Modifier Return Type Method Name

Parameter List

Method Body

Example

public static int add(int a, int b) {
return a + b;

}

 Figure 12.1 An example of a method declaration

Job Ready Java240

are, however, additional conventions that further restrict method names in practice.

Method names should

• Begin with a lowercase letter

• Be a verb (if a single word name)

• Begin with a verb (if a multiword name) followed by other words

• Be in camel case (i.e., the fi rst letter of the second and following words should be

capitalized)

 Here are some examples:

• calculateTotal

• processOrders

• storeUserData

• getFullname

• checkCardValidity

 Return Values
 Methods can return values to the caller, but they don ’ t have to. In the programs we have

created previously in this course, we have seen examples of both.

• System.out.println("Hello") does not return a value to the caller; it simply

prints a value to the console.

• The Scanner method nextLine() does return a value to the caller; it returns the

string of characters that the user typed into the console. We put that value into a

variable (see the WindowMaster program in Lesson 6).

• Float.parseFloat("5.32") does return a value to the caller; it converts the string

data type input parameter into a fl oat data type and returns it. We put that value

into a variable and then use it to perform math calculations (see WindowMaster).

 Whether or not your method returns a value, you must indicate the return type of your

method when declaring the method. If your method does not return a value, the return

type is void ; otherwise, it is the data type of whatever value the method returns. In the

following example, we have a function called printHiYa that does not return a value, so

its return type is void :

 NOTE The compiler won ’ t yell at you if the fi rst letter of a method name
is not lowercase; however, other Java programmers probably will yell at
you.

241Lesson 12: Adding Methods

 public static void printHiYa() {
 System.out.println("HiYa");
 }

 In this second example, we have method called calculcatePi that returns a number,

specifi cally a double, so its return type is double :

 public static double calculatePi() {
 return 22/7; // approximately PI
 }

 Using Return Values
 Let ’ s take a look at a listing to get a closer view of how return values can be used within

our code. Listing{ 12.1 is a fun program that has a main method as well as three other

methods that we ’ ll use to review how return types can be used.

 LISTING 12.1
 Working with Return Values

 public class getNumbers {

 public static void main(String[] args) {

 get2();

 int num = get3();
 System.out.println(num);

 System.out.println(get4());
 }

 NOTE If we want to know what type a method is a returning, we just
have to look at the piece of code right before the method ’ s declaration
(name). If we want to know the value being returned, it appears in the
method ’ s code, proceeded by the return keyword.

Job Ready Java242

 public static int get2() {
 return 2;
 }
 public static int get3() {
 return 3;
 }
 public static int get4() {
 return 4;
 }
 }

 When we run this listing, we will see the following output:

 3
 4

 When we ’ re calling a method, we can use a return value in many diff erent ways. In the

code in Listing{ 12.1 , we can see that three methods have been created called get2 , get3 ,

and get4 . Each returns a simple number as an integer. We will use each of these three

methods to show three things we can do with the returned values.

 The fi rst thing we can do with a returned value is ignore it. If you look at the main

method, you ’ ll see that it does a call to get2() . The get2() method returns an integer

with the value of 2; however, it does nothing with it. We simply ignore it, and that ’ s fi ne.

 The second thing we can do is put the value returned into a variable and then use that

variable in some way. In looking at the main method, you can see that we call get3() .

The value returned from get3() is placed in an integer that we ’ ve created called num. We

can then use the num integer in the rest of our program. In this case, we simply print it to

the console.

 The third way we can use the return type is to actually just pass the call to the method

into another method, such as System.out.println() . When this happens, the method

we are passing will be evaluated, and the value returned will be used. In Listing{ 12.1 ,

we pass the get4() method as a parameter to the System.out.println() method. The

returned value of 4 from get4() is passed into println() and just printed to the console.

 Input Parameters
 Methods can have zero or more input parameters. Input parameters are simply place-s

holders for values (declarations for the variables) that will be “passed in” as data for the

method to use. Methods without parameters are useful because we can reuse the code

contained in the method in many places. However, methods get really powerful when we

can pass parameter values into them.

243Lesson 12: Adding Methods

 Here ’ s a somewhat contrived example: say we wanted to write some reusable code that

added two numbers together. Further, let ’ s assume that we don ’ t know how to use param-

eters. If this were the case, we ’ d have to write a separate method for each number pair we

wanted to add.

 public static int add1And1() {
 return 1 + 1;
 }

 public static int add1And2() {
 return 1 + 2;
 }

 public static int add1And3() {
 return 1 + 3;
 }

And so on.. .

 This is not a good situation. To be able to add any two numbers, we would have to write

an infi nite number of these methods.

 Each equation applies to only one situation; while the equation is true, it is not general.

 1 + 1 = 2
 1 + 2 = 3
 1 + 3 = 4
And so on…

 What we really want is the general equation for adding two numbers together.

 a + b = y

 We want to be able to supply the values for a and b and have the method calculate y for

us. We ’ ll use input parameters to help us here.

 public static int add(int a, int b) {
 return a + b;
 }

 Now we have a method that will take any two numbers and will calculate the sum. Note

that for each parameter, we included an identifi er and an associated data type. In fact, we

have declared each parameter similar to a variable declaration. In this case, both parame-

ters are of type int .

Job Ready Java244

 Matching Number of Parameters
 It is worth repeating that the number of parameters and their data types must match thet

type and number defi ned by the method; otherwise, the code for the method call won ’ t

compile. For example, if the method defi nition looks like this:

 public void sayHello(String a, String b){
 // Code here
 }

 then the method call will have to look like this:

 sayHello("Bob", "Sue");

 or like this:

 String a = "Bob";
 String b = "Sue";
 methodName(a, b);

 Listing{ 12.2 pulls this into a listing we can enter and execute.

 LISTING 12.2
 A Method with Two Parameters

 public class MethodForms {

 public static void main(String[] args) {
 sayHello("Bob", "Sue");
 }

 public static void sayHello(String a, String b){
 System.out.println("Hello " + a + " and " + b);
 }
 }

 When we run this program, we can see that the two values passed are received by the

sayHello() method, which uses them to display a message as such:

 Hello Bob and Sue

 What happens when you modify the code to what is shown in Listing{ 12.3 where we

pass only one parameter when two are expected?

245Lesson 12: Adding Methods

 LISTING 12.3
 A Method Receiving Only One of Two Parameters

 // This listing causes an error!
 public class MethodForms {

 public static void main(String[] args) {
 sayHello("Bob");
 }

 public static void sayHello(String a, String b){
 System.out.println("Hello " + a + " and " + b);
 }
 }

 If you compile and run this listing, you will get an error. Similarly, if you pass more than

two parameters:

 sayHello(“Bob”, “Sue”, “John”);

 you will also get an error. As you can see, it is critical that you pass values that match with

your method ’ s parameters.

 Matching Parameter Types
 In addition to making sure the number of items you send to your method is the same as

the number of parameters in your method defi nition, you also must make sure the types

of each value you send match the type listed in the method defi nition. Just as with send-

ing the wrong number of parameters, if you send a wrong type for a parameter, you will

also get an error when you run your program. Listing{ 12.4 is a modifi cation of Listing{ 12.2

where a numeric value is being sent when a String is expected.

 LISTING 12.4
 Calling a Method with a Wrong Parameter Type

 // This listing causes an error!
 public class MethodForms {

Job Ready Java246

 public static void main(String[] args) {
 sayHello("Bob", 10);
 }

 public static void sayHello(String a, String b){
 System.out.println("Hello " + a + " and " + b);
 }
 }

 Looking at the code, you can see that the numeric value of 10 is being sent as the sec-

ond parameter. Because sayHello() is expecting the second parameter (b) to be a String ,

you will get an error when you try to run this.

 Passing Parameters
 Let ’ s step back and look more closely at what is happening when you pass a value to a

method. Look at Listing{ 12.5 .

 LISTING 12.5
 MathFun with Parameters

 public class MethodFun() {
 public static void main(String[] args) {
 int num = 42;
 silly(num);
)

 public static void silly(int x) {
 System.out.println("My parameter is: " + x);
 }
 }

 This program creates a variable called num , which is passed to a method called silly() .

The method then prints out a message with our variable so that the fi nal output looks like

the following:

 My parameter is: 42

 NOTE A parameter passed to a method can be a literal, a variable, or as
you saw earlier, even another method. As long as the item being passed
evaluates to the appropriate data type, it can be used.

247Lesson 12: Adding Methods

 Let ’ s dig into what is happening here. You can see that we create a variable called num

and assign the value of 42. This is nothing new. We then use the num variable as a param-

eter and pass it to silly . Here is what is important. What is happening behind the scenes

is that the value of num is actually being copied into the variable x in silly ’ s parameter

list. So when silly is running, it is using a copy of what was in num . When the silly

method ends, x goes away; however, the original num in main still exists and still retains its

original value.

 In Listing{ 12.5 , silly() is passed a variable of the appropriate type. We can also pass

other items as long as what is passed is the correct type. We saw passing a variable. A sec-

ond thing we could pass is a literal.

 silly(42);

 Third, as you saw earlier, we can also pass another method that resolves to the right

type. A fourth option is to pass any valid expression that resolves to the right type. The

following are all valid calls to our silly() method:

 silly(4 + 3); // same as passing 7
 silly(100 /4); // same as passing 25
 silly(10 - 3 + 12 / 3 * 10 + 3); // same as passing 50
 silly(num + 3); // same as passing 45 if num is 42

 NOTE Note that num and x are two different variables and are stored
in two different places by the program. What is happening is we are
passing the value from one to the other, which is often referred to as
passing by value .

 NOTE You might have noticed something a bit odd about how we ’ ve
been using System.out.println() . We ’ ve passed it numbers, String s,
and other things and it worked! That is a bit different from what has
just been described. In Lesson 15, you ’ ll learn what is happening to allow
println() to be so adaptive to different types!

Job Ready Java248

 METHOD FORMS
 Now that you ’ ve seen the parts of a method and seen how parameters work, we will take a

look at some of the forms that methods can take. Given the rules discussed, there are four

forms that a method can take.

• No return value, no parameters

• Return value, no parameters

• No return value, one or more parameters

• Return value, one or more parameters

 It is worth reviewing each of these to see how they diff er.

 No Return Value, No Parameters
 The fi rst example of a method form we will examine is a method that has no return value

and takes no parameters.

 public static void doit() {
 System.out.println("Hello");
 return;
 }

 Because no value is returned, the return type of our method called doit is set to void .

Because there are no parameters, there is nothing in the parentheses.

 Return Value, No Parameters
 The second example of a method form is one that has a return value but takes no

parameters.

 public static int get5() {
 return 5;
 }

 NOTE It is worth noting that we included the return keyword in this
code; however, because the end of the method was reached, it was not
required. The method would have returned regardless.

249Lesson 12: Adding Methods

 This method returns a value, so there is a return type, which in this example is an int .

Because there are no parameters, there is nothing in the parentheses.

 No Return Value, One or More Parameters
 The third example of a method form is one that does not have a return value, but does

have one or more parameters.

 public static void silly(int i) {
 System.out.println("My parameter is: " + i);
 }

 Because no value is returned, the return type is set to void . There is a parameter being

passed to this method. The parameter is called i and is of type int .

 Return Value, One or More Parameters
 The fourth example of a method form is one that has a return value and takes one or more

parameters.

 public static int add(int a, int b) {
 return a + b;
 }

 This method returns a value, so there is a return type, which in this example is an int .

There are parameters being passed to this method as we can see by looking at the iden-

tifi ers between the parentheses. In this case, there is an integer called a and an integer

called b being passed to the method.

 The static Keyword
 We are always using the static keyword for our method defi nitions in this part of the

course. Don ’ t worry about the meaning right now—we ’ ll cover it in detail when we learn

 NOTE System.out.println(...) is not a return value.
 One fairly common point of confusion for beginning programmers is

the difference between returning a value from a method and printing
something to the console. Returning a value from a method requires
the return keyword, as shown in the previous examples.

Job Ready Java250

about the object-oriented features of Java in the next unit. Once we learn what the

static keyword means, we ’ ll use it much less frequently. For now, just remember to

include it with your method defi nition. If you forget it, your code might not compile.

 PULLING IT ALL TOGETHER
 Let ’ s put all of this newfound knowledge about methods to work for us by creating a

method that we can use in one of our programs.

 So far, the WindowMaster program we ’ ve used in previous lessons is in good shape, but

we are repeating ourselves in at least one place. We ’ re going to clean that up by creating

a reusable method. Listing{ 12.6 presents the current code from WindowMaster with some

redundant code highlighted.

 LISTING 12.6
 WindowMaster.java: The WindowMaster Listing

 import java.util.Scanner;

 public class WindowMaster {

 public static void main(String [] args) {
 // declare variables for height and width
 float height;
 float width;

 // declare String variables to hold the user's height and
 // width input
 String stringHeight;
 String stringWidth;

 // declare other variables
 float areaOfWindow;
 float cost;
 float perimeterOfWindow;

 // declare and initialize the Scanner
 Scanner myScanner = new Scanner(System.in);

 // get input from the user
 System.out.println("Please enter window height:");

251Lesson 12: Adding Methods

 stringHeight = myScanner.nextLine();
 System.out.println("Please enter window width:");
 stringWidth = myScanner.nextLine(); stringWidth = myScanner.nextLine();

 // convert String values of height and width to float values
 height = Float.parseFloat(stringHeight);
 width = Float.parseFloat(stringWidth);

 // calculate the area of the window
 areaOfWindow = height * width;

 // calculate the perimeter of the window
 perimeterOfWindow = 2 * (height + width);

 // calculate the total cost - use a hard-coded value
 // for material cost
 cost = ((3.50f * areaOfWindow) + (2.25f * perimeterOfWindow));

 // display the results to the user
 System.out.println("Window height = " + stringHeight);
 System.out.println("Window width = " + stringWidth);
 System.out.println("Window area = " + areaOfWindow);
 System.out.println("Window perimeter = " + perimeterOfWindow);
 System.out.println("Total Cost = " + cost);
 }
 }

 The fi rst two highlighted lines look similar to the third and fourth lines.

 System.out.println("Please enter window height:");
 stringHeight = myScanner.nextLine();

 System.out.println("Please enter window width:");
 stringWidth = myScanner.nextLine();

 The following two lines are almost identical as well:

 height = Float.parseFloat(stringHeight);
 width = Float.parseFloat(stringWidth);

 This presents a great opportunity for refactoring this code into a reusable method.

Refactoring is simply the process of reorganizing and/or cleaning up your code without

adding, subtracting, or changing functionality. After refactoring, the code still does the

same thing it did before, but it is now more readable and maintainable.

Job Ready Java252

 The fi rst step in refactoring code into a method is to divide out the similarities and

the diff erences of the repeated code. The similarities of the code will represent the main

body of the new method. The diff erences can be factored out into input parameters and/

or return types for the method. We ’ ll follow a process similar to the one we followed with

the add method in the earlier “Parameters” section.

 Identifying the Similarities
 What are the similarities in our code example? For each input value that we request from

the user, we do the following:

1. Print a message to the console to let the user know what type of value we ’ re

asking for.

2. Wait for the user to provide the value, read the value, and store it in a variable.

3. Convert the string value read from the console into a fl oat value that we can use for

mathematical operations later in the program.

 Identifying the Differences
 We also need to determine the diff erences. What are the diff erences in the

repeated code?

• The message printed to the console is diff erent for each value requested.

• We store the user-provided values in diff erent variables.

 Creating the Method
 Armed with this knowledge of similarities and diff erences, we can now create our new

method. We ’ ll need to do the following:

1. Decide on a name.

2. Decide whether the method needs input parameters. If so, how many and of

what type?

3. Decide whether the method needs to return a value. If so, what type?

4. Write the code for the body of the method.

 Setting the Name
 You learned earlier the characteristics of creating a method name. Using that, we ’ ll call our

new method readValue since it is reading a value.

253Lesson 12: Adding Methods

 Determining Parameters
 For the decision regarding input parameters, we need to look at our list of diff erences.

What needs to vary each time we run the method?

 According to our list, the message changes, and the variable in which we store the user

value changes. We will need to provide a message each time—this sounds like an input

parameter. Putting the user value into a variable sounds like a return type, so we ’ ll handle

that next. It looks like we ’ ll have one input parameter that will represent the message we

want to print to the console to prompt the user for a value.

 What type should this be?

 To answer this, we look at the existing code. In the existing code, the user prompt mes-

sage is represented by a string literal that is passed to System.out.println() , which

means that our input parameter should be a string as well.

 Setting a Return Type
 Now for the return type. In the existing code, we store both string and fl oat representa-

tions of the values entered by the user. If you look closely, however, you will notice that

we really only care about the fl oat representation of these values{—{the string repre-

sentations are only needed because the console doesn ’ t understand numbers. We want

to prompt the user to input a value and then get the fl oat representation of the value;

we do not want to deal with strings. This indicates that the return type of the method

should be fl oat.

 Our Basic Defi nition
 At this point, we ’ ve determined all the pieces to be able to create our method defi nition.

This is what we have so far:

 public static float readValue (String prompt) {
 // method body TBD
 }

 NOTE You could set the return type to be a string; however, you would
then end up doing a similar conversion each time you ’ ve gotten a
response from your new method. There is no point doing something
over and over if you can put it into a method and have it done in one
place.

Job Ready Java254

 Note that for now we are making our methods public and static . We then have the

return type we determined, which is fl oat. This is followed by our new method name,

readValue . Finally, we have our parameter, which is a string. Since this parameter is a tex-

tual prompt, we ’ ll name our parameter prompt .

 Our Method Body
 With a defi nition in place, we now need to make our method do something useful. Our

method needs to do the following:

1. Print the provided prompt to the console.

2. Wait for the user to input a value.

3. Read the value.

4. Convert the value into a fl oat data type.

5. Return the converted value.

 We need a Scanner variable to read the value in from the console. You may wonder why

we can ’ t use the one in main. This has to do with scoping rules, which we will cover in thes

next section. For now, just go with it. Listing{ 12.7 presents our method.

 LISTING 12.7
 The New readValue() Method

 public static float readValue(String prompt) {

 // declare and initialize a Scanner variable
 Scanner myScanner = new Scanner(System.in);

 // print prompt to Console
 System.out.println(prompt);

 // read value into String data type
 String input = myScanner.nextLine();

 // convert the String to a float
 float floatVal = Float.parseFloat(input);

 // return the float value
 return floatVal;
 }

255Lesson 12: Adding Methods

 Using the Method
 The fi nal step in our refactoring adventure is to replace the repeated code in our example

with calls to our new method. We will replace the lines highlighted in Listing{ 12.4 with just

two lines (each line will be a call to our new method).

 You ’ ll notice also that we no longer need the variables stringHeight or stringWidth ,

which means we can remove the lines on which they are declared. However, removing

these variables causes a compilation problem. Why? Well, we are still printing out the

value of stringHeight and stringWidth to the console. Now that they are gone, we have

a problem. To fi x this, we ’ ll simply print out the fl oat values (height , width) instead. After

making all these changes, WindowMaster looks like Listing{ 12.8 .

 LISTING 12.8
 The Refactored WindowMaster Program

 import java.util.Scanner;

 public class WindowMaster {

 public static void main(String [] args) {
 // declare variables for height and width
 float height;
 float width;

 // declare other variables
 float areaOfWindow;
 float cost;
 float perimeterOfWindow;

 // declare and initialize the Scanner
 Scanner myScanner = new Scanner(System.in);

 // get input from user
 height = readValue("Please enter window height:");height = readValue("Please enter window height:");
 width = readValue("Please enter window width:"); width = readValue("Please enter window width:");

 // calculate the area of the window
 areaOfWindow = height * width;

 // calculate the perimeter of the window
 perimeterOfWindow = 2 * (height + width);

Job Ready Java256

 // calculate the total cost - use a hard-coded value
 // for material cost
 cost = ((3.50f * areaOfWindow) + (2.25f * perimeterOfWindow));

 // display the results to the user
 System.out.println("Window height = " + height); System.out.println("Window height = " + height);
 System.out.println("Window width = " + width); System.out.println("Window width = " + width);
 System.out.println("Window area = " + areaOfWindow);
 System.out.println("Window perimeter = " + perimeterOfWindow);
 System.out.println("Total Cost = " + cost);
 }

 public static float readValue(String prompt) {

 // declare and initialize a Scanner variable
 Scanner myScanner = new Scanner(System.in); Scanner myScanner = new Scanner(System.in);

 // print prompt to console
 System.out.println(prompt);System.out.println(prompt);

 // read value into String data type
 String input = myScanner.nextLine();

 // convert the String to a float// convert the String to a float
 float floatVal = Float.parseFloat(input);

 // return the float value
 rreturn floatVal;
 }
 }

 When you run our newly refactored WindowMaster program, you will see output that

looks just like what you ’ ve seen before.

 Please enter window height:
10
 Please enter window width:
10
 Window height = 10.0
 Window width = 10.0
 Window area = 100.0
 Window perimeter = 40.0
 Total Cost = 440.0

257Lesson 12: Adding Methods

 SCOPE
 Now, we return to the questions regarding scope. Looking at our code, we have a variable

called myScanner of type Scanner that is declared and initialized in the main method. We

also have a variable called myScanner of type Scanner that is declared and initialed in the

readValue method. This raises some questions.

• Do we need both? Why?

• How can we have two diff erent variables with the same name? How can the com-

piler tell them apart?

 The answers to these questions have to do with the concept of scope. As we ’ ve seen, a

Java program consists of blocks of code. These blocks are marked by curly braces, { }. We

have also seen that these blocks can be nested; for example, the WindowMaster class block

contains both the main method block and the readValue method block. Method blocks

can contain other blocks of code such as if statement blocks, while loop blocks, etc.

 The Java language allows us to defi ne variables inside a block of code. These vari-

ables are said to be local to that block of code. Variables declared in outer blocks can be

accessed by code inside nested code blocks, but the reverse is not true. Code in outer

blocks cannot “see into” nested blocks. Listing{ 12.9 presents some examples of this.

 LISTING 12.9
 A Look at Scope

 public static void main(String[] args) {
 int age = 42;

 for (int i = 0; i < 5; i++) {
 // this is ok - the nested block can access the variables
 // in the outer block
 System.out.println(age);
 }

 if (age < 18) {
 // this is ok - the nested block can access the variables

 NOTE We can have as many methods as we want in a class. Any
additional methods we are creating get declared outside the main
method, but inside the code.

Job Ready Java258

 // in the outer block
 int yearsToWait = 18 - age;
 }

 // NOT ok - outer block cannot access variables declared inside
 // inner blocks
 System.out.println(yearsToWait);
 }

 If you are using other Java IDEs or the command line, then this listing likely will not

compile or run. If you are using NetBeans, then while the program might compile, when

you run it, you will get an error. You might see the following:

 42
 42
 42
 42
 42
 Exception in thread "main"

 While the program ran in NetBeans, it has an error. If we look at the NetBeans IDE

in Figure{ 12.2 , we see that line 24 shows an error. This error occurs with the last call to

System.out.println() . The variable yearsToWait was declared within the code block of

the previous if statement, so it has limited scope to just the if statement ’ s block of code.

Once the if statement ’ s block of code ended, the variable was no longer available, so the

program couldn ’ t access it and gave an error.

 Figure 12.2 Error in NetBeans

259Lesson 12: Adding Methods

 DEBUGGING AND STEP INTO
 We will now step back for a moment and take another look at debugging to review what is

happening with program fl ow and to learn a new feature within the NetBeans debugger.

Listing{ 12.10 is a simple listing we will use.

 LISTING 12.10
 MethodFun Program for Debugging

 public class MethodFun {

 public static void main(String[] args) {
 int num = 42;
 doIt(num);
 doIt(num);
 doIt(num);
 }

 public static void doIt(int x) {
 System.out.println("My number: " + x);
 }
 }

 This listing is simple and straightforward. An integer is created called num , which is

assigned the value of 42. The doIt() method is then called three times with the value of

num passed each time. Within the doIt() method, the value of num is accepted in a variable

called x , and it is simply printed with a message to the screen. The fi nal output looks like

the following:

 My number: 42
 My number: 42
 My number: 42

 Enter this listing into NetBeans and make sure it works cleanly. Once it is working,

there are two things we want to explore. The fi rst is how we can set a breakpoint inside a

method and have it go to that breakpoint every time even though we ’ re executing inside

the main method. The second is how we can step into something.

Job Ready Java260

 Setting a Breakpoint in a Method
 First, let ’ s set a breakpoint at line 22, as shown in Figure{ 12.3 .

 As we can see in the fi gure, the breakpoint has been set in the n doIt() method and not

in the main method. If you press the button to run in debug mode (or press Ctrl+F5), the

program will start and run until it hits our breakpoint.

 NOTE In case you ’ ve forgotten how to set a breakpoint, you can click the
line number or click the line of code and press Ctrl+F8. See Lesson 11 if
you need a refresher on basic debugging.

 Figure 12.3 The MethodFun program

261Lesson 12: Adding Methods

 When the listing breaks, you will notice that we are in our doIt() method. The coding

window has highlighted a line in green, as shown in Figure{ 12.4 , so we know that is where

we ’ ve stopped.

 We can also see that the fi rst doIt() line is gray. That is because we ’ ve entered that

method. If we click the Output window, we will notice that no output is displayed. That ist

because we have not yet run the System.Out.println() call.

 If we continue (or press F5), the program will run until we hit the breakpoint again

with the next call of doIt() . In Figure{ 12.5 , we can see that once again we are back at the

System.Out.println() line, which is highlighted in green. We can also see that second

 Figure 12.4 The fi rst time through

Job Ready Java262

call to doIt() is now highlighted. Additionally, we can see in the Output window that 42

has been printed once from the previous execution of the method.

 If we continue again, the code will run to the next breakpoint, which is again in a doIt()

method. The output will show another 42 printed. A fi nal press of Continue , and the pro-e

gram runs to the end with our output showing the complete list of 42 three times.

 Stepping into Code
 We ’ ve just seen how a breakpoint can be set within a method. Now we are going to move

our breakpoint to show how we can step into code. Place your breakpoint on the fi rst call

to doIt() . This is line 16 in Figure{ 12.5 but might be a diff erent line in your listing.

 Figure 12.5 The second time around

263Lesson 12: Adding Methods

 With the breakpoint set, let ’ s debug our program. The program should run until it

reaches our fi rst doIt() call with the breakpoint, as shown in Figure{ 12.6 .

 With the cursor now at line 16, no output has happened yet. The Output window will

show no numbers. This is because we stopped before calling doIt() . Up to this point,

we ’ ve seen Step Over, and we ’ ve seen Continue. If we choose to step over the next line, we

will end up running doIt() , and the following doIt() method will be highlighted. What

would be more useful is to be able to go intoo doIt() . That ’ s where Step Into helps us.

 If we look at the Debug menu, we see there is another option called Step Into. This

option can also be accessed with F7 or the Step Into button (). Pressing this

button takes us into the code that is highlighted instead of taking us to the line that

follows it.

 Figure 12.6 Breaking on doIt()

Job Ready Java264

 Let ’ s dive into whatever this is doing. With the code stopped on line 16 in Figure{ 12.5 ,

selecting to Step Into will go from that line to line 22. Do this and the result should be

what we see in Figure{ 12.7 .

 This will let us shift program fl ow into the doIt() method, where we can then see what

it is doing. If we choose to continue, then once we ’ ve stepped through the doIt() code,

we ’ ll be popped back to the main method to continue.

 NOTE If you are on the System.out.println() line and press Step Into, then

the debugger is going to take you into the code for the println() method. If this

happens, you can either step through the code or hit Continue in the debugger to

fi nish running the program.

 Figure 12.7 Stepping into doIt()

265Lesson 12: Adding Methods

 Debugging and Scope
 We ’ ve seen setting a breakpoint in a method, and we ’ ve seen how to use Step Into. There

is something else worth noticing in what we just did. This is related to program scope.

 In Figure{ 12.6 , we saw what the IDE looked like when our program control was in the

main method. More importantly, if you look at the Variables window in the lower half of

the debugger window, you can see that we have access to our args variable and our num

variable. What you don ’ t see is variable x that is also in our program. That is because x is

not part of the main method.

 When we step into the doIt() method, as shown in Figure{ 12.7 , what is displayed

in the Variable window changes. We now see the x variable that is part of our doIt()

method. This variable was created for doIt() and initialized with the value passed. In this

case, a copy of what was in num is used to initialize x . Once program control returns to the

main method, the Variable window will no longer show x as being available and will be

back to showing num . Only the variable that is in scope and available is shown in the Vari-

able window.

 SUMMARY
 In this lesson, we covered a lot by learning all about methods. Here ’ s some of what we

covered:

• Why methods are important

• How to defi ne methods

• What a method signature is

• The diff erent forms a method can take

• How to create a useful method by refactoring code

• Java scoping rules

• How to step into the code in methods when using a debugger

 EXERCISES
 Most people learn best by doing, so this section includes a couple of coding exercises using

static method defi nition and execution to help you confi rm you ’ ve learned this lesson. The

exercises are as follows:

Exercise 1: Method to the Madness

Exercise 2: Return to Sender

Job Ready Java266

Exercise 3: MatchWork

Exercise 4: Barely Controlled Chaos

 EXERCISE 1: METHOD TO THE MADNESS
 Write a program called MethodToTheMadness , as shown in the code in Exercise Listing{ 12.1 . s

After making sure it works, add the second method call needed to print the rest of the

code.

 EXERCISE LISTING 12.1
 MethodToTheMadness.java

 public class MethodToTheMadness {
 public static void main(String[] args) {
 eatMe();
 System.out.println("\n ― Lewis Carroll, Alice in Wonderland");
 }

 static void eatMe(){
 System.out.println(" 'But I don’t want to go among mad people,' Alice
remarked.");
 System.out.println(" 'Oh, you can’t help that,' said the Cat.");
 System.out.print(" 'We’re all mad here. I’m mad. You’re mad.'");
 }

 static void drinkMe(){
 System.out.println(" 'How do you know I’m mad?' said Alice.");
 System.out.println(" 'You must be,' said the Cat, 'or you wouldn’t
have come here.' ");
 }
 }

 After you add the second method call, you should see the following when you run

the program:

 'But I don’t want to go among mad people,' Alice remarked.
 'Oh, you can’t help that,' said the Cat.
 'We’re all mad here. I’m mad. You’re mad.' 'How do you know I’m mad?'
said Alice.
 'You must be,' said the Cat, 'or you wouldn’t have come here.'
 ― Lewis Carroll, Alice in Wonderland

267Lesson 12: Adding Methods

 Exercise 2: Return to Sender
 In this exercise, you will match return types to variables by using the ReturnToSender

program shown in Exercise Listing{ 12.2 . You should enter the listing and then fi x the type

defi nitions so that they match the return types of the called methods. Once everything

matches correctly, compile and run it.

 EXERCISE LISTING 12.2
 ReturnToSender.java

 public class ReturnToSender {
 public static void main(String[] args) {

 ??? aMystery = mystery();
 ??? totallyUnexpected = unexpected();
 ??? aSurprise = surprise();
 ??? itsClassified = classified();
 ??? aSecret = secret();

 System.out.println("The methods have returned! Their results...\n");
 System.out.println("Mysterious: " + aMystery);
 System.out.println(" Secret: " + aSecret);
 System.out.println("Surprising: " + aSurprise);
 System.out.println("Classified: " + itsClassified);
 System.out.println("Unexpected: " + totallyUnexpected);

 }

 public static int secret(){
 return 42;
 }

 public static double surprise(){
 return 3.14;
 }

 public static char mystery(){
 return 'X';
 }

 public static boolean classified(){
 return true;
 }

Job Ready Java268

 public static String unexpected(){
 return "Spanish Inquisition";
 }
 }

 When you run the completed listing, you should see the following:

 The methods have returned! Their results...

 Mysterious: X
 Secret: 42
 Surprising: 3.14
 Classified: true
 Unexpected: Spanish Inquisition

 Exercise 3: MatchWork
 In this exercise, you will practice using parameters. Create a new program using the code

in Exercise Listing{ 12.3 . Fix the method call by changing the ??? to the correct number of

literal values. When everything matches correctly, compile and run it.

 EXERCISE LISTING 12.3
 MatchWork.java

 public class MatchWork {
 public static void main(String[] args) {

 System.out.println(" The word Cart should come before Horse
alphabetically : " + comesBefore(???));
 System.out.println(" Half of 42 = " + halfOf(???));
 System.out.println(" (short) Pi = " + pi(???));
 System.out.println(" The first letter of the word Llama is: " +
firstLetter(???));
 System.out.println(" 1337 x 1337 = " + times1337(???));

 }

 public static double pi(){
 return 3.14;
 }

269Lesson 12: Adding Methods

 public static int times1337(int x){
 return x * 1337;
 }

 public static double halfOf(double y){
 return y / 2;
 }

 public static String firstLetter(String word){
 return word.substring(0, 1);
 }

 public static boolean comesBefore(String a, String b){
 return a.compareToIgnoreCase(b) < 0;
 }
 }

 When you run this program, you should see the following output:

 The word Cart should come before Horse alphabetically : true
 Half of 42 = 21.0
 (short) Pi = 3.14
 The first letter of the word Llama is: L
 1337 x 1337 = 1787569

 Exercise 4: Barely Controlled Chaos
 We usually write methods to capture functionality that we plan to use over and over again.

That way we don ’ t have to keep writing the same code. Instead, we can write it once (make

sure it ’ s perfect!) and then call that example whenever we need it.

 Let ’ s use what we ’ ve learned so far to encapsulate a couple of methods we ’ ll use to

generate a random mini-sentence (like a micro Mad Lib) over and over again. Write a pro-

gram called BarelyControlledChaos starting with the code in Exercise Listing{ 12.4 .s

 After you enter that code, add what is needed to complete the listing.

• Write a method that returns a randomly chosen color (have it choose from at least

fi ve diff erent colors).

• Write a method that returns a randomly chosen animal (have it choose from at least

fi ve diff erent animals).

• Write another method that returns a random integer chosen from a range (min/

max) that can be either of the two numbers or anything between.

Job Ready Java270

 When you ’ re done defi ning and implementing these methods, replace the ??? in the

main method with a call to the appropriate type.

 EXERCISE LISTING 12.4
 BarelyControlledChaos.java

 public class BarelyControlledChaos {

 public static void main(String[] args) {

 ??? color = ???; // call color method here
 ??? animal = ???; // call animal method again here
 ??? colorAgain = ???; // call color method again here
 ??? weight = ???; // call number method,
 // with a range between 5 - 200
 ??? distance = ???; // call number method,
 // with a range between 10 - 20
 ??? number = ???; // call number method,
 // with a range between 10000 - 20000
 ??? time = ???; // call number method,
 // with a range between 2 - 6

 System.out.println("Once, when I was very small...");

 System.out.println("I was chased by a " + color + ", "
 + weight + "lb " + " miniature " + animal
 + " for over " + distance + " miles!!");

 System.out.println("I had to hide in a field of over "
 + number + " " + colorAgain + " poppies for nearly "
 + time + " hours until it left me alone!");

 System.out.println("\nIt was QUITE the experience, "
 + "let me tell you!");
 }

 // ??? Method 1 ???
 // ??? Method 2 ???
 // ??? Method 3 ???
 }

271Lesson 12: Adding Methods

 When you complete this listing and run it, you should see something similar to the fol-

lowing (but with your random values and information):

 Once, when I was very small...
 I was chased by a magenta, 80lb miniature mammoth for over 12 miles!!
 I had to hide in a field of over 4593 periwinkle poppies for nearly 3 hours
until it left me alone!

 It was QUITE the experience, let me tell you!

Lesson 13

 Organizing
with Arrays

 Arrays are the fi rst collection type that we are going to learn

about. It is the most fundamental of the collection types,

and many of the other collection types we will learn later use

the array structure under the covers in creative ways to yield

interesting effects.

 When we mention that a type is a collection, we mean that it

can hold multiple simple or complex data values inside it.

 LEARNING OBJECTIVES
 By the time you fi nish this lesson, you will be able to:

• Diff erentiate between elements of an array and the indexes of those elements

• Explain one-dimensional, multidimensional (including two-dimensional), and jagged arrays

• Instantiate diff erent ranks and lengths of arrays

• Access elements in an array

• Deal with errors that occur when attempting to access an array

273Lesson 13: Organizing with Arrays

 WHAT IS AN ARRAY?
 We have covered a lot of Java basics up to this point. We understand variable types,

and we can use fl ow of control statements to branch and loop our code blocks. We also

learned how to group repeatable blocks of code into methods. The next piece we need to

understand is how to store and work with collections of items.

 Consider a situation where we want to store a list of fi ve integers. Without collections

like arrays, we would have to declare fi ve variables. That ’ s maybe not a big deal when we

are talking about fi ve variables, but what if you had to store 10,000 variables? This is where

arrays help us.

 An array is a set of uniform data elements that can be accessed using indexes.

• An element is a single item in an array. t

• Uniform means that all elements in a given array must have the same data type. m

• The index of an element refers to its position in the array. (Array indexes start at 0!) x

 We can visualize an array like lockers at an amusement park. Arrays always start at

index 0 and count up from there. In our previous reference to storing a list of fi ve values,

we could get an array of length 5, which would have the indexes from 0 to 4, as shown in

Figure{ 13.1 .

 Arrays can have any number of dimensions . A one-dimensional array is a vector, a two-ss

dimensional array is a table, and a three-dimensional array is a cube. We use the term rank

to describe the number of dimensions in an array.

 Each dimension in an array has a length, which describes the number of positions in h

that direction. For example, in the case of a two-dimensional table with two rows and

 Figure 13.1 An array of lockers

Job Ready Java274

six columns, one dimension would be of length 2 and the other would be of length 6, as

shown in Figure{ 13.2 .

 The total length of the array itself is the total number of elements in all dimensions. So,

our table shown in Figure{ 13.2 would have an array length of 12 (6 rows * 2 columns).

 The index of each element in array is an integer that refers to a specifi c element space x

in the array. Indexes in most modern programming languages start with 0. For example,

in our two-dimensional table, the element in the second row and third column would be

located at index [1][2].

 Types of Arrays
 We can create three types of arrays. The fi rst type is the one-dimensional array, as shown inyy

Figure{ 13.3 . This can be thought of as a single line or, in math terms, a vector of elements.r

 The second type of array is a multidimensional rectangular array, which is structured yy

like a two-dimensional table. In these arrays, all the subarrays have the same length.

Figure{ 13.4 shows a two-dimensional array with six columns and three rows.

543210

0

1

 Figure 13.2 A two-dimensional array

43210 Figure 13.3 One-dimensional array

543210

0

2

1

 Figure 13.4 A two-dimensional multidimensional array

275Lesson 13: Organizing with Arrays

 If we add another subarray to this array, we end up with a three-dimensional array, as

shown in Figure{ 13.5 .

 The third and last type of array is the multidimensional jagged array in which each sub-y

array is a single independent array and, as such, can have diff erent lengths, as shown in

Figure{ 13.6 .

 Unlike some languages (such as JavaScript), array size is fi xed in Java. This means thatd

after you instantiate an array and specify its dimension and lengths, those lengths cannot

be changed. Additionally, while you can go beyond three-dimensional arrays, this is typi-

cally unnecessary and gets confusing. As a result, we generally err on the side of simpler

data structures.

 Element vs. Index
 As indicated earlier, it is important to be able to distinguish between the data stored in the

array (the elements of the array) and the integers that defi ne s where that data is stored (thee

indexes of the array). s

 One metaphor that can help you keep the distinction in mind is that of houses on a

street. Each house has a numeric address on the street, but the house is not the same

thing as the address (and similarly, the address is not the same thing as the house). The

5 01
43210

0

2

1

 Figure 13.5 A three-dimensional multidimensional
array

0

1

2

3

 Figure 13.6 A multidimensional jagged array

Job Ready Java276

address (index) allows us to go to the right part of the street (array) and view the house

(element) at that location.

 DECLARING ARRAYS
 Like variables, arrays can be declared, initialized, and then used. Because there are diff er-

ent types of arrays, in this lesson we will look at the process for initializing and declaring for

each of the types before pulling things together with accessing array elements.

 The syntax for declaring an array variable depends on the shape of the array to be cre-

ated. Let ’ s look at each of the diff erent shapes independently.

 Single-Dimensional Arrays
 The declaration of the array variable is simplest for a single-dimensional array. You must

simply provide the type of the elements to be stored, followed by square brackets.

 int[] arrayOfInts; //creates a single-dimensional array

 In this case, we have created a single-dimensional array of integers called arrayOfInts . It

is worth noting that a single-dimensional array has one dimension. As such, single-dimen-

sional arrays are also known as one-dimensional arrays.

 NOTE Whenever you see something followed by square brackets in
Java, it is a good indicator that you are dealing with an array.

 Rectangular Arrays
 Rectangular arrays are also relatively simple. To add another dimension to the array, you

simply add another set of square brackets to the declaration. Each set of brackets will

determine the dimension of the array: [] for one dimension, [][] for two dimensions,

and so on.

 The following is an example of creating a multidimensional array of integers called

my2DArray that has two dimensions:

 int[][] my2DArray = new int[4][4];

 It is worth noting that in addition to declaring this two-dimensional array, it is being set to

hold 4 by 4 elements, or 16 total elements.

277Lesson 13: Organizing with Arrays

 The following declaration creates a multidimensional array that has three dimensions.

It is being initialized so that all three dimensions have fi ve elements. This means the array

can hold up to 5 × 5 × 5, or 125 fl oat values.

 float[][][] my3DArray = new float [5][5][5];

 NOTE Newer Java programmers often try to put the square brackets
after the name of the array instead of after the type when declaring the
array. While this will work, the brackets should go after the type when
declaring and then later after the name when using the array.

 Jagged Arrays
 Both a rectangular and a jagged array can be considered to be an array of arrays. As such,f

the syntax for declaring variables of that type will involve multiple square brackets to

indicate the nesting of arrays. You can declare a jagged array similar to a multidimen-

sional array.

 int[][] myArray = new int[2][];

 In this case, you are declaring an array of integers; however, on the right you can see a

diff erence. While this is set to have two rows, the number of columns has not been stated.

That will be determined when the array is initialized.

 INITIALIZING ARRAYS
 In simple terms, arrays are blocks of memory, just like any other variable. This means we

can initialize an empty array and add elements to it later, or we can initialize an array that

already includes the elements we want the array to hold.

 If we initialize an empty array, we specify the number of elements we want to allocate

space for without providing the data to be stored immediately. Depending on the data

type, default values will be placed at each location in the array.

 In the other method of initialization, we can provide data right away, and the size of the

array will be inferred and set to exactly the size required for that data.

 Keep in mind that you cannot change the size of an array after it has been initialized.

This means you must defi ne the size correctly when you initialize an array, even if the ele-

ments themselves are initially empty.

Job Ready Java278

 Initializing a Single-Dimensional Array
 As with declaration, initialization is simplest with single-dimensional arrays. Initializing the

array requires setting up the memory area for the values to be stored. To set this up, we

use the new keyword. This keyword is followed by what is being set up and initialized. For

example, consider the following code:

 int[] numbers = new int[4];

 Looking to the left of the equal sign, you can see that this code declares a single-dimen-

sional array called numbers . Looking to the right, you can see that the new keyword is

being used to initialize this array. It is being created as an array of four integers. Because

no values are indicated, each of the four elements in the array will be implicitly set to a

default value for integers, which is 0.

 The following is a declaration for the same array. This time, however, the values are

explicitly being set to zero.

 int[] numbers = { 0, 0, 0, 0 };

 As you can see to the right of the equal sign, curly braces are being used to enclose the

block of default values. Because there are four values, this single-dimensional array will be

set to have four elements. If we were to visualize this array after any of these statements

has been executed, it would look like Figure{ 13.7 .

 NOTE Because array sizes are set when initialized, it is worth taking time
to plan out an array on paper before coding it.

210Indexes

000

3

0

 Figure 13.7 Our initialized single-dimensional array

 While we set the value to zero, we could have used any valid integer value when

declaring and initializing the array.

 int[] numbers = { 20, 33, 44444, 123 };

279Lesson 13: Organizing with Arrays

 Initializing a Rectangular Array
 If we want a tabular data structure (a rectangular array, which is also a two-dimensional

array), instead of putting a single number like the 4 earlier, we declare it as an int[][]

(with brackets to defi ne the dimension of the array), and then we put both dimensions in

the brackets when we initialize it. The following code would create an array with 2 rows

and 3 columns:

 int rows = 2;
 int columns = 3;
 int[][] table = new int[rows] [columns];

 Instead of using literals to initialize this array, variables were used. This is perfectly

acceptable. The previous code is equivalent to having written the following:

 int[][] table = new int [2][3];

 This would produce an array of default int values, as shown in Figure{ 13.8 .

 As with single-dimensional arrays, multidimensional arrays can be auto-initialized. The

following code creates the same two-dimensional array, but with values in each element:

 // row 0 row 1
 int[][] autoInitTable = { { 5, 3, 1 }, { 2, 4, 6 } };

 Figure{ 13.9 shows these values can be visualized.

 In this setup, each “row” in the array is a separate subarray, and each subarray includes

the same number of elements.

210Indexes

000

000

0

1

 Figure 13.8 Declaring and initializing a two-
dimensional array

 NOTE The designation of the fi rst dimension as a “row” and the second
as a “column” is arbitrary. Arrays don ’ t have a spatial layout: they ’ re
just memory locations with numeric addresses. We could have just as
easily made the fi rst dimension the “column” and the second the “row.”
However, when you work with multidimensional arrays, it will be critical
for you to establish and maintain consistent conventions across your
application.

Job Ready Java280

 Initializing a Jagged Array
 Unlike the rectangular array described earlier, a jagged array includes multiple arrays of

varying lengths. As a result, jagged arrays do not have a regular shape, and initialization is

slightly trickier.

 You saw the declaration of a jagged array earlier, as well as part of the initialization. The

following is an initialization of another jagged array that has three rows:

 int[][] jagged = new int[3][];

 To initialize these rows, you then need to set each of the rows to an array.

 jagged[0] = new int[] { 1, 2 };
 jagged[1] = new int[] { 3, 4, 5, 6 };
 jagged[2] = new int[] { 7, 8, 9 };

 You can see that the fi rst row is initialized to two values. The second row is set to four

values. Finally, the third row is set to three values. If you were to visualize the result of this

jagged array, it would look similar to Figure{ 13.10 .

210Indexes

135

642

0

1

 Figure 13.9 Initializing a two-dimensional array with values

Indexes

1{ }

3{ }

0

1

7{ }2

2

4

8

5

9

6

 Figure 13.10 Our initialized jagged array

 NOTE If you were to have more than two dimensions in a jagged array, it
is recommended that only the last dimension should be jagged.

281Lesson 13: Organizing with Arrays

 ACCESSING ARRAY ELEMENTS
 Now that we have arrays declared and initialized, it is time to get to the important infor-

mation: accessing the array elements. To access an individual element, we simply use the

index of the element we want to work with inside square brackets. Let ’ s look at how to

access each of the types of arrays.

 Accessing Elements in a Single-Dimensional Array
 As mentioned, you access array elements using an index number within square brackets.

As an example, let ’ s consider our one-dimensional array example.

 int[] numbers = new int[] { 3, 5, 2, 0 };

 It ’ s important to remember that the index is the position in the array starting with zero,

and the value is what is stored in the element at the index ’ s position. For example, the sec-

ond element in the numbers array we just created and initialized has the index 1 and the

value 5. This is illustrated in Figure{ 13.11 .

 In this array, in the second slot is the value of 5. If we wanted to replace the 5 with a 7,

we would do the following:

 numbers[1] = 9;

 As you can see, we are using the name of the array along with square brackets that

contain the index of the item we want. We can then treat this (numbers[1]) like any other

integer variable. In this case, we are simply assigning a new value of 9 to it. Similarly, we

could print the value of the second position:

 System.out.println(numbers[1]);

 NOTE The trickiest part for beginners is remembering that indexes start
at zero. So, if you want the fi rst element, it is at index zero [0].

210Indexes

253

3

0

 Figure 13.11 Index vs. value

Job Ready Java282

 This would print the value we just assigned, which is 9. The following would print the

value of 2:

 System.out.println(numbers[2]);

 To print the fi rst value of 3, we would use an index of 0, so the code would be as follows:

 System.out.println(numbers[0]);

 Listing{ 13.1 provides a working sample of code that illustrates this in action, plus a

little more.

 LISTING 13.1
 Using a One-Dimensional Array

 public class ArrayFun {

 public static void main(String[] args) {

 int ourNumber = 0;
 int[] numbers = new int[]{3, 5, 2, 0};

 System.out.println("Our Numbers: ");
 System.out.println(numbers[0]);
 System.out.println(numbers[1]);
 System.out.println(numbers[2]);
 System.out.println(numbers[3]);
 System.out.println("ourNumber: " + ourNumber);

 numbers[1] = 9;
 ourNumber = numbers[0];

 System.out.println("Our Numbers Now: ");
 System.out.println(numbers[0]);
 System.out.println(numbers[1]);
 System.out.println(numbers[2]);
 System.out.println(numbers[3]);
 System.out.println("ourNumber: " + ourNumber);
 }
 }

283Lesson 13: Organizing with Arrays

 When this is executed, the following output should be generated:

 Our Numbers:
 3
 5
 2
 0
 ourNumber: 0
 Our Numbers Now:
 3
 9
 2
 0
 ourNumber: 3

 Most of what is in this listing matches what we mentioned before. The main new action

is that we can also see that an element from our array (number[0]) is being assigned to the

variable ourNumber .

 Accessing Elements in a Multidimensional Array
 As we increase the number of dimensions in the array, simply place the index in a

bracket for each dimension. Figure{ 13.12 shows a 2 × 3 array that has each element fi lled

with a value.

 If we wanted to assign number to a variable from the fi rst row and second column this

array, we could do the following:

 int gottenNumber = autoTable[0][1];

 NOTE Don ’ t confuse the index of an element with its x value .

210Indexes

135

642

0

1

 Figure 13.12 Elements in a multidimensional array

Job Ready Java284

 This assumes the table name is autoTable . Looking at Figure{ 13.12 , you can see that

the value assigned to gottenNumber would be 3. If we wanted to assign the item in the

second row and third column to a variable, we could do the following:

 int anotherNumber = autoTable[1][2];

 In this case, anotherNumber is assigned the value of 6.

 Accessing Elements in a Jagged Array
 A jagged array is accessed in the same way as a multidimensional array; however, we need

to be aware of how many items are in the columns. Figure{ 13.13 shows an example of a

jagged array.

 In looking at the fi gure, if we wanted to get the second element from the third array,

we would do the following:

 int eight = jagged[2][1];

 If we wanted to replace the value in the second position of the fi rst array, which is cur-

rently 2, we could do that as follows:

 jagged[0][1] = 42;

 In this case, we are replacing the 2 with the value of 42.

 ITERATING THROUGH ARRAYS
 Now that we have seen how to set up and access arrays, it is time to take our learning to

the next level. Arrays and loops go hand in hand. Any time you want to read through mul-

tiple elements of an array, in particular when the incoming arrays could have diff erent

lengths, you will need to “loop” through it.

Indexes

1{ }

3{ }

0

1

7{ }2

2

4

8

5

9

6

0 1 2 3 Figure 13.13 Elements in a jagged array

285Lesson 13: Organizing with Arrays

 Depending on the type of loop, this means either looping through the valid r indexes of s

the array and using the indexes as shown earlier to access the elements at those locations

or iterating through the r elements directly. s

 When performing the second kind of loop, we will not know what index we ’ re on at any

given time. We don ’ t typically need to know the index, but there are cases when we do

need this information.

 In sections that follow, we will walk through a series of examples of some of the tech-

niques for iterating through arrays. We ’ ll walk through summing elements, changing

looping direction, and printing pairs of elements. Before we jump into those techniques,

let ’ s start by simply iterating through a simple single-dimensional array, as shown in List-

ing{ 13.2 . We will use the same array we used in Listing{ 13.1 .

 LISTING 13.2
 Iterating through a Single-Dimensional Array

 public class ArrayFun2 {

 public static void main(String[] args) {

 int [] numbers = new int[]{3, 5, 2, 0};

 System.out.println("Starting....");
 for (int ctr = 0; ctr < numbers.length; ctr++) {
 System.out.println("ctr = " + ctr + " Numbers = " + numbers[ctr]);
 }
 System.out.println("....Done!");
 }
 }

 Running Listing{ 13.2 results in output that should not surprise you.

 Starting....
 ctr = 0 Numbers = 3
 ctr = 1 Numbers = 5
 ctr = 2 Numbers = 2
 ctr = 3 Numbers = 0
 Done!

 There is only one new thing in this listing. The rest should look familiar based on what

has been taught up to this point. The listing starts by creating and initializing our array

of numbers called numbers . This is just like we saw in the previous listing. The interesting

Job Ready Java286

things, however, start happening with our for loop. In this case, we are going to use our

counter as the index into our array. As such, we start by setting our counter, ctr , to an ini-

tial value of 0.

 We want to then step through the array until we get to the end. This is where some-

thing new is happening. We can use the length of the array to determine the number of

times we loop through the array. It is important to remember that the length refers to

the number of elements in the array, so an array ’ s length is always 1 less than the high-

est index in the array. As can be seen in the listing, we are comparing value of ctr to the

value of numbers.length . We can simply iterate our counter each time until we reach

the length!

 Iterating through Multidimensional and Jagged Arrays
 Iterating through multidimensional and jagged arrays can be done similarly. Both are rela-

tively straightforward once the length of the array is known. Let ’ s start by looking at List-

ing{ 13.3 , which iterates through a two-dimensional array and prints its values.

 LISTING 13.3
 Iterating through a Two-Dimensional Array

 public class ArrayFun3 {

 public static void main(String[] args) {
 String[][] words = {{"One", "Two", "three"},
 {"red", "white", "blue"},
 {"cat", "rabbit", "cow"}};

 System.out.println("Starting....");
 for (int i = 0; i < words.length; i++) {
 for (int j = 0; j < words[i].length; j++) {
 System.out.println("i = " + i + " j = " + j + " is "
+ words[i][j]);
 }
 System.out.println("-----");
 }
 }
 }

 When we run this listing, we get the following output:

287Lesson 13: Organizing with Arrays

 Starting....
 i = 0 j = 0 is One
 i = 0 j = 1 is Two
 i = 0 j = 2 is three

 i = 1 j = 0 is red
 i = 1 j = 1 is white
 i = 1 j = 2 is blue

 i = 2 j = 0 is cat
 i = 2 j = 1 is rabbit
 i = 2 j = 2 is cow

 Taking a look, you can see that this time, instead of using integers, we ’ ve switched to

creating an array of String s. Regardless of the data type being used, the array will be

used in the same way. You can see that we create a two-dimensional string called words

and then load it with words. In this case, we are creating a 3 × 3 array based on the three

groups of values being initialized.

 Once the data is initialized, then just like with a one-dimensional array, we use a

for loop to iterate through each dimension of the array. With multiple dimensions,

however, we nest the for loops. In the fi rst for loop, you ’ ll see that we check for the

length of words.

 for (int i = 0; i < words.length; i++) {i < words.length

 This gives us the number of elements in the fi rst dimension. Within that for loop, we

then check the length of each item within that dimension.

 for (int j = 0; j < words[i].length; j++) {j < words[i].length

 If you were doing a jagged array, your process would be exactly the same. Add a few

words to the code in Listing{ 13.3 in the initialization and run the code again. For example,

if we change the initialization to the following:

 public static void main(String[] args) {
 String[][] words = {{"One", "Two", "three", "four", "five"},
 {"red", "white", "blue"},
 {"cat", "rabbit"}};

 Making this change and rerunning the program creates the following output:

 Starting....
 i = 0 j = 0 is One

Job Ready Java288

 i = 0 j = 1 is Two
 i = 0 j = 2 is three
 i = 0 j = 3 is four
 i = 0 j = 4 is five

 i = 1 j = 0 is red
 i = 1 j = 1 is white
 i = 1 j = 2 is blue

 i = 2 j = 0 is cat
 i = 2 j = 1 is rabbit

 As you can see, nothing else in the code had to be changed.

 Sum the Elements of an Array
 Let ’ s go back to Listing{ 13.2 and take it a little bit further by using the values in the ele-

ments rather than just displaying them. Listing{ 13.3 iterates through a new array. This

time, in addition to displaying the output, we are also determining the sum of all the num-

bers. Listing{ 13.4 presents the new code.

 LISTING 13.4
 Summing Values in an Array

 public class ArrayFun4 {

 public static void main(String[] args) {

 int[] numbers = {3, 5, 2, 1, 10, 42 };
 int sum = 0; // keep running total
 for (int ctr = 0; ctr < numbers.length; ctr++) {
 sum += numbers[ctr];
 System.out.println("ctr = " + ctr + " current sum = " + sum);
 }
 System.out.println("Final sum: " + sum);
 }
 }

 When we run the program, we should see the following:

 ctr = 0 current sum = 3

289Lesson 13: Organizing with Arrays

 ctr = 1 current sum = 8
 ctr = 2 current sum = 10
 ctr = 3 current sum = 11
 ctr = 4 current sum = 21
 ctr = 5 current sum = 63
 Final sum: 63

 Looping Back to Front, with a Twist
 In Java, a for loop can count up or down, so we can also loop through an array from back

to front if we want. In fact, let ’ s go from back to front and print only the elements that are

in odd-numbered indexes. Enter and run Listing{ 13.5 to see this in action.

 LISTING 13.5
 Going Backward in an Array

 public class ArrayFun5 {

 public static void main(String[] args) {

 int[] numbers = {3, 5, 2, 1, 10, 42};
 // start at last index, go to first (0)
 for (int ctr = numbers.length - 1; ctr >= 0; ctr--) {
 if (ctr % 2 == 1) {
 System.out.println("index " + ctr + " - " + numbers[ctr]);
 }
 }
 }
 }

 The output of this code would be as follows:

 index 5 - 42
 index 3 - 1
 index 1 - 5

 NOTE For fun, change the values used to initialize the array and run the
program again.

Job Ready Java290

 If we review this listing, everything should look familiar. You can see that instead of

starting with zero and going to the length of the array, we are instead starting with the

length and working toward zero. Instead of adding to our counter, we subtract from it. This

is all done within the for loop. To only display the values in the odd index locations, we sim-

ply use the modulus operator (%). If we have a remainder, then we know the index is odd.

 Printing Pairs of Elements
 For this example, let ’ s consider that we want to print pairs of elements, skipping one

number in between each pair. So, if we have an array with numbers 1, 2, 3, 4, 5, 6, we want

to print 1, 2 and then 4, 5. This is exactly what Listing{ 13.6 is doing.

 LISTING 13.6
 Printing Pairs of Elements and More

 public class ArrayFun6 {

 public static void main(String[] args) {

 int[] numbers = {1, 2, 3, 4, 5, 6};

 for (int i = 0; i < numbers.length - 2; i += 3) {
 System.out.println("Pair: (" + numbers[i] + ", " +
numbers[i + 1] + ")");
 }
 }
 }

 When we run this, we can confi rm that the output is as follows:

 Pair: (1, 2)
 Pair: (4, 5)

 In this listing, there are three key ideas being demonstrated. The fi rst is that for each

printout, we include two numbers and skip one number. This means using three elements

in each loop. Thus, our increment for the loop needs to be i += 3 .

 The second relates to the check for the length of the array that we have used in previ-

ous listings. Since we are reading three elements in, we need to stop earlier than length.

We can use i < numbers.length for one element at a time, but since we have 3, we need

to subtract the diff erence (3 − 1 = 2).

291Lesson 13: Organizing with Arrays

 Finally, this listing illustrates that we can use an expression as an index. So [i + 1] is

the index next to the current element i .

 CHANGING THE SIZE OF AN ARRAY
 As mentioned earlier, we cannot change the size of an array once it is initialized. What

we can do is initialize a new, larger array and copy all the elements over to it, as shown inn

Listing{ 13.7 .

 LISTING 13.7
 Changing an Array ' s Size

 public class ArrayFun7 {

 public static void main(String[] args) {

 int[] numbers = {3, 5, 2, 1};
 for (int i = 0; i < numbers.length; i++) {
 System.out.println("ctr = " + i + " current sum = " + numbers[i]);
 }
 System.out.println("Number of items: " + numbers.length);

 numbers = growArray(numbers, 5);

 for (int i = 0; i < numbers.length; i++) {
 System.out.println("i = " + i + " current value = " + numbers[i]);
 }
 System.out.println("Number of items: " + numbers.length);
 }

 NOTE As always, be sure to write pseudocode, fl owchart the process,
or simply write the steps of the process out with sample data before
attempting to code. The majority of times when new programmers have
an array issues, it is because they have not solved the problem on paper
before writing code.

Job Ready Java292

 public static int[] growArray(int[] original, int howManyMoreElements) {
 int[] newArray = new int[original.length + howManyMoreElements];

 for (int i = 0; i < original.length; i++) {
 // copy the element at the current index
 // from original to newArray
 newArray[i] = original[i];
 }

 return newArray;
 }
 }

 In this listing, we are creating an array of numbers that contains four numbers. We iter-

ate through the array and print out each number followed by printing out the number of

items in the array.

 Once we have done this, we do a call to a new method we have created called growArray .

Notice that we pass the name of our array to this method along with an integer indicating

how many more elements we want added. This method returns to our listing a new bigger

array that we assign back to the array we had created. Once we have done this, we again

iterate through our array and show the elements to confi rm that we do indeed have a big-

ger array. The fi nal output is shown here:

 ctr = 0 current sum = 3
 ctr = 1 current sum = 5
 ctr = 2 current sum = 2
 ctr = 3 current sum = 1
 Number of items: 4
 i = 0 current value = 3
 i = 1 current value = 5
 i = 2 current value = 2
 i = 3 current value = 1
 i = 4 current value = 0
 i = 5 current value = 0
 i = 6 current value = 0
 i = 7 current value = 0
 i = 8 current value = 0
 Number of items: 9

 If you look at the growArray() method we created, you will see that the code is similar

to what we ’ ve seen. In this case, the method is returning a type of int[] , which is simply

293Lesson 13: Organizing with Arrays

an array of integers. For parameters, it is taking our original integer array as well as an

integer indicating the number of elements to add.

 public static int[] growArray(int[] original, int howManyMoreElements) {

 The method simply creates a new array. It then uses a for loop to iterate through the

elements of the original array and use the original indexes to map the elements to the

same locations in the new array. Once we have completed this, we return the newly cre-

ated array back to the calling method.

 DEALING WITH ERRORS
 Index out-of-range exceptions are the most common exceptions you encounter when

dealing with arrays. Simply put, this error occurs when we try to access an element of an

array that does not exist. Consider the following array:

 int[] numbers = {1, 2, 3, 4, 5, 6}

 There are only six elements in this array, so the max index is 5. What happens if we try

to execute the following line of code?

 System.out.println(numbers[52]);

 If we do this, we will get an exception, or more specifi cally an array index out-of-bounds

exception. This error only occurs at run time.

 If you get this error when iterating through an array, the error usually means that your

loop ’ s conditional expression (such as i < { expression }) is incorrect.

 In our previous example of growing an array in Listing{ 13.6 , if the howManyMoreElements

had been negative, when our for loop was set to loop for each element in the original

array, it would have had more indexes than the newArray . As a result, it would throw

the ArrayIndexOutOfBoundsException once the loop progressed past the last element

of newArray .

 SUMMARY
 Arrays are a fundamental construct of collections and a common topic in technical inter-

views, especially in coding challenges in interviews. In practice, most developers prefer

to use more robust collection structures such as List, Set, and Map; however, many other

Job Ready Java294

languages use the array structure heavily. Additionally, the array being a core piece of the

more robust collection structures requires us as developers to be comfortable with it if we

are to understand how those structures are implemented and create our own more com-

plicated collections.

 In this lesson, we learned all about single-dimensional (also called one-dimensional),

multidimensional, and jagged arrays. We saw how to declare, initialize, and use arrays in a

variety of ways.

 At this point, we have learned the basic building blocks of the Java programming lan-

guage. It ’ s now time to shift the focus toward applying Java to object-oriented concepts.

 EXERCISES
 Below are additional coding exercises to help you practice what you are learning about the

Java programming language. These are to do on your own, so most will not always include

answers. Many of the exercises cover accepting user input via Scanner. There are several

exercises for you to apply what you learned in this lesson:

Exercise 1: A Rainbow

Exercise 2: Still Positive

Exercise 3: Fruit Basket

Exercise 4: Simple Combination

Exercise 5: Hidden Nuts

Exercise 6: Summative Sums

 Exercise 1: A Rainbow
 Practice using arrays by making a text rainbow. Create a new program using the code

in Exercise Listing{ 13.1 . In the listing, you will type out the code to create and print a

String[] . You should notice that something doesn ’ t quite match up. Fix the code to print

out the colors in true ROYGBIV order!

 Important!
 Type all code yourself so that you better understand the code and you learn how to
handle mistakes on your own.

295Lesson 13: Organizing with Arrays

 EXERCISE LISTING 13.1
 ARainbow.java

 public class ARainbow {
 public static void main(String[] args) {
 String[] colors = {"Red", "Orange", "Yellow", "Green", "Blue",
"Indigo", "Violet"};

 System.out.println(colors[5]);
 System.out.println(colors[3]);
 System.out.println(colors[2]);
 System.out.println(colors[1]);
 System.out.println(colors[4]);
 System.out.println(colors[0]);
 System.out.println(colors[6]);

 }
 }

 What you should see after you have updated this listing is the following:

 Red
 Orange
 Yellow
 Green
 Blue
 Indigo
 Violet

 Exercise 2: Still Positive
 In this exercise, practice using arrays with conditionals. Start by creating a program called

StillPositive.java that determines all the positive numbers and prints them. Use the

following array of numbers:

 int[] numbers = { 389, -447, 26, -485, 712, -884, 94, -64, 868, -776, 227,
-744, 422, -109, 259, -500, 278, -219, 799, -311};

 When you run your program, you should see the following output:

 Gotta stay positive ...!
 389 26 712 94 868 227 422 259 278 799

Job Ready Java296

 Exercise 3: Fruit Basket
 Use the code in Exercise Listing{ 13.3 to create a program that iterates through the array of

fruit and prints out a count of the number of apples, the number of oranges, the number

of other fruit, and the total amount of fruit in our basket.

 EXERCISE LISTING 13.3
 FruitBasket.java

 public class FruitBasket {

 public static void main(String[] args) {
 String[] fruitBasket = {"Orange", "Apple", "Orange", "Apple", "Orange",
 "Apple", "Orange", "Apple", "Orange", "Orange", "Orange", "Apple",
 "Orange", "Orange", "Apple", "Orange", "Orange", "Apple", "Apple",
 "Orange", "Apple", "Apple", "Orange", "Orange", "Apple", "Apple",
 "Apple", "Banana", "Apple", "Orange", "Orange", "Apple", "Apple",
 "Orange", "Orange", "Orange", "Orange", "Apple", "Apple", "Apple",
 "Apple", "Orange", "Orange", "PawPaw", "Apple", "Orange", "Orange",
 "Apple", "Orange", "Apple", "Kiwi", "Orange", "Apple", "Orange",
 "Apple", "Orange", "Orange", "Apple", "Apple", "Orange", "Orange",
 "Apple", "Orange", "Apple", "Kiwi", "Orange", "Apple", "Orange",
 "Dragonfruit", "Apple", "Orange", "Orange"};

 int numOranges = 0;
 int numApples = 0;
 int numOtherFruit = 0;

 // Fruit counting code goes here!

 // Print The Results!

 }
 }

 Here is the initial output:

 Total# of Fruit in Basket: 65
 Number of Apples: 28
 Number of Oranges: 33
 Number of Other Fruit: 4

297Lesson 13: Organizing with Arrays

 Exercise 4: Simple Combination
 Practice combining arrays into one array. Combine the following two arrays into one large

array and then print out the whole new array. Exercise Listing{ 13.4 gives you the code to

start with.

 EXERCISE LISTING 13.4
 SimpleCombination.java

 public class SimpleCombination {
 public static void main(String[] args) {
 int[] firstHalf = {3, 7, 9, 10, 16, 19, 20, 34, 35, 45, 47, 49};
// 12 numbers
 int[] secondHalf = {51, 54, 68, 71, 75, 78, 82, 84, 85, 89, 91, 100};
// also 12!

 int[] wholeNumbers = new int[24];

 // Combining code should go here!

 // Printing code should go here

 }
 }

 When you run the program, you should see the following output from your one array:

 All together now!:
 3 7 9 10 16 19 20 34 35 45 47 49 51 54 68 71 75 78 82 84 85 89 91 100

 Exercise 5: Hidden Nuts
 Squirrels like to hide their nuts, but they ’ re not always good about fi nding them again.

Using the code snippet in Exercise Listing{ 13.5 as a base, iterate through the hiding spaces

and fi nd out where the squirrel put his nut and print the results to the screen.

Job Ready Java298

 EXERCISE LISTING 13.5
 HiddenNuts.java

 import java.util.Random;

 public class HiddenNuts {

 public static void main(String[] args) {

 String[] hidingSpots = new String[100];
 Random squirrel = new Random();
 hidingSpots[squirrel.nextInt(hidingSpots.length)] = "Nut";
 System.out.println("The nut has been hidden ...");

 // Nut finding code should go here!
 }
 }

 When you run this program, you should see code similar to the following; however, your

nuts should end up in diff erent locations!

 The nut has been hidden ...
 Found it! It's in spot# 42

 Exercise 6: Summative Sums
 Write a static method that takes in an array of integers, adds them together, and returns

the result. Call your new method inside a main method and print out the results. You can

use the following three example arrays with your program:

 { 1, 90, -33, -55, 67, -16, 28, -55, 15 }
 { 999, -60, -77, 14, 160, 301 }
 { 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130,
 140, 150, 160, 170, 180, 190, 200, -99 }

 Using these three arrays, here is what you should see for results:

 #1 Array Sum: 42
 #2 Array Sum: 1337
 #3 Array Sum: 2001

P A R T I I I

 Fundamentals of
Classes and

Objects
 Lesson 14: Object-Oriented Concepts

 Lesson 15: Creating Classes and Types

 Lesson 16: Managing Storage and Memory

 Lesson 17: Exploring Interfaces, Composition, and Inheritance

 Lesson 18: Diving into Interfaces

 Lesson 19: Diving into Composition

 Lesson 20: Diving into Inheritance

 Lesson 21: Understanding Collections

 Lesson 22: Introduction to Lists

 Lesson 23: Exploring Maps

 Lesson 24: Using Simple File Input and Output

 Lesson 25: Applying Application Design

 Lesson 26: Handling Exceptions

 Lesson 27: Pulling It All Together: Building the Class Roster App

Lesson 14

 Object-Oriented
Concepts

 In this lesson, we are going to look at some general object-

oriented concepts. We will explore different ways of abstracting

problems, defi ne object orientation (one way to abstract

problems), describe the characteristics of an object-oriented

language, and discuss the concept of public interface vs. private

implementation.

 LEARNING OBJECTIVES
 By the end of this lesson, you will be able to:

• Diff erentiate between various types of computer programming languages

• Defi ne the fi ve things that make a language object-oriented

• Explain what a type is and how it is used in Java

• Explain how public interface and private implementation work together

• Describe loose coupling

• Explain the single responsibility principle and cohesion

• Explain the concept of delegation

• Relate delegation to encapsulation

301Lesson 14: Object-Oriented Concepts

 ABSTRACTION
 There are many ways to approach a particular problem that you are trying to solve. One

approach is to start with the model of the solution space and then attempt to map the

problem into it. This is the approach of many languages.

Assembly language closely matches the underlying computer mechanics. If you want to e

solve a particular problem, you must think in terms of how the computer works fi rst and

then fi gure out how to map the problem into that paradigm. This means that you must

think about problems in terms of binary numbers, registers, addition, and subtraction. This

requires you to understand how to do things like move data into registers, decrement the

value in a register, and use various processor operations. Solving a problem with assembly

language requires a thorough knowledge of the actual processor being used.

Functional languages model everything as mathematical functions and immutable datas

structures. Here, everything is a function that takes inputs and produces values or does

work. This means you must think about the problem in terms of mathematical functions,

inputs, outputs, and data structures.

Logic programming languages model all problems as relations, facts, and rules. Theses

languages are based on formal logic and require the programmer to map the problem

domain into facts and rules in these languages.

Object-oriented languages take a diff erent approach in that they represent concepts in s

both the solution space and the problem space as objects. Since the real world is essen-

tially full of objects, this is very convenient. Take a car, for example—it can be described as

a collection of properties (weight, color, number of doors, etc.) and behaviors (drive, turn,

roll up window, turn on radio, etc.). This is how we model objects in an object-oriented

 language: via properties and behaviors. Less translation is needed to map a car into

one of these objects than is needed to map a car into some of the approaches taken by

non-object-oriented languages.

 OBJECT ORIENTATION
 What makes a language object-oriented? Object orientation can be summarized like this:

• Everything is an object.

• A program is just a collection of objects that tell each other what to do by sending

messages (in Java ’ s case, these messages are method calls).

• Each object can be made up of or composed of other objects (this is called composi-

tion in Java).n

• Every object has a type.

Job Ready Java302

• All objects of a particular type can receive the same messages (in Java, this means

that they all have the same methods).

 Grady Booch put it more simply: “An object has state, behavior, and identity.”

Let ’ s break this down:

State : This means that the properties of an object have certain values at certain times.

For example, a car might have a velocity of 50 miles per hour right now, but 0 miles per

hour in 10 seconds. The combination of these values at a given point in time describes

the object ’ s state.

Behavior : This means that an object has some capacity to do something. In Java, these

capabilities are represented as methods. Many times, these methods change the state

of the object.

Identity : Here we are talking about the ability to distinguish one object from another

even when the objects are the same type. For example, I can diff erentiate the shade

tree in my front yard from the one in my backyard.

 TYPES
 Every object in Java has a type. A type is a classifi cation that defi nes the structure ande

range of values for the type and the associated operations allowed on those values. On

the one hand, there are native or intrinsic Java types that we have already learned about

such as int , fl oat , and boolean , but we are also free to create our own types in Java. In

fact, every time we defi ne a new Java class, we defi ne a new type.

 We have also used a few non-native types that are not part of the Java language itself,

such as Random and Scanner . In later lessons, we ’ ll look at the details of how to create our

own data types and how to create programs that contain several data types cooperating

to solve problems.

 NOTE While Java is considered an object-oriented language, not
everything in Java is an object. As an example, the primitive types such
as int, fl oat, and double are not objects.

 PUBLIC INTERFACE/PRIVATE
IMPLEMENTATION
 Every class should have a public interface that defi nes how the outside world can interact e

with it. Behind this public contact should be a private implementation. This allows us to n

303Lesson 14: Object-Oriented Concepts

separate “what” an object does from “how” it does it. Calling code (the code from other

parts of the program that use the object) should not be concerned with how an object

fulfi lls the contract and should in no way ever rely on the specifi cs of the implementation

(or side eff ects of a particular implementation) when using the object. The implementer of

the object reserves the right to change the implementation details at their discretion.

 Let ’ s look at an example from our everyday lives that illustrates why this concept is so

important: the fast-food drive-through. The public interface at a drive-through is familiar

to all of us. They can vary somewhat, but the basic interface follows four steps. First, there

is a menu displaying items and prices; next, there is a speaker where we place our order;

next, there is a window where we pay; and fi nally, there is a window where we get our

food. As a customer of the restaurant (and user of drive-through public interface), I have

no idea about how my order is processed, how and when the ingredients are delivered,

how the food is cooked, or how many cooks are in the kitchen—and frankly, I really don ’ t

care. I just want to order my food, pay for it, and enjoy my meal. The restaurant is free to

upgrade its ordering system, get new stoves, hire more cooks, or make any other changes

to their system, and as long as the drive-through works as it did before and the food tastes

the same, I ’ m a happy customer.

 ENCAPSULATION AND DATA HIDING
 One way to help facilitate the notion of public interface and private implementation is

through encapsulation and n data hiding . Well-designed classes prevent direct access to their g

properties by calling code (remember, calling code is code from other parts of the program

that use the object). Instead, they force this access through getter and setter methods.

This prevents the calling code from being aware of the internal details of the object. This

allows the internal representation of the properties to change without the knowledge

of the calling code. This technique leads to loose coupling between the calling code andg

the object.

 SINGLE RESPONSIBILITY PRINCIPLE
AND COHESION
 A well-designed class has a well-defi ned area of responsibility. Generally speaking, this

means the class does one thing, does it completely, and does it well, so a class is cohesive

and follows the single responsibility principle . The class should fully contain all aspects of itse

area of responsibility. The public interface of the class must be defi ned so that its function

is crystal clear (even though how it is implemented is hidden).

Job Ready Java304

 Let ’ s return to our drive-through example. If the drive-through interface (i.e., the menu,

order speaker, payment window, and pickup window) is to be cohesive, it must allow us to

do everything involved in ordering, paying for, and picking up our meal. For example, the

interface would not be cohesive if at the payment window, I had to get out of my car, walk

over to the bank, transfer funds from my account to the restaurant, and then return to

my car. On the other hand, the drive-through should be limited to just ordering and pay-

ing for food. For example, I shouldn ’ t have the option of renewing my driver ’ s license at

the payment window. This is clearly outside the scope of what a fast-food drive-through

should do.

 Although this is just an example, you can see how cohesive interfaces make sense.

These principles apply to objects just as they apply to drive-through restaurants.

 DELEGATION
 The concept of delegation is complementary to encapsulation. If our class is well-

encapsulated, it will only handle tasks that are within its well-defi ned area of responsibility.

If one or more of the tasks within the class ’ s area of responsibility require a subtask that is

outside the class ’ s main area of responsibility, the class must delegate that task to anothere

class. We have already seen examples of this in our code—we delegate to System.out for

writing to the console and to the Scanner object for reading from the console.

 For example, a drive-through that does not specialize in baking bread “delegates” this

responsibility to a bakery that bakes the buns and delivers them to the restaurant. As the

consumer of the restaurant interface, I do not care whether the buns are baked on site or

at a bakery and delivered. As long as the buns are fresh, taste good, and have the correct

nutritional content, I am a happy customer. The restaurant specializes in putting together

the fi nished hamburger. They delegate things such as baking the buns and processing the

meat to other companies.

 SUMMARY
 This was a quick introduction to some of the big concepts of object-oriented programming.

The remaining lessons in this section cover these topics in detail and will set you on the

path to becoming an object-oriented programmer.

Lesson 15

 Creating Classes
and Types

 In this lesson, we ’ ll look at how we defi ne and create new types in

Java and what comprises these new types.

 LEARNING OBJECTIVES
 By the end of this lesson, you will be able to:

• Create new types

• Diff erentiate between classes and objects

• Explain the use of accessors and mutators (or getters and setters)

• Use the dot operator to access object public properties or methods

• Use the this keyword

• Instantiate an object

• Invoke a method

• Relate constructors to methods

• Apply the static keyword to methods and constants

 CREATING NEW TYPES
 Every time we defi ne a new class in Java, we are defi ning a new type. As discussed earlier

in the course, there are two categories of data types in Java: primitive types and reference

types. New classes fall into the latter category.

Job Ready Java306

 Types (classes) in Java simply consist of fi elds (or s properties) and ss behaviors (or s methods). s

Fields and behaviors are sometimes referred to as members . You have already used several ss

user-defi ned types, including Scanner and String .

 Listing{ 15.1 presents a new class called Dog . We could also say that Listing{ 15.1 is pre-

senting a new type called Dog !

 LISTING 15.1
 A New Class/Type Called Dog

 public class Dog {

 private String name;
 private double weight;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public double getWeight() {
 return weight;
 }

 public void setWeight(double weight) {
 this.weight = weight;
 }

 public void bark() {
 System.out.println("WOOF!");
 }

 public void sit() {
 System.out.println("Sitting...");
 }

 }

 In looking at the Dog class, we can see that it contains a couple of properties and several

methods. The properties are name and weight . The methods are getName() , setName() ,

getWeight() , setWeight() , bark() , and sit() .

307Lesson 15: Creating Classes and Types

 CLASSES VS. OBJECTS
 A class is a defi nition, like the blueprint of a house. A blueprint is a detailed model of a s

building. It may show you how to build your house, but you can ’ t live in a blueprint. As

illustrated in Figure{ 15.1 , you have to build the house, following the plan in the blueprint,

before you can move in. Similarly, you must instantiate an object, based on the defi nition

contained in the class, before you can use it.

 Another way to approach this is to think of a class as an idea and an object as the instan-

tiation of that idea. For example, a class is like the idea of a German shepherd, whereas an

object is my German shepherd named Buster. You can pet Buster, but you cannot pet the

idea of a German shepherd.

 PROPERTIES, ACCESSORS, AND MUTATORS
 In the previous lesson, we talked about encapsulation and data hiding. A common tech-

nique used to achieve data hiding in Java is the use of accessors and s mutators (these ares

also known as getters and s setters in Java). Accessors and mutators are simply methods thats

get and set (respectively) the values of the properties (or fi elds) on an object.

 Figure 15.1 Blueprints versus the actual house

Job Ready Java308

 The process of using getters and setters for a fi eld is to declare the fi eld as private and

then create methods that start with get… and set… . For example, the following declares a

private fi eld called name :

 private String name;

 The getter and setter for name would be public methods that could look like this:

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name; // we’ll talk about ‘this’ later in this lesson!
 }

 So, why would we go to all the trouble to create these methods when we could simply

let clients access and change the values of our class ’ s properties directly? As mentioned,

it is desirable for code that uses an object to have no idea how the properties are stored

or calculated. This code should just know what each getter and setter does. By doing so,

we create self-governing objects. That is, any changes made to the state of the object

(changes to properties) are made only by the object ’ s methods.

 For example, a Student class might have a property called ID , which represents the

student ID. This student ID is typically generated by the school and cannot be changed by

anyone else. In this case, it is best to have the ID property as private and then implement a

getter to return the ID of the student (and in this case, we can skip implementing a setter

for the ID property since we don ’ t want any entity to change it).

 DOT OPERATOR
 The dot operator (.) is used to access visible properties or methods of an object. The dotr

operator is used for static and nonstatic properties and methods. On the left side of the

dot operator is the class name (for static fi elds and methods) or the variable name of the

instance (for nonstatic fi elds or methods). On the right side of the dot operator is the

method or fi eld we want to access.

 We have seen many examples of the dot operator.

• SimpleMath.add(...) : Static

• System.out.println(...) : Static

• myDog.bark() : Nonstatic

• currentStudent.getGradePointAverage() : Nonstatic

309Lesson 15: Creating Classes and Types

this KEYWORD
 In Listing{ 15.1 , you saw the use of the this keyword. The this keyword is used to refer to

the instance of the class in which the code is currently executing. It is used in conjunction

with the dot operator to access properties and methods of the containing class. Option-

ally, you don ’ t need the this keyword unless there is a name collision. It is common to

see the this keyword used in accessors, mutators, and constructors (as with both the Dog

and Student examples earlier). Additionally, static methods and variables should not be

referred to with the this keyword.

 NOTE The this keyword cannot exist outside constructors and instance
methods of a class.

 METHODS/BEHAVIORS
 In addition to properties (and their corresponding getters and setters), classes can have

behaviors. The behaviors of a class are implemented as methods. As we saw earlier in the ss

course, methods are simply named blocks of code that can be invoked (or called) by other d

code in the program to accomplish some purpose. Methods are always contained inside a

class defi nition—they cannot stand on their own.

 In the example shown in Listing{ 15.1 , there were both regular methods— bark() and

sit() —and getter/setter methods for the name and weight properties.

 If your class is well designed, the methods in the class will match the purpose of the

class. In other words, they must be cohesive. For example, in the previous Dog class, it

would not make any sense to have a method called meow() .

 NOTE You might have noticed that the methods on the Dog class are not
marked static. Up until this point, we have marked all methods static,
so this is something new. Nonstatic methods are known as instance
methods . We look at object instantiation and how to invoke instance s
methods on an object later in this lesson. We will also take a detailed
look at the static keyword and its use at the end of this lesson.

 CONSTRUCTORS
 A constructor is a special method that is called when you create an instance of your class.r

Constructors are usually used to initialize the properties of a newly instantiated (newly

Job Ready Java310

created) object. Although constructors are methods, there are some special rules thatd

must be followed when creating a constructor.

• A constructor must have the same name as the class that it is a part of. For example,

the constructor for a class called Dog would be Dog() .

• Constructors never have a return type, not even void .

• Constructors can have parameters but don ’ t have to.

• There can be more than one constructor in a given class.

• You don ’ t have to create a constructor for your class as long as the superclass has

no-arg constructors. If you don ’ t create one, the compiler will supply one called the

default constructor. The default constructor has no parameters and appears to haverr

an empty method body. Such a constructor is the default constructor whether you

write it or the compiler provides it.

 Let ’ s take another look at the Dog class, as shown in Listing{ 15.2 . This time with a

default constructor and one that takes name and weight parameters.

 LISTING 15.2
 The Dog Class with Constructors Included

 public class Dog {

 private String name;
 private double weight;

 public Dog() {

 }

 public Dog(String nameIn, double weightIn) {
 this.name = nameIn;
 this.weight = weightIn;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

311Lesson 15: Creating Classes and Types

 public double getWeight() {
 return weight;
 }

 public void setWeight(double weight) {
 this.weight = weight;
 }

 public void bark() {
 System.out.println("WOOF!");
 }

 public void sit() {
 System.out.println("Sitting...");
 }

 }

 OBJECT INSTANTIATION AND METHOD
INVOCATION
 Because the Dog class in Listing{ 15.2 has two constructors, we now have two options for

creating a new Dog object. We can create a Dog using the default constructor that we

wrote (i.e., the one that has no arguments), or we can use the constructor that has two

parameters.

 First, let ’ s look at creating a Dog object using its default constructor. We will start by

creating a class called App . We will include a main method from which we ’ ll instantiate our

Dog object.

 public class App {

 public static void main(String[] args) {

 Dog myDog = new Dog();

 }
 }

 If no values are explicitly set on the fi elds of a class when it is instantiated, the fi elds

get initialized to their default values: null for reference types, 0 for primitive numbers, and

false for booleans. Since we used the constructor with no arguments, the fi elds in our new

Dog (myDog) were initialized to their default values: null for name and 0.0 for weight .

Job Ready Java312

 To set values for name and weight, we must invoke the setter methods for these two

properties. As mentioned, we do this with the dot operator:

 public class App {

 public static void main(String[] args) {

 Dog myDog = new Dog();
 myDog.setName("Spot");
 myDog.setWeight(34.0);

 }
 }

 Now myDog has the name Spot and weighs 34 pounds.

 Because we have the second constructor, we can create a new Dog with values of our

choosing for name and weight when we instantiate the object, as in the following example:

 public class App {

 public static void main(String[] args) {

 Dog anotherDog = new Dog("Buster", 23.5);

 }
 }

 The variable anotherDog is instantiated with the name Buster and a weight of

23.5 pounds.

 NOTE To recap, if we have variables of local scope, then we must initialize
them before they can be used, and we must do that ourselves. But when
we instantiate a class, any of the fi elds in the class that are not initialized
in the constructor will get their default values. For all primitive types, that
means the numbers go to 0 and booleans go to false. Reference types get
initialized to null.

static KEYWORD
 Now that we know a little bit more about classes and objects, let ’ s revisit the static key-

word to learn where and when it is appropriate to use it for fi elds and methods. First, let ’ s

look at some facts about the static keyword.

313Lesson 15: Creating Classes and Types

• If a fi eld or method is marked as static, it means that it is associated with the class e and

not with any particular instantiation of the class. This means that there is only everss

one copy of a fi eld or method that is marked static. This one copy exists whether

zero or 97 instances of the class are created. For example, if name on our Dog class

were static, all Dog objects would share the same name.

• Static fi elds and methods can be accessed without creating an instance of the class.ss

This follows from the previous item. The one and only copy of a static fi eld or

method exists even if no instances of the class have been instantiated.

• Nonstatic properties and methods are associated with a particular instance of the

class, which means that they are accessible only through that particular instance of

that object. This also means that nonstatic fi elds and methods do not exist until one tt

or more instances of the class have been created.

 Given this curious set of properties, when is it appropriate or desirable to mark a

method or property static? There are four common use cases for the static keyword:

• Main method

• Constant values

• Utility methods

• Factory pattern

static and the Main Method
 We have seen this example of the static keyword from the fi rst program we wrote: Hel-

loWorld. The main method is the entry point of our program—this is where the programt

kicks off . Since this is the fi rst thing that is going to be run in the program (even before

any objects are instantiated), it has to be static. There is no way for the JVM to create our

object and then call main—where would that code live? Instead, the JVM locates our class

and then calls main to begin execution.

static and Constant Values
 Constants are another place where it is appropriate to use the static keyword. We can

defi ne a constant value (for example, a constant for the value of pi) as a static fi eld on a

class. This means that there will only ever be one copy of that constant in our program.

The value can ’ t be changed, so there is no reason to have a copy of the value associated

with every instance of the class. The example in Listing{ 15.3 shows what this looks like.

Job Ready Java314

static and Utility Methods
 Utility methods such as those performing math operations are great candidates for using

the static keyword. Methods that are marked static must not attempt to change the

state of the class with which they are associated. Again, math operations are perfect

examples of this. They take inputs, operate on those inputs, and produce outputs. In fact,

all the methods and constants on the Math class in Java are marked static.

 Listing{ 15.3 is a simple class that shows what a static constant and static methods look like.

 LISTING 15.3
 Using Static Contants and Methods

 public class SimpleMath {

 public static final double PI = 3.14;
 public static int add(int a, int b) {
 return a + b;
 }

 public static int subtract(int a, int b) {
 return a - b;
 }
 }

 As you can see, we have declared PI as a public static fi nal double fi eld, and we have

two methods, add() and subtract() , that are also marked static.

 We have discussed why marking these fi elds and methods as static makes sense, but we

haven ’ t discussed how this will aff ect how other code interacts with this fi eld and these

methods. Marking these members static means that we can access them without fi rst instan-

tiating an instance of the SimpleMath class. In some occurrences, we must fi rst instantiate

an object before we can access its methods. One example is Scanner , which requires that we

declare and instantiate a Scanner before we can call a method on our new instance, like this:

 Scanner myScanner = new Scanner(System.in);
 myScanner.nextLine();

 When using static methods or fi elds, we do not have to fi rst instantiate the object; we

can use it directly from the class. This is because static members are associated with the

class itself, rather than with a particular instantiation of the class.

 SimpleMath.add(5, 3);

315Lesson 15: Creating Classes and Types

 PULLING IT ALL TOGETHER
 A lot has been covered in this lesson, so let ’ s step back and use NetBeans to walk through

creating a simple project to create an application and a separate class. The application

we create will be called Adder and will have static constants and methods. We will walk

through NetBeans and see a feature or two that it provides to help us pull this together.

 Create a new application in NetBeans. In NetBeans, select File ➢ New Project to open

the New Project dialog. Just as we suggested in the fi rst part of this course, select Maven

as the category and Java Application for Projects. Then click the Next button.t

 In the New Java Application dialog, give the project a name. We can use the name

ObjectInstantiation since we will be creating an object. We can leave the rest of the valuesn

and click the Finish button to create our project. h

 Within the project now displayed, right-click the package name and select New ➢ Java

Class, as shown in Figure{ 15.2 , to create a new class.

 Give the class a name of App . Giving your fi rst class the name of App is a pattern you can

use throughout the rest of this book as you create applications with multiple classes. The

App class will be the one that holds your main method. For other classes that are created,

we will name them based on what they do. With our App class created, our project should

look similar to Figure{ 15.3 .

 Figure 15.2 Creating a new class

Job Ready Java316

 We ’ ll set up our App class similar to what we ’ ve been doing. We ’ ll start by creating a

main method. Since we are using NetBeans, you can use a shortcut to enter the declara-

tion for main. Type psvm on a line within the App class and press the Tab key. This should

expand out to the following:

 public static void main(String[] args) {

 }

 Figure 15.3 Our App class in NetBeans

 NOTE A program is nothing but objects sending messages back and
forth cooperating with each other to solve a task. In Java, the way that
we send those messages back and forth is by calling methods.

 Creating a New Class
 With our main method in place, we are ready to add some functionality to our program.

We are going to create a new class that will provide some math functionality. To keep it

317Lesson 15: Creating Classes and Types

simple, our new class will start with just a single method for adding two numbers. To add

the new class, once again right-click our class ’ s package name and select New ➢ Java Class

(as shown in Figure{ 15.2). This time call the new class Adder , since our class will be adding

numbers. The new class should be displayed in NetBeans similar to what is in Figure{ 15.4 .

 Within this class, we are going to add an add() method that will be used to simply add

two integers and return the result. The code to add to your Adder class is as follows:

 public int add(int a, int b) {
 return a + b;
 }

 It is worth noting that our Adder class does not have a main method. As we have men-

tioned before, we need only one main method in our program, and we ’ ve already set that

up within our App class.

 With this add() method added to the Adder class, click the tab to pull up the code for

your App.java class. Within the main method of our App class, we want to call our add()

method. What we had done in the past with a method was to simply call it and save the

value returned. We generally would then print out the value. Code to do this would look

something like Listing{ 15.4 .

 Figure 15.4 The new Adder class

 TIP Another NetBeans shortcut is that you can type sout on a new line
and press tab. This will expand to System.out.println(""); .

Job Ready Java318

 LISTING 15.4
 App Code to Add Two Numbers

 public class App {

 public static void main(String[] args) {

 int sum = add(5, 4);
 System.out.println("The sum is " + sum);
 }
 }

 If we look at this code in NetBeans, we will see that the add() method has red squiggly

lines under it indicating there is an issue. To use the add() method, we need to instantiate

the Adder class and then call it from our main method. That means our code in Listing{ 15.4

is not going to work for us. We need to replace it.

 The fi rst thing we need to do is get an instance of our Adder class. We will do this the

same way we ’ ve declared any other variable, but with a type of Adder .

 Adder myAdder = new Adder();

 We have seen declarations like this in the past. When we created scanners and some

other things, we did it this same way. In this case, Adder is a user-defi ned type that

we created.

 Let ’ s take a look at this code a little bit. The fi rst part should be familiar in that we have

the type, Adder , and the name of the variable, myAdder , that will hold our object of this

type. We are then setting our variable equal to a new Adder object by calling new and the

Adder constructor, Adder() . If you recall, the only method we put in our Adder class was

the add() method. We did not supply a constructor in Adder . So, the compiler will actually

supply a constructor for us that has no arguments.

 NOTE What we ’ re doing is telling the Java Runtime to create a new
object based on this Adder template and hand this back a reference.

 Now that we have a reference, we can get to the add() method. Within our main

method, we can now defi ne an integer to hold our sum and then use our object. Update

the App code to look like Listing{ 15.5 .

319Lesson 15: Creating Classes and Types

 LISTING 15.5
 Creating an Adder Object

 public class App {

 public static void main(String[] args) {

 Adder myAdder = new Adder();

 int sum = myAdder.add(4, 5);
 System.out.println("The sum is " + sum);
 }
 }

 You can see that our declaration has been added; then in the following line we create

the sum variable to hold the result of adding two numbers using the myAdder object we

created. When you enter this code in NetBeans, you will notice that after typing myAdder

and then the dot, as such:

 int sum = myAdder.

 NetBeans will pop up a dialog similar to Figure{ 15.5 . This is a dialog that shows all the

methods the myAdder object contains.

 You might notice that there are all kinds of other items such as methods listed in

addition to our add() method. For now, just ignore this stuff . We will cover it in more

detail when we talk about inheritance in a later lesson. For now, you can either continue

typing or simply select the add() method from the list.

 Go ahead and pass 4 and 5 to the add() method, as shown in Listing{ 15.5 . With the list-

ing completed, run the program. You should see that the add() method works and our

output is shown as follows:

 The sum is: 9

 At this point, we ’ ve created a new class (type), created an instance, and used it in our

listing to call a method in that class. But we aren ’ t done.

 NOTE What is happening behind the scenes is that the App class is
passing messages to the Adder class. Specifi cally, it is passing a 4 and a 5
to a method in the Adder class. The Adder class then has a method that is
returning a message to the App class with the result of 9.

Job Ready Java320

 Figure 15.5 NetBeans class method pop-up

 NOTE In a program that has more than one class, only one of the
classes will have a main method. We recommend you call the class
with the main method App .

 Going Static
 With our Adder class in place, what would happen if we added the static keyword to the

add() method we created? It is worth backing up a little bit and talking about a couple of

things related to static.

321Lesson 15: Creating Classes and Types

 One of the things we said earlier was that the static keyword could be used to associ-

ate a method or fi eld with the class instead of with a particular object created from the

class. In Listing{ 15.5 , we did not use the static keyword with the add() method, so to use

the method, we had to instantiate a new Adder class to create a reference.

 The static keyword associates the add() method with the class. What that means is

that we don ’ t have to instantiate the Adder class; this method just exists when our pro-

gram starts up. Let ’ s change the code in our Adder class to include the static keyword.

Your new method should look like this:

 public static int add(int a, int b) {static
 return a + b;
 }

 There is something within NetBeans worth noting at this point. As you can see in

Figure{ 15.6 , when we added the static keyword into the listing, NetBeans changed add to

be italicized. This lets us easily identify static methods because they are italicized.

 With static added to our add() method, we can look back at the App class in Net-

Beans. There are a couple things that have changed in NetBeans in this class.

 First, in Figure{ 15.7 , we can see that the call to the add class is now italicized in the App

class as well. This again indicates that the class is static.

 Figure 15.6 NetBeans italicizes static method names.

Job Ready Java322

 We also see that changing the method to static didn ’ t cause an error in our App class

but does cause us a warning. We can see this by the warning icon on the line number.

If we hover our mouse pointer over the line number, we will see the warning shown in

Figure{ 15.8 .

 Figure 15.7 Back in the App class after making add() static

 Figure 15.8 Accessing static method warning

323Lesson 15: Creating Classes and Types

 The warning is telling us that we are accessing a static method while using an instance

of the class. What we ’ ve done is instantiate Adder to create a specifi c instance; then we ’ ve

called add() on that particular instance. Doing this no longer makes sense because add()

is a static method. In this case, we don ’ t need to defi ne an instance. We can make a couple

of changes to our Adder class in Listing{ 15.5 .

 First, we no longer need to declare an instance. As such, we can remove the fol-

lowing line:

 Adder myAdder = new Adder();

 Because we no longer have myAdder , we need to also change the code line that follows.

As you learned earlier in the “static KEYWORD” section, we know the static method is

associated with the class, not any instance of the class. So, instead of putting the name of

a variable of type Adder , we put the class name.

 int sum = Adder.add(4, 5);

 Listing{ 15.6 shows the resulting updated code for the App class.

 LISTING 15.6
 Updated App Class Using static Method in Adder

 public class App {

 public static void main(String[] args) {

 int sum = Adder. add (4, 5);
 System.out.println("The sum is " + sum);
 }
 }

 When you run the updated listing, you should get the output showing that the sum still

results in 9, as shown in Figure{ 15.9 .

 When to Go Static
 So, the real question is, why would we use something like this, right? Why don ’ t we make

everything static? Why are some things instance variables whereas some things aren ’ t?

 There are a couple of cases where static is necessary. One place where it is necessary is

on our main method. All our main methods have to be static.

Job Ready Java324

 The other place where static methods are really good is when we have constants. With

constants we don ’ t really need multiple copies. For example, we would need only one copy

of a constant such as PI. In fact, if we wanted, we could put a constant for PI into our Adder

class. To do that, we could add an additional line of code to our Adder class, as shown in

Listing{ 15.7 .

 LISTING 15.7
 Our Adder Class with Static PI Added

 public class Adder {

 public static final double PI = 3.14;

 public static int add(int a, int b) {

 Figure 15.9 Output from our app

325Lesson 15: Creating Classes and Types

 return a + b;
 }
 }

 With the additional line of code, our Adder class now has a constant static value for PI

that we can use. We could then use PI from other places by just calling Adder.PI .

 Existing Static Methods
 As we just saw in our example, constants make great static values. Methods that take

consistent input and always return the same output are also good candidates for static.

For example, if we give our add() method the same two inputs, it always gives us the

same output no matter what. It doesn ’ t matter how many times we call it, we get the

same results. The method is not really keeping track of any state. It just takes the inputs,

computes the output, and gives it back. Methods like this are great candidates for the

static keyword.

 As Java developers, we can put these types of static methods together in classes, and

those classes can be a library of classes. In fact, one such library of classes already exists

called the Math class.

 The Math class provides a variety of uses including calculating sine, cosine, tangent, or

arctangent. It also has functions such as abs() for calculating the absolute value as well as

a number of defi ned constants, such as E and PI.

 To see what is available in the Math class, within your App class, you can type Math.

(Math followed by a dot) and get a pop-up similar to what you saw earlier with Adder .

Figure{ 15.10 shows part of the list of items you can access.

 These math functions can be used without the need to instantiate a Math object; we

can use just these functions. We don ’ t have to write them ourselves, and we don ’ t have to

instantiate an object.

 SUMMARY
 In this lesson, we took a closer look at what makes up a class, how to defi ne new types,

some of the properties of constructors, how to instantiate objects, and when and where

to use the static keyword. These are all important tools that will help us create well-

designed object-oriented software. In the next lesson, we ’ ll look at how the JVM manages

all of these objects in memory.

Job Ready Java326

 EXERCISES
 The following are additional coding exercises to help you practice what you are learning

about the Java programming language. These are to do on your own, so most will not

always include answers. Many of the exercises cover accepting user input via Scanner .

There are several exercises for you to apply what you learned in this lesson:

Exercise 1: Class Modeling

Exercise 2: Refactoring

Exercise 3: A Multiclass Problem

 Figure 15.10 The Math class

327Lesson 15: Creating Classes and Types

 Exercise 1: Class Modeling
 Create a new NetBeans project called ClassModeling.{You are given two diff erent sce-

narios for modeling each of these real-world objects. Consider the important properties

and methods needed for each scenario and each model and then create a Java class for

each of the following:

• House

• Model a house as if the class were to be part of a GPS mapping system.

• Model a house as if the class were to be part of a 3D design system.

• Airplane

• Model an airplane as if the class were to be part of an air traffi c control system.

• Model an airplane as if the class were to be part of a fl ight simulator.

• Car

• Model a car as if the class were to be part of an inventory system for a car

dealership.

• Model a car as if the class were to be part of a video game.

• Ice cream

• Model ice cream as if the class were to be part of the control system at the dairy

that makes the ice cream.

• Model ice cream as if the class were to be part of the stocking system at a gro-

cery store.

• Book

• Model a book as if the class were to be part of a publishing system that the

author uses to write the book.

• Model a book as if the class were to be part of a library cataloging system.

 Do the following for each class:

• Defi ne properties, determining which will be read/write and which will be read-only.

• Implement setters and getters (as appropriate) for each property.

 NOTE Important!

 Type all code yourself so that you better understand the code and to learn how to
handle mistakes on your own.

Job Ready Java328

• Implement a constructor to initialize some or all of the property values.

• Determine what behaviors the class should have and then defi ne (do not imple-

ment) the methods associated with each behavior.

 Exercise 2: Refactoring
 So far, all the code that we ’ ve written in previous lessons has resided in one class. The

objective of this exercise is to practice modeling and packaging code into classes and to

instantiate and call methods on a class from another class.

 In this exercise, you will refactor code you wrote in previous exercises from previous

lessons. Move all the code for each lab into a new class with no main method. Write code

for the main method in a separate class that instantiates your new class and executes a

method that runs the program.

 Refactor the following exercises:

• Lesson 7: Birthstones

• Lesson 10: Opinionator

• Lesson 10: Coin Flipper

• Lesson 10: Guess Me More

• Lesson 12: Method to Madness

 Use the following example as a pattern for refactoring your labs. In the example, a Hel-

loWorld program is refactored so that it consists of two classes instead of just one. Here is

the original program:

 public class HelloWorld {

 public static void main(String[] args) {
 System.out.println("Hello, World!");
 }
 }

 The fi rst step in refactoring the program is to move the functionality that is cur-

rently contained in the main method to a new nonstatic method. We ’ ll call the new

method sayHello :

 public class HelloWorld {

 public static void main(String[] args) {

 }

329Lesson 15: Creating Classes and Types

 public void sayHello() {
 System.out.println("Hello, World!");
 }
 }

 Next, we ’ ll remove the main method from the HelloWorld class:

 public class HelloWorld {

 public void sayHello() {
 System.out.println("Hello, World!");
 }
 }

 The HelloWorld class is now how we want it to be, but we are left with a problem:

our program no longer has a class with a main method in it, so there is no way to run it.

The next step is to create a new class called App and to implement a main method within

that class.

 public class App {

 public static void main(String[] args) {

 }
 }

 This is okay; our program will now run, but it won ’ t do anything because the main

method is empty. The fi nal step in refactoring our program is to add code to main that

instantiates a HelloWorld object and then calls the sayHello() method,

 public class App {

 public static void main(String[] args) {

 HelloWorld myHelloWorld = new HelloWorld();
 myHelloWorld.sayHello();

 }
 }

 The refactoring is now complete.

Job Ready Java330

 Exercise 3: A Multiclass Problem
 The objective of this exercise is to practice designing and implementing programs that

have more than one class.

• Design a class (no main method) called SimpleCalculator that performs basic

math operations (addition, subtraction, multiplication, division) on two operands.

• Create another class called App that presents a simple console calculator UI to the

user. This second class should handle all user input and console output and must use

the fi rst class to perform all the math operations.

• The UI should give the user a choice of operations. One of the choices should be

to exit the program.

• After the user selects an operation, the UI should ask the user for two operands

and then display the result of the calculation.

• The UI should then display the menu of choices again.

• When the user chooses to exit the program, the UI should print a

thank-you message.

• Before coding, create a fl owchart for your program.

Lesson 16

 Managing Storage
and Memory

 In this lesson, we ’ ll look at how and where data is stored and

managed in memory and how objects are referenced.

 LEARNING OBJECTIVES
 By the end of this lesson, you will be able to:

• Compare and contrast stack and heap memory in a running program

• Explain object references

• Explain how the new keyword works with constructors to create objects in memory

• Compare and contrast manual memory management and garbage collection

• Explain why Java is a pass-by-value language

 PROGRAMS AND MEMORY
 When your program is running, its data must be stored in memory. There are two main

areas of memory that the JVM uses to store the data associated with our programs:

the stack and the heap. As our program runs, each method (including main) gets some

memory on the stack. The memory that each method gets is called a stack frame. Any e

new object created by our program will get some memory on the heap. We ’ ll look at the

details of what ends up on the stack and heap and why things end up on one or the other

in this lesson.

Job Ready Java332

 The Stack
 The stack is a memory structure that is managed by the JVM. The stack is a last-in, fi rst-out k

(LIFO) data structure. In a stack data structure, new items are added to the top—this is

known as pushing the item onto the stack. Items are also removed from the top of theg

stack—this is known as popping the item off the stack. This means that the last thing we g

pushed onto the stack will be the fi rst thing to get popped off , which is why this data

structure is described as last-in, fi rst-out.

 For a visual reference, think of the stack of plates at a restaurant buff et. As the plates

are added, they pile up on the previously added plates, as shown in Figure{ 16.1 . When you

get to the buff et, you take the plate that is on top, which was the last one that was added.

 Rather than adding plates to a stack at the buff et, the JVM adds a stack frame for each

method that gets executed in the program. The fi rst stack frame for our program always

contains the information for our main method.

 The stack frame contains the following information:

• Values of all primitive type variables declared in the method

• The heap location of any nonprimitive types declared in the method

• Values of the parameters passed into the method

• JVM bookkeeping information about the method

 The good news is that the JVM takes care of all the stack manipulation, so we do not

have to do anything with it in our code. However, the workings of the stack and heap are

common interview questions. In addition, knowing the basic functionality is a foundation

for learning more advanced concepts and will give you a better understanding of how pro-

grams interact with the JVM and operating system and how code can be optimized.

 Figure 16.1 A stack in programming is like a stack of plates

333Lesson 16: Managing Storage and Memory

 Let ’ s take a look at an example. Consider the following method:

 public void method(int parameter) {
 int x = 5;
 int y = parameter;
 }

 Now let ’ s suppose we call this method with a parameter of 10, like this:

 method(10);

 Here we have a method that takes an int parameter and then creates two more inte-

gers. The calling code invokes the method, passing a value of 10 to the parameter variable.

Because these are primitive types, the data and the variable name are stored on the stack.

The method() entry on the stack represents the bookkeeping information the JVM needs

to keep track of the execution environment. The four values beneath the Stack label in

Figure{ 16.2 represent the stack frame for method() .

 When method() is done executing, the memory on the stack will be popped off it, which

will cause y , x , parameter , and method() to be deleted from memory.

 If method() is invoked again later in the program, the JVM will build a new stack frame

and push it onto the stack. In this case, for primitive types such as int , notice that the data

value is physically copied to the new memory space. If we were to change the value of

parameter , it would not aff ect the value of y because y and parameter are contained in

two separate memory spaces in the stack frame.

 Figure 16.2 The stack once method(10) is called

Job Ready Java334

 The Heap
 The heap is an area where chunks of memory are allocated to store reference types.p

Unlike the stack, things can be removed from and added to the heap in any order. Whereas

the items on the stack, particularly primitive types, are stored in a single segment of

 memory, the heap requires two segments of memory.

• On the heap is the actual data, which is some type of object.

• On the stack is a pointer to the actual data. The value of this pointer is the address

location in memory where the data on the heap can be found.

 This concept can be confusing to the beginning developer: why not have only a stack?

The main reason is effi ciency. While a simple type, such as int , only requires a single

piece of data, we have already seen that classes can contain many members and diff erent

pieces of data.

 When we pass something small, like an int, between methods, it is fi ne to just make a

copy of that data, but what if you had a customer object that also contained invoice his-

tory and other pieces of information? What if you had a list of all the customer objects in

the state of Ohio? You could potentially have tens of thousands of pieces of data inside

a single object. If we were to create a complete copy of all this data every time we called

a method, we would have tens of thousands more calls, and our computer could run out

of memory.

 So, in the case of reference types such as classes, it is more effi cient to store the object

once on the heap with the reference on the stack. When you pass a class object to another

variable, only the reference is copied—not the object itself. Thus, all variables that point to

the same object on the heap are linked. So, if you make a change to the heap object using

one variable, the others, being pointers to the same object, also “see” the update.

 Consider the class Person shown in Listing{ 16.1 . It has two data fi elds, name and

age . This class will be a blueprint to create as many Person objects as we may need in

our program.

 LISTING 16.1
 A Simple Person Class

 public class Person {
 private String name;
 private int age;

 public String getName() {
 return name;
 }

335Lesson 16: Managing Storage and Memory

 public void setName(String name) {
 this.name = name;
 }

 public int getAge() {
 return age;
 }

 public void setAge(int age) {
 this.age = age;
 }
 }

 Let ’ s go ahead and create one:

 Person p = new Person();

 We have already discussed constructors a bit, and we saw that they are just special

methods that are called when we create new objects of a type. When the new keyword and

one of the constructors of a class are used together, the JVM creates a new object of that

particular type on the heap and hands us back a reference to this object. Because name and

age are fi elds, they will be auto-initialized. name is a String , which is not a primitive type,

so it will receive a null value. age is an int , which has a default value of 0.

 Right now, the stack and heap look like what is shown in Figure{ 16.3 .

 Figure 16.3 The stack and heap with a constructed Person

Job Ready Java336

 The variable p is simply a reference to the actual Person object on the heap. The value

stored in p is the heap location of the newly created Person object.

 Now, what happens if we were to defi ne a second variable and assign the value of p to

it like this:

 Person p2 = p;

 In this case, the JVM would only copy the pointer; it would not create a second object

on the heap. After the statement is executed, the stack would look like what is shown in

Figure{ 16.4 . Notice that p and p2 point to the same Person object on the heap.

 At this point, if we were to assign a value to name using the p variable and a value to age

using the p2 variable, because they are pointing to one single object, they would both see

the data updates, as shown in Figure{ 16.4 .

 p.setName("Mary");
 p2.setAge(19);

 System.out.println(p.getAge()); // prints 19
 System.out.println(p2.getName()); // prints Mary

 Listing{ 16.2 adds this code to a complete app listing that also uses the Person class shown

in Listing{ 16.2 .

 Figure 16.4 Two variables on the stack pointing to the same object on the heap

337Lesson 16: Managing Storage and Memory

 LISTING 16.2
 Modifying Data on the Heap

 public class App {
 public static void main(String[] args) {

 Person p = new Person();
 Person p2 = p;

 p.setName("Mary");
 p2.setAge(19);

 System.out.println("Person p: ");
 System.out.println(p.getAge());
 System.out.println(p.getName());

 System.out.println("Person p2: ");
 System.out.println(p2.getAge());
 System.out.println(p2.getName());
 }
 }

 If you look at this listing, you can see that a name is added to p , but not an age. Simi-

larly, an age was added to p2 , but not a name. When the code is executed, the output con-

fi rms that the information was changed in both (see Figure{ 16.5).

 Person p:
 19
 Mary
 Person p2:
 19
 Mary

 To recap, the diff erence between user-defi ned (reference) types and primitive types

can be summarized as follows:

• Primitive types are stored on the stack. When data is passed by value, a copy of the

data is made, such that changes to the value do not aff ect the other copies.

• User-defi ned types are stored on the heap with only a reference stored on the

stack. When a reference is passed to a method, a copy of the reference is made. This

means the object on the heap now has one more reference pointing to it and that

changes to the data made through any reference to that object are seen by all other

references to that object.

Job Ready Java338

 It is worth remembering that Java is a pass-by-value language . This means that a copy ise

made of any value passed into a method. In the case of primitive types, the actual value of

the variable (for example, 5 if the variable is an int) is copied into a new memory location

on the stack. In the case of user-defi ned types, a copy of the reference value is made and

stored into a new memory location on the stack.

 Figure 16.5 The stack and heap after the update

 NOTE While knowing how the stack and heap work doesn ’ t really get
used in your day-to-day job, knowing how memory allocation works and
how the stack and heap do their jobs is something that can come up in
an interview for Java programmers.

 GARBAGE COLLECTION
 As we have discussed, Java is a managed language. This means that the programmer is

not responsible for allocating and releasing memory manually. In Java, we simply create

objects and/or native data types as we need them in our programs, and the JVM takes

care of releasing all memory as appropriate. As discussed previously, all memory allocated

on the stack is automatically released when a method completes, and its associated stack

frame is destroyed.

 Memory used by objects on the heap is eligible for garbage collection when there are

no more references to the object. We can explicitly take a reference away from an object

on the heap by setting the reference to null. Because the reference variables are stored

on the stack, they will go away when their respective stack frames go away (i.e., when

their enclosing method returns), which also removes the references from the object to

339Lesson 16: Managing Storage and Memory

which they point. This process is called garbage collection, and the component responsiblen

for doing this is called the garbage collector . Periodically, the garbage collector will siftrr

through the objects on the heap and check to see whether they are still being referenced

on the stack. If they are not, they will be marked for cleanup and might be removed

from memory.

 Garbage collection is one of the key features of managed languages and is a reason

why you would choose a language like Java or C# over, say, C++. In unmanaged languages,

the developer is responsible for managing memory allocation and deallocation (dele-

tion). If a developer fails to do this properly, it can cause signifi cant issues such as memory

corruption, application crashes, and memory leaks. A memory leak occurs when objects

continue to be added to memory but not properly cleaned up.

 REFERENCE AND NULL VALUES
 It is important to look at objects a little more closely to fully understand how they are ini-

tialized and used. Understanding this can help prevent possible errors in your code.

 As mentioned earlier, primitive data types are considered value types. When created,

they are given default values. We learned that numerical values default to zero and bool-

eans to false. When using user-defi ned types, which we ’ ve referred to as reference types

as well, default values are set to null. Let ’ s take a look at Listing{ 16.3 , which is a new App

class that uses the Person class we created earlier.

 LISTING 16.3
 Defaulting References to Null

 public class App {

 public static void main(String[] args) {

 Person person = new Person();
 person.setAge(35);

 System.out.println("Age = " + person.getAge());

 Potential Interview Question
 What are some reasons you would choose a managed language like Java or C# over
an unmanaged language like C++?

Job Ready Java340

 System.out.println("Name = " + person.getName());
 }
 }

 There is not a lot happening in this listing. It creates a Person object using the default

constructor and then sets the age to 35. The name within the Person object is not set to

a value, so it is left to the default. If you look at the following output from the listing, you

see that the default for name is null :

 Age = 35
 Name = null

 With initialization, all user-defi ned types get a value of null . You see this in the Person

class here. It is also true of other reference types such as String .

 What is null ? It is a special value in Java that indicates we have a user-defi ned type that

is not associated to any object on the heap. So, we have an object, but it ’ s not pointing

to anything.

 What happens if we set our object to null , as shown in Listing{ 16.4 ?

 LISTING 16.4
 Setting an Object to Null: Error Alert!

 public class App {

 public static void main(String[] args) {

 Person person = new Person();
 person.setAge(35);
 person.setName("Eric");

 person = null;

 System.out.println("Age = " + person.getAge());
 System.out.println("Name = " + person.getName());
 }
 }

 You can see in Listing{ 16.4 that we are still instantiating our person object on the heap.

We then initialize both the age and name in our person object this time. We then decide we

no longer want this person object, so we set person to null , thus removing its reference

from the object. In short, person no longer points to anything.

341Lesson 16: Managing Storage and Memory

 What is the impact of this on our program? The program will compile; however, when

you try to run it, things go wrong.

 Exception in thread "main" java.lang.NullPointerException
 at App.main(App.java:21)

 We are now getting an error. As you can see, the program says we have an exception in

the main thread. The type of the exception is a NullPointerException .

 In Java a NullPointerException is an error in the code. If we have a reference to a

person object, it is an error to try to operate on it if it ’ s not actually pointing to something

on the heap. It ’ s a reference, so it needs to reference something.

 A good analogy as to what is happening is a television remote control. Having a refer-

ence variable that points to nothing (null) is in a lot of ways like having a remote control,

but not having the television. You can press the buttons on the remote, but nothing is

going to happen, because there is no television associated to it.

 In our code, we create an object that is pointing to a Person object on the heap, and

everything is fi ne. When we assign null to person , it is like we removed the TV and now

just have the remote, which is useless.

 What we have learned is that if we try to operate on a reference to an object that ’ s null,

we are going to get a NullPointerException . The way to fi x this is to make sure that we

have instantiated our reference and that we are pointing to a real object on the heap.

 NOTE You will learn about handling exceptions like
NullPointerException in your code using error handling. This will be
covered in Lesson 23.

 SUMMARY
 It is impossible to build any sort of signifi cant application without using variables. Under-

standing the types of variables, how they are managed in memory, and the scope in which

their data is available is a key foundation that must be understood before learning more

complicated topics.

 Memory management is handled automatically in the majority of Java programming,

but understanding how it works will make you a better developer and better at optimizing

code for performance. Memory management, although not a typical focus in day-to-day

coding, is a popular topic in software developer job interviews, so you should work to gain

confi dence in describing its workings with examples before interviewing.

 This lesson wrapped up discussing how reference types default to null and how you

can get a NullPointerException if your reference type does not point to an object

on the heap.

Lesson 17

 Exploring
Interfaces,
Composition,
and Inheritance

 In this lesson, we will overview three more language features

that help us write good software: interfaces, composition, and

inheritance.

 Proper use of these features can help us create well-designed

object-oriented programs, and you will use them throughout your

career. In this lesson, we discuss each of these features and look

at the kinds of problems each can address. Think of this lesson

as your guide to what these features are and why and when to

use them. The implementation details of each of these features

343Lesson 17: Exploring Interfaces, Composition, and Inheritance

will be covered in more detail in the next few lessons as well as

throughout the rest of the course. We will learn where these

tools are appropriate and how to use them in projects. For now,

just concentrate on the big concepts associated with each of

these features.

 LEARNING OBJECTIVES:
 By the end of this lesson, you will be able to:

• Explain how interfaces, composition, and inheritance help you write code

• Explain how interfaces work with classes to implement capabilities in the classes’ methods

• Explain how composition and inheritance work together for code reuse

• Determine when to use an interface, composition, and/or inheritance within code

 HOW DO THESE TOOLS HELP?
 Interfaces, composition, and inheritance can help us write better, more maintainable soft-

ware by doing the following:

• Allowing us to control how other code interacts with our objects

• Allowing us to defi ne relationships between the objects in our programs

• Helping us keep our implementations private

• Helping us integrate code from several teams or vendors

• Allowing us to develop diff erent pieces of large applications in a distributed manner

• Helping us to follow the Don ’ t Repeat Yourself (DRY) principle

 None of these language features is a “silver bullet”; they each have an appropriate time

and place. Part of becoming a good software developer involves developing good judg-

ment to know where and when a particular feature or technique is or isn ’ t appropriate; this

good judgment comes with practice. You will have plenty of practice (and guidance from

us) with these concepts throughout the rest of this course.

Job Ready Java344

 INTERFACES
 Java developers use the term interface in at least two diff erent ways. We used this term e

earlier in a general or conceptual way to describe the capabilities that a class advertises or

makes available to other code: the public interface versus the private implementation. In

this lesson, we introduce a more specifi c use of the term. Here, interface refers to a spe-e

cifi c feature of the Java language.

 You can think of a Java interface as a contract. We can create Java classes that promise e

to implement (or fulfi ll) all the capabilities described in the interface. In practical terms,

a Java interface is a list of methods that must be implemented by any class that claims to

fulfi ll that interface. An introduction to what this looks like in code will be covered in a spe-

cifi c interface write-up in Lesson 18. Additionally, interfaces will be covered throughout

the course as we apply them in listings and exercises.

 Interfaces are good at expressing a loosely coupled, contract-based relationship. These

types of relationships are especially good at enabling interoperability, and they give us

a mechanism to protect our private implementation. Contract-based relationships are

also useful in helping to integrate code from diff erent teams or vendors. Once everyone

agrees on the interface, each team is free to develop their private implementations in any

way they want without aff ecting other parts of the program.

 Let ’ s look at an example where an interface is used to enable interoperability and inte-

gration. Suppose that we are on a team that works for a car company. We have expertise in

building cars, and we want to make all the vehicles in our lineup self-driving. Although we

know how to create vehicles, we have no expertise in creating the software and hardware

systems that control our vehicles. Rather than develop this capability in-house, we would

like to incorporate self-driving technology from someone like Google or Tesla.

 One way to do this would be to work with Google or Tesla to integrate their software

with each of the vehicles in our lineup, one by one. We could start with the compact cars,

move to mid- and full-size, and end with our pickups and SUVs. If we take this approach, we

might have to write custom software to integrate with each of the diff erent vehicles in our

lineup, which would be a lot of work.

 On the other hand, we could create a single navigation interface that each of the vehi-

cles in our lineup would implement. Each underlying implementation would be diff erent,

but the interface describing how to control and navigate our vehicles would be the same.

As far as the self-driving system is concerned, all of the vehicles would look exactly the

same. This means that we would have to write the code that integrated the self-driving

system with the vehicles only one time.

345Lesson 17: Exploring Interfaces, Composition, and Inheritance

 This arrangement gives us the freedom to change the implementation details about

the car without aff ecting the self-driving system. Further, the self-driving system doesn ’ t

have to worry about the diff erences in the actual implementation of a sedan or a pickup,

because it treats everything as a vehicle.

 NOTE A class may implement as many interfaces as it needs.

 COMPOSITION AND INHERITANCE
 Composition and inheritance allow us to express relationships between objects and to

reuse code. Although they are similar in some ways, they take diff erent approaches and

express diff erent types of relationships. This means you must fi rst determine the type of

relationship you want to express before you can decide if you want to use composition or

inheritance. Once you determine this, the code follows naturally.

 Composition
 Composition is a feature of just about every programming language—it is not unique to

object-oriented languages. In object-oriented languages like Java and C#, composition isn

the mechanism that allows objects to be made up of other objects. Composition allows us

to express a has-a relationship. It allows us to reuse code by creating fi elds in our objectsa

that are other objects. We then delegate to the contained object when we want to take

advantage of the capabilities of that object.

 We see composition around us in the real world every day. Let ’ s go back to the

fast-food drive-through example we used in Lesson 14 and look at how the restaurant is

put together behind the scenes. We can assume that the restaurant will need a stove of

some kind to prepare the food, a point-of-sale system, a freezer, a drink dispenser, and

so on. When designing the restaurant, the architect doesn ’ t design the stove, freezer,

point-of-sale system, or drink dispensers. Instead, they create a space for these things in

the overall restaurant design. When it comes time to build the restaurant, the contractor

won ’ t build these components from scratch but will instead order them from a supplier

and install them into the restaurant. At this point, the restaurant has a stove, a has a freezer,a

has a point-of-sale system, and a has a drink dispenser. Cooking, freezing, sales, and drink a

dispensing capabilities are then delegated to these pieces of equipment.

 Composition is great at these kinds of relationships where you need the capabilities of

another object, but that is as far as the relationship goes. It is important to point out that

the restaurant has a stove, but no one would ever say that the restaurant a is a stove. Thisa

brings us to the next feature, inheritance.

Job Ready Java346

 Inheritance
 Inheritance is a core feature of object-oriented languages like Java and C#. In fact, without

this feature, a language can be object-based but cannot be object-oriented. Inheritance

allows us to express an is-a relationship between two types. These types of relationships a

express a hierarchical relationship or taxonomy. We use inheritance when we want to cre-

ate a class that is just like another class but with just a few more features or capabilities. It

expresses a true inheritance or specialization relationship.

 To illustrate this concept, let ’ s look at another example from the real world: motorcy-

cles. All motorcycles have two wheels, a motor, handlebars, brakes, and a throttle (among

other things—we ’ ll keep it simple for this illustration).

 Now let ’ s look at a dirt bike. A dirt bike has all the characteristics of a motorcycle plus

knobby off -road tires and a high-performance suspension. In other words, a dirt bike is a

specialized version of a motorcycle. We want to inherit all the features of a motorcycle and

then add in the special features of the dirt bike.

 Next, let ’ s look at a street bike. Like the dirt bike, it has all the features of a motorcycle,

plus a headlight, a taillight, turn signals, and a license plate. And just like the dirt bike, it

inherits all the features from a motorcycle and adds in its special parts—it is a specialized

motorcycle.

 Both a dirt bike and a street bike have an is-a relationship with a motorcycle. A dirt bike a

is a motorcycle, and a street bike a is a motorcycle. No one would ever say that a dirt bikea

has a motorcycle—it actually is a motorcycle.a

 In object-oriented terms, motorcycle is the parent of both dirt bike and street bike. Botht

dirt bike and street bike are said to extend motorcycle. We ’ ll see what all this looks like ind

code in a separate, inheritance-specifi c write-up in Lesson 20.

 USING INTERFACES, COMPOSITION,
AND INHERITANCE
 As you gain experience as a software developer, it will become easier to know when to use

interfaces, composition, and inheritance. As you see more situations and work on more

projects, patterns will emerge that will help you decide which of these tools to use. You

will certainly make mistakes along the way and choose the wrong one from time to time,

which is okay because this is where we really learn.

 There are, however, some rules of thumb that you should follow to start off on the

right foot. First, you will fi nd that we almost exclusively use interfaces and composition in

 NOTE We ’ ll go deeper into composition in Lesson 19.

347Lesson 17: Exploring Interfaces, Composition, and Inheritance

the software we write for this course and in web application development in general. That

doesn ’ t mean that inheritance is bad—far from it. It just means that it is not the right tool

to express the kinds of relationships we model when building web applications.

 Even though we will not be writing much code that uses inheritance, the code we write

will use classes that have inheritance relationships all the time. In fact, every class you cre-

ate will have an implicit inheritance relationship with a class called Object . Inheritance is

often used in the frameworks and libraries that we will use to build our applications. If it is

done well, we don ’ t notice these relationships unless we look at the source code.

 NOTE We ’ ll see the details of how every class implicitly inherits from the
Object class when we go into more detail on inheritance in Lesson 20.

 SUMMARY
 In this short lesson, we discussed three powerful language features: interfaces, composi-

tion, and inheritance. At this point, you should have a good understanding of the kinds of

relationships between objects that each can model and have a good mental framework for

what these features look like from various analogies from the real world.

 We ’ ll begin to see what these features look like in code in the next several lessons as

we dig deeper into understanding the concepts by using them in more complex programs

throughout the rest of this course. We ’ ll start by looking at the basic code for each of

these in the next three lessons.

 NOTE Throughout the rest of the course, we ’ ll point out situations where
we are using interfaces, composition, and inheritance. We ’ ll explain the
benefi ts and show you what it looks like in code. Make sure you pay
attention to these situations and that you truly gain an understanding of
why we are applying these language features in the ways presented to
you.

Lesson 18

 Diving into
Interfaces

 In this lesson, we will look at how interfaces are created and used.

 Interfaces can help us integrate code from different teams and

allow us to express loosely coupled, contract-based relationships

between components. Here, we will cover declaration,

implementation, and extension of interfaces. We will also look

at the restrictions on interfaces and how interfaces work with

polymorphism.

 This is not an exhaustive treatment of interfaces. We ’ re just

going to cover the basics. As you start creating more advanced

programs, you will learn how to apply interfaces in increasingly

sophisticated situations, so this is just the beginning of our journey

with interfaces.

349Lesson 18: Diving into Interfaces

 LEARNING OBJECTIVES
 By the end of this lesson, you will be able to:

• Declare an interface

• Implement an interface

• Implement multiple interfaces

• Discuss interface restrictions

• Extend an interface

• Relate polymorphism to interfaces

 WHAT IS AN INTERFACE?
 An interface is a reference type, just like classes and enums. The big diff erence is that e

interfaces are never instantiated. That is to say, you cannot do this:

 new SomeInterface ()

 What an interface does is defi ne a set of methods that provide standard behaviors that

any type that implements the interface must provide. s

 DECLARING AN INTERFACE
 Declaring an interface is similar to declaring a class. Just as with a class, the interface must

reside in a fi le with the same name as the interface and a .java extension. For example,

the interface in Listing{ 18.1 must reside in a fi le called Vehicle.java .

 LISTING 18.1
 The Vehicle Interface

 public interface Vehicle {

 public void moveForward(int milesPerHour);
 public void moveBackward(int milesPerHour);
 public void stop();
 public void turnLeft();
 public void turnRight();
 public void engineOn();
 public void engineOff();
 }

Job Ready Java350

 Compared to class declarations, the key diff erences when declaring interfaces are

as follows:

• The interface keyword is used instead of the class keyword.

• An interface can have abstract methods, default methods, and static methods.

• Abstract methods are methods that are declared without an implementation.

• A semicolon is placed after each method defi nition.

• In the previous example, none of the defi ned methods has implementations

because they are abstract methods (we can use the abstract keyword, but it ’ s

implicit).

• Default, static, and private methods can have implementations in an interface.

• All abstract, default, and static methods in an interface are implicitly public.

 Interfaces can include method declarations. In fact, all types of methods can be

declared in an interface: with or without return types, with or without parameters, and in

any combination. In the examples that follow, methods are declared with no return types

just to simplify the examples.

 IMPLEMENTING AN INTERFACE
 To have an interface do anything useful, we must create a class that promises to fulfi ll the

contract defi ned by the interface. When we do this, we say that a class implements the s

interface.

 This is necessary because you cannot instantiate a standard interface on its own. It must

have an implementing class. This requires two things.

• The class must declare that it implements a given interface.

• The class must provide implementations for each of the methods defi ned in the

interface.

Listing{ 18.2 shows an example of a class called MidsizeSedan that implements the

Vehicle interface that we defi ned in Listing{ 18.1 .

 LISTING 18.2
 The MidsizeSedan Class

 public class MidSizeSedan implements Vehicle {

351Lesson 18: Diving into Interfaces

 @Override
 public void moveForward(int milesPerHour) {
 // implementation code here...
 }

 @Override
 public void moveBackward(int milesPerHour) {
 // implementation code here...
 }

 @Override
 public void stop() {
 // implementation code here...
 }

 @Override
 public void turnLeft() {
 // implementation code here...
 }

 @Override
 public void turnRight() {
 // implementation code here...
 }

 @Override
 public void engineOn() {
 // implementation code here...
 }

 @Override
 public void engineOff() {
 // implementation code here...
 }

 }

 You can see that the MidsizeSedan class has methods that align with those in the inter-

face. Keep in mind that the code is not shown in this listing to simplify the example and

allow you to focus on the fact that the methods match up.

 The @Override symbol is an annotation. Annotations are a form of metadata that helps

describe the program but are not part of the program itself. They can be used in

diff erent ways.

Job Ready Java352

 NOTE We will not be using default implementations in this course.
Versions prior to Java 8 did not allow this.

• The compiler can use annotations to help detect errors.

• Code generation tools can use annotations.

• Some annotations are available to be inspected at runtime.

In this case, the @Override annotation indicates that the methods in our class (MidsizeSe-

dan) were defi ned in the interface (Vehicle((), and this class is providing an implementation.

 INTERFACE RESTRICTIONS
 Because interfaces are meant to be contracts, Java imposes restrictions on them.

• Interfaces cannot have member fi elds (but they may defi ne constants).

• None of the methods can have implementations. From Java 8 onward, however,

interfaces are allowed to have default implementations of methods, which can be

useful in certain contexts. For reverse compatibility, adding methods to an interface

does not cause your implementer ’ s code to need to be recompiled.

 IMPLEMENTING MULTIPLE INTERFACES
 A class may implement more than one interface. Such a class must simply list all the inter-

faces that it implements and then provide implementations of all the methods of each

interface.

 For example, suppose we create an interface called Trackable . The purpose of this

interface is to allow someone to locate or track vehicles in their fl eet. The interface might

look like Listing{ 18.3 .

 LISTING 18.3
 A Trackable Interface

 public interface Trackable {

 public void sendCurrentLocation();
 public void beaconOn();
 public void beaconOff();
 }

353Lesson 18: Diving into Interfaces

 Now we can have our MidsizeSedan from earlier implement both Vehicle and

Trackable , as shown in Listing{ 18.4 .

 LISTING 18.4
 MidsizeSedan Implementing Two Interfaces

 public class MidSizeSedan implements Vehicle, Trackable {

 @Override
 public void moveForward(int milesPerHour) {
 // implementation code here...
 }

 @Override
 public void moveBackward(int milesPerHour) {
 // implementation code here...
 }

 @Override
 public void stop() {
 // implementation code here...
 }

 @Override
 public void turnLeft() {
 // implementation code here...
 }

 @Override
 public void turnRight() {
 // implementation code here...
 }

 @Override
 public void engineOn() {
 // implementation code here...
 }

 @Override
 public void engineOff() {
 // implementation code here...
 }

 @Override
 public void sendCurrentLocation() {

Job Ready Java354

 // implementation code here...
 }

 @Override
 public void beaconOn() {
 // implementation code here...
 }

 @Override
 public void beaconOff() {
 // implementation code here...
 }

 }

 EXTENDING AN INTERFACE
 There are times when you might want to defi ne an interface that has the same capabil-

ities as an existing interface but with one or more additional methods. In this case, we can

extend an existing interface. The new interface declares that it extends the existing inter-d

face and then defi nes only its new methods.

 For example, say we have a new line of business that takes some of our existing vehicles

and turns them into emergency vehicles (such as police cruisers or ambulances). The inter-

face for these vehicles must include the capabilities of our existing Vehicle interface, but

we also need the ability to control sirens and fl ashers. For this situation, our new interface

might look something like Listing{ 18.5 .

 LISTING 18.5
 Extending an Interface

 public interface EmergencyVehicle extends Vehicle {

 public void flashersOn();
 public void flashersOff();
 public void sirenOn();
 public void sirenOff();

 }

 Any class that implements EmergencyVehicle must provide implementations for the

methods defi ned in EmergencyVehicle and for all the methods defi ned in Vehicle . For

example, an Ambulance class might look like Listing{ 18.6 .

355Lesson 18: Diving into Interfaces

 LISTING 18.6
 An Ambulance Class

 public class Ambulance implements EmergencyVehicle {

 @Override
 public void flashersOn() {
 // implementation code here...
 }

 @Override
 public void flashersOff() {
 // implementation code here...
 }

 @Override
 public void sirenOn() {
 // implementation code here...
 }

 @Override
 public void sirenOff() {
 // implementation code here...
 }

 @Override
 public void moveForward(int milesPerHour) {
 // implementation code here...
 }

 @Override
 public void moveBackward(int milesPerHour) {
 // implementation code here...
 }

 @Override
 public void stop() {
 // implementation code here...
 }

 @Override
 public void turnLeft() {
 // implementation code here...
 }

Job Ready Java356

 @Override
 public void turnRight() {
 // implementation code here...
 }

 @Override
 public void engineOn() {
 // implementation code here...
 }

 @Override
 public void engineOff() {
 // implementation code here...
 }

 }

 INTERFACES AND POLYMORPHISM
 Polymorphism is a pillar of object-oriented design. Polymorphism means “many-formed,” m

and the key idea is that an object can take more than one form. Objects can be treated

polymorphically when they implement an interface or when they use inheritance to extend

another class. For now, we will restrict our discussion to polymorphism and interfaces. To

illustrate this concept, let ’ s look at the MidsizeSedan class shown earlier.

 In its last incarnation, MidsizeSedan implements two interfaces: Vehicle and

Trackable . This means that a MidsizeSedan object can be treated as any one of these

three types:

• MidsizeSedan

• Vehicle

• Trackable

 Let ’ s see what this looks like in code:

 MidSizeSedan car = new MidSizeSedan();

 In this fi rst example, we simply create a new MidsizeSedan object on the heap and

point to it with a MidsizeSedan reference. This is straightforward: this is how we have

been instantiating and referring to objects so far in the course. Our reference variable

(car) has access to all the methods on MidsizeSedan .

 Here is our next example:

 Vehicle vehicle = new MidSizeSedan();

357Lesson 18: Diving into Interfaces

 In this example, we create a new MidsizeSedan object on the heap, but this time we

point to it with a Vehicle reference. In this case, a complete MidsizeSedan object is cre-

ated on the heap, just like the previous example. However, since we have chosen to treat

the MidsizeSedan as Vehicle by referring to the MidsizeSedan object with a Vehicle ref-

erence, we only have access to the methods on the MidsizeSedan that are defi ned in the

Vehicle interface. As far as we are concerned, the object we ’ ve created is just a Vehicle

and nothing more.

 Finally, here is our last example:

 Trackable trackable = new MidSizeSedan();

 In this example, we create a new MidsizeSedan object on the heap, but this time we

point to it with a Trackable reference. In this case, a complete MidsizeSedan object is cre-

ated on the heap, just like in the previous two examples. However, since we have chosen to

treat the MidsizeSedan as a Trackable by referring to it with a Trackable reference, we

only have access to the methods that are defi ned in the Trackable interface. As far as we

are concerned, the object we created is just a Trackable and nothing more.

 In each of the previous examples, a new, complete MidsizeSedan object is created on

the heap. The diff erence is that we refer to the newly created object with diff erent refer-

ence types. The reference types, in turn, determine how the newly created object looks to

us—a MidsizeSedan , a Vehicle , or a Trackable object.

 SUMMARY
 In this document, we looked at the basics of implementing interfaces in code. The follow-

ing are the important points:

• How to declare an interface

• How to implement an interface

• How to extend an interface

• How to implement more than one interface

• How polymorphism works with interfaces

 Remember that we just covered the basics of interfaces here. Throughout the rest

of the course, you will learn how to use this language feature eff ectively in the projects

and examples.

Lesson 19

 Diving into
Composition

 In this very short lesson, we ’ ll take an initial look at what

composition looks like in Java code. In Lesson 17, we discussed

how composition can be used to model a has-a relationship

between objects. In this lesson, we will look at a simple example of

composition.

 Later in this part of the course, we ’ ll explore the power of

composition after we learn about the List and Maps data

structures in Lessons 21 and 22. We ’ ll use these data structures and

composition to create components later in this course.

 LEARNING OBJECTIVES
 By the time you fi nish this lesson, you will be able to:

• Defi ne composition

• Compare projects built with composition to projects without composition

359Lesson 19: Diving into Composition

 WHAT IS COMPOSITION?
 One of the main characteristics of an object-oriented language is that objects can be made

up of other objects. This is done through composition . From a coding standpoint, this n

means that one or more of the fi elds in an object are other objects rather than primitive

types or strings.

 To illustrate this point, look at two examples of modeling a book in Java. In each model,

we want to keep track of the following:

• Book title

• Book ISBN

• Book author, including contact information

• Book publisher, including contact information

 Book without Composition
 Let ’ s start with an example that does not use composition, which we ’ ll call BadBook . In the

BadBook class, we will model all the information about the book using strings. It might

look something like Listing 19.1 ; however, note that the getters and setters for the fi elds

are not shown in order to make the example easier to read.

 LISTING 19.1
 The BadBook Class

 public class BadBook {
 private String title;
 private String isbn;
 private String authorName;
 private String authorStreet;
 private String authorCity;
 private String authorState;
 private String authorZip;
 private String publisherName;
 private String publisherStreet;
 private String publisherCity;
 private String publisherState;
 private String publisherZip;
 private String publisherPhone;
 }

Job Ready Java360

 This class keeps track of the minimum data required, but it feels messy. All the infor-

mation is in separate fi elds, and there is nothing to tie the author or publisher informa-

tion together.

 Should a book really have a fi eld called publisherCity ? Shouldn ’ t a publisher be a sep-

arate entity? The same is true about the author. An authorCity fi eld feels sloppy. What if

a book has more than one author? How do we handle that?

 Book with Composition
 Let ’ s see how we can approach this problem using composition. First, let ’ s look at the

entities we have to keep track of:

• Book

• Author

• Publisher

• Address

 The fi rst three are probably obvious to you, but the fourth one might not be. We ’ re

choosing to model an address as an entity because both authors and publishers have an

address, and, in this example, all addresses have the same format.

 Let ’ s model these objects and then see how they relate to each other. We ’ ll start with

Address , as shown in Listing 19.2 . We will keep things simple with our Address class by

having just a street, city, state, and zip.

 LISTING 19.2
 An Address Class

 public class Address {
 private String street;
 private String city;
 private String state;
 private String zip;
 }

 Next, the Author class can be created as shown in Listing 19.3 . Again, we ’ ll keep things

simple by having just a fi rst name, last name, and address.

361Lesson 19: Diving into Composition

 LISTING 19.3
 An Author Class

 public class Author {
 private String firstName;
 private String lastName;
 private Address address;
 }

 Now we are using composition. The Author class has-an address. We put the street, city,n

state, and zip information in the Address object and create a fi eld in the Author class of

type Address to hold that information for us. This is nice because it puts all the address

information in a single container.

 The Publisher class in Listing 19.4 looks similar to the Author class, except that pub-

lishers have fi elds for name and phone instead of fi elds for fi rst and last name.

 LISTING 19.4
 A Publisher Class

 public class Publisher {
 private String name;
 private Address address;
 private String phone;
 }

 Here, again, we are using composition. We can see that the Publisher class has-an

address.

 Finally, let ’ s look at the Book class. Things get more interesting here. We need to keep

track of the title, ISBN, publisher, and all authors. To account for the possibility of having

more than one author, we will create a fi eld that is an array of Author objects. Listing 19.5

shows what our Book class looks like.

 LISTING 19.5
 The Book Class

 public class Book {
 private String title;
 private String isbn;

Job Ready Java362

 private Author[] authors;
 private Publisher publisher;
 }

 We ’ re now using composition on two levels: the Book class has-a publisher and a has-an

array of authors, and the Publisher and Author classes each have-an address. Further, wen

are using an array to hold the Author objects for our book.

 This is a much cleaner design. Each set of related information—address, publisher,

author, and book—is in its own class. We are using composition to build objects that con-

tain other objects.

 SUMMARY
 Composition is a powerful tool that you will use frequently in the rest of this course and

throughout your career. We looked at a simple example of composition, but this is just

the beginning and only introduced the general syntax of using composition. As the course

goes on, we will show you how to use composition to create well-designed applications.

 EXERCISES
 The following are some additional exercises to help you practice what you are learning

about composition. These are to do on your own. The exercises include the following:

Exercise 1: Classroom Composition

Exercise 2: Cookbook

 Exercise 1: Classroom Composition
 Put composition into practice. Take the Classroom class in Exercise Listing 19.1 and break

it down into classes. Consider what things a classroom has versus what things describe a

classroom. For example, a classroom has a teacher.

 EXERCISE LISTING 19.1
 The Classroom Class

 public class Classroom {
 private String className;
 private int classGradeLevel;

363Lesson 19: Diving into Composition

 private String teacherFirstname;
 private String teacherLastname;
 private String student1Firstname;
 private String student1Lastname;
 private int student1Grade;
 private String student2Firstname;
 private String student2Lastname;
 private int student2Grade;
 private String student3Firstname;
 private String student3Lastname;
 private int student3Grade;
 private int maximumNumberStudents;
 }

 Exercise 2: Cookbook
 A cookbook is often full of recipes. Exercise Listing 19.2 is a class to hold a cookbook. Use

composition to simplify the Cookbook class.

 As a note, this is a pretty bad cookbook, but you can make it better. Most cookbooks

have more than two recipes, and most recipes have more than three ingredients. As you

refactor this listing so that it uses composition, your result should allow it to use as many

recipes and ingredients as needed by the users of your new classes.

 EXERCISE LISTING 19.2
 The Cookbook Class

 public class Cookbook {

 String title;
 String authorFirstname;
 String authorLastname;
 Double price;
 int yearPublished;
 String recipe1Name;
 String recipe1AuthorFirstname;
 String recipe1AuthorLastname;

 Hint
 A classroom generally has a teacher and students.

Job Ready Java364

 String recipe1Ingredient1;
 Double recipe1Ingredient1Amount; // ie. 1.25
 String recipe1Ingredient1MeasurementType; // ie. Tablespoon
 String recipe1Ingredient2;
 Double recipe1Ingredient2Amount;
 String recipe1Ingredient2MeasurementType;
 String recipe1Ingredient3;
 Double recipe1Ingredient3Amount;
 String recipe1Ingredient3MeasurementType;
 String recipe1MixingInstructions;
 String recipe1CaloriesPerServing;
 String recipe1Servings;
 String recipe2Name;
 String recipe2AuthorFirstname;
 String recipe2AuthorLastname;
 String recipe2Ingredient1;
 Double recipe2Ingredient1Amount; // ie. 1.25
 String recipe2Ingredient1MeasurementType; // ie. Tablespoon
 String recipe2Ingredient2;
 Double recipe2Ingredient2Amount;
 String recipe2Ingredient2MeasurementType;
 String recipe2Ingredient3;
 Double recipe2Ingredient3Amount;
 String recipe2Ingredient3MeasurementType;
 String recipe2MixingInstructions;
 String recipe2CaloriesPerServing;
 String recipe2Servings;
 }

Lesson 20

 Diving into
Inheritance

 In this part of our lesson, we will look at specialization and

inheritance. In Lesson 17, we discussed how inheritance can

be used to model an is-a relationship between objects. These

relationships are hierarchical in nature and express a true

inheritance, or parent-child, relationship between objects. In this

lesson, we will cover extension of classes, method overloading,

method overriding, access control, and how polymorphism works

with inheritance.

 As mentioned earlier in this lesson, you won ’ t explicitly use

inheritance often in the rest of this course or in web application

development, but you will implicitly use inheritance all the

time. Inheritance is a foundational concept of object-oriented

programming, and you must have a good understanding of this

concept to be a successful object-oriented developer.

Job Ready Java366

 LEARNING OBJECTIVES
 By the end of this lesson, you will be able to:

• Explain how everything extends object

• Explain what a parent class is, including synonyms

• Explain what a child class is, including synonyms

• Use access control to extend objects

• Explain is-a versus has-a relationships

• Discuss the benefi ts of a well-designed inheritance hierarchy

• Reuse code with inheritance

• Overload a method

• Explain the use of constructors with derived and base classes

• Use polymorphism with inheritance

• Relate an abstract base class to a base class and an interface

 EVERYTHING EXTENDS OBJECT
 The Object class is the parent of every class in Java; it is at the root of the class hierarchy.

In other words, everything starts here. You do not have to do anything explicit to create

this relationship. It happens automatically when you defi ne a class.

 The Object class has 12{methods, which means that every class ever created in Java

implements these 12{methods. It is fairly common practice to replace the default imple-

mentation of equals , hashCode , and toString with versions specifi c to your class by

overriding them. We will take a closer look at overriding methods later in this document,g

and then we ’ ll look at how to override equals , hashCode , and toString specifi cally in a

later lesson.

 TERMINOLOGY
 Before we dig into the details of implementing inheritance relationships, we need to dis-

cuss some terminology. Inheritance is one area of object-oriented languages where ter-

minology can be a bit confusing for newcomers. There are several ways of expressing the

relationship between a parent class and the classes that extend it.

• Parent class

• Also referred to as superclass or s base class . ss

367Lesson 20: Diving into Inheritance

• When classes extend a parent class, they inherit the properties and behaviors of

the parent class.

• Child class

• Also referred to as the subclass , s extended class , or s derived class .ss

• This class inherits the properties and behaviors of the base class when it extends

the base class.

• This class can add properties and behaviors to those of the base class.

• This class can override (i.e., provide its own implementation of) properties and

behaviors of the base class. We ’ ll look at overriding in this lesson.

• We say this this class specializes the base class.

 Unfortunately for the newcomer, all these terms are in common use and are used fl u-

idly and interchangeably by developers. For example, a developer might refer to a parent

class as a parent class, a s base class , and a s superclass in the same conversation. Make sure s

that you understand these terms and know how to use them properly.

 ACCESS CONTROL
 So far, we have seen public and private access to properties and methods. We now look at

a new keyword: protected . If we mark a property or method of a base class protected ,

it means that property or method can be seen by the base class, all derived classes, and

other classes in the package, but it cannot be seen by any other class (in other words, it is

as if that property or method were private with respect to other classes). If you think there

is a good chance that a class will be extended in the future, it is good practice to mark the

properties of the class protected instead of private. In general, you should use the most

restrictive access level that makes sense for each member of your class.

 Table{ 20.1 outlines what access is allowed by each of the modifi ers.

 Table 20.1 Access Allowed by Modifi er

Modifi er Class Access? Package Access? Subclass Access? World Access?

public Yes Yes Yes Yes
protected Yes Yes Yes No
no modifi er Yes Yes No* No
private Yes No No No

 * { unless in the same package

Job Ready Java368

 INHERITANCE
 There are times when we want to explicitly create an is-a relationship between two a

objects. In a previous lesson, we looked at this type of relationship between motorcycles,

dirt bikes, and street bikes. Here, we ’ ll talk about a fi ctional human resources (HR) system

in which we need to have employees, managers, and summer interns.

 A well-designed inheritance hierarchy is built so the parent class is the most general

(i.e., it contains all the fi elds and methods common to its descendants) and the child

classes specialize the parent. In our example, e Employee will be the base class, and both

Manager and SummerIntern will extend Employee .

 Let ’ s look at the Employee class fi rst, as shown in Listing{ 20.1 . Note that we make

fi rstName and lastName protected so that the child classes will have access to

these members.

 LISTING 20.1
 The Employee Class

 public class Employee {
 protected String firstName;
 protected String lastName;

 public void doWork() {
 // code to do work ...
 }

 public void createYearlyObjectives() {
 // code to create yearly objectives...
 }

 Package-Private Access
 The access level that applies when you have no access modifi er for one of the
members your class is called package-private . This access level is a bit nonintuitive
in that it grants access only within the class (which can be okay) and other classes in
the package (which can be okay), but it prevents access from subclasses. This type
of access is common when performing unit testing. It can also be useful in cases
where several classes in a package work together, but you want to restrict access to
some members to only classes in that package or when a class is fi nal and should not
be extended.

369Lesson 20: Diving into Inheritance

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
 }

 All employees have these capabilities whether they are accountants, software devel-

opers, managers, or even the CEO; however, many employees have additional capabilities

and responsibilities. For example, a manager can hire and fi re people and can give perfor-

mance reviews. A manager is a special kind of employee—it inherits some common prop-

erties and behaviors, but it also extends the functionality of what an employee does with

new and/or diff erent properties and behaviors.

 In Java, this specialization relationship is achieved via inheritance and is implemented

using the extends keyword. Listing{ 20.2 shows a Manager class that extends the earlier

Employee class.

 LISTING 20.2
 A Manager Class

 public class Manager extends Employee {
 public void hire() {
 // code to hire someone...
 }

 public void fire() {
 // code to fire someone...
 }

 public void givePerformanceReview() {
 // code to give performance review
 }
 }

Job Ready Java370

 Even though only the additional Manager -specifi c methods are contained in the Man-

ager class defi nition, all the members of Employee are included in Manager . To illustrate

this, in NetBeans or your IDE, create classes with the Employee and Manager classes from

the previous two listings. In a new App class, write the code to instantiate a new Manager

object in NetBeans or your IDE.

 Manager manager = new Manager();
 manager.

 When you type the dot after manager , you should see the editor ’ s help pop-up showing

the available members, as shown in Figure{ 20.1 .

 Figure 20.1 The members of the Manager class

371Lesson 20: Diving into Inheritance

 You can see that in addition to hire() , fi re() , and givePerformanceReview() , the

Manager class has all the methods defi ned in Employee : doWork() , createYearlyObjec-

tives() , and the getters and setters for fi rstName and lastName . You will also notice that

Manager has all of the methods defi ned on Object . The Manager class gets all this func-

tionality because it extends Employee .

 CODE REUSE THROUGH INHERITANCE
 The previous example illustrates how code can be reused through inheritance. If we have a

group of objects (Employees , for example) that all have common properties and behaviors,

we can put the common properties and behaviors into a base class and then extend it into

particular subclasses (Manager , for example).

 This means we only need to write the common code one time. These subclasses each

get{all the common code from the Employee class and are free to add properties and

behaviors for their particular purposes. The subclasses are also free to override properties

or behaviors of the base class. In this way, inheritance promotes code reuse and is a great

tool to help organize our code.

 METHOD OVERLOADING
 Earlier in this course, we talked about method signatures and defi ned a method signature

as the combination of the name of the method and its parameter list. In any given class,

each method must have a unique signature. This brings us to a new term: method overload-

ing . We can overload a method by creating methods in a class that share the same name g

but have diff erent parameter lists.

 For example, look at the class, Adder , in Listing{ 20.3 .

 LISTING 20.3
 Overloaded add() Methods

 public class Adder {

 public int add(int a, int b) {
 return a + b;
 }

Job Ready Java372

 public float add(float a, float b) {
 return a + b;
 }

 }

 This class has two methods, both named add . The fi rst takes two int parameters, and

the second takes two fl oat parameters. The compiler knows which one to call at runtime

based on the types of the parameters passed in.

 Similarly, Listing{ 20.4 shows another version of an Adder class also with two methods

also called add . This time the add methods have diff erent numbers of parameters, which is

valid as well.

 LISTING 20.4
 Another Overloaded Set of add() Methods

 public class Adder {

 public int add(int a, int b) {
 return a + b;
 }

 public float add(float a, float b, int c) {
 return a + b + c;
 }
 }

 Note that this listing is not very practical, but it does illustrate that you have a diff erent

number of parameters. In this case, if two int values are passed, the fi rst add() method

is called. If three int s are passed, the second is called. Ultimately, you can create as many

overloaded add() methods in Adder as you want as long as each has something that is dif-

ferent to give them diff erent signatures—one or more types and/or a diff erent number of

parameters.

 NOTE Technically, method overriding is not an inheritance topic; however,
the related topic of method overriding, which is covered next, is associated
to inheritance.

373Lesson 20: Diving into Inheritance

 METHOD OVERRIDING
 With inheritance comes the ability to override methods. This simply means that the child

class will replace the implementation of a base class method with an implementation

of its own.

 For example, all Employees objects in our system have the ability to set objectives via

the createYearlyObjectives() method. This method is implemented in the Employee

base class and can be reused by all subclasses. This was demonstrated in the example in

Listing{ 20.1 .

 It is possible that a manager would require a diff erent implementation for

createYearlyObjectives() —perhaps the manager must set their own objectives and

must set goals for each of their direct reports, for example. If this were the case, we would

simply implement createYearlyObjectives() in the Manager class, which would override

(i.e., replace) the implementation contained in the Employee class.

 NOTE Please note a key difference between overriding and overloading:

• When you override a method in a child class, it must have the same sig-
nature as the corresponding method in the parent class.

• When you overload a method, it must have a unique signature.

 NOTE A common interview question might ask when overriding happens
versus overloading. Overriding happens at runtime. Overloading happens
when compiling.

 We have two implementation options when overriding a method.

• We can completely replace the functionality of the parent class.

• We can add to the functionality of the parent class.

 For the fi rst option, we simply re-implement the method in the child class. This new

implementation will replace the implementation in the parent class. For the second

option, we re-implement the method in the child class, but at some point, we call the

method in the parent class. If we do this, the parent method will run just like any method

call made in code.

 In Listing{ 20.5 , the Manager class overrides the createYearlyObjectives() method

but does not call the version of the method in Employee .

Job Ready Java374

 LISTING 20.5
 Overriding a Method

 public class Manager extends Employee {
 public void hire() {
 // code to hire someone...
 }

 public void fire() {
 // code to fire someone...
 }

 public void givePerformanceReview() {
 // code to give performance review
 }

 @Override
 public void createYearlyObjectives() {
 // we're overriding the version of this method in Employee
 // put new code here...
 }
 }

 Looking at Listing{ 20.5 , you see that the method is presented in the same manner with

the exception of adding the following line of code before it:

 @Override

 In the example in Listing{ 20.6 , the Manager class again overrides the createYear-

lyObjectives() method, but this time it calls the version in Employee and then adds

its new code.

 LISTING 20.6
 Overriding and Extending a Method

 public class Manager extends Employee {
 public void hire() {
 // code to hire someone...
 }

375Lesson 20: Diving into Inheritance

 public void fire() {
 // code to fire someone...
 }

 public void givePerformanceReview() {
 // code to give performance review
 }

 @Override
 public void createYearlyObjectives() {
 // we're overriding the version of this method in Employee
 // put new code here...
 super.createYearlyObjectives();
 // put more new code here...
 }
 }

 NOTE In Listing 20.6 , you can call the parent ’ s version of the method that
you are overriding at any point in the method.

 In this listing, you can see that we use the super keyword to reference the parent class.

The keywords super and this are related. The super keyword always refers to the parent

of the current class, and this always refers to the class itself.

 CONSTRUCTORS
 We know from past lessons that constructors are simply special methods that, when used

in conjunction with the new keyword, get called when instantiating an object of a particular

class. Thus far, we have had to deal with only one constructor because our classes have not

extended a base class.

 Things get more complicated with derived classes. With a derived class, we have the

constructor of the derived (child) class and the constructor of the base (parent) class.

Remember also that a derived class can extend a class that is itself a derived class, which

means that we could be dealing with several constructors.

Job Ready Java376

 Knowing the order of constructor execution is important as the class hierarchy becomes

more complicated. Remember that the fi rst line of every constructor is either an explicit

constructor call or an implicit call to super() . This helps to remember that the super class

constructor always runs fi rst

 NOTE We use derived and base class in this discussion. Child class could
have been used synonymously with derived class, and parent class could
have been used synonymously with base class. Developers often intermix
these terms.

 To help us with calling constructors and other objects of the immediate base class, we

can use the keyword super . The super keyword is useful to explicitly call the constructor

of the base class or when you need to access a method of the base class that has been

overridden by the derived class.

 Our focus now is on inheritance and, more specifi cally, constructors. The following are

rules for dealing with constructors in derived classes (you should memorize these rules(():ss

• The call to super(...) must be the fi rst statement in the constructor. t

• If you do not explicitly call super in the constructor of a derived class, the compiler

will automatically call the base class default constructor. If one doesn ’ t exist, a com-

pilation error will occur.

• The base class constructor can be invoked in a derived class by calling super(...)

where (...) is the parameter list that may be empty.

• You can call super(...) only from within the constructor of the derived class— not

from anywhere else.e

• The call to super must match the signature of a valid constructor in the base class.

• If your derived class does not defi ne a constructor, the compiler provides the

derived class with a default constructor that does nothing but call super , invoking

the default constructor of the base class.

• You are allowed to call this(...) as the fi rst line instead, which will call a diff erent

constructor in the derived class.

• Eventually, the super constructor will get called (before all other constructors).

• Calls to constructors in this() or super() must be fi rst.

• Circular constructor references are disallowed by the compiler.

377Lesson 20: Diving into Inheritance

 Listing{ 20.7 and Listing{ 20.8 show updated Employee and Manager classes with simple

constructors added. These constructors print a simple message letting us know they ’ ve

been executed.

 LISTING 20.7
 The Updated Employee Class

 public class Employee {

 protected String firstName;
 protected String lastName;

 Employee() {
 System.out.println("Employee Constructor");
 }
 public void doWork() {
 // code to do work ...
 }

 public void createYearlyObjectives() {
 // code to create yearly objectives...
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
 }

Job Ready Java378

 LISTING 20.8
 The Updated Manager Class

 public class Manager extends Employee {

 Manager(){
 // super() is implicitly added here by the compiler // super() is implicitly added here by the compiler
 // as the first statement of the constructor

 System.out.println("Manger Constructor"); System.out.println("Manger Constructor");
 }

 Manager(int aValue){
 // super() - without parameters - is implicity added here by the // super() - without parameters - is implicity added here by the
 // complier as the first statement of the constructor
 System.out.println("Manager Constructor with argument");
 }

 public void hire() {
 // code to hire someone...
 }

 public void fire() {
 // code to fire someone...
 }

 public void givePerformanceReview() {
 // code to give performance review
 }
 }

 We see in Listing{ 20.8 that we ’ ve included comments where a call to the super()

 constructor would implicitly occur. Listing{ 20.9 illustrates this.

 LISTING 20.9
 Watch the Constructors Work

 public class App {

 public static void main(String[] args) {

379Lesson 20: Diving into Inheritance

 System.out.println("Create an employee: ");
 Employee employee = new Employee();
 System.out.println("Create a manager: ");
 Manager manager = new Manager();
 System.out.println("Done");
 }
 }

 When we execute this listing with our classes, we get the following output:

 Create an employee:
 Employee Constructor
 Create a manager:
 Employee Constructor
 Manager Constructor
 Done

 As we can see, the employee was instantiated, and its constructor was called. There

should be no surprise there. When the Manager was instantiated, its constructor was

called, but the constructor of the base class was also called fi rst. This happens because an

implicit call to super() was executed at the beginning of the Manager ’ s constructor.

 Listing{ 20.10 shows an updated Manager class with the super being (unneces-

sarily) included.

 LISTING 20.10
 Manager Class with super Added

 public class Manager extends Employee {

 Manager(){
 super();
 System.out.println("Manager Constructor");
 }

 Manager(int aValue){
 System.out.println("Manager Constructor with argument");
 }

 public void hire() {
 // code to hire someone...
 }

Job Ready Java380

 public void fire() {
 // code to fire someone...
 }

 public void givePerformanceReview() {
 // code to give performance review
 }
 }

 When we execute Listing{ 20.9 again using this new Manager class, we get the

same output.

 Create an employee:
 Employee Constructor
 Create a manager:
 Employee Constructor
 Manager Constructor
 Done

 NOTE They key piece of information to retain at this point is that we have
access to the super keyword to access things in base classes and that by
default constructors in derived classes will call the base class constructors
fi rst.

 POLYMORPHISM
 We introduced the concept of polymorphism when we discussed interfaces in Lesson 17.

Polymorphism also applies to inheritance. The reason that an object can take more than

one form stems from the idea discussed earlier: when an object extends another object, it

creates an is-a relationship with the base class.a

 For example, a Manager is an n Employee , which means that we can use an Employee

object reference to point to a Manager object. In other words, we can treat the Manager

object like an Employee . Please keep in mind that the reverse is not true. A Manager has all

the capabilities and characteristics of an Employee (plus some), but not all Employee s have

the capabilities and characteristics of Manager s. A real-world example of this would be the

relationship between mammals and dogs. All dogs are mammals (and can be treated as

such), but not all mammals are dogs.

381Lesson 20: Diving into Inheritance

 NOTE Remember that derived types behave the same as base types. They
can be used wherever the associated base type could be used.

 Let ’ s look at an example with Employee and Manager .

 Manager manager = new Manager();
 Employee employee = new Manager();

 Here we are referencing a Manager object with a Manager reference and an Employee

reference. Again, this is perfectly fi ne because a Manager is-an n Employee .

 If we use NetBeans, we can take a look at which methods are available to each refer-

ence. Figure{ 20.2 shows what is presented for the Manager reference.

 Here we see that all the Manager methods and all the Employee methods are available.

 If we take a look at the Employee reference as shown in Figure{ 20.3 , we see that the list

shown isn ’ t the same.

 Here you can see that only the Employee methods are available to the Employee ref-

erence. The object that was created on the heap is actually a Manager object, but the

Employee reference only gives us access to the methods defi ned in the Employee class.

 Figure 20.2 Methods available to the Man-
ager reference

Job Ready Java382

 CALLING METHODS POLYMORPHICALLY
 The fact that we can override superclass methods in a subclass, along with the fact that

we can use a superclass reference to point to a subclass object, leads to some interesting

questions as to which version of the method will be invoked—the superclass version or the

subclass version?

 Here are the rules, using Employee and Manager (and the createObjectives method)

as an example:

• If you have an instance of Employee pointed to by an Employee reference, the

Employee version of createObjectives is called (obviously, because no other ver-

sion exists).

• If you have an instance of Manager that has not overridden the t Employee version of

createObjectives and is pointed to by a Manager reference, the Employee version

of createObjectives is called (again, this is straightforward because there is no

other version).

• If you have an instance of Manager (as in the previous bullet) but it is pointed to by

an Employee reference, the Employee version of createObjectives is called (it is

still the only version of the method).

• If you have an instance of Manager that has overridden the s Employee version of

createObjectives and is pointed to by a Manager reference, the Manager version

of createObjectives is called (this is also intuitive).

• If you have an instance of Manager that has overridden the s Employee version of

createObjectives and is pointed to by an Employee reference, the Manager

version of createObjectives is called (perhaps not what you would expect).

 Figure 20.3 Methods available to the
Employee reference

383Lesson 20: Diving into Inheritance

 ABSTRACT BASE CLASSES
 The fi nal object-oriented code organization tool that we will talk about in this lesson is the

abstract base class. An abstract base class has some properties of a regular base class and

some characteristics of an interface.

• Like an interface, an abstract class cannot be instantiated—only subclasses of an

abstract class can be instantiated.

• Like an interface, an abstract base class can defi ne abstract methods (defi nition

only—no implementation) and then force subclasses to provide an implementation.

• Like a regular base class, an abstract base class can provide fully implemented

methods that get inherited by child classes. We call these fully implemented

methods concrete methods. ss

• Like a regular base class, an abstract base class can contain fi elds that are visible to

the child classes.

 These features allow you to create classes that implement code common to potential

subclasses (so the code can be reused), force subclasses to have certain behaviors (i.e.,

methods), and force subclasses to provide their own implementations of those behaviors.

 SUMMARY
 This was an overview of the most important features of inheritance. Remember that inher-

itance is a foundational concept in object-oriented programming, and it is something that

you must be familiar with. Here are the key topics we covered in this lesson:

• Expressing an inheritance or is-a relationship between classes by extending classes a

using the extends keyword

• Method overloading

• Method overriding

• Controlling access to the members of your class

• Polymorphism and inheritance

 EXERCISES
 Most people learn best by doing, so this section includes an exercise using what you

learned in this lesson.

Exercise 1: Working with Shape

Job Ready Java384

 Exercise 1: Working with Shape
 Create a set of classes to represent a square, rectangle, triangle, and circle. Have these

classes inherit from an abstract base class called Shape . Each class will implement at least

two read-only fi elds, area and perimeter represented by their getters: getArea() , which

will return the area of the shape; and getPerimeter() , which will return the perimeter of

the shape.

 Here ’ s a tip if you need it: The abstract base class, Shape , will have a property called

color and the two methods getArea() and getPerimeter() , but they will be empty.

They are designed to be overridden by inherited shapes, so make sure that any shape that

inherits from the base class implements their own versions of getArea() and getPerim-

eter() based on the type of shape it is. It is suggested you start with a square because

this should be the easiest to implement. Create a Shape base class, inherit a square from it,

and override the two methods. If you have done this correctly, it should give you the idea

for the others.

 NOTE If you are uncertain about read-only fi elds, revisit Lesson 15.

Lesson 21

 Understanding
Collections

 This lesson is a look at the Java Collections Framework.

Collections are data structures that allow you to store multiple

values in a more fl exible manner than simple arrays. We ’ ll look

at common Collections Framework classes and the relationship

between interfaces and implementations in this context.

 LEARNING OBJECTIVES
 By the end of this lesson, you will be able to:

• Describe the Collections Framework

• Understand the diff erence between interface and implementation

• Understand the diff erence between lists, sets, and maps

• Know several commonly used collections of each type

 COLLECTIONS IN JAVA
 In the broadest sense, a collection is simply a data structure that groups multiple elements n

together into a single unit. Collections usually represent a group of related data such as a

class of students, a group of addresses, or a list of classes in a school schedule. We make

extensive use of collections in programming to manipulate groups of{related data.

Job Ready Java386

 The Java Collections Framework is a library of code that allows programmers to manip-

ulate groups of related objects. Because the Collections Framework is available to all Java

programmers, we gain the benefi t of not having to “reinvent the wheel” for collections

manipulation. Because this framework is widely used, the implementation of these algo-

rithms has been honed over time to be fast, effi cient, and bug-free.

 Another benefi t of the framework is that there is one application programming inter-

face (API) that is widely used by Java programmers. This means that you can easily read

and understand someone else ’ s Collections Framework code when working on new pro-

jects or when helping someone else with an issue.

 JAVADOC
 The best place to learn about the structure and capabilities of the Collections Frame-

work and any of its specifi c implementations is the Javadoc. As mentioned earlier in this

course, a Javadoc is an HTML-formatted code document that is generated from special

Javadoc tags in the comments of code. All the code that comes with the JDK has extensive

Javadocs available online. This should be the fi rst place you look to see how a particular

method or interface is supposed to work.

 The offi cial website for documentation of the Java Standard Edition Platform is at docs

.oracle.com/javase . This web page will display the documentation homepage for the

latest version of the Java platform. The Javadoc for the components of the Java platform

can be found under the Specifi cations heading on the page and is called API Documentation. n

For example, the Java 15 API Documentation is available at docs.oracle.com/en/java/

javase/15/docs/api/index.html . The API Documentation page looks like Figure{ 21.1 .

 NOTE Java and the Java tools continue to be updated. Developers will
often choose to use a version that is known to be tried and true, and thus
stable, rather than using the most recently released version. Fortunately,
documentation for multiple recent versions is available online. To see the
API documentation for version 11 or 12, you can simply change the 15 in the
mentioned URL to 11 or 12, respectively.

 You can navigate all the packages and/or classes of the Java platform using the links

within the page or the search bar in the upper right. Clicking a package or class will display

the details of that package or class in the main window.

 For example, Figure{ 21.2 shows the details for the List interface.

387Lesson 21: Understanding Collections

 COLLECTIONS FRAMEWORK STRUCTURE
 You will do a complete examination of the Collections Framework Javadoc in an

exercise, but there are a few things that you should know about the Collections

Framework.

• The framework consists of several interfaces and several implementing classes. This

is a great example of how interfaces are used in the real world.

• The underlying implementations have diff erent characteristics. For example, Sets

cannot have duplicate entries, but Lists can.

 Figure 21.1 The API documentation page

Job Ready Java388

 You should explore the Javadoc in detail to gain a full understanding of the Collections

Framework, but we ’ ll start by taking a closer look at the description of the Collection inter-

face and its add method to get you familiar with reading Javadoc.

 The Javadoc documentation has an excellent breakdown for the Collection interface

itself. Note that the documentation of an interface or class always includes the name of

the interface or class, type parameters (if applicable), superinterfaces (i.e., parent inter-

faces), subinterfaces (i.e., child interfaces), a list of all classes that implement the interface

(or interfaces), a description of the interface or class, a note indicating the fi rst version of

Java where the interface or class was included, and a list of related interfaces or classes.

 Figure 21.2 Details for the List interface

389Lesson 21: Understanding Collections

 A lot of this verbiage may be intimidating to you at this point in your learning, but that

is okay. You should always go to the Javadoc fi rst, try to understand what it is saying about

the interface or class, and then ask questions about things you don ’ t understand.

 NOTE The Collection interface can be found here:
docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/

Collection.html

 INTERFACE VS. IMPLEMENTATION
 A common pattern we see when using collections is that we program to the interface but e

instantiate using the implementation . This means we end up with code like this: n

 List<String> strings = new ArrayList<>();

 In this example, List is an interface, and ArrayList is an actual implementation of that

interface. The interface defi nes all the behavior we expect of the collection, and the imple-

mentation decides how that behavior is actually performed behind the scenes.

 Diff erent implementations will do things sometimes diff erently behind the scenes, but

they will all give you the methods the interface contains. One of the benefi ts of this is that

if you decide to change the implementation, you only need to change what instantiates it;

the rest of your code can stay the same. There will be no methods in your code that need

to change.

 Some implementations, like the Stack implementation of List, will give you extra

methods: push (for adding things) and pop (for removing things) in this example. If you

want to take advantage of those features, however, you cannot declare the variable with

the interface, or those special features will not be available. In that situation, you declare

the variable with the implementation you want to use.

 Stack<String> stringStack = new Stack<>();

 This is okay to do, but it does mean you are tied to that implementation of the collec-

tion. If we are using pop and push in our code, we cannot change it to an ArrayList without

rewriting our code to stop using pop and push.

 NOTE This lesson is an overview. We will go into more detail on using
collections such as Lists as well as using Maps in the next two lessons.

Job Ready Java390

 ITERATOR
 An iterator is an object that allows you to visit each element in a collection individually. Allr

iterators have a hasNext method that returns true if there are more elements to visit and

a next method that retrieves the next element. Some iterators also implement the remove

method, which is used to remove elements from the collection during iteration, but this

method is not required. We will see examples of using an iterator to visit all the elements

in a collection in the following sections.

 NOTE If you are removing items from a collection, you generally don ’ t use
an Iterator. For removing an item or iterating in a reverse order, you should
use a traditional for loop.

 COMMONLY USED INTERFACES
IN THE COLLECTIONS FRAMEWORK
 There are several commonly used interfaces in the Collections Framework. We will take a

quick look at the following three interfaces:

• List

• Set

• Map

 These are overviewed here; however, we will cover Lists in greater detail in Lesson 22,

and Maps will be covered in greater detail in Lesson 23.

 Quick Look at List
 List is an interface that extends Collection. It is an ordered collection of items that may

include duplicate elements. Two commonly used Lists are ArrayList and Stack.

ArrayList
 The ArrayList is the List implementation we will use the most. Like any implementation of

the List interface, the ArrayList has all the features of the Collection interface and all the

features of the List interface.

391Lesson 21: Understanding Collections

 One way to think about the ArrayList is like an array on steroids. The main convenience

that ArrayLists have over arrays is that you can dynamically add and remove elements from

an ArrayList and it will automatically resize for you.

 NOTE You can fi nd ArrayList in the Javadocs at docs.oracle.com/en/
java/javase/15/docs/api/java.base/java/util/ArrayList.html .

Stack
 A Stack is another List implementation that adds in specialty methods to treat the List like

a last in, fi rst out (LIFO) stack. Those specialty methods are push to place an object on the

top of the Stack, pop to remove an object from the top of the Stack, and peek to see what

object is on the top of the Stack.

 NOTE You can fi nd Stack in the Javadocs at docs.oracle.com/en/java/
javase/15/docs/api/java.base/java/util/Stack.html .

 Quick Look at Set
 Set is another interface that extends Collection. Commonly used Sets include HashSet and

TreeSet. There are two diff erences between a List and a Set:

• Each item in a Set must be unique: all duplicates are ignored. Lists do allow dupli-

cate items. In this case, the equivalence between objects is based on the equals

and hashCode methods.

• A Set does not maintain order, whereas a List will. This means that when you

retrieve items from a Set, the items may appear in a diff erent order each time.

HashSet
 A HashSet is the type of Set we typically use. It determines whether an object is unique

based on the equals method of the object.

 NOTE You can fi nd HashSet in the Javadocs at docs.oracle.com/en/
java/javase/15/docs/api/java.base/java/util/HashSet.html .

Job Ready Java392

TreeSet
 A TreeSet is a Set that does maintain an order. It will default to the natural order of the

objects, such as numerical or alphabetical order. If the objects are more complex you can

provide a Comparator that tells the TreeSet how to compare and order the objects.

 NOTE You can fi nd TreeSet in the Javadocs at docs.oracle.com/en/
java/javase/15/docs/api/java.base/java/util/TreeSet.html . You can
fi nd more on Comparator in the Javadocs at docs.oracle.com/en/java/
javase/15/docs/api/java.base/java/util/Comparator.html .

 Quick Look at Map
 Maps are a part of the Collections Framework, but they do not extend Collection. A Map

is an object that maps keys to values. We can retrieve collections of the keys or values in a

Map, so they are tied to the Collections Framework.

 All keys in a Map must be unique, while values can be duplicated. Because of that when

we get{all the keys, we get a Set; getting all the values gives us a List. Two common Maps

are HashMap and TreeMap.

HashMap
 A{ HashMap is the Map we use most often. Entries in the HashMap have no defi ned order

and cannot guarantee that any order will remain consistent over time.

 NOTE You can fi nd HashMap in the Javadocs at docs.oracle.com/en/
java/javase/15/docs/api/java.base/java/util/HashMap.html .

TreeMap
 A TreeMap is a Map that will maintain an order based on the keys. Similar to the TreeSet

we talked about previously, it will use the natural order or a Comparator to determine

the order.

 NOTE You can fi nd TreeMap in the Javadocs at docs.oracle.com/en/
java/javase/15/docs/api/java.base/java/util/TreeMap.html .

393Lesson 21: Understanding Collections

 SUMMARY
 In this lesson, you learned that the Java Collections Framework gives us a number of dif-

ferent ways to store multiple objects in memory. When using these collections, we typi-

cally program to the interface, while instantiating using a specifi c implementation. What

our application needs should determine which implementation of the Collection or Map

you use. There are several good implementations of each, so it is up to you to decide

what makes the most sense in your code. In the next two lessons, we ’ ll dig deeper into

Lists and Maps.

Lesson 22

 Introduction
to Lists

 This lesson is a quick introduction to Lists. Lists are a type of

data structure that allows you to store values and objects in a

more fl exible manner than arrays.

 LEARNING OBJECTIVES
 By the end of this lesson, you will able to:

• Describe some of the diff erent types of Lists available

• Explain how generic types work in Java

• Use Lists in your code

• Use enhanced for loops with Lists

• Create and use an Iterator

 LIST
 List is an interface that extends Collection. It is an ordered collection of items that may

include duplicate elements. The List interface has quite a few methods, but the ones that

you will be using most are the following:

• add

• get

395Lesson 22: Introduction to Lists

• remove

• size

 We include examples of using these methods in this lesson, but you should read the

Javadoc associated with these methods to become familiar with how they work.

 TYPES OF LISTS
 There are several types of Lists that exist in the Java Collections Framework. Although we

will focus on the ArrayList, we will also discuss the LinkedList and Stack so that you are

prepared if a situation arises where your program can benefi t from them. In addition to

the ArrayList, let ’ s take a quick look at the LinkedList and Stack.

 ArrayList
 Think of the ArrayList class as a supercharged array. Arrays are great data structures, but

they have some limitations, especially that once defi ned, Arrays cannot shrink or grow. An

ArrayList can automatically shrink and grow dynamically, so you can easily add or remove

new elements whenever you like.

 However, removing or inserting items in the middle of the ArrayList causes all the other

elements to be shifted, which is slower than other operations. An ArrayList will also main-

tain the order in which things were inserted into it based on following fi rst in, fi rst out

(FIFO). Modern Java developers prefer ArrayList to Array unless they are absolutely certain

about the size of the data and trying to gain a very small performance boost.

 NOTE All the Collection interfaces provide a better API for manipulation
and fi ltering arrays.

 LinkedList
 Another type of list is the LinkedList. The LinkedList class does not store elements in an

array. You can think of the linked list as a chain of elements. A linked list has a head , which dd

is the fi rst element, and a tail , which is the last element. Each element in the list, often l

referred to as a node , contains the data object and a pointer to the next node. When each e

of the nodes just points to the next node, it is a singly linked list . Conceptually, it looks like tt

Figure{ 22.1 .

Job Ready Java396

 We also can have doubly linked lists where each node points to the next node and the s

previous, as shown in Figure{ 22.2 . The LinkedList class in Java is a doubly linked list.

 The main benefi t to using the LinkedList over an array or ArrayList structure is that

insertions and deletions from the middle do not require shifting elements. For example,

to insert an item called Object 5 in between Objects 3 and 4 of the singly linked list shown

in Figure{ 22.1 , we would simply point the next node reference of Object 3 to Object 5 and

set the next node reference of Object 5 to Object 4 as shown in Figure{ 22.3 .

 In the end, nothing shifts, and only the reference arrows are changed.

 The trade-off for effi cient insertions and deletions is that linked lists take up more

memory, and unlike an array, which can navigate to an element directly by index, a linked

list has to traverse the list, or walk node by node, until it fi nds a specifi c element.e

Head TailTT

Object 1 Object 2 Object 3 Object 4

 Figure 22.1 A conceptual look at a linked list

Head TailTT

Object 1 Object 2 Object 3 Object 4

 Figure 22.2 A doubly linked list

Head

Object 1 Object 2 Object 3

Object 5
TailTT

Object 4

 Figure 22.3 Inserting into a linked list

 NOTE Developers tend to prefer the ArrayList to the LinkedList.
However, in job interviews, being able to describe and create your own
simple linked list data structure is a fairly common task. Knowing the
trade-offs between the two is also a common interview question.

397Lesson 22: Introduction to Lists

 Stack
 The Stack class is just like the memory stack examples we have seen in this course. The

stack has basic methods of push() and pop() to place objects on top and remove from

the top, as well as a peek() method, which allows you to examine the top object without

removing it. The Stack class is a last-in, fi rst-out (LIFO) structure.

 An example of where you might use a Stack is with undo functionality in a word pro-

cessor application. Hitting the shortcut for undo (Ctrl-Z) will undo your actions in reverse

order, so if you were to store each action as a Stack, you could easily pop actions off

last to fi rst.

 UNDERSTANDING GENERICS
 Before we can dig into the details of lists, we need to discuss generic types (or simplys

generics) in Java. The defi nition of a generic type from Oracle is:ss

 A generic class or interface that is parameterized over types.

 So, what does that mean?

 Java data structures like Lists are containers that hold other objects for us. They are

generic (or parameterized) types. The generic type mechanism in Java allows us to specify

the type of objects that a list can hold. It also allows a class to defi ne what other type it

can act on in a generic fashion.

 For example, we could specify a list that holds strings. If we do this, we will encounter

an error if we try to put anything other than strings into our list. Earlier versions of Java

had no generic types, and you could put any type of object into a list. This meant that

you had to check each time you retrieved a value from your list to ensure that it was the

type you were expecting. You can still create a collection like this, but you will fi nd that

it is almost always advantageous to create containers that only accept a particular type.

It makes your code cleaner, smaller, and easier to maintain, and it allows the compiler to

ensure that you are not mistakenly putting the wrong type of object in your data struc-

ture. The following List examples all use generic types.

 The way that we tell the compiler that we want a list of strings instead of a list of

Student objects is with angle brackets. For example, this is how you would declare a list

of strings:

 List<String> myList;

 Here is a declaration of a list of Student objects:

 List<Student> studentList;

Job Ready Java398

 In the previous lesson, we referenced the Javadoc as a source of additional informa-

tion. Note that the Javadoc documentation for Collection and List uses the placeholder E

for the type of the Collection or List. This is done to signify that the method will accept a

parameter of the type that the data structure is declared to hold.

 NOTE The angle brackets (<>) are also known as the diamond operator. r
When the angle brackets contain a value, such as <int> , then it is called
the type parameter. r

 USING LISTS
 As we have mentioned, the major advantage of using List over an array is that, unlike an

array, a list can dynamically grow, so you can keep adding items without having to specify a

size. While there are many available members in the List type, we will cover the most com-

monly used ones here. Let ’ s take a look at using Lists by creating and instantiating a list

and then adding items to it. We will follow this by seeing how to access, insert, and remove

items from the list.

 Instantiating a List
 The List class is not static, so we use the new keyword to instantiate it. At the time of cre-

ation, you must identify the type of elements that you want to store in the List. It should

be any class: String , Person , BankAccount , or any other nonprimitive type. You can even

have a List of List if you wanted.

 As an example, we will create a list of String types, which we will put into an ArrayList.

 As a good programming habit, one of the things we should do is program to interfaces.

Like the other classes in the Collections Framework, there are interfaces for List that can

be used. Using interfaces helps us enforce encapsulation and other good programming

practices. It will also provide fl exibility for changing our implementations later if that

becomes necessary.

 NOTE As you start creating more sophisticated programs, you will want
to program to interfaces as well.

399Lesson 22: Introduction to Lists

 What we want to do, therefore, is declare a variable of type List. Because List is a

generic (which we mentioned earlier), we can set our new list to hold a specifi c type, in

this case only items that are of type String. To do this, we use the angle brackets and indi-

cate the type.

 List<String> strings

 This creates a List for String objects called strings , which we can also instantiate as

an object.

 List<String> strings = new ArrayList<>();

 Notice that in each example we declare the variable as a List type, but then in this

instantiation we are saying it is a new ArrayList<>() . In this case, ArrayList is a concrete

implementation of List . We typically want to create our lists this way, with the actual type

of the List we are using on the right side of the expression.

 You will also notice that we didn ’ t include String in the diamond operator on the right

of this instantiation. That is not necessary because it is implied to be a string based on

what has been set up in the generic on the left. Finally, you see the parentheses. These are

included because we are calling the constructor for the ArrayList<> , in this case with no

parameters.

 If you are entering this line of code into NetBeans, you ’ ll notice that List and Array-

List are fl agged as having problems (red squiggly lines under them). The issue is that List

and ArrayList can ’ t be found because we haven ’ t imported them into our class yet. If you

are using NetBeans, you can click the line number with the red dot that shows the error.

This displays a pop-up list of options for fi xing our issue, as shown in Figure{ 22.4 .

 From the list, you can simply click the option Add import for java.util.ArrayList and thent

click Add import for java.util.List. This will add the following two import statements tott

your code:

 Figure 22.4 NetBeans help for fi xing missing imports.

Job Ready Java400

 import java.util.ArrayList;
 import java.util.List;

 Of course, we could have simply typed the import information into the IDE if we

already knew it.

 At this point, we have instantiated a new list. What we have, however, is an empty list of

String s. Listing{ 22.1 confi rms that our list is empty by printing its size.

 LISTING 22.1
 The Size of strings

 import java.util.ArrayList;
 import java.util.List;

 public class App {
 public static void main(String[] args) {

 List<String> strings = new ArrayList<>();

 System.out.println("List size: " + strings.size());
 }
 }

 When we execute this code, we see the following output:

 List size: 0

 The size() method on our ArrayList simply returns the number of items in our list,

which in this case is zero. This should make sense, being that the list is empty.

 NOTE The selected type for a List cannot be a primitive type (int , boolean ,
char , etc.). If you need to hold a primitive type in a List, you should instead
use the corresponding class version (wrapper reference type): Integer or
Boolean or Character . Each primitive type has a class version you can use
in situations like this. These classes are also known as wrapper classes. s
For example, a list of Integer objects would look like this:

 List<Integer> numbers = new ArrayList<>();

401Lesson 22: Introduction to Lists

 Adding Items to a List
 With our ArrayList created, we are ready to add items to it. There is one main way to add

things to a List: the add() method. Using our strings list from earlier, we can add new

strings like this:

 strings.add("A");
 strings.add("B");
 strings.add("C");

 Listing{ 22.2 expands on the previous listing to add a couple of items.

 LISTING 22.2
 Adding Items to strings

 import java.util.ArrayList;
 import java.util.List;

 public class App {

 public static void main(String[] args) {

 List<String> strings = new ArrayList<>();

 System.out.println("List size: " + strings.size());

 strings.add("The First String");
 strings.add("The Second String");
 strings.add("The Third String");
 System.out.println("List size: " + strings.size());
 }
 }

 As you can see, after printing the initial size of strings , the next three lines of code

add new strings to our ArrayList using the add() method. After doing these additions, we

again print the size of strings and see that it has been updated accordingly.

 List size: 0
 List size: 3

Job Ready Java402

 Accessing Items in a List
 The List class is an indexed collection, which means that individual elements can be accessed d

via index just like an array, except we do so by using the get() method. In Listing{ 22.2 , we

used add() to add items to the strings list. The current state of that list is as follows:

Element Index

The First String 0
The Second String 1
The Third String 2

 Using the get() method along with the index of the element we want, we can retrieve

a value. For example, if we were to run the statement strings.get(2) , the output would

be The Third String .

 This also means we can loop through a List using a for loop. Something to be aware of

is that while arrays have a length property we can use as a loop control, the List class has

a size() method that we will want to use. Listing{ 22.3 expands on the previous listing to

now print out the elements in strings .

 LISTING 22.3
 Getting Elements from a List

 import java.util.ArrayList;
 import java.util.List;

 public class App {

 public static void main(String[] args) {

 List<String> strings = new ArrayList<>();

 System.out.println("List size: " + strings.size());

 strings.add("The First String");
 strings.add("The Second String");
 strings.add("The Third String");
 System.out.println("List size: " + strings.size());

 for (int i = 0; i < strings.size(); i++) {
 System.out.println(strings.get(i));
 }
 }
 }

403Lesson 22: Introduction to Lists

 You can see that the output from executing this code is exactly what we would expect.

 List size: 0
 List size: 3
 The First String
 The Second String
 The Third String

 Inserting Items into a List
 We can also use the add() method to place elements wherever you like in a list. There are

two parameters in this use of the method to insert an item. The fi rst is the index at which

you want to insert the new item, and the second is the element you want to insert. Here ’ s

an example:

 strings.add(1, "A New String");

 Executing this line of code after creating the list in Listing{ 22.3 would result in a List

that looks like this:

Element Index

The First String 0
A New String 1
The Second String 2
The Third String 3

 The new element, A New String , has been placed at position 1; consequently, the ele-

ment formerly at position 1 and all elements after it have been shifted further into the list

and their indexes changed.

 NOTE If you want to place an item at the beginning of the list, you can
use an index of 0.

 Removing Items from a List
 There are several ways to remove items from a List. The fi rst is to use the clear() method

to remove all the items in the List. If you want to be more selective, you can use the

remove() method in a couple of diff erent ways.

Job Ready Java404

 Using remove() and passing in an object will scan the List, and when Java fi nds an item

that matches the object, it will remove it from the List and stop.

 For example, in Listing{ 22.4 we create a list that includes "Apple" , "Banana" , "Cherry" ,

and "Date" and then remove "Banana" .

 LISTING 22.4
 Removing an Element from a List

 import java.util.ArrayList;
 import java.util.List;

 public class App {

 public static void main(String[] args) {

 List<String> strings = new ArrayList<>();

 strings.add("Apple");
 strings.add("Banana");
 strings.add("Cherry");
 strings.add("Date");
 System.out.println("List size: " + strings.size());

 for (int i = 0; i < strings.size(); i++) {
 System.out.println(strings.get(i));
 }

 strings.remove("Banana");

 System.out.println("List size: " + strings.size());

 for (int i = 0; i < strings.size(); i++) {
 System.out.println(strings.get(i));
 }
 }
 }

 This code is straightforward. Once again, we create our list of String s called strings .

We add the four elements as we did before and then print the size followed by printing

each of the elements to confi rm that they were added. We then call the remove() method

and pass the value we want found and removed, in this case Banana . To confi rm that this

405Lesson 22: Introduction to Lists

was removed, we print the size, which decreased by one, and then we loop through and

print each element. When we look at the output, we can see that Banana is indeed gone.

 List size: 4
 Apple
 Banana
 Cherry
 Date
 List size: 3
 Apple
 Cherry
 Date

 It ’ s worth noting that the remove() method will remove the fi rst matching item it fi nds

in the list. If we had added two Banana elements into Listing 22.4, then only the fi rst one

would have been removed.

 We can also use remove() and pass in an index position. It will remove whatever item

is at that position, while also returning the item in case it is to be used for anything. For

example, the following would remove the item at position 1 of strings :

 strings.remove(1);

 NOTE Remember, position 1 is the second item in the List. Indexes
start at 0.

 Again, as things are removed, the size of the List shrinks accordingly. When working

with remove() and index positions, we need to be careful to make sure that we don ’ t use

an index value beyond the size of our List nor should we try to remove an item by index

position if the List is empty. Doing so will cause an exception to be thrown which could

crash our program if not handled correctly. Lesson 26 shows how to handle exceptions. In

this case, you would be handling an IndexOutOfBoundsException .

 ENHANCED APPROACHES TO ACCESS
LIST ITEMS
 There are two additional approaches for accessing items in a list. Because these alterna-

tive methods are used by Java developers for accessing items, it is important to be familiar

with them. These include using enhanced for loops and using an Iterator .

Job Ready Java406

 The Enhanced for Loop and Lists
 While we can use a normal for loop to iterate through a List, an easier way is to use the

enhanced for loop that lets us visit each element in our List. We use it exactly the same

way that we use it with a normal array; however, the format is simpler.

 for(type Operand : List_name) {
 }

 The type Operand represents what we want to pull out of our list each time through

the loop. On the other side of the colon, we include the List that we want to use to pull

items from. Listing{ 22.5 shows this enhanced for loop in action.

 LISTING 22.5
 Using the Enhanced for Loop

 import java.util.ArrayList;
 import java.util.List;

 public class App {

 public static void main(String[] args) {

 List<String> strings = new ArrayList<>();

 strings.add("Apple");
 strings.add("Banana");
 strings.add("Cherry");
 strings.add("Date");

 for (String currentString : strings) {
 System.out.println(currentString);
 }
 }
 }

 The for loop will iterate through each index and on each loop provide access to each

element in strings using the operand (currentString) that you have created. You will

see the expected output when you execute this listing:

 Apple
 Banana

407Lesson 22: Introduction to Lists

 Cherry
 Date

 NOTE Do not remove elements using the enhanced for loop.

 Visiting Each Element: Iterators
 The enhanced for loop is one way to work through the items in a List. There is another

way, which is through the use of an iterator.

 One of the things that Lists and Collections have is this thing called an iterator. An itera-rr

tor is used to visit all the elements in a Collection exactly once. As was mentioned earlier,

a List is an ordered Collection; it ’ s like an array. A Collection can have slots that can come

in any order. They start at index 0 and go to index 1, 2, 3, 4, or to whatever the last index is

based on how big the Collection or List is. An iterator comes into play because not all Col-

lections have an order. An iterator ’ s job is to make sure each item in the Collection is vis-

ited one by one, and only once.

 NOTE We don ’ t know what the order is in there, but the guarantee of an
iterator is that we will visit each one exactly one time and only one time.
We do know in a list that items are in fi rst in, fi rst out (FIFO) order. A set
does not maintain order.

 Let ’ s take a look at what it entails to create and use an iterator.

 Creating an Iterator
 The fi rst thing we must do is to get the iterator out of our List. We will start by declaring a

variable, like we do with any variable, and this is going to be an Iterator. Just like Lists and

ArrayLists, an Iterator is a generic type, so our declaration will be similar to what we saw

earlier with Lists. In this case, we ’ ll create an Iterator that works with Strings and instanti-

ate it from the strings ListArray we ’ ve been using in this lesson as such:

 Iterator<String> iterator = strings.iterator();

 In looking at this line of code, you can see that the iterator() method on strings

takes no parameters and is just going to return an Iterator that holds Strings . This is

exactly what we wanted to do to get an iterator that will work with our strings ArrayList.

Job Ready Java408

 Of course, if you are running this in NetBeans, you are going to see that the Iterator

gives an error because it isn ’ t defi ned! Just like with List and ArrayList, you will need to

include an import.

 import java.util.Iterator;

 With this code, we have an Iterator ready to be used. Regardless of whether you

are using a List, Set, or another kind of Collection, you ’ ll be able to set up an Iterator

this same way.

 Using the Iterator
 When we have defi ned an Iterator for a List, Set, or other kind of Collection, we are guar-

anteed that it knows how to visit all the elements in that particular collection of objects.

The iterator takes care of the implementation of getting through the elements once. We

don ’ t have to know or care how it does what it does, which is a really good thing.

 With our Iterator created, we are ready to use it. We are going to use the iterator to

move through our list of strings that we created earlier. With the Iterator , we want to

loop through the items until we don ’ t have any more. To do this, we will focus on next()

and hasNext() . Listing 22.6 presents a List that we created in Listing{ 22.5 ; however, this

time we added an Iterator to loop through the elements as well.

 LISTING 22.6
 Using an Iterator

 import java.util.ArrayList;
 import java.util.Iterator;
 import java.util.List;

 public class App {

 public static void main(String[] args) {

 List<String> strings = new ArrayList<>();

 strings.add("Apple");
 strings.add("Banana");
 strings.add("Cherry");
 strings.add("Date");

409Lesson 22: Introduction to Lists

 // Display List with an enhanced for loop
 for (String s : strings) {
 System.out.println(s);
 }

 // Display List with an Iterator
 Iterator<String> iterator = strings.iterator();
 while (iterator.hasNext()) {
 String currentString = iterator.next();
 System.out.println(currentString);
 }
 }
 }

 When we execute this listing, we see the list printed out twice.

 Apple
 Banana
 Cherry
 Date
 Apple
 Banana
 Cherry
 Date

 The values are printed out the fi rst time using the enhanced for loop we saw earlier.

After that, an Iterator is created called iterator that is instantiated using our Array-

List , strings . With that in place, we ’ re ready to loop through strings . Because we don ’ t

necessarily know the number of items, we need to fi rst check to see whether there is an

item to be read. We can do this with the hasNext() method. If there is an item to be read,

then we can get it by using the next() method on our Iterator (iterator).

 With the item read, we can loop and do the check to see whether there is another

item. When the iterator reaches the end of the ArrayList, hasNext() returns false, and our

loop will end.

 NOTE It is worth noting that the enhanced for loop and the use of an
iterator do basically the same thing. The use of the iterator simply breaks
the work out into more steps. An iterator is, however, safer to use when
removing items. Both approaches are commonly used in Java programs,
so it is good to be aware of how both work.

Job Ready Java410

 SUMMARY
 You will see Lists all over enterprise applications as lists of customers, invoices, billing

information, and other types are returned from databases and passed around your code.

The ArrayList class is the go-to List class for Java developers when they need to store a

collection of related items.

 As you saw in this lesson, Lists use generics to save time and overhead by declaring

what class will be used in a List. This makes it so we don ’ t have to check each item we pull

out of the List before using it. Be aware that while the examples in this lesson used Strings

in the List, other types such as Person could have been used in the same way.

 EXERCISES
 Most people learn best by doing, so this section includes exercises using what you learned

in this lesson.

Exercise 1: Three Threes

Exercise 2: Mixed-Up Animals

 Exercise 1: Three Threes
 Use what you learned today to create an ArrayList and then add the following strings to it

in the order listed:

 One
 Two
 Three
 Four
 Five
 Six
 Three
 Seven
 Three
 Eight

 After adding the items, iterate through your ArrayList and display the strings. Then

write the code so that you fi nd and remove the second and third Three string. Don ’ t

remove the fi rst Three ! Iterate and print the remaining items. Your fi nal list should look

like this:

 One
 Two

411Lesson 22: Introduction to Lists

 Three
 Four
 Five
 Six
 Seven
 Eight

 NOTE When removing items from your ArrayList, you should use an
iterator. Don ’ t use an enhanced for loop.

 Exercise 2: Mixed-Up Animals
 Create an ArrayList that will be used to hold the names of diff erent animals that will be

entered by the user. As you add each string to the ArrayList, insert it where it belongs

alphabetically. Print the list out after each time the user enters a new value. For example,

if the user entered Mouse and then Cat , your list would look like:

 Cat
 Mouse

 If they then entered Dog , your list should print as follows:

 Cat
 Dog
 Mouse

 Have the user enter 10 diff erent animals in a mixed-up order. When you print the fi nal

list, it should be ordered alphabetically without any added work.

Lesson 23

 Exploring Maps

 This lesson continues the discussion of using collections by

exploring the Map data structure, which is used for saving key/

value pairs. In the lesson, we will primarily focus on the HashMap

implementation and how to work with it in your code.

 LEARNING OBJECTIVES
 By the end of this lesson, you will be able to:

• Describe the Map interface

• Understand the HashMap implementation of Map

• Work the HashMap in your code

 MAP INTERFACE
 A Map is an object that maps keys to values. In general, a map models the concept of a

mathematical function. In a map, each key can map to one and only one y value , so it cannot e

contain duplicate keys.

 While Maps are part of the Java Collections Framework, the Map interface itself is not a

Collection (i.e., it does not extend the Collection interface, and it is not iterable); however,

we can get a Collection of either the keys or the values of a Map or a Collection of Entry

objects (both Key and Value).

413Lesson 23: Exploring Maps

 The Map interface has many methods. In this lesson, we will cover the most often used

methods, which are as follows:

• get

• put

• keySet

• size

• values

 NOTE We cover a few examples using these methods in this lesson;
however, it is recommended that you should read the Javadoc
associated with each to become familiar with how they work. You can
fi nd the Map interface in the Javadocs at docs.oracle.com/en/java/
javase/15/docs/api/java.base/java/util/Map.html for Version 15, or at
docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/

Map.html if you are using version 11.

HashMap
 We will focus on the HashMap implementation of the Map interface for now. HashMap is

the most commonly used implementation of the Map interface. In the following sections,

we ’ ll review a number of code snippets to see the features of the HashMap. As an exam-

ple, we ’ ll see how it can be used to hold the population of several countries.

 CREATING AND ADDING ENTRIES TO A MAP
 Working with Maps is similar to working with other collections. This includes creating,

instantiating, and then adding to a Map.

 Instantiating a Map
 Like with any class, the fi rst step to using a Map is to declare a variable and then instanti-

ate a Map object. Like the List we saw before, a Map is a generic type, so we need to say

what type of elements it will hold.

 A Map will diff er from a List. When we created a List, we provided a type to identify the

type of values that would be stored. In a Map, a type for the value still needs to be pro-

vided, but a type for the keys must also be included.

Job Ready Java414

 As an example, we will store populations for countries. Each country will be unique in

that there cannot be two countries with the same name, so the country name will be our

key. The population would then be the values being stored.

 Map<String, Integer> populations = new HashMap<>();

 This declares a Map that has a key that is a String value that will be able to hold our

country name and an Integer that will be able to hold our value, which will be the popula-

tion. Similar to Lists, we create a reference to the interface. In this case, a Map is equal to a

new HashMap , the concrete implementation.

 As was the case when we used other collections, for Map and HashMap to be used in

our code, we ’ ll need to import them.

 import java.util.HashMap;
 import java.util.Map;

 Adding Data to a Map
 With an empty Map created, we are ready to add something to it. We add data to a Map

using the put() method, passing in the key fi rst and then the value. For example, if we

wanted to add the population for the United States, then we could use USA for the key and

then the population as an Integer type for the value.

 populations.put("USA", 328000000);

 Using put() , this adds the value of 328000000 to our populations HashMap using the

key USA . We could add additional countries in the same manner.

 populations.put("Canada", 37590000);
 populations.put("United Kingdom", 66800000);
 populations.put("Japan", 126000000);

 NOTE We are using Integer to store population; however, using a Long
might be more appropriate since it is possible for a country such as China
to have a population that won ’ t fi t in an Integer.

 Listing{ 23.1 presents the instantiation and addition of items into a simple listing.

415Lesson 23: Exploring Maps

 LISTING 23.1
 Creating a HashMap

 import java.util.HashMap;
 import java.util.Map;

 public class MapsExample {

 public static void main(String[] args) {

 Map<String, Integer> populations = new HashMap<>();

 populations.put("USA", 328000000);
 populations.put("Canada", 37590000);
 populations.put("United Kingdom", 66800000);
 populations.put("Japan", 126000000);

 System.out.println("Map size is: " + populations.size());
 }
 }

 One additional line was added to this listing in which we print out the number of ele-

ments in the Map that was created. We get the number of elements using the size()

method. When executed, our four population elements are added with their key values.

 Map size is: 4

 The listing tells us that the size of the populations Map is 4, which matches

what we added.

 MANIPULATING WITH ENTRIES IN A MAP
 While it is great to add elements to a Map, for it to be useful, we need to be able to access

those elements. Additionally, because nobody is perfect, it would also be good to know

how to replace or delete Map elements.

 Looking Up Values in a Map
 We use the get() method to look up a Value in a Map, passing in the key for what we

want to retrieve. For example, if we wanted to get the population of Japan from our

Job Ready Java416

populations HashMap and save it in a new variable, we would pass the key value of Japan

to the get() method as follows:

 Integer foundPopulation = populations.get("Japan");

 If we use a key that is not in the Map, get() will return a value of null . Listing{ 23.2

expands on the previous listing to print the population of Japan, which is a key in our Map.

It also prints the value returned when trying to use a key (ASDF(() that hasn ’ t been added to

the populations Map.

 LISTING 23.2
 Getting Values from a Map

 import java.util.HashMap;
 import java.util.Map;

 public class MapsExample {

 public static void main(String[] args) {

 Map<String, Integer> populations = new HashMap<>();

 populations.put("USA", 328000000);
 populations.put("Canada", 37590000);
 populations.put("United Kingdom", 66800000);
 populations.put("Japan", 126000000);

 System.out.println("Map size is: " + populations.size());

 Integer japanPopulation = populations.get("Japan");
 System.out.println("The population of Japan is: " + japanPopulation);

 Integer ASDFPopulation = populations.get("ASDF");
 System.out.println("The population of ASDF is: " + ASDFPopulation);
 }
 }

 The output from executing this is as follows:

 Map size is: 4
 The population of Japan is: 126000000
 The population of ASDF is: null

 As expected, this output confi rms that Japan was found and that ASDF wasn ’ t.

417Lesson 23: Exploring Maps

 Replacing Data in a Map
 If we want to replace data in a Map, we simply use the put() method again with the same

key. In maps, the keys must be unique, so when we use put() with an existing key, we

overwrite the existing data. If we want to update the population of the United States, then

we use the key USA and our new population.

 populations.put("USA", 328000002);

 Once this has been executed, the new value for USA will be updated to 328000002,

which is an increase of 2.

 Removing Values from a Map
 There are times when we might need to completely remove a key and its associated value

from a Map. We can do this by using the remove() method and pass in the key. If we

wanted to remove Japan from our Map, we ’ d pass the following:

 populations.remove("Japan");

 When this line of code is executed, an entry with a key of Japan will be removed

from the Map.

 GETTING KEYS AND LISTING MAPPED
VALUES IN A MAP
 At this point we ’ ve manipulated the data in our Map, and we ’ ve been able to pull out a

value when we knew the key. In the real world, we might not always know the keys or

the values. We might get a Map from a data store, or we might read a fi le where we don ’ t

know what the keys are. As such, it would be good to know how to get the keys and then

to use those keys to get the values.

 Listing All the Keys
 Remember, keys have to be unique. If keys aren ’ t unique, then we wouldn ’ t be able to use

them to get a value because there could be more than one result. Of course, while keys

must be unique, a Map can have as many keys as you want.

Job Ready Java418

 Because of the uniqueness of the keys, when we retrieve them from a Map, we get

them back in a Set. If you remember, we learned in a previous lesson that Sets are unor-

dered Lists and must have unique values. This aligns with what we ’ ve said about the keys in

Maps as well.

 If we want all the keys in our populations Map that we created earlier, then we can

create a Set and then pull the keys into the Set. Because a Set is a generic type, we need

to say the type it will hold. The keys in our populations Map were Strings, so we could

declare a keys Set as follows:

 Set<String> keys

 To then get the keys from our Map, we would use the keySet() method. This method

returns a set of keys from our populations Map.

 Set<String> keys = populations.keySet();

 Once done getting the keys, you can then use an enhanced for loop (or other loop) to

cycle through them, as shown in Listing{ 23.3 .

 LISTING 23.3
 Printing the Keys from a Map

 import java.util.HashMap;
 import java.util.Map;
 import java.util.Set;

 public class MapsExample {

 public static void main(String[] args) {

 Map<String, Integer> populations = new HashMap<>();

 populations.put("USA", 328000000);
 populations.put("Canada", 37590000);
 populations.put("United Kingdom", 66800000);
 populations.put("Japan", 126000000);

 System.out.println("Map size is: "+ populations.size());

 // Update the USA
 populations.put("USA", 328000002);

419Lesson 23: Exploring Maps

 // get the Set of keys from the map
 Set<String> keys = populations.keySet();

 // print the keys to the screen
 for (String k : keys) {
 System.out.println(k);
 }
 }
 }

 In this listing we add values to the Map just like before and then print the size. We

follow this by doing a call to put() to update the population for the United States. We sim-

ply add 2 to that population. The code should look familiar to that point.

 We then create our Set object called keys . We call keySet() on our populations Map

to get the set of keys.

 With that completed, we use the enhanced for loop to cycle through each of the items

in the Set that was created. As a reminder, for an enhanced for loop, to the left of the

colon we declare a variable of the type we are pulling from the Set. In this case, we are

getting the keys from our populations Map, which are String values. So, we will defi ne a

variable (k) of type String . To the right of the colon we supply the Collection that contains

our elements we are grabbing. In this case, we are getting the elements from the keys

object we just created and fi lled using keySet() .

 Within the body of our enhanced loop, we will get each key in our keys Set one by one.

Our listing then simply prints each of these key values. Looking at the output, we see the

size and updated population for USA followed by the list of our keys, which is exactly what

we wanted.

 Map size is: 4
 The population of USA is: 328000002
 Canada
 USA
 Japan
 United Kingdom

 NOTE We cannot necessarily predict the order of the keys in the Set we get
using keySet() . Most Map types do not save their data in a specifi c order.

Job Ready Java420

 Listing All the Values Key by Key
 If we want to print out all the values in our Map, one way is to use the keySet() method as

we did in Listing{ 23.3 and then use the get() method with each of those keys.

 In Listing{ 23.4 , we create our Map with items and then again use the enhanced for loop

to display the value. In this case, you can see that we use the get() key with the obtained

value in k to pull the value from populations.

 LISTING 23.4
 Getting Each Value Using the Obtained Keys

 import java.util.HashMap;
 import java.util.Map;
 import java.util.Set;

 public class MapsExample {

 public static void main(String[] args) {

 Map<String, Integer> populations = new HashMap<>();

 populations.put("USA", 328000000);
 populations.put("Canada", 37590000);
 populations.put("United Kingdom", 66800000);
 populations.put("Japan", 126000000);

 Set<Map.Entry<String,Integer>> entries = populations.entrySet();

 for (Map.Entry e : entries) {
 System.out.println("The population of " + e.getKey()
 + " is " + e.getValue());
 }
 }
 }
 }

 When you execute this listing, we get each of the keys along with the

corresponding values.

 The population of Canada is 37590000
 The population of USA is 328000000
 The population of Japan is 126000000
 The population of United Kingdom is 66800000

421Lesson 23: Exploring Maps

 NOTE You might have noticed that in Listing 23.4 , the output printed the
list of elements in a different order than they were added. They were added
as USA, Canada, United Kingdom, and Japan, but printed as Canada, USA,
Japan, and United Kingdom. As mentioned, Sets are unordered, so you
should not rely on a specifi c order to be maintained.

 Listing All the Values: Value Collection
 There are times when we might want to grab all the Values from a Map collection without

really caring about the keys. For example, if we simply wanted to get the average popula-

tion of all the countries in our Map, then we wouldn ’ t need the keys; we ’ d simply need

the values.

 We can also use the values() method to get a Collection of all the values in our Map. In

this case, we are going to get the values as a Collection instead of a Set. In looking at our

populations Map, when we call values() , it will return a Collection of the values, which

will be the Integers containing the population numbers.

 Collection<Integer> popValues = populations.values();

 NOTE The reason we want to use a Collection instead of a Set is that
while we cannot have a duplicate key, we could have a duplicate value.
A Collection lets us have duplicates, whereas a Set will not.

 Most of Listing{ 23.5 should look familiar.

 LISTING 23.5
 Using a Collection to Get All Values

 import java.util.Collection;
 import java.util.HashMap;
 import java.util.Map;

Job Ready Java422

 public class MapsExample {

 public static void main(String[] args) {

 Map<String, Integer> populations = new HashMap<>();

 populations.put("USA", 328000000);
 populations.put("Canada", 37590000);
 populations.put("United Kingdom", 66800000);
 populations.put("Japan", 126000000);

 // get the Collection of values from the Map
 Collection<Integer> popValues = populations.values();

 // list all of the population values
 for (Integer currentPopulation : popValues) {
 System.out.println(currentPopulation);
 }
 }
 }

 In this listing, we are once again adding four countries to our populations Map as we

have done before. We then create a Collection of Integers called popValues and fi ll

it with the values from our Map using the values() method. An enhanced for loop then

prints each of these values using the Integer currentPopulation that was defi ned.

 When this code is executed, the populations from our Map collection are displayed.

 37590000
 328000000
 126000000
 66800000

 Remember, however, that these could be retrieved in any order.

 NOTE We do not have access to the key information for any of the values
when we use the values() method, so it is not always an applicable
method to use. In fact, it is a common interview question to ask how to tell
all the keys that go to value(x) .

423Lesson 23: Exploring Maps

 SUMMARY
 Maps are an often-used collection type that relies on key/value pairs. They are most appro-

priate to use when you have a collection that requires fast lookups by a unique key. As you

learned in this lesson, there are several diff erent ways you can work with Maps, and it is up

to you to decide when each way makes sense to use.

 EXERCISES
 Most people learn best by doing, so this section includes exercises using what you learned

in this lesson about Maps and previously in this course.

Exercise 1: State Capitals

Exercise 2: A Reusable User I/O Class

Exercise 3: Student Quiz Scores

 Exercise 1: State Capitals
 In this exercise, write a simple program that holds all the states and their corresponding

capitals in a HashMap. Your program should include the following features:

• Create a Java Console application called StateCapitals.

• Create a HashMap to hold the names of the states and their corresponding capital

names. (State name is the key; capital name is the value.)

• Load the HashMap with each state/capital pair. This can be hard-coded.

• Print all the state names to the screen. Hint: Get the keys from the map and then

print each state name one by one.

• Print all the capital names to the screen. Hint: Get the values from the map and then

print each capital name to the screen one by one.

• Print each state along with its capital to the screen. Hint: Use keySet() to get each

value from the map one by one and then print both the key and value as you go.

 Your resulting output should look similar to the following, although your order

might vary:

 STATES:
 =======
 Alabama
 Alaska
 Arizona

Job Ready Java424

 Arkansas
 ...
 ...

 CAPITALS:
 =========
 Montgomery
 Juneau
 Phoenix
 Little Rock
 ...
 ...

 STATE/CAPITAL PAIRS:
 ====================
 Alabama - Montgomery
 Alaska - Juneau
 Arizona - Phoenix
 Arkansas - Little Rock

 Exercise 2: A Reusable User I/O Class
 The objective of this exercise includes designing and implementing programs that have

more than one class. As such, you will create a reusable user class.

 NOTE Before coding, you should create a fl owchart for your program to
help plan what it will do.

 Design a class that has methods to ask for and retrieve keyboard input from the user

and to print information out to the console. Your class will not have a main method. Your

class must implement the interface in Exercise Listing{ 23.1 .

 EXERCISE LISTING 23.1
 UserIO Interface

 public interface UserIO {

 void print(String message);

425Lesson 23: Exploring Maps

 String readString(String prompt);

 int readInt(String prompt);

 int readInt(String prompt, int min, int max);

 double readDouble(String prompt);

 double readDouble(String prompt, double min, double max);

 float readFloat(String prompt);

 float readFloat(String prompt, float min, float max);

 long readLong(String prompt);

 long readLong(String prompt, long min, long max);

 }

 The methods that you implement must behave in the following manner:

• print

• Print a given String to the console. The String value displayed should be

passed in as a parameter.

• readString

• Display a given message String to prompt the user to enter in a String ; then

read in the user response as a String and return that value. The prompt mes-

sage should be passed in as a parameter, and the String value read in should be

the return value of the method.

• readInt

• Display a given message String to prompt the user to enter in an integer and

then read in the user response and return that integer value. The prompt mes-

sage value should be passed in as a parameter, and the value that is read in

should be the return of the method.

• Display a prompt to the user to enter an integer between a specifi ed min and

max range and read in an integer. If the user ’ s number does not fall within the

range, keep prompting the user for new input until it does. The prompt message

and min and max values should be passed in as parameters. The value read in

from the console should be the return of the method.

Job Ready Java426

• readDouble

• Display a given message String to prompt the user to enter in a double and

then read in the user response and return that double value. The prompt mes-

sage value should be passed in as a parameter and the value that is read in

should be the return of the method.

• Display a prompt to the user to enter a double between a specifi ed min and max

range and read in a double. If the user ’ s number does not fall within the range,

keep prompting the user for new input until it does. The prompt message and

min and max values should be passed in as parameters. The value read in from

the console should be the return of the method.

• readFloat

• Display a given message String to prompt the user to enter in a fl oat, then read

in the user response and return that fl oat value. The prompt message value

should be passed in as a parameter and the value that is read in should be the

return of the method.

• Display a prompt to the user to enter a fl oat between a specifi ed min and max

range and read in a fl oat. If the user ’ s number does not fall within the range,

keep prompting the user for new input until it does. The prompt message and

min and max values should be passed in as parameters. The value read in from

the console should be the return of the method.

• readLong

• Display a given message String to prompt the user to enter in a long; then read

in the user response and return that long value. The prompt message value

should be passed in as a parameter, and the value that is read in should be the

return of the method.

• Display a prompt to the user to enter a long between a specifi ed min and max

range and read in a long. If the user ’ s number does not fall within the range,

keep prompting the user for a new input until it does. The prompt message and

min and max values should be passed in as parameters. The value read in from

the console should be the return of the method.

 These methods will be used by another class with a main method, and this class imple-

mentation will be taking over the job of handling all the I/O to the console. Therefore, its

methods need to be general so that the program built on top of it can use it to collect or

display user input for just about anything.

 The example in Exercise Listing{ 23.2 should be possible if your implementing class was

called UserIOImpl .

427Lesson 23: Exploring Maps

 EXERCISE LISTING 23.2
 Testing the UserIO Interface

 public class TestingUserIO {
 public static void main(String[] args) {
 UserIO userIO = new UserIOImpl();
 int smallNum = userIO.readInt("Give me a small number :");
 int bigNum = userIO.readInt("Now give me a much bigger number! :");
 if(bigNum < smallNum){
 userIO.print("Hey! " + smallNum +" is BIGGER than " + bigNum);
 userIO.print("I guess I can fix it.");
 int swapNum = bigNum;
 bigNum = smallNum;
 smallNum = swapNum;
 }
 int betweenNum = userIO.readInt("Now give me one in between! : ",
smallNum, bigNum);
 userIO.print("I like the number " + betweenNum + "!");
 }
 }

 You will use the result of this class in the following exercise.

 Exercise 3: Student Quiz Scores
 In this exercise you will write a program that stores quiz scores for each student in a class

and calculates the average quiz score for each student on request. The user should be able

to do the following:

• View a list of students in the system

• Add a student to the system

• Remove a student from the system

• View a list of quiz scores for a given student

• View the average quiz score for a given student

 It is up to you to design and implement a reasonable user interface (UI) menu system.

You should design the UI and make a program fl ow chart before you begin coding.

 Your program should include the following features:

• This program will be a Java console application called StudentQuizGrades.

• The program should use the UserIO class created previously for all console input

and output.

Job Ready Java428

• The program must store student quiz data in a HashMap that has the student name

as the key and an ArrayList of integers as the values.

 Once you have the program working, you can do the following for an additional

challenge:

1. Calculate the average quiz score for the entire class.

2. Find and list the student(s) with the highest quiz score.

3. Find and list the student(s) with the lowest quiz score.

Lesson 24

 Using Simple File
Input and Output

 Up to this point, we have been dealing with data as variables

(primitives and objects) in memory and occasionally reading

values from the console (and then promptly storing these values

in a variable). This has worked well, but all of our data disappears

when the program completes. To write truly useful programs, we

must be able to store data when program execution ends and read

that data the next time we run our programs.

 In this lesson, we will begin to explore data persistence and ways

that we can translate data from variables (in memory) to fi les (on

disk) for long-term storage and then reverse the process when we

need to access the data later. We will concentrate on storing data

in fl at text fi les for now, but the principles of this lesson continue to

be relevant when we start storing data in relational databases.

Job Ready Java430

 We will also take a look at one way we can do simple fi le input

and output. For now, however, we ’ ll cover the basics—just enough

to get data into and out of fi les.

 LEARNING OBJECTIVES
 By the end of this lesson, you will be able to:

• Describe options for data storage

• Describe how related data is represented in object-oriented languages

• Defi ne marshaling and unmarshaling

• Explain the characteristics of a fi le format

• Create a plan to write data to and read data from a fi le

• Write to a fi le using PrintWriter

• Use Scanner to read from a fi le

 DATA STORAGE AND REPRESENTATION
 We have two options available to us for data storage: we can store data in memory, which

is volatile, or we can store the data on more permanent media such as a hard disk, fl ash

drive, or optical drive. Java has libraries that allow us to write data to and read data from

more permanent media whether connected locally, on a network, or in the cloud. This is

convenient for us, but these libraries don ’ t have much intelligence—they will simply write

out the bits that we give them. It is up to us to decide how this data should be represented

and translated.

 A group of related data is generally represented by an object in object-oriented lan-

guages such as Java. The object itself represents the thing being modeled (e.g., a stu-

dent) and the fi elds on the object represent properties of the thing being modeled (e.g.,

fi rst name, last name, age). In past lessons, we have seen how to create these classes and

instantiate them into objects. We have also seen how to set values for the properties on

the objects and even how to store them in maps and lists. We have not had to do any trans-

lation or marshaling/unmarshaling of any of these values because everything has always

been stored as objects in memory.

 Now that we want to permanently store this data, we must decide how the data will be

represented. As mentioned in the overview, for now, we will be storing our data in fl at text

fi les on a local hard drive. We must encode the objects we have in memory in some way

so that we can store them. The process of translating data from an object in memory into

431Lesson 24: Using Simple File Input and Output

another format and writing it to permanent storage is known as marshaling. The reverse g

process—reading the data from permanent storage and translating it into objects in mem-

ory—is known as unmarshaling. g

 Our choice of using fl at text fi les as our storage format implies that our data (even

numbers) will be stored as text. We must design a fi le format that allows us to easily read

from and write to the fi le, and that allows us to easily tell where the data of one object

ends and the next one begins. We must also keep track of which fi elds are text and which

fi elds are numbers so that we can convert them properly when reading from the fi le.

 FILE FORMAT, MARSHALING,
AND UNMARSHALING
 To illustrate fi le format, marshaling, and unmarshaling, we will use the example of storing

a student class roster to a fi le. We will discuss the particulars of the fi le format here and

cover the details of the implementation in Lesson 27. In that lesson, a complete solution

will be coded along with the lessons.

 The key characteristics of any fi le format we choose to implement are as follows:

• We must be able to easily tell where one student record ends and the next

one begins.

• We must be able to easily tell where one property within a student record ends and

the next begins.

• Malformed records should have little or no impact on our ability to properly read

subsequent records.

• The format must make it straightforward to read from and write to the fi le. In other

words, the format should be easy to parse.

 Given these overall requirements, we will go with the following fi le format:

• Each line in the fi le represents one student. This satisfi es the fi rst, third, and fourth

bulleted items.

• Each fi eld in the student record will be separated with the token :: . This satisfi es

the second item in the previous list. This token acts as a boundary between each

fi eld and can be called a delimiter . Commas and tabs are often used as delimiters.rr

 As a bonus, we can tell how many students are in the roster by the number of lines

in the fi le.

Job Ready Java432

 Student Class
 In Listing{ 24.1 , you see a Student class. The Student class shows how student data is

stored in memory.

 LISTING 24.1
 The Student Class

 public class Student {
 private String firstName;
 private String lastName;
 private String studentId;
 private String cohort; // Java cohort month/year

 public Student(String studentId) {
 this.studentId = studentId;
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getStudentID() {
 return studentId;
 }

 public String getCohort() {
 return cohort;
 }

433Lesson 24: Using Simple File Input and Output

 public void setCohort(String cohort) {
 this.cohort = cohort;
 }
 }

 If we look closely at the Student class, we see that there is nothing new being pre-

sented. Our class has four fi elds, fi rstName , lastName , studentID , and cohort , that we will

want to save.

 File Format Example
 When we save our data, we will want to know the order and the fi le format. The fi le format

is simply how the data will be stored in the fi le. In the case of our Student data, the follow-

ing fi le format will be used:

 <student id>::<first name>::<last name>::<cohort>

 Here ’ s an example:

 0001::John::Doe::Java - August 2021
 0002::Sally::Smith::Java - April 2021
 0003::John::Jones::.NET - Jan 2021

 Marshaling and Unmarshaling Approach
 Now that we know how our student data will be represented in memory and on the disk,

we can write code that translates from one to the other. This process will include opening

the fi le, working with each Student object, and then cleaning up or closing everything.

 Here is the outline for writing student data to the fi le:

1. Open the fi le for writing.

2. Go through the collection of students one by one.

3. For each student, do the following:

a. Create a string consisting of student ID, fi rst name, last name, and cohort (in

that order), separated by :: .

b. Write the string to the output fi le.

c. Get the next student (if one exists) and go back to step a.

d. If there are no more students to process, then quit.

4. Close the fi le.

Job Ready Java434

 Here is the outline for reading student data from the fi le:

1. Open the fi le for reading.

2. For each line in the fi le, do the following:

a. Read the line into a string variable.

b. Split the string into chunks at the :: delimiter.

c. Create a new student object.

d. Use the fi rst value from the split string to set the student ID.

e. Use the second value from the split string to set the student fi rst name.

f. Use the third value from the split string to set the student last name.

g. User the fourth value from the split string to set the cohort value.

h. Put the newly created and initialized student object into a collection or map.

i. If there are more lines in the fi le, go to step a.

j. If there are no more lines in the fi le, quit creating student objects.

3. Close the fi le.

 This high-level marshaling/unmarshaling approach will continue to be useful even as we

move from storing our data in fl at fi les to storing data in relational databases. We will use

diff erent tools and libraries, but the general concepts will remain the same.

 SIMPLE FILE I/O
 Let ’ s dig deeper and cover the basics of how to do simple fi le input and output. We ’ ll add

more elegant error processing code after we learn about handling exceptions in Lesson 26.

We ’ ll start by writing to a fi le using PrintWriter . We will follow this by seeing how to use

the same Scanner class we ’ ve used previously to read from the fi le we create.

 NOTE There are lots of ways to read and write to fi les. This lesson is
presenting one approach to do this so that you can see the process.
The focus of the following is not to go into depth, but so that you have a
simple way to read and write to fi les on your own.

435Lesson 24: Using Simple File Input and Output

 Writing to a File
 We will use a PrintWriter object to write to our fi les. There are several other approaches

that you can use to write to fi les, but we will use PrintWriter because it is similar to

writing output to the console, which we ’ ve been doing with the System.out .

 Because we are writing to a fi le, we will pass PrintWriter a FileWriter object to take

care of handling the writing of the characters to the fi le. When we create the FileWriter

object, we will pass it a single parameter—the name of the fi le we want to write. This can

be any valid fi lename.

 Because both PrintWriter and FileWriter are existing classes, we will need to

include their code. As we have learned, this is done by adding import statements

to our code:

 import java.io.PrintWriter;
 import java.io.FileWriter;

 With the import statements in place, we can create our PrintWriter object.

 PrintWriter out = new PrintWriter(new FileWriter("OutFile.txt"));

 In this case, we are creating a PrintWriter object called out . As mentioned, we are

passing into it a new FileWriter object that is created using our fi lename, OutFile.

txt . The end result of this call is that we ’ ve opened a stream that can be used to write

to our fi le.

 With our PrintWriter object created, we can use it to write information. Listing{ 24.2

pulls this process together into a complete.

 LISTING 24.2
 Writing to a File

 import java.io.FileWriter;
 import java.io.PrintWriter;

 public class SimpleFileIO {

 public static void main(String[] args) throws Exception {
 try (PrintWriter out = new PrintWriter(new
FileWriter("OutFile.txt"))) {
 out.println("this is a line in my file...");
 out.println("a second line in my file...");

Job Ready Java436

 out.println("a third line in my file...");
 out.flush();
 out.close();
 }
 }
 }

 Taking a look at the code in the listing, we can again see that the main method starts by

declaring and initializing a PrintWriter called out to write to a fi le called OutFile.txt .

If OutFile.txt does not exist, it will be created automatically. If it does exist, it will be

overwritten.

 Once out is created, we can use its println() method to write to our fi le. We use

println() in the same manner that we used it with System.out to display information to

the console. You can see that we write three lines to our fi le in this listing.

 Writing to a fi le is diff erent from writing to the console. When we write out to the con-

sole, it shows up on the console right away. Well, when we write to a fi le, it may or may not

go right away. The system might save the items to be written and write them out to the fi le

in a more effi cient way. For example, if we have a lot of little items being written to the fi le,

then the PrintWriter might bundle them and write them to the fi le at the same time. As

such, once we ’ ve done our three calls to println() , we don ’ t know if our lines have actually

written. By calling the fl ush() method, we force everything to be written to the fi le. This

process gives us a method for getting everything written without further delay.

 The last thing we need to do is call the close() method, which closes the underlying

stream that PrintWriter uses to write to the fi le. It is important to close resources such

as streams.

 NOTE Even though we don ’ t have to manually allocate/deallocate
memory in Java, we can still have resource leaks if we don ’ t properly
clean up after ourselves. In Lesson 26, you will learn about exception
handling and using throws and try . Writing items to a fi le is an area of
your code where you will want to apply exception handling (and the use
of the try command).

 Exceptions
 When you typed the code from Listing{ 24.2 into your program, you might have noticed

that after the call to main is the added phrase throws Exception . If you remove throws

Exception from the line of code, then NetBeans will highlight an issue for the line where

the PrintWriter is declared and initialized, as shown in Figure{ 24.1 .

437Lesson 24: Using Simple File Input and Output

 Creating a new FileWriter can cause an exception called an IOException . When we

encounter code that can throw an exception (as this code does), we should handle the

error in some way.

 One way to handle this situation is to put a label on our main method that indicates

that the code contained in the main method may cause an exception to be thrown. In

addition to that label, you will also see that the keyword try has been added. The use of

PrintWriter has been placed within the try command ’ s parentheses. The command that

writes the information to the fi le has been placed in a code block for the try . This added

code is the minimal code to handle an error should it happen.

 For now, we are just going to label our code to indicate that it may cause an error and

add a simple try command. We will learn about throw , try , and how to properly handle

exceptions in Lesson 26 on exception handling. For now, you need to add these to your

listing to fi x the syntax error that will otherwise be identifi ed by NetBeans.

 The OutFile .txt File
 When we run Listing{ 24.2 , we don ’ t see anything on the screen. That ’ s because we didn ’ t

send anything to the screen. Rather, we sent it to the fi le OutFile.txt . You can fi nd this

fi le on your hard drive, or you can look at it from within NetBeans.

 To fi nd the fi le in NetBeans, start by clicking the Files tab in the Projects pane. This will

show a diff erent view of our project that lists all the fi les that we actually have on disk. As

you can see in Figure{ 24.2 , one of our fi les is the new OutFile.txt that we just created.

 Figure 24.1 An exception that must be caught

Job Ready Java438

 If you double-click OutFile.txt in the File tab, it will open the fi le, as shown in

Figure{ 24.3 .

 As you can see, all three lines were written to our fi le. If you run the program again, it

will overwrite these lines.

 Reading from a File
 We will use the Scanner object to read from our fi les. There are alternative approaches to

reading from fi les, but we will use this one because it is similar to reading from the con-

sole. Listing 24.3 opens the fi le OutFile.txt , reads each line, and prints each line of the

fi le to the screen.

 Figure 24.2 The Files tab

439Lesson 24: Using Simple File Input and Output

 LISTING 24.3
 Reading the OutFile.txt File

 import java.io.BufferedReader;
 import java.io.FileReader;
 import java.util.Scanner;

 public class SimpleFileIO {

 public static void main(String[] args) throws Exception {

 Scanner sc = new Scanner(
 new BufferedReader(new FileReader("OutFile.txt")));

 // go through the file line by line
 while (sc.hasNextLine()) {

 Figure 24.3 The OutFile.txt fi le

Job Ready Java440

 String currentLine = sc.nextLine();
 System.out.println(currentLine);
 }
 }
 }

 If we look at the main() method in our listing, we see that we are creating a new

Scanner . We have created Scanner s in the past; however, this time we create it with

a BufferedReader instead of System.in . The BufferedReader will require a new

FileReader that includes the name of the fi le we want to read. We pass this fi lename

(OutFile.txt((in our case) to the FileReader constructor. This makes for a long line, but it

opens our fi le for reading.

 Scanner sc = new Scanner(new BufferedReader(new FileReader("OutFile.txt")));

 Like working with the FileWriter , creating a new FileReader can cause an error. Spe-

cifi cally, if the fi le specifi ed in the constructor does not exist, a FileNotFoundException

will be thrown. Again, we will learn in Lesson 26 how to handle exceptions, but for now we

added throws Exception to the main() method.

 After the Scanner has been created and initialized properly, we use methods such as

hasNextLine() and nextLine() , just as we do when reading from the console. The has-

NextLine() checks to see whether there is an additional line in our fi le. As long as there

is, the while loop will then call nextLine() to get it, followed by a call to System.out.

println() to display it to the console.

 this is a line in my file...
 a second line in my file...
 a third line in my file...

 SUMMARY
 In this lesson, you learned about the high-level marshaling/unmarshaling approach, which

will be useful as you work with data, whether storing it in fl at fi les or in databases. We then

jumped into code to see a simple way to do fi le input and output. This lesson has just enough

to get you started. We will look at some more complicated scenarios in future lessons.

 EXERCISES
 Most people learn best by doing, so this section includes exercises using what you learned

in this lesson and previously in this course.

441Lesson 24: Using Simple File Input and Output

Exercise 1: Creating State Capitals

Exercise 2: Hashing the State Capitals

Exercise 3: A State Guessing Game

Exercise 4: Objectifying States

 Exercise 1: Creating State Capitals
 In this exercise, you write a program that creates a fi le called StateCapitals.txt that has

a list of states and their capitals with a delimiter between them. The data to write to your

fi le is as follows:

 Alabama::Montgomery
 Alaska::Juneau
 Arizona::Phoenix
 Arkansas::Little Rock
 California::Sacramento
 Colorado::Denver
 Connecticut::Hartford
 Delaware::Dover
 Florida::Tallahassee
 Georgia::Atlanta
 Hawaii::Honolulu
 Idaho::Boise
 Illinois::Springfield
 Indiana::Indianapolis
 Iowa::Des Moines
 Kansas::Topeka
 Kentucky::Frankfort
 Louisiana::Baton Rouge
 Maine::Augusta
 Maryland::Annapolis
 Massachusetts::Boston
 Michigan::Lansing
 Minnesota::Saint Paul
 Mississippi::Jackson
 Missouri::Jefferson City
 Montana::Helena
 Nebraska::Lincoln
 Nevada::Carson City
 New Hampshire::Concord
 New Jersey::Trenton
 New Mexico::Santa Fe
 New York::Albany

Job Ready Java442

 North Carolina::Raleigh
 North Dakota::Bismarck
 Ohio::Columbus
 Oklahoma::Oklahoma City
 Oregon::Salem
 Pennsylvania::Harrisburg
 Rhode Island::Providence
 South Carolina::Columbia
 South Dakota::Pierre
 Tennessee::Nashville
 Texas::Austin
 Utah::Salt Lake City
 Vermont::Montpelier
 Virginia::Richmond
 Washington::Olympia
 West Virginia::Charleston
 Wisconsin::Madison
 Wyoming::Cheyenne

 You will use this fi le for the following exercise.

 NOTE Keep it simple! You can write each of the lines of information just
like you saw in Listing 24.2 .

 Exercise 2: Hashing the State Capitals
 In this exercise, write a program that uses the fi le you created in Exercise 1 to load infor-

mation into a HashMap. If you recall, you loaded state capitals into a HashMap in Exercise 1

of Lesson 23. This time, your program must do the following:

• Create a HashMap to hold the names of all the states and their corresponding capi-

tal names. (State name is still the key and the capital name is the value.)

• Load the HashMap with each state/capital pair using the StateCapitals.txt fi le

you created in Exercise 1.

• After loading, print out how many state/capitals pairs are inside your map.

• Then print out all the state names to the screen.

 Exercise 3: A State Guessing Game
 Expand on Exercise 2. Create a small knowledge game. Choose a random state and prompt

the user to input its capital. Let them know if they get it correct.

443Lesson 24: Using Simple File Input and Output

 To take this exercise to the next level, make the following improvements:

• Ask them how many they want to guess and choose that many states. (Don ’ t allow

duplicates.)

• Give them a point for each correct guess and subtract one for each miss.

• Print out a total score at the end.

 Here ’ s some sample output (order may vary):

 READY TO TEST YOUR KNOWLEDGE? WHAT IS THE CAPITAL OF 'Alaska'?
 Juneau
 NICE WORK! Juneau IS CORRECT!

 Exercise 4: Objectifying States
 This exercise is similar to the previous one, but you will create an object to hold informa-

tion about the capital of each state. This object will be the value for each state/capital pair.

 Also, instead of doing the exhaustive hand hard-coding of each capital ’ s informa-

tion, you should load in all the information from a given fi le. Your program must do the

following:

• It will have a class called Capital with the following properties:

• Name

• Population

• Square mileage

• It will have another class with your main method called StateCapitalsApp .

• The main method should include a HashMap declared to map the name of a

state to its corresponding Capital object. (The state name is the key; the Capi-

tal object is the value.)

• Next, use your data unmarshaling strategy to use a fi le to create all appropri-

ate Capital objects and store them under their appropriate state name in your

HashMap. Use the data at the end of this exercise to create a fi le called More-

StateCapitals.txt to be used.

• Print out a message detailing how many state capitals were loaded into

your HashMap.

• Next, print out each state and its capital ’ s name, population, and square mileage to

the screen. (Hint: Use the key set to get each Capital object out of the map one by

one and then print each fi eld of the Capital object to the screen.)

Job Ready Java444

• Prompt the user for a population limit, and print out all states and their capitals

that have a population over that limit. (Hint: You will have to add code to ask the

user for a minimum population. Once you have this value, go through each state/

capital pair as you did for the previous step, but only print the information for capi-

tals that have a population above the limit.)

• Finally, prompt the user for an area limit, and print out all states and capitals that

have an area under that limit.

 The following is sample output. The order of information may vary.

 50 STATE/CAPITAL PAIRS LOADED.
 ==============================
 Alabama - Montgomery | Pop: 205000 | Area: 156 sq mi
 Alaska - Juneau | Pop: 31000 | Area: 3255 sq mi
 Arizona - Phoenix | 1445000 | Area: 517 sq mi
 Arkansas - Little Rock | Pop: 193000 | Area: 116 sq mi
 …
 …

 Please enter the lower limit for capital city population: 150000
 150000

 LISTING CAPITALS WITH POPULATIONS GREATER THAN 150000:

 Alabama - Montgomery | Pop: 205000 | Area: 156 sq mi
 Arizona - Phoenix | 1445000 | Area: 517 sq mi
 Arkansas - Little Rock | Pop: 193000 | Area: 116 sq mi
 …
 …

 Please enter the upper limit for capital city sq mileage:
 150

 LISTING CAPITALS WITH AREAS LESS THAN 150:
 Arkansas - Little Rock | Pop: 193000 | Area: 116 sq mi
 …
 …

 The following is the data you should have in your fi le. You can modify Exercise 1 to

write this data instead of the data you used before:

 Alabama::Montgomery::205764::155.4
 Alaska::Juneau::31275::2716.7
 Arizona::Phoenix::1445632::474.9
 Arkansas::Little Rock::193524::116.2

445Lesson 24: Using Simple File Input and Output

 California::Sacramento::466488::97.2
 Colorado::Denver::600158::153.4
 Connecticut::Hartford::124775::17.3
 Delaware::Dover::36047::22.4
 Florida::Tallahassee::181376::95.7
 Georgia::Atlanta::420003::131.7
 Hawaii::Honolulu::337256::85.7
 Idaho::Boise City::205671::63.8
 Illinois::Springfield::116250::54
 Indiana::Indianapolis::820445::361.5
 Iowa::Des Moines::203433::75.8
 Kansas::Topeka::127473::56
 Kentucky::Frankfort::25527::14.7
 Louisiana::Baton Rouge::229493::76.8
 Maine::Augusta::19136::55.4
 Maryland::Annapolis::38394::6.73
 Massachusetts::Boston::617594::48.4
 Michigan::Lansing::114297::35
 Minnesota::St. Paul::285068::52.8
 Mississippi::Jackson::173514::104.9
 Missouri::Jefferson City::43079::27.3
 Montana::Helena::28190::14
 Nebraska::Lincoln::258379::74.6
 Nevada::Carson City::55274::143.4
 New Hampshire::Concord::42695::64.3
 New Jersey::Trenton::84913::7.66
 New Mexico::Santa Fe::67947::37.3
 New York::Albany::97856::21.4
 North Carolina::Raleigh::403892::114.6
 North Dakota::Bismarck::61272::26.9
 Ohio::Columbus::787033::210.3
 Oklahoma::Oklahoma City::579999::607
 Oregon::Salem::154637::45.7
 Pennsylvania::Harrisburg::49528::8.11
 Rhode Island::Providence::178042::18.5
 South Carolina::Columbia::129272::125.2
 South Dakota::Pierre::13646::13
 Tennessee::Nashville-Davidson::601222::473.3
 Texas::Austin::790390::251.5
 Utah::Salt Lake City::186440::109.1
 Vermont::Montpelier::7855::10.2
 Virginia::Richmond::204214::60.1
 Washington::Olympia::46478::16.7
 West Virginia::Charleston::51400::31.6
 Wisconsin::Madison::233209::68.7
 Wyoming::Cheyenne::59466::21.1

Lesson 25

 Applying
Application Design

 In this lesson, we will step back from the code and focus on

some foundational topics that are needed by master-level

Java developers. We have seen that well-designed classes are

cohesive and well encapsulated. As we start to write more

complex applications—applications with multiple classes and a

wide-ranging set of capabilities—we need additional tools and

techniques to keep our code clean and easy to maintain. In this

lesson, we will look at one of these techniques, tiered application

design, and how we can apply it.

 Additionally, we will discuss the software development lifecycle

(SDLC). SDLC is a general term for the process or processes that

we use to build software applications. There are many different

approaches and schools of thought on this topic, but there are

447Lesson 25: Applying Application Design

two main categories: waterfall and iterative. We will look at each

approach and then outline the approach that we will use in the

rest of the course.

 LEARNING OBJECTIVES
 By the end of this lesson, you will be able to:

• Defi ne CRUD

• Explain how tiered design benefi ts application development

• Identify the basic tiers of tiered design

• Describe the diff erent parts of the Model-View-Controller pattern

• Explain packages as they apply to coding development

• Understand what the software development lifecycle is

• Explain waterfall including its advantages and disadvantages

• Compare waterfall to iterative approaches to designing software

• Explain agile including its advantages and disadvantages

 CRUD APPLICATIONS
 CRUD stands for Create, Read, Update, and Delete. We use this to describe applications

that are primarily concerned with managing, updating, and storing information. CRUD

applications come in all shapes and sizes, for example:

• The contact manager on your phone

• Human resources (HR) and medical systems

• Amazon

• Facebook

 Most business applications are CRUD applications to some degree. Because businesses

depend on their data to run effi ciently, CRUD applications are usually mission critical to

a company. We will start building CRUD applications now using the design patterns and

techniques that are used for building web applications. Many of these patterns and tech-

niques are overkill for the small console applications we will be building in several of the

next lessons, but we introduce these patterns to you now to help you prepare for building

web applications.

Job Ready Java448

 Using a Tiered Design
Tiered application design allows us to ensure that our principles of separation of concerns,n

cohesion, and encapsulation are present in all parts of our applications. By keeping our

concerns separated, we can reuse components in a variety of environments. In other

words, our classes and layers are not tightly coupled to each other.

 The Basic Tiers
 CRUD applications have four basic layers:

• Storage: Files, databases, or other persistent storage

• Data access: Classes that handle retrieving and storing data

• Business logic: Classes that handle all logic specifi c to your problem domain

(traditionally referred to as the service layer) rr

• User interface: Classes that handle all interaction with the user (traditionally

referred to as the presentation layer) rr

 In addition to these basic tiers, which are also shown in Figure{ 25.1 , we have data transfer

objects (DTOs). DTOs are used to move data from one tier to another in our applications. s

They are simply Java classes that have fi elds and getters/setters and no other methods. As

the name implies, they are used to ferry data between the layers of our application.

 THE MODEL-VIEW-CONTROLLER PATTERN
 We will use a specifi c tiered application design called the Model-View-Controller (MVC)

pattern. MVC, which is shown in Figure{ 25.2 , is one of many design patterns that software

developers use to build applications. As the name implies, MVC applications consist of

three main layers, or types, of components.

Data
Transfer
Objects

User Interface

Business Logic

Data Access

Storage

 Figure 25.1 Basic tiers of an application

449Lesson 25: Applying Application Design

• Model: The model comprises all the components in the application that deal with

representing and storing data. In our applications, this includes the storage layer,

the data access layer, and the DTOs.

• Controller: The controller is the brain of the program. The controller orchestrates

the actions of the other components in the application in a way that accomplishes

the application ’ s goals. You can think of a controller as a general contractor—it

knows what needs to be done, when it needs to be done, and who can do it, but it

never does the work itself. It uses other classes in the application to get the actual

work done.

• View: The view is responsible for interacting with the user. No other compo-

nent in the application is allowed to interact with the user. All of this must go

through the view.

Model

Data
Transfer
Objects

View

Controller

Data Access

Storage

 Figure 25.2 MVC model

 Design Pattern
 A design pattern is a general approach or template for solving a commonly
occurring problem that can be applied in many different situations. Design patterns
can be considered best practices that developers can apply to commonly occurring
software design problems.

 PACKAGES
 There is a Java feature called packages that helps us further organize our code. Eachs

package is essentially a folder into which we place related classes. We ’ ve been using pack-

ages in a nominal way already—the IDE automatically creates a package for each project

that we create. Going forward, we will be more intentional about creating our packages.

Job Ready Java450

Each of the basic tiers or types of classes has its own package. We recommend that you

follow this pattern for all your projects in the remainder of the course:

• DTOs go in the dto package

• Data access objects (DAOs) go in the dao package

• Controller objects go in the controller package

• User interface objects go in the ui package

 SOFTWARE DEVELOPMENT LIFECYCLE
OVERVIEW
 In addition to understanding the MVC pattern, it is also important to understand the SDLC,

the process or processes that we use to build software applications. There are many dif-

ferent approaches and schools of thought on this topic, but there are two main categories:

waterfall and iterative. We will look at each approach and then outline the approach that

we will use in the rest of the course.

 Waterfall
 The waterfall approach to building software has been around a long time, and it is simple h

and intuitive. The main outline looks like an outline for approaching just about any project

and consists of these parts:

1. There is an idea for a project.

2. All the requirements for the project are gathered, and a comprehensive specifi ca-

tion is created.

3. The software is written according to the specifi cation.

4. Testing is done against the specifi cation.

5. Bugs are reported and fi xed.

6. The project is shipped.

 In a waterfall project, this sequence is done only once, which means that this process

does not respond to change very well. It rests on the premise that all the requirements can

be gathered and specifi ed up front.

 Despite its infl exible nature, the waterfall approach is well suited for certain types of

projects. If you have a project where all the requirements are known up front and you

know they won ’ t change, this process is great. Generally, those types of projects involve

systems that put people ’ s lives on the line, such as avionics or medical equipment systems.

451Lesson 25: Applying Application Design

These types of systems must get it right the fi rst time and must be verifi able against a

stable specifi cation because the price of a mistake is very high.

 Iterative Development
Iterative software development takes a diff erent approach. It embraces change becauset

change is inevitable in most projects. Many of the steps in the iterative process are the

same as those in the waterfall model, but the steps are repeated as many times as needed

to complete the project. Each time through the process adds functionality and refi nes the

project. It looks like this:

1. There is an idea for a project.

2. Initial requirements are gathered.

3. The next iteration is planned.

4. The features scheduled for that iteration are developed and tested.

5. The features scheduled for that iteration are delivered.

6. Wash, rinse, repeat steps 2–5 until the project is ready to ship.

 This process rests on the premise that all requirements cannot be known up front

and that even the requirements that are known up front are subject to change at any

point. Steps 2 through 5 are repeated until the project is ready to ship. Each time step{2 is

repeated, the team re-evaluates the overall requirements and makes sure that the project

is still on course relative to the current situation.

 The iterative approach is appropriate for almost all projects. It is especially appropriate

for business applications because changes in the market or actions by competitors can

drastically change the requirements of a project over time. The iterative approach expects

those changes and mitigates the risk associated with those changes by delivering features

a few at a time in each iteration and then frequently confi rming that the project is on

course to meet the current needs of the client.

 AGILE DEVELOPMENT
 We use a type of iterative development called agile in this course. There are many diff er-e

ent approaches that call themselves agile, and each methodology has its own emphasis

and terms for the concepts discussed here. Devotees of the diff erent agile approaches

can be a bit zealous and each company has its own take on agile development. We strive

to show you these concepts in a method-agnostic manner. Having said that, we have to

start with something, and we take concepts from the OpenUP and eXtreme Programming

approaches.

Job Ready Java452

 Project Lifecycle
 The big pattern that is repeated in the OpenUP approach consists of four phases.

• Phase 1: Inception

• Phase 2: Elaboration

• Phase 3: Construction

• Phase 4: Transition

 This is the structure for the overall project as well as for each iteration within the

project. The main idea is that as the project moves through the phases on a macro level,

the team is adding value and reducing risk to the project. Value in an agile project equates

to working, production-quality code that meets the current requirements of the project.

The more working code the team has delivered, the greater the value of the project and

the lower the risk to successful delivery.

 Phase 1: Inception
 Inception is the beginning of any project. To move on to the next overall phase of the

project, the team must do the following:

• Agree on scope and objectives

• Understand what is to be built

• Identify key system functionality

• Determine at least one feasible solution

• Understand the high-level estimate for cost

• Understand the high-level schedule

• Understand the high-level risks to the project

 In other words, all stakeholders must agree on what will be built, agree on the approxi-

mate cost (will it be $10,000 or $1,000,000?), agree on the time frame (will this take three

months or three years?), and agree that a solution to the problem is feasible (for example,

that the solution doesn ’ t require time travel or some other impossibility).

 Phase 2: Elaboration
 Once all stakeholders agree to the criteria of the Inception phase, the project moves into

Elaboration. In this phase, the stakeholders do the following:

• Gather more detailed requirements

• Design, implement, validate, and establish a baseline for the technical architecture

of the project

453Lesson 25: Applying Application Design

• Mitigate essential risks

• Have a more accurate idea of costs and schedule

 This phase is all about gaining a better understanding of the requirements and mit-

igating technical risk. The main deliverable of Elaboration is an executable architecture , e

which is a rudimentary working software proof-of-concept for the technically riskiest

 portions of the project. To the extent possible, the goal is to prove that a solution is

 possible. To move on to the next phase, all stakeholders must agree that the executable

architecture represents the technical path forward. Everyone must also agree that the

value delivered and remaining risks are acceptable.

 Phase 3: Construction
 Next, the project moves into the Construction phase. This is where the development team

starts development of the features of the product. Features are delivered in an iterative

manner—iteration lengths are short (usually from one to three weeks), and features are

delivered at the end of each iteration. After each iteration, the team re-examines the

requirements to make sure nothing has changed, corrects course if necessary, plans the

features for the next iteration, and then develops the features for that iteration. Testing

occurs constantly in this process. Features are tested as they are completed, and all bugs

are fi xed before the end of the iteration.

 This process continues until the stakeholders determine that all the required fea-

tures have been implemented and that it is time to switch focus to tuning, polishing, and

deployment.

 Phase 4: Transition
 The Transition phase concentrates on getting the project ready for release. This phase

includes beta testing to make sure that customer expectations are met and involves gath-

ering information on lessons learned so that future projects can be improved.

 Once all stakeholders agree that the software is ready for release, it is delivered, and

the project comes to a close.

 Iterations
 The project lifecycle is measured in months and keeps its focus at the overall stakeholder

level. The iteration lifecycle is measured in weeks and focuses on the team doing the

planning and work for the iteration. Finally, the work item level is measured in days and is

focused on the individual team member.

 A few hours are spent at the beginning of each iteration planning the work to be done.

Time is also spent here in verifying that all the project assumptions and requirements still

Job Ready Java454

hold. If requirements have changed, adjustments are made here. You can think of this as

the Inception phase of the iteration.

 After planning is complete, a few days are spent in up-front technical planning and

architecture. This addresses any technical risks or concerns for the work to be done during

the iteration. You can think of this as the Elaboration phase of the iteration.

 After technical planning is completed, work on the features begins. Developers work on

individual work items according to the iteration plan. Features are tested as they are deliv-

ered, and bugs are fi xed as they are reported. The team strives to get a stable build at the

end of each week. This is the Construction phase of the iteration.

 As the iteration ends, all completed features are fi nalized and put into a fi nal stable

iteration build—this is the output of the iteration. A few hours are spent at the end of

the iteration to gather lessons learned. This information is then used to make the next

 iteration better. This is the Transition phase of the iteration.

 These iterations continue until all the required features of the application are

 complete. After that, the overall project moves into the Transition phase, and the entire

project is delivered to the customer.

 NOTE Appendix C contains an agile approach checklist for console
CRUD applications.

 SUMMARY
 Generally speaking, tiered design is overkill for console applications of the size we have

been doing in this course so far. However, we are using this approach in preparation for

moving our applications to the web. MVC is one of the most widely used patterns in web

application development, and you will use it for all the web application projects and

assignments.

 This lesson also covered the software development lifecycle. The SDLC describes how

we work in teams to deliver large applications to our customers. Understanding how this

works and how you, as a developer, fi t into the overall picture is important to your success

as a professional software developer. You should follow the agile approach to develop-

ment for your projects throughout the rest of this course.

Lesson 26

 Handling
Exceptions

 It is inevitable that your programs will sometimes have errors.

These can be errors within your code such as dividing by zero,

errors caused by bad data, or errors caused by numerous other

reasons. Error conditions in Java are represented by exceptions.

The Java mechanisms for handling exceptions are the try , catch ,

and fi nally constructs and the throws keyword.

 One of the marks of a professional developer is that their

programs handle exceptions and recover gracefully. This means

that predictable error conditions are expected and do not crash

the program because additional code is written to handle these

runtime errors.

Job Ready Java456

 LEARNING OBJECTIVES
 By the time you fi nish this lesson, you will be able to:

• Defi ne an exception

• Diff erentiate between checked and unchecked exceptions

• Handle an exception with try , catch , and fi nally

• Throw an exception

• Explain exception translation and encapsulation

 EXCEPTION HANDLING
 There are two types of errors: runtime and compiletime. Compiletime errors must be fi xed

before you can compile and run your application. Runtime errors occur when your code is

syntactically correct, but an unexpected issue occurs while running the application.

 An example of a runtime exception is when your application attempts to access a fi le

that isn ’ t there or attempts to divide by zero. Opening a fi le and division are both valid

code statements, so the application compiles fi ne. However, if a user enters a 0 denomina-

tor while the application is running or if an application attempts to read a missing fi le, you

might encounter runtime errors.

 Runtime errors fall into two categories: handled and unhandled. An unhandled

runtime error will crash your program. At this point in the program, you have most likely

seen a dialogue like this one:

 Exception in thread "main" java.langArithmeticException: / by zero
 at com.sg.calculator.Calculate.divide(Calculate.java:30)
 at com.sg.caculator.App.main(App.java:59)
 --
 BUILD FAILURE
 --

 A runtime error occurred, and the application crashes and closes without allowing you

to exit properly. What if this application was being used by your boss? How about a paying

customer? What if they had unsaved information within the application? Would the infor-

mation still be available in the application when they reopen it?

 Listing{ 26.1 presents a simple piece of code that complies cleanly and runs. There

should be no compile errors. This code is based on the Adder code you created in Lesson 5;

however, instead of adding, this code is dividing.

457Lesson 26: Handling Exceptions

 LISTING 26.1
 Dividing Two Numbers

 import java.util.Scanner;

 public class Exceptions {

 public static void main(String[] args) {
 String input;

 double quotient = 0;
 int numerator = 0;
 int denominator = 0;

 Scanner myScanner = new Scanner(System.in);

 System.out.println("Please enter the numerator:");
 input = myScanner.nextLine();
 numerator = Integer.parseInt(input);

 System.out.println("Please enter the denominator:");
 input = myScanner.nextLine();
 denominator = Integer.parseInt(input);

 quotient = (double) numerator / denominator;

 System.out.println("The quotient is: " + quotient);
 }
 }

 Def inition
 Exception is short for “exceptional event.” According to the Oracle Java
documentation, 1 an exception is:

An exceptional event which occurs in the normal execution of a program that dis-
rupts the normal fl ow of the program ’ s instructions .

1 { https://docs.oracle.com/javase/tutorial/essential/exceptions/defi nition.html

Job Ready Java458

 As mentioned, this code is a throwback to what you saw in early lessons but doing divi-

sion instead of addition. The code prompts the user for two numbers: a numerator and a

denominator. It grabs these as String s from the console, converts them to numbers, cal-

culates the quotient, and then displays the result.

 As long as the user enters numbers and as long as the second number is not a zero,

this listing works great. For example, the following output is from running the listing and

entering 5 and 5:

 Please enter the numerator:
5
 Please enter the denominator:
5
 The quotient is: 1.0

 If you enter 5 and 0, you get an exception.

 Please enter the numerator:
5
 Please enter the denominator:
0
 Exception in thread "main" java.lang.ArithmeticException: / by zero
 at Exceptions.main(Exceptions.java:32)
 Command execution failed.

 You also get an exception if you enter text instead of a number.

 Please enter the numerator:
5
 Please enter the denominator:
asdf
 Exception in thread "main" java.lang.NumberFormatException: For input string:
"asdf" at java.lang.NumberFormatException.forInputString(NumberFormat-
Exception.java:65)
 at java.lang.Integer.parseInt(Integer.java:580)
 at java.lang.Integer.parseInt(Integer.java:615)
 at Exceptions.main(Exceptions.java:30)
 Command execution failed.

 Clearly, we need to handle these problems to make a better, and more professional,

experience for our users!

459Lesson 26: Handling Exceptions

 CATCH OR SPECIFY REQUIREMENT
 If your code (or code that your code calls) can cause an exception to be thrown, you must

either catch the exception or specify that your code might cause that error. Catching the g

exception means that you have written code to try to recover from the error or to simply

report that the error occurred. Specifying the exception means marking your code to indi-g

cate that it may cause this error. In this case, you are not trying to recover from the error

or report it. Your code simply throws the error and lets the calling code try to handle it.

 EXCEPTION TYPES
 There are two categories of exceptions: checked and d unchecked . Checked exceptions aredd

always subject to the “catch or specify” requirement, whereas unchecked exceptions are

not. You are still free to handle (i.e., try to recover from) unchecked exceptions in your

code, but you are not required to.

 There are two types of unchecked exceptions: errors and s runtime exceptions. Errors are ss

abnormal conditions from which most programs should not attempt to recover, but there may

be conditions under which you would want to attempt to recover from a runtime exception.

 Anything that extends Exception (excluding RuntimeException) is a checked excep-

tion, and anything that extends RuntimeException is an unchecked exception. You can see

this in the class hierarchy presented in Figure{ 26.1 .

 NOTE In summary:
• RuntimeException extends Exception .

• Both Exception and Error extend Throwable .

• Throwable extends Object .

 HANDLING (CATCHING) EXCEPTIONS
 We use the try-catch-fi nally construct to handle exceptions in Java. Let ’ s look at each y

one of these.

 try Block
 When we identify code that we believe might cause an exception, we can surround it with

a try block. This block can contain lines of the code that might cause diff erent excep-

tion types, as well as lines of code that cannot cause an exception to occur. The try block

marks the code you want to try to run.y

Job Ready Java460

 For example, in Listing{ 26.1 , we had code to get input from the user. We could surround

it with a try block as such:

 try {
 input = myScanner.nextLine();
 numerator = Integer.parseInt(input);
 }

 We could also surround our division statement with a try block.

 try {
 quotient = numerator / denominator;
 }

Exception Error

RuntimeException

Extends

Object

Throwable

Extendsten

Extends

Extendsten

 Figure 26.1 The Exception
hierarchy

461Lesson 26: Handling Exceptions

 Expanding on our try block for entering a number, we can add a catch in case the user

enters text instead of a number. That would look like this:

 try {
 input = myScanner.nextLine();
 numerator = Integer.parseInt(input);
 } catch (NumberFormatException ex) {
 System.out.println("You didn't enter a number!");
 }

 As you can see, the catch is followed by specifying the type that you want to catch and

an identifi er to store the exception into should it get caught. In this case, we are catching a

NumberFormatException error. Any other exceptions will be not be caught and could still

cause the program to terminate.

 catch Block
 In general, each try block must be accompanied by at least one catch block. A catch block

contains code that either attempts to recover from the exception or simply reports the

error in some way (i.e., writes to a log fi le). In short, if a try block of code causes an excep-

tion, then the catch block tries to catch the error so that you can handle it without crash-h

ing your program.

 If the try block contains code that throws more than one type of exception, you can

have a separate catch block for each exception type so you can respond to each error in a

diff erent way. A catch block can also handle an entire class or family of exceptions, which

is useful when you want to respond to all exceptions in the same way.

 NOTE As you can see, catch expects you to provide an exception type.
While you could use the exception type of Exception , that doesn ’ t
give you much information about what issue occurred. In general,
you can determine specifi c exceptions to catch by reviewing Java
documentation or by looking at the exceptions your program causes
when it is executed.

Job Ready Java462

 To prevent the division by zero from crashing the program, we would catch an error of

type ArithmeticException .

 try {
 quotient = numerator / denominator;
 } catch (ArithmeticException ex) {
 System.out.println("Something went wrong: " + ex);
 }

 Starting with Java 7, exceptions could be combined if they were to be treated the same

way. To do this multi-catch statement, you simply separated each possible exception with h

a |. For example, the following catches both an ArrayIndexOutOfBoundsException and an

ArithmeticException :

 try {
 // some code to try...
 } catch(ArrayIndexOutOfBoundsException | ArithmeticException ex) {
 System.out.println("Something went wrong: " + ex);
 }

 This is equivalent to doing the following:

 try {
 // some code to try...
 } catch(ArrayIndexOutOfBoundsException ex) {
 System.out.println("Something went wrong: " + ex);
 } catch(ArrayIndexOutOfBoundsException ex) {
 System.out.println("Something went wrong: " + ex);
 }

 fi nally Block
 Each try - catch block combination may optionally be accompanied by a fi nally block. Codey

in the fi nally block will always run after the s try - catch combination, whether an exception

occurred or not.

fi nally blocks are well suited for code that cleans up resources. Without the fi nally

block, the cleanup code would have to appear in both the try block and the catch block(s).

The structure of the overall try - catch -fi nally block is as follows:

 public static void myMethod() throws exception, another_Exception {

463Lesson 26: Handling Exceptions

 try {
 //code that can cause an exception
 // goes here
 } catch (<exception type> identifier) {
 // code to handle this type
 // of exception
 } catch (<another_exception type> identifier) {
 // code to handle this type
 // of exception
 } finally {
 // code that runs whether an exception
 // occurred or not
 }
 }

 Listing{ 26.2 updates Listing{ 26.1 to include some exception handling. Note that while this

handles exceptions, it is still not a great listing. To make the listing work better, you would

want to add loops so that the user could get another chance to enter a number if they

erroneously entered text.

 LISTING 26.2
 Dividing Two Numbers with Some Exception Handling

 import java.util.Scanner;

 public class Exceptions {

 public static void main(String[] args) {
 String input;

 double quotient = 0;
 int numerator = 0;
 int denominator = 0;

 Scanner myScanner = new Scanner(System.in);

 try {
 System.out.println("Please enter the numerator:");
 input = myScanner.nextLine();
 numerator = Integer.parseInt(input);
 } catch (NumberFormatException ex) {
 System.out.println("Input could not be parsed into an integer");
 }

Job Ready Java464

 try {
 System.out.println("Please enter the denominator:");
 input = myScanner.nextLine();
 denominator = Integer.parseInt(input);
 } catch (NumberFormatException ex) {
 System.out.println("Input could not be parsed into an integer");
 }

 try {
 quotient = (double) numerator / denominator;
 } catch (ArithmeticException ex) {
 System.out.println("Something went wrong: " + ex);
 }

 System.out.println("The quotient is: " + quotient);
 }
 }

 SPECIFYING AND THROWING EXCEPTIONS
 If you decide that your code should not attempt to catch (i.e., handle) the exceptions that

may be thrown with the try -catch - fi nally construct, you must then specify that your code

can cause those exceptions. This can be done using the throws keyword as part of your

method defi nition. You simply add the throws keyword followed by a comma-delimited list

of exception types that could be thrown to the method defi nition.

 For example, the following method throws an IOException :

 public static void myMethod() throws IOException {
 // method code goes here
 }

 You can also specify within the body of your method that it throws an exception. In this

case, you would use throw instead of throws , and you would instantiate a new exception

as shown in the following:

 public static void myMethod(){
 // method code can go here
 throw new IOException();
 }

465Lesson 26: Handling Exceptions

 As you can see, throws is used within the method signature, whereas throw is used

within the method. The throw keyword is used to explicitly throw an exception, whereas

the throws keyword is used to declare the exception.

 EXCEPTION TRANSLATION
AND ENCAPSULATION
 There are times when you do not want your code to attempt to recover from an error, but

you don ’ t want to directly throw the exception that occurred either. Often, in these cases,

you want to translate the exception from an implementation-specifi c exception (such as

FileNotFoundException or SQLException) into a more general application exception

(such as ClassRosterDaoException). These application-specifi c exceptions let the caller

know that something went wrong in the DAO (for example, that some information could

not be persisted), but it doesn ’ t indicate anything about the underlying implementation.

 This arrangement is known as exception translation , and it is an important technique in n

helping us maintain well-encapsulated classes and application layers. If we go through all

the trouble of creating interfaces and keeping our implementations private only to have

our errors tie us back to a specifi c implementation, we have failed. This is what is known

as a leaky abstraction : the implementation details leak out to the caller through the

implementation-specifi c exceptions. Developers commonly call this exception wrapping.g

 Fortunately, we can avoid this by doing exception translation. You simply put a

try - catch around the code that can cause the exception, just as you would do if you

were going to handle the exception. In the catch block, you create a new instance of the

application-specifi c exception, passing in a message and the exception that got thrown as

parameters to the constructor, as in the following example:

 try {
 // code that can cause an exception
 // goes here
 } catch (FileNotFoundException e) {
 throw new ClassRosterDaoException("Student data could not be read", e);
 }

 NOTE We ’ ll see examples of exception translation and encapsulation in
the Class Roster application in the next lesson.

Job Ready Java466

 SUMMARY
 To write eff ective code, we should always remember the types and nature of errors that

can be produced by the application. Implementing try-catch-- -fi nally- and handling our

exceptions is an important part of coding. Ensure that your application appropriately han-

dles exceptions and gracefully exits from exceptions. Uncaught exceptions can defi nitely

hinder user experiences and possibly make the application insecure.

 When the user types in a letter when our program is expecting a number, our program

blows up. This is because methods like Integer.parseInt() throw a runtime (unchecked)

exception called NumberFormatException and methods like the nextInt() method on

Scanner throw a runtime (unchecked) exception called InputMismatchException .

 Now that we know about handling exceptions using the try - catch block, is there a way

we can prevent our program from blowing up when the user types in some unexpected

input? What kind of code would you have to add to your user input and output implemen-

tation to handle this situation? We ’ ll take a deeper look at this in a later lesson, but this is a

good topic to start thinking about now.

 EXERCISES
 The following are additional coding exercises to help you practice what you are learning

about the Java programming language. These are to do on your own, so most will not

always include answers. Many of the exercises cover accepting user input via Scanner .

There are several exercises for you to apply what you learned in this lesson:

Exercise 1: Keep On Asking

Exercise 2: Arrays Gone Bad

Exercise 3: Exiting Gracefully

 Exercise 1: Keep On Asking
 Update Listing{ 26.2 using a do -while loop so that you keep prompting the user to enter

a value until a number is entered. Also update the listing so that only positive numbers

are entered.

 Exercise 2: Arrays Gone Bad
 Array indexes can cause problems for some developers. This can be the mistake of starting

with an array index of 1 and inadvertently going up to the length of the array, which would

467Lesson 26: Handling Exceptions

be out of bounds, or it can be simply calling for an item in an array with an index that

doesn ’ t exist.

 Exercise Listing{ 26.2 uses an array to allow a user to pick an animal based on a number.

Because the number the user enters is used as the index for the array of animals, what

happens if the user picks a number outside the array ’ s index?

 EXERCISE LISTING 26.2
 A Bad Array

 import java.util.Scanner;

 public class Exceptions {

 public static void main(String[] args) {
 String input;
 int userPick = 0;
 String[] animals = {"cat", "dog", "squirrel",
 "frog", "fish", "hamster",
 "pig", "goat", "horse"};

 Scanner myScanner = new Scanner(System.in);

 // Display Animals
 for (int ctr = 0; ctr < animals.length; ctr++)
 {
 System.out.println((ctr+1) + " - " + animals[ctr]);
 }

 System.out.println("-------------------------");
 System.out.println("Which pet would you like? ");
 System.out.println("Pick a pet number: ");

 // Get input from user!
 input = myScanner.nextLine();
 userPick = Integer.parseInt(input);

 // Display user's choice.
 System.out.println("You picked: " + animals[userPick]);
 }
 }

 Your job is to fi x this listing so that the exception caused by using a bad index doesn ’ t

cause the program to blow up.

Job Ready Java468

 There is more than one way to fi x the listing. One is to validate the user input to

make sure it is within the range of the array ’ s index values. The second is to check for an

exception when using the value entered by the user. Because this is a lesson on excep-

tion handling, modify the code to use exception handling. While you are at it, add excep-

tion handling to the user input to make sure that it doesn ’ t end if a whole number is

not entered.

 Some additional cleanup that you might want to do on this listing is to change the dis-

play so that the numbers go from 1 to 9{when listing the animals, instead of from 0 to 8.

 1 - cat
 2 - dog
 3 - squirrel
 4 - frog
 5 - fish
 6 - hamster
 7 - pig
 8 - goat
 9 - horse

 Which pet would you like?
 Pick a number from 1 to 9 :

 Exercise 3: Exiting Gracefully
 In Lesson 24, you learned about creating and reading fi les. Rewrite Listings 24.2 and 24.5

to do exception handling. If an IOException or FileNotFoundException error is thrown,

catch it, display a message saying there was a problem with the fi le, and exit the program

gracefully.

Lesson 27

 Pulling It All
Together: Building
the Class Roster
App

 In this lesson, we pull together everything you ’ ve learned to this

point and put it into practice in an entire console application.

The purpose of this code-along is to give you an example of how

to design and build a console-based MVC CRUD application using

all the tools and techniques you have learned so far. We ’ ll build

this project following the agile checklist in Appendix C and will

organize it using tiered application design and MVC patterns

demonstrated in this section.

Job Ready Java470

 PROGRAM OBJECTIVES
• Build a Class Roster program

• Include a menu of options that interacts with the user

• Add, view, and remove student information

• Include dependency injection in the application

• Handle exceptions within the application

• Persist the student data to a fi le

 NOTE You should use this lesson as a template for the exercises for
building a DVD library.

 APPLICATION REQUIREMENTS AND
USE CASES
 We will build an application that manages a roster of students. The user will be able to cre-

ate, view, and delete students in the system, and all student data will be persisted to a fi le.

Here are the use cases:

• Add Student

• View All Students

• View a Single Student

• Remove Student

 Further, there is a requirement that the application store all the student data to a fi le

so that student data persists between times the Class Roster application is run.

 UNDERSTANDING THE
APPLICATION STRUCTURE
 Figure{ 27.1 is the UML class diagram of the Class Roster application. In this diagram, we

introduce notation that represents interface, composition, and inheritance relationships.

471Lesson 27: Pulling It All Together: Building the Class Roster App

 Interface Relationships
 In Figure{ 27.1 , the lines ending in circles show that a class implements a particular inter-

face. For example, ClassRosterDaoFileImpl implements the ClassRosterDao interface

in Figure{ 27.1 . Our convention is to name the interface for the logical component that it

represents—in this case, the ClassRosterDao . Each class that implements the interface

will be named for the type of implementation that the class represents and always ends

in Impl (for implementation). Here, our DAO is implemented using text fi les, so it is called

ClassRosterDaoFileImpl . If we had an implementation that used a database instead, it

might be called ClassRosterDaoDatabaseImpl .

 NOTE Different groups might adopt a different standard, so it is important
to learn conventions when you join a new organization or team. Adding
the Impl to the end of the name is just one convention. Another popular
convention is to add an I at the beginning to indicate an interface, such as
IClassRosterDao instead of ClassRosterDaoImpl .

UserIOConsoleImpl

Student

Exception

ClassRosterDaoException

ClassRosterView

ClassRosterController
1

1

ClassRosterDaoFilelmpl

«interface»
UserIO

«interface»
ClassRosterDao

Extendsten

1

 Figure 27.1 UML class diagram of Class Roster application

Job Ready Java472

 Composition Relationships
 In Figure{ 27.1 , the lines that end in diamonds represent composition. For example,

ClassRosterController has a member that is a ClassRosterDao and a member that is a

ClassRosterView . ClassRosterView has a member of type UserIO .

 Inheritance Relationships
 In Figure{ 27.1 , the line ending in the arrowhead represents inheritance. Here, our

ClassRosterDaoException extends Exception .

 Keep the diagram in Figure{ 27.1 in mind as we build the application. We ’ ll see all of the

implementation details as we go through this lesson.

 Classes and Interfaces in Our Application
 The Class Roster application will have six classes.

• Student : This is the DTO that holds all the student information.

• UserIOConsoleImpl : This is the console-specifi c implementation of the UserIO

interface.

• ClassRosterView : This class handles all the UI logic such as a menu.

• ClassRosterController : This is the orchestrator of the application. It knows what

needs to be done, when it needs to be done, and what component can do the job.

• ClassRosterDaoFileImpl : This is the text fi le–specifi c implementation of the

ClassRosterDao interface.

• ClassRosterDaoException : This is the error class for our application. It extends

Exception .

The application will also have two interfaces.

• ClassRosterDao : This interface defi nes the methods that must be implemented by

any class that wants to play the role of DAO for class roster information in the

application. We will implement a text fi le–based DAO in the code-along. You could

imagine, however, an implementation that only stored student data in memory or

one that stored student data in a database. Each class would be diff erent, but all

would implement that same interface, ensuring that they are all well encapsulated.

Note that the ClassRosterController only uses this interface to reference the

DAO. It is completely unaware of the implementation details.

473Lesson 27: Pulling It All Together: Building the Class Roster App

• UserIO : This interface defi nes the methods that must be implemented by any

class that wants to directly interact with the user interface technology. We will

implement a console-based user interface in the code-along. You could imagine,

however, an implementation that used a windowing system or some other technol-

ogy. Again, each class would be diff erent, but all would implement the same inter-

face, ensuring that they are all well encapsulated. Note that ClassRosterView only

uses this interface to interact with the user. It is completely unaware of the imple-

mentation details.

 MVC Rules of the Game
 We ’ re about to start building the application, but before we do, we need to review the

MVC rules of the game. Keep these in mind not only as we build this application but also as

you build your other applications throughout the course.

• The controller is the “brains of the operation.” It knows what needs to be done,

when it needs to be done, and what component can do it. It acts like a general con-

tractor, directing work but never doing the work itself.

• The view (and any helper classes) is responsible for all user interaction. No other

component is allowed to interact with the user.

• The DAO is responsible for the persistence and retrieval of student data.

• The DTO is the container for student data. The DAO and DTO comprise the model.

• All components (model, view, and controller) can use DTOs.

• The controller can talk with both the view and the DAO.

• The DAO cannot access the view.

• The view cannot access the DAO.

 Construction Approach
 We will build the Class Roster application in the following steps:

1. Create the packages and empty classes and interfaces to create the shell of

the program.

2. Create the menu system.

3. Implement each use case in order.

a. Create Student

b. Display All Students

Job Ready Java474

c. Display a Single Student

d. Remove Student

 We will build all functionality without fi le persistence fi rst. After all the features are

done, we will add persistence, which will require code to read from and write to fi les and

handle/translate the associated exceptions.

 NOTE These steps should be used as a guide when building the exercise
applications in this course.

 SETTING UP THE CLASS ROSTER
APPLICATION SHELL
 In this step, we will create the outline, or shell , of our program. This involves creating all l

the classes and interfaces (empty for now) in their correct packages so we have the overall

structure of the program.

 After creating a new project called ClassRoster , create the classes and interfaces

shown in Figure{ 27.2 .

 The example uses the base package com.sg .classroster . Your base package may

be diff erent depending on what you specifi ed when you created your project. Also, as

indicated in Figure{ 27.2 , ClassRosterDao.java and UserIO.java are interfaces,

not classes.

 Figure 27.2 Class Roster classes and interfaces

475Lesson 27: Pulling It All Together: Building the Class Roster App

 NOTE We strongly recommend that you match our naming convention
throughout this code-along.

 The fi rst package listed Figure{ 27.2 is the com.sg.classroster package. To create

this package, right-click Source Packages and select New s ➢ Java Package, as shown in

Figure{ 27.3 .

 In the New Java Package window, type the name of the new package

(com.sg .classroster) for Package Name, as in Figure{ 27.4 . Click the Finish button whenh

you are done.

 You ’ ve created the new package. You can create the other packages shown in

Figure{ 27.2 in the same manner.

 Once the packages have been created, the Java classes and interfaces can then be

created. You ’ ve created Java classes before. You create an interface in the same

manner. To create the ClassRosterDao interface, in the package explorer, right-click the

 com.sg .classroster.dao package that you create by following the previous steps, and

then select New ➢ Java Package, as shown in Figure{ 27.5 .

 Figure 27.3 Creating a package

Job Ready Java476

 Figure 27.5 Adding an interface

 Figure 27.4 Naming the new Java package

477Lesson 27: Pulling It All Together: Building the Class Roster App

 When the New Java Interface dialog box appears, type ClassRosterDao into the Class

Name text box, as shown in Figure{ 27.6 . Click the Finish button when you are done.h

 You can create the rest of the interfaces in the same manner. This will provide the

shell of your application, which we will use throughout the rest of this lesson as we pull

together the Class Roster program.

 CREATING THE MENU SYSTEM
 After the shell of the program is created, we can create the menu system, or user inter-

face, for our application. The fi rst version of our menu system won ’ t be backed by any

functionality, but it will allow the user to run the program and navigate through all the

menu items.

 This will involve working with the following fi les:

• App

• ClassRosterController

 Figure 27.6 Naming the new Java interface

Job Ready Java478

• ClassRosterView

• UserIO

• UserIOConsoleImpl

 UserIO and UserIOConsoleImpl
 These components should look familiar: you created them in an earlier lesson as an

 exercise. Go back to those previous labs and copy those components into this project.

UserIO should look like Listing{ 27.1 .

 LISTING 27.1
 UserIO

 public interface UserIO {
 void print(String msg);

 double readDouble(String prompt);

 double readDouble(String prompt, double min, double max);

 float readFloat(String prompt);

 float readFloat(String prompt, float min, float max);

 int readInt(String prompt);

 int readInt(String prompt, int min, int max);

 long readLong(String prompt);

 long readLong(String prompt, long min, long max);

 String readString(String prompt);

 public void close();
 }

 Take the implementation of UserIO that you completed in a previous lesson ’ s exercises

and copy it into UserIOConsoleImpl . Alternatively, you can use the code from Listing{ 27.2 .

479Lesson 27: Pulling It All Together: Building the Class Roster App

 LISTING 27.2
 UserIOConsoleImpl

 import java.util.Scanner;

 public class UserIOConsoleImpl implements UserIO {

 final private Scanner console = new Scanner(System.in);

 @Override
 public void print(String msg) {
 System.out.println(msg);
 }

 @Override
 public String readString(String msgPrompt) {
 System.out.println(msgPrompt);
 return console.nextLine();
 }

 @Override
 public int readInt(String msgPrompt) {
 boolean invalidInput = true;
 int num = 0;
 while (invalidInput) {
 try {
 // print the message msgPrompt (ex: asking for the # of cats!)
 String stringValue = this.readString(msgPrompt);
 // Get the input line, and try and parse
 num = Integer.parseInt(stringValue); // if it's 'bob'
 // it'll break
 invalidInput = false; // or you can use 'break;'
 } catch (NumberFormatException e) {
 // If it explodes, it'll go here and do this.
 this.print("Input error. Please try again.");
 }
 }
 return num;
 }

Job Ready Java480

 @Override
 public int readInt(String msgPrompt, int min, int max) {
 int result;
 do {
 result = readInt(msgPrompt);
 } while (result < min || result > max);

 return result;
 }

 @Override
 public long readLong(String msgPrompt) {
 while (true) {
 try {
 return Long.parseLong(this.readString(msgPrompt));
 } catch (NumberFormatException e) {
 this.print("Input error. Please try again.");
 }
 }
 }

 @Override
 public long readLong(String msgPrompt, long min, long max) {
 long result;
 do {
 result = readLong(msgPrompt);
 } while (result < min || result > max);

 return result;
 }

 @Override
 public float readFloat(String msgPrompt) {
 while (true) {
 try {
 return Float.parseFloat(this.readString(msgPrompt));
 } catch (NumberFormatException e) {
 this.print("Input error. Please try again.");
 }
 }
 }

481Lesson 27: Pulling It All Together: Building the Class Roster App

 @Override
 public float readFloat(String msgPrompt, float min, float max) {
 float result;
 do {
 result = readFloat(msgPrompt);
 } while (result < min || result > max);

 return result;
 }

 @Override
 public double readDouble(String msgPrompt) {
 while (true) {
 try {
 return Double.parseDouble(this.readString(msgPrompt));
 } catch (NumberFormatException e) {
 this.print("Input error. Please try again.");
 }
 }
 }

 @Override
 public double readDouble(String msgPrompt, double min, double max) {
 double result;
 do {
 result = readDouble(msgPrompt);
 } while (result < min || result > max);
 return result;
 }

 @Override
 public void close(){
 this.console.close();
 }

 }

 NOTE If you fi nd yourself with a missing or buggy UserIOConsoleImpl , you
can download an offi cial implementation to use instead: www.wiley.com/go/
jobreadyjava under the “Downloads” link .

Job Ready Java482

 ClassRosterController
 Next, we ’ ll start in the controller. Since this component is the “brains of the operation,” it

will control when the menu system is displayed. Our strategy here is to create a method

that displays the menu, gets the user ’ s menu choice, and then calls a method that per-

forms an action based on the user ’ s menu choice. Type the code in Listing{ 27.3 into your

ClassRosterController .

 LISTING 27.3
 ClassRosterController

 public class ClassRosterController {

 private UserIO io = new UserIOConsoleImpl();

 public void run() {
 boolean keepGoing = true;
 int menuSelection = 0;
 while (keepGoing) {
 io.print("Main Menu");
 io.print("1. List Student IDs");
 io.print("2. Create New Student");
 io.print("3. View a Student");
 io.print("4. Remove a Student");
 io.print("5. Exit");

 menuSelection = io.readInt("Please select from the"
 + " above choices.", 1, 5);

 switch (menuSelection) {
 case 1:
 io.print("LIST STUDENTS");
 break;
 case 2:
 io.print("CREATE STUDENT");
 break;
 case 3:
 io.print("VIEW STUDENT");
 break;
 case 4:
 io.print("REMOVE STUDENT");
 break;

483Lesson 27: Pulling It All Together: Building the Class Roster App

 case 5:
 keepGoing = false;
 break;
 default:
 io.print("UNKNOWN COMMAND");
 }
 }
 io.print("GOOD BYE");
 io.close();
 }
 }

 App
 Now we need to add the main method to the App class so we can test our menu system.

In this method, we will instantiate our controller and call the run method. Add the code in

Listing{ 27.4 to your App class.

 LISTING 27.4
 App Class

 public class App {

 public static void main(String[] args) {
 ClassRosterController controller = new ClassRosterController();
 controller.run();
 }
 }

 Now run this code to make sure the menu is working. The output should look some-

thing like this:

 Main Menu
 1. List Student IDs
 2. Create New Student
 3. View a Student
 4. Remove a Student
 5. Exit
 Please select from the above choices.
 4
 REMOVE STUDENT
 1. List Student IDs

Job Ready Java484

 2. Create New Student
 3. View a Student
 4. Remove a Student
 5. Exit
 Please select from the above choices.
 5
 GOOD BYE

 NOTE You will need to add imports to your classes.

 ClassRosterView
 This initial version is okay for getting the structure of the run method, but it breaks the

rule stating that the controller should only orchestrate work and shouldn ’ t do any of the

work itself. Although the controller is using the UserIOConsoleImpl class to interact with

the user, the controller creates and determines the layout of the menu, which should be

done by the view component instead.

 Let ’ s refactor this so the menu layout and rendering are in the view where it belongs.

We ’ ll do the following:

1. Move the functionality that prints the menu and gets the user ’ s selection to

ClassRosterView .

2. Have the controller use ClassRosterView instead of UserIOConsoleImpl for all the

work involved in displaying the menu and getting the user ’ s selection.

Add the code in Listing{ 27.5 to ClassRosterView .

 LISTING 27.5
 ClassRosterView

 public class ClassRosterView {

 private UserIO io = new UserIOConsoleImpl();

 public int printMenuAndGetSelection() {
 io.print("Main Menu");
 io.print("1. List Students");

485Lesson 27: Pulling It All Together: Building the Class Roster App

 io.print("2. Create New Student");
 io.print("3. View a Student");
 io.print("4. Remove a Student");
 io.print("5. Exit");

 return io.readInt("Please select from the above choices.");
 }
 }

 All we have done is move the functionality for printing the menu and getting the user ’ s

selection from the controller over to the view. Notice that we ’ re using composition here—

the ClassRosterView has-a a UserIO member, and it uses UserIO to interact with the user.

Remember that UserIO is an interface.

ClassRosterView uses the public interface, UserIO , and is unaware of the imple-

mentation details of the concrete implementation, UserIOConsoleImpl . In other words,

ClassRosterView is unaware that it is writing to and reading from the console; it only

knows that it is interacting with the user.

 ClassRosterController
 Now we need to return to the ClassRosterController . We ’ ll add a member of type

ClassRosterView , and we ’ ll have the controller use it for displaying the menu and getting

the user ’ s selection. For now, we ’ ll leave the UserIO member in our Controller and use

it to print out the placeholder messages for each of the menu choices. As we implement

each use case, we ’ ll replace the calls to UserIO with calls to ClassRosterView . When we ’ re

done, there will be no calls to UserIO left in the controller; at that point, we will remove

the UserIO member variable. Modify your controller to look like Listing{ 27.6 .

 LISTING 27.6
 Modified ClassRosterController

 public class ClassRosterController {

 private ClassRosterView view = new ClassRosterView();
 private UserIO io = new UserIOConsoleImpl();

 public void run() {
 boolean keepGoing = true;
 int menuSelection = 0;
 while (keepGoing) {

Job Ready Java486

 menuSelection = getMenuSelection();

 switch (menuSelection) {
 case 1:
 io.print("LIST STUDENTS");
 break;
 case 2:
 io.print("CREATE STUDENT");
 break;
 case 3:
 io.print("VIEW STUDENT");
 break;
 case 4:
 io.print("REMOVE STUDENT");
 break;
 case 5:
 keepGoing = false;
 break;
 default:
 io.print("UNKNOWN COMMAND");
 }

 }
 io.print("GOOD BYE");
 }

 private int getMenuSelection() {
 return view.printMenuAndGetSelection();
 }

 }

 Here we have done two things.

• We created a new method called getMenuSelection() that we call to get the

menuSelection in the run method.

• We made a call to printMenuAndGetSelection on the view member.

 We ’ ll use this pattern throughout the application. The run method will ask for the user

selection and then route the request to a private controller method. These private control-

ler methods will then orchestrate the work required to fulfi ll the user ’ s requested action.

487Lesson 27: Pulling It All Together: Building the Class Roster App

 ADDING A STUDENT USE CASE
 Now that we have the menu system in place, it is time to implement the fi rst use case:

Add Student.

 The fi rst use case is always the most work to implement because you only have a menu

system at this point. Either you can start at the user interface and work your way back or

you can start with the DTO and DAO and work toward the front. We ’ ll start with the DTO

and work our way toward the front.

 Student (DTO)
 The fi rst thing we ’ ll do is create the Student class. Enter the code from Listing{ 27.7 into

your Student class.

 LISTING 27.7
 The Student Class

 public class Student {
 private String firstName;
 private String lastName;
 final String studentId;
 // Programming Language + cohort month/year
 private String cohort;

 public Student(String studentId) {
 this.studentId = studentId;
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

Job Ready Java488

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getStudentId() {
 return studentId;
 }

 public String getCohort() {
 return cohort;
 }

 public void setCohort(String cohort) {
 this.cohort = cohort;
 }
 }

 Notice that studentId is a read-only fi eld. It is passed in as a parameter to the con-

structor, and there is no setter for this fi eld. All other fi elds on the Student class are read/

write and must be set manually after a Student object has been instantiated.

 ClassRosterDao and ClassRosterDaoFileImpl
 Now that we have our DTO, we need someplace to store it, so we ’ ll create the initial

versions of the ClassRosterDao interface and the ClassRosterDaoFileImpl class. Since

we know all our user stories, we can defi ne the complete ClassRosterDao interface here,

but we ’ ll only implement the functionality to create a new student at this time.

 ClassRosterDao
 The ClassRosterDao is pretty straightforward. We ’ ll have one method for each use case.

Add the code in Listing{ 27.8 to your ClassRosterDao fi le.

 LISTING 27.8
 ClassRosterDao

 public interface ClassRosterDao {

 /**
 * Adds the given Student to the roster and associates it with the given

489Lesson 27: Pulling It All Together: Building the Class Roster App

 * student id. If there is already a student associated with the given
 * student id it will return that student object, otherwise it will
 * return null.
 *
 * @param studentId id with which student is to be associated
 * @param student student to be added to the roster
 * @return the Student object previously associated with the given
 * student id if it exists, null otherwise
 */
 Student addStudent(String studentId, Student student);

 /**
 * Returns a List of all students in the roster.
 *
 * @return List containing all students in the roster.
 */
 List<Student> getAllStudents();

 /**
 * Returns the student object associated with the given student id.
 * Returns null if no such student exists
 *
 * @param studentId ID of the student to retrieve
 * @return the Student object associated with the given student id,
 * null if no such student exists
 */
 Student getStudent(String studentId);

 /**
 * Removes from the roster the student associated with the given id.
 * Returns the student object that is being removed or null if
 * there is no student associated with the given id
 *
 * @param studentId id of student to be removed
 * @return Student object that was removed or null if no student
 * was associated with the given student id
 */
 Student removeStudent(String studentId);
 }

 NOTE Again, you ’ ll likely need to add imports, in this case for Student and
List .

Job Ready Java490

 Notice that all the methods in the interface are commented with Javadoc comments.

This not only provides great documentation in the source code but also allows you to run

the Javadoc tool on your codebase to produce HTML documentation similar to what we

looked at for Collection , List , and Map . It also populates information about your code

when using the IDE ’ s IntelliSense.

 ClassRosterDaoFileImpl
 For this use case, we ’ ll create the initial version of ClassRosterDaoFileImpl and imple-

ment the addStudent() method.

 Our fi rst step is to make ClassRosterDaoFileImpl implement the ClassRosterDao

interface. Add the implements keyword and the interface name, and then in NetBeans

click the lightbulb icon to display the Implement all abstract methods option, as shown in

Figure{ 27.7 .

 After implementing all abstract methods, ClassRosterDaoFileImpl should look like

Listing{ 27.9 . You ’ ll see that each method simply throws an UnsupportedOperationExcep-

tion for now, which is fi ne.

 LISTING 27.9
 After Implementing All Abstract Methods

 public class ClassRosterDaoFileImpl implements ClassRosterDao {

 @Override
 public Student addStudent(String studentId, Student student) {
 throw new UnsupportedOperationException("Not supported yet.");
 }

 Figure 27.7 Implement all abstract methods option

491Lesson 27: Pulling It All Together: Building the Class Roster App

 @Override
 public List<Student> getAllStudents() {
 throw new UnsupportedOperationException("Not supported yet.");
 }

 @Override
 public Student getStudent(String studentId) {
 throw new UnsupportedOperationException("Not supported yet.");
 }

 @Override
 public Student removeStudent(String studentId) {
 throw new UnsupportedOperationException("Not supported yet.");
 }

 }

 As we mentioned earlier, the initial version of ClassRosterDaoFileImpl will hold all

data in memory only. It won ’ t read from or write to a fi le. We ’ ll add the fi le persistence

feature at the end. Even when we add the fi le persistence code, we ’ ll need to have a data

structure to hold all the student information. We ’ re going to use a Map here because we

need to look up students by ID, and this will be easy to do with a Map that uses student ID

as the key.

 Add the following private member to your ClassRosterDaoFileImpl along with the

appropriate imports.

 final Map<String, Student> students = new HashMap<>();

 Now we are ready to implement the addStudent() method. This method is straightfor-

ward; we simply put the supplied student into our map using the supplied student ID as

the key and we ’ re done. Modify your addStudent() method to look like this:

 @Override
 public Student addStudent(String studentId, Student student) {

 return students.put(studentId, student);
 }

 ClassRosterView
 We now have a DTO in which to carry student information, and we have a DAO in which we

can store Student objects. Next, we need a way to get the information we need from the

Job Ready Java492

user to create a new Student object. For this, we ’ ll go back to the ClassRosterView and

add a method that does this for us. Add the method in Listing{ 27.10 to your

ClassRosterView class.

 LISTING 27.10
 The getNewStudentInfo () Method

 public Student getNewStudentInfo() {
 Student currentStudent = new Student(io.readString("Please enter
Student ID"));
 currentStudent.setFirstName(io.readString("Please enter First
Name"));
 currentStudent.setLastName(io.readString("Please enter Last
Name"));
 currentStudent.setCohort(io.readString("Please enter Cohort"));
 return currentStudent;
 }

 This method prompts the user for the student ID, fi rst name, last name, and cohort;

gathers this information; creates a new Student object; and returns it to the caller.

 We ’ ll add two more methods to the view now. The fi rst method simply displays a ban-

ner or heading to the UI indicating that the next interactions on the screen will be for

creating a new student. The second method displays a message that the new student was

successfully created and waits for the user to hit Enter to continue. Add the methods in

Listing{ 27.11 to your ClassRosterView class.

 LISTING 27.11
 Additional ClassRosterView Methods

 public void displayCreateStudentBanner() {
 io.print("=== Create Student ===");
 }

 public void displayCreateSuccessBanner() {
 io.readString(
 "Student successfully created. Please hit enter to continue");
 }

493Lesson 27: Pulling It All Together: Building the Class Roster App

 ClassRosterController
 We now have all the individual parts: a DTO, a DAO with a method to store a Student DTO,

and a view method that can gather student information from the user and create a new

Student object. Our next step is to add code to the controller that coordinates all these

parts so the user can choose to create a new student, enter all the information, and store

the new student.

 Before we write the logic to accomplish this task, we must create a ClassRosterDao

member fi eld in our Controller so we can have the DAO store the newly created Student

object for us. Add the following line just after the ClassRosterView member fi eld in your

controller:

 private ClassRosterDao dao = new ClassRosterDaoFileImpl();

 Now we ’ ll create a method in the Controller to orchestrate the creation of a new stu-

dent. Our method will do the following:

• Display the Create Student banner

• Get{all the student data from the user and create the new Student object

• Store the new Student object

• Display the Create Student Success banner

 Of course, the Controller won ’ t actually do any of this work. It will have the view and

the DAO do all the heavy lifting. Add the following method to your controller:

 private void createStudent() {
 view.displayCreateStudentBanner();
 Student newStudent = view.getNewStudentInfo();
 dao.addStudent(newStudent.getStudentId(), newStudent);
 view.displayCreateSuccessBanner();
 }

 Finally, we have to make a call to createStudent() in the run method when the user

selects menu option 2. Update the switch statement in your run() method to look

like this:

 switch (menuSelection) {
 case 1:
 io.print("LIST STUDENTS");
 break;

Job Ready Java494

 case 2:
 createStudent();
 break;
 case 3:
 io.print("VIEW STUDENT");
 break;
 case 4:
 io.print("REMOVE STUDENT");
 break;
 case 5:
 keepGoing = false;
 break;
 default:
 io.print("UNKNOWN COMMAND");
 }

 At this point, you have implemented the Create Student use case. Of course, it is hard

to see the results of our work because we can ’ t view any of the students in the system yet.

We ’ ll fi x that in the next step.

 VIEWING ALL STUDENTS USE CASE
 We ’ ll follow the same pattern used in the Create Student use case for the View All Stu-

dents use case.

1. Update the DAO implementation.

2. Update the view.

3. Update the controller.

 This use case will be easier than Create Student because we don ’ t have to start from

scratch. We did a lot of the groundwork when we implemented the previous use case.

 ClassRosterDaoFileImpl
 Here we will implement the getAllStudents() method. Modify the getAllStudents()

method so it looks like this:

 @Override
 public List<Student> getAllStudents() {
 return new ArrayList<Student>(students.values());
 }

495Lesson 27: Pulling It All Together: Building the Class Roster App

 NOTE You might need to add an import for ArrayList .

 This code gets all the Student objects out of the students Map as a collection by

calling the values() method. We pass that returned collection into the constructor for a

new ArrayList . One of the constructors for ArrayList takes a collection as a parameter,

which eff ectively allows us to convert the collection of Student objects into an ArrayList

of Student objects that we can return from the method. Note that our method specifi es

that we ’ ll return a List<Student> , but we create and return an ArrayList<Student> .

This is perfectly fi ne because ArrayList implements the List interface so it can be treated

as a List.

 ClassRosterView
 Next, we ’ ll create a method that takes a list of Student objects as a parameter and dis-

plays the information for each student to the screen. After the list has been displayed,

the method will pause and wait for the user to hit the Enter key. Add the method in List-

ing{ 27.12 to your ClassRosterView class.

 LISTING 27.12
 The displayStudentList () Method

 public void displayStudentList(List<Student> studentList) {
 for (Student currentStudent : studentList) {
 String studentInfo = String.format("#%s : %s %s %s",
 currentStudent.getStudentId(),
 currentStudent.getFirstName(),
 currentStudent.getLastName(),
 currentStudent.getCohort());
 io.print(studentInfo);
 }
 io.readString("Please hit enter to continue.");
 }

 Now we will add the method to show the Display All Students banner. Add the follow-

ing method to your ClassRosterView class:

 public void displayDisplayAllBanner() {
 io.print("=== Display All Students ===");
 }

Job Ready Java496

 ClassRosterController
 We ’ ll now add the code to our Controller to orchestrate the necessary activity to list all the

students in the system. We ’ ll create a method called listStudents() that will get a list of

all Student objects in the system from the DAO and then hand that list to the view to dis-

play to the user. Add the following method to your controller:

 private void listStudents() {
 view.displayDisplayAllBanner();
 List<Student> studentList = dao.getAllStudents();
 view.displayStudentList(studentList);
 }

 Finally, we have to make a call to listStudents() in the run method when the user

selects menu option 1. Update the switch statement again in your run method to look

like this:

 switch (menuSelection) {
 case 1:
 listStudents();
 break;
 case 2:
 createStudent();
 break;
 case 3:
 io.print("VIEW STUDENT");
 break;
 case 4:
 io.print("REMOVE STUDENT");
 break;
 case 5:
 keepGoing = false;
 break;
 default:
 io.print("UNKNOWN COMMAND");
 }

 You should now be able to run the program, create a new student, and view the stu-

dent ’ s ID and name. Here is a sample run of the program:

 Main Menu
 1. List Student IDs
 2. Create New Student
 3. View a Student

497Lesson 27: Pulling It All Together: Building the Class Roster App

 4. Remove a Student
 5. Exit
 Please select from the above choices.
2
 === Create Student ===
 Please enter Student ID
0001
 Please enter First Name
Joe
 Please enter Last Name
Cool
 Please enter Cohort
Java Jan 2020
 Student successfully created. Please hit enter to continue.

 Main Menu
 1. List Student IDs
 2. Create New Student
 3. View a Student
 4. Remove a Student
 5. Exit
 Please select from the above choices.
1
 === Display All Students ===
 0001: Joe Cool Java Jan 2020
 Please hit enter to continue.

 Main Menu
 1. List Student IDs
 2. Create New Student
 3. View a Student
 4. Remove a Student
 5. Exit
 Please select from the above choices.

 GETTING A STUDENT USE CASE
 You have now completed the second use case. Next, we ’ ll tackle viewing a single student.

Again, we ’ ll follow the same pattern for this use case:

1. Update the DAO implementation.

2. Update the view.

3. Update the controller.

Job Ready Java498

 ClassRosterDaoFileImpl
 Here we will implement the getStudent() method. This method is quite simple. We just

ask the students Map for the Student object with the given ID and return it. Modify your

getStudent() method to look like this:

 @Override
 public Student getStudent(String studentId) {
 return students.get(studentId);
 }

 ClassRosterView
 We will implement three new methods in the view for this use case:

• displayDisplayStudentBanner() shows the Display Student banner.

• getStudentIdChoice() asks the user for the ID of the student to display.

• displayStudent() displays a student ’ s information to the user.

 Add the methods in Listing{ 27.13 to your view.

 LISTING 27.13
 Methods to Display a Student

 public void displayDisplayStudentBanner () {
 io.print("=== Display Student ===");
 }

 public String getStudentIdChoice() {
 return io.readString("Please enter the Student ID.");
 }

 public void displayStudent(Student student) {
 if (student != null) {
 io.print(student.getStudentId());
 io.print(student.getFirstName() + " " + student.getLastName());
 io.print(student.getCohort());
 io.print("");
 } else {
 io.print("No such student.");
 }
 io.readString("Please hit enter to continue.");
 }

499Lesson 27: Pulling It All Together: Building the Class Roster App

 ClassRosterController
 Here we need to create the viewStudent() method. This method asks the view to display

the View Student banner and get the student ID from the user. Then it asks the DAO for

the student associated with the ID. Finally, it asks the view to display the student informa-

tion. Add the method presented in Listing{ 27.14 to your controller.

 LISTING 27.14
 The viewStudent () Method

 private void viewStudent() {
 view.displayDisplayStudentBanner();
 String studentId = view.getStudentIdChoice();
 Student student = dao.getStudent(studentId);
 view.displayStudent(student);
 }

 Finally, we have to make a call to viewStudent() in the run method when the user

selects menu option 3. Update the switch statement in your run method to look like this:

 switch (menuSelection) {
 case 1:
 listStudents();
 break;
 case 2:
 createStudent();
 break;
 case 3:
 viewStudent();
 break;
 case 4:
 io.print("REMOVE STUDENT");
 break;
 case 5:
 keepGoing = false;
 break;
 default:
 io.print("UNKNOWN COMMAND");
 }

 You should now be able to create a new student and view that student in the applica-

tion. Here is a sample run of the program:

 Main Menu
 1. List Student IDs

Job Ready Java500

 2. Create New Student
 3. View a Student
 4. Remove a Student
 5. Exit
 Please select from the above choices.
2
 === Create Student ===
 Please enter Student ID
0002
 Please enter First Name
Jane
 Please enter Last Name
Awesome
 Please enter Cohort
Java Jan 2021
 Student successfully created. Please hit enter to continue

 Main Menu
 1. List Student IDs
 2. Create New Student
 3. View a Student
 4. Remove a Student
 5. Exit
 Please select from the above choices.
3
 === Display Student ===
 Please enter the Student ID.
0002
 0002
 Jane Awesome
 Java Jan 2021

 Please hit enter to continue

 Main Menu
 1. List Student IDs
 2. Create New Student
 3. View a Student
 4. Remove a Student
 5. Exit
 Please select from the above choices.

501Lesson 27: Pulling It All Together: Building the Class Roster App

 REMOVING A STUDENT USE CASE
 We ’ ll move on to Remove Student next. Our fi nal use case will again follow the same

pattern as before.

 ClassRosterDaoFileImpl
 Here we will implement the removeStudent() method. This method is simple as well. We

just ask the students Map to remove the Student object mapped with the given ID. Mod-

ify your removeStudent() method to look like the following:

 @Override
 public Student removeStudent(String studentId) {
 Student removedStudent = students.remove(studentId);
 return removedStudent;
 }

 ClassRosterView
 For this use case, we need to add two methods to our view: one to display the Remove

Student banner and one to display the results of our remove. We will reuse the getStu-

dentIdChoice() method that was created in a previous step. Add the methods in List-

ing{ 27.15 to your view.

 LISTING 27.15
 The Remove Student Methods

 public void displayRemoveStudentBanner () {
 io.print("=== Remove Student ===");
 }

 public void displayRemoveResult(Student studentRecord) {
 if(studentRecord != null){
 io.print("Student successfully removed.");
 }else{
 io.print("No such student.");
 }
 io.readString("Please hit enter to continue.");
 }

Job Ready Java502

 ClassRosterController
 Here we need to create the removeStudent() method. This method will ask the view

to display the Remove Student banner and ask the user for the ID of the student to be

removed. It will then ask the DAO to remove the student and capture the returned stu-

dent. Finally, we will pass the record to the view to display the results. Add the method in

Listing{ 27.16 to your controller.

 LISTING 27.16
 The removeStudent () Method

 private void removeStudent() {
 view.displayRemoveStudentBanner();
 String studentId = view.getStudentIdChoice();
 Student removedStudent = dao.removeStudent(studentId);
 view.displayRemoveResult(removedStudent);
 }

 Finally, we have to make a call to removeStudent() in the run method when the user

selects menu option 4. Update the switch statement in your run method to look like this:

 switch (menuSelection) {
 case 1:
 listStudents();
 break;
 case 2:
 createStudent();
 break;
 case 3:
 viewStudent();
 break;
 case 4:
 removeStudent();
 break;
 case 5:
 keepGoing = false;
 break;
 default:
 io.print("UNKNOWN COMMAND");
 }

503Lesson 27: Pulling It All Together: Building the Class Roster App

 You should now be able to remove a student from the system. Here is a sample run of

the program showing the steps after a student has been added:

 Main Menu
 1. List Student IDs
 2. Create New Student
 3. View a Student
 4. Remove a Student
 5. Exit
 Please select from the above choices.
1
 === Display All Students ===
 0003: Jamal Fantastic
 Please hit enter to continue.

 Main Menu
 1. List Student IDs
 2. Create New Student
 3. View a Student
 4. Remove a Student
 5. Exit
 Please select from the above choices.
4
 === Remove Student ===
 Please enter the Student ID.
0003
 Student successfully removed.
 Please hit enter to continue.

 Main Menu
 1. List Student IDs
 2. Create New Student
 3. View a Student
 4. Remove a Student
 5. Exit
 Please select from the above choices.
1
 === Display All Students ===
 Please hit enter to continue.

 Main Menu
 1. List Student IDs
 2. Create New Student
 3. View a Student
 4. Remove a Student
 5. Exit
 Please select from the above choices.

Job Ready Java504

 You have now completed all the use cases for the application. You should now be able

to add, display, and remove students in the system. In our next step, we ’ ll clean up the

unknown command and exit processing.

 HANDLING UNKNOWN COMMAND
AND EXITING
 We still have some things to clean up in the controller and the view. We need to add code

to handle unknown commands and exiting. After we do this, we can remove the ConsoleIO

member fi eld from the controller because all user interaction will be handled through the

view, as it should be.

 ClassRosterView
 Add the two methods in Listing{ 27.17 to your view. These will print messages when we exit

or run into an unknown situation.

 LISTING 27.17
 Added ClassRosterView Methods

 public void displayExitBanner() {
 io.print("Good Bye!!!");
 }

 public void displayUnknownCommandBanner() {
 io.print("Unknown Command!!!");
 }

 ClassRosterController
 Here we will add two methods: unknownCommand() and exitMessage() . These methods

ask the view to display the appropriate message to the user. Add the methods in List-

ing{ 27.18 to your controller.

505Lesson 27: Pulling It All Together: Building the Class Roster App

 LISTING 27.18
 Added ClassRosterController Methods

 private void unknownCommand() {
 view.displayUnknownCommandBanner();
 }

 private void exitMessage() {
 view.displayExitBanner();
 }

 Finally, we need to call these methods from the run() method. Modify your run()

method to look like Listing{ 27.19 .

 LISTING 27.19
 The Updated run() Method

 public void run() {
 boolean keepGoing = true;
 int menuSelection = 0;
 while (keepGoing) {

 menuSelection = getMenuSelection();

 switch (menuSelection) {
 case 1:
 listStudents();
 break;
 case 2:
 createStudent();
 break;
 case 3:
 viewStudent();
 break;
 case 4:
 removeStudent();
 break;

Job Ready Java506

 case 5:
 keepGoing = false;
 break;
 default:
 unknownCommand();
 }

 }
 exitMessage();
 }

 Now all references to UserIO are gone from the controller, so we can remove the

UserIO member fi eld.

 WORKING WITH DEPENDENCY INJECTION
 At this point, our application is shaping up nicely. Everything is well organized into a

Model-View-Controller pattern, and our classes are well designed. One of the critical

pieces in good application design is the concept of loose coupling. As has been mentioned,

one technique that helps with loose coupling is programming to interfaces. We have two

places in our application where we use interfaces to help with loose coupling.

• ClassRosterDao

• UserIO

 We use these interfaces and their associated implementations because we can antici-

pate needing diff erent implementations of each. For example, in this project, we could

create a DAO that persists student data to a fi le. We could imagine an implementation

that only stored student data in memory or an implementation that stores student

data in a database. As far as the controller is concerned, each implementation looks

the same because the controller programs to the DAO interface and not to a particular

implementation.

 Although we are programming to the ClassRosterDao interface in the controller and

to the UserIO interface in the view, we still hard-code our choice for implementation.

 In our ClassRosterController :

 private ClassRosterDao dao = new ClassRosterDaoFileImpl();

 In the ClassRosterView :

 private UserIO io = new UserIOConsoleImpl();

507Lesson 27: Pulling It All Together: Building the Class Roster App

 Even after all that work to create an interface and a well-designed private implemen-

tation, the controller and view are still tightly coupled to a specifi c implementation of the

interface, so all our hard work has not paid off yet.

 What we really need is a way to tell the controller and the view which implementation

of the ClassRosterDao and UserIO interfaces, respectively, to use. This concept is known

as dependency injection. We ’ ll implement a version of it in this lesson. n

 Implementation
 It is time to see what all this looks like in practice. Here we will refactor our application to

use dependency injection by doing the following:

1. Remove the hard-coded reference to ClassRosterDaoFileImpl and ClassRoster-

View in the controller.

2. Remove the hard-coded reference to UserIOConsoleIMpl in the view.

3. Implement a constructor in the controller that has a ClassRosterDao parameter

and a ClassRosterView parameter and uses the incoming values to initialize the

ClassRosterDao and ClassRosterView member fi elds.

4. Implement a constructor in the view that has a UserIO parameter and uses the

incoming value to initialize the UserIO member fi eld.

5. Add code to the main method in the App class that wires everything up and kicks off

the program.

 ClassRosterController
 Our fi rst step is to remove the code that initializes the view and dao member fi elds in the

controller so that we are left with just their declarations. Modify ClassRosterController

so the declarations look like this:

 private ClassRosterView view;
 private ClassRosterDao dao;

 Now we must implement a constructor that initializes these members. Add the

following constructor to your ClassRosterController :

 public ClassRosterController(ClassRosterDao dao, ClassRosterView view) {
 this.dao = dao;
 this.view = view;
 }

Job Ready Java508

 NOTE At this point, the app won ’ t be working since we need to make a few
more changes. Do not panic if you try to run your app and it is not working.

 Note we are passing the view and the DAO into the controller. Even though we have

only one implementation of these interfaces now, it could be that in the future there will

be other implementations. The App class has the responsibility to tell the controller what

implementations to use. This decouples the controller from knowing about which imple-

mentations of the DAO and view exist. The controller can know how to use those inter-

faces without worrying about how they are implemented.

 ClassRosterView
 We ’ ll modify ClassRosterView in the same way we modifi ed the controller. First, remove

the code that initializes the io member fi eld. Modify ClassRosterView so the declaration

looks like this:

 final UserIO io;

 Now we must implement a constructor that initializes the io member fi eld. Add the fol-

lowing constructor to your ClassRosterView :

 public ClassRosterView(UserIO io) {
 this.io = io;
 }

 App
 We have all the components modifi ed for dependency injection, so now we must modify

the main method in our App class so that it confi gures, instantiates, and assembles the

classes in our application. Our code will do the following:

1. Declare a UserIO variable and initialize it with a UserIOConsoleImpl reference.

2. Declare and instantiate a ClassRosterView object, passing the UserIO created in

the previous step into the constructor.

3. Declare a ClassRosterDao variable and initialize it with a ClassRosterDaoFileImpl

reference.

4. Instantiate a ClassRosterController , passing the ClassRosterDao and

ClassRosterView objects into the constructor.

5. Call the run method on the controller to kick things off .

509Lesson 27: Pulling It All Together: Building the Class Roster App

 Modify the main method in your App class to look like this:

 public static void main(String[] args) {
 UserIO myIo = new UserIOConsoleImpl();
 ClassRosterView myView = new ClassRosterView(myIo);
 ClassRosterDao myDao = new ClassRosterDaoFileImpl();
 ClassRosterController controller =
 new ClassRosterController(myDao, myView);
 controller.run();
 }

 NOTE You need to add imports for your classes as well.

 That does it. You now have an application that uses a form of dependency injection

to keep the components loosely coupled. It is possible also to create an interface that

includes all the methods we want to see in our view and then make the ClassRosterView

class implement the underlying interface. That way, if we decide to implement an actual

user interface for our application through the web, we can implement the view class for a

web application.

 HANDLING APPLICATION EXCEPTIONS
 In the next few steps, we ’ ll see how to use application-specifi c exceptions, and we ’ ll imple-

ment the fi le persistence feature of the application.

 ClassRosterDaoException
 Now we ’ ll create the application-specifi c exception for our project. As we discussed earlier,

the purpose of this exception is to allow us to hide the underlying implementation excep-

tions so that we don ’ t leak implementation details from our DAO.

 As demonstrated in the UML diagram for our application in Figure{ 27.8 ,

Classroster DaoException extends Exception .

 This is common practice when creating specifi c exceptions for your application. By

extending Exception , we inherit all the capabilities of Exception and then can add any

special features that we want to add. In our case, we won ’ t add any new features, because

we want our exception to act just like Exception . Extending Exception allows us to trans-

late and/or wrap any implementation-specifi c exception that can get thrown, which is

exactly the feature we are interested in. You can also get this by extending RuntimeEx-

ception as well. Remember that when we extend Exception , our new exception will be a

checked exception.

Job Ready Java510

 Create the ClassRosterDaoException class in the com.sg .classroster.dao package

and make it look like Listing{ 27.20 .

 LISTING 27.20
 The ClassRosterDaoException Class

 public class ClassRosterDaoException extends Exception{

 public ClassRosterDaoException(String message) {
 super(message);
 }

 public ClassRosterDaoException(String message, Throwable cause) {
 super(message, cause);
 }

 }

Exception Error

RuntimeException

Extends

Object

Throwable

Extendsten

Extends

Extendsten

 Figure 27.8 ClassrosterDaoException extends
Exception

511Lesson 27: Pulling It All Together: Building the Class Roster App

 Let ’ s analyze this code a bit. First, notice that we use the extends keyword to indicate

that we are extending Exception . This is standard, but it is a good example of where you

will use inheritance fairly often.

 Next, notice that we have two constructors. One takes just a string message , and the

other takes a string message and a Throwable cause . Also notice that each of these

constructors turns around and calls the matching constructor on the Exception class by

calling super() . All constructors call super implicitly, but in our case we are explicating

calling super . We do this because we want to call particular constructors in the super

class, not the default super() constructor.

 We will use the fi rst constructor in cases where something is wrong in our application,

but it isn ’ t caused by another exception. For example, maybe our application has some

validation rules for student data input and one of the fi elds doesn ’ t pass validation. In

that case, we could throw a new ClassRosterDaoException with a message describing

the problem.

 We will use the second constructor in cases where something is wrong in our applica-

tion that is caused by another exception in the underlying implementation. In these cases,

we catch the implementation-specifi c exception (for example FileNotFoundException).

In the catch block, we would create a new ClassRosterDaoException and pass in a new

message and the exception that caused the original problem, and then we throw the

newly created ClassRosterDaoException . We have eff ectively wrapped the original

exception with our application-specifi c exception.

 One more question remains: Why is the type of the second parameter of the second

constructor Throwable and not Exception ?

 As it turns out, Exception extends Throwable . If we reduced the scope of what the

constructor could take, then it wouldn ’ t be overriding. We want to be compliant with the

existing constructor of Exception as opposed to creating an unintentional overload. Here

is an excerpt from the Javadoc for Exception :

 public class Exception extends Throwable

 The class Exception and its subclasses are a form of Throwable that indicates condi-

tions that a reasonable application might want to catch.

 NOTE Now you have a better idea of how exceptions are used and handled
in Java. Right now, all this information probably seems a bit overwhelming,
but with time and practice, you ’ ll become more comfortable with these
concepts and techniques.

Job Ready Java512

 ADDING FILE PERSISTENCE
 In the fi nal step of the code-along, we will add code to persist the student information to

a fi le. The DAO code for this will follow the algorithm described in Lesson 24. We need to

make the following changes:

1. Add methods to the DAO to read student data from a fi le.

• Add a method to unmarshal a line of text into a Student object.

• Add a method to iterate over a fi le line by line, and load students into our Map.

2. Add a method to the DAO to write student data to a fi le.

• Add a method to marshal a student into a line of text.

• Add a method to iterate over all students in our Map and write each to a fi le.

3. Modify the public methods of the DAO to read from and write to the fi le when

appropriate.

4. Modify the DAO interface to account for the exceptions that can be thrown by the

implementation.

5. Modify the controller to account for and handle exceptions thrown by the DAO.

6. Add a method to our view for displaying error messages to the user.

 ClassRosterDaoFileImpl
 There are several changes we will need to make in ClassRosterDaoFileImpl . We ’ ll cover

each of these changes in the following sections.

 Constants
 We will use the fi le format described in Lesson 24. Each line in our fi le will consist of the

student ID, fi rst name, last name, and cohort, separated by two colons like this:

<studentid>::<first name>::<last name>::<cohort>

 Here ’ s an example:

 0001::Joe::Cool::Java - Jan 2021
 0002::Jane::Awesome::Java - April 2019
 0003::Jamal:Fantastic::.NET - Jan 2021

513Lesson 27: Pulling It All Together: Building the Class Roster App

 To start, we ’ ll create two constants in our DAO: one for the name of the fi le that holds

all the student data and one for the delimiter (two colons). Add the following constants

near the top of your ClassRosterDaoFileImpl class:

 public static final String ROSTER_FILE = "roster.txt";
 public static final String DELIMITER = "::";

 unmarshalStudent
 Our next step is to create a method that can translate a line of text into a Student object.

This method will follow the pattern described earlier, and the process is also described in

Lesson 24.

1. Take in a String line to break apart for student information.

2. Split the String into chunks at the :: delimiter.

3. Create a new Student object.

4. Use the fi rst value from the split String to set the student ID (this is passed into

the constructor of the new Student object).

5. Use the second value from the split String to set the student ’ s fi rst name.

6. Use the third value from the split String to set the student ’ s last name.

7. Use the fourth value from the split String to set the cohort value.

 Add the method in Listing{ 27.21 to your ClassRosterDaoFileImpl .

 LISTING 27.21
 unmarshalStudent () Method

 private Student unmarshalStudent(String studentAsText){
 // studentAsText is expecting a line read in from our file.
 // For example, it might look like this:
 // 1234::Ada::Lovelace::Java-September1842
 //
 // We then split that line on our DELIMITER - which we are using as ::
 // Leaving us with an array of Strings, stored in studentTokens.
 // Which should look like this:
 // ______________________________________
 // | | | | |
 // |1234|Ada|Lovelace|Java-September1842|
 // | | | | |
 // --------------------------------------

Job Ready Java514

 // [0] [1] [2] [3]
 String[] studentTokens = studentAsText.split(DELIMITER);

 // Given the pattern above, the student Id is in index 0 of the array.
 String studentId = studentTokens[0];

 // Which we can then use to create a new Student object to satisfy
 // the requirements of the Student constructor.
 Student studentFromFile = new Student(studentId);

 // However, there are 3 remaining tokens that need to be set into the
 // new student object. Do this manually by using the appropriate setters.

 // Index 1 - FirstName
 studentFromFile.setFirstName(studentTokens[1]);

 // Index 2 - LastName
 studentFromFile.setLastName(studentTokens[2]);

 // Index 3 - Cohort
 studentFromFile.setCohort(studentTokens[3]);

 // We have now created a student! Return it!
 return studentFromFile;
 }

 You should note that we use the String.split method to split each line in the fi le

into an array of String s. When the split method splits a String on the given delimiter, it

throws the delimiter away. Carefully read the comments in the previous code for details.

 loadRoster
 Our next step is to create a method that reads the roster fi le into memory. This method

will follow the algorithm described in Lesson 24.

1. Open the fi le for reading.

2. For each line in the fi le, do the following:

a. Read the line into a String variable.

b. Pass the line to our unmarshalStudent() method to parse it into Student .

c. Put the newly created and initialized Student object into the students Map .

3. Close the fi le.

 Add the method in Listing{ 27.22 to your ClassRosterDaoFileImpl .

515Lesson 27: Pulling It All Together: Building the Class Roster App

 LISTING 27.22
 The loadRoster () Method

 private void loadRoster() throws ClassRosterDaoException {
 // create an initial scanner
 Scanner scanner = null;

 try {
 // Change scanner to read from file
 scanner = new Scanner(
 new BufferedReader(
 new FileReader(ROSTER_FILE)));
 // currentLine holds the most recent line read from the file
 String currentLine;
 // currentStudent holds the most recent student unmarshaled
 Student currentStudent;
 // Go through ROSTER_FILE line by line, decoding each line into a
 // Student object by calling the unmarshalStudent method.
 // Process while we have more lines in the file
 while (scanner.hasNextLine()) {
 // get the next line in the file
 currentLine = scanner.nextLine();
 // unmarshal the line into a Student
 currentStudent = unmarshalStudent(currentLine);

 // We are going to use the student id as the map key for our
 // student object.
 // Put currentStudent into the map using student id as the key
 students.put(currentStudent.getStudentId(), currentStudent);
 }
 } catch (FileNotFoundException e) {
 throw new ClassRosterDaoException(
 "-_- Could not load roster data into memory.", e);
 }

 // close scanner
 finally{
 if (scanner!=null) {
 scanner.close();
 }
 }
 }

Job Ready Java516

 Pay close attention to the following:

• At the top of this method, in the try-catch block, we catch the FileNotFoundEx-

ception and translate it into a ClassRosterDaoException .

• We use a Scanner to read each line from the fi le one by one (this was demonstrated

in Lesson 24).

 marshalStudent
 Now we ’ ll create the method that organizes the student information from an in-memory

object into a line of text so that it can then be written properly into a fi le. This method will

also follow the pattern described earlier and the process outlined in Lesson 24.

 However, most importantly, we must preserve the order of information when we

translate our student into text because we are eventually expecting to unmarshal it back

into a student again. The write method must be the equal and opposite balance to the

read method:

1. Take in a student.

2. Create a String consisting of student ID, fi rst name, last name, and cohort (in that

order), separated by the :: delimiter.

 Add the method in Listing{ 27.23 to your ClassRosterDaoFileImpl .

 LISTING 27.23
 The marshalStudent () Method

 private String marshalStudent(Student aStudent){
 // We need to turn a Student object into a line of text for our file.
 // For example, we need an in-memory object to end up like this:
 // 4321::Charles::Babbage::Java-September1842

 // It's not a complicated process. Just get out each property,
 // and concatenate with our DELIMITER as a kind of spacer.

 // Start with the student id, since that's supposed to be first.
 String studentAsText = aStudent.getStudentId() + DELIMITER;

 // add the rest of the properties in the correct order:

 // FirstName
 studentAsText += aStudent.getFirstName() + DELIMITER;

517Lesson 27: Pulling It All Together: Building the Class Roster App

 // LastName
 studentAsText += aStudent.getLastName() + DELIMITER;

 // Cohort - don't forget to skip the DELIMITER here.
 studentAsText += aStudent.getCohort();

 // We have now turned a student to text! Return it!
 return studentAsText;
 }

 writeRoster
 Now we ’ ll create the method that writes the student information from memory to a fi le.

Again, we will follow the algorithm outlined in Lesson 24.

1. Open the fi le for writing.

2. Go through the Student objects in the students Map one by one.

3. For each Student , do the following:

a. Turn a Student to text, using our marshalStudent() method, spaced by our

delimiter.

b. Write the String to the output file.

4. Close the fi le.

 Add the method in Listing{ 27.24 to your ClassRosterDaoFileImpl .

 LISTING 27.24
 The writeRoster () Method

 private void writeRoster() throws ClassRosterDaoException {
 // NOTE FOR APPRENTICES: We are not handling the IOException, but
 // we are translating it to an application-specific exception and
 // then simply throwing it (i.e., "reporting" it) to the code that
 // called it. It is the responsibility of the calling code to
 // handle any errors that occur.
 PrintWriter out = null;

 try {
 out = new PrintWriter(new FileWriter(ROSTER_FILE));
 // Write out the Student objects to the roster file.
 // NOTE TO APPRENTICES: We could just grab the student map,

Job Ready Java518

 // get the Collection of Students, and iterate over them but we've
 // already created a method that gets a List of Students, so
 // we'll reuse it.
 String studentAsText;
 List<Student> studentList = new ArrayList(students.values());
 for (Student currentStudent : studentList) {
 // turn a Student into a String
 studentAsText = marshalStudent(currentStudent);
 // write the Student object to the file
 out.println(studentAsText);
 // force PrintWriter to write line to the file
 out.flush();
 }
 } catch (IOException e) {
 throw new ClassRosterDaoException(
 "Could not save student data.", e);
 }
 finally{
 // Clean up
 if (out!=null){
 out.close();
 }
 }
 }

 Pay close attention to the following:

1. At the top of this method, in the try-catch block, we catch the IOException and

translate it into a ClassRosterDaoException .

2. We ’ re using a PrintWriter to write to the fi le (this was demonstrated in Lesson 24).

3. We fl ush the PrintWriter buff er each time through the for loop to force it to

write the student to the fi le.

4. We close the PrintWriter at the end.

 addStudent
 Now that we have the loadRoster and writeRoster methods in place, we need to modify

addStudent , getAllStudents , getStudent , and removeStudent so that they read from

and write to the fi le as appropriate.

 Add a call to loadRoster and to writeRoster and add the throws

ClassRosterDao Exception declaration to addStudent so it looks like Listing{ 27.25 .

519Lesson 27: Pulling It All Together: Building the Class Roster App

 LISTING 27.25
 The addStudent () Method

 @Override
 public Student addStudent(String studentId, Student student)
 throws ClassRosterDaoException {
 loadRoster();
 Student newStudent = students.put(studentId, student);
 writeRoster();
 return newStudent;
 }

 This method reads all the Student objects from the fi le and loads them into our map. It

then adds the new Student object to our map and then writes all the student information

to the fi le to make sure the change is persisted.

 Notice that this now causes an error because the addStudent method declaration in

the ClassRosterDao interface does not allow the declaration of new or broader checked

exceptions. We ’ ll fi x that later in this lesson.

 getAllStudents
 Add a call to loadRoster and add the throws ClassRosterDaoException declaration to

getAllStudents so it looks like Listing{ 27.26 .

 LISTING 27.26
 The getAllStudents () Method

 @Override
 public List<Student> getAllStudents()
 throws ClassRosterDaoException {
 loadRoster();
 return new ArrayList(students.values());
 }

 This method reads all the Student objects from the fi le, gets them out of the map,

and then returns an ArrayList of the Student objects to the caller. Notice that this now

causes an error because the getAllStudents method declaration in the ClassRosterDao

interface does not specify that it throws a ClassRosterDaoException . We ’ ll fi x that later

in this lesson.

Job Ready Java520

 getStudent
 Add a call to loadRoster and add the throws ClassRosterDaoException declaration to

getStudent so it looks like Listing{ 27.27 .

 LISTING 27.27
 The getStudent () Method

 @Override
 public Student getStudent(String studentId)
 throws ClassRosterDaoException {
 loadRoster();
 return students.get(studentId);
 }

 This method reads all the Student objects from the fi le, gets the requested student out

of the map, and then returns the Student object to the caller. Notice that this now causes

an error because the getStudent method declaration in the ClassRosterDao interface

does not specify that it throws a ClassRosterDaoException . Again, we will fi x that later in

this lesson.

 removeStudent
 Add a call to loadRoster and to writeRoster and add the throws ClassRosterDaoEx-

ception declaration to removeStudent so it looks like Listing{ 27.28 .

 LISTING 27.28
 The removeStudent Method

 @Override
 public Student removeStudent(String studentId)
 throws ClassRosterDaoException {
 loadRoster();
 Student removedStudent = students.remove(studentId);
 writeRoster();
 return removedStudent;
 }

521Lesson 27: Pulling It All Together: Building the Class Roster App

 This method ensures that all Student objects are read in from the fi le and loaded into

our map. Then the method removes the specifi ed Student object from our map, writes the

updated students map to the fi le, and returns the removed Student object to the caller.

 Notice that this now causes an error because the removeStudent method declaration

in the ClassRosterDao interface does not specify that it throws a ClassRosterDaoExcep-

tion . Again, we will fi x that later in this document.

 ClassRosterDao
 Now we need to go fi x the ClassRosterDao interface. We ’ ll add the throws

ClassRosterDaoException declaration to each of the methods. Modify ClassRoster-

Dao to look like Listing{ 27.29 . With this change, the controller will fail to compile until we

update it as well.

 LISTING 27.29
 The Updated ClassRosterDao Interface

 public interface ClassRosterDao {
 /**
 * Adds the given Student to the roster and associates it with the
 * given student id. If there is already a student associated with the
 * given student id it will return that student object; otherwise it
 * will return null.
 *
 * @param studentId id with which student is to be associated
 * @param student student to be added to the roster
 * @return the Student object previously associated with the given
 * student id if it exists, null otherwise
 * @throws ClassRosterDaoException
 */
 Student addStudent(String studentId, Student student)
 throws ClassRosterDaoException;

 /**
 * Returns a List of all Students on the roster.
 *
 * @return Student List containing all students on the roster.
 * @throws ClassRosterDaoException
 */

Job Ready Java522

 List<Student> getAllStudents()
 throws ClassRosterDaoException;

 /**
 * Returns the student object associated with the given student id.
 * Returns null if no such student exists
 *
 * @param studentId ID of the student to retrieve
 * @return the Student object associated with the given student id,
 * null if no such student exists
 * @throws ClassRosterDaoException
 */
 Student getStudent(String studentId)
 throws ClassRosterDaoException;

 /**
 * Removes from the roster the student associated with the given id.
 * Returns the student object that is being removed or null if
 * there is no student associated with the given id
 *
 * @param studentId id of student to be removed
 * @return Student object that was removed or null if no student
 * was associated with the given student id
 * @throws ClassRosterDaoException
 */
 Student removeStudent(String studentId)
 throws ClassRosterDaoException;
 }

 ClassRosterView
 We need to add one more method to our view to display the given error message to the

user. We ’ ll use this method in the controller to display any error messages we encounter.

Add the following method to your ClassRosterView :

 public void displayErrorMessage(String errorMsg) {
 io.print("=== ERROR ===");
 io.print(errorMsg);
 }

 ClassRosterController
 The DAO is all taken care of, but the changes we made broke our controller. All the

methods in our controller that call DAO methods now have compile errors because they

523Lesson 27: Pulling It All Together: Building the Class Roster App

do not have any code to handle the new ClassRosterDaoExceptions that the DAO is now

throwing. We ’ ll fi x this in two steps.

1. We ’ ll add throws ClassRosterDaoException to the createStudent , viewStudent ,

removeStudent , and listStudents methods.

2. We ’ ll add a try-catch block in the run method.

 Modify the private methods in ClassRosterController to look like Listing{ 27.30 .

 LISTING 27.30
 The Updated ClassRosterController

 private int getMenuSelection() {
 return view.printMenuAndGetSelection();
 }

 private void createStudent() throws ClassRosterDaoException {
 view.displayCreateStudentBanner();
 Student newStudent = view.getNewStudentInfo();
 dao.addStudent(newStudent.getStudentId(), newStudent);
 view.displayCreateSuccessBanner();
 }

 private void listStudents() throws ClassRosterDaoException {
 view.displayDisplayAllBanner();
 List<Student> studentList = dao.getAllStudents();
 view.displayStudentList(studentList);
 }

 private void viewStudent() throws ClassRosterDaoException {
 view.displayDisplayStudentBanner();
 String studentId = view.getStudentIdChoice();
 Student student = dao.getStudent(studentId);
 view.displayStudent(student);
 }

 private void removeStudent() throws ClassRosterDaoException {
 view.displayRemoveStudentBanner();
 String studentId = view.getStudentIdChoice();
 Student removedStudent = dao.removeStudent(studentId);
 view.displayRemoveResult(removedStudent);
 }

Job Ready Java524

 private void unknownCommand() {
 view.displayUnknownCommandBanner();
 }

 private void exitMessage() {
 view.displayExitBanner();
 }

 Now we ’ ll add a try-catch block to the controller ’ s run method so we can react to the

ClassRosterDaoExceptions that potentially get thrown by our code. When we encounter

an exception, we ’ ll just tell the view to print out the error message for us. Modify your run

method to look like Listing{ 27.31 .

 LISTING 27.31
 The Updated run Method

 public void run() {
 boolean keepGoing = true;
 int menuSelection = 0;
 try {
 while (keepGoing) {

 menuSelection = getMenuSelection();

 switch (menuSelection) {
 case 1:
 listStudents();
 break;
 case 2:
 createStudent();
 break;
 case 3:
 viewStudent();
 break;
 case 4:
 removeStudent();
 break;
 case 5:
 keepGoing = false;
 break;
 default:
 unknownCommand();
 }

525Lesson 27: Pulling It All Together: Building the Class Roster App

 }
 exitMessage();
 } catch (ClassRosterDaoException e) {
 view.displayErrorMessage(e.getMessage());
 }
 }

 Create roster.txt
 The fi nal step in the code-along is to create the roster.txt fi le where our student data

will be stored. To do this, switch to the Files tab (found next to the Projects tab), right-click

the ClassRoster folder, and select r New and then w Other , as shown in Figure{ 27.9 . rr

 That will display the New File dialog. In the Categories pane, select Other . In the Chooserr

File Type pane, select Empty File, and click e Next , as shown in Figure{ 27.10 . tt

 This will display the New Empty File dialog. Enter roster.txt in the File Name text entry

fi eld and click Finish , as shown in Figure{ 27.11 . h

 Now roster.txt should show up on the Files tab, as shown in Figure{ 27.12 .

 Finally, open roster.txt and remove all empty lines from the fi le. For some reason,

NetBeans creates an empty line in its empty fi le. If you don ’ t remove this line from

roster.txt , you will get an ArrayIndexOutOfBoundsException when your program tries

to read roster.txt .

 Figure 27.9 Adding the roster.txt fi le

Job Ready Java526

 Figure 27.10 Selecting the fi le type

 Figure 27.11 Entering the fi lename and location

527Lesson 27: Pulling It All Together: Building the Class Roster App

 SUMMARY
 You have created your fi rst MVC CRUD application. Remember to follow the steps we took

to build this application as you build the exercises included with this lesson. Make sure you

use the code you wrote here as a template, or guide, for your future projects.

 EXERCISES
 These exercises help you practice in your own application what you have reviewed in this

lesson. These are to do on your own.

Exercise 1: Your Own DVD Library

Exercise 2: Electronic Address Book

 NOTE This exercise will be referenced again in a future lesson where you
will extend what you build here.

 Exercise 1: DVD Library Update
 The purpose of this exercise is to demonstrate your profi ciency in what you ’ ve learned

up to this point, including basic Java syntax involving console input and output, basic fi le

input and output, basic string/text manipulation, fl ow of control statements, expressions,

and basic data structures such as arrays, lists, and maps. Additionally, you will demonstrate

your profi ciency in implementing the MVC design pattern and dependency injection.

 In this exercise, you will create a program that stores information about a DVD collec-

tion. The program must do the following:

• Allow the user to add a DVD to the collection

• Allow the user to remove a DVD from the collection

 Figure 27.12 The roster.txt fi le has been added

Job Ready Java528

• Allow the user to edit the information for an existing DVD in the collection

• Allow the user to list the DVDs in the collection

• Allow the user to display the information for a particular DVD

• Allow the user to search for a DVD by title

• Load the DVD library from a fi le

• Save the DVD library back to the fi le when the program completes

• Allow the user to add, edit, or delete many DVDs in one session

 Additionally, you should follow the MVC design pattern and follow the agile approach

checklist outlined in Appendix D.

 Your DVD data transfer object should have the following fi elds:

• Title

• Release date

• MPAA rating

• Director ’ s name

• Studio

• User rating or note (allows the user to enter additional information, e.g., “Good

family movie”)

 Exercise 2: Electronic Address Book
 The objective of this exercise is to continue to practice designing programs that consist of

more than one class, implement the MVC pattern presented in this course, and use Java

Collections and Maps. In this exercise, design a program that acts as an electronic address

book. This program should do the following:

• Allow the user to add addresses to the address book

• Allow the user to remove addresses from the address book

• Allow the user to see how many addresses are in the book

• Allow the user to list all the addresses in the book

• Allow the user to fi nd an address by last name

 Design an Address class to hold address information. Design an AddressBookDao class

that holds Address objects. It should also have methods to do the following:

• Add an address

• Remove an address

529Lesson 27: Pulling It All Together: Building the Class Roster App

• Find an address by last name

• Return a count of addresses in AddressBookDao

• Return all the addresses in AddressBookDao

 Design an AddressBookController class. This class should do the following:

• Orchestrate all activities of the program.

• Use the view and UserIOClass from a previous exercise to handle all console input

and output. You might need to modify the view.

• Use the AddressBookDao class to store Address objects.

 You should also add code to allow the user to edit an address and to initialize your

address book from a fi le. Finally, add code to allow the user to save an address back

to the fi le.

 The following provides ideas as a sample for the UI for the application:

 ==========
 Initial Menu:
 Please select the operation you wish to perform:
 1. Add Address
 2. Delete Address
 3. Find Address
 4. List Address Count
 5. List All Addresses

 Add Address Menu:
 Please Enter First Name:
 Please Enter Last Name:
 Please Enter Street Address:
 .
 .
 .
 Address added. Press 1 to go to Main Menu.

 Delete Address Menu:
 Please enter last name of address to delete:

 John Doe
 123 Main Street
 Hometown, OH, 12345

 Really Delete?
 Address Deleted. Press 1 to go to Main Menu.

Job Ready Java530

 Find Address Menu:
 Please enter last name of address to find:

 Sally Jones
 45 Elm Street
 Applegrove, OH 44321

 Press 1 to go to Main Menu.

 List Address Count Menu:
 There are 45 addresses in the book. Press 1 to go to Main Menu.

 List Addresses Menu:
 John Doe
 123 Main Street
 Hometown, OH, 12345

 Sally Jones
 45 Elm Street
 Applegrove, OH 44321

 .
 .
 .

 Press 1 to go to Main Menu.

P A R T I V

 Intermediate Java
 Lesson 28: Exploring the Service Layer

 Lesson 29: Pulling It All Together: Coding the Class Roster Service Layer

 Lesson 30: Doing Unit Testing

 Lesson 31: Testing Stateful Code

 Lesson 32: Including Magic Numbers and Enums

 Lesson 33: Manipulating Dates and Times

 Lesson 34: Using the BigDecimal Class

 Lesson 35: Working with Lambdas and Streams

Lesson 28

 Exploring the
Service Layer

 This lesson introduces the service layer to our tiered/MVC

application design. The service layer sits between the

controller and the data access object (DAO) and contains the

business logic for the application. We ’ ll discuss why service layers

are needed, their role in an application, and how they relate to the

other application components.

 LEARNING OBJECTIVES
 By the time you fi nish this lesson, you will be able to:

• Explain the role of the service layer

• Create semantic exceptions

• Design a service layer application programming interface (API)

 THE ROLE OF THE SERVICE LAYER
 So far we have the model, view, and controller components in our tiered application

design. Let ’ s review some of the MVC rules we ’ ve seen in earlier lessons.

• The model is responsible for persisting, retrieving, and ferrying data around the

application.

533Lesson 28: Exploring the Service Layer

• The controller is the orchestrator of our application: it knows what needs to be

done and when it needs to be done, but it doesn ’ t do any of the work. All work is

done by other components.

• The view knows how to display what it receives, but it can ’ t do any calculations.

 This works well for CRUD applications. If all you need to do is create, read, update, and

delete data and there is no business logic in your application, you are all set. But what if

you need business logic? What if you need to make calculations such as tax and shipping

on an order? What if you need to validate inputs such as a credit card number or shipping

address? What if we need to coordinate the activities of more than one DAO? Where do we

put all this code?

 The MVC pattern as we know it now has no place for any of this type of code. This is

where the service layer comes in: it is all about doing work. The service layer is responsible r

for checking business rules, doing calculations, coordinating interactions with the DAOs,

and performing other similar activities.

 The term service layer is a bit of a misnomer. Generally speaking, the service layer r

is just a Java class that implements a service layer functionality. In that sense, it is

just like the other components of our application; it just has a diff erent role to play in

the system.

 The introduction of the service layer changes the MVC rules some because we insert

the service layer in between the controller and the DAOs. This means that the controller

is no longer allowed to talk directly to the DAOs. The controller now must use the service

layer to communicate with the DAOs, which means that the service layer becomes both

the business logic and the persistence API for the rest of the application. The service layer

is the only component in the system that is allowed to talk to the DAOs. Our MVC tiered

design now looks like Figure{ 28.1 .

Model

Data
Transfer
Objects

View

Controller

Service Layer

Data Access

Storage

 Figure 28.1 Our updated MVC tiered design

Job Ready Java534

 SERVICE LAYER EXCEPTIONS
 In this lesson, we introduce the concept of semantic or application logic exceptions. These

exceptions represent violations of validation or business logic. For example, we will cre-

ate an exception for the Class Roster application that is thrown if the user tries to create

a Student object with an existing ID. These exceptions are implemented just like applica-

tion-specifi c exceptions in that they extend Exception and they have two constructors.

The only diff erence is that they signal a diff erent type of error. We will see in the following

sections how these become an integral part of the service layer interface/API.

 SERVICE LAYER API DESIGN
 The fi rst step in creating a service layer is to defi ne what you want the service layer to

do and create an interface for that functionality. We probably won ’ t have more than one

implementation for our service layer (like we will have for our DAOs), but creating an inter-

face for the service layer gives us that option later if we need it. That said, the main reason

we create the service layer interface is that it forces us to design the API/contract for our

service layer up front: we have to think about what the interface is, how it will be used, and

how we signal success and failure.

 To demonstrate this process, we will design the Class Roster service layer interface. In

the next lesson, we will implement the service layer in the Class Roster project. The service

layer for Class Roster will be similar to the interface for the underlying DAO, but there will

be several changes because of the business rules we are going to introduce to the applica-

tion and enforce in the service layer.

 NEW BUSINESS RULES
 If we didn ’ t have new business rules to add to the application, we would have no

reason to create a service layer. Here, we are going to add three business rules to our

application.

• The application should not allow the user to create a student with an ID that already

exists in the system.

• The application should not allow the user to create a student that has empty values

for First Name, Last Name, or Cohort.

• The application will record an entry to an audit log every time a Student object is

created or removed from the system.

 As mentioned earlier, we will design the interface for the new service layer here, and

we will implement the new service layer as part of the next lesson in this course.

535Lesson 28: Exploring the Service Layer

 CREATE A STUDENT
 This is where the biggest change will be. In the current implementation, the DAO method

for creating a student simply takes the student and saves it no matter what. This is per-

fectly fi ne—the DAO is supposed to be fast and stupid, and it is supposed to do what you

tell it to do, no questions asked.

 We want the service layer method that creates a student to be a bit more sophisticated;

it must enforce our three business rules. In this step, we are declaring the method in the

service layer interface, but our method declaration must somehow indicate that these

rules will be enforced. Let ’ s see how this works.

 Defi ne the Method Signature
 First, we must defi ne the signature of our method. We are going to call this method

createStudent() . It will not have any parameters. Note that this is diff erent from the

addStudent() method in the underlying DAO interface, which takes a student ID and a

Student object. This is perfectly acceptable. The service layer doesn ’ t have to mirror the

DAO interface methods. Here is our method signature:

 createStudent()

 Defi ne the Return Type
 Next, we must defi ne the return type of our method. The createStudent() method will

return nothing. This is diff erent from the addStudent() method in the underlying DAO

interface, which returns a Student object if the given student ID already exists. There is no

need to return a student object from the createStudent() service layer method because

our business rules do not allow us to create a student with a duplicate student ID.

 NOTE You could return a Boolean from createStudent() to indicate that
the method was successful. Additionally, in most real-world applications,
you would programmatically generate a student ID rather than having the
user provide it.

 Defi ne the Errors That Might Occur in This Method
 Finally, we must defi ne any errors that might occur when this method is executed. There

are three things that might go wrong.

Job Ready Java536

• The ID of the given Student object might already exist

• First Name, Last Name, or Cohort values might be missing

• Something might go wrong when the DAO tries to read from or write to the under-

lying data store

 If any of these things occur, the method must throw an exception that lets the caller

know the nature of the error. To do this, we must create two new exception types.

• ClassRosterDuplicateIdException for the duplicate student ID error

• ClassRosterDataValidationException for the data validation error

 We have an existing exception for the third error— ClassRosterDaoException— — —

but, in hindsight, this exception seems a bit specifi c. We will rename/refactor this from

ClassRosterDaoException to ClassRosterPersistenceException so that it applies to

any persistence error, not just problems that occur in a DAO.

 This gives us the following code to defi ne createStudent() :

 void createStudent(Student student) throws
 ClassRosterDuplicateIdException,
 ClassRosterDataValidationException,
 ClassRosterPersistenceException;

 One thing you may have noticed is that there is nothing in the declaration of this

method to indicate that our third business rule—writing to the audit log every time a Stu-

dent object is created or removed in the system—is enforced. This is because that particu-

lar business rule is part of the private implementation of the service layer. This rule does

not aff ect how the service layer methods are used by other parts of the application, so it

does not show up as part of the public interface of the service layer.

 SERVICE LAYER METHODS FOR
GETTING STUDENTS
 For our class roster application, we will need methods for getting students. These will

include getting all students, getting a single student, and removing a student.

 Get All Students
 The service layer method for getting all students will be identical to the method

getAllStudents() in the underlying DAO interface, because we don ’ t have any

business logic or validation to perform here. These types of methods are known as

537Lesson 28: Exploring the Service Layer

pass-through methods, and you will generally have a few of these in your service layer

interfaces.

 List<Student> getAllStudents() throws ClassRosterPersistenceException;

 Get a Single Student
 The method to get a single student, getStudent() , will also be a pass-through method, as

shown in the following:

 Student getStudent(String studentId) throws
 ClassRosterPersistenceException;

 Remove a Student
 The method to remove a student, removeStudent() , is not a pass-through because we

must write to the audit log when a Student object is removed from the system; however,

the declaration of this method is the same as the underlying DAO interface method.

 Student removeStudent(String studentId) throws
 ClassRosterPersistenceException;

 SUMMARY
 In this lesson, we introduced the service layer and discussed how it fi ts into a tiered MVC

application structure. The key takeaways from this document are as follows:

• The service layer is responsible for the business logic of an application.

• The service layer sits between the controller and the DAOs. When introduced into

an application, the controller should use the service layer for all DAO access.

• Application-specifi c exceptions are used to signal violations of business rules. These

exceptions are part of the public interface, or API, of the service layer.

• Service layers generally have some methods that simply turn around and call a

matching DAO method—these are known as pass-through methods.

 In the following lesson, we will go deeper by starting with what we learned in this

lesson on the service layer and applying it to our Class Roster application.

Lesson 29

 Pulling It All
Together: Coding
the Class Roster
Service Layer

 It ’ s time again to pull together what we ’ ve learned by

implementing the Class Roster service layer that we designed in

the previous lesson into an application. We will continue with the

Class Roster application we updated in Lesson 27.

 PROGRAM OBJECTIVES
 Essentially, we will be coding the business rules into our application by following these steps:

• Create the service layer interface.

• Create new application-specifi c exceptions.

• Refactor/rename the existing ClassRosterDaoException .

• Implement the service layer interface.

• Modify the controller to use the new service layer.

539Lesson 29: Pulling It All Together: Coding the Class Roster Service Layer

• Modify the dependency injection code in App to account for the new service layer component.

• Add the audit log feature.

• Create the Audit DAO interface.

• Create the Audit DAO fi le implementation.

• Modify the service layer to use the Audit DAO.

• Modify the dependency injection code in App to account for the new Audit DAO

component.

 CREATE A SERVICE LAYER INTERFACE
 The fi rst step in updating our Class Roster application is to create the service layer inter-

face that we designed in the previous lesson. We are going to have several classes and

interfaces related to our service layer, so we will create a new com.sg .classroster.

service package in the same way we ’ ve added packages before. To do this, open the

ClassRoster project, right-click the com.sg.classroster package, and select New ➢ Java

Package, as shown in Figure{ 29.1 .

 Type the name of the new package (com.sg.classroster.service) next to Package Name

in the New Java Package window, as shown in Figure{ 29.2 . Click the Finish button when h

you are done.

 Now that the package has been created, it is time to create the interface. In the

package explorer, right-click the com.sg .classroster.service package and select New

➢ Java Package, as shown in Figure{ 29.3 .

 Figure 29.1 Adding a new Java package

Job Ready Java540

 When the New Java Interface dialog box appears, type ClassRosterServiceLayer
into the Class Name text box, as shown in Figure{ 29.4 . Click the Finish button whenh

you are done.

 Figure 29.2 Naming the Java package

 Figure 29.3 Creating a new Java interface

541Lesson 29: Pulling It All Together: Coding the Class Roster Service Layer

 Finally, we need to defi ne the methods we designed in Lesson 28. Add code to your

ClassRosterServiceLayer interface so that it looks like Listing{ 29.1 .

 LISTING 29.1
 The ClassRosterServiceLayer Interface

 public interface ClassRosterServiceLayer {

 void createStudent(Student student) throws
 ClassRosterDuplicateIdException,
 ClassRosterDataValidationException,
 ClassRosterPersistenceException;

 List<Student> getAllStudents() throws
 ClassRosterPersistenceException;

 Student getStudent(String studentId) throws
 ClassRosterPersistenceException;

 Figure 29.4 Naming the new Java interface

Job Ready Java542

 Student removeStudent(String studentId) throws
 ClassRosterPersistenceException;

 }

 You ’ ll notice that NetBeans is now showing errors. This is because we haven ’ t created

the new exceptions or refactored/renamed the existing exception. We ’ ll do that in the

next step.

 CREATE NEW EXCEPTIONS
 Now we need to create our two new exceptions and refactor/rename the existing excep-

tion. At this point, you should know how to create new classes, packages, and interfaces in

NetBeans (as shown in the previous step). The details of these NetBeans creation opera-

tions will not be shown from here on out.

 Exceptions are created in the same package as the component that potentially throws

them. So, the exceptions thrown by the service layer are in the service package and the

exception thrown by the DAO is in the dao package in our application.

 ClassRosterDuplicateIdException
 Create a new class in the com.sg .classroster.service package called ClassRoster-
DuplicateIdException . This class will extend Exception and will have two constructors

(just like the ClassRosterDaoException you implemented in the previous section). When

complete, your new class should look like Listing{ 29.2 .

 LISTING 29.2
 The ClassRosterDuplicateIdException Class

 public class ClassRosterDuplicateIdException extends Exception {

 public ClassRosterDuplicateIdException(String message) {
 super(message);
 }

 public ClassRosterDuplicateIdException(String message,
 Throwable cause) {
 super(message, cause);
 }

 }

543Lesson 29: Pulling It All Together: Coding the Class Roster Service Layer

 ClassRosterDataValidationException
 Create a new class in the com.sg .classroster.service package called ClassRosterData-
ValidationException . This class will be similar to ClassRosterDuplicateIdException .

When complete, your new class should look like Listing{ 29.3 .

 LISTING 29.3
 The ClassRosterDataValidationException Class

 public class ClassRosterDataValidationException extends Exception {

 public ClassRosterDataValidationException(String message) {
 super(message);
 }

 public ClassRosterDataValidationException(String message,
 Throwable cause) {
 super(message, cause);
 }
 }

 Refactor/Rename ClassRosterDaoException
 Now we need to refactor/rename ClassRosterDaoException to ClassRosterPersis-

tenceException . This change does not add or remove any functionality from our program,

but it does better signal the intent of this exception and better encapsulates the private

implementation of the service layer.

 In NetBeans, right-click ClassRosterDaoException in the com.sgn .classroster.dao

package in the Project Explorer and select Refactor ➢ Rename, as shown in Figure{ 29.5 .

 Type ClassRosterPersistenceException into the New Name text box of the Rename

Class dialog box, as shown in Figure{ 29.6 . Click the Refactor button when done.r

 Finally, we have to return to the ClassRosterServiceLayer interface and import

ClassRosterPersistenceException . Open ClassRosterServiceLayer.java , right-click

any white space in the fi le, and select Fix Imports, as shown in Figure{ 29.7 . This will import

ClassRosterPersistenceException and fi x the fi nal error in NetBeans.

Job Ready Java544

 Figure 29.5 Refactoring a name

 Figure 29.6 Renaming the class

545Lesson 29: Pulling It All Together: Coding the Class Roster Service Layer

 Now ClassRosterServiceLayer should look like Listing{ 29.4 with no errors.

 LISTING 29.4
 The Fixed ClassRosterServiceLayer

 public interface ClassRosterServiceLayer {

 void createStudent(Student student) throws
 ClassRosterDuplicateIdException,
 ClassRosterDataValidationException,
 ClassRosterPersistenceException;

 List<Student> getAllStudents() throws
 ClassRosterPersistenceException;

 Figure 29.7 Fixing the imports

Job Ready Java546

 Student getStudent(String studentId) throws
 ClassRosterPersistenceException;

 Student removeStudent(String studentId) throws
 ClassRosterPersistenceException;
 }

 CREATE THE SERVICE LAYER
IMPLEMENTATION
 With the service layer interface and all the exceptions in place, we are ready to implement

the service layer. Create a new Java class called ClassRosterServiceLayerImpl in the

 com.sg .classroster.service package. Have this class implement the ClassRosterSer-

viceLayer interface and then have NetBeans implement all of the abstract methods of

the interface for you. Your class should look like Listing{ 29.5 when you are done.

 LISTING 29.5
 ClassRosterServiceLayerImpl

 public class ClassRosterServiceLayerImpl implements
 ClassRosterServiceLayer {

 @Override
 public void createStudent(Student student) throws
 ClassRosterDuplicateIdException,
 ClassRosterDataValidationException,
 ClassRosterPersistenceException {
 throw new UnsupportedOperationException("Not supported yet.");
 }

 @Override
 public List<Student> getAllStudents() throws
 ClassRosterPersistenceException {
 throw new UnsupportedOperationException("Not supported yet.");
 }

 @Override
 public Student getStudent(String studentId) throws
 ClassRosterPersistenceException {
 throw new UnsupportedOperationException("Not supported yet.");
 }

547Lesson 29: Pulling It All Together: Coding the Class Roster Service Layer

 @Override
 public Student removeStudent(String studentId) throws
 ClassRosterPersistenceException {
 throw new UnsupportedOperationException("Not supported yet.");
 }
 }

 Constructor and DAO Member
 Now that we have the shell of our service layer implementation, we can start adding some

functionality. The service layer needs to use the DAO for Student object CRUD operations,

so we will add a member fi eld of type ClassRosterDao to our service layer implementa-

tion. The member fi eld will be initialized through the service layer implementation con-

structor. Add the following code to the top of your ClassRosterServiceLayerImpl class:

 private final ClassRosterDao dao;

 public ClassRosterServiceLayerImpl(ClassRosterDao dao) {
 this.dao = dao;
 }

 Validating Student Data
 One of the business rules that we must enforce in the service layer is that every student in

the system must have values for First Name, Last Name, and Cohort. If any of these fi elds

is empty, the Student object should not be persisted. To help with this, we will create a

method that does this validation for us. If the given Student object fails validation, this

method will throw a ClassRosterDataValidationException . We will use this method

during the Create Student process. Add the private method in Listing{ 29.6 to the bottom

of your ClassRosterServiceLayerImpl class.

 LISTING 29.6
 The Private validateStudentData() Method

 private void validateStudentData(Student student) throws
 ClassRosterDataValidationException {

 if (student.getFirstName() == null
 || student.getFirstName().trim().length() == 0
 || student.getLastName() == null

Job Ready Java548

 || student.getLastName().trim().length() == 0
 || student.getCohort() == null
 || student.getCohort().trim().length() == 0) {

 throw new ClassRosterDataValidationException(
 "ERROR: All fields [First Name, Last Name, Cohort] are required.");
 }
 }

 Here, we are checking each fi eld in the given object to see, fi rst, that it is not null and,

second, that it is neither empty or just whitespace. This is necessary because a null string

and an empty string are not the same things in Java. If any of the fi elds is either null or

empty/whitespace only, this method throws a ClassRosterDataValidationException .

 NOTE For added safety, we should also check to make sure that the
student name does not contain the delimiter we are using when storing
and retrieving data, in our case :: .

 Create Student
 We are now ready to implement the Create Student logic. In this method, we must do the

following:

1. Ensure that the incoming student ID does not already exist.

2. Validate that all the fi elds in the incoming Student object have values.

3. Pass the incoming Student object to the DAO so that it can persist it.

 Modify the createStudent method in your ClassRosterServiceLayerImpl class so

that it looks like Listing{ 29.7 .

 LISTING 29.7
 The Modified createStudent() Method

 @Override
 public void createStudent(Student student) throws
 ClassRosterDuplicateIdException,
 ClassRosterDataValidationException,
 ClassRosterPersistenceException {

 // First check to see if there is already a student

549Lesson 29: Pulling It All Together: Coding the Class Roster Service Layer

 // associated with the given student's id
 // If so, we're all done here.
 // Throw a ClassRosterDuplicateIdException
 if (dao.getStudent(student.getStudentId()) != null) {
 throw new ClassRosterDuplicateIdException(
 "ERROR: Could not create student. Student Id "
 + student.getStudentId()
 + " already exists");
 }

 // Now validate all the fields on the given Student object.
 // This method will throw an
 // exception if any of the validation rules are violated.
 validateStudentData(student);

 // We passed all our business rules checks so go ahead
 // and persist the Student object
 dao.addStudent(student.getStudentId(), student);
 }

 Get All Students
 This method is straightforward because it is a pass-through method. We simply turn

around and call the getAllStudents method on the DAO and return the results. Modify

the getAllStudents method in your ClassRosterServiceLayerImpl class so that it looks

like Listing{ 29.8 .

 LISTING 29.8
 The Modified getAllStudents() Method

 @Override
 public List<Student> getAllStudents() throws ClassRosterPersistenceException {
 return dao.getAllStudents();
 }

 Get One Student
 This is another pass-through method. We simply turn around and call the getStudent

method on the DAO and return the results. Modify the getStudent method in your

ClassRosterServiceLayerImpl class so that it looks like Listing{ 29.9 .

Job Ready Java550

 LISTING 29.9
 The Modified getStudent() Method

 @Override
 public Student getStudent(String studentId) throws
ClassRosterPersistenceException {
 return dao.getStudent(studentId);
 }

 Remove Student
 Finally, we ’ ll implement the removeStudent method. This is a pass-through method as

well (for now; we will add code to write to the audit log in a later step). We simply turn

around and call the removeStudent method on the DAO and return the results. Modify

the removeStudent method in your ClassRosterServiceLayerImpl so that it looks like

Listing{ 29.10 .

 LISTING 29.10
 The Modified removeStudent() Method

 @Override
 public Student removeStudent(String studentId) throws
ClassRosterPersistenceException {
 return dao.removeStudent(studentId);
 }

 MODIFY THE CONTROLLER
 We are now ready to modify the controller so that it uses our new service layer instead of

directly using the DAO. We do this in the following steps:

1. Replace the member fi eld of type ClassRosterDao with a member fi eld of type

ClassRosterServiceLayer .

2. Modify the constructor, replacing the ClassRosterDao parameter with a

ClassRosterServiceLayer parameter.

3. Replace all the calls to DAO methods with calls to service layer methods.

551Lesson 29: Pulling It All Together: Coding the Class Roster Service Layer

 Replace Member Field
 Replace the fi eld declaration for the ClassRosterDao :

 private ClassRosterDao dao;

 with a declaration for the ClassRosterServiceLayer :

 private ClassRosterServiceLayer service;

 Modify Constructor
 Now we must modify the constructor so that it initializes the new ClassRosterSer-

viceLayer instead of the now removed ClassRosterDao . Modify the constructor in your

ClassRosterServiceLayerImpl class so that it looks like Listing{ 29.11 .

 LISTING 29.11
 The Modified ClassRosterController() Method

 public ClassRosterController(ClassRosterServiceLayer service,
ClassRosterView view) {
 this.service = service;
 this.view = view;
 }

 Replace Calls to DAO Methods with Calls to the Service
Layer Method
 The changes we made in the previous two steps are now causing compilation errors in

four of our controller methods. Update these listings with the changes in Listings{ 29.12

through{ 29.15 to fi x these errors.

 LISTING 29.12
 The Modified listStudents() Method

 private void listStudents() throws ClassRosterPersistenceException {
 List<Student> studentList = service.getAllStudents();

 view.displayStudentList(studentList);
 }

Job Ready Java552

 LISTING 29.13
 The Modified viewStudent() Method

 private void viewStudent() throws ClassRosterPersistenceException {
 String studentId = view.getStudentIdChoice();
 Student student = service.getStudent(studentId) ;
 view.displayStudent(student);
 }

 LISTING 29.14
 The Modified removeStudent() Method

 private void removeStudent() throws ClassRosterPersistenceException {
 view.displayRemoveStudentBanner();
 String studentId = view.getStudentIdChoice();
 service.removeStudent(studentId);
 view.displayRemoveSuccessBanner();
 }

 LISTING 29.15
 The Modified createStudent() Method

 private void createStudent() throws ClassRosterPersistenceException {
 view.displayCreateStudentBanner();
 boolean hasErrors = false;
 do {
 Student currentStudent = view.getNewStudentInfo();
 try {
 service.createStudent(currentStudent);
 view.displayCreateSuccessBanner();
 hasErrors = false;
 } catch (ClassRosterDuplicateIdException |

ClassRosterDataValidationException e) {
 hasErrors = true;
 view.displayErrorMessage(e.getMessage());
 }
 } while (hasErrors);
 }

553Lesson 29: Pulling It All Together: Coding the Class Roster Service Layer

 The changes to createStudent are more extensive than the previous three methods.

Notice that we are now calling service.createStudent . You ’ ll remember from the

design of our service layer interface that this method throws two additional exceptions:

ClassRosterDuplicateIdException and ClassRosterDataValidationException . Our

program can handle these two errors by displaying an error message to the user and then

reprompting for the student data.

 To do this, we use a combination of a Boolean fl ag (hasErrors), a do -while loop, and

a try - catch construct. If the call to createStudent causes an exception, we display the

error message to the user and set the hasErrors fl ag to true , which will cause the

do -while loop to execute again. This prompts the user for the requested input again. If

the call to createStudent does not cause an exception, the program displays the success

banner and sets the hasErrors fl ag to false , which will cause the do -while loop to stop

repeating.

 The catch block in this createStudent demonstrates the syntax for handling more

than one type of exception in a single catch block. This syntax is straightforward: instead

of listing one exception type followed by an identifi er, list all the exception types to be

handled in the catch block separated by the bitwise OR (|) operator followed by a single

identifi er, as shown in the example.

 NOTE While you can handle more than one exception in a single catch
block, there is one rule. None of the exceptions in the single catch block
can be in the same hierarchy. For example, (FileNotFoundException |
IOException) would not be legal.

 MODIFY THE APP
 The changes we made to the controller have caused compilation errors in the App class

because we changed the signature of the controller ’ s constructor. Recall that the App class

is responsible for wiring or assembling the components of our application. We ’ ll make two

changes to the App class.

• Add code to instantiate the service layer (and pass the DAO into its constructor).

• Modify the code that instantiates the controller to pass the service layer instance to

the constructor.

 Modify the main method of your App class so that it looks like Listing{ 29.16 .

Job Ready Java554

 LISTING 29.16
 The Updated main() Method

 public static void main(String[] args) {
 UserIO myIo = new UserIOConsoleImpl();
 ClassRosterView myView = new ClassRosterView(myIo);
 ClassRosterDao myDao = new ClassRosterDaoFileImpl();
 ClassRosterServiceLayer myService = new ClassRosterServiceLayerImpl(myDao);
 ClassRosterController controller = new ClassRosterController(myService, myView);
 controller.run();
 }

 That completes the addition of the fi rst two business rules. Now we will add the audit

log feature.

 ADD THE AUDIT LOG FEATURE
 The audit log feature will be implemented in four steps:

1. Creation and implementation of the Audit DAO interface and implementation class

2. Changes to the service layer to write to the Audit Log when creating and removing

students in the system

3. Modifying the App class to create and wire the Audit DAO into the service layer

4. Creating the empty audit.txt fi le

 Audit DAO Interface and Implementation
 The Audit DAO is simple. It has just one method that writes an entry to the log fi le.

Because this method can run into problems writing to the audit fi le, it throws ClassRos-

terPersistenceException . Create a new Java interface called ClassRosterAuditDao in

the com.sg .classroster.dao package and add code so it looks like this:

 public interface ClassRosterAuditDao {

 public void writeAuditEntry(String entry) throws
ClassRosterPersistenceException;

 }

555Lesson 29: Pulling It All Together: Coding the Class Roster Service Layer

 Now create a new Java class called ClassRosterAuditDaoFileImpl in the com.sg.

classroster.dao package and modify the fi le so it looks like Listing{ 29.17 .

 LISTING 29.17
 ClassRosterAuditDaoFileImpl

 public class ClassRosterAuditDaoFileImpl implements ClassRosterAuditDao {

 public static final String AUDIT_FILE = "audit.txt";
 @override
 public void writeAuditEntry(String entry) throws
ClassRosterPersistenceException {
 PrintWriter out;

 try {
 out = new PrintWriter(new FileWriter(AUDIT_FILE, true));
 } catch (IOException e) {
 throw new ClassRosterPersistenceException("Could not persist audit
information.", e);
 }

 LocalDateTime timestamp = LocalDateTime.now();
 out.println(timestamp.toString() + " : " + entry);
 }
 }

 There are some things to note about this implementation.

 You should note that we are opening the audit fi le in append mode so that eache

entry will be appended to the fi le rather than overwriting everything that was there

before. We{accomplish this by setting the second parameter of the FileWriter

constructor to true .

 new FileWriter(AUDIT_FILE, true)

 Also, note that we are using a LocalDateTime object to create a timestamp for our

audit log entries. Don ’ t worry too much about LocalDateTime now—just use it as shown

here. We will learn about the Java Date-Time API in a later lesson.

Job Ready Java556

 Modify the Service Layer
 Now that the Audit DAO is implemented, we need to modify the service layer to use the

Audit DAO to write to the audit log. We ’ ll do this in four steps.

1. Add a member fi eld of type ClassRosterAuditDao .

2. Modify the ClassRosterServiceLayerImpl constructor so that it initializes the

ClassRosterAuditDao member fi eld.

3. Modify the createStudent method to write an audit log message when a student is

successfully created.

4. Modify the removeStudent method to write an audit log message when a student

is removed.

 Add Member Field
 First, we ’ ll add a member fi eld of type ClassRosterAuditDao to our service layer

implementation. Add the following line to the top of your ClassRosterServiceLayer-

Impl class:

 private final ClassRosterAuditDao auditDao;

 Modify the Constructor
 Now we must add code to the constructor to initialize the auditDao member fi eld. Modify

your ClassRosterServiceLayerImpl constructor so that it looks like Listing{ 29.18 .

 LISTING 29.18
 ClassRosterServiceLayerImpl

 public ClassRosterServiceLayerImpl(ClassRosterDao dao, ClassRosterAuditDao auditDao) {
 this.dao = dao;
 this.auditDao = auditDao;
 }

 Now that the Audit DAO has been declared and initialized, it is ready for use.

 Modify createStudent
 The changes to createStudent are straightforward. We simply need to ask the Audit DAO

to write an entry to the log after the student has been successfully added to the DAO.

557Lesson 29: Pulling It All Together: Coding the Class Roster Service Layer

Modify your createStudent method so that it looks like Listing{ 29.19 (note that we ’ ve

added only one line to the end of the method).

 LISTING 29.19
 The Modified createStudent() Method

 public void createStudent(Student student) throws
 ClassRosterDuplicateIdException,
 ClassRosterDataValidationException,
 ClassRosterPersistenceException {

 // First check to see if there is already a student
 // associated with the given student's id
 // If so, we're all done here.
 // Throw a ClassRosterDuplicateIdException
 if (dao.getStudent(student.getStudentId()) != null) {
 throw new ClassRosterDuplicateIdException(
 "ERROR: Could not create student. Student Id "
 + student.getStudentId()
 + " already exists");
 }

 // Now validate all the fields on the given Student object.
 // This method will throw an
 // exception if any of the validation rules are violated.
 validateStudentData(student);

 // We passed all our business rules checks so go ahead
 // and persist the Student object
 dao.addStudent(student.getStudentId(), student);

 // The student was successfully created, now write to the audit log
 auditDao.writeAuditEntry(
 "Student " + student.getStudentId() + " CREATED.");
 }

 Modify removeStudent
 Now we will make similar changes to the method. Modify your removeStudent method so

that it looks like Listing{ 29.20 .

Job Ready Java558

 LISTING 29.20
 The Modified removeStudent() Method

 public Student removeStudent(String studentId) throws
ClassRosterPersistenceException {
 Student removedStudent = dao.removeStudent(studentId);
 // Write to audit log
 auditDao.writeAuditEntry("Student " + studentId + " REMOVED.");
 return removedStudent;
 }

 Again, we are simply writing an entry to the audit log after a student has been success-

fully removed from the system.

 Modify App
 Finally, we must modify the App class so that it instantiates the new Audit DAO and wires

it into the service layer. Modify the main method in your App class so that it looks like

Listing{ 29.21 .

 LISTING 29.21
 The Modified App main() Method

 public static void main(String[] args) {
 // Instantiate the UserIO implementation
 UserIO myIo = new UserIOConsoleImpl();
 // Instantiate the View and wire the UserIO implementation into it
 ClassRosterView myView = new ClassRosterView(myIo);
 // Instantiate the DAO
 ClassRosterDao myDao = new ClassRosterDaoFileImpl();
 // Instantiate the Audit DAO
 ClassRosterAuditDao myAuditDao = new ClassRosterAuditDaoFileImpl();
 // Instantiate the service layer and wire the DAO and Audit DAO into it
 ClassRosterServiceLayer myService = new ClassRosterServiceLayerImpl(myDao, myAuditDao);
 // Instantiate the Controller and wire the service layer into it
 ClassRosterController controller = new ClassRosterController(myService, myView);
 // Kick off the Controller
 controller.run();
 }

559Lesson 29: Pulling It All Together: Coding the Class Roster Service Layer

 SUMMARY
 In this lesson, you have seen how a service layer is implemented. The important things to

remember from this exercise are the following:

• The service layer sits between the controller and the DAO and contains the business

logic of the program.

• The service layer can (and often does) interact with more than one DAO. In our

example, the service layer interacted with both the ClassRosterDao (for CRUD

operations on Student objects) and the AuditDao (for writing to the audit log).

• Adding a service layer to an application aff ects several components. In our example,

we had to modify the controller and the App classes to account for the new compo-

nent. It is strongly recommended that you take the “back to front” approach that

we followed in this example.

• Create the service layer interface and implementation.

• Modify the controller to use the new service layer.

• Modify the App class to instantiate the new service layer and wire it into the

application.

Lesson 30

 Doing Unit Testing

 We now have a complete application, which is pretty cool!

But how do we know we ’ re done? How do we know that

we ’ ve met all the requirements of the project? And how do we

know that there are no errors? Unit testing is a technique that can

help us answer these questions.

 In this lesson, we will introduce the concept of unit testing, look

at the JUnit automated unit testing framework, see how we can

test both stateless and stateful code, and do a code-along where

we add unit tests to the Class Roster application.

 LEARNING OBJECTIVES
 By the end of this lesson, you will be able to:

• Explain what unit testing is

• Diff erentiate between black-box and glass-box (or white-box) testing

• Diff erentiate between stateful and stateless components

• Describe test-driven development

561Lesson 30: Doing Unit Testing

• Trace the process of Red/Green/Refactor

• Explain the usage of test stubs

• Use JUnit to create, run, and document unit tests

• Explain how the Given/When/Then approach to unit testing works

• Describe what makes a good unit test

• Trace the unit testing design and implementation process

 UNIT TESTING
 Software is tested at several diff erent points during the development of a project. Unit

testing involves testing the lowest-level components of an application and is done by theg

software development team. The developer responsible for developing a particular com-

ponent is also generally responsible for creating the unit tests for that component.

 Modern unit testing involves the use of automated testing frameworks. The de facto

standard for Java development is the JUnit testing framework, which we will be using in

this lesson. These automated tests are run as part of the build process, and if the tests

don ’ t pass, the build fails. We do this to make sure, to the extent possible, that new code

doesn ’ t break existing code.

 Unit testing is just the beginning of the testing story for a software project. As the

project goes on, the entire application is tested as part of integration and system testing.

The QA team will test the entire system in a combination of manual and automated tests

using a variety of specialized QA testing frameworks. In addition to these functional tests,

the application may undergo performance testing (especially if it is a web application) to

ensure that the application runs normally under load. The fi nal step in the testing process

is user acceptance testing. This is where the client puts the fi nal version of the application

through its paces and signs off that it meets all requirements.

 NOTE Since this is a development course, we will concentrate on unit and
integration testing using the JUnit testing framework.

 TYPES OF UNIT TESTING
 There are some diff erent approaches to unit testing, some diff erent types of code to be

unit tested, and some terminology that we need to discuss before we look at JUnit and

dive into creating tests.

Job Ready Java562

 Black-Box vs. Glass-Box Testing
Black-box testing tests only the x functionality of a particular component without knowing y

anything about how the component is implemented. In our examples, black-box testing

tests the interface, or contract, of the component. The purpose of this type of testing is to

ensure that a given component does what it promises to do.

Glass-box (commonly referred to as x white-box) testing does take the implementationx

of a component into account. The tests are designed so that each code path through the

component is exercised. The tiered/MVC application design approach followed in this

course puts a premium on programming to interfaces so that the functionality can be sep-

arated from the implementation, so we will use the black-box testing approach.

 Stateful vs. Stateless Components
 Generally, there are two types of code that we can test: code that has no state (i.e., causes

no side eff ects, called stateless) and code that does. Code that has no state or side eff ectss

acts like a mathematical function. If you put the same inputs into this code, it will always

produce the same result. Examples of this type of code include all the static methods

on the Java Math class. If you put 100{into the Math.sqrt method, it will always return

10{whether you call it once or call it 350 times.

 Code that does have state (i.e., causes side eff ects, called stateful) is diff erent. Thel

results of a particular method call, even with identical inputs, might be diff erent

depending on what happened previously. For example, the fi rst time you add a student

to the Class Roster program with a student ID of 0001, the system persists the Student

object without error. If you try to do that a second time, the system will throw an excep-

tion; thus, you have the same input, but you get a diff erent result.

 From a practical standpoint, this means we must be mindful to put things in a

known state before testing stateful code, whereas we can test stateless code in any

order we want.

 Test-Driven Development and Red/Green/Refactor
 Test-Driven Development (TDD) is a software development approach where the unit tests

for a component are written before the component is implemented. In this approach, the

interface and shell implementation (where each method throws UnsupportedOperation-

Exception) are the only components created before the unit tests are written. After these

(all failing) unit tests are written, the developer goes back to the component and starts to

replace the UnsupportedOperationExceptions with actual code. Once all unit tests pass,

the developer is done.

563Lesson 30: Doing Unit Testing

 This approach is called Red/Green/Refactor. The name refers to the fact that the test

results will initially be Red (for failing) but will turn Green as the actual code is imple-

mented. Once all tests are Green (passing) the developer is free to refactor the code to

make it more concise or effi cient. Since the test suite already exists, the developer can

be sure that any refactoring done to the code doesn ’ t break anything. You will have the

opportunity to try TDD in some of the exercises ahead.

 Test Stubs
Test stubs allow us to simulate some components of the system to make the testing of s

other components easier. For example, when testing the business logic in our service layer,

we will stub out both the ClassRosterDao and the ClassRosterAuditDao components. It

is not necessary for the DAOs to actually read from and write to fi les when testing the ser-

vice layer, so we ’ ll replace the fi le implementations with stub implementations containing

canned data.

JUnit
 JUnit is the de facto standard automated unit test framework in the Java universe. There

are other options out there, but JUnit has, by far, the largest mindshare.

 JUnit has good integration with NetBeans, Eclipse, IntelliJ, and Maven. The unit tests

are part of the Maven build by default, and if any of the tests fail, the build fails. JUnit

makes it easy to create unit test suites for your Java components.

 Here we will discuss some of the features of the JUnit framework and discuss how unit

tests should be approached. This includes test setup and teardown (also called cleanup) aspp

well as annotations and asserts.

 Test Setup and Teardown
 To help get the code being tested into a known good state, the JUnit framework provides

Setup and tearDown hooks that will run before and after your tests. These come in two fl a-

vors. First, there are the Setup / tearDown// methods that run only once. The Setup method

runs right before your JUnit test class is created, and the tearDown method runs right

after your JUnit test class is destroyed. These can be useful for specialized situations.

 The more common (and more useful) Setup and tearDown methods run before and

after each individual test in your test suite. These methods allow you to ensure that your

code is in a known good state before every test case is run and that everything is cleaned

Job Ready Java564

up when the test has completed. You will have the opportunity to use these methods in

the code-along and in your labs.

 Annotations
 The current version of JUnit is annotation driven. That means that the classes containing n

the unit test code are just plain old Java objects (POJOs). In older versions, your test class

had to extend a JUnit base class, but this is no longer the case. Simply mark your class with

JUnit annotations and JUnit will know what to do. NetBeans will generate the shell of your

JUnit test class for you, so you do not have to remember all the annotations. One that you

will use all the time, however, is the @Test annotation. You must mark each of your test

methods with this annotation if you want JUnit to execute it. We ’ ll see this in action later

in this lesson.

 Asserts
 JUnit provides a set of static helper methods that allow you to test diff erent conditions in

your tests. These are known as assertions . These methods allow you to assert things like ss

the following:

• A Boolean condition is false.

• A Boolean condition is true.

• An object reference is null.

• An object reference is not null.

• Two values are equal.

• Two objects are equal.

 If the assertion is wrong, the method throws an AssertionError , and the test case

fails. We will use these assertions in the code-along, and you will use them in your unit test

suites throughout the rest of the course.

 GIVEN/WHEN/THEN
 The general approach that we will take for unit testing our code is called Given/When/

Then.

 First, we put the code in a known good state and create all necessary test data (Given).

Then we write a test that acts—this test uses the arranged data to execute the code we

are testing (When). Finally, we assert that the results are what we expect (Then).

565Lesson 30: Doing Unit Testing

 NOTE Given/When/Then is also referred to as Arrange/Act/Assert.

 STATELESS UNIT TESTING
 Now that we ’ ve provided an overview of the concepts associated with unit testing, we will

discuss what makes a good unit test and the process you should use when unit testing.

Here, we concentrate on the techniques used for testing stateless code, which, if you

recall, is a type of code that produces the same output for the same input, regardless of

how often it is run. We are going to focus on the following:

• Describing what makes a good unit test

• Tracing the unit testing design and implementation process

 NOTE In the next lesson, we will focus on testing stateful code.

 What Makes a Good Unit Test?
 A good unit test must cover all the diff erent categories of input and output combinations

that are possible in a given piece of code. This does not mean you need to test every

possible input/output combination. In some cases, that is impossible.

 Rather, this means you must design tests that cover each class and each branch of

code, making a best eff ort to not miss any. We ’ ll see an example of this later. Having said

that, your tests should be effi cient, but not redundant, addressing each class and branch

of code (or combination) uniquely. Multiple tests of the same kind of inputs are a waste

of eff ort.

 Designing a Test Plan
 A test plan is a way of documenting the scope and approach of a particular group (often

called a suite) of tests. As a whole, a test plan should encompass all types of valid inputs,e

as well as edge and boundary conditions, and occasionally invalid potential inputs. Some of

these may seem abstract, so let ’ s consider a concrete example by designing tests for the

method presented in Listing{ 30.1 .

Job Ready Java566

 LISTING 30.1
 The areTheLlamasHappy Method

 /**
 * A method to determine if the provided trampolines will result in
 * happy llamas.
 *
 * When llamas get together they like to bounce on trampolines.
 * However, llamas are very particular about the proper number of
 * trampolines,
 * and are usually only happy if there are between 24 to 42 (inclusive!).
 * This only changes if the trampolines are made of ultra-bouncey NASA
 * fabric.
 * In those cases, while they still require at LEAST 24, the llamas figure
 * the more trampolines the better!
 *
 * return true if the llamas will be happy with their trampolines,
 * or false otherwise.
 *
 * @param ultraBouncy True if trampolines are made of UltraBouncy NASA
 * fabric.
 * @param trampolines The number of trampolines
 * @return boolean indicating if the llamas are happy
 */

 public static boolean areTheLlamasHappy(boolean ultraBouncy, int trampolines){
 // implementation removed!
 return true;
 }

 NOTE We are designing tests for a method without knowing anything
about the method ’ s internal code. As long as we know the expected d
behavior of a method, we can design (and even implement) tests!

 Designing a test plan for a method means we have to decide on values for its input

parameters and expected return value as a result of using those input parameters. In the

case of the method areTheLlamasHappy , there are two input parameters, a Boolean and

an integer, as well as a Boolean return type.

567Lesson 30: Doing Unit Testing

 These three things thus become the focus of our test design, and in general we should

work to cover all the types of inputs that put us in bounds (making the llamas happy) and

out of bounds (making the llamas unhappy), and we need to test boundary conditions as

well. The boundaries in this case are 24 and 42 trampolines and normal or ultra-bouncy

trampoline fabric.

 This means a practical test plan would combine input values for our parameters in

eff ective ways, pairing a number of normal trampolines below, at, and above our boundary

numbers, and then doing the same but with the ultra-bouncy trampolines.

 Happy Llama Test Plan
 Here ’ s an example of what that could look like for Happy Llamas:

 Normal Trampoline Tests

• areTheLlamasHappy(false, 10) → false

• areTheLlamasHappy(false, 24) → true

• areTheLlamasHappy(false, 30) → true

• areTheLlamasHappy(false, 42) → true

• areTheLlamasHappy(false, 50) → false

 Ultra-Bouncy Trampoline Tests

• areTheLlamasHappy(true, 10) → false

• areTheLlamasHappy(true, 24) → true

• areTheLlamasHappy(true, 30) → true

• areTheLlamasHappy(true, 42) → true

• areTheLlamasHappy(true, 50) → true

 Examining the inputs, we have chosen a number of trampolines that fall below, at,

and above the lower boundary for our llama logic of 24 and followed suit with the upper

boundary of 42. These fi ve resulting values were then paired fi rst with the Boolean repre-

senting normal fabric and then again with the ultra-bouncy.

 This simple combination already expands into the result of 10 separate tests, a good

fi rst step, but a bare minimum to prove functionality. If we were to design a more exhaus-

tive test plan, it would be good to test other values including numbers of llamas including

the negative, extremely large, or those values immediately above and below the bound-

aries. However, this sort of exhaustive testing quickly becomes just that—exhausting. So,

we need to carefully balance good coverage of tests and eff ective return on eff ort.

Job Ready Java568

 NOTE It is always a good idea to take the time to develop a test plan fi rsts
before you begin writing your code. You are less likely to forget input and
output combinations if you take the time to plan them fi rst.

 IMPLEMENTING UNIT TESTS
 Implementing a test plan is often as simple as creating a new Java class to act as our JUnit

test suite. While you can create test classes manually, it is often easier to use the auto-

generation technology that is part of most IDEs. This way, your IDE will often take care of

connecting external dependencies like JUnit into your project automatically.

 Creating the Test Class
 To create a test plan in NetBeans, you can use the following steps:

1. In NetBean ’ s Project view, right-click the class you want to test (for example,

HappyLlamas.java).

2. Select Tools and then s Create/Update Tests. ss

3. Walk through the wizard to create a new JUnit class.

• The name should look similar to com.tsg.HappyLlamasTest . Note that com.tsg

will match the Java package you used for your HappyLlamas class.

• Ensure that Test Packages is selected in the Location drop-down. s

• Generated Code Checkbox List should have nothing selected.

• Method Access Levels Checkbox List should have nothing selected.

• Generated Comments Checkbox List should have nothing selected.

4. Click OK.

 Once you complete the wizard, you should be left with a new Java class similar to List-

ing{ 30.2 . You ’ ll fi nd this class listed under the Test Packages folder on the Projects tab.

 LISTING 30.2
 The New Java Test Class

 public class HappyLlamasTest {

 public HappyLlamasTest() {

569Lesson 30: Doing Unit Testing

 }

 @Test
 public void testSomeMethod() {

 }
 }

 Once you have generated the code in Listing{ 30.2 , implementing our test suite is simply

a matter of writing new test methods, similar in defi nition to testSomeMethod . These will

be public void methods that are annotated with the @Test . Within these methods we will

have to set up our inputs, call the method we are testing, capture the return, and assert

that it conforms to the expected return value.

 NOTE The areTheLlamasHappy method under test is a stateless, static
method. If your IDE wizard generated setUp or tearDown methods in the
previous step, there is no need to use them. You can remove them from
your test class if you are doing stateless unit testing.

 Writing Happy Llama Tests
 As we walk through an example of how to implement tests from our test plan, the follow-

ing are important things to remember:

• JUnit test methods are just Java methods, but they have specifi c requirements for

structure.

• All tests must have an t @Test annotation or JUnit won ’ t know to run it as part of

the test suite.

• Test methods should always be public, return no value, and have an empty

parameter list. It ’ s just the names of our test methods that will change. How-

ever, starting from JUnit 5, these constraints were relaxed, and JUnit 5 requires

test classes to have any visibility except for private.

• Name your test cases so that you can tell what they are testing. This is less a

requirement than a good idea.

Job Ready Java570

• Each test method should test only one input/output combination. This makes it

much easier to debug your tests when they fail.

• Use the assertXxxx methods to determine whether the test results are what you

expected. (For example, calling areTheLlamasHappy with false and 10 should return

false, so we could use the method assertFalse to test the return value.)

 Let ’ s look at an example test for our fi rst test case from earlier:

• areTheLlamasHappy(false, 10) → false

Listing{ 30.3 provides the code for the implementation of this test.

 LISTING 30.3
 Testing for False, 10

 @Test
 public void testNormalTrampoline10() {
 // GIVEN - for simple methods, this means setting up the parameters
 boolean isNasaFabric = false;
 int numTrampolines = 10;

 // WHEN - for simple methods, this generally means calling the method
 // under test
 // and then capturing its return to assert on
 boolean result = areTheLlamasHappy(isNasaFabric, numTrampolines);

 // THEN - basically just a conditional that proves the result is what
 // you expect it to be, plus an extra message to display if it doesn't
 // match.
 //
 // There are a wide variety of assert types. Here we
 // just want to assert that it returned false, but we could have also
 // used
 // assertEquals and passed in a false value.

 assertFalse(result , "10 Llamas w/ Normal Trampolines Should Be
Unhappy!");
 }

 This test method follows the Given/When/Then model discussed earlier. First, it allo-

cates variables for each of the method ’ s parameters and assigns them the values picked

571Lesson 30: Doing Unit Testing

out in the test plan. Next, it calls the method using those variables as parameters and

captures the result. Finally, it uses an assert method to check the return value from the t

method, in this case asserting that the value should be false.

 A similar pattern can be used to implement the rest of the tests in our test suite, and

once saved to a JUnit test class, it (and any others) can be run as part of a project-built pro-

cess to verify the behavior of the method under test.

 NOTE When adding the test to your test fi le, you might need to also
include an import for the method ’ s code. You ’ ve added imports to your
project in previous lessons, so this process should be familiar.

 Running JUnit Tests
 You can run the unit tests by fi rst doing a Clean & Build (), and then, as shown in

Figure{ 30.1 , right-click your project in the project view and select Test from the drop-down. t

This will run all unit tests associated with your project.

 This should populate the Test Results window, as shown in Figure{ 30.2 , and allow you to

drill down into specifi c tests and see the results.

 NOTE If you close the Test Results window by accident, the easy way to
reopen it in NetBeans is to navigate to Window ➢ IDE Tools ➢ Test Results.

 The test fi les themselves are in the Test Packages project folder, and you can trigger an

individual test fi le by right-clicking the appropriate test fi le and selecting Test File. This wille

only run the tests described in that fi le. In Figure{ 30.3 , we can see that the selection would

only run the HappyLlamaTests.java fi le.

 The Test Results window will list all the tests you chose to run (in the individual test fi le

or for the project as a whole). You can choose to expand or collapse individual test results

by clicking the + symbol (Windows) or arrow (Mac) next to a test in the list. You can see the

Test Results window in Figure{ 30.4 , which shows that three of the tests for HappyLlamasTest

passed but seven others failed.

Job Ready Java572

 NOTE If you don ’ t see the passed tests, you can click the check mark in the
green circle to the left to show them. The icons on the left toggle what is
shown in the test results.

 If you double-click a test in the Test Results window, you will jump to the code for the

test case in question, and you can see more information about the test that failed, or even

set a breakpoint to debug the test.

 Figure 30.1 Running the tests

573Lesson 30: Doing Unit Testing

IMPORTANT NOTE
 With NetBeans version 10 and newer, there were some issues with the test
methods triggering correctly during the testing step of the build process.
This can be fi xed by adding the following to the project ’ s pom.xml fi le. This is
usually added after the properties node.

 <build>
 <plugins>
 <plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.19.1</version>
 <dependencies>
 <dependency>
 <groupId>org.junit.platform</groupId>
 <artifactId>junit-platform-surefire-provider</artifactId>
 <version>1.1.0</version>
 </dependency>
 </dependencies>
 </plugin>
 </plugins>
 </build>

 Figure 30.2 The Test Results window

Job Ready Java574

 Figure 30.3 Running a single test fi le

 Figure 30.4 The test results

575Lesson 30: Doing Unit Testing

 SUMMARY
 This was a quick introduction to some of the concepts associated with unit testing in the

software development process as well as a discussion of the design and implementation of

unit tests for stateless code using the JUnit framework. The following are the main take-

aways for this lesson:

• Unit testing involves testing the lowest-level components of a software application.

It is the responsibility of the developer to create unit tests for every class, and this

is usually done with an automated unit testing framework like JUnit.

• Black-box testing tests only the promised functionality of a given software compo-

nent and does not take the implementation details into account. Glass-box testing

(sometimes called white-box testing) does take the implementation details into

account. Glass-box tests are designed to exercise all possible paths in the compo-

nent under testing.

• Special consideration must be given when testing stateful software so that the

component is in a known good state before each test is run; no such consideration is

necessary when testing stateless components.

• We use the Given/When/Then approach to unit testing.

Given: Put the system in a known good state and create any test data needed.

When: Run the code under test using the test data set up in the Given step.

Then: Check to see whether the actual result matches the expected result

for the test.

• Test-Driven Development (TDD) is a development approach that builds the unit

tests for a component before the implementation of that component is created.

This approach is also known as Red/Green/Refactor.

• Test stubs can be used to make unit testing certain components easier.

• You should write a test plan and fi gure out all the input/output combinations neces-

sary for testing a method before you write any code.

• Each test method in your unit test class should test as few things as possible while

still being a valid test. Make your test methods as granular as possible.

• Any method marked with the @Test annotation will be run by JUnit as a part of the

test suite.

Job Ready Java576

• Your test methods must be marked with the @Test annotation, public, return

nothing, and have no parameters.

• JUnit has a number of assertXxxx methods that should be used in your tests to

assert that the actual result matches the expected result.

 Now that you are familiar with stateless Java code, in the next lesson, we will create

test suites for stateful Java code.

Lesson 31

 Testing Stateful
Code

 In this lesson, we will look at techniques for unit testing stateful

code. We will use many of the same techniques we learned for

testing stateless code, but there will be additional work in setting

up our tests, and we must be mindful of the order in which we

test things.

 We will also unit test the service layer for the Class Roster

application with a new testing technique called stubbing . We will

use stubbed versions of the DAOs in the unit tests for the service

layer. This lesson will also explain the motivation and techniques

for testing a service layer using stubbed DAOs.

Job Ready Java578

 LEARNING OBJECTIVES
 By the end of this lesson, you will be able to:

• Diff erentiate between testing stateless and stateful code

• Use the setup and teardown methods in JUnit

• Use arrange, act, assert for stateful code

• Test the ClassRoster DAO

• Test that the creation of a student with an existing student ID does not work

• Test that all fi elds of a student object cannot be empty

 UNIT TESTING STATEFUL CODE
 Testing stateful code is a bit more complicated than testing stateless code because,

depending on the state of the code, the same set of inputs can produce a diff erent output.

For example, say you are testing the account portion of a banking application. Some of the

account components include functionality to deposit money, withdraw money, and check

the account balance. Now suppose you are testing this component and you want to test

the deposit method. You set up your test to add $100 to the account. After depositing

the $100, you want to check the balance to make sure the $100{was deposited correctly.

So, you call the method to get the account balance. What should the balance be? Should

it be $100?

 Herein lies the complexity of testing stateful code. You have no way of knowing what

the balance of the account should be if you don ’ t know what the balance was before

you started your test. What if you deposit $100{more into the account? What should the

balance be now? Clearly, it should be $100{more than it was before, but if we don ’ t know

the state of the system before the test, we have no way of knowing what that value should

actually be. Because we don ’ t know the state or what the values should be, this code is

stateless, which means we need a diff erent way of testing.

 The following points illustrate the main diff erences between testing stateless code and

stateful code:

• You must put the system in a known good state before testing stateful code. If you

do not do this, you will have no way to check to see whether the actual result of the

test matches your expected result. This is not necessary for stateless code.

• You must be mindful of the order in which you test things in stateful code. Calling

the same method with the same parameters three times in a row may produce

three diff erent results if the code is stateful. Stateless code produces the same

result no matter how many times in a row it is called.

579Lesson 31: Testing Stateful Code

• The expected results from a particular method call might depend on if and/or

how many times a diff erent method was called in stateful code. For example, thed

expected result from the method that gets the bank account balance depends on

how many times the deposit and withdraw methods were called and the parame-

ters used in those calls. In other words, calling one method can change the result of

calling another method. This does not happen with stateless code.

 You must take all of this into account when designing and implementing tests for

stateful code, which makes it more diffi cult than testing stateless code. In the rest of this

lesson, we will see how JUnit can help us with some of these diffi culties, and we will imple-

ment the unit test suite for the Class Roster DAO and service layer.

 SEPARATING PRODUCTION AND TEST DATA
 In our Class Roster application, the DAO ’ s only job is to store and retrieve student informa-

tion without altering that data in any way. Our tests will simply make sure that the DAO

stores and retrieves students as advertised.

 However, our DAO implementation is tightly intertwined with the fi le system, and using

the DAO will actively modify the data currently stored in the working application. As such,

it is important that we create a way to separate the production or working data from the

test data. This will require an update to your DAOImpl class to fi rst change the ROSTER_

FILE variable to a declaration, and the addition of new constructor methods to allow this

separation.

 First, let ’ s change the ROSTER_FILE variable so that it exists as a declaration, not a dec-

laration and assignment. Instead, we will use our DAOImpl constructors to assign the fi le-

name to our constant variable. This also means we need to remove ROSTER_FILE ’ s static

keyword since diff erent instances of ClassRosterDaoFileImpl might be using diff erent

fi les, and thus the ROSTER_FILE becomes better suited as a nonstatic variable associated

with that instance.

 Update the ROSTER_FILE variable declaration in ClassRosterDaoFileImpl to the fol-

lowing statement:

 private final String roster_file;

 Note that because ROSTER_FILE is no longer a constant, we ’ ve changed its name to low-

ercase. Next add the constructors in Listing{ 31.1 to ClassRosterDaoFileImpl .

Job Ready Java580

 LISTING 31.1
 The New ClassRosterDaoFileImpl Constructors

 public ClassRosterDaoFileImpl(){
 roster_file = "roster.txt";
 }

 public ClassRosterDaoFileImpl(String rosterTextFile){
 roster_file = rosterTextFile;
 }

 This has created a pair of constructors. The fi rst, no-args constructor is providing the

earlier default behavior that ClassRosterDaoFileImpl was originally built upon, which

is instantiation and the assignment of roster.txt to the roster_fi le variable. However,

the second, overloaded constructor has allowed us to create ClassRosterDaoFileImpl

instances that use another fi le, thus allowing the fi le reference to be injected upon con-

struction. This is something that will be perfect for test setup and ensuring that we don ’ t

overwrite our production application data.

 Adding hashCode and equals to Student
 To make testing easier, we implement the equals and hashCode methods for the Student

object. This will allow us to easily compare two Student objects to see if the values of their

fi elds match.

 Both equals and hashCode are methods inherited from the Object class. The default

implementation of equals simply compares the heap location of two Student references

to see if they are pointing to the same place on the heap, equating whether or not they

are literally the same object. While useful, during testing it would be more useful to have

the method work similarly to the String ’ s overloaded version, where when comparing two

Student s’ contents, if the same, those two Student objects would be considered equal.

 We will only use the equals method for our tests. This requires that if two objects are

equal, then the hashCode values for each object must also match. As such, we must also

implement the hashCode method. We won ’ t get into all the details here, but essentially,

the hashCode of an object is a unit integer value that represents the state of that object. In

short, two objects that are equal to one another must have the same hashCode value.

 Luckily, NetBeans (and every other IDE) will generate these methods for us and will

help ensure that they are implemented correctly. In fact, NetBeans won ’ t let you generate

one without the other.

581Lesson 31: Testing Stateful Code

 Simply follow these steps to add equals and hashCode :

1. Open the Student class and right-click the class name to get a pop-up menu. Select

the Insert Code option in the menu.e

2. Select equals() and hashCode() from the list of options.

3. Select all four checkboxes in both sections. All the Student properties are impor-

tant for this.

4. Click the Generate button.e

 You should end up with two methods that look similar to the ones in Listing{ 31.2 . Make

sure all the properties are accounted for in yours, but don ’ t worry if the numbers are a

little diff erent. The numbers are autogenerated, and it is not as important that they match

exactly with the ones in our example.

 LISTING 31.2
 Student ’ s New equals and hashCode Methods

 @Override
 public int hashCode() {
 int hash = 7;
 hash = 89 * hash + Objects.hashCode(this.firstName);
 hash = 89 * hash + Objects.hashCode(this.lastName);
 hash = 89 * hash + Objects.hashCode(this.studentId);
 hash = 89 * hash + Objects.hashCode(this.cohort);
 return hash;
 }

 @Override
 public boolean equals(Object obj) {
 if (this == obj) {
 return true;
 }
 if (obj == null) {
 return false;

 IMPORTANT NOTE
 If you override either equals or hashCode , you are expected to override the other, and
you should use the same properties in both. Failure to do so can cause irregular or
breaking issues in Java code.

Job Ready Java582

 }
 if (getClass() != obj.getClass()) {
 return false;
 }
 final Student other = (Student) obj;
 if (!Objects.equals(this.firstName, other.firstName)) {
 return false;
 }
 if (!Objects.equals(this.lastName, other.lastName)) {
 return false;
 }
 if (!Objects.equals(this.studentId, other.studentId)) {
 return false;
 }
 if (!Objects.equals(this.cohort, other.cohort)) {
 return false;
 }
 return true;
 }

 Now that you have these methods, you can assert on whole Student objects to check

their equality with another Student object.

 Adding toString to Student
 It is also recommended to add an overridden toString method to your Student class to

help with test failure messages. This toString method is added mostly for convenience.

Often in error messages, JUnit will print out information about the object that failed a

test. It helps if that information is readable to us, but the default toString method only

really serializes the object ’ s class name and hashcode. Both are interesting pieces of infor-

mation, but not often particularly usable. Overriding this method can allow us to print out

all the object ’ s property values instead, which can allow for much better insight into issues

when reading test logs.

 To add your new toString method, follow the same process we used earlier for adding

the equals and hashcode methods. Right-click the Student class name and select Insert

Code. From the menu, select toString to display the code generation dialog. From the

dialog, select all the fi elds and then click the Generate button to add the code that will bee

similar to Listing{ 31.3 .

583Lesson 31: Testing Stateful Code

 LISTING 31.3
 Example of Student ’ s New toString Method

 @Override
 public String toString() {
 return "Student{" + "firstName=" + firstName + ", lastName=" + lastName +
", studentId=" + studentId + ", cohort=" + cohort + '}';
 }

 Creating the Test Class
 Our next step is creating the JUnit test class that will hold our test suite for our DAO. To

do this, we follow similar steps to the ones done in the stateless testing exercises.

1. In NetBeans’s Project view, right-click the ClassRosterDaoFileImpl class.

2. Select Tools , and then select s Create/Update Tests. ss

3. Walk through the wizard to create a new JUnit class.

• The name should look similar to classroster.dao.ClassRosterDao-

FileImplTest .

• Ensure that Test Packages is selected in the Location drop-down.s

• Generated Code Checkbox List should have everything selected.

• Method Access Levels Checkbox List should have nothing selected.

• Generated Comments Checkbox List should have nothing selected.

4. Click OK.KK

 Once you complete the wizard, you should be left with a new Java class similar to

 Listing{ 31.4 . This class is the shell of our new test suite, and we will be creating new tests

to replace the testSomeMethod method with real tests.

 LISTING 31.4
 ClassRosterDaoFileImplTest

 public class ClassRosterDaoFileImplTest {

 public ClassRosterDaoFileImplTest() {
 }

Job Ready Java584

 @BeforeAll
 public static void setUpClass() {
 }

 @AfterAll
 public static void tearDownClass() {
 }

 @BeforeEach
 public void setUp() {
 }

 @AfterEach
 public void tearDown() {
 }

 @Test
 public void testSomeMethod() {
 fail("The test case is a prototype.");
 }

 }

 The Set Up and Tear Down Methods
 The JUnit Framework gives us four methods, or rather four annotations, to help get the

code we are testing into a known good state.

• setUpClass annotated with @BeforeAll

• This static method is run once at the time the test class is initialized and can be

used to set up external resources.

• tearDownClass annotated with @AfterAll

• This static method is run once after all the tests have been run and can be used

to clean up external resources.

• setUp annotated with @BeforeEach

• This nonstatic method is run once before each test method in the JUnit test

class. It can be used to set things to a known good state before each test.

• tearDown annotated with @AfterEach

• This nonstatic method is run once after each test method in the JUnit test com-

pletes. It can be used to clean up after each test.

585Lesson 31: Testing Stateful Code

 We will use the setUp method to put our system into a known good state before each

test. Setting the system to a known good state in setUp gives us everything we need

right now.

 To do this, we ’ re going to add in a new ClassRosterDao property declaration to our

test class and then use the setUp in the JUnit class to reference the new overloaded con-

structor we built in the ClassRosterDaoFileImpl with a newly created fi le to ensure that

we aren ’ t messing up production data and that our testDAO is eff ectively empty.

 Update your to ClassRosterDaoFileImplTest method, as shown in Listing{ 31.5 , to

declare our new testDao object, remove the unneeded setup/teardown methods and tem-

plate method, and fi ll setUp with our initialization code.

 LISTING 31.5
 Updated ClassRosterDaoFileImplTest Method

 public class ClassRosterDaoFileImplTest {

 ClassRosterDao testDao;

 public ClassRosterDaoFileImplTest() {
 }

 @BeforeEach
 public void setUp() throws Exception{
 String testFile = "testroster.txt";
 // Create a new FileWriter for the test roster file
 new FileWriter(testFile);
 testDao = new ClassRosterDaoFileImpl(testFile);
 }
 }

 This way, before every test run, we will have created a new blank testroster.txt fi le

using the FileWriter and then used that as our fi leName when instantiating our testDao .

Both ensure that we are starting with a fresh, empty DAO object and minimize our inter-

ference with the normal application ’ s data stored in the roster.txt fi le.

 Arrange/Act/Assert for Stateful Code
 We must add two general steps to the Arrange part of the unit testing process for

stateful code.

1. Put the system in a known good state using the JUnit setUp method.

Job Ready Java586

2. Create test data and add it to the system before each test is run. This can be done

either in the setUp method (if the test data should be the same for all tests) or in

each individual test method.

 The Act and Assert parts of the testing process are identical to those for testing

stateless code:

• Act: Call the method under test with the correct test inputs

• Assert: Verify that the expected result matched the actual result

 NOTE As you learned in the previous lesson, Arrange/Act/Assert is also
referred to as Given/When/Then.

 CLASS ROSTER DAO TEST DESIGN
 Our ClassRosterDao has four methods that we must test.

• Add Student

• Get Student

• Get All Students

• Remove Student

 When designing tests for these methods in our DAO, we need to make sure we design

and implement tests for each method. In most cases, we will use more than one per test to

“arrange” our DAO ’ s state correctly before we assert on it.

 First, we must consider what the eff ects of each method will be on the DAO and then

how we can use the other tools (DAO methods) available to us to determine whether the

state was correctly changed. Let ’ s start this process with the addStudent method.

 Add Student
 Let ’ s look at the DAO interface method and comment, which is shown in Listing{ 31.6 ,

before we get started on designing a test for this method.

587Lesson 31: Testing Stateful Code

 LISTING 31.6
 The DAO Interface Method and Comment

 /**
 * Adds the given Student to the roster and associates it with the given
 * student id. If there is already a student associated with the given
 * student id it will return that student object, otherwise it will
 * return null.
 *
 * @param studentId id with which student is to be associated
 * @param student student to be added to the roster
 * @return the Student object previously associated with the given
 * student id if it exists, null otherwise
 */

 Student addStudent(String studentId, Student student)
 throws ClassRosterPersistenceException;

 Reading through both the method and its JavaDoc comment, let ’ s list some of the

information we can gather about this method and its potential testing requirements. Here

is what we know about addStudent :

• To call this method, we will need a studentId String and a Student object.

• After calling this method with those parameters, the student should now be stored

within ClassRosterDaoFileImplTest and be associated with the given studentId .

• If there was no student in the DAO already with that studentId , the return

should be null .

• However, if there was a student stored under that ID, then the previous s Student

associated will be returned.

• There is also a chance that this method could throw a ClassRosterPersistenceEx-

ception , which implies it is touching a data store (we know it should be reading and

writing to the fi le).

 All this data is something we should already know, but it is always a good idea to dou-

ble- and even triple-check your assumptions when beginning the testing process.

 Looking at our gathered information, the fi rst two bullet points are particularly impor-

tant for our testing purposes. In this case, they focus on the fact that addStudent changes

the state by adding a new or replacing an existing student within the DAO.

Job Ready Java588

 NOTE Remember when testing stateful code, you are generally most
interested in arranging and asserting on how the code changes the state.

 However, just the state change isn ’ t the only thing we need to focus on. We need to

also understand how to assert and prove that the state change happened correctly. In this e

case, we use other methods to measure the eff ect that this method call had on the state—

the change of students stored within the DAO.

 Remember, the ClassRosterDaoFileImplTest has three other methods: getStudent ,

getAllStudents , and removeStudent . Technically, each one of these could be used to

verify the eff ect that calling the addStudent method has on the DAO, but getStudent is

particularly well suited in that it allows us to simply retrieve the student from the DAO and

examine it.

 Get Student
 Before we use it in a test, let ’ s refresh ourselves with what getStudent does. Listing{ 31.7

presents the current code for getStudent .

 LISTING 31.7
 The getStudent Interface Method and Comments

 /**
 * Returns the student object associated with the given student id.
 * Returns null if no such student exists
 *
 * @param studentId ID of the student to retrieve
 * @return the Student object associated with the given student id,
 * null if no such student exists
 */
 Student getStudent(String studentId)
 throws ClassRosterPersistenceException ;

 We know the following things about getStudent :

• To call this method, we will need a studentId String .

• The return should be a Student object. In theory, this is a student previously stored

under that ID.

589Lesson 31: Testing Stateful Code

• If there was no student in the DAO with that studentId , the return should be null .

• There is also a chance that this method could throw a ClassRosterPersistenceEx-

ception , which again implies touching a persistent data store.

 ClassRosterDaoTest: Adding and Getting a Student
 Our Add/Get Student test is straightforward. We know that the DAO is in an empty state

since we created a new empty instance within our setUp method.

1. The fi rst step of this test is to create a new Student object (Arrange).

2. Then we add that student to the DAO (Act).

3. Next, we get the student back out of the DAO and put it in another variable (Act).

4. Finally, we check to see that the data within the stored student is equal to the

retrieved student from the DAO (Assert).

Listing{ 31.8 presents our test code.

 LISTING 31.8
 The testAddGetStudent Test Code

 @Test
 public void testAddGetStudent() throws Exception {
 // Create our method test inputs
 String studentId = "0001";
 Student student = new Student(studentId);
 student.setFirstName("Ada");
 student.setLastName("Lovelace");
 student.setCohort("Java-May-1845");

 // Add the student to the DAO
 testDao.addStudent(studentId, student);
 // Get the student from the DAO
 Student retrievedStudent = testDao.getStudent(studentId);

 // Check that the data is equal
 assertEquals(student.getStudentId(),
 retrievedStudent.getStudentId(),
 "Checking student id.");
 assertEquals(student.getFirstName(),
 retrievedStudent.getFirstName(),
 "Checking student first name.");
 assertEquals(student.getLastName(),

Job Ready Java590

 retrievedStudent.getLastName(),
 "Checking student last name.");
 assertEquals(student.getCohort(),
 retrievedStudent.getCohort(),
 "Checking student cohort.");
 }

 Our fi rst test is now complete, but we ’ ve only touched two of our DAO methods, and

we only used the test with one Student object. Let ’ s do another.

 Get All Students
 Let ’ s look at the DAO interface method and comment before we get started on designing

a test for the getAllStudents method. This is shown in Listing{ 31.9 .

 LISTING 31.9
 The getAllStudents Interface Method and Comments

 /**
 * Returns a List of all Students on the roster.
 *
 * @return Student List containing all students on the roster.
 */
 List<Student> getAllStudents()
 throws ClassRosterPersistenceException;

 This is an easier method to consider. It takes in no parameters and simply returns a list of

students within the DAO. To properly test this method, we ’ re going to have to use it along-

side addStudent and maybe removeStudent to change what is contained within the list.

 ClassRosterDaoTest: Adding and Getting All Students
 This test is slightly more complicated than the previous Add/Get test, but not by much.

Here we are focusing on testing the two methods addStudent and getAllStudents

and verifying that each method works. To do this properly, we should really use multiple

Student objects. In this test, we do the following:

1. Create and add two Student objects to the DAO (Arrange).

2. Get{all the Student objects from the DAO (Act).

3. Check to see that the DAO returned the two objects (Assert).

Listing{ 31.10 shows the resulting test code.

591Lesson 31: Testing Stateful Code

 LISTING 31.10
 The testAllGetAllStudents Test Code

 @Test
 public void testAddGetAllStudents() throws Exception {
 // Create our first student
 Student firstStudent = new Student("0001");
 firstStudent.setFirstName("Ada");
 firstStudent.setLastName("Lovelace");
 firstStudent.setCohort("Java-May-1845");

 // Create our second student
 Student secondStudent = new Student("0002");
 secondStudent.setFirstName("Charles");
 secondStudent.setLastName("Babbage");
 secondStudent.setCohort(".NET-May-1845");

 // Add both our students to the DAO
 testDao.addStudent(firstStudent.getStudentId(), firstStudent);
 testDao.addStudent(secondStudent.getStudentId(), secondStudent);

 // Retrieve the list of all students within the DAO
 List<Student> allStudents = testDao.getAllStudents();

 // First check the general contents of the list
 assertNotNull(allStudents, "The list of students must not be null.");
 assertEquals(2, allStudents.size(),"The list of students should have 2
students.");

 // Then the specifics
 assertTrue(testDao.getAllStudents().contains(firstStudent),
 "The list of students should include Ada.");
 assertTrue(testDao.getAllStudents().contains(secondStudent),
 "The list of students should include Charles.");

 }

 IMPORTANT NOTE
 The test in Listing 31.10 will fail unless you properly completed the equals / hashCode//
additions to your Student class discussed earlier in this lesson.

Job Ready Java592

 Remove Student
 Let ’ s look at the DAO interface method and comment for removing a student before we

get started on designing a test for this method. Listing{ 31.11 shows the removeStudent

interface method.

 LISTING 31.11
 The removeStudent Interface Method and Comments

 /**
 * Removes from the roster the student associated with the given id.
 * Returns the student object that is being removed or null if
 * there is no student associated with the given id
 *
 * @param studentId id of student to be removed
 * @return Student object that was removed or null if no student
 * was associated with the given student id
 */
 Student removeStudent(String studentId);

 We know the following things about removeStudent :

• To call this method, we will need a studentId String .

• The return should be a Student object. In theory, this is a student that was previ-

ously stored under that ID.

• If there was no student in the DAO with that studentId , the return should be null .

• The state eff ect of this on the DAO is that the returned student should no longer be

within the DAO.

• There is another mention of a ClassRosterPersistenceException , which implies

more persistent data storage.

 ClassRosterDaoTest: Adding and Removing Students
 In this test, we do the following:

1. Create and add two Student objects to the DAO (Arrange).

2. Remove one of the students from the DAO (Act).

3. Check to see that there is only one student left in the DAO (Assert).

4. Check to see that the DAO returns null if we try to retrieve the removed stu-

dent (Assert).

593Lesson 31: Testing Stateful Code

5. Remove the other student from the DAO (Act).

6. Check to see that there are no students in the DAO (Assert).

7. Check to see that the DAO returns null if we try to retrieve the removed stu-

dent (Assert).

 Even though this is only one test, as shown in Listing{ 31.12 , we are acting and asserting

several times. This is perfectly fi ne. You can act and assert as many times as needed to fully

execute the test case.

 LISTING 31.12
 The testRemoveStudent Test Code

 @Test
 public void testRemoveStudent() throws Exception {
 // Create two new students
 Student firstStudent = new Student("0001");
 firstStudent.setFirstName("Ada");
 firstStudent.setLastName("Lovelace");
 firstStudent.setCohort("Java-May-1945");

 Student secondStudent = new Student("0002");
 secondStudent.setFirstName("Charles");
 secondStudent.setLastName("Babbage");
 secondStudent.setCohort(".NET-May-1945");

 // Add both to the DAO
 testDao.addStudent(firstStudent.getStudentId(), firstStudent);
 testDao.addStudent(secondStudent.getStudentId(), secondStudent);

 // remove the first student - Ada
 Student removedStudent = testDao.removeStudent(firstStudent.
getStudentId());

 // Check that the correct object was removed.
 assertEquals(removedStudent, firstStudent, "The removed student should
be Ada.");

 // Getall the students
 List<Student> allStudents = testDao.getAllStudents();

 // First check the general contents of the list
 assertNotNull(allStudents, "All students list should be not null.");

Job Ready Java594

 assertEquals(1, allStudents.size(), "All students should only have 1
student.");

 // Then the specifics
 assertFalse(allStudents.contains(firstStudent),
 "All students should NOT include Ada.");
 assertTrue(allStudents.contains(secondStudent),
 "All students should NOT include Charles.");

 // Remove the second student
 removedStudent = testDao.removeStudent(secondStudent.getStudentId());
 // Check that the correct object was removed.
 assertEquals(removedStudent, secondStudent,
 "The removed student should be Charles.");

 // retrieve all of the students again and check the list.
 allStudents = testDao.getAllStudents();

 // Check the contents of the list - it should be empty
 assertTrue(allStudents.isEmpty(),
 "The retrieved list of students should be empty.");

 // Try to get both students by their old id. They should be null.
 Student retrievedStudent = testDao.getStudent(firstStudent.
getStudentId());
 assertNull(retrievedStudent, "Ada was removed, should be null.");

 retrievedStudent = testDao.getStudent(secondStudent.getStudentId());
 assertNull(retrievedStudent, "Charles was removed, should be null.");

 }

 UNIT TESTING THE SERVICE LAYER
 In this part of the lesson, we will unit test the service layer for the Class Roster applica-

tion. As mentioned at the beginning of this lesson, we will use a new testing technique

called stubbing. g

595Lesson 31: Testing Stateful Code

 Planning the Test Design
 The main purpose of the unit test suite for the service layer is to test that the business

rules are being applied properly. For completeness, we will also test the pass-through

methods of the service layer. We will test these business rules:

• Creation of a Student object with an existing student ID is prohibited.

• All fi elds on the Student object must have nonempty values.

 These business rules are enforced in the createStudent method of the DAO. We will

need three test cases:

• Create valid student. All fi elds have values, and the student does not have an exist-

ing student ID.

• Create a student with an existing student ID.

• Create a student with one or more empty fi eld values.

 We will also implement tests for getAllStudents , getStudent , and removeStudent .

These tests will be similar to the tests we created for the matching DAO methods in a pre-

vious step.

 Creating the Test Class
 You should remember this step from our DAOImpl testing step. We will create a JUnit test

class that will hold our test suite for our service layer. Do the following:

1. In the NetBeans Project view, right-click the ServiceLayerImpl class.

2. Select Tools , and then select s Create/Update Tests. ss

3. Walk through the wizard to create a new JUnit class.

• The name should look similar to classroster.service.ClassRosterService-

LayerImplTest .

• Ensure that Test Packages is selected in the s Location drop-down.n

• Generated Code Checkbox List should have everything selected.

• Method Access Levels Checkbox List should have nothing selected.

• Generated Comments Checkbox List should have nothing selected.

4. Once these steps are fi nished, click the OK button.

 Completing the wizard should leave you with a new Java test class, as shown in List-

ing{ 31.13 , where we will write our service layer test suite.

Job Ready Java596

 LISTING 31.13
 ClassRosterServiceLayerImplTest

 public class ClassRosterServiceLayerImplTest {

 public ClassRosterServiceLayerImplTest() {
 }

 @BeforeAll
 public static void setUpClass() {
 }

 @AfterAll
 public static void tearDownClass() {
 }

 @BeforeEach
 public void setUp() {
 }

 @AfterEach
 public void tearDown() {
 }

 @Test
 public void testSomeMethod() {
 fail("The test case is a prototype.");
 }
 }

 Creating the DAO Stubs
 The service layer is not responsible for storing or retrieving Student objects. That is the

job of the DAO. This means we don ’ t have to (or want to) test the actual persistence of

Student objects in this test suite. We only want to test the business rules and the integra-

tion between the service layer and the DAO.

 Given this fact, we can use stubbed versions of our DAOs to test the functionality of the

service layer. Since we are programming to interfaces and using constructor-based depen-

dency injection, it will be easy to use the stubbed versions of the DAOs instead of the fi le-

based implementations.

597Lesson 31: Testing Stateful Code

 A stubbed version of a component simply returns canned data for any method call. Wen

can set up a stubbed version of a component to act just about any way we want or need it

to. Let ’ s take a look at the stubbed implementation of our DAOs.

 ClassRosterAuditDaoStubImpl
 The ClassRosterAuditDaoStubImpl implementation shown in Listing{ 31.14 is simple. The

writeAuditEntry method does nothing. This allows the service layer to make the call to

the Audit DAO, but nothing will get written to the audit log fi le.

 This is a testing class and belongs inside our test packages, not our development

sources. Therefore, to create this testing stub, proceed with the following steps:

1. In the NetBeans Project view, right-click the ClassRosterServiceLayerImplTest ’ s

test package.

2. Select New and then w Java Class.ss

3. Name it ClassRosterAuditDaoStubImpl .

4. Click the Finish button.h

5. Update the internal code to the shell implementation in Listing{ 31.14 .

 LISTING 31.14
 The ClassRosterAuditDaoStubImpl Shell Implementation

 public class ClassRosterAuditDaoStubImpl implements ClassRosterAuditDao {

 @Override
 public void writeAuditEntry(String entry) throws
ClassRosterPersistenceException {
 //do nothing . . .
 }
 }

 ClassRosterDaoStubImpl
 This ClassRosterDaoStubImpl implementation is a bit more complicated than the Audit

DAO stub implementation, but it is still quite straightforward. The stub implementation

has the following features:

• A member fi eld of type Student

 This represents the one and only student in the DAOStub .

Job Ready Java598

• Constructor

 We have two. One is a no-arg constructor that instantiates a hard-coded student

for our stub. The other allows a test student to be injected via the constructor by a

test class.

• addStudent

 This returns our onlyStudent fi eld if the ID matches our onlyStudent ' s ID. Other-

wise, it returns null. Note that there is no persistence. The incoming Student param-

eter is never added to the DAOStub or persisted in any way.

• getAllStudents

 This method simply returns a List containing the one and only student.

• getStudent

 This returns our onlyStudent fi eld if the ID matches our onlyStudent ’ s ID; other-

wise, it returns null.

• removeStudent

 This returns our onlyStudent fi eld if the ID matches our onlyStudent ’ s ID; other-

wise, it returns null. Note that this does not change or remove our only Student

existence within our DAOStub .

 To create this stub, follow similar steps as the AuditDaoStub previously, and then fi ll

out your ClassRosterDaoStubImpl with the code in Listing{ 31.15 .

 LISTING 31.15
 ClassRosterDaoStubImpl

 public class ClassRosterDaoStubImpl implements ClassRosterDao {

 public Student onlyStudent;

 public ClassRosterDaoStubImpl() {
 onlyStudent = new Student("0001");
 onlyStudent.setFirstName("Ada");
 onlyStudent.setLastName("Lovelace");
 onlyStudent.setCohort("Java-May-1845");
 }

 public ClassRosterDaoStubImpl(Student testStudent){
 this.onlyStudent = testStudent;
 }

599Lesson 31: Testing Stateful Code

 @Override
 public Student addStudent(String studentId, Student student)
 throws ClassRosterPersistenceException {
 if (studentId.equals(onlyStudent.getStudentId())) {
 return onlyStudent;
 } else {
 return null;
 }
 }

 @Override
 public List<Student> getAllStudents()
 throws ClassRosterPersistenceException {
 List<Student> studentList = new ArrayList<>();
 studentList.add(onlyStudent);
 return studentList;
 }

 @Override
 public Student getStudent(String studentId)
 throws ClassRosterPersistenceException {
 if (studentId.equals(onlyStudent.getStudentId())) {
 return onlyStudent;
 } else {
 return null;
 }
 }

 @Override
 public Student removeStudent(String studentId)
 throws ClassRosterPersistenceException {
 if (studentId.equals(onlyStudent.getStudentId())) {
 return onlyStudent;
 } else {
 return null;
 }
 }
 }

 Test Setup
 By using stubbed DAOs for these tests, we have essentially defi ned the state of our test

system. Since the DAOs are the properties that belong to our service layer, their state

represents the state of our service layer. That means if we can start these DAOs in a good

Job Ready Java600

state, so will our service layer. Since our stubs start in a predefi ned state, we will begin

testing our service layer with the assumption that it contains a Class Roster DAO with

exactly one student.

 Although we don ’ t have to do any work to put our code in a known good state, we do

have to create the service layer object and wire in our stub DAOs. This code is similar to

the code we have in the App class of the Class Roster application. Update the top of your

ClassRosterServiceLayerImplTest with the setup in Listing{ 31.16 .

 LISTING 31.16
 Create the Service Layer Object and Wire a Stub DAO

 private ClassRosterServiceLayer service;

 public ClassRosterServiceLayerImplTest() {
 ClassRosterDao dao = new ClassRosterDaoStubImpl();
 ClassRosterAuditDao auditDao = new ClassRosterAuditDaoStubImpl();

 service = new ClassRosterServiceLayerImpl(dao, auditDao);
 }

 Test Implementation
 Finally, we will look at our test implementations. These include testCreateValidStudent ,

testCreateStudentDuplicateId , testGetAllStudents , testGetStudent , and testRem-

oveStudent .

 testCreateValidStudent
 The testCreateValidStudent test shown in Listing{ 31.17 is quite straightforward. We are

simply asserting that the creation of a valid student (no duplicate student ID and values

for all fi elds that the only hard-coded student in our DaoStub) does not cause an exception

to be thrown.

 LISTING 31.17
 The testCreateValidStudent test

 @Test
 public void testCreateValidStudent() {

601Lesson 31: Testing Stateful Code

 // ARRANGE
 Student student = new Student("0002");
 student.setFirstName("Charles");
 student.setLastName("Babbage");
 student.setCohort(".NET-May-1845");
 // ACT
 try {
 service.createStudent(student);
 } catch (ClassRosterDuplicateIdException
 | ClassRosterDataValidationException
 | ClassRosterPersistenceException e) {
 // ASSERT
 fail("Student was valid. No exception should have been thrown.");
 }
 }

 testCreateStudentDuplicateId
 The testCreateStudentDuplicateID test shown in Listing{ 31.18 asserts that a

ClassRosterDuplicateIdException is thrown when trying to create a student with an

existing student ID. In this case, we know that the stubbed implementation of the Class

Roster DAO has an existing student with an ID of 0001 so we attempt to create a new stu-

dent with that student ID. Since we expect an exception to be thrown by this call, we sur-

round it with a try/catch .

• If the call executes and no exception is thrown, we fail the test with a message

saying we expected an exception to be thrown.

• If the expected exception is thrown, we simply return. Since there are no errors or

exceptions, this lets the JUnit test framework know that this test passed.

• If a diff erent exception is thrown, the test will fail.

 LISTING 31.18
 The testCreateStudentDuplicateId Test

 @Test
 public void testCreateDuplicateIdStudent() {
 // ARRANGE
 Student student = new Student("0001");
 student.setFirstName("Charles");
 student.setLastName("Babbage");
 student.setCohort(".NET-May-1845");

Job Ready Java602

 // ACT
 try {
 service.createStudent(student);
 fail("Expected DupeId Exception was not thrown.");
 } catch (ClassRosterDataValidationException
 | ClassRosterPersistenceException e) {
 // ASSERT
 fail("Incorrect exception was thrown.");
 } catch (ClassRosterDuplicateIdException e){
 return;
 }
 }

 testCreateStudentInvalidData
 The testCreateStudentInvalidData test shown in Listing{ 31.19 is similar to the test for

duplicate student ID. Here we ensure that we don ’ t have a duplicate student ID and then

also leave one of the fi elds blank. We use the same try/catch techniques as shown in the

previous example except we are looking for a diff erent exception.

 LISTING 31.19
 The testCreateStudentInvalidData Test

 @Test
 public void testCreateStudentInvalidData() throws Exception {
 // ARRANGE
 Student student = new Student("0002");
 student.setFirstName("");
 student.setLastName("Babbage");
 student.setCohort(".NET-May-1845");

 // ACT
 try {
 service.createStudent(student);
 fail("Expected ValidationException was not thrown.");
 } catch (ClassRosterDuplicateIdException
 | ClassRosterPersistenceException e) {
 // ASSERT
 fail("Incorrect exception was thrown.");
 } catch (ClassRosterDataValidationException e){
 return;
 }
 }

603Lesson 31: Testing Stateful Code

 testGetAllStudents
 In the testGetAllStudents test shown in Listing{ 31.20 , since we know that the stubbed

Class Roster DAO contains only one student, we assert that only one student is returned

from the getAllStudents service layer method.

 LISTING 31.20
 The testGetAllStudents Test

 @Test
 public void testGetAllStudents() throws Exception {
 // ARRANGE
 Student testClone = new Student("0001");
 testClone.setFirstName("Ada");
 testClone.setLastName("Lovelace");
 testClone.setCohort("Java-May-1845");

 // ACT & ASSERT
 assertEquals(1, service.getAllStudents().size(),
 "Should only have one student.");
 assertTrue(service.getAllStudents().contains(testClone),
 "The one student should be Ada.");
 }

 testGetStudent
 For the testGetStudent test shown in Listing{ 31.21 , since we know that the stubbed Class

Roster DAO only contains one Student with Student ID = 0001, we assert that a Student is

returned when we ask for Student ID 0001 and that no student is returned when we ask

for Student ID 0042.

 LISTING 31.21
 The testGetStudent Test

 @Test
 public void testGetStudent() throws Exception {
 // ARRANGE
 Student testClone = new Student("0001");
 testClone.setFirstName("Ada");
 testClone.setLastName("Lovelace");
 testClone.setCohort("Java-May-1845");

Job Ready Java604

 // ACT & ASSERT
 Student shouldBeAda = service.getStudent("0001");
 assertNotNull(shouldBeAda, "Getting 0001 should be not null.");
 assertEquals(testClone, shouldBeAda,
 "Student stored under 0001 should be Ada.");

 Student shouldBeNull = service.getStudent("0042");
 assertNull(shouldBeNull, "Getting 0042 should be null.");

 }

 testRemoveStudent
 The behavior of the removeStudent method is that it will remove the student and return

the associated Student object if a student exists for the given student ID. Otherwise, it

will do nothing and return null. In the testRemoveStudent test shown in Listing{ 31.22 , we

assert that a Student object is returned when we remove student ID 0001 and that null is

returned when we remove student ID 0042.

 LISTING 31.22
 The testRemoveStudent Test

 @Test
 public void testRemoveStudent() throws Exception {
 // ARRANGE
 Student testClone = new Student("0001");
 testClone.setFirstName("Ada");
 testClone.setLastName("Lovelace");
 testClone.setCohort("Java-May-1845");

 // ACT & ASSERT
 Student shouldBeAda = service.removeStudent("0001");
 assertNotNull(shouldBeAda, "Removing 0001 should be not null.");
 assertEquals(testClone, shouldBeAda, "Student removed from 0001 should
be Ada.");

 Student shouldBeNull = service.removeStudent("0042");
 assertNull(shouldBeNull, "Removing 0042 should be null.");

 }

605Lesson 31: Testing Stateful Code

 SUMMARY
 In this lesson, we discussed and demonstrated the techniques for unit testing stateful

code. We then completed the unit tests for the Class Roster service layer and saw how

stubbed implementations can be used to test other components. The following are the

main points to remember from this lesson:

• You must put stateful code into a known good state before unit testing it.

• You must be mindful of the order in which you test and call methods for stateful

code. Calls to one method can aff ect the results from other methods.

• JUnit provides set up and tear down methods to help put stateful code into a

known good state.

• Implementing the equals and hashCode methods on your DTOs can make unit test-

ing a lot easier. Remember that you must use the same fi elds to calculate equality

and the hash code for your objects.

• Stubbed implementations of components such as DAOs can be used to test compo-

nents that use them.

• Hard-coded stubbed component implementations have a fi xed state.

• When testing components (such as the service layer) that depend on other com-

ponents (such as DAOs), you must wire the dependencies together as part of your

overall test setup.

• The combination of a try/catch block and the JUnit static method called fail can

be used to test conditions where an exception is expected.

 EXERCISES
 Many people learn best by doing, so this section includes exercises using what you learned

in this lesson and previously in this course.

Exercise 1: Testing the Address Book app

Exercise 2: Testing the DVD Library program

 Exercise 1: Testing the Address Book App
 Design and implement a complete set of unit tests for the DAO of the Address Book appli-

cation that you created in Lesson 27. Use the lesson notes as a guide and pattern your

test suite after the test suite created in the Class Roster unit test code-along earlier in

this lesson.

Job Ready Java606

 Exercise 2: Testing the DVD Library
 Design and implement a complete set of unit tests for the DAO of the DVD Library appli-

cation that you created in Lesson 27. Use the information from this lesson as a guide and

pattern your test suite after the test suite created in the Class Roster application.

Lesson 32

 Including Magic
Numbers
and Enums

 We use enums to defi ne a set of predefi ned, related

constants. Some common examples include the months

of the year and days of the week. In this shorter lesson, we ’ ll look at

how to create and use enums. Enums are a construct that allows

us to defi ne a group of related constants.

 LEARNING OBJECTIVES
 By the end of this lesson, you will be able to:

• Explain what a magic number is and why enums are better

• Create enums

• Use enums

Job Ready Java608

 MAGIC NUMBERS
 A magic number is a value that is hard-coded into your code but does not have a clear r

meaning. For example, suppose we had an order-entry system. As each order is processed,

it could have a status of Quoted, Purchased, Shipped, or Delivered.

 In languages that do not provide enums, a developer will often simply assign a

numeric code to each status, so you could end up looking at code such as what is shown in

Listing{ 32.1 .

 LISTING 32.1
 Coding without an Enum

 public void shipOrder(Order order) {
 if(order.getStatus() == 2) { // purchased
 // ship it

 // move to shipped status
 o.setStatus(3);
 }
 }

 With the comments, the code is clearer, but without the comments, a developer unfa-

miliar with the order status codes would not know what 2 and 3 mean. This listing might

work now, but what happens if a change is needed? Software tends to change over time,

so what would we do when we need to add steps in the middle?

 For example, what would happen if we needed to add a Gift Wrap stage in between

Purchased and Shipped? In that case, the order of steps could end up being 1, 2, 5, 3, 4. The

larger the workfl ow becomes and the more insertions and deletions are made, then the

more unwieldy hard-coding numbers actually becomes.

 This is where enums become useful.

 ENUMS
 As mentioned, enums are a construct that allows us to defi ne a group of related constants.

In other words, we can defi ne a controlled vocabulary for the constants we are interested

in. For example, we can use an enum to defi ne the order status options in the previous

example, defi ne the days of the week, or even identify the diff erent shifts at a factory.

609Lesson 32: Including Magic Numbers and Enums

 You have already seen that constants are far better than hard-coded magic numbers in

your code. Enums take constants a step further in that they are all grouped together and

are type safe. It is also easier to see which enum values are valid and which are not.

 There are many sophisticated things that can be done with enums; many of them are

not available in other languages, but these features are beyond the scope of this lesson

and beyond your needs at this stage of your development career. We will concentrate on

using enums as better constants.

 Creating Enums for Fixed Constants
 Defi ning a Java enum is similar to defi ning a class or interface. For example, we could

defi ne an enum to be used as a set of fi xed constants for the basic math operators:

addition, subtraction, multiplication, and division. This enum could then be used in a simple

math program.

 Creating an enum for use as a set of constants is straightforward. Simply list each item

in the enum vocabulary in a comma-separated list in the body of the enum like this:

 public enum MathOperator {
 ADD, SUBTRACT, MULTIPLY, DIVIDE
 }

 NOTE Because the enum items are constants, they should be named in
all caps.

 Using Enums
 One of the advantages of using enums over regular constants is that an enum is a proper

type. This means we can use a particular enum type in the formal parameter list of a

method and in switch statements.

 To illustrate this, we will create a class that performs simple math operations on two

integers. This class has one method— calculate()— — —that has three parameters:

• The operation to perform

• Operand 1

• Operand 2

 We then assign each of the enum values to a specifi c operation using a switch state-

ment, as shown in Listing{ 32.2 .

Job Ready Java610

 LISTING 32.2
 Using a Switch and Enum Together

 public class IntMath {

 public int calculate(MathOperator operator, int operand1, int operand2) {

 switch(operator) {
 case ADD:
 return operand1 + operand2;
 case SUBTRACT:
 return operand1 - operand2;
 case MULTIPLY:
 return operand1 * operand2;
 case DIVIDE:
 return operand1 / operand2;
 default:
 throw new UnsupportedOperationException();
 }
 }
 }

 Here are some things to note about this code:

• The fi rst formal parameter of this method is of type MathOperator , which is the

enum type that we just created. This guarantees that the only values allowed as

operators are ADD , SUBTRACT , MULTIPLY , and DIVIDE .

• When using an enum in a switch statement, the values in the case statements must

be unqualifi ed—in other words, ADD versus MathOperator.ADD .

• The return statements in each case negate the need for break statements.

• We have chosen to throw an UnsupportedOperationException if we don ’ t recog-

nize the operator.

 Listing{ 32.3 presents an application class that uses the MathOperator enum along with

the IntMath class.

 LISTING 32.3
 Using the IntMath Class

 public class App {

 public static void main(String[] args) {

611Lesson 32: Including Magic Numbers and Enums

 IntMath num1 = new IntMath();
 int result;

 result = num1.calculate(MathOperator.ADD, 10, 5);
 System.out.println("Add: " + result);

 result = num1.calculate(MathOperator.SUBTRACT, 10, 5);
 System.out.println("Subtract: " + result);

 result = num1.calculate(MathOperator.MULTIPLY, 10, 5);
 System.out.println("Multiply: " + result);

 System.out.println("Divide: " + num1.calculate(MathOperator.DIVIDE, 10, 5));
 }
 }

 In this listing, you can see that an IntMath() object is created called num1 . It is then

used to do calculations. The type of calculation will be based on the MathOperator enum

that was created. You can see that using MathOperator.ADD results in the ADD case in List-

ing{ 32.2 being called. Using MathOperator.SUBTRACT results in the corresponding SUB-

TRACT case being used. The end result is that the use of the enum makes it clear what the

listing is trying to accomplish. When the program is executed, the results should look like

the following:

 Add: 15
 Subtract: 5
 Multiply: 50
 Divide: 2

 Getting Values from an Enum
 Many times, we might use an enum that has been defi ned in a diff erent fi le. As such, we

might not be aware of the values it contains. In Java, when an enum is created by the com-

piler, a method called values() is added to the enum. This method allows you to access

the values that the enum contains.

 In Listing{ 32.4 , we illustrate a simple use of the values() method using an enhanced

for loop to show all the entries in an enum of months.

 LISTING 32.4
 The Month Enum

 public class Test {
 enum Month { JANUARY, FEBRUARY, MARCH,

Job Ready Java612

 APRIL, MAY, JUNE,
 JULY, AUGUST, SEPTEMBER,
 OCTOBER, NOVEMBER, DECEMBER }

 public static void main(String[] args) {
 for (Month m : Month.values())
 System.out.println(m);
 }
 }

 In the listing, an enhanced loop cycles through the values in the Month enum and prints

each entry.

 JANUARY
 FEBRUARY
 MARCH
 APRIL
 MAY
 JUNE
 JULY
 AUGUST
 SEPTEMBER
 OCTOBER
 NOVEMBER
 DECEMBER

 NOTE In Listing 32.4 , you can clearly see the values in the enum in the
code. This is done as a simple example to show you how values() can be
used.

 ENUM MEMBERS
 The Month enum in Listing{ 32.4 presents a common but basic usage of enums using con-

stant values. Enums, however, can do a lot more by including additional members, spe-

cifi cally fi elds and methods. Members of an enum are implicitly declared as public static

members that cannot be changed. In Listing{ 32.5 , the Month enum is expanded to provide

more functionality.

613Lesson 32: Including Magic Numbers and Enums

 LISTING 32.5
 The Expanded Month Enum

 package com.tsg.moreenumfun;

 public enum Month {
 JANUARY(1, 31),
 FEBRUARY(2, 28),
 MARCH(3, 31),
 APRIL(4, 30),
 MAY(5, 31),
 JUNE(6, 30),
 JULY(7, 31),
 AUGUST(8, 31),
 SEPTEMBER(9, 30),
 OCTOBER(10, 31),
 NOVEMBER(11, 30),
 DECEMBER(12, 31);

 private int order;
 private int days;

 Month(int order, int days) {
 this.order = order;
 this.days = days;
 }

 int numberOfDays() {
 return days;
 }

 int monthToNumber() {
 return order;
 }

 String monthToSeason() {

 String season;

 switch (this) {
 case JANUARY:
 case FEBRUARY:
 case MARCH:
 season = "Winter";
 break;

Job Ready Java614

 case APRIL:
 case MAY:
 case JUNE:
 season = "Spring";
 break;
 case JULY:
 case AUGUST:
 case SEPTEMBER:
 season = "Summer";
 break;
 case OCTOBER:
 case NOVEMBER:
 case DECEMBER:
 season = "Fall";
 break;
 default:
 season = "Unknown";
 break;
 }
 return season;
 }
 }

 When we review Listing{ 32.5 , we can see that the enum looks a lot like other classes

with a few key diff erences. First, it is declared with the enum keyword. This sets the type

as an enum instead of a standard class. Second, the members of the enum, both fi elds and

methods, are all declared by default as public fi nal . This means that once defi ned, they

cannot be changed.

 In the listing, we didn ’ t just defi ne the value for the enum items, such as JANUARY ; we

also included defi ning values for each. In this case, we included two additional numbers.

The fi rst is the order in which the month appears in the year, and the second is the number

of days the month contains. We included these in parentheses after each month ’ s entry. To

maintain the value for the enum, we declared two private variables to hold the values as

well as declared a constructor to assign the values.

 private int order;
 private int days;

 Month(int order, int days) {
 this.order = order;
 this.days = days;
 }

615Lesson 32: Including Magic Numbers and Enums

 As you can see, we store the values as order and days . With the constructor, we assign

the initializing value into the private variables of our existing enum. To access these values,

we have created member functions that can be used. We can do more than just access

these values from within our enum, which is illustrated by the monthToSeason() method

that determines the season and returns it.

 Listing{ 32.6 is a short listing that uses the updated Month enum and its methods.

 LISTING 32.6
 Using the Month Enum

 package com.tsg.moreenumfun;

 public class MoreEnumFun {

 public static void main(String[] args) {

 Month month;
 month = Month.JANUARY;

 System.out.println("Month: " + month.numberOfDays());
 System.out.println("====");

 for (Month i : Month.values()) {
 System.out.println("Month: " + i + " - " + i.monthToNumber()
 + " - " + i.numberOfDays() + " - " + i.monthToSeason());
 }
 }
 }

 In this listing, a variable called month is defi ned as a Month enum. This value is then

assigned a value from the enum, in this case Month.January . Following the assignment, a

simple call to System.out.println displays the number of days within the month we

assigned—in this case, 31 days.

 In addition to showing how a month can be declared, assigned, and displayed, the list-

ing also uses an enhanced for loop to show how you can cycle through the enum and see

not only the entries but also the values associated to each entry. When Listing{ 32.6 is exe-

cuted, the following is displayed:

 Month: 31
 ====
 Month: JANUARY - 1 - 31 - Winter

Job Ready Java616

 Month: FEBRUARY - 2 - 28 - Winter
 Month: MARCH - 3 - 31 - Winter
 Month: APRIL - 4 - 30 - Spring
 Month: MAY - 5 - 31 - Spring
 Month: JUNE - 6 - 30 - Spring
 Month: JULY - 7 - 31 - Summer
 Month: AUGUST - 8 - 31 - Summer
 Month: SEPTEMBER - 9 - 30 - Summer
 Month: OCTOBER - 10 - 31 - Fall
 Month: NOVEMBER - 11 - 30 - Fall
 Month: DECEMBER - 12 - 31 - Fall

 Of course, the point of an enum is to be able to access these values as constants within

your listings, more so than simply printing the values out.

 NOTE In Listing 32.6 , the value of Month.JANUARY is assigned to the month
variable. If you try assigning a value that is not listed in the enum, you
will get an error. For example, assigning month = Month.HALLOWEEN would
be invalid because HALLOWEEN is not a valid entry in Month .

 SUMMARY
 That ’ s all there is to it. We introduce this topic here because, as we begin to use other

libraries, we see enums more and more, and we want you to understand how they work.

 The important takeaways from this lesson are the following:

• Enums are used as a way to group related constants.

• Enums are fi rst-class types and can be used as formal parameters to methods and in

switch statements.

• Items in an enum should be in all caps since they are constants.

• Enums are used widely, and you will start to see them in other APIs and frameworks

as we program larger applications.

 EXERCISES
 The following exercises will help you practice what you are learning about enums in this

lesson. These are to do on your own.

617Lesson 32: Including Magic Numbers and Enums

Exercise 1: How Many Days until Friday?

Exercise 2: Playing Cards

 Exercise 1: How Many Days until Friday?
 In this exercise, create an enum for every day of the week. Then, create an App class that

asks the user to enter a day of the week and then use a switch statement and your enum

to print out how many days there are until Friday.

 Exercise 2: Playing Cards
 Create two enums: one that contains the four suits in a card deck (CLUBS((, DIAMONDS ,

HEARTS , and SPADES) and a second one that contains the names of the ranks of cards such

as ACE , TWO , THREE , etc.

 Use your newly created enums in a listing that should randomly select a card by select-

ing a random suit and a rank and then display the card to the console. Here ’ s an example:

 ACE CLUBS

 Once you ’ ve completed printing a card, modify your listing to select and print fi ve cards

randomly. Your output could look something like the following:

 Drawing a hand of cards:
 THREE DIAMONDS
 KING CLUBS
 SIX CLUBS
 FOUR HEARTS
 NINE HEARTS

Lesson 33

 Manipulating
Dates and Times

 The Java Date-Time API is a big API with a large number of

features. In this lesson we will introduce the Date-Time API

and show what is needed to get started.

 The version of the Date-Time API that we cover in this lesson was

introduced in Java 8 and addresses many shortcomings of what

was available prior to that version for the date-time classes. The

problems with the previous API led to the rise of several third-party

Date-Time API implementations. The newer Java API incorporates

features of these third-party APIs.

 NOTE The Date-Time API is just like any other API in that it consists
of several different packages and classes, all of which have Javadocs
explaining how they are to be used. We encourage you to explore the API
and grab additional features as you need them.

619Lesson 33: Manipulating Dates and Times

 LEARNING OBJECTIVES
 By the end of this lesson, you will be able to:

• Use the correct ISO calendar standard

• Diff erentiate between human time and machine time

• Diff erentiate between local and zone classes

• Diff erentiate between periods and duration

• Create LocalDates

• Calculate dates in the future and the past

• Calculate the time between two dates

• Format dates

• Convert the Date and GregorianCalendar objects

ISO CALENDAR
 The Java Date-Time API uses standard 8601 from the International Organization for Stan-

dardization (ISO 8601) for representing dates and times. ISO 8601 is meant to normalize

the diff erences in date/time formats across the globe and is based on the Gregorian calen-

dar that was introduced in 1582. The basic format is as follows:

 YYYY-MM-DDThh:mm:ss

 Time is represented using the 24-hour clock. Although ISO 8601 is the default format,

the Date-Time API gives us several ways to format dates and times as needed for our appli-

cations. We will see examples of this later in the lesson.

 HUMAN TIME AND MACHINE TIME
 The Java Date-Time API has two ways to represent time: human time and machine time.

 Human time is familiar to us. It consists of units such as years, months, days, hours, min-

utes, and seconds. As the name implies, human time is regular calendar and clock time.

 Machine time is a bit diff erent. Machine time is a timeline (measured down to nanosec-

ond intervals) that starts on January 1, 1970, which is known as the epoch. Positive numbersh

represent time after the epoch, and negative numbers represent time before the epoch.

There are utility methods that convert from machine time to human time, and vice versa.

 LOCAL AND ZONED CLASSES
 The Java Date-Time API provides classes that work with time zone information and others

that just deal with dates and times without taking time zones into account. They are easy

Job Ready Java620

to tell apart: ZonedDateTime takes the time zone into account, whereas LocalDate-

Time does not.

 We will be using LocalDateTime and LocalDate throughout this course, but you should

be aware of the zoned date/time classes, especially if you work at a global company where

time zones can be critical.

 PERIODS AND DURATION
 The Java Date-Time API has two ways to measure time periods: duration and period. Dura-

tions are measured in machine time (seconds and nanoseconds), whereas periods are

measured in human time (years, months, and days). We will see examples of using a period

to calculate the diff erence between two dates later in this lesson. The basic principles of

using duration are basically the same. This method keeps track of how much time there is

between two points in time.

 WORKING WITH LocalDate OBJECTS
 Now that we have discussed some of the basics of the Java Date-Time API, we are ready

to look at some code. We ’ ll start by creating a LocalDate object. It is a good class to start

with if you just need to use a simple date.

 Creating LocalDates
LocalDate objects are created using one of the supplied factory methods rather than using thes

LocalDate constructor. A factory method is simply a method that creates a new object for us

when called. The two most commonly used LocalDate factory methods are now and parse .

 The fi rst example in Listing{ 33.1 creates a new LocalDate object containing

today ’ s date.

 LISTING 33.1
 Creating a LocalDate with the Current Date

 import java.time.LocalDate;

 public class App {
 public static void main(String[] args) {

621Lesson 33: Manipulating Dates and Times

 LocalDate ld = LocalDate.now();
 System.out.println(ld);
 }
 }

 Note that to use the LocalDate object, we needed to import java.time.LocalDate .

When this program is executed, we see that the current date is displayed similar to the

following:

 2020-10-06

 As can be seen, this program was executed on October 6, 2020. What happens, how-

ever, if we want a date other than the current date? In Listing{ 33.2 two more examples of

setting values into our LocalDate object are presented.

 LISTING 33.2
 Initializing LocalDate Values

 import java.time.LocalDate;
 import java.time.format.DateTimeFormatter;

 public class App {
 public static void main(String[] args) {

 LocalDate ld = LocalDate.now();
 System.out.println(ld);

 ld = LocalDate.parse("2021-03-01");
 System.out.println(ld);

 ld = LocalDate.parse("02/07/2021", DateTimeFormatter.ofPattern(
"MM/dd/yyyy"));

 System.out.println(ld);
 }
 }

 This listing leaves the call to LocalDate.now() , but then adds two new examples. In

the fi rst new example, we create a new LocalDate object containing the date represented

by a well-formed ISO 8601 string, which is passed in the parse() method of the Local-

Date object.

 ld = LocalDate.parse("2021-03-01");

Job Ready Java622

 In the output from running the listing, we can see that the date was assigned and

displayed as expected and that 2021-03-01 is the second date printed when you run

the program.

 2020-10-06
 2021-03-01
 2021-02-07

 What happens if we want to capture a date in a diff erent format than the standard

yyyy-mm-dd ISO 8601 format? The third example presented in the listing creates a new

LocalDate object containing the date represented by a well-formed date string of the

pattern MM/dd/yyyy .

 ld = LocalDate.parse("02/07/2021", DateTimeFormatter.ofPattern("MM/dd/yyyy"));

 Notice that this version of the parse() method requires both the date string and

a parameter specifying the pattern of the incoming date. To do this, we use the static

ofPattern() method on the DateTimeFormatter . Because the DateTimeFormatter code

is in a diff erent package from LocalDate , we need to import java.time.format.Date-

TimeFormatter to use it.

 When we run the listing, you can see from the output that was displayed earlier that

our entered date of 02/07/2021 was displayed; however, it was displayed in the standard

ISO format of 2021-02-07 .

 NOTE When creating the format string for month, you might have
noticed that the format string uses capital Ms instead of lowercase.
DateTimeFormatter uses a capital M for identifying months and a lowercase m
for identifying minutes.

 Converting Dates to and from Strings
 Often, we will get dates from a fi le or other sources that are not stored in a LocalDate

format but rather are presented as a simple string of text. In such cases, we are likely to

want to convert these from a String format into a date within our programs so that we

can do date calculations on them.

 To convert a date from a string, we can use the same parse() method we used in the

previous listing and simply pass it our date, as shown in Listing{ 33.3 .

623Lesson 33: Manipulating Dates and Times

 LISTING 33.3
 Converting a Date to and from a String

 import java.time.LocalDate;

 public class App {
 public static void main(String[] args) {

 String isoDate = "2021-12-25";

 LocalDate ld = LocalDate.parse(isoDate);
 System.out.println("ld = " + ld);
 System.out.println("isoDate = " + isoDate);
 }
 }

 In this listing, a String is created called isoDate and assigned a value of 2021-12-25 .

We could have also read this same value from a fi le, asked the user to enter the date value,

or obtained the value in a variety of other ways and placed it into our string. We then pass

the String value in isoDate to the parse() method of LocalDate , which converts it to

an isoDate . The listing then prints the value of both the LocalDate (ld) object and the

String (isoDate).

 ld = 2021-12-25
 isoDate = 2021-12-25

 To convert a date to a String is a simple matter of calling the toString() method

on the LocalDate object. Using our values from the previous listing, it would be as

simple as this:

 isoDate = ld.toString();

 Formatting Dates
 Although ISO 8601 is the default date format for the Java Date-Time API, dates can be

displayed in a variety of formats. To do this, we use a combination of the LocalDate.

format() method and the DateTimeFormatter class.

 In Listing{ 33.2 , you saw the DateTimeFormatter class used to display a date in the MM/

dd/yyyy format using the parse() method of the LocalDate object. The following also

formats a LocalDate into a String with the date pattern MM/dd/yyyy:

 DateTimeFormatter formatter = DateTimeFormatter.ofPattern("MM/dd/yyyy");

Job Ready Java624

 LocalDate ld = LocalDate.parse("02/07/2021", formatter);
 String formatted = ld.format(formatter);

 What is happening in this code is that a DateTimeFormatter is being created called

formatter . This is a layout or pattern that can be used to format our date.

 The DateTimeFormatter will then be passed to the parse() method of LocalDate

along with a date value to create a LocalDate in the second line. In the fi nal line, we are

assigning the value returned from calling the format() method on our LocalDate object

(ld) to our formatted String , formatted . However, we are also passing the formatted()

method to the formatter we had created. This will result in the returned date being for-

matted with that formatter. As a result, if we were to print the value of formatted , it

would look like this:

 02/07/2021

 Listing{ 33.4 takes the formatting we just did to the next level. In this listing, we format

a date using special characters in a couple of diff erent patterns.

 LISTING 33.4
 Going Crazy Formatting Dates

 import java.time.LocalDate;
 import java.time.format.DateTimeFormatter;

 public class App {

 public static void main(String[] args) {

 LocalDate ld = LocalDate.parse("2020-12-25");
 String formatted;

 System.out.println("Starting date: " + ld);

 formatted = ld.format(DateTimeFormatter.ofPattern("MM=dd=yyyy+=+=+="));
 System.out.println(formatted);

 formatted = ld.format(DateTimeFormatter.ofPattern("==> MM/yyyy <=="));
 System.out.println(formatted);

625Lesson 33: Manipulating Dates and Times

 formatted = ld.format(DateTimeFormatter.ofPattern("yyyy-dd-MM-dd-yyyy"));
 System.out.println(formatted);
 }
 }

 When you run this listing, you see our date printed in a variety of manners.

 Starting date: 2020-12-25
 12=25=2020+=+=+=
 ==> 12/2020 <==
 2020-25-12-25-2020

 You can see in this formatted output that the values for month, day, and year are

placed into the corresponding letters and that the symbols that were used are simply

displayed.

 Using Localization
 There is one more example worth reviewing at this time, which involves the ofLocalized-

Date() method of the DateTimeFormatter we ’ ve been using. This method uses localiza-

tion information from the system to determine how the date should be formatted. The

format for using the method is as follows:

 ld.format(DateTimeFormatter.ofLocalizedDate(FormatStyle.FULL));

 In this case, a predefi ned style is passed to the ofLocalizedData() method. The

predefi ned style is a FormatStyle enum. In this case, FormatStyle.FULL is the style

being passed. When called, the previous line will result in a date value that looks like

this (depending on the localization information on your computer, this may look diff er-

ent for you):

 Friday, December 25, 2020

 To use FormatStyle enum, we will need to import java.time.format.FormatStyle .

This will give you access to the diff erent predefi ned formats shown in Listing{ 33.5 .

 LISTING 33.5
 Using Localized Date Formats

 import java.time.LocalDate;
 import java.time.format.DateTimeFormatter;
 import java.time.format.FormatStyle;

Job Ready Java626

 public class App {

 public static void main(String[] args) {

 LocalDate ld = LocalDate.parse("2020-12-25");

 System.out.println("Starting date: " + ld);

 String formatted = ld.format(
 DateTimeFormatter.ofLocalizedDate(FormatStyle.FULL));
 System.out.println(formatted);

 System.out.println(
 ld.format(DateTimeFormatter.ofLocalizedDate(FormatStyle.LONG)));
 System.out.println(
 ld.format(DateTimeFormatter.ofLocalizedDate(FormatStyle.
MEDIUM)));
 System.out.println(
 ld.format(DateTimeFormatter.ofLocalizedDate(FormatStyle.SHORT)));
 }
 }

 When you execute this listing, you should see something similar to the following:

 Starting date: 2020-12-25
 Friday, December 25, 2020
 December 25, 2020
 Dec 25, 2020
 12/25/20

 NOTE Again, the localization function localizes the date format to your
system. As such, your output might vary from what is displayed.

 GETTING THE TIME WITH LocalDateTime
 We have focused on LocalDate up to this point; however, at times you might also want

to capture the time. You can get both the date and the time by using a LocalDateTime

object. For the most part, this object works like the LocalDate object, except that you will

also get time information.

 Listing{ 33.6 is concise and illustrates the use of LocalDateTime .

627Lesson 33: Manipulating Dates and Times

 LISTING 33.6
 Getting the Local Time

 import java.time.LocalDateTime;
 import java.time.format.DateTimeFormatter;

 public class App {

 public static void main(String[] args) {

 LocalDateTime ldt = LocalDateTime.now();

 System.out.println(ldt);

 String formatted =
 ldt.format(DateTimeFormatter.ofPattern("yyyy-MM-dd hh:mm:ss"));
 System.out.println(formatted);
 }
 }

 With the exception of using LocalDateTime instead of LocalDate , this listing operates

like the previous listings. We declare a LocalDateTime called ldt to which we assign the

current date and time by calling the now() method. We then print out the value.

 Because the value isn ’ t as nicely presented as we ’ d like, the listing then calls the

format() method in the same manner we did earlier. We pass a pattern through the

DateTimeFormatter to state in what format we want our output. In this case, we pres-

ent the year, month, and day followed by a space and then the hour, minutes, and sec-

onds. The resulting output for both the formatted date and time and unformatted are

as follows:

 2020-10-06T20:26:23.583
 2020-10-06 08:26:23

 If we were to run the program now, the date and time would be the current

date and time.

 As you can see, the features mentioned with LocalDate work equally well with Local-

DateTime . If you wanted only the time, without the date, then you could use the Date-

TimeFormatter with a pattern such as hh:mm:ss .

Job Ready Java628

 NOTE Remember, when formatting dates and times with the ofPattern()
method, you use capital M for month and lowercase m for minutes.

 WORKING WITH DATE CALCULATIONS
 When working with dates, we often need to do more than just convert them from strings

and format them for display. There are times we need to manipulate dates. This might be

adjusting dates by adding to them, such as adding two weeks to a due date for a library

book. Alternatively, it might be that we need to do calculations on dates, such as subtract-

ing a due date from the current date to see how long something is past due (or how long

until it is due).

 Fortunately, the LocalDate provides methods that makes doing such calculations

easy. We ’ ll cover adjusting dates and then doing calculations for determining the time

between dates.

 Calculating Dates in the Future and Past
LocalDate provides a number of methods that lets you move a date forward into the

future or backward into the past. This can be done by adding or subtracting years, months,

weeks, or days to a date. The variety of methods provided by LocalDate include the

following:

• plusYears()

• plusMonths()

• plusWeeks()

• plusDays()

• minusYears()

• minusMonths()

• minusWeeks()

• minusDays()

 To use these methods, simply pass in the number of years, months, or days that you

want to add or subtract from the existing date, and the method will return a new Local-

Date object. It is as easy as it sounds. For example, the following code subtracts (moves

back in time) eight days from the ld date and assigns the new date to the past object.

 LocalDate past = ld.minusDays(8);

629Lesson 33: Manipulating Dates and Times

 Listing{ 33.7 presents a simple use of the plusYear() method to let you know what day

of the week New Year ’ s Day will be for each of the next 10 years.

 LISTING 33.7
 The Day of the Week for New Year ' s Day

 import java.time.LocalDate;
 import java.time.format.DateTimeFormatter;
 import java.time.format.FormatStyle;

 public class App {

 public static void main(String[] args) {

 LocalDate ld = LocalDate.parse("2021-01-01");
 System.out.println("Starting date: " + ld);
 System.out.println("==========================");

 for (int i = 0; i < 10; i++) {
 System.out.println(
 ld.format(DateTimeFormatter.ofLocalizedDate(FormatStyle.FULL)));

 ld = ld.plusYears(1);
 }
 }
 }

 The output from running this listing is as follows:

 Starting date: 2021-01-01
 ==========================
 Friday, January 1, 2021
 Saturday, January 1, 2022
 Sunday, January 1, 2023
 Monday, January 1, 2024
 Wednesday, January 1, 2025
 Thursday, January 1, 2026
 Friday, January 1, 2027
 Saturday, January 1, 2028
 Monday, January 1, 2029
 Tuesday, January 1, 2030

Job Ready Java630

 You can use the other methods in the same manner. Clearly, the methods starting with

minus move a date back in time. Those that start with plus move dates forward.

 Calculating the Time between Two Dates
LocalDate also provides an easy way to determine the amount of time between two dates

via the until() method. The until() method compares two dates and returns a Period

object representing the diff erence in time between the two dates. Listing{ 33.8 presents

an example of using a LocalDate variable and comparing it to another date using the

Period class to store the diff erence. To use the Period class, you ’ ll need to import java.

time.Period .

 LISTING 33.8
The Difference between Dates

 import java.time.LocalDate;
 import java.time.Period;

 public class App {
 public static void main(String[] args) {

 LocalDate ld = LocalDate.now();
 LocalDate otherDate = LocalDate.parse("2022-01-01");

 Period diff = ld.until(otherDate);

 System.out.println("Starting date: " + ld);
 System.out.println("Other date: " + otherDate);
 System.out.println("==========================");

 System.out.println("Difference: " + diff);
 }
 }

 What you see in looking at Listing{ 33.8 is that we place the current date into our Local-

Date variable called ld . We then place a second date into our otherDate variable. In this

case, we are placing 2022-01-01 , which is New Year ’ s Day 2022, into the variable. Using

the following line of code, we then determine the diff erence between the two dates:

 Period diff = ld.until(past);

631Lesson 33: Manipulating Dates and Times

 When the listing was executed, it produces the following information:

 Starting date: 2020-10-06
 Other date: 2022-01-01
 ==========================
 Difference: P1Y2M26D

 NOTE Because we are comparing to the current date (LocalDate.now()),
your output will be different.

 When I ran the listing, you can see that the diff erence is 1 year, 2 months, and 26 days;

however, this information is presented in a manner that is a bit cryptic. Fortunately, the

Period class has getter methods for the years, months, and days values that make up the

time diff erence between the two dates.

• getYears()

• getMonths()

• getDays()

 Listing{ 33.9 presents an update to Listing{ 33.8 that has an output that is much easier to

understand.

 LISTING 33.9
 Getting Differences Piece by Piece

 import java.time.LocalDate;
 import java.time.Period;

 public class App {

 public static void main(String[] args) {
 LocalDate ld = LocalDate.now();
 LocalDate otherDate = LocalDate.parse("2022-01-01");

 Period diff = ld.until(otherDate);

 System.out.println("Starting date: " + ld);
 System.out.println("Other date: " + otherDate);
 System.out.println("==========================");

Job Ready Java632

 System.out.println("Difference: " + diff);
 System.out.println("Years: " + diff.getYears());
 System.out.println("Months: " + diff.getMonths());
 System.out.println("Days: " + diff.getDays());
 }
 }

 The output is much clearer, as shown here:

 Starting date: 2020-10-06
 Other date: 2022-01-01
 ==========================
 Difference: P1Y2M26D
 Years: 1
 Months: 2
 Days: 26

 WORKING WITH LEGACY DATES
 In the fi nal section of this lesson, we will look at conversion from the legacy Date and Gre-

gorianCalendar objects to LocalDate objects. These two types of date objects were used

in older versions of Java, so we might come across them.

 Converting Date Objects
 The conversion of a legacy Date object into a LocalDate object involves two steps. First,

you must convert the Date into a ZonedDateTime object and from there into a LocalDate .

 The fi rst step (converting the Date to the ZonedDateTime) consists of several pieces.

1. We convert the Date into an Instant. Essentially, we are converting the Date from

human time into machine time.

2. We then convert the Instant derived from the legacy Date into a ZonedDateTime

object using the static ofInstant() method. Here, we are essentially converting

the machine time Instant back into a human time ZonedDateTime object. Notice

that we must also pass a time zone ID into the ofInstant() method, so we use the

system default of the machine the code is running on.

 The second step is more straightforward. We simply call the toLocalDate() method

of our ZonedDateTime object. Listing{ 33.10 shows the conversion of a Date object into a

LocalDate object.

633Lesson 33: Manipulating Dates and Times

 LISTING 33.10
 Converting from Date to LocalDate

 import java.time.LocalDate;
 import java.time.ZoneId;
 import java.time.ZonedDateTime;
 import java.util.Date;

 public class App {
 public static void main(String[] args) {

 LocalDate ld;
 Date legacyDate = new Date();

 // Step 1
 ZonedDateTime zdt = ZonedDateTime.ofInstant(
 legacyDate.toInstant(), ZoneId.systemDefault());
 // Step 2
 ld = zdt.toLocalDate();

 System.out.println(legacyDate);
 System.out.println(ld);
 }
 }

 The comments within the listing show the two steps described earlier. Also note that

we needed to include a few additional imports for the new objects that are being used.

When you run this listing, you see basic output, which is the original value of the Date

object followed by the value of the newly created LocalDate object. The values match,

which is what we want.

 Wed Oct 07 11:14:43 EDT 2020
 2020-10-07

 Converting a GregorianCalendar Object
 Converting from a GregorianCalendar object to a LocalDate is much easier. In this

case, GregorianCalendar includes a method to convert to a ZonedDateTime object

called, appropriately, toZoneDateTime() . Once converted, you can then follow the

second step from earlier to convert the ZonedDateTime to a LocalDate , as shown in

Listing{ 33.11 .

Job Ready Java634

 LISTING 33.11
 Converting from GregorianCalendar to LocalDate

 import java.time.LocalDate;
 import java.time.ZonedDateTime;
 import java.util.GregorianCalendar;

 public class App {
 public static void main(String[] args) {

 LocalDate ld;
 GregorianCalendar legacyCalendar = new GregorianCalendar();

 // Step 1
 ZonedDateTime zdt = legacyCalendar.toZonedDateTime();
 // Step 2
 ld = zdt.toLocalDate();

 System.out.println(legacyCalendar);
 System.out.println(ld);
 }
 }

 When you look at the output from this listing, you ’ ll notice that the Gregorian calendar

default format for printing contains a lot of information, which makes its printout some-

what unusable. Even so, once converted, we get the LocalDate we ’ ve come to expect. The

following is the output from this listing:

 java.util.GregorianCalendar[time=1602084052565,areFieldsSet=true,areAllFie
ldsSet=true,lenient=true,zone=sun.util.calendar.ZoneInfo[id="America/New_
York",offset=-18000000,dstSavings=3600000,useDaylight=true,transitions=235,
last Rule=java.util.SimpleTimeZone[id=America/New_York,offset=-18000000,dstS
avings=3600000,useDaylight=true,startYear=0,startMode=3,startMonth=2,start
Day=8,startDayOfWeek=1,startTime=7200000,startTimeMode=0,endMode=3,endMont
h=10,endDay=1,endDayOfWeek=1,endTime=7200000,endTimeMode=0]],firstDayOfWee
k=1,minimalDaysInFirstWeek=1,ERA=1,YEAR=2020,MONTH=9,WEEK_OF_YEAR=41,WEEK_
OF_MONTH=2,DAY_OF_MONTH=7,DAY_OF_YEAR=281,DAY_OF_WEEK=4,DAY_OF_WEEK_IN_
MONTH=1,AM_PM=0,HOUR=11,HOUR_OF_DAY=11,MINUTE=20,SECOND=52,MILLISECOND=565,Z
ONE_OFFSET=-18000000,DST_OFFSET=3600000]
 2020-10-07

 NOTE Your output will be different, depending on the day you run the
program.

635Lesson 33: Manipulating Dates and Times

 SUMMARY
 The Java Date-Time API introduced way back in Java 8 was a great improvement over pre-

vious versions. It is a large and powerful API, and we have really just scratched the surface.

We have shown the basics of the API in this lesson, and these basics will get you through

the course, but there are many useful features that we leave to you to discover. The best

way to learn an API is to read the documentation and then write some code that uses the

API to see how it behaves—in other words, just play with the API.

 The important takeaways from this lesson are the following:

• The Java Date-Time API uses the ISO-8601 date format.

• The Java Date-Time API can represent time in human time and machine time.

• Machine time is represented as a timeline (down to nanosecond intervals) since the

epoch (which is January 1, 1970).

• Periods of time are measured using two classes: Duration , which uses machine

time, and Period , which uses human time.

• LocalDate and LocalDateTime objects are instantiated using factory methods

instead of constructors. The two most commonly used factory methods are now()

and parse() .

• Java Date-Time objects can be formatted in a variety of ways.

• LocalDate provides methods to calculate dates in the future or the past based on

an existing LocalDate object.

• The Java Date-Time API provides methods to help convert to and from legacy date

and time APIs.

 EXERCISES
 The following are exercises to help you practice what you are learning about working with

dates and times in this lesson. These are to do on your own.

Exercise 1: Birthday Calculator

Exercise 2: It ’ s the End of the World as We Know It

Exercise 3: Tracking Your Time

 Exercise 1: Birthday Calculator
 For this exercise, create an application to help people report on birthdays. Your birthday

calculator application should do the following:

Job Ready Java636

• Ask someone for their birthday, for example 01/01/2002.

• Tell them the day of the week their birthday falls on.

• Then tell them the day of the week it falls on this year.

• Next tell them what day it is today and the number of days until their next birthday.

• And then tell them what their age will be.

 The following is example output your application could produce:

 Welcome to the Magical BirthDAY Calculator!

 What's your birthday?
 01-01-2002
 That means you were born on a TUESDAY!
 This year it falls on a MONDAY...
 And since today is 12-30-2021, there are only 2 more days until the next one!
 Bet you're excited to be turning 20!

 Exercise 2: It's The End of the World as We Know It
 There are several predictions as to when the world will end. The following are some of the

predicted dates:

• December 31, 2129

• January 1, 3239 (approximately)

• January 1, 2026 (approximately)

• January 1, 2028 (approximately)

 Write a program that determines how much time remains between now and each of

these predictions.

 NOTE You can search online for list of dates for apocalyptic events to s
determine additional dates to try.

 Exercise 3: Tracking Your Time
 Write a program that tracks the amount of time it takes you to read the next lesson in this

course. One approach to doing this is to do the following:

1. Run the program when you are ready to start the lesson.

2. Have the program capture the date and time when it starts.

637Lesson 33: Manipulating Dates and Times

3. Within a loop, create a prompt that asks, “Are you done with the lesson (y/n)?”

4. If the user responds with “n,” then provide the current time, indicate how many

hours and minutes they ’ ve been working on the lesson, and prompt them again to

ask if they are done.

5. If the user responds with “y,” then provide the ending date and time and tell them

how many total minutes they spent on the lesson.

6. If they answer something other than “n” or “y,” then you ’ ll want to tell them that

they need to respond with “n” or “y.”

Lesson 34

 Using the
BigDecimal Class

 In this lesson, we will look at the BigDecimal class. This class

is used to represent arbitrary precision decimal numbers. It

provides ways to set the number of signifi cant digits and confi gure

how numbers should be rounded. This class should be used for all

calculations involving currency.

 Like some of the other classes and libraries we have covered,

we will introduce you to BigDecimal and show what you need to

get started. We won ’ t cover every capability of the class, but we

will give you enough information so that you can explore the

remaining capabilities on your own.

 LESSON OBJECTIVES
 By the end of this lesson, you will be able to:

• Explain BigDecimal

• Describe scale as it applies to BigDecimal

• Explain considerations for rounding modes

639Lesson 34: Using the BigDecimal Class

 EXPLORING BIGDECIMAL
 The Javadoc documentation for BigDecimal is pretty technical and can be a bit intimi-

dating. In this section, we explore some of the ideas behind BigDecimal , and in the next

section, we look at some code samples.

BigDecimal is an immutable type (just like String). That means that a BigDecimal

object ’ s value cannot be changed once it is set. From a practical standpoint, that means

you must set the result of any BigDecimal operation to another BigDecimal variable. We

will see examples of this in the code examples later in this lesson.

 Constructing BigDecimals
 There are several diff erent constructors that you can use to create instances of BigDeci-

mal . Most of them are straightforward, but we want to discuss two of them here: the

String constructor and the double constructor.

 It seems intuitive to use a double value to create a BigDecimal instance. After all, they

are both decimal numbers, right? Well, the problem with using a double to create a Big-

Decimal stems from the imprecise nature of doubles, which is why BigDecimal was cre-

ated in the fi rst place.

 For example, you would expect that passing in 0.1 to the constructor of BigDecimal

would create a BigDecimal with the value of exactly 0.1, but you would be wrong. Not all

values can be represented exactly as a double. For example, you would expect 0.1 to be

stored when constructing an instance with BigDecimal(0.1) ; however, what could actu-

ally end up being stored is the following:

 This odd value is stored because the 0.1{value being used with the constructor is not

exactly 0.1{in the system, even though it appears that way when being passed in.

 So, it is not a good idea to use the t BigDecimal double constructor. Take a look at List-

ing{ 34.1 , which illustrates how to create a BigDecimal called myNumber with an assigned

double value of 0.1.

 LISTING 34.1
 Using a Double with BigDecimal

 import java.math.BigDecimal;

 public class MyBigDecimal {
 public static void main(String[] args) {

 0.1000000000000000055511151231257827021181583404541015625

Job Ready Java640

 double x = 0.1;
 BigDecimal myNumber = new BigDecimal(x);
 System.out.println(myNumber);
 }
 }

 If you enter and execute this listing, you ’ ll confi rm that the output is not 0.1, just as the

Oracle documentation claimed.

 0.1000000000000000055511151231257827021181583404541015625

 What should we do if we need to create a BigDecimal with the exact value of 0.1? This

is where the String constructor helps us. It may seem nonintuitive to create a BigDecimal

from a String ; however, if we pass the String "0.1" into the BigDecimal constructor,

it will create a BigDecimal equal to exactly 0.1. Again, according to the Oracle

documentation:

 The String constructor, on the other hand, is perfectly predictable: writing new BigDecimal

("0.1") creates a BigDecimal which is exactly equal to 0.1, as one would expect. Therefore, it isy

generally recommended that the String constructor be used in preference to this [the double

constructor] one.

 Listing{ 34.2 is short, but it confi rms the Oracle documentation.

 LISTING 34.2
 Using a String with BigDecimal

 import java.math.BigDecimal;

 public class MyBigDecimal {
 public static void main(String[] args) {

 BigDecimal myNumber = new BigDecimal("0.1");
 System.out.println(myNumber);
 }
 }

 This time, BigDecimal is assigned a string value that is displayed when you run the pro-

gram. The result is what we want, which is simply:

 0.1

641Lesson 34: Using the BigDecimal Class

 NOTE None of the other BigDecimal constructors (int , long , BigDecimal)
have the problem of imprecision.

 Understanding Scale
 When working with BigDecimal s, it is important to understand scale. The scale value ise

the number of digits to the right of the decimal point. For example, when dealing with cur-

rency calculations, we will use a value of 2 for the scale.

 Understanding Rounding Modes
 Another concept to be aware of when working with numbers and doing mathematical oper-

ations is rounding. The BigDecimal class has several rounding modes. The rounding mode

you should use will be dependent upon the business rules for your application. Diff erent

industries and applications have diff erent rules. This is generally not a decision that shouldt

be made by anyone on the development team. Table{ 34.1 lists the modes that are available.

 The rounding modes and the scale value that are right for your application are com-

pletely dependent on your business rules. Often, these settings will be related to the

generally accepted accounting principles for your particular industry; sometimes tax law

 Table 34.1 BigDecimal Rounding Modes

Rounding

Mode Description

CEILING Rounds toward positive infi nity
DOWN Rounds toward zero
FLOOR Rounds toward negative infi nity
HALF_DOWN Rounds toward the nearest neighbor unless both neighbors are equidistant,

in which case it rounds down
HALF_EVEN Rounds toward the nearest neighbor unless both neighbors are equidistant,

in which case it rounds toward the even neighbor
HALF_UP Rounds toward the nearest neighbor unless both neighbors are equidistant,

in which case it rounds up
UNNECESSARY Asserts that the requested operation has an exact result so there is no need

to round
UP Rounds away from zero

Job Ready Java642

determines them. In any case, the development team should never make these decisions

without knowing the business rules.

 NOTE You can import java.math.RoundingMode to get the RoundingMode
enum values.

 WORKING WITH BIGDECIMAL
 Now that we have some background information, we will take a closer look at BigDecimal

in action. In Listings{ 34.1 and{ 34.2 , you saw BigDecimal values created using a double

and a string, respectively. These values were created and set with default scaling values.

For example, when the value of "0.1" was assigned to myNumber in Listing{ 34.2 , the scale

value was set to the number of positions to the right of the decimal, which was 1.

 Setting Scale
 What happens if we want to set the scale to a diff erent value? Listing{ 34.3 helps illustrate

the use of BigDecimal ’ s setScale() method to set the scale.

 LISTING 34.3
 Changing the Scale of a BigDecimal Object

 import java.math.BigDecimal;

 public class App {
 public static void main(String[] args) {

 BigDecimal aNum = new BigDecimal("23.45");
 BigDecimal bNum = aNum.setScale(4);

 System.out.println("aNum = " + aNum);
 System.out.println("bNum = " + bNum);

 System.out.println("aNum scale = " + aNum.scale());
 System.out.println("bNum scale = " + bNum.scale());
 }
 }

643Lesson 34: Using the BigDecimal Class

 This code should be easy to follow with what we already know. A BigDecimal object

called aNum is created, and the value of "23.45" is assigned to it. We then assign this value

to a second BigDecimal object called bNum ; however, we called the setScale() method to

use a scale of 4.

 The listing then prints out the value stored within both aNum and bNum . This is followed

by a call to another BigDecimal method called scale() , which returns the scale value for

a variable.

 Take a look at the output:

 a = 23.45
 b = 23.4500
 a scale = 2
 b scale = 4

 We can see that the value of aNum was set to 23.45 as expected, and its scale matched the

number of places to the right of the decimal, which is 2. You can also see that since the value

assigned to bNum was stated to have a scale of 4, when bNum was displayed, it included four

positions to the right of the decimal, and as expected, the scale value shown is indeed 4.

 Setting Scale without Rounding Mode
 Look at Listing{ 34.3 again. What would you expect to happen if you changed the assign-

ment to bNum to the following?

 BigDecimal bNum = aNum.setScale(1);

 In this line of code, we attempt to create a new BigDecimal object called bNum and

assign it a value from aNum , but with a scale of 1.

 This produces an error.

 While you might expect the value of 23.4 to be assigned to bNum , this is not what hap-

pens. Rather, your code generates an exception because we didn ’ t tell the method what

rounding mode to use when getting rid of the second digit to the right of the decimal point.

Rounding BigDecimals
 Table{ 34.1 listed the rounding modes that can be used to let BigDecimal know how to

round a number. Listing{ 34.4 updates Listing{ 34.3 to show bNum being scaled to one posi-

tion instead of two.

Job Ready Java644

 LISTING 34.4
 Setting Scale with Rounding Mode HALF_UP

 import java.math.BigDecimal;
 import java.math.RoundingMode;

 public class App {
 public static void main(String[] args) {

 BigDecimal aNum = new BigDecimal("23.45");
 BigDecimal bNum = aNum.setScale(1, RoundingMode.HALF_UP);

 System.out.println("aNum = " + aNum);
 System.out.println("bNum = " + bNum);

 System.out.println("aNum scale = " + aNum.scale());
 System.out.println("bNum scale = " + bNum.scale());
 }
 }

 In this example, we add the rounding mode value of HALF_UP when setting the scale

to 1. Now BigDecimal knows how to properly round when getting rid of the second

digit to the right of the decimal point. Not only do we avoid an exception, but we get the

output with a scale of one position, as expected. We also see that bNum ’ s decimal value was

rounded up.

 aNum = 23.45
 bNum = 23.5
 aNum scale = 2
 bNum scale = 1

 If we wanted to have rounding go down, we could swap out the RoundingMode for

HALF_DOWN :

 BigDecimal bNum = aNum.setScale(1, RoundingMode.HALF_DOWN);

 If we change this line of code in Listing{ 34.4 and run it again, the output would be

as follows:

645Lesson 34: Using the BigDecimal Class

 aNum = 23.45
 bNum = 23.4
 aNum scale = 2
 bNum scale = 1

 As we can see, the value of bNum results in 23.4 instead of 23.5 . The value was

rounded down.

DOING CALCULATIONS WITH BigDecimals
 When doing math calculations with BigDecimal s, we need to use the methods included

with the class rather than the math operators. The basic methods are as follows:

• add

• subtract

• multiply

• divide

 For example, to add bNum to aNum , we would do the following:

 BigDecimal result = aNum.add(bNum);

 This would put the sum of the two numbers into the BigDecimal object called result .

Subtracting and multiplying would work the same way as shown in Listing{ 34.5 .

 LISTING 34.5
 Basic Math with BigDecimals

 import java.math.BigDecimal;

 public class App {
 public static void main(String[] args) {

 BigDecimal aNum = new BigDecimal("10");
 BigDecimal bNum = new BigDecimal("6");
 BigDecimal result

 result = aNum.add(bNum);
 System.out.println("Adding: " + result);

Job Ready Java646

 result = aNum.subtract(bNum);
 System.out.println("Subtracting: " + result);

 result = aNum.multiply(bNum);
 System.out.println("Multiplying: " + result);
 }
 }

 As you can see, the code is straightforward. The values of 10 and 6 are placed into Big-

Decimal objects, and adding, subtracting, and multiplying are each done. The results are

what we would expect.

 Adding: 16
 Subtracting: 4
 Multiplying: 60

Dividing BigDecimals
 You might have noticed that the last example didn ’ t include division. When we add, sub-

tract, or multiply numbers, things are relatively clean. For example, you don ’ t need to

worry about the possibly of increasing decimal places.

 When we divide numbers, it is possible for the number of decimal places to increase. In

simple terms, 10 divided by 2 is 5, which is nice and clean. In fact, we could divide 10 by 4,

which results in 2.5, which adds a decimal place but is still a result we can work with.

 What happens, however, when we divide 10 by 6?

 In this case, the result is 1.6666. The result is a nonterminating decimal. Because the

decimal value doesn ’ t end, the BigDecimal value won ’ t know how to store the value

unless you tell it. Consider the following:

 aNum = new BigDecimal("10");
 bNum = new BigDecimal("6");
 result = aNum.divide(bNum); // Exception!

 The calculation of result will throw an exception. In fact, it will throw an Arithmetic-

Exception exception because result would contain an infi nitely repeating value to the

right of the decimal point. To avoid this issue, we need to set a value for a rounding mode,

as shown in Listing{ 34.6 .

647Lesson 34: Using the BigDecimal Class

 LISTING 34.6
 Division with Various Rounding Modes

 import java.math.BigDecimal;
 import java.math.RoundingMode;

 public class App {
 public static void main(String[] args) {

 BigDecimal aNum = new BigDecimal("10");
 BigDecimal bNum = new BigDecimal("6");
 BigDecimal result;

 result = aNum.divide(bNum, RoundingMode.HALF_UP);
 System.out.println("Adding: " + result);

 result = aNum.divide(bNum, 2, RoundingMode.HALF_UP);
 System.out.println("Subtracting: " + result);

 result = aNum.divide(bNum, 2, RoundingMode.DOWN);
 System.out.println("Multiplying: " + result);
 }
 }

 When you execute this listing, you get the following output:

 2
 1.67
 1.66

 In this listing, you can see that division is done three times. The fi rst time, two values

are passed to the divide() method of aNum . First is the number that will be used to divide,

bNum , and the second is the rounding mode, which in this case is HALF_UP. You can see in

this case that the result is that 10 divided by 6 is equal to 2. The result was rounded to the

same scale as our original number, in this case, aNum .

 In the second and third calls to the divide() method on aNum , three values are passed.

The fi rst is the number that will be used to divide, bNum again. These two times, however,

bNum is followed by a scale value before including the rounding mode. You can see that

the fi rst rounding mode is set to round HALF_UP . The second is set to round DOWN , which is

what our output refl ects.

Job Ready Java648

 SUMMARY
 The BigDecimal class provides Java developers with a convenient way to deal with dec-

imal numbers in a predictable fashion. The important takeaways from this lesson are the

following:

• Scale refers to the number of digits to the right of the decimal point.

• BigDecimal provides several diff erent rounding modes.

• It is important to set the rounding mode when performing division operations

because the operation may result in an infi nitely repeating value to the right of the

decimal point.

• BigDecimal objects are immutable.

 EXERCISES
 The following exercises will help you practice what you have learned about using the Big-

Decimal class. These are to do on your own.

Exercise 1: Interest Calculator

Exercise 2: Car Lot Service Layer

 Exercise 1: Interest Calculator
 In this exercise, write an interest calculator program that works as described in

this example.

 John has $500 to invest. Sue knows of a mutual fund plan that pays 10% interest annu-

ally, compounded quarterly. That is, every three months, the principal is multiplied by 2.5%

(the 10% annual rate divided by 4 because it is compounded 4 times per year), and the

result is added to the principal.

 More generally, the new amount each quarter is equal to the following:

 CurrentBalance * (1 + (QuarterlyInterestRate / 100))

 Write a program that will tell John how much money will be in the fund after a specifi ed

number of years. Make the program general; that is, it should prompt for the following

inputs and use those inputs in the calculations.

• Annual interest rate

• Initial amount of principal

• The number of years the money is to stay in the fund

649Lesson 34: Using the BigDecimal Class

 The output should include the following for each year:

• The year number

• The principal at the beginning of the year

• The total amount of interest earned for the year

• The principal at the end of the year

 The following is an example of output that you could have your program produce:

 How much do you want to invest? 500
 How many years are you investing? 10
 What is the annual interest rate % growth? 10

 Calculating...
 Year 1:
 Began with $500.00
 Earned $51.91
 Ended with $551.91

 Year 2:
 Began with $551.91
 Earned $57.30
 Ended with $609.20

 Year 3:
 Began with $609.20
 Earned $63.24
 Ended with $672.44

 ...

 If you are adventurous, you can update your program with the following addi-

tional changes:

• Change the program so that interest is compounded monthly.

• Change the program so that the user can choose from quarterly, monthly, or daily

interest compound periods.

 Exercise 2: Car Lot Service Layer
 Create a service layer that could be used in a simulated car lot program. Remember, the

service layer handles the business logic for a larger application. This car lot ’ s business lot

expects the layer to do some purchase validation, discounting, and fi ltering.

 Your service layer should implement the interface in Exercise Listing{ 34.2A .

Job Ready Java650

 EXERCISE LISTING 34.2A
 CarLotService

 public interface CarLotService {

 public Car getACar(String VIN);
 public List<Car> getAllCars();
 public List<Car> getCarsByColor(String color);
 public List<Car> getCarsInBudget(BigDecimal maxPrice);
 public List<Car> getCarByMakeAndModel(String make, String model);

 public BigDecimal discountCar(String VIN, BigDecimal percentDiscount)
 throws NoSuchCarException;

 public CarKey sellCar(String VIN, BigDecimal cashPaid)
 throws NoSuchCarException,
 OverpaidPriceException,
 UnderpaidPriceException;
 }

 As you can see, there are several business-based methods that must be defi ned:

• Given a VIN, it should be able to get a single Car .

• It should be able to get{all the Car objects and return them in a List.

• Given a color, it should be able to return all the available Car objects of that color

in a List.

• Given a max price, it should be able to return a List of all available Car objects at or

under that price.

• Given a make and model, it should be able to return a List of all the available

Car objects.

• Given a VIN and a discount amount (i.e., 15%), this method should discount the

car ’ s price (updating the offi cial price records of that car) and then return the new

fi nal price.

• If there is no car that matches, it should throw a NoSuchCarException .

• Given a VIN and a cash Amount, it should “buy”: checking if the price matches,

removing the car from the lot, and returning the associated CarKey .

• If there is no car that matches, it should throw a NoSuchCarException .

651Lesson 34: Using the BigDecimal Class

• If they gave too much money, it should throw an OverpaidPriceException .

• If they gave too little money, it should throw an UnderpaidPriceException .

 Assume that you also have access to the DAO and DTOs in Exercise Listings{ 34.2B

through{ 34.2D .

 NOTE These are references. You should not need to change or add
nondescribed properties or methods.

 EXERCISE LISTING 34.2B
 CarLotDAO

 public interface CarLotDAO {
 public Car addCar(String VIN, Car car);

 public Car getCar(String VIN);
 public List<Car> getCars();

 public void editCar(String VIN, Car car);

 public Car removeCar(String VIN);
 }

 EXERCISE LISTING 34.2C
 Car DTO

 public class Car {
 private String VIN;
 private String make;
 private String model;
 private String color;

 private BigDecimal price;
 private long odometerMiles;

Job Ready Java652

 private CarKey key;

 // plus getters, setters & appropriate constructors
 }

 EXERCISE LISTING 34.2D
 CarKey DTO

 public class CarKey {
 private String VIN;
 private boolean laserCut;

 // plus getters, setters & appropriate constructors
 }

Lesson 35

 Working
with Lambdas
and Streams

 Streams, in conjunction with lambdas, allow developers to process

data from Collections in a powerful way. In this lesson, we will

cover a lot of terminology and look at these features to see how we

can use them to simplify our code and make it more effi cient.

 LEARNING OBJECTIVES
 By the end of this lesson, you will be able to:

• Identify tasks you can use aggregate operations for

• Describe pipelines

• Explain streams as they relate to pipelines

• Compare streams to iteration

• Explain lambdas

• Use fi lter with streams

• Use map with streams

• Use collect with streams

• Use forEach with streams

Job Ready Java654

 USING AGGREGATE OPERATIONS
 When we use Collections to store objects in our programs, we generally need to do more

than simply put the objects in the Collection: we also need to store, retrieve, remove, and

update these objects.

Aggregate operations use lambdas to perform actions on the objects in a Collection. For s

example, you can use aggregate operations to:

• Print the names of all the people in a Collection of Address objects

• Return all of the Address objects for people from Akron, Ohio

• Return all of the Address objects for people from Akron, Ohio, grouped by ZIP code

• Calculate and return the average age of servers in your inventory (provided the

Server object has a purchase date fi eld)

These tasks can be accomplished by using aggregate operations along with pipelines

and streams.

 UNDERSTANDING PIPELINES AND STREAMS
 A pipeline is simply a sequence of aggregate operations. A e stream is a sequence of itemsm

(not a data structure) that carries items from the source through the pipeline. Pipelinest

include a data source, zero or more intermediate operations, and a terminal operation.

 A data source is most commonly a Collection, but it could be an array, the return from e

a method call, or some sort of I/O channel. Intermediate operations , such as a fi lter opera-s

tion, accept a stream and produce a new stream. A fi lter operation takes in a stream and

then produces another stream that contains only the items matching the criteria of the

fi lter. There are some intermediate operations that accept one type of stream and convert

it to another type of stream.

 Finally, a terminal operation is an operation that returns a nonstream result. This result n

could be a primitive type (for example, an integer), a Collection, or no result at all. For

example, the operation might just print the name of each item in the stream.

 NOTE A data source and terminal operation are required for a pipeline to
execute.

655Lesson 35: Working with Lambdas and Streams

 STREAMS VS. ITERATION
 We will see that some aggregate operations (e.g., forEach) look like iterators, but there

are fundamental diff erences.

• Aggregate operations process items from a stream, not directly from a Collection.

• Aggregate operations support lambda expressions as parameters.

 That said, anything we do with streams can also be accomplished by using normal loops

and iteration. It might just take a lot more code.

 EXPLORING LAMBDAS
Lambdas in programming are anonymous functions or methods. The term s anonymous heres

simply means that we don ’ t defi ne them with a specifi c name. They do still take in parame-

ters, have a body, and can return data.

 In Java, lambda expressions are not anonymous. Lambda expressions are implementations

of functional interfaces. A functional interface is simply an interface with a single abstract

method. An example of a functional interface is the Runnable or the Comparable interface.

 Lambda expressions can be passed into methods as a parameter, which essentially

allows us to pass methods into methods. We have only seen examples of passing data into

methods, so you may be asking yourself when this might be useful. Lambdas are particu-

larly useful with the stream and aggregate operation features of Java. Aggregate opera-

tions such as fi lter and forEach require the caller to pass in a lambda that defi nes how the

objects in the stream should be fi ltered or processed.

 NOTE In Java, lambda expressions allow us to treat code as data.

 WORKING WITH STREAM
AND LAMBDA SYNTAX
 We ’ ve covered a lot of terminology, but now we will look at the syntax and usage of

lambdas in streams. To illustrate how we typically use them, we will create several lambdas

with commonly used stream methods. To that end, we will fi rst defi ne an object to use in

these streams.

Job Ready Java656

 To help with our illustration, we will use the Person class shown in Listing{ 35.1 in our

code. We will then use this class with the stream methods.

 LISTING 35.1
 The Person Class

 package com.tsg.lambdafun;

 public class Person {

 private String name;
 private int age;

 Person (String n, int a){
 name = n;
 age = a;
 }
 Person (){
 name = "empty";
 age = 0;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public int getAge() {
 return age;
 }

 public void setAge(int age) {
 this.age = age;
 }
 }

 The forEach () Stream Method
 The fi rst terminal operation we ’ ll review is the forEach() method. This method doesn ’ t

actually return anything. Instead, it allows us to run code against each and every object in

657Lesson 35: Working with Lambdas and Streams

the stream. The lambda passed in this example implements the functional interface

Consumer , which includes the abstract method accept (docs.oracle.com/javase/8/

docs/api/java/util/function/Consumer.html).

 One use for the forEach() method is to print out everything in the List.

 people.stream()
 .forEach((p) -> System.out.println(p.getName + " : " + p.getAge()));

 In this example, we start the stream as usual with the stream() method and then call

forEach() on the stream. Inside the forEach(), our lambda takes in each object and puts

it into a println .

 Let ’ s say we want to print the name on one line and the age on the next; we can make a

multiline lambda using curly braces, as illustrated in Listing{ 35.2 .

 LISTING 35.2
 Using forEach () to Loop through a Stream

 package com.tsg.lambdafun;

 import java.util.ArrayList;
 import java.util.List;

 public class App {

 public static void main(String[] args) {

 List<Person> people = new ArrayList<>();

 people.add(new Person("Alfred", 17));
 people.add(new Person("Henrey", 18));
 people.add(new Person("George", 19));
 people.add(new Person("Joe", 27));
 people.add(new Person("Zelda", 7));

 for (Person currentPerson : people) {
 System.out.print(currentPerson.getName());
 System.out.print(" - ");
 System.out.println(currentPerson.getAge());
 }

 System.out.println("======");

Job Ready Java658

 people.stream()
 .forEach((currentPerson) -> {
 System.out.print(currentPerson.getName());
 System.out.print(" - ");
 System.out.println(currentPerson.getAge());
 });
 }
 }

 This listing creates a List containing several Person objects using the Person class

from Listing{ 35.1 . The list is then printed to the screen using a for loop to show its con-

tents. Our interest now, however, is to use the stream() method to print out each person.

You can see that this is being done as well. The forEach() method selects each person

and then uses three lines to print out the values for the name and age with a dash in

the middle.

 As you can see from the following output, printing the list with the stream() results in

the same output as printing it with a for loop:

 Alfred - 17
 Henrey - 18
 George - 19
 Joe - 27
 Zelda - 7
 ======
 Alfred - 17
 Henrey - 18
 George - 19
 Joe - 27
 Zelda - 7

 You should note that when we use a multiline lambda, we need to include a semicolon

at the end of lines and a return statement if the functional interface has a return value.

If we use a multiline lambda in a fi lter or map, we also need to make sure to return a value

from the lambda. The return is assumed on the single-statement lambdas, but is required

in multistatement lambdas.

 Combining the forEach() with the fi lter() method we covered in the previous sec-

tion, you can see in Listing{ 35.3 how to use the stream to fi lter the people List fi rst by age

and then by the fi rst letter.

659Lesson 35: Working with Lambdas and Streams

 LISTING 35.3
 Using filter() with a Stream

 package com.tsg.lambdafun;

 import java.util.ArrayList;
 import java.util.List;

 public class App {

 public static void main(String[] args) {

 List<Person> people = new ArrayList<>();

 people.add(new Person("Alfred", 17));
 people.add(new Person("Henrey", 18));
 people.add(new Person("George", 19));
 people.add(new Person("Joe", 27));
 people.add(new Person("Zelda", 7));

 System.out.println("==> Age 18 or greater ==");
 people.stream()
 .filter((currentPerson) ->
 currentPerson.getAge() >= 18)
 .forEach((currentPerson) -> {
 System.out.print(currentPerson.getName());
 System.out.print(" - ");
 System.out.println(currentPerson.getAge());
 });

 System.out.println("==> Names start with G ==");
 people.stream()
 .filter((currentPerson) ->
 currentPerson.getName().startsWith("G"))
 .forEach((currentPerson) -> {
 System.out.print(currentPerson.getName());
 System.out.print(" - ");
 System.out.println(currentPerson.getAge());
 });
 }
 }

Job Ready Java660

 The fi rst part of this listing again sets up a List of Person objects called people . The

stream() method is then used as is the forEach() to cycle through each person. The

diff erence this time is that the fi lter() method is also used. The fi rst time stream() is

called, we fi lter based on the age being greater than or equal to 18. The following time we

fi lter based on the name starting with G. The output from the listing refl ects these fi lters

in action.

 ==> Age 18 or greater ==
 Henrey - 18
 George - 19
 Joe - 27
 ==> Names start with G ==
 George - 19

 The fi lter Stream Method
 The fi rst stream method we will look at is fi lter(). This method does just what it says: it

fi lters a stream down to contain only the objects we want it to. The lambda that we defi ne

for it is a Boolean check. Anything that returns true from the check stays in the stream;

everything else is discarded from the stream.

 NOTE A lambda that returns true or false in Java can also be called
a predicate . The lambdas passed into fi lter operations are predicate
implementations. Predicates take one parameter and return a Boolean
primitive. Other types of predicates include BiPredicate , which takes
two parameters: IntPredicate , which takes an int parameter; and
LongPredicate , which takes a long parameter.

 To start, we will look at fi ltering a stream of Person objects to include only the people

who are old enough to vote, 18 years old or older. We will assume we are starting from a

List of Person objects called people .

 people.stream()
 .filter((p) -> p.getAge() >= 18)

 We fi rst use the stream method on the List to turn it into a stream, and then we call the

fi lter method on that. Inside the fi lter method we see our lambda.

 (p) -> p.getAge() >= 18.

661Lesson 35: Working with Lambdas and Streams

 Let ’ s break this line of code down. The p is the parameter of the lambda. It will hold

each Person object as we evaluate it in the stream. Since it is just a parameter name, it can

be anything. We just decided to call it p here since it represents a person. The arrow opera-

tor (->) is used only for lambdas to separate the parameters from the body of the lambda.

Finally is the body.

 p.getAge() >= 18

 This is the statement that will be evaluated. Anything that returns true from this state-

ment stays in the stream.

 Now let ’ s say we want to fi lter the original List down to people whose names

start with J.

 people.stream()
 .filter((p) -> p.getName().startsWith("J"))

 This would have the same setup as the previous example: stream method calls and then

fi lter method call with our lambda inside. Because startsWith() returns true or false on

its own, we don ’ t need to make it any more complicated than just calling that method.

 What if we wanted to combine our previous two examples and look for people who are

greater than or equal to 18 and have a name that starts with J? Because the fi lter method

returns a stream, we just chain these calls together as follows:

 people.stream()
 .filter((p) -> p.getAge() >= 18)
 .filter((p) -> p.getName().startsWith("J"))

 We fi rst fi lter down to people over the age of 18 and then fi lter that down to people

whose names start with J. At the end of this statement we have a stream of people who

are older than 18 and whose names start with J.

 You typically want to handle situations like this using two (or more) separate fi lters,

rather than combining the two into a single fi lter method call, because it keeps your code

more readable.

 The map Stream Method
 Sometimes when we process data with streams, we care about only one piece of the data

and we don ’ t need the rest. There are also times when we simply need to convert a piece

of our data to something diff erent. The map() method allows us to switch the stream to

contain only the data that can sometimes be easier to process. We use the map() stream

method when we want to convert the type that is being held in the stream.

Job Ready Java662

 NOTE The map method doesn ’ t have anything to do with the Map class.
The map method takes a function as a parameter. The input function is a
functional interface that takes as input a generic parameter and returns a
generic value.

 For an initial example, let ’ s say we want to get{all the names out of our List of

Person objects.

 people.stream()
 .map((p) -> p.getName())

 We turn our List into a stream with the stream() method and then call our

map() method.

 Inside the map() method, we use a lambda to return a piece of data with its type being

the type of the stream. In this case, by returning the name of the Person object, the

stream is now a stream of String objects, instead of a stream of Person objects. If we

wanted to continue working on the stream, the lambdas would now take in String s.

 There are also special map methods if we want to map into ints, doubles, or longs.

We can use mapToInt() , mapToDouble() , or mapToLong() (respectively) to specifi cally

change the stream into those types. In fact, those create special stream types (IntStream ,

Double Stream , and LongStream) that let us use methods such as average() , sum() , min() ,

or max() on the stream.

 As an example of that, let ’ s say we want to get the average age of all the Person

objects in our List.

 int averageAge = people.stream()
 .mapToInt((p) -> p.getAge())
 .average();

 The map() method can also be combined with the fi lter() method, or any other stream

method. Let ’ s get a stream of all the names of Persons over 18:

 people.stream()
 .filter((p) -> p.getAge() >= 18)
 .map((p) -> p.getName())

 We fi rst fi lter the list down to just Person objects with an age of 18 or more and then

map the stream so it is now a stream of String objects that are the names of our people.

663Lesson 35: Working with Lambdas and Streams

 The collect Stream Method
 The fi lter() and map() methods both return a stream. We need to change the stream

back into a List to pass it around and use it in our code properly. The collect() method

lets us do that.

 When we use the collect() method, we pass into it a Collector type, which we can

generate using static methods in the Collectors class.

 First let ’ s look at collecting our stream into a List.

 List<Person> overEighteen = people.stream()
 .filter((p) -> p.getAge() >= 18)
 .collect(Collectors.toList());

 We fi rst create the stream with the stream() method and then use fi lter to keep only

Person objects over the age of 18{in the stream. We then fi nally use collect() to put

them into a List. The Collectors.toList() call specifi cally puts the remaining things in

the stream into a List. Listing{ 35.4 pulls this together into a working program using our

Person class.

 LISTING 35.4
 Using the collect() Method

 package com.tsg.lambdafun;

 import java.util.ArrayList;
 import java.util.List;
 import java.util.stream.Collectors;

 public class App {

 public static void main(String[] args) {

 List<Person> people = new ArrayList<>();

 people.add(new Person("Alfred", 17));
 people.add(new Person("Henrey", 18));
 people.add(new Person("George", 19));
 people.add(new Person("Joe", 27));
 people.add(new Person("Zelda", 7));
 people.add(new Person("Zoe", 27));

Job Ready Java664

 List<Person> oldPeople = people.stream()
 .filter((p) -> p.getName()
 .startsWith("Z")).collect(Collectors.toList());

 oldPeople.stream()
 .forEach((currentPerson) -> {
 System.out.print(currentPerson.getName());
 System.out.print(" - ");
 System.out.println(currentPerson.getAge());
 });
 }
 }

 When you execute this listing, you get the following results:

 Zelda - 7
 Zoe - 27

 An important thing to note is that when we assign the fi ltered stream back into a List,

the original List people will not change. The act of streaming a List will not change the

original List.

 Another way we might want to collect our stream is into a Map. Let ’ s say we want to

organize our Person List into sublists based on age.

 Map<Integer, List<Person>> peopleAges = people.stream()
 .collect(Collectors.groupingBy((p) -> p.getAge()));

 In the call Collectors.groupingBy((p) -> p.getAge()) , we specify what we want

the key for the Map to be and how we are organizing our List: in this case, by age. So, for

each distinct age, we will have a List of Person objects.

 Further Syntax
 There are many more things you can do with streams, but the methods we discussed here

are what you will typically use with them. If you are interested in researching what else can

be done with streams, take a look at the Stream Javadoc, which you can fi nd at docs.ora-

cle.com/en/java/javase/11/docs/api/java.base/java/util/stream/Stream.html .

You can also fi nd a summary of the package at docs.oracle.com/en/java/javase/11/

docs/api/java.base/java/util/stream/package-summary.html .

665Lesson 35: Working with Lambdas and Streams

 SUMMARY
 Streams, aggregate operations, and lambdas are powerful features in Java. They allow us

to easily accomplish tasks that used to be diffi cult. In this lesson, you learned that streams,

aggregate operations, and lambdas can provide you with powerful tools for processing

data. The following main takeaways from this lesson:

• Streams are associated with Collections of objects. A stream is a sequence of items;

it is not a data structure.

• Stream objects are processed through a pipeline, which consists of zero or more

intermediate operations and exactly one terminal operation.

• Processing items from a stream is similar to iteration except that stream iteration is

all internal; there is no way for the calling code to control the iteration process.

• There are many methods in the Stream class that allow us to process data using

lambdas, but we primarily use fi lter() , map() , collect() , and forEach() .

 EXERCISES
 The following exercises help you practice what you are learning regarding lambdas and

streams. These are to do on your own.

Exercise 1: Only the Young

Exercise 2: DVD Library Update

 Exercise 1: Only the Young
 Make the following modifi cations to the code presented in the listings in this lesson to get

each of the following results:

• Modify Listing 34.3 to print only the people who are younger than 18.

• Modify the listing to print only the people younger than 18{who have a name that

begins with A.

• Create a new List using collect() that contains only the people younger than 17.

Print your results to confi rm.

Job Ready Java666

 Exercise 2: DVD Library Update
 Your task in this exercise is to change the implementation of the fi rst version of DVD

Library you did in Lesson 27 to take advantage of the lambda, stream, and aggregate fea-

tures of Java.

 You should add the following features to your program:

• Find all movies released in the last N years.N

• Find all the movies with a given MPAA rating.

• Find all the movies by a given director.

• When searching by director, the movies should be sorted into separate data struc-

tures by MPAA rating.

• Find all the movies released by a particular studio.

• Find the average age of the movies in the collection.

• Find the newest movie in your collection.

• Find the oldest movie in your collection.

• Find the average number of notes associated with movies in your collection.

 In your implementation you should include an interface for your DAO that contains all

the methods specifi ed here plus all the methods in version 1 of your DAO. Also include an

implementation class that implements the DVDLibrary interface using lambdas, streams,

and aggregates and makes all necessary changes to the Controller , View , and App classes.

P A R T V

 Advanced Java
 Lesson 36: Working with the Spring Framework

 Lesson 37: Introducing Maven

 Lesson 38: Pulling It All Together: Building the Class Roster with Spring

Lesson 36

 Working with the
Spring Framework

 Spring is a collection of libraries that provide support for

JVM-based enterprise applications. We will use the Spring

framework portion of the larger Spring ecosystem in this lesson.

The Spring framework provides support for dependency injection,

MVC web applications, RESTful web services, authentication/

authorization, and database connectivity.

 In this lesson, we will look at dependency injection with Spring

and how to accomplish it using XML confi guration fi les or

annotation-based confi guration.

669Lesson 36: Working with the Spring Framework

 LEARNING OBJECTIVES
 By the end of this lesson, you will be able to:

• Explain how dependency injection (DI) and programming to interfaces work together

• Explain why the Spring framework is used

• Outline the four main strategies of Spring

• Defi ne plain old Java objects (POJOs)

• Implement DI using XML confi guration

• Implement DI using annotation-based confi guration

 DEPENDENCY INJECTION AND PROGRAMMING
TO INTERFACES
 As we have covered in previous lessons, dependency injection is a design pattern that n

implements a form of inversion of control. In fact, these two terms are used inter-ll

changeably.

 The “inversion” of control in this case is that client objects are no longer responsible

for instantiating the objects (also known as services) on which they depend. Instead, thes

dependencies are handed to (i.e., injected into) the client objects by some other entity.

Dependencies are handed to the client through either constructors or setter methods.

 Of course, we have been using this pattern for a while now. We have built our compo-

nents so that their dependencies are handed to them via their constructors. We assemble

(or wire) the application in our App class. This arrangement works pretty well, but our

confi guration is still hard-coded in our App class. If we want to change anything, we have

to modify the App class and recompile. The Spring framework allows us to externalize this

confi guration into XML fi les or use annotations to defi ne our DI.

 Using dependency injection has the following advantages:

• Allows for loose coupling between the client and the concrete implementation of

the service.

• Allows the externalization (to confi guration fi les) of the system ’ s confi guration

information. This allows for confi guration changes without forcing a recompilation

of the application.

• Allows for more fl exible parallel development. Developers can program against the

interface and use stubbed or mock implementations while the real implementation

of the component is being built.

Job Ready Java670

 WHY SPRING?
 Spring was originally created as a reaction against the growing complexity of the Java

frameworks that existed at the time. The fi rst version of the Spring framework was writ-

ten by Rod Johnson and was released in conjunction with a development book he wrote in

2002. The offi cial 1.0 version was released in March 2004, and the project has been going

strong ever since. Its sole purpose was (and is) to simplify the programming and creation

of Java applications. We ’ ll start with the base feature of dependency injection because

the other features (e.g., MVC, web services, security, and database support) build on this

foundation.

 When Spring started, the main framework for building enterprise Java applications

was the Enterprise Java Bean (EJB) specifi cation. This specifi cation required complicated

deployment descriptors and lots of extra plumbing code. Over time Java developers began

looking for a simpler, cleaner way to build complex applications, and this is where Spring

came into its own. Over time, the EJB specifi cation has become much simpler and now

Spring and JEE (of which the EJB specifi cation is a part) share much in common.

 While the Spring Framework has done much to simplify enterprise Java programming

from the beginning, it has not been completely free from criticism. Like any software,

it has evolved over time, getting better with each release. The fi rst couple of releases

relied heavily on XML-based confi guration to the extent that sometimes it felt as if you

were writing programs in XML. In later releases, annotation and Java-based confi guration

options were added to the framework. This gave developers many confi guration options

and allowed them the freedom to choose the right confi guration tool for the job. In this

course, we will use both XML and annotation-driven confi guration.

 One of the more recent releases of Spring introduced Spring Boot, which enables

automatic confi guration based on what libraries are packaged with or available to your

application. Spring Boot relies heavily on the “convention over confi guration” approach

where little or no confi guration is required for standard situations. Of course, even with

this approach, developers are free to override any confi guration setting in the application

using XML, Java, or annotations.

 UNDERSTANDING THE SPRING APPROACH
 In addition to providing loose coupling via DI, Spring provides us with a lightweight devel-

opment approach using plain old Java objects and templates that can replace boiler-

plate code.

671Lesson 36: Working with the Spring Framework

 Plain Old Java Objects
 Many frameworks (both historical and current) require you to extend their classes to take

advantage of their features. This often leads to code that is bound to the framework,

essentially locking you into a particular vendor ’ s solution.

 Spring strives to be minimally invasive to your code base in that it allows you to use

plain old Java objects instead. POJOs can be largely free of framework-specifi c code,

which makes the code more testable (since it can be tested outside the framework) and

easier to move to another framework if desired.

 The Spring framework includes a container known as the Inversion of Control (IoC) con-

tainer. The IoC container is responsible for creating objects needed by an application as

well as confi guring and managing the objects through their lifecycle.

 The Spring container uses the POJO classes and the confi guration data to confi gure and

run an application. The Spring framework provides two containers that support DI.

• BeanFactory container: The simplest container with basic support for DI.

• ApplicationContext container: Built on top of the BeanFactory to provide more

enterprise-specifi c functionalities. The ApplicationContext container includes all

the functionality of the BeanFactory , so it is recommended to use it over the Bean-

Factory container.

 All the objects managed by the Spring container are called beans . The Spring containerss

is responsible for instantiating, assembling, and managing objects (also called beans). s

 The container uses confi guration metadata to know which objects to instantiate,

assemble, and confi gure. We can use XML to represent the confi guration metadata (more

on this later in the lesson). It is also possible to do that through annotations or through

Java code.

 Templates
 Spring uses templates to reduce the need for boilerplate code in your applications. List-

ing{ 36.1 contains code that talks to a database without using Spring ’ s JDBC template.

Don ’ t worry about understanding all of the code in this listing.

 LISTING 36.1
 No Spring

 public Employee getEmployeeById(long id) {
 Connection conn = null;
 PreparedStatement stmt = null;

Job Ready Java672

 ResultSet rs = null;
 try {
 conn = dataSource.getConnection();
 stmt = conn.prepareStatement(
 "select id, firstname, lastname, salary from "
 + "employee where id=?"); //select employee
 stmt.setLong(1, id);
 rs = stmt.executeQuery();
 Employee employee = null;
 if (rs.next()) { //this will create an object from the data
 employee = new Employee();
 employee.setId(rs.getLong("id"));
 employee.setFirstName(rs.getString("firstname"));
 employee.setLastName(rs.getString("lastname"));
 employee.setSalary(rs.getBigDecimal("salary"));
 }
 return employee;
 } catch (SQLException e) { // what should be done here?

 } finally {
 if (rs != null) { //clean up mess
 try {
 rs.close();
 catch(SQLExeception e) {}
 }

 if (stmt != null) {
 try {
 stmt.close();
 } catch (SQLException e) {
 }
 }

 if (conn != null) {
 try {
 conn.close();
 } catch (SQLException e) {
 }
 }
 }

 return null;
 }
 }

673Lesson 36: Working with the Spring Framework

 Listing{ 36.2 shows code that does the same thing using a Spring JDBC template. Even if

you don ’ t fully understand the code (which you certainly won ’ t at this point), it is clear that

the example in Listing{ 36.2 is much cleaner than the fi rst example.

 LISTING 36.2
 With Spring

 public Employee getEmployeeById(long id) {
 return jdbcTemplate.queryForObject (
 "select id, firstname, lastname, salary " + // SQL Query
 "from employee where id=?",
 new RowMapper<Employee>() {
 Public Employee mapRow(ResultSet rs, //Map results to object
 int rowNum) throws SQLException {
 Employee employee = new Employee();
 employee.setId(rs.getLong("id"));
 employee.setFirstName(rs.getString("firstname"));
 employee.setLastName(rs.getString("lastname"));
 employee.setSalary(rs.getBigDecimal("salary"));
 return employee;
 }
 },
 id); //specify query parameter
 }

 Spring templates allow the developer to concentrate on the business logic instead of

repetitious resource management and error handling code.

 PULLING IT ALL TOGETHER: SPRING
DI IN ACTION
 To take a look at how we can implement Spring DI, we will use a prewritten MVC project with

the same setup we ’ ve been using already. You can download the fi le, Book Tracker using the

following URL: www.wiley.com/go/jobreadyjava under the “Downloads” link .

 Save this fi le to your computer and extract its contents. Open the extracted project in

your IDE for use in this code-along. If you run this program, you will see that it allows you

to enter and view book details. It uses a simple menu structure.

 Main Menu
 1. View Books

Job Ready Java674

 2. View Book Details
 3. Add Book
 4. Update Book
 5. Delete Book
 6. Exit
 Please select an option:

 You can add books and then view, update, or delete them. The code for each of these

options is included and works as expected.

 NOTE Code for exception handling is not included in the program, so if you
enter bad information, such as a character when a number is expected, the
program will throw an exception.

 Spring DI with XML
 First, let ’ s look at the XML-based setup. To start with, we need to add a dependency into

our pom.xml fi le so that Maven will include the appropriate Spring libraries in our project.

Listing{ 36.3 shows the markup to add to your project ’ s pom.xml fi le.

 LISTING 36.3
 The Dependency Markup to Add to pom.xml

 <dependencies>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>5.2.2.RELEASE</version>
 </dependency>
 </dependencies>

 Once this is in the project, you need to build the project to ensure that the libraries are

downloaded.

675Lesson 36: Working with the Spring Framework

 XML Confi guration File
 Next, we need to create a new folder in our project for the XML confi guration fi le. Inside

your project, go to the src/main folder and create a resources folder. Inside this folder,

create a new fi le called applicationContext.xml .

 We will confi gure the DI in the XML fi le, but we need to start by adding the markup in

Listing{ 36.4 to applicationContext.xml .

 LISTING 36.4
 Markup to Add to applicationContext.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns=" http://www.springframework.org/schema/beans "
 xmlns:xsi="http:// www.w3.org/2001/XMLSchema-instance "
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-
beans.xsd ">

 </beans>

 These tags help set up the fi le so Spring can read it in and understand everything else

that comes inside.

 We now need to add in <bean> tags that will identify each of our diff erent classes

and how they tie together. These tags should be nested inside the <beans> element we

just created.

 First, we have some simple classes that have no dependencies themselves.

 <bean id="io" class="com.sg.booktracker.ui.UserIOConsoleImpl"/>

 <bean id="dao" class="com.sg.booktracker.dao.BookDaoMemoryImpl"/>

 We will use the id fi eld to reference each class in other parts of the XML, and the class

fi eld is the fully qualifi ed name of the class we want to inject. Notice that we make beans

out of the Impl versions, rather than creating beans for interfaces.

 Now we can add in the beans for the rest of the classes, adding in the dependencies as

they are necessary. Listing{ 36.5 shows the markup.

Job Ready Java676

 LISTING 36.5
 The Beans for the Other Classes

 <bean id="view" class="com.sg.booktracker.ui.BookView">
 <constructor-arg ref="io"/>
 </bean>

 <bean id="service" class="com.sg.booktracker.service.BookService">
 <constructor-arg ref="dao"/>
 </bean>

 <bean id="controller" class="com.sg.booktracker.controller.BookController">
 <constructor-arg ref="service"/>
 <constructor-arg ref="view"/>
 </bean>

 The bean tags here are not self-closed because we need to add in our dependencies.

• Because each of these classes has a constructor that takes in the dependency, we

add in constructor-arg tags.

• Inside that tag, the ref fi eld references the id of the class that needs to

be injected.

• We also set up all our dependencies: our view takes in the UserIO class, our service

takes in the DAO, and our controller takes in our service and view.

 Update the App Class
 The last part of the XML setup is to update the main method in our App class with the

markup in Listing{ 36.6 .

 LISTING 36.6
 The XML for Updating main Method in App Class

 public static void main(String[] args) {

 ApplicationContext appContext
 = new ClassPathXmlApplicationContext("classpath:application-
Context.xml");

677Lesson 36: Working with the Spring Framework

 BookController controller = appContext.getBean("controller",
BookController.class);
 controller.run();
 }

 NOTE At this point, if you run the code and get any errors, make sure you
rebuild the project so the appropriate dependencies are pulled.

 The fi rst line here loads our XML fi le. The resources directory is an easy one for Java

to read data in from, so just indicating our XML is in the classpath is enough. The Appli-

cationContext and ClassPathXMLApplicationContext classes come in from the Spring

library, so they will need to be imported.

 After we have that loaded up, we just need to ask it to get the controller bean, which

references the ID in the XML. Behind the scenes it will build everything it needs in memory

to give us the controller, including any dependencies and their dependencies.

 If you make these same changes in the provided code, you should be able to see it run.

If there are any mistakes in the XML, you will probably get some ugly stack traces in the

console. Review them closely: the mistakes are there, but it ’ s not always easy to read.

 Spring DI with Annotations
 Now we will look at doing Spring DI with annotations. This is the way you will typically see

it in done. The XML method still works, but annotation-based confi guration is how most

development is set up these days.

 Starting with a new copy of the project, we add the same dependency to the pom.xml

fi le, which is shown in Listing{ 36.7 .

 LISTING 36.7
 Dependencies for Annotation-Based Configuration

 <dependencies>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>5.2.2.RELEASE</version>
 </dependency>
 </dependencies>

Job Ready Java678

 Make sure to do a build so the libraries are downloaded and added to the project, and

then we are ready to start adding in annotations.

 Class Annotations
 Each class that was a bean in the XML setup needs to be annotated in this step; the anno-

tations are how Spring fi gures out which classes to instantiate.

 We will start with the UserIOConsoleImpl . At the top of the class, just before the class

declaration, we need to add in the @Component annotation.

 @Component
 public class UserIOConsoleImpl implements UserIO {

 This is the primary annotation we use to tell Spring to instantiate this class in memory

so it can be injected elsewhere. The annotation comes from the Spring library we added,

so it will need to be imported. Since this class doesn ’ t have any dependencies of its own,

this is all we need to do.

 We will similarly annotate the BookDaoMemoryImpl class.

 @Component
 public class BookDaoMemoryImpl implements BookDao {

 We are once again only dealing with the Impl versions of classes, so we do not need to

annotate any interfaces.

 Next, we will start annotating classes that have actual dependencies, which means we

will add in another annotation. Let ’ s start with the BookView class annotations presented

in Listing{ 36.8 .

 LISTING 36.8
 BookView Class Annotations

 @Component
 public class BookView {

 private UserIO io;

 @Autowired
 public BookView(UserIO io) {
 this.io = io;
 }
 }

679Lesson 36: Working with the Spring Framework

 We once again add in the @Component annotation before the class declaration, but

we have now also added in the @Autowired annotation before the constructor. This tells

Spring that when a BookView is created, it should look for something that is-a UserIO in

memory to inject. Since we annotated the UserIOConsoleImpl class, that class will be in

memory and available to inject.

 If we did not have this constructor, we could also put the @Autowired annotation

directly on the io fi eld.

 @Component
 public class BookView {

 @Autowired
 private UserIO io;

 Both ways are valid, and both work. The @Autowired annotation comes from our Spring

library, so it will need to be imported.

 We will do the same thing for our other classes, BookService and BookController , as

shown in Listing{ 36.9 .

 NOTE Using constructor autowiring will avoid null resources at runtime.
If Spring can ’ t fi nd a bean to inject, the context load will fail if using the
constructor. On the fi eld, you could get a null value.

 LISTING 36.9
 Annotations for BookService and BookController

 @Component
 public class BookService {

 private BookDao dao;

 @Autowired
 public BookService(BookDao dao) {
 this.dao = dao;
 }

Job Ready Java680

 @Component
 public class BookController {

 private BookService service;
 private BookView view;

 @Autowired
 public BookController(BookService service, BookView view) {
 this.service = service;
 this.view = view;
 }

 Even though the BookController constructor takes in two parameters, the @Autowired

annotation will still work. Spring can fi gure out what needs to be injected.

 With the annotations all set up, we can now modify the main method in our App class to

start everything up, as shown in Listing{ 36.10 .

 LISTING 36.10
 Modified main Method

 public static void main(String[] args) {
 AnnotationConfigApplicationContext appContext = new AnnotationConfig-
ApplicationContext();
 appContext.scan("com.sg.booktracker");
 appContext.refresh();

 BookController controller = appContext.getBean("bookController",
BookController.class);
 controller.run();
 }

 This looks similar to the XML main method in the previous step, but it starts up in a dif-

ferent way. The appContext in this version is an AnnotationConfi gApplicationContext

class, which will need to be imported from the Spring library.

 Once we have that instantiated, we need to tell it where to start scanning our project

for annotations. Your package structure needs to be set up correctly for this to work. You

typically want to start scanning from the package your App is in, in this case com

.sg.booktracker . When we call the refresh method on the next line, Spring checks all

classes it can fi nd in that package and any child packages for annotations. Anything that

is an @Component is created in memory with dependencies injected where it sees

@Autowired .

681Lesson 36: Working with the Spring Framework

 We can then ask for our BookController so we can start the program. Since we didn ’ t

set any IDs for our classes when we annotated them, their default IDs are their names con-

verted to camel case, in this situation bookController for BookController . Once we have

that class, we can run it, and everything should work.

 SUMMARY
 In this lesson, we looked at what the Spring framework is and how we can use it for depen-

dency injection. Here are important points to remember:

• We have to add our external libraries as dependencies to our Maven POM fi le.

• The Spring application context can be set up using XML or annotations.

• To use the Spring application context, we need to read in the XML fi le or scan for

annotations.

• Annotations are the more common option in Java development these days.

Lesson 37

 Introducing Maven

 We have been using Maven to build our projects in

NetBeans, but we have not discussed the advantages of

using Maven over the build management tools that are built into

the IDE. The IDE tools work reasonably well for small, individual

projects that don ’ t depend on too many external libraries, but they

have the following drawbacks for larger, multideveloper projects:

◆ Everyone on the team must use NetBeans.

◆ All external JAR fi les must be referenced directly in the project

and must be manually copied to each developer ’ s machine.

◆ There is no good way to manage the versions of the required

external libraries.

◆ There is no way to build the project outside of NetBeans. This

severely limits the options the team has for automated build

machines and for building and deploying the project to QA,

performance test, and production environments.

683Lesson 37: Introducing Maven

 Maven helps address these issues. Maven is a project

management framework that provides IDE-independent build

and dependency management tools.

 LEARNING OBJECTIVES
 By the end of this lesson, you will be able to:

• Describe Maven

• Explain the project object model (POM)

• Explain how Maven uses dependency management

• Outline the Maven lifecycle

 WHAT IS MAVEN?
 Maven bills itself as a project management framework. It strives to manage a project ’ s kk

build, reporting, and documentation from one place.

 Maven ’ s build management is declarative rather than task oriented. It has a built-in

lifecycle, so you simply declare what you want to do, not how to do it. Maven also has

declarative dependency management, so you tell Maven what libraries (including version

numbers) you need, and it will make sure those libraries are available to your code.

 Maven does a lot of things, so covering what it can do is a big subject on its own. In this

lesson, we will concentrate on using the built-in Maven lifecycle and the dependency man-

agement features to make our projects easier to build and to share with our team.

 PROJECT OBJECT MODEL
 Maven is based on the project object model (POM). The POM is defi ned in an XML fi le

called pom.xml . This fi le contains the declarations for all libraries on which the project

depends and can contain declarations of the Java version to use and other project-level

settings. Listing{ 37.1 shows a typical POM fi le.

 LISTING 37.1
 A Typical Mavin POM.xml File

 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Job Ready Java684

 xsi:schemaLocation=
 "http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-
4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.sg</groupId>
 <artifactId>MeanMedianMode</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>MeanMedianMode</name>
 <url>http://maven.apache.org</url>.

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 </properties>

 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>5.6.0</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <finalName>mean-median-mode</finalName>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.8.1</version>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
 </project>

 Let ’ s analyze the POM fi le. First, it is important to remember that this fi le is generated

by NetBeans when you create your project. We ’ ll just look at the parts of the fi le that you

might want to modify.

685Lesson 37: Introducing Maven

 Project Identifi cation
 The following code contains the tags that identify your project to Maven:

 <groupId>com.sg</groupId>
 <artifactId>MeanMedianMode</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>MeanMedianMode</name>

 We learned about most of this in the fi rst part of this course, but it is worth covering

each of these tags again.

• groupID: Traditionally, the groupId is the base package of your project, but this is

not a requirement. The groupId is meant to identify the organization with which

the project is associated.

• artifactId: The artifactId is the name that will be given to the fi le into which

this project is packaged.

• SNAPSHOT: The version indicates the version of the project. It defaults to

1.0-SNAPSHOT in NetBeans, but you can set this to any value.

• packaging: The packaging tag indicates how you would like the project to be pack-

aged. For now, this will always be jar , which stands for Java Archive. If you were

doing web applications, then this would be war , which stands for Web Archive.

• name: The name tag is, essentially, the name of this project. It does not have to

match the artifactId discussed earlier.

 Dependencies
 The following tags indicate the external Java libraries on which your application depends:

 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>5.6.0</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

 Each library on which we depend has a separate dependency tag nested in the depen-

dencies tag. In this case, we rely on version 5.6.0 of the JUnit library. Note that each

dependency entry is described using the same tags used to describe our project to

Job Ready Java686

Maven:{groupId , artifactId , and version . The scope tag can be used to limit where and

how a particular library will be used. In this case, the value test indicates that the JUnit

library should be used only when running unit tests but should not be included when pack-

aging or installing the project.

 Build Settings
 The build tag contains settings aff ecting how the project will be built.

 <build>
 <finalName>mean-median-mode</finalName>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.8.1</version>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
 </plugin>
 </plugins>
 </build>

 With the build tags, we are interested in the target and source tags of the compiler

plugin. The source tag indicates the Java version that should be used for the source code

of the project , and the target tag indicates the version of the JVM on which the project

should be run.

 DEPENDENCY MANAGEMENT
 One of the great features of Maven is dependency management. This means that Maventt

will manage all the external libraries (packaged as JAR fi les) that you need to use in

your program. You may have noticed that we ’ re using the term dependency here in ay

diff erent way than we did when we talked about the Spring Framework. The Spring

Framework helps us manage how the components of our application relate to and

depend on each other at the class and object levels through dependency injection.

Maven, on the other hand, helps us manage the external Java libraries that we rely on

at a project level.

 Without Maven, the developer is responsible for manually identifying, downloading,

and including the JAR fi les of all the libraries on which the project depends. The developer

is also responsible for storing and managing these JAR fi les.

687Lesson 37: Introducing Maven

 When using Maven, the developer is still responsible for identifying the libraries on

which the project depends, but Maven automatically fetches all dependencies into a

central repository on your machine (located in the ~/.m2 directory). All Maven projects

on your machine share this repository, which means that each library is downloaded

only once.

 As an added bonus, Maven also handles transitive dependencies automatically. For s

example, if you declare (in your POM) that your project depends on Library A and it turns

out that Library A depends on Libraries B and C, Maven will automatically download all

three libraries into your local repository. You do not have to specify (or even be aware)

that Library A requires Libraries B and C.

 MAVEN LIFECYCLE
 Maven ’ s project lifecycle is defi ned but is fl exible. You can change it if you need to but, for

most projects, the predefi ned lifecycle is suffi cient. The lifecycle consists of several stages,

which are known as goals . These goals are simply the kinds of actions (like compiling andss

running unit tests) that we need to take as we build a software project. NetBeans hides

much of this from us, but these goals are run behind the scenes when we ask NetBeans to

build and run our applications.

 Developers tend to use the following goals extensively:

• compile : Compiles the project source code

• test-compile : Compiles the project test source code

• test : Runs the project unit tests

• package : Builds and packages the project

• install: Installs the project package into the local .m2 repository (the project

package can then be used in other projects)

 SUMMARY
 In this lesson, we took a closer look at Maven and discussed its benefi ts for larger projects.

The main takeaways for this lesson are the following:

• Maven is an IDE independent build management tool.

• Maven is a declarative framework. It allows you to say what you want to have done

without specifying how it will be done.

• The Maven build is represented in the project object model, which is defi ned in the

pom.xml fi le.

Job Ready Java688

• Maven manages the external libraries on which your project depends. This includes

management of transitive dependencies.

• Maven has a predefi ned lifecycle made up of several stages called goals. ss

• Using Maven, instead of the built-in IDE build management tools, gives software

teams more fl exibility in choosing which IDE (or IDEs) will be used and allows easy

integration with automated build and deployment servers.

 NOTE You can fi nd more on Apache Maven at https://maven.apache.org/ .

Lesson 38

 Pulling It All
Together: Building
the Class Roster
with Spring

 In this lesson, we pull together the code to convert our Class

Roster application into a Spring application. In the new version,

we will have Spring do the dependency injection and application

wiring that we currently do by hand in the App class and the service

layer unit test. Using the Spring DI container is a foundational

Spring skill. Almost all other Spring features (security, AOP, MVC,

REST) take advantage of the core Spring DI container, which

means that this is something you ’ ll do in just about every Spring

project you encounter.

Job Ready Java690

 PROGRAM OBJECTIVES

 We ’ ll convert our Class Roster application by doing these tasks:

• Add the Spring libraries to the POM fi le

• Add the shell Spring confi guration fi les to the project

• Convert the DI and application wiring code currently in the App class into Spring

• Convert the unit tests to use Spring

 INCLUDE THE SPRING LIBRARIES
 To take advantage of the Spring framework, we must ensure that the Spring framework

library is included in the Maven POM. As we discussed in the Maven lesson, you must

include a dependency entry for each library we want to include in our project.

 Open your pom.xml fi le and verify that it includes the code dependencies, as shown in

Listing{ 38.1 .

 LISTING 38.1
 The pom.xml File

 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.
w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/
POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.sg</groupId>
 <artifactId>ClassRoster</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>
 <dependencies>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>5.3.0.RELEASE</version>
 </dependency>
 <dependency>
 <groupId>org.junit.jupiter</groupId>
 <artifactId>junit-jupiter-api</artifactId>
 <version>5.6.0</version>
 <scope>test</scope>
 </dependency>
 <dependency>

691Lesson 38: Pulling It All Together: Building the Class Roster with Spring

 <groupId>org.junit.jupiter</groupId>
 <artifactId>junit-jupiter-params</artifactId>
 <version>5.6.0</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.junit.jupiter</groupId>
 <artifactId>junit-jupiter-engine</artifactId>
 <version>5.6.0</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <maven.compiler.source>1.8</maven.compiler.source>
 <maven.compiler.target>1.8</maven.compiler.target>
 </properties>
 </project>

 In particular, you want to check for the following dependency:

 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>5.3.0.RELEASE</version>
 </dependency>

 As long as the Spring framework dependency is inside the <dependencies> node,

everything should be good, even if the individual dependencies are in a diff erent order in

your fi le.

 How Do I Know What My Dependency Entry
Should Be?
 The libraries that will be used in this lesson are available in online Maven repositories. This

is true of the vast majority of open source libraries. The question is, how do I know what

the Maven dependency entry is supposed to be? There are two good approaches for fi nd-

ing this out.

Go to the project website: Many project websites have the Maven dependency entry

right there. Simply copy and paste the entry into your POM fi le. For example, the Maven

entry for the Spring core framework is found on Spring Boot ’ s Maven Plugin page at

 docs.spring.io/spring-boot/docs/current/maven-plugin/usage.html .

Job Ready Java692

Search for the dependency on Google or another search engine: For example, a

search for JUnit maven dependency yields this page as its top result: junit y ➢ junit ➢

Maven Repository (mvnrepository.com/artifact/junit/junit/), which contains the

Maven dependency entry for JUnit 5.

 NOTE We use JUnit just as an example. NetBeans automatically adds the
JUnit dependency to your POM when you create a new unit test.

 ADD SPRING CONFIGURATION FILES
 Now that we have access to the Spring libraries, we will start to put things in place that will

allow us to use the libraries. Our fi rst step will be the addition of the application context

confi guration fi les. Recall that one way to defi ne (confi gure) the Spring DI container and

application context is through an XML confi guration fi le. Our convention is to list all the

beans in the fi le applicationContext.xml , but this is not a requirement. You can call the

fi le anything you want. To start, we ’ ll just add the skeleton of the fi le to our project.

 Create a fi le called applicationContext.xml in the src/main/resources folder of

your project (you may have to create the folder) and copy the code content from List-

ing{ 38.2 into it.

 LISTING 38.2
 applicationContext.xml

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd

 <!-- Bean definitions go here -->

 </beans>

693Lesson 38: Pulling It All Together: Building the Class Roster with Spring

 Note that this is an empty template for the applicationContext fi le, which is pre-

populated with Spring XML namespace entries for the Spring container as well as some

additional Spring features. Use this as a starting point for all of your Spring confi guration

fi les. Also note that all bean wiring defi nitions will appear after the "Bean defi nitions go

here " comment and before the closing </beans> tag.

 Do exactly the same thing in the src/test/resources folder of your project. You may

have to create this folder manually. This applicationContext.xml fi le will allow us to

have a separate confi guration for our unit tests.

 CONVERT THE APP CLASS TO USE SPRING
 Now we are ready to convert the manual dependency injection code in our App class to

use Spring for dependency injection. Essentially, we ’ re going to move the code in the main

method (shown in Listing{ 38.3) of App into the applicationContext.xml fi le.

 LISTING 38.3
 The Updated App Class main Method

 public static void main(String[] args) {
 UserIO myIo = new UserIOConsoleImpl();
 ClassRosterView myView = new ClassRosterView(myIo);
 ClassRosterDao myDao = new ClassRosterDaoFileImpl();
 ClassRosterAuditDao myAuditDao =
 new ClassRosterAuditDaoFileImpl();
 ClassRosterServiceLayer myService =
 new ClassRosterServiceLayerImpl(myDao, myAuditDao);
 ClassRosterController controller =
 new ClassRosterController(myService, myView);
 controller.run();

 }

 After we do that, we ’ ll replace the code currently in App with code that instantiates the

Spring DI container, gets the controller from the Spring DI container, and then calls run on

the controller.

Job Ready Java694

 Defi ning Beans
 The code that we currently have in the main method of the App class is responsible for

instantiating each of the objects in our application. This requires knowing the depen-

dencies between the components and passing the correct objects into appropriate con-

structors when instantiating the classes. Spring allows us to remove this knowledge from

our Java code and externalize it to the applicationContext.xml fi le. We will defi ne the

relationships between all our components in the applicationContext.xml fi le, and we

will let the Spring DI container handle the instantiation of our objects. We will simply

instantiate the Spring container and ask it to hand us our controller.

 Before we start modifying our applicationContext.xml fi le, we need to discuss some

of the tags and attributes that we ’ ll be using to defi ne our beans.

• The bean tag: This is the XML tag we use to defi ne the objects we want the Spring

container to instantiate for us.

• The id attribute: This is the XML attribute that we use to tell the Spring container

what alias to give a particular bean that it instantiates. It is similar to the key in a

Map. We can ask for a reference to the object by passing the id attribute to the

Spring application context, and it will hand us back the requested reference.

• The class attribute: This is the fully qualifi ed name of the class that we want the

Spring container to instantiate for us. Remember, this must be the fully qualifi ed

name of the class. You must explicitly include the full package name.

• The constructor-arg tag: This tag is nested in the bean tag and is used to indicate

that we want Spring to pass a parameter into the constructor when instantiat-

ing the bean.

• The ref attribute: We use this attribute to refer to a previously defi ned bean. The

value of the ref attribute must be the id of another bean in the applicationCon-

text.xml fi le.

 Modify the applicationContext.xml fi le in src/main/resources so that it looks like

Listing{ 38.4 .

 LISTING 38.4
 Modified applicationContext.xml File

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"

695Lesson 38: Pulling It All Together: Building the Class Roster with Spring

 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd

 <!-- Bean definitions go here -->
 <bean id="userIO" class="com.sg.classroster.ui.UserIOConsoleImpl"/>

 <bean id="view" class="com.sg.classroster.ui.ClassRosterView">
 <constructor-arg ref="userIO"/>
 </bean>

 <bean id="classRosterDao"
 class="com.sg.classroster.dao.ClassRosterDaoFileImpl"/>

 <bean id="auditDao"
 class="com.sg.classroster.dao.ClassRosterAuditDaoFileImpl"/>

 <bean id="serviceLayer"
 class="com.sg.classroster.service.ClassRosterServiceLayerImpl">
 <constructor-arg ref="classRosterDao"/>
 <constructor-arg ref="auditDao"/>
 </bean>

 <bean id="controller"
 class="com.sg.classroster.controller.ClassRosterController">
 <constructor-arg ref="serviceLayer"/>
 <constructor-arg ref="view"/>
 </bean>

 </beans>

 This userIO entry tells the Spring container to instantiate an instance of our UserIO-

ConsoleImpl class and to make it available in the application context under the alias

userIO . Notice that we only have the id and class attributes for this bean because this

class does not depend on any other components. In other words, we don ’ t need to tell

Spring to pass any parameters into the constructor of the UserIOConsoleImpl class.

 The view entry tells the Spring container to instantiate an instance of our

ClassRosterView class and to make it available in the application context under the alias

view . Notice that, in addition to the id and class attributes, we have a nested construc-

tor-arg tag inside this bean tag. The constructor-arg tag allows us to tell the Spring

container to pass a parameter into the constructor. We use the ref attribute of the con-

structor-arg tag to tell Spring we want to pass the userIO bean as a parameter to the

ClassRosterView constructor.

Job Ready Java696

 The classRosterDao entry tells the Spring container to instantiate an instance of our

ClassRosterDaoFileImpl class and to make it available in the application context under

the alias classRosterDao .

 The auditDao entry tells the Spring container to instantiate an instance of our

ClassRosterAuditDaoFileImpl class and to make it available in the application context

under the alias auditDao .

 The serviceLayer entry tells the Spring container to instantiate an instance of our

ClassRosterServiceLayerImpl class and to make it available in the application context

under the alias serviceLayer . Notice that, in addition to the id and class attributes, we

have two nested constructor-arg tags inside this bean tag. We use the ref attribute of

the fi rst constructor-arg tag to tell Spring we want to pass the classRosterDao bean as

a parameter of the ClassRosterServiceLayerImpl constructor. We use the ref attribute

of the second constructor-arg tag to tell Spring we want to pass the auditDao bean as a

parameter of the ClassRosterServiceLayerImpl constructor.

 The controller entry tells the Spring container to instantiate an instance of our

ClassRosterController class and to make it available in the application context under

the alias controller . Notice that, in addition to the id and class attributes, we have two

nested constructor-arg tags inside this bean tag. We use the ref attribute of the fi rst

constructor-arg tag to tell Spring we want to pass the serviceLayer bean as a param-

eter of ClassRosterController constructor. We use the ref attribute of the second

constructor-arg tag to tell Spring we want to pass the view beans as a parameter of the

ClassRosterController constructor.

 Modifying the App Class
 Now that we have the Spring application context defi ned, we can replace the code cur-

rently in the main method of the App class with code that instantiates the application con-

text, retrieves the controller from the context, and then invokes the run method on the

controller.

 Modify the main method of your App class so it looks like Listing{ 38.5 (make sure to just

comment out the existing code so you can compare it to the new code).

 LISTING 38.5
 Modified main Method in App Class

 public static void main(String[] args) {
 // UserIO myIo = new UserIOConsoleImpl();
 // ClassRosterView myView = new ClassRosterView(myIo);

697Lesson 38: Pulling It All Together: Building the Class Roster with Spring

 // ClassRosterDao myDao = new ClassRosterDaoFileImpl();
 // ClassRosterAuditDao myAuditDao =
 // new ClassRosterAuditDaoFileImpl();
 // ClassRosterServiceLayer myService =
 // new ClassRosterServiceLayerImpl(myDao, myAuditDao);
 // ClassRosterController controller =
 // new ClassRosterController(myService, myView);
 // controller.run();

 ApplicationContext ctx =
 new ClassPathXmlApplicationContext("applicationContext.xml");
 ClassRosterController controller =
 ctx.getBean("controller", ClassRosterController.class);
 controller.run();
 }

 The Java object that holds the application context that we defi ned in the applica-

tionContext.xml fi le is of type ApplicationContext . The particular implementation of

ApplicationContext that we use is called ClassPathXmlApplicationContext , and we

pass the name of our Spring application context confi guration fi le to the constructor of

ClassPathXmlApplicationContext . In our case, that is applicationContext.xml .

 We can retrieve the beans instantiated by the Spring application context by using the

getBean method. This method takes two parameters. The fi rst parameter is the id of the

bean you want to retrieve. In our case, it is controller . The second parameter is the type of

the bean you want to retrieve. Because the Spring application context can instantiate and

hold on to objects of any type, it uses Object references for all of them. When we retrieve

a reference from the application context, we must tell the Spring container the underlying

type of the reference we want to retrieve so that the container can cast it to the correct

type for us.

 NOTE There is another version of getBean that just takes one parameter
(the id of the object). This version returns an Object reference, so you have
to explicitly cast the object to the correct type manually.

 CONVERT THE UNIT TESTS TO USE SPRING
 We must go through a similar process to convert our unit tests to use the Spring applica-

tion context. We will only convert the service layer unit tests to use the Spring context

because the service layer is the only component that uses dependency injection.

Job Ready Java698

 As we did with the code in the main method of our App class, here we are going to move

the code from the constructor of our ClassRosterServiceLayerTest class (shown in List-

ing{ 38.6) to the applicationContext.xml fi le.

 LISTING 38.6
 ClassRosterServiceLayerTest

 public ClassRosterServiceLayerTest() {
 // wire the Service Layer with stub implementations of the Dao and
 // Audit Dao
 ClassRosterDao dao = new ClassRosterDaoStubImpl();
 ClassRosterAuditDao auditDao = new ClassRosterAuditDaoStubImpl();

 service = new ClassRosterServiceLayerImpl(dao, auditDao);
 }

 Defi ning Beans
 Modify the ApplicationContext.xml fi le in the src/resources folder so that it looks like

Listing{ 38.7 .

 LISTING 38.7
 Modified ApplicationContext.xml File

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xsi:schemaLocation=
 "http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd

 <!-- Bean definitions go here -->
 <bean id="classRosterDao"
 class="com.sg.classroster.dao.ClassRosterDaoFileImpl"/>

 <bean id="classRosterDaoStub"
 class="com.sg.classroster.dao.ClassRosterDaoStubImpl"/>

699Lesson 38: Pulling It All Together: Building the Class Roster with Spring

 <bean id="auditDaoStub"
 class="com.sg.classroster.dao.ClassRosterAuditDaoStubImpl"/>

 <bean id="serviceLayer"
 class="com.sg.classroster.service.ClassRosterServiceLayerImpl">
 <constructor-arg ref="classRosterDaoStub"/>
 <constructor-arg ref="auditDaoStub"/>
 </bean>

 </beans>

 This is similar to the applicationContext.xml fi le used for the application itself, but

there are some important diff erences.

• We only defi ne beans for the DAOs and the service layer because these are the only

components used for this set of tests.

• We defi ne beans for the stubbed-out versions of the Class Roster DAO and the

Audit DAO.

• We pass the stubbed-out versions of the DAOs to the service layer constructor.

 Modifying the Test Class Constructor
 Now that we have the application context defi ned, we can modify the constructor of our

unit test to use the application context instead of the code we currently have. Modify the

constructor of your ClassRosterServiceLayerTest class so that it looks like Listing{ 38.8 .

 LISTING 38.8
 Modified ClassRosterServiceLayerTest Constructor

 public ClassRosterServiceLayerTest() {
 // wire the Service Layer with stub implementations of the Dao and
 // Audit Dao
 // ClassRosterDao dao = new ClassRosterDaoStubImpl();
 // ClassRosterAuditDao auditDao =
 // new ClassRosterAuditDaoStubImpl();
 //
 // service = new ClassRosterServiceLayerImpl(dao, auditDao);

 ApplicationContext ctx =
 new ClassPathXmlApplicationContext("applicationContext.xml");

Job Ready Java700

 service =
 ctx.getBean("serviceLayer", ClassRosterServiceLayer.class);
 }

 This looks similar to the modifi cations we made to the main method of the App class

except that we are retrieving the service layer object from the context instead of the con-

troller. Also note that we ’ re not calling a method on the service layer here, but rather we

are simply assigning the returned reference to the service class member.

 EXCEPTION CONDITIONS
 The Spring container is a powerful tool that helps us build fl exible, loosely coupled appli-

cations. This is a great thing, but it does add more moving parts to our environment. One

consequence of externalizing dependencies to an XML confi guration fi le is that any errors

contained in the confi guration fi le are not detectable until runtime, because the compiler

has no way of catching these errors.

 Here are some common errors that you might encounter:

• Misspelled bean class attribute: All bean classes must be specifi ed by their cor-

rectly spelled, fully qualifi ed class name. If you misspell this, the Spring container

will throw an error indicating that the bean cannot be instantiated.

• Misspelled bean id in ref attribute: When you refer to another bean (in a ref

attribute), it must appear exactly as it did in the original bean defi nition.

• Malformed XML: The applicationContext.xml fi le must be composed of

well-formed XML. These are the easiest errors to catch and diagnose. The error

message usually tells you the line and column where the error occurred.

• Using the value attribute when you meant to use the ref attribute in constructor

or setter injection. Remember that the value attribute passes the literal value of

the attribute to the constructor or setter, whereas the ref passes a reference to the

object referred to by the attribute value.

 These types of error message will show up in the NetBeans console output.

 Another way to provide confi guration metadata for the Spring container is through the

use of annotations or Java code. These two alternatives provide a better way to deal with

the previous errors since the metadata is written in Java code.

701Lesson 38: Pulling It All Together: Building the Class Roster with Spring

 SUMMARY
 Once you have made the changes described in this lesson, you will be able to run your unit

tests and your application just as you did before. We made no changes to functionality;

we simply refactored the project by replacing the code we wrote that manually did depen-

dency injection and replaced it with the Spring dependency injection container. Use this

project as a template for future Maven/Spring projects.

 Here are the important points to remember:

• We have to add dependency entries for all external libraries to the Maven POM fi le.

Specifi cally, for this project, we added entries for Spring Core.

• The Spring container (known as the application context) is confi gured via an XML fi le tt

that contains defi nitions for all the objects we want Spring to control.

• Maven makes a distinction between the application and test environments. We

must have a Spring confi guration fi le for each environment.

• We place the Spring confi guration fi les on the classpath. In our Maven projects, we

place these fi les in either Other Sources or s Other Test Sources. ss

• To use the Spring container, we must instantiate an implementation of Applica-

tionContext (in our case, we use ClassPathXmlApplicationContext). The Appli-

cationContext will read the Spring confi guration fi le and instantiate all confi gured

objects. We then ask the ApplicationContext for references to these objects by

name rather than instantiating them ourselves.

 EXERCISES
 This exercise helps you practice what you are learning about using the Spring framework.

This is to do on your own.

Exercise 1: DVD Library

 Exercise 1: DVD Library
 Convert your DVD Library application to use the Spring DI container. Use what you learned

in this lesson as a guide and pattern for your approach.

P A R T V I

 Appendices
 Appendix A: Code Checklist

 Appendix B: Java Concepts Study List

 Appendix C: Agile Approach Checklist for Console CRUD Applications

703

 Appendix A:
Code Checklist
 This document can be used as a guide to help you prepare your code. Many organiza-

tions have similar lists with more detail to guide you through preparing your code before

sharing with a team. Go through the items on this checklist before you consider your code

to be complete.

 FUNCTIONALITY
• Make sure your code compiles.

• Double-check that the application performs per specifi cation.

• Have unit tests to verify that the application performs per specifi cations.

• Use positive unit tests to exercise code as intended.

• Use negative unit tests to intentionally misuse the code and verify robust error

handling and bounds of input values.

• Step through all possible code paths in the debugger.

• Confi rm that code analysis tools in your IDE do not report warnings.

 STYLE
• Use a consistent style.

• Ensure that classes, methods, and variables are named with appropriate letter

casing and code blocks are indented properly.

• Follow the Single Responsibility Principle.

• Strive to separate large functions into collections of smaller functions that per-

form single tasks.

• Strive to make classes cohesive so that each class has one area of responsibility

that it handles completely.

704 Job Ready Java

• Use comments appropriately.

• Use comments sparingly; intent should be clear from your naming conventions.

• Use comments to clarify your intent if it might not be clear, for example, when

there is a legitimately complicated section of code to satisfy a business rule or

requirement.

• Do not use comments to make up for poorly written code; they should enhance

already readable code.

• Do not comment the obvious.

705

 Appendix B:
Java Concepts
Study List
 The following is a list of basic Java concepts that you learned within this book. You should

know and be comfortable discussing these topics in preparation for technical interviews

and your fi rst days on the job.

 VARIABLES
• What is a variable?

• What is a variable declaration?

• What is a variable assignment?

• What does the fi nal keyword mean?

• What does it mean to cast a variable?

 METHODS
• What makes up a method ’ s signature?

• What is a method parameter?

• What is a method body?

• What does the static keyword mean?

• What does the fi nal keyword mean?

• What does the term override mean?

• What does the term overload mean?

Job Ready Java706

 ARRAYS
• What is an array?

• What does an array hold?

• What are the limitations of an array?

• Is an array an object?

• The fi rst value in an array can be found at what index?

• What is an ArrayIndexOutOfBoundException ?

 MAKING DECISIONS
• What is a Boolean expression?

• What is a switch statement?

• What is an if statement?

• What is an else statement?

• What is an else if statement?

 LOOPS
• What is a loop?

• What is a for loop?

• What is a for-each loop?

• What can a for loop do that a for-each loop cannot?

• What is a while loop?

• What is a do-while loop?

• What is the diff erence between a while loop and a do/while loop?

 JAVA/JVM
• How is the import keyword used?

• What is a package?

• What is Javadoc?

• What is the stack?

707Appendix B: Java Concepts Study List

• What kinds of variables are created there?

• What is garbage collection?

• How does the garbage collector know when to return memory to the heap?

• Is the Java language pass by value or pass by reference?

• What does pass by value mean?

• What does pass by reference mean?

• What is a NullPointerException ?

 OBJECTS
• What is a class?

• What is an object?

• What is the heap?

• What is scope?

• What is an accessor?

• What is a mutator?

• What is a constructor?

• What does the public keyword mean?

• What does the static keyword mean?

• What does the private keyword mean?

• What does the abstract keyword mean?

• How is abstract used in conjunction with classes?

• What is polymorphism?

• What does encapsulation mean?

• What does it mean if a class is cohesive?

• What is the single responsibility principle?

• What is data hiding?

• What does the term generic mean?

• What are the two categories of nested classes?

• What is a local class?

• What is a static nested class?

Job Ready Java708

• What level of access to the properties and methods of the enclosing class does a

static nested class have?

• Under what conditions can a local class access variables in the enclosing scope?

• What is the default constructor?

 INTERFACES
• What is an interface?

• How do interfaces help achieve polymorphism?

 INHERITANCE
• What is inheritance?

• What does it mean if one class is derived from another class?

• What does it mean if one class extends another class?

• How does inheritance help achieve polymorphism?

• What is a base class?

• What is an abstract base class?

• What is a superclass?

• What is a subclass?

• What is specialization?

 N-TIER DESIGN
• What does MVC stand for? What is it?

• What is a model?

• What is a controller?

• What is a view?

• What is a DAO?

• What does it mean to be loosely coupled?

• Why is it a good idea to split your applications into layers?

709Appendix B: Java Concepts Study List

 COLLECTIONS
• What is an ArrayList ?

• What is a List ? How is it diff erent from an ArrayList ?

• What is a HashMap ?

• What is a Map ? How is it diff erent from a HashMap ?

• What is a Collection ?

• What is an iterator?

 EXCEPTIONS
• What is an exception?

• What is an unchecked exception?

• What is a checked exception?

• What is a runtime exception?

• What does a fi nally block do?

• What is a try/catch ?

• What does the throws keyword mean?

 LAMBDAS/STREAMS
• What is a lambda?

• What is a stream (in the context of the new Java 8 Collection API)?

• What are aggregate operations?

• What is a pipeline?

• What is a functional interface?

 SPRING CORE
• What are the four design principles of Spring?

• What is dependency injection?

• What is constructor injection?

• What is setter injection?

710

 Appendix C:
Agile Approach Checklist
for Console CRUD
Applications
 This appendix outlines an approach that can be used to break down a project and imple-

ment it in a stepwise and agile way. This will allow you to deliver demonstrable, testable

code in small increments.

 NOTE A hypothetical address book application is used as an example
when describing this approach.

 ASSUMPTIONS
 Our applications are mainly concerned with creating, reading, updating, and deleting

(CRUD) data to and from persistent storage (fi les or databases).

• Our programs (even the simple ones) must be split into tiers or layers as practice

for more complicated problems. This leads us to create projects with the follow-

ing features:

• Data transfer objects (DTOs), also known as domain objects (e.g., Address)

• A data access object that handles storing data in memory and reading and

writing data from persistent storage (e.g., AddressBookDao)

• Some kind of user interface (e.g., the console)

• Logic that orchestrates the objects in the program (this will be found in the

controller)

711Appendix C: Agile Approach Checklist for Console CRUD Applications

 REQUIREMENT STEPS

 Step 1
 Create user stories from the problem statement and/or requirements. For Address Book,

they would be as follows:

• Add an address

• View an address

• Delete an address

• Edit an address

• List all addresses

• Show the number of addresses in the address book

• Save to fi le

• Read from fi le

 DESIGN STEPS

 Step 2
 Analyze the problem statement and identify the required classes. For Address Book, we

have the following:

• Address (DTO)

• AddressBookDao (data access object)

• UserIO (helper used by the View class to interact with the console)

• View class (used by Controller to handle user interaction)

• AddressBookController (this class orchestrates the program)

• App (this class has a main method that instantiates AddressBookController and

calls the execute method)

 Step 3
 Flesh out the classes by defi ning properties and methods for each.

712 Job Ready Java

 Step 4
 Create a fl owchart for the user interaction process (e.g., displaying menus and reacting to

user menu choices).

 Step 5
 Create a fi le format to match the identifi ed domain object(s) (e.g., Address). For example,

for storing addresses, we might have something like this:

 <firstName>::<lastName>::<streetAddress>::<city>::<state>::<zip>

 CONSTRUCTION STEPS

 Step 6
 Create a menu system (in the execute method of AddressBookController) with

stubbed-out code for each menu choice.

 For example, when the user presses the choice to add an address, the system simply

prints a message saying, “Add Address: To Be Implemented.” This can be delivered to the

user for testing and feedback.

 Step 7
 Pick a user story to implement, for example “Add address.” For this story, we ’ ll need to do

the following:

1. Create the Address class (domain object).

2. Create the AddressBookDao class.

a. Include a HashMap or ArrayList to hold the Address objects as a class-

level variable.

b. Implement the addAddress(...) method.

3. Add code into the AddressBookController to do the following:

a. Instantiate AddressBookDao object for storing Address information.

b. Read in address information from the user.

c. Create a new Address object.

713Appendix C: Agile Approach Checklist for Console CRUD Applications

d. Put address information from the user into the Address object.

e. Add the new Address object to the AddressBookDao .

 Each user story will be diff erent, and the fi rst one is always the most work. Repeat

step{7 for each user story.

714

 Index

 Numbers and Symbols
 - (unary minus operator), 86
 -- (decrement operator), 86
 + (unary plus operator), 86
 ++ (increment operator), 86
 ! (logical complement operator), 86
 . (dot operator), 308
 { } (curly brackets), 170
 < > (diamond operator), 398

 A
ABeginning.java fi le, 94–95
 abstract base classes, 383
abstract keyword, 79, 350
 abstract methods, 350
 access control, 367–368

 modifi ers, 367
 package-private access, 367

 accessors, 307–308
add() method, 317, 371–372,

401, 403
Adder program

 input, 104–109
 with input, 109–110

 AdoptOpenJDK
 macOS, 13–17
 Microsoft Windows, 7–10

 aggregate operations, 654
 agile development

 checklist, 710–713
 project lifecycle

 construction, 453
 elaboration, 452–453
 inception, 452
 transition, 453

 algorithms, 194
AllTheMath.java fi le, 98–100
 annotations, 351

 Spring DI, 677–681
 unit testing, 564, 569

 Apache NetBeans. See NetBeans e
 API (application programming

interface), 386
 service layer, 534

App class
 Spring framework and, 693–697
 XML setup and, 676–677

ApplicationContext container
(Spring), 671

areTheLlamasHappy() method,
566

 arithmetic operators
 - (subtraction), 86
 / (division), 86
 + (additive), 86

715Index

 * (multiplication), 86
 % (remainder), 86

 arrays
 declaring

 jagged, 276–277
 rectangular, 276–277
 single-dimensional, 276

 description, 273–274
 dimensions, 273
 elements, 273, 275–276

 accessing, 281–284
 jagged arrays, 284
 multidimensional

arrays, 283–284
 printing pairs, 290–291
 single-dimensional

arrays, 281–283
 summing, 288–289

 error handling, 293
 index, 273, 275–276
 initializing, 277

 jagged, 280
 rectangular, 279–280
 single-dimensional, 278

 iterating through, 284–286
 jagged arrays, 286–288
 multidimensional

arrays, 286–288
 looping through, 289–290
 multidimensional, 274–275
 multidimensional jagged array, 275
 one-dimensional, 274
 sizing, 291–293
 study list, 707
 uniform, 273

 assembly language, 301
assert keyword, 79
 assertions, unit testing, 564, 571
 automation tools, 26

 B
 base classes, 366

 abstract, 383
 constructors, 376

BeanFactory container (Spring), 671
 beans (Spring), 671

 Class Roster application, 694–696
BewareTheKraken.java, 172–173
BigDecimal class, 638

 calculations
 basic math, 645–646
 division, 646–647

 constructing, 638–641
 doubles and, 639–640
 rounding, 643–645
 rounding modes, 641–642
 scale and, 641

 setting, 642–643
 strings and, 640–641

 binary operators, 86–87
 = (simple assignment), 86
 arithmetic operators

 - (subtraction), 86
 / (division), 86
 + (additive), 86
 * (multiplication), 86
 % (remainder), 86

 bitwise and bit shift operators
 & (bitwise AND), 87
 ̂ (bitwise exclusive OR), 87
 | (bitwise inclusive OR), 87
 << (signed left shift), 87
 >> (signed right shift), 87
 >>> (unsigned right shift), 87

 comparison operators
 == (equal to), 86
 != (not equal to), 86
 < (less than), 86

Index716

 <= (less than or equal to), 86
 > (greater than), 86

 conditional operators
 && (conditional AND), 87
 || (conditional OR), 87

 bitwise and bit shift operators
 & (bitwise AND), 87
 ̂ (bitwise exclusive OR), 87
 | (bitwise inclusive OR), 87
 << (signed left shift), 87
 >> (signed right shift), 87
 >>> (unsigned right shift), 87

 bitwise operations, 149
 black-box unit testing, 562
 block comments, 76
 boolean characters, 82
 boolean expressions, 141
boolean keyword, 79
 bottom-up approach, 72–73
break keyword, 79
 breaking loops, while loop, 172–174
 breakpoints, 63

 removing, 67
 setting, 64–66

BucketsOfFun.java fi le, 100–102
byte keyword, 79

 C
calculate() method, 609–610
case keyword, 79
catch block, exception handling,

461–462
catch keyword, 79
 catching exceptions

catch block, 461–462
fi nally block, 462–464
try block, 459–460

 chaining, if-else statements,
144–146

char keyword, 79, 82
 checked exceptions, 459
 child classes, 367

 derived classes, 367
 extended classes, 367
 specializing parent, 368
 subclasses, 367

class keyword, 79
 Class Roster application, 470

App class, 483–484
 application exceptions,

ClassRosterDaoException,
509–511

 audit log
 Audit DAO, 554–555
ClassRosterAudit-

DaoFileImpl, 555
ClassRosterService-

LayerImpl, 556–557
createStudent()

method, 557
 modify app, 558
removeStudent()

method, 558
 service layer, 556

 classes, 472
ClassRosterController,

482–483, 485–486
ClassRosterDaoFileImpl,

constructors, 580
ClassRosterDaoStubImpl,

598–599
ClassRosterView, 484–485
 composition relationships, 472
 construction approach, 473–474
 controller modifi cation, 550–553

ClassRosterController()
method, 551

createStudent()
method, 552

717Index

listStudents() method, 551
removeStudent()

method, 552
viewStudent() method, 552

 DAO stubs, 596–600
 test implementation, 600–604
 test setup, 599–600

 DAO test design, 586
 comments, 587–589
getAllStudents()

method, 590
getStudent()

method, 588–589
 interface methods, 587–589
removeStudent()

method, 592–593
testAddGetStudent test

code, 589–590
testAllGetAllStudents()

method, 591
 dependency injection, 506–507

App class, 508–509
ClassRosterController,

507–508
equals() method, 580–582
 exceptions

ClassRosterDaoExcep-
tion, 543–545

ClassRosterDataValidation-
Exception, 543

ClassRosterDuplicateId-
Exception, 542

ClassRosterPersistence-
Exception, 543–545

 creating, 542–546
 refactoring, 543–545
 renaming, 543–545

 exiting
ClassRosterController,

504–506

ClassRosterView, 504
 fi le persistence

ClassRosterController,
522–525

ClassRosterDao, 521–522
ClassRosterDaoFileImpl,

512–521
ClassRosterView, 522

hashCode() method, 580–582
 inheritance, 472
 interface relationships, 471
 interfaces, 472–473

ClassRosterDao, 475
ClassRosterServiceLayer,

541–542, 545–546
 Java package naming, 476
 menu system, 477–478

 User IO, 478
 User IOConsoleImpl,

479–481
 MVC, 473
 naming convention, 475
roster.txt fi le, 525–527
 service layer implementation,

546–547
 Audit DAO, 556
ClassRosterServiceLayer-

ImplTest, 596
 constructors, 547
 controller modifi cation,

550–553
createStudent()

method, 548–549
 DAO member, 547
getAllStudents()

method, 549
getStudent()

method, 549–550
removeStudent()

method, 550

Index718

 student data valida-
tion, 547–548

validateStudentData()
method, 547–548

 service layer interface,
creating, 539–542

 shell setup, 474–477
ClassRosterAudit DaoImpl,

597–598
 Spring framework

App class conversion, 693–697
 beans, defi ning, 694–696
 confi guration fi les, 692–693
 dependency entries, 691–692
 exception conditions, 700
 libraries, 690–691
 test class constructor,

699–700
 unit test conversion, 697–700

 student use case
ClassRosterController,

492–494
ClassRosterDao, 488–490
ClassRosterDaoFileImp,

490–491
ClassRosterView, 491–492
getNewStudentInfo()

method, 492
Student class, 487–488

 student use case removal
ClassRosterController,

502–504
ClassRosterDaoFileImpl,

501
ClassRosterView, 501

 test class, 583–586
testCreateStudentDuplcateId

test, 601–602
testCreateStudentInvalidData

test, 602–603

testCreateValidStudent
test, 600–601

testGetAllStudents test, 603
testGetStudent test, 603–604
testRemoveStudent test, 604
toString() method, 582–583
 UML class diagram, 471
 unknown commands

ClassRosterController,
504–506

ClassRosterView, 504
 View All Students use case

ClassRosterController,
496–497

ClassRosterDaoFileImpl,
494–495

ClassRosterView, 495
 viewing single student

use case, 497
ClassRosterController,

499–500
ClassRosterDaoFileImpl,

498
ClassRosterView, 498

 classes
 annotations, 678
 base classes, 366

 abstract, 383
 behaviors, 309
 child classes, 367
 Class Roster application, 472
 code editor, 55
 constructors, 309–311
 creating, 316–320
 derived classes, 367, 375–376
 extended classes, 367
IntMath, 610–611
 methods, 309
MidSizeSedan, 350–351
 objects, compared, 307

719Index

Opinionator, 217
 parent classes, 366

 specializing, 368
 private implementation, 302–303
 public interface, 302–303
Random, 208–209
 single responsibility prin-

ciple, 303–304
 subclasses, 367
 superclasses, 366

ClassRosterDao interface, 475
ClassRosterServiceLayer interface,

541–542
clear() method, 403–404
close() method, 436
 code

 checklist, 703–704
 disabling, 78
 functionality, 703
 style, 703–704

 code editor, classes, 55
 code reuse, inheritance and, 371
collect() method, 663–664
 collections, 385–386

 iterators, 390
 Java Collections Framework, 386
 Javadoc, 386–387
 study list, 709

 command line, 107
CommentingCode.java fi les, 97–98
 comments, 75–76, 78–79

 block comments, 76
 disabling code, 78
 doc comments, 76
 Javadoc, 76
 multiline, 76
 single-line, 76

compareTo() method, 156–157
 comparison operators

 == (equal to), 86
 != (not equal to), 86
 < (less than), 86
 <= (less than or equal to), 86
 > (greater than), 86

 compilation errors, 61–62
 compiletime errors, 456
 compiling programs, 19–21

 JVM (Java Virtual Machine), 22
 NetBeans, 57–59

 composition, 345, 346–347, 359
Address class, 360
BadBook class, 359–360
Book class, 361–362
 Class Roster application, 472
Publisher class, 361

 computers, description, 73
 concrete methods, 383
 conditional execution, 139
 conditional operator, 150–151
 conditional operators

 && (conditional AND), 87
 || (conditional OR), 87

 conditional-and operator, 147–149
 conditional-or operator, 147–149
 console, debugger and, 232–234
const keyword, 79
 constants, 84

 fi xed, enums, 609
 construction phase (agile

development), 453
 Class Roster application, 473–474

 constructors, 309–311, 375–380
 base classes, 376
 calling, 376

continue keyword, 79
 CRUD (Create, Read, Update,

Delete), 447–448
 business logic layer, 448

Index720

 data access layer, 448
 DTOs (data transfer objects), 448
 storage layer, 448
 user interface layer, 448

 curly brackets (), 170

 D
 DAOs (data access objects), 450

 Audit DAO, 554–555
ClassRosterAuditDaoFileImpl,

555
ClassRosterAuditDaoImpl,

597–598
ClassRosterDao, 488–490
ClassRosterDaoException,

509–511, 543–545
ClassRosterDaoFileImp, 490–491
ClassRosterDaoFileImpl,

constructors, 580
ClassRosterDaoStubImpl,

598–599
 DAO member, 547
 DAO stubs, 596–600

 test implementation, 600–604
 test setup, 599–600

 DAO test design, 586
 comments, 587–589
getAllStudents()

method, 590
getStudent()

method, 588–589
 interface methods, 587–589
removeStudent()

method, 592–593
testAddGetStudent test

code, 589–590
testAllGetAllStudents()

method, 591

 service layer, 533
 data

 data hiding, 303
 accessors, 307–308
 getters, 307–308
 mutators, 307–308
 setters, 307–308

versus information, 73–74 s
 marshaling, 431, 433–434
 unmarshaling, 431, 433–434

 data representation, 430–431
 data sources, 654
 data storage, 430–431
 data types

 converting, 81–82
 dynamic, 81
 nonprimitive, 106
 primitive, 80–81, 337
 reference, 80
 static, 81
 type safety, 82
 user-defi ned, 337

 date calculations
 future/past, 628–630
 legacy dates

 date object conversion,
632–633

GregorianCalendar
object, 633–634

 time between two dates, 630–632
 date formatting, 623–625
 dates, converting to/from

strings, 622–623
 Debug tab, 67
 debugger, 26–27

 console, 232–234
 running, 226–234

 debugging, 60
 breakpoints, 63

721Index

 removing, 67
 setting, 64–66, 224–226

 compilation errors, 61–62
 logic errors, 63
 methods, 265
 running debugger, 226–234
 runtime errors, 63
 stepping through code,

226, 259–264
 syntax errors, 61–62
 variables, 229–232
WindowMasterDebug.

java, 223–224
 decisions

if statements, 139–142
if-else statements, 142–146
 study list, 707

 declaring interfaces, 349–350
 declaring variables, 106

 WindowMaster, 129–130
default keyword, 79
 default methods, 350
 delegation, 304
 dependency injection, 669
 dependency management,

Maven, 686–687
 derived classes, 375–376
 design patterns, 449
 diamond operator (), 398
do keyword, 79
 doc comments, 76
doIt() method, 261–265
 dot operator (.), 308
double keyword, 79
 doubles, random, 210–212
do-while loops, 174–175
 DTOs (data transfer objects),

448
 dynamic data types, 81

 E
 EJB (Enterprise Java Bean), 670
 elaboration phase (agile development),

452–453
else keyword, 79
else-if statements, switch logic, 154
 encapsulation, 303

 delegation, 304
 exceptions, 465

enum keyword, 79
 enums, 608–609

 fi xed contants, 609
IntMath class, 610–611
 members, 612–616
 Month, 611–612
 switches and, 610
 using, 609–611
 values, 611–612

 equality operators, 140
equals() method, 155–158, 580–582
 error handling, 535–536

 arrays, 293
 errors

 compilation, 61–62
 compiletime, 456
 logic, 63
 runtime, 63, 456
 syntax, 61–62

 exception handling, 456
 catching, 459

catch block, 461–462
fi nally block, 462–464
try block, 459–460

 specifying, 459
 exceptions

 checked, 459
 Class Roster application, Spring

framework, 700

Index722

 Class Roster service
layers, 542–546

 defi nition, 457
 encapsulation, 465
 fi le I/O, 436–437
NumberFormatException,

113–114
 server layer, 534
 specifying, 464–465
 study list, 709
 throwing, 464–465
 translating, 465
 unchecked, 459

 exclusive-or operator, 149
 exercises

ABeginning.java, 94–95
Adder2.java, 109–110
 address book app, testing, 605
ALittleChaos.java, 216–217
AllTheMath.java, 98
AllTheMaths.java, 99–100
ARainbow.java, 295
BarelyControlledChaos.

java, 270–271
 birthday calculator, 635–636
 birthstones, 160–161
BucketsOfFun.java, 100–102
 car lot service layer, 649–652
ClassModeling, 327–328
Classroom class, 362–363
CoinFlipper, 220
CommentingCode.java, 97–98
Cookbook class, 363–364
 days until Friday, 617
DoOrDoNot, 185–186
 DVD library test, 606
 DVD library update, 527–528, 666
 electronic address book, 528–530
 end of the world prediction, 636

FieldDay, 165–166
FixBuzz, 191–192
ForAndTwentyBlackbirds, 187
ForTimes, 189
FortuneCookie, 221
FruitBasket.java, 296
 guessing game, 200–206
GuessMe, 159–160
GuessMeFinally, 186
GuessMeMore, 220–221
 health monitor, 125
HiddenNuts.java, 298
HighRoller.java, 219–220
 interest calculator, 648–649
Looper.java, 235–236
 Mad Libs, 126
MatchWork.java, 268–269
MethodToTheMadness.java, 266
 Mixed-up Animals, 411
 month, 159
 nesting for loops, 190
 objectifying states, 443–445
 odd number display, 234–235
Opinionator class, 217
Opinionator.java, 218–219
PickyEater, 163–165
 playing cards, 617
ProjectGutenberg.java, 95–96
 refactoring, 328–329
ReturnToSender.java, 267–268
 shape and, 384
SimpleCombination.java, 296
 Space Rustlers, 162–163
SpringForwardFallBack,

188–189
 state capitals, 423–424, 441–442
 state guessing game, 442–443
 student quiz scores, 427–428
 Three Threes, 410–411

723Index

 time tracking, 636–637
 trivia game, 161–162
 Turing test, 124–125
 user input, 121–123
 user I/O class, reusable, 424–426
 user I/O interface testing, 427
 young persons, 665

 expressions, 85
 boolean, 141
 mathematical, 89–92
 operands, 85
 operators, 85

 extending interfaces, 354–356
 extending methods, 374–375
extends keyword, 79

 F
 factory methods, 620
false keyword, 79
 fi le formats, 431

 example, 433
 fi le I/O, 434

 reading from fi les, 438–439
 writing to fi les, 435–436

 exceptions, 436–437
OutFile.txt fi le, 437–438

 fi les, 434
 delimiters, 431
 reading from, 438–439
 writing to, 435–436

 exceptions, 436–437
OutFile.txt fi le, 437–438

fi lter() method, 658–659
fi nal keyword, 79
fi nally block, exception handling,

462–464
fi nally keyword, 79

 fi xed contants, enums, 609
fl oat keyword, 79
 fl oating-point numbers, 82
 fl ow of control, 194
 fl owcharts

 branches, 195–196
 diamond, 197
 example, 197–198
 loops, 196
 ovals, 197
 parallelogram, 197
 rectangles, 197
 sequences, 194–195

fl ush() method, 436
for keyword, 79
for loops, 179–181

 incrementing, 181–182
 initializing, 181
 lists, 406
 nesting, 190–191
 terminating, 181

forEach() method, 656–658
 functional languages, 301

 G
 garbage collection, 338–339
 generic types, 397
 generics, 397
get() method, 402, 415–416
get2() method, 240
getAllStudents() method, 536–537
getStudent() method, 537
 getters, 307–308
 Git, 68
 Given/When/Then unit testing, 564
 glass-box unit testing, 562
 Gosling, James, 3

Index724

goto keyword, 79
growArray() method, 292
GuessingGame. java, 213–215

 H
hashCode() method, 580–582
hasNext() method, 409
 heap, 334–338
HelloWorld, 53–57
HighRoller.java, 219–220

 I
 IDE (integrated development

environment), 25
 automation tools, 26
 debugger, 26–27
 source code editor, 25–26

 identifi ers, 79
if keyword, 79
if statements, 139–140, 141–142

 operators, 140
 switch logic, 154

if-else statements, 142–144
 chaining, 144–146

 implementation, versus interfaces, 389 s
implements keyword, 79
import keyword, 79
 inception phase (agile development),

452
 incrementing loops, while loop, 171
 indexed collections, 402–403
 information, versus data, 73–74 s
 inheritance, 346–347, 366

 Class Roster application, 472
 code reuse, 371
 is-a relationships, 368

 method extending, 374–375
 method overloading, 371–372
 method overriding, 373–375
 study list, 708

 initializing loops, while loop,
171

 initializing variables, 106
 input, 130–131

Adder program, 104–109
 loops and, 111–112

 input parameters, 242–243
 matching numbers, 244–245
 matching types, 245–246
 passing, 246–247

instanceof keyword, 79
 instantation

 lists, 398–400
 objects, 311–312

 instructions, mapping, 136
int keyword, 79
 integers, 108–109

 random, 209–210
interface keyword, 79, 350
 interfaces, 344–345, 346–347, 349

 Class Roster application,
471, 472–473
ClassRosterDao, 475

ClassRosterServiceLayer
interface, 541–542

 declaring, 349–350
 extending, 354–356
versus implementation, 389 s
 implementing, 350–351

 multiple, 352–354
 naming, 540–541
 polymorphism and, 356–357
 restrictions, 352
 study list, 708

725Index

 subinterfaces, 388
 superinterfaces, 388

 intermediate operations, 654
IntMath class, 610–611
 IoC (Inversion of Control), 669,

671
 is-a relationships, 368
 iterations

 project lifecycle, 453–454
versus streams, 655 s

 iterative development
approach, 450–451

iterator() method, 407–409
 iterators, 390, 407

 creating, 407–408
 using, 408–409

 J
 jagged arrays

 declaring, 276–277
 element access, 284
 initialization, 280
 iterating through, 286–288

 Java, study list, 707
 Java Collections Framework, 386

 classes, 388
 implementing classes, 387
 indexed collections, 402–403
 interfaces, 387, 388
 Javadoc, 386–387
 List interface, 388, 394

ArrayList, 390–391, 395
LinkedList, 395–396
Stack, 390–391, 397

 Map interface
HashMap, 392
TreeMap, 392

Set interface

HashSet, 391
TreeSet, 392

 subinterfaces, 388
 superinterfaces, 388
 type parameters, 388

 Java Date-Time API
 duration, 620
 human time, 619
 ISO calendar, 619
LocalDate object, LocalDate,

620–622
 machine time, 619
ofLocalizedDate() method, 625
 periods, 620
 time zones, 619–620

 Javadoc, 386–387
 API Documentation, 386
 classes, 388
 interfaces, 388
 subinterfaces, 388
 superinterfaces, 388
 type parameters, 388

 Javadoc comments, 76
 JavaScript, 3
 JDK (Java Development Kit), 3–4
 JRE (Java Runtime Environment), 5
 JUnit unit testing, 563

 running tests, 571–574
 @Test annotation, 569

 JVM (Java Virtual Machine), 4–5
 compiler and, 22

 K
 keys, Map interface, 417–419
keySet() method, 418–419
 keywords, 79

abstract, 350
interface, 350

Index726

 protected, 367
static, 249–250, 312–313,

320–325
 constant values and, 313
main method and, 313
 utility methods, 314

this, 309
throws, 464–465

 L
 lambdas, 655

 parameters, 661
 study list, 709
 syntax, 655–664

 LIFO (last-in, fi rst-out), 332
 List interface, 394

 accessing items, 402–403
ArrayList, 390–391, 395
 getting elements, 402–403
 indexed collections, 402–403
 inserting items, 403
 instantiating, 398–400
 iterators, 407

 creating, 407–408
 using, 408–409

LinkedList, 395
 doubly linked list, 396
 head, 395
 node, 395
 singly linked list, 395
 tail, 395

for loop, 406
 primitive types, 400
 removing items, 403–405
Stack, 390–391, 397

 literals, 79, 82
 boolean, 82
 char, 82

 fl oating-point numbers, 82
 null, 82
 strings, 82
 whole numbers, 82

 local time, 626–628
LocalDate, values, initializing,

621–622
LocalDateTime, 626–628
 logic errors, 63
 logic programming languages, 301
long keyword, 79
 loops, 111–112, 167–168

do-while, 174–179
 fl owcharts, 196
for loops, 179–184

 lists, 406
 study list, 707
while loops, 168–174

 loose compling, 506–509

 M
 macOS

 NetBeans, 32–37
 OpenJDK installation, 13–17

 magic numbers, 608
 Map interface, 412–413

 data replacement, 417
HashMap, 392

 adding data, 414–415
 instantiating maps, 413–414

 keys
 listing, 417–419
 printing, 418–419

 listing values, key by key, 420–421
TreeMap, 392
 value deletion, 417
 value lookup, 415–416
 values, listing, 421–422

727Index

map() method, 661–662
 marshaling, 431, 433–434
 math, BigDecimal, 645–647
 mathematical expressions, 89–92
 mathematical operators, 89–92
MathOperator enum, 610–611
 Maven, 49

 build settings, 686
 dependencies, 685–686
 dependency manage-

ment, 686–687
 installing, 50–53
 POM (project object model), 683
POM.xml fi le, 683–684
 project identifi cation, 685
 project lifecycle, 687

 memory
 garbage collection, 338–339
 heap, 334–338
 stack, 332
 stack frame, 331

 metaphors, 74
 method signature, 535

fi lter(), 658–659
 methods

 abstract, 350
add(), 317, 371–372, 401, 403
areTheLlamasHappy(), 566
 body, 254
 breakpoints, 260–262
calculate(), 609–610
 class behaviors, 309
clear(), 403–404
close(), 436
collect(), 663–664
compareTo(), 156–157
 concrete, 383
 debugging, 265
 declaration, 238–239

 default, 350
 defi ning, 238–239
doIt(), 261–265
equals(), 155–158, 580–582
 extending, 374–375
 factory methods, 620
fl ush(), 436
forEach(), 656–658
 forms, 247–250
get(), 402, 415–416
get2(), 240
getAllStudents(), 536–537
getStudent(), 537
 getter/setter, 309
growArray(), 292
hashCode(), 580–582
hasNext(), 409
 input parameters, 242–243

 matching numbers, 244–245
 matching types, 245–246
 passing parameters, 246–247

 invoking, 311–312
iterator(), 407–409
keySet(), 418–419
map(), 661–662
 names, 252
 naming conventions, 239–240
nextDouble(), 210–211
nextInt(), 209, 214
ofLocalizedDate(), 625
 overloading, 371–372
 overriding, 373–375
 parameters, 253
parseInt(), 111
peek(), 397
 polymorphism, 382
pop(), 397
print(), 425
println(), 95, 436

Index728

push(), 397
put(), 417
readDouble(), 426
readFloat(), 426
readInt(), 425
readLong(), 426
readString(), 425
readValue(), 253, 254
 refactoring code

 diff erences, 252
 method creation, 252–254
 similarities, 252

 regular, 309
remove(), 403–404, 417
removeStudent(), 537
 return types, 253, 535
 return values, 240–242
sayHello(), 244
 scope, 265
 signature, 239
size(), 400
 static, 350
 stepping into code, 262–264
stream(), 660
 study list, 706
toString(), 582–583
 using, 255–257
values(), 421–422

MidSizeSedan class, 350–351
 models, 74
 modifi ers, access and, 367
Month enum, 611–612
 multidimensional arrays, 274–275

 element access, 283–284
 iterating through, 286–288

 multidimensional jagged array, 275
 multiline comments, 76
 mutators, 307–308
 MVC (Model-View-Controller) pattern,

448–449, 533–534

 Class Roster application, 473
 controller, 449
 model, 449
 view, 449

MyScanner.java, 115–120

 N
 naming conventions

 Class Roster application, 475
 methods, 239–240

native keyword, 79
 nesting, for loops, 190–191
 NetBeans, 25

 binaries, installation, 37–40
 Windows, 40–43

 code, compiling, 57–59
 Group Id, 51
 installers, 27–28

 macOS, 32–37
 Windows, 28–32

 running, 44
 New Java Package window, 475
new keyword, 79
 New Project wizard, 50
nextDouble() method, 210–211
nextInt() method, 209, 214
 N-tier, study list, 708
 null, 82
null keyword, 79
 null values, 339–341
NumberFormatException, 113–114

 O
 Oak, 3
 object orientation, 301–302

 behavior, 302
 identity, 302
 state, 302

729Index

 object-oriented languages, 301
 objects, 74

 behavior, 302
 classes, compared, 307
 dot operator (.), 308
 DTOs (data transfer objects), 448
 identity, 302
 instantiation, 311–312
 POJOs (plain old Java objects),

671
 scanner objects, 106–107
 state, 302
 study list, 707–708
 types, 302

ofLocalizedDate() method, 625
 one-dimensional arrays, 274
 OpenJDK

 AdoptOpenJDK, 7–10
 installing, 5–6

 macOS, 13–17
 Windows, 6–13

 operands, 85
 operators, 84

 arithmetic operators
 - (subtraction), 86
 / (division), 86
 + (additive), 86
 * (multiplication), 86
 % (remainder), 86

 binary operators, 86–87
 = (simple assignment), 86

 bitwise and bit shift operators
 & (bitwise AND), 87
 ̂ (bitwise exclusive OR), 87
 | (bitwise inclusive OR), 87
 & (bitwise AND), 87
 ̂ (bitwise exclusive OR), 87
 | (bitwise inclusive OR), 87
 << (signed left shift), 87

 >> (signed right shift), 87
 >>> (unsigned right shift), 87

 bitwise operators, 149
 comparison operators

 == (equal to), 86
 != (not equal to), 86
 < (less than), 86
 == (equal to), 86
 != (not equal to), 86
 < (less than), 86
 <= (less than or equal to),

86
 > (greater than), 86

 conditional, 147–149, 150–151
 conditional operators

 && (conditional AND), 87
 || (conditional OR), 87
 && (conditional AND), 87
 || (conditional OR), 87

 equality, 140
 exclusive-or, 149
 mathematical, 89–92
 precedence, 88–89

 conditional operators, 148
 relational, 140
 ternary, 87–88, 150–151
 unary, 85–86

Opinionator class, 217
Opinionator.java, 218–219
 Oracle JDK, 4
OutFile.txt fi le, 437–438
 overloading methods, 371–372
 overriding methods, 373–375

 P
package keyword, 79
 package-private access, 367
 packages, 449–450

Index730

 adding, 539
 naming, 540

 parameters, input parameters,
242–243
 matching numbers, 244–245
 matching types, 245–246
 passing parameters, 246–247

 parent classes, 366
 base classes, 366
 extending, 367
 specializing, 368
 superclasses, 366

parseInt() method, 111
 parsing, 103, 112–113
 pass-by-value language, 337
 pass-through methods, 537
peek() method, 397
Person class, 656–657
 pipelines, 654
 POJOs (plain old Java objects), 671
 polymorphism, 380–382

 interfaces and, 356–357
 methods, calling, 382

 POM (project object model), 683
pop() method, 397
 primitive data types, 80–81, 337
print() method, 425
 printing, keys from map, 418–419
println() method, 95, 436
 private implementation, 302–303

 data hiding, 303
 encapsulation, 303

private keyword, 79
 production data, unit testing

and, 579–586
 programming, 74
 programming languages

 assembly language, 301
 functional languages, 301

 logic programming languages, 301
 object-oriented languages, 301

 programs, 74
 building, 127–137
 compiling, 19–21
 running, 19–21, 59–60
 syntax errors, 21
 writing, 18–19

 project lifecycle, Maven, 687
 project lifecycle (agile development)

 construction, 453
 elaboration, 452–453
 inception, 452
 iterations, 453–454
 transition, 453

ProjectGutenberg.java fi le, 95–96
 projects, creating, 48–53
protected keyword, 79, 367
 public interface, 302–303

 data hiding, 303
 encapsulation, 303

public keyword, 79
push() method, 397
put() method, 417
 Python, 3

 R
Random class, 208–209
 random doubles, 210–212
 random integers, 209–210
 random numbers, seed

values, 208–209
Random object, initializing, 208–209
readDouble() method, 426
readFloat() method, 426
 reading from fi les, 438–439
readInt() method, 425
readLong() method, 426

731Index

readString() method, 425
readValue() method, 253, 254
 rectangular arrays

 declaring, 276–277
 initialization, 279–280

 Red/Green/Refactor unit testing,
562–563

 reference data types, 80
 reference values, 339–341
 relational operators, 140
remove() method, 403–404, 417
removeStudent() method, 537
 representation. See data e

representation
 reserved words, 79
return keyword, 79
 return types, 535
 return values, 241–242

 methods, 240–242
 rounding, BigDecimal, 641–642,

643–645
 Ruby, 3
 runtime errors, 63, 456

 S
sayHello() method, 244
 scale, BigDecimal and, 641
 scanner objects, 106–107
 SCM (source code management), 68
 scope, 257–258
 SDLC (software design lifecycle)

 agile development, 451
 project lifecycle, 452–453

 CRUD (Create, Read,
Update, Delete)
 business logic layer, 448
 data access layer, 448
 DTOs, 448

 storage layer, 448
 user interface layer, 448

 iterations, 453–454
 iterative development, 451
 packages, 449–450
 waterfall approach, 450–451

 SDLC (software development
lifecycle), 446

 seed values, 208–209
 semantics, 75
 service layer

 API design, 534
 car lot exercises, 649–652
 exceptions, 534
getAllStudents()

method, 536–537
 MVC pattern, 533–534

 services, 669
 Set interface

HashSet, 391
TreeSet, 392

 setters, 307–308
 shapes, 384
short keyword, 79
 single responsibility principle, 303–304
 single-dimensional arrays

 declaring, 276
 element access, 281–283
 initialization, 278

 single-line comments, 76
size() method, 400
 source code editor, 25–26
 source control, 67–68
 specializing parent class, 368
 specifi cations, 75
 Spring DI, 673–674

 annotations, 677–681
 XML-based setup, 674–677

 Spring framework, 669

Index732

App class conversion, 693–697
ApplicationContext con-

tainer, 671
BeanFactory container, 671
 beans, 671
 Class Roster application

 beans, defi ning, 694–696
 confi guration fi les, 692–693
 dependency entries, 691–692
 exception conditions, 700
 libraries, 690–691
 unit test conversion, 697–700

 origins, 670
 Spring DI, 673–674

 annotations, 677–681
 XML-based setup, 674–677

 study list, 709
 templates, 671–673

 stack, 332
 stack frame, 331
 stateful components, unit testing, 562
 stateless components, unit

testing, 562
 stateless unit testing

 plan design, 565–566
 happy llamas, 567

 test quality, 565
 statements, switch, 151–154
 static data types, 81
static keyword, 79, 249–250,

312–313, 320–325
 constant values and, 313
main method and, 313
 utility methods, 314

 static methods, 350
 storage, 430–431
stream() method, 660
 streams, 654

versus iteration, 655 s

 study list, 709
 syntax, 655–664

strictfp keyword, 79
 strings, 82, 108–109

 adding items, 401
BigDecimal and, 640–641
 comparing, 155–158
 converting, 131–132
 dates, 622–623
 size, 400

 study list, 705–7019
 subinterfaces, 388
super keyword, 79
 superclasses, 366
 superinterfaces, 388
switch block, 151–152
switch keyword, 79
switch statement, 151–154
 switches, enums and, 610
synchronized keyword, 79
 syntax, 75

 lambdas, 655–664
 streams, 655–664

 syntax errors, 21, 61–62

 T
 TDD (Test-Driven Development) unit

testing, 562–563
 templates, Spring, 671–673
 terminal operations, 654
 ternary operators, 87–88, 150–151
 Test Results window, 571–574
 test stubs unit testing, 563
 testing, unit testing, 561

 annotations, 564, 569
 assertions, 564
 black-box, 562
 Given/When/Then, 564

733Index

 glass-box, 562
 implementing, 568–574
 JUnit, 563, 571–574
 production data, 579–586
 Red/Green/Refactor, 562–563
 setup, 563–564, 584–585
 stateful code, 578–579
 stateful components, 562
 stateless, 565–568
 stateless components, 562
 TDD (Test-Driven Development),

562–563
 teardown, 563–564, 584–585
 test stubs, 563
 testing for false, 570–571

this keyword, 79, 309
throw keyword, 79
 throwing exceptions, 464–465
throws keyword, 79, 464–465
 tiered application design, 448

 DTOs (data transfer objects), 448
 MVC (Model-View-Controller)

pattern, 448–449
 controller, 449
 model, 449
 view, 449

 time
 Java Date-Time API, 619
 local, 626–628

 time zones, 619–620
toString() method, 582–583
 Trackable interface, 352–353
transient keyword, 79
 transition phase (agile development),

453
 translating exceptions, 465
true keyword, 79
try block, exception handling,

459–460

try keyword, 79
 Turing test, 124–125
 type conversion, 81–82
 type safety, 82
 types, 302

 behaviors, 306
 creating, 305–306
 fi elds, 306
 members, 306

 U
 unary operators, 85–86
 unchecked exceptions, 459
 unit testing, 561

 annotations, 564, 569
 assertions, 564, 571
 black-box, 562
 Given/When/Then, 564
 glass-box, 562
 implementing, 568

HappyLamasTest(), 568–569
 test class, 568–569

 JUnit, 563
 running tests, 571–574

 production data, 579–586
equals() method, 580–582
hashCode() method, 580–582
toString() method, 582–583

 Red/Green/Refactor, 562–563
 service layer, 594

 Class Roster application,
595–604

 planning design, 595
 test class, 595–596

 setup, 563–564
 setup methods, 584–585
 stateful code, 578–579, 586–594

 act, 586

Index734

 arrange, 585–586
 assert, 586

 stateful components, 562
 stateless, 565

 plan design, 565–568
 test quality, 565

 stateless components, 562
 stubbing, 594–600
 TDD (Test-Driven Development),

562–563
 teardown, 563–564
 teardown methods, 584–585
 test class, 583–586
 test stubs, 563
 testing for false, 570–571

 unmarshaling, 431, 433–434
 user-defi ned types, 337

 V
 values

 enums, 611–612
 Map interface, listing key by

key, 420–421
 null values, 339–341
 reference values, 339–341
 return values, methods, 240–242
 user, 108

values() method, 421–422
 variables

 assigning values, 83–84
 debugging and, 229–232
 declaring, 82–83, 106

 WindowMaster, 129–130
 initializing, 106

 naming, 84
 study list, 705

Vehicle.java, 349–350
 VM (virtual machine), 4
void keyword, 79
volatile keyword, 79

 W
 waterfall development

approach, 450–451
while keyword, 79
while loops, 168–171

 breaking, 172–174
 incrementing, 171
 initializing, 171

 whole numbers, 82
 WindowMaster, 134–135

 variables, declaring, 129–130
WindowMasterDebug.java,

debugging, 223–224
WindowMaster.java, 250–251
 Windows

 command prompt window, 6–7
 NetBeans, 28–32
 OpenJDK installation, 6–13

 wizards, New Project, 50
 writing to fi les, 435–436

 exceptions, 436–437
OutFile.txt fi le, 437–438

 X–Y–Z
 XML (eXtensible Markup Language),

Spring DI and, 674–677

