
Dr. Barry Burd holds an M.S. in
Computer Science from Rutgers
University and a Ph.D. in Math-
ematics from the University of
Illinois. Barry is also the author of
Beginning Programming with Java
For Dummies, Java for Android For
Dummies, and Flutter For Dummies.

Understand basic Java®
building blocks

Write programs with objects
and classes

Use the new features
in Java 17

8th Edition

Barry Burd, PhD
Java Champion and author of
Beginning Programming with
Java For Dummies

Java
®

Computers/Programming Languages/
Java

$29.99 USA/$35.99 CAN/£21.99 UK

Learning Java® is smooth sailing with Dummies
The bestselling guide to the Java® programming language is back. Java For
Dummies is your need-to-read guide for mastering this essential programming
language. Even if you aren’t studying Java on the island of Java, you’ll feel like
you’re on vacation, with easy-to-understand explanations that make learning
easy, for beginners and experienced coders alike. Start with the essential building
blocks and bushwhack your way through writing programs that work. Pick up
some fancy tips and techniques along the way, and you’ll soon be a native of
Java land.

Burd

Cover Image: © kowalskichal/Shutterstock

Java®

8th Edition

• Develop good software
• Control program flow
• Create objects and classes
• Use arrays and collections
• Respond to button clicks
• Connect to a database
• Download the book’s sample code
• Get practice with additional

exercises

1.0625 in 7.375 x 9.25 in

FM.indd i Trim size: 7.375 in × 9.25 in February 22, 2022 8:51 PM

 Java®
 8th Edition

 by Barry Burd

Java® For Dummies®, 8th Edition
Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2022 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. Java is a registered trademark of Oracle America, Inc. All other trademarks are the property of their
respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHORS HAVE USED THEIR
BEST EFFORTS IN PREPARING THIS WORK, THEY MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT
TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL
WARRANTIES, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES
REPRESENTATIVES, WRITTEN SALES MATERIALS OR PROMOTIONAL STATEMENTS FOR THIS WORK. THE FACT
THAT AN ORGANIZATION, WEBSITE, OR PRODUCT IS REFERRED TO IN THIS WORK AS A CITATION AND/OR
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE PUBLISHER AND AUTHORS
ENDORSE THE INFORMATION OR SERVICES THE ORGANIZATION, WEBSITE, OR PRODUCT MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS
NOT ENGAGED IN RENDERING PROFESSIONAL SERVICES. THE ADVICE AND STRATEGIES CONTAINED HEREIN
MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH A SPECIALIST WHERE APPROPRIATE.
FURTHER, READERS SHOULD BE AWARE THAT WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ. NEITHER THE PUBLISHER
NOR AUTHORS SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING
BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2022932287

ISBN: 978-1-119-86164-5; 978-1-119-86165-2 (ebk); 978-1-119-86168-3 (ebk)

FM.indd ii Trim size: 7.375 in × 9.25 in February 22, 2022 8:51 PM

Contents at a Glance
Introduction . 1

Part 1: Getting Started with Java . 5
CHAPTER 1: All about Java . 7
CHAPTER 2: All about Software . 21
CHAPTER 3: Using the Basic Building Blocks . 33

Part 2: Writing Your Own Java Programs . 55
CHAPTER 4:	 Making	the	Most	of Variables	and	Their Values . 57
CHAPTER 5: Controlling Program Flow with Decision-Making Statements 97
CHAPTER 6: Controlling Program Flow with Loops . 135

Part 3: Working with the Big Picture:
Object-Oriented Programming . 155
CHAPTER 7:	 The	Inside	scOOP . 157
CHAPTER 8:	 Saving	Time	and	Money:	Reusing	Existing	Code 199
CHAPTER 9:	 Constructing	New	Objects . 233

Part 4: Smart Java Techniques . 259
CHAPTER 10:	Putting	Variables	and Methods	Where	They	Belong 261
CHAPTER 11:	Using	Arrays	to	Juggle	Values . 295
CHAPTER 12:	Using	Collections	and	Streams	(When	Arrays	Aren’t	Good	Enough) . . . 323
CHAPTER 13:	Looking	Good	When Things	Take	Unexpected	Turns 355
CHAPTER 14: Sharing Names among the Parts of a Java Program 385
CHAPTER 15:	Fancy	Reference	Types . 411
CHAPTER 16:	Java’s	Juggling	Act . 431
CHAPTER 17:	Using	Java	Database	Connectivity . 451

Part 5: The Part of Tens . 463
CHAPTER 18:	Ten	Packs	of	Java	Websites . 465
CHAPTER 19:	Ten	Bits	of	Advice	for New	Software	Developers 469

Index . 475

TOC.indd iii	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:55	PM

TOC.indd iv	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:55	PM

TOC.indd v	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:55	PM

Table of Contents v

Table of Contents
INTRODUCTION . 1

About	This	Book .1
Foolish Assumptions .2
Icons	Used	in	This	Book .3
Beyond	the	Book .4
Where	to	Go	from	Here .4

PART 1: GETTING STARTED WITH JAVA . 5

CHAPTER 1: All about Java . 7
What	You	Can	Do	with	Java .8
Why	You	Should	Use	Java .9
Gaining	Perspective:	Where	Java	Fits	In .10
Object-Oriented	Programming	(OOP) .12

Object-oriented	languages .13
Objects	and	their	classes .15
What’s	so	great	about	an	object-oriented	language? 15
Objects	and	classes	are	everywhere . .18

What’s	Next? .19

CHAPTER 2: All about Software . 21
Get	Ready	for	Java .21
The	Inside	Scoop .23

What	is	a	compiler? .24
What	is	a	Java	virtual	machine? .27

Developing Software .31
Spoiler Alert! .32

CHAPTER 3: Using the Basic Building Blocks . 33
Speaking the Java Language .33

The	grammar	and	the	common	names .34
The	words	in	a	Java	program .35

Checking	Out	Java	Code	for	the	First	Time .37
Understanding a Simple Java Program .38

The	Java	class .38
The	Java	method .40
The	main	method	in	a	program .41
How	you	finally	tell	the	computer	to	do	something 43
Brace	yourself .45

TOC.indd vi	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:55	PM

vi Java For Dummies

And	Now,	a	Few	Comments .49
Adding	comments	to	your	code .49
What’s	Barry’s	excuse? .53
Using	comments	to	experiment	with	your	code 53

PART 2: WRITING YOUR OWN JAVA PROGRAMS 55

CHAPTER 4: Making the Most of Variables and Their Values . . . 57
Varying	a	Variable .58

Assignment statements .60
The	types	of	values	that	variables	may	have 61
How	to	hold	the	line .64
Numbers without decimal points .65
Combining	declarations	and	initializing	variables 67

Experimenting	with	JShell .69
What	Happened	to	All	the	Cool	Visual	Effects? .72
The	Atoms:	Java’s	Primitive	Types .73

The	char	type .73
The	boolean	type .76

The	Molecules	and	Compounds:	Reference	Types 78
An	Import	Declaration .82
Creating	New	Values	by	Applying	Operators .84

Initialize	once,	assign	often .87
The	increment	and	decrement	operators .89
Assignment operators .93

CHAPTER 5: Controlling Program Flow with Decision-Making
Statements . 97
Making	Decisions	(Java	if	Statements) .98

Guess	the	number .98
She	controlled	keystrokes	from	the	keyboard 99
Creating randomness .102
The	if	statement .103
Equal,	equal .104
Brace	yourself .105
Your	intent	to	indent .105
Elseless	in	Helsinki .106

Using Blocks in JShell .108
Forming	Conditions	with	Comparisons	and	Logical	Operators 109

Comparing numbers; comparing characters 109
Comparing	objects .110
Look! .113
Java’s	logical	operators .115
Vive	les	nuls! .118
(Conditions	in	parentheses) .119

TOC.indd vii	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:55	PM

Table of Contents vii

The	Nesting	Habits	of	if	Statements .121
Choosing	among	Many	Alternatives .124

Java’s	glorious	switch	statement .124
A switch in time saves 14 .127
Your	grandparents’	switch	statement .130
Free fall .131

CHAPTER 6: Controlling Program Flow with Loops 135
Repeating	Instructions	Over	and	Over	Again	(Java	while	
Statements) .136
Count	On	Me .139

The	anatomy	of	a	for	statement .141
The	world	premiere	of	“Al’s	All	Wet” .142

You	Can	Always	Get	What	You	Want .145
The	root	of	the	matter .148
Reading	a	single	character .149
File handling in Java .150
Block on the while side .151

PART 3: WORKING WITH THE BIG PICTURE:
OBJECT-ORIENTED PROGRAMMING . 155

CHAPTER 7: The Inside scOOP . 157
Defining	a	Class	(What	It	Means	to	Be	an	Account) 158

Declaring	variables	and	creating	objects .163
Initializing	a	variable .166
Using	an	object’s	fields .167
One	program;	several	classes .167
Declaring a public class .167

Defining	a	Method	within	a	Class	(Displaying	an	Account) 169
An	account	that	displays	itself .170
The	display	method’s	header .172

Sending	Values	to	and	from	Methods	(Calculating	Interest) 173
Passing a value to a method .176
Returning	a	value	from	the	getInterest	method 178

Giving	Your	Numbers	a	Makeover .180
Hide-and-Seek .185

Good	programming . .185
Public	lives	and	private	dreams:	Making	a	field	inaccessible 188
Enforcing	rules	with	accessor	methods .190

Barry’s	Own	GUI	Class . .190

TOC.indd viii	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:55	PM

viii Java For Dummies

CHAPTER 8: Saving Time and Money: Reusing Existing Code . . .199
What	It	Means	to	Be	an	Employee .200

The	last	word	on	employees .200
Putting	your	class	to	good	use .202
Cutting a check .206

Working	with	Disk	Files	(a	Brief	Detour) .207
Storing	data	in	a	file .207
Repeat	after	me .208
Reading	from	a	file .209
Who	moved	my	file? .212
You	moved	your	file! .212
Reading	a	line	at	a	time .213
Clean	up	after	yourself .215

Defining	Subclasses	(What	It	Means	to	Be	a	Full-Time	or	
Part-Time	Employee) .216

Creating a subclass .218
Creating subclasses is habit-forming .220

Using Subclasses .221
Making	types	match .223
The	second	half	of	the	story .224

Changing	the	Payments	for	Only	Some	of	the	Employees 225
A Java annotation .227
Using methods from classes and subclasses 228

CHAPTER 9: Constructing New Objects . 233
Defining	Constructors	(What	It	Means	to	Be	a	Temperature) 234

What	is	a	temperature? .235
What	is	a	temperature	scale?	(Java’s	enum	type) 235
Okay,	so	then	what	is	a	temperature? .236
What	you	can	do	with	a	temperature .238
Constructing	a	temperature;	a	slow-motion	replay 240
Some things never change .243

Doing	Something	about	the	Weather .246
Building better temperatures .246
Constructors for subclasses .248
Using	all	this	stuff .249
The	default	constructor .250

A	Constructor	That	Does	More .254
Classes	and	methods	from	the	Java	API .256
Live	dangerously .257

TOC.indd ix	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:55	PM

Table of Contents ix

PART 4: SMART JAVA TECHNIQUES . 259

CHAPTER 10: Putting Variables and Methods Where
They Belong . 261
Defining	a	Class	(What	It	Means	to	Be	a	Baseball	Player) 262

Another	way	to	beautify	your	numbers .263
Using	the	Player	class .264
One	class;	nine	objects .266
Don’t	get	all	GUI	on	me .266
Some facts about potatoes .268

Making	Static	(Finding	the	Team	Average) .270
Why	is	there	so	much	static? .272
Meet	the	static	initializer .272
Displaying	the	overall	team	average .273
The	static	keyword	is	yesterday’s	news .276
Could cause static; handle with care .276

Experiments	with	Variables .279
Putting a variable in its place .280
Telling	a	variable	where	to	go .283

Passing Parameters . .287
Pass	by	value .288
Returning	a	result .290
Pass	by	reference .290
Returning	an	object	from	a	method .292
Epilogue .294

CHAPTER 11: Using Arrays to Juggle Values . 295
Getting	Your	Ducks	All	in	a	Row .295

Creating	an	array	in	two	easy	steps .298
How	to	book	hotel	guests .299
Tab	stops	and	other	special	things .301
Make	life	easy	for	yourself .302
Stepping	through	an	array	with	the	enhanced	for	loop 304
Do	you	have	a	room? .306
Writing	to	a	file .308
When	to	close	a	file .309

Arrays	of	Objects .311
Using	the	Room	class .313
Yet	another	way	to	beautify	your	numbers 316
The	conditional	operator .317

How	to	Argue	with	Your	Code .318
Settling the argument .319
Checking for the right number of program arguments 321

TOC.indd x	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:55	PM

x Java For Dummies

CHAPTER 12: Using Collections and Streams (When
Arrays Aren’t Good Enough) . 323
Arrays	Have	Limitations .324
Collection	Classes	to	the	Rescue .325

Using	an	ArrayList .325
Using generics .328
Wrap	it	up .331
Are	we	done	yet? .333
Once	and	again .333
So	many	collection	classes! .335

Functional Programming .336
Problem-solving	the	old-fashioned	way .337
Lambda	expressions .339
A black sheep among the lambdas .341
A	taxonomy	of	lambda	expressions .342
The	interpretation	of	streams .342
Why	bother? .348
Method references .351

CHAPTER 13: Looking Good When Things Take
Unexpected Turns . 355
Garbage	In .356

The	parameter	in	a	catch	clause .360
Do	it	yourself .362
Who	will	catch	the	exception? .364
Catching	two	or	more	exceptions	at	a	time 371

The	Buck	Stops	Here,	Except	When	It	Doesn’t 372
Catch it soon .374
Catch it later .375
Checked	or	unchecked? .377

Try,	Try	Again! .380

CHAPTER 14: Sharing Names among the Parts of a
Java Program . 385
Access	Modifiers .386
Classes	and	Their	Members .386
Public and Private Access for Members .387

Drawing on a frame .390
Putting a package in its place . .392
Making a frame .394

Default Access for Members .396
Switching to Default access .398
Accessing default members within a package 400

TOC.indd xi	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:55	PM

Table of Contents xi

Protected Access for Members .402
A class in one package and a subclass in another 402
Two	classes	in	the	same	package .404

Access	Modifiers	for	Java	Classes .408
Public classes .408
Nonpublic classes .409

From Classes Come Modules .410

CHAPTER 15: Fancy Reference Types . 411
Java’s	Types .411
The	Java	Interface .412

Declaring two interfaces .413
Implementing	interfaces .415
Putting the pieces together .417

Abstract Classes .420
Caring	for	your	pet .423
Using	all	your	classes .425

Relax!	You’re	Not	Seeing	Double! .427

CHAPTER 16: Java’s Juggling Act . 431
Juggling	Two	or	More	Calls .432

Events	and	event	handling .435
Follow the thread .436
Don’t	miss	this .437
Inside	the	actionPerformed	method .439

Some	Events	Aren’t	Button	Clicks .440
The	Inner	Sanctum .446

CHAPTER 17: Using Java Database Connectivity 451
Creating	a	Database	and	a	Table .452

Seeing	what	happens	when	you	run	the	code 453
Using SQL commands .454
Connecting and disconnecting .455

Putting	Data	in	the	Table .456
Retrieving	Data .457
Destroying	Data .459
One	Step	Beyond .461

PART 5: THE PART OF TENS . 463

CHAPTER 18: Ten Packs of Java Websites . 465
This	Book’s	Website .465
For	Business	Issues	Related	to	This	Book .465
Download the Java Development Kit .466

TOC.indd xii	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:55	PM

xii Java For Dummies

Your	Grandparents’	Java	Download	Site .466
The	Horse’s	Mouth .466
Join	Java	User	Groups .466
Find the Latest News about Java .466
Find	News,	Reviews,	and	Sample	Code .466
Got	a	Technical	Question	about	Anything? .467
Become	Involved	in	the	Future	of	Java .467

CHAPTER 19: Ten Bits of Advice for New Software
Developers . 469
How	Long	Does	It	Take	to	Learn	Java? .470
Which	of	Your	Books	Should	I	Read? .470
Are	Books	Other	than	Yours	Good	for	Learning	Java	and	
Android	Development? .471
Which	Computer	Programming	Language(s)	Should	I	Learn? 471
Which	Skills	Other	than	Computer	Coding	Should	I	Learn? 471
How	Should	I	Continue	My	Learning	as	a	Software	Developer?472
How	Else	Should	I	Continue	My	Learning	as	a	Developer? 472
How	Can	I	Land	a	Job	Developing	Software? .473
I	Still	Don’t	Know	What	to	Do	with	My	Life .473
If	I	Have	Other	Questions,	How	Can	I	Contact	You? 474

INDEX . 475

Introduction 1

Introduction.indd 1 Trim size: 7.375 in × 9.25 in February 22, 2022 8:56 PM

Introduction

W
hat’s all the fuss about Java? To help answer that question, I offer a few
facts:

 » More than a third of the world’s programmers use Java as one of their primary
programming languages. That’s at least 5.2 million programmers. And Java
powers more than 52 percent of the world’s back-end web services.*

 » Ninety percent of all Fortune 500 companies use Java.**

 » Websites that use Java include Google, YouTube, LinkedIn, Amazon,
and eBay.***

 » In 2021, Glassdoor, Inc., ranked jobs based on earnings potential, job satisfac-
tion, and number of available job openings. Among the company’s “50 Best
Jobs in America for 2021,” a career as a Java developer ranked number one.****

Sounds good. Right?

Please, read on.

About This Book
This book isn’t the usual dry techie guide. It’s written for normal human beings —
people with little or no programming experience. In this book, I divide Java into
manageable chunks. Each chunk is (more or less) a chapter on its own. I explain
concepts in plain language using complete code examples that you can download

* https://blog.jetbrains.com/idea/2020/09/a-picture-of-java-in-2020

** https://blogs.oracle.com/oracleuniversity/post/why-does-java-remain-
so-popular

*** www.frgconsulting.com/blog/why-is-java-so-popular-developers

**** www.glassdoor.com/List/Best-Jobs-in-America-LST_KQ0,20.htm

2 Java For Dummies

Introduction.indd 2 Trim size: 7.375 in × 9.25 in February 22, 2022 8:56 PM

and run. I keep each code example focused on a few key concepts. I resist the urge
to use fancy tricks that impress professional programmers. I expand on concepts
that may be difficult for newcomers. I add diagrams to help you visualize impor-
tant ideas. I provide exercises with each chapter along with solutions to the exer-
cises on the book’s website.

Finally, and most importantly — and without question the most significant of all
this book’s features — I throw in some jokes. I’ve written some good jokes and
lots of bad jokes. (I should say “lots and lots” of bad jokes.) I’ve hidden Easter
eggs in the text. I’ve added anecdotes about all kinds of topics. Some of the anec-
dotes are true, and many of them are . . . well, you figure it out.

Foolish Assumptions
In this book, I make a few assumptions about you, the reader. If one of these
assumptions is incorrect, you’re probably okay. If all these assumptions are incor-
rect, please buy the book anyway:

 » I assume that you have access to a computer. Here’s the good news: You
can run most of the code in this book on almost any computer. The only
computers you can’t use to run this code are ancient boxes that are more
than ten years old (give or take a few years).

 » I assume that you can navigate your computer’s common menus and
dialog boxes. You don’t have to be a Windows, Linux, or Macintosh power
user, but you should be able to start a program, find a file, put a file into a
certain directory — that sort of thing. Most of the time, when you follow
instructions in this book, you’re typing code on the keyboard, not pointing-
and-clicking the mouse.

 » I assume that you can think logically. That’s all there is to programming in
Java — thinking logically. If you can think logically, you have it made. If you
don’t believe that you can think logically, read on. You may be pleasantly
surprised.

 » I make few assumptions about your computer programming experience
(or your lack of such experience). In writing this book, I’ve tried to do the
impossible: Make the book interesting for experienced programmers yet
accessible to people with little or no programming experience. So I assume no
particular programming background on your part. If you’ve never created a
loop or indexed an array, that’s okay.

Introduction 3

Introduction.indd 3 Trim size: 7.375 in × 9.25 in February 22, 2022 8:56 PM

On the other hand, if you’ve done these things (maybe in Visual Basic, Python,
or C++), you’ll discover some interesting plot twists in Java. The developers of
Java took the best ideas in object-oriented programming, streamlined them,
reworked them, and reorganized them into a sleek, powerful way of thinking
about problems. You’ll find many new, thought-provoking features in Java. As
you find out about these features, many of them will seem quite natural to
you. One way or another, you’ll feel good about using Java.

Icons Used in This Book
If you could watch me write this book, you’d see me sitting at my computer, talk-
ing to myself. I say each sentence in my head. Most of the sentences, I mutter
several times. When I have an extra thought or a side comment that doesn’t belong
in the regular stream, I twist my head a little bit. That way, whoever’s listening to
me (usually, nobody) knows that I’m off on a momentary tangent.

Of course, in print, you can’t see me twisting my head. I need some other way to
set a side thought in a corner by itself. I do it with icons. When you see a Tip icon
or a Remember icon, you know that I’m taking a quick detour.

Here’s a list of icons that I use in this book:

A tip is an extra piece of information — a helpful tidbit that the other books may
forget to tell you.

Everyone makes mistakes. Heaven knows that I’ve made a few in my time. Any-
way, when I think people are especially prone to make a mistake, I mark it with a
Warning icon.

Sometimes I want to hire a skywriting airplane crew. “Barry,” says the white
smoky cloud, “if you want to compare two numbers, use the double equal sign.
Please don’t forget to do this.” Because I can’t afford skywriting, I have to settle
for a more modest option: I create a paragraph marked with the Remember icon.

“If you don’t remember what such-and-such means, see blah-blah-blah,” or
“For more information, read blahbity-blah-blah.”

4 Java For Dummies

Introduction.indd 4 Trim size: 7.375 in × 9.25 in February 22, 2022 8:56 PM

Writing computer code is an activity, and the best way to learn an activity is to
practice it. That’s why I’ve created things for you to try in order to reinforce your
knowledge. Many of these are confidence-builders, and some are more challeng-
ing. When you first start putting concepts into practice, you’ll discover all kinds of
issues, quandaries, and roadblocks that didn’t occur to you when you started
reading about the material. But that’s a good thing. Keep at it! Don’t become frus-
trated. Or, if you do become frustrated, visit this book’s website (http://
javafordummies.allmycode.com) for hints and solutions.

This icon calls attention to useful material that you can find online. Check it out!

Occasionally, I run across a technical tidbit. The tidbit may help you understand
what the people behind the scenes (the people who developed Java) were thinking.
You don’t have to read it, but you may find it useful. You may also find the tidbit
helpful if you plan to read other (geekier) books about Java.

Beyond the Book
In addition to what you’re reading right now, this book comes with a free, access-
anywhere Cheat Sheet containing code that you can copy and paste into your own
Java program. To get this Cheat Sheet, simply go to www.dummies.com and type
Java For Dummies Cheat Sheet in the Search box.

Where to Go from Here
If you’ve gotten this far, you’re ready to start reading about Java application
development. Think of me (the author) as your guide, your host, your personal
assistant. I do everything I can to keep things interesting and, most importantly,
to help you understand.

If you like what you read, send me a note. My email address, which I created just
for comments and questions about this book, is JavaForDummies@allmycode.com.
If email and chat aren’t your favorites, you can reach me instead on Twitter
(@allmycode) and on Facebook (www.facebook.com/allmycode). And don’t
forget — for the latest updates, visit this book’s website. The site’s address is
http://javafordummies.allmycode.com.

1
Part1.indd 5	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	9:01	PM

Getting Started
with Java

IN THIS PART . . .

Install	the	software	you	need	for	developing	Java	
programs.

Find	out	how	Java	fits	into	today’s	technology	scene.

Run	your	first	complete	Java	program.

Part1.indd 6	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	9:01	PM

CHAPTER 1 All about Java 7

1.indd 7	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:39	PM

Chapter 1
 All about Java

 Say what you want about computers. As far as I’m concerned, computers are
good for just two simple reasons:

» When computers do work, they feel no resistance, no stress, no bore-
dom, and no fatigue.		Your	computer	can	work	24/7	making	calculations	for	
 www.climateprediction.net 	 —	a	distributed	computing	project	to	model	
the	world	’	s	climate	change.	Or,	have	your	computer	crunch	numbers	for	
 Rosetta@home 	 —	a	site	that	models	proteins	to	help	cure	major	illnesses.	
Will	you	feel	sorry	for	my	computer	because	it’s	working	so	hard?	Will	the	
computer	complain?	No.	

	You	can	make	demands,	give	the	computer	its	orders,	and	crack	the	whip.	
Will	you	(or	should	you)	feel	the	least	bit	guilty?	Not	at	all.		

» Computers move ideas, not paper.		Not	long	ago,	whenever	you	wanted	
to	send	a	message	to	someone,	you	hired	a	messenger.	The	messenger	
mounted	a	horse	and	delivered	your	message	personally.	The	message	was	
recorded	on	paper	or	parchment	or	a	clay	tablet	or	whatever	other	physical	
medium	was	available	at	the	time.	

	This	whole	process	seems	wasteful	now,	but	that’s	only	because	you	and	
I	are	sitting	comfortably	in	the	electronic	age.	Messages	are	ideas,	and	
physical	objects	like	ink,	paper,	and	horses	have	little	or	nothing	to	do	with	
real	ideas;	they’re	just	temporary	carriers	for	ideas	(even	though	people	used	
them	for	several	centuries	to	carry	ideas).	Nevertheless,	the	ideas	themselves	
are	paperless,	horseless,	and	messengerless.	

 IN THIS CHAPTER

» What Java is

» Where Java came from

» Why Java is so cool

» How to orient yourself to object-
oriented programming

8 PART 1 Getting Started with Java

1.indd 8	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:39	PM

The	neat	thing	about	computers	is	that	they	carry	ideas	efficiently.	They	carry	
nothing	but	the	ideas,	a	couple	of	photons,	and	some	electrical	power.	They	
do	this	with	no	muss,	no	fuss,	and	no	extra	physical	baggage.

When you start dealing efficiently with ideas, something very nice happens:
Suddenly, all overhead is gone. Instead of pushing paper and trees, you’re pushing
numbers and concepts. Without the overhead, you can do things much faster and
do things that are far more complex than ever.

What You Can Do with Java
It would be nice if all this complexity were free, but, unfortunately, it isn’t. Some-
one has to think hard and decide exactly what to ask the computer to do. After that
thinking takes place, someone has to write a set of instructions for the computer
to follow.

Given the current state of affairs, you can’t write these instructions in English or
any other language that people speak. Science fiction is filled with stories about
people who make simple requests of robots and get back disastrous, unexpected
results. English and other such languages are unsuitable for communication with
computers, for several reasons:

 » An English sentence can be misinterpreted.	“Chew	one	tablet	three	times	a	
day	until	finished.”

 » It’s difficult to weave a complicated command in English.	“Join	flange	A	to	
protuberance	B,	making	sure	to	connect	only	the	outermost	lip	of	flange	A	to	
the	larger	end	of	the	protuberance	B	while	joining	the	middle	and	inner	lips	
of	flange	A	to	grommet	C.”

 » An English sentence has lots of extra baggage.	“Sentence	has	unneeded	
words.”

 » English can be difficult to interpret.	“As	part	of	this	Publishing	Agreement	
between	John	Wiley	&	Sons,	Inc.	(‘Wiley’)	and	the	Author	(‘Barry	Burd’),	Wiley	
shall	pay	the	sum	of	one-thousand-two-hundred-fifty-seven	dollars	and	
sixty-three	cents	($1,257.63)	to	the	Author	upon	submittal	of	Java For
Dummies,	8th	Edition	(‘the	Work’)	either	in	whole	or	in	part	as	determined	
by	Clause	9 in	Section 16	of	this	agreement	or	its	subsequent	amendments	
under	the	laws	of	the	State	of	Indiana.”

CHAPTER 1 All about Java 9

1.indd 9	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:39	PM

To tell a computer what to do, you have to use a special language to write terse,
unambiguous instructions. A special language of this kind is called a computer
programming language. A set of instructions written in such a language is called a
program. When looked at as a big blob, these instructions are called software or
code. Here’s what code looks like when it’s written in Java:

public class PayBarry {

 public static void main(String args[]) {

 double checkAmount = 1257.63;

 System.out.print("Pay to the order of ");

 System.out.print("Dr. Barry Burd ");

 System.out.print("$");

 System.out.println(checkAmount);

 }

}

Why You Should Use Java
It’s time to celebrate! You’ve just picked up a copy of Java For Dummies,
8th Edition, and you’re reading Chapter 1. At this rate, you’ll be an expert Java
programmer* in no time at all, so rejoice in your eventual success by throwing a
big party.

To prepare for the party, I’ll bake a cake. I’m lazy, so I’ll use a ready-to-bake cake
mix. Let me see: Add water to the mix and then add butter and eggs — hey, wait!
I just looked at the list of ingredients. What’s MSG? And what about propylene
glycol? That’s used in antifreeze, isn’t it?

I’ll change plans and make the cake from scratch. Sure, it’s a little harder, but that
way, I get exactly what I want.

Computer programs work the same way: You can use somebody else’s program or
write your own. If you use somebody else’s program, you use whatever you get.
When you write your own program, you can tailor the program especially for your
needs.

* In professional circles, a developer’s responsibilities are usually broader than those of
a programmer. But, in this book, I use the terms programmer and developer almost
interchangeably.

10 PART 1 Getting Started with Java

1.indd 10	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:39	PM

Writing computer code is a big, worldwide industry. Companies do it, freelance
professionals do it, hobbyists do it — all kinds of people do it. A typical big com-
pany has teams, departments, and divisions that write programs for the company.
But you can write programs for yourself or for someone else, for a living or for
fun. In a recent estimate, the number of lines of code written each day by pro-
grammers in the world exceeds the number of methane molecules on the planet
Jupiter.** Take almost anything that can be done with a computer — with the right
amount of time, you can write your own program to do it. (Of course, the “right
amount of time” may be quite long, but that’s not the point. Many interesting and
useful programs can be written in hours or even minutes.)

Gaining Perspective: Where Java Fits In
Here’s a brief history:

 » 1954–1957: FORTRAN is developed.

FORTRAN	was	the	first	modern	computer	programming	language.	For	
scientific	programming,	FORTRAN	is	a	real	racehorse.	Year	after	year,	
FORTRAN	is	a	leading	language	among	computer	programmers	throughout	
the	world.

 » 1959: Grace Hopper at Remington Rand develops the COBOL program-
ming language.

The	letter	B	in	COBOL	stands	for	Business,	and	business	is	just	what	COBOL	is	
all	about.	The	language’s	primary	feature	is	the	processing	of	one	record	after	
another,	one	customer	after	another,	or	one	employee	after	another.

Within	a	few	years	after	its	initial	development,	COBOL	became	the	most	
widely	used	language	for	business	data	processing.

 » 1972: Dennis Ritchie at AT&T Bell Labs develops the C programming
language.

The	“look	and	feel”	that	you	see	in	this	book’s	examples	comes	from	the	
C	programming	language.	Code	written	in	C	uses	curly	braces,	if	statements,	
for	statements,	and	other	elements.

In	terms	of	power,	you	can	use	C	to	solve	the	same	problems	that	you	can	
solve	by	using	FORTRAN	or	Java	or	any	other	modern	programming	language.	
(You	can	write	a	scientific	calculator	program	in	COBOL	but	doing	that	sort	of	
thing	would	feel	quite	strange.)	The	difference	between	one	programming	

** I made up this fact all by myself.

CHAPTER 1 All about Java 11

1.indd 11	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:39	PM

language	and	another	isn’t	power —	the	difference	is	ease	and	appropriate-
ness	of	use.	That’s	where	the	Java	language	excels.

 » 1986: Bjarne Stroustrup (also at AT&T Bell Labs) develops C++.

Unlike	its	C	language	ancestor,	the	language	C++	supports	object-oriented	
programming.	This	support	represents	a	huge	step	forward.	(See	the	next	
section	in	this	chapter.)

 » May 23, 1995: Sun Microsystems releases its first official version of the
Java programming language.

Java	improves	upon	the	concepts	in	C++.	Java	not	only	supports	object-
oriented	programming	but	also	enforces the use of	object-oriented	
programming.

Additionally,	Java	is	a	great	general-purpose	programming	language.	
A	program	written	in	Java	runs	seamlessly	on	all	major	platforms,	including	
Windows,	Macintosh,	and	Linux.	With	Java,	you	can	write	windowed	applica-
tions,	build	and	explore	databases,	control	handheld	devices,	and	more.	
Within	five	short	years,	the	Java	programming	language	has	2.5	million	
developers	worldwide.	(I	know —	I	have	a	commemorative	T-shirt	to	prove	it.)

 » November 2000: Java goes to school.

In	the	US,	the	College	Board	announces	that,	starting	in	the	year	2003,	the	
Computer	Science	Advanced	Placement	exams	will	be	based	on	Java.

 » 2004: Java is the top language on the world-famous TIOBE Index, and
stays on top for the next 15 years.

 » Also in 2004: Java goes into space!

A	robotic	rover,	named	Spirit,	runs	Java	code	to	explore	Mars.

 » January 2010: Oracle Corporation purchases Sun Microsystems, bringing
Java technology into the Oracle family of products.

 » August 2017: Oracle announces its plan to release new versions of Java
every six months.

Until	then,	new	Java	versions	became	available	once	every	few	years.	But	the	
release	of	Java	9 in	September	2017	is	followed	by	the	rollout	of	Java	10 in	
March	2018.	Up	next	is	Java	11 in	September	2018.

In	September	2021,	Java	17	is	a	long-term support	(LTS)	release.	This	means	
that	Oracle	promises	to	keep	Java	running	smoothly	until	at	least	September	
2026.	These	LTS	releases	come	every	two	years,	so	the	next	rock-solid,	
take-no-prisoners	version	of	Java	is	Java	21 in	September	2023.

The	new	release	cycle	has	injected	energy	into	the	evolution	of	the	Java	
programming	language.

 » May 2020: Java celebrates its 25th birthday.

12 PART 1 Getting Started with Java

1.indd 12	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:39	PM

Java technology powers applications of companies like Netflix, Alibaba, Tinder,
Uber, PayPal, the New York Times, Pinterest, Slack, Shopify, Twitter, Target, and
Wells Fargo.* The job search site Monster.com says:

“Java	is	one	of	the	most	popular	programming	languages	in	use,	so	it’s	no	surprise	
it	came	in	as	the	No.	1	skill	tech	companies	were	looking	for.	According	to	Oracle,	
3	billion	mobile	phones	run	Java,	along	with	125	million	TV	devices	and	89%	of	
desktop	computers	in	the	U.S. Java	is	everywhere	and	the	demand	for	strong	
developers	is	high.” **

Well, I’m impressed.

Object-Oriented Programming (OOP)
It’s three in the morning. I’m dreaming about the history course I failed in high
school. The teacher is yelling at me, “You have two days to study for the final
exam, but you won’t remember to study. You’ll forget and feel guilty, guilty,
guilty.”

Suddenly, the phone rings. I’m awakened abruptly from my deep sleep. (Sure,
I disliked dreaming about the history course, but I like being awakened even less.)
At first, I drop the telephone on the floor. After fumbling to pick it up, I issue a
grumpy, “Hello, who’s this?” A voice answers, “I’m a reporter from the Reuters
news agency. I’m writing an article about Java, and I need to know all about the
programming language in five words or less. Can you explain it?”

My mind is too hazy. I can’t think. So I say the first thing that comes to my mind
and then go back to sleep.

Come morning, I hardly remember the conversation with the reporter. In fact,
I don’t remember how I answered the question. Did I utter a few obscenities and
then go back to sleep?

* Sources:

www.softwaretestinghelp.com/real-world-applications-of-java, https://newrelic.
com/blog/nerd-life/what-you-can-do-with-java, https://vaadin.com/blog/the-state-
of-java, https://discovery.hgdata.com/product/spring-boot

** www.monster.com/career-advice/article/programming-languages-you-should-know

CHAPTER 1 All about Java 13

1.indd 13	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:39	PM

I put on my robe and rush out to my driveway. As I pick up the morning paper,
I glance at the front page and see this 2-inch headline:

Burd Calls Java “A Great Object-Oriented Language”

Object-oriented languages
Java is object-oriented. What does that mean? Unlike languages, such as FOR-
TRAN, that focus on giving the computer imperative “Do this/Do that” com-
mands, object-oriented languages focus on data. Of course, object-oriented
programs still tell the computer what to do. They start, however, by organizing
the data, and the commands come later.

Object-oriented languages are better than “Do this/Do that” languages because
they organize data in a way that helps people do all kinds of things with it. To
modify the data, you can build on what you already have rather than scrap every-
thing you’ve done and start over each time you need to do something new.
Although computer programmers are generally smart people, they took a while to
figure this out. For the full history lesson, see the nearby sidebar, “The winding
road from FORTRAN to Java” (but I won’t make you feel guilty if you don’t read it).

THE WINDING ROAD FROM
FORTRAN TO JAVA
In	the	mid-1950s,	a	team	of	people	created	a	programming	language	named	
FORTRAN. It	was	a	good	language,	but	it	was	based	on	the	idea	that	you	should	issue	
direct,	imperative	commands	to	the	computer.	“Do	this,	computer.	Then	do	that,	com-
puter.”	(Of	course,	the	commands	in	a	real	FORTRAN	program	were	much	more	precise	
than	“Do	this”	or	“Do	that.”)

In	the	years	that	followed,	teams	developed	many	new	computer	languages,	and	many	
of	the	languages	copied	the	FORTRAN	“Do	this/Do	that”	model.	One	of	the	more	popu-
lar	“Do	this/Do	that”	languages	went	by	the	1-letter	name	C.	Of	course,	the	“Do	this/Do	
that”	camp	had	some	renegades.	In	languages	named	SIMULA	and	Smalltalk,	program-
mers	moved	the	imperative	“Do	this”	commands	into	the	background	and	concentrated	
on	descriptions	of	data.	In	these	languages,	you	didn’t	come	right	out	and	say,	“Print	a	
list	of	delinquent	accounts.”	Instead,	you	began	by	saying,	“This	is	what	it	means	to	be	
an	account.	An	account	has	a	name	and	a	balance.”	Then	you	said,	“This	is	how	you	ask	
an	account	whether	it’s	delinquent.”	Suddenly,	the	data	became	king.	An	account	was	a	
thing	that	had	a	name,	a	balance,	and	a	way	of	telling	you	whether	it	was	delinquent.

(continued)

14 PART 1 Getting Started with Java

1.indd 14	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:39	PM

Languages	that	focus	first	on	the	data	are	called	object-oriented	programming	
languages.	These	object-oriented	languages	make	excellent	programming	tools.	
Here’s	why:

• Thinking	first	about	the	data	makes	you	a	good	computer	programmer.

• You	can	extend	and	reuse	the	descriptions	of	data	over	and	over	again.	When	you	
try	to	teach	old	FORTRAN	programs	new	tricks,	however,	the	old	programs	show	
how	brittle	they	are.	They	break.

In	the	1970s,	object-oriented	languages,	such	as	SIMULA	and	Smalltalk,	were	buried	in	
the	computer	hobbyist	magazine	articles.	In	the	meantime,	languages	based	on	the	old	
FORTRAN	model	were	multiplying	like	rabbits.

So,	in	1986	a	fellow	named	Bjarne	Stroustrup	created	a	language	named	C++. The
C++	language	became	popular	because	it	mixed	the	old	C	language	terminology	with	
the	improved	object-oriented	structure.	Many	companies	turned	their	backs	on	the	old	
FORTRAN/C	programming	style	and	adopted	C++	as	their	standard.

But	C++	had	a	flaw.	Using	C++,	you	could	bypass	all	the	object-oriented	features	and	
write	a	program	by	using	the	old	FORTRAN/C	programming	style.	When	you	started	
writing	a	C++	accounting	program,	you	could	take	either	fork	in	the	road:

• Start	by	issuing	direct	“Do	this”	commands	to	the	computer,	saying	the	mathemati-
cal	equivalent	of	“Print	a	list	of	delinquent	accounts,	and	make	it	snappy.”

• Choose	the	object-oriented	approach	and	begin	by	describing	what	it	means	to	be	
an	account.

Some	people	said	that	C++	offered	the	best	of	both	worlds,	but	others	argued	that	the	
first	world	(the	world	of	FORTRAN	and	C)	shouldn’t	be	part	of	modern	programming.	If	
you	gave	a	programmer	an	opportunity	to	write	code	either	way,	that	person	would	too	
often	choose	to	write	code	the	wrong	way.

So,	in	1995	James	Gosling	of	Sun	Microsystems	created	the	language	named	Java.	In	
creating	Java,	Gosling	borrowed	the	look	and	feel	of	C++.	But	Gosling	took	most	of	the	
old	“Do	this/Do	that”	features	of	C++	and	threw	them	in	the	trash.	Then	he	added	fea-
tures	that	made	the	development	of	objects	smoother	and	easier.	All	in	all,	Gosling	cre-
ated	a	language	whose	object-oriented	philosophy	is	pure	and	clean.	When	you	
program	in	Java,	you	have	no	choice	but	to	work	with	objects.	That’s	the	way	it	
should	be.

(continued)

CHAPTER 1 All about Java 15

1.indd 15	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:39	PM

Objects and their classes
In an object-oriented language, you use objects and classes to organize your data.

Imagine that you’re writing a computer program to keep track of the houses in a
new condominium development (still under construction). The houses differ only
slightly from one another. Each house has a distinctive siding color, an indoor
paint color, a kitchen cabinet style, and so on. In your object-oriented computer
program, each house is an object.

But objects aren’t the whole story. Although the houses differ slightly from one
another, all the houses share the same list of characteristics. For instance, each
house has a characteristic known as siding color. Each house has another charac-
teristic known as kitchen cabinet style. In your object-oriented program, you need a
master list containing all characteristics that a house object can possess. This
master list of characteristics is called a class.

So there you have it. Object-oriented programming is misnamed. It should be
called “programming with classes and objects.”

Now notice that I put the word classes first. How dare I do this! Well, maybe I’m
not so crazy. Think again about a housing development that’s under construction.
Somewhere on the lot, in a rickety trailer parked on bare dirt, is a master list of
characteristics known as a blueprint. An architect’s blueprint is like an object-
oriented programmer’s class. A blueprint is a list of characteristics that each
house will have. The blueprint says “siding.” The actual house object has gray
siding. The blueprint says “kitchen cabinet.” The actual house object has Louis
XIV kitchen cabinets.

The analogy doesn’t end with lists of characteristics. Another important parallel
exists between blueprints and classes. A year after you create the blueprint, you
use it to build ten houses. It’s the same with classes and objects. First, the pro-
grammer writes code to describe a class. Then when the program runs, the com-
puter creates objects from the (blueprint) class.

So that’s the real relationship between classes and objects. The programmer
defines a class, and from the class definition, the computer makes individual
objects.

What’s so great about an object-oriented
language?
Based on the preceding section’s story about home building, imagine that you’ve
already written a computer program to keep track of the building instructions for

16 PART 1 Getting Started with Java

1.indd 16	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:39	PM

houses in a new development. Then the big boss decides on a modified plan — a
plan in which half the houses have three bedrooms and the other half have four.

If you use the old FORTRAN/C style of computer programming, your instructions
look like this:

Dig a ditch for the basement.

Lay concrete around the sides of the ditch.

Place two-by-fours along the sides for the basement's frame.

...

This would be similar to an architect creating a long list of instructions instead of
a blueprint. To modify the plan, you have to sort through the list to find the
instructions for building bedrooms. To make matters worse, the instructions
might be scattered among pages xvii, 234, 394–410, 739, 10, and 2. If the builder
had to decipher other peoples’ complicated instructions, the task would be ten
times harder.

Starting with a class, however, is like starting with a blueprint. If you decide to
have both three- and four-bedroom houses, you can start with a blueprint called
the house blueprint — it has a ground floor and a second floor, but has no indoor
walls drawn on the second floor. Then you make two more second-floor
blueprints — one for the three-bedroom house and another for the four-bedroom
house. (You name these new blueprints the three-bedroom house blueprint and the
four-bedroom house blueprint.)

Your builder colleagues are amazed at your sense of logic and organization, but
they have concerns. They pose a question. “You called one of the blueprints the
‘three-bedroom house’ blueprint. How can you do this if it’s a blueprint for a
second floor and not for a whole house?”

You smile knowingly and answer, “The three-bedroom house blueprint can say,
‘For info about the lower floors, see the original house blueprint.’ That way, the
three-bedroom house blueprint describes a whole house. The four-bedroom
house blueprint can say the same thing. With this setup, we can take advantage of
all the work we already did to create the original house blueprint and save lots of
money.”

In the language of object-oriented programming, the three- and four-bedroom
house classes are inheriting the features of the original house class. You can also
say that the three- and four-bedroom house classes are extending the original
house class. (See Figure 1-1.)

CHAPTER 1 All about Java 17

1.indd 17	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:39	PM

The original house class is called the superclass of the three- and four-bedroom
house classes. In that vein, the three- and four-bedroom house classes are
subclasses of the original house class. Put another way, the original house class is
called the parent class of three- and four-bedroom house classes. The three- and
four-bedroom house classes are child classes of the original house class. (Refer to
Figure 1-1.)

Needless to say, your homebuilder colleagues are jealous. A crowd of homebuild-
ers is mobbing around you to hear about your great ideas. So, at that moment, you
drop one more bombshell: “By creating a class with subclasses, we can reuse the
blueprint in the future. If someone comes along and wants a five-bedroom house,
we can extend our original house blueprint by making a five-bedroom house
blueprint. We’ll never have to spend money for an original house blueprint again.”

“But,” says a colleague in the back row, “what happens if someone wants a
different first-floor design? Do we trash the original house blueprint or start
scribbling all over the original blueprint? That’ll cost big bucks, won’t it?”

In a confident tone, you reply, “We don’t have to mess with the original house
blueprint. If someone wants a Jacuzzi in their living room, we can make a new,
small blueprint describing only the new living room and call it the Jacuzzi-in-
living-room house blueprint. Then this new blueprint can refer to the original
house blueprint for info on the rest of the house (the part that’s not in the living
room).” In the language of object-oriented programming, the Jacuzzi-in-living-
room house blueprint still extends the original house blueprint. The Jacuzzi blue-
print is still a subclass of the original house blueprint. In fact, all the terminology
about superclass, parent class, and child class still applies. The only thing that’s

FIGURE 1-1:
Terminology	in	
object-oriented	
programming.

18 PART 1 Getting Started with Java

1.indd 18	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:39	PM

new is that the Jacuzzi blueprint overrides the living room features in the original
house blueprint.

In the days before object-oriented languages, the programming world experi-
enced a crisis in software development. Programmers wrote code and then dis-
covered new needs and then had to trash their code and start from scratch. This
problem happened over and over again because the code that the programmers
were writing couldn’t be reused. Object-oriented programming changed all this
for the better (and, as Burd said, Java is “A Great Object-Oriented Language”).

Objects and classes are everywhere
When you program in Java, you work constantly with classes and objects. These
two ideas are vitally important. That’s why, in this chapter, I hit you over the head
with one analogy after another about classes and objects.

Close your eyes for a minute and think about what it means for an item to be a
chair:

A chair has a seat, a back, and legs. Each seat has a shape, a color, a degree of soft-
ness, and other characteristics. These are the properties a chair possesses. What
I describe is chairness — the notion of an item being a chair. In object-oriented
terminology, I’m describing the Chair class.

Now peek over the edge of this book’s margin and take a minute to look around
the room. (If you’re not sitting in a room right now, fake it.)

Several chairs are in the room, and each chair is an object. Each of these objects is
an example of that ethereal thing called the Chair class. So that’s how it works —
the class is the idea of chairness, and each individual chair is an object.

A class isn’t quite a collection of things. Instead, a class is the idea behind a cer-
tain kind of thing. When I talk about the class of chairs in your room, I’m talking
about the fact that each chair has legs, a seat, a color, and so on. The colors may
be different for different chairs in the room, but that doesn’t matter. When you
talk about a class of things, you’re focusing on the properties that each of the
things possesses.

It makes sense to think of an object as being a concrete instance of a class. In fact,
the official terminology is consistent with this line of thinking. If you write a Java
program in which you define a Chair class, each actual chair (the chair you’re
sitting on, the empty chair next to you, and so on) is called an instance of the
Chair class.

CHAPTER 1 All about Java 19

1.indd 19	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:39	PM

Here’s another way to think about a class. Imagine a table displaying all three of
your bank accounts (see Table 1-1).

Think of the table’s column headings as a class and think of each row of the table
as an object. The table’s column headings describe the Account class.

According to the table’s column headings, each account has an account number, a
type, and a balance. Rephrased in the terminology of object-oriented program-
ming, each object in the Account class (that is, each instance of the Account class)
has an account number, a type, and a balance. So the bottom row of the table is an
object with account number 16-17238-13344-7. This same object has type Savings
and a balance of 247.38. If you opened a new account, you would have another
object and the table would grow an additional row. The new object would be an
instance of the same Account class.

What’s Next?
This chapter is filled with general descriptions of things. A general description is
good when you’re just getting started, but you don’t really understand things
until you get to know some specific info, as laid out in the next several chapters.

So please, turn the page. The next chapter can’t wait for you to read it.

TABLE 1-1 A Table of Accounts
Account	Number Type Balance

16-13154-22864-7 Checking 174.87

1011	1234	2122	0000 Credit –471.03

16-17238-13344-7 Savings 247.38

1.indd 20	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:39	PM

CHAPTER 2 All about Software 21

2.indd 21 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

Chapter 2
 All about Software

 T he best way to get to know Java is to do Java. When you’re doing Java, you’re
writing, testing, and running your own Java programs. This chapter
describes the kind of software you use for all those Java-related tasks. The

chapter has general instructions to help you set up your computer, but it has no
detailed instructions. If you want detailed instructions, visit this book ’ s website:
 http://JavaForDummies.allmycode.com .

 Get Ready for Java
 If you’re a seasoned veteran of computers and computing (whatever that means)
and you’re too jumpy to follow the detailed instructions on this book’s website,
you can try installing the required software by reading these general
instructions:

1. Install a Java Development Kit (JDK).

 A Java Development Kit is a bunch of software that makes all Java programs
work.

 But wait! What does it mean to make “all Java programs work"? I answer that
question later in this chapter, in the section “ The Inside Scoop .”

 To install a Java Development Kit, visit https://adoptium.net and follow that
website ’ s instructions.

 IN THIS CHAPTER

» Installing software development
tools

» Peeking inside the tools

» Writing and running your own Java
programs

22 PART 1 Getting Started with Java

2.indd 22 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

The https://adoptium.net site has several JDKs, written by several different
companies, and almost any of these kits will work with this book’s examples. If you
dislike the adoptium.net alternatives and you prefer instead to get the “official” JDK,
you can download it from www.oracle.com/java/technologies/downloads.
The problem with Oracle’s official version is” that it comes with a long, somewhat
confusing list of legal requirements. It’s probably okay to run this book’s examples
with Oracle’s JDK, but I’m not a lawyer and I’ve never even played one on TV. So I
always recommend taking the safest possible route — get Java from https://
adoptium.net.

2. Install an integrated development environment.

An integrated development environment (IDE) is a program to help you compose
and test new software. It’s like a glorified version of Microsoft Word for writing
computer code. For this book’s examples, you can use almost any IDE that
supports Java.

Here’s a list of IDEs that are most popular among professional developers:

• Eclipse (www.eclipse.org/downloads)

• IntelliJ IDEA (www.jetbrains.com/idea)

• NetBeans (https://netbeans.apache.org)

• Visual Studio Code, also known as VS Code (https://code.
visualstudio.com)

Some IDEs are made especially for students, educators, and other specialized
communities. These include BlueJ, DrJava, Greenfoot, JCreator, jGrasp, and
several others.

If you like roughing it, you can write and run Java programs without using an
IDE: Just type your Java program in a plain text editor (such as Windows
Notepad) and run the program on your operating system’s command line
(Windows MS-DOS, macOS Terminal, or whatever). It’s not fun to develop
software this way, but it makes you feel like a big shot.

This book’s website has detailed instructions for installing and using the most
commonly used IDEs.

3. Test your installed software.

What you do in this step depends on which IDE you choose in Step 2. Anyway,
here are some general instructions:

a. Launch your IDE (Eclipse, IntelliJ IDEA, NetBeans, or whatever).

b. In the IDE, create a new Java project.

c. Within the Java project, create a new Java class named Main. (Choosing
File ➪  New ➪  Java Class works in most IDEs.)

d. Edit the new Main.java file by typing the following lines of code:

CHAPTER 2 All about Software 23

2.indd 23 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

public class Main {

 public static void main(String[] args) {

 System.out.print(12345);

 }

}

For most IDEs, you add the code into a big (mostly blank) editor pane. Try to
type the code exactly as you see it here. If you see an uppercase letter, type
an uppercase letter. Do the same with all lowercase letters.

What? You say you don’t want to type a bunch of code from the book?
Well, all right then! Visit this book’s website (http://JavaForDummies.
allmycode.com) to download all the code examples and copy them into
the IDE of your choice.

e. Run Main.java and make sure that the run’s output reads 12345.

You may find variations on the picture that I paint in the preceding steps. For
example, some IDEs come with options for you to install a JDK. In those cases, you
can skip Step 1 and march straight to Step 2. Nevertheless, the picture that I paint
with the preceding steps is useful and reliable. When you follow my instructions,
you might end up with two copies of the JVM, or two IDEs, but that’s okay. You
never know when you’ll need a spare.

That’s it! But remember: Not everyone (computer geek or not) can follow
these skeletal instructions flawlessly. So, if you want more details, visit http://
JavaForDummies.allmycode.com.

The Inside Scoop
One of my acquaintances is a tool-and-die maker. She uses tools to make tools
(and dies). I once asked, “Who makes the tools that you use to make tools?” After
ignoring her smart-aleck answer, I guessed that a tool-and-die-toolmaker makes
tools for tool-and-die makers so that tool-and-die makers can make tools.

A computer programmer does the same kind of thing: A programmer uses existing
programs as tools to create new programs. The existing programs and new pro-
grams might perform very different kinds of tasks. For example, a Java program
(a program you create) might keep track of a business’s customers. To create that
customer-tracking program, you use several programs belonging to a Java Devel-
opment Kit. With a JDK’s programs, you can create many other useful programs —
customer-tracking programs, weather-predicting programs, gaming programs,
or programs that run on your mobile phone.

24 PART 1 Getting Started with Java

2.indd 24 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

A JDK contains at least 30 different programs — many more, if you count com-
pressed archives and other such items. This section deals with two of the most
important JDK components:

 » A compiler is a program that takes your Java code and turns that code into a
bunch of instructions called bytecode.

Humans can’t readily compose or decipher bytecode instructions. But certain
software that you run on your computer can interpret and carry out bytecode
instructions.

 » A Java virtual machine (JVM) is a program that interprets and carries out
bytecode instructions.

The rest of this section describes compilers and Java virtual machines.

What is a compiler?
A compiler is a program that takes your Java code turns that code into a bunch
of instructions called bytecode.

—Barry Burd, Java For Dummies, 8th Edition

You’re a human being. (Sure, every rule has exceptions. But if you’re reading this
book, you’re probably human.) Anyway, humans can write and comprehend the
code in Listing 2-1.

LISTING 2-1: Looking for a Vacant Room

// This is part of a Java program.
// It's not a complete Java program.

roomNum = 1;

while (roomNum < 100) {

 if (guests[roomNum] == 0) {

 out.println("Room " + roomNum + " is available.");
 exit(0);

 } else {

 roomNum++;
 }

}

out.println("No vacancy");

CHAPTER 2 All about Software 25

2.indd 25 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

The Java code in Listing 2-1 checks for vacancies in a small hotel (a hotel with
room numbers from 1 to 99). You can’t run the code in Listing 2-1 without adding
several lines. But here in Chapter 2, those additional lines aren’t important. What’s
important is that, by staring at the code, squinting a bit, and looking past all the
code’s strange punctuation, you can see what the code is trying to do:

Set the room number to 1.

As long as the room number is less than 100,

 Check the number of guests in the room.

 If the number of guests in the room is 0, then

 report that the room is available,

 and stop.

 Otherwise,

 prepare to check the next room by

 adding 1 to the room number.

If you get to the nonexistent room number 100, then

 report that there are no vacancies.

If you see no similarities between Listing 2-1 and its English equivalent, don’t
worry: You’re reading Java For Dummies, 8th Edition, and, like most human beings,
you can learn to read and write the code in Listing 2-1. The code in Listing 2-1 is
called Java source code.

Here’s the catch: Computers aren’t human beings. Computers don’t normally fol-
low instructions like the instructions in Listing 2-1. That is, computers don’t fol-
low Java source code instructions. Instead, computers follow cryptic instructions
like the ones in Listing 2-2.

LISTING 2-2: A Translation of Listing 2-1 into Java Bytecode

aload_0

iconst_1

putfield Hotel/roomNum I

goto 32

aload_0

getfield Hotel/guests [I

aload_0

getfield Hotel/roomNum I

iaload

ifne 26

getstatic java/lang/System/out Ljava/io/PrintStream;

new java/lang/StringBuilder

(continued)

26 PART 1 Getting Started with Java

2.indd 26 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

dup

ldc "Room "

invokespecial java/lang/StringBuilder/<init>(Ljava/lang/String;)V

aload_0

getfield Hotel/roomNum I

invokevirtual java/lang/StringBuilder/append(I)Ljava/lang/StringBuilder;

ldc " is available."

invokevirtual

 java/lang/StringBuilder/append(Ljava/lang/String;)Ljava/lang/StringBuilder;

invokevirtual java/lang/StringBuilder/toString()Ljava/lang/String;

invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V

iconst_0

invokestatic java/lang/System/exit(I)V

goto 32

aload_0

dup

getfield Hotel/roomNum I

iconst_1

iadd

putfield Hotel/roomNum I

aload_0

getfield Hotel/roomNum I

bipush 100

if_icmplt 5

getstatic java/lang/System/out Ljava/io/PrintStream;

ldc "No vacancy"

invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V

return

The instructions in Listing 2-2 aren’t Java source code instructions. They’re Java
bytecode instructions. When you write a Java program, you write source code
instructions (like the instructions in Listing 2-1). After you finish writing the
source code, your IDE runs a program (a translation tool) on your source code. The
program is a compiler. The compiler translates your source code instructions into
Java bytecode instructions. In other words, the compiler takes code that you can
write and understand (like the code in Listing 2-1) and translates it into code that
a computer has a fighting chance of carrying out (like the code in Listing 2-2).

You might put your source code in a file named Hotel.java. If so, the compiler
probably puts the Java bytecode in another file named Hotel.class. Normally,
you don’t bother looking at the bytecode in the Hotel.class file. In fact, the com-
piler doesn’t encode the Hotel.class file as ordinary text, so you can’t examine
the bytecode with an ordinary editor. If you try to open Hotel.class with

LISTING 2-2: (continued)

CHAPTER 2 All about Software 27

2.indd 27 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

Notepad, TextEdit, KWrite, or even Microsoft Word, you see nothing but dots,
squiggles, and other gobbledygook. To create Listing 2-2, I had to apply yet
another tool to my Hotel.class file. That tool displays a text-like version of a
Java bytecode file. I used Ando Saabas’s Java Bytecode Editor (https://set.ee/
jbe).

No one (except for a few crazy programmers in some isolated labs in faraway
places) writes Java bytecode. You run software (a compiler) to create Java byte-
code. The only reason to look at Listing 2-2 is to understand what a hard worker
your computer is.

What is a Java virtual machine?
A Java virtual machine (JVM) is a program that interprets and carries out
bytecode instructions.

—Barry Burd, Java For Dummies, 8th Edition

In the preceding “What is a compiler?” section, I make a big fuss about computers
following instructions like the ones in Listing 2-2. As fusses go, it’s a very nice
fuss. But if you don’t read every fussy word, you may be misguided. The exact
wording is “. . . computers follow cryptic instructions like the ones in Listing 2-2.”
The instructions in Listing 2-2 are a lot like instructions that a computer can exe-
cute, but generally, computers don’t execute Java bytecode instructions. Instead,
each kind of computer processor has its own set of executable instructions, and
each computer operating system uses the processor’s instructions in a slightly
different way.

Here’s a hypothetical situation: The year is 1992 (a few years before Java was
made public) and you run the Linux operating system on a computer that has an
old Pentium processor. Your friend runs Linux on a computer with a different kind
of processor — a PowerPC processor. (In the 1990s, Intel Corporation made Pen-
tium processors, and IBM made PowerPC processors.)

Listing 2-3 contains a set of instructions to display Hello world! on the com-
puter screen.* The instructions work on a Pentium processor running the Linux
operating system.

* I paraphrase these Intel instructions from Konstantin Boldyshev’s Linux Assembly HOWTO
document (http://tldp.org/HOWTO/Assembly-HOWTO/hello.html).

28 PART 1 Getting Started with Java

2.indd 28 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

LISTING 2-3: A Simple Program for a Pentium Processor

.data

msg:

 .ascii "Hello, world!\n"

 len = . - msg

.text

 .global _start

_start:

 movl $len,%edx

 movl $msg,%ecx

 movl $1,%ebx

 movl $4,%eax

 int $0x80

 movl $0,%ebx

 movl $1,%eax

 int $0x80

Listing 2-4 contains another set of instructions to display Hello world! on the
screen.** The instructions in Listing 2-4 work on a PowerPC processor running
Linux.

LISTING 2-4: A Simple Program for a PowerPC Processor

.data

msg:

 .string "Hello, world!\n"

 len = . - msg

.text

 .global _start

_start:

 li 0,4

 li 3,1

 lis 4,msg@ha

 addi 4,4,msg@l

 li 5,len

 sc

 li 0,1

 li 3,1

 sc

** I paraphrase the PowerPC code from Hollis Blanchard’s PowerPC Assembly (www.ibm.
com/developerworks/library/l-ppc). Hollis also reviewed and critiqued this “What is a
Java virtual machine?” section for me. Thank you, Hollis.

CHAPTER 2 All about Software 29

2.indd 29 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

The instructions in Listing 2-3 run smoothly on a Pentium processor. But these
instructions mean nothing to a PowerPC processor. Likewise, the instructions in
Listing 2-4 run nicely on a PowerPC, but these same instructions are complete
gibberish to a computer with a Pentium processor. So your friend’s PowerPC soft-
ware might not be available on your computer. And your Intel computer’s soft-
ware might not run at all on your friend’s computer.

Now go to your cousin’s house. Your cousin’s computer has a Pentium processor
(just like yours), but your cousin’s computer runs Windows instead of Linux. What
does your cousin’s computer do when you feed it the Pentium code in Listing 2-3?
It screams, “Not a valid Win32 application” or “Windows can’t open this file.”
What a mess!

Java bytecode creates order from all this chaos. Unlike the code in Listings 2-3
and 2-4, Java bytecode isn’t specific to one kind of processor or to a single operat-
ing system. Instead, any kind of computer can have a Java virtual machine, and
Java bytecode instructions run on any computer’s Java virtual machine. The JVM
that runs on a Pentium with Linux translates Java bytecode instructions into the
kind of code you see in Listing 2-3. And the JVM that runs on a PowerPC with
Linux translates Java bytecode instructions into the kind of code you see in
Listing 2-4. The same kind of translation takes place for modern processors, like
the Intel i9 and the ARM M1.

If you write a Java program and compile that Java program into bytecode, then the
JVM on your computer can run the bytecode, the JVM on your friend’s computer
can run the bytecode, and the JVM on your grandmother’s supercomputer can run
the bytecode.

For a look at some Java bytecode, see Listing 2-2. Remember: You never have to
write or decipher Java bytecode. Writing bytecode is the compiler’s job. Decipher-
ing bytecode is the Java virtual machine’s job.

With Java, you can take a bytecode file that you created with a Windows computer,
copy the bytecode to who-knows-what kind of computer, and then run the byte-
code with no trouble. That’s one of the many reasons Java has become popular so
quickly. This outstanding feature, which gives you the ability to run code on many
different kinds of computers, is called portability.

What makes Java bytecode so versatile? This fantastic universality enjoyed by Java
bytecode programs comes from the Java virtual machine. The Java virtual machine
is one of those three tools that you must have on your computer.

Imagine that you’re the Windows representative to the United Nations Security
Council. (See Figure 2-1.) The Macintosh representative is seated to your right,
and the Linux representative is to your left. (Naturally, you don’t get along with

30 PART 1 Getting Started with Java

2.indd 30 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

either of these people. You’re always cordial to one another, but you’re never sin-
cere. What do you expect? It’s politics!) The distinguished representative from
Java is at the podium. The Java representative is speaking in bytecode, and neither
you nor your fellow ambassadors (Mac and Linux) understand a word of Java
bytecode.

But each of you has an interpreter. Your interpreter translates from bytecode to
Windows while the Java representative speaks. Another interpreter translates
from bytecode to Macintosh-ese. And a third interpreter translates bytecode into
Linux-speak.

Think of your interpreter as a virtual ambassador. The interpreter doesn’t really
represent your country, but the interpreter performs one of the important tasks
that a real ambassador performs. The interpreter listens to bytecode on your
behalf. The interpreter does what you would do if your native language were Java
bytecode. The interpreter pretends to be the Windows ambassador and sits through
the boring bytecode speech, taking in every word and processing each word in
some way or another.

You have an interpreter — a virtual ambassador. In the same way, a Windows
computer runs its own bytecode-interpreting software. That software is the Java
virtual machine.

FIGURE 2-1:
An imaginary

meeting of the
UN Security

Council.

CHAPTER 2 All about Software 31

2.indd 31 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

A Java virtual machine is a proxy, an errand boy, a go-between. The JVM serves as
an interpreter between Java’s run-anywhere bytecode and your computer’s own
system. While it runs, the JVM walks your computer through the execution of
bytecode instructions. The JVM examines your bytecode, bit by bit, and carries out
the instructions described in the bytecode. The JVM interprets bytecode for your
Windows system, your Mac, or your Linux box, or for whatever kind of computer
you’re using. That’s a good thing. It’s what makes Java programs more portable
than programs in any other language.

Developing Software
All this has happened before, and it will all happen again.

—Peter Pan (J. M. Barrie) and Battlestar Galactica
(2003–2009, NBC Universal)

When you create a Java program, you repeat the same steps over and over again.
Figure 2-2 illustrates the cycle.

First, you write a program. After writing the first draft, you repeatedly compile,
run, and modify the program. With a little experience, the compile and run steps
become easy to carry out. In many cases, one mouse-click starts the compilation
or the run.

However, writing the first draft and modifying the code are not one-click tasks.
Developing code requires time and concentration.

FIGURE 2-2:
Developing a

Java program.

32 PART 1 Getting Started with Java

2.indd 32 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

Never be discouraged when the first draft of your code doesn’t work. For that
matter, never be discouraged when the 25th draft of your code doesn’t work.
Rewriting code is one of the most important things you can do (aside from ensur-
ing world peace).

When people talk about writing programs, they use the wording in Figure 2-2.
They say, “You compile the code” and “You run the code.” But the “you” isn’t
always accurate, and the “code” differs slightly from one part of the cycle to the
next. Figure 2-3 describes the cycle from Figure 2-2 in a bit more detail.

For most people’s needs, Figure 2-3 contains too much information. If I click a
Run icon, I don’t have to remember that the computer runs code on my behalf.
And, for all I care, the computer can run my original Java code or some bytecode
knockoff of my original Java code. In fact, many times in this book, I casually write
“when you run your Java code,” or “when the computer runs your Java program.”
You can live a very happy life without looking at Figure 2-3. The only use for
Figure 2-3 is to help you if the loose wording in Figure 2-2 confuses you. If
Figure 2-2 doesn’t confuse you, ignore Figure 2-3.

Spoiler Alert!
In the next chapter, you start running Java code. That’s what you really want from
this book. Isn’t it?

FIGURE 2-3:
Who does what

with which code?

CHAPTER 3 Using the Basic Building Blocks 33

3.indd 33 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

Chapter 3
 Using the Basic Building
Blocks

 “Bce мыcли, кoтopыe имeют oгpoмныe пocлeдcтвия вceгдa пpocты.
(All great ideas are simple.)”

 —LEO TOLSTOY

 T he quotation applies to all kinds of things — things like life, love, and com-
puter programming. That’s why this chapter takes a multilayered approach.
In this chapter, you get your fi rst details about Java programming. And in

discovering details, you’ll see the simplicities.

 Speaking the Java Language
 If you try to picture in your mind the entire English language, what do you see?
Maybe you see words, words, words. (That’s what Hamlet saw.) Looking at the
language under a microscope, you see one word after another. The bunch-of-
words image is fi ne, but if you step back a bit, you may see two other things:

» The language’s grammar

» Thousands of expressions, sayings, idioms, and historical names

 IN THIS CHAPTER

» Speaking the Java language: The API
and the language specifi cation

» Taking a fi rst glance at Java code

» Understanding the parts of a simple
program

» Documenting your code

34 PART 1 Getting Started with Java

3.indd 34 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

The first category (the grammar) includes rules like this: “The verb agrees with
the noun in number and person.” The second category (expressions, sayings, and
stuff) includes knowledge like this: “Julius Caesar was a famous Roman emperor,
so don’t name your son Julius Caesar, unless you want him to get beaten up every
day after school.”

The Java programming language has all the aspects of a spoken language like
English. Java has words, grammar, commonly used names, stylistic idioms, and
other such elements.

The grammar and the common names
The people at Sun Microsystems who created Java thought of Java as having sep-
arate parts. Just as English has its grammar and commonly used names, the Java
programming language has its specification (its grammar) and its application
programming interface (its commonly used names). Along with these parts come
two important documents:

 » The Java Language Specification: This documentation includes rules like
this: “Always put an open parenthesis after the word for” and “Use an asterisk
to multiply two numbers.”

 » The API Specification: Java’s application programming interface (API) contains
thousands of names that were added to Java after the language’s grammar
was defined. These names range from the commonplace to the exotic. For
example, one name — the name JFrame — represents a window on your
computer’s screen. A more razzle-dazzle name — pow — helps you raise 5 to
the tenth power or raise whatever to the whatever-else power. Other names
help you listen for the user’s button clicks, query databases, and do all kinds
of useful things.

You can download the language specification by poking around at http://docs.
oracle.com/javase/specs, but I don’t recommend doing it. With the language
spec, you can settle subtle arguments about edge cases in the behavior of Java
programs. But the spec is far too detailed for the day-to-day study of Java.

The second document — the API Specification — is the go-to document for most
of your Java programming needs. The API contains thousands and thousands of
names and keeps growing with each new Java language release. That may seem
scary, but there’s good news — you don’t have to memorize anything in the
API. Nothing. None of it. You can look up the stuff you need to use in the docu-
mentation and ignore the stuff you don’t need. What you use often, you’ll remem-
ber. What you don’t use often, you’ll forget (like any other programmer).

CHAPTER 3 Using the Basic Building Blocks 35

3.indd 35 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

The API document for Java 17 lives online at https://docs.oracle.com/en/
java/javase/17/docs/api/index.html.

No one knows all there is to know about the Java API. If you’re a Java programmer
who frequently writes programs that open new windows, you know how to use the
API JFrame class. If you seldom write programs that open windows, the first few
times you need to create a window, you can look up the JFrame class in the API
documentation. My guess is that if you prevented a typical Java programmer from
looking up anything in the API documentation, the programmer would be able to
use less than 2 percent of all names in the Java API.

You may love the For Dummies style, but unfortunately, Java’s official API docu-
mentation isn’t written that way. The API documentation is both concise and pre-
cise. For some help in deciphering the API documentation’s language and style,
see this book’s website (http://JavaForDummies.allmycode.com).

In a way, nothing about the Java API is special. Whenever you write a Java
 program — even the smallest, simplest Java program — you create a class that’s
on par with any of the classes defined in the official Java API. The API is just a set
of classes and other names that were created by ordinary programmers who hap-
pen to participate in the official Java Community Process (JCP). Unlike the names
you create, the names in the API are distributed with every version of Java. (I’m
assuming that you, the reader, are not a participant in the Java Community Pro-
cess. But, with a fine book like Java For Dummies, 8th Edition, one never knows.)

If you’re interested in the JCP’s activities, visit www.jcp.org.

The folks at the JCP don’t keep the Java programs in the official Java API a secret.
If you want, you can look at all these programs. When you install Java on your
computer, the installation puts a file named src.zip on your hard drive. You can
open src.zip with your favorite unzipping program. There, before your eyes, is
all the Java API code.

The words in a Java program
A hard-core Javateer will say that the Java programming language has four kinds
of words: keywords, restricted keywords, literals, and identifiers. This is true. But
the bare truth, with no other explanation, isn’t useful. So, I dress up the truth a bit
by thinking in terms of three kinds of words: keywords, identifiers that ordinary
programmers like you and I create, and identifiers from the API.

The differences among these three kinds of words are similar to the differences
among words in the English language. In the sentence “Sam is a person,” the
word person is like a Java keyword. No matter who uses the word person, the word

36 PART 1 Getting Started with Java

3.indd 36 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

always means roughly the same thing. (Sure, you can think of bizarre exceptions
in English usage, but please don’t.)

The word Sam is like a Java identifier because Sam is a name for a particular per-
son. Words like Sam, Dinswald, and McGillimaroo aren’t prepacked with meaning in
the English language. These words apply to different people, depending on the
context, and become names when parents pick one for their newborn kid.

Now consider the sentence “Julius Caesar is a person.” If you utter this sentence,
you’re probably talking about the fellow who ruled Rome until the Ides of March.
Although the name Julius Caesar isn’t hardwired into the English language, almost
everyone uses the name to refer to the same person. If English were a program-
ming language, the name Julius Caesar would be an API identifier.

Here’s how I, in my mind, divide the words in a Java program into categories:

 » Keywords: A keyword is a word that has its own special meaning in the Java
programming language, and that meaning doesn’t change from one program
to another. Examples of keywords in Java are if, else, and do.

The JCP committee members, who have the final say on what constitutes a
Java program, have chosen all the Java keywords. If you think about the two
parts of Java, which I discuss earlier, in the section “The grammar and the
common names,” the Java keywords belong solidly to the language
specification.

 » Identifiers: An identifier is a name for something. The identifier’s meaning can
change from one program to another, but some identifiers’ meanings tend to
change more:

• Identifiers created by you and me: As a Java programmer (yes, even as a
novice Java programmer), you create new names for classes and other
items you describe in your programs. Of course, you may name something
Prime, and your coworker writing code two cubicles down the hall can
name something else Prime. That’s okay because Java has no predeter-
mined meaning for Prime. In your program, you can make Prime stand for
the Federal Reserve’s prime rate. And your friend down the hall can make
Prime stand for the “bread, roll, preserves, and prime rib.” No conflict
arises, because you and your coworker are writing two different Java
programs.

• Identifiers from the API: The JCP members have created names for many
things and thrown tens of thousands of these names into the Java API.
The API comes with each version of Java, so these names are available to
anyone who writes a Java program. Examples of such names are String,
Integer, JWindow, JButton, JTextField, and File.

CHAPTER 3 Using the Basic Building Blocks 37

3.indd 37 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

Strictly speaking, the meanings of the identifiers in the Java API aren’t cast in
stone. Although you can make up your own meanings for JButton or JWindow, this
isn’t a good idea. If you did, you would confuse the dickens out of other program-
mers, who are used to the standard API meanings for these familiar identifier
names. But even worse, when your code assigns a new meaning to an identifier like
JButton, you lose any computational power that was created for the identifier in
the API code. The programmers at Sun Microsystems, Oracle, and the Java Com-
munity Process did all the work of writing Java code to handle buttons. If you
assign your own meaning to JButton, you’re turning your back on all the progress
made in creating the API.

To see the list of Java keywords, go to www.dummies.com and enter Beginning Pro-
gramming with Java For Dummies cheat sheet in the Search box.

Checking Out Java Code for the First Time
The first time you look at somebody else’s Java program, you may tend to feel a bit
queasy. The realization that you don’t understand something (or many things) in
the code can make you nervous. I’ve written hundreds (maybe thousands) of Java
programs, but I still feel insecure when I start reading someone else’s code.

The truth is that finding out about a Java program is a bootstrapping experience.
First, you gawk in awe of the program. Then you run the program to see what it
does. Then you stare at the program for a while or read someone’s explanation of
the program and its parts. Then you gawk a little more and run the program again.
Eventually, you come to terms with the program. (Don’t believe the wise guys who
say they never go through these steps. Even the experienced programmers
approach a new project slowly and carefully.)

In Listing 3-1, you get a blast of Java code. (Like all novice programmers, you’re
expected to gawk humbly at the code.) Hidden in the code, I’ve placed some
important ideas, which I explain in detail in the next section. These ideas include
the use of classes, methods, and Java statements.

LISTING 3-1: The Simplest Java Program

public class Displayer {

 public static void main(String[] args) {

 System.out.println("You'll love Java!");

 }

}

38 PART 1 Getting Started with Java

3.indd 38 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

You don’t have to type the code in Listing 3-1 (or in any of this book’s listings).
To download all the code in this book, visit the book’s website (http://JavaFor
Dummies.allmycode.com).

When you run the program from Listing 3-1, the computer displays You'll love
Java!. (Figure 3-1 shows the output of the Displayer program.) Now, I admit that
writing and running a Java program is a lot of work just to get You'll love Java!
to appear on somebody’s computer screen, but every endeavor has to start
somewhere.

This book’s website (http://JavaForDummies.allmycode.com) has instructions
to help you run Java programs such as the code in Listing 3-1.

In the following section, you do more than just admire the program’s output.
After you read the following section, you actually understand what makes the
program in Listing 3-1 work.

Understanding a Simple Java Program
This section presents, explains, analyzes, dissects, and otherwise demystifies the
Java program shown previously in Listing 3-1.

The Java class
Because Java is an object-oriented programming language, your primary goal is to
describe classes and objects. (If you’re not convinced about this, read the sections
on object-oriented programming in Chapter 1.)

On those special days when I’m feeling sentimental, I tell people that Java is more
pure in its object-orientation than many other so-called object-oriented lan-
guages. I say this because, in Java, you can’t do anything until you create a class
of some kind. It’s like being on Jeopardy! and hearing the host say, “Let’s go to a
commercial” and then interrupting that person by saying, “I’m sorry — you can’t
issue an instruction without putting your instruction inside a class.”

FIGURE 3-1:
Running the
program in
Listing 3-1.

CHAPTER 3 Using the Basic Building Blocks 39

3.indd 39 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

The code in Listing 3-1 is a Java program, and that program describes a class.
I wrote the program, so I get to make up a name for my new class. I chose the
name Displayer because the program displays a line of text on the computer
screen. That’s why the first line in Listing 3-1 contains the words class
Displayer. (See Figure 3-2.)

The first two words in Listing 3-1, public and class, are Java keywords. (See the
section “The words in a Java program,” earlier in this chapter.) No matter who
writes a Java program, the words public and class are always used in the same
way. On the other hand, Displayer in Listing 3-1 is an identifier. (I made up the
word Displayer while I was writing this chapter.) Displayer is the name of a
particular class — the class that I’m creating by writing this program.

This book is filled with talk about classes, but for the best description of a Java
class (the reason for using the word class in Listing 3-1), visit Chapter 7. The
word public means that other Java classes (classes other than the Displayer
class in Listing 3-1) can use the features declared in Listing 3-1. For more details
about the meaning of public and the use of the word public in a Java program,
see Chapters 7 and 14.

tHE jAVA PROGRAMMING LANGUAGE IS cASe-sEnsITiVE. If you change a lower-
case letter in a word to an UpperCase letter, you can change the word’s meaning.
cHANGING case can make the entire word go from being meaningful to being
meaningless. In the first line of Listing 3-1, you can’t replace class with Class. iF
YOU DO, THE WHOLE PROGRAM STOPS WORKING. The same holds true, to some
extent, for the name of a file containing a particular class. For example, the name
of the class in Listing 3-1 is Displayer, starting with an uppercase letter D. So, it’s
a good idea to save the code of Listing 3-1 in a file named Displayer.java, start-
ing with an uppercase letter D.

FIGURE 3-2:
A Java program

is a class.

40 PART 1 Getting Started with Java

3.indd 40 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

Normally, if you define a class named DogAndPony, the class’s Java code is in a file
named DogAndPony.java, spelled and capitalized exactly the same way that the
class name is spelled and capitalized. In fact, this file naming convention is man-
datory for most examples in this book.

The Java method
You’re working as an auto mechanic in an upscale garage. Your boss, who’s always
in a hurry and has a habit of running words together, says, “fixTheAlternator
on that junkyOldFord.” Mentally, you run through a list of tasks: “Drive the car
into the bay, lift the hood, find a wrench, loosen the alternator belt,” and so on.
Three things are going on here:

 » You have a name for what you’re supposed to do. The name is
fixTheAlternator.

 » In your mind, you have a list of tasks associated with the name
fixTheAlternator. The list includes “Drive the car into the bay, lift the hood,
find a wrench, loosen the alternator belt,” and so on.

 » You have a grumpy boss who’s telling you to do all this work. Your boss
gets you working by saying, “fixTheAlternator.” In other words, your boss gets
you working by saying the name of what you’re supposed to do.

In this scenario, using the word method wouldn’t be a big stretch. You have a
method for doing something with an alternator. Your boss calls that method into
action, and you respond by doing all the things in the list of instructions that you
associate with the method.

If you believe all that (and I hope you do), you’re ready to read about Java meth-
ods. In Java, a method is a list of things to do. Every method has a name, and you
tell the computer to do the things in the list by using the method’s name in your
program.

I’ve never written a program to get a robot to fix an alternator. But, if I did, the
program might include a fixTheAlternator method. The list of instructions in
my fixTheAlternator method would look something like the text in
Listing 3-2.

Don’t scrutinize Listings 3-2 and 3-3 too carefully — all the code in them is fake!
I made up this code so that it looks a lot like real Java code, but it’s not real. What’s
more important, the code in Listings 3-2 and 3-3 isn’t meant to illustrate all the
rules about Java. So, if you have a grain of salt handy, take it with Listings 3-2
and 3-3.

CHAPTER 3 Using the Basic Building Blocks 41

3.indd 41 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

LISTING 3-2: A Method Declaration

void fixTheAlternator(onACertainCar) {

 driveInto(car, bay);

 lift(hood);

 get(wrench);

 loosen(alternatorBelt);

 ...

}

Somewhere else in my Java code (somewhere outside of Listing 3-2), I need an
instruction to call my fixTheAlternator method into action. The instruction to
call the fixTheAlternator method into action may look like the line in
Listing 3-3.

LISTING 3-3: A Method Call

fixTheAlternator(junkyOldFord);

Now that you have a basic understanding of what a method is and how it works,
you can dig a little deeper into some useful terminology:

 » If I’m being lazy, I refer to the code in Listing 3-2 as a method. If I’m not being
lazy, I refer to this code as a method declaration.

 » The method declaration in Listing 3-2 has two parts. The first line (the part
with fixTheAlternator in it, up to but not including the open curly brace) is
a method header. The rest of Listing 3-2 (the part surrounded by curly braces)
is a method body.

 » The term method declaration distinguishes the list of instructions in Listing 3-2
from the instruction in Listing 3-3, which is known as a method call.

A method’s declaration tells the computer what happens if you call the method into
action. A method call (a separate piece of code) tells the computer to actually call
the method into action. A method’s declaration and the method’s call tend to be in
different parts of the Java program.

The main method in a program
Figure 3-3 has a copy of the code from Listing 3-1. The bulk of the code contains
the declaration of a method named main. (Just look for the word main in the code’s

42 PART 1 Getting Started with Java

3.indd 42 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

method header.) For now, don’t worry about the other words in the method
header: public, static, void, String, and args. I explain these words in the next
several chapters.

Like any Java method, the main method is a recipe:

How to make biscuits:

 Heat the oven.

 Roll the dough.

 Bake the rolled dough.

or

How to follow the main instructions for a Displayer:

 Print "You'll love Java!" on the screen.

The word main plays a special role in Java. In particular, you never write code that
explicitly calls a main method into action. The word main is the name of the
method that is called into action automatically when the program begins running.

Look back at Figure 3-1. When the Displayer program runs, the computer auto-
matically finds the program’s main method and executes any instructions inside
the method’s body. In the Displayer program, the main method’s body has only
one instruction. That instruction tells the computer to print You'll love Java!
on the screen. So, in Figure 3-1, You'll love Java! appears on the computer
screen.

The instructions in a method aren’t executed until the method is called into action.
But, if you give a method the name main, that method is called into action
automatically.

FIGURE 3-3:
The main
method.

CHAPTER 3 Using the Basic Building Blocks 43

3.indd 43 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

Almost every computer programming language has something akin to Java’s
methods. If you’ve worked with other languages, you may remember terms like
functions, procedures, subprograms, subroutines, and good ol’ PERFORM statements.
Whatever you call it in your favorite programming language, a method is a bunch
of instructions collected and given a new name.

How you finally tell the computer
to do something
Buried deep in the heart of Listing 3-1 is the single line that actually issues a direct
instruction to the computer. The line, which is highlighted in Figure 3-4, tells the
computer to display You'll love Java!. This line is a statement. In Java, a state-
ment is a direct instruction that tells the computer to do something (for example,
display this text, put 7 in that memory location, make a window appear).

In System.out.println, the next-to-last character is a lowercase letter l, not a
digit 1.

Of course, Java has different kinds of statements. A method call, which I introduce
in the earlier section “The Java method,” is one of the many kinds of Java state-
ments. Listing 3-3 shows you what a method call looks like, and Figure 3-4 also
contains a method call that looks like this:

System.out.println("You'll love Java!");

When the computer executes this statement, the computer calls into action a
method named System.out.println. (Yes, in Java, a name can have dots in it. The
dots mean something.)

I said it already, but it’s worth repeating: In System.out.println, the next-to-
last character is a lowercase letter l (as in the word line), not a digit 1 (as in the num-
ber one). If you use a digit 1, your code won’t work. Just think of println as a way
of saying “print line” and you won’t have any problem.

FIGURE 3-4:
A Java statement.

44 PART 1 Getting Started with Java

3.indd 44 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

To learn the meaning behind the dots in Java names, see Chapters 7 and 14.

Figure 3-5 illustrates the System.out.println situation. Actually, two methods
play active roles in the running of the Displayer program. Here’s how they work:

 » There’s a declaration for a main method. I wrote the main method myself.
This main method is called automatically whenever I run the
Displayer program.

 » There’s a call to the System.out.println method. The method call for the
System.out.println method is the only statement in the body of the main
method. In other words, calling the System.out.println method is the only
item on the main method’s to-do list.

The declaration for the System.out.println method is buried inside the
official Java API. For a refresher on the Java API, see the sections “The gram-
mar and the common names” and “The words in a Java program,” earlier in
this chapter.

FIGURE 3-5:
Calling the

System.out.
println method.

CHAPTER 3 Using the Basic Building Blocks 45

3.indd 45 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

When I say things like, “System.out.println is buried inside the API,” I’m not
doing justice to the API. True, you can ignore all the nitty-gritty Java code inside
the API. All you need to remember is that System.out.println is defined some-
where inside that code. But I’m not being fair when I make the API code sound like
something magical. The API is just another bunch of Java code. The statements in
the API that tell the computer what it means to carry out a call to System.out.
println look a lot like the Java code in Listing 3-1.

In Java, each statement (like the boxed line in Figure 3-4) ends with a semicolon.
Other lines in Figure 3-4 don’t end with semicolons, because the other lines in
Figure 3-4 aren’t statements. For instance, the method header (the line with the
word main in it) doesn’t directly tell the computer to do anything. The method
header announces, “Just in case you ever want to do main, the next few lines of
code tell you how to do it.”

Every complete Java statement ends with a semicolon.

Brace yourself
Long ago, or maybe not so long ago, your schoolteachers told you how useful out-
lines are. With an outline, you can organize thoughts and ideas, help people see
forests instead of trees, and generally show that you’re a member of the Tidy Per-
sons Club. Well, a Java program is like an outline. The program in Listing 3-1
starts with a header line that says, “Here comes a class named Displayer.” After
that header, a subheader announces, “Here comes a method named main.”

Now, if a Java program is like an outline, why doesn’t a program look like an out-
line? What takes the place of the Roman numerals, capital letters, and other items?
The answer is twofold:

 » In a Java program, curly braces enclose meaningful units of code.

 » You, the programmer, can (and should) indent lines so that other program-
mers can see at a glance the outline form of your code.

In an outline, everything is subordinate to the item in Roman numeral I. In a Java
program, everything is subordinate to the top line — the line with class in it. To
indicate that everything else in the code is subordinate to this class line, you use
curly braces. Everything else in the code goes inside these curly braces. (See
Listing 3-4.)

46 PART 1 Getting Started with Java

3.indd 46 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

LISTING 3-4: Curly Braces for a Java Class

public class Displayer {

 public static void main(String[] args) {

 System.out.println("You'll love Java!");

 }

}

In an outline, some stuff is subordinate to a capital letter A item. In a Java pro-
gram, some lines are subordinate to the method header. To indicate that some-
thing is subordinate to a method header, you use curly braces. (See Listing 3-5.)

LISTING 3-5: Curly Braces for a Java Method

public class Displayer {

 public static void main(String[] args) {

 System.out.println("You'll love Java!");

 }

}

In an outline, some items are at the bottom of the food chain. In the Displayer
class, the corresponding line is the line that begins with System.out.println.
Accordingly, this System.out.println line goes inside all the other curly braces
and is indented more than any other line.

Never lose sight of the fact that a Java program is, first and foremost, an outline.

If you put curly braces in the wrong places or omit curly braces where the braces
should be, your program probably won’t work at all. If your program works, it’ll
probably work incorrectly.

If you don’t indent lines of code in an informative manner, your program will still
work correctly, but neither you nor any other programmer will be able to figure
out what you were thinking when you wrote the code.

If you’re a visual thinker, you can picture outlines of Java programs in your head.
One friend of mine visualizes an actual numbered outline morphing into a Java
program. (See Figure 3-6.) Another person, who shall remain nameless, uses
more bizarre imagery. (See Figure 3-7.)

CHAPTER 3 Using the Basic Building Blocks 47

3.indd 47 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

I appreciate a good excuse as much as the next guy, but failing to indent your
Java code is inexcusable. In fact, many IDEs have tools to indent your code auto-
matically. In your favorite IDE, look for menus such as Source ➪ Format or
Code ➪ Reformat Code.

Here are some things for you to try to help you understand the material in this
section. If trying these things builds your confidence, that’s good. If trying these
things makes you question what you’ve read, that’s good too. If trying these
things makes you nervous, don’t be discouraged. You can find answers and other
help at this book’s website (http://JavaForDummies.allmycode.com). You can
also email me with your questions (JavaForDummies@allmycode.com).

FIGURE 3-7:
A class is bigger

than a method; a
method is bigger

than a statement.

FIGURE 3-6:
An outline turns

into a Java
program.

48 PART 1 Getting Started with Java

3.indd 48 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

BEGIN THE BEGUINE

 » If you’ve downloaded the code from this book’s website, import Listing 3-1
(from the downloaded 03-01 folder) into your IDE. If you don’t plan to
download the code, create a new project in your IDE. In the new project,
create a class named Displayer with the code from Listing 3-1. With the
downloaded project, or with your own, newly created project, run the
program and look for the words You'll love Java! in the output.

 » Try running the code in Listing 3-1 with the text "You'll love Java!"
changed to "No more baked beans!". What happens?

CAPITAL PAINS

 » Try to run the code in Listing 3-1 with the word public (all lowercase)
changed to Public (starting with an uppercase letter). What happens?

 » Try to run the code in Listing 3-1 with the word main (all lowercase) changed
to Main (starting with an uppercase letter). What happens?

 » Try to run the code in Listing 3-1 with the word System (starting with an
uppercase letter) changed to system (all lowercase). What happens?

STOLEN SEMICOLON

 » Try to run the code in Listing 3-1 with the semicolon missing. What happens?

 » Try to run the code in Listing 3-1 with additional semicolons added at the ends
of some of the lines. What happens?

MISCELLANEOUS MISCHIEF

 » Try to run the code in Listing 3-1 with the indentation changed. For example,
don’t indent any lines. Also, for good measure, remove the line breaks
between the first curly brace and the word public (so that the code reads
public class Displayer { public ...). What happens?

 » Try to run the code in Listing 3-1 with the word println changed to print1n
(with the digit 1 near the end). What happens?

 » Try to run the code in Listing 3-1 with the text "You'll love Java!"
changed to " Use a straight quote \", not a curly quote \u201D".
What happens?

CHAPTER 3 Using the Basic Building Blocks 49

3.indd 49 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

And Now, a Few Comments
People gather around campfires to hear the old legend about a programmer whose
laziness got her into trouble. To maintain this programmer’s anonymity, I call her
Jane Pro. Jane worked many months to create the holy grail of computing: a pro-
gram that thinks on its own. If completed, this program could work indepen-
dently, learning new concepts without human intervention. Day after day, night
after night, Jane Pro labored to give the program that spark of creative, indepen-
dent thought.

One day, when she was almost finished with the project, she received a disturbing
piece of paper mail from her health insurance company. No, the mail wasn’t about
a serious illness. It was about a routine office visit. The insurance company’s
claim form had a place for Jane’s date of birth, as if her date of birth had changed
since the last time she sent in a claim. She had absentmindedly scribbled 2016 as
her year of birth, so the insurance company refused to pay the bill.

Jane dialed the insurance company’s phone number. Within 20 minutes, she was
talking to a live person. “I’m sorry,” said the live person. “To resolve this issue,
you must dial a different number.” Well, you can guess what happened next. “I’m
sorry. The other operator gave you the wrong number.” And then, “I’m sorry. You
must call back the original phone number.”

Five months later, Jane’s ear ached, but after 800 hours on the phone, she had
finally gotten a tentative promise that the insurance company would eventually
reprocess the claim. Elated as she was, she was anxious to get back to her pro-
gramming project. Could she remember what all those lines of code were sup-
posed to be doing?

No, she couldn’t. Jane stared and stared at her own work and, like a dream that
doesn’t make sense the next morning, the code was completely meaningless to
her. She had written a million lines of code, and not one line was accompanied by
an informative explanatory comment. She had left no clues to help her understand
what she’d been thinking, so in frustration she abandoned the whole project.

Adding comments to your code
Listing 3-6 holds an enhanced version of this chapter’s sample program. In addi-
tion to all the keywords, identifiers, and punctuation, Listing 3-6 has text that’s
meant for human beings to read.

50 PART 1 Getting Started with Java

3.indd 50 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

LISTING 3-6: Three Kinds of Comments

/*

 * Listing 3-6 in "Java For Dummies, 8th Edition"

 *

 * Copyright 2022 Wiley Publishing, Inc.

 * All rights reserved.

 */

/**

 * The Displayer class displays text

 * on the computer screen.

 *

 * @author Barry Burd

 * @version 1.0 1/24/22

 * @see java.lang.System

 */

public class Displayer {

 /**

 * The main method is where

 * execution of the code begins.

 *

 * @param args (See Chapter 11.)

 */

 public static void main(String[] args) {

 System.out.println("I love Java!"); //Replace "I" with "You"?

 }

}

A comment is a special section of text, inside a program, whose purpose is to help
people understand the program. A comment is part of a good program’s
documentation.

The Java programming language has three kinds of comments:

 » Traditional comments: The first five lines of Listing 3-6 form one traditional
comment. The comment begins with /* and ends with */. Everything
between the opening /* and the closing */ is for human eyes only. No
information about "Java For Dummies, 8th Edition" or Wiley
Publishing, Inc. is translated by the compiler.

To read about compilers, see Chapter 2.

The second, third, fourth, and fifth lines in Listing 3-6 have extra asterisks (*). I
call them extra because these asterisks aren’t required when you create a

CHAPTER 3 Using the Basic Building Blocks 51

3.indd 51 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

comment. They just make the comment look pretty. I include them in
Listing 3-6 because, for some reason that I don’t entirely understand, most
Java programmers add these extra asterisks.

 » End-of-line comments: The text //Replace "I" with "You"? in Listing 3-6
is an end-of-line comment. An end-of-line comment starts with two slashes
and goes to the end of a line of type. Once again, the compiler doesn’t
translate the text inside the end-of-line comment.

 » Javadoc comments: A javadoc comment begins with a slash and two
asterisks (/**). Listing 3-6 has two javadoc comments: one with the text The
Displayer class ... and another with the text The main method is
where

A javadoc comment, which is a special kind of traditional comment, is meant
to be read by people who never even look at the Java code. But that doesn’t
make sense. How can you see the javadoc comments in Listing 3-6 if you
never look at Listing 3-6?

Well, a certain program called javadoc (what else?) can find all the javadoc
comments in Listing 3-6 and turn these comments into a nice-looking web
page. Figure 3-8 shows the page.

Javadoc comments are great. Here are several great things about them:

 » The only person who has to look at a piece of Java code is the programmer
who writes the code. Other people who use the code can find out what the
code does by viewing the automatically generated web page.

 » Because other people don’t look at the Java code, other people don’t make
changes to the Java code. (In other words, other people don’t introduce errors
into the existing Java code.)

 » Because other people don’t look at the Java code, other people don’t have to
decipher the inner workings of the Java code. All these people need to know
about the code is what they read on the code’s web page.

 » The programmer doesn’t create two separate files — some Java code over
here and some documentation about the code over there. Instead, the
programmer creates one piece of Java code and embeds the documentation
(in the form of javadoc comments) right inside the code.

 » The generation of web pages from javadoc comments is automatic. So
everyone’s documentation has the same format. No matter whose Java code
you use, you find out about that code by reading a page like the one in
Figure 3-8. That’s good because the format in Figure 3-8 is familiar to anyone
who uses Java.

52 PART 1 Getting Started with Java

3.indd 52 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

FIGURE 3-8:
The javadoc page

generated from
the code in
Listing 3-6.

CHAPTER 3 Using the Basic Building Blocks 53

3.indd 53 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

 » Best of all, Java’s online API Specification, which describes all of Java’s
standard identifiers, comes entirely from runs of the javadoc program on
comments in Java code. There’s nothing arbitrary or haphazard about Java’s
API Specification. The Specification is always in sync with the actual Java code.

You can generate your own web pages from the javadoc comments that you put in
your code. From your IDE’s menu bar, select Tools or Project and look for a com-
mand labeled Generate JavaDoc.

What’s Barry’s excuse?
For years I’ve been telling my students to put comments in their code, and for
years I’ve been creating sample code (like the code in Listing 3-1) with no com-
ments in it. Why?

Three little words: Know your audience. When you write complicated, real-life
code, your audience is other programmers, information technology managers,
and people who need help deciphering what you’ve done. When I write simple
samples of code for this book, my audience is you — the novice Java programmer.
Rather than read my comments, your best strategy is to stare at my Java
statements — the statements that Java’s compiler deciphers. That’s why I put so
few comments in this book’s listings.

Besides, I’m a little lazy.

Using comments to experiment
with your code
You may hear programmers talk about commenting out certain parts of their code.
When you’re writing a program and something’s not working correctly, it often
helps to try removing some of the code. If nothing else, you find out what happens
when that suspicious code is removed. Of course, you may not like what happens
when the code is removed, so you don’t want to delete the code completely.
Instead, you turn your ordinary Java statements into comments. For instance, you
turn the statement

System.out.println("I love Java!");

into the comment

// System.out.println("I love Java!");

54 PART 1 Getting Started with Java

3.indd 54 Trim size: 7.375 in × 9.25 in February 22, 2022 8:38 PM

This change keeps the Java compiler from seeing the code while you try to figure
out what’s wrong with your program.

Traditional comments aren’t very useful for commenting out code. The big prob-
lem is that you can’t put one traditional comment inside of another. Suppose that
you want to comment out the following statements:

System.out.println("Parents,");

System.out.println("pick your");

/*

 * Intentionally displays on four separate lines

 */

System.out.println("battles");

System.out.println("carefully!");

If you try to turn this code into one traditional comment, you get the following
mess:

/*

 System.out.println("Parents,");

 System.out.println("pick your");

 /*

 * Intentionally displays on four separate lines

 */

 System.out.println("battles");

 System.out.println("carefully!");

*/

The first */ (after Intentionally displays) ends the traditional comment pre-
maturely. Then the battles and carefully statements aren’t commented out,
and the last */ chokes the compiler. You can’t nest traditional comments inside
one another. Because of this, I recommend end-of-line comments as tools for
experimenting with your code.

Most IDEs can comment out sections of your code for you automatically. From
your IDE’s menu bar, select Code or Source and look for menu items pertaining to
comments.

2
Part2.indd 55	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	9:01	PM

Writing Your
Own Java
Programs

IN THIS PART . . .

Create	new	values	and	modify	existing	values.

Add	decision-making	to	your	application’s	logic.

Use	repetition	as	a	tool	in	problem-solving.

Part2.indd 56	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	9:01	PM

CHAPTER 4 Making the Most of Variables and Their Values 57

4.indd 57	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

Chapter 4
 Making the Most
of Variables and
Their Values

 The following conversation between Mr. Van Doren and Mr. Barasch never
took place:

Charles:		A	sea	squirt	eats	its	brain,	turning	itself	from	an	animal	into	a	plant.	

Jack:		Is	that	your	fi	nal	answer,	Charles?	

Charles:		Yes,	it	is.	

Jack:		How	much	money	do	you	have	in	your	account	today,	Charles?	

Charles:		I	have	fi	fty	dollars	and	twenty-two	cents	in	my	checking	account.	

Jack:		Well,	you	had	better	call	the	IRS,	because	your	sea	squirt	answer	is	correct.	
You	just	won	a	million	dollars	to	add	to	your	checking	account.	What	do	you	think	
of	that,	Charles?	

Charles:		I	owe	it	all	to	honesty,	diligence,	and	hard	work,	Jack.			

 Some aspects of this dialogue can be represented in Java by a few lines of code.

 IN THIS CHAPTER

» Assigning values to things

» Making things store certain types of
values

» Applying operators to get new values

58 PART 2 Writing Your Own Java Programs

4.indd 58	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

Varying a Variable
No matter how you acquire your million dollars, you can use a variable to tally
your wealth. Listing 4-1 shows the code.

LISTING 4-1: Using a Variable

amountInAccount = 50.22;

amountInAccount = amountInAccount + 1000000.00;

You don’t have to type the code in Listing 4-1 (or in any of this book’s listings).
To download all the code in this book, visit the book’s website (http://JavaFor
Dummies.allmycode.com).

The code in Listing 4-1 makes use of the amountInAccount variable. A variable is
a placeholder. You can stick a number like 50.22 into a variable. After you place a
number in the variable, you can change your mind and put a different number into
the variable. (That’s what varies in a variable.) Of course, when you put a new
number in a variable, the old number is no longer there. If you didn’t save the old
number somewhere else, the old number is gone.

Figure 4-1 gives a before-and-after picture of the code in Listing 4-1. After the
first statement in Listing 4-1 is executed, the variable amountInAccount has the
number 50.22 in it. Then, after the second statement of Listing 4-1 is executed,
the amountInAccount variable suddenly has 1000050.22 in it. When you think
about a variable, picture a place in the computer’s memory where wires and tran-
sistors store 50.22, 1000050.22, or whatever. On the left side of Figure 4-1, imag-
ine that the box with 50.22 in it is surrounded by millions of other such boxes.

FIGURE 4-1:
A	variable	

(before	
and	after).

CHAPTER 4 Making the Most of Variables and Their Values 59

4.indd 59	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

Now you need some terminology. The thing stored in a variable is a value. A vari-
able’s value can change during the run of a program (when Jack gives you a
million bucks, for instance). The value that’s stored in a variable isn’t necessarily
a number. (For instance, you can create a variable that always stores a letter.) The
kind of value that’s stored in a variable is a variable’s type.

You can read more about types in the section “The types of values that variables
may have,” later in this chapter.

A subtle, almost unnoticeable difference exists between a variable and a variable’s
name. Even in formal writing, I often use the word variable when I mean variable
name. Strictly speaking, amountInAccount is a variable name, and all the memory
storage associated with amountInAccount (including the type that amountIn
Account has and whatever value amountInAccount currently represents) is the
variable itself. If you think this distinction between variable and variable name is
too subtle for you to worry about, join the club.

Every variable name is an identifier — a name that you can make up in your own
code. In preparing Listing 4-1, I made up the name amountInAccount.

For more information on the kinds of names in a Java program, see Chapter 3.

Before the sun sets on Listing 4-1, you need to notice one more part of the listing.
The listing has 50.22 and 1000000.00 in it. Anybody in their right mind would call
these things numbers, but in a Java program it helps to call these things literals.

And what’s so literal about 50.22 and 1000000.00? Well, think about the variable
amountInAccount in Listing 4-1. The variable amountInAccount stands for 50.22
some of the time, but it stands for 1000050.22 the rest of the time. You could use
the word number to talk about amountInAccount. But really, what amountIn
Account stands for depends on the fashion of the moment. On the other hand,
50.22 literally stands for the value 50 22/100.

A variable’s value changes; a literal’s value doesn’t.

You can add underscores to numeric literals. Rather than use the plain old
1000000.00 in Listing 4-1, you can write amountInAccount = amountInAccount
+ 1_000_000.00. Unfortunately, you can’t easily do what you’re most tempted to
do. You can’t write 1,000,000.00 (as you would in the United States), nor can you
write 1.000.000,00 (as you would in Germany). If you want to display a number
such as 1,000,000.00 in the program’s output, you have to use some fancy for-
matting tricks. For more information about formatting, check Chapters 10 and 11.

60 PART 2 Writing Your Own Java Programs

4.indd 60	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

Assignment statements
Statements like the ones in Listing 4-1 are called assignment statements. In an
assignment statement, you assign a value to something. In many cases, this some-
thing is a variable.

I recommend getting into the habit of reading assignment statements from right
to left. Figure 4-2 illustrates the action of the first line in Listing 4-1.

The second line in Listing 4-1 is just a bit more complicated. Figure 4-3 illustrates
the action of the second line in Listing 4-1.

In an assignment statement, the thing being assigned a value is always on the left
side of the equal sign.

FIGURE 4-2:
The	action	of	the	

first	line	in	
Listing 4-1.

FIGURE 4-3:
The	action	of	the	

second	line	in	
Listing 4-1.

CHAPTER 4 Making the Most of Variables and Their Values 61

4.indd 61	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

The types of values that variables may have
Have you seen the TV commercials that make you think you’re flying among the
circuits inside a computer? Pretty cool, eh? These commercials show 0s (zeros)
and 1s (ones) sailing by because 0s and 1s are the only things that computers can
deal with. When you think a computer is storing the letter J, the computer is really
storing 01001010. Everything inside the computer is a sequence of 0s and 1s. As
every computer geek knows, a 0 or 1 is called a bit.

As it turns out, the sequence 01001010, which stands for the letter J, can also stand
for the number 74. The same sequence can also stand for 1.0369608636003646 ×
10–43. In fact, if the bits are interpreted as screen pixels, the same sequence can be
used to represent the dots shown in Figure 4-4. The meaning of 01001010 depends
on the way the software interprets this sequence of 0s and 1s.

How do you tell the computer what 01001010 stands for? The answer is in the con-
cept of type. The type of a variable is the range of values that the variable is
permitted to store. I copied the lines from Listing 4-1 and put them into a com-
plete Java program. The program is in Listing 4-2. When I run the program in
Listing 4-2, I get the output shown in Figure 4-5.

LISTING 4-2: A Program Uses amountInAccount

public class Millionaire {

 public static void main(String[] args) {

 double amountInAccount;

 amountInAccount = 50.22;

 amountInAccount = amountInAccount + 1000000.00;

 System.out.print("You have $");

 System.out.print(amountInAccount);

 System.out.println(" in your account.");

 }

}

FIGURE 4-4:
An	extreme	

close-up	of	eight	
black	and	white	
screen	pixels.

62 PART 2 Writing Your Own Java Programs

4.indd 62	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

In Listing 4-2, look at the first line in the body of the main method:

double amountInAccount;

This line is called a variable declaration. Putting this line in your program is like
saying, “I’m declaring my intention to have a variable named amountInAccount in
my program.” This line reserves the name amountInAccount for your use in the
program.

In this variable declaration, the word double is a Java keyword. This word double
tells the computer what kinds of values you intend to store in amountInAccount.
In particular, the word double stands for numbers between –1.8 × 10308 and 1.8 ×
10308. (These are enormous numbers with 308 zeros before the decimal point. Only
the world’s richest people write checks with 308 zeros in them. The second of
these numbers is one-point-eight gazazzo-zillion-kaskillion. The number 1.8 ×
10308, a constant defined by the International Bureau of Weights and Measures, is
the number of eccentric computer programmers between Sunnyvale, California,
and the M31 Andromeda Galaxy.)

More important than the humongous range of the double keyword’s numbers is
the fact that a double value can have digits beyond the decimal point. After you
declare amountInAccount to be of type double, you can store all sorts of numbers
in amountInAccount. You can store 50.22, 0.02398479, or –3.0. In Listing 4-2, if
I hadn’t declared amountInAccount to be of type double, I may not have been able
to store 50.22. Instead, I would have had to store plain old 50, with no digits
beyond the decimal point.

Another type — type float — also allows you to have digits beyond the decimal
point. But float values aren’t as accurate as double values.

In many situations, you have a choice. You can declare certain values to be either
float values or double values. But don’t sweat the choice between float and
double. For most programs, just use double. With today’s fancy processors, the
space you save using the float type is almost never worth the loss of accuracy.
(For more details, see the nearby sidebar, “To the decimal point and beyond!”)

The big million-dollar jackpot in Listing 4-2 is impressive. But Listing 4-2
doesn’t illustrate the best way to deal with dollar amounts. In a Java program, the
best way to represent currency is to shun the double and float types and opt
instead for a type named BigDecimal. For more information, see this book’s
website (http://JavaForDummies.allmycode.com).

FIGURE 4-5:
Running	the	
program	in	
Listing 4-2.

CHAPTER 4 Making the Most of Variables and Their Values 63

4.indd 63	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

TO THE DECIMAL POINT AND BEYOND!
Java	has	two	different	types	that	have	digits	beyond	the	decimal	point:	type	double
and	type	float.	So,	what’s	the	difference?	When	you	declare	a	variable	to	be	of	type	
double,	you’re	telling	the	computer	to	keep	track	of	64	bits	when	it	stores	the	variable’s	
values.	When	you	declare	a	variable	to	be	of	type	float,	the	computer	keeps	track	of	
only	32	bits.

You	could	change	Listing 4-2	and	declare	amountInAccount	to	be	of	type	float:

float amountInAccount;

Surely,	32	bits	are	enough	to	store	a	small	number	like	50.22,	right?	Well,	they	are	and	
they	aren’t.	You	could	easily	store	50.00	with	only	32	bits.	Heck,	you	could	store	50.00	
with	only	6	bits.	The	size	of	the	number	doesn’t	matter.	The	accuracy	matters.	In	a	64-bit	
double	variable,	you’re	using	most	of	the	bits	to	store	stuff	beyond	the	decimal	point.	To	
store	the	.22	part	of	50.22,	you	need	more	than	the	measly	32	bits	that	you	get	with	
type	float.

Do	you	really	believe	what	you	just	read —	that	it	takes	more	than	32	bits	to	store	.
22?	To	help	convince	you,	I	made	a	few	changes	to	the	code	in	Listing 4-2.	I	made	
amountInAccount	be	of	type	float.	Then	I	changed	the	first	three	statements	inside	
the	main	method:

float amountInAccount;

amountInAccount = 50.22F;

amountInAccount = amountInAccount + 1000000.00F;

(To	understand	why	I	used	the	letter	F in 50.22F	and	1000000.00F,	see	Table 4-1,	later	
in	this	chapter.)	The	output	I	got	was

You have $1000050.25 in your account.

Compare	this	with	the	output	in	Figure 4-5.	When	I	switch	from	type	double	to	type	
float,	Charles	has	an	extra	three	cents	in	his	account.	By	changing	to	the	32-bit	float
type,	I’ve	clobbered	the	accuracy	in	the	amountInAccount	variable’s	hundredths	place.	
That’s	bad.

Another	difficulty	with	float	values	is	purely	cosmetic.	Look	again	at	the	literals,	50.22
and	1000000.00,	in	Listing 4-2.	The	Laws	of	Java	say	that	literals	like	these	take	up	
64	bits	each.	So,	if	you	declare	amountInAccount	to	be	of	type	float,	you’ll	run	into	

(continued)

64 PART 2 Writing Your Own Java Programs

4.indd 64	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

How to hold the line
The last three statements in Listing 4-2 use a neat formatting trick. You want to
display several different items on a single line on the screen. You put these items
in separate statements. All but the last of the statements are calls to System.out.
print. (The last statement is a call to System.out.println.) Calls to System.out.
print display text on part of a line and then leave the cursor at the end of the cur-
rent line. After executing System.out.print, the cursor is still at the end of the
same line, so the next System.out.whatever can continue printing on that same
line. With several calls to print capped off by a single call to println, the result is
just one nice-looking line of output. (Refer to Figure 4-5.)

A call to System.out.print writes some things and leaves the cursor sitting at the
end of the line of output. A call to System.out.println writes things and then
finishes the job by moving the cursor to the start of a brand-new line of output.

Run the code in Listing 4-2 to make sure that it runs correctly on your computer.
Then see what happens when you make the following changes:

NUMBER FORMAT EXPERIMENTS

 » Add	thousands-separators	to	the	number	1000000.00	in	the	code.	For	
example,	if	you	live	in	the	United	States,	where	the	thousands-separator	
is	a	comma,	change	the	number	to	1,000,000.00	and	see	what	happens.	
(Hint:	Nothing	good	happens.)

 » Try	using	underscores	as	thousands-separators	in	the	code.	That	is,	change	
1000000.00	to	1_000_000.00	and	see	what	happens.

trouble.	You’ll	have	trouble	stuffing	those	64-bit	literals	into	your	little	32-bit	amountIn
Account	variable.	To	compensate,	you	can	switch	from	double	literals	to	float	literals	
by	adding	an	F	to	each	double	literal,	but	a	number	with	an	extra	F	at	the	end	looks	
funny.

float amountInAccount;

amountInAccount = 50.22F;

amountInAccount = amountInAccount + 1000000.00F;

To	experiment	with	numbers,	visit	http://babbage.cs.qc.cuny.edu/IEEE-754.
old/Decimal.html.	The	page	takes	any	number	you	enter	and	shows	you	how	the	
number	would	be	represented	as	32	bits	and	as	64	bits.

(continued)

CHAPTER 4 Making the Most of Variables and Their Values 65

4.indd 65	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

 » Add	a	currency	symbol	to	the	number	50.22	in	the	code.	For	example,	if	you	live	
in	the	United	States,	where	the	currency	symbol	is	$,	see	what	happens	when	you	
change	the	first	assignment	statement	to	amountInAccount = $50.22.

HOW TO DISPLAY VALUES

 » Listing 4-2	has	two	System.out.print	statements	and	one	System.out.
println	statement.	Change	all	three	to	System.out.println	statements	
and	then	run	the	program.

 » The	code	in	Listing 4-2	displays	one	line	of	text	in	its	output.	Using	the	
amountInAccount	variable,	add	statements	to	the	program	so	that	it	displays	
a	second	line	of	text.	Have	the	second	line	of	text	be	“Now	you	have	even	
more!	You	have	2000000.00 in	your	account.”

Numbers without decimal points
“In 1995, the average family had 2.3 children.”

At this point, a wise guy always remarks that no real family has exactly 2.3 chil-
dren. Clearly, whole numbers have a role in this world. Therefore, in Java, you can
declare a variable to store nothing but whole numbers. Listing 4-3 shows a pro-
gram that uses whole number variables.

LISTING 4-3: Using the int Type

public class ElevatorFitter {

 public static void main(String[] args) {

 int weightOfAPerson;

 int elevatorWeightLimit;

 int numberOfPeople;

 weightOfAPerson = 150;

 elevatorWeightLimit = 1400;

 numberOfPeople = elevatorWeightLimit / weightOfAPerson;

 System.out.print("You can fit ");

 System.out.print(numberOfPeople);

 System.out.println(" people on the elevator.");

 }

}

66 PART 2 Writing Your Own Java Programs

4.indd 66	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

The story behind the program in Listing 4-3 takes some heavy-duty explaining.
Here goes:

You have a hotel elevator whose weight capacity is 1,400 pounds. One weekend
the hotel hosts the Brickenchicker family reunion. A certain branch of the
Brickenchicker family has been blessed with identical dectuplets (ten siblings, all
with the same physical characteristics). Normally, each of the Brickenchicker
dectuplets weighs exactly 145 pounds. But on Saturday the family has a big
catered lunch, and, because lunch included strawberry shortcake, each of the
Brickenchicker dectuplets now weighs 150 pounds. Immediately after lunch, all
ten of the Brickenchicker dectuplets arrive at the elevator at exactly the same
time. (Why not? All ten of them think alike.) So, the question is, how many of the
dectuplets can fit on the elevator?

Now remember, if you put one ounce more than 1,400 pounds of weight on the
elevator, the elevator cable breaks, plunging all dectuplets on the elevator to their
sudden (and costly) deaths.

The answer to the Brickenchicker riddle (the output of the program of Listing 4-3)
is shown in Figure 4-6.

At the core of the Brickenchicker elevator problem, you have whole numbers —
numbers with no digits beyond the decimal point. When you divide 1,400 by 150,
you get 91⁄3, but you shouldn’t take the 1⁄3 seriously. No matter how hard you try,
you can’t squeeze an extra 50 pounds’ worth of Brickenchicker dectuplet onto the
elevator. This fact is reflected nicely in Java. In Listing 4-3, all three variables
(weightOfAPerson, elevatorWeightLimit, and numberOfPeople) are of type int.
An int value is a whole number. When you divide one int value by another (as you
do with the slash in Listing 4-3), you get another int. When you divide 1,400 by
150, you get 9 — not 91⁄3. You see this in Figure 4-6. Taken together, the following
statements display 9 onscreen:

numberOfPeople = elevatorWeightLimit / weightOfAPerson;

System.out.print(numberOfPeople);

FIGURE 4-6:
Save	the	

Brickenchickers.

CHAPTER 4 Making the Most of Variables and Their Values 67

4.indd 67	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

TAKE A FLYING LEAP

My wife and I were married on February 29, so we have one anniversary every
four years. Write a program with a variable named years. Based on the value of
the years variable, the program displays the number of anniversaries we’ve had.
For example, if the value of years is 4, the program displays the sentence Number
of anniversaries: 1. If the value of years is 7, the program still displays
Number of anniversaries: 1. But if the value of years is 8, the program displays
Number of anniversaries: 2.

Combining declarations and
initializing variables
Look back at Listing 4-3. In that listing, you see three variable declarations — one
for each of the program’s three int variables. I could have done the same thing
with just one declaration:

int weightOfAPerson, elevatorWeightLimit, numberOfPeople;

If two variables have completely different types, you can’t create both variables in
the same declaration. For instance, to create an int variable named weightOfFred
and a double variable named amountInFredsAccount, you need two separate vari-
able declarations.

You can give variables their starting values in a declaration. In Listing 4-3, for
instance, one declaration can replace several lines in the main method (all but the
calls to print and println):

int weightOfAPerson = 150, elevatorWeightLimit = 1400,

 numberOfPeople = elevatorWeightLimit/weightOfAPerson;

FOUR WAYS TO STORE WHOLE NUMBERS
Java	has	four	types	of	whole	numbers.	The	types	are	byte,	short,	int,	and	long.
Unlike	the	complicated	story	about	the	accuracy	of	types	float	and	double,	the	only	
thing	that	matters	when	you	choose	among	the	whole	number	types	is	the	size	of	the	
number	you’re	trying	to	store.	If	you	want	to	use	numbers	larger	than	127,	don’t	use	
byte.	To	store	numbers	larger	than	32767,	don’t	use	short.

Most	of	the	time,	you’ll	use	int.	But	if	you	need	to	store	numbers	larger	than	
2147483647,	forsake	int	in	favor	of	long. (A long	number	can	be	as	big	as	
9223372036854775807.)	For	the	whole	story,	see	Table 4-1,	a	little	earlier	in	this	chapter.

68 PART 2 Writing Your Own Java Programs

4.indd 68	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

When you do this, you don’t say that you’re assigning values to variables. The
pieces of the declarations with equal signs in them aren’t really called assignment
statements. Instead, you say that you’re initializing the variables. Believe it or not,
keeping this distinction in mind is helpful.

For example, when you initialize a variable inside a program’s main method, you
don’t have to specify the new variable’s type. You can start Listing 4-2 like this:

public class Millionaire {

 public static void main(String[] args) {

 var amountInAccount = 0.0;

If you want, you can start Listing 4-3 this way:

public class ElevatorFitter {

 public static void main(String[] args) {

 var weightOfAPerson = 150;

 var elevatorWeightLimit = 1400;

 var numberOfPeople = elevatorWeightLimit/weightOfAPerson;

In either case, the word var replaces the name of a type. This trick works because
Java is smart. When you write

var amountInAccount = 0.0;

Java looks at the number 0.0 and realizes that amountInAccount is a double value.
It’s a number with digits to the right of the decimal point. In the same way,
Java sees

var weightOfAPerson = 150;

and figures out on its own that weightOfAPerson has to be int value.

This var business doesn’t work if you don’t initialize your new variable. For
example, the lines

// BAD CODE:

var numberOfCats;

numberOfCats = 3;

are unacceptable as far as Java is concerned. Java can’t wait until the assignment
statement numberOfCats = 3 to decide what type of variable numberOfCats is.
Java wants to know immediately.

CHAPTER 4 Making the Most of Variables and Their Values 69

4.indd 69	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

There are other situations in which the use of var is illegal, even with an initial-
ization. For details, see Chapter 7.

Like everything else in life, initializing a variable has advantages and
disadvantages:

 » When you combine six lines of Listing 4-3 into just one declaration, the
code becomes more concise.	Sometimes	concise	code	is	easier	to	read.	
Sometimes	it’s	not.	As	a	programmer,	it’s	your	judgment	call.

 » By initializing a variable, you might automatically avoid certain pro-
gramming errors.	For	an	example,	see	Chapter 7.

 » In some situations, you have no choice. The nature of your code forces
you either to initialize or not to initialize.	For	an	example	that	doesn’t	lend	
itself	to	variable	initialization,	see	the	deleting-evidence	program	in	Chapter 6.

Experimenting with JShell
The programs in Listings 4-2 and 4-3 both begin with the same old, tiresome
refrain:

public class SomethingOrOther {

 public static void main(String[] args) {

A Java program requires this verbose introduction because

 » In	Java,	the	entire	program	is	a	class.

 » The main	method	is	called	into	action	automatically	when	the	program	begins	
running.

I explain all of this in Chapter 3.

Anyway, retyping this boilerplate code into an editor window can be annoying,
especially when your goal is to test the effect of executing a few simple state-
ments. To fix this problem, the stewards of Java came up with a new tool in Java
9. They call it JShell.

70 PART 2 Writing Your Own Java Programs

4.indd 70	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

Instructions for launching JShell differ from one computer to the next. For
instructions that work on your computer, visit this book’s website (http://
JavaForDummies.allmycode.com).

When you use JShell, you hardly ever type an entire program. Instead, you type a
Java statement, and then JShell responds to your statement, and then you type
a second statement, and then JShell responds to your second statement, and then
you type a third statement, and so on. A single statement is enough to get a
response from JShell.

Some folks have tweaked JShell to make its behavior a bit different from what
I describe in this book. If you’re running IntelliJ IDEA’s JShell Console or some
other specialized JShell variant, be sure to check the vendor’s documentation.

JShell is only one example of a language’s Read Evaluate Print Loop (REPL). Many
programming languages have REPLs and, with Java 9, the Java language finally
has a REPL of its own.

In Figure 4-7, I use JShell to find out how Java responds to the assignment state-
ments in Listings 4-2 and 4-3.

FIGURE 4-7:
An	intimate	

conversation	
between	JShell	

and	me.

CHAPTER 4 Making the Most of Variables and Their Values 71

4.indd 71	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

When you run JShell, the dialogue goes something like this:

jshell> You type a statement

JShell responds

jshell> You type another statement

JShell responds

For example, in Figure 4-7, I type double amountInAccount and then press Enter.
JShell responds by displaying

amountInAccount ==> 0.0

Here are a few things to notice about JShell:

 » You don’t have to type an entire Java program.

Typing	a	few	statements	such	as

double amountInAccount

amountInAccount = 50.22

amountInAccount = amountInAccount + 1000000.00

does	the	trick.	It’s	like	running	the	code	snippet	in	Listing 4-1	(except	that	
Listing 4-1	doesn’t	declare	amountInAccount	to	be	a	double).

 » In JShell, semicolons are (to a large extent) optional.

In	Figure 4-7,	I	type	a	semicolon	at	the	end	of	only	one	of	my	nine	lines.

For	some	advice	about	using	semicolons	in	JShell,	see	Chapter 5.

 » JShell responds immediately after you type each line.

After	I	declare	amountInAccount	to	be	double,	JShell	responds	by	telling	
me	that	the	amountInAccount	variable	has	the	value	0.0.	After	I	type	
amountInAccount = amountInAccount + 1000000.00,	JShell	tells	me	that	
the	new	value	of	amountInAccount is 1000050.22.

 » You can mix statements from many different Java programs.

In	Figure 4-7,	I	mix	statements	from	the	programs	in	Listings 4-2	and 4-3.	
JShell	doesn’t	care.

 » You can ask JShell for the value of an expression.

You	don’t	have	to	assign	the	expression’s	value	to	a	variable.	For	example,	
in	Figure 4-7,	I	type

elevatorWeightLimit / weightOfAPerson

72 PART 2 Writing Your Own Java Programs

4.indd 72	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

JShell	responds	by	telling	me	that	the	value	of	elevatorWeightLimit /
weightOfAPerson is 9.	JShell	makes	up	a	temporary	name	for	that	value.	
In	Figure 4-7,	the	name	happens	to	be	$8.	So,	on	the	next	line	in	Figure 4-7,	
I	ask	for	the	value	of	$8 +1,	and	JShell	gives	me	the	answer	10.

 » You can even get answers from JShell without using variables.

On	the	last	line	in	Figure 4-7,	I	ask	for	the	value	of	42 + 7,	and	JShell	
generously	answers	with	the	value	49.

While you’re running JShell, you don’t have to retype commands that you’ve
already typed. You don’t even have to copy and paste commands. If you press the
up-arrow key once, JShell shows you the command that you typed most recently.
If you press the up-arrow key twice, JShell shows you the next-to-last command
that you typed. And so on. When JShell shows you a command, you can press the
left- and right-arrow keys to move to any character in the middle of the com-
mand. You can modify characters in the command. Finally, when you press Enter,
JShell executes the newly modified command.

To end your run of JShell, you type /exit (starting with a slash). But /exit is only
one of many commands you can give to JShell. To ask JShell what other kinds of
commands you can use, type /help.

With JShell, you can test your statements before you put them into a full-blown
Java program. That makes JShell a truly useful tool.

SHELL GAME

Visit this book’s website (http://JavaForDummies.allmycode.com) for instruc-
tions on launching JShell on your computer. After launching JShell, type a few
lines of code from Figure 4-7. See what happens when you type some slightly
different lines.

What Happened to All the
Cool Visual Effects?

The programs in Listings 4-2 and 4-3 are text-based. A text-based program has
no windows, no dialog boxes — nothing of that kind. All you see is line after line
of plain, unformatted text. The user types something, and the computer displays
a response beneath each line of input.

CHAPTER 4 Making the Most of Variables and Their Values 73

4.indd 73	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

The opposite of a text-based program is a graphical user interface (GUI) program.
A GUI program has windows, text fields, buttons, and other visual goodies.

As visually unexciting as text-based programs are, they contain the basic concepts
for all computer programming. Also, text-based programs are easier for the nov-
ice programmer to read, write, and understand than the corresponding GUI pro-
grams. So, in this book I take a three-pronged approach:

 » Text-based examples:	I	introduce	most	of	the	new	concepts	with	
these	examples.

 » The DummiesFrame class:	Alongside	the	text-based	examples,	I	present	
GUI	versions	using	the	DummiesFrame	class,	which	I	created	especially	for	
this	book.	(I	introduce	the	DummiesFrame	class	in	Chapter 7.)

 » GUI programming techniques:	I	describe	some	of	the	well-known	tech-
niques	in	Chapters 9, 10, 14,	and 16.	I	even	have	a	tiny	GUI	example	in	this	
chapter.	(See	the	later	section	“The	Molecules	and	Compounds:	Reference	
Types.”)

With this careful balance of drab programs and sparkly programs, you’re sure to
learn Java.

The Atoms: Java’s Primitive Types
The words int and double that I describe in the previous sections are examples of
primitive types (also known as simple types) in Java. The Java language has exactly
eight primitive types. As a newcomer to Java, you can pretty much ignore all but
four of these types. (As programming languages go, Java is nice and compact that
way.) Table 4-1 shows the complete list of primitive types.

The types that you shouldn’t ignore are int, double, char, and boolean. Previous
sections in this chapter cover the int and double types. So the next two sections
cover char and boolean types.

The char type
Several decades ago, people thought computers existed only for doing big
number-crunching calculations. Nowadays, nobody thinks that way. So, if you
haven’t been in a cryogenic freezing chamber for the past 20 years, you know that
computers store letters, punctuation symbols, and other characters.

74 PART 2 Writing Your Own Java Programs

4.indd 74	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

The Java type that’s used to store characters is called char. Listing 4-4 has a
simple program that uses the char type. Figure 4-8 shows the output of the
program in Listing 4-4.

LISTING 4-4: Using the char Type

public class CharDemo {

 public static void main(String[] args) {

 char myLittleChar = 'b';

 char myBigChar = Character.toUpperCase(myLittleChar);

TABLE 4-1 Java’s Primitive Types
Type	Name What	a	Literal	Looks	Like Range	of	Values

Whole number types

byte (byte)42 –128	to	127

short (short)42 –32768	to	32767

int 42 –2147483648	to	2147483647

long 42L –9223372036854775808	to	9223372036854775807

Decimal number types

float 42.0F –3.4	×	1038	to	3.4	×	1038

Double 42.0 –1.8	×	10308	to	1.8	×	10308

Character type

Char 'A' Thousands	of	characters,	glyphs,	and	symbols

Logical type

Boolean true true,	false

FIGURE 4-8:
An	exciting	run	
of	the	program	
of	Listing 4-4	
as	it	appears	

in	IntelliJ’s	Run	
tool	window.

CHAPTER 4 Making the Most of Variables and Their Values 75

4.indd 75	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

 System.out.println(myBigChar);

 }

}

In Listing 4-4, the first initialization stores the letter b in the variable my
LittleChar. In the initialization, notice how b is surrounded by single quote
marks. In Java, every char literal starts and ends with a single quote mark.

In a Java program, single quote marks surround the letter in a char literal.

If you need help sorting out the terms assignment, declaration, and initialization, see
the section “Combining declarations and initializing variables,” earlier in this
chapter.

In the second initialization of Listing 4-4, the program calls an API method whose
name is Character.toUpperCase. The Character.toUpperCase method does just
what its name suggests — the method produces the uppercase equivalent of the
letter b. This uppercase equivalent (the letter B) is assigned to the myBigChar vari-
able, and the B that’s stored in myBigChar appears on the screen.

For an introduction to the Java application programming interface (API), see
Chapter 3.

If you’re tempted to write the following statement,

char myLittleChars = 'barry'; //Don't do this

please resist the temptation. You can’t store more than one letter at a time in a
char variable, and you can’t put more than one letter between a pair of single
quotes. If you’re trying to store words or sentences (not just single letters), you
need to use something called a String.

For a look at Java’s String type, see the section “The Molecules and Compounds:
Reference Types,” later in this chapter.

If you’re used to writing programs in other languages, you may be aware of some-
thing called ASCII character encoding. Most languages use ASCII; Java uses Uni-
code. In the old ASCII representation, each character takes up only 8 bits, but in
Unicode, each character takes up 8, 16, or 32 bits. Whereas ASCII stores the letters
of the Roman (English) alphabet, Unicode has room for characters from most of
the world’s commonly spoken languages. The only problem is that some of the
Java API methods are geared specially toward 16-bit Unicode. Occasionally, this
bites you in the back (or it bytes you in the back, as the case may be). If you’re

76 PART 2 Writing Your Own Java Programs

4.indd 76	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

using a method to write Hello on the screen and H e l l o shows up instead,
check the method’s documentation for mention of Unicode characters.

It’s worth noticing that the two methods, Character.toUpperCase and System.
out.println, are used quite differently in Listing 4-4. The method Character.
toUpperCase is called as part of either an initialization or an assignment state-
ment, but the method System.out.println is called on its own. To find out more
about this topic, see the explanation of return values in Chapter 7.

The boolean type
A variable of type boolean stores one of two values: true or false. Listing 4-5
demonstrates the use of a boolean variable. Figure 4-9 shows the output of the
program in Listing 4-5.

LISTING 4-5: Using the boolean Type

public class ElevatorFitter2 {

 public static void main(String[] args) {

 System.out.println("True or False?");

 System.out.println("You can fit all ten of the");

 System.out.println("Brickenchicker dectuplets");

 System.out.println("on the elevator:");

 System.out.println();

 int weightOfAPerson = 150;

 int elevatorWeightLimit = 1400;

 int numberOfPeople = elevatorWeightLimit / weightOfAPerson;

 boolean allTenOkay = numberOfPeople >= 10;

 System.out.println(allTenOkay);

 }

}

FIGURE 4-9:
The

	Brickenchicker	
dectuplets	

strike	again.

CHAPTER 4 Making the Most of Variables and Their Values 77

4.indd 77	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

In Listing 4-5, the allTenOkay variable is of type boolean. To find a value for the
allTenOkay variable, the program checks to see whether numberOfPeople is
greater than or equal to ten. (The symbols >= stand for greater than or equal to.)

At this point, it pays to be fussy about terminology. Any part of a Java program
that has a value is an expression. If you write

weightOfAPerson = 150;

then 150 is an expression (an expression whose value is the quantity 150). If you
write

numberOfEggs = 2 + 2;

then 2 + 2 is an expression (because 2 + 2 has the value 4). If you write

int numberOfPeople = elevatorWeightLimit / weightOfAPerson;

then elevatorWeightLimit / weightOfAPerson is an expression. (The value of
the expression elevatorWeightLimit / weightOfAPerson depends on whatever
values the variables elevatorWeightLimit and weightOfAPerson have when the
code containing the expression is executed.)

Any part of a Java program that has a value is an expression.

In Listing 4-5, the code numberOfPeople >= 10 is an expression. The expression’s
value depends on the value stored in the numberOfPeople variable. But, as you
know from seeing the strawberry shortcake at the Brickenchicker family’s catered
lunch, the value of numberOfPeople isn’t greater than or equal to ten. As a result,
the value of numberOfPeople >= 10 is false. So, in the statement in Listing 4-5,
in which allTenOkay is assigned a value, the allTenOkay variable is assigned a
false value.

In Listing 4-5, I call System.out.println() with nothing inside the parentheses.
When I do this, Java adds a line break to the program’s output. In Listing 4-5,
System.out.println() tells the program to display a blank line.

78 PART 2 Writing Your Own Java Programs

4.indd 78	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

The Molecules and Compounds:
Reference Types

By combining simple things, you get more complicated things. That’s the way
things always go. Take some of Java’s primitive types, whip them together to
make a primitive type stew, and what do you get? You get a more complicated type
called a reference type.

The program in Listing 4-6 uses reference types. Figure 4-10 shows you what
happens when you run the program in Listing 4-6.

LISTING 4-6: Using Reference Types

import javax.swing.JFrame;

public class ShowAFrame {

 public static void main(String[] args) {

 JFrame myFrame = new JFrame();

 String myTitle = "Blank Frame";

 myFrame.setTitle(myTitle);

 myFrame.setSize(300, 200);

 myFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 myFrame.setVisible(true);

 }

}

The program in Listing 4-6 uses two references types. Both types are defined
in the Java API. One of the types (the one that you’ll use all the time) is called
String. The other type (the one that you can use to create GUIs) is called JFrame.

FIGURE 4-10:
An	empty	frame.

CHAPTER 4 Making the Most of Variables and Their Values 79

4.indd 79	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

A String is a bunch of characters. It’s like having several char values in a row. So,
with the myTitle variable declared to be of type String, assigning "Blank Frame"
to the myTitle variable makes sense in Listing 4-6. The String class is declared
in the Java API.

In a Java program, double quote marks surround the letters in a String literal.

A Java JFrame is a lot like a window. (The only difference is that you call it a JFrame
instead of a window.) To keep Listing 4-6 short and sweet, I decided not to put
anything in my frame — no buttons, no fields, nothing.

Even with a completely empty frame, Listing 4-6 uses tricks that I don’t describe
until later in this book. So don’t try reading and interpreting every word of
Listing 4-6. The big thing to get from Listing 4-6 is that the program has two
variable declarations. In writing the program, I made up two variable names:
myTitle and myFrame. According to the declarations, myTitle is of type String,
and myFrame is of type JFrame.

You can look up String and JFrame in Java’s API documentation. But, even before
you do, I can tell you what you’ll find. You’ll find that String and JFrame are the
names of Java classes. So that’s the big news. Every class is the name of a refer-
ence type. You can reserve amountInAccount for double values by writing

double amountInAccount;

or by writing

double amountInAccount = 50.22;

You can also reserve myFrame for a JFrame value by writing

JFrame myFrame;

or by writing

JFrame myFrame = new JFrame();

or even

var myFrame = new JFrame();

To review the notion of a Java class, see the sections on object-oriented program-
ming (OOP) in Chapter 1.

80 PART 2 Writing Your Own Java Programs

4.indd 80	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

Every Java class is a reference type. If you declare a variable to have some type
that’s not a primitive type, the variable’s type is (most of the time) the name of a
Java class.

Now, when you declare a variable to have type int, you can visualize what that
declaration means in a fairly straightforward way. It means that, somewhere
inside the computer’s memory, a storage location is reserved for that variable’s
value. In the storage location is a bunch of bits. The arrangement of the bits
ensures that a certain whole number is represented.

That explanation is fine for primitive types like int or double, but what does it
mean when you declare a variable to have a reference type? What does it mean to
declare variable myFrame to be of type JFrame?

Well, what does it mean to declare i thank You God to be an E. E. Cummings poem?
What would it mean to write the following declaration?

EECummingsPoem ithankYouGod;

It means that a class of things is EECummingsPoem, and ithankYouGod refers to an
instance of that class. In other words, ithankYouGod is an object belonging to the
EECummingsPoem class.

Because JFrame is a class, you can create objects from that class. (If you don’t
believe me, read some of my paragraphs about classes and objects in Chapter 1.)
Each object (each instance of the JFrame class) is an actual frame — a window
that appears on the screen when you run the code in Listing 4-6. By declaring the
variable myFrame to be of type JFrame, you’re reserving the use of the name
myFrame. This reservation tells the computer that myFrame can refer to an actual
JFrame-type object. In other words, myFrame can become a nickname for one of
the windows that appears on the computer screen. Figure 4-11 illustrates the
situation.

When you declare ClassName variableName;, you’re saying that a certain vari-
able can refer to an instance of a particular class.

In Listing 4-6, the phrase JFrame myFrame reserves the use of the name myFrame.
On that same line of code, the phrase new JFrame() creates a new object (an
instance of the JFrame class). Finally, that line’s equal sign makes myFrame refer
to the new object. Knowing that the two words new JFrame() create an object can
be vitally important. For a more thorough explanation of objects, see Chapter 7.

CHAPTER 4 Making the Most of Variables and Their Values 81

4.indd 81	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

Try these experiments:

RUN IT TWICE

 » Run	the	code	in	Listing 4-6	on	your	computer.

 » Run	the	code	in	Listing 4-6	again.	But	before	running	the	code,	comment	out	
the	myFrame.setVisible(true)	statement	by	inserting	two	forward	slashes	
(//)	immediately	to	the	left	of	the	statement.	Does	anything	happen	when	you	
run	the	modified	code?

SHUFFLE PLAY

Experiment with the code in Listing 4-6 by changing the order of the statements
inside the body of the main method. Which rearrangements of these statements
are okay, and which aren’t?

FIGURE 4-11:
The	variable	

myFrame	refers	to	
an	instance	of	the	

JFrame	class.

82 PART 2 Writing Your Own Java Programs

4.indd 82	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

An Import Declaration
It’s always good to announce your intentions upfront. Consider the following
classroom lecture:

Today, in our History of Film course, we’ll discuss the career of actor Lionel Herbert
Blythe Barrymore.

Born in Philadelphia, Barrymore appeared in more than 200 films, including	It’s	a	
Wonderful	Life,	Key	Largo,	and	Dr.	Kildare’s	Wedding	Day. In addition, Barrymore
was a writer, composer, and director. Barrymore did the voice of Ebenezer Scrooge
every year on radio. . . .

PRIMITIVE-TYPE STEW
While	I’m	on	the	subject	of	frames,	what’s	a	frame,	anyway?	A	frame	is	a	window	that	
has	a	certain	height	and	width	and	a	certain	location	on	your	computer’s	screen.	
Therefore,	deep	inside	the	declaration	of	the	Frame	class,	you	can	find	variable	
declarations	that	look	something	like	this:

int width;

int height;

int x;

int y;

Here’s	another	example:	Time.	An	instance	of	the	Time	class	may	have	an	hour	
(a	number	from	1	through	12),	a	number	of	minutes	(from	0	through	59),	and	a	
letter	(a	for	a.m.; p	for	p.m.):

int hour;

int minutes;

char amOrPm;

Notice	that	this	high-and-mighty	thing	called	a	Java	API	class	is	neither	high	nor	mighty.	
A	class	is	just	a	collection	of	declarations.	Some	of	those	declarations	are	the	declara-
tions	of	variables.	Some	of	those	variable	declarations	use	primitive	types,	and	other	
variable	declarations	use	reference	types.	These	reference	types,	however,	come	from	
other	classes,	and	the	declarations	of	those	classes	have	variables.	The	chain	goes	on	
and	on.	Ultimately,	everything	comes,	in	one	way	or	another,	from	the	primitive	types.

CHAPTER 4 Making the Most of Variables and Their Values 83

4.indd 83	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

Interesting stuff, heh? Now compare these paragraphs with a lecture in which the
instructor doesn’t begin by introducing the subject:

Welcome once again to the History of Film.

Born in Philadelphia, Lionel Barrymore appeared in more than 200 films, including	It’s	
a	Wonderful	Life,	Key	Largo,	and	Dr.	Kildare’s	Wedding	Day.	In addition, Barrymore
(not Ethel, John, or Drew) was a writer, composer, and director. Lionel Barrymore did
the voice of Ebenezer Scrooge every year on radio. . . .

Without a proper introduction, a speaker may have to remind you repeatedly that
the discussion is about Lionel Barrymore and not about any other Barrymore. The
same is true in a Java program. Look again at Listing 4-6:

import javax.swing.JFrame;

public class ShowAFrame {

 public static void main(String[] args) {

 JFrame myFrame = new JFrame();

In Listing 4-6, you announce in the introduction (in the import declaration) that
you’re using JFrame in your Java class. You clarify what you mean by JFrame with
the full name javax.swing.JFrame. (Hey! Didn’t the first lecturer clarify with the
full name “Lionel Herbert Blythe Barrymore”?) After announcing your intentions
in the import declaration, you can use the abbreviated name JFrame in your Java
class code.

If you don’t use an import declaration, you have to repeat the full javax.swing.
JFrame name wherever you use the name JFrame in your code. For example, with-
out an import declaration, the code of Listing 4-6 would look like this:

public class ShowAFrame {

 public static void main(String[] args) {

 javax.swing.JFrame myFrame = new javax.swing.JFrame();

 String myTitle = "Blank Frame";

 myFrame.setTitle(myTitle);

 myFrame.setSize(3200, 200);

 myFrame.setDefaultCloseOperation(javax.swing.JFrame.EXIT_ON_CLOSE);

 myFrame.setVisible(true);

 }

}

84 PART 2 Writing Your Own Java Programs

4.indd 84	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

The details of this import stuff can be pretty nasty. But fortunately, many IDEs
have convenient helper features for import declarations. In your IDE of choice,
look for menus such as Code ➪ Optimize Imports or Source ➪ Organize Imports.

No single section in this book can present the entire story about import declara-
tions. To begin untangling some of the import declaration’s subtleties, see the
sidebar entitled “Import declarations: The ugly truth” later in this chapter. See
also Chapters 5 and 7.

Creating New Values by
Applying Operators

What could be more comforting than your old friend the plus sign? It was the first
topic you learned about in elementary school math. Almost everybody knows how
to add 2 and 2. In fact, in English usage, adding 2 and 2 is a metaphor for some-
thing that’s easy to do. Whenever you see a plus sign, a cell in your brain says,
“Thank goodness — it could be something much more complicated.”

Java has a plus sign. You can use it for several purposes. You can use the plus sign
to add two numbers, like this:

int apples, oranges, fruit;

apples = 5;

oranges = 16;

fruit = apples + oranges;

You can also use the plus sign to paste String values together:

String startOfChapter =

 "It's three in the morning. I'm dreaming about the" +
 "history course that I failed in high school.";

System.out.println(startOfChapter);

This can be handy because, in Java, you can’t make an ordinary String straddle
from one line to another. In other words, the following code wouldn’t work:

String thisIsBadCode =

 "It's three in the morning. I'm dreaming about the

 history course that I failed in high school.";

System.out.println(thisIsBadCode);

CHAPTER 4 Making the Most of Variables and Their Values 85

4.indd 85	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

If you want a single string to span several lines, you need another trick. For details,
see Chapter 5.

The correct way to say that you’re pasting String values together is to say that
you’re concatenating String values.

You can even use the plus sign to paste numbers next to String values:

int apples, oranges, fruit;

apples = 5;

oranges = 16;

fruit = apples + oranges;
System.out.println("You have" + fruit + "pieces of fruit.");

Of course, the old minus sign is available, too (but not for String values):

apples = fruit - oranges;

Use an asterisk (*) for multiplication and a slash (/) for division:

double rate, pay;

int hours;

rate = 6.25;

hours = 35;

pay = rate * hours;

System.out.println(pay);

For an example using division, refer to Listing 4-3.

When you divide an int value by another int value, you get an int value. The
computer doesn’t round. Instead, the computer chops off any remainder. If you
put System.out.println(11 / 4) in your program, the computer prints 2, not
2.75. To get past this, make either (or both) of the numbers you’re dividing dou-
ble values. If you put System.out.println(11.0 / 4) in your program, the
computer prints 2.75.

Another useful arithmetic operator is called the remainder operator. The symbol
for the remainder operator is the percent sign (%). When you put System.out.
println(11 % 4) in your program, the computer prints 3. It does this because 4
goes into 11 who-cares-how-many times with a remainder of 3. The remainder
operator turns out to be fairly useful. Listing 4-7 has an example.

86 PART 2 Writing Your Own Java Programs

4.indd 86	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

LISTING 4-7: Making Change

import static java.lang.System.out;

public class MakeChange {

 public static void main(String[] args) {

 int total = 248;

 int quarters = total / 25;

 int whatsLeft = total % 25;

 int dimes = whatsLeft / 10;

 whatsLeft = whatsLeft % 10;

 int nickels = whatsLeft / 5;

 whatsLeft = whatsLeft % 5;

 int cents = whatsLeft;

 out.println("From " + total + " cents you get");
 out.println(quarters + " quarters");
 out.println(dimes + " dimes");
 out.println(nickels + " nickels");
 out.println(cents + " cents");
 }

}

Figure 4-12 shows a run of the code in Listing 4-7. You start with a total of
248 cents. Then

quarters = total / 25

divides 248 by 25, giving 9. That means you can make 9 quarters from 248 cents.
Next,

whatsLeft = total % 25

divides 248 by 25 again and puts only the remainder, 23, into whatsLeft. Now
you’re ready for the next step, which is to take as many dimes as you can out of
cents.

FIGURE 4-12:
Change	

for	$2.48.

CHAPTER 4 Making the Most of Variables and Their Values 87

4.indd 87	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

The code in Listing 4-7 makes change in US currency with the following coin
denominations: 1 cent, 5 cents (one nickel), 10 cents (one dime), and 25 cents (one
quarter). With these denominations, the MakeChange class gives you more than
simply a set of coins adding up to 248 cents. The MakeChange class gives you the
smallest number of coins that add up to 248 cents. With some minor tweaking, you
can make the code work in any country’s coinage. You can always get a set of coins
adding up to a total. But, for some kinds of coinage, you won’t always get the
smallest number of coins that add up to a total. For example, in the mid-1970s,
England had coins with values 25p, 20p, 10p, and 5p. To put 40p together, a
program like the one in Listing 4-7 would suggest 25p + 10p + 5p. But you could
use fewer coins by shelling out 20p + 20p.

SMOOTH OPERATORS

Find the values of the following expressions by typing each expression in JShell:

 » 5 / 4

 » 5 / 4.0

 » 5.0 / 4

 » 5.0 / 4.0

 » "5" + "4"

 » 5 + 4

 » " " + 5 + 4

Initialize once, assign often
Listing 4-7 has three lines that put values into the variable whatsLeft:

int whatsLeft = total % 25;

whatsLeft = whatsLeft % 10;

whatsLeft = whatsLeft % 5;

Only one of these lines is a declaration. The other two lines are assignment state-
ments. That’s good because you can’t declare the same variable more than once
(not without creating something called a block). If you goof and write

int whatsLeft = total % 25;

int whatsLeft = whatsLeft % 10;

88 PART 2 Writing Your Own Java Programs

4.indd 88	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

in Listing 4-7, you see an error message (such as Duplicate variable whatsLeft
or Variable 'whatsLeft' is already defined) when you try to compile your
code.

To find out what a block is, see Chapter 5. Then, for some honest talk about rede-
claring variables, see Chapter 10.

IMPORT DECLARATIONS: THE UGLY TRUTH
Notice	the	import	declaration	at	the	top	of	Listing 4-7:

import static java.lang.System.out;

Compare	this	with	the	import	declaration	at	the	top	of	Listing 4-6:

import javax.swing.JFrame;

By	adding	the	import static java.lang.System.out;	line	to	Listing 4-7,	I	can	
make	the	rest	of	the	code	a	bit	easier	to	read,	and	I	can	avoid	having	long	Java	state-
ments	that	start	on	one	line	and	continue	on	another.	But	you	never	have	to	do	that.	
If	you	remove	the	import static java.lang.System.out;	line	and	pepper	the	
code	liberally	with	System.out.println,	the	code	works	just	fine.

Here’s	a	question:	Why	does	one	declaration	include	the	word	static	and	the	other	dec-
laration	doesn’t?	Well,	to	be	honest,	I	wish	I	hadn’t	asked!

For	the	real	story	about	static,	you	have	to	read	part	of	Chapter 10.	And	frankly,	I	don’t	
recommend	skipping	ahead	to	that	chapter’s	static	section	if	you	take	medicine	for	a	
heart	condition,	if	you’re	pregnant	or	nursing,	or	if	you	have	no	previous	experience	
with	object-oriented	programming.	For	now,	rest	assured	that	Chapter 10	is	easy	to	
read	after	you’ve	made	the	journey	through	Part	3	of	this	book.	And	when	you	have	to	
decide	whether	to	use	the	word	static	in	an	import	declaration,	remember	these	hints:

• The	vast	majority	of	import	declarations	in	Java	program	do	not	use	the	word	static.

• In	this	book,	I	never	use	import static	to	import	anything	except	System.out.	(Well,	
almost	never. . .	.)

• Most	import	declarations	don’t	use	the	word	static	because	most	declarations	
import	classes.	Unfortunately,	System.out	is	not	the	name	of	a	class.

CHAPTER 4 Making the Most of Variables and Their Values 89

4.indd 89	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

The increment and decrement operators
Java has some neat little operators that make life easier (for the computer’s pro-
cessor, for your brain, and for your fingers). Altogether, four such operators
exist — two increment operators and two decrement operators. The increment
operators add 1, and the decrement operators subtract 1. The increment operators
use double plus signs (++), and the decrement operators use double minus signs
(––). To see how they work, you need some examples. The first example is shown
in Figure 4-13.

Figure 4-14 shows a run of the program in Figure 4-13. In this horribly uneventful
run, the count of bunnies prints three times.

The double plus signs go by two names, depending on where you put them. When
you put the ++ before a variable, the ++ is called the preincrement operator. (The pre
stands for before.)

The word before has two meanings:

 » You	put	++	before	the	variable.

 » The	computer	adds	1	to	the	variable’s	value	before	the	variable	is	used	in	any	
other	part	of	the	statement.

FIGURE 4-13:
Using	

preincrement.

FIGURE 4-14:
A	run	of	the	code	

in	Figure 4-13.

90 PART 2 Writing Your Own Java Programs

4.indd 90	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

To understand this, look at the bold line in Figure 4-13. The computer adds 1 to
numberOfBunnies (raising the value of numberOfBunnies to 29) and then prints 29
onscreen.

With out.println(++numberOfBunnies), the computer adds 1 to numberOf
Bunnies before printing the new value of numberOfBunnies onscreen.

An alternative to preincrement is postincrement. (The post stands for after.) The
word after has two different meanings:

 » You	put	++	after	the	variable.

 » The	computer	adds	1	to	the	variable’s	value	after	the	variable	is	used	in	any	
other	part	of	the	statement.

To see more clearly how postincrement works, look at the bold line in Figure 4-15.
The computer prints the old value of numberOfBunnies (which is 28) on the screen,
and then the computer adds 1 to numberOfBunnies, which raises the value of
numberOfBunnies to 29.

With out.println(numberOfBunnies++), the computer adds 1 to numberOf
Bunnies after printing the old value that numberOfBunnies already had.

Figure 4-16 shows a run of the code in Figure 4-15. Compare Figure 4-16 with the
run in Figure 4-14:

 » With	preincrement	in	Figure 4-14,	the	second	number	is	29.

 » With	postincrement	in	Figure 4-16,	the	second	number	is	28.

In	Figure 4-16,	29	doesn’t	show	onscreen	until	the	end	of	the	run,	when	the	
computer	executes	one	last	out.println(numberOfBunnies).

FIGURE 4-15:
Using	

postincrement.

CHAPTER 4 Making the Most of Variables and Their Values 91

4.indd 91	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

Are you trying to decide between using preincrement or postincrement? Try no
longer. Most programmers use postincrement. In a typical Java program, you
often see things like numberOfBunnies++. You seldom see things like
++numberOfBunnies.

In addition to preincrement and postincrement, Java has two operators that
use ––. These operators are called predecrement and postdecrement:

 » With	predecrement (--numberOfBunnies),	the	computer	subtracts	1	from	
the	variable’s	value	before	the	variable	is	used	in	the	rest	of	the	statement.

 » With	postdecrement (numberOfBunnies--),	the	computer	subtracts	1	from	
the	variable’s	value	after	the	variable	is	used	in	the	rest	of	the	statement.

FIGURE 4-16:
A	run	of	the	code	

in	Figure 4-15.

STATEMENTS AND EXPRESSIONS
You	can	describe	the	pre-	and	postincrement	and	pre-	and	postdecrement	operators	in	
two	ways:	the	way	everyone	understands	them	and	the	right	way.	The	way	that	I	explain	
the	concept	in	most	of	this	section	(in	terms	of	time,	with	before	and	after)	is	the	way	
that	everyone	understands	it.	Unfortunately,	the	way	everyone	understands	the	con-
cept	isn’t	really	the	right	way.	When	you	see	++	or	––,	you	can	think	in	terms	of	time	
sequence.	But	occasionally	a	programmer	uses	++	or	––	in	a	convoluted	way,	and	the	
notions	of	before	and	after	break	down.	So,	if	you’re	ever	in	a	tight	spot,	think	about	
these	operators	in	terms	of	statements	and	expressions.

First,	remember	that	a	statement	tells	the	computer	to	do	something,	and	an	expres-
sion	has	a	value.	(I	discuss	statements	in	Chapter 3,	and	I	describe	expressions	else-
where	in	this	chapter.)	Which	category	does	numberOfBunnies++	belong	to?	The	
surprising	answer	is	both —	the	Java	code	numberOfBunnies++	is	both	a	statement	
and	an	expression.

Assume	that,	before	the	computer	executes	the	code	out.println(numberOf
Bunnies++),	the	value	of	numberOfBunnies is 28:

• As	a	statement,	numberOfBunnies++	tells	the	computer	to	add	1	to	
numberOfBunnies.

• As	an	expression,	the	value	of	numberOfBunnies++ is 28,	not	29.

(continued)

92 PART 2 Writing Your Own Java Programs

4.indd 92	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

Rather than write ++numberOfBunnies, you can achieve the same effect by writing
numberOfBunnies = numberOfBunnies + 1. So, some people conclude that Java’s
++ and –– operators are for saving keystrokes — to keep those poor fingers from
overworking themselves. This is entirely incorrect. The best reason for using ++ is
to avoid the inefficient and error-prone practice of writing the same variable
name, such as numberOfBunnies, twice in the same statement. If you write
numberOfBunnies only once (as you do when you use ++ or ––), the computer has
to figure out what numberOfBunnies means only once. On top of that, when you
write numberOfBunnies only once, you have only one chance (instead of two
chances) to type the variable name incorrectly. With simple expressions like
numberOfBunnies++, these advantages hardly make a difference. But with more
complicated expressions, such as inventoryItems[(quantityReceived--*items
PerBox+17)]++, the efficiency and accuracy that you gain by using ++ and –– are
significant.

PROGNOSTICATION GAME

Before you run the following code, try to predict what the code’s output will be.
Then run the code to find out whether your prediction is correct:

public class Main {

 public static void main(String[] args) {

 int i = 10;

 System.out.println(i++);
 System.out.println(--i);

So,	even	though	the	computer	adds	1	to	numberOfBunnies,	the	code	out.
println(numberOfBunnies++)	really	means	out.println(28).

Now,	almost	everything	you	just	read	about	numberOfBunnies++	is	true	about	
++numberOfBunnies.	The	only	difference	is	that	as	an	expression,	++numberOf
Bunnies	behaves	in	a	more	intuitive	way:

• As	a	statement,	++numberOfBunnies	tells	the	computer	to	add	1	to	
numberOfBunnies.

• As	an	expression,	the	value	of	++numberOfBunnies is 29.

So,	with	out.println(++numberOfBunnies),	the	computer	adds	1	to	the	variable	
numberOfBunnies,	and	the	code	out.println(++numberOfBunnies)	really	means	
out.println(29).

(continued)

CHAPTER 4 Making the Most of Variables and Their Values 93

4.indd 93	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

 --i;

 i--;

 System.out.println(i);

 System.out.println(++i);
 System.out.println(i--);

 System.out.println(i);

 i++;
 i = i++ + ++i;
 System.out.println(i);

 i = i++ + i++;
 System.out.println(i);

 }

}

SEE PLUS PLUS

Type the boldface text, one line after another, into JShell and see how JShell
responds:

int i = 8

i++

i

i

i++

i

++i

i + i++

i++ + i

Assignment operators
If you read the preceding section, which is about operators that add 1, you may be
wondering whether you can manipulate these operators to add 2 or add 5 or add
1000000. Can you write numberOfBunnies++++ and still call yourself a Java pro-
grammer? Well, you can’t. If you try it, an error message appears when you try to
compile your code.

What can you do? As luck would have it, Java has plenty of assignment operators
you can use. With an assignment operator, you can add, subtract, multiply, or divide
by anything you want. You can do other cool operations, too. Listing 4-8 has a
smorgasbord of assignment operators (the ones with equal signs). Figure 4-17
shows the output from running Listing 4-8.

94 PART 2 Writing Your Own Java Programs

4.indd 94	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

LISTING 4-8: Assignment Operators

public class UseAssignmentOperators {

 public static void main(String[] args) {

 int numberOfBunnies = 27;

 int numberExtra = 53;

 numberOfBunnies += 1;
 System.out.println(numberOfBunnies);

 numberOfBunnies += 5;
 System.out.println(numberOfBunnies);

 numberOfBunnies += numberExtra;
 System.out.println(numberOfBunnies);

 numberOfBunnies *= 2;

 System.out.println(numberOfBunnies);

 System.out.println(numberOfBunnies -= 7);

 System.out.println(numberOfBunnies = 100);

 }

}

Listing 4-8 shows how versatile Java’s assignment operators are. With the assign-
ment operators, you can add, subtract, multiply, or divide a variable by any num-
ber. Notice how += 5 adds 5 to numberOfBunnies, and how *= 2 multiplies
numberOfBunnies by 2. You can even use another expression’s value (in Listing 4-8,
numberExtra) as the number to be applied.

The last two lines in Listing 4-8 demonstrate a special feature of Java’s assign-
ment operators. You can use an assignment operator as part of a larger Java state-
ment. In the next-to-last line of Listing 4-8, the operator subtracts 7 from
numberOfBunnies, decreasing the value of numberOfBunnies from 172 to 165.
Then the whole assignment business is stuffed into a call to System.out.println,
so 165 prints onscreen.

FIGURE 4-17:
A	run	of	the	code	

in	Listing 4-8.

CHAPTER 4 Making the Most of Variables and Their Values 95

4.indd 95	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

Lo and behold, the last line of Listing 4-8 shows how you can do the same thing
with Java’s plain old equal sign. The thing that I call an assignment statement
near the start of this chapter is really one of the assignment operators that I
describe in this section. Therefore, whenever you assign a value to something, you
can make that assignment be part of a larger statement.

Each use of an assignment operator does double duty as a statement and an
expression. In all cases, the expression’s value equals whatever value you assign.
For example, before executing the code System.out.println(numberOfBunnies
-= 7), the value of numberOfBunnies is 172. As a statement, numberOfBunnies -=
7 tells the computer to subtract 7 from numberOfBunnies (so the value of num-
berOfBunnies goes from 172 to 165). As an expression, the value of numberOfBun-
nies -= 7 is 165. So the code System.out.println(numberOfBunnies -= 7)
really means System.out.println(165). The number 165 displays on the com-
puter screen.

For a richer explanation of this kind of thing, see the sidebar “Statements and
expressions,” earlier in this chapter.

THE OPERATION IS A SUCCESS

Before you run the following code, try to predict what the code’s output will be.
Then run the code to find out whether your prediction is correct:

public class Main {

 public static void main(String[] args) {

 int i = 10;

 i += 2;
 i -= 5;

 i *= 6;

 System.out.println(i);

 System.out.println(i += 3);
 System.out.println(i /= 2);

 }

}

4.indd 96	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:37	PM

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 97

5.indd 97 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

Chapter 5
 Controlling Program
Flow with Decision-
Making Statements

 T he TV show Dennis the Menace aired on CBS from 1959 to 1963. I remember
one episode in which Mr. Wilson was having trouble making an important
decision. I think it was something about changing jobs or moving to a new

town. Anyway, I can still see that shot of Mr. Wilson sitting in his yard, sipping
lemonade, and staring into nowhere for the whole afternoon. Of course, the
annoying character Dennis was continually interrupting Mr. Wilson’s peace and
quiet. That’s what made this situation funny.

 What impressed me about this episode (the reason I remember it clearly, even
now) was Mr. Wilson’s dogged intent in making the decision. This guy wasn’t
going about his everyday business, roaming around the neighborhood while
thoughts about the decision wandered in and out of his mind. He was sitting qui-
etly in his yard, making marks carefully and logically on his mental balance sheet.
How many people actually make decisions this way?

 At that time, I was still pretty young. I’d never faced the responsibility of making
a big decision that aff ected my family and me. But I wondered what such a

 IN THIS CHAPTER

» Writing statements that choose
between alternatives

» Forming logical conditions

» Putting statements inside one
another

» Choosing among many alternatives

98 PART 2 Writing Your Own Java Programs

5.indd 98 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

decision-making process would be like. Would it help to sit there like a stump for
hours on end? Would I make my decisions by the careful weighing and tallying of
options? Or would I shoot in the dark, take risks, and act on impulse? Only time
would tell.

Making Decisions (Java if Statements)
When you’re writing computer programs, you’re constantly hitting forks in roads.
Did the user correctly type the password? If yes, let the user work; if no, kick the
bum out. So the Java programming language needs a way of making a program
branch in one of two directions. Fortunately, the language has a way: It’s called an
if statement.

Guess the number
Listing 5-1 illustrates the use of an if statement. Two runs of the program in
Listing 5-1 are shown in Figure 5-1.

LISTING 5-1: A Guessing Game

import java.util.Random;

import java.util.Scanner;

import static java.lang.System.out;

public class GuessingGame {

 public static void main(String[] args) {

 Scanner keyboard = new Scanner(System.in);

 out.print("Enter an int from 1 to 10: ");

 int inputNumber = keyboard.nextInt();

 int randomNumber = new Random().nextInt(10) + 1;

 if (inputNumber == randomNumber) {

 out.println("**********");

 out.println("*You win.*");

 out.println("**********");

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 99

5.indd 99 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

 } else {

 out.println("You lose.");

 out.print("The random number was ");

 out.println(randomNumber + ".");
 }

 out.println("Thank you for playing.");

 keyboard.close();

 }

}

The program in Listing 5-1 plays a guessing game with the user. The program
gets a number (a guess) from the user and then generates a random number
between 1 and 10. If the number that the user entered is the same as the random
number, the user wins. Otherwise, the user loses and the program tells the user
what the random number was.

She controlled keystrokes
from the keyboard
Taken together, the lines

import java.util.Scanner;

 Scanner keyboard = new Scanner(System.in);

 int inputNumber = keyboard.nextInt();

in Listing 5-1 get whatever number the user types on the computer’s keyboard.
The last of the three lines puts this number into a variable named inputNumber. If
these lines look complicated, don’t worry: You can copy these lines almost

FIGURE 5-1:
Two runs of the
guessing game.

100 PART 2 Writing Your Own Java Programs

5.indd 100 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

word-for-word whenever you want to read from the keyboard. Include the first
two lines (the import and Scanner lines) just once in your program. Later in your
program, wherever the user types an int value, include a line with a call to
nextInt (as in the last of the preceding three lines of code).

Of all the names in these three lines of code, the only two names I coined myself
are inputNumber and keyboard. All the other names are part of Java. So, if I want to
be creative, I can write the lines this way:

import java.util.Scanner;

 Scanner readingThingie = new Scanner(System.in);

 int valueTypedIn = readingThingie.nextInt();

I can also beef up my program’s import declarations, as I do later on, in
Listings 5-2 and 5-3. Other than that, I have very little leeway.

As you read on in this book, you’ll start recognizing the patterns behind these
three lines of code, so I don’t clutter up this section with all the details. For now,
you can just copy these three lines and keep the following guidelines in mind:

 » When you import java.util.Scanner, you don’t use the word static.

But importing Scanner is different from importing System.out. When you import
java.lang.System.out, you use the word static. (Refer to Listing 5-1.) The
difference creeps into the code because Scanner is the name of a class and
System.out isn’t the name of a class.

For a quick look at the use of the word static in import declarations, see the
sidebar in Chapter 4 about import declarations: the ugly truth. For a more
complete story about the word, see Chapter 10.

 » Typically (on a desktop or laptop computer), the name System.in stands
for the keyboard.

To get characters from someplace other than the keyboard, you can type
something other than System.in inside the parentheses.

What else can you put inside the new Scanner(...) parentheses? For some
ideas, see Chapter 8.

In Listing 5-1, I make the arbitrary decision to give one of my variables the
name keyboard. The name keyboard reminds you, the reader, that this
variable refers to a bunch of plastic buttons in front of your computer.
Naming something keyboard tells Java nothing about plastic buttons or
about user input. On the other hand, the name System.in always tells Java
about those plastic buttons. The code Scanner keyboard = new Scanner

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 101

5.indd 101 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

(System.in) in Listing 5-1 connects the name keyboard with the plastic
buttons that we all know and love.

 » When you expect the user to type an int value (a whole number of some
kind), use nextInt().

If you expect the user to type a double value (a number containing a decimal point),
use nextDouble(). If you expect the user to type true or false, use nextBool-
ean(). If you expect the user to type a word like Barry, Java, or Hello, use next().

Decimal points vary from one country to another. In the United States, 10.5
(with a period) represents ten-and-a-half, but in France, 10,5 (with a comma)
represents ten-and-a-half. In Switzerland, 10.50 is an amount of money,
and 10,50 is an amount that’s not money-related. In the Persian language, a
decimal point looks like a slash (but it sits a bit lower than the digit characters).
Your computer’s operating system stores information about the country you
live in, and Java reads that information to decide what ten-and-a-half looks
like. If you run a program containing a nextDouble() method call and Java
responds with an InputMismatchException, check your input. You might
have input 10.5 when your country’s conventions require 10,5 (or another way
of representing ten-and-a-half). For more information, see the sidebar “Where
on earth do you live?” in Chapter 8.

For an example in which the user types a word, see Listing 5-3, later in this
chapter. For an example in which the user types a single character, see
Listing 6-4, in Chapter 6. For an example in which a program reads an entire
line of text (all in one big gulp), see Chapter 8.

 » You can get several values from the keyboard, one after another.

To do this, use the keyboard.nextInt() code several times.

To see a program that reads more than one value from the keyboard, go to
Listing 5-4, later in this chapter.

 » Whenever you use Java’s Scanner, you should call the close method
after your last nextInt call (or your last nextDouble call or your last
nextWhatever call).

In Listing 5-1, the main method’s last statement is

keyboard.close();

This statement does some housekeeping to disconnect the Java program from
the computer keyboard. (The amount of required housekeeping is more than
you might think!) If I omit this statement from Listing 5-1, nothing terrible
happens. Java’s virtual machine usually cleans up after itself very nicely. But
using close() to explicitly detach from the keyboard is good practice, and
some IDEs display warnings if you omit the keyboard.close() statement. In
this book’s example, I always remember to close my Scanner variables.

102 PART 2 Writing Your Own Java Programs

5.indd 102 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

In Chapter 13, I show you a more reliable way to incorporate close() in your
Java program.

When your program calls System.out.println, your program uses the
computer’s screen. So why don’t you call a close method after all your
System.out.println calls? The answer is subtle. In Listing 5-1, your own
code connects to the keyboard by calling new Scanner(System.in). So, later
in the program, your code cleans up after itself by calling the close method.
But with System.out.println, your own code doesn’t create a connection
to the screen. (The out variable refers to a PrintStream, but you don’t call
new PrintStream() to prepare for calling System.out.println.) Instead,
the Java virtual machine connects to the screen on your behalf. The Java
virtual machine’s code (which you never have to see) contains a call to new
PrintStream() in preparation for your calling System.out.println. So,
because it’s a well-behaved piece of code, the Java virtual machine eventually
calls out.close() with no effort on your part.

Creating randomness
In Listing 5-1, the code new Random().nextInt(10) stands for a number that
appears to be randomly generated — a whole number in the range from 0 to 9.
With 1 added on, the expression new Random().nextInt(10) + 1 is a number
from 1 to 10.

Notice my careful wording in the previous paragraph about “a number that appears
to be randomly generated.” Achieving real randomness is surprisingly difficult.
Mathematician Persi Diaconis says that if you flip a coin several times, always
starting with the head side up, you’re likely to toss heads more often than tails. If
you toss several more times, always starting with the tail side up, you’ll likely toss
tails more often than heads. In other words, coin tossing isn’t really fair.*

Computers aren’t much better than coins and human thumbs. A computer mimics
the generation of random sequences, but in the end the computer just does what
it’s told and does all of this in a purely deterministic fashion. So, in Listing 5-1,
when the computer executes

import java.util.Random;

 int randomNumber = new Random().nextInt(10) + 1;

* Diaconis, Persi. “The Search for Randomness.” American Association for the Advancement
of Science annual meeting. Seattle. 14 Feb. 2004.

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 103

5.indd 103 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

the computer appears to give a randomly generated number — a whole number
between 1 and 10. But it’s all a fake. The computer only follows instructions. It’s
not really random, but without bending a computer over backward, it’s the best
that anyone can do.

Once again, I ask you to take this code on blind faith. Don’t worry about what new
Random().nextInt really does until you have more experience with Java. Just copy
this code into your own programs and have fun with it. And, if the numbers from 1
to 10 aren’t in your flight plans, don’t fret. To roll an imaginary die, write the
statement

int rollEmBaby = new Random().nextInt(6) + 1;

With the execution of this statement, the variable rollEmBaby gets a value
from 1 to 6.

The if statement
At the core of Listing 5-1 is a Java if statement. This if statement represents a
fork in the road. (See Figure 5-2.) The computer follows one of two prongs: the
prong that prints You win or the prong that prints You lose. The computer decides
which prong to take by testing the truth or falsehood of a condition. In Listing 5-1,
the condition being tested is

inputNumber == randomNumber

FIGURE 5-2:
An if statement

is like a fork in
the road.

104 PART 2 Writing Your Own Java Programs

5.indd 104 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

Does the value of inputNumber equal the value of randomNumber? When the condi-
tion is true, the computer does the stuff between the condition and the word else.
When the condition turns out to be false, the computer does the stuff after the
word else. Either way, the computer goes on to execute the last println call, which
displays Thank you for playing.

The condition in an if statement must be enclosed in parentheses. However, a
line like if (inputNumber == randomNumber) is not a complete statement (just
as “If I had a hammer” isn’t a complete sentence). So, this line if (inputNumber
== randomNumber) shouldn’t end with a semicolon.

Sometimes, when I’m writing about a condition that’s being tested, I slip into
using the word expression instead of condition. That’s okay because every condition
is an expression. An expression is something that has a value and, sure enough,
every condition has a value. The condition’s value is either true or false. (For
revealing information about expressions and values like true and false, see
Chapter 4.)

Equal, equal
In Listing 5-1, in the if statement’s condition, notice the use of the double equal
sign. Comparing two numbers to see whether they’re the same isn’t the same as
setting something equal to something else. That’s why the symbol to compare for
equality isn’t the same as the symbol that’s used in an assignment or an initial-
ization. In an if statement’s condition, you can’t replace the double equal sign
with a single equal sign. If you do, your program just won’t work. (You almost
always get an error message when you try to compile your code.)

On the other hand, if you never make the mistake of using a single equal sign in a
condition, you’re not normal. Not long ago, while I was teaching an introductory
Java course, I promised that I’d swallow my laser pointer if no one made the single
equal sign mistake during any of the lab sessions. This wasn’t an idle promise. I
knew I’d never have to keep it. As it turned out, even if I had ignored the first ten
times anybody made the single equal sign mistake during those lab sessions, I
would still be laser-pointer-free. Everybody mistakenly uses the single equal sign
several times in a programming career.

The trick is not to avoid making the single-equal-sign mistake; the trick is to
catch the mistake whenever you make it.

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 105

5.indd 105 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

Brace yourself
The if statement in Listing 5-1 has two halves: a top half and a bottom half. I have
names for these two parts of an if statement. I call them the if part (the top half)
and the else part (the bottom half).

The if part in Listing 5-1 seems to have more than one statement in it. I make this
happen by enclosing the three statements of the if part in a pair of curly braces.
When I do this, I form a block. A block is a bunch of statements scrunched together
by a pair of curly braces.

With this block, three calls to println are tucked away safely inside the if part.
With the curly braces, the rows of asterisks and the words You win display only
when the user’s guess is correct.

This business with blocks and curly braces applies to the else part as well. In
Listing 5-1, whenever inputNumber doesn’t equal randomNumber, the computer
executes three print/println calls. To convince the computer that all three of
these calls are inside the else clause, I put these calls into a block. That is,
I enclose these three calls in a pair of curly braces.

Strictly speaking, Listing 5-1 has only one statement between the if and the else
statements and only one statement after the else statement. The trick is that
when you place a bunch of statements inside curly braces, you get a block; and a
block behaves, in all respects, like a single statement. In fact, the official Java doc-
umentation lists blocks as one of the many kinds of statements. So, in Listing 5-1,
the block that prints You win and asterisks is a single statement that has, within
it, three smaller statements.

Your intent to indent
Notice how, in Listing 5-1, the print and println calls inside the if statement
are indented. (This includes both the You win and You lose statements. The
print and println calls that come after the word else are still part of the if
statement.) Strictly speaking, you don’t have to indent the statements that are
inside an if statement. For all the compiler cares, you can write your whole pro-
gram on a single line or place all your statements in an artful, misshapen zigzag.
The problem is that neither you nor anyone else can make sense of your code if
you don’t indent your statements in some logical fashion. In Listing 5-1, the
indenting of the print and println statements helps your eye (and brain) see
quickly that these statements are subordinate to the overall if/else flow.

106 PART 2 Writing Your Own Java Programs

5.indd 106 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

In a small program, unindented or poorly indented code is barely tolerable. But in
a complicated program, indentation that doesn’t follow a neat, logical pattern is a
big, ugly nightmare.

Many Java IDEs have tools to indent your code automatically. In your favorite IDE,
look for menus such as Source ➪ Format or Code ➪ Reformat Code.

When you write if statements, you may be tempted to chuck out the window all
the rules about curly braces and simply rely on indentation. This strategy works in
other programming languages, such as Python and Haskell, but not in Java. If you
indent three statements after the word else and forget to enclose those state-
ments in curly braces, the computer thinks that the else part includes only the
first of the three statements. What’s worse, the indentation misleads you into
believing that the else part includes all three statements. This makes it more dif-
ficult for you to figure out why your code isn’t behaving the way you think it
should. Watch those braces!

Elseless in Helsinki
Okay, so the title of this section is contrived. Big deal! The idea is that you can
create an if statement without the else part. Take, for instance, the code in List-
ing 5-1, shown earlier. Maybe you’d rather not rub it in whenever the user loses
the game. The modified code in Listing 5-2 shows you how to do this (and
Figure 5-3 shows you the result).

LISTING 5-2: A Kinder, Gentler Guessing Game

import java.util.Random;

import java.util.Scanner;

import static java.lang.System.in;

import static java.lang.System.out;

FIGURE 5-3:
Two runs of
the game in
Listing 5-2.

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 107

5.indd 107 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

public class DontTellThemTheyLost {

 public static void main(String[] args) {

 Scanner keyboard = new Scanner(in);

 out.print("Enter an int from 1 to 10: ");

 int inputNumber = keyboard.nextInt();

 int randomNumber = new Random().nextInt(10) + 1;

 if (inputNumber == randomNumber) {

 out.println("*You win.*");

 }

 out.println("That was a very good guess :-)");

 out.print("The random number was ");

 out.println(randomNumber + ".");
 out.println("Thank you for playing.");

 keyboard.close();

 }

}

The if statement in Listing 5-2 has no else part. When inputNumber is the same
as randomNumber, the computer prints You win. When inputNumber is different
from randomNumber, the computer doesn’t print You win.

Listing 5-2 illustrates another new idea. With an import declaration for System.
in, I can reduce new Scanner(System.in) to the shorter new Scanner(in). Add-
ing this import declaration is hardly worth the effort. In fact, I do more typing
with the import declaration than without it. Nevertheless, the code in Listing 5-2
demonstrates that it’s possible to import System.in.

STRAIGHT TALK

In Chapter 4, Listing 4-5 tells you whether you can or cannot fit ten people on an
elevator. A run of the listing’s code looks something like this:

True or False?

You can fit all ten of the

Brickenchicker dectuplets

on the elevator:

false

108 PART 2 Writing Your Own Java Programs

5.indd 108 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

Use what you know about Java’s if statements to make the program’s output
more natural. Depending on the value of the program’s elevatorWeightLimit
variable, the output should be either

You can fit all ten of the

Brickenchicker dectuplets

on the elevator.

or

You can't fit all ten of the

Brickenchicker dectuplets

on the elevator.

Using Blocks in JShell
Chapter 4 introduces Java 9’s interactive JShell environment. You type a state-
ment, and JShell responds immediately by executing the statement. That’s fine
for simple statements, but what happens when you have a statement inside of a
block?

In JShell, you can start typing a statement with one or more blocks. JShell doesn’t
respond until you finish typing the entire statement — blocks and all. To see how
it works, look over this conversation that I had recently with JShell:

jshell> import static java.lang.System.out

jshell> import java.util.Random

jshell> int randomNumber = new Random().nextInt(10) + 1

randomNumber ==> 4

jshell> int inputNumber = 4

inputNumber ==> 4

jshell> if (inputNumber == randomNumber) {

 ...> out.println("*You win.*");

 ...> }

You win.

jshell>

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 109

5.indd 109 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

In this dialogue, I’ve set the text that I type in bold. JShell’s responses aren’t set
in bold.

When I type if (inputNumber == randomNumber) { and press Enter, JShell
doesn’t do much — it only displays a ...> prompt, which indicates that whatever
lines I’ve typed don’t form a complete statement. I have to respond by typing the
rest of the if statement.

When I finish the if statement with a close curly brace, JShell finally acknowl-
edges that I’ve typed an entire statement. JShell executes the statement and (in
this example) displays *You win.*.

Notice the semicolon at the end of the out.println line:

 » When you type a statement that’s not inside of a block, JShell lets you omit the
semicolon at the end of the statement.

 » When you type a statement that’s inside of a block, JShell (like the plain old
Java in Listing 5-2) doesn’t let you omit the semicolon.

When you type a block in JShell, you always have the option of typing the entire
block on one line, with no line breaks, like so:

if (inputNumber == randomNumber) { out.println("*You win.*"); }

Forming Conditions with Comparisons
and Logical Operators

The Java programming language has plenty of little squiggles and doodads for
your various condition-forming needs. This section tells you all about them.

Comparing numbers; comparing characters
Table 5-1 shows you the operators that you can use to compare one value with
another.

You can use all of Java’s comparison operators to compare numbers and charac-
ters. When you compare numbers, things go pretty much the way you think they
should go. But when you compare characters, things are a little strange. Compar-
ing uppercase letters with one another is no problem. Because the letter B comes

110 PART 2 Writing Your Own Java Programs

5.indd 110 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

alphabetically before H, the condition 'B' < 'H' is true. Comparing lowercase
letters with one another is also okay. What’s strange is that when you compare an
uppercase letter with a lowercase letter, the uppercase letter is always smaller. So,
even though 'Z' < 'A' is false, 'Z' < 'a' is true.

Under the hood, the letters A through Z are stored with numeric codes 65 through
90. The letters a through z are stored with codes 97 through 122. That’s why each
uppercase letter is smaller than each lowercase letter.

Be careful when you compare two numbers for equality (with ==) or inequality
(with !=). After you do some calculations and obtain two double values or two
float values, the values that you have are seldom dead-on equal to one another.
(The problem comes from those pesky digits beyond the decimal point.) For
instance, the Fahrenheit equivalent of 21 degrees Celsius is 69.8, and when you
calculate 9.0 / 5 * 21 + 32 by hand, you get 69.8. But the condition 9.0 / 5 *
21 + 32 == 69.8 turns out to be false. That’s because, when the computer calcu-
lates 9.0 / 5 * 21 + 32, it gets 69.80000000000001, not 69.8.

Comparing objects
When you start working with objects, you find that you can use == and != to com-
pare objects with one another. For instance, a button you see on the computer
screen is an object. You can ask whether the thing that was just mouse-clicked is
a particular button on your screen. You do this with Java’s equality operator:

if (e.getSource() == bCopy) {

clipboard.setText(which.getText());

TABLE 5-1 Comparison Operators
Operator Symbol Meaning Example

== is equal to numberOfCows == 5

!= is not equal to buttonClicked != panic
Button

< is less than numberOfCows < 5

> is greater than myInitial > 'B'

<= is less than or equal to numberOfCows <= 5

>= is greater than or equal to myInitial >= 'B'

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 111

5.indd 111 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

To find out more about responding to button clicks, read Chapter 16.

The big gotcha with Java’s comparison scheme comes when you compare two
strings. (For a word or two about Java’s String type, see the section about refer-
ence types in Chapter 4.) When you compare two strings with one another, you
don’t want to use the double equal sign. Using the double equal sign would ask,
“Is this string stored in exactly the same place in memory as that other string?”
Usually, that’s not what you want to ask. Instead, you usually want to ask, “Does
this string have the same characters in it as that other string?” To ask the second
question (the more appropriate question), Java’s String type has a method named
equals. (Like everything else in the known universe, this equals method is
defined in the Java API, short for application programming interface.) The equals
method compares two strings to see whether they have the same characters in
them. For an example using Java’s equals method, see Listing 5-3. (Figure 5-4
shows a run of the program in Listing 5-3.)

LISTING 5-3: Checking a Password

import java.util.Scanner;

import static java.lang.System.*;

public class CheckPassword {

 public static void main(String[] args) {

 out.print("What's the password?");

 var keyboard = new Scanner(in);

 String password = keyboard.next();

 out.println("You typed >>" + password + "<<");
 out.println();

FIGURE 5-4:
The results of
using == and

using Java’s
equals method.

(continued)

112 PART 2 Writing Your Own Java Programs

5.indd 112 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

 if (password == "swordfish") {

 out.println("""

 The word you typed is stored

 in the same place as the real

 password. You must be a hacker.""");

 } else {

 out.println("""

 The word you typed is not

 stored in the same place as

 the real password, but that's

 no big deal.""");

 }

 out.println();

 if (password.equals("swordfish")) {

 out.println("""

 The word you typed has the

 same characters as the real

 password. You can use our

 precious system.""");

 } else {

 out.println("""

 The word you typed doesn't

 have the same characters as

 the real password. You can't

 use our precious system.""");

 }

 keyboard.close();

 }

}

In Listing 5-3, the call keyboard.next() grabs whatever word the user types on
the computer keyboard. The code shoves this word into the variable named pass-
word. Then the program’s if statements use two different techniques to compare
password with "swordfish".

The more appropriate of the two techniques uses Java’s equals method. The
equals method looks funny because when you call it, you put a dot after one
string and put the other string in parentheses. But that’s the way you have to do it.

In calling Java’s equals method, it doesn’t matter which string gets the dot and
which gets the parentheses. For instance, in Listing 5-3, you could have written

if ("swordfish".equals(password))

LISTING 5-3: (continued)

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 113

5.indd 113 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

The method would work just as well.

A call to Java’s equals method looks imbalanced, but it’s not. There’s a reason
behind the apparent imbalance between the dot and the parentheses. The idea is
that you have two objects: the password object and the "swordfish" object. Each
of these two objects is of type String. (However, password is a variable of type
String, and "swordfish" is a String literal.) When you write password.
equals("swordfish"), you’re calling an equals method that belongs to the pass-
word object. When you call that method, you’re feeding "swordfish" to the
method as the method’s parameter (pun intended). You can read more about
methods belonging to objects in Chapter 7.

In addition to its equals method, Java has an equalsIgnoreCase method. Even
though "SWORDFISH".equals("swordfish") is false, its close cousin "SWORD-
FISH".equalsIgnoreCase("swordfish") is true.

Look!
The big new in Listing 5-3 is Java’s equals method, but the listing has several
other interesting features. This section describes three of them.

On the var side
In Listing 5-2, the following statement associates my made-up name keyboard
with Java’s well-established name Scanner:

Scanner keyboard = new Scanner(in);

The word Scanner appears twice in this statement — once as Scanner keyboard
and again as new Scanner(in). You may ask whether this repetition of the name
Scanner is necessary. Chapter 4 introduces Java’s use of the word var, and
Listing 5-3 puts var to good use. In Listing 5-3, the statement

var keyboard = new Scanner(in);

tells Java to figure out on its own that keyboard refers to a Scanner value. Believe
it or not, older versions of Java couldn’t jump to that conclusion. Before Java 10
came along, repeating words like Scanner, as in Listings 5-1 and 5-2, was the only
option.

This newfangled var word is handy! But remember, you can’t always replace
Scanner keyboard with var keyboard. For details, see Chapter 7.

114 PART 2 Writing Your Own Java Programs

5.indd 114 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

The expression new Scanner(in) is an example of a constructor call. For the low-
down on constructor calls, see Chapter 9.

When one line isn’t enough
Listing 5-3 uses a feature that didn’t become an official part of Java until
September 2020 (with Java 15): A text block is a bunch of text surrounded on both
sides by three double quotes (""").

out.println("""

 The word you typed is stored

 in the same place as the real

 password. You must be a hacker.""");

A text block starts with three double quotation marks, and the remainder of that
block’s first line must be blank. If you mistakenly put text after those first three
quotation marks, Java becomes sick to its stomach:

// Don't do this:

out.println("""The word you typed is stored

 in the same place as the real

 password. You must be a hacker.""");

Text blocks are useful because the text inside a block can straddle more than one
line. Without text blocks, you may be tempted to put one quotation mark at each
end, but that doesn’t work. The following code, with traditional Java string nota-
tion, is forbidden:

// This code is incorrect:

out.println("

 The word you typed is stored

 in the same place as the real

 password. You must be a hacker.");

This book’s seventh edition hit the shelves in 2017, before Java had text blocks.
In that edition, Listing 5-3 had a truckload of out.println calls:

out.println("The word you typed is stored");

out.println("in the same place as the real");

out.println("password. You must be a");

out.println("hacker.");

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 115

5.indd 115 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

That was some ugly code!

Importing everything in one fell swoop
The first line of Listing 5-3 illustrates a lazy way of importing both System.out
and System.in. To import everything that System has to offer, you use the aster-
isk wildcard character (*). In fact, importing java.lang.System.* is like having
about 30 separate import declarations, including System.in, System.out,
System.err, System.nanoTime, and many other System things.

I don’t use the wildcard very much in this book’s examples. But for larger
programs — programs that use dozens of names from the Java API — the lazy
asterisk trick is handy.

You can’t toss an asterisk anywhere you want inside an import declaration. For
example, you can’t import everything starting with java by writing import
java.*. You can substitute an asterisk only for the name of a class or for the name
of something static that’s tucked away inside a class. For more information about
asterisks in import declarations, see Chapter 7. For information about static
things, see Chapter 10.

Java’s logical operators
Mr. Spock would be pleased: Java has all the operators you need for mixing and
matching logical tests. The operators are shown in Table 5-2.

You can use these operators to form all kinds of elaborate conditions. Listing 5-4
has an example.

TABLE 5-2 Logical Operators
Operator Symbol What It Means Example

&& and 5 < x && x < 10

|| or x < 5 || 10 < x

! not !password.equals("swordfish")

116 PART 2 Writing Your Own Java Programs

5.indd 116 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

LISTING 5-4: Checking Username and Password

import javax.swing.JOptionPane;

public class Authenticator {

 public static void main(String[] args) {

 String username = JOptionPane.showInputDialog("Username:");

 String password = JOptionPane.showInputDialog("Password:");

 if (

 username != null && password != null &&

 (

 (username.equals("bburd") && password.equals("swordfish")) ||

 (username.equals("hritter") && password.equals("preakston"))

)

)

 {

 JOptionPane.showMessageDialog(null, "You're in.");

 } else {

 JOptionPane.showMessageDialog(null, "You're suspicious.");

 }

 }

}

Several runs of the program in Listing 5-4 are shown in Figure 5-5. When the
username is bburd and the password is swordfish or when the username is hritter
and the password is preakston, the user sees a nice message. Otherwise, the user is
a bum who sees the nasty message they deserve.

Confession: Figure 5-5 is a fake! To help you read the usernames and passwords,
I added an extra statement to Listing 5-4. The extra statement (UIManager.
put("TextField.font", new Font("Dialog", Font.BOLD, 14))) enlarges each
text field’s font size. Yes, I modified the code before creating the figure. Shame
on me!

Listing 5-4 illustrates a new way to get user input; namely, to show the user an
input dialog box. The statement

String password = JOptionPane.showInputDialog("Password:");

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 117

5.indd 117 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

in Listing 5-4 performs more or less the same task as the statement

String password = keyboard.next();

from Listing 5-3. The big difference is, while keyboard.next() displays dull-
looking text in a console, JOptionPane.showInputDialog("Username:") displays
a fancy dialog box containing a text field and buttons. (Compare Figures 5-4
and 5-5.) When the user clicks OK, the computer takes whatever text is in the text
field and hands that text over to a variable. In fact, Listing 5-4 uses JOptionPane.
showInputDialog twice — once to get a value for the username variable and a
second time to get a value for the password variable.

Near the end of Listing 5-4, I use a slight variation on the JOptionPane business:

JOptionPane.showMessageDialog(null, "You're in.");

With showMessageDialog, I show a simple dialog box — a box with no text field.
(Again, see Figure 5-5.)

Like thousands of other names, the name JOptionPane is defined in Java’s API.
(To be more specific, JOptionPane is defined inside something called javax.
swing, which in turn is defined inside Java’s API.) So, to use the name

FIGURE 5-5:
Several runs of
the code from

Listing 5-4.

118 PART 2 Writing Your Own Java Programs

5.indd 118 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

JOptionPane throughout Listing 5-4, I import javax.swing.JOptionPane at the
top of the listing.

In Listing 5-4, JOptionPane.showInputDialog works nicely because the user’s
input (username and password) are mere strings of characters. If you want the
user to input a number (an int or a double, for example), you have to do some
extra work. For example, to get an int value from the user, type something like
int numberOfCows = Integer.parseInt(JOptionPane.showInputDialog("How
many cows?")). The extra Integer.parseInt stuff forces your text field’s input
to be an int value. To get a double value from the user, type something like
double fractionOfHolsteins = Double.parseDouble(JOptionPane.showInpu
tDialog("Holsteins:")). The extra Double.parseDouble business forces your
text field’s input to be a double value.

Vive les nuls!
The French translations of For Dummies books are books Pour les Nuls. So a
“dummy” in English is a “nul” in French.* But in Java, the word null means
“nothing.” When you see

if (

 username != null

in Listing 5-4, you can imagine that you see

if (

 username isn't nothing

or

if (

 username has any value at all

To find out how usernames can have no value, see the last row in Figure 5-5.
When you click Cancel in the first dialog box, the computer hands null to your
program. So, in Listing 5-4, the variable username becomes null. The compari-
son username != null checks to make sure that you haven’t clicked Cancel in the
program’s first dialog box. The comparison password != null performs the same
kind of check for the program’s second dialog box. When you see the if statement
in Listing 5-4, you can imagine that you see the following:

* In Russian, a “dummy” is a “чaйник,” which, when interpreted literally, means a “tea-
pot.” So, in Russian, this book is Java For Teapots. I’ve never been called a teapot, and I’m not
sure how I’d react if I were.

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 119

5.indd 119 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

if (

 you didn't press Cancel in the username dialog and

 you didn't press Cancel in the password dialog and

 (

 (you typed bburd in the username dialog and

 you typed swordfish in the password dialog) or

 (you typed hritter in the username dialog and

 you typed preakston in the password dialog)

)

)

In Listing 5-4, the comparisons username != null and password != null are not
optional. If you forget to include these and then click Cancel when the program
runs, you get a nasty NullPointerException message, and the program comes
crashing down before your eyes. The word null represents nothing, and in Java,
you can’t compare nothing to a string like "bburd" or "swordfish". In Listing 5-4,
the purpose of the comparison username != null is to prevent Java from moving
on to check username.equals("bburd") whenever you happen to click Cancel.
Without this preliminary username != null test, you’re courting trouble.

The last couple of nulls in Listing 5-4 are different from the others. In the code
JOptionPane.showMessageDialog (null, "You're in."), the word null stands
for “no other dialog box.” In particular, the call showMessageDialog tells Java to
pop up a new dialog box, and the word null indicates that the new dialog box
doesn’t grow out of any existing dialog box. One way or another, Java insists that
you say something about the origin of the newly popped dialog box. (For some
reason, Java doesn’t insist that you specify the origin of the showInputDialog
box. Go figure!) Anyway, in Listing 5-4, having a showMessageDialog box pop up
from nowhere is quite useful.

(Conditions in parentheses)
Keep an eye on those parentheses! When you’re combining conditions with logical
operators, it’s better to waste typing effort and add unneeded parentheses than to
goof up your result by using too few parentheses. Take, for example, the expression

2 < 5 || 100 < 6 && 27 < 1

By misreading this expression, you might conclude that the expression is false.
That is, you could wrongly read the expression as meaning (something-or-
other) && 27 < 1. Because 27 < 1 is false, you would conclude that the whole
expression is false. The fact is that, in Java, any && operator is evaluated before
any || operator. So the expression really asks whether 2 < 5 || (something-or-
other). Because 2 < 5 is true, the whole expression is true.

120 PART 2 Writing Your Own Java Programs

5.indd 120 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

To change the expression’s value from true to false, you can put the expres-
sion’s first two comparisons in parentheses, like this:

(2 < 5 || 100 < 6) && 27 < 1

Java’s || operator is inclusive. This means that you get a true value whenever the
thing on the left side is true, the thing on the right side is true, or both things are
true. For instance, the expression 2 < 10 || 20 < 30 is true.

In Java, you can’t combine comparisons the way you do in ordinary English. In
English, you may say, “We’ll have between three and ten people at the dinner
table.” But in Java, you get an error message if you write 3 <= people <= 10. To
do this comparison, you need something like 3 <= people && people <= 10.

In Listing 5-4, the if statement’s condition has more than a dozen parentheses.
What happens if you omit two of them?

if (

 username != null && password != null &&

 // open parenthesis omitted

 (username.equals("bburd") && password.equals("swordfish")) ||

 (username.equals("hritter") && password.equals("preakston"))

 // close parenthesis omitted

)

Java tries to interpret your wishes by grouping everything before the “or” (the ||
operator):

if (

 username != null && password != null &&

 (username.equals("bburd") && password.equals("swordfish"))

 ||

 (username.equals("hritter") && password.equals("preakston"))

)

When the user clicks Cancel and username is null, Java says, “Okay! The stuff
before the || operator is false, but maybe the stuff after the || operator is true. I’ll
check the stuff after the || operator to find out whether it’s true.” (Java often
talks to itself. The psychiatrists are monitoring this situation.)

Anyway, when Java finally checks username.equals("hritter"), your program
aborts with an ugly NullPointerException message. You’ve made Java angry by

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 121

5.indd 121 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

trying to apply .equals to a null username. (Psychiatrists have recommended
anger management sessions for Java, but Java’s insurance plan refuses to pay for
the sessions.)

Make some changes to the code in Listing 5-4.

THE RULE OF THREE

Add a third username/password combination to the list of acceptable logins.

OUT, DAMN’D NOT!

In Listing 5-4, change

username != null && password != null

to

!(username == null || password == null)

Does the program still work? Why or why not?

EQUAL BYTES

In Listing 5-4, change

username != null && password != null

to

!(username == null && password == null)

This is almost the same as the previous experiment. The only difference is the use
of && instead of || between the two == null tests. Does the program still work?
Why or why not?

The Nesting Habits of if Statements
Have you seen those cute Russian matryoshka nesting dolls? Open one, and
another one is inside. Open the second, and a third one is inside it. You can do the
same thing with Java’s if statements. (Talk about fun!) Listing 5-5 shows
you how.

122 PART 2 Writing Your Own Java Programs

5.indd 122 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

LISTING 5-5: Nested if Statements

import java.util.Scanner;

import static java.lang.System.out;

public class Authenticator2 {

 public static void main(String[] args) {

 var keyboard = new Scanner(System.in);

 out.print("Username: ");

 String username = keyboard.next();

 if (username.equals("bburd")) {

 out.print("Password: ");

 String password = keyboard.next();

 if (password.equals("swordfish")) {

 out.println("You're in.");

 } else {

 out.println("Incorrect password");

 }

 } else {

 out.println("Unknown user");

 }

 keyboard.close();

 }

}

Figure 5-6 shows several runs of the code in Listing 5-5. The main idea is that to
log on, you have to pass two tests. (In other words, two conditions must be true.)
The first condition tests for a valid username; the second condition tests for the
correct password. If you pass the first test (the username test), you march right
into another if statement that performs a second test (the password test). If you
fail the first test, you never make it to the second test. Figure 5-7 shows the over-
all plan.

The code in Listing 5-5 does a good job with nested if statements, but it does a
terrible job with real-world user authentication. First, never show a password in
plain view (without asterisks to masquerade the password). Second, don’t handle
passwords without encrypting them. Third, don’t tell the malicious user which of
the two words (the username or the password) was entered incorrectly.
Fourth . . . well, I could go on and on. The code in Listing 5-5 just isn’t meant to
illustrate good username/password practices.

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 123

5.indd 123 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

I CHANGED MY MIND

Modify the program in Listing 5-4 so that, if the user clicks Cancel for either the
username or the password, the program replies with a Not enough information
message.

FIGURE 5-6:
Three runs

of the code in
Listing 5-5.

FIGURE 5-7:
Don’t eat

with this fork.

124 PART 2 Writing Your Own Java Programs

5.indd 124 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

Choosing among Many Alternatives
I’m the first to admit that I hate making decisions. If things go wrong, I would
rather have the problem be someone else’s fault. Writing the previous sections (on
making decisions with Java’s if statement) knocked the stuffing right out of me.
That’s why my mind boggles as I begin this section on choosing among many
alternatives. What a relief it is to have that confession out of the way!

Java’s glorious switch statement
Now it’s time to explore situations in which you have a decision with many
branches. Take, for instance, the popular campfire song “Al’s All Wet.” (For a
review of the lyrics, see the nearby “Al’s All Wet” sidebar.) You’re eager to write
code that prints this song’s lyrics. Fortunately, you don’t have to type all the
words over and over again. Instead, you can take advantage of the repetition in the
lyrics.

A complete program to display the “Al’s All Wet” lyrics doesn’t come until
Chapter 6. In the meantime, assume that you have a variable named verse. The
value of verse is 1, 2, 3, or 4, depending on which verse of “Al’s All Wet” you’re
trying to print. You could have a big, clumsy bunch of if statements that checks
each possible verse number:

if (verse == 1) {

 out.println("That's because he has no brain.");

}

if (verse == 2) {

 out.println("That's because he is a pain.");

}

if (verse == 3) {

 out.println("'Cause this is the last refrain.");

}

But that approach seems wasteful. Why not create a statement that checks the
value of verse just once and then takes an action based on the value it finds? For-
tunately, just such a statement exists. It’s called a switch statement. Listing 5-6
has an example of a switch statement.

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 125

5.indd 125 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

“AL’S ALL WET”
Sung to the tune of “Gentille Alouette”

Al’s all wet. Oh, why is Al all wet? Oh,
Al’s all wet ’cause he’s standing in the rain.
Why is Al out in the rain?
That’s because he has no brain.
Has no brain, has no brain,
In the rain, in the rain.

Oh, oh, oh, oh

Al’s all wet. Oh, why is Al all wet? Oh,
Al’s all wet ’cause he’s standing in the rain.
Why is Al out in the rain?
That’s because he is a pain.
He’s a pain, he’s a pain,
Has no brain, has no brain,
In the rain, in the rain.

Oh, oh, oh, oh

Al’s all wet. Oh, why is Al all wet? Oh,
Al’s all wet ’cause he’s standing in the rain.
Why is Al out in the rain?
’Cause this is the last refrain.
Last refrain, last refrain,
He’s a pain, he’s a pain,
Has no brain, has no brain,
In the rain, in the rain.

Oh, oh, oh, oh

Al’s all wet. Oh, why is Al all wet? Oh,
Al’s all wet ’cause he’s standing in the rain.

—Harriet Ritter and Barry Burd

126 PART 2 Writing Your Own Java Programs

5.indd 126 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

LISTING 5-6: A switch Statement

import java.util.Scanner;

import static java.lang.System.out;

public class JustSwitchIt {

 public static void main(String[] args) {

 var keyboard = new Scanner(System.in);

 out.print("Which verse? ");

 int verse = keyboard.nextInt();

 switch (verse) {

 case 1 -> out.println("That's because he has no brain.");

 case 2 -> out.println("That's because he is a pain.");

 case 3 -> out.println("'Cause this is the last refrain.");

 default -> out.println("No such verse. Please try again.");

 }

 out.println("Oh, oh, oh, oh");

 keyboard.close();

 }

}

Figure 5-8 shows two runs of the program in Listing 5-6. (Figure 5-9 illustrates
the program’s overall idea.) First, the user types a number, like the number 2.
Then execution of the program reaches the top of the switch statement. The com-
puter checks the value of the verse variable. When the computer determines that
the verse variable’s value is 2, the computer checks each case of the switch state-
ment. The value 2 doesn’t match the topmost case, so the computer proceeds to
the middle of the three cases. The value posted for the middle case (the number 2)
matches the value of the verse variable, so the computer executes the statement
in case 2:

out.println("That's because he is a pain.");

If the pesky user asks for verse 6, the computer bypasses cases 1, 2, and 3. The
computer goes straight to the default. In the default, the computer displays No
such verse. Please try again and then jumps out of the switch statement.
After the computer is out of the switch statement, the computer displays Oh, oh,
oh, oh.

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 127

5.indd 127 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

In newer versions of Java, you can put more than one value in each case of a
switch statement. For example, you can write the following friendly code:

var keyboard = new Scanner(System.in);

out.print("Will you pay me? ");

String reply = keyboard.next();

switch (reply) {

 case "Yes", "YES", "Y", "OK" -> out.println("Thank you!");

 case "No", "NO", "n" -> out.println("Thanks for nothing!");

}

A switch in time saves 14
In 2020, with the release of Java 14, the Java world “switched gears” (pun
intended). The stewards of Java introduced a brand-new feature — namely, the
switch expression. Here’s the story:

FIGURE 5-8:
Running the code

from Listing 5-6
two times.

FIGURE 5-9:
The big fork in

the code of
Listing 5-6.

128 PART 2 Writing Your Own Java Programs

5.indd 128 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

If you look again at Listing 5-6, you wonder why someone took so much delight
in typing the words out.println. Those words appear four times in the switch
statement, and the only difference is the choice of a sarcastic verse. This repeated
use of out.println seems wasteful. Why not have only one call to out.println
for all the different answers the program can display?

Java’s switch expression addresses this issue. In fact, runs of the code in
Listing 5-7 look exactly the same as the runs of Listing 5-6. (Refer to
Figure 5-8.)

LISTING 5-7: Out with the Old out.println!

import java.util.Scanner;

import static java.lang.System.out;

public class MakingAGoodExpression {

 public static void main(String[] args) {

 var keyboard = new Scanner(System.in);

 out.print("Which verse? ");

 int verse = keyboard.nextInt();

 String line;

 line = switch (verse) {

 case 1 -> "That's because he has no brain.";

 case 2 -> "That's because he is a pain.";

 case 3 -> "'Cause this is the last refrain.";

 default -> "No such verse. Please try again.";

 };

 out.println(line);

 out.println("Oh, oh, oh, oh");

 keyboard.close();

 }

}

If you’re using an older version of Java, don’t bother trying to run the code in
Listing 5-7. It won’t work.

In any computer language, the word expression refers to a bunch of code that
stands for a value. In Listing 5-7, the entire switch expression stands for a string
of characters. For example, when verse is 2, the code

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 129

5.indd 129 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

 switch (verse) {

 case 1 -> "That's because he has no brain.";

 case 2 -> "That's because he is a pain.";

 case 3 -> "'Cause this is the last refrain.";

 default -> "No such verse. Please try again.";

};

stands for the string "That's because he is a pain." So, in that scenario,
Listing 5-7 does the same thing as this code:

line = "What part of 'no' don't you understand?";

out.println(line);

In this small snippet of code, notice how the first line ends with a semicolon.
That’s why there’s a semicolon at the end of the big switch expression in
Listing 5-7.

You can squeeze even more goodness out of Java’s switch expression. For exam-
ple, you don’t have to assign the expression’s value to a variable. You can bypass
the variable and print the switch expression’s value:

out.println(switch (verse) {

 case 1 -> "That's because he has no brain.";

 case 2 -> "That's because he is a pain.";

 case 3 -> "'Cause this is the last refrain.";

 default -> "No such verse. Please try again.";

});

But remember that a switch expression can’t stand independently on its own. The
following code makes no sense:

// Bad code!

int verse = keyboard.nextInt();

String line;

"That's because he is a pain."; // This isn't a complete statement.

out.println(line);

The code with a freestanding switch expression doesn’t work, either.

// Bad code!

int verse = keyboard.nextInt();

String line;

switch (verse) { // This isn't a complete statement.

130 PART 2 Writing Your Own Java Programs

5.indd 130 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

 case 1 -> "That's because he has no brain.";

 case 2 -> "That's because he is a pain.";

 case 3 -> "'Cause this is the last refrain.";

 default -> "No such verse. Please try again.";

};

out.println(line);

Your grandparents’ switch statement
In versions of Java before Java 14, the code in Listings 5-6 and 5-7 would have
failed. That’s because Java’s switch statement came originally from the switch
statement in the C/C++ language family, and the C/C++ switch statement was
quite clunky. The code in Listing 5-8 does the same thing as the code in
Listings 5-6 and 5-7, but the Listing 5-8 code works in all versions of Java — old
and new.

LISTING 5-8: A la recherche du temps perdu

import java.util.Scanner;

import static java.lang.System.out;

public class TheVeryOldSwitcheroo {

 public static void main(String[] args) {

 var keyboard = new Scanner(System.in);

 out.print("Which verse? ");

 int verse = keyboard.nextInt();

 switch (verse) {

 case 1:

 out.println("That's because he has no brain.");

 break;

 case 2:

 out.println("That's because he is a pain.");

 break;

 case 3:

 out.println("'Cause this is the last refrain.");

 break;

 default:

 out.println("No such verse. Please try again.");

 break;

 }

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 131

5.indd 131 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

 out.println("Oh, oh, oh, oh");

 keyboard.close();

 }

}

Runs of the code in Listing 5-8 look exactly the same as runs of Listings 5-6
and 5-7. (Refer to Figure 5-8.) The big difference is that Listing 5-8 uses the old
form of the switch statement. In the old form:

 » You use colons (:) instead of arrows (->).

 » You need break statements to bypass any remaining cases.

When Java encounters a break statement, it jumps out of whatever switch state-
ment it’s in. For example, imagine that verse has the value 2. In Listing 5-6, Java
prints That's because he is a pain. Then, because of the break statement, Java
skips right past the case that would display 'Cause this is the last refrain.
In fact, Java jumps out of the entire switch statement and goes directly to the
statement just after the end of the switch statement. The computer displays Oh,
oh, oh, oh because that’s what the statement after the switch statement tells
Java to do.

You don’t really need to put a break at the end of an old switch statement. In
Listing 5-8, the last break (the break that’s part of the default) is just for the sake
of overall tidiness.

The need for break inside the old switch statement is a Java programmer’s night-
mare. Everyone forgets to add these break statements, and when you forget to add
break statements, you get fall-though. With fall-through, execution of the code
falls right through from one case to the next. Execution keeps falling through
until you eventually reach a break statement or the end of the entire switch
statement.

Free fall
Usually, when you’re using a switch statement, you don’t want fall-through, so
you pepper break statements throughout the switch statements. But, occasion-
ally, fall-through is just the thing you need. Take, for instance, the “Al’s All Wet”
song. (The classy lyrics are shown in the sidebar bearing the song’s name.) Each
verse of “Al’s All Wet” adds new lines in addition to the lines from previous verses.
This situation (accumulating lines from one verse to another) cries out for a
switch statement with fall-through. Listing 5-9 demonstrates the idea.

132 PART 2 Writing Your Own Java Programs

5.indd 132 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

LISTING 5-9: A switch Statement with Fall-Through

import java.util.Scanner;

import static java.lang.System.out;

public class FallingForYou {

 public static void main(String[] args) {

 var keyboard = new Scanner(System.in);

 out.print("Which verse? (one, two or three) ");

 String verse = keyboard.next();

 switch (verse) {

 case "three":

 out.print("Last refrain, ");

 out.println("last refrain,");

 case "two":

 out.print("He's a pain, ");

 out.println("he's a pain,");

 case "one":

 out.print("Has no brain, ");

 out.println("has no brain,");

 }

 out.print("In the rain, ");

 out.println("in the rain.");

 out.println("Oh, oh, oh, oh");

 out.println();

 keyboard.close();

 }

}

Figure 5-10 shows several runs of the program in Listing 5-9. Because the switch
has no break statements in it, fall-through happens all over the place. For
instance, when the user enters the word two, Java starts by executing the two
statements in case "two":

out.print("He's a pain, ");

out.println("he's a pain,");

Then Java marches right on to execute the two statements in case "one":

out.print("Has no brain, ");

out.println("has no brain,");

CHAPTER 5 Controlling Program Flow with Decision-Making Statements 133

5.indd 133 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

That’s good because the song’s second verse has all these lines in it.

Notice what happens when the user asks for verse six. The switch statement in
Listing 5-9 has no case "six" and no default, so none of the actions inside the
switch statement is executed. Even so, with statements that print In the rain,
in the rain and Oh, oh, oh, oh right after the switch statement, the computer
displays something when the user asks for verse "six".

If you travel back in time to the year 2010, you can’t run the code in Listing 5-9.
It wasn’t until July 2011, with the release of Java 7, that strings became acceptable
as Java case values. In Java 6, case 3: was okay, but case "three": was strictly
forbidden.

Get some practice with if statements and switch statements!

MONTH-TO-MONTH RESUSCITATION

Write a program that inputs the name of a month and outputs the number of days
in that month. In this first version of the program, assume that February always
has 28 days. Use Java’s switch statement — the kind I used in Listing 5-6.

FIGURE 5-10:
Running the code

of Listing 5-9
four times.

134 PART 2 Writing Your Own Java Programs

5.indd 134 Trim size: 7.375 in × 9.25 in February 22, 2022 8:35 PM

LEAPING TO CONCLUSIONS

Make changes to your code from the earlier section “Month-to-Month Resuscita-
tion.” Have the user input a month name and also yes or no in response to the
question Is it a leap year?

HOW ABOUT A DATE?

Make changes to your code from the earlier section “Leaping to Conclusions.”
Rather than mimic Listing 5-6, use a switch expression of the kind you find in
Listing 5-7. Then use Java’s old-style switch statement like the one you see in
Listing 5-8.

THE YIELD APP

Take this code for a spin and see what it does:

out.println(switch (month) {

 case "January", "March", "May", "July",

 "August", "October", "December" -> 31;

 case "April", "June", "September", "November" -> 30;

 case "February" -> {

 out.print("Leap year (true/false)? ");

 isLeapYear = keyboard.nextBoolean();

 if (isLeapYear) {

 yield 29;

 } else {

 yield 28;

 }

 }

 default -> 0;

} + " days");

CHAPTER 6 Controlling Program Flow with Loops 135

6.indd 135	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:42	PM

Chapter 6
 Controlling Program
Flow with Loops

 I n 1966, the company that brings you Head & Shoulders shampoo made history.
On the back of the bottle, the directions for using the shampoo read, “LATHER–
RINSE–REPEAT.” Never before had a complete set of directions (for doing any-

thing, let alone shampooing your hair) been summarized so succinctly. People in
the direction-writing business hailed this as a monumental achievement.
Directions like these stood in stark contrast to others of the time. (For instance,
the fi rst sentence on a can of bug spray read, “Turn this can so that it points away
from your face.” Duh!)

 Aside from their brevity, the thing that made the Head & Shoulders directions so
cool was that, with three simple words, they managed to capture a notion that’s
at the heart of all instruction-giving: the notion of repetition. That last word,
REPEAT, took an otherwise bland instructional drone and turned it into a sophis-
ticated recipe for action.

 The fundamental idea is that when you’re following directions, you don’t just fol-
low one instruction after another. Instead, you take turns in the road. You make
decisions (“If HAIR IS DRY, then USE CONDITIONER”) and you go into loops
(“LATHER–RINSE, and then LATHER–RINSE again.”). In computer program-
ming, you use decision-making and looping all the time. This chapter explores
looping in Java.

 IN THIS CHAPTER

» Using basic looping

» Counting as you loop

» Repeating relentlessly (until the user
gives you a clear answer)

136 PART 2 Writing Your Own Java Programs

6.indd 136	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:42	PM

Repeating Instructions Over and Over
Again (Java while Statements)

Here’s a guessing game for you. The computer generates a random number from
1 to 10. The computer asks you to guess the number. If you guess incorrectly, the
game continues. As soon as you guess correctly, the game is over. Listing 6-1
shows the program to play the game, and Figure 6-1 shows a round of play.

LISTING 6-1: A Repeating Guessing Game

import java.util.Random;

import java.util.Scanner;

import static java.lang.System.out;

public class GuessAgain {

 public static void main(String[] args) {

 var keyboard = new Scanner(System.in);

 int numGuesses = 0;

 int randomNumber = new Random().nextInt(10) + 1;

 out.println(" ************ ");

 out.println("Welcome to the Guessing Game");

 out.println(" ************ ");

 out.println();

 out.print("Enter an int from 1 to 10: ");

 int inputNumber = keyboard.nextInt();

 numGuesses++;

FIGURE 6-1:
Play	until	
you	drop.

CHAPTER 6 Controlling Program Flow with Loops 137

6.indd 137	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:42	PM

 while (inputNumber != randomNumber) {

 out.println();

 out.println("Try again...");

 out.print("Enter an int from 1 to 10: ");

 inputNumber = keyboard.nextInt();

 numGuesses++;
 }

 out.print("You win after ");

 out.println(numGuesses + " guesses.");

 keyboard.close();

 }

}

In Figure 6-1, the user makes four guesses. Each time around, the computer
checks to see whether the guess is correct. An incorrect guess generates a request
to try again. For a correct guess, the user gets a rousing You win, along with a tally
of the number of guesses they made. The computer repeats several statements,
checking each time through to see whether the user’s guess is the same as a cer-
tain randomly generated number. Each time the user makes a guess, the computer
adds 1 to its tally of guesses. When the user makes the correct guess, the computer
displays that tally. Figure 6-2 illustrates the flow of action.

FIGURE 6-2:
Around	and	

around	you	go.

138 PART 2 Writing Your Own Java Programs

6.indd 138	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:42	PM

When you look over Listing 6-1, you see the code that does all this work. At the
core of the code is a thing called a while statement (also known as a while loop).
Rephrased in English, the while statement says:

while the inputNumber is not equal to the randomNumber

keep doing all the stuff in curly braces: {

}

The stuff in curly braces (the stuff that repeats) is the code that prints Try again
and Enter an int ..., gets a value from the keyboard, and adds 1 to the count of
the user’s guesses.

When you’re dealing with counters, like numGuesses in Listing 6-1, you may eas-
ily become confused and be off by 1 in either direction. You can avoid this head-
ache by making sure that the ++ statements stay close to the statements whose
events you’re counting. For example, in Listing 6-1, the variable numGuesses
starts with a value of 0. That’s because, when the program starts running, the user
hasn’t made any guesses. Later in the program, right after each call to keyboard.
nextInt, is a numGuesses++ statement. That’s how you do it — you increment the
counter as soon as the user enters another guess.

The statements in curly braces are repeated as long as inputNumber != random-
Number is true. Each repetition of the statements in the loop is called an iteration
of the loop. In Figure 6-1, the loop undergoes three iterations. (If you don’t believe
that Figure 6-1 has exactly three iterations, count the number of Try again print-
ings in the program’s output. A Try again appears for each incorrect guess.)

When, at long last, the user enters the correct guess, the computer goes back to
the top of the while statement, checks the condition in parentheses, and finds
itself in double double-negative land. The not equal (!=) relationship between
inputNumber and randomNumber no longer holds. In other words, the while state-
ment’s condition, inputNumber != randomNumber, is false. Because the while
statement’s condition is false, the computer jumps past the while loop and goes
on to the statements just below the while loop. In these two statements, the com-
puter prints You win after four guesses.

With code of the kind shown in Listing 6-1, the computer never jumps out in mid-
loop. When the computer finds that inputNumber isn’t equal to randomNumber, the
computer marches on and executes all five statements inside the loop’s curly
braces. The computer performs the test again (to see whether inputNumber is still
not equal to randomNumber) only after it fully executes all five statements in the
loop.

CHAPTER 6 Controlling Program Flow with Loops 139

6.indd 139	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:42	PM

I have two things for you to try:

BIGGER AND BETTER

Modify the program in Listing 6-1 so that the randomly generated number is a
number from 1 through 100. To make life bearable for the game player, have the
program give a hint whenever the player guesses incorrectly. Hints such as Try a
higher number or Try a lower number are helpful.

NO NEGATIVITY

Write a program in which the user types int values, one after another. The pro-
gram stops looping when the user types a number that isn’t positive (for example,
the number 0 or the number –17). After all the looping, the program displays the
largest number that the user typed. For example, if the user types the numbers

7

25

3

9

0

the program displays the number 25.

Count On Me
“Write I will not talk in class on the blackboard 100 times.”

What your teacher really meant was this:

Set the count to 0.

As long as the count is less than 100,

 Write 'I will not talk in class' on the blackboard,

 Add 1 to the count.

Fortunately, you didn’t know about loops and counters at the time. If you pointed
out all this stuff to your teacher, you’d have gotten into a lot more trouble than
you were already in.

One way or another, life is filled with examples of counting loops. And computer
programming mirrors life — or is it the other way around? When you tell a com-
puter what to do, you’re often telling the computer to print three lines, process

140 PART 2 Writing Your Own Java Programs

6.indd 140	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:42	PM

ten accounts, dial a million phone numbers, or whatever. Because counting loops
is so common in programming, the people who create programming languages
have developed statements just for loops of this kind. In Java, the statement that
repeats something a certain number of times is called a for statement. Listings 6-2
and 6-3 illustrate the use of the for statement. Listing 6-2 has a rock-bottom
simple example and Listing 6-3 has a more exotic example. Take your pick.

LISTING 6-2: The World’s Most Boring for Loop

import static java.lang.System.out;

public class Yawn {

 public static void main(String[] args) {

 for (int count = 1; count <= 10; count++) {

 out.print("The value of count is ");

 out.print(count);

 out.println(".");

 }

 out.println("Done!");

 }

}

Figure 6-3 shows you what you get when you run the program from Listing 6-2.
(You get exactly what you deserve.) The for statement in Listing 6-2 starts by
setting the count variable to 1. Then the statement tests to make sure that count
is less than or equal to 10 (which it certainly is). Then the for statement dives
ahead and executes the printing statements between the curly braces. (At this
early stage of the game, the computer prints The value of count is 1.) Finally,
the for statement does that last thing inside its parentheses — it adds 1 to the
value of count.

FIGURE 6-3:
Counting	to	ten.

CHAPTER 6 Controlling Program Flow with Loops 141

6.indd 141	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:42	PM

With count now equal to 2, the for statement checks again to make sure that
count is less than or equal to 10. (Yes, 2 is smaller than 10.) Because the test turns
out okay, the for statement marches back into the curly-braced statements and
prints The value of count is 2 on the screen. Finally, the for statement does
that last thing inside its parentheses — it adds 1 to the value of count, increasing
the value of count to 3.

And so on. This whole business repeats until, after ten iterations, the value of
count finally reaches 11. When this happens, the check for count being less than
or equal to ten fails and the loop’s execution ends. The computer jumps to what-
ever statement comes immediately after the for statement. In Listing 6-2, the
computer prints Done! as its output. Figure 6-4 illustrates the whole process.

The anatomy of a for statement
After the word for, you always put three things in parentheses. The first of these
three is called an initialization, the second is an expression, and the third is an
update:

for (initialization ; expression ; update)

FIGURE 6-4:
The	action	of	

the	for	loop	in	
Listing 6-2.

142 PART 2 Writing Your Own Java Programs

6.indd 142	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:42	PM

Each of the three items in parentheses plays its own, distinct role:

 » The initialization	is	executed	once,	when	the	run	of	your	program	first	
reaches	the	for	statement.

 » The expression	is	evaluated	several	times	(before	each	iteration).

 » The update	is	also	evaluated	several	times	(at	the	end	of	each	iteration).

If it helps, think of the loop as though its text is shifted all around:

int count = 1

for count <= 10 {

 out.print("The value of count is ");

 out.print(count);

 out.println(".");

 count++;
}

You can’t write a real for statement this way. Even so, this is the order in which
the parts of the statement are executed.

If you declare a variable in the initialization of a for loop, you can’t use that vari-
able outside the loop. For instance, in Listing 6-2, you see an error message if you
try putting out.println(count) after the end of the loop.

Anything that can be done with a for loop can also be done with a while loop.
Choosing to use a for loop is a matter of style and convenience, not necessity.

The world premiere of “Al’s All Wet”
Listing 6-2 is very nice, but the program in that listing does nothing interesting.
For a more eye-catching example, see Listing 6-3. In Listing 6-3, I make good on
a promise I make in Chapter 5: The program in Listing 6-3 prints all the lyrics of
the hit single “Al’s All Wet.” (You can find the lyrics in Chapter 5.)

LISTING 6-3: The Unabridged “Al’s All Wet” Song

import static java.lang.System.out;

public class AlsAllWet {

CHAPTER 6 Controlling Program Flow with Loops 143

6.indd 143	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:42	PM

 public static void main(String[] args) {

 String intro = """

 Al's all wet. Oh, why is Al all wet? Oh,

 Al's all wet 'cause he's standing in the rain.""";

 for (int verse = 1; verse <= 3; verse++) {
 out.println(intro);

 out.println("Why is Al out in the rain?");

 out.println(switch (verse) {

 case 1 -> "That's because he has no brain.";

 case 2 -> "That's because he is a pain.";

 case 3 -> "'Cause this is the last refrain.";

 default -> "";

 });

 switch (verse) {

 case 3:

 out.println("Last refrain, last refrain,");

 case 2:

 out.println("He's a pain, he's a pain,");

 case 1:

 out.println("Has no brain, has no brain,");

 }

 out.println("""

 In the rain, in the rain.

 Oh, oh, oh, oh""");

 out.println();

 }

 out.println(intro);

 }

}

Listing 6-3 is nice because it combines many of the ideas from Chapters 5 and 6.
Listing 6-3 has two switches nested inside a for loop. One of them is a switch
expression; the other is a switch statement with fall-through. As the value of the
for loop’s counter variable (verse) goes from 1 to 2 and then to 3, Java executes
all the parts in both of these switches. When the program is near the end of its run
and execution has dropped out of the for loop, the program’s last statement
prints the song’s final verse.

When I boldly declare that a for statement is for counting, I’m stretching the
truth just a bit. Java’s for statement is versatile: You can use a for statement in
situations that have nothing to do with counting. For instance, a statement with
no update part, such as for (i = 0; i < 10;), just keeps going. The looping

144 PART 2 Writing Your Own Java Programs

6.indd 144	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:42	PM

ends when some action inside the loop assigns a big number to the variable i. You
can even create a for statement with nothing inside the parentheses. The loop for
(; ;) runs forever, which is good if the loop controls a serious piece of machin-
ery. Usually, when you write a for statement, you’re counting how many times to
repeat something. But, in truth, you can do just about any kind of repetition with
a for statement.

Would you like some practice? Try these experiments and challenges:

FOR AMOUR

A for statement’s initialization may have several parts. A for statement’s update
may also have several parts. To find out how, enter the following lines in Java’s
JShell, or add the lines to a small Java program:

import static java.lang.System.out

for (int i = 0, j = 10; i < j; i++, j--) {out.println(i + " " + j);}

COLLECTING VALUES

What’s the output of the following code?

int total = 0;

for (int i = 0; i < 10; i++) {
 total += i;
}

System.out.println(total);

In this code, the variable total is called an accumulator because it accumulates
(adds up) a bunch of values inside the loop.

FACTORIAL

In mathematics, the exclamation point (!) means factorial — the number you get
when you multiply all the positive int values up to and including a certain num-
ber. For example, 3! is 1 × 2 × 3, which is 6. And 5! is 1 × 2 × 3 × 4 × 5, which is 120.

Write a program in which the user types a positive int value (call it n), and Java
displays the value of n! as its output.

SEEING STARS

Without running the following code, try to predict the code’s output:

CHAPTER 6 Controlling Program Flow with Loops 145

6.indd 145	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:42	PM

for (int row = 0; row < 5; row++) {
 for (int column = 0; column < 5; column++) {
 System.out.print("*");

 }

 System.out.println();

}

After making your prediction, run the code to find out whether your prediction is
correct.

SEEING MORE AND MORE STARS

The code in this experiment is a slight variation on the code in the previous exper-
iment. First, try to predict what the code will output. Then run the code to find out
whether your prediction is correct:

for (int row = 0; row < 5; row++) {
 for (int column = 0; column <= row; column++) {
 System.out.print("*");

 }

 System.out.println();

}

THREE TRIANGLES

Write a program that uses loops to display three copies of the following pattern,
one after another:

**

*

You Can Always Get What You Want
Fools rush in where angels fear to tread.

—ALEXANDER POPE

Today, I want to be young and foolish (or, at the very least, foolish). Look back at
Figure 6-2 and notice how Java’s while loop works. When execution enters a

146 PART 2 Writing Your Own Java Programs

6.indd 146	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:42	PM

while loop, the computer checks to make sure that the loop’s condition is true. If
the condition isn’t true, the statements inside the loop are never executed — not
even once. In fact, you can easily cook up a while loop whose statements are never
executed (although I can’t think of a reason you would ever want to do it):

int twoPlusTwo = 2 + 2;

while (twoPlusTwo == 5) {

 out.println("""

 Are you kidding?

 2 + 2 doesn't equal 5.
 Everyone knows that 2 + 2 equals 3.""");
}

In spite of this silly twoPlusTwo example, the while statement turns out to be the
most versatile of Java’s looping constructs. In particular, the while loop is good
for situations in which you must look before you leap. For example, “While money
is in my account, write a mortgage check every month.” When you first encounter
this statement, if your account has a zero balance, you don’t want to write a mort-
gage check — not even a single check.

But at times (not many), you want to leap before you look. Take, for instance, the
situation in which you’re asking the user for a response. Maybe the user’s response
makes sense, but maybe it doesn’t. If it doesn’t, you want to ask again. Maybe the
user’s finger slipped, or perhaps the user didn’t understand the question.

Figure 6-5 shows some runs of a program to delete a file. Before deleting the file,
the program asks the user whether making the deletion is okay. If the user answers
y or n, the program proceeds according to the user’s wishes. But if the user enters
any other character (any digit, uppercase letter, punctuation symbol, or what-
ever), the program asks the user for another response.

FIGURE 6-5:
Two	runs	of	
the	code	in	
Listing 6-4.

CHAPTER 6 Controlling Program Flow with Loops 147

6.indd 147	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:42	PM

To write this program, you need a loop — a loop that repeatedly asks the user
whether the file should be deleted. The loop keeps asking until the user gives a
meaningful response. Now, the thing to notice is that the loop doesn’t need to
check anything before asking the user the first time. Indeed, before the user gives
the first response, the loop has nothing to check. The loop doesn’t start with “As
long as such-and-such is true, then get a response from the user.” Instead, the
loop just leaps ahead, gets a response from the user, and then checks the response
to see whether it makes sense.

That’s why the program in Listing 6-4 has a do loop (also known as a do . . . while
loop). With a do loop, the program jumps right in, takes action, and then checks a
condition to see whether the result of the action makes sense. If the result makes
sense, execution of the loop is done. If not, the program goes back to the top of the
loop for another go-round.

LISTING 6-4: To Delete or Not to Delete

import java.io.File;

import java.util.Scanner;

import static java.lang.System.out;

public class DeleteEvidence {

 public static void main(String[] args) {

 var evidence = new File("cookedBooks.txt");

 var keyboard = new Scanner(System.in);

 char reply;

 do {

 out.print("Delete evidence? (y/n) ");

 reply = keyboard.findWithinHorizon(".", 0).charAt(0);

 } while (reply != 'y' && reply != 'n');

 if (reply == 'y') {

 out.println("Okay, here goes...");

 evidence.delete();

 out.println("The evidence has been deleted.");

 } else {

 out.println("Sorry, buddy. Just asking.");

 }

 keyboard.close();

 }

}

148 PART 2 Writing Your Own Java Programs

6.indd 148	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:42	PM

Figure 6-5 shows two runs of the code in Listing 6-4. The program accepts low-
ercase letters y and n, but not the uppercase letters Y and N. To make the program
accept uppercase letters, change the conditions in the code as follows:

do {

 out.print("Delete evidence? (y/n) ");

 reply = keyboard.findWithinHorizon(".", 0).charAt(0);

} while (reply != 'y' && reply != 'Y' && reply != 'n' && reply!='N');

if (reply == 'y' || reply == 'Y') {

Figure 6-6 shows the flow of control in the loop of Listing 6-4. With a do loop, the
situation in the twoPlusTwo program (shown at the beginning of this section) can
never happen. Because the do loop carries out its first action without testing a
condition, every do loop is guaranteed to perform at least one iteration.

The root of the matter
The location of Listing 6-4’s cookedBooks.txt file on your computer’s hard drive
depends on several factors. If you create a cookedBooks.txt file in the wrong
directory, the code in Listing 6-4 cannot delete your file. (More precisely, if
cookedBooks.txt is in the wrong directory on your hard drive, the code in
Listing 6-4 can’t find the cookedBooks.txt file in preparation for deleting
the file.)

In most settings, you start testing Listing 6-4 by creating a project within your
IDE. The new project lives in a folder on your hard drive. That folder is called the
project’s root folder. With the code in Listing 6-4, the cookedBooks.txt file
belongs directly inside your project’s root folder.

FIGURE 6-6:
Here	we	go	

loop,	do	loop.

CHAPTER 6 Controlling Program Flow with Loops 149

6.indd 149	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:42	PM

For example, I have a project named 06-04. That project lives on my hard drive in
a folder named 06-04 — the project’s root folder. Directly inside that 06-04 root
folder, I have a file named cookedBooks.txt. Also, inside the 06-04 folder, I have
a src subfolder. The src subfolder contains my DeleteEvidence.java file.

If you have trouble deciding where the cookedBooks.txt file should be, add the
following code to Listing 6-4 immediately after the new File statement:

try {

 out.println("Looking for " + evidence.getCanonicalPath());
} catch (java.io.IOException e) {

 e.printStackTrace();

}

When you run the code, Java tells you where, on your hard drive, the cooked-
Books.txt file should be.

For more information about files and their folders, see Chapter 8.

Reading a single character
Over in Listing 5-3, from Chapter 5, the user types a word on the keyboard. The
keyboard.next method grabs the word and places the word into a String variable
named password. Everything works nicely because a String variable can store
many characters at a time, and the next method can read many characters at a
time.

But in Listing 6-4, you’re not interested in reading several characters. You expect
the user to press one letter — either y or n. So you don’t create a String variable
to store the user’s response. Instead, you create a char variable — a variable that
stores just one symbol at a time.

The Java API has no nextChar method. To read something suitable for storage in
a char variable, you have to improvise. In Listing 6-4, the improvisation looks
like this:

keyboard.findWithinHorizon(".", 0).charAt(0)

You can use this code exactly as it appears in Listing 6-4 whenever you want to
read a single character.

A String variable can contain many characters or just one. But a String variable
that contains only one character isn’t the same as a char variable. No matter what
you put in a String variable, String variables and char variables have to be
treated differently.

150 PART 2 Writing Your Own Java Programs

6.indd 150	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:42	PM

File handling in Java
In Listing 6-4, the actual file-handling statements deserve some attention. These
statements involve the use of classes, objects, and methods. Many of the meaty
details about these things are in other chapters, like Chapters 7 and 9. Even so, I
can’t do any harm by touching on some highlights right here.

So you can find a class in the Java language API named java.io.File. The statement

var evidence = new File("cookedBooks.txt");

creates a new object in the computer’s memory. This object, formed from the
java.io.File class, describes everything that the program needs to know about
the disk file cookedBooks.txt. From this point on in Listing 6-4, the variable
evidence refers to the disk file cookedBooks.txt.

The evidence object, as an instance of the java.io.File class, has a delete
method. (What can I say? It’s in the API documentation.) When you call evidence.
delete, the computer gets rid of the file for you.

Of course, you can’t get rid of something that doesn’t already exist. When the
computer executes

var evidence = new File("cookedBooks.txt");

Java doesn’t check to make sure that you have a file named cookedBooks.txt. To
force Java to do the checking, you have a few options. The simplest is to call the
exists method. When you call evidence.exists(), the method looks in the
folder where Java expects to find cookedBooks.txt. The call evidence.exists()
returns true if Java finds cookedBooks.txt inside that folder. Otherwise, the call
evidence.exists() returns false. Here’s how it works:

if (evidence.exists()) {

 var keyboard = new Scanner(System.in);

 char reply;

 do {

 out.print("Delete evidence? (y/n) ");

 reply = keyboard.findWithinHorizon(".", 0).charAt(0);

 } while (reply != 'y' && reply != 'n');

 if (reply == 'y') {

 out.println("Okay, here goes...");

 evidence.delete();

CHAPTER 6 Controlling Program Flow with Loops 151

6.indd 151	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:42	PM

 out.println("The evidence has been deleted.");

 } else {

 out.println("Sorry, buddy. Just asking.");

 }

 keyboard.close();

}

Block on the while side
A bunch of statements surrounded by curly braces forms a block. If you declare a
variable inside a block, you generally can’t use that variable outside the block. For
instance, in Listing 6-4, you see an error message if you make the following
change:

do {

 out.print("Delete evidence? (y/n) ");

 char reply = keyboard.findWithinHorizon(".", 0).charAt(0);

} while (reply != 'y' && reply != 'n');

if (reply == 'y')

With the declaration char reply inside the loop’s curly braces, no use of the name
reply makes sense anywhere outside the braces. When you try to compile this
code, you get three error messages — two for the reply words in while (reply
!= 'y' && reply != 'n') and a third for the if statement’s reply.

So, in Listing 6-4, your hands are tied. The program’s first real use of the reply
variable is inside the loop. But to make that variable available after the loop, you
have to declare reply before the loop. In this situation, you’re best off declaring
the reply variable without initializing the variable. Very interesting!

To read more about variable initializations, see Chapter 4. To find out more about
blocks, see Chapter 5.

All versions of Java have the three kinds of loops described in this chapter (while
loops, for loops, and do ... while loops). But newer Java versions (namely, Java
5 and beyond) have yet another kind of loop, called an enhanced for loop. For a look
at Java’s enhanced for loop, see Chapter 11.

152 PART 2 Writing Your Own Java Programs

6.indd 152	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:42	PM

MISSED OPPORTUNITY

Copy the code from Listing 6-1, but with the following change:

out.print("Enter an int from 1 to 10: ");

int inputNumber = keyboard.nextInt();

numGuesses++;

do {

 out.println();

 out.println("Try again...");

 out.print("Enter an int from 1 to 10: ");

 inputNumber = keyboard.nextInt();

 numGuesses++;
} while (inputNumber != randomNumber);

out.print("You win after ");

out.println(numGuesses + " guesses.");

The code in Listing 6-1 has a while loop, but this modified code has a do loop.
Does this modified code work correctly? Why or why not?

LET’S BUST OUT OF HERE

In Chapter 5, you use break statements to jump out of a switch. But a break
statement can also play a role inside a loop. To find out how it works, run a pro-
gram containing the following code:

var keyboard = new Scanner(System.in);

while (true) {

 System.out.print("Enter an int value: ");

 int i = keyboard.nextInt();

 if (i == 0) {

 break;

 }

 System.out.println(i);

}

System.out.println("Done!");

keyboard.close();

The loop’s condition is always true. It’s like starting a loop with the line

while (1 + 1 == 2)

CHAPTER 6 Controlling Program Flow with Loops 153

6.indd 153	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:42	PM

If it weren’t for the break statement, the loop would run forever. Fortunately,
when you execute the break statement, Java jumps to the code immediately after
the loop.

CARRY ON AND KEEP CODING

In addition to its break statement, Java has a continue statement. When you exe-
cute a continue statement, Java skips to the end of its loop and begins the next
iteration of that loop. To see it in action, run a program containing the following
code:

var keyboard = new Scanner(System.in);

while (true) {

 System.out.print("Enter an int value: ");

 int i = keyboard.nextInt();

 if (i > 10) {

 continue;

 }

 if (i == 0) {

 break;

 }

 System.out.println(i);

}

System.out.println("Done!");

keyboard.close();

6.indd 154	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:42	PM

3
Part3.indd 155	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	9:00	PM

Working with
the Big Picture:
Object-Oriented
Programming

IN THIS PART . . .

Find	out	what	classes	and	objects	are	(without	bending	
your	brain	out	of	shape).

Learn	how	to	reuse	existing	code	(saving	time	and	
money).

Be	the	architect	of	your	virtual	world	by	constructing	
brand-new	objects.

Part3.indd 156	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	9:00	PM

CHAPTER 7 The Inside scOOP 157

7.indd 157	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

Chapter 7
 The Inside scOOP

 A s a computer book author, I’ve been told, over and over again: Don’t expect
people to read sections and chapters in their logical order. People jump
around, picking what they need and skipping what they don’t feel like

reading. With that in mind, I realize that you may have skipped Chapter 1 . If that’s
the case, please don’t feel guilty. You can compensate in just 60 seconds by read-
ing the following information, culled from Chapter 1 :

Because Java is an object-oriented programming language, your primary goal is to
describe classes and objects. A class is the idea behind a certain kind of thing. An object
is a concrete instance of a class. The programmer defi nes a class, and from the class
defi nition, Java makes individual objects.

 Of course, you can certainly choose to skip over the 60-second summary para-
graph. If that’s the case, you may want to recoup some of your losses. You can do
that by reading the following two-word summary of Chapter 1 :

Classes; objects.

 IN THIS CHAPTER

» Thinking like a real-life object-
oriented programmer

» Passing values to and from methods

» Hiding details in your object-
oriented code

158 PART 3 Working with the Big Picture: Object-Oriented Programming

7.indd 158	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

Defining a Class (What It Means
to Be an Account)

What distinguishes one bank account from another? If you ask a banker this ques-
tion, you hear a long sales pitch. The banker describes interest rates, fees,
penalties — the whole routine. Fortunately for you, I’m not interested in all that.
Instead, I want to know how my account is different from your account. After all,
my account is named Barry Burd, trading as Burd Brain Consulting, and your account
is named Jane Q. Reader, trading as Budding Java Expert. My account has $24.02 in it.
How about yours?

When you come right down to it, the differences between one account and another
can be summarized as values of variables. Maybe there’s a variable named bal-
ance. For me, the value of balance is 24.02. For you, the value of balance is
55.63. The question is, when writing a computer program to deal with accounts,
how do I separate my balance variable from your balance variable?

The answer is to create two separate objects. Let one balance variable live inside
one object and let the other balance variable live inside the other object. While
you’re at it, put a name variable and an address variable in each of the objects. And
there you have it: two objects, and each object represents an account. More pre-
cisely, each object is an instance of the Account class. (See Figure 7-1.)

So far, so good. However, you still haven’t solved the original problem. In your
computer program, how do you refer to my balance variable as opposed to your
balance variable? Well, you have two objects sitting around, so maybe you have
variables to refer to these two objects. Create one variable named myAccount and
another variable named yourAccount. The myAccount variable refers to my object
(my instance of the Account class) with all the stuff that’s inside it. To refer to my
balance, write

myAccount.balance

FIGURE 7-1:
Two	objects.

CHAPTER 7 The Inside scOOP 159

7.indd 159	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

To refer to my name, write

myAccount.name

For want of any better terminology, this way of referring to an object’s fields is
called dot notation.

Then yourAccount.balance refers to the value in your object’s balance variable,
and yourAccount.name refers to the value of your object’s name variable. To tell
Java how much I have in my account, you can write

myAccount.balance = 24.02;

To display your name on the screen, you can write

out.println(yourAccount.name);

These ideas come together in Listings 7-1 and 7-2. Here’s Listing 7-1:

LISTING 7-1: What It Means to Be an Account

package com.example.accounts;

public class Account {

 String name;

 String address;

 double balance;

}

The Account class in Listing 7-1 defines what it means to be an Account. In par-
ticular, Listing 7-1 tells you that each of the Account class’s instances has three
variables: name, address, and balance. This is consistent with the information in
Figure 7-1. Java programmers have a special name for variables of this kind (vari-
ables that belong to instances of classes). Each of these variables — name, address,
and balance — is called a field.

A variable declared inside a class but not inside any particular method is a field. In
Listing 7-1, the variables name, address, and balance are fields. Another name for
a field is an instance variable.

160 PART 3 Working with the Big Picture: Object-Oriented Programming

7.indd 160	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

Chapter 4 tells you that, when you initialize a variable in a method’s body, you can
replace the variable’s type with the word var. In other words, you can write

public static void main(String[] args) {

 var greeting = "Good morning!"; //Okay!

 // ... and so on.

Yes, this rule about var applies to the variables that you declare inside your
method bodies. But it doesn’t apply to a class’s fields. I illustrate this concept with
a few lines of incorrect code:

public class Account {

 var name = "Alan"; //Forgive me for typing this!

 // ... and so on.

Honestly, it makes me nervous to type these three lines, even while I warn you
that this is bad code.

If you’ve been grappling with the material in Chapters 4 through 6, the code for
class Account (refer to Listing 7-1) may come as a big shock to you. Can you really
define a complete Java class with only four lines of code (give or take a curly
brace)? You certainly can. A class is a grouping of existing things. In the Account
class of Listing 7-1, those existing things are two String values and a double
value.

The field declarations in Listing 7-1 have default access, which means that I didn’t
add a word before the type name String. The alternatives to default access are
public, protected, and private access:

public String name;

protected String address;

private double balance;

Professional programmers shun the use of default access because default access
doesn’t shield a field from accidental misuse. But in my experience, you learn best
when you learn about the simplest stuff first, and in Java, default access is the
simplest stuff. In this book, I delay the discussion of private access until this
chapter’s “Hide-and-Seek” section. And I delay the discussion of protected access
until Chapter 14. As you read this chapter’s examples, please keep in mind that
default access isn’t the best thing to use in a Java program. And, if a professional
programmer asks you where you learned to use default access, please lie and
blame someone else’s book.

CHAPTER 7 The Inside scOOP 161

7.indd 161	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

Your IDE won’t offer to run the code in Listing 7-1. That’s because Listing 7-1 has
no main method. The run of every Java program must begin with the main method,
so the code in Listing 7-1 has no starting point. To use the listing’s Account class,
your project must contain at least two Java files: one file with the code in
Listing 7-1, and another file with a main method. In this chapter, Listing 7-2 has
a handy-dandy main method, so the Account class in Listing 7-1 won’t go to
waste.

But wait! You need to know another tidbit before you can use the code in
Listing 7-1. The listing begins with the line package com.example.accounts.
That line says, “This file is one of possibly many files that are inside a grouping
named com.example.accounts.” When a Java file belongs to such a grouping, the
file must live in a specially named folder on your computer’s hard drive. This
chapter’s “Package deal” sidebar has some details.

PACKAGE DEAL
Java	has	a	feature	that	lets	you	lump	classes	into	groups.	Each	group	of	classes	is	called	
a	package.

The	Java	API	defines	about	4,500	classes.	Each	class	belongs	to	one	of	about	220	pack-
ages.	When	you	write	import java.util.Scanner,	you’re	referring	to	a	class	named	
Scanner,	which	belongs	to	the	package	named	java.util.

But	that’s	not	all!	The	grouping	doesn’t	stop	with	packages.	Packages	can	be	lumped	
into	bigger	things	called	modules.	Each	package	in	the	Java	API	belongs	to	one	of	about	
70	different	modules.	When	you	write	import java.util.Scanner,	you’re	referring	
to	something	in	the	class	named	Scanner,	which	belongs	to	the	package	named	java.
util,	which	in	turn	belongs	to	the	module	named	java.base.

The Account	class	in	Listing 7-1	belongs	to	a	package	that	I	named	com.example.
accounts.	The	first	line	in	Listing 7-1	makes	it	so.	That	first	line	is	called	a	package
declaration.

In	the	Java	world,	programmers	customarily	give	packages	long,	dot-filled	names.	For	
instance,	because	I’ve	registered	the	domain	name	allmycode.com,	I	may	name	a	pack-
age	com.allmycode.dummiesframe.	In	truth,	I	can	name	a	package	almost	anything	I	
want —	like	com.example.accounts,	fish.and.chips,	or	simply	hamburger.	In	any	
case,	informative	package	names	like	com.allmycode.dummiesframe	are	better	than	
silly	names	like	midnight.in.akron or do.not.run.this.code.

(continued)

162 PART 3 Working with the Big Picture: Object-Oriented Programming

7.indd 162	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

When	I	created	Listing 7-1,	I	didn’t	have	to	start	with	a	package	declaration.	None	of	
the	listings	in	Chapters 1–6	starts	with	package	declarations,	so	each	of	those	classes	
belongs	to	a	catchall	default package.	also	known	as	Java’s	unnamed package.
Professional	Java	programmers	avoid	using	this	unnamed	package.	So,	for	
Listing 7-1,	I	decided	to	straighten	up	and	start	flying	right.

How	many	classes	can	you	define?	The	Account	class	in	Listing 7-1	is	one	of	them.	You	
can	also	create	a	Customer	class,	a	Company	class,	classes	named	Address,	Agency,	
Contract,	Buyer,	Seller,	Consumer,	Sale,	BalanceSheet,	IncomeStatement,	
Inventory,	Lease,	Product,	Loan,	Discount,	and	many	more.	Of	course,	you	may	
want	to	separate	these	classes	from	your	other	classes	named	Song,	Novel,	Film,	
Painting,	and	Video.	So,	you	might	create	two	different	packages:	one	named	com.
example.accounts	and	another	named	com.example.arts.

You	can	start	any	Java	file	with	a	package	declaration,	but	you	have	to	remember	a	few	
things:

• A Java file’s package name dictates the names of some folders and subfolders.

The	code	in	Listing 7-1	begins	with	package com.example.accounts.	So	your	
hard	drive	must	have	a	folder	named	com,	which	has	a	subfolder	named	example,	
which	in	turn	has	its	own	subfolder	named	accounts.	Your	Account.java	file	
must	be	inside	this	accounts	folder.	For	example,	on	my	computer,	I	have	a	proj-
ect	whose	root	folder	is	named	07-01.	My	copy	of	Listing 7-1	is	inside	a	07-01/
src/com/example/accounts	folder.

• Many IDEs have to be told explicitly to create the needed folders.

Before	you	copy	the	code	from	Listing 7-1	into	your	IDE,	you	probably	have	to	tell	
the	IDE	to	create	a	package	named	com.example.accounts.	When	you	do,	your	
IDE	will	create	the	com/example/accounts	folders	for	you.	Then	you	can	copy	the	
Account.java	file	into	the	com/example/accounts	folder.

How	do	you	tell	your	IDE	to	create	a	package?	When	you	start	a	new	project,	your	
IDE	might	prompt	you	for	a	new	package	name.	The	IDE	creates	the	package	as	
part	of	the	new	project.	When	you	work	on	an	existing	project,	creating	a	package	
might	mean	fishing	around	for	New ➪  Package	among	your	IDE’s	menus.	If	you	
can’t	find	a	way	to	do	that,	look	for	some	hints	at	this	book’s	website	(http://
javafordummies.allmycode.com).

After	telling	you	about	packages,	I	can	clear	up	some	of	the	confusion	about	import
declarations:	Any	import	declaration	that	doesn’t	use	the	word	static	must	start	with	
the	name	of	a	package	and	must	end	with	either	of	the	following:

(continued)

CHAPTER 7 The Inside scOOP 163

7.indd 163	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

Declaring variables and creating objects
A young fellow approaches me while I’m walking down the street. He tells me to
print “You’ll love Java!” so I print those words. If you must know, I print them
with chalk on the sidewalk. But where I print the words doesn’t matter. What
matters is that some guy issues instructions, and I follow the instructions.

• The	name	of	a	class	within	that	package

• An	asterisk	(indicating	all	classes	within	that	package)

For	example,	the	declaration

import java.util.Scanner;

is	valid	because	java.util	is	the	name	of	a	package	in	the	Java	API,	and	Scanner	is	the	
name	of	a	class	in	the	java.util	package.	The	dotted	name	java.util.Scanner is
called	the	fully qualified name	of	the	Scanner	class.	A	class’s	fully	qualified	name	
includes	the	name	of	the	package	in	which	the	class	is	defined.	(You	can	find	out	all	this	
stuff	about	java.util	and	Scanner	by	reading	Java’s	API	documentation.	For	tips	on	
reading	the	documentation,	see	Chapter 3	and	this	book’s	website.)

Here’s	another	example.	The	declaration

import javax.swing.*;

is	valid	because	javax.swing	is	the	name	of	a	package	in	the	Java	API,	and	the	asterisk	
refers	to	all	classes	in	the	javax.swing	package.	With	this	import	declaration	at	the	
top	of	your	Java	code,	you	can	use	abbreviated	names	for	classes	in	the	javax.swing
package —	names	like	JFrame,	JButton,	JMenuBar,	JCheckBox,	and	many	others.

Here’s	one	more	example.	A	line	like

import javax.*; //Bad!!

is not	a	valid	import	declaration.	The	Java	API	has	no	package	with	the	one-word	name	
javax.	You	may	think	that	this	line	allows	you	to	abbreviate	all	names	beginning	with	
javax	(names	like	javax.swing.JFrame,	and	javax.sound.midi),	but	that’s	not	the	
way	the	import	declaration	works.	Because	javax	isn’t	the	name	of	a	package,	the	line	
import javax.*	just	angers	the	Java	compiler.

After	all	this	fuss	about	packages,	you	may	wonder	what	difference	it	makes	that	a	class	
is	in	one	package	or	another.	For	some	insight,	see	Chapter 14.

164 PART 3 Working with the Big Picture: Object-Oriented Programming

7.indd 164	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

Later that day, an elderly woman sits next to me on a park bench. She says, “An
account has a name, an address, and a balance.” And I say, “That’s fine, but what
do you want me to do about it?” In response she just stares at me, so I don’t do
anything about her account pronouncement. I just sit there, she sits there, and we
both do absolutely nothing.

Listing 7-1, shown earlier, is like the elderly woman. This listing defines what it
means to be an Account, but the listing doesn’t tell me to do anything with my
account, or with anyone else’s account. In order to do something, I need a second
piece of code. I need another class — a class that contains a main method. Fortu-
nately, while the woman and I sit quietly on the park bench, a young child comes
by with Listing 7-2.

LISTING 7-2: Dealing with Account Objects

package com.example.accounts;

import static java.lang.System.out;

public class UseAccount {

 public static void main(String[] args) {

 Account myAccount;

 Account yourAccount;

 myAccount = new Account();

 yourAccount = new Account();

 myAccount.name = "Barry Burd";

 myAccount.address = "222 Cyberspace Lane";

 myAccount.balance = 24.02;

 yourAccount.name = "Jane Q. Public";

 yourAccount.address = "111 Consumer Street";

 yourAccount.balance = 55.63;

 out.print(myAccount.name);

 out.print(" (");

 out.print(myAccount.address);

 out.print(") has $");

 out.print(myAccount.balance);

 out.println();

 out.print(yourAccount.name);

 out.print(" (");

 out.print(yourAccount.address);

CHAPTER 7 The Inside scOOP 165

7.indd 165	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

 out.print(") has $");

 out.print(yourAccount.balance);

 }

}

Taken together, the two classes — Account and UseAccount — form one complete
program. The code in Listing 7-2 defines the UseAccount class, and the UseAc-
count class has a main method. This main method has variables of its own —
yourAccount and myAccount.

In a way, the first two lines inside the main method of Listing 7-2 are mislead-
ing. Some people read Account yourAccount as if it’s supposed to mean that
“yourAccount is an Account” or that “the variable yourAccount refers to an
instance of the Account class.” That’s not really what this first line means.
Instead, the line Account yourAccount means, “If and when I make the variable
yourAccount refer to something, that something will be an instance of the
Account class.” So, what’s the difference?

The difference is that simply declaring Account yourAccount doesn’t make the
yourAccount variable refer to an object. All the declaration does is reserve the
variable name yourAccount so that the name can eventually refer to an instance of
the Account class. The creation of an actual object doesn’t come until later in the
code, when Java executes new Account().

Technically, when Java executes new Account(), you’re creating an object by call-
ing the Account class’s constructor. When you see Java’s new keyword, think
“constructor call.” I have a lot more to say about constructors and constructor
calls in Chapter 9.

When Java executes the assignment yourAccount = new Account(), Java creates
a new object (a new instance of the Account class) and makes the variable yourAc-
count refer to that new object. (The equal sign makes the variable refer to the new
object.) Figure 7-2 illustrates the situation.

To test the claim that I made in the last few paragraphs, I added an extra line to
the code of Listing 7-2. I tried to print yourAccount.name after declaring yourAc-
count but before calling new Account():

Account myAccount;

Account yourAccount;

out.println(yourAccount.name);

myAccount = new Account();

yourAccount = new Account();

166 PART 3 Working with the Big Picture: Object-Oriented Programming

7.indd 166	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

When I tried to compile the new code, I got this error message: variable yourAc-
count might not have been initialized. That settles it. Before you do new
Account(), you can’t print the name variable of an object because an object
doesn’t exist.

When a variable has a reference type, simply declaring the variable isn’t enough.
You don’t get an object until you call a constructor and use the keyword new.

For information about reference types, see Chapter 4.

Initializing a variable
In Chapter 4, I announce that you can initialize a primitive type variable as part of
the variable’s declaration:

int weightOfAPerson = 150;

You can do the same thing with reference type variables, such as myAccount and
yourAccount in Listing 7-2. You can combine the first four lines in the listing’s
main method into just two lines, like this:

Account myAccount = new Account();

Account yourAccount = new Account();

FIGURE 7-2:
Before	and	after	

a	constructor	
is	called.

CHAPTER 7 The Inside scOOP 167

7.indd 167	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

If you combine lines this way, you automatically avoid the variable might not
have been initialized error that I describe in the preceding section. Sometimes
you find a situation in which you can’t initialize a variable. But when you can ini-
tialize, it’s usually a plus.

Using an object’s fields
After you’ve bitten off and chewed the main method’s first four lines, the rest of
the code in Listing 7-2 is sensible and straightforward. You have three lines that
put values in the myAccount object’s fields, three lines that put values in the
yourAccount object’s fields, and four lines that do some printing. Figure 7-3
shows the program’s output.

One program; several classes
Each program in Chapters 3–6 consists of a single class. That’s great for a book’s
introductory chapters. But in real life, a typical program consists of hundreds or
even thousands of classes. The program that spans Listings 7-1 and 7-2 consists
of two classes. Sure, having two classes isn’t like having thousands of classes, but
it’s a step in that direction.

In practice, most programmers put each class in a file of its own. When you create
a program, such as the one in Listings 7-1 and 7-2, you create two files on your
computer’s hard drive. Therefore, when you download this section’s example
from the web, you get two separate files — Account.java and UseAccount.java.

For information about running a program consisting of more than one .java
file in Eclipse, NetBeans, and IntelliJ IDEA, visit this book’s website (http://
javafordummies.allmycode.com).

Declaring a public class
The first line of Listing 7-1 is

public class Account {

FIGURE 7-3:
Running	the	code	

in	Listings 7-1	
and 7-2.

168 PART 3 Working with the Big Picture: Object-Oriented Programming

7.indd 168	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

The Account class is public. A public class is available for use by all other classes.
For example, if you write an ATMController program in some remote corner of
cyberspace, then your ATMController program can contain code, such as myAc-
count.balance = 24.02, making use of the Account class declared in Listing 7-1.
(Of course, your code has to know where in cyberspace I’ve stored the code in
Listing 7-1, but that’s another story.)

Listing 7-2 contains the code myAccount.balance = 24.02. You might say to
yourself, “The Account class has to be public because another class (the code in
Listing 7-2) uses the Account class.” Unfortunately, the real lowdown about pub-
lic classes is a bit more complicated. In fact, when the planets align themselves
correctly, one class can make use of another class’s code, even though the other
class isn’t public. (I describe how this works in Chapter 14.)

The dirty secret in this chapter’s code is that declaring certain classes to be public
simply makes me feel good. Yes, programmers do certain things to feel good. In
Listing 7-1, my esthetic sense of goodness comes from the fact that an Account
class is useful to many other programmers. When I create a class that declares
something useful and nameable — an Account, an Engine, a Customer, a Brain-
Wave, a Headache, or a SevenLayerCake class — I declare the class to be public.

The UseAccount class in Listing 7-2 is also public. When a class contains a main
method, Java programmers tend to make the class public without thinking too
much about who uses the class. So even if no other class makes use of my main
method, I declare the UseAccount class to be public. Most of the classes in this
book contain main methods, so most of the classes in this book are public.

When you declare a class to be public, you must declare the class in a file whose
name is exactly the same as the name of the class (but with the .java extension
added). For example, if you declare public class MyImportantCode, you must
put the class’s code in a file named MyImportantCode.java, with uppercase let-
ters M, I, and C and all other letters lowercase. This filenaming rule has an impor-
tant consequence: If your code declares two public classes, your code must consist
of at least two .java files. In other words, you can’t declare two public classes in
one .java file.

For more news about the word public and other such words, see Chapter 14.

In this section, I create an Account class. You can create classes too.

GETTING ORGANIZED

An Organization has a name (such as XYZ Company), an annual revenue (such as
$100,000.00), and a boolean value indicating whether the organization is or is not

CHAPTER 7 The Inside scOOP 169

7.indd 169	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

a profit-making organization. Companies that manufacture and sell products are
generally profit-making organizations; groups that provide aid to victims of nat-
ural disasters are generally not profit-making organizations.

Declare your own Organization class. Declare another class that creates organi-
zations and displays information about those organizations.

YUMMY FOODS

A product for sale in a food store has several characteristics: a type of food (peach
slices), a weight (500 grams), a cost ($1.83), a number of servings (4), and a num-
ber of calories per serving (70).

Declare a FoodProduct class. Declare another class that creates FoodProduct
instances and displays information about those instances.

Defining a Method within a Class
(Displaying an Account)

Imagine a table containing the information about two accounts. (If you have trou-
ble imagining such a thing, just look at Table 7-1.)

In Table 7-1, each account has three things a name, an address, and a balance.
That’s how things were done before object-oriented programming came along.
But object-oriented programming involved a big shift in thinking. With object-
oriented programming, each account can have a name, an address, a balance, and
a way of being displayed.

In object-oriented programming, each object has its own built-in functionality.
An account knows how to display itself. A string can tell you whether it has the
same characters inside it as another string has. A PrintStream instance, such as
System.out, knows how to do println. In object-oriented programming, each

TABLE 7-1 Without Object-Oriented Programming
Name Address Balance

Barry	Burd 222	Cyberspace	Lane 24.02

Jane	Q. Public 111	Consumer	Street 55.63

170 PART 3 Working with the Big Picture: Object-Oriented Programming

7.indd 170	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

object has its own methods. These methods are little subprograms that you can
call to have an object do things to (or for) itself.

And why is this a good idea? It’s good because you’re making pieces of data take
responsibility for themselves. With object-oriented programming, all the func-
tionality that’s associated with an account is collected inside the code for the
Account class. Everything you have to know about a string is located in the file
String.java. Anything having to do with year numbers (whether they have two
or four digits, for instance) is handled right inside the Year class. Therefore, if
anybody has problems with your Account class or your Year class, they know just
where to look for all the code. That’s great!

Imagine an enhanced account table. In this new table, each object has built-in
functionality. Each account knows how to display itself on the screen. Each row of
the table has its own copy of a display method. Of course, you don’t need much
imagination to picture this table. I just happen to have a table you can look at. It’s
Table 7-2.

An account that displays itself
In Table 7-2, each account object has four things — a name, an address, a balance,
and a way of displaying itself on the screen. After you make the jump to object-
oriented thinking, you’ll never turn back. Listings 7-3 and 7-4 show programs
that implement the ideas in Table 7-2.

LISTING 7-3: An Account Displays Itself

package com.example.accounts;

import static java.lang.System.out;

public class Account {

 String name;

 String address;

 double balance;

TABLE 7-2 The Object-Oriented Way
Name Address Balance Display

Barry	Burd 222	Cyberspace	Lane 24.02 out.print ...

Jane	Q. Public 111	Consumer	Street 55.63 out.print ...

CHAPTER 7 The Inside scOOP 171

7.indd 171	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

 public void display() {

 out.print(name);

 out.print(" (");

 out.print(address);

 out.print(") has $");

 out.print(balance);

 }

}

LISTING 7-4: Using the Improved Account Class

package com.example.accounts;

public class UseAccount {

 public static void main(String[] args) {

 var myAccount = new Account();

 var yourAccount = new Account();

 myAccount.name = "Barry Burd";

 myAccount.address = "222 Cyberspace Lane";

 myAccount.balance = 24.02;

 yourAccount.name = "Jane Q. Public";

 yourAccount.address = "111 Consumer Street";

 yourAccount.balance = 55.63;

 myAccount.display();

 System.out.println();

 yourAccount.display();

 }

}

A run of the code in Listings 7-3 and 7-4 looks just like a run of Listings 7-1
and 7-2. You can see the action earlier, in Figure 7-3.

In Listing 7-3, the Account class has four things in it: a name, an address, a bal-
ance, and a display method. These things match up with the four columns in
Table 7-2. So each instance of the Account class has a name, an address, a bal-
ance, and a way of displaying itself. The way you call these things is nice and
uniform. To refer to the name stored in myAccount, you write

myAccount.name

172 PART 3 Working with the Big Picture: Object-Oriented Programming

7.indd 172	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

To get myAccount to display itself on the screen, you write

myAccount.display()

Both expressions use dot notation. The only structural difference is in the
parentheses.

When you call a method, you put parentheses after the method’s name.

The display method’s header
Look again at Listings 7-3 and 7-4. A call to the display method is inside the
UseAccount class’s main method, but the declaration of the display method is up
in the Account class. The declaration has a header and a body. (See Chapter 3.) The
header has three words and some parentheses:

 » The word public serves roughly the same purpose as the word public in
Listing 7-1.	Roughly	speaking,	any	code	can	contain	a	call	to	a	public	method,	
even	if	the	calling	code	and	the	public	method	belong	to	two	different	classes.	
In	this	section’s	example,	the	decision	to	make	the	display	method	public	is	a	
matter	of	taste.	Normally,	when	I	create	a	method	that’s	useful	in	a	wide	
variety	of	applications,	I	declare	the	method	to	be	public.

 » The word void tells Java that when the display method is called, the
display method doesn’t return anything to the place that called it. To
see	a	method	that	does	return	something	to	the	place	that	called	it,	see	the	
next	section.

 » The word display is the method’s name.	Every	method	must	have	a	name.	
Otherwise,	you	don’t	have	a	way	to	call	the	method.

 » The parentheses contain all the things you’re going to pass to the
method when you call it.	When	you	call	a	method,	you	can	pass	information	
to	that	method	on	the	fly.	The	display	method	in	Listing 7-3	looks	strange	
because	the	parentheses	in	the	method’s	header	have	nothing	inside	them.	
This	nothingness	indicates	that	no	information	is	passed	to	the	display
method	when	you	call	it.	For	a	meatier	example,	see	the	next	section.

Listing 7-3 contains the display method’s declaration and Listing 7-4 contains a
call to the display method. Although Listings 7-3 and 7-4 contain different
classes, both uses of public in Listing 7-3 are optional. To find out why, check out
Chapter 14.

CHAPTER 7 The Inside scOOP 173

7.indd 173	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

SHOW OFF

In the previous section, you create Organization and FoodProduct classes. Add
display methods to both of these classes and create separate classes that make
use of these display methods.

Sending Values to and from Methods
(Calculating Interest)

Think about sending someone to the supermarket to buy bread. When you do this,
you say, “Go to the supermarket and buy some bread.” (Try it at home. You’ll have
a fresh loaf of bread in no time at all!) Of course, at some other time, you send that
same person to the supermarket to buy bananas. You say, “Go to the supermarket
and buy some bananas.” And what’s the point of all of this? Well, you have a
method, and you have some on-the-fly information that you pass to the method
when you call it. The method is named goToTheSupermarketAndBuySome. The on-
the-fly information is either bread or bananas, depending on your culinary needs.
In Java, the method calls would look like this:

goToTheSupermarketAndBuySome(bread);

goToTheSupermarketAndBuySome(bananas);

The things in parentheses are called parameters, or parameter lists. With parame-
ters, your methods become much more versatile. Instead of buying the same item
each time, you can send somebody to the supermarket to buy bread one time,
bananas another time, and birdseed the third time. When you call your goToThe-
SupermarketAndBuySome method, you decide right then and there what you’ll ask
your pal to buy.

And what happens when your friend returns from the supermarket? “Here’s the
bread you asked me to buy,” says your friend. By carrying out your wishes, your
friend returns something to you. You make a method call, and the method returns
information (or a loaf of bread).

The thing returned to you is called the method’s return value. The general type of
thing that is returned to you is called the method’s return type. These concepts are
made more concrete in Listings 7-5 and 7-6.

174 PART 3 Working with the Big Picture: Object-Oriented Programming

7.indd 174	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

LISTING 7-5: An Account That Calculates Its Own Interest

package com.example.accounts;

import static java.lang.System.out;

public class Account {

 String name;

 String address;

 double balance;

 public void display() {

 out.print(name);

 out.print(" (");

 out.print(address);

 out.print(") has $");

 out.print(balance);

 }

 public double getInterest(double percentageRate) {

 return balance * percentageRate / 100.00;

 }

}

LISTING 7-6: Calculating Interest

package com.example.accounts;

import static java.lang.System.out;

public class UseAccount {

 public static void main(String[] args) {

 var myAccount = new Account();

 var yourAccount = new Account();

 myAccount.name = "Barry Burd";

 myAccount.address = "222 Cyberspace Lane";

 myAccount.balance = 24.02;

 yourAccount.name = "Jane Q. Public";

 yourAccount.address = "111 Consumer Street";

 yourAccount.balance = 55.63;

CHAPTER 7 The Inside scOOP 175

7.indd 175	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

 myAccount.display();

 out.print(" plus $");

 out.print(myAccount.getInterest(5.00));

 out.println(" interest ");

 yourAccount.display();

 double yourInterestRate = 7.00;

 out.print(" plus $");

 double yourInterestAmount = yourAccount.getInterest(yourInterestRate);

 out.print(yourInterestAmount);

 out.println(" interest ");

 }

}

Figure 7-4 shows the output of the code in Listings 7-5 and 7-6. In Listing 7-5,
the Account class has a getInterest method. This getInterest method is called
twice from the main method in Listing 7-6; the actual account balances and inter-
est rates are different each time:

 » In the first call, the balance is 24.02 and the interest rate is 5.00.	The	first	
call,	myAccount.getInterest(5.00),	refers	to	the	myAccount	object	and	to	
the	values	stored	in	the	myAccount	object’s	fields.	(See	Figure 7-5.)	When	this	
call	is	made,	the	expression	balance * percentageRate / 100.00	stands	
for	24.02	*	5.00	/	100.00.

 » In the second call, the balance is 55.63, and the interest rate is 7.00.
In	the	main	method,	just	before	this	second	call	is	made,	the	variable	
yourInterestRate	is	assigned	the	value	7.00.	The	call	itself,	yourAccount.
getInterest(yourInterestRate),	refers	to	the	yourAccount	object	and	to	
the	values	stored	in	the	yourAccount	object’s	fields.	(Again,	see	Figure 7-5.)	
So,	when	the	call	is	made,	the	expression	balance * percentageRate /
100.00	stands	for	55.63	*	7.00	/	100.00.

By the way, the main method in Listing 7-6 contains two calls to getInterest.
One call has the literal 5.00 in its parameter list; the other call has the variable
yourInterestRate in its parameter list. Why does one call use a literal and the
other call use a variable? No reason. I just want to show you that you can do it
either way.

FIGURE 7-4:
Running	the	code	

in	Listings 7-5	
and 7-6.

176 PART 3 Working with the Big Picture: Object-Oriented Programming

7.indd 176	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

Passing a value to a method
Take a look at the getInterest method’s header (as you read the explanation in
the next few bullets, you can follow some of the ideas visually with the diagram in
Figure 7-6):

 » The word double tells Java that when the getInterest method is called,
the getInterest method returns a double value back to the place that
called it.	The	statement	in	the	getInterest	method’s	body	confirms	this.	
The	statement	says	return balance * percentageRate / 100.00,	and	
the	expression	balance * percentageRate / 100.00	has	type	double.
(That’s	because	all	the	things	in	the	expression —	balance,	percentageRate,	
and	100.00 —	have	type	double.)

When	the	getInterest	method	is	called,	the	return	statement	calculates	
balance * percentageRate / 100.00	and	hands	the	calculation’s	result	
back	to	the	code	that	called	the	method.

 » The word getInterest is the method’s name.	That’s	the	name	you	use	to	call	
the	method	when	you’re	writing	the	code	for	the	UseAccount	class.

 » The parentheses contain all the things that you pass to the method
when you call it.	When	you	call	a	method,	you	can	pass	information	to	
that	method	on	the	fly.	This	information	is	the	method’s	parameter	list.	The	
getInterest	method’s	header	says	that	the	getInterest	method	takes	one	
piece	of	information	and	that	piece	of	information	must	be	of	type	double:

public double getInterest(double percentageRate)

FIGURE 7-5:
My	account	and	
your	account.

CHAPTER 7 The Inside scOOP 177

7.indd 177	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

Sure	enough,	if	you	look	at	the	first	call	to	getInterest	(down	in	the	useAccount
class’s	main	method),	that	call	has	the	number	5.00	in	it.	And	5.00	is	a	double
literal.	When	I	call	getInterest,	I’m	giving	the	method	a	value	of	type	double.

If	you	don’t	remember	what	a	literal	is,	see	Chapter 4.

The	same	story	holds	true	for	the	second	call	to	getInterest.	Down	
near	the	bottom	of	Listing 7-6,	I	call	getInterest	and	feed	the	variable	
yourInterestRate	to	the	method	in	its	parameter	list.	Luckily	for	me,	
I	declared	yourInterestRate	to	be	of	type	double	just	a	few	lines	
before	that.

When you run the code in Listings 7-5 and 7-6, the flow of action isn’t from top
to bottom. The action goes from main to getInterest, and then back to main, and
then back to getInterest, and, finally, back to main again. Figure 7-7 shows the
whole business.

FIGURE 7-6:
Passing	a	value	to	

a	method.

178 PART 3 Working with the Big Picture: Object-Oriented Programming

7.indd 178	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

Returning a value from the
getInterest method
When the getInterest method is called, the method executes the one statement
that’s in the method’s body: a return statement. The return statement computes
the value of balance * percentageRate / 100.00. If balance happens to be
24.02, and percentageRate is 5.00, the value of the expression is 1.201 —
around $1.20. (Because the computer works exclusively with 0s and 1s, Java gets
this number wrong by an ever-so-tiny amount. Java gets 1.2009999999999998.
That’s just something that humans have to live with.)

FIGURE 7-7:
The	flow	of	
control	in	

Listings 7-5	
and 7-6.

CHAPTER 7 The Inside scOOP 179

7.indd 179	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

Anyway, after this value is calculated, Java executes the return, which sends the
value back to the place in main where getInterest was called. At that point in the
process, the entire method call — myAccount.getInterest(5.00) — takes on
the value 1.2009999999999998. The call itself is inside a println:

out.println(myAccount.getInterest(5.00));

So the println ends up with the following meaning:

out.println(1.2009999999999998);

The whole process, in which a value is passed back to the method call, is illus-
trated in Figure 7-8.

If a method returns anything, a call to the method is an expression with a value.
That value can be printed, assigned to a variable, added to something else, or
whatever. Anything you can do with any other kind of value, you can do with a
method call.

You might use the Account class in Listing 7-5 to solve a real problem. You’d call
the Account class’s display and getInterest methods in the course of an actual
banking application. But the UseAccount class in Listing 7-6 is artificial. The Use-
Account code creates some fake account data and then calls some Account class
methods to convince you that the Account class’s code works correctly. (You don’t

FIGURE 7-8:
A	method	call	is	
an	expression	
with	a	value.

180 PART 3 Working with the Big Picture: Object-Oriented Programming

7.indd 180	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

seriously think that a bank has depositors named “Jane Q. Public” and “Barry
Burd,” do you?) The UseAccount class in Listing 7-6 is a test case — a short-lived
class whose sole purpose is to test another class’s code. Like the code in Listing 7-6,
each test case in this book is an ordinary class — a free-form class containing its
own main method. Free-form classes are okay, but they’re not optimal. Java
developers have something better — a more disciplined way of writing test cases.
The “better way” is called JUnit, and it’s described at https://junit.org/junit5/
docs/current/user-guide/.

TAX DAY

In previous sections, you create your own Organization class. Add a method to
the class that computes the amount of tax the organization pays. A profit-making
organization pays 10 percent of its revenue in tax, but a nonprofit organization
pays only 2 percent of its revenue in tax.

Make a separate class that creates two or three organizations and displays
information about each organization, including the amount of tax the organiza-
tion pays.

COST OF CONSUMPTION

In previous sections, you create your own FoodProduct class. Add methods to the
class to compute the cost per 100 grams, the cost per serving, and the total num-
ber of calories in the product.

Make a separate class that creates two or three products and displays information
about each product.

Giving Your Numbers a Makeover
Looking at Figure 7-4 again, you may be concerned that the interest on my account
is only $1.2009999999999998. Seemingly, the bank is cheating me out of two
hundred-trillionths of a cent. I should go straight to the bank and demand my fair
interest. Maybe you and I should go together. We’ll kick up some fur at that old
bank and bust this scam right open. If my guess is correct, this is part of a big
salami scam. In a salami scam, someone shaves tiny amounts off millions of
accounts. People don’t notice their tiny little losses, but the person doing the
shaving collects enough for a quick escape to Barbados (or for a whole truckload
of salami).

CHAPTER 7 The Inside scOOP 181

7.indd 181	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

Wait a minute! What about you? In Listing 7-6, you have yourAccount. And in
Figure 7-4, your name is Jane Q. Public. Nothing is motivating you to come with
me to the bank. Checking Figure 7-4 again, I see that you’re way ahead of the
game. According to my calculations, the program overpays you by three hundred-
trillionths of a cent. Between the two of us, we’re ahead by a hundred-trillionth of
a cent. What gives?

Well, because computers use 0s (zeros) and 1s and don’t have an infinite amount
of space to do calculations, such inaccuracies as the ones shown in Figure 7-4 are
normal. The quickest solution is to display the inaccurate numbers in a more sen-
sible fashion. You can round the numbers and display only two digits beyond the
decimal point, and some handy tools from Java’s API (application programming
interface) can help. Listing 7-7 shows the code, and Figure 7-9 displays the pleas-
ant result.

LISTING 7-7: Making Your Numbers Look Right

package com.example.accounts;

import static java.lang.System.out;

public class UseAccount {

 public static void main(String[] args) {

 var myAccount = new Account();

 var yourAccount = new Account();

 myAccount.balance = 24.02;

 yourAccount.balance = 55.63;

 double myInterest = myAccount.getInterest(5.00);

 double yourInterest = yourAccount.getInterest(7.00);

 out.printf("$%4.2f\n", myInterest);

 out.printf("$%5.2f\n", myInterest);

 out.printf("$%.2f\n", myInterest);

 out.printf("$%3.2f\n", myInterest);

 out.printf("$%.2f $%.2f", myInterest, yourInterest);

 }

}

FIGURE 7-9:
Numbers	that	
look	like	dollar	

amounts.

182 PART 3 Working with the Big Picture: Object-Oriented Programming

7.indd 182	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

The inaccurate numbers in Figure 7-4 come from the computer’s use of 0s and 1s.
A mythical computer whose circuits were wired to use digits 0, 1, 2, 3, 4, 5, 6, 7, 8,
and 9 wouldn’t suffer from the same inaccuracies. So, to make things better, Java
provides its own, special way around the computer’s inaccurate calculations.
Java’s API has a class named BigDecimal — a class that bypasses the computer’s
strange 0s and 1s and uses ordinary decimal digits to perform arithmetic calcula-
tions. For more information, visit this book’s website (http://javafordummies.
allmycode.com).

Listing 7-7 uses a handy method named printf. When you call printf, you always
put at least two parameters inside the call’s parentheses:

 » The first parameter is a format string.

The	format	string	uses	funny-looking	codes	to	describe	exactly	how	the	other	
parameters	are	displayed.

 » All the other parameters (after the first) are values to be displayed.

Look at the last printf call of Listing 7-7. The first parameter’s format string has
two placeholders for numbers. The first placeholder (%.2f) describes the display of
myInterest. The second placeholder (another %.2f) describes the display of
yourInterest. To find out exactly how these format strings work, see Figures 7-10,
7-11, 7-12, 7-13, and 7-14.

For more examples using the printf method and its format strings, see
Chapters 8 and 9. For a complete list of options associated with the printf meth-
od’s format string, see the java.util.Formatter page of Java’s API documenta-
tion at https://docs.oracle.com/en/java/javase/17/docs/api/java.base/
java/util/Formatter.html.

FIGURE 7-10:
Using	a	format	

string.

CHAPTER 7 The Inside scOOP 183

7.indd 183	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

FIGURE 7-11:
Adding	extra	

places	to	display	
a	value.

FIGURE 7-12:
Displaying	a	

value	without	
specifying	the	
exact	number	

of	places.

FIGURE 7-13:
Specifying	too	
few	places	to	

display	a	value.

FIGURE 7-14:
Displaying	more	
than	one	value	
with	a	format	

string.

184 PART 3 Working with the Big Picture: Object-Oriented Programming

7.indd 184	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

The format string in a printf call doesn’t change the way a number is stored
internally for calculations. All the format string does is create a nice-looking
bunch of digit characters that can be displayed on your screen.

The printf method is good for formatting values of any kind: ordinary numbers,
hexadecimal numbers, dates, strings of characters, and other strange values.
That’s why I show it to you in this section. But when you work with currency
amounts, this section’s printf tricks are fairly primitive. For some better ways to
deal with currency amounts (such as the interest amounts in this section’s exam-
ple), see Chapter 11.

FILL IN THE BLANKS

Here’s a Java “unprogram.” It’s not a real Java program because I’ve masked
some of the characters in the code. I replaced these characters with under-
scores (_):

import static java.lang.System.out;

public class Main {

 public static void main(String[] args) {

 out.printf("%s%_%s", ">>", 7, "<<\n");

 out.printf("%s%___%s", ">>", 7, "<<\n");

 out.printf("%s%____%s", ">>", 7, "<<\n");

 out.printf("%s%____%s", ">>", 7, "<<\n");

 out.printf("%s%__%s", ">>", 7, "<<\n");

 out.printf("%s%__%s", ">>", -7, "<<\n");

 out.printf("%s%__%s", ">>", -7, "<<\n");

 out.printf("%s%_____%s", ">>", 7.0, "<<\n");

 out.printf("%s%_%s", ">>", "Hello", "<<\n");

 out.printf("%s%_%s", ">>", 'x', "<<\n");

 out.printf("%s%_%s", ">>", 'x', "<<\n");

 }

}

Replace the underscores so that this program produces the following output:

>>7<<

>> 7<<

>>7 <<

>>0000000007<<

>>+7<<
>>-7<<

CHAPTER 7 The Inside scOOP 185

7.indd 185	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

>>(7)<<

>> 7.00000<<

>>HELLO<<

>>x<<

>>X<<

To do this, look for clues in the java.util.Formatter page of Java’s API docu-
mentation at https://docs.oracle.com/en/java/javase/17/docs/api/java.
base/java/util/Formatter.html.

Hide-and-Seek
Put down this book and put on your hat. You’ve been such a loyal reader that I’m
taking you out to lunch!

I have just one problem. I’m a bit short on cash. Would you mind if, on the way to
lunch, we stopped at an automatic teller machine and picked up a few bucks? Also,
we have to use your account. My account is a little low.

Fortunately, the teller machine is easy to use. Just step right up and enter your
PIN. After you enter your PIN, the machine asks which of several variable names
you want to use for your current balance. You have a choice of balance324, myBal,
currentBalance, b$, BALANCE, asj999, or conStanTinople. Having selected a
variable name, you’re ready to select a memory location for the variable’s value.
You can select any number between 022FFF and 0555AA. (Those numbers are in
hexadecimal format.) After you configure the teller machine’s software, you can
easily get your cash. You did bring a screwdriver, didn’t you?

Good programming
When it comes to good computer programming practice, one word stands out
above all others: simplicity. When you’re writing complicated code, the last thing
you want is to deal with somebody else’s misnamed variables, convoluted solu-
tions to problems, or clever, last-minute kludges. You want a clean interface that
makes you solve your own problems and no one else’s.

In the automatic teller machine scenario that I describe earlier, the big problem is
that the machine’s design forces you to worry about other people’s concerns.
When you should be thinking about getting money for lunch, you’re thinking
instead about variables and storage locations. Sure, someone has to work out the
teller machine’s engineering problems, but the banking customer isn’t the person.

186 PART 3 Working with the Big Picture: Object-Oriented Programming

7.indd 186	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

This section is about safety, not security. Safe code keeps you from making acci-
dental programming errors. Secure code (a completely different story) keeps
malicious hackers from doing intentional damage.

So, everything connected with every aspect of a computer program has to be sim-
ple, right? Well, no. That’s not right. Sometimes, to make things simple in the
long run, you have to do lots of preparatory work up front. The people who built
the automated teller machine worked hard to make sure that the machine is
consumer-proof. The machine’s interface, with its screen messages and buttons,
makes the machine a very complicated, but carefully designed, device.

The point is that making things look simple takes some planning. In the case of
object-oriented programming, one of the ways to make things look simple is to
prevent code outside a class from directly using fields defined inside the class.
Take a peek at the code in Listing 7-1. You’re working at a company that has just
spent $10 million for the code in the Account class. (That’s more than a million-
and-a-half per line!) Now your job is to write the UseAccount class. You would
like to write

myAccount.name = "Barry Burd";

but doing so would be getting you too far inside the guts of the Account class.
After all, people who use an automatic teller machine aren’t allowed to program
the machine’s variables. They can’t use the machine’s keypad to type the statement

balanceOnAccount29872865457 = balanceOnAccount29872865457 + 1000000.00;

Instead, they push buttons that do the job in an orderly manner. That’s how a
programmer achieves safety and simplicity.

To keep things nice and orderly, you need to change the Account class from
Listing 7-1 by outlawing such statements as

myAccount.name = "Barry Burd";

and

out.print(yourAccount.balance);

Of course, this poses a problem. You’re the person who’s writing the code for the
UseAccount class. If you can’t write myAccount.name or yourAccount.balance,
how will you accomplish anything at all? The answer lies in things called accessor
methods. Listings 7-8 and 7-9 demonstrate these methods.

CHAPTER 7 The Inside scOOP 187

7.indd 187	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

LISTING 7-8: Hide Those Fields

package com.example.accounts;

public class Account {

 private String name;

 private String address;

 private double balance;

 public void setName(String n) {

 name = n;

 }

 public String getName() {

 return name;

 }

 public void setAddress(String a) {

 address = a;

 }

 public String getAddress() {

 return address;

 }

 public void setBalance(double b) {

 balance = b;

 }

 public double getBalance() {

 return balance;

 }

}

LISTING 7-9: Calling Accessor Methods

package com.example.accounts;

import static java.lang.System.out;

public class UseAccount {

 public static void main(String[] args) {

 var myAccount = new Account();

 var yourAccount = new Account();

(continued)

188 PART 3 Working with the Big Picture: Object-Oriented Programming

7.indd 188	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

 myAccount.setName("Barry Burd");

 myAccount.setAddress("222 Cyberspace Lane");

 myAccount.setBalance(24.02);

 yourAccount.setName("Jane Q. Public");

 yourAccount.setAddress("111 Consumer Street");

 yourAccount.setBalance(55.63);

 out.print(myAccount.getName());

 out.print(" (");

 out.print(myAccount.getAddress());

 out.print(") has $");

 out.print(myAccount.getBalance());

 out.println();

 out.print(yourAccount.getName());

 out.print(" (");

 out.print(yourAccount.getAddress());

 out.print(") has $");

 out.print(yourAccount.getBalance());

 }

}

A run of the code in Listings 7-8 and 7-9 looks no different from a run of
Listings 7-1 and 7-2. Either program’s run is shown earlier, in Figure 7-3. The big
difference is that in Listing 7-8, the Account class enforces the carefully con-
trolled use of its name, address, and balance fields.

Public lives and private dreams:
Making a field inaccessible
Notice the addition of the word private in front of each of the Account class’s field
declarations. The word private is a Java keyword. When a field is declared private,
no code outside of the class can make direct reference to that field. So if you put
myAccount.name = "Barry Burd" in the UseAccount class of Listing 7-9, you get
an error message such as name has private access in Account.

Rather than reference myAccount.name, the UseAccount programmer must call
method myAccount.setName or method myAccount.getName. These methods,
setName and getName, are called accessor methods because they provide access to
the Account class’s name field. (Actually, the term accessor method isn’t formally a
part of the Java programming language. It’s just the term that people use for
methods that do this sort of thing.) To zoom in even more, setName is called a

LISTING 7-9: (continued)

CHAPTER 7 The Inside scOOP 189

7.indd 189	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

setter method, and getName is called a getter method. (I bet you won’t forget that
terminology!)

With many IDEs, you don’t have to type your own accessor methods. First, you
type a field declaration like private String name. Then, on your IDE’s menu bar,
you choose Source ➪ Generate Getters and Setters or choose Code ➪ Insert
Code ➪ Setter or some mix of those commands. After you make all your choices,
the IDE creates accessor methods and adds them to your code.

Notice that all the setter and getter methods in Listing 7-8 are declared to be pub-
lic. This ensures that anyone from anywhere can call these two methods. The idea
here is that manipulating the actual fields from outside the Account code is
impossible, but you can easily reach the approved setter and getter methods for
using those fields.

Think again about the automatic teller machine. Someone using the ATM can’t
type a command that directly changes the value in their account’s balance field,
but the procedure for depositing a million-dollar check is easy to follow. The peo-
ple who build the teller machines know that if the check-depositing procedure is
complicated, plenty of customers will mess it up royally. So that’s the story —
make impossible anything that people shouldn’t do and make sure that the tasks
people should be doing are easy.

Nothing about having setter and getter methods is sacred. You don’t have to write
any setter and getter methods that you won’t use. For instance, in Listing 7-8,
I can omit the declaration of method getAddress and everything still works. The
only problem if I do this is that anyone else who wants to use my Account class
and retrieve the address of an existing account is up a creek.

When you create a method to set the value in a balance field, you don’t have to
name your method setBalance. You can name it tunaFish or whatever you like.
The trouble is that the setFieldname convention (with lowercase letters in set
and an uppercase letter to start the Fieldname part) is an established stylistic
convention in the world of Java programming. If you don’t follow the convention,
you confuse the kumquats out of other Java programmers.

When you call a setter method, you feed it a value of the type that’s being set.
That’s why, in Listing 7-9, you call yourAccount.setBalance(55.63) with a
parameter of type double. In contrast, when you call a getter method, you usually
don’t feed any values to the method. That’s why, in Listing 7-9, you call yourAc-
count.getBalance() with an empty parameter list. Occasionally, you may want
to get and set a value with a single statement. To add a dollar to your account’s
existing balance, you write yourAccount.setBalance(yourAccount.getBal-
ance() + 1.00).

190 PART 3 Working with the Big Picture: Object-Oriented Programming

7.indd 190	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

Enforcing rules with accessor methods
Go back to Listing 7-8 and take a quick look at the setName method. Imagine putt-
ing the method’s assignment statement inside an if statement:

public void setName(String n) {

 if (!n.equals("")) {

 name = n;

 }

}

Now, if the programmer in charge of the UseAccount class writes myAccount.
setName(""), the call to setName has no effect. Furthermore, because the name
field is private, the following statement is illegal in the UseAccount class:

myAccount.name = "";

Of course, a call such as myAccount.setName("Joe Schmoe") still works because
"Joe Schmoe" doesn’t equal the empty string "".

That’s cool. With a private field and an accessor method, you can prevent someone
from assigning the empty string to an account’s name field. With more elaborate
if statements, you can enforce any rules you want.

PRIVATE EYE

In previous sections, you create your own Organization and FoodProduct classes.
In those classes, replace the default access fields with private fields. Create getter
and setter methods for those fields. In the setter methods, add code to ensure that
the String values aren’t empty and that numeric values aren’t negative.

Barry’s Own GUI Class
You may be growing tired of the bland, text-based programs that litter this book’s
pages. You may want something a bit flashier — something with text fields and
buttons. Well, I’ve got some examples for you!

I’ve created a class that I call DummiesFrame. When you import my DummiesFrame
class, you can create a simple graphical user interface (GUI) application with very
little effort.

CHAPTER 7 The Inside scOOP 191

7.indd 191	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

Listing 7-10 uses my DummiesFrame class, and Figures 7-15, 7-16, and 7–17 show
you the results.

LISTING 7-10: Your First DummiesFrame Example

package com.example.graphical;

import com.allmycode.dummiesframe.DummiesFrame;

public class Hello2U {

 public static void main(String[] args) {

 var frame = new DummiesFrame("Greet Me!");

 frame.addRow("Your first name");

 frame.go();

 }

 public static String calculate(String firstName) {

 return "Hello, " + firstName + "!";
 }

}

FIGURE 7-15:
The	code	in	

Listing 7-10	starts	
running.

FIGURE 7-16:
The	user	fills	in	

the	fields.

192 PART 3 Working with the Big Picture: Object-Oriented Programming

7.indd 192	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

Here’s a blow-by-blow description of the lines in Listing 7-10:

 » The	first	line

import com.allmycode.dummiesframe.DummiesFrame;

makes	the	name	DummiesFrame	available	to	the	rest	of	the	code	in	the	listing.

 » Inside	the	main	method,	the	statement

var frame = new DummiesFrame("Greet Me!");

creates	an	instance	of	my	DummiesFrame	class	and	makes	the	variable	name	
frame	refer	to	that	instance.	A	DummiesFrame	object	appears	as	a	window	on	
the	user’s	screen.	In	this	example,	the	text	on	the	window’s	title	bar	is	Greet Me!

 » The	next	statement	is	a	call	to	the	frame	object’s	addRow	method:

frame.addRow("Your first name");

This	call	puts	a	row	on	the	face	of	the	application’s	window.	The	row	consists	
of	a	label	(whose	text	is	Your first name),	an	empty	text	field,	and	a	red	X	mark	
indicating	that	the	user	hasn’t	yet	typed	anything	useful	into	the	field.	(Refer	to	
Figure 7-15.)

 » A	call	to	the	frame	object’s	go	method

frame.go();

makes	the	app’s	window	appear	on	the	screen.

 » The	header	of	the	calculate	method

public static String calculate(String firstName) {

tells	Java	two	important	things:

• The calculate	method	returns	a	value	of	type	String.

• Java	should	expect	the	user	to	type	a	String	value	in	the	text	field,	and	
whatever	the	user	types	will	become	the	firstName	parameter’s	value.

To	use	my	DummiesFrame	class,	your	code	must	have	a	method	named	
calculate,	and	the	calculate	method	must	obey	certain	rules:

FIGURE 7-17:
The	user	clicks	

the	button.

CHAPTER 7 The Inside scOOP 193

7.indd 193	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

• The calculate	method’s	header	must	start	with	the	words	public
static.

• The	method	may	return	any	Java	type:	String,	int,	double,	or	whatever.	
(That’s	actually	not	a	rule;	it’s	an	opportunity!)

• The calculate	method	must	have	the	same	number	of	parameters	as	
there	are	rows	in	the	application’s	window.

Listing 7-10	has	only	one	addRow	method	call,	so	the	window	in	Figure 7-10	
has	only	one	row	(not	including	the	Submit	button),	and	so	the	calculate
method	has	only	one	parameter.

When	the	user	starts	typing	text	into	the	window’s	text	field,	the	red	X	mark	
turns	into	a	green	check	mark.	(Refer	to	Figure 7-16.)	The	green	check	mark	
indicates	that	the	user	has	typed	a	value	of	the	expected	type	(in	this	example,	
a	String	value)	into	the	text	field.

 » When	the	user	clicks	the	button,	my	DummiesFrame	code	works	in	the	
background	and	tells	Java	to	execute	the	calculate	method	in	Listing 7-10.	
The	expression	in	the	calculate	method’s	return	statement

return "Hello, " + firstName + "!";

tells	Java	what	to	display	at	the	bottom	of	the	window.	(Refer	to	Figure 7-17.)	
In	this	example,	the	user	types	Barry	in	the	one-and-only	text	field,	so	the	
value	of	firstName is "Barry",	and	the	calculate	method	returns	the	string	
"Hello, Barry!"	(Ah!	The	perks	of	being	a	For Dummies	author!)

Using my DummiesFrame class, you can build a simple GUI application with only
ten lines of code.

In this section’s example, my DummiesFrame code, working in the background,
calls the calculate method when the user clicks a button. How does Dummies-
Frame manage to do that? For some insight, see Chapter 16.

The DummiesFrame class isn’t built into the Java API, so, in order to run the code
in Listing 7-10, my DummiesFrame.java file must be part of your project. When
you download the code from this book’s website (http://javafordummies.
allmycode.com), you get a folder named 07-10 containing both the Listing 7-10
code and my DummiesFrame.java code. You can copy both these files to a project
in your IDE, but the way you copy them depends on which IDE you use. One way
or another, my DummiesFrame class is in a package named com.allmycode.
dummiesframe, so the DummiesFrame.java file must be in a directory named
dummiesframe, which is inside another directory named all my code, which is
inside yet another directory named com. For some tips, refer to this chapter’s
“Package deal” sidebar.

194 PART 3 Working with the Big Picture: Object-Oriented Programming

7.indd 194	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

To keep things simple, I include the DummiesFrame.java file in the 07-10 folder
that you download from this book’s website. But, really, is that the best way to add
my own code to your project? In Chapter 1, I describe files with the .class exten-
sion, and the role that those files play in the running of a Java program. Instead of
handing you my DummiesFrame.java file, I should be putting only a Dummies-
Frame.class file in the download. And, on some other occasion, if I have to give
you hundreds of .class files, I should bundle them all into one big archive file.
Java has a name for a big file that encodes many smaller .class files. It’s called a
JAR file, and it has the .jar extension. In a real-life application, if you’re prepar-
ing your code for other people to use as part of their own applications, a JAR file is
definitely the way to go.

My DummiesFrame class isn’t exclusively for greetings and salutations. Listing 7-11
uses DummiesFrame to do arithmetic.

LISTING 7-11: A Really Simple Calculator

package com.example.graphical;

import com.allmycode.dummiesframe.DummiesFrame;

public class Addition {

 public static void main(String[] args) {

 var frame = new DummiesFrame("Adding Machine");

 frame.addRow("First number");

 frame.addRow("Second number");

 frame.setButtonText("Sum");

 frame.go();

 }

 public static int calculate(int firstNumber, int secondNumber) {

 return firstNumber + secondNumber;
 }

}

The window in Figure 7-18 has two rows because Listing 7-11 has two addRow calls
and the listing’s calculate method has two parameters. In addition, Listing 7-11
calls the frame object’s setButtonText method. So, in Figure 7-18, the text on the
face of the button isn’t the default word Submit.

Listing 7-12 contains a GUI version of the Guessing Game application from
Chapter 5, and Figure 7-19 shows the game in action.

CHAPTER 7 The Inside scOOP 195

7.indd 195	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

LISTING 7-12: I’m Thinking of a Number

package com.example.graphical;

import java.util.Random;

import com.allmycode.dummiesframe.DummiesFrame;

public class GuessingGame {

 public static void main(String[] args) {

 DummiesFrame frame = new DummiesFrame("Guessing Game");

 frame.addRow("Enter an int from 1 to 10");

 frame.setButtonText("Submit your guess");

 frame.go();

 }

 public static String calculate(int inputNumber) {

 Random random = new Random();

 int randomNumber = random.nextInt(10) + 1;

 if (inputNumber == randomNumber) {

 return "You win.";

 } else {

 return "You lose. The random number was " + randomNumber + ".";
 }

 }

}

FIGURE 7-18:
Look!	The	code	in	

Listing 7-11	
actually	works!

FIGURE 7-19:
I	win!

196 PART 3 Working with the Big Picture: Object-Oriented Programming

7.indd 196	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

In Listing 7-13, I use this chapter’s Account class alongside the DummiesFrame
class. I could get the same results without creating an Account instance, but I
want to show you how classes can cooperate to form a complete program. A run of
the code is in Figure 7-20.

LISTING 7-13: Using the Account Class

package com.example.accounts;

import com.allmycode.dummiesframe.DummiesFrame;

public class UseAccount {

 public static void main(String[] args) {

 DummiesFrame frame = new DummiesFrame("Display an Account");

 frame.addRow("Full name");

 frame.addRow("Address");

 frame.addRow("Balance");

 frame.setButtonText("Display");

 frame.go();

 }

 public static String calculate(String name, String address,

 double balance) {

 Account myAccount = new Account();

 myAccount.setName(name);

 myAccount.setAddress(address);

 myAccount.setBalance(balance);

 return myAccount.getName() + " (" + myAccount.getAddress() +
 ") has $" + myAccount.getBalance();
 }

}

FIGURE 7-20:
I’m	rich.

CHAPTER 7 The Inside scOOP 197

7.indd 197	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

Use the DummiesFrame class to create two GUI programs.

WINDOW SHOPPING

A window has text fields for an organization’s name, annual revenue, and status
(profit-making or not profit-making). When the user clicks a button, the window
displays the amount of tax the organization pays.

A profit-making organization pays 10 percent of its revenue in tax; a nonprofit
organization pays 2 percent of its revenue in tax.

GUI CHOP SUEY

A window has text fields for a product’s type of food, weight, cost, number of
servings, and number of calories per serving. When the user clicks a button, the
window displays the cost per 100 grams, the cost per serving, and the total num-
ber of calories in the product.

7.indd 198	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:41	PM

CHAPTER 8 Saving Time and Money: Reusing Existing Code 199

8.indd 199 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

Chapter 8
 Saving Time and Money:
Reusing Existing Code

reuse /ree-YOOSS/ noun The act of using something for the n th time, where n
is greater than 1. Example: “Reuse of the material in Java For Dummies,
8th Edition is strictly prohibited.”

 Reuse is good but, in many situations, reuse is a rarity. For example, in the United
States, the Department of Agriculture estimates that 30 to 40 percent of the
nation ’ s food goes to waste. And, according to one source, only 9 percent of the
world ’ s plastics are recycled.

 Information goes to waste too. As I revise this chapter for the 8th edition, I ’ m
deciding not to reuse the 7th edition ’ s chapter introduction. (That introduction ’ s
made-up story isn ’ t amusing in the least.) In desperation, I looked at some of my
other books to fi nd an introduction that I could reuse for this chapter. No luck!
I came up empty-handed.

 I can ’ t even reuse paragraphs to explain common concepts. My description of Java
classes from another book wouldn ’ t work well in this book. I ’ ve even experienced
times when I had to scrap sections in several chapters because of a small update
in Chapter 3 .

 No doubt about it! Reuse is a precious commodity, and it ’ s in very short supply.

 IN THIS CHAPTER

» Adding new life to old code

» Tweaking your code

» Making changes without spending a
fortune

200 PART 3 Working with the Big Picture: Object-Oriented Programming

8.indd 200 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

What It Means to Be an Employee
Wouldn’t it be nice if every piece of software did just what you wanted it to do? In
an ideal world, you could buy a program, make it work right away, plug it seam-
lessly into new situations, and update it easily whenever your needs change.
Unfortunately, software of this kind doesn’t exist. (Nothing of this kind exists.)
The truth is that no matter what you want to do, you can find software that does
some of it, but not all of it.

This is one of the reasons why object-oriented programming has been successful.
For years, companies were buying prewritten code, only to discover that the code
didn’t do what they wanted it to do. So, what did the companies do about it? They
started messing with the code. Their programmers dug deep into the program
files, changed variable names, moved subprograms around, reworked formulas,
and generally made the code worse. The reality was that if a program didn’t
already do what you wanted it to do (even if it did something ever so close to what
you wanted), you could never improve the situation by mucking around inside the
code. The best option was always to chuck the whole program (expensive as that
was) and start all over again. What a sad state of affairs!

With object-oriented programming, a big change has come about. At its heart, an
object-oriented program is made to be modified. With correctly written software,
you can take advantage of features that are already built-in, add new features of
your own, and override features that don’t suit your needs. And the best part is
that the changes you make are clean. No clawing and digging into other people’s
brittle program code. Instead, you make nice, orderly additions and modifications
without touching the existing code’s internal logic. It’s the ideal solution.

The last word on employees
When you write an object-oriented program, you start by thinking about the data.
You’re writing about accounts. So, what’s an account? You’re writing code to han-
dle button clicks. So, what’s a button? You’re writing a program to send payroll
checks to employees. What’s an employee?

In this chapter’s first example, an employee is someone with a name and a job
title. Sure, employees have other characteristics, but for now I stick to the basics.
The code in Listing 8-1 defines what it means to be an employee.

LISTING 8-1: What Is an Employee?

package com.example.payroll;

import static java.lang.System.out;

CHAPTER 8 Saving Time and Money: Reusing Existing Code 201

8.indd 201 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

public class Employee {

 private String name;

 private String jobTitle;

 public void setName(String nameIn) {

 name = nameIn;

 }

 public String getName() {

 return name;

 }

 public void setJobTitle(String jobTitleIn) {

 jobTitle = jobTitleIn;

 }

 public String getJobTitle() {

 return jobTitle;

 }

 public void cutCheck(double amountPaid) {

 out.printf("Pay to the order of %s ", name);

 out.printf("(%s) ***$", jobTitle);

 out.printf("%,.2f\n", amountPaid);

 }

}

According to Listing 8-1, each employee has seven features. Two of these features
are fairly simple: Each employee has a name and a job title. (In Listing 8-1, the
Employee class has a name field and a jobTitle field.)

And what else does an employee have? Each employee has four methods to handle
the values of the employee’s name and job title. These methods are setName, get-
Name, setJobTitle, and getJobTitle. I explain methods like these (accessor
methods) in Chapter 7.

On top of all of that, each employee has a cutCheck method. The idea is that the
method that writes payroll checks has to belong to one class or another. Because
most of the information in the payroll check is customized for a particular
employee, you may as well put the cutCheck method inside the Employee class.

For details about the printf calls in the cutCheck method, see the section “Cut-
ting a check,” later in this chapter.

202 PART 3 Working with the Big Picture: Object-Oriented Programming

8.indd 202 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

Putting your class to good use
The Employee class in Listing 8-1 has no main method, so there’s no starting point
for executing code. To fix this deficiency, the programmer writes a separate pro-
gram with a main method and uses that program to create Employee instances.
Listing 8-2 shows a class with a main method — one that puts the code in
Listing 8-1 to the test.

LISTING 8-2: Writing Payroll Checks

package com.example.payroll;

import java.io.File;

import java.io.IOException;

import java.util.Scanner;

public class DoPayroll {

 public static void main(String[] args) throws IOException {

 var diskScanner = new Scanner(new File("EmployeeInfo.txt"));

 for (int empNum = 1; empNum <= 3; empNum++) {
 payOneEmployee(diskScanner);

 }

 diskScanner.close();

 }

 static void payOneEmployee(Scanner aScanner) {

 var anEmployee = new Employee();

 anEmployee.setName(aScanner.nextLine());

 anEmployee.setJobTitle(aScanner.nextLine());

 anEmployee.cutCheck(aScanner.nextDouble());

 aScanner.nextLine();

 }

}

To run the code in Listing 8-2, your hard drive must contain a file named Employ-
eeInfo.txt. Fortunately, the stuff that you download from this book’s website
(http://javafordummies.allmycode.com) comes with an EmployeeInfo.txt
file. Just copy the EmployeeInfo.txt file to a place where Listing 8-2 can find it.
For example, imagine that you’ve created a project named 08-02. Listing 8-2 lives
somewhere inside the src subfolder of a folder named 08-02, Copy my Employee-
Info.txt file directly inside the 08-02 folder — not inside the src subfolder. Java
will normally look in only the 08-02 folder for files like EmployeeInfo.txt.

CHAPTER 8 Saving Time and Money: Reusing Existing Code 203

8.indd 203 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

WHERE ON EARTH DO YOU LIVE?
Grouping separators vary from one country to another. This makes a big difference
when you try to read double values using Java’s Scanner class. To see what I mean,
have a serious look at the following JShell session.

jshell> import java.util.Scanner

jshell> import java.util.Locale

jshell> var keyboard = new Scanner(System.in)

keyboard ==> java.util.Scanner[delimiters=\p{javaWhitespace}+] ... \E]
[infinity string=\Q8\E]

jshell> keyboard.nextDouble()

1000.00

$4 ==> 1000.0

jshell> Locale.setDefault(Locale.FRANCE)

jshell> keyboard = new Scanner(System.in)

keyboard ==> java.util.Scanner[delimiters=\p{javaWhitespace}+] ... \E]
[infinity string=\Q8\E]

jshell> keyboard.nextDouble()

1000,00

$7 ==> 1000.0

jshell> keyboard.nextDouble()

1000.00

| java.util.InputMismatchException thrown:

| at Scanner.throwFor (Scanner.java:860)

| at Scanner.next (Scanner.java:1497)

| at Scanner.nextDouble (Scanner.java:2467)

| at (#8:1)

jshell>

I conducted this session on a computer in the United States. The country of origin is rel-
evant because, in response to the first keyboard.nextDouble() call, I type 1000.00
(with a period before the last two zeros) and Java accepts this as meaning “one
thousand.”

But then, in the JShell session, I call Locale.setDefault(Locale.FRANCE), which tells
Java to behave as if my computer is in France. When I create another Scanner instance

(continued)

204 PART 3 Working with the Big Picture: Object-Oriented Programming

8.indd 204 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

and call keyboard.nextDouble() again, Java accepts 1000,00 (with a comma before
the last two zeros) as an expression meaning mille (French for “one thousand”). What’s
more, Java no longer accepts the period in 1000.00. When I type 1000.00 (with a
period) I get an InputMismatchException.

By default, your computer’s Scanner instance wants you to input double numbers the
way you normally type them in your country. If you type numbers according to another
country’s convention, you get an InputMismatchException. So, when you run the
code in Listing 8-2, the numbers in your EmployeeInfo.txt file must use your coun-
try’s format.

This brings me to the running of the code in Listing 8-2. The EmployeeInfo.txt file
that you download from this book’s website starts with the following three lines:

• Barry Burd

• CEO

• 5000.00

That last number 5000.00 has a period in it, so if your country prefers a comma in
place of my United States period, you get an InputMismatchException. In response
to this, you have two choices:

• In the downloaded EmployeeInfo.txt file, change the periods to commas.

• In the code of Listing 8-2, add the statement Locale.setDefault(Locale.US)
before the diskScanner declaration.

And finally, if you want your output to look like your own country’s numbers, you can do
it with Java’s Formatter class. Add something like this to your code:

out.print(new java.util.Formatter().format(java.util.Locale.FRANCE, "%,.2f",

1000.00));

For all the details, see the API (Application Programming Interface) documentation for
Java’s Formatter class (https://docs.oracle.com/en/java/javase/17/docs/
api/java.base/java/util/Formatter.html) and Locale class (https://docs.
oracle.com/en/java/javase/17/docs/api/java.base/java/util/Locale.
html).

(continued)

CHAPTER 8 Saving Time and Money: Reusing Existing Code 205

8.indd 205 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

For more words of wisdom about files on your hard drive, see the “Working with
Disk Files (a Brief Detour)” section in this chapter.

The DoPayroll class in Listing 8-2 has two methods. One of the methods, main,
calls the other method, payOneEmployee, three times. Each time around, the pay-
OneEmployee method gets stuff from the EmployeeInfo.txt file and feeds this
stuff to the Employee class’s methods.

Here’s how the variable name anEmployee is reused and recycled:

 » The first time that payOneEmployee is called, the statement anEmployee =
new Employee() makes anEmployee refer to a new object.

 » The second time that payOneEmployee is called, the computer executes the
same statement again. This second execution creates a new incarnation of the
anEmployee variable that refers to a brand-new object.

 » The third time around, all the same stuff happens again. A new anEmployee
variable ends up referring to a third object.

The whole story is pictured in Figure 8-1.

There are always interesting things for you to try:

FIGURE 8-1:
Three calls to the
payOneEmployee

method.

206 PART 3 Working with the Big Picture: Object-Oriented Programming

8.indd 206 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

LOCALE, LOCALE, LOCALE

A PlaceToLive has an address, a number of bedrooms, and an area (in square feet
or square meters). Write the PlaceToLive class’s code. Write code for a separate
class named DisplayThePlaces. Your DisplayThePlaces class creates a few Pla-
ceToLive instances by assigning values to their address, numberOfBedrooms, and
area fields. The DisplayThePlaces class also reads (from the keyboard) the cost
of living in each place. For each place, your code displays the cost per square foot
(or square meter) and the cost per bedroom.

PAY PER CLICK

Use your new PlaceToLive class and my DummiesFrame class (from Chapter 7) to
create a GUI application. The GUI application takes information about a place to
live and displays the place’s cost per square foot (or meter) and the cost per
bedroom.

Cutting a check
Listing 8-1 has three printf calls. Each printf call has a format string (like "(%s)
***$") and a variable (like jobTitle). Each format string has a placeholder (like
%s) that determines where and how the variable’s value is displayed.

For example, in the second printf call, the format string has a %s placeholder.
This %s holds a place for the jobTitle variable’s value. According to Java’s rules,
the notation %s always holds a place for a string and, sure enough, the variable
jobTitle is declared to be of type String in Listing 8-1. Parentheses and some
other characters surround the %s placeholder, so parentheses surround each job
title in the program’s output. (See Figure 8-2.)

Back in Listing 8-1, notice the comma inside the %,.2f placeholder. The comma
tells the program to use grouping separators. That’s why, in Figure 8-2, you see
$5,000.00, $7,000.00, and $10,000.00 instead of $5000.00, $7000.00, and
$10000.00.

FIGURE 8-2:
Everybody
gets paid.

CHAPTER 8 Saving Time and Money: Reusing Existing Code 207

8.indd 207 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

Working with Disk Files (a Brief Detour)
In previous chapters, programs read characters from the computer’s keyboard.
But the code in Listing 8-2 reads characters from a specific file. The file (named
EmployeeInfo.txt) lives on your computer’s hard drive.

This EmployeeInfo.txt file is like a word processing document. The file can con-
tain letters, digits, and other characters. But unlike a word processing document,
the EmployeeInfo.txt file contains no formatting — no italics, no bold, no font
sizes, nothing of that kind.

The EmployeeInfo.txt file contains only ordinary characters — the kinds of key-
strokes that you type while you play a guessing game from Chapters 5 and 6. Of
course, getting guesses from a user’s keyboard and reading employee data from a
disk file aren’t exactly the same. In a guessing game, the program displays
prompts, such as Enter an int from 1 to 10. The game program conducts a
back-and-forth dialogue with the person sitting at the keyboard. In contrast,
Listing 8-2 has no dialogue. This DoPayroll program reads characters from a
hard drive and doesn’t prompt or interact with anyone.

Most of this chapter is about code reuse. But Listing 8-2 stumbles upon an impor-
tant idea — an idea that’s not directly related to code reuse. Unlike the examples
in previous chapters, Listing 8-2 reads data from a stored disk file. So, in the fol-
lowing sections, I take a short side trip to explore disk files.

Storing data in a file
The code in Listing 8-2 doesn’t run unless you have some employee data sitting
in a file. Listing 8-2 says that this file is EmployeeInfo.txt. So, before running
the code of Listing 8-2, I created a small EmployeeInfo.txt file. The file is shown
in Figure 8-3; refer to Figure 8-2 for the resulting output.

When you visit this book’s website (http://javafordummies.allmycode.com)
and you download the book’s code listings, you get a copy of the EmployeeInfo.
txt file.

FIGURE 8-3:
An Employee

Info.txt file.

208 PART 3 Working with the Big Picture: Object-Oriented Programming

8.indd 208 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

To keep Listing 8-2 simple, I insist that, when you type the characters in
Figure 8-3, you finish up by typing 10000.00 and then pressing Enter. (Look again
at Figure 8-3 and notice how the cursor is at the start of a brand-new line.) If you
forget to finish by pressing Enter, the code in Listing 8-2 will crash when you try
to run it.

Grouping separators vary from one country to another. The file shown in
Figure 8-3 works on a computer configured in the United States where 5000.00
means “five thousand.” But the file doesn’t work on a computer that’s configured
in what I call a “comma country” — a country where 5000,00 means “five thou-
sand.” If you live in a comma country, be sure to read this chapter’s “Where on
Earth do you live?” sidebar.

Repeat after me
In almost any computer programming language, reading data from a file can be
tricky. You add extra lines of code to tell the computer what to do. Sometimes you
can copy and paste these lines from other peoples’ code. For example, you can
follow the pattern in Listing 8-2:

/*

* The pattern in Listing 8-2

*/

import java.io.File;

import java.io.IOException;

import java.util.Scanner;

class SomeClassName {

 public static void main(String[] args) throws IOException {

 var scannerName = new Scanner(new File("SomeFileName"));

 //Some code goes here

 scannerName.nextInt();

 scannerName.nextDouble();

 scannerName.next();

 scannerName.nextLine();

 //Some code goes here

 scannerName.close();

 }

}

CHAPTER 8 Saving Time and Money: Reusing Existing Code 209

8.indd 209 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

You want to read data from a file. You start by imagining that you’re reading from
the keyboard. Put the usual Scanner and next codes into your program. Then add
some extra items from the Listing 8-2 pattern:

 » Add two new import declarations — one for java.io.File and another for
java.io.IOException.

 » Type throws IOException in your method’s header.

 » Type new File(" ") in your call to new Scanner.

 » Take a file that’s already on your hard drive. Type that filename inside the
quotation marks.

 » Take the word that you use for the name of your scanner. Reuse that word in
calls to next, nextInt, nextDouble, and so on.

 » Take the word that you use for the name of your scanner. Reuse that word in
a call to close.

Occasionally, copying and pasting code can get you into trouble. Maybe you’re
writing a program that doesn’t fit the simple Listing 8-2 pattern. You need to
tweak the pattern a bit. But to tweak the pattern, you need to understand some of
the ideas behind the pattern.

That’s how the next section comes to your rescue. It covers some of these ideas.

This paragraph is actually a confession. In almost every computer programming
language, input from a disk file is a nasty business. There’s no such thing as a
simple INPUT command. You normally have to set up a connection between the
code and the disk device, prepare for possible trouble reading from the device, do
your reading, convert the characters you read into the type of value that you want
and, finally, break your connection with the disk device. It’s a big mess. That’s
why, in this book, I rely on Java’s Scanner class. The Scanner class makes input
relatively painless. But, I admit, professional Java programmers hardly ever use
the Scanner class to do input. Instead, they use something called a BufferedReader
or classes in the java.nio package. If you’re not content with my use of the Scan-
ner class and you want to see Listing 8-2 translated into a BufferedReader pro-
gram, visit this book’s website (http://javafordummies.allmycode.com/).

Reading from a file
In previous chapters, programs read characters from the computer’s keyboard.
These programs use things like Scanner, System.in, and nextDouble — things
defined in Java’s API. The DoPayroll program in Listing 8-2 puts a new spin on this
story. Rather than read characters from the keyboard, the program reads characters
from the EmployeeInfo.txt file. The file lives on your computer’s hard drive.

210 PART 3 Working with the Big Picture: Object-Oriented Programming

8.indd 210 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

To read characters from a file, you use some of the same things that help you read
characters from the keyboard. You use Scanner, nextDouble, and other goodies.
But in addition to these goodies, you have a few extra hurdles to jump. Here’s
a list:

 » You need a new File object. To be more precise, you need a new instance of
the API’s File class. You get this new instance with code like

new File("EmployeeInfo.txt")

The stuff in quotation marks is the name of a file — a file on your computer’s
hard drive. The file contains characters like those shown previously in
Figure 8-3.

At this point, the terminology makes mountains out of molehills. Sure, I use
the phrases new File object and new File instance, but all you’re doing is making
new File("EmployeeInfo.txt") stand for a file on your hard drive. After
you shove new File("EmployeeInfo.txt") into new Scanner,

var diskScanner = new Scanner(new File("EmployeeInfo.txt"));

you can forget all about the new File business. From that point on in the
code, diskScanner stands for the EmployeeInfo.txt filename on your
computer’s hard drive. (The name diskScanner stands for a file on your hard
drive just as, in previous examples, the name keyboard stands for those
buttons you press day in and day out.)

Creating a new File object in Listing 8-2 is like creating a new Employee
object later in the same listing. It’s also like creating a new Account object in
the examples of Chapter 7. The only difference is that the Employee and
Account classes are defined in this book’s examples. The File class is defined
in Java’s API.

When you connect to a disk file with new Scanner, don’t forget the new File
part. If you write new Scanner("EmployeeInfo.txt") without new File,
the compiler won’t mind. (You don’t get any warnings or error messages
before you run the code.) But when you run the code, you don’t get anything
like the results that you expect to get.

 » You must refer to the File class by its full name: java.io.File. You can
do this with an import declaration like the one in Listing 8-2. Alternatively, you
can clutter your code with a statement like

var diskScanner = new Scanner(new java.io.File("EmployeeInfo.txt"));

 » You need a throws IOException clause. Lots of things can go wrong when
your program connects to EmployeeInfo.txt. For one thing, your hard
drive may not have a file named EmployeeInfo.txt. For another, the file
EmployeeInfo.txt may be in the wrong directory. To brace for this kind of

CHAPTER 8 Saving Time and Money: Reusing Existing Code 211

8.indd 211 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

calamity, the Java programming language takes certain precautions. The
language insists that when a disk file is involved, you acknowledge the
possible dangers of calling new Scanner.

You can acknowledge the hazards in several possible ways, but the simplest
way is to use a throws clause. In Listing 8-2, the main method’s header ends
with the words throws IOException. By adding these two words, you appease
the Java compiler. It’s as if you’re saying “I know that calling new Scanner can
lead to problems. You don’t have to remind me.” And, sure enough, adding
throws IOException to your main method keeps the compiler from
complaining. (Without this throws clause, you get an unhandled exception
error message.)

For the full story on Java exceptions, read Chapter 13. In the meantime, add
throws IOException to the header of any method that calls new Scanner
(new File(....

 » You must refer to the IOException class by its full name: java.
io.IOException.

You can do this with an import declaration like the one in Listing 8-2.
Alternatively, you can enlarge the main method’s throws clause:

public static void main(String[] args) throws java.io.IOException {

 » You must pass the file scanner’s name to the payOneEmployee method.

In Listing 7-5 in Chapter 7, the getInterest method has a parameter named
percentageRate. Whenever you call the getInterest method, you hand an
extra, up-to-date piece of information to the method. (You hand a number —
an interest rate — to the method. Figure 7-7 illustrates the idea.)

The same thing happens in Listing 8-2. The payOneEmployee method has a
parameter named aScanner. Whenever you call the payOneEmployee method,
you hand an extra, up-to-date piece of information to the method. (You hand
a scanner — a reference to a disk file — to the method.)

You may wonder why the payOneEmployee method needs a parameter. After all, in
Listing 8-2, the payOneEmployee method always reads data from the same file.
Why bother informing this method, each time you call it, that the disk file is still
the EmployeeInfo.txt file?

Well, there are plenty of ways to shuffle the code in Listing 8-2. Some ways don’t
involve a parameter. But the way that this example has arranged things, you have
two separate methods: a main method and a payOneEmployee method. You create
a scanner once inside the main method and then use the scanner three times —
once inside each call to the payOneEmployee method.

212 PART 3 Working with the Big Picture: Object-Oriented Programming

8.indd 212 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

Anything you define inside a method is like a private joke that’s known only to the
code inside that method. So, the diskScanner that you define inside the main
method isn’t automatically known inside the payOneEmployee method. To make
the payOneEmployee method aware of the disk file, you pass diskScanner from
the main method to the payOneEmployee method.

To read more about things that you declare inside (and outside) of methods, see
Chapter 10.

Who moved my file?
When you download the code from this book’s website (http://javafordummies.
allmycode.com/), you’ll find files named Employee.java and DoPayroll.java —
the code in Listings 8-1 and 8-2. You’ll also find a file named EmployeeInfo.txt.
That’s good because, if Java can’t find the EmployeeInfo.txt file, the whole proj-
ect doesn’t run properly. Instead, you get a FileNotFoundException.

In general, when you get a FileNotFoundException, some file that your program
needs isn’t available to it. This is an easy mistake to make. It can be frustrating
because, to you, a file such as EmployeeInfo.txt may look like it’s available to
your program. But remember: Computers are stupid. If you make a tiny mistake,
the computer can’t read between the lines for you. So, if your EmployeeInfo.txt
file isn’t in the right directory on your hard drive or the filename is spelled incor-
rectly, the computer chokes when it tries to run your code.

Sometimes you know darn well that an EmployeeInfo.txt (or whatever.xyz) file
exists on your hard drive. But when you run your program, you still get a mean-
looking FileNotFoundException. When this happens, the file is usually in the
wrong directory on your hard drive. (Of course, it depends on your point of view.
Maybe the file is in the right directory, but your Java program is looking for the
file in the wrong directory.) To diagnose this problem, add the following code to
Listing 8-2:

var employeeInfo = new File("EmployeeInfo.txt");

System.out.println("Looking for " + employeeInfo.getCanonicalPath());

When you run the code, Java tells you where, on your hard drive, the Employee-
Info.txt file should be.

You moved your file!
Java normally looks in your project’s top-level folder for a file like EmployeeInfo.
txt. But you can override this behavior by naming a file’s exact location in your

CHAPTER 8 Saving Time and Money: Reusing Existing Code 213

8.indd 213 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

Java code. Code like new File("C:\\Users\\bburd\\workspace\\08-01\\
EmployeeInfo.txt") looks really ugly, but it works.

In the preceding paragraph, did you notice the double backslashes in “C: \\
Users\\bburd\\workspace ...”? If you’re a Windows user, you’d be tempted to
write C:\Users\bburd\workspace ... with single backslashes. But in Java, the
single backslash has its own, special meaning. (For example, back in Listing 7-7,
\n means to go to the next line.) So, in Java, to indicate a backslash inside a quoted
string, you use a double backslash instead.

Macintosh and Linux users might find comfort in the fact that their path separa-
tor, /, has no special meaning in a Java string. On a Mac, the code new File("/
Users/bburd/workspace/08-01/EmployeeInfo.txt") is as normal as breathing.
(Well, it’s almost that normal!) But Mac users and Linux wonks shouldn’t claim
superiority too quickly. Lines such as new File("/Users/bburd/workspace ...
work in Windows as well. In Windows, you can use either a slash (/) or a backslash
(\) as the path name separator. At the Windows command prompt, I can type cd
c:/users\bburd to get to my home directory.

If you know where your Java program looks for files, you can worm your way from
that place to the directory of your choice. Assume, for the moment, that the code
in Listing 8-2 normally looks for the EmployeeInfo.txt file in a directory named
08-01. As an experiment, go to the 08-01 directory and create a new subdirectory
named dataFiles. Then move my EmployeeInfo.txt file to the new dataFiles
directory. To read numbers and words from the file that you moved, modify
Listing 8-2 with the code new File("dataFiles\\EmployeeInfo.txt") or new
File("dataFiles/EmployeeInfo.txt").

Reading a line at a time
In Listing 8-2, the payOneEmployee method illustrates some useful tricks for
reading data. In particular, every scanner that you create has a nextLine method.
(You might not use this nextLine method, but the method is available nonethe-
less.) When you call a scanner’s nextLine method, the method grabs everything
up to the end of the current line of text. In Listing 8-2, a call to nextLine can read
a whole line from the EmployeeInfo.txt file. (In another program, a scanner’s
nextLine call may read everything the user types on the keyboard up to the press-
ing of the Enter key.)

Notice my careful choice of words: nextLine reads everything “up to the end of
the current line.” Unfortunately, what it means to read up to the end of the cur-
rent line isn’t always what you think it means. Intermingling nextInt, nextDou-
ble, and nextLine calls can be messy. You have to watch what you’re doing and
check your program’s output carefully.

214 PART 3 Working with the Big Picture: Object-Oriented Programming

8.indd 214 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

To understand all of this, you need to be painfully aware of a data file’s line breaks.
Think of a line break as an extra character, stuck between one line of text and the
next. Then imagine that calling nextLine means to read everything up to and
including the next line break.

Now take a look at Figure 8-4:

 » If one call to nextLine reads Barry Burd[LineBreak], the subsequent call
to nextLine reads CEO[LineBreak].

 » If one call to nextDouble reads the number 5000.00, the subsequent call to
nextLine reads the [LineBreak] that comes immediately after the number
5000.00. (That’s all the nextLine reads — a [LineBreak] and nothing more.)

 » If a call to nextLine reads the [LineBreak] after the number 5000.00, the
subsequent call to nextLine reads Harriet Ritter[LineBreak].

So, after reading the number 5000.00, you need two calls to nextLine in order to
scoop up the name Harriet Ritter. The mistake that I usually make is to forget the
first of those two calls.

Look again at the file in Figure 8-3. For this section’s code to work correctly, you
must have a line break after the last 10000.00. If you don’t, a final call to next-
Line makes your program crash and burn. The error message reads NoSuchEle-
mentException: No line found.

FIGURE 8-4:
Calling

nextDouble
and nextLine.

CHAPTER 8 Saving Time and Money: Reusing Existing Code 215

8.indd 215 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

I’m always surprised by the number of quirks that I find in each programming
language’s scanning methods. For example, the first nextLine that reads from
the file in Figure 8-3 devours Barry Burd[LineBreak] from the file. But that
nextLine call delivers Barry Burd (with no line break) to the running code. So
nextLine looks for a line break, and then nextLine loses the line break. Yes, this
is a subtle point. And no, this subtle point hardly ever causes problems for anyone.

If this business about nextDouble and nextLine confuses you, please don’t put
the blame on Java. Mixing input calls is delicate work in any computer program-
ming language. And the really nasty thing is that each programming language
approaches the problem a little differently. What you find out about nextLine in
Java helps you understand the issues when you get to know C++ or Visual Basic,
but it doesn’t tell you all the details. Each language’s details are unique to that
language. (Yes, it’s a big pain. But because all computer programmers become rich
and famous, the pain eventually pays off.)

Clean up after yourself
To the average computer user, a keyboard doesn’t feel anything like a file stored
on a computer’s hard drive. But disk files and keyboard input have a lot in com-
mon. In fact, a basic principle of computer operating systems dictates that any
differences between two kinds of input be, for the programmer, as blurry as pos-
sible. As a Java programmer, you should treat disk files and keyboard input almost
the same way. That’s why Listing 8-2 contains a diskScanner.close() call.

When you run a Java program, you normally execute the main method’s state-
ments, starting with the first statement in the method body and ending with the
last statement in the method body. You take detours along the way, skipping past
else parts and diving into method bodies, but basically you finish executing
statements at the end of the main method. That’s why, in Listing 8-2, the call to
close is at the end of the main method’s body. When you run the code in
Listing 8-2, the last thing you do is disconnect from the disk file. And, fortu-
nately, that disconnection takes place after you’ve executed all the nextLine and
nextDouble calls.

ON THE RECORD

Previously in this chapter, you create instances of your own PlaceToLive class
and display information about those instances. Modify the text-based version of
your code so that it gets each instance’s characteristics (address, number of bed-
rooms, and area) from a disk file.

216 PART 3 Working with the Big Picture: Object-Oriented Programming

8.indd 216 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

Defining Subclasses (What It Means to
Be a Full-Time or Part-Time Employee)

This time last year, your company paid $10 million for a piece of software. That
software came in the Employee.class file. People at Burd Brain Consulting (the
company that created the software) don’t want you to know about the innards of
the software. (Otherwise, you may steal their ideas.) So, you don’t have the Java
program file that the software came from. (In other words, you don’t have
Employee.java.) You can run the bytecode in the Employee.class file. You can
also read the documentation in a web page named Employee.html. But you can’t see
the statements inside the Employee.java program, and you can’t change any of
the program’s code.

Since this time last year, your company has grown. Unlike in the old days, your
company now has two kinds of employees: full-time and part-time. Each full-
time employee is on a fixed, weekly salary. (If the employee works nights and
weekends, then in return for this monumental effort, the employee receives a
hearty handshake.) In contrast, each part-time employee works for an hourly
wage. Your company deducts an amount from each full-time employee’s pay-
check to pay for the company’s benefits package. Part-time employees, however,
don’t get benefits.

The question is whether the software that your company bought last year can keep
up with the company’s growth. You invested in a great program to handle employ-
ees and their payroll, but the program doesn’t differentiate between your full-
time and part-time employees. You have several options:

 » Call your next-door neighbor, whose 12-year-old child knows more about
computer programming than anyone in your company. Get this uppity
little brat to take the employee software apart, rewrite it, and hand it back to
you with all the changes and additions your company requires.

On second thought, you can’t do that. No matter how smart that kid is, the
complexities of the employee software will probably confuse the kid. By the
time you get the software back, it’ll be filled with bugs and inconsistencies.
Besides, you don’t even have the Employee.java file to hand to the kid. All
you have is the Employee.class file, which can’t be read or modified with a
text editor. (See Chapter 2.) Besides, your kid just beat up the neighbor’s kid.
You don’t want to give your neighbor the satisfaction of seeing you beg for the
whiz kid’s help.

CHAPTER 8 Saving Time and Money: Reusing Existing Code 217

8.indd 217 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

 » Scrap the $10 million employee software. Get someone in your company to
rewrite the software from scratch.

In other words, say goodbye to your time and money.

 » Write a new front end for the employee software. That is, build a piece of
code that does some preliminary processing on full-time employees and then
hands the preliminary results to your $10 million software. Do the same for
part-time employees.

This idea could be decent or spell disaster. Are you sure that the existing
employee software has convenient hooks in it? (That is, does the employee
software contain entry points that allow your front-end software to easily
send preliminary data to the expensive employee software?) Remember: This
plan treats the existing software as one big, monolithic lump, which can
become cumbersome. Dividing the labor between your front-end code and
the existing employee program is difficult. And if you add layer upon layer to
existing black box code, you’ll probably end up with a fairly inefficient system.

 » Call Burd Brain Consulting, the company that sold you the employee
software. Tell Dr. Burd that you want the next version of his software to
differentiate between full-time and part-time employees.

“No problem,” says Dr. Burd. “It’ll be ready by the start of the next fiscal
quarter.” That evening, Dr. Burd makes a discreet phone call to his next-door
neighbor. . . .

 » Create two new Java classes named FullTimeEmployee and
PartTimeEmployee. Have each new class extend the existing functionality of
the expensive Employee class, but have each new class define its own,
specialized functionality for certain kinds of employees.

Way to go! Figure 8-5 shows the structure that you want to create.

FIGURE 8-5:
The Employee

class family tree.

218 PART 3 Working with the Big Picture: Object-Oriented Programming

8.indd 218 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

Creating a subclass
In Listing 8-1, I define an Employee class. I can use what I define in Listing 8-1
and extend the definition to create new, more specialized classes. So, in Listing 8-3,
I define a new class: a FullTimeEmployee class.

LISTING 8-3: What Is a FullTimeEmployee?

package com.example.payroll;

public class FullTimeEmployee extends Employee {

 private double weeklySalary;

 private double benefitDeduction;

 public void setWeeklySalary(double weeklySalaryIn) {

 weeklySalary = weeklySalaryIn;

 }

 public double getWeeklySalary() {

 return weeklySalary;

 }

 public void setBenefitDeduction(double benefitDedIn) {

 benefitDeduction = benefitDedIn;

 }

 public double getBenefitDeduction() {

 return benefitDeduction;

 }

 public double findPaymentAmount() {

 return weeklySalary - benefitDeduction;

 }

}

Looking at Listing 8-3, you can see that each instance of the FullTimeEmployee
class has two fields: weeklySalary and benefitDeduction. But are those the only
fields that each FullTimeEmployee instance has? No, they’re not. The first line of
Listing 8-3 says that the FullTimeEmployee class extends the existing Employee
class. This means that in addition to having a weeklySalary and a benefitDeduc-
tion, each FullTimeEmployee instance also has two other fields: name and job-
Title. These two fields come from the definition of the Employee class, which you
can find in Listing 8-1.

CHAPTER 8 Saving Time and Money: Reusing Existing Code 219

8.indd 219 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

In Listing 8-3, the magic word is extends. When one class extends an existing
class, the extending class automatically inherits functionality that’s defined in the
existing class. So, the FullTimeEmployee class inherits the name and jobTitle
fields. The FullTimeEmployee class also inherits all the methods that are declared
in the Employee class: setName, getName, setJobTitle, getJobTitle, and cut-
Check. The FullTimeEmployee class is a subclass of the Employee class. That means
the Employee class is the superclass of the FullTimeEmployee class. You can also
talk in terms of blood relatives: The FullTimeEmployee class is the child of the
Employee class, and the Employee class is the parent of the FullTimeEmployee
class.

It’s almost (but not quite) as if the FullTimeEmployee class were defined by the
code in Listing 8-4.

LISTING 8-4: Fake (But Informative) Code

package com.example.payroll;

import static java.lang.System.out;

public class FullTimeEmployee {

 private String name;

 private String jobTitle;

 private double weeklySalary;

 private double benefitDeduction;

 public void setName(String nameIn) {

 name = nameIn;

 }

 public String getName() {

 return name;

 }

 public void setJobTitle(String jobTitleIn) {

 jobTitle = jobTitleIn;

 }

 public String getJobTitle() {

 return jobTitle;

 }

 public void setWeeklySalary(double weeklySalaryIn) {

 weeklySalary = weeklySalaryIn;

 }

 (continued)

220 PART 3 Working with the Big Picture: Object-Oriented Programming

8.indd 220 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

 public double getWeeklySalary() {

 return weeklySalary;

 }

 public void setBenefitDeduction(double benefitDedIn) {

 benefitDeduction = benefitDedIn;

 }

 public double getBenefitDeduction() {

 return benefitDeduction;

 }

 public double findPaymentAmount() {

 return weeklySalary - benefitDeduction;

 }

 public void cutCheck(double amountPaid) {

 out.printf("Pay to the order of %s ", name);

 out.printf("(%s) ***$", jobTitle);

 out.printf("%,.2f\n", amountPaid);

 }

}

Why does the title for Listing 8-4 call that code fake? (Should the code feel
insulted?) Well, the main difference between Listing 8-4 and the inheritance situ-
ation in Listings 8-1 and 8-3 is this: A child class can’t directly reference the pri-
vate fields of its parent class. To do anything with the parent class’s private fields,
the child class has to call the parent class’s accessor methods. Back in Listing 8-3,
calling setName("Rufus") would be legal, but the code name="Rufus" wouldn’t be.
If you believe everything you read in Listing 8-4, you’d think that code in the
FullTimeEmployee class can do name="Rufus". Well, it can’t. (My, what a subtle
point this is!)

You don’t need the Employee.java file on your hard drive to write code that
extends the Employee class. All you need is the file Employee.class.

Creating subclasses is habit-forming
After you’re accustomed to extending classes, you can get extend-happy. If you
created a FullTimeEmployee class, you might as well create a PartTimeEmployee
class, as shown in Listing 8-5.

LISTING 8-4: (continued)

CHAPTER 8 Saving Time and Money: Reusing Existing Code 221

8.indd 221 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

LISTING 8-5: What Is a PartTimeEmployee?

package com.example.payroll;

public class PartTimeEmployee extends Employee {

 private double hourlyRate;

 public void setHourlyRate(double rateIn) {

 hourlyRate = rateIn;

 }

 public double getHourlyRate() {

 return hourlyRate;

 }

 public double findPaymentAmount(int hours) {

 return hourlyRate * hours;

 }

}

Unlike the FullTimeEmployee class, PartTimeEmployee has no salary or deduc-
tion. Instead PartTimeEmployee has an hourlyRate field. (Adding a numberOf-
HoursWorked field would also be a possibility. I chose not to do this, figuring that
the number of hours a part-time employee works will change drastically from
week to week.)

Using Subclasses
The preceding section tells a story about creating subclasses. It’s a good story, but
it’s incomplete. Creating subclasses is fine, but you gain nothing from these sub-
classes unless you write code to use them.

Listing 8-6 contains the simplest possible example of a program that uses the
subclasses FullTimeEmployee and PartTimeEmployee. (For a look as some more
interesting examples, visit this book’s website).

222 PART 3 Working with the Big Picture: Object-Oriented Programming

8.indd 222 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

LISTING 8-6: Putting Subclasses to Good Use

package com.example.payroll;

public class PayrollForTwo {

 public static void main(String[] args) {

 var ftEmployee = new FullTimeEmployee();

 ftEmployee.setName("Barry Burd");

 ftEmployee.setJobTitle("CEO");

 ftEmployee.setWeeklySalary(5000.00);

 ftEmployee.setBenefitDeduction(500.00);

 ftEmployee.cutCheck(ftEmployee.findPaymentAmount());

 System.out.println();

 var ptEmployee = new PartTimeEmployee();

 ptEmployee.setName("Steve Surace");

 ptEmployee.setJobTitle("Driver");

 ptEmployee.setHourlyRate(7.53);

 ptEmployee.cutCheck(ptEmployee.findPaymentAmount(10));

 }

}

Figure 8-6 shows the output of the code in Listing 8-6.

To understand Listing 8-6, you need to keep an eye on three classes: Employee,
FullTimeEmployee, and PartTimeEmployee. (For a look at the code that defines
these classes, see Listings 8-1, 8-3, and 8-5.)

The first half of Listing 8-6 deals with a full-time employee. Notice how many
methods are available for use with the ftEmployee variable? For instance, you can
call ftEmployee.setWeeklySalary because ftEmployee has type FullTimeEm-
ployee. You can also call ftEmployee.setName because the FullTimeEmployee
class extends the Employee class.

FIGURE 8-6:
I earn a lot more

than Steve.

CHAPTER 8 Saving Time and Money: Reusing Existing Code 223

8.indd 223 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

Because cutCheck is declared in the Employee class, you can call ftEmployee.
cutCheck. But you can also call ftEmployee.findPaymentAmount because a find-
PaymentAmount method is in the FullTimeEmployee class.

Making types match
Look again at the first half of Listing 8-6. Take special notice of that last
statement — the one in which the full-time employee is actually cut a check. The
statement forms a nice, long chain of values and their types. You can see this by
reading the statement from the inside out:

 » Method ftEmployee.findPaymentAmount is called with an empty parameter
list. (Refer to Listing 8-6.) That’s good because the findPaymentAmount
method takes no parameters. (Refer to Listing 8-3.)

 » The findPaymentAmount method returns a value of type double. (Again, refer
to Listing 8-3.)

 » The double value that ftEmployee.findPaymentAmount returns is passed to
method ftEmployee.cutCheck. (Refer to Listing 8-6.) That’s good because
the cutCheck method takes one parameter of type double. (Refer to
Listing 8-1.)

For a fanciful graphical illustration, see Figure 8-7.

Always feed a method the value types that it wants in its parameter list.

FIGURE 8-7:
Matching

parameters.

224 PART 3 Working with the Big Picture: Object-Oriented Programming

8.indd 224 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

The second half of the story
In the second half of Listing 8-6, the code creates an object of type PartTimeEm-
ployee. A variable of type PartTimeEmployee can do some of the same things a
FullTimeEmployee variable can do. But the PartTimeEmployee class doesn’t have
the setWeeklySalary and setBenefitDeduction methods. Instead, the PartTi-
meEmployee class has the setHourlyRate method. (See Listing 8-5.) So, in
Listing 8-6 the next-to-last line is a call to the setHourlyRate method.

The last line of Listing 8-6 is by far the most interesting. On that line, the code
hands the number 10 (the number of hours worked) to the findPaymentAmount
method. Compare this with the earlier call to findPaymentAmount — the call for
the full-time employee in the first half of Listing 8-6. Between the two sub-
classes, FullTimeEmployee and PartTimeEmployee, are two different findPay-
mentAmount methods. The two methods have two different kinds of parameter
lists:

 » The FullTimeEmployee class’s findPaymentAmount method takes no
parameters (refer to Listing 8-3).

 » The PartTimeEmployee class’s findPaymentAmount method takes one int
parameter (refer to Listing 8-5).

This is par for the course. Finding the payment amount for a part-time employee
isn’t the same as finding the payment amount for a full-time employee. A part-
time employee’s pay changes each week, depending on the number of hours the
employee works in a week. The full-time employee’s pay stays the same each
week. So, the FullTimeEmployee and PartTimeEmployee classes both have find-
PaymentAmount methods, but each class’s method works quite differently.

Yes, I have some things for you to try:

BUY OR RENT

Previously in this chapter, you create instances of your own PlaceToLive class
and display information about those instances. Create two subclasses of your Pla-
ceToLive class: a House class and an Apartment class. Each House object has a
mortgage cost (a monthly amount) and a property tax cost (a yearly amount).
Each Apartment object has a rental cost (a monthly amount).

A separate DisplayThePlaces class creates some houses and some apartments.
For each house or apartment, your DisplayThePlaces class displays the total cost
per square foot (or square meter) and the total cost per bedroom, both calculated
monthly.

CHAPTER 8 Saving Time and Money: Reusing Existing Code 225

8.indd 225 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

TAX BREAKS

In Chapter 7, you create an Organization class. Each instance of your Organiza-
tion class has a name, an annual revenue amount, and a boolean value indicating
whether the organization is or is not a profit-making organization.

Create a new Organization_2 class. Each instance of this new class has only a
name and an annual revenue amount. Create two subclasses: a ProfitMaking-
Organization class and a NonProfitOrganization class. A profit-making orga-
nization pays 10 percent of its revenue in tax, but a nonprofit organization pays
only 2 percent of its revenue in tax.

Make a separate class that creates ProfitMakingOrganization instances and
NonProfitOrganization instances while also displaying information about each
instance, including the amount of tax the organization pays.

Changing the Payments for Only
Some of the Employees

Wouldn’t you know it! Some knucklehead in the human resources department
offered double pay for overtime to one of your part-time employees. Now word is
getting around, and some of the other part-timers want double pay for their over-
time work. If this keeps up, you’ll end up in the poorhouse, so you need to send
out a memo to all the part-time employees, explaining why earning more money
is not to their benefit.

In the meantime, you have two kinds of part-time employees — the ones who
receive double pay for overtime hours and the ones who don’t — so you need to
modify your payroll software. What are your options?

 » Well, you can dig right into the PartTimeEmployee class code, make a few
changes, and hope for the best. (Not a good idea!)

 » You can follow the previous section’s advice and create a subclass of the
existing PartTimeEmployee class. “But wait,” you say. “The existing
PartTimeEmployee class already has a findPaymentAmount method.
Do I need some tricky way of bypassing this existing findPaymentAmount
method for each double-pay-for-overtime employee?”

226 PART 3 Working with the Big Picture: Object-Oriented Programming

8.indd 226 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

At this point, you can thank your lucky stars that you’re doing object-oriented
programming in Java. With object-oriented programming, you can create a
subclass that overrides the functionality of its parent class. Listing 8-7 has just
such a subclass.

LISTING 8-7: Yet Another Subclass

package com.example.payroll;

public class PartTimeWithOver extends PartTimeEmployee {

 @Override

 public double findPaymentAmount(int hours) {

 if (hours <= 40) {

 return getHourlyRate() * hours;

 } else {

 return getHourlyRate() * 40 + getHourlyRate() * 2 * (hours - 40);
 }

 }

}

Figure 8-8 shows the relationship between the code in Listing 8-7 and other
pieces of code in this chapter. In particular, PartTimeWithOver is a subclass of a
subclass. In object-oriented programming, a chain of this kind is not the least bit
unusual. In fact, as subclasses go, this chain is rather short.

FIGURE 8-8:
A tree of
classes.

CHAPTER 8 Saving Time and Money: Reusing Existing Code 227

8.indd 227 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

The PartTimeWithOver class extends the PartTimeEmployee class, but PartTime-
WithOver picks and chooses what it wants to inherit from the PartTimeEmployee
class. Because PartTimeWithOver has its own declaration for the findPayment-
Amount method, the PartTimeWithOver class doesn’t inherit a findPaymentAmount
method from its parent. (See Figure 8-9.)

According to the official terminology, the PartTimeWithOver class overrides its
parent class’s findPaymentAmount method. If you create an object from the Part-
TimeWithOver class, that object has the name, jobTitle, hourlyRate, and cut-
Check of the PartTimeEmployee class, but the object has the findPaymentAmount
method that’s defined in Listing 8-7.

A Java annotation
The word @Override in Listing 8-7 is an example of an annotation. A Java annota-
tion tells your computer something about your code. In particular, the @Override
annotation in Listing 8-7 tells the Java compiler to be on the lookout for a com-
mon coding error. The annotation says, “Make sure that the method immediately
following this annotation has the same stuff (the same name, the same parame-
ters, and so on) as one of the methods in the superclass. If not, then display an
error message.”

So if I accidentally type

public double findPaymentAmount(double hours) {

FIGURE 8-9:
Method

findPayment
Amount isn’t

inherited.

228 PART 3 Working with the Big Picture: Object-Oriented Programming

8.indd 228 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

instead of int hours as in Listings 8-5 and 8-7, the compiler reminds me that my
new findPaymentAmount method doesn’t really override anything that’s in
Listing 8-5.

Java has other kinds of annotations (such as @Deprecated and @SuppressWarn-
ings). You can read a bit about the @SuppressWarnings annotation in Chapter 9.

Java’s annotations are optional. If you remove the word @Override from
Listing 8-7, your code still runs correctly. But the @Override annotation gives
your code some added safety. With @Override, the compiler checks to make sure
that you’re doing something you intend to do (namely, overriding one of the
superclass’s methods). And with apologies to George Orwell, some types of anno-
tations are less optional than others. You can omit certain annotations from your
code only if you’re willing to replace the annotation with lots and lots of unan-
notated Java code.

Using methods from classes and subclasses
If you need clarification on this notion of overriding a method, look at the code in
Listing 8-8. A run of that code is shown in Figure 8-10.

LISTING 8-8: Testing the Code from Listing 8-7

package com.example.payroll;

public class PayrollForThree {

 public static void main(String[] args) {

 var ftEmployee = new FullTimeEmployee();

 ftEmployee.setName("Barry Burd");

 ftEmployee.setJobTitle("CEO");

 ftEmployee.setWeeklySalary(5000.00);

 ftEmployee.setBenefitDeduction(500.00);

 ftEmployee.cutCheck(ftEmployee.findPaymentAmount());

FIGURE 8-10:
Running the code

of Listing 8-8.

CHAPTER 8 Saving Time and Money: Reusing Existing Code 229

8.indd 229 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

 var ptEmployee = new PartTimeEmployee();

 ptEmployee.setName("Chris Apelian");

 ptEmployee.setJobTitle("Computer Book Author");

 ptEmployee.setHourlyRate(7.53);

 ptEmployee.cutCheck(ptEmployee.findPaymentAmount(50));

 PartTimeWithOver ptoEmployee = new PartTimeWithOver();

 ptoEmployee.setName("Steve Surace");

 ptoEmployee.setJobTitle("Driver");

 ptoEmployee.setHourlyRate(7.53);

 ptoEmployee.cutCheck(ptoEmployee.findPaymentAmount(50));

 }

}

The code in Listing 8-8 writes checks to three employees. The first employee is a
full-timer. The second is a part-time employee who hasn’t yet gotten wind of the
overtime payment scheme. The third employee knows about the overtime pay-
ment scheme and demands a fair wage.

With the subclasses, all three of these employees coexist in Listing 8-8. Sure, one
subclass comes from the old PartTimeEmployee class, but that doesn’t mean you
can’t create an object from the PartTimeEmployee class. In fact, Java is smart
about this. Listing 8-8 has three calls to the findPaymentAmount method, and
each call reaches out to a different version of the method:

 » In the first call, ftEmployee.findPaymentAmount, the ftEmployee variable is
an instance of the FullTimeEmployee class. So the method that’s called is the
one in Listing 8-3.

 » In the second call, ptEmployee.findPaymentAmount, the ptEmployee
variable is an instance of the PartTimeEmployee class. So, the method that’s
called is the one in Listing 8-5.

 » In the third call, ptoEmployee.findPaymentAmount, the ptoEmployee
variable is an instance of the PartTimeWithOver class. So, the method that’s
called is the one in Listing 8-7.

This code is fantastic. It’s clean, elegant, and efficient. With all the money that
you save on software, you can afford to pay everyone double for overtime hours.
(Whether you do that or keep the money for yourself is another story.)

230 PART 3 Working with the Big Picture: Object-Oriented Programming

8.indd 230 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

Here are some things for you to try.

PAY MORE AND MORE

In previous sections, you create House and Apartment subclasses of your PlaceTo-
Live class. Create an ApartmentWithFees subclass of your Apartment class. In
addition to the monthly rental price, someone living in an ApartmentWithFees
pays a fixed amount every quarter (every three months). Create a separate class
that displays the monthly cost of living in a House instance, an Apartment instance,
and an ApartmentWithFees instance.

VIRTUAL METHODS

Create a project with four Java source files. Each file defines a particular Java class.

public class Main {

 public static void main(String[] args) {

 MyThing myThing, myThing2;

 myThing = new MySubThing();

 myThing2 = new MyOtherThing();

 myThing.value = 7;

 myThing2.value = 44;

 myThing.display();

 myThing2.display();

 }

}

public class MyThing {

 int value;

 public void display() {

 System.out.println("In MyThing, value is " + value);
 }

}

public class MySubThing extends MyThing {

 @Override

 public void display() {

 System.out.println("In MySUBThing, value is " + value);
 }

CHAPTER 8 Saving Time and Money: Reusing Existing Code 231

8.indd 231 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

}

public class MyOtherThing extends MyThing {

 @Override

 public void display() {

 System.out.println("In MyOTHERThing, value is " + value);
 }

}

What output do you see when you run the Main.java file’s code? What does this
output tell you about variable declarations and method calling in Java?

8.indd 232 Trim size: 7.375 in × 9.25 in February 22, 2022 8:41 PM

CHAPTER 9 Constructing New Objects 233

9.indd 233 Trim size: 7.375 in × 9.25 in February 22, 2022 8:40 PM

Chapter 9
 Constructing New
Objects

 Ms. Jennie Burd

 121 Schoolhouse Lane

 Anywhere, Kansas

 Dear Ms. Burd,

 In response to your letter of June 21, I believe I can say with complete assurance
that objects are not created spontaneously from nothing. Although I’ve never
actually seen an object being created (and no one else in this offi ce can claim to
have seen an object in its moment of creation), I have every confi dence that some
process or another is responsible for the building of these interesting and useful
thingamajigs. We here at ObjectsAndClasses.com support the unanimous opinions
of both the scientifi c community and the private sector in matters of this nature.
Furthermore, we agree with the recent fi nding of a blue ribbon panel that con-
cludes, beyond any doubt, that spontaneous object creation would impede the
present economic outlook.

 IN THIS CHAPTER

» Defi ning constructors

» Inheriting constructors from a parent
class

» Using Java’s default constructor
features

» Constructing a simple GUI from
scratch

234 PART 3 Working with the Big Picture: Object-Oriented Programming

9.indd 234 Trim size: 7.375 in × 9.25 in February 22, 2022 8:40 PM

Please be assured that I have taken all steps necessary to ensure the safety and
well-being of you, our loyal customer. If you have any further questions, please do
not hesitate to contact our complaint department. The department’s manager is
Mr. Blake Wholl. You can contact him by visiting our company’s website.

Once again, let me thank you for your concern, and I hope you continue to patron-
ize ObjectsAndClasses.com.

Yours truly,

Mr. Scott Brickenchicker

The one who couldn’t get on the elevator in Chapter 4

Defining Constructors (What It
Means to Be a Temperature)

Here’s a statement that creates an object:

Account myAccount = new Account();

I know it works — I got it from one of my own examples in Chapter 7. Anyway, in
Chapter 7 I say, “[W]hen Java executes new Account(), you’re creating an object
by calling the Account class’s constructor.” What does this pithy sentence mean?

Well, the keyword new tells Java to create an object — an instance of a class. Java
responds by performing certain actions. For starters, Java finds a place in its
memory to store information about the new object. If the object has fields, the
fields should eventually have meaningful values.

To find out about fields, see Chapter 7.

When you ask Java to create a new object, you may want to specify what’s placed
in the object’s fields. And what if you’re interested in doing more than filling
fields? Perhaps, when Java creates a new object, you have a whole list of jobs for
Java to carry out. For instance, when Java creates a new window object, you want
Java to realign the sizes of all buttons in that window.

Creating a new object can involve all kinds of tasks, so in this chapter you create
constructors. A constructor tells Java to perform a new object’s start-up tasks.

CHAPTER 9 Constructing New Objects 235

9.indd 235 Trim size: 7.375 in × 9.25 in February 22, 2022 8:40 PM

What is a temperature?
“Good morning, and welcome to Object News. The local temperature in your area
is a pleasant 73 degrees Fahrenheit.”

Each temperature consists of two parts: a number and a temperature scale.
A number is just a double value, such as 32.0 or 70.52. But what’s a temperature
scale? Is it a string of characters, like "Fahrenheit" or "Celsius"? Not really,
because some strings aren’t temperature scales. There’s no "Quelploof" tem-
perature scale, and a program that can display the temperature "73 degrees
Quelploof” is a bad program. So how can you limit the temperature scales to the
small number of scales that people use? One way to do it is with Java’s enum type.

What is a temperature scale?
(Java’s enum type)
Java provides lots of ways for you to group things together. In Chapter 11, you
group things to form an array. And in Chapter 12, you group things to form a col-
lection. In this chapter, you group things into an enum type. (Of course, you can’t
group anything unless you can pronounce enum. The word enum is pronounced
“ee-NOOM,” like the first two syllables of the word enumeration.)

Creating a complicated enum type isn’t easy, but to create a simple enum type, just
write a bunch of words inside a pair of curly braces. Listing 9-1 defines an enum
type. The name of the enum type is TempScale.

LISTING 9-1: The TempScale Type (an enum Type)

package com.example.weather;

public enum TempScale {

 CELSIUS, FAHRENHEIT, KELVIN, RANKINE,

 NEWTON, DELISLE, RÉAUMUR, RØMER, LEIDEN

}

In Listing 9-1, I’m showing off my physics prowess by naming not two, not four,
but nine different temperature scales. Some readers’ computers have trouble with
the special characters in the words RÉAUMUR and RØMER. If you’re one of those
readers, simply delete the words RÉAUMUR and RØMER from the code. I promise: It
won’t mess up the example.

236 PART 3 Working with the Big Picture: Object-Oriented Programming

9.indd 236 Trim size: 7.375 in × 9.25 in February 22, 2022 8:40 PM

When you define an enum type, two important things happen:

 » You create values.

Just as 13 and 151 are int values, CELSIUS and FAHRENHEIT are TempScale
values.

 » You can create variables to refer to those values.

In Listing 9-2, I declare the fields number and scale. Just as

double number;

declares that a number variable is of type double,

TempScale scale;

declares variable scale to be of type TempScale.

“To be of type TempScale” means that you can have values CELSIUS,
FAHRENHEIT, KELVIN, and so on. So, in Listing 9-2, I can give the scale
variable the value FAHRENHEIT (or TempScale.FAHRENHEIT, to be more
precise).

An enum type is a Java class in disguise. That’s why Listing 9-1 contains an entire
file devoted to one thing — namely, the declaration of an enum type (the Temp-
Scale type). Like the declaration of a class, an enum type declaration belongs in a
file all its own. The code in Listing 9-1 belongs in a file named TempScale.java.

Okay, so then what is a temperature?
Each temperature consists of two things: a number and a temperature scale. The
code in Listing 9-2 makes this fact abundantly clear.

LISTING 9-2: The Temperature Class

package com.example.weather;

public class Temperature {

 private double number;

 private TempScale scale;

 public Temperature() {

 number = 0.0;

 scale = TempScale.FAHRENHEIT;

 }

CHAPTER 9 Constructing New Objects 237

9.indd 237 Trim size: 7.375 in × 9.25 in February 22, 2022 8:40 PM

 public Temperature(double number) {

 this.number = number;

 scale = TempScale.FAHRENHEIT;

 }

 public Temperature(TempScale scale) {

 number = 0.0;

 this.scale = scale;

 }

 public Temperature(double number, TempScale scale) {

 this.number = number;

 this.scale = scale;

 }

 public void setNumber(double number) {

 this.number = number;

 }

 public double getNumber() {

 return number;

 }

 public void setScale(TempScale scale) {

 this.scale = scale;

 }

 public TempScale getScale() {

 return scale;

 }

}

The code in Listing 9-2 has the usual setter and getter methods (accessor meth-
ods for the number and scale fields).

For some good reading on setter and getter methods (also known as accessor
methods), see Chapter 7.

On top of all of that, Listing 9-2 has four other method-like-looking things. Each
of these method-like things has the name Temperature, which happens to be the
same as the name of the class. None of these Temperature method-like things has
a return type of any kind — not even void, which is the cop-out return type.

Each of these method-like things is called a constructor. A constructor is like a
method, except that a constructor has a special purpose: to create new objects.

238 PART 3 Working with the Big Picture: Object-Oriented Programming

9.indd 238 Trim size: 7.375 in × 9.25 in February 22, 2022 8:40 PM

Whenever the computer creates a new object, the computer executes the state-
ments inside a constructor.

You can omit the word public in the first lines of Listings 9-1 and 9-2. If you omit
public, other Java programs might not be able to use the features defined in the
TempScale type and in the Temperature class. (Don’t worry about the programs in
this chapter: With or without the word public, all programs in this chapter can
use the code in Listings 9-1 and 9-2. To find out which Java programs can use
classes that aren’t public, see Chapter 14.) If you do use the word public in the
first line of Listing 9-1, Listing 9-1 must be in a file named TempScale.java,
starting with a capital letter T. And if you do use the word public in the first line
of Listing 9-2, Listing 9-2 must be in a file named Temperature.java, starting
with a capital letter T. (For an introduction to public classes, see Chapter 7.)

What you can do with a temperature
Listing 9-3 gives form to some of the ideas that I describe in the preceding
section. In Listing 9-3, you call the constructors that are declared earlier, in
Listing 9-2. Figure 9-1 shows what happens when you run all this code.

LISTING 9-3: Using the Temperature Class

package com.example.weather;

import static java.lang.System.out;

public class UseTemperature {

 public static void main(String[] args) {

 final String format = "%5.2f degrees %s\n";

 var temp = new Temperature();

 temp.setNumber(70.0);

 temp.setScale(TempScale.FAHRENHEIT);

 out.printf(format, temp.getNumber(), temp.getScale());

 temp = new Temperature(32.0);

 out.printf(format, temp.getNumber(), temp.getScale());

FIGURE 9-1:
Running the

code from
Listing 9-3.

CHAPTER 9 Constructing New Objects 239

9.indd 239 Trim size: 7.375 in × 9.25 in February 22, 2022 8:40 PM

 temp = new Temperature(TempScale.CELSIUS);

 out.printf(format, temp.getNumber(), temp.getScale());

 temp = new Temperature(2.73, TempScale.KELVIN);

 out.printf(format, temp.getNumber(), temp.getScale());

 }

}

In Listing 9-3, each statement of the kind

temp = new Temperature(blah,blah,blah);

calls one of the constructors from Listing 9-2. So, by the time the code in
Listing 9-3 finishes running, it creates four instances of the Temperature class.
Each instance is created by calling a different constructor from Listing 9-2.

In Listing 9-3, the last of the four constructor calls has two parameters: 2.73 and
TempScale.KELVIN. This isn’t particular to constructor calls. A method call or a
constructor call can have a bunch of parameters. You separate one parameter from
another with a comma. Another name for “a bunch of parameters” is a parameter
list.

The only rule you must follow is to match the parameters in the call with the
parameters in the declaration. For example, in Listing 9-3, the fourth and last
constructor call

new Temperature(2.73, TempScale.KELVIN)

has two parameters: the first of type double and the second of type TempScale.
Java approves of this constructor call because Listing 9-2 contains a matching
declaration. That is, the header

public Temperature(double number, TempScale scale)

has two parameters: the first of type double and the second of type TempScale. If
a Temperature constructor call in Listing 9-3 had no matching declaration in
Listing 9-2, Listing 9-3 would crash and burn. (To state things more politely, Java
would display errors when you tried to compile the code in Listing 9-3.)

By the way, this business about multiple parameters isn’t new. Over in Chapter 6,
I write keyboard.findWithinHorizon(".",0).charAt(0). In that line, the method
call findWithinHorizon(".",0) has two parameters: a string and an int value.
Luckily for me, the Java API has a method declaration for findWithinHorizon — a
declaration whose first parameter is a string and whose second parameter is an int
value.

240 PART 3 Working with the Big Picture: Object-Oriented Programming

9.indd 240 Trim size: 7.375 in × 9.25 in February 22, 2022 8:40 PM

Constructing a temperature;
a slow-motion replay
When the computer executes one of the new Temperature statements in Listing 9-3,
the computer has to decide which of the constructors in Listing 9-2 to use. The
computer decides by looking at the parameter list — the stuff in parentheses after
the words new Temperature. For instance, when the computer executes

temp = new Temperature(32.0);

from Listing 9-3, the computer says to itself, “The number 32.0 in parentheses is
a double value. One of the Temperature constructors in Listing 9-2 has just one
parameter with type double. The constructor’s header looks like this:

HOW TO CHEAT: ENUM TYPES
AND SWITCHES
Listings 9-2 and 9-3 contain long-winded names such as TempScale.FAHRENHEIT
and TempScale.CELSIUS. Names such as FAHRENHEIT and CELSIUS belong to my
TempScale type (the type defined in Listing 9-1). These names have no meaning out-
side of my TempScale context. (If you think I’m being egotistical with this “no meaning
outside of my context” remark, try deleting the TempScale. part of TempScale.
FAHRENHEIT in Listing 9-2. Suddenly, Java tells you that your code contains an error.)

Java is normally fussy about type names and dots. But when they created enum types,
the makers of Java decided that enum types in switch statements and expressions
deserved special treatment. You can use an enum value to decide which case to execute
in a switch statement or switch expression. When you do this, you don’t use the enum
type name in the case expressions. For example, the following Java code is correct:

TempScale scale = TempScale.RANKINE;

char letter =

 switch (scale) {

 case CELSIUS -> 'C';

 case KELVIN -> 'K';

 case RANKINE, RÉAUMUR, RØMER -> 'R';

 default -> 'X';

 };

In the first line of code, I write TempScale.RANKINE because this first line isn’t inside a
switch. But in the next several lines of code, I write case CELSIUS, case KELVIN, and
case RANKINE without the word TempScale. In fact, if I create a case clause by writing
case TempScale.RANKINE, Java complains with a loud, obnoxious error message.

CHAPTER 9 Constructing New Objects 241

9.indd 241 Trim size: 7.375 in × 9.25 in February 22, 2022 8:40 PM

public Temperature(double number)

“So I guess I’ll execute the statements inside that particular constructor.” The
computer goes on to execute the following statements:

this.number = number;

scale = TempScale.FAHRENHEIT;

As a result, you get a brand-new object whose number field has the value 32.0 and
whose scale field has the value TempScale.FAHRENHEIT.

In the two lines of code, you have two statements that set values for the fields
number and scale. Take a look at the second of these statements, which is a bit
easier to understand. The second statement sets the new object’s scale field to
TempScale.FAHRENHEIT. You see, the constructor’s parameter list is (double
number), and that list doesn’t include a scale value. So whoever programmed this
code had to make a decision about what value to use for the scale field. The pro-
grammer could have chosen FAHRENHEIT or CELSIUS, but they could also have
chosen KELVIN, RANKINE, or any of the other obscure scales named in Listing 9-1.
(This programmer happens to live in New Jersey, in the United States, where peo-
ple commonly use the old Fahrenheit temperature scale.)

Marching back to the first of the two statements, this first statement assigns a
value to the new object’s number field. The statement uses a cute trick that you can
see in many constructors (and in other methods that assign values to objects’
fields). To understand the trick, take a look at Listing 9-4. The listing shows you
two ways that I could have written the same constructor code.

LISTING 9-4: Two Ways to Accomplish the Same Thing

//Use this constructor...

 public Temperature(double whatever) {

 number = whatever;

 scale = TempScale.FAHRENHEIT;

 }

//... or use this constructor...

 public Temperature(double number) {

 this.number = number;

 scale = TempScale.FAHRENHEIT;

 }

//... but don't put both constructors in your code.

242 PART 3 Working with the Big Picture: Object-Oriented Programming

9.indd 242 Trim size: 7.375 in × 9.25 in February 22, 2022 8:40 PM

Listing 9-4 has two constructors in it. In the first constructor, I use two different
names: number and whatever. In the second constructor, I don’t need two names.
Rather than make up a new name for the constructor’s parameter, I reuse an
existing name by writing this.number.

Here’s what’s going on in Listing 9-2:

 » In the statement this.number = number, the name this.number refers
to the new object’s number field — the field that’s declared near the top of
Listing 9-2. (See Figure 9-2.)

In the statement this.number = number, number (on its own, without this)
refers to the constructor’s parameter. (Again, see Figure 9-2.)

In general, this.someName refers to a field belonging to the object that contains
the code. In contrast, plain old someName refers to the closest place where some-
Name happens to be declared. In the statement this.number = number (refer to
Listing 9-2), that closest place happens to be the Temperature constructor’s
parameter list.

WHAT’S THIS ALL ABOUT?
Suppose that your code contains a constructor — the first of the two constructors in
Listing 9-4. The whatever parameter is passed a number like 32.0, for instance. Then
the first statement in the constructor’s body assigns that value, 32.0, to the new object’s
number field. The code works. But in writing this code, you had to make up a new name
for a parameter — the name whatever. And the only purpose for this new name is to
hand a value to the object’s number field. What a waste! To distinguish between the
parameter and the number field, you gave a name to something that was just momen-
tary storage for the number value.

Making up names is an art, not a science. I’ve gone through plenty of naming phases.
Years ago, whenever I needed a new name for a parameter, I picked a confusing mis-
spelling of the original variable name. (I’d name the parameter something like numbr or
nuhmber.) I’ve also tried changing a variable name’s capitalization to come up with a
parameter name. (I’d use parameter names like Number or nUMBER.) In Chapter 8, I
name all my parameters by adding the suffix In to their corresponding variable names.
(The jobTitle variable matched up with the jobTitleIn parameter.) None of these
naming schemes works well — I can never remember the quirky new names I’ve cre-
ated. The good news is that this parameter-naming effort isn’t necessary. You can give
the parameter the same name as the variable. To distinguish between the two, you use
the Java keyword this.

CHAPTER 9 Constructing New Objects 243

9.indd 243 Trim size: 7.375 in × 9.25 in February 22, 2022 8:40 PM

Some things never change
Chapter 7 introduces the printf method and explains that each printf call starts
with a format string. The format string describes the way the other parameters
are to be displayed.

In previous examples, this format string is always a quoted literal. For instance,
the first printf call in Listing 7-7 (see Chapter 7) is

out.printf("$%4.2f\n", myInterest);

In Listing 9-3, I break with tradition and begin the printf call with a variable that
I name format:

out.printf(format, temp.getNumber(), temp.getScale());

That’s okay as long as my format variable is of type String. And indeed, in
Listing 9-3, the first variable declaration is

final String format = "%5.2f degrees %s\n";

In this declaration of the format variable, take special note of the word final.
This Java keyword indicates that the value of format can’t be changed. If I add
another assignment statement to Listing 9-3:

format = "%6.2f (%s)\n";

the compiler barks back at me with the message cannot assign a value to
final variable.

FIGURE 9-2:
What

this.number
and number

mean.

244 PART 3 Working with the Big Picture: Object-Oriented Programming

9.indd 244 Trim size: 7.375 in × 9.25 in February 22, 2022 8:40 PM

When I write the code in Listing 9-3, the use of the final keyword isn’t absolutely
necessary. But the final keyword provides some extra protection. When I initial-
ize format to "%5.2f degrees %s\n", I intend to use this same format just as it
is, over and over again. I know darn well that I don’t intend to change the format
variable’s value. Of course, in a 10,000-line program, I can become confused and
try to assign a new value to format somewhere deep down in the code. To prevent
me from accidentally changing the format string, I declare the format variable to
be final. It’s just good, safe programming practice.

There’s always more stuff for you to try.

SCHOOL DAYS

Create a Student class with a name, an ID number, a grade point average (GPA),
and a major area of study. The student’s name is a String. The student’s ID num-
ber is an int value. The GPA is a double value between 0.0 and 4.0. The Major is
an enum type, with values such as COMPUTER_SCIENCE, MATHEMATICS, LITERATURE,
PHYSICS, and HISTORY.

Every student has a name and an ID number, but a brand-new student might not
have a GPA or a major. Create constructors with and without GPA and Major
parameters.

As usual, create a separate class that makes use of your new Student class.

FLIGHT OF FANCY

Create an AirplaneFlight class with a flight number, a departure airport, the
time of departure, an arrival airport, and a time of arrival. The flight number is an
int value. The departure and arrival airport fields belong to an Airport enum
type, with values corresponding to some of the official IATA airport codes. (For
example, London Heathrow Airport’s code is LHR; Los Angeles International Air-
port’s code is LAX; check out www.iata.org/publications/Pages/code-search.
aspx for a searchable database of airline codes.)

For the times of arrival and departure, use Java’s LocalTime class. (For more on
LocalTime, check out the LocalTime documents page at https://docs.oracle.
com/en/java/javase/17/docs/api/java.base/java/time/LocalTime.html.)
To create a LocalTime object that’s set to 2:15 P.M. (also known as 14:15), execute

LocalTime twoFifteen = LocalTime.of(14, 15);

CHAPTER 9 Constructing New Objects 245

9.indd 245 Trim size: 7.375 in × 9.25 in February 22, 2022 8:40 PM

To create a LocalTime object that’s set to the current time (according to the com-
puter’s system clock), execute

LocalTime currentTime = LocalTime.now();

Every flight has a number, a departure airport, and an arrival airport. But some
flights might not have departure and arrival times. Create constructors with and
without departure and arrival time parameters.

Create a separate class that makes use of your new AirplaneFlight class.

MAKE A HIT RECORD

Newer versions of Java (from Java 16 onward) have a fancy feature called record
classes. For an introduction to these beauties, name two files TemperatureRe-
cord.java and UseTemperatureRecord.java. Put the following code in these files
and then give the code a spin:

//TemperatureRecord.java

package com.example.weather;

public record TemperatureRecord(double number, TempScale scale) {

}

//UseTemperatureRecord.java

package com.example.weather;

import static java.lang.System.out;

public class UseTemperatureRecord {

 public static void main(String[] args) {

 final String format = "%5.2f degrees %s\n";

 TemperatureRecord temp = new TemperatureRecord(2.73, TempScale.KELVIN);

 out.printf(format, temp.number(), temp.scale());

 }

}

246 PART 3 Working with the Big Picture: Object-Oriented Programming

9.indd 246 Trim size: 7.375 in × 9.25 in February 22, 2022 8:40 PM

Doing Something about the Weather
In Chapter 8, I make a big fuss over the notion of subclasses. That’s the right thing
to do. Subclasses make code reusable, and reusable code is good code. With that in
mind, it’s time to create a subclass of the Temperature class (which I develop in
this chapter’s first section).

Building better temperatures
After perusing the code in Listing 9-3, you decide that the responsibility for dis-
playing temperatures has been seriously misplaced. Listing 9-3 has several tedi-
ous repetitions of the lines to print temperature values. A 1970s programmer
would tell you to collect those lines into one place and turn them into a method.
(The 1970s programmer wouldn’t have used the word method, but that’s not
important right now.) Collecting lines into methods is fine, but with today’s
object-oriented programming methodology, you think in broader terms. Why not
get each temperature object to take responsibility for displaying itself? After all,
if you develop a display method, you probably want to share the method with
other people who use temperatures. So put the method right inside the declaration
of a temperature object. That way, anyone who uses the code for temperatures
has easy access to your display method.

Now replay the tape from Chapter 8. “Blah, blah, blah . . . don’t want to modify
existing code . . . blah, blah, blah . . . too costly to start again from scratch . . . blah,
blah, blah . . . extend existing functionality.” It all adds up to one thing:

Don’t abuse it. Instead, reuse it.

So you decide to create a subclass of the Temperature class — the class defined in
Listing 9-2. Your new subclass complements the Temperature class’s functional-
ity by having methods to display values in a nice, uniform fashion. The new class,
TemperatureNice, is shown in Listing 9-5.

LISTING 9-5: The TemperatureNice Class

package com.example.weather;

import static java.lang.System.out;

public class TemperatureNice extends Temperature {

 public TemperatureNice() {

 super();

 }

CHAPTER 9 Constructing New Objects 247

9.indd 247 Trim size: 7.375 in × 9.25 in February 22, 2022 8:40 PM

 public TemperatureNice(double number) {

 super(number);

 }

 public TemperatureNice(TempScale scale) {

 super(scale);

 }

 public TemperatureNice(double number, TempScale scale) {

 super(number, scale);

 }

 public void display() {

 out.printf("%5.2f degrees %s\n", getNumber(), getScale());

 }

}

In the display method of Listing 9-5, notice the calls to the Temperature class’s
getNumber and getScale methods. Why do I do this? Well, inside the Temperat-
ureNice class’s code, any direct references to the number and scale fields would
generate error messages. It’s true that every TemperatureNice object has its own
number and scale fields. (After all, TemperatureNice is a subclass of the Tem-
perature class, and the code for the Temperature class defines the number and
scale fields.) But because number and scale are declared to be private inside the
Temperature class, only code that’s right inside the Temperature class can directly
use these fields.

Don’t put additional declarations of the number and scale fields inside the Tem-
peratureNice class’s code. If you do, you inadvertently create four different vari-
ables (two called number and another two called scale). You’ll assign values to
one pair of variables. Then you’ll be shocked that when you display the other pair
of variables, those values seem to have disappeared.

When an object’s code contains a call to one of the object’s own methods, you
don’t need to preface the call with a dot. For instance, in the last statement of
Listing 9-5, the object calls its own methods with getNumber() and getScale(),
not with someObject.getNumber() and somethingOrOther.getScale(). If going
dotless makes you queasy, you can compensate by taking advantage of yet another
use for the this keyword: Just write this.getNumber() and this.getScale() in
the last line of Listing 9-5.

248 PART 3 Working with the Big Picture: Object-Oriented Programming

9.indd 248 Trim size: 7.375 in × 9.25 in February 22, 2022 8:40 PM

Constructors for subclasses
By far, the biggest news in Listing 9-5 is the way the code declares constructors.
The TemperatureNice class has four of its own constructors. If you’ve gotten in
gear thinking about subclass inheritance, you may wonder why these constructor
declarations are necessary. Doesn’t TemperatureNice inherit the parent Tempera-
ture class’s constructors? No, subclasses don’t inherit constructors.

Subclasses don’t inherit constructors.

That’s right. Subclasses don’t inherit constructors. In one oddball case, a con-
structor may look like it’s being inherited, but that oddball situation is a fluke, not
the norm. In general, when you define a subclass, you declare new constructors to
go with the subclass.

I describe the oddball case (in which a constructor looks like it’s being inherited)
later in this chapter, in the section “The default constructor.”

So the code in Listing 9-5 has four constructors. Each constructor has the name
TemperatureNice, and each constructor has its own uniquely identifiable param-
eter list. That’s the boring part. The interesting part is that each constructor
makes a call to something named super, which is a Java keyword.

In Listing 9-5, super stands for a constructor in the parent class:

 » The statement super() in Listing 9-5 calls the parameterless Temperature()
constructor that’s in Listing 9-2. That parameterless constructor assigns 0.0 to
the number field and TempScale.FAHRENHEIT to the scale field.

 » The statement super(number, scale) in Listing 9-5 calls the constructor
Temperature(double number, TempScale scale) that’s in Listing 9-2. In
turn, the constructor assigns values to the number and scale fields.

 » In a similar way, the statements super(number) and super(scale) in
Listing 9-5 call constructors from Listing 9-2.

The computer decides which of the Temperature class’s constructors is being
called by looking at the parameter list after the word super. For instance, when
the computer executes

super(number, scale);

from Listing 9-5, the computer says to itself, “The number and scale fields in
parentheses have types double and TempScale. But only one of the Temperature

CHAPTER 9 Constructing New Objects 249

9.indd 249 Trim size: 7.375 in × 9.25 in February 22, 2022 8:40 PM

constructors in Listing 9-2 has two parameters with types double and TempScale.
The constructor’s header looks like this:

public Temperature(double number, TempScale scale)

“So I guess I’ll execute the statements inside that particular constructor.”

Using all this stuff
In Listing 9-5, I define what it means to be in the TemperatureNice class. Now
it’s time to put this TemperatureNice class to good use. Listing 9-6 has code that
uses TemperatureNice.

LISTING 9-6: Using the TemperatureNice Class

package com.example.weather;

public class UseTemperatureNice {

 public static void main(String[] args) {

 var temp = new TemperatureNice();

 temp.setNumber(70.0);

 temp.setScale(TempScale.FAHRENHEIT);

 temp.display();

 temp = new TemperatureNice(32.0);

 temp.display();

 temp = new TemperatureNice(TempScale.CELSIUS);

 temp.display();

 temp = new TemperatureNice(2.73, TempScale.KELVIN);

 temp.display();

 }

}

The code in Listing 9-6 is much like its cousin code in Listing 9-3. The big differ-
ences are described here:

 » Listing 9-6 creates instances of the TemperatureNice class. That is, Listing 9-6
calls constructors from the TemperatureNice class, not the Temperature class.

250 PART 3 Working with the Big Picture: Object-Oriented Programming

9.indd 250 Trim size: 7.375 in × 9.25 in February 22, 2022 8:40 PM

 » Listing 9-6 takes advantage of the display method in the TemperatureNice
class. So the code in Listing 9-6 is much tidier than its counterpart in
Listing 9-3.

A run of Listing 9-6 looks exactly like a run of the code in Listing 9-3 — it just
reaches the finish line in a far more elegant fashion. (The run is shown previously,
in Figure 9-1.)

The default constructor
The main message in the previous section is that subclasses don’t inherit con-
structors. So, what gives with all the listings over in Chapter 8? In Listing 8-6, a
statement says

FullTimeEmployee ftEmployee = new FullTimeEmployee();

But here’s the problem: The code defining FullTimeEmployee (refer to Listing 8-3)
doesn’t seem to have any constructors declared inside it. So, in Listing 8-6, how
can you possibly call the FullTimeEmployee constructor?

Here’s what’s going on. When you create a subclass and don’t put any explicit
constructor declarations in your code, Java creates one constructor for you. It’s
called a default constructor. If you’re creating the public FullTimeEmployee sub-
class, the default constructor looks like the one in Listing 9-7.

LISTING 9-7: A Default Constructor

public FullTimeEmployee() {

 super();

}

The constructor in Listing 9-7 takes no parameters, and its single statement calls
the constructor of whatever class you’re extending. (Woe be to you if the class
you’re extending has no parameterless constructor.)

You’ve just read about default constructors, but watch out! Notice one thing that
this talk about default constructors doesn’t say: It doesn’t say that you always get
a default constructor. In particular, if you create a subclass and define any con-
structors yourself, Java doesn’t add a default constructor for the subclass (and the
subclass doesn’t inherit any constructors, either).

CHAPTER 9 Constructing New Objects 251

9.indd 251 Trim size: 7.375 in × 9.25 in February 22, 2022 8:40 PM

How can this trip you up? Listing 9-8 has a copy of the code from Listing 8-3, but
with one constructor added to it. Take a look at this modified version of the Full-
TimeEmployee code.

LISTING 9-8: Look, I Have a Constructor!

package com.example.payroll;

public class FullTimeEmployee extends Employee {

 private double weeklySalary;

 private double benefitDeduction;

 public FullTimeEmployee(double weeklySalary) {

 this.weeklySalary = weeklySalary;

 }

 public void setWeeklySalary(double weeklySalaryIn) {

 weeklySalary = weeklySalaryIn;

 }

 public double getWeeklySalary() {

 return weeklySalary;

 }

 public void setBenefitDeduction(double benefitDedIn) {

 benefitDeduction = benefitDedIn;

 }

 public double getBenefitDeduction() {

 return benefitDeduction;

 }

 public double findPaymentAmount() {

 return weeklySalary - benefitDeduction;

 }

}

If you use the FullTimeEmployee code in Listing 9-8, a line like the following
doesn’t work:

FullTimeEmployee ftEmployee = new FullTimeEmployee();

It doesn’t work because, having declared a FullTimeEmployee constructor that
takes one double parameter, you no longer get a default parameterless construc-
tor for free.

252 PART 3 Working with the Big Picture: Object-Oriented Programming

9.indd 252 Trim size: 7.375 in × 9.25 in February 22, 2022 8:40 PM

What do you do about this? If you declare any constructors, declare all construc-
tors that you’ll possibly need. Take the constructor in Listing 9-7 and add it to the
code in Listing 9-8. Then the call new FullTimeEmployee() starts working again.

Under certain circumstances, Java automatically adds an invisible call to a parent
class’s constructor at the top of a constructor body. This automatic addition of a
super call is a tricky bit of business that doesn’t appear often, so when it does
appear, it may seem quite mysterious. For more information, see this book’s web-
site (http://javafordummies.allmycode.com).

In this section, I have four (count ’em — four) experiments for you to try:

STUDENT SHOWCASE

In a previous section, you create your own Student class. Create a subclass that
has a method named getString.

Like the display method in this chapter’s TemperatureNice class, the getString
method creates a nice-looking String representation of its object. But unlike the
TemperatureNice class’s display method, the getString method doesn’t print
that String representation on the screen. Instead, the getString method simply
returns that String representation as its result.

In a way, a getString method is much more versatile than a display method.
With a display method, all you can do is show a String representation on the
screen. But with a getString method, you can create a String representation and
then do whatever you want with it.

Create a separate class that creates some instances of your new subclass and puts
their getString methods to good use.

THE WAITING GAME

In a previous section, you create your own AirplaneFlight class. Create a sub-
class that has a method named duration. The duration method, which has no
parameters, returns the amount of time between the flight’s departure time and
arrival time.

To find the number of hours between two LocalTime objects (such as twoFifteen
and currentTime), execute

long hours = ChronoUnit.HOURS.between(twoFifteen, currentTime);

CHAPTER 9 Constructing New Objects 253

9.indd 253 Trim size: 7.375 in × 9.25 in February 22, 2022 8:40 PM

To find the number of minutes between two LocalTime objects (such as twoFif-
teen and currentTime), execute

long minutes = ChronoUnit.MINUTES.between(twoFifteen, currentTime);

A CONVERSION DIVERSION

Create a new TemperatureEvenNicer class — a subclass of this section’s Tem-
peratureNice class. The TemperatureEvenNicer class has a convertTo method.
If the variable temp refers to a Fahrenheit temperature and Java executes

temp.convertTo(TempScale.CELSIUS);

then the temp object changes to a Celsius temperature, with the number converted
appropriately. The same kind of thing happens if Java executes

temp.convertTo(TempScale.FAHRENHEIT);

with temp already referring to a Celsius temperature.

SET A NEW RECORD

Follow up on the “Make a Hit Record” experiment from earlier in this chapter.
Name two files TemperatureNiceRecord.java and UseTemperatureNiceRecord.
java. Put the following code in these files and see how they run.

//TemperatureNiceRecord.java

package com.example.weather;

import static java.lang.System.out;

public record TemperatureNiceRecord(double number, TempScale scale) {

 public TemperatureNiceRecord() {

 this(0, TempScale.CELSIUS);

 }

 public void display() {

 out.printf("%5.2f degrees %s\n", number, scale);

 }

}

//UseTemperatureNiceRecord.java

254 PART 3 Working with the Big Picture: Object-Oriented Programming

9.indd 254 Trim size: 7.375 in × 9.25 in February 22, 2022 8:40 PM

package com.example.weather;

public class UseTemperatureNiceRecord {

 public static void main(String[] args) {

 var temp = new TemperatureNiceRecord();

 temp.display();

 temp = new TemperatureNiceRecord(2.73, TempScale.KELVIN);

 temp.display();

 }

}

A Constructor That Does More
Here’s a quote from somewhere near the start of this chapter: “And what if you’re
interested in doing more than filling fields? Perhaps, when the computer creates
a new object, you have a whole list of jobs for the computer to carry out.” Okay,
what-if?

This section’s example has a constructor that does more than just assign values
to fields. The example is in Listings 9-9 and 9-10. The result of running the
example’s code is shown in Figure 9-3.

LISTING 9-9: Defining a Frame

package com.example.graphical;

import javax.swing.JButton;

import javax.swing.JFrame;

import java.awt.FlowLayout;

public class SimpleFrame extends JFrame {

FIGURE 9-3:
Don’t panic.

CHAPTER 9 Constructing New Objects 255

9.indd 255 Trim size: 7.375 in × 9.25 in February 22, 2022 8:40 PM

 public SimpleFrame() {

 setTitle("Don't click the button!");

 setLayout(new FlowLayout());

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 add(new JButton("Panic"));

 setSize(300, 100);

 setVisible(true);

 }

}

LISTING 9-10: Displaying a Frame

package com.example.graphical;

public class ShowAFrame {

 public static void main(String[] args) {

 new SimpleFrame();

 }

}

Like my DummiesFrame examples, the code in Listings 9-9 and 9-10 displays a
window on the computer screen. But unlike my DummiesFrame examples, all the
method calls in Listings 9-9 and 9-10 refer to methods in Java’s standard API
(application programming interface).

To find my DummiesFrame examples, refer to Chapter 7.

The code in Listing 9-9 contains lots of names that are probably unfamiliar to
you — names from Java’s API. When I was first becoming acquainted with Java, I
foolishly believed that knowing Java meant remembering all these names. Quite
the contrary: These names are just carry-on baggage. The real Java is the way the
language implements object-oriented concepts.

Anyway, Listing 9-10’s main method has only one statement: a call to the con-
structor in the SimpleFrame class. Notice how the object that this call creates isn’t
even assigned to a variable. That’s okay because the code doesn’t need to refer to
the object anywhere else.

Up in the SimpleFrame class, there’s only one constructor declaration. Far from
just setting variables’ values, this constructor calls method after method from the
Java API.

256 PART 3 Working with the Big Picture: Object-Oriented Programming

9.indd 256 Trim size: 7.375 in × 9.25 in February 22, 2022 8:40 PM

All the methods called in the SimpleFrame class’s constructor come from the par-
ent class, JFrame. The JFrame class lives in the javax.swing package. This pack-
age and another package, java.awt, have classes that help you put windows,
images, drawings, and other gizmos on a computer screen. (In the java.awt
package, the letters awt stand for abstract windowing toolkit.)

For a little gossip about the notion of a Java package, see Chapters 7 and 14.

In the Java API, what people normally call a window is an instance of the javax.
swing.JFrame class.

Classes and methods from the Java API
Looking at Figure 9-3, you can probably tell that an instance of the SimpleFrame
class doesn’t do much. The frame has only one button, and when you click the
button, nothing happens. I made the frame this way to keep the example from
becoming too complicated. Even so, the code in Listing 9-9 uses several API
classes and methods. The setTitle, setLayout, setDefaultCloseOperation,
add, setSize, and setVisible methods all belong to the javax.swing.JFrame
class. Here’s a list of names used in the code:

 » setTitle: Calling setTitle puts words on the frame’s title bar. (The new
SimpleFrame object is calling its own setTitle method.)

 » FlowLayout: An instance of the FlowLayout class positions objects on the
frame in a centered, typewriter fashion. Because the frame in Figure 9-3 has
only one button on it, that button is centered near the top of the frame. If the
frame had eight buttons, five of them may be lined up in a row across the top
of the frame and the remaining three would be centered along a second row.

 » setLayout: Calling setLayout puts the new FlowLayout object in charge of
arranging components, such as buttons, on the frame. (The new SimpleFrame
object is calling its own setLayout method.)

 » setDefaultCloseOperation: Calling setDefaultCloseOperation tells Java
what to do when you click the little × in the frame’s upper right corner. (On a
Mac, you click the little red circle in the frame’s upper left corner.) Without this
method call, the frame itself disappears, but the Java virtual machine (JVM)
keeps running. To stop your program’s run, you have to perform one more
step. (You may have to look for a Terminate option in Eclipse, IntelliJ IDEA, or
NetBeans.)

Calling setDefaultCloseOperation(EXIT_ON_CLOSE) tells Java to shut itself
down when you click the × in the frame’s upper right corner. The alternatives
to EXIT_ON_CLOSE are HIDE_ON_CLOSE, DISPOSE_ON_CLOSE, and, my

CHAPTER 9 Constructing New Objects 257

9.indd 257 Trim size: 7.375 in × 9.25 in February 22, 2022 8:40 PM

personal favorite, DO_NOTHING_ON_CLOSE. Use one of these alternatives when
your program has more work to do after the user closes your frame.

 » JButton: The JButton class lives in the javax.swing package. One of the
class’s constructors takes a String instance (such as "Panic") for its
parameter. Calling this constructor makes that String instance into the label
on the face of the new button.

 » add: The new SimpleFrame object calls its add method. Calling the add
method places the button on the object’s surface (in this case, the surface of
the frame).

 » setSize: The frame becomes 300 pixels wide and 100 pixels tall. (In the
javax.swing package, whenever you specify two dimension numbers, the
width number always comes before the height number.)

 » setVisible: When it’s first created, a new frame is invisible. But when the
new frame calls setVisible(true), the frame appears on your computer
screen.

Live dangerously
Your IDE may warn you that the SimpleFrame in Listing 9-9 has no serialVer-
sionUID field. “And what,” you ask, “is a serialVersionUID field?” It’s some-
thing having to do with storing a JFrame object — something you don’t care
about. Not having a serialVersionUID field generates a warning, not an error. So
throw caution to the wind and ignore the warning.

If, for some reason, you can’t ignore the warning, suppress the warning by adding
the line @SuppressWarnings("serial") with no semicolon immediately above
the public class SimpleFrame line. (Like @Override from Chapter 8, @Sup-
pressWarnings is a Java annotation.)

If, for some other reason, you don’t want to suppress the warning, add the state-
ment private static final long serialVersionUID = 1L; immediately below
the public class SimpleFrame line.

THE NULL HYPOTHESIS

In JShell, type the following sequence of declarations and statements. What hap-
pens? Why?

jshell> import javax.swing.JFrame

jshell> JFrame frame

258 PART 3 Working with the Big Picture: Object-Oriented Programming

9.indd 258 Trim size: 7.375 in × 9.25 in February 22, 2022 8:40 PM

jshell> frame.setSize(100, 100)

jshell> frame = new JFrame()

jshell> frame.setSize(100, 100)

jshell> frame.setVisible(true)

WIDESPREAD PANIC

In Listing 9-9, change the statement

setLayout(new FlowLayout());

to

setLayout(new BorderLayout));

What difference does this change make when you run the program?

4
Part4.indd 259	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	9:00	PM

Smart Java
Techniques

IN THIS PART . . .

Decide	where	declarations	belong	in	your	Java	program.

Deal	with	bunches	of	things	(bunches	of	rooms,	bunches	
of	sales,	and	even	bunches	of	bunches).

Fully	embrace	Java’s	object-oriented	features.

Create	a	windowed	app	and	respond	to	mouse	clicks.

Work	with	your	favorite	database.

Part4.indd 260	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	9:00	PM

CHAPTER 10 Putting Variables and Methods Where They Belong 261

10.indd 261 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

Chapter 10
 Putting Variables
and Methods Where
They Belong

 H ello, again. You’re listening to radio station WWW, and I’m your host, Sam
Burd. It’s the start again of the big baseball season, and today station
WWW brought you live coverage of the Hankees-versus-Socks game.

At this moment, I’m awaiting news of the game’s fi nal score.

 If you remember from earlier this afternoon, the Socks looked like they were going
to take those Hankees to the cleaners. Then the Hankees belted ball after ball, giv-
ing the Socks a run for their money. Those Socks! I’m glad I wasn’t in their shoes.

 Anyway, as the game went on, the Socks pulled themselves up. Now the Socks are
nose-to-nose with the Hankees. We’ll get the fi nal score in a minute, but fi rst, a
few reminders. Stay tuned after this broadcast for the big Jerseys game. And don’t
forget to tune in next week when the Cleveland Gowns play the Bermuda Shorts.

 Okay, here’s the fi nal score. Which team has the upper hand? Which team will
come out a head? And the winner is . . . oh, no — it’s a tie!

 IN THIS CHAPTER

» Making something belong to an
entire class

» Putting variables inside and outside
methods

» Improving your batting average

262 PART 4 Smart Java Techniques

10.indd 262 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

Defining a Class (What It Means to
Be a Baseball Player)

As far as I’m concerned, a baseball player has a name and a batting average. List-
ing 10-1 puts my belief about baseball players into Java program form.

LISTING 10-1: The Player Class

package com.example.baseball;

import java.text.DecimalFormat;

public class Player {

 private String name;

 private double average;

 public Player(String name, double average) {

 this.name = name;

 this.average = average;

 }

 public String getName() {

 return name;

 }

 public double getAverage() {

 return average;

 }

 public String getAverageString() {

 var decFormat = new DecimalFormat();

 decFormat.setMaximumIntegerDigits(0);

 decFormat.setMaximumFractionDigits(3);

 decFormat.setMinimumFractionDigits(3);

 return decFormat.format(average);

 }

}

Here I go, picking apart the code in Listing 10-1. Luckily, earlier chapters cover
lots of stuff in this code. The code defines what it means to be an instance of the
Player class. Here’s what’s in the code:

 » Declarations of the fields name and average: For bedtime reading about
field declarations, see Chapter 7.

CHAPTER 10 Putting Variables and Methods Where They Belong 263

10.indd 263 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

 » A constructor to make new instances of the Player class: For the
lowdown on constructors, see Chapter 9.

 » Getter methods for the fields name and average: For chitchat about
accessor methods (that is, setter and getter methods), see Chapter 7.

 » A method that returns the player’s batting average in String form: For
the good word about methods, see Chapter 7. (I put a lot of good stuff in
Chapter 7, didn’t I?)

Another way to beautify your numbers
The getAverageString method in Listing 10-1 takes the value from the average
field (a player’s batting average), converts that value (normally of type double)
into a String, and then sends that String value right back to the method caller.
The use of DecimalFormat, which comes directly from the Java application pro-
gramming interface (API), ensures that the String value looks like a baseball
player’s batting average. According to the decFormat.setMaximum... and dec-
Format.setMinimum... method calls, the String value has no digits to the left of
the decimal point and has exactly three digits to the right of the decimal point.

Java’s DecimalFormat class can be quite handy. For example, to display the values
345 and –345 in an accounting-friendly format, you can use the following code:

DecimalFormat decFormat = new DecimalFormat();

decFormat.setMinimumFractionDigits(2);

decFormat.setNegativePrefix("(");

decFormat.setNegativeSuffix(")");

System.out.println(decFormat.format(345));

System.out.println(decFormat.format(-345));

In this little example’s format string, everything before the semicolon dictates the
way positive numbers are displayed, and everything after the semicolon deter-
mines the way negative numbers are displayed. So, with this format, the numbers
345 and –345 appear as follows:

345.00

(345.00)

To discover some other tricks with numbers, visit the DecimalFormat page of
Java’s API documentation (https://docs.oracle.com/en/java/javase/17/
docs/api/java.base/java/text/DecimalFormat.html).

264 PART 4 Smart Java Techniques

10.indd 264 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

Using the Player class
Listings 10-2 and 10-3 have code that uses the Player class — the class that’s
defined earlier, in Listing 10-1.

LISTING 10-2: Using the Player Class

package com.example.baseball;

import javax.swing.JFrame;

import javax.swing.JLabel;

import java.awt.GridLayout;

import java.io.File;

import java.io.IOException;

import java.util.Scanner;

public class TeamFrame extends JFrame {

 public TeamFrame() throws IOException {

 Player;

 var hankeesData = new Scanner(new File("Hankees.txt"));

 for (int num = 1; num <= 9; num++) {
 player = new Player(hankeesData.nextLine(), hankeesData.nextDouble());

 hankeesData.nextLine();

 addPlayerInfo(player);

 }

 setTitle("The Hankees");

 setLayout(new GridLayout(10, 2, 20, 6));

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 pack();

 setVisible(true);

 hankeesData.close();

 }

 void addPlayerInfo(Player player) {

 add(new JLabel(" " + player.getName()));
 add(new JLabel(player.getAverageString()));

 }

}

CHAPTER 10 Putting Variables and Methods Where They Belong 265

10.indd 265 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

LISTING 10-3: Displaying a Frame

package com.example.baseball;

import java.io.IOException;

public class ShowTeamFrame {

 public static void main(String[] args) throws IOException {

 new TeamFrame();

 }

}

For a run of the code in Listings 10-1, 10-2, and 10-3, see Figure 10-1.

To run this program, you need a file containing data on your favorite baseball
players. Fortunately, the stuff you download from this book’s website comes with
a Hankees.txt file. (See Figure 10-2.)

FIGURE 10-1:
Would you bet

money on these
people?

FIGURE 10-2:
What a team!

266 PART 4 Smart Java Techniques

10.indd 266 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

The Hankees.txt file can’t be in just any old folder on your computer’s hard drive.
The file has to be in a place where Java can find it, which is most likely your
project’s root folder. If Java can’t find the file, then a run of this section’s example
gives you an unpleasant FileNotFoundException message. For advice on choos-
ing locations for files like Hankees.txt, refer to Chapter 8.

You may live in a country where the value of π is approximately 3,14159 (with a
comma) instead of 3.14159 (with a period). If you do, the file shown in Figure 10-2
won’t work for you. The program will crash with an InputMismatchException.
To run this section’s example, you have to change the periods in the Hankees.txt
file into commas. Alternatively, you can add a statement such as Locale.
setDefault(Locale.US) to your code. For details, see Chapter 8.

For this section’s code to work correctly, you must have a line break after the
last .212 in Figure 10-2. For details about line breaks, see Chapter 8.

One class; nine objects
The code in Listing 10-2 calls the Player constructor nine times. The result is that
the code creates nine instances of the Player class. The first time through the
loop, the code creates an instance with the name Barry Burd. The second time
through the loop, the code abandons the Barry Burd instance and creates another
instance with name Harriet Ritter. The third time through, the code abandons
poor Harriet Ritter and creates an instance for Weelie J. Katz. The code has
only one instance at a time but, all in all, the code creates nine instances.

Each Player instance has its own name and average fields. Each instance also
has its own Player constructor and its own getName, getAverage, and
getAverageString methods. Look at Figure 10-3 and think of the Player class
with its nine incarnations.

Don’t get all GUI on me
The code in Listing 10-2 uses several names from the Java API. Some of these
names are explained in Chapter 9. Others are explained right here:

 » JLabel: A JLabel is an object with some text in it. One way to display text
inside the frame is to add an instance of the JLabel class to the frame.

In Listing 10-2, the addPlayerInfo method is called nine times, once for each
player on the team. Each time addPlayerInfo is called, the method adds two
new JLabel objects to the frame. The text for each JLabel object comes from
a player object’s getter method.

CHAPTER 10 Putting Variables and Methods Where They Belong 267

10.indd 267 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

 » GridLayout: A GridLayout arranges things in evenly spaced rows and
columns. This constructor for the GridLayout class takes two parameters:
the number of rows and the number of columns.

In Listing 10-2, the call to the GridLayout constructor takes parameters
(10, 2, 20, 6). So, in Figure 10-1,

• The display has ten rows — one for each of the nine players and an empty
one at the bottom for spacing.

• The display also has two columns: one for a player’s name and another for
the player’s average.

• The horizontal gap between the two columns is 20 pixels wide.

• The vertical gap between any two rows is 6 pixels tall.

 » pack: When you pack a frame, you set the frame’s size. That’s the size the
frame has when it appears on your computer screen. Packing a frame
shrink-wraps the frame around whatever objects you’ve added inside the
frame.

In Listing 10-2, by the time you’ve reached the call to pack, you’ve already
called addPlayerInfo nine times and added 18 labels to the frame. In
executing the pack method, the computer picks a nice size for each label,
given whatever text you’ve placed inside the label. Then the computer
picks a nice size for the whole frame, given that the frame has these 18 labels
inside it.

When you plop stuff onto frames, you have quite a bit of leeway with the order in
which you do things. For instance, you can set the layout before or after you’ve
added labels and other stuff to the frame. If you call setLayout and then add
labels, the labels appear in nice, orderly positions on the frame. If you reverse this

FIGURE 10-3:
A class and its

objects.

268 PART 4 Smart Java Techniques

10.indd 268 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

order (add labels and then call setLayout), the calling of setLayout rearranges
the labels in a nice, orderly fashion. It works fine either way.

In setting up a frame, the one thing you shouldn’t do is violate this sequence:

Add things to the frame, then

pack();

setVisible(true);

If you call pack and then add more things to the frame, the pack method doesn’t
take into consideration the more recent things you’ve added. If you call setVis-
ible before you add things or call pack, the user sees the frame as it’s being con-
structed. Finally, if you forget to set the frame’s size (by calling pack or another
sizing method), the frame you see looks like the one in Figure 10-4. (Normally, I
wouldn’t show you an anomalous run like the one in Figure 10-4, but I’ve made
the mistake so many times that I feel as though this puny frame is an old friend
of mine.)

Some facts about potatoes
Chapter 8 introduces input from a disk file, and along with that topic comes the
notion of an exception. When you tinker with a disk file, you need to acknowledge
the possibility of raising an IOException. That’s the lesson from Chapter 8, and
that’s why the constructor in Listing 10-2 has a throws IOException clause.

What about the main method in Listing 10-3? With no apparent reference to disk
files in this main method, why does the method need its own throws IOException
clause? Well, an exception is a hot potato. If you have one, you either have to eat
it (as you can see in Chapter 13) or use a throws clause to toss it to someone else.
If you toss an exception with a throws clause, someone else is stuck with the
exception just the way you were.

The constructor in Listing 10-2 throws an IOException, but to whom is this
exception thrown? Who in this chain of code becomes the bearer of responsibility
for the problematic IOException? Well, who called the constructor in Listing 10-2?
It was the main method in Listing 10-3 — that’s who called the TeamFrame
constructor. Because the TeamFrame constructor throws its hot potato to the main
method in Listing 10-3, the main method has to deal with it. As shown in
Listing 10-3, the main method deals with it by tossing the IOException again (by

FIGURE 10-4:
A shrunken

frame.

CHAPTER 10 Putting Variables and Methods Where They Belong 269

10.indd 269 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

having a throws IOException clause of its own). That’s how the throws clause
works in Java programs.

If a method calls another method and the called method has a throws clause, the
calling method must contain code that deals with the exception. To find out more
about dealing with exceptions, read Chapter 13.

At this point in the book, the astute For Dummies reader may pose a follow-up
question or two: “When a main method has a throws clause, someone else has to
deal with the exception in that throws clause. But who called the main method?
Who deals with the IOException in the throws clause of Listing 10-3?” The
answer is that the Java virtual machine (or JVM, the thing that runs all your Java
code) called the main method. So the JVM takes care of the IOException in List-
ing 10-3. If the program has any trouble reading the Hankees.txt file, the respon-
sibility ultimately falls on the JVM. The JVM takes care of the situation by displaying
an error message and then ending the run of your program. How convenient!

Would you like some practice with the material in this section? If so, try this:

COURTING DISASTER

The code in Listing 10-2 reads from a file named Hankees.txt. Delete that Han-
kees.txt file from your computer’s hard drive, or temporarily move the file to a
different directory. Then try to run the program in Listings 10-1 to 10-3. What
horrible things happen when you do this?

MEN’S CLOTHING

A line of men’s clothing features shirts, pants, jackets, overcoats, neckties, and
shoes. Create an enum to represent the six kinds of items. Then create a
MensClothingItem class. Each instance of the class has a kind (one of the six enum
values) and a name (such as Casual Summer Design #7).

Write code to display a frame (like the frame in Figure 10-1). The frame has six
rows to describe one complete men’s wardrobe.

DEAL ME IN

Create an enum to represent the suits in a deck of playing cards (CLUBS, DIAMONDS,
HEARTS, and SPADES). Create a PlayingCard class. Each playing card has a number
(from 1 to 13) and a suit. In the numbering scheme, 11 stands for a Jack, 12 stands
for a Queen, and 13 stands for a King. Write code that creates several cards and
displays them on the screen (in either text-only format or as a frame, like the one
in Figure 10-1).

270 PART 4 Smart Java Techniques

10.indd 270 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

RECORD KEEPING

Some challenges in the Try It Out paragraphs in Chapter 9 introduce Java’s record
feature. Modify Listing 10-1 so that Player is a record. Modify Listing 10-2 to use
your new Player record.

Making Static (Finding the Team Average)
Thinking about the code in Listings 10-1 through 10-3, you decide that you want
to find the team’s overall batting average. Not a bad idea! The Hankees in
Figure 10-1 have an average of about .106, so the team needs some intensive train-
ing. While the players are out practicing on the ball field, you have a philosophical
hurdle to overcome.

In Listings 10-1 through 10-3, you have three classes: a Player class and two
other classes that help display data from the Player class. So, in this class morass,
where should the variables storing your overall, team-average tally go?

 » It makes no sense to put tally variables in either of the displaying classes
(TeamFrame or ShowTeamFrame). After all, the tally has something-or-other to
do with players, teams, and baseball. The displaying classes are about creating
windows, not about playing baseball.

 » You’re uncomfortable putting an overall team average in an instance of
the Player class because an instance of the Player class represents just
one player on the team. What business does a single player have storing
overall team data? Sure, you could make the code work, but it wouldn’t be an
elegant solution to the problem.

Lucky for you, Java has its static keyword. Anything that’s declared to be static
belongs to the whole class, not to any particular instance of the class. When you
create the static field, totalOfAverages, you create just one copy of the field.
This copy stays with the entire Player class. No matter how many instances of the
Player class you create — one, nine, or none — you have just one totalOfAver-
ages field. And, while you’re at it, you create other static fields (playerCount
and decFormat) and static methods (findTeamAverage and findTeamAver-
ageString). To see what I mean, look at Figure 10-5.

Going along with your passion for subclasses, you put code for teamwide tallies in
a subclass of the Player class. The PlayerPlus subclass code is shown in
Listing 10-4.

CHAPTER 10 Putting Variables and Methods Where They Belong 271

10.indd 271 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

LISTING 10-4: Creating a Team Batting Average

package com.example.baseball;

import java.text.DecimalFormat;

public class PlayerPlus extends Player {

 private static int playerCount = 0;

 private static double totalOfAverages = .000;

 private static DecimalFormat decFormat = new DecimalFormat();

 static {

 decFormat.setMaximumIntegerDigits(0);

 decFormat.setMaximumFractionDigits(3);

 decFormat.setMinimumFractionDigits(3);

 }

 public PlayerPlus(String name, double average) {

 super(name, average);

 playerCount++;
 totalOfAverages += average;
 }

 public static double findTeamAverage() {

 return totalOfAverages / playerCount;

 }

 public static String findTeamAverageString() {

 return decFormat.format(totalOfAverages / playerCount);

 }

}

FIGURE 10-5:
Some static and
nonstatic fields

and methods.

272 PART 4 Smart Java Techniques

10.indd 272 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

Why is there so much static?
Maybe you’ve noticed — the code in Listing 10-4 is overflowing with the word
static. That’s because nearly everything in this code belongs to the entire Play-
erPlus class and not to individual instances of the class. That’s good, because
something like playerCount (the number of players on the team) shouldn’t
belong to individual players and having each PlayerPlus object keep track of its
own count would be silly. (“I know how many players I am. I’m just one player!”)
If you had nine individual playerCount fields, either each field would store the
number 1 (which is useless) or you would have nine different copies of the count,
which is wasteful and prone to error. By making playerCount static, you’re keep-
ing the playerCount in just one place, where it belongs.

The same kind of reasoning holds for the totalOfAverages. Eventually, the
totalOfAverages field will store the sum of the players’ batting averages. For all
nine members of the Hankees, this adds up to .956. It’s not until someone calls
the findTeamAverage or findTeamAverageString method that the computer
actually finds the overall Hankees team batting average.

You also want the methods findTeamAverage and findTeamAverageString to be
static. Without the word static, there would be nine findTeamAverage
methods — one for each instance of the PlayerPlus class. This wouldn’t make
much sense. Each instance would have the code to calculate totalOfAverages /
playerCount on its own, and each of the nine calculations would yield the same
answer.

In general, any task that all instances have in common (and that yields the same
result for each instance) should be coded as a static method.

Constructors are never static.

Meet the static initializer
In Listing 10-4, the decFormat field is static. This makes sense because decFor-
mat makes totalOfAverages / playerCount look nice, and both fields in the
expression totalOfAverages / playerCount are static. Thinking more directly,
the code needs only one thing for formatting numbers. If you have several num-
bers to format, the same decFormat thing that belongs to the entire class can for-
mat each number. Creating a decFormat for each player is not only inelegant but
also wasteful.

But declaring decFormat to be static presents a little problem. To set up the for-
matting, you have to call methods like decFormat.setMaximumIntegerDigits(0).

CHAPTER 10 Putting Variables and Methods Where They Belong 273

10.indd 273 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

You can’t just plop these method calls anywhere in the PlayerPlus class. For
example, the following code is bad, invalid, illegal, and otherwise un-Java-like:

// THIS IS BAD CODE:

public class PlayerPlus extends Player {

 private static DecimalFormat decFormat = new DecimalFormat();

 decFormat.setMaximumIntegerDigits(0); // Bad!

 decFormat.setMaximumFractionDigits(3); // Bad!

 decFormat.setfsMinimumFractionDigits(3); // Bad!

Look at the examples from previous chapters. In those examples, I never let a
method call just dangle on its own, the way I do in the bad, bad code. In this
chapter, in Listing 10-1, I don’t call setMaximumIntegerDigits without putting
the method call inside the getAverageString method’s body. This no-dangling-
method-calls business isn’t an accident. Java’s rules restrict the places in the code
where you can issue calls to methods, and putting a lonely method call on its own
immediately inside a class definition is a big no-no.

In Listing 10-4, where can you put the necessary setMax and setMin calls? You
can put them inside the body of the findTeamAverageString method, much the
way I put them inside the getAverageString method in Listing 10-1. But putting
those method calls inside the findTeamAverageString method’s body might
defeat the purpose of having decFormat be static. After all, a programmer might
call findTeamAverageString several times, calling decFormat.setMaximumInte-
gerDigits(0) each time. But that would be quite wasteful. The entire PlayerPlus
class has only one decFormat field, and that decFormat field’s MaximumInteg-
erDigits value is always 0. Don’t keep setting MaximumIntegerDigits(0) over
and over again.

The best alternative is to take the bad lines in this section’s bad code and put
them inside a static initializer. Then they become good lines inside good code. (See
Listing 10-4.) A static initializer is a block that’s preceded by the word static.
Java executes the static initializer’s statements once for the entire class. That’s
exactly what you want for something called static.

Displaying the overall team average
You may be noticing a pattern. When you create code for a class, you generally
write two pieces of code: One piece of code defines the class, and the other piece
of code uses the class. (The ways to use a class include calling the class’s con-
structor, referencing the class’s nonprivate fields, and calling the class’s meth-
ods.) Listing 10-4, shown previously, contains code that defines the PlayerPlus
class, and Listing 10-5 contains code that uses this PlayerPlus class.

274 PART 4 Smart Java Techniques

10.indd 274 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

LISTING 10-5: Using the Code from Listing 10-4

package com.example.baseball;

import javax.swing.JFrame;

import javax.swing.JLabel;

import java.awt.GridLayout;

import java.io.File;

import java.io.IOException;

import java.util.Scanner;

public class TeamFrame extends JFrame {

 public TeamFrame() throws IOException {

 PlayerPlus player;

 var hankeesData = new Scanner(new File("Hankees.txt"));

 for (int num = 1; num <= 9; num++) {
 player =

 new PlayerPlus(hankeesData.nextLine(), hankeesData.nextDouble());

 hankeesData.nextLine();

 addPlayerInfo(player);

 }

 add(new JLabel());

 add(new JLabel("----"));

 add(new JLabel(" Team Batting Average:"));

 add(new JLabel(PlayerPlus.findTeamAverageString()));

 setTitle("The Hankees");

 setLayout(new GridLayout(12, 2, 20, 6));

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 pack();

 setVisible(true);

 hankeesData.close();

 }

 void addPlayerInfo(PlayerPlus player) {

 add(new JLabel(" " + player.getName()));
 add(new JLabel(player.getAverageString()));

 }

}

CHAPTER 10 Putting Variables and Methods Where They Belong 275

10.indd 275 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

To run the code in Listing 10-5, you need a class with a main method. The Show-
TeamFrame class in Listing 10-3 works just fine.

Figure 10-6 shows a run of the code from Listing 10-5. This run depends on the
availability of the Hankees.txt file from Figure 10-2. The code in Listing 10-5 is
almost an exact copy of the code from Listing 10-2. (So close is the copy that, if I
could afford it, I’d sue myself for theft of intellectual property.) The only thing
new in Listing 10-5 is the stuff shown in bold.

In Listing 10-5, the GridLayout has two extra rows: one row for spacing and
another row for the Hankees team average. Each of these rows has two Label
objects in it:

 » The spacing row has a blank label and a label with a dashed line. The
blank label is a placeholder. When you add components to a GridLayout, the
components are added row by row, starting at the left end of a row and
working toward the right end. Without this blank label, the dashed-line label
would appear at the left end of the row, under Hugh R. DaReader’s name.

 » The other row has a label displaying the words Team Batting Average, and
another label displaying the number .106. The method call that gets the
number .106 is interesting. The call looks like this:

PlayerPlus.findTeamAverageString()

Take a look at that method call. That call has the following form:

ClassName.methodName()

That’s new and different. In earlier chapters, I say that you normally preface a
method call with an object’s name, not a class’s name. So why does this dot
notation use a class name? The answer: When you call a static method, you
preface the method’s name with the name of the class that contains the
method. The same holds true whenever you reference another class’s static

FIGURE 10-6:
A run of the code

in Listing 10-5.

276 PART 4 Smart Java Techniques

10.indd 276 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

field. This makes sense. Remember: The whole class that defines a static
field or method owns that field or method. So, to refer to a static field or
method, you preface the field or method’s name with the class’s name.

With dot notation that refers to a static field or method, you can cheat and use
an object’s name in place of the class name. For instance, in Listing 10-5, with
judicious rearranging of some other statements, you can use the expression
player.findTeamAverageString().

The static keyword is yesterday’s news
This section makes a big noise about static fields and methods, but static
things have been part of the picture since early in this book. For example,
Chapter 3 introduces System.out.println. The name System refers to a class,
and out is a static field in that class. That’s why, in Chapter 4 and beyond, I use
the static keyword to import the out field:

import static java.lang.System.out;

In Java, static fields and methods show up all over the place. When they’re
declared in someone else’s code and you’re making use of them in your code, you
hardly ever have to worry about them. But when you’re declaring your own fields
and methods and must decide whether to make them static, you have to think a
little harder.

In this book, my first serious use of the word static is way back in Listing 3-1.
I use the static keyword as part of every main method (and lots of main methods
are in this book’s listings). So why does main have to be static? Well, remember
that nonstatic things belong to objects, not classes. If the main method isn’t static,
you can’t have a main method until you create an object. But, when you start up a
Java program, no objects have been created yet. The statements that are executed
in the main method start creating objects. So if the main method isn’t static, you
have a big chicken-and-egg problem.

Could cause static; handle with care
When I first started writing Java programs, I had recurring dreams about seeing a
certain error message. The message was Nonstatic field or method cannot be
referenced from a static context. So often did I see this message, so thor-
oughly was I perplexed, that the memory of this message became burned into my
subconscious existence.

CHAPTER 10 Putting Variables and Methods Where They Belong 277

10.indd 277 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

These days, I know why I saw that error message so often. I can even make the
message occur, if I want. But I still feel a little shiver whenever I see this message
on my screen.

Before you can understand why the message occurs and how to fix the problem,
you need to get some terminology under your belt. If a field or method isn’t static,
it’s called nonstatic. (Real surprising, hey?) Given that terminology, you have at
least two ways to make the dreaded message appear:

 » Put Class.nonstaticThing somewhere in your program.

 » Put nonstaticThing somewhere inside a static method.

In either case, you’re getting yourself into trouble. You’re taking something that
belongs to an object (the nonstatic thing) and putting it in a place where no objects
are in sight.

Take, for instance, the first of the two situations I just described. To see this
calamity in action, go back to Listing 10-5. Toward the end of the listing, change
player.getName() to Player.getName(). That does the trick. What could Player.
getName possibly mean? If anything, the expression Player.getName means “Call
the getName method that belongs to the entire Player class.” But look back at
Listing 10-1. The getName method isn’t static. Each instance of the Player (or
PlayerPlus) class has a getName method. None of the getName methods belongs
to the entire class. So the call Player.getName makes no sense. (Maybe the com-
puter is pulling punches when it displays the inoffensive cannot be refer-
enced... message. Perhaps a harsh, nonsensical expression message would be
more fitting.)

For a taste of the second situation (in the bullet list earlier in this section), go
back to Listing 10-4. While no one’s looking, quietly remove the word static
from the declaration of the decFormat field (near the top of the listing). This
removal turns decFormat into a nonstatic field. Suddenly, each player on the team
has a separate decFormat field.

Well, things are just hunky-dory until the computer reaches the findTeamAver-
ageString method. That static method has four decFormat.SuchAndSuch state-
ments in it. Once again, you’re forced to ask what a statement of this kind could
possibly mean. Method findTeamAverageString belongs to no instance in partic-
ular. (The method is static, so the entire PlayerPlus class has one findTeamAver-
ageString method.) But with the way you’ve just butchered the code, plain old
decFormat without reference to a particular object has no meaning. So again,
you’re referencing the nonstatic field, decFormat, from inside a static method’s
context. For shame, for shame, for shame!

278 PART 4 Smart Java Techniques

10.indd 278 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

I don’t know about you, but I can always use some practice with static variables
and methods:

DESIGNER DUMMIES

In a previous section, you create a class to represent items in a line of men’s
clothing. Create a subclass that includes the name of the designer (Dummies House
of Fashion), the color of the item, and the cost of the item.

The designer’s name will be static because all items in the line have the same
designer. The color can be a static field from Java’s own Color class. (See https://
docs.oracle.com/en/java/javase/17/docs/api/java.desktop/java/awt/
Color.html.)

Write code to display a frame (like the frame in Figure 10-1). The frame has eight
rows. The first row displays the name of the designer. The next six rows describe
one complete men’s wardrobe. The last row shows the wardrobe’s total cost.

COUNT ME IN

In a previous section, you create a class to represent a playing card. Add a static
field to your PlayingCard class. The field keeps track of the number of times the
class’s constructor has been called, and thus has a count of the number of playing
cards.

ATTACK OF THE MUTANTS

What’s the output of the following code? Make some predictions, and then run the
code to see whether your predictions are correct:

import static java.lang.System.out;

public class Main {

 public static void main(String[] args) {

 out.println("bigValue: " + MutableInteger.bigValue);
 // out.println("bigValue: " + IntegerHolder.value); ILLEGAL

 var holder1 = new MutableInteger(42);

 var holder2 = new MutableInteger(7);

 out.println("holder1: " + holder1.value);
 out.println("holder2: " + holder2.value);

CHAPTER 10 Putting Variables and Methods Where They Belong 279

10.indd 279 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

 out.println();

 holder1.value++;
 holder2.value++;
 MutableInteger.bigValue++;

 out.println("bigValue: " + MutableInteger.bigValue);
 out.println("holder1: " + holder1.value);
 out.println("holder2: " + holder2.value);

 out.println();

 holder1.bigValue++;
 out.println("bigValue according to holder1: " + holder1.bigValue);
 out.println("bigValue according to holder2: " + holder2.bigValue);
 }

}

class MutableInteger {

 int value;

 static int bigValue = 1_000_000;

 public MutableInteger(int value) {

 this.value = value;

 }

}

Experiments with Variables
One summer during my college days, I was sitting on the front porch, loafing
around and talking with someone I’d just met. I think her name was Janine.
“Where are you from?” I asked. “Mars,” she answered. She paused to see whether
I’d ask a follow-up question.

As it turned out, Janine was from Mars, Pennsylvania, a small town about 20 miles
north of Pittsburgh. Okay, what’s my point? The point is that the meaning of a
name depends on the context. If you’re just north of Pittsburgh and ask, “How do
I get to Mars from here?” you may receive a sensible, nonchalant answer. But if
you ask the same question standing on a street corner in Manhattan, you’ll prob-
ably arouse some suspicion. (Okay, knowing Manhattan, people would probably
just ignore you.)

280 PART 4 Smart Java Techniques

10.indd 280 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

Of course, the people who live in Mars, Pennsylvania, are very much aware that
their town has an oddball name. Fond memories of teenage years at Mars High
School don’t prevent a person from knowing about the big red planet. On a clear
evening in August, you can still have the following conversation with one of the
local residents:

You: How do I get to Mars?

Local resident: You’re in Mars, pal. What particular part of Mars are you looking for?

You: No, I don’t mean Mars, Pennsylvania. I mean the planet Mars.

Local resident: Oh, the planet! Well, then, catch the 8:19 train leaving for Cape
Canaveral. No, wait — that’s the local train. That’d take you through West
Virginia. . . .

The meaning of a name depends on where you’re using the name. Although most
English-speaking people think of Mars as a place with a carbon dioxide atmos-
phere, some folks in Pennsylvania think about all the shopping they can do in
Mars. And those folks in Pennsylvania really have two meanings for the name
Mars. In Java, those names may look like this: Mars and planets.Mars.

Putting a variable in its place
Your first experiment is shown in Listings 10-6 and 10-7. The listings’ code high-
lights the difference between variables that are declared inside and outside
methods.

LISTING 10-6: Two Meanings for Mars

import static java.lang.System.out;

class EnglishSpeakingWorld {

 String mars = " red planet";

 void visitPennsylvania() {

 out.println("visitPA is running:");

 String mars = " Janine's home town";

 out.println(mars);

 out.println(this.mars);

 }

}

CHAPTER 10 Putting Variables and Methods Where They Belong 281

10.indd 281 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

LISTING 10-7: Calling the Code of Listing 10-6

import static java.lang.System.out;

public class GetGoing {

 public static void main(String[] args) {

 out.println("main is running:");

 var e = new EnglishSpeakingWorld();

 //out.println(mars); cannot resolve symbol

 out.println(e.mars);

 e.visitPennsylvania();

 }

}

Figure 10-7 shows a run of the code in Listings 10-6 and 10-7. Figure 10-8 shows
a diagram of the code’s structure. In the GetGoing class, the main method creates
an instance of the EnglishSpeakingWorld class. The variable e refers to the new
instance. The new instance is an object with a variable named mars inside it. That
mars variable has the value "red planet". This mars ("red planet") variable is a
field.

Another way to describe that mars field is to call it an instance variable because that
mars variable (the variable whose value is "red planet") belongs to an instance of
the EnglishSpeakingWorld class. In contrast, you can refer to static fields (like
the playerCount, totalOfAverages, and decFormat fields in Listing 10-4) as class
variables. For example, playerCount in Listing 10-4 is a class variable because one
copy of playerCount belongs to the entire PlayerPlus class.

Now look at the main method in Listing 10-7. Inside the GetGoing class’s main
method, you aren’t permitted to write out.println(mars). In other words, a
bare-faced reference to any mars variable is a definite no-no. The mars variable
that I mention in the preceding paragraph belongs to the EnglishSpeakingWorld
object, not the GetGoing class.

FIGURE 10-7:
A run of the code

in Listings 10-6
and 10-7.

282 PART 4 Smart Java Techniques

10.indd 282 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

However, inside the GetGoing class’s main method, you can certainly write e.mars
because the e variable refers to your EnglishSpeakingWorld object. That’s nice.

Near the bottom of the code, the visitPennsylvania method is called. When
you’re inside visitPennsylvania, you have another declaration of a mars vari-
able, whose value is "Janine's home town". This particular mars variable is called
a method-local variable because it belongs to just one method: the visitPennsyl-
vania method.

Now you have two variables, both with the name mars. One mars variable, a field,
has the value "red planet". The other mars variable, a method-local variable, has
the value "Janine's home town". In the code, when you use the word mars, to
which of the two variables are you referring?

The answer is, when you’re visiting Pennsylvania, the variable with value
"Janine's home town" wins. When in Pennsylvania, think the way the
Pennsylvanians think. When you’re executing code inside the visitPennsylvania
method, resolve any variable name conflicts by going with method-local
variables — variables declared right inside the visitPennsylvania method.

What if you’re in Pennsylvania and need to refer to that 2-mooned celestial object?
More precisely, how does code inside the visitPennsylvania method refer to the
field with value "red planet"? The answer is, use this.mars. The word
this points to whatever object contains all this code (and not to any methods inside

FIGURE 10-8:
The structure of

the code in
Listings 10-6

and 10-7.

CHAPTER 10 Putting Variables and Methods Where They Belong 283

10.indd 283 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

the code). That object, an instance of the EnglishSpeakingWorld class, has a big,
fat mars field, and that field’s value is "red planet". So that’s how you can force
code to see outside the method it’s in — you use the Java keyword this.

For more information on the keyword this, see Chapter 9.

Telling a variable where to go
Years ago, when I lived in Milwaukee, Wisconsin, I made frequent use of the local
bank’s automatic teller machines. Machines of this kind were just beginning to
become standardized. The local teller machine system was named TYME, which
stood for Take Your Money Everywhere.

I remember traveling by car out to California. At one point, I got hungry and
stopped for a meal, but I was out of cash. So I asked a gas station attendant, “Do
you know where there’s a TYME machine around here?”

So you see, a name that works well in one place could work terribly, or not at all,
in another place. In Listings 10-8 and 10-9, I illustrate this point (with more than
just an anecdote about teller machines).

LISTING 10-8: Tale of Atomic City

import static java.lang.System.out;

class EnglishSpeakingWorld2 {

 String mars;

 void visitIdaho() {

 out.println("visitID is running:");

 mars = " red planet";

 String atomicCity = " Population: 25";

 out.println(mars);

 out.println(atomicCity);

 }

 void visitNewJersey() {

 out.println("visitNJ is running:");

 out.println(mars);

 //out.println(atomicCity); cannot resolve symbol

 }

}

284 PART 4 Smart Java Techniques

10.indd 284 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

LISTING 10-9: Calling the Code of Listing 10-8

public class GetGoing2 {

 public static void main(String[] args) {

 var e = new EnglishSpeakingWorld2();

 e.visitIdaho();

 e.visitNewJersey();

 }

}

Figure 10-9 shows a run of the code in Listings 10-8 and 10-9. Figure 10-10 shows
a diagram of the code’s structure. The code for EnglishSpeakingWorld2 has two
variables: The mars variable, which isn’t declared inside a method, is a field; the
other variable, atomicCity, is a method-local variable and is declared inside the
visitIdaho method.

FIGURE 10-9:
A run of the code

in Listings 10-8
and 10-9.

FIGURE 10-10:
The structure of

the code in
Listings 10-8

and 10-9.

CHAPTER 10 Putting Variables and Methods Where They Belong 285

10.indd 285 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

In Listing 10-8, notice where each variable can and can’t be used. When you try to
use the atomicCity variable inside the visitNewJersey method, you see an error
message. Literally, the message says cannot resolve symbol. Figuratively, the
message says, “Hey, buddy, Atomic City is in Idaho, not New Jersey.” Technically,
the message says that the method-local variable atomicCity is available only in
the visitIdaho method because that’s where the variable was declared.

Back inside the visitIdaho method, you’re free to use the atomicCity variable as
much as you want. After all, the atomicCity variable is declared inside the visi-
tIdaho method.

And what about Mars? Have you forgotten about your old friend, that lovely
80-degrees-below-0 planet? Well, both the visitIdaho and visitNewJersey
methods can access the mars variable. That’s because the mars variable is a field.
That is, the mars variable is declared in the code for the EnglishSpeakingWorld2
class but not inside any particular method. (In my stories about the names for
things, remember that people who live in both states, Idaho and New Jersey, have
heard of the planet Mars.)

The life cycle of the mars field has three separate steps:

1. When the EnglishSpeakingWorld2 class first flashes into existence, the
computer sees String mars and creates space for the mars field.

2. When the visitIdaho method is executed, the method assigns the value "red
planet" to the mars field. (The visitIdaho method also prints the value of
the mars field.)

3. When the visitNewJersey method is executed, the method prints the mars
value once again.

In this way, the mars field’s value is passed from one method to another.

Try out these programs. See what you think.

WHO’S WHO?

What’s the output of the following code? Why?

public class Main1 {

 static String name = "Nancy";

 public static void main(String[] args) {

 System.out.println(name);

286 PART 4 Smart Java Techniques

10.indd 286 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

 String name = "Barry";

 System.out.println(name);

 }

}

WHO MOVED MY NAME?

What’s the output of the following code? Why?

public class Main2 {

 String name = "George";

 public static void main(String[] args) {

 new Main2();

 }

 Main2() {

 System.out.println(name);

 String name = "Barry";

 System.out.println(name);

 System.out.println(this.name);

 }

}

MISTER WHO

What’s the output of the following code? Why?

public class Main3 {

 static String name = "George";

 public static void main(String[] args) {

 String name = "Barry";

 new OtherClass();

 }

}

class OtherClass {

CHAPTER 10 Putting Variables and Methods Where They Belong 287

10.indd 287 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

 OtherClass() {

 String name = "Leonard";

 System.out.println(name);

 System.out.println(Main3.name);

 }

}

WHO ELSE IS WHO?

What’s the output of the following code? Why?

public class Main4 {

 String name = "Betty";

 public static void main(String[] args) {

 new Main4();

 }

 Main4() {

 String name = "Barry";

 new YetAnotherClass(this);

 }

}

class YetAnotherClass {

 YetAnotherClass(Main4 whoCreatedMe) {

 String name = "Leonard";

 System.out.println(name);

 // System.out.println(Main4.name); ILLEGAL

 System.out.println(whoCreatedMe.name);

 }

}

Passing Parameters
A method can communicate with another part of your Java program in several
ways. One way is by way of the method’s parameter list. Using a parameter list,
you pass on-the-fly information to a method as the method is being called.

288 PART 4 Smart Java Techniques

10.indd 288 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

Imagine that the information you pass to the method is stored in one of your pro-
gram’s variables. What, if anything, does the method actually do with that vari-
able? The following sections present a few interesting case studies.

Pass by value
According to my web research, the town of Smackover, Arkansas, has 2,232 people
in it. But my research isn’t current. Just yesterday, Dora Kermongoos celebrated a
joyous occasion over at Smackover General Hospital — the birth of her healthy,
blue-eyed baby girl. (The girl weighs 7 pounds, 4 ounces, and is 21 inches tall.)
Now the town’s population has risen to 2,233.

Listing 10-10 has a very bad program in it. The program is supposed to add 1 to a
variable that stores Smackover’s population, but the program doesn’t work. Take
a look at Listing 10-10 to see why.

LISTING 10-10: This Program Doesn’t Work

public class TrackPopulation {

 public static void main(String[] args) {

 int smackoverARpop = 2232;

 birth(smackoverARpop);

 System.out.println(smackoverARpop);

 }

 static void birth(int cityPop) {

 cityPop++;
 }

}

When you run the program in Listing 10-10, the program displays the number
2,232 onscreen. After nine months of planning and anticipation and Dora’s whop-
ping seven hours in labor, the Kermongoos family’s baby girl wasn’t registered in
the system. What a shame!

The improper use of parameter passing caused the problem. In Java, when you
pass a parameter that has one of the eight primitive types, that parameter is passed
by value.

For a review of Java’s eight primitive types, see Chapter 4.

CHAPTER 10 Putting Variables and Methods Where They Belong 289

10.indd 289 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

Here’s what this means in plain English: Any changes that the method makes to
the value of its parameter don’t affect the values of variables back in the calling
code. In Listing 10-10, the birth method can apply the ++ operator to cityPop all
it wants — the application of ++ to the cityPop parameter has absolutely no effect
on the value of the smackoverARpop variable back in the main method.

Technically, what’s happening is the copying of a value. (See Figure 10-11.) When
the main method calls the birth method, the value stored in smackoverARpop is
copied to another memory location — a location reserved for the cityPop
parameter’s value. During the birth method’s execution, 1 is added to the city-
Pop parameter. But the place where the original 2232 value was stored — the
memory location for the smackoverARpop variable — remains unaffected.

When you do parameter passing with any of the eight primitive types, the com-
puter uses pass by value. The value stored in the calling code’s variable remains
unchanged. This happens even if the calling code’s variable and the called
method’s parameter happen to have exactly the same name.

FIGURE 10-11:
Pass by value,

under the hood.

290 PART 4 Smart Java Techniques

10.indd 290 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

Returning a result
You must fix the problem that the code in Listing 10-10 poses. After all, a young
baby Kermongoos can’t go through life untracked. To record this baby’s existence,
you have to add 1 to the value of the smackoverARpop variable. You can do this in
plenty of ways, and the way presented in Listing 10-11 isn’t the simplest. Even so,
the way shown in Listing 10-11 illustrates a point: Returning a value from a
method call can be an acceptable alternative to parameter passing. Look at
Listing 10-11 to see what I mean.

LISTING 10-11: This Program Works

public class TrackPopulation2 {

 public static void main(String[] args) {

 int smackoverARpop = 2232;

 smackoverARpop = birth(smackoverARpop);

 System.out.println(smackoverARpop);

 }

 static int birth(int cityPop) {

 return cityPop + 1;

 }

}

After running the code in Listing 10-11, the number you see on your computer
screen is the correct number: 2,233.

The code in Listing 10-11 has no new features in it (unless you call working correctly
a new feature). The most important idea in Listing 10-11 is the return statement,
which also appears in Chapter 7. Even so, Listing 10-11 presents a nice contrast to
the approach in Listing 10-10, which had to be discarded.

Pass by reference
In the previous section or two, I take great pains to emphasize a certain point —
that when a parameter has one of the eight primitive types, the parameter is
passed by value. If you read this, you probably missed the emphasis on the param-
eter’s having one of the eight primitive types. The emphasis is needed because
passing objects (reference types) doesn’t quite work the same way.

When you pass an object to a method, the object is passed by reference. What this
means to you is that statements in the called method can change any values that

CHAPTER 10 Putting Variables and Methods Where They Belong 291

10.indd 291 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

are stored in the object’s variables. Those changes do affect the values that are
seen by whatever code called the method. Listings 10-12 and 10-13 illustrate the
point.

LISTING 10-12: What Is a City?

class City {

 int population;

}

LISTING 10-13: Passing an Object to a Method

public class TrackPopulation3 {

 public static void main(String[] args) {

 var smackoverAR = new City();

 smackoverAR.population = 2232;

 birth(smackoverAR);

 System.out.println(smackoverAR.population);

 }

 static void birth(City aCity) {

 aCity.population++;

 }

}

When you run the code in Listings 10-12 and 10-13, the output you see is the num-
ber 2,233. That’s good because the code has things like ++ and the word birth in it.
The deal is, adding 1 to aCity.population inside the birth method actually
changes the value of smackoverAR.population, as it’s known in the main method.

To see how the birth method changes the value of smackoverAR.population,
look at Figure 10-12. When you pass an object to a method, the computer doesn’t
make a copy of the entire object. Instead, the computer makes a copy of a reference
to that object. (Think of it the way it’s shown in Figure 10-12. The computer makes
a copy of an arrow that points to the object.)

In Figure 10-12, you see just one instance of the City class, with a population
variable inside it. Now keep your eye on that object as you read the following
steps:

1. Just before the birth method is called, the smackoverAR variable refers to that
object — the instance of the City class.

292 PART 4 Smart Java Techniques

10.indd 292 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

2. When the birth method is called and smackoverAR is passed to the birth
method’s aCity parameter, the computer copies the reference from
smackoverAR to aCity. Now aCity refers to that same object — the
instance of the City class.

3. When the statement aCity.population++ is executed inside the birth
method, the computer adds 1 to the object’s population field. Now the
program’s one and only City instance has 2233 stored in its population field.

4. The flow of execution goes back to the main method. The value of smack-
overAR.population is printed. But smackoverAR refers to that one instance
of the City class. So smackoverAR.population has the value 2233. The
Kermongoos family is so proud.

Returning an object from a method
Believe it or not, the previous sections on parameter passing left unexplored one
nook-and-cranny of Java methods: When you call a method, the method can
return something right back to the calling code. In previous chapters and sections,
I return primitive values, such as int values, or nothing (otherwise known as
void). In this section, I return a whole object. It’s an object of type City from
Listing 10-12. The code that makes this happen is in Listing 10-14.

FIGURE 10-12:
Pass by

reference,
under the hood.

CHAPTER 10 Putting Variables and Methods Where They Belong 293

10.indd 293 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

LISTING 10-14: Here, Have a City

public class TrackPopulation4 {

 public static void main(String[] args) {

 var smackoverAR = new City();

 smackoverAR.population = 2232;

 smackoverAR = doBirth(smackoverAR);

 System.out.println(smackoverAR.population);

 }

 static City doBirth(City aCity) {

 var myCity = new City();

 myCity.population = aCity.population + 1;
 return myCity;

 }

}

If you run the code in Listing 10-14, you get the number 2,233. That’s good. The
code works by telling the doBirth method to create another City instance. In the
new instance, the value of population is 2233. (See Figure 10-13.)

After the doBirth method is executed, that City instance is returned to the main
method. Then, back in the main method, that instance (the one that doBirth returns)
is assigned to the smackoverAR variable. (See Figure 10-14.) Now smackoverAR
refers to a brand-new City instance — an instance whose population is 2,233.

FIGURE 10-13:
The doBirth

method creates a
City instance.

294 PART 4 Smart Java Techniques

10.indd 294 Trim size: 7.375 in × 9.25 in February 22, 2022 8:42 PM

In Listing 10-14, notice the type consistency in the calling and returning of the
doBirth method:

 » The smackoverAR variable has type City. The smackoverAR variable is
passed to the aCity parameter, which is also of type City.

 » The myCity variable is of type City. The myCity variable is sent back in
the doBirth method’s return statement. That’s consistent, because the
doBirth method’s header begins with static City doBirth(blah, blah,
blah ... — a promise to return an object of type City.

 » The doBirth method returns an object of type City. Back in the main
method, the object that the call to doBirth returns is assigned to the
smackoverAR variable, and (you guessed it) the smackoverAR variable is of
type City.

Aside from being quite harmonious, all this type agreement is absolutely neces-
sary. If you write a program in which your types don’t agree with one another, the
compiler spits out an unsympathetic incompatible types message.

Epilogue
Dora Kermongoos and her newborn baby daughter are safe, healthy, and resting
happily in their Smackover, Arkansas, home.

FIGURE 10-14:
The new City

instance is
assigned to the

smackoverAR
variable.

CHAPTER 11 Using Arrays to Juggle Values 295

11.indd 295 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

Chapter 11
 Using Arrays to Juggle
Values

 W elcome to the Java Motel! No haughty bellhops, no overpriced room
service, none of the usual silly puns. Just a clean double room that’s a
darn good value!

 Getting Your Ducks All in a Row
 The Java Motel, with its ten comfortable rooms, sits in a quiet place off the main
highway. Aside from a small, separate offi ce, the motel is just one long row of
ground fl oor rooms. Each room is easily accessible from the spacious front park-
ing lot.

 Oddly enough, the motel’s rooms are numbered 0 through 9. I could say that the
numbering is a fl uke — something to do with the builder’s original design plan.
But the truth is that starting with 0 makes the examples in this chapter easier to
write.

 IN THIS CHAPTER

» Dealing with several values at a time

» Searching for things

» Creating values as you get a program
running

296 PART 4 Smart Java Techniques

11.indd 296 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

Anyway, you’re trying to keep track of the number of guests in each room. Because
you have ten rooms, you may think about declaring ten variables:

int guestsInRoomNum0, guestsInRoomNum1, guestsInRoomNum2,

 guestsInRoomNum3, guestsInRoomNum4, guestsInRoomNum5,

 guestsInRoomNum6, guestsInRoomNum7, guestsInRoomNum8,

 guestsInRoomNum9;

Doing it this way may seem a bit inefficient — but inefficiency isn’t the only thing
wrong with this code. Even more problematic is the fact that you can’t loop
through these variables. To read a value for each variable, you have to copy the
nextInt method ten times:

guestsInRoomNum0 = diskScanner.nextInt();

guestsInRoomNum1 = diskScanner.nextInt();

guestsInRoomNum2 = diskScanner.nextInt();

//... and so on.

Surely a better way exists.

That better way involves an array. An array is a row of values, like the row of
rooms in a 1-floor motel. To picture the array, just picture the Java Motel:

 » First, picture the rooms, lined up next to one another.

 » Next, picture the same rooms with their front walls missing. Inside each room
you can see a certain number of guests.

 » If you can, forget that the two guests in Room 9 are putting piles of bills
into a big briefcase. Ignore the fact that the guests in Room 6 haven’t moved
away from the TV set in a day-and-a-half. Instead of all these details, see
only numbers. In each room, see a number representing the count of
guests in that room. (If free-form visualization isn’t your strong point, look
at Figure 11-1.)

In the lingo of this chapter, the entire row of rooms is called an array. Each room
in the array is called a component of the array (also known as an array element).
Each component has two numbers associated with it:

 » The room number (a number from 0 to 9), which is called an index of the array

 » A number of guests, which is a value stored in a component of the array

CHAPTER 11 Using Arrays to Juggle Values 297

11.indd 297 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

Using an array saves you from all the repetitive nonsense in the sample code
shown at the beginning of this section. For instance, to declare an array with ten
values in it, you can write one fairly short statement:

int[] guests = new int[10];

If you’re especially verbose, you can expand this statement so that it becomes two
separate statements:

int[] guests;

guests = new int[10];

In either of these code snippets, notice the use of the number 10. This number tells
the computer to make the guests array have ten components. Each component of
the array has a name of its own. The starting component is named guests[0], the
next is named guests[1], and so on. The last of the ten components is named
guests[9].

In creating an array, you always specify the number of components. The array’s
indices start with 0 and end with the number that’s one less than the total number
of components.

The snippets that I show you give you two ways to create an array. The first way
uses one line. The second way uses two lines. If you take the single-line route, you
can put that line inside or outside a method. The choice is yours. On the other
hand, if you use two separate lines, the second line, guests = new int[10],
should be inside a method.

FIGURE 11-1:
An abstract
snapshot of

rooms in the
Java Motel.

298 PART 4 Smart Java Techniques

11.indd 298 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

In an array declaration, you can put the square brackets before or after the vari-
able name. In other words, you can write int[] guests or int guests[]. The
computer creates the same guests variable no matter which form you use.

Creating an array in two easy steps
Look again at the two lines that you can use to create an array:

int[] guests;

guests = new int[10];

Each line serves its own distinct purpose:

 » int[] guests: This first line is a declaration. The declaration reserves the
array name (a name like guests) for use in the rest of the program. In the Java
Motel metaphor, this line says, “I plan to build a motel here and assign a
certain number of guests to each room.” (See Figure 11-2.)

Never mind what the declaration int[] guests actually does. It’s more
important to notice what the declaration int[] guests doesn’t do. The
declaration doesn’t reserve ten memory locations. Indeed, a declaration like
int[] guests doesn’t really create an array. All the declaration does is set up
the guests variable. At that point in the code, the guests variable still doesn’t
refer to a real array. (In other words, the motel has a name, but the motel
hasn’t been built yet.)

FIGURE 11-2:
Two steps in

creating an array.

CHAPTER 11 Using Arrays to Juggle Values 299

11.indd 299 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

 » guests = new int[10]: This second line is an assignment statement. The
assignment statement reserves space in the computer’s memory for ten int
values. In terms of real estate, this line says, “I’ve finally built the motel. Go
ahead and put guests in each room.” (Again, see Figure 11-2.)

How to book hotel guests
After you’ve created an array, you can put values into the array’s components. For
instance, you want to store the fact that Room 6 contains four guests. To put the
value 4 in the component with index 6, you write guests[6] = 4.

Now business starts to pick up. A big bus pulls up to the motel. On the side of the
bus is a sign that says Noah’s Ark. Out of the bus come 25 couples, each walking,
stomping, flying, hopping, or slithering to the motel’s small office. Only 10 of the
couples can stay at the Java Motel, but that’s okay because you can send the other
15 couples down the road to the old C-Side Resort and Motor Lodge.

Anyway, to register ten couples into the Java Motel, you put a couple (two guests)
in each of your ten rooms. Having created an array, you can take advantage of the
array’s indexing and write a for loop, like this:

for (int roomNum = 0; roomNum < 10; roomNum++) {
 guests[roomNum] = 2;

}

This loop takes the place of ten assignment statements. Notice how the loop’s
counter goes from 0 to 9. Compare this with Figure 11-2 and remember that the
indices of an array go from zero to one less than the number of components in
the array.

However, given the way the world works, your guests don’t always arrive in neat
pairs, and you have to fill each room with a different number of guests. You prob-
ably store information about rooms and guests in a database. If you do, you can
still loop through an array, gathering numbers of guests as you go. The code to
perform such a task may look like this:

resultset = statement.executeQuery("select GUESTS from RoomData");

for (int roomNum = 0; roomNum < 10; roomNum++) {
 resultset.next();

 guests[roomNum] = resultset.getInt("GUESTS");

}

300 PART 4 Smart Java Techniques

11.indd 300 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

But because this book doesn’t cover databases until Chapter 17, you may be better
off reading numbers of guests from a plain-text file. A sample file named
GuestList.txt is shown in Figure 11-3.

After you’ve made a file, you can call on the Scanner class to get values from the
file. The code is shown in Listing 11-1, and the resulting output is in Figure 11-4.

For tips on reading from disk files, refer to Chapter 8.

LISTING 11-1: Filling an Array with Values

package com.example.hotel;

import java.io.File;

import java.io.IOException;

import java.util.Scanner;

import static java.lang.System.out;

public class ShowGuests {

 public static void main(String[] args) throws IOException {

 int[] guests = new int[10];

 var diskScanner = new Scanner(new File("GuestList.txt"));

 for (int roomNum = 0; roomNum < 10; roomNum++) {

 guests[roomNum] = diskScanner.nextInt();

 }

 out.println("Room\tGuests");

FIGURE 11-3:
The GuestList.txt

file.

FIGURE 11-4:
Running the code
from Listing 11-1.

CHAPTER 11 Using Arrays to Juggle Values 301

11.indd 301 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

 for (int roomNum = 0; roomNum < 10; roomNum++) {

 out.print(roomNum);

 out.print("\t");

 out.println(guests[roomNum]);

 }

 diskScanner.close();

 }

}

The code in Listing 11-1 has two for loops: The first loop reads numbers of guests,
and the second loop writes numbers of guests.

Every array has a built-in length field. An array’s length is the number of compo-
nents in the array. So, in Listing 11-1, if you print the value of guests.length, you
get 10.

Tab stops and other special things
In Listing 11-1, some calls to print and println use the \t escape sequence. It’s
called an escape sequence because you escape from displaying the letter t on the
screen. Instead, the characters \t stand for a tab. The computer moves forward to
the next tab stop before printing any more characters. Java has a few of these
handy escape sequences. Some of them are shown in Table 11-1.

TABLE 11-1 Escape Sequences
Sequence Meaning

\b Backspace

\t Horizontal tab

\n Line feed

\f Form feed

\r Carriage return

\" Double quote "

\’ Single quote '

\\ Backslash \

302 PART 4 Smart Java Techniques

11.indd 302 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

In the Windows command prompt and Macintosh Terminal, tab stops are eight
spaces apart. But in some environments, tab stops are only four spaces apart. With
four-space stops, you don’t see the sensible alignment that appears earlier, in
Figure 11-4. If you want the columns to align no matter where your program runs,
replace tab characters with blank spaces in Listing 11-1. (Of course, if you’re fussy,
you have to check for numbers with more than one digit. But that’s another story.)

Make life easy for yourself
Besides what you see in Listing 11-1, you have another way to fill an array in Java:
with an array initializer. When you use an array initializer, you don’t even have to
tell the computer how many components the array has. The computer figures it
out for you.

Listing 11-2 shows a new version of the code to fill an array. The program’s output
is the same as the output from Listing 11-1. (It’s the stuff shown earlier, in
Figure 11-4.) The only difference between Listings 11-1 and 11-2 is the bold text in
Listing 11-2. That bold doodad is an array initializer.

LISTING 11-2: Using an Array Initializer

package com.example.hotel;

import static java.lang.System.out;

public class ShorterShowGuests {

 public static void main(String[] args) {

 int[] guests = {1, 4, 2, 0, 2, 1, 4, 3, 0, 2};

 out.println("Room\tGuests");

 for (int roomNum = 0; roomNum < 10; roomNum++) {
 out.print(roomNum);

 out.print("\t");

 out.println(guests[roomNum]);

 }

 }

}

An array initializer can contain expressions as well as literals. In plain English,
this means that you can put all kinds of things between the commas in the initial-
izer. For instance, an initializer like {1 + 3, keyboard.nextInt(), 2, 0, 2, 1,
4, 3, 0, 2} works just fine.

CHAPTER 11 Using Arrays to Juggle Values 303

11.indd 303 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

UTILIZING ARRAYS

Run this code to discover some useful methods in the java.util.Arrays package:

import java.util.Arrays;

public class WriteArray {

 public static void main(String[] args) {

 int[] guests = {1, 4, 2, 0, 2, 1, 4, 3, 0, 2};

 System.out.println(guests); // Not very useful!

 System.out.println(Arrays.toString(guests));

 Arrays.sort(guests);

 System.out.println(Arrays.toString(guests));

 Arrays.fill(guests, 0);

 System.out.println(Arrays.toString(guests));

 }

}

TOO MANY WORDS

In a fit of shameless narcissism, I made a rough count of the number of words in
pages 1 to 7 of this book’s previous edition.

int[] words = {0, 296, 342, 405, 363, 350, 323, 101};

Write a program that prompts the user for a page number and responds with the
count of words on that particular page.

SPELL IT BACKWARD

Modify the code in Listing 11-1 so that it displays the rooms in reverse room-
number order (starting with Room 9 and working down to Room 0).

MAKE YOUR MARKS

First the user types five numbers on the keyboard. Then the program displays five
lines of characters, each line having the same number of asterisks as one of the
user’s numbers. A run of the program might look like this:

5

3

9

0

10

304 PART 4 Smart Java Techniques

11.indd 304 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

ROOMS WITH A VIEW

Use my DummiesFrame (from Chapter 7) to create a GUI program based on the
ideas in Listings 11-1 and 11-2. In your program, the frame has only one input row:
a Room number row. If the user types 3 in the Room number row and then clicks the
button, the program displays the number of guests in Room 3.

Stepping through an array with the
enhanced for loop
Java has an enhanced for loop — a for loop that doesn’t use counters or indices.
Listing 11-3 shows you how to do it.

The material in this section applies to Java 5.0 and later Java versions. But this
section’s material doesn’t work with older versions of Java — versions such as 1.3,
1.4, and so on. For a bit more about Java’s version numbers, see Chapter 2.

LISTING 11-3: Get a Load o’ That for Loop!

package com.example.hotel;

import static java.lang.System.out;

public class EnhancedShowGuests {

 public static void main(String[] args) {

 int[] guests = {1, 4, 2, 0, 2, 1, 4, 3, 0, 2};

 int roomNum = 0;

 out.println("Room\tGuests");

 for (int numGuests : guests) {

 out.print(roomNum++);
 out.print("\t");

 out.println(numGuests);

 }

 }

}

CHAPTER 11 Using Arrays to Juggle Values 305

11.indd 305 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

Listings 11-1 and 11-3 have the same output. It’s in Figure 11-4.

An enhanced for statement has three parts:

for (variableType variableName : rangeOfValues)

The first two parts are variableType and variableName. The loop in Listing 11-3
defines a variable named numGuests, and numGuests has type int. During each
loop iteration, the variable numGuests takes on a new value. Refer to Figure 11-4
to see these values. The initial value is 1. The next value is 4. After that comes 2.
And so on.

Where is the loop finding all these numbers? The answer lies in the loop’s ran-
geOfValues. In Listing 11-3, the loop’s rangeOfValues is guests. So, during the ini-
tial loop iteration, the value of numGuests is guests[0] (which is 1). During the
next iteration, the value of numGuests is guests[1] (which is 4). After that comes
guests[2] (which is 2). And so on.

Java’s enhanced for loop requires a word of caution: Each time through the loop,
the variable that steps through the range of values stores a copy of the value in the
original range. The variable does not point to the range itself.

For example, if you add an assignment statement that changes the value of
numGuests in Listing 11-3, this statement has no effect on any of the values stored
in the guests array. To drive this point home, imagine that business is bad and
I’ve filled my hotel’s guests array with zeros. Then I execute the following code:

for (int numGuests : guests) {

 numGuests += 1;

 out.print(numGuests + " ");
}

out.println();

for (int numGuests : guests) {

 out.print(numGuests + " ");
}

The numGuests variable takes on values stored in the guests array. But the
numGuests += 1 statement doesn’t change the values stored in this guests array.
The code’s output looks like this:

1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0

306 PART 4 Smart Java Techniques

11.indd 306 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

TRACK YOUR WEIGHT

Initialize an array with your weight for each day in a week:

double[] weight = {145.7, 148.3, 147.2, 146.2, 147.0, 148.5, 146.9};

Write code to display a list of your gains and losses during the course of the week.
For example, from the first day to the next, your weight change is 2.6. By the fol-
lowing day, your change is -1.1.

FIND THE BIGGEST

Add code to the end of Listing 11-1 so that the program finds the room(s) with the
largest number of guests. The program’s new output may look something like
this:

4 guests in Room 1

4 guests in Room 6

To do this, have a variable named largestSoFar. Examine the array’s elements
one by one and then update the value of largestSoFar whenever you find a new,
record-high number.

FIND THE TOTAL

Add code to the end of Listing 11-1 so that the program reports the total number
of people staying at the motel. To do this, have a variable named runningTotal.
Examine the array’s values one by one, adding each such value to the big run-
ningTotal value.

Do you have a room?
You’re sitting behind the desk at the Java Motel. Look! Here comes a party of five.
These people want a room, so you need software that checks whether a room is
vacant. If one is, the software modifies the GuestList.txt file (refer to Figure 11-3)
by replacing the number 0 with the number 5. As luck would have it, the software
is on your hard drive. The software is shown in Listing 11-4.

LISTING 11-4: Do You Have a Room?

package com.example.hotel;

import java.io.File;

import java.io.IOException;

CHAPTER 11 Using Arrays to Juggle Values 307

11.indd 307 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

import java.io.PrintStream;

import java.util.Scanner;

import static java.lang.System.out;

public class FindVacancy {

 public static void main(String[] args) throws IOException {

 int[] guests = new int[10];

 int roomNum;

 var diskScanner = new Scanner(new File("GuestList.txt"));

 for (roomNum = 0; roomNum < 10; roomNum++) {
 guests[roomNum] = diskScanner.nextInt();

 }

 diskScanner.close();

 roomNum = 0;

 while (roomNum < 10 && guests[roomNum] != 0) {

 roomNum++;

 }

 if (roomNum == 10) {

 out.println("Sorry, no v cancy");

 } else {

 out.print("How many people for room ");

 out.print(roomNum);

 out.print("? ");

 var keyboard = new Scanner(System.in);

 guests[roomNum] = keyboard.nextInt();

 keyboard.close();

 var listOut = new PrintStream("GuestList.txt");

 for (roomNum = 0; roomNum < 10; roomNum++) {
 listOut.print(guests[roomNum]);

 listOut.print(" ");

 }

 listOut.close();

 }

 }

}

Figure 11-5 shows three runs of the code in Listing 11-4. The motel starts with
two vacant rooms: Rooms 3 and 8. (Remember that the room numbers start with
Room 0.) The first time you run the code, you put five people into Room 3. The

308 PART 4 Smart Java Techniques

11.indd 308 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

second time you run the code, you put a party of ten in Room 8. (What a party!)
The third time you run the code, you have no more vacant rooms. When the pro-
gram discovers this, it displays the message Sorry, no v cancy, omitting at least
one letter, in the tradition of all motel neon signs.

In Listing 11-4, the condition roomNum < 10 && guests[roomNum] != 0 can be
tricky. If you move things around and write guests[roomNum] != 0 && roomNum
< 10, you can get yourself into lots of trouble. For details, see this book’s website
(http://javafordummies.allmycode.com).

Writing to a file
The code in Listing 11-4 uses tricks from other chapters and sections of this book.
The code’s only brand-new feature is the use of PrintStream to write to a disk
file. Think about any example in this book that calls System.out.print or out.
println or their variants. What’s really going on when you call one of these
methods?

The thing called System.out is an object. The object is defined in the Java API.
In fact, System.out is an instance of a class named java.io.PrintStream
(or just PrintStream, to its close friends). Now each object created from the
PrintStream class has methods named print and println. Just as each Account
object in Listing 7-3 has a display method, and just as the DecimalFormat object
in Listing 10-1 (over in Chapter 10) has a format method, so the PrintStream
object named out has print and println methods. When you call System.out.
println, you’re calling a method that belongs to a PrintStream instance.

FIGURE 11-5:
Filling vacancies.

CHAPTER 11 Using Arrays to Juggle Values 309

11.indd 309 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

Okay, so what of it? Well, System.out always stands for some text area on your
computer screen. If you create your own PrintStream object and you make that
object refer to a disk file, that PrintStream object refers to the disk file. When you
call that object’s print method, you write text to a file on your hard drive.

In Listing 11-4, when you say

var listOut = new PrintStream("GuestList.txt");

listOut.print(guests[roomNum]);

listOut.print(" ");

you’re telling Java to write text to a file on your hard drive — the GuestList.txt
file.

That’s how you update the count of guests staying in the hotel. When you call
listOut.print for the number of guests in Room 3, you may print the number 5.
So, in Figure 11-5, a number in the GuestList.txt file changes from 0 to 5. Then
in Figure 11-5, you run the program a second time. When the program gets data
from the newly written GuestList.txt file, Room 3 is no longer vacant. This
time, the program suggests Room 8.

This is more of an observation than a tip. Say that you want to read data from a file
named Employees.txt. To do this, you make a scanner. You call new Scanner(new
File("Employees.txt")). If you accidentally call new Scanner("Employees.
txt") without the new File part, the call doesn’t connect to your Employees.txt
file. But notice how you prepare to write data to a file. You make a PrintStream
instance by calling new PrintStream("GuestList.txt"). You don’t use new File
anywhere in the call. If you goof and accidentally include new File, the Java com-
piler becomes angry, jumps out, and bites you.

When to close a file
Notice the placement of new Scanner calls, new PrintStream calls, and close
calls in Listing 11-4. As in all the examples, each new Scanner call has a corre-
sponding close call. And in Listing 11-4, the new PrintStream call has its own
close call (the listOut.close() call). But in Listing 11-4, I’m careful to place
these calls tightly around their corresponding nextInt and print calls. For exam-
ple, I don’t set up diskScanner at the very start of the program, and I don’t wait
until the very end of the program to close diskScanner. Instead, I perform all my
diskScanner tasks, one after the other, in quick succession:

var diskScanner = new Scanner(new File("GuestList.txt")); //construct

for (roomNum = 0; roomNum < 10; roomNum++) {

310 PART 4 Smart Java Techniques

11.indd 310 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

 guests[roomNum] = diskScanner.nextInt(); //read

}

diskScanner.close(); //close

I do the same kind of thing with the keyboard and listOut objects.

I do this quick dance with input and output because my program uses GuestList.
txt twice: once for reading numbers and a second time for writing numbers. If
I’m not careful, the two uses of GuestList.txt might conflict with one another.
Consider the following program:

// THIS IS BAD CODE

import java.io.File;

import java.io.IOException;

import java.io.PrintStream;

import java.util.Scanner;

public class BadCode {

 public static void main(String[] args) throws IOException {

 int[] guests = new int[10];

 var diskScanner = new Scanner(new File("GuestList.txt"));

 var listOut = new PrintStream("GuestList.txt");

 guests[0] = diskScanner.nextInt();

 listOut.print(5);

 diskScanner.close();

 listOut.close();

 }

}

Like many methods and constructors of its kind, the PrintStream constructor
doesn’t pussyfoot around with files. If it can’t find a GuestList.txt file, the con-
structor creates a GuestList.txt file and prepares to write values into it. But, if a
GuestList.txt file already exists, the PrintStream constructor deletes the
existing file and prepares to write to a new, empty GuestList.txt file. In the
BadCode class, the new PrintStream constructor call deletes whatever GuestList.
txt file already exists. This deletion comes before the call to diskScanner.
nextInt(). So diskScanner.nextInt() can’t read whatever was originally in the
GuestList.txt file. That’s bad!

To avoid this disaster, I carefully separate the two uses of the GuestList.txt file
in Listing 11-4. Near the top of the listing, I construct diskScanner and then read
from the original GuestList.txt file and then close diskScanner. Later, toward

CHAPTER 11 Using Arrays to Juggle Values 311

11.indd 311 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

the end of the listing, I construct listOut and then write to a new GuestList.txt
file and then close listOut. With writing separated completely from reading,
everything works correctly.

The keyboard variable in Listing 11-4 doesn’t refer to GuestList.txt, so key-
board doesn’t conflict with the other input or output variables. No harm would
come from following my regular routine — putting keyboard = new
Scanner(System.in) at the start of the program and putting keyboard.close()
at the end of the program. But to make Listing 11-4 as readable and as uniform as
possible, I place the keyboard constructor and the close call tightly around the
keyboard.nextInt call.

TALLY HO!

Add code to the end of Listing 11-1 so that the program reports the number of
empty rooms, the number of rooms with only one guest, the number of rooms
with exactly two guests, and so on. To do this, create an array named howMany-
RoomsWith. Examine the motel’s rooms one by one. When you encounter an empty
room, add 1 to howManyRoomsWith[0]. When you encounter a room with one guest,
add 1 to howManyRoomsWith[1]. And so on.

Arrays of Objects
The Java Motel is open for business, now with improved guest registration soft-
ware! The people who brought you this chapter’s first section are always scratch-
ing their heads, looking for the best ways to improve their services. Now, with
some ideas from object-oriented programming, they’ve started thinking in terms
of a Room class.

“And what,” you ask, “would a Room instance look like?” That’s easy. A Room
instance has three properties: the number of guests in the room, the room rate,
and a smoking/nonsmoking stamp. Figure 11-6 illustrates the situation.

Listing 11-5 shows the code that describes the Room class. As promised, each
instance of the Room class has three fields: the guests, rate, and smoking fields.
(A false value for the boolean field, smoking, indicates a nonsmoking room.) In
addition, the entire Room class has a static field named currency. On my com-
puter in the United States, this currency object makes room rates look like dollar
amounts.

To find out what static means, see Chapter 10.

312 PART 4 Smart Java Techniques

11.indd 312 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

LISTING 11-5: So This Is What a Room Looks Like!

package com.example.hotel;

import java.text.NumberFormat;

import java.util.Scanner;

import static java.lang.System.out;

public class Room {

 private int guests;

 private double rate;

 private boolean smoking;

 private static NumberFormat currency = NumberFormat.getCurrencyInstance();

 public void readRoom(Scanner diskScanner) {

 guests = diskScanner.nextInt();

 rate = diskScanner.nextDouble();

 smoking = diskScanner.nextBoolean();

 }

 public void writeRoom() {

 out.print(guests);

 out.print("\t");

 out.print(currency.format(rate));

 out.print("\t");

 out.println(smoking ? "yes" : "no");

 }

}

Listing 11-5 has a few interesting quirks, but I’d rather not describe them until
after you see all the code in action. That’s why, at this point, I move right on to the
code that calls the Listing 11-5 code. After you read about arrays of rooms (shown
in Listing 11-6), check out my description of the Listing 11-5 quirks.

FIGURE 11-6:
Another abstract

snapshot of
rooms in the

Java Motel.

CHAPTER 11 Using Arrays to Juggle Values 313

11.indd 313 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

This warning is a deliberate repeat of an idea from Chapter 4, Chapter 7, and from
who-knows-what-other chapter: Be careful when you use type double or type
float to store money values. Calculations with double or float can be inaccurate.
For more information (and more finger wagging), see Chapters 4 and 7.

This tip has absolutely nothing to do with Java. If you’re the kind of person who
prefers a smoking room (with boolean field smoking = true in Listing 11-5), find
someone you like — someone who can take off three consecutive days from work.
Have that person sit with you and comfort you for 72 straight hours while you
refrain from smoking. You might become temporarily insane while the nicotine
leaves your body, but eventually you’ll be okay. And your friend will feel like a
real hero.

Using the Room class
Now you need an array of rooms. The code to create such a thing is in Listing 11-6.
The code reads data from the RoomList.txt file. (Figure 11-7 shows the contents
of the RoomList.txt file.)

Figure 11-8 shows a run of the code in Listing 11-6.

FIGURE 11-7:
A file of

Room data.

314 PART 4 Smart Java Techniques

11.indd 314 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

LISTING 11-6: Would You Like to See a Room?

package com.example.hotel;

import java.io.File;

import java.io.IOException;

import java.util.Scanner;

import static java.lang.System.out;

public class ShowRooms {

 public static void main(String[] args) throws IOException {

 Room[] rooms;

 rooms = new Room[10];

 var diskScanner = new Scanner(new File("RoomList.txt"));

 for (int roomNum = 0; roomNum < 10; roomNum++) {
 rooms[roomNum] = new Room();

 rooms[roomNum].readRoom(diskScanner);

 }

 out.println("Room\tGuests\tRate\tSmoking?");

 for (int roomNum = 0; roomNum < 10; roomNum++) {
 out.print(roomNum);

 out.print("\t");

 rooms[roomNum].writeRoom();

 }

 diskScanner.close();

 }

}

Say what you want about the code in Listing 11-6. As far as I’m concerned, only
one issue in the whole listing should concern you. And what, you ask, is that issue?
Well, to create an array of objects — as opposed to an array made up of primitive

FIGURE 11-8:
A run of the code

in Listing 11-6.

CHAPTER 11 Using Arrays to Juggle Values 315

11.indd 315 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

values — you have to do three things: Make the array variable, make the array
itself, and then construct each individual object in the array. This is different from
creating an array of int values or an array containing any other primitive type
values. When you create an array of primitive type values, you do only the first two
of these three things.

To help make sense of all this, follow along in Listing 11-6 and Figure 11-9 as you
read the following points:

 » Room[] rooms;: This declaration creates a rooms variable. This variable is
destined to refer to an array (but doesn’t yet refer to anything).

 » rooms = new Room[10];: This statement reserves ten slots of storage in the
computer’s memory. The statement also makes the rooms variable refer to
the group of storage slots. Each slot is destined to refer to an object (but
doesn’t yet refer to anything).

 » rooms[roomNum] = new Room();: This statement is inside a for loop. The
statement is executed once for each of the ten room numbers. For example,
the first time through the loop, this statement says rooms[0] = new Room().
That first time around, the statement makes the slot rooms[0] refer to an
actual object (an instance of the Room class).

Although it’s technically not considered a step in array making, you still have to
fill each object’s fields with values. For instance, the first time through the loop,
the readRoom call says rooms[1].readRoom(diskScanner), which means, “Read

FIGURE 11-9:
Steps in creating

an array of
objects.

316 PART 4 Smart Java Techniques

11.indd 316 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

data from the RoomList.txt file into the rooms[1] object’s fields (the guests,
rate, and smoking fields).” Each time through the loop, the program creates a
new object and reads data into that new object’s fields.

You can squeeze the steps together just as you do when creating arrays of primi-
tive values. For instance, you can complete the first two steps in one fell swoop,
like this:

Room[] rooms = new Room[10];

You can also use an array initializer. (For an introduction to array initializers, see
the section “Make live easy for yourself,” earlier in this chapter.)

Yet another way to beautify your numbers
You can make numbers look nice in plenty of ways. If you take a peek at earlier
chapters, for example, you can see that Listing 7-7 uses printf and Listing 10-1
uses a DecimalFormat. But in Listing 11-5, I display a currency amount. I use the
NumberFormat class with its getCurrencyInstance method.

If you compare the formatting statements in Listings 10-1 and 11-5, you don’t see
much difference:

 » One listing uses a constructor; the other listing calls getCurrency
Instance. The getCurrencyInstance method is a good example of
a factory method, which is a convenient tool for creating commonly used
objects. People always need code that displays currency amounts. So the
getCurrencyInstance method creates a currency format without forcing
you to write a complicated DecimalFormat constructor call. In the United
States, this complicated constructor call would be new DecimalFormat
("$###0.00;($###0.00)").

Like a constructor, a factory method returns a brand-new object. But unlike
a constructor, a factory method has no special status. If you create your own
factory method, you can name it anything you want. When you call a factory
method, you don’t use the keyword new.

 » One listing uses DecimalFormat; the other listing uses NumberFormat.
A decimal number is a certain kind of number. (In fact, a decimal number
is a number written in the base-10 system.) Accordingly, the DecimalFormat
class is a subclass of the NumberFormat class. The DecimalFormat methods
are more specific, so for most purposes, I use DecimalFormat. But it’s harder

CHAPTER 11 Using Arrays to Juggle Values 317

11.indd 317 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

to use the DecimalFormat class’s getCurrencyInstance method. For
programs that involve money, I tend to use NumberFormat.

 » Both listings use format methods. In the end, you just write something like
currency.format(rate) or decFormat.format(average). After that, Java
does the work for you.

From Chapter 4 onward, I issue gentle warnings against using types such as dou-
ble and float for storing currency values. For the most accurate currency calcu-
lations, use int, long, or — best of all — BigDecimal.

You can read more about the dangers of double types and currency values in
Chapter 7.

The conditional operator
Listing 11-5 uses an interesting doodad called the conditional operator. This condi-
tional operator takes three expressions and returns the value of just one of them.
It’s like a mini if statement. When you use the conditional operator, it looks
something like this:

conditionToBeTested ? expression1 : expression2

The computer evaluates the conditionToBeTested condition. If the condition is true,
the computer returns the value of expression1. But, if the condition is false, the
computer returns the value of expression2.

So, in the code

smoking ? "yes" : "no"

the computer checks whether smoking has the value true. If so, the whole 3-part
expression stands for the first string, "yes". If not, the whole expression stands
for the second string, "no".

In Listing 11-5, the call to out.println causes either "yes" or "no" to display.
Which string gets displayed depends on whether smoking has the value true or
false.

How do you learn Java? You learn it the same way you get to Carnegie Hall: Prac-
tice! Practice! Practice!

318 PART 4 Smart Java Techniques

11.indd 318 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

A CLASSY HOTEL

Supercharge this chapter’s examples:

 » Modify the code in Listing 11-4 so that it uses the Room class from Listing 11-5.

 » Add to your work so that when you specify a number of incoming guests, you
also enter the guests’ preference for a smoking or nonsmoking room.

 » Create a subclass of the Room class in Listing 11-5. In your subclass, each room
has a maximum occupancy. Don’t let your code put more guests in a room
than the room’s occupancy will allow.

DOUBLE YOUR PRESSURE

In Chapter 9, you create a Student class. Each student has a name and an ID num-
ber. For this programming challenge, imagine that each student has five grades —
one for each of the five courses the student takes. Each grade is a double value
from 0.0 to 4.0 (4.0 is the best). A student’s grade point average (GPA) is the
average of the student’s five grade values.

In this chapter’s Student class, one of the fields is an array of five double values.
Your program finds the student’s GPA and displays it (along with the student’s
name and ID number) on the screen.

How to Argue with Your Code
Take a method header from Listing 11-5:

public void readRoom(Scanner diskScanner) {

This method has a parameter named diskScanner. The first time you call the
method, you can make diskScanner read from the RoomList.txt file. The second
time, you can make diskScanner read from the wellNourishedKittens file. The
third time, diskScanner may represent the underAppreciatedAuthors.md file.
This flexibility comes from the fact that diskScanner gets its value at the moment
you call the method — and not a nanosecond before then.

The same kind of thing can be true of your program’s main method. Every main
method has a String[] args parameter. When you launch a program, you can
send one or more words to the args parameter. For example, if you send

Java For Dummies

CHAPTER 11 Using Arrays to Juggle Values 319

11.indd 319 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

to the program, then args[0] is "Java", args[1] is "For", and args[2] is "Dum-
mies". If you send

"Java For Dummies" Great!

to the program then, because of the added quotation marks, args[0] is "Java For
Dummies" and args[1] is "Great!".

The way you send words to the args parameter depends on your IDE, but the gen-
eral idea depends on two things:

 » There are many ways to run a program.

Each of these ways is called a run configuration. Without knowing it, you’ve
probably been using a default, one-size-fits-most run configuration to test this
book’s sample programs. That default configuration served you well.

But now, it’s time for a change. A run configuration contains answers to
several different questions: Which file contains the main method? Which
version of Java will you run? Which of your drive’s folders will be used? Where
will the System.out text appear? And so on.

 » One of these answers is named program arguments.

Most IDEs have some kind of Modify Run Configuration menu option. When
you select this option, you see a dialog box with places for all these answers.
In that dialog box, one text field is labeled Program Arguments. Your IDE takes
whatever you type in that text field and sends it to args when your code runs.

You can change a configuration’s program arguments before each run or
create several different configurations, each with its own program arguments.
For help setting up program arguments in Eclipse and IntelliJ IDEA, visit this
book’s website (http://javafordummies.allmycode.com).

You don’t need an IDE to feed arguments to a program. Imagine that you have a
Java class named ThreeLittleWords. Depending on your setup, you may be able
to open a Command Prompt or Terminal window and type java ThreeLittle-
Words.java Java For Dummies. If all goes well, the args array will contain the
words Java For Dummies.

Settling the argument
Listing 11-7 shows you how to use program arguments in your code.

320 PART 4 Smart Java Techniques

11.indd 320 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

LISTING 11-7: Generate a File of Numbers

package com.example.numbers;

import java.io.IOException;

import java.io.PrintStream;

import java.util.Random;

public class MakeRandomNumsFile {

 public static void main(String[] args) throws IOException {

 var generator = new Random();

 if (args.length < 2) {

 System.out.println("Usage: MakeRandomNumsFile filename number");

 System.exit(1);

 }

 var printOut = new PrintStream(args[0]);

 int numLines = Integer.parseInt(args[1]);

 for (int count = 1; count <= numLines; count++) {
 printOut.println(generator.nextInt(10) + 1);
 }

 printOut.close();

 }

}

Figure 11-10 shows the result of a run of Listing 11-7. Before the run, I set the
program arguments to RandomNumbers.txt 5. The array component args[0]
takes on the value "RandomNumbers.txt", and args[1] becomes "5". So the pro-
gram’s assignment statements end up having the following meaning:

var printOut = new PrintStream("RandomNumbers.txt");

int numLines = Integer.parseInt("5");

The program creates a file named RandomNumbers.txt and sets numLines to 5. So,
later in the code, the program randomly generates five values and puts those val-
ues into RandomNumbers.txt.

To find the new RandomNumbers.txt file, look first in your project’s root folder.
For more information, refer to Chapter 6.

CHAPTER 11 Using Arrays to Juggle Values 321

11.indd 321 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

Notice how each program argument in Listing 11-7 is a String value. When you
look at args[1], you don’t see the number 5 — you see the string "5" with a digit
character in it. Unfortunately, you can’t use that "5" to do any counting. To get an
int value from "5", you have to apply the parseInt method. (Again, see
Listing 11-7.)

The parseInt method lives inside a class named Integer. So, to call parseInt, you
preface the name parseInt with the word Integer. The Integer class has all kinds
of handy methods for doing things with int values.

In Java, Integer is the name of a class, and int is the name of a primitive (simple)
type. The two words are related, but they’re not the same. The Integer class has
methods and other tools for dealing with int values.

Checking for the right number
of program arguments
What happens if the user makes a mistake? What if the user omits the number 5
in the text field in Figure 11-10?

Then the computer assigns "RandomNumbers.txt" to args[0] but assigns nothing
to args[1]. This is bad. If the computer ever reaches the statement

int numLines = Integer.parseInt(args[1]);

the program crashes with an unfriendly ArrayIndexOutOfBoundsException.

FIGURE 11-10:
A run of the code

in Listing 11-7.

322 PART 4 Smart Java Techniques

11.indd 322 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

What do you do about this? In Listing 11-7, you check the length of the args
array. You compare args.length with 2. If the args array has fewer than two
components, you display a message on the screen and exit from the program.
Figure 11-11 shows the resulting output.

Despite the checking of args.length in Listing 11-7, the code still isn’t crash-
proof. If the user types five instead of 5, the program takes a nosedive with a
NumberFormatException. The second program argument can’t be a word. The
argument has to be a number (and a whole number, at that). I can add if state-
ments to Listing 11-7 to make the code more bulletproof, but checking for the
NumberFormatException is better done in Chapter 13.

When you’re working with program arguments, you can enter a String value with
a blank space in it — just enclose the value in double quote marks. For instance,
you can run the code of Listing 11-7 with arguments "My Big Fat File.txt" 7.

The sun is about to set on this book’s discussion of arrays. But before you leave the
subject of arrays, think about this: An array is a row of things, and not every kind
of thing fits into just one row. Take the first few examples in this chapter involv-
ing the motel. The motel rooms, numbered 0 through 9, are in one long line. But
what if you move up in the world? You buy a big hotel with 50 floors and with 100
rooms on each floor. Then the data is square shaped. You have 50 rows, and each
row contains 100 items. Sure, you can think of the rooms as though they’re
all in one long row, but why should you have to do that? How about having a
2-dimensional array? It’s a square-shaped array in which each component has
two indices: a row number and a column number. Alas, I have no space in this
book to show you a 2-dimensional array (and I can’t afford a big hotel’s prices,
anyway). But if you visit this book’s website (http://javafordummies.allmy
code.com), you can read all about it.

You can never get too much practice:

MINE IS THE BIGGEST

Write a program whose program arguments include three int values. As its out-
put, the program displays the largest of the three int values.

FIGURE 11-11:
The code in

Listing 11-7 tells
you how to run it.

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 323

12.indd 323 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

Chapter 12
 Using Collections and
Streams (When Arrays
Aren ’ t Good Enough)

 C hapter 11 is about arrays. With an array, you can manage a bunch of things
all at once. In a hotel management program, you can keep track of all the
rooms. You can quickly fi nd the number of people in a room or fi nd a vacant

room.

 However, arrays don’t always fi t the bill. In this chapter, you fi nd out where arrays
fall short and how collections can save the day.

 IN THIS CHAPTER

» Facing the limitations of arrays

» Dealing with a bunch of objects
at once

» Using Java ’ s cool functional
programming features

» Developing code for multicore
processors

324 PART 4 Smart Java Techniques

12.indd 324 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

Arrays Have Limitations
Imagine that you store customer names in some predetermined order. Your code
contains an array, and the array has space for 100 names:

String[] name = new String[100];

for (int i = 0; i < 100; i++) {
 name[i] = new String();

}

All is well until, one day, customer number 101 shows up. As your program runs,
you enter data for customer 101, hoping desperately that the array with 100 com-
ponents can expand to fit your growing needs.

No such luck. Arrays don’t expand. Your program crashes with an
ArrayIndexOutOfBoundsException.

“In my next life, I’ll create arrays of length 1,000,” you say to yourself. And when
your next life rolls around, you do just that:

String[] name = new String[1000];

for (int i = 0; i < 1000; i++) {
 name[i] = new String();

}

But during your next life, an economic recession occurs. Rather than have 101
customers, you have only 3 customers. Now you’re wasting space for 1,000 names
when space for 3 names would do.

And what if no economic recession occurs? You’re sailing along with your array of
size 1,000, using a tidy 825 spaces in the array. The components with indices 0
through 824 are being used, and the components with indices 825 through 999
are waiting quietly to be filled.

One day, a brand-new customer shows up. Because your customers are stored in
order (alphabetically by last name, numerically by identification number, what-
ever), you want to squeeze this customer into the correct component of your array.
The trouble is that this customer belongs early on in the array, at the component
with index 7. What happens then?

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 325

12.indd 325 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

You take the name in component number 824 and move it to component 825.
Then you take the name in component 823 and move it to component 824. Take
the name in component 822 and move it to component 823. Continue doing this
until you’ve moved the name in component 7. Then you put the new customer’s
name into component 7. What a pain! Sure, the computer doesn’t complain. (If the
computer has feelings, it probably likes this kind of busywork.) But as you move
around all these names, you waste processing time, you waste power, and you
waste all kinds of resources.

“In my next life, I’ll leave three empty components between every two names.”
And of course, your business expands. Eventually you find that three aren’t
enough.

Collection Classes to the Rescue
The issues in the preceding section aren’t new. Computer scientists have been
working on these issues for a long time. They haven’t discovered any magic
one-size-fits-all solution, but they’ve discovered some clever tricks.

The Java API has a bunch of classes known as collection classes. Each collection
class has methods for storing bunches of values, and each collection class’s meth-
ods use some clever tricks. For you, the bottom line is as follows: Certain collec-
tion classes deal as efficiently as possible with the issues raised in the preceding
section. If you have to deal with such issues when writing code, you can use these
collection classes and call the classes’ methods. Rather than fret about a customer
whose name belongs in position 7, you can just call a class’s add method. The
method inserts the name at a position of your choice and deals reasonably with
whatever ripple effects have to take place. In the best circumstances, the insertion
is quite efficient. In the worst circumstances, you can rest assured that the code
does everything the best way it can.

Using an ArrayList
One of the most versatile of Java’s collection classes is the ArrayList. Listing 12-1
shows you how it works.

326 PART 4 Smart Java Techniques

12.indd 326 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

LISTING 12-1: Working with a Java Collection

package com.example.people;

import java.io.File;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Scanner;

import static java.lang.System.out;

public class ShowNames {

 public static void main(String[] args) throws IOException {

 ArrayList<String> people = new ArrayList<>();

 var diskScanner = new Scanner(new File("names.txt"));

 while (diskScanner.hasNext()) {

 people.add(diskScanner.nextLine());

 }

 people.remove(0);

 people.add(2, "Jim Newton");

 for (String name : people) {

 out.println(name);

 }

 diskScanner.close();

 }

}

Figure 12-1 shows you a sample names.txt file. The code in Listing 12-1 reads that
names.txt file and prints the stuff in Figure 12-2.

FIGURE 12-1:
Several names

in a file.

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 327

12.indd 327 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

All the interesting things happen when you execute the remove and add methods.
The variable named people refers to an ArrayList object. When you call that
object’s remove method,

people.remove(0);

you eliminate a value from the list. In this case, you eliminate whatever value is in
the list’s initial position (the position numbered 0). So, in Listing 12-1, the call to
remove takes the name Barry Burd out of the list.

That leaves only eight names in the list, but then the next statement,

people.add(2, "Jim Newton");

inserts a name into position number 2. (After Barry is removed, position number 2
is the position occupied by Harry Spoonswagler, so Harry moves to position 3, and
Jim Newton becomes the number 2 person.)

Notice that an ArrayList object has two different add methods. The method that
adds Jim Newton has two parameters: a position number and a value to be added.
Another add method

people.add(diskScanner.nextLine());

takes only one parameter. This statement takes whatever name it finds on a line
of the input file and appends that name to the end of the list. (The add method
with only one parameter always appends its value to what’s currently the end of
the ArrayList object.)

The last few lines of Listing 12-1 contain an enhanced for loop. Like the loop in
Listing 11-3, the enhanced loop in Listing 12-1 has the following form:

for (variableType variableName : rangeOfValues)

FIGURE 12-2:
The code in
Listing 12-1

changes some of
the names.

328 PART 4 Smart Java Techniques

12.indd 328 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

In Listing 12-1, the variableType is String, the variableName is name, and the
rangeOfValues includes the things stored in the people collection. During an
iteration of the loop, name refers to one of the String values stored in people. (So,
if the people collection contains nine values, the for loop goes through nine iter-
ations.) During each iteration, the statement inside the loop displays a name on
the screen.

Using generics
Look again at Listing 12-1, shown earlier, and notice the funky ArrayList
declaration:

ArrayList<String> people = new ArrayList<>();

Each collection class is generified. That ugly-sounding word means that every col-
lection declaration should contain some angle-bracketed stuff, such as <String>.
The thing that’s sandwiched between < and > tells Java what kinds of values the
new collection may contain. For example, in Listing 12-1, the words
ArrayList<String> people tell Java that people is a bunch of strings. That is,
the people list contains String objects (not Room objects, not Account objects, not
Employee objects — nothing other than String objects).

You can’t use generics in any version of Java before Java 5.0, and the code in
Listing 12-1 goes kablooey in any version before Java 7. For more about generics,
see the later sidebar, “All about generics.”

In Listing 12-1, the words ArrayList<String> people say that the people vari-
able can refer only to a collection of String values. So, from that point on, any
reference to an item from the people collection is treated exclusively as a String.
If you write

people.add(new Room());

the compiler coughs up your code and spits it out because a Room (created in
Chapter 11) isn’t the same as a String. (This coughing and spitting happens even
if the compiler has access to the Room class’s code — the code in Chapter 11.) But
the statement

people.add("George Gow");

is just fine. Because "George Gow" has type String, the compiler smiles happily.

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 329

12.indd 329 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

ALL ABOUT GENERICS
One of the original design goals for Java was to keep the language as simple as possible.
James Gosling, the language’s creator, took some unnecessarily complicated features of
C++ and tossed them out the window. The result was a language that was elegant and
sleek. Some people said the language was too sleek. So, after several years of discussion
and squabbling, Java became a bit more complicated. By the year 2004, Java had enum
types, enhanced for loops, static import, and other interesting new features. But the
most talked-about new feature was the introduction of generics:

ArrayList<String> people = new ArrayList<String>();

The use of anything like <String> was new in Java 5.0. In old-style Java, you’d write

 ArrayList people = new ArrayList();

In those days, an ArrayList could store almost anything you wanted to put in it: a
number, an Account, a Room, a String — anything. The ArrayList class was versatile,
but with this versatility came some headaches. If you could put anything into an
ArrayList, you couldn’t easily predict what you would get out of an ArrayList. In par-
ticular, you couldn’t easily write code that assumed you had stored certain types of val-
ues in the ArrayList. Here’s an example:

ArrayList things = new ArrayList();

things.add(new Account());

Account myAccount = things.get(0);

//DON'T USE THIS. IT'S BAD CODE.

In the third line, the call to get(0) grabs the earliest value in the things collection. The
call to get(0) is okay, but then the compiler chokes on the attempted assignment to
myAccount. You see a message on the third line saying that whatever you get from the
things list can’t be stuffed into the myAccount variable. You see this message because
by the time the compiler reaches the third line, it has forgotten that the item added on
the second line was of type Account!

The introduction of generics fixes this problem:

ArrayList<Account> things = new ArrayList<Account>();

things.add(new Account());

Account myAccount = things.get(0);

//USE THIS CODE INSTEAD. IT'S GOOD CODE.

Adding <Account> in two places tells the compiler that things stores Account
instances — nothing else. So, in the third line in the preceding code, you get a value

(continued)

330 PART 4 Smart Java Techniques

12.indd 330 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

from the things collection. Then, because things stores only Account objects, you
can make myAccount refer to that new value.

Java 5.0 added generics to Java. But soon after the birth of Java 5.0, programmers
noticed how clumsy the code for generics can be. After all, you can create generics
within generics. An ArrayList can contain a bunch of arrays, each of which can be an
ArrayList. So you can write

ArrayList<ArrayList<String>[]> mess = new ArrayList<ArrayList<String>[]>();

All the repetition in that mess declaration gives me a headache! To avoid this ugliness,
Java 7 and later versions have a diamond operator: <>. The diamond operator tells Java
to reuse whatever insanely complicated stuff you put in the previous part of the generic
declaration. In this example, the <> tells Java to reuse <ArrayList<String>[]>, even
though you write <ArrayList<String>[]> only once. Here’s how the streamlined
Java 7 code looks:

ArrayList<ArrayList<String>[]> mess = new ArrayList<>();

In Java 7 and later, you can write either of these mess declarations: the original, nasty
declaration with two occurrences of ArrayList<String>[] or the streamlined (only
mildly nasty) declaration with the diamond operator and only one
ArrayList<String>[] occurrence.

Yes, the streamlined code is still complicated. But without all the ArrayList<String>
[] repetition, the streamlined code is less cumbersome. The Java 7 diamond operator
takes away one chance for you to copy something incorrectly and have a big error in
your code.

Chapter 4 shows you how to declare a variable using the word var. How does var work
in declarations with generics? That var word’s job is to take responsibility away from the
start of a declaration, so var doesn’t play nicely with the diamond operator. In
Listing 12-1, you can write

ArrayList<String> people = new ArrayList<>();

or

var people = new ArrayList<String>();

but you can’t write

var people = new ArrayList<>(); //Not enough information!

(continued)

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 331

12.indd 331 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

Wrap it up
In Chapter 4, I point out that Java has two kinds of types: primitive types and ref-
erence types. (If you didn’t read those sections, or you don’t remember them,
don’t feel guilty. You’ll be okay.) Things like int, double, char, and boolean are
primitive types, and things like String, JFrame, ArrayList, and Account are ref-
erence types.

The distinction between primitive types and reference types has been a source of
contention since Java’s birth in 1995. Even now, Oracle’s wizards are hatching
plans to get around the stickier consequences of having two kinds of types. One of
those consequences is the fact that collections, such as the ArrayList, can’t con-
tain values of a primitive type. For example, it’s okay to write

ArrayList<String> people = new ArrayList<>();

but it’s not okay to write

ArrayList<int> numbers = new ArrayList<>(); // BAD! BAD!

because int is a primitive type. So, if you want to store values like 3, 55, and 21 in
an ArrayList, what do you do? Rather than store int values in the ArrayList,
you store Java’s Integer values:

ArrayList<Integer> list = new ArrayList<>();

In previous chapters, you see the Integer class in connection with the parseInt
method:

int numberOfCows = Integer.parseInt("536");

The Integer class has many methods, such as parseInt, for dealing with int
values. The class also has fields such as MAX_VALUE and MIN_VALUE, which stand
for the largest and smallest values that int variables may have.

The Integer class is an example of a wrapper class. Each of Java’s eight primitive
types has a corresponding wrapper class. You can use methods and fields in Java’s
Double, Character, Boolean, Long, Float, Short, and Byte wrapper classes. For
example, the Double class has methods named parseDouble, compareTo, toHex-
String, and fields named MAX_VALUE and MAX_EXPONENT.

Notice the pattern. All eight of Java’s primitive types (such as int, double, char)
have names that start with lowercase letters. In contrast, all of the wrapper classes
(Integer, Double, Character, and so on) have names that begin with uppercase
letters.

332 PART 4 Smart Java Techniques

12.indd 332 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

Java programmers like to begin the names of classes with uppercase letters. You
can declare public class account or public class employee. But if you do,
other programmers will think you’re a rube.

The Integer class wraps the primitive int type with useful methods and values.
In addition, you can create an Integer instance that wraps a single int value:

Integer myInteger = new Integer(42);

In this line of code, the myInteger variable has one int value inside it: the int
value 42. In Paul’s words, wrapping the int value 42 into an Integer object myIn-
teger is “something like putting lots of extra breading on okra — it makes 42
more digestible for finicky eaters like collections.”

Instances of the other wrapper classes work the same way. For example, an
instance of the Double class wraps up a single primitive double value.

Double averageNumberOfTomatoes = new Double(1.41421356237);

Here’s a program that stores five Integer values in an ArrayList:

import java.util.ArrayList;

public class Main {

 public static void main(String[] args) {

 ArrayList<Integer> list = new ArrayList<>();

 fillTheList(list);

 for (Integer n : list) {

 System.out.println(n);

 }

 }

 public static void fillTheList(ArrayList<Integer> list) {

 list.add(85);

 list.add(19);

 list.add(0);

 list.add(103);

 list.add(13);

 }

}

In the code, notice calls like list.add(85) that have int value parameters. At this
point, little Billy gets excited and says, “Look, Mom! I added the primitive int
value 85 to my ArrayList!” No, Billy. That’s not what’s going on.

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 333

12.indd 333 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

In this code, the list collection contains Integer values, not int values. A prim-
itive int value is a lot like an instance of the Integer class. But a primitive int
value isn’t exactly the same as an Integer instance.

What’s going on is called autoboxing. Before Java 5.0, you had to write

list.add(new Integer(85));

if you wanted to add an Integer to an ArrayList. But Java 5.0 and later Java ver-
sions can automatically wrap an int value inside a box. An int value in a param-
eter list becomes an Integer in ArrayList. Java’s autoboxing feature makes
programs easier to read and write.

Are we done yet?
Here’s a pleasant surprise. When you write a program like the one shown previ-
ously in Listing 12-1, you don’t have to know how many names are in the input
file. Having to know the number of names may defeat the purpose of using the
easily expandable ArrayList class. Rather than loop until you read exactly nine
names, you can loop until you run out of data.

The Scanner class has several nice methods, such as hasNextInt, hasNextDouble,
and plain old hasNext. Each of these methods checks for more input data. If
there’s more data, the method returns true. Otherwise, the method returns false.

Listing 12-1 uses the general-purpose hasNext method. This hasNext method
returns true as long as there’s anything more to read from the program’s input.
After the program scoops up that last Hugh R. DaReader line in Figure 12-1,
the subsequent hasNext call returns false. This false condition ends execution
of the while loop and plummets the computer toward the remainder of the
Listing 12-1 code.

The hasNext method is quite handy. In fact, hasNext is so handy that it’s part of
a bigger concept known as an iterator, and iterators are baked into all of Java’s col-
lection classes.

Once and again
An iterator spits out a collection’s values, one after another. To obtain a value
from the collection, you call the iterator’s next method. To find out whether the
collection has any more values in it, you call the iterator’s hasNext method.
Listing 12-2 uses an iterator to display people’s names.

334 PART 4 Smart Java Techniques

12.indd 334 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

LISTING 12-2: Iterating through a Collection

package com.example.people;

import java.io.File;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Iterator;

import java.util.Scanner;

import static java.lang.System.out;

public class ShowNamesAgain {

 public static void main(String[] args) throws IOException {

 ArrayList<String> people = new ArrayList<>();

 var diskScanner = new Scanner(new File("names.txt"));

 while (diskScanner.hasNext()) {

 people.add(diskScanner.nextLine());

 }

 people.remove(0);

 people.add(2, "Jim Newton");

 Iterator<String> iterator = people.iterator();

 while (iterator.hasNext()) {

 out.println(iterator.next());

 }

 diskScanner.close();

 }

}

You can replace the enhanced for loop at the end of Listing 12-1 with the boldface
code in Listing 12-2. When you do, you get the same output as before. (You get the
output in Figure 12-2.) In Listing 12-2, the first boldface line of code creates an
iterator from the people collection. The second and third lines call the iterator’s
hasNext and next methods to grab all objects stored in the people collection —
one for each iteration of the loop. These lines display each of the people
collection’s values.

Which is better? An enhanced for loop or an iterator? Java programmers prefer
the enhanced for loop because the for loop involves less baggage — no iterator
object to carry from one line of code to the next. But as you see later in this

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 335

12.indd 335 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

chapter, the most programming-enhanced feature can be upgraded, streamlined,
tweaked, and otherwise reconstituted. There’s no end to the way you can improve
upon your code.

So many collection classes!
The ArrayList class that I use in many of this chapter’s examples is only the tip
of the Java collections iceberg. The Java library contains many collections classes,
each with its own advantages. Table 12-1 contains an abbreviated list.

Each collection class has its own set of methods (in addition to the methods that
it inherits from AbstractCollection, the ancestor of all collection classes).

To find out which collection classes best meet your needs, visit the Java API doc-
umentation pages at https://docs.oracle.com/en/java/javase/17/docs/
api/java.base/java/util/doc-files/coll-overview.html.

Once again, I’d like to put you to work:

OUR BEST PLAYERS

Use the Player class from Chapter 10 to make an ArrayList of Player objects.
Write a program to display the names of the players whose average is .100 or
higher.

TABLE 12-1	 Some Collection Classes
Class Name Characteristic

ArrayList A resizable array.

LinkedList A list of values, each having a field that points to the next one in the list.

Stack A structure that grows from bottom to top. The structure is optimized for access to the
topmost value. You can easily add a value to the top or remove the value from the top.

Queue A structure that grows at one end. The structure is optimized for adding values to one
end (the rear) and removing values from the other end (the front).

PriorityQueue A structure, like a queue, that lets certain (higher-priority) values move toward the front.

HashSet A collection containing no duplicate values.

HashMap A collection of key/value pairs.

336 PART 4 Smart Java Techniques

12.indd 336 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

OUR BIGGEST NUMBER

Create an ArrayList containing Integer values. Then step through the values in
the list to find the largest value among all values in the list. For example, if the list
contains the numbers 85, 19, 0, 103, and 13, display the number 103.

INSERT IN ORDER

Create an ArrayList containing String values in alphabetical order. When the
user types an additional word on the keyboard, the program inserts the new word
into the ArrayList in the proper (alphabetically ordered) place.

For example, imagine that the list starts off containing the words "cat", "dog",
"horse", and "zebra" (in that order). After the user types the word fish on the
keyboard (and presses Enter), the list contains the words "cat", "dog", "fish",
"horse", and "zebra" (in that order).

To write this program, you may find the String class’s compareToIgnoreCase
method and the ArrayList class’s size method useful. You can find out about
these methods by visiting https://docs.oracle.com/en/java/javase/17/
docs/api/java.base/java/lang/String.html#compareToIgnoreCase(java.
lang.String) and https://docs.oracle.com/en/java/javase/17/docs/api/
java.base/java/util/ArrayList.html#size().

Functional Programming
From 1953 to 1957, John Backus and others developed the FORTRAN programming
language, which contained the basic framework for thousands of 20th century
programming languages. The framework has come to be known as imperative pro-
gramming because of its do-this-then-do-that nature.

A few years after the rise of FORTRAN, John McCarthy created another language,
named Lisp. Unlike FORTRAN, the underlying framework for Lisp is functional pro-
gramming. In a purely functional program, you avoid writing “do this, then do
that.” Instead, you write things like “Here’s how you’ll be transforming this into
that when you get around to doing the transformation.”

For one reason or another, imperative programming became the dominant mode.
But in recent years, functional programming has emerged as a powerful and use-
ful way of thinking about code.

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 337

12.indd 337 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

Problem-solving the old-fashioned way
In Chapter 11, you use arrays to manage the Java Motel. But that venture is behind
you now. You’ve given up the hotel business. (You tell people that you decided to
move on. But in all honesty, the hotel was losing a lot of money. According to the
United States bankruptcy court, the old Java Motel is now in Chapter 11.)

Since leaving the hotel business, you’ve transitioned into online sales. Nowadays,
you run a website that sells books, DVDs, and other content-related items. (Barry
Burd’s Java For Dummies, 8th Edition, is currently your best seller, but that’s beside
the point.)

In your world, the sale of a single item looks something like the stuff in
Listing 12-3. Each sale has an item and a price.

LISTING 12-3: The Sale Class

package com.example.sales;

public class Sale {

 private String item;

 private double price;

 public String getItem() {

 return item;

 }

 public void setItem(String item) {

 this.item = item;

 }

 public double getPrice() {

 return price;

 }

 public void setPrice(double price) {

 this.price = price;

 }

 public Sale(String item, double price) {

 this.item = item;

 this.price = price;

 }

}

338 PART 4 Smart Java Techniques

12.indd 338 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

To make use of the Sale class, you create a small program. The program totals up
the sales on DVDs. The program is shown in Listing 12-4.

LISTING 12-4: Using the Sale Class

package com.example.sales;

import java.text.NumberFormat;

import java.util.ArrayList;

public class TallySales {

 public static void main(String[] args) {

 ArrayList<Sale> sales = new ArrayList<Sale>();

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 fillTheList(sales);

 double runningTotal = 0;

 for (Sale sale : sales) {

 if (itemIsDVD(sale)) {

 runningTotal += sale.getPrice();

 }

 }

 System.out.println(currency.format(runningTotal));

 }

 static boolean itemIsDVD(Sale sale) {

 return sale.getItem().equals("DVD");

 }

 static void fillTheList(ArrayList<Sale> sales) {

 sales.add(new Sale("DVD", 15.00));

 sales.add(new Sale("Book", 12.00));

 sales.add(new Sale("DVD", 21.00));

 sales.add(new Sale("CD", 5.25));

 }

}

In Chapter 11, you step through an array by using an enhanced for statement.
Listing 12-4 has its own enhanced for statement. But in Listing 12-4, the enhanced
for statement steps through the values in a collection. Each such value is a sale.
The loop repeatedly checks a sale to find out whether the item sold is a DVD. If so,

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 339

12.indd 339 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

the code adds the sale’s price to the running total. The program’s output is
$36.00 — the running total displayed as a currency amount.

The scenario in Listing 12-4 isn’t unusual. You have a collection of items (a col-
lection of sales, perhaps). You step through the items in the collection, finding the
items that meet certain criteria (the sale of a DVD, for example). You grab a certain
value (such as the sale price) of each item that meets your criteria. Then you do
something useful with the values you’ve grabbed (for example, adding the values
together).

Here are some other examples:

 » Step through your list of employees. Find each employee whose perfor-
mance evaluation scored 3 or higher. Give each such employee a $100 bonus
and then determine the total amount of money you’ll pay in bonuses.

 » Step through your list of customers. For each customer who has shown
interest in buying a smartphone, send the customer an email about this
month’s discount plans.

 » Step through the list of planets that have been discovered. For each
M-class planet, find the probability of finding intelligent life on that planet.
Then find the average of all such probabilities.

This scenario is so common that it’s worth finding better and better ways to deal
with the scenario. One way to deal with it is to use some of the functional pro-
gramming features in Java.

Lambda expressions
In Chapter 3 of Java For Dummies, the author says,

In Java, a method is a list of things to do. Every method has a name, and you tell the
computer to do the things in the list by using the method’s name in your program.

He’s a clever fellow because, in this sentence, he’s careful to use the word method.
Yes, a method is a list of things to do, but not all to-do lists are methods, and not
all to-do lists have names.

A lambda expression is a to-do list with no name. Here’s an example:

(sale) -> sale.getItem().equals("DVD")

340 PART 4 Smart Java Techniques

12.indd 340 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

When you put this expression in just the right place, the expression does the work
of the itemIsDVD method in Listing 12-4. Figure 12-3 brings this point home.

A lambda expression is a concise way of creating a list of things to do. The list may
include only one to-do item (as in Figure 12-3) or any number of items:

(sale) -> {

 var compareTo = "DVD";

 return sale.getItem().equals(compareTo);

}

When you put more than one to-do item in a lambda expression, the expression
must have a complete method body with curly braces, semicolons, and the return
keyword. Only the stuff before the arrow (->) is abbreviated.

Ugh! This section’s “to-do list” terminology bothers me. I have to change to the
correct wording. When you collect things to do into a method or a lambda expres-
sion, you have what programmers call a function. Methods are functions with
names; lambda expressions are functions without names. So there!

The lambda expression in Figure 12-3 has only one parameter — the sale param-
eter. Can a lambda expression have more than one parameter? Of course, it can.
Here’s an example:

(price1, price2) -> price1 + price2

Figure 12-4 describes the new lambda expression’s meaning.

The lambda expression in Figure 12-4 does (roughly) what the following
method does:

double sum(double price1, double price2) {

 return price1 + price2;
}

FIGURE 12-3:
Does the item

that’s being sold
happen to be

a DVD?

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 341

12.indd 341 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

A black sheep among the lambdas
Here’s an interesting lambda expression:

(sale) -> System.out.println(sale.getPrice())

This lambda expression does (roughly) what the following method does:

void display(Sale sale) {

 System.out.println(sale.getPrice());

}

In the method’s header, the word void indicates that the method doesn’t return a
value. When you call the display method (or you use the equivalent lambda
expression), you don’t expect to get back a value. Instead, you expect the code to
do something in response to the call (something like displaying text on the com-
puter’s screen).

To draw a sharp distinction between returning a value and “doing something,”
functional programmers have a name for “doing something without returning a
value” — they call that something a side effect. In functional programming, a side
effect is considered a second-class citizen, a last resort, a tactic you use when you
can’t simply return a result. Unfortunately, displaying information on a screen
(something that so many computer programs do) is a side effect. Any program
that displays output (on a screen, on paper, or as tea leaves in a cup) isn’t a purely
functional program.

FIGURE 12-4:
Add two prices.

342 PART 4 Smart Java Techniques

12.indd 342 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

A taxonomy of lambda expressions
Java divides lambda expressions into about 45 different categories. Table 12-2
lists a few of the categories.

The categories in Table 12-2 aren’t mutually exclusive. For example, every Predi-
cate is a Function. (Every Predicate accepts one parameter and returns a result.
The result happens to be boolean.)

The next several sections refer to some of these categories.

The interpretation of streams
The earlier section “Once and again” introduces iterators. An iterator’s next
method spits out a collection’s values, one by one. That’s great, but Java takes this
concept a step further with the notion of a stream. A stream is like an iterator
except that, with a stream, you don’t have to call a next method. A stream spits
out a collection’s values automatically. To get values from a stream, you don’t call
a stream’s next method. In fact, a typical stream has no next method.

With streams, you can create an assembly line that elegantly solves this chapter’s
sales problem. Unlike the code in Listing 12-4, the new assembly line solution
uses concepts from functional programming.

The assembly line consists of several methods. Each method takes the data, trans-
forms the data in some way or other, and hands its results to the next method in
line. Figure 12-5 illustrates the assembly line for this chapter’s sales problem.

TABLE 12-2	 A Few Kinds of Lambda Expressions
Name Description Example

Function Accepts one parameter; produces a result of
any type

(sale) -> sale. price

Predicate Accepts one parameter; produces a boolean
valued result

(sale) -> sale.item.
equals("DVD")

BinaryOperator Accepts two parameters of the same type;
produces a result of the same type

(price1, price2) -> price1 +
price2

Consumer Accepts one parameter; produces no result (sale) -> System.out.
println(sale. price)

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 343

12.indd 343 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

In Figure 12-5, each box represents a bunch of raw materials as they’re trans-
formed along an assembly line. Each arrow represents a method (or, metaphori-
cally, a worker on the assembly line).

For example, in the transition from the second box to the third box, a worker
method (the filter method) sifts out sales of items that aren’t DVDs. Imagine
Lucy Ricardo standing between the second and third boxes, removing each book
or CD from the assembly line and tossing it carelessly onto the floor.

The parameter to Java’s filter method is a Predicate — a lambda expression
whose result is boolean. (See Tables 12-2 and 12-3.) The filter method in
Figure 12-5 sifts out items that don’t pass the lambda expression’s true /
false test.

For some help understanding the words in Column 3 of Table 12-3 (Predicate,
Function, and BinaryOperator), see the earlier section “A taxonomy of lambda
expressions.”

FIGURE 12-5:
A functional

programming
assembly line.

344 PART 4 Smart Java Techniques

12.indd 344 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

In Figure 12-5, in the transition from the third box to the fourth box, a worker
method (the map method) pulls the price out of each sale. From that worker’s
place onward, the assembly line contains only price values.

To be more precise, Java’s map method takes a Function such as

(sale) -> sale.getPrice()

and applies the Function to each value in a stream. (See Tables 12-2 and 12-3.) So
the map method in Figure 12-5 takes an incoming stream of sale objects and cre-
ates an outgoing stream of price values.

In Figure 12-5, in the transition from the fourth box to the fifth box, a worker
method (the reduce method) adds up the prices of DVD sales. Java’s reduce
method takes two parameters:

 » The first parameter is an initial value.

In Figure 12-5, the initial value is 0.0.

 » The second parameter is a BinaryOperator. (See Tables 12-2 and 12-3.)

In Figure 12-5, the reduce method’s BinaryOperator is

(price1, price2) -> price1 + price2

TABLE 12-3	 Some Functional Programming Methods
Method Name Member Of Parameter(s) Result Type Result Value

stream Collection
(for example, an
ArrayList object)

(None) Stream A stream that spits
out elements of the
collection

filter Stream Predicate Stream A new stream contain-
ing values for which the
lambda expression
returns true

map Stream Function Stream A new stream contain-
ing the results of
 applying the lambda
expression to the
incoming stream

reduce Stream BinaryOperator The type used by
the Binary
Operator

The result of combining
all values in the incom-
ing stream

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 345

12.indd 345 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

The reduce method uses its BinaryOperator to combine the values from the
incoming stream. The initial value serves as the starting point for all the combin-
ing. So, in Figure 12-5, the reduce method performs two additions. (See
Figure 12-6.)

For comparison, imagine calling the method

reduce(10.0, (value1, value2) -> value1 * value2)

with the stream whose values include 3.0, 2.0, and 5.0. The resulting action is
shown in Figure 12-7.

Taken as a whole, the entire assembly line shown in Figure 12-5 adds up the prices
of DVDs sold. Listing 12-5 contains a complete program using the streams and
lambda expressions of Figure 12-5.

FIGURE 12-6:
The reduce

method adds two
values at a time.

FIGURE 12-7:
The reduce

method
multiplies values

from an incoming
stream.

346 PART 4 Smart Java Techniques

12.indd 346 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

LISTING	12-5:	 Living the Functional Way of Life

package com.example.sales;

import java.text.NumberFormat;

import java.util.ArrayList;

public class TallySalesAgain {

 public static void main(String[] args) {

 ArrayList<Sale> sales = new ArrayList<>();

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 fillTheList(sales);

 double total = sales.stream()

 .filter((sale) -> sale.getItem().equals("DVD"))

 .map((sale) -> sale.getPrice())

 .reduce(0.0, (price1, price2) -> price1 + price2);

 System.out.println(currency.format(total));

 }

 static void fillTheList(ArrayList<Sale> sales) {

 sales.add(new Sale("DVD", 15.00));

 sales.add(new Sale("Book", 12.00));

 sales.add(new Sale("DVD", 21.00));

 sales.add(new Sale("CD", 5.25));

 }

}

The code in Listing 12-5 requires Java 8 or later. If your IDE is set for an earlier
Java version, you might have to tinker with the IDE’s settings. You may even have
to download a newer version of Java.

The boldface code in Listing 12-5 is one big Java assignment statement. The right
side of the statement contains a sequence of method calls. Each method call
returns an object, and each such object is the thing before the dot in the next
method call. That’s how you form the assembly line.

For example, near the start of the boldface code, the name sales refers to an
ArrayList object. Each ArrayList object has a stream method. In Listing 12-5,
sales.stream() is a call to that ArrayList object’s stream method.

The stream method returns an instance of Java’s Stream class. (What a surprise!)
So sales.stream() refers to a Stream object. (See Figure 12-8.)

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 347

12.indd 347 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

Every Stream object has a filter method. So

sales.stream().filter((sale) -> sale.getItem().equals("DVD"))

contains a call to the Stream object’s filter method. (Refer to Figure 12-8.)

The pattern continues. The Stream object’s map method returns yet another
Stream object — a Stream object containing prices. (See Figure 12-9.) To that
Stream of prices you apply the reduce method, which yields one double value —
the total of the DVD prices. (See Figure 12-10.)

FIGURE 12-8:
Getting all
DVD sales.

FIGURE 12-9:
Getting the

price from each
DVD sale.

FIGURE 12-10:
Getting the

total price of all
DVD sales.

348 PART 4 Smart Java Techniques

12.indd 348 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

Every stream has two kinds of methods: intermediate and terminal. An intermedi-
ate method is one that returns another stream. A terminal method is one that either
returns something other than a stream or returns nothing (void). A chain of calls
begins with one or more intermediate methods and ends with a single terminal
method. For example, in Listing 12-5, filter and map are intermediate methods,
and reduce is a terminal method. In a sense, the terminal method pulls values
from all the intermediate methods. When Java tries to find the value of total, the
terminal reduce method eagerly asks for price1 and price2. At that moment, the
lazy, intermediate filter and map methods wake up and start pumping out values.

If you don’t put a terminal method call at the end of your call chain, Java doesn’t
execute any of the intermediate calls. For an example, see the Try It Out paragraph
at the end of this chapter.

Why bother?
The chain of method calls in Listing 12-5 accomplishes everything that the loop in
Listing 12-4 accomplishes. But the code in Figure 12-10 uses concepts from func-
tional programming. What’s the big deal? Are you better off with Listing 12-5 than
with Listing 12-4?

You are. For the past several years, the big trend in chip design has been multicore
processors. With several cores, a processor can execute several statements at the
same time, speeding up a program’s execution by a factor of 2 or 4 or 8 or even
more. Programs run much faster if you divide the work among several cores. But
how do you divide the work?

You can modify the imperative code in Listing 12-4. For example, with some fancy
features, you can hand different loop iterations to different cores. But the result-
ing code is messy. For the code to work properly, you have to micromanage the
loop iterations, checking carefully to make sure that the final runningTotal value
is correct.

In contrast, the functional code is easy to modify. To take advantage of multicore
processors, you change only one word in Listing 12-5!

sales.parallelStream()

 .filter((sale) -> sale.getItem().equals("DVD"))

 .map((sale) -> sale.getPrice())

 .reduce(0.0, (price1, price2) -> price1 + price2);

In Listing 12-5, the stream() method call creates a serial stream. With a serial
stream, Java does its processing one sale at a time. But a call to parallelStream()
creates a slightly different kind of stream: a parallel stream. With a parallel stream,

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 349

12.indd 349 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

Java divides the work among the number of cores in the computer’s processor (or
according to some other useful measure of computing power). If you have 4 mil-
lion sales and four cores, each core processes 1 million of the sales.

Each core works independently of the others, and each core dumps its result into
a final reduce method. The reduce method combines the cores’ results into a final
tally. In the best possible scenario, all the work gets done in one-fourth the time
it would take with an ordinary serial stream.

When you read the preceding paragraph, don’t gloss over the phrase best possible
scenario. Parallelism isn’t magic. And sometimes, parallelism isn’t your friend.
Consider the situation in which you have only 20 sale amounts to tally. The time
it takes to divide the problem into four groups of 5 sales each far exceeds the
amount of time you save in using all four cores. In addition, some problems don’t
lend themselves to parallel processing. Imagine that the price of an item depends
on the number of similar items being sold. In that case, you can’t divide the prob-
lem among four independently operating cores. If you try, each core has to know
what the other cores are doing. You lose the advantage of having four threads of
execution.

NO VARIABLES? NO PROBLEM!
In imperative programming, your code’s pieces interact with one another. All the pieces
might be updating the current price of Oracle stock shares (ticker symbol: ORCL). The
simultaneous updates may conflict with one another and result in an incorrect out-
come. You’ve experienced the same phenomenon if you’ve ever clicked a website’s
Purchase button, only to learn that the item you’re trying to purchase is out of stock.
Someone else completed a purchase while you were filling in your credit card informa-
tion. Too many customers were grabbing for the same goods at the same time.

The source of the problem is shared data. How many clients share simultaneous access
to Oracle’s stock price? How many customers share access to a web page’s Purchase
button? Today’s multicore processors can perform more than one instruction at a time.
How many simultaneous instructions can all be trying to modify the same variable’s
value?

In imperative programming, a variable is a place where statements share their values
with one another. Can you avoid using variables in your code?

Compare the loop in Listing 12-4 with the functional programming code in Listing 12-5.
In Listing 12-4, the runningTotal variable is shared among all loop iterations. Because

(continued)

350 PART 4 Smart Java Techniques

12.indd 350 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

each iteration can potentially change the value of runningTotal, you can’t assign each
iteration to a different processor core. If you did, you’d risk having two cores updating
that running total at the same time. (Chances are good that, because of the simultane-
ous updating, neither core would do its update correctly!) But the filter/map/reduce
lines in Listing 12-5 make no reference to the code’s total variable. The program’s
total variable is a final tally, not a running total. In fact, none of the variables in
Listing 12-5 represents a running total. In Listing 12-5, the running total is completely
anonymous.

In imperative programming, a variable is a place where statements share their values
with one another. But functional programming shuns variables. So, when you do func-
tional programming, you don’t have a lot of data sharing. Many of the difficulties associ-
ated with shared data vanish into thin air.

Here’s an analogy: Imagine a programming problem as a cube, and then imagine an
imperative programming solution as a way of slicing the cube into manageable pieces.
(See the first sidebar figure.)

To get the most out of a four-core processor, you divide your code into four pieces —
one piece for each core. But with imperative programming, your program’s pieces don’t
fit neatly into your processor’s cores. The figure shows what happens when you try to
squeeze an imperative program into a multicore processor.

Functional programming also divides code into pieces, but it does so along different
lines. With functional programming, the pieces of the code fit neatly into the processor’s
cores. (See the following sidebar figure.)

(continued)

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 351

12.indd 351 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

Method references
Take a critical look at the last lambda expression in Listing 12-5:

(price1, price2) -> price1 + price2)

This expression does roughly the same work as a sum method. (In fact, you can
find a sum method’s declaration in the earlier section “Lambda expressions.”) If
your choice is between typing a 3-line sum method and typing a 1-line lambda
expression, you’ll probably choose the lambda expression. But what if you have a
third alternative? Rather than type your own sum method, you can refer to an
existing sum method. Using an existing method is the quickest and safest thing
to do.

As luck would have it, Java’s Double class contains a static sum method. You don’t
have to create your own sum method. If you run the following code:

double i = 5.0, j = 7.0;

System.out.println(Double.sum(i, j));

the computer displays 12.0. So, rather than type the price1 + price2 lambda
expression in Listing 12-5, you can use two colons to create a method reference —
an expression that refers to an existing method.

sales.stream()

 .filter((sale) -> sale.getItem().equals("DVD"))

Functional code eliminates much of the worry about sharing data among the parts of a
program. In that way, functional programming is an elegant solution to an important
computing problem.

352 PART 4 Smart Java Techniques

12.indd 352 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

 .map((sale) -> sale.getPrice())

 .reduce(0.0, Double :: sum);

The expression Double :: sum refers to the sum method belonging to Java’s Dou-
ble class. When you use this Double :: sum method reference, you do the same
thing that the last lambda expression does in Listing 12-5. Everybody is happy.

For information about static methods, see Chapter 10.

You can always try the programming challenges that you dream up on your own.
If you have no ideas to give you practice with functional programming, I have a
couple of suggestions for you:

BE GENEROUS

Each employee has a name and a performance evaluation score. Find the total
amount of money that you’ll pay in bonuses if you give a $100 bonus to each
employee whose score is 3 or higher. In your code, make optimal use of lambda
expressions and method references.

SAVE TIME

Each recipe has a name, a list of ingredients (some of which involve meat prod-
ucts), and an estimated preparation time. Find the average time estimate for
cooking one of the vegetarian recipes.

RECORD SALES

Some challenges in the Try It Out paragraphs in Chapter 9 introduce Java’s record
feature. Modify Listing 12-3 so that Sale is a record. Modify Listing 12-5 to use
your new Sale record.

INTERMEDIATE METHODS ARE JUST PLAIN LAZY

In the section “The interpretation of streams,” I warn that Java does nothing
when you end a chain without a terminal method call. To double-check that I’m
not lying about this, run Listing 12-5 with the following modified code:

var total = sales.stream()

 .filter((sale) -> sale.getItem().equals("DVD"))

 .map((sale) -> {

CHAPTER 12 Using Collections and Streams (When Arrays Aren’t Good Enough) 353

12.indd 353 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

 System.out.println("Hello");

 return sale.getPrice();

 });

// Commented out: System.out.println(currency.format(total));

STREAMLESS VARMINT

You don’t need streams to make use of Java’s lambda expressions. Run this code
for a glimpse at the possibilities:

import java.util.function.Function;

public class LambdaWithoutStream {

 public static void main(String[] args) {

 System.out.println(change("Hello", (String a) -> {return a + "!";}));
 }

 static String change(String str, Function<String, String> func) {

 return func.apply(str);

 }

}

12.indd 354 Trim size: 7.375 in × 9.25 in February 22, 2022 8:47 PM

CHAPTER 13 Looking Good When Things Take Unexpected Turns 355

13.indd 355 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

Chapter 13
 Looking Good
When Things Take
Unexpected Turns

 September 9, 1945: A moth fl ies into one of the relays of the Harvard Mark II
computer and gums up the works. This becomes the fi rst recorded case of a
real-life computer bug.

April 19, 1957: Herbert Bright, manager of the data processing center at Westing-
house in Pittsburgh, receives an unmarked deck of computer punch cards in the
mail (which is like receiving an unlabeled CD-ROM in the mail today). Mr. Bright
guesses that this deck comes from the development team for FORTRAN — the
fi rst computer programming language. He’s been waiting a few years for this
software. (No web downloads were available at the time.)

 Armed with nothing but this good guess, Bright writes a small FORTRAN program
and tries to compile it on his IBM 704. (The IBM 704 lives in its own, specially
built, 2,000-square-foot room. With vacuum tubes instead of transistors, the
machine has a whopping 32K of RAM. The operating system has to be loaded from
tape before the running of each program, and a typical program takes between
two and four hours to run.) After the usual waiting time, Bright’s attempt to com-
pile a FORTRAN program comes back with a single error: a missing comma in one
of the statements. Bright corrects the error, and the program runs like a charm.

 IN THIS CHAPTER

» Recovering from bad input and other
nasty situations

» Making your code (more or less)
crash-proof

» Defi ning your own exception class

356 PART 4 Smart Java Techniques

13.indd 356 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

July 22, 1962: Mariner I, the first US spacecraft aimed at another planet, is destroyed
when it behaves badly four minutes after launch. The bad behavior is attributed to
a missing bar (like a hyphen) in the formula for the rocket’s velocity.

Around the same time, orbit computation software at NASA is found to contain the
incorrect statement DO 10 I=1.10 (instead of the correct DO 10 I=1,10). In mod-
ern notation, this is like writing do10i = 1.10 in place of for (int i=1; i<=10;
i++). The change from a comma to a period turns a loop into an assignment
statement.

January 1, 2000: The Year 2000 problem wreaks havoc on the modern world.

Any historically accurate facts in these notes were borrowed from the following
sources: the Computer Folklore newsgroup (https://groups.google.com/
forum/#!forum/alt.folklore.computers), the Free On-line Dictionary of
Computing (http://foldoc.org), Computer magazine (www.computer.org/
computer-magazine), and other web pages of the IEEE (www.computer.org). All
inaccuracies stem from this author’s lunatic musings.

Garbage In
You’re taking inventory. This means counting item after item, box after box, and
marking the numbers of such things on log sheets, in little handheld gizmos, and
into forms on computer keyboards. A particular part of the project involves enter-
ing the number of boxes you find on the shelf labeled Big Dusty Boxes That
Haven’t Been Opened Since Year One. Rather than break the company’s decades-
old habit, you decide not to open any of these boxes. You arbitrarily assign the
value $3.25 to each box.

Listing 13-1 shows the software to handle this bit of inventory. The software has a
flaw, which is revealed in Figure 13-1. When the user enters a whole number value,
things are okay. But when the user enters something else (like the number 3.5), the
program comes crashing to the ground. Surely something can be done about this.
Computers are stupid, but they’re not so stupid that they should fail royally when-
ever a user enters an improper value.

LISTING 13-1: Counting Boxes

package com.example.inventory;

import java.text.NumberFormat;

import java.util.Scanner;

CHAPTER 13 Looking Good When Things Take Unexpected Turns 357

13.indd 357 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

import static java.lang.System.out;

public class InventoryA {

 public static void main(String[] args) {

 final double boxPrice = 3.25;

 var keyboard = new Scanner(System.in);

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 out.print("How many boxes do we have? ");

 String numBoxesIn = keyboard.next();

 int numBoxes = Integer.parseInt(numBoxesIn);

 out.print("The value is ");

 out.println(currency.format(numBoxes * boxPrice));

 keyboard.close();

 }

}

The key to fixing a program bug is examining the message that appears when the
program crashes. The inventory program’s message says java.lang.NumberFor-
matException. That means a class named NumberFormatException is in the java.
lang API package. Somehow, the call to Integer.parseInt brought this Number-
FormatException class out of hiding.

For a brief explanation of the Integer.parseInt method, see Chapter 11.

Well, here’s what’s going on. The Java programming language has a mechanism
called exception handling. With exception handling, a program can detect that
something is about to go wrong and respond by creating a brand-new object. In
the official terminology, the program is said to be throwing an exception. That new
object, an instance of the Exception class, is passed like a hot potato from one
piece of code to another until some piece of code decides to catch the exception.
When the exception is caught, the program executes some recovery code, buries

FIGURE 13-1:
Three separate

runs of the code
in Listing 13-1.

358 PART 4 Smart Java Techniques

13.indd 358 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

the exception, and moves on to the next normal statement as though nothing had
ever happened. The process is illustrated in Figure 13-2.

The whole thing is done with the aid of several Java keywords. These keywords are
described in this list:

 » throw: Creates a new exception object.

 » throws: Indicates that a method may pass the exception up to whatever code
called the method.

 » try: Encloses code that has the potential to create a new exception object. In
the usual scenario, the code inside a try clause contains calls to methods
whose code can create one or more exceptions.

 » catch: Deals with the exception, buries it, and then moves on.

So, the truth is out. By some chain of events like the one shown in Figure 13-2, the
method Integer.parseInt can throw a NumberFormatException. When you call
Integer.parseInt, this NumberFormatException is passed on to you.

The Java application programming interface (API) documentation for the par-
seInt method says, “Throws: NumberFormatException — if the string does not
contain a parsable integer.” Once in a while, reading the documentation actually
pays off.

FIGURE 13-2:
Throwing,

passing, and
catching an
exception.

CHAPTER 13 Looking Good When Things Take Unexpected Turns 359

13.indd 359 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

If you call yourself a hero, you’d better catch the exception so that all the other
code can get on with its regular business. Listing 13-2 shows the catching of an
exception.

LISTING 13-2: A Hero Counts Boxes

package com.example.inventory;

import java.text.NumberFormat;

import java.util.Scanner;

import static java.lang.System.out;

public class InventoryB {

 public static void main(String[] args) {

 final double boxPrice = 3.25;

 var keyboard = new Scanner(System.in);

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 out.print("How many boxes do we have? ");

 String numBoxesIn = keyboard.next();

 try {

 int numBoxes = Integer.parseInt(numBoxesIn);

 out.print("The value is ");

 out.println(currency.format(numBoxes * boxPrice));

 } catch (NumberFormatException e) {

 out.print(e.getMessage());

 out.println(" ... Cannot interpret the input.");

 }

 keyboard.close();

 }

}

Figure 13-3 shows three runs of the code from Listing 13-2. When a misguided
user types three instead of 3, the program maintains its cool by displaying For
input string: "three" ... Cannot interpret the input. The trick is to
enclose the call to Integer.parseInt inside a try clause. If you do this, the com-
puter watches for exceptions when any statement inside the try clause is exe-
cuted. If an exception is thrown, the computer jumps from inside the try clause
to a catch clause below it. In Listing 13-2, the computer jumps directly to the
catch (NumberFormatException e) clause. The computer executes the two print
statements inside the clause and then marches on with normal processing. In
Listing 13-2, this “normal processing” means executing keyboard.close().

360 PART 4 Smart Java Techniques

13.indd 360 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

An entire try-catch assembly — complete with a try clause, catch clause, and
what-have-you — is called a try statement. Sometimes, for emphasis, I call it a
try-catch statement.

The parameter in a catch clause
Take a look at the catch clause in Listing 13-2 and pay particular attention to the
words (NumberFormatException e). This looks a lot like a method’s parameter
list, doesn’t it? In fact, every catch clause is like a little mini-method with its own
parameter list.

The parameter list always has an exception type name and then a parameter. The
parameter is an object — an instance of the NumberFormatException class. When
an exception is caught, Java makes the catch clause’s parameter refer to that
exception object. In other words, the name e in Listing 13-2 stores a bunch of
information about the exception. To take advantage of this, you can call some of
the exception object’s methods.

In Listing 13-2, I call the exception’s getMessage method. Lo and behold! The
getMessage call returns the text For input string: "three". That’s helpful
information. Java hands this information to the e variable whenever it can’t make
sense of the user’s three input.

In addition to the getMessage method, each exception has a handy printStack-
Trace method. To see how this works, rewrite the catch clause in Listing 13-2 as
follows:

} catch (NumberFormatException e) {

 e.printStackTrace();

}

With this new catch clause, a run of the inventory program may look like the run
shown in Figure 13-4. When you call printStackTrace, you see a list of methods
that were running when the exception was thrown, along with line numbers in
each of the methods. In Figure 13-4, the display includes Integer.parseInt and
the main method.

FIGURE 13-3:
Three runs

of the code in
Listing 13-2.

CHAPTER 13 Looking Good When Things Take Unexpected Turns 361

13.indd 361 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

Notice the similarity between the run in Figure 13-4 and two of the runs in
Figure 13-1.

 » In Figure 13-4: Java throws a NumberFormatException. The code in
Listing 13-2 catches the exception and calls a method that prints a stack trace.
Then the program keeps running (to call keyboard.close(), for example).

 » In Figure 13-1: Java throws a NumberFormatException. None of the code in
Listing 13-1 catches the exception, so Java does what it always does for any
uncaught exceptions: It prints a stack trace and then abruptly ends the run of
the program. In other words, your program crashes.

When you mix System.out.println calls with printStackTrace calls, the order
in which Java displays the information isn’t predictable. That’s because print-
StackTrace doesn’t write directly to System.out. The printStackTrace method
writes to something called System.err, which, by default, shows up on the same
screen as System.out. If you want, you can tweak the code so that text goes exactly
where you want it to go.

I can’t think of a clever way to connect the Try in TryItOut with the try in try-
catch statements. If you think of something, scribble it in the margin on this
page. Then try this little challenge:

DON’T BE A QUITTER

Add try-catch statements to keep the following code from crashing:

import java.util.Scanner;

public class Main {

 public static void main(String[] args) {

 var keyboard = new Scanner(System.in);

 var words = new String[5];

 int i = 0;

 do {

FIGURE 13-4:
Java’s stack trace.

362 PART 4 Smart Java Techniques

13.indd 362 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

 words[i] = keyboard.next();

 } while (!words[i++].equals("Quit"));

 for (int j = 0; j < 5; j++) {
 System.out.println(words[j].length());

 }

 keyboard.close();

 }

}

Do it yourself
In the previous sections, you confuse your inventory program by typing three
instead of 3. Nice work! What else can go wrong today? Are there other kinds of
exceptions — ones that have nothing to do with the NumberFormatException?
Sure, plenty of different exception types are out there. You can even create one of
your own. You wanna try? If so, look at Listings 13-3 and 13-4.

LISTING 13-3: Making Your Own Kind of Exception

package com.example.inventory;

public class OutOfRangeException extends RuntimeException {

 public OutOfRangeException(String message) {

 super("A value is out of range.\n" + message);
 }

}

LISTING 13-4: Using Your Custom-Made Exception

package com.example.inventory;

import java.text.NumberFormat;

import java.util.Scanner;

import static java.lang.System.out;

public class InventoryC {

CHAPTER 13 Looking Good When Things Take Unexpected Turns 363

13.indd 363 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

 public static void main(String[] args) {

 final double boxPrice = 3.25;

 var keyboard = new Scanner(System.in);

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 out.print("How many boxes do we have? ");

 String numBoxesIn = keyboard.next();

 try {

 int numBoxes = Integer.parseInt(numBoxesIn);

 if (numBoxes < 0) {

 throw new OutOfRangeException("You typed " + numBoxes +

 ". There's no such thing as a negative box.");

 }

 out.print("The value is ");

 out.println(currency.format(numBoxes * boxPrice));

 } catch (NumberFormatException e) {

 out.print(e.getMessage());

 out.println(" ... Cannot interpret the input.");

 } catch (OutOfRangeException e) {

 out.println(e.getMessage());

 }

 keyboard.close();

 }

}

Listings 13-3 and 13-4 remedy a problem that quietly cropped up earlier. Look
at the last of the three runs in Figure 13-3. The user reports that the shelves
have –25 boxes, and the computer takes this value without blinking an eye. The
truth is that you would need a black hole (or some other exotic, space-time warp-
ing phenomenon) to have a negative number of boxes on any shelf in your ware-
house. So the program should become upset if the user enters a negative number
of boxes, which is what the code in Listing 13-4 does. To see what I mean, look at
Figure 13-5.

The code in Listing 13-3 declares a new kind of exception class: OutOfRangeEx-
ception. In many situations, typing a negative number would work just fine, so
OutOfRangeException isn’t built in to the Java API. However, in the inventory
program, a negative number of boxes should be flagged as an anomaly.

364 PART 4 Smart Java Techniques

13.indd 364 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

How do you know that the class in Listing 13-3 is an exception of some kind? You
know because the class declaration’s first line says extends RuntimeException.
The class in Listing 13-3 is a particular kind of exception called a runtime exception.
To learn more about runtime exceptions, see the section “The Buck Stops Here,
Except When It Doesn’t,” later in this chapter.

When you call

throw new OutOfRangeException("You typed " + numBoxes +
 ". There's no such thing as a negative box.");

in Listing 13-4, you pass the string "You typed " + numBoxes + ... to the mes-
sage parameter in Listing 13-3. The constructor in Listing 13-3 doesn’t do much
on its own with that message value. Instead, the constructor combines the mes-
sage with its own "A value is out of range.\n" string. Then the constructor
uses super to pass the combined string on to its superclass — the RuntimeExcep-
tion class. By the time you’re done, the call e.getMessage() gives you a whole
bunch of text: A value is out of range ... blah, blah, ... no such thing
... blah blah.

To read more about Java’s super keyword, refer to Chapter 9.

Who will catch the exception?
Take one more look at Listing 13-4. Notice that more than one catch clause can
accompany a single try clause. When an exception is thrown inside a try clause,
Java starts reviewing the accompanying list of catch clauses. It starts at whatever
catch clause comes immediately after the try clause and works its way down the
program’s text.

For each catch clause, Java asks itself, “Is the exception that was just thrown an
instance of the class in this clause’s parameter list?”

 » If not, Java skips this catch clause and moves on to the next catch
clause in line.

FIGURE 13-5:
Three runs of

the code from
Listings 13-3

and 13-4.

CHAPTER 13 Looking Good When Things Take Unexpected Turns 365

13.indd 365 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

 » If so, Java executes this catch clause and then skips past all other catch
clauses that come with this try clause. Java goes on and executes whatever
statements come after the whole try-catch statement.

For some concrete examples, see Listings 13-5 and 13-6.

LISTING 13-5: Yet Another Exception

package com.example.inventory;

class NumberTooLargeException extends OutOfRangeException {

 public NumberTooLargeException(String message) {

 super("A value is too large.\n" + message);
 }

}

LISTING 13-6: Catch Me If You Can

package com.example.inventory;

import java.text.NumberFormat;

import java.util.Scanner;

import static java.lang.System.out;

public class InventoryD {

 public static void main(String[] args) {

 final double boxPrice = 3.25;

 final int maxBoxes = 1000;

 var keyboard = new Scanner(System.in);

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 out.print("How many boxes do we have? ");

 String numBoxesIn = keyboard.next();

 try {

 int numBoxes = Integer.parseInt(numBoxesIn);

 if (numBoxes < 0) {

 throw new OutOfRangeException("You typed " + numBoxes +

 ". There's no such thing as a negative box.");

 }

(continued)

366 PART 4 Smart Java Techniques

13.indd 366 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

 if (numBoxes > maxBoxes) {

 throw new NumberTooLargeException(numBoxes +

 " is larger than the maximum of " + maxBoxes);

 }

 out.print("The value is ");

 out.println(currency.format(numBoxes * boxPrice));

 } catch (NumberFormatException e) {

 out.print(e.getMessage());

 out.println(" ... Cannot interpret the input.");

 } catch (OutOfRangeException e) {

 out.println(e.getMessage());

 } catch (Exception e) {

 out.println(e.getMessage());

 }

 out.println("That's that.");

 keyboard.close();

 }

}

To run the code in Listings 13-5 and 13-6, you need one additional Java program
file. You need the OutOfRangeException class in Listing 13-3.

Listing 13-6 addresses the scenario in which you have limited shelf space. You
don’t have room for more than 1,000 boxes, but once in a while the program asks
how many boxes you have, and somebody enters the number 1001 accidentally. In
cases like this, Listing 13-6 performs a quick reality check: Any number of boxes
over 1,000 is tossed out as being unrealistic.

Listing 13-6 watches for a NumberTooLargeException, but to make life more
interesting, Listing 13-6 has no catch clause for the NumberTooLargeException.
In spite of this, everything still works out just fine. It’s fine because Number-
TooLargeException is declared to be a subclass of OutOfRangeException, and
Listing 13-6 has a catch clause for the OutOfRangeException.

You see, because NumberTooLargeException is a subclass of OutOfRangeExcep-
tion, any instance of NumberTooLargeException is just a special kind of OutO-
fRangeException. So, in Listing 13-6, Java may start looking for a clause to catch
a NumberTooLargeException. When Java stumbles upon the OutOfRangeExcep-
tioncatch clause, Java says, “Okay, I’ve found a match. I’ll execute the state-
ments in this catch clause.”

LISTING 13-6: (continued)

CHAPTER 13 Looking Good When Things Take Unexpected Turns 367

13.indd 367 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

To keep from having to write this whole story over and over again, I introduce
some new terminology. I say that the catch clause with parameter OutOfRange-
Exception matches the NumberTooLargeException that’s been thrown. I call this
catch clause a matching catch clause.

The following list describes different things that the user may do and how the
computer responds. As you read, you can follow along by looking at the runs
shown in Figure 13-6:

 » The user enters an ordinary whole number, like the number 3. All
statements in the try clause are executed. Then Java skips past all the catch
clauses and executes the code that comes immediately after all the catch
clauses. (See Figure 13-7.)

 » The user enters something that’s not a whole number, like the word fish.
The code throws a NumberFormatException. Java skips past the remaining
statements in the try clause. Java executes the statements inside the first
catch clause — the clause whose parameter is of type NumberFormat
Exception. Then Java skips past the second and third catch clauses and
executes the code that comes immediately after all the catch clauses.
(See Figure 13-8.)

FIGURE 13-6:
Four runs of the

code from
Listing 13-6.

368 PART 4 Smart Java Techniques

13.indd 368 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

 » The user enters a negative number, like the number –25. The code throws
an OutOfRangeException. Java skips past the remaining statements in the
try clause. Java even skips past the statements in the first catch clause. (After
all, an OutOfRangeException isn’t any kind of a NumberFormatException.
The catch clause with parameter NumberFormatException isn’t a match
for this OutOfRangeException.) Java executes the statements inside the

FIGURE 13-7:
No exception is

thrown.

FIGURE 13-8:
Java throws a

NumberFormat-
Exception.

CHAPTER 13 Looking Good When Things Take Unexpected Turns 369

13.indd 369 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

second catch clause — the clause whose parameter is of type OutOfRange
Exception. Then Java skips past the third catch clause and executes the code
that comes immediately after all the catch clauses. (See Figure 13-9.)

 » The user enters an unrealistically large number, like the number 1001.
The code throws a NumberTooLargeException. Java skips past the remaining
statements in the try clause. Java even skips past the statements in the first
catch clause. (After all, a NumberTooLargeException isn’t any kind of
NumberFormatException.)

But, according to the code in Listing 13-5, NumberTooLargeException is a
subclass of OutOfRangeException. When Java reaches the second catch
clause, Java says, “Hmm! A NumberTooLargeException is a kind of
OutOfRangeException. I’ll execute the statements in this catch clause —
the clause with parameter of type OutOfRangeException.” In other words,
it’s a match.

Java executes the statements inside the second catch clause. Then Java skips
the third catch clause and executes the code that comes immediately after all
the catch clauses. (See Figure 13-10.)

FIGURE 13-9:
Java throws an

OutOfRange-
Exception.

370 PART 4 Smart Java Techniques

13.indd 370 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

 » Something else, something quite unpredictable, happens. (I don’t know
what.) With my unending urge to experiment, I reached into the try clause of
Listing 13-6 and added a statement that commits a serious crime. The
statement divides a number by zero:

try {

 out.println(1 / 0);

 int numBoxes = Integer.parseInt(numBoxesIn);

When Java encounters this statement, it throws an ArithmeticException.
Java skips past the remaining statements in the try clause. Then Java skips past
the statements in the first and second catch clauses. When Java reaches the
third catch clause, I can hear Java say, “Hmm! An ArithmeticException is a
kind of Exception. I’ve found a matching catch clause — a clause with a
parameter of type Exception. I’ll execute the statements in this catch clause.”

So Java executes the statements inside the third catch clause. Then Java
executes the code that comes immediately after all the catch clauses. (See
Figure 13-11.)

When Java looks for a matching catch clause, Java latches on to the topmost
clause that fits one of the following descriptions:

 » The clause’s parameter type is the same as the type of the exception that
was thrown.

 » The clause’s parameter type is a superclass of the exception’s type.

FIGURE 13-10:
Java throws a

NumberTooLarg-
eException.

CHAPTER 13 Looking Good When Things Take Unexpected Turns 371

13.indd 371 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

If a better match appears farther down the list of catch clauses, that’s just too
bad. Imagine that you added a catch clause with a parameter of type Number-
TooLargeException to the code in Listing 13-6. Imagine, also, that you put this
new catch clause after the catch clause with parameter of type OutOfRangeEx-
ception. Then, because NumberTooLargeException is a subclass of the OutOfRan-
geException class, the code in the new NumberTooLargeException clause would
never be executed. That’s just the way the cookie crumbles.

Catching two or more exceptions at a time
You can catch more than one kind of exception in a single catch clause. For exam-
ple, in a particular inventory program, you might want the same text to accom-
pany a NumberFormatException and your own OutOfRangeException. In that
case, you can rewrite part of Listing 13-6 this way:

} catch (NumberFormatException | OutOfRangeException e) {

 out.println(e.getMessage());

 out.println("Input a number from 0 to 1000.");

} catch (Exception e) {

 out.println(e.getMessage());

}

The pipe symbol, |, tells Java to catch either a NumberFormatException or an
OutOfRangeException. If you throw an exception of either type, the program adds
Input a number from 0 to 1000 to its helpful output. If you throw an exception

FIGURE 13-11:
Java throws an

Arithmetic-
Exception.

372 PART 4 Smart Java Techniques

13.indd 372 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

that’s neither a NumberFormatException nor an OutOfRangeException, the pro-
gram jumps to the last catch clause where you don’t get that Input a number ...
output.

Try your hand at this coding task:

LOOSEN UP A BIT

In Listing 13-6, boxPrice and maxBoxes have fixed values. Make improvements to
the code so that the user enters both those values. Remember that some values for
these quantities make no sense. For example, a negative number of boxes is never
too many boxes. Use try-catch statements to handle inappropriate user input.

The Buck Stops Here, Except
When It Doesn’t

Listing 13-7 has a scaled-down version of an example from Chapter 8. The code
tries to read values from a disk file and then write some results to the screen, but
the code doesn’t work.

LISTING 13-7: Not Writing Payroll Checks

/*

 * This code does not compile.

 */

package com.example.payroll;

import java.io.File;

import java.util.Scanner;

import static java.lang.System.out;

public class DoNotDoPayroll {

 public static void main(String[] args) {

 out.println("Starting payroll ...");

 doPayroll();

 out.println("Payroll completed.");

 }

CHAPTER 13 Looking Good When Things Take Unexpected Turns 373

13.indd 373 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

 public static void doPayroll() {

 var diskScanner = new Scanner(new File("EmployeeInfo.txt"));

 String name = diskScanner.nextLine();

 double amountPaid = diskScanner.nextDouble();

 out.printf("Pay to the order of %s: $%,.2f\n", name, amountPaid);

 diskScanner.close();

 }

}

When you construct a Scanner with System.out, nothing much can go wrong. But
when you construct a Scanner with a File, you have to be careful. Maybe you
misspelled the file name (EnployeeImfo.txt). Maybe your file is in the cloud, and
the file is unreadable because the network is down. Maybe you lack permission to
access any files. Who knows?

Java doesn’t let you call new Scanner(new File(anything_at_all)) unless you
acknowledge that there’s some risk. The problem is that the code deep inside the
Scanner constructor’s body can throw an exception. This kind of exception is an
instance of the FileNotFoundException class. When you try to compile the code
in Listing 13-7, you see an unwelcome message such as

Unhandled exception: java.io.FileNotFoundException

The Java programming language has two kinds of exceptions. They’re called
checked and unchecked exceptions:

 » The potential throwing of a checked exception must be acknowledged
in the code.

 » The potential throwing of an unchecked exception doesn’t need to be
acknowledged in the code.

A FileNotFoundException is one of Java’s checked exception types. When you call
a constructor or method that has the potential to throw a FileNotFoundExcep-
tion, you need to acknowledge that exception in the code.

Now, when I say that an exception is acknowledged in the code, what do I really
mean?

// The author wishes to thank that FileNotFoundException,

// without which this code could not have been written.

374 PART 4 Smart Java Techniques

13.indd 374 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

No, that’s not what it means to be acknowledged in the code. Acknowledging an
exception in the code means one of two things:

 » The statements (including any constructor or method calls) that can throw the
exception are inside a try clause. That try clause has a catch clause with a
matching exception type in its parameter list.

 » The statements (including any constructor or method calls) that can throw the
exception are inside a method that has a throws clause in its header. The
throws clause contains a matching exception type.

If you’re confused by the wording of these two bullets, don’t worry. The next two
listings illustrate the points made in the bullets.

Catch it soon
In Listing 13-8, the new Scanner call is inside a try clause. That try clause has a
catch clause with exception type FileNotFoundException.

LISTING 13-8: Acknowledging with a try-catch Statement

package com.example.payroll;

import java.io.File;

import java.io.FileNotFoundException;

import java.util.Scanner;

import static java.lang.System.out;

public class DoPayroll {

 public static void main(String[] args) {

 out.println("Starting payroll ...");

 cutCheck();

 out.println("Payroll completed.");

 }

 public static void cutCheck() {

 try {

 var diskScanner = new Scanner(new File("EmployeeInfo.txt"));

 String name = diskScanner.nextLine();

 double amountPaid = diskScanner.nextDouble();

 out.printf("Pay to the order of %s: $%,.2f\n", name, amountPaid);

CHAPTER 13 Looking Good When Things Take Unexpected Turns 375

13.indd 375 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

 diskScanner.close();

 } catch (FileNotFoundException e) {

 out.println(e.getMessage());

 }

 }

}

Figure 13-12 shows two runs of the code in Listing 13-8. For the first run, an
EmployeeInfo.txt file contains the lines Barry Burd and 5000.00. For the second
run, the user’s hard drive contains no EmployeeInfo.txt file.

When I look at Listing 13-8, my heart is filled with pride. I’ve acknowledged the
FileNotFoundException, prevented the code from printing Pay to the order
of, and avoided a nasty program crash. In fact, I handled the exception as soon as
it arose. I put out that fire in the cutCheck method before it could spread and burn
up the main method.

But wait! Did I do the right thing? Here’s an important principle in software
design: Don’t be too hasty to catch an exception. Looking back at Figure 13-12, the
second run ends with the words Payroll completed. Is that true? Will Barry actu-
ally receive the $5000.00 that he so rightfully deserves? No. That second run
in Figure 13-12 throws a FileNotFoundException. The cutCheck method in
Listing 13-8 catches the exception and doesn’t tell the main method that anything
went wrong. So the main method, gleeful in its ignorance of the FileNotFound-
Exception, prints Payroll completed.

I shouldn’t have shielded the FileNotFoundException from the code’s main
method. Instead, I should have relayed the exception from the cutCheck method
up to the main method. The example in the next section shows you how.

Catch it later
In Listing 13-9, the cutCheck method says “This FileNotFoundException isn’t
my problem. Let main deal with it.”

FIGURE 13-12:
With and without
an EmployeeInfo.

txt file.

376 PART 4 Smart Java Techniques

13.indd 376 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

LISTING 13-9: A Method Admits Its Shortcomings

package com.example.payroll;

import java.io.File;

import java.io.FileNotFoundException;

import java.util.Scanner;

import static java.lang.System.out;

public class DoPayrollB {

 public static void main(String[] args) {

 out.println("Starting payroll ...");

 try {

 cutCheck();

 out.println("Payroll completed.");

 } catch (FileNotFoundException e) {

 out.println(e.getMessage());

 }

 }

 public static void cutCheck() throws FileNotFoundException {

 var diskScanner = new Scanner(new File("EmployeeInfo.txt"));

 String name = diskScanner.nextLine();

 double amountPaid = diskScanner.nextDouble();

 out.printf("Pay to the order of %s: $%,.2f\n", name, amountPaid);

 diskScanner.close();

 }

}

Figure 13-13 shows two runs of the code in Listing 13-9. For the first run, an
EmployeeInfo.txt file contains the lines Barry Burd and 5000.00, and the run
ends with the words Payroll completed. For the second run, the user’s hard
drive contains no EmployeeInfo.txt file, and the program doesn’t display those
misleading words.

FIGURE 13-13:
Payroll

completed?
Maybe yes,
maybe no.

CHAPTER 13 Looking Good When Things Take Unexpected Turns 377

13.indd 377 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

The important part of Listing 13-9 is in the cutCheck method’s header. That
header ends with throws FileNotFoundException. By announcing that it throws
a FileNotFoundException, method cutCheck passes the buck. What this throws
clause really says is, “I realize that a statement inside this method has the poten-
tial to throw a FileNotFoundException, but I’m not acknowledging the exception
in a try-catch statement. Java compiler, please don’t bug me about this. Instead
of having a try-catch statement, I’m passing the responsibility for acknowledg-
ing the exception to the main method (the method that called the cutCheck
method).”

Indeed, in the main method, the call to cutCheck is inside a try clause. That try
clause has a catch clause with a parameter of type FileNotFoundException. So
everything is okay. Method cutCheck passes the responsibility to the main method,
and the main method accepts the responsibility with an appropriate try-catch
statement. Everybody’s happy. Even the Java compiler is happy.

To better understand the throws clause, imagine a volleyball game in which the
volleyball is an exception. When a player on the other team serves, that player is
throwing the exception. The ball crosses the net and heads directly toward you. If
you pound the ball back across the net, you’re catching the exception. But if you
pass the ball to another player, you’re using the throws clause. In essence, you’re
saying, “Here, other player — you deal with this exception.”

A statement in a method can throw an exception that’s not matched by a catch
clause. This includes situations in which the statement throwing the exception
isn’t even inside a try block. When this happens, execution of the program jumps
out of the method that contains the offending statement. Execution jumps back to
whatever code called the method in the first place.

A method can name more than one exception type in its throws clause. Just use
commas to separate the names of the exception types, as in the following example:

throws FileNotFoundException, NumberFormatException, ArithmeticException

Checked or unchecked?
Sneak a peek at Listing 13-3 and notice that your newly-declared OutOfRangeEx-
ception class extends Java’s RuntimeException class. Why would you want to
extend RuntimeException? Here’s the story:

 » Any subclass of RuntimeException is unchecked.

In fact, any descendant (sub-subclass, sub-sub-subclass, and so on) of
RuntimeException is unchecked. The unchecked exceptions represent errors

378 PART 4 Smart Java Techniques

13.indd 378 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

that can crop up almost anywhere in your program. If your code throws an
unchecked exception, you should think about rewriting the code.

Some common unchecked exceptions include the NumberFormatException
(of Listings 13-2, 13-4, and others), the ArithmeticException, the
IndexOutOfBoundsException, the infamous NullPointerException, and
many others. When you write Java code, much of your code is susceptible to
these exceptions, but enclosing the code in try clauses (or passing the buck
with throws clauses) is completely optional.

 » Any exception that’s not a descendant of RuntimeException is checked.

Unchecked exceptions represent challenges that the outside world may
impose on your program. Like it or not, some files simply aren’t where
they should be, so you had better acknowledge this in your program and
write code to make the best of it. Java’s checked exceptions include the
FileNotFoundException, (See Listings 13-8 and 13-9.) the Printer-
Exception, the SQLException, and a gang of other interesting exceptions.

READER’S ACKNOWLEDGMENTS

The following code doesn’t compile because the code throws an unacknowledged
FileNotFoundException:

// BAD CODE:

import java.io.File;

import java.util.Scanner;

public class Main {

 public static void main(String[] args) {

 var diskScanner = new Scanner(new File("numbers.txt"));

 int[] numerators = new int[5];

 int[] denominators = new int[5];

 int i = 0;

 while (diskScanner.hasNextInt()) {

 numerators[i] = diskScanner.nextInt();

 denominators[i] = diskScanner.nextInt();

 i++;
 }

 for (int j = 0; j < numerators.length; j++) {
 System.out.println(numerators[j] / denominators[j]);

 }

CHAPTER 13 Looking Good When Things Take Unexpected Turns 379

13.indd 379 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

 diskScanner.close();

 }

}

Fix the unacknowledged FileNotFoundException so that the code compiles. Then
notice that, depending on the values in the numbers.txt file, some other excep-
tions may be thrown during a run of the program. Add one or more try-catch
statements to display messages about these exceptions without letting the pro-
gram crash.

IF IT’S BROKEN, FIX IT

Add try-catch statements or throws clauses (or a mixture of these two things) to
fix the following broken code:

// BAD CODE:

import java.io.DataInputStream;

import java.io.DataOutputStream;

import java.io.EOFException;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

public class Main {

 public static void main(String[] args) {

 var fileIn = new File("input");

 var fileInStrm = new FileInputStream(fileIn);

 var dataInStrm = new DataInputStream(fileInStrm);

 var fileOut = new File("output");

 var fileOutStrm = new FileOutputStream(fileOut);

 var dataOutStrm = new DataOutputStream(fileOutStrm);

 int numFilesCopied = 0;

 try {

 while (true) {

 dataOutStrm.writeByte(dataInStrm.readByte());

 }

 } catch (EOFException e) {

 numFilesCopied = 1;

 }

 }

}

380 PART 4 Smart Java Techniques

13.indd 380 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

When you’ve gotten the code to compile, create a file named input and run the
code to see whether it creates the file named output.

Try, Try Again!
Once upon a time, I was a young fellow living with my parents in Philadelphia and
just starting to drive a car. I was heading toward a friend’s house and thinking
about who-knows-what when another car came from nowhere and bashed my
car’s passenger door. This kind of thing is called a RunARedLightException.

Anyway, both cars were still drivable, and we were squat in the middle of a busy
intersection. To avoid causing a traffic jam, we both pulled over to the nearest
curb. I fumbled for my driver’s license (which had a very young photo of me on it)
and opened the door to get out of my car.

And that’s when the second accident happened. As I was getting out of my car, a
city bus was coming by. The bus hit me and rolled me against my car a few times.
This kind of thing is called a DealWithLawyersException.

The truth is that everything came out just fine. I was bruised but not battered. My
parents paid for the damage to the car, so I never suffered any financial conse-
quences. (I managed to pass on the financial burden by putting the RunARedLigh-
tException into my throws clause.)

This incident helps to explain why I think the way I do about exception handling.
In particular, I wonder, “What happens if, while the computer is recovering from
one exception, a second exception is thrown?” After all, the statements inside a
catch clause aren’t immune to calamities.

Well, the answer to this question is anything but simple. For starters, you can put
a try statement inside a catch clause. This protects you against unexpected,
potentially embarrassing incidents that can crop up during the execution of the
catch clause. But when you start worrying about cascading exceptions, you open
up a slimy can of worms. The number of scenarios is large, and things can become
complicated quickly. The program in Listing 13-10 helps you sort things out.

LISTING 13-10: Using Two Files

package com.example.payroll;

import java.io.File;

import java.io.FileNotFoundException;

CHAPTER 13 Looking Good When Things Take Unexpected Turns 381

13.indd 381 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

import java.util.Scanner;

import static java.lang.System.out;

public class DoPayrollC {

 public static void main(String[] args) {

 out.println("Starting payroll ...");

 try {

 cutCheck();

 out.println("Payroll completed.");

 } catch (FileNotFoundException e) {

 out.println(e.getMessage());

 }

 }

 public static void cutCheck() throws FileNotFoundException {

 var diskScanner = new Scanner(new File("EmployeeInfo.txt"));

 var diskScanner2 = new Scanner(new File("LegalInfo.txt"));

 String name = diskScanner.nextLine();

 double amountPaid = diskScanner.nextDouble();

 String disclaimer = diskScanner2.nextLine();

 out.printf("Pay to the order of %s: $%,.2f\n", name, amountPaid);

 out.println(disclaimer);

 diskScanner.close();

 diskScanner2.close();

 }

}

The output of a run from Listing 13-10 might look like the text in Figure 13-14.

But what happens if, after successfully opening the first file (EmployeeInfo.txt),
Java can’t find the second file (LegalInfo.txt)? Then Java throws a FileNot-
FoundException and jumps immediately out of the cutCheck method. Java never
calls diskScanner.close(), and the connection to EmployeeInfo.txt lives on in
limbo. With a small program like the one in Listing 13-10, this is no big deal. But
if your code repeatedly fails to close such resources, you could be in big trouble.

FIGURE 13-14:
You’ll hear from

our lawyers!

382 PART 4 Smart Java Techniques

13.indd 382 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

That’s why Java has a try-with-resources feature. A try-with-resources statement
keeps track of all the things you’ve opened and closes them automatically when
they’re no longer needed. Listing 13-11 has the full story.

LISTING 13-11: Making Sure to Close Resources

package com.example.payroll;

import java.io.File;

import java.io.FileNotFoundException;

import java.util.Scanner;

import static java.lang.System.out;

public class DoPayrollD {

 public static void main(String[] args) {

 out.println("Starting payroll ...");

 try {

 cutCheck();

 out.println("Payroll completed.");

 } catch (FileNotFoundException e) {

 out.println(e.getMessage());

 }

 }

 public static void cutCheck() throws FileNotFoundException {

 try (var diskScanner = new Scanner(new File("EmployeeInfo.txt"));

 var diskScanner2 = new Scanner(new File("LegalInfo.txt"))) {

 String name = diskScanner.nextLine();

 double amountPaid = diskScanner.nextDouble();

 String disclaimer = diskScanner2.nextLine();

 out.printf("Pay to the order of %s: $%,.2f\n", name, amountPaid);

 out.println(disclaimer);

 } catch (FileNotFoundException e) {

 out.println("Abnormal return from the cutCheck method ...");

 throw e;

 }

 }

}

CHAPTER 13 Looking Good When Things Take Unexpected Turns 383

13.indd 383 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

In Listing 13-11, the declarations of diskScanner1 and diskScanner2 are in
parentheses after the word try. The parenthesized declarations tell Java to close
diskScanner1 and diskScanner2 automatically after execution of the statements
in the try clause. Java closes these connections whether you throw an exception
or not.

Look at all the statements in the body of the cutCheck method. Not one of these
statements contains the word close. You don’t need any explicit close calls. The
try-with-resources statement does all the closing for you.

You can access all kinds of resources (files, databases, connections to servers, and
others) and have peace of mind knowing that Java will sever the connections
automatically when necessary. Life is good!

Before we bid a fond farewell to Listing 13-11, let’s take a moment to look at the
cutCheck method’s catch clause. As in Listing 13-9, we want the code’s main
method to do something about a missing LegalInfo.txt file. We could add lots of
clunky if statements to make main bend to our will, but it’s better to have main
respond to the original FileNotFoundException. In the cutCheck method’s catch
cause, the variable e stands for that unsavory FileNotFoundException. So the
statement throw e does the trick. That statement says “pass this despicable File-
NotFoundException on to whichever method called me.” And the “method that
called me” is main.

In a try-with-resources statement, the catch clause is optional. In Listing 13-11,
if you remove the catch clause, the program behaves almost the same way. The
only thing you lose is the possibility of getting the Abnormal return from the
cutCheck method output.

BE RESOURCEFUL

Modify the code in Listing 13-8 so that it uses a try-with-resources statement.

DON’T MISS A TRICK

Modify the code in Listing 13-11 so that it checks for sensible values in the two disk
files. Does the EmployeeInfo.txt file have a name and a double value? Does the
LegalInfo.txt file contain any text?

13.indd 384 Trim size: 7.375 in × 9.25 in February 22, 2022 8:44 PM

CHAPTER 14 Sharing Names among the Parts of a Java Program 385

14.indd 385	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:44	PM

Chapter 14
 Sharing Names among
the Parts of a Java
Program

 O ur family ’ s neighborhood elementary school has a yearly tradition: Each
spring, the students in fi fth grade take a daylong fi eld trip to Philadelphia.
When my son was in fi fth grade, I went along on the trip to help supervise 4

of the 20 children. While the 4 kids and I were touring the city ’ s historical sites,
I misplaced the preplanned itinerary. I didn ’ t know where we were supposed to go
next. So, what could I do? I did what any good Philadelphia native would do —
I ignored the itinerary and took the kids to the nearest cheap restaurant. I treated
them all to Philadelphia ’ s signature dish — the fat-laden, greasy, Philadelphia
cheesesteak.

 What could this story possibly have to do with Java? That ’ s simple. This chapter is
about access — how one class ’ s code may gain access to another class ’ s code. My
Philadelphia anecdote is about access, too. Shortly after the school trip, my son ’ s
fi fth grade teacher got wind of my shenanigans during the tour. Later, when my
daughter was in fi fth grade, the teacher said that I wasn’t welcome to take part in
that year ’ s junket to Philadelphia. The teacher had revoked my access to those
Philadelphia cheesesteaks.

 IN THIS CHAPTER

» Hiding names from other classes

» Exposing names to other classes

» Tweaking your code to fi nd the right
middle ground

386 PART 4 Smart Java Techniques

14.indd 386	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:44	PM

Access Modifiers
Object-oriented programming is big on hiding details. Programmers who write
one piece of code shouldn’t tinker with the details inside another programmer’s
code. It’s not a matter of security and secrecy — it’s a matter of safety. When you
hide details, you prevent the intricacies inside one piece of code from being twisted
and broken by another piece of code. Your code comes in nice, discrete, manage-
able lumps. You keep complexity to a minimum. You make fewer mistakes. You
save money. You help promote world peace.

Other chapters have plenty of examples of the use of private fields. When a field is
declared private, it’s hidden from all outside meddling. This hiding enhances
modularity, minimizes complexity, and so on.

Elsewhere in the annals of Java For Dummies, 8th Edition, are examples of things that
are declared public. Just like a public celebrity, a field that’s declared public is left
wide open. Plenty of people probably know what kind of toothpaste Elvis used, and
any programmer can reference a public field, even a field that’s not named Elvis.

In Java, the words public and private are called access modifiers. No doubt you’ve
seen fields and methods without access modifiers in their declarations. A method
or field of this kind is said to have default access. Many examples in this book use
default access without making a big fuss about it. That’s okay in some chapters,
but not in this chapter. In this chapter, I describe the nitty-gritty details about
default access.

And you can find out about yet another access modifier that isn’t used in any
example before this chapter. (At least, I don’t remember using it in any earlier
examples.) It’s the protected access modifier. Yes, this chapter covers some of
the slimy, grimy facts about protected access.

Classes and Their Members
With this topic, you can become all tangled up in terminology, so you need to
get some basics out of the way. (Most of the terminology you need comes from
Chapters 7 and 10, but it’s worth reviewing at the start of this chapter.) Consider
this chunk of Java code:

public class MyClass {

 int myField; //a field (a member)

CHAPTER 14 Sharing Names among the Parts of a Java Program 387

14.indd 387	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:44	PM

 void myMethod() { //a method (another member)

 int myOtherField; //a method-local variable (NOT a member)

 }

}

The comments on the right side of the code tell the whole story. The code has two
kinds of variables: fields and method-local variables. This chapter isn’t about
method-local variables. It’s about methods and fields.

Believe me, carrying around the phrase methods and fields wherever you go isn’t
easy. It’s much better to give these things one name and be done with it. That’s
why both methods and fields are called members of a class.

At this point, you make an important distinction. Think about Java’s public key-
word. You can put public in front of a member. For example, you can write

public static void main(String[] args) {

or

public amountInAccount = 50.22;

You can also put the public keyword in front of a class. For example, you can
write

public class Drawing {

 // Your code goes here

}

In Java, the public keyword has two slightly different meanings: one meaning for
the members of a class and another meaning for the classes themselves. Most of
this chapter deals with the meaning of public (and other such keywords) for
members. The last part of this chapter (appropriately titled “Access Modifiers for
Java Classes”) deals with the meaning for classes.

Public and Private Access for Members
Each field is declared in a particular class, belongs to that class, and is a member
of that class. The same is true of methods: Each method is declared in a particular
class, belongs to that class, and is a member of that class. Can you use a certain

388 PART 4 Smart Java Techniques

14.indd 388	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:44	PM

member name in a particular place in your code? To begin answering the question,
check whether that place is inside or outside the member’s class:

 » If	the	member	is	private,	only	code	that’s	inside	the	member’s	class	can	refer	
directly	to	that	member’s	name:

class SomeClass {

 private int myField = 10;

}

class SomeOtherClass {

 public static void main(String[] args) {

 var someObject = new SomeClass();

 System.out.println(someObject.myField); //This doesn't work.

 }

}

 » If	the	member	is	public,	any	code	running	in	the	same	Java	virtual	machine	
can	refer	directly	to	that	member’s	name.

class SomeClass {

 public int myField = 10;

}

class SomeOtherClass {

 public static void main(String[] args) {

 var someObject = new SomeClass();

 System.out.println(someObject.myField); //This works.

 }

}

Throughout this chapter, I make claims such as the one in the previous bullet. “If
a member is public, any code can refer directly to that member’s name.” In fact,
claims of this kind aren’t entirely true. In this chapter’s last section, I describe
Java’s module feature. When two classes reside in two different modules, the abil-
ity of one class to refer to the other class’s names doesn’t automatically apply. For
details, see the later section “From Classes Come Modules.”

Figures 14-1, 14-2, and 14-3 illustrate the ideas in a slightly different way.

CHAPTER 14 Sharing Names among the Parts of a Java Program 389

14.indd 389	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:44	PM

When you see this section’s examples, you may come to the wrong conclusion.
You may have this little conversation with yourself: “In the example with private
int myField, the code doesn’t work. But in the example with public int myField,
the code works. So, to have a better chance of getting my code to work, I should
make my fields public and avoid making them private. Right?”

FIGURE 14-1:
Several	classes	

and	their	
subclasses.

FIGURE 14-2:
The	range	of	code	
in	which	a	public	
field	or	method	

can	be	used	
(shaded).

390 PART 4 Smart Java Techniques

14.indd 390	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:44	PM

No, dear reader. That’s not right!

Public fields are easy to use and even easier to misuse. The best way to engineer
your code is to make access to each field as restrictive as possible. If a field doesn’t
absolutely need to be public, try making it private. If other classes have to get or
set the field’s values, provide public getter and setter methods. And that leads
nicely into the next paragraph

EVERYTHING’S BETTER WITH GETTERS AND SETTERS

In one of this section’s examples, you can’t write someObject.myField because,
in SomeClass, the variable myField is declared to be private. Fix this by adding
public getters and setters; be sure to modify the someObject.myField reference
appropriately.

Drawing on a frame
To make clear this business about access modifiers, you need an example or two.
In this chapter’s first example, almost everything is public. With public access,
you don’t have to worry about who-can-use-what.

The code for this first example comes in several parts. The first part, which is in
Listing 14-1, displays an ArtFrame. On the face of the ArtFrame is a Drawing. If all
the right pieces are in place, running the code of Listing 14-1 displays a window
like the one shown in Figure 14-4.

FIGURE 14-3:
The	range	of	code	
in	which	a	private	
field	or	method	

can	be	used	
(shaded).

CHAPTER 14 Sharing Names among the Parts of a Java Program 391

14.indd 391	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:44	PM

LISTING 14-1: Displaying a Frame

package com.example.chapter14;

import com.burdbrain.drawings.Drawing;

import com.burdbrain.frames.ArtFrame;

public class ShowFrame {

 public static void main(String[] args) {

 var artFrame = new ArtFrame(new Drawing());

 artFrame.setSize(200, 100);

 artFrame.setVisible(true);

 }

}

The code in Listing 14-1 creates a new ArtFrame object, sets the object’s size, and
makes the object visible. Notice that Listing 14-1 starts with two import declara-
tions. The first import declaration allows you to abbreviate the name Drawing
from the com.burdbrain.drawings package. The second import declaration
allows you to abbreviate the name ArtFrame from com.burdbrain.frames. You
purchased the use of these packages from Burd Brain Consulting, known world-
wide for its cheap, reliable software.

For a review of import declarations, see Chapter 4.

The detective in you may be thinking, “The author must have written more code
(code that I don’t see here) and put that code in packages that he named com.
burdbrain.drawings and com.burdbrain.frames.” And, indeed, you are correct. To
make Listing 14-1 work, I create something called a Drawing, and I’m putting all
my drawings in the com.burdbrain.drawings package. I also need an ArtFrame
class, and I’m putting all such classes in my com.burdbrain.frames package.

So, really, what’s a Drawing? Well, if you’re so eager to know, look at
Listing 14-2.

FIGURE 14-4:
An	ArtFrame.

392 PART 4 Smart Java Techniques

14.indd 392	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:44	PM

LISTING 14-2: The Drawing Class

package com.burdbrain.drawings;

import java.awt.Graphics;

public class Drawing {

 public int x = 40, y = 40, width = 40, height = 40;

 public void paint(Graphics g) {

 g.drawOval(x, y, width, height);

 }

}

You don’t have to know much about the code in Listing 14-2. In fact, you can get
by if you notice only two things:

 » The Drawing class belongs to a package named com.burdbrain.drawing.

 » The Drawing class and all of its members (x, y, width,	height, and paint)
are public.

You can think of the listing’s paint method as a black box because this chapter
isn’t really about painting things. The paint method in Listing 14-2 is only a
vehicle to help me describe access modifiers. Even so, you may be curious about
the listing’s Graphics class and g.drawOval call. If so, you can read the later side-
bar, “Draw on the screen (crayons not required).”

Putting a package in its place
Package names can include dots and underscores, but they can’t include other
punctuation characters. For example, you can name your package good.job or
go_away, but you can’t name it oh, my! or state-of-the-art,. A dot in a package
name separates one part of the name from another.

When you put a class into a package, you have to create a directory structure that
mirrors the package name’s parts. For example, the code in Listing 14-2 belongs
to the com.burdbrain.drawings package. To house that code, you must have
three directories: a com directory, a subdirectory of com named burdbrain, and a
subdirectory of burdbrain named drawings. The overall directory structure is
shown in Figure 14-5.

CHAPTER 14 Sharing Names among the Parts of a Java Program 393

14.indd 393	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:44	PM

Many IDEs build this directory structure for you. Here’s how it works:

 » You’re	a	programmer	at	the	illustrious	Burd	Brain	Consulting	company.	You	
start	creating	a	new	project.	You	ask	for	your	project’s	root	directory	to	be	
named	MyBigProject.

As	a	result,	the	IDE	creates	a	directory	named	MyBigProject	with	a	subdirec-
tory	that’s	typically	named	src.	Java	will	“know”	to	look	for	code	inside	that	
src	directory.	After	all,	the	name	src	is	short	for	source	code.

 » The	IDE	asks	you	for	a	package	name.	You	type	com.burdbrain.drawings.

As	a	result,	the	IDE	creates	the	com,	burdbrain,	and	drawings	directories.	
(Refer	to	Figure 14-5.)

 » You	finish	creating	the	project	and	start	writing	your	com.burdbrain.
drawings	package’s	code.	After	a	while,	you	select	New ➪  Package	(or	
something	like	that)	from	the	IDE’s	menu	bar.	You	ask	the	IDE	to	create	a	
second	package	named	com.burdbrain.frames.

As	a	result,	the	IDE	creates	the	frames	directory.	(Refer	to	Figure 14-5.)

 » You	start	writing	your	com.burdbrain.frames	package’s	code.

If you don’t have your code in the appropriate directories, you get a repulsive and
disgusting NoClassDefFoundError. Believe me, this error is never fun to see.
When you see this error, you get no clues to help you figure out where the missing
class is or where the compiler expects to find it. If you stay calm, you can figure
out all this stuff on your own. If you panic, you’ll poke around for hours. As a

FIGURE 14-5:
The	files	and	
directories	in	
your	project.

394 PART 4 Smart Java Techniques

14.indd 394	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:44	PM

seasoned Java programmer, I can remember plenty of scraped knuckles that came
from this heinous NoClassDefFoundError.

Making a frame
This chapter’s first three listings develop one multipart example. This section has
the last of three pieces in that example. This last piece isn’t essential for the
understanding of access modifiers, which is the main topic of this chapter. So, if
you want, you can glance quickly at Listing 14-3 and then move on. On the other
hand, if you want to know more about the Java Swing classes, read the sidebar
“Draw on the screen (crayons not required).”

LISTING 14-3: The ArtFrame Class

package com.burdbrain.frames;

import com.burdbrain.drawings.Drawing;

import javax.swing.JFrame;

import java.awt.Graphics;

public class ArtFrame extends JFrame {

 Drawing;

 public ArtFrame(Drawing drawing) {

 this.drawing = drawing;

 setTitle("Abstract Art");

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 }

 public void paint(Graphics g) {

 drawing.paint(g);

 }

}

MAKE IT AND BREAK IT

Create your own Java project using the code from Listings 14-1 through 14-3. Run
the code to make sure that it works. Then try to move the ArtFrame.java file to
the com/burdbrain/drawings folder. Does your IDE automatically change the
package declaration at the top of the ArtFrame.java file? If not, does your IDE
offer to make that change for you? Make sure that, with a mismatch between the
package declaration and the folder where the file resides, the application refuses
to run.

CHAPTER 14 Sharing Names among the Parts of a Java Program 395

14.indd 395	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:44	PM

DRAW ON THE SCREEN (CRAYONS
NOT REQUIRED)
Listings 14-2	and 14-3	have	all	the	gadgetry	you	need	for	putting	a	drawing	on	a	Java	
frame.	The	code	uses	several	names	from	the	Java	API	(application	programming	
interface).	I	explain	most	of	these	names	in	Chapters 9	and 10.

The	only	new	name	in	Listings 14-2	and 14-3	is	the	word	paint. The paint	method	in	
Listing 14-3	defers	to	another	paint	method —	the	paint	method	belonging	to	a	
Drawing	object.	(Refer	to	Listing 14-2.)	The	ArtFrame	object	creates	a	floating	window	
on	your	computer	screen.	What’s	drawn	in	that	floating	window	depends	on	whatever	
Drawing	object	was	passed	to	the	ArtFrame	constructor.

The paint	method	in	Listing 14-2	uses	a	standard	trick	for	making	things	appear	
onscreen.	The	parameter	g	in	Listing 14-2	is	called	a	graphics context.	In	particular,	g
stores	information	about	the	setting	in	which	Java	draws	pixels.	What’s	the	current	ink	
color?	What’s	the	current	text	font?	How	do	you	draw	an	oval?	The	graphics	context	
remembers	all	that	stuff.

To	make	things	appear,	all	you	do	is	draw	with	this	graphics	context,	and	whatever	you	
draw	is	eventually	rendered	on	the	computer	screen.

Here’s	a	little	more	detail:	In	Listing 14-2,	the	paint	method	takes	a	g	parameter.	This	g
parameter	refers	to	an	instance	of	the	java.awt.Graphics	class.	Because	a	Graphics
instance	is	a	context,	the	things	you	draw	with	this	context	are	eventually	displayed	on	
the	screen.	Like	all	instances	of	the	java.awt.Graphics	class,	this	context	has	several	
drawing	methods —	and	one	of	them	is	drawOval.	When	you	call	drawOval,	you	spec-
ify	a	starting	position	(x	pixels	from	the	left	edge	of	the	frame	and	y	pixels	from	the	top	
of	the	frame).	You	also	specify	an	oval	size	by	putting	numbers	of	pixels	in	the	width
and	height	parameters.	Calling	the	drawOval	method	puts	a	little	round	thing	into	the	
Graphics	context.	That	Graphics	context,	round	thing	and	all,	is	displayed	onscreen.

If	you	trace	the	flow	of	Listings 14-1	through	14-3,	you	may	notice	something	peculiar:	
The paint	methods	in	these	listings	never	seem	to	be	called.	Well,	for	many	of	Java’s	
window-making	components,	you	just	declare	a	paint	method	and	let	the	method	sit	
there	quietly	in	the	code.	When	the	program	runs,	the	computer	calls	the	paint
method	automatically.

That’s	what	happens	with	javax.swing.JFrame	objects.	In	Listing 14-3,	the	frame’s	
paint	method	is	called	from	behind	the	scenes.	Then	the	frame’s	paint	method	calls	
the	Drawing	object’s	paint	method,	which	in	turn	draws	an	oval	on	the	frame.	That’s	
how	you	get	the	stuff	you	see	earlier,	in	Figure 14-4.

396 PART 4 Smart Java Techniques

14.indd 396	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:44	PM

NOW IN LIVING COLOR

In Listing 14-2, I draw a circle on a frame. To fill the circle with green color, use
the Graphics class’s setColor and fillOval methods, like this:

g.setColor(Color.GREEN)

g.fillOval(x, y, width, height);

Values such as Color.GREEN belong to Color class in the java.awt package.

Create a frame that displays a traffic signal with its green, yellow, and red lights.

Default Access for Members
Your preferred software vendor, Burd Brain Consulting, has sold you two files:
Drawing.class and ArtFrame.class. According to Chapter 2, these .class files
are called bytecode files. You can use the declarations in the Drawing.class and
ArtFrame.class files, but you can’t modify these files. In addition, you can’t see
the code inside the original Drawing.java and ArtFrame.java files. Burd Brain
Consulting didn’t sell you the .java files, so you have to live with whatever hap-
pens to be inside the two .class files. (If only you’d purchased a copy of Java For
Dummies, 8th Edition, which has the code for these .java files in Listings 14-2
and 14-3!)

Anyway, you want to tweak the way the oval looks in Figure 14-4 so that it’s a bit
wider. To do this, you create a subclass of the Drawing class — DrawingWide —
and put it in Listing 14-4.

LISTING 14-4: A Subclass of the Drawing Class

package com.example.chapter14;

import com.burdbrain.drawings.Drawing;

import java.awt.Graphics;

public class DrawingWide extends Drawing {

 int width = 100, height = 30;

 public void paint(Graphics g) {

 g.drawOval(x, y, width, height);

 }

}

CHAPTER 14 Sharing Names among the Parts of a Java Program 397

14.indd 397	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:44	PM

To make use of the code in Listing 14-4, you change two of the lines in Listing 14-1.
(See the boldface code in Listing 14-5.)

LISTING 14-5: How to Change the ShowFrame Code

package com.example.chapter14;

// No longer needed: import com.burdbrain.drawings.Drawing;

import com.burdbrain.frames.ArtFrame;

public class ShowFrame {

 public static void main(String[] args) {

 var artFrame = new ArtFrame(new DrawingWide());

 artFrame.setSize(200, 100);

 artFrame.setVisible(true);

 }

}

Put Listings 14-2 through 14-5 into one project. When you run the code, you get
the frame shown in Figure 14-6.

At this point, your project has two drawing classes: the original Drawing class and
your new DrawingWide class. Similar as these classes may be, they live in two sep-
arate packages. That’s not surprising. The Drawing class, developed by your
friends at Burd Brain Consulting, lives in a package whose name starts with com.
burdbrain. But you developed DrawingWide on your own, so you shouldn’t put it in
a com.burdbrain package. Being a loyal employee of the Example Company, you
put your code in a com.example package.

Your DrawingWide class (refer to Listing 14-4) is a subclass of the original Draw-
ing class. (Refer to Listing 14-2.) In the subclass, you make reference to the origi-
nal class’s x and y fields. That’s okay because, in the Drawing class, those fields
are public. (See Figure 14-7.)

FIGURE 14-6:
Another	art	

frame.

398 PART 4 Smart Java Techniques

14.indd 398	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:44	PM

One way or another, your DrawingWide subclass compiles and runs as planned.
You go home, beaming with the confidence of having written useful, working
code.

Switching to Default access
If you’re reading these paragraphs in order, you know that the last example ends
happily. The code in Listing 14-4 runs like a charm. Everyone, including my won-
derful editor, Paul Levesque, is happy.

But wait! Do you ever wonder what life would be like if you hadn’t chosen that
particular career, dated that certain someone, or read that certain For Dummies
book? In this section, I roll back the clock a bit to show you what would have hap-
pened if one word had been omitted from the code in Listing 14-2. What if the
people at Burd Brain Consulting hadn’t made the Drawing class’s fields public?
(See Listing 14-6.)

LISTING 14-6: Fields with Default Access

package com.burdbrain.drawings;

import java.awt.Graphics;

public class Drawing {

 int x = 40, y = 40, width = 40, height = 40;

 public void paint(Graphics g) {

 g.drawOval(x, y, width, height);

 }

}

FIGURE 14-7:
The	range	of	code	
in	which	x	and	y	

can	be	used	
(shaded).

CHAPTER 14 Sharing Names among the Parts of a Java Program 399

14.indd 399	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:44	PM

With this change in the Drawing class, the DrawingWide code in Listing 14-4 no
longer works. Instead, you see the following error messages:

x is not public in com.burdbrain.drawings.Drawing;

cannot be accessed from outside package

g.drawOval(x, y, width, height);

 ^

y is not public in com.burdbrain.drawings.Drawing;

cannot be accessed from outside package

g.drawOval(x, y, width, height);

 ^

In Java, the default access for a member of a class is package-wide access. A mem-
ber declared without the word public, private, or protected in front of it is accessible
only in the package in which its class resides. Figures 14-8 and 14-9 illustrate the
point.

FIGURE 14-8:
The	range	of	code	
in	which	a	default	
field	or	method	

can	be	used	
(shaded).

FIGURE 14-9:
The	range	of	code	
in	which	x	and	y	

can	be	used	
(shaded).

400 PART 4 Smart Java Techniques

14.indd 400	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:44	PM

The DrawingWide class in Listing 14-4 is a subclass of the Drawing class in
Listing 14-6, so you’d guess that DrawingWide can explicitly refer to the Drawing
class’s x and y fields. But the Drawing class’s x and y fields have default access,
and DrawingWide is in a different package. Sorry! It just doesn’t work.

The same story about default access holds true for methods as well as fields. After
all, the access rules — default and otherwise — apply to all members of classes.

The access rules that I describe in this chapter don’t apply to method-local vari-
ables. A method-local variable can be accessed only within its own method. For
the rundown on method-local variables, see Chapter 10.

The names of packages, with all their dots and subparts, can be slightly mislead-
ing. For example, you can create four-part package names. Imagine that you have
two packages — one named com.burdbrain.drawings, and another named com.
burdbrain.drawings.rectangles, The packages’ names are similar, but that
doesn’t make one package part of the other. To import these packages, you need
two separate lines:

import com.burdbrain.drawings;

import com.burdbrain.drawings.rectangles;

What’s more, these two packages don’t share their default members with each
other. They’re two different packages.

The next few sections have examples of situations in which default access yields
good results.

Accessing default members
within a package
As a child, I loved receiving things in the mail. As an adult, I still love it. At worst,
I get junk mail that I can throw directly into the trash. At best, I get something I
can use, a new toy, or an item somebody sent especially for me.

Well, if you like receiving mail, today is your lucky day. Somebody from Burd
Brain Consulting sent you a subclass of the Drawing class. It’s essentially the same
as the code in Listing 14-4. The only difference is that this new DrawingWideBB
class lives inside the com.burdbrain.drawings package. The code is shown in
Listing 14-7.

CHAPTER 14 Sharing Names among the Parts of a Java Program 401

14.indd 401	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:44	PM

LISTING 14-7: Drawing a Wide Oval

package com.burdbrain.drawings;

import java.awt.Graphics;

public class DrawingWideBB extends Drawing {

 int width = 100, height = 30;

 public void paint(Graphics g) {

 g.drawOval(x, y, width, height);

 }

}

To run the code in Listing 14-7, you have to change two lines in Listing 14-1. (See
Listing 14-8.)

LISTING 14-8: Another Change to the ShowFrame Code

package com.example.chapter14;

import com.burdbrain.drawings.DrawingWideBB;

import com.burdbrain.frames.ArtFrame;

public class ShowFrame {

 public static void main(String[] args) {

 var artFrame = new ArtFrame(new DrawingWideBB());

 artFrame.setSize(200, 100);

 artFrame.setVisible(true);

 }

}

Try running Listing 14-8 along with Listings 14-3, 14-6, and 14-7. The fields x
and y have default access in Listing 14-6, yet everything works just fine. The rea-
son? It’s because Drawing and DrawingWideBB are in the same package. Look back
at Figure 14-8 and notice the shaded region that spans across an entire package.
The code in the DrawingWideBB class has every right to use the x and y fields,
which are defined with default access in the Drawing class because Drawing
and DrawingWideBB are in the same package. (Compare Figure 14-10 with
Figure 14-9.)

402 PART 4 Smart Java Techniques

14.indd 402	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:44	PM

Protected Access for Members
When I was first getting to know Java, I thought the word protected meant “nice
and secure” or something like that. “Wow, that field is protected. It must be hard
to get at.” Well, this notion turned out to be wrong. In Java, a member that’s pro-
tected is less hidden, less secure, and available for use in more classes than one
that has default access. In other words, protected access is more permissive than
default access. For me, the terminology is misleading. But that’s the way it is.

A class in one package and
a subclass in another
Think of protected access this way. You start with a field that has default access
(a field without the word public, private, or protected in its declaration). That
field can be accessed only inside the package in which it lives. Now add the word
protected to the front of the field’s declaration. Suddenly, classes outside that
field’s package have some access to the field. You can now reference the field from
a subclass (of the class in which the field is declared). You can also reference the
field from a sub-subclass, a sub-sub-subclass, and so on. Any descendant class
will do. If you want evidence, see Listing 14-9.

LISTING 14-9: Protected Fields

package com.burdbrain.drawings;

import java.awt.Graphics;

public class Drawing {

 protected int x = 40, y = 40, width = 40, height = 40;

FIGURE 14-10:
The	range	of	

code	in	which	x	
and	y	can	be	

used	(shaded).

CHAPTER 14 Sharing Names among the Parts of a Java Program 403

14.indd 403	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:44	PM

 public void paint(Graphics g) {

 g.drawOval(x, y, width, height);

 }

}

Test the code in Listing 14-9 along with Listings 14-3 through 14-5. The Drawing-
Wide class (refer to Listing 14-4) references the x and y fields that are defined in
its parent Drawing class (refer to Listing 14-9.) That’s okay, even though Draw-
ingWide isn’t in the same package as the Drawing class. It’s okay because the x
and y fields are protected in the Drawing class.

Compare Figures 14-8 and 14-11. Notice the extra bit of shading in Figure 14-11. A
subclass can access a protected member of a class, even if that subclass belongs to
some other package.

Figure 14-12 shows the relationships between the DrawingWide class (refer to
Listing 14-4), the DrawingWideBB class (refer to Listing 14-7), and the Drawing
class in Listing 14-9.

Do you work with a team of programmers? Do people from outside your team use
their own team’s package names? If so, when they use your code, they may make
subclasses of the classes you’ve defined. This is where protected access comes in
handy. Use protected access when you want people from outside your team to
make direct references to your code’s fields or methods.

FIGURE 14-11:
The	range	of	code	

in	which	a	
protected	field	or	
method	can	be	
used	(shaded).

404 PART 4 Smart Java Techniques

14.indd 404	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:44	PM

For the members of a class, private access is the most restrictive. Default access is
a bit less restrictive, and then comes protected access, and finally, public access,
which is the least restrictive.

Two classes in the same package
Those people from Burd Brain Consulting are sending you one piece of software
after another. This time, they’ve sent an alternative to the ShowFrame class — the
class in Listing 14-1. This new ShowFrameWideBB class displays a wider oval (how
exciting!), but it does this without creating a DrawingWide class. Instead, the new
ShowFrameWideBB code creates a Drawing instance and then changes the value of
the instance’s width and height fields. The code is shown in Listing 14-10. You
can run Listing 14-10 along with Listings 14-3 and 14-9.

LISTING 14-10: Burd Brain Consulting Draws a Wide Oval

package com.burdbrain.drawings;

import com.burdbrain.frames.ArtFrame;

class ShowFrameWideBB {

 public static void main(String[] args) {

 var drawing = new Drawing();

 drawing.width = 100;

 drawing.height = 30;

 var artFrame = new ArtFrame(drawing);

 artFrame.setSize(200, 100);

 artFrame.setVisible(true);

 }

}

FIGURE 14-12:
The	range	of	

code	in	which	x	
and	y	can	be	

used	(shaded).

CHAPTER 14 Sharing Names among the Parts of a Java Program 405

14.indd 405	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:44	PM

Here’s the story. This ShowFrameWideBB class in Listing 14-10 is in the same pack-
age as the Drawing class. (Refer to Listing 14-9.) Both classes are in the com.
burdbrain.drawings package. But ShowFrameWideBB isn’t a subclass of the Draw-
ing class.

Now imagine compiling ShowFrameWideBB with the Drawing class. The Show-
FrameWideBB class makes explicit reference to the Drawing class’s width and
height fields. So, what happens?

Well, everything goes smoothly because protected members (such as width and
height, in Listing 14-9) are available in two (somewhat unrelated) places. Look
again at Figure 14-11. A protected member is available to subclasses outside the
package, but the member is also available to code (subclasses or not) within the
member’s package. Figure 14-13 shows the relationship among several classes,
including the DrawingWideBB class (refer to Listing 14-10) and the Drawing class
in Listing 14-9.

The real story about protected access is one step more complicated than the story
I describe in this section. The Java Language Specification (https://docs.
oracle.com/javase/specs) mentions a hair-splitting point about code being
responsible for an object’s implementation. When you’re first figuring out how to
program in Java, don’t worry about this point. Wait until you’ve written many Java
programs. Then, when you stumble upon a variable has protected access
error message, you can start worrying. Better yet, skip the worrying and take a
careful look at the protected-access section in the Java Language Specification.

For info about the Java Language Specification, visit Chapter 3.

FIGURE 14-13:
The	range	of	code	

in	which	x,	y,	
width,	and	height	

can	be	used	
(shaded).

406 PART 4 Smart Java Techniques

14.indd 406	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:44	PM

Here are some things for you to try:

BUY THIS BOOK

A Book has a title (a String) and an author (an instance of the Author class). An
Author has a name (a String) and an ArrayList of Book instances. A separate
class contains a main method that creates several books and several authors. The
main method also displays information about the books and authors.

Put each class in its own package. Wherever possible, make your fields private,
and provide public getters and setters.

NAME THAT TUNE

An Item has a name (a String) and an artist (an instance of the Artist class).
Each Artist instance has a name (a String) and an ArrayList of items.

The Song and Album classes are subclasses of the Item class. Each Song instance
has a genre (a value from an enum named Genre). The values of Genre are ROCK,
POP, BLUES, and CLASSICAL. Each Album instance has an ArrayList of songs.

Finally, a Playlist has an ArrayList of items.

Create these classes. Devise a plausible scenario in which these classes would be
spread over more than one package. In a separate class, construct instances of
each class, and display information about these instances on the screen.

WHAT’S MINE IS YOURS

The following four classes live in four different .java files. Without typing these
classes in an IDE’s editor, decide which statements will cause the IDE to display
error messages. For each such statement, decide on the least permissive access
change that would eliminate the error message:

// THIS CODE DOES NOT COMPILE:

package com.mypackage.things;

import com.yourpackage.stuff.Stuff;

import com.yourpackage.stuff.morestuff.MoreStuff;

public class Things {

 protected int i = 0;

 private int j = 0;

 int k = 0;

CHAPTER 14 Sharing Names among the Parts of a Java Program 407

14.indd 407	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:44	PM

 public static void main(String[] args) {

 var stuff = new Stuff();

 System.out.println(stuff.i);

 var moreStuff = new MoreStuff();

 System.out.println(moreStuff.i);

 }

}

package com.yourpackage.stuff;

import com.yourpackage.stuff.morestuff.MoreStuff;

public class Stuff {

 protected int i = 0;

 void aMethod() {

 new MoreStuff().myMethod();

 }

}

package com.yourpackage.stuff.morestuff;

import com.mypackage.things.Things;

public class MoreStuff extends Things {

 protected void myMethod() {

 System.out.println(i);

 }

}

package com.mypackage.things;

public class MoreThings extends Things {

 public void anotherMethod() {

 System.out.println(i);

 System.out.println(j);

 System.out.println(k);

 }

}

408 PART 4 Smart Java Techniques

14.indd 408	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:44	PM

Access Modifiers for Java Classes
Maybe the things you read about access modifiers for members make you a tad
dizzy. After all, member access in Java is a complicated subject with lots of plot
twists and cliffhangers. Well, the dizziness is over. Compared with the saga for
fields and methods, the access story for classes is rather simple.

A class can be either public or nonpublic. If you see something like

public class Drawing

you’re looking at the declaration of a public class. But if you see plain old

class OnlyMyDrawing

the class that’s being declared isn’t public.

Public classes
If a class is public, you can refer to the class from anywhere in your code. Of
course, some restrictions apply. You must obey all the rules in this chapter’s
“Putting a package in its place” section. You must account for the code’s modular
structure. (See this chapter’s “From Classes Come Modules” section, later on.)
You must also refer to a packaged class properly. For example, in Listing 14-1, you
can write

import com.burdbrain.drawings.Drawing;

import com.burdbrain.frames.ArtFrame;

...

var artFrame = new ArtFrame(new Drawing());

or you can do without the import declarations and write

var artFrame =

 new com.burdbrain.frames.ArtFrame(new com.burdbrain.drawings.Drawing());

One way or another, your code must acknowledge that the ArtFrame and Drawing
classes are in named packages.

CHAPTER 14 Sharing Names among the Parts of a Java Program 409

14.indd 409	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:44	PM

Nonpublic classes
If a class isn’t public, you can refer to the class only from code within the class’s
package.

I tried it. First, I went back to Listing 14-2 and deleted the word public. I turned
public class Drawing into plain old class Drawing, like this:

package com.burdbrain.drawings;

import java.awt.Graphics;

class Drawing {

 public int x = 40, y = 40, width = 40, height = 40;

 public void paint(Graphics g) {

 g.drawOval(x, y, width, height);

 }

}

Then I compiled the code in Listing 14-7. Everything was peachy because
Listing 14-7 contains the following lines:

package com.burdbrain.drawings;

public class DrawingWideBB extends Drawing

Because both pieces of code are in the same com.burdbrain.drawings package,
access from DrawingWideBB back to the nonpublic Drawing class was no problem.

But then I tried to compile the code in Listing 14-3. The code in Listing 14-3
begins with

package com.burdbrain.frames;

That code isn’t in the com.burdbrain.drawings package. So, when the computer
reached the line

Drawing drawing;

from Listing 14-3, the computer went poof! To be more precise, the computer dis-
played this message:

com.burdbrain.drawings.Drawing is not public in com.burdbrain.drawings;

cannot be accessed from outside package

410 PART 4 Smart Java Techniques

14.indd 410	Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:44	PM

Well, I guess I got what was coming to me.

Things are never as simple as they seem. The rules I describe in this section apply
to almost every class in this book. But Java has fancy things called inner classes,
and inner classes follow a different set of rules. Fortunately, a typical novice pro-
grammer has little contact with inner classes. The only inner classes in this book
are in Chapter 16 (and a few inner classes disguised as enum types). So for now, you
can live quite happily with the rules that I describe in this section.

From Classes Come Modules
The cosmos is made of solar systems, and these solar systems combine to form
galaxies. But the story doesn’t end there. The galaxies group into galaxy clusters,
which in turn group into superclusters. The same is true of Java. Fields and meth-
ods form classes, which combine to form packages, and the packages combine to
form modules.

Most of the java and javax packages in this book’s examples live in a module
named java.base, but a few packages live in other modules. For example, the
java.awt and javax.swing packages (imported in Listing 14-3) belong to a mod-
ule named java.desktop.

As it is with packages, you can create your own modules. When you do, you build
a wall around that module’s code. Public or not, you can’t access code from other
peoples’ modules, and other peoples’ modules can’t access your code.

Fortunately, the wall around your code is penetrable. Your module’s code can
explicitly make its packages available to the code in other modules, and the other
modules can explicitly request access to your module’s code.

I’m already way over the page limit for this chapter. For more information about
modules, visit https://openjdk.java.net/projects/jigsaw/quick-start.

CHAPTER 15 Fancy Reference Types 411

15.indd 411 Trim size: 7.375 in × 9.25 in February 22, 2022 8:43 PM

Chapter 15
 Fancy Reference Types

 I n previous chapters, you may have read about the things that full-time and
part-time employees have in common. In particular, both the FullTimeEmployee
and PartTimeEmployee classes can extend the Employee class. That ’ s nice to

know if you ’ re running a small business, but what if you ’ re not running a busi-
ness? What if you ’ re taking care of house pets?

 This chapter explores the care of house pets and other burning issues.

 Java ’ s Types
 Chapter 4 explains that Java has these two kinds of types:

» Primitive types: Java has a total of eight primitive types: The four you use
most often are int , double , boolean , and char .

» Reference types: Java ’ s API has thousands of reference types, and, when you
write a Java program, you defi ne new reference types.

 Java ’ s String type is a reference type. So are Java ’ s Scanner , JFrame ,
ArrayList , and File types. My DummiesFrame is a reference type. In
Chapter 8 , you create your own Employee , FullTimeEmployee , and
PartTimeEmployee reference types. Your fi rst You ’ ll love Java! program has a
main method inside of a class, and that class is a reference type. You may not
realize it, but every array belongs to a reference type.

 IN THIS CHAPTER

» Writing and using a Java interface

» Working with abstract classes

412 PART 4 Smart Java Techniques

15.indd 412 Trim size: 7.375 in × 9.25 in February 22, 2022 8:43 PM

In Java, reference types are everywhere. But until this point in the book, the only
reference types you see are classes and arrays. Java has other kinds of reference
types, and this chapter explores the possibilities.

The Java Interface
Think about a class (such as an Employee class) and a subclass (such as a Full
TimeEmployee class). The relationship between a class and its subclass is one of
inheritance. In many real-life families, a child inherits assets from a parent. And
in Chapter 8, the FullTimeEmployee class inherits name and jobTitle fields from
the Employee class. That’s the way it works.

But consider the relationship between an editor and an author. The editor says,
“By signing this contract, you agree to submit a completed manuscript by the
ninth of January.” Despite any excuses that the author gives before the deadline
date (and, believe me, authors make plenty of excuses), the relationship between
the editor and the author is one of obligation. The author agrees to take on certain
responsibilities; and, in order to continue being an author, the author must fulfill
those responsibilities. (By the way, there’s no subtext in this paragraph — none
at all.)

Now consider Barry Burd. Who? Barry Burd — that guy who writes Java For
Dummies and certain other For Dummies books (all from Wiley Publishing). He’s a
college professor, and he’s also an author. You want to mirror this situation in a
Java program, but Java doesn’t support multiple inheritance. You can’t make
Barry extend both a Professor class and an Author class at the same time.

Fortunately for Barry, Java has interfaces. An interface is a kind of reference type.
In fact, the code to create an interface looks a lot like the code to create a class:

public interface MyInterfaceName {

 // blah, blah, blah

}

An interface is a lot like a class, but an interface is different. (What else is new?
A cow is like a planet, but it’s quite a bit different. Cows moo; planets hang in
space.)

Anyway, when you read the word interface, you can start by thinking of a class.
Then, in your head, note that

CHAPTER 15 Fancy Reference Types 413

15.indd 413 Trim size: 7.375 in × 9.25 in February 22, 2022 8:43 PM

 » A class can extend only one parent class, but a class can implement many
interfaces.

 » A parent class is a bunch of stuff that a class inherits. But an interface is a
bunch of stuff that an implementing class is obligated to provide.

What about poor Barry? He can be an instance of a Person class with all the fields
that any person has — name, address, age, height, weight, and so on. He can also
implement more than one interface:

 » Because Barry implements a Professor interface, he must have methods
named teachStudents, adviseStudents, and gradePapers.

 » Because he implements an Author interface, he must have methods named
writeChapters, reviewChapters, answerEmail, and so on.

Declaring two interfaces
Imagine two different kinds of data. One is a column of numbers that comes from
an array. Another is a table (with rows and columns) that comes from a disk file.
What might these two things have in common?

I don’t know about you, but I may want to display both kinds of data. So, I can
write code to create a contract. The contract says, “Whoever signs this contract
agrees to have a display method.” In Listing 15-1, I declare a Displayable
interface.

LISTING 15-1: Behold! An Interface!

package com.example.data;

public interface Displayable {

 void display();

}

Wait just a darn minute! The display method declaration in Listing 15-1 has a
header but no body. No curly braces appear after display() — only a lonely-
looking semicolon. What’s going on here?

414 PART 4 Smart Java Techniques

15.indd 414 Trim size: 7.375 in × 9.25 in February 22, 2022 8:43 PM

To answer the question, I’ll let the code in Listing 15-1 speak for itself. If the code
in the listing could talk, here’s what the code would say:

“As an interface, my display method has a header but no body. A class that claims
to implement me (the Displayable interface) must provide (either directly or
indirectly) a body for the display method. That is, a class that claims to implement
Displayable must, in one way or another, provide its own code of the following
kind:

public void display() {

 // Some statements go here

}

To implement me (the interface in Listing 15-1), the new code’s display method
must take no parameters and return nothing (also known as void).”

The Displayable interface is like a legal contract. The Displayable interface
doesn’t tell you what an implementing class already has. Instead, the Display
able interface tells you what an implementing class must declare in its own code.

In addition to displaying columns of numbers and tables, I may also want to sum-
marize both kinds of data. How do you summarize a column of numbers? I don’t
know. Maybe you display the total of all the numbers. And how do you summarize
a table? Maybe you display the table’s column headings. How you summarize the
data isn’t my concern. All I care about is that you have some way to summarize
the data.

So, I create code containing a second Java contract. The second contract says,
“Whoever signs this contract agrees to have a summarize method.” In Listing 15-2,
I declare a Summarizable interface.

LISTING 15-2: Another Interface

package com.example.data;

public interface Summarizable {

 String summarize();

}

Any class claiming to implement the Summarizable interface must, by hook or by
crook, provide an implementation of a summarize method — a method with no
parameters that returns a String value.

CHAPTER 15 Fancy Reference Types 415

15.indd 415 Trim size: 7.375 in × 9.25 in February 22, 2022 8:43 PM

In the declaration of an interface, a particular method might have no body of its
own. A method with no body is called an abstract method.

An interface’s abstract method is automatically public whether you use the word
public or not. For example, in Listing 15-2, the line

String summarize();

has the same meaning as

public String summarize();

If you enjoy typing the word public, feel free to do so. If not, leave that word out.

Implementing interfaces
Listing 15-3 implements the Displayable and Summarizable interfaces and pro-
vides bodies for the display and summarize methods.

LISTING 15-3: Implementing Two Interfaces

package com.example.data;

public class ColumnOfNumbers implements Displayable, Summarizable {

 double numbers[];

 public ColumnOfNumbers(double[] numbers) {

 this.numbers = numbers;

 }

 @Override

 public void display() {

 for (double d : numbers) {

 System.out.println(d);

 }

 }

 @Override

 public String summarize() {

 double total = 0.0;

 for (double d : numbers) {

 total += d;

 }

 return Double.toString(total);

 }

}

416 PART 4 Smart Java Techniques

15.indd 416 Trim size: 7.375 in × 9.25 in February 22, 2022 8:43 PM

When you implement an interface, you provide bodies for the interface’s abstract
methods.

Java’s compiler is serious about the use of the implements keyword. If you remove
either of the two method declarations from Listing 15-3 without removing the
implements clause, you see some frightening error messages in your IDE’s editor.
Java expects you to honor the contract that the implements keyword implies. If
you don’t honor the contract, Java refuses to compile your code. So there!

You can use Java’s error messages to your advantage. Start by typing some code
containing the clause implements Displayable, Summarizable. Because of the
implements clause, the editor displays an error mark and lists the names of the
methods that you should have declared but didn’t. In this section’s example, those
method names are display and summarize. After a few more mouse clicks, the
IDE generates simple display and summarize methods for you.

Listing 15-4 contains another class that implements the Displayable and
Summarizable interfaces.

LISTING 15-4: Another Class Implements the Interfaces

package com.example.data;

import java.io.File;

import java.io.FileNotFoundException;

import java.util.ArrayList;

import java.util.Scanner;

public class Table implements Displayable, Summarizable {

 Scanner diskFile;

 ArrayList<String> lines = new ArrayList<>();

 public Table(String fileName) {

 try {

 diskFile = new Scanner(new File(fileName));

 } catch (FileNotFoundException e) {

 e.getMessage();

 }

 while (diskFile.hasNextLine()) {

 lines.add(diskFile.nextLine());

 }

 }

CHAPTER 15 Fancy Reference Types 417

15.indd 417 Trim size: 7.375 in × 9.25 in February 22, 2022 8:43 PM

 @Override

 public void display() {

 for (String line : lines) {

 System.out.println(line);

 }

 }

 @Override

 public String summarize() {

 return lines.get(0);

 }

}

In Listings 15-3 and 15-4, notice several uses of the @Override annotation.
Chapter 8 introduces the use of the @Override annotation. Normally, you use
@Override to signal the replacement of a method that’s already been declared in
a superclass. But from Java 6 onward, you can also use @Override to signal an
interface method’s implementation. That’s what I do in Listings 15-3 and 15-4.

Putting the pieces together
The code in Listing 15-5 makes use of all the stuff in Listings 15-1 to 15-4.

LISTING 15-5: Getting the Most out of Your Interfaces

package com.example.data;

public class Main {

 public static void main(String[] args) {

 double numbers[] = {21.7, 68.3, 5.5};

 var column = new ColumnOfNumbers(numbers);

 displayMe(column);

 summarizeMe(column);

 Table table = new Table("MyTable.txt");

 displayMe(table);

 summarizeMe(table);

 }

(continued)

418 PART 4 Smart Java Techniques

15.indd 418 Trim size: 7.375 in × 9.25 in February 22, 2022 8:43 PM

 static void displayMe(Displayable displayable) {

 displayable.display();

 System.out.println();

 }

 static void summarizeMe(Summarizable summarizable) {

 System.out.println(summarizable.summarize());

 System.out.println();

 }

}

With the MyTable.txt file shown in Figure 15-1, the output from Listing 15-5 is
shown in Figure 15-2.

Feast your eyes on the displayMe method in Listing 15-5. What kind of parameter
does the displayMe method take? Is it a ColumnOfNumbers? No. Is it a Table? No.

The displayMe method knows nothing about ColumnOfNumbers instances or
Table instances. All the displayMe method knows about is things that implement
Displayable. That’s what the displayMe method’s parameter list says. When you
hand something that implements the Displayable interface to the displayMe
method, the displayMe method knows what it can do. The displayMe method can
call the parameter’s display method, because that parameter object is guaranteed
to have a display method.

FIGURE 15-1:
The MyTable.txt

file.

FIGURE 15-2:
Running the code

in Listing 15-5.

LISTING 15-5: (continued)

CHAPTER 15 Fancy Reference Types 419

15.indd 419 Trim size: 7.375 in × 9.25 in February 22, 2022 8:43 PM

The same kind of thing is true about the summarizeMe method in Listing 15-5.
How do you know that you can call summarizable.summarize() inside the body of
the summarizeMe method? You can make this call because summarizable has to
have a summarize() method. The rules about Java interfaces guarantee it.

That’s the real power behind Java’s interfaces.

CONTROL ALT DELETE

In this section, the ColumnOfNumbers and Table classes implement the Display
able and Summarizable interfaces. What about a Deletable interface? Any class
implementing the Deletable interface must have its own delete method.

Create the DeletableColumnOfNumbers class — a subclass of the ColumnOfNumbers
class. In addition to all the things ColumnOfNumbers does, the DeletableColumnOf
Numbers class also implements the Deletable interface. When you delete a col-
umn of numbers, you set the values of each of its entries to 0.0.

TWO KINDS OF METHODS
Inside an interface declaration, any method without a body is called an abstract method.
If you run Java 8 or later, you can also put methods with bodies inside an interface dec-
laration. A method with a body is called a default method. In an interface’s code, each
default method declaration starts with the default keyword:

 public interface MyInterface {

 void method1();

 default void method2() {

 System.out.println("Hello!");

 }

 }

In MyInterface, method1 is an abstract method, and method2 is a default method. If
you create a class that implements MyInterface, like so:

 class MyClass implements MyInterface

then your newly declared MyClass must declare its own method1 and provide a body
for method1. Optionally, your MyClass may declare its own method2. If MyClass
doesn’t declare its own method2, then MyClass inherits a method2 body from
MyInterface.

420 PART 4 Smart Java Techniques

15.indd 420 Trim size: 7.375 in × 9.25 in February 22, 2022 8:43 PM

Create the DeletableTable class — a subclass of the Table class. In addition to all
the things Table does, the DeletableTable class also implements the Deletable
interface. When you delete a table, you remove all rows except the first (table
heading) row. (Hint: If you call the lines list’s remove method starting from the 1
row and going to the lines.size() row, you won’t be happy with the results.
A call to the remove method modifies the list immediately, and that can mess up
your loop.)

Abstract Classes
Is there anything you can say that applies to animals of every kind? If you’re a
biologist, maybe there is. But if you’re a programmer, you can say very little. If
you don’t believe me, consider the wondrous variety of life on planet earth:*

 » A gelada monkey spends the day on a grassy plateau. But at night the gelada
goes for a snooze on the rocky, perilous edge of a mountain cliff. With any
luck, the sleeping monkey doesn’t toss and turn much.

 » A Pompeii worm lives in an underwater tube. The temperature by the worm’s
head is about 72 degrees Fahrenheit (22 degrees Celsius). But at the other
end of the worm, the water temperature is normally 176 degrees Fahrenheit
(80 degrees Celsius). If you know one of these worms personally, don’t buy
any warm socks for it.

 » A sea squirt lives part of its life as an animal. At a certain point in its life cycle,
the sea squirt attaches itself permanently to a rock and then digests its own
brain, effectively turning itself into a plant.

 » A tiny water bear can survive 12 days (and maybe more) with no atmosphere
in the vacuum of outer space. Even the cosmic radiation in outer space
doesn’t harm a water bear. In 2017, a team of scientists concluded that

See www.smithsonianmag.com/sciencenature/ethiopiasexoticmonkeys147893502

https://serc.carleton.edu/microbelife/topics/marinesymbiosis/pompeii.html

www.psychologytoday.com/blog/choke/201207/howhumanslearnlessons

theseasquirt

www.esa.int/Our_Activities/Human_Spaceflight/Research/Tiny_animals_survive_

exposure_to_space

www.nature.com/articles/s4159801705796x

CHAPTER 15 Fancy Reference Types 421

15.indd 421 Trim size: 7.375 in × 9.25 in February 22, 2022 8:43 PM

water bears would survive most mass extinction events, including nearby
supernova blasts and large asteroid impacts. So that’s what I want to be in
my next life — a water bear.

With so much biological diversity on our planet, the only thing I can say that
applies to every animal is that every animal has a certain weight (measured in
pounds or kilograms), and every animal makes (or, possibly, doesn’t make) a
characteristic sound. Listing 15-6 has the complete scoop.

LISTING 15-6: What a Programmer Knows about Animals

package com.example.species;

public class Animal {

 double weight;

 String sound;

 public Animal(double weight, String sound) {

 this.weight = weight;

 this.sound = sound;

 }

}

While I typed the code for the Animal class, I had to stop and correct several typing
mistakes. The mistakes weren’t really my fault: My cat was walking back and
forth across my computer keyboard. And that brings me from the subject of all
animals to the topic of house pets.

A house pet is an animal. But every house pet has a name — like Fluffy, Spot, or
Princess. And every house pet has a recommended routine for taking care of
the pet.

Of course, the care routines differ greatly from one kind of pet to another. If I had
a dog, I’d have to walk the dog. But I’d never try to walk a cat. In fact, I don’t even
let our cat out of the house. So when I define my HousePet class, I want to be
vague about pet care instructions. And in Java, a class that’s somewhat vague is
called an abstract class. Listing 15-7 has an example.

422 PART 4 Smart Java Techniques

15.indd 422 Trim size: 7.375 in × 9.25 in February 22, 2022 8:43 PM

LISTING 15-7: What It Means to Be a House Pet

package com.example.species;

public abstract class HousePet extends Animal {

 String name;

 public HousePet(String name, double weight, String sound) {

 super(weight, sound);

 this.name = name;

 }

 abstract public void howToCareFor();

 public void about() {

 System.out.print(name + " weighs " + weight + " pounds");
 System.out.print(sound != null ? (" and says '" + sound + "'") : "");
 System.out.println(".");

 }

}

On the first line of Listing 15-7, the keyword abstract tells Java that HousePet
is an abstract class. Because HousePet is an abstract class, HousePet can have an
abstract method. And in Listing 15-7, howToCareFor is an abstract method.
An abstract method has a header but no body. In an abstract method’s declaration,
there are no curly braces — only a semicolon where curly braces would normally
appear.

So, when you try to execute the howToCareFor method, what happens? Well, you
can’t really execute the howToCareFor method in Listing 15-7. In fact, you can’t
even create an instance of the abstract class declared in Listing 15-7. The follow-
ing lines of code are illegal:

// VERY BAD CODE:

HousePet myPet = new HousePet("Boop", 12.0, "Meow");

var yourPet = new HousePet("Pawz", 22.5, "Woof");

An abstract class has no life of its own. To use an abstract class, you have to create
an ordinary (non-abstract) class that extends the abstract class. In the ordinary
class, all methods have bodies. So everything works out.

Before you walk away from Listing 15-7, notice the super(weight, sound) call in
that listing. As in Chapter 9, the keyword super triggers a call to the superclass’s
constructor. In Listing 15-7, calling super(weight, sound) is like calling the
Animal(double weight, String sound) constructor from Listing 15-6. The con-
structor assigns values to the new object’s weight and sound fields.

CHAPTER 15 Fancy Reference Types 423

15.indd 423 Trim size: 7.375 in × 9.25 in February 22, 2022 8:43 PM

Caring for your pet
Here’s a quotation from the book Java For Dummies, 8th Edition:

"To use an abstract class, you have to create an ordinary (non-abstract) class that
extends the abstract class."

So, to use the HousePet class in Listing 15-7, you have to create a class that
extends the HousePet class. The code in Listing 15-8 extends the abstract HousePet
class and provides a body for the method named howToCareFor.

LISTING 15-8: It’s a Dog’s Life

package com.example.species;

public class Dog extends HousePet {

 int walksPerDay;

 public Dog(String name, double weight, int walksPerDay) {

 super(name, weight, "Woof");

 this.walksPerDay = walksPerDay;

 }

 @Override

 public void howToCareFor() {

 System.out.print("Walk " + name);
 System.out.println(" " + walksPerDay + " times each day.");
 }

}

In addition to having a name, a weight, and a sound, every dog gets walked a
certain number of times per day. And now, because of the howToCareFor method’s
body, you know what caring for a dog means: It means walking the dog a certain
number of times each day. It’s a good thing the howToCareFor method is abstract
in the HousePet class. You wouldn’t necessarily want to walk some other kind
of pet.

Take, for example, a domestic cat. “Caring” for a cat may mean not bothering it
too often. And cats have other characteristics — characteristics that don’t apply to
dogs. For example, some cats go outdoors; others don’t. You can make walksPer
Day be 0 for an indoor cat, but that feels like cheating. Instead, each cat can have
a boolean value representing the cat’s indoor/outdoor status. Listing 15-9 has
the code.

424 PART 4 Smart Java Techniques

15.indd 424 Trim size: 7.375 in × 9.25 in February 22, 2022 8:43 PM

LISTING 15-9: How to Be a Cat

package com.example.species;

public class Cat extends HousePet {

 boolean isOutdoor;

 public Cat(String name, double weight, boolean isOutdoor) {

 super(name, weight, "Meow");

 this.isOutdoor = isOutdoor;

 }

 @Override

 public void howToCareFor() {

 System.out.println

 (isOutdoor ? "Let " : "Do not let " + name + " outdoors.");
 }

}

Both the Dog and Cat classes are subclasses of the HousePet class. And, because of
the abstract method declaration in Listing 15-7, both the Dog and Cat classes must
have howToCareFor methods. But the howToCareFor methods in the two classes
are quite different. One method refers to a walksPerDay field; the other method
refers to an isOutdoor field. And because the HousePet class’s howToCareFor
method is abstract, there’s no default behavior. Either the Dog and Cat classes
implement their own howToCareFor methods or the Dog and Cat classes can’t
claim to extend HousePet.

This paragraph describes a picky detail, and you should ignore it if you have any
inclination to do so: The Dog and Cat classes must implement the howToCareFor
method because the Dog and Cat classes aren’t abstract. If the Dog and Cat classes
were abstract (that is, if they were abstract classes extending the abstract HousePet
class), then the Dog and Cat classes would not have to implement the howToCare
For method. The Dog and Cat classes could pass the implementation buck to their
own subclasses. For that matter, an abstract class that implements an interface
doesn’t have to provide bodies for all the interfaces abstract methods. Abstract
classes can take advantage of many little loopholes. But, to use these loopholes,
you have to create some exotic programming examples. So, in this chapter
I simplify the story and write that (a) a class that extends an abstract class must
provide bodies for the abstract class’s abstract methods and (b) a class that imple-
ments an interface must provide bodies for the interface’s abstract methods. It’s
not exactly true, but it’s good enough for now.

If you live in a very small apartment, you may not have room for a dog or a cat.
In that case, Listing 15-10 is for you.

CHAPTER 15 Fancy Reference Types 425

15.indd 425 Trim size: 7.375 in × 9.25 in February 22, 2022 8:43 PM

LISTING 15-10: You May Grow Up to Be a Fish

package com.example.species;

public class Fish extends HousePet {

 public Fish(String name, double weight) {

 super(name, weight, null);

 }

 @Override

 public void howToCareFor() {

 System.out.println("Feed " + name + " daily.");
 }

}

I could go on and on creating subclasses of the HousePet class. Many years ago,
our daughter had some pet mice. Caring for the mice meant keeping the cat away
from them.

In Java, subclasses multiply like rabbits.

Using all your classes
Your work isn’t finished until you’ve tested your code. Most programs require
hours, days, and even months of testing. But for this chapter’s HousePet example,
I do only one test. The test is in Listing 15-11.

LISTING 15-11: The Class Menagerie

package com.example.species;

public class Main {

 public static void main(String[] args) {

 var dog1 = new Dog("Fido", 54.7, 3);

 var dog2 = new Dog("Rover", 15.2, 2);

 var cat1 = new Cat("Felix", 10.0, false);

 var fish1 = new Fish("Bubbles", 0.1);

 (continued)

426 PART 4 Smart Java Techniques

15.indd 426 Trim size: 7.375 in × 9.25 in February 22, 2022 8:43 PM

 dog1.howToCareFor();

 dog2.howToCareFor();

 cat1.howToCareFor();

 fish1.howToCareFor();

 dog1.about();

 dog2.about();

 cat1.about();

 fish1.about();

 }

}

When you run the code in Listing 15-11, you get the output shown in Figure 15-3.

Notice how the code in Listing 15-11 seamlessly and effortlessly calls many ver-
sions of the howToCareFor method. With the dog1.howToCareFor() and dog2.
howToCareFor() calls, Java executes the method in Listing 15-8. With the cat1.
howToCareFor() call, Java executes the method in Listing 15-9. And, with the
fish1.howToCareFor() call, Java executes the method in Listing 15-10 — it’s like
having a big if statement without writing the if statement’s code. When you add
a new class for a pet mouse, you don’t have to enlarge an existing if statement.
There’s no if statement to enlarge.

Notice also how the about method in the abstract HousePet class keeps track of
the object that called it. For example, when you call dog1.about() in Listing 15-11,
the HousePet class’s nonspecific about method knows that the sound dog1 makes
is Woof. Everything falls into place very nicely.

Do you like abstract art? You can use abstract classes to create abstract art!

FIGURE 15-3:
Please don’t

pet the Pompeii
worm.

LISTING 15-11: (continued)

CHAPTER 15 Fancy Reference Types 427

15.indd 427 Trim size: 7.375 in × 9.25 in February 22, 2022 8:43 PM

ASCII ART

Create an abstract class named Shape. The Shape class has a size field (of type
int) and an abstract show method. Extend the abstract Shape class with two other
classes: a Square class and a Triangle class. In the bodies of the Square and Tri
angle classes’ show methods, place the code that creates a text-based rendering
of the shape in question. For example, a Square of size 5 looks like this:

| |

| |

| |

A Triangle of size 2 looks like this:

 /\

/ \

GOOEY ART

For an extra-special challenge, create an abstract Shape class with an abstract
paint method. The Shape class also has size, color, and isFilled fields. The
size field has type int, the color field has type java.awt.Color, and the
isFilled field has type boolean. Extend the abstract Shape class with two other
classes: a Square class and a Circle class. In the bodies of the Square and Circle
classes’ paint methods, place the code that draws the shape in question on a Java
JFrame.

Relax! You’re Not Seeing Double!
If you’ve read this chapter’s earlier sections on interfaces and abstract methods,
your head might be spinning. Both interfaces and abstract classes have abstract
methods. But the abstract methods play slightly different roles in these two kinds
of reference types. How can you keep it all straight in your mind?

The first thing to do is to remember that no one learns about object-oriented pro-
gramming concepts without getting lots of practice in writing code. If you’ve read
this chapter and you’re confused, that may be a good thing. It means you’ve
understood enough to know how complicated this stuff is. The more code you
write, the more comfortable you’ll become with classes, interfaces, and all these
other ideas.

428 PART 4 Smart Java Techniques

15.indd 428 Trim size: 7.375 in × 9.25 in February 22, 2022 8:43 PM

The next thing to do is to sort out the differences in the way you declare abstract
methods. Table 15-1 has the story.

Both interfaces and abstract classes have abstract methods. So, you may be won-
dering how you should choose between declaring an interface and declaring an
abstract class. In fact, you might ask three professional programmers how inter-
faces and abstract classes differ from one another. If you do, you may get five
different answers. (Yes, five answers; not three answers.)

Interfaces and abstract classes are similar beasts, and the new features in Java 8
made them even more similar than in previous Java versions. But the basic idea is
about the relationships among things.

 » Extending a subclass represents an is a relationship.

Think about the relationships in this chapter’s earlier section “Abstract
Classes.” A house pet is an animal. A dog is a house pet. A cat is a house pet.
A fish is a house pet.

 » Implementing an interface represents a can do relationship.

Think about the relationships in this chapter’s earlier section “The Java
Interface.” The first line in Listing 15-3 says implements Displayable. With
these words, the code promises that each ColumnOfNumbers object can be
displayed. Later in same listing, you make good on the promise by declaring a
display method.

Think about the relationships in this chapter’s earlier section “The Java
Interface.” A column of numbers isn’t always a summarizable thing. But in
Listing 15-3, you promise that the ColumnOfNumbers objects will be summari-
zable, and you make good on the promise by declaring a summarize method.

TABLE 15-1	 Using (or Not Using) Abstract Methods
In an Ordinary
(Non-Abstract) Class

In an
Interface

In an Abstract
Class

Are abstract methods allowed? No Yes Yes

Can a method declaration contain the
abstract keyword?

No Yes Yes

Can a method declaration contain the
default keyword (meaning “not
abstract”)?

No Yes No

With neither the abstract nor the
default keyword, a method is:

Not abstract Abstract Not abstract

CHAPTER 15 Fancy Reference Types 429

15.indd 429 Trim size: 7.375 in × 9.25 in February 22, 2022 8:43 PM

If you want more tangible evidence of the difference between an interface and an
abstract class, consider this: A class can implement many interfaces, but a class
can extend only one other class, even if that one class is an abstract class. So, after
you’ve declared

public class Dog extends HousePet

you can’t also make Dog extend a Friend class. But you can make Dog implement
a Befriendable interface. And then you can make the same Dog class implement
a Trainable interface. (By the way, I’ve tried making my Cat class implement a
Trainable interface but, for some reason, it never works.)

And, if you want an even more tangible difference between an interface and an
abstract class, I have one for you: An interface can’t contain any nonstatic, nonfi-
nal fields. For example, if the HousePet class in Listing 15-7 were an interface, it
couldn’t have a name field. That simply wouldn’t be allowed.

So there. Interfaces and abstract classes are different from one another. But if
you’re new at the game, you shouldn’t worry about the difference. Just read as
much code as you can, and don’t get scared when you see an abstract method.
That’s all there is to it.

15.indd 430 Trim size: 7.375 in × 9.25 in February 22, 2022 8:43 PM

CHAPTER 16 Java’s Juggling Act 431

16.indd 431 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

Chapter 16
 Java ’ s Juggling Act

 S tudy after study shows how people perform poorly when they try to multi-
task. I occasionally attend two online presentations at the same time. I set
up two computers, each with easily adjustable volume controls. My plan is

to pivot my attention between the two computer screens, changing the volumes,
moment by moment, in response to the importance of what ’ s being presented.

 This plan never works. Rather than follow both presentations, I end up following
neither of them.

 Most people can ’ t concentrate on two tasks at a time, but some people can.
A study at the University of Utah found that about 1 in x 40 people is a supertasker —
someone who can drive a simulated vehicle, talk on a phone, memorize words,
and do mental arithmetic all at the same time. * A series of fMRI scans has shown
that supertaskers ’ brains don ’ t race to keep up with all the input they receive. **

Instead, their brains tune down the logical thinking and turn up the relaxing
thoughts. The regions in their brains that are responsible for daydreaming and
other calming activities take the front stage when these people multitask.

 What about computers? How do they multitask? Since the 1960s, computers have
been able to interleave many tasks in time slices lasting only fractions of a second.
And nowadays, with multicore processors, each computer has several mini-brains
that can all process instructions simultaneously.

 IN THIS CHAPTER

» Creating code to handle mouse clicks

» Responding when the user presses a
key or selects a drop-down box item

» Putting classes inside other classes

 * https://link.springer.com/article/10.3758/PBR.17.4.479

 ** https://pubmed.ncbi.nlm.nih.gov/25223371

432 PART 4 Smart Java Techniques

16.indd 432 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

Without multitasking, computer interfaces would be quite primitive. Imagine
starting a download and then having to wait ten minutes before your web browser
can accept mouse clicks. Better yet, start the download and wait ten minutes
before any other apps accept input of any kind.

Programming for multitasking is surprisingly complex. So, in this chapter, I cover
only a tiny sliver of the subject with examples from Java’s Swing framework.
Swing isn’t the newest or slickest toolset for creating graphical interfaces in Java,
but Swing’s structure illustrates some important ideas in multithreaded
programming.

In 2011, Oracle added a newer framework — JavaFX — to Java’s bag of tricks.
JavaFX provides a richer set of components than Swing, but JavaFX code requires
a bit more setup than a Swing app. If you’re interested in reading more about
JavaFX, visit https://openjfx.io.

Every major Java IDE has visual tools to help you design a GUI interface. With any
of these tools, you drag buttons, text fields, and other goodies from a palette onto
a frame. Using the mouse, you can move and resize each component. As you design
the frame visually, the tools create the frame’s code automatically. For more info,
check your IDE’s documentation.

Juggling Two or More Calls
In previous chapters, I create windows that don’t do much. A typical window dis-
plays some information but has no interactive elements. Well, the time has come
to change all that. This chapter’s first example is a window with a button on it.
When the user clicks the button, darn it, something happens. The code is shown
in Listing 16-1, and the main method that calls the code in Listing 16-1 is in
Listing 16-2.

LISTING 16-1: A Guessing Game

package com.example.games;

import javax.swing.*;

import java.awt.FlowLayout;

import java.awt.event.*;

import java.util.Random;

public class GameFrame extends JFrame implements ActionListener {

 int randomNumber = new Random().nextInt(10) + 1;
 int numGuesses = 0;

CHAPTER 16 Java’s Juggling Act 433

16.indd 433 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

 JTextField textField = new JTextField(5);

 JButton button = new JButton("Guess");

 JLabel label = new JLabel(numGuesses + " guesses");

 public GameFrame() {

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 setLayout(new FlowLayout());

 add(textField);

 add(button);

 add(label);

 button.addActionListener(this);

 pack();

 setVisible(true);

 }

 @Override

 public void actionPerformed(ActionEvent e) {

 String textFieldText = textField.getText();

 if (Integer.parseInt(textFieldText) == randomNumber) {

 button.setEnabled(false);

 textField.setText(textFieldText + " Yes!");
 textField.setEnabled(false);

 } else {

 textField.setText("");

 textField.requestFocus();

 }

 numGuesses++;
 String guessWord = (numGuesses == 1) ? " guess" : " guesses";

 label.setText(numGuesses + guessWord);
 }

}

LISTING 16-2: Starting the Guessing Game

package com.example.games;

public class ShowGameFrame {

 public static void main(String[] args) {

 new GameFrame();

 }

}

434 PART 4 Smart Java Techniques

16.indd 434 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

Some snapshots from a run of this section’s code are shown in Figures 16-1
and 16-2. In a window, the user plays a guessing game. Behind the scenes, the
program chooses a secret number (a number from 1 to 10). Then the program dis-
plays a text field and a button. The user types a number in the text field and clicks
the button. One of two things happens next:

 » If the number the user types isn’t the same as the secret number, the
computer posts the number of guesses made so far. The user gets to make
another guess.

 » If the number the user types is the same as the secret number, the text
field displays Yes!. Meanwhile, the game is over, so both the text field and the
button become disabled. Both components have that gray, washed-out look,
and neither component responds to keystrokes or mouse clicks.

In Listing 16-1, the code to create the frame, the button, and the text field isn’t
earth-shattering. I do similar things in Chapters 9 and 10. The JTextField class
is new in this chapter, but a text field isn’t much different from a button or a label.
Like so many other components, the JTextField class is defined in the javax.
swing package. When you create a new JTextField instance, you can specify the
number of columns. In Listing 16-1, I create a text field that’s five columns wide.

Listing 16-1 uses a fancy question mark and colon to decide between the singular
guess and the plural guesses. If you’re not familiar with this conditional operator,
see Chapter 11.

Before you run this section’s code, your IDE may warn you that the frame in
Listing 16-2 has no serialVersionUID field. You can safely ignore this warning.
For a bit more information about the warning, refer to Chapter 9.

FIGURE 16-1:
An incorrect

guess.

FIGURE 16-2:
The correct

guess.

CHAPTER 16 Java’s Juggling Act 435

16.indd 435 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

Events and event handling
The big news in Listing 16-1, shown in the preceding section, is the handling of
the user’s button click. When you’re working in a graphical user interface (GUI),
anything the user does (like pressing a key, moving the mouse, clicking the mouse,
or whatever) is called an event. The code that responds to the user’s press, move-
ment, or click is called event-handling code.

Listing 16-1 deals with the button-click event with three parts of its code:

 » The top of the GameFrame class declaration says that this class implements
ActionListener.

By announcing that it will implement the ActionListener interface, the code
in Listing 16-1 agrees that it will give meaning to the interface’s abstract
actionPerformed method. In this situation, giving meaning means declaring
an actionPerformed method with curly braces, a body, and maybe some
statements to execute.

For the full story about Java interfaces (as opposed to graphical user inter-
faces), refer to Chapter 15.

 » Sure enough, the code for the GameFrame class has an actionPerformed
method, and that actionPerformed method has a body.

 » Finally, the constructor for the GameFrame class adds this to the button’s list
of action listeners.

Java will call the actionPerformed method in Listing 16-1 when the user clicks
the button. Hooray!

Taken together, all three of these tricks make the GameFrame class handle button
clicks.

For more details about the use of Java’s this keyword in Listing 16-1, see this
chapter’s “Don’t miss this” section.

MARK FOR REMOVAL

You can learn a lot about the code in Listing 16-1 by removing certain statements
and observing the results. For each suggested removal, see whether your IDE dis-
plays any error messages. If not, try to run the program. After observing the
results, put the element back and try the next suggested removal:

 » Remove the entire actionPerformed method declaration — header and all.

 » Remove the call to setVisible(true).

436 PART 4 Smart Java Techniques

16.indd 436 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

 » Remove the call to pack().

 » Remove the call to button.addActionListener().

Follow the thread
Here’s a well-kept secret: Java programs are multithreaded, which means that sev-
eral things at a time are going on whenever you run a Java program. Sure, the
computer is executing the code you’ve written, but it’s executing other code as
well (code that you didn’t write and don’t see). All this code is being executed at
the same time. While the computer executes your main method’s statements, one
after another, the computer takes time out, sneaks away briefly, and executes
statements from other, unseen methods. For most simple Java programs, these
other methods are ones that are defined as part of the Java virtual machine (JVM).

For example, Java has an event-handling thread. While your code runs, the event-
handling thread’s code runs in the background. The event-handling thread’s code
listens for mouse clicks and takes appropriate action whenever a user clicks the
mouse. Figure 16-3 illustrates how this business works.

When the user clicks the button, the event-handling thread says, “Okay, the but-
ton was clicked. What should I do about that?” And the answer is, “Call some
actionPerformed methods.” It’s as though the event-handling thread has code
that looks like this:

FIGURE 16-3:
Two Java
threads.

CHAPTER 16 Java’s Juggling Act 437

16.indd 437 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

if (buttonJustGotClicked()) {

 object1.actionPerformed(infoAboutTheClick);

 object2.actionPerformed(infoAboutTheClick);

 object3.actionPerformed(infoAboutTheClick);

}

Of course, behind every answer is yet another question. In this situation, the
follow-up question is, “Where does the event-handling thread find actionPer-
formed methods to call?” And there’s another question: “What if you don’t want
the event-handling thread to call certain actionPerformed methods that are
lurking in your code?”

Well, that’s why you call the addActionListener method. In Listing 16-1, the call

button.addActionListener(this);

tells the event-handling thread, “Put this code’s actionPerformed method on
your list of methods to be called. Call this code’s actionPerformed method when-
ever the button is clicked.”

That’s how it works. To have the computer call an actionPerformed method, you
register the method with Java’s event-handling thread. You do this registration by
calling addActionListener. The addActionListener method belongs to the
object whose clicks (and other events) you’re waiting for. In Listing 16-1, you’re
waiting for the button object to be clicked, and the addActionListener method
belongs to that button object.

Don’t miss this
In Chapters 9 and 10, the keyword this gives you access to instance variables from
the code inside a method. What does the this keyword really mean? Well, com-
pare it with the English phrase state your name:

I, (state your name), do solemnly swear to uphold the constitution of the Philadelphia
Central High School Photography Society. . . .

The phrase state your name is a placeholder. It’s a space in which each person puts
their own name:

 » I, Bob, do solemnly swear . . .

 » I, Fred, do solemnly swear . . .

438 PART 4 Smart Java Techniques

16.indd 438 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

Think of the pledge (“I . . . do solemnly swear . . .”) as a piece of code in a Java
class. In that piece of code is the placeholder phrase state your name. Whenever an
instance of the class (a person) executes the code (that is, takes the pledge), the
instance fills in its own name in place of the phrase state your name.

The this keyword works the same way. It sits inside the code that defines the
GameFrame class. (Refer to Listing 16-1.) Whenever an instance of GameFrame is
constructed, the instance calls addActionListener(this). In that call, the this
keyword stands for the instance itself:

button.addActionListener(thisGameFrameInstance);

By calling button.addActionListener(this), the GameFrame instance is saying,
“Add my actionPerformed method to the list of methods that are called whenever
the button is clicked.” And indeed, the GameFrame instance has an actionPer-
formed method. The GameFrame has to have an actionPerformed method because
the GameFrame class implements the ActionListener interface. It’s funny how
that all fits together.

For a thought experiment, imagine that you’ve constructed two instances of the
GameFrame class.

var frame1 = new GameFrame();

var frame2 = new GameFrame();

Maybe both frames (frame1 and frame2) appear on the screen at the same time.
Both frames contain their own copies of the textField variable, the button vari-
able, the label variable, and the actionPerfomed method. In addition, both
frames contain their own copies of this.

 » In the frame1 code, this refers to that frame1 object.

In the frame1 code, calling button.addActionListener(this) tells Java to
call the frame1 object’s actionPerformed method when the user clicks the
frame1 object’s button.

 » In the frame2 code, this refers to the frame2 object.

In the frame2 code, calling button.addActionListener(this) tells Java to
call the frame2 object’s actionPerformed method when the user clicks the
frame2 object’s button.

THIS IS IT

In your own words, describe the uses of the keyword this in the following code:

CHAPTER 16 Java’s Juggling Act 439

16.indd 439 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

public class Main {

 public static void main(String[] args) {

 new IntegerHolder(42).displayMyN();

 new IntegerHolder(7).displayMyN();

 }

}

 class IntegerHolder {

 private int n;

 IntegerHolder(int n) {

 this.n = n;

 }

 void displayMyN() {

 Displayer.display(this);

 }

 public int getN() {

 return n;

 }

}

class Displayer {

 public static void display(IntegerHolder holder) {

 System.out.println(holder.getN());

 }

}

Inside the actionPerformed method
The actionPerformed method in Listing 16-1 uses a bunch of tricks from the Java
API. Here’s a brief list of those tricks:

 » Every instance of JTextField (and of JLabel) has its own getter and setter
methods, including getText and setText. Calling getText fetches whatever
string of characters is in the component. Calling setText changes the
characters that are in the component. In Listing 16-1, judicious use of getText
and setText pulls a number out of the text field and replaces the number
with either nothing (the empty string "") or the number, followed by
the word Yes!

440 PART 4 Smart Java Techniques

16.indd 440 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

 » Every component in the javax.swing package (JTextField, JButton, or
whatever) has a setEnabled method. When you call setEnabled(false),
the component gets that limp, gray, washed-out look and can no longer
receive button clicks or keystrokes.

 » Every component in the javax.swing package has a requestFocus method.
When you call requestFocus, the component gets the privilege of receiving
the user’s next input. For example, in Listing 16-1, the call textField.
requestFocus() says, “Even though the user may have just clicked the
button, put a cursor in the text field. That way, the user can type another
guess in the text field without clicking the text field first.”

You can perform a test to make sure that the object referred to by the button vari-
able is really the thing that was clicked. Just write if (e.getSource() == but-
ton). If your code has two buttons, button1 and button2, you can test to find out
which button was clicked. You can write if (e.getSource() == button1) and
if (e.getSource() == button2).

COPY CAT

Using the techniques shown in this chapter, create a program that displays a
frame containing three components: a text field (JTextField), a button (JBut-
ton), and a label (JLabel). The user types text into the text field. Then, whenever
the user clicks the button, the program copies any text that’s in the text field onto
the label.

Some Events Aren’t Button Clicks
When you know how to respond to one kind of event, responding to other kinds of
events is easy. Listings 16-3 and 16-4 display a window that converts between US
and UK currencies. The code in these listings responds to many kinds of events.
Figures 16-4, 16-5, 16-6, and 16-7 show some pictures of the code in action.

FIGURE 16-4:
US-to-UK
currency.

CHAPTER 16 Java’s Juggling Act 441

16.indd 441 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

LISTING 16-3: Displaying the Local Currency

package com.example.money;

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.text.NumberFormat;

import java.util.Locale;

public class MoneyFrame extends JFrame implements

 ItemListener, KeyListener, MouseListener {

 JComboBox<String> combo = new JComboBox<>();

 JLabel fromCurrencySymbol = new JLabel(" ");

 JTextField textField = new JTextField(5);

 JLabel resultLabel = new JLabel(" ");

 NumberFormat currencyUS = NumberFormat.getCurrencyInstance(Locale.US);

 NumberFormat currencyUK = NumberFormat.getCurrencyInstance(Locale.UK);

 public MoneyFrame() {

 setLayout(new FlowLayout(FlowLayout.LEFT));

 combo.addItem("US to UK");

 combo.addItem("UK to US");

 add(combo);

 add(fromCurrencySymbol);

 textField.setText("0.00");

 add(textField);

 add(resultLabel);

FIGURE 16-5:
Using the

combo box.

FIGURE 16-6:
UK-to-US
currency.

FIGURE 16-7:
Junk in;

junk out.

(continued)

442 PART 4 Smart Java Techniques

16.indd 442 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

 combo.addItemListener(this);

 textField.addKeyListener(this);

 resultLabel.addMouseListener(this);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 setSize(500, 100);

 setVisible(true);

 }

 void setResultText() {

 String fromCurrency = "";

 String amountString = "";

 double dollarToPound = 0.74;

 try {

 double amount = Double.parseDouble(textField.getText());

 if (combo.getSelectedItem().equals("US to UK")) {

 amountString =

 " = " + currencyUK.format(amount * dollarToPound);
 fromCurrency = "$";

 }

 if (combo.getSelectedItem().equals("UK to US")) {

 amountString =

 " = " + currencyUS.format(amount / dollarToPound);
 fromCurrency = "\u00A3";

 }

 } catch (NumberFormatException e) {

 amountString = "Bad value " + e.getMessage();
 }

 fromCurrencySymbol.setText(fromCurrency);

 resultLabel.setText(amountString);

 }

 @Override

 public void itemStateChanged(ItemEvent i) {

 setResultText();

 }

 @Override

 public void keyReleased(KeyEvent k) {

 setResultText();

 }

LISTING 16-3: (continued)

CHAPTER 16 Java’s Juggling Act 443

16.indd 443 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

 @Override

 public void keyPressed(KeyEvent k) {

 }

 @Override

 public void keyTyped(KeyEvent k) {

 }

 @Override

 public void mouseEntered(MouseEvent m) {

 resultLabel.setForeground(Color.red);

 }

 @Override

 public void mouseExited(MouseEvent m) {

 resultLabel.setForeground(Color.black);

 }

 @Override

 public void mouseClicked(MouseEvent m) {

 }

 @Override

 public void mousePressed(MouseEvent m) {

 }

 @Override

 public void mouseReleased(MouseEvent m) {

 }

}

LISTING 16-4: Calling the Code in Listing 16-3

package com.example.money;

public class ShowMoneyFrame {

 public static void main(String[] args) {

 new MoneyFrame();

 }

}

444 PART 4 Smart Java Techniques

16.indd 444 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

Okay, so Listing 16-3 is a little long. Even so, the outline of the code in Listing 16-3
isn’t too bad. Here’s what the outline looks like:

public class MoneyFrame extends JFrame implements

 KeyListener, ItemListener, MouseListener {

 Variable declarations

 Constructor for the MoneyFrame class

 Declaration of a method named setResultText

 Methods that are required because the class implements three interfaces

}

The constructor in Listing 16-3 adds the following four components to the new
MoneyFrame window:

 » A combo box: In Figure 16-4, the combo box displays US to UK. In Figure 16-5,
the user makes the move to select the second of the two items in the combo
box: UK to US. In Figure 16-6, the selected item (UK to US) is displayed.

 » A label: In Figure 16-4, the label displays a dollar sign.

 » A text field: In Figure 16-4, the user types 54 in the text field.

 » Another label: In Figure 16-4, the label displays £39.96.

In Java, a JComboBox (commonly called a drop-down list) can display items of any
kind. In Listing 16-3, the declaration

JComboBox<String> combo = new JComboBox<>();

constructs a JComboBox whose entries have type String. That seems sensible, but
if your application has a Person class, you can declare JComboBox<Person> peo-
pleBox. In that situation, Java has to know how to display each Person object in
the drop-down list. (It isn’t a big deal. Java finds out how to display a person by
looking for a toString() method inside the Person class.)

The MoneyFrame implements three interfaces: the ItemListener, KeyListener,
and MouseListener interfaces. Because it implements three interfaces, the code
can listen for three kinds of events. I discuss the interfaces and events in the fol-
lowing list:

 » ItemListener: A class that implements the ItemListener interface must
have an itemStateChanged method. When you select an item in a combo
box, the event-handling thread calls itemStateChanged.

CHAPTER 16 Java’s Juggling Act 445

16.indd 445 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

In Listing 16-3, when the user selects US-to-UK or UK-to-US in the combo box,
the event-handling thread calls the itemStateChanged method. In turn, the
itemStateChanged method calls setResultText. The setResultText
method checks to see what’s now selected in the combo box. If the user
selects the US-to-UK option, the setResultText method converts dollars to
pounds. If the user selects the UK-to-US option, the setResultText method
converts pounds to dollars.

In the setResultText method, I use the string "\u00A3". The funny-looking
\u00A3 code is Java’s UK pound sign. (The u in \u00A3 stands for Unicode —
an international standard for representing characters in the world’s alpha-
bets.) If my operating system’s settings defaulted to UK currency, in the runs
of Java programs the pound sign would appear on its own. For information
about all of this, check out the Locale class in ’s API documentation
(https://docs.oracle.com/en/java/javase/17/docs/api/java.base/
java/util/Locale.html).

By the way, if you’re thinking in terms of real currency conversion, forget
about it. This program uses rates that may or may not have been accurate
at one time. Sure, a program can reach out on the Internet for the most
up-to-date currency rates, but at the moment you have other Javafish to fry.

 » KeyListener: A class that implements the KeyListener interface must have
three methods named keyReleased, keyPressed, and keyTyped. When you
lift your finger off a key, the event-handling thread calls keyReleased, which
calls setResultText, and so on.

 » MouseListener: A class that implements the MouseListener interface must
have mouseEntered, mouseExited, mouseClicked, mousePressed, and
mouseReleased methods. Implementing MouseListener is different from
implementing ActionListener. When you implement ActionListener, as
in Listing 16-1, the event-handling thread responds only to mouse clicks. But
with MouseListener, the thread responds to the user pressing the mouse,
releasing the mouse, and more.

In Listing 16-3, the mouseEntered and mouseExited methods are called
whenever you move over or away from the resultLabel. How do you know
that the resultLabel is involved? Just look at the code in the MoneyFrame
constructor. The statement

resultLabel.addMouseListener(this);

tells Java to listen for resultLabel mouse events, and to call this class’s
methods when any of those mouse events occur.

446 PART 4 Smart Java Techniques

16.indd 446 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

Look at the mouseEntered and mouseExited methods in Listing 16-3. When
mouseEntered or mouseExited is called, the computer forges ahead and
calls setForeground. This setForeground method changes the color of the
label’s text.

Isn’t modern life wonderful? The Java API even has a Color class with names
like Color.red and Color.black.

Listing 16-3 has several methods that aren’t really used. For example, when you
implement MouseListener, your code has to have its own mouseReleased method.
You need the mouseReleased method not because you’re going to do anything
special when the user releases the mouse button but rather because you made a
promise to the Java compiler and you have to keep it.

In an earlier section, you create a program that copies text from a text field to a
label whenever the user clicks a button. Modify the program so that the user does-
n’t have to click a button. The program automatically updates the label’s text
whenever the user modifies the text field’s content.

The Inner Sanctum
Here’s big news! You can define a class inside of another class! For the user,
Listing 16-5 behaves the same way as Listing 16-1. But in Listing 16-5, the Game-
Frame class contains a class named MyActionListener.

LISTING 16-5: A Class within a Class

package com.example.games;

import javax.swing.*;

import java.awt.FlowLayout;

import java.awt.event.*;

import java.util.Random;

public class GameFrame extends JFrame {

 int randomNumber = new Random().nextInt(10) + 1;
 int numGuesses = 0;

 JTextField textField = new JTextField(5);

 JButton button = new JButton("Guess");

 JLabel label = new JLabel(numGuesses + " guesses");

CHAPTER 16 Java’s Juggling Act 447

16.indd 447 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

 public GameFrame() {

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 setLayout(new FlowLayout());

 add(textField);

 add(button);

 add(label);

 button.addActionListener(new MyActionListener());

 pack();

 setVisible(true);

 }

 class MyActionListener implements ActionListener {

 @Override

 public void actionPerformed(ActionEvent e) {

 String textFieldText = textField.getText();

 if (Integer.parseInt(textFieldText) == randomNumber) {

 button.setEnabled(false);

 textField.setText(textFieldText + " Yes!");
 textField.setEnabled(false);

 } else {

 textField.setText("");

 textField.requestFocus();

 }

 numGuesses++;
 String guessWord = (numGuesses == 1) ? " guess" : " guesses";

 label.setText(numGuesses + guessWord);
 }

 }

}

The MyActionListener class in Listing 16-5 is an inner class. An inner class is a lot
like any other class, but within an inner class’s code, you can refer to the enclos-
ing class’s fields. For example, several statements inside MyActionListener use
the name textField, and textField is declared in the enclosing GameFrame
class — not inside the MyActionListener class.

Notice that the code in Listing 16-5 uses the MyActionListener class only once.
(The only use is in a call to button.addActionListener.) So, I ask, do you really
need a name for something that’s used only once? No, you don’t. You can substi-
tute the entire definition of the inner class inside the call to button.addAction-
Listener. When you do this, you have an anonymous inner class. Listing 16-6
shows you how it works.

448 PART 4 Smart Java Techniques

16.indd 448 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

LISTING 16-6: A Class with No Name (Inside a Class with a Name)

package com.example.games;

import javax.swing.*;

import java.awt.FlowLayout;

import java.awt.event.*;

import java.util.Random;

public class GameFrame extends JFrame {

 int randomNumber = new Random().nextInt(10) + 1;
 int numGuesses = 0;

 JTextField textField = new JTextField(5);

 JButton button = new JButton("Guess");

 JLabel label = new JLabel(numGuesses + " guesses");

 public GameFrame() {

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 setLayout(new FlowLayout());

 add(textField);

 add(button);

 add(label);

 button.addActionListener(new ActionListener() {

 @Override

 public void actionPerformed(ActionEvent e) {

 String textFieldText = textField.getText();

 if (Integer.parseInt(textFieldText) == randomNumber) {

 button.setEnabled(false);

 textField.setText(textFieldText + " Yes!");
 textField.setEnabled(false);

 } else {

 textField.setText("");

 textField.requestFocus();

 }

 numGuesses++;
 String guessWord = (numGuesses == 1) ? " guess" : " guesses";

 label.setText(numGuesses + guessWord);
 }

 });

 pack();

 setVisible(true);

 }

}

CHAPTER 16 Java’s Juggling Act 449

16.indd 449 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

Inner classes are good for things like event handlers, such as the actionPer-
formed method in this chapter’s examples. The most difficult thing about an
anonymous inner class is keeping track of the parentheses, the curly braces, and
the indentation. My humble advice is, start by writing code without any inner
classes, as in the code from Listing 16-1. Later, when you become bored with ordi-
nary Java classes, experiment by changing some of your ordinary classes into
inner classes.

MAINTAIN ANONYMITY

In a previous section, you create a program that copies text from a text field to a
label whenever the user clicks a button. Modify the code so that it has an inner
class. Then if you’re ambitious, modify the code so that it has an anonymous inner
class.

MARY HAD A LITTLE LAMBDA

In Listing 16-6, replace the addActionListener call with the following code:

button.addActionListener(e -> {

 String textFieldText = textField.getText();

 if (Integer.parseInt(textFieldText) == randomNumber) {

 button.setEnabled(false);

 textField.setText(textFieldText + " Yes!");
 textField.setEnabled(false);

 } else {

 textField.setText("");

 textField.requestFocus();

 }

 numGuesses++;
 String guessWord = (numGuesses == 1) ? " guess" : " guesses";

 label.setText(numGuesses + guessWord);
});

Notice the similarities (and differences) between an anonymous inner class and a
lambda expression.

16.indd 450 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

CHAPTER 17 Using Java Database Connectivity 451

17.indd 451 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

Chapter 17
 Using Java Database
Connectivity

 T he year is 1998. I ’ m scheduled to introduce Java Database Connectivity to a
group of computer science professors at the ITiCSE conference in Ireland.
Every day, for six days, I spend all afternoon driving from one town to

another. Every evening, my family members visit the town ’ s sites while I sit in our
hotel room, pounding away at my laptop. The demo I have planned for the confer-
ence presentation isn ’ t working, and nothing I do makes the error messages
go away.

 On the day of the conference, my demo still isn ’ t working. I do a scaled-down
presentation — one that should be called “Simulating Java Database Connectiv-
ity.” Like any experienced instructor, I make up an excuse for the presentation ’ s
wimpy results. “JDBC is still in beta,” I say. Fortunately, the conference attendees
seem to believe me.

 A month later, back home in New Jersey, I discover the fl aw in the demo I had
planned. Rather than type database customers , I should have typed database-
customers . The thing that kept me from touring towns in Ireland and reduced
my conference presentation from substance to fl uff was a single blank space.
It wasn ’ t even a character I could write on a piece of paper.

 IN THIS CHAPTER

» Connecting to a database

» Inserting values into a database

» Making queries to a database

452 PART 4 Smart Java Techniques

17.indd 452 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

So much for my confession. This chapter covers Java Database Connectivity* (JDBC),
and your experience with JDBC will be joyous and fruitful. The JDBC classes pro-
vide common access to most database management systems. Just get a driver for
your favorite vendor’s system, and you’re ready to go.

Creating a Database and a Table
The crux of JDBC is contained in two packages: java.sql and javax.sql, both of
which are in the Java API. This chapter’s examples use the classes in java.sql.
The first example is shown in Listing 17-1.

LISTING 17-1: Creating a Database and a Table

package com.example.accounts;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

public class CreateTable {

 public static void main(String[] args) {

 final String CONNECTION = "jdbc:sqlite:AccountDatabase.db";

 try (Connection conn = DriverManager.getConnection(CONNECTION);

 Statement statement = conn.createStatement()) {

 statement.executeUpdate("""

 create table ACCOUNTS

 (NAME VARCHAR(32) NOT NULL PRIMARY KEY,

 ADDRESS VARCHAR(32),

 BALANCE FLOAT)""");

 System.out.println("ACCOUNTS table created.");

* Apparently, there’s no evidence in any of Oracle’s literature that the acronym JDBC actually
stands for Java Database Connectivity. But that’s okay. If Java Database Connectivity isn’t the
correct terminology, it’s close enough. In the Java world, JDBC certainly doesn’t stand for
John Digests Bleu Cheese.

CHAPTER 17 Using Java Database Connectivity 453

17.indd 453 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

 } catch (SQLException e) {

 System.out.println(e.getMessage());

 }

 }

}

Running the examples in this chapter is a bit trickier than running other chapters’
examples. To talk to a database, you need an intermediary piece of software known
as a database driver. Database drivers come in all shapes and sizes, and many of
them are quite expensive. But Listing 17-1 points to a freebie driver: the Sqlite
JDBC driver.

When you install Java, you don’t get this Sqlite driver. You need a separate file
named sqlite-jdbc.jar, which you can download from https://github.com/
xerial/sqlite-jdbc.

Even after you’ve downloaded a copy of sqlite-jdbc.jar, your IDE might not
know where you’ve put the file on your computer’s hard drive. It’s usually not
enough to put sqlite-jdbc.jar in a well-known directory. Instead, you have to
tell your IDE exactly where to find your sqlite-jdbc.jar file. Here’s what you do
in two commonly used IDEs:

 » Eclipse: Choose Project ➪  Properties. In the resulting dialog box, select Java
Build Path and then select the Libraries tab. On the Libraries tab, select
Modulepath. Click the Add External JARs button, and then navigate to the
sqlite-jdbc.jar file on your computer’s hard drive.

 » IntelliJ IDEA: Choose File ➪  Project Structure. In the resulting dialog box,
select Libraries. Click the Plus Sign (+) icon and, in the resulting drop-down
box, select Java. Navigate to the sqlite-jdbc.jar file on your computer’s
hard drive.

For more detailed instructions the use of Sqlite with Java, visit www.
sqlitetutorial.net/sqlite-java.

Seeing what happens when
you run the code
During a successful run of the code in Listing 17-1, you see an ACCOUNTS table
created message. That’s about it. The code has no other visible output because
most of the output goes to a database.

454 PART 4 Smart Java Techniques

17.indd 454 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

If you poke around a bit, you can find direct evidence of the new database’s
existence. Using your computer’s File Explorer or Finder, you can navigate to the
project folder containing the code in Listing 17-1 (the project’s root folder). Just
look for a file named AccountDatabase.db.

Unfortunately, you can’t see what’s inside the database unless you run a couple
more programs. Read on!

If you don’t want to use Sqlite, you have to replace the CONNECTION string in this
chapter’s examples. Which other string you use depends on the kind of database
software you have, and on other factors. Check your database vendor’s
documentation.

Using SQL commands
These days, people work with two different kinds of databases:

 » Relational: A relational database has any number of tables. In a particular
table, each column represents a property. Figure 17-1 has a visual representa-
tion of the table described in Listing 17-1.

 » NoSQL (Not Only SQL): In a NoSQL database, data isn’t organized into tables.
Instead, each chunk of data may be a document, a graph, a set of key-value
pairs, or some other structure.

The code in Listing 17-1 talks to a relational database. The heart of the code lies in
the call to executeUpdate. The executeUpdate call contains a string — a text
block of the kind you see in Chapter 5.

If you’re familiar with Structured Query Language, or SQL, the command strings
in the calls to executeUpdate make sense to you. If not, pick up a copy of SQL For
Dummies, 9th Edition, by Allen G. Taylor (Wiley). One way or another, don’t go
fishing around this chapter for an explanation of the create table command.
You won’t find an explanation, because the big create table string in Listing 17-1
isn’t part of Java. This command is just a string of characters you feed to Java’s
executeUpdate method. This string, which is written in SQL, creates a new data-
base table with three columns (columns for a customer’s NAME, the customer’s
ADDRESS, and the account’s BALANCE). When you write a Java database program,

FIGURE 17-1:
Two deadbeat

customers.

CHAPTER 17 Using Java Database Connectivity 455

17.indd 455 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

that’s what you do. You write ordinary SQL commands and surround those com-
mands with calls to Java methods.

Connecting and disconnecting
Aside from the call to the executeUpdate method, the code in Listing 17-1 is copy-
and-paste stuff. Here’s a rundown on what each part of the code means:

 » DriverManager.getConnection: Establish a session with a particu-
lar database.

The getConnection method lives in a Java class named DriverManager. In
Listing 17-1, the call to getConnection creates an AccountDatabase.db file
and opens a connection to that file. Of course, you may already have an
AccountDatabase.db file before you start running the code in Listing 17-1. If you
do, the call to getConnection uses your existing AccountDatabase.db file.

In the CONNECTION string, notice the colons. The code doesn’t simply name
the AccountDatabase.db file — it tells the DriverManager class which
protocols to use to connect with the file. The code jdbc:sqlite: — which
is a lot like the http: in a web address — tells the computer to use the jdbc
protocol to talk to the sqlite protocol, which in turn talks directly to your
AccountDatabase.db file.

 » conn.createStatement: Make a statement.

It seems strange, but in Java Database Connectivity, you create a single
statement object. After you’ve created a statement object, you can use that
object many times, with many different SQL strings, to issue many different
commands to the database. So, before you start calling the statement.
executeUpdate method, you have to create an actual statement object. The
call to conn.createStatement creates that statement object for you.

 » try-with-resources: Release resources, come what may!

As Ritter always says, you’re not being considerate of others if you don’t clean
up your own messes. Every connection and every database statement lock up
some system resources. When you’re finished using these resources, you
release them.

In Listing 17-1, Java’s try-with-resources block automatically closes and
releases your resources at the end of the block’s execution. In addition,
try-with-resources takes care of all the messy details associated with failed
attempts to catch exceptions gracefully.

For the scoop about try-with-resources, see Chapter 13.

456 PART 4 Smart Java Techniques

17.indd 456 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

Putting Data in the Table
Like any other tabular configuration, a database table has columns and rows.
When you run the code in Listing 17-1, you get an empty table. The table has three
columns (NAME, ADDRESS, and BALANCE) but no rows. To add rows to the table, run
the code in Listing 17-2.

LISTING 17-2: Inserting Data

package com.example.accounts;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

public class AddData {

 public static void main(String[] args) {

 final String CONNECTION = "jdbc:sqlite:AccountDatabase.db";

 try (Connection conn = DriverManager.getConnection(CONNECTION);

 Statement statement = conn.createStatement()) {

 statement.executeUpdate("""

 insert into ACCOUNTS values

 ('Barry Burd', '222 Cyber Lane', 24.02)""");

 statement.executeUpdate("""

 insert into ACCOUNTS values

 ('Joe Dow', '111 Luddite Street', 55.63)""");

 System.out.println("Rows added.");

 } catch (SQLException e) {

 System.out.println(e.getMessage());

 }

 }

}

Listing 17-2 uses the same strategy as the code in Listing 17-1: Create Java strings
containing SQL commands and make those strings be arguments to Java’s execu-
teUpdate method. In Listing 17-2, I put two rows in the ACCOUNTS table — one for
me and another for Joe Dow. (Joe, I hope you appreciate this.)

CHAPTER 17 Using Java Database Connectivity 457

17.indd 457 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

For the best results, put all this chapter’s listings in the same project. That way,
you don’t have to add the sqlite-jdbc.jar file to more than one project. You can
also count on the AccountDatabase.db file being readily available to all four of
this chapter’s code listings.

Retrieving Data
What good is a database if you can’t get data from it? In this section, you query the
database you created in previous sections. The code to issue the query is shown in
Listing 17-3.

LISTING 17-3: Making a Query

package com.example.accounts;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

import java.text.NumberFormat;

import static java.lang.System.out;

public class GetData {

 public static void main(String[] args) {

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 final String CONNECTION = "jdbc:sqlite:AccountDatabase.db";

 try (Connection conn = DriverManager.getConnection(CONNECTION);

 Statement statement = conn.createStatement();

 ResultSet resultset = statement.executeQuery

 ("select * from " + "ACCOUNTS")) {

 while (resultset.next()) {

 out.print(resultset.getString("NAME"));

 out.print(", ");

 out.print(resultset.getString("ADDRESS"));

 out.print(" ");

 out.println(currency.format

 (resultset.getFloat("BALANCE")));

 }

(continued)

458 PART 4 Smart Java Techniques

17.indd 458 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

 } catch (SQLException e) {

 out.println(e.getMessage());

 }

 }

}

To use a database other than Sqlite, change the value of CONNECTION in each of this
chapter’s examples.

A run of the code from Listing 17-3 is shown in Figure 17-2. The code queries the
database and then steps through the rows of the database, printing the data from
each of the rows.

Listing 17-3 calls executeQuery and supplies the call with an SQL command. For
those who know SQL commands, this particular command gets all data from the
ACCOUNTS table (the table you create in Listing 17-1).

The thing returned from calling executeQuery is of type java.sql.ResultSet.
(That’s one of the differences between the executeUpdate and executeQuery
methods: executeQuery returns a result set, and executeUpdate doesn’t.) A result
set is much like a database table. Like the original table, the result set has rows and
columns. Each row contains the data for one account. In this example, each row
has a name, an address, and a balance amount.

After you call executeQuery and get your result set, you can step through the
result set one row at a time. To do this, you go into a little loop and test the condi-
tion resultset.next() at the top of each loop iteration. Each time around, the
call to resultset.next() does two things:

 » It moves you to the next row of the result set (the next account) if another
row exists.

 » It tells you whether another row exists by returning a boolean value — true
or false.

FIGURE 17-2:
Retrieving data

from the
database.

LISTING 17-3: (continued)

CHAPTER 17 Using Java Database Connectivity 459

17.indd 459 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

If the condition resultset.next() is true, the result set has another row. The com-
puter moves to that other row, so you can march into the body of the loop and scoop
data from that row. On the other hand, if resultset.next() is false, the result set
has no more rows. You jump out of the loop and start closing everything.

Now imagine that Java is pointing to a row of the result set and you’re inside the
loop in Listing 17-3. You’re retrieving data from the result set’s row by calling the
result set’s getString and getFloat methods. Back in Listing 17-1, you set up the
ACCOUNTS table with the columns NAME, ADDRESS, and BALANCE. Here in Listing 17-3,
you’re getting data from these columns by calling your getSomeTypeOrOther
methods and feeding the original column names to these methods. After you have
the data, you display the data on the computer screen.

Each Java ResultSet instance has several nice getSomeTypeOrOther methods.
Depending on the type of data you put into a column, you can call methods getAr-
ray, getBigDecimal, getBlob, getInt, getObject, getTimestamp, and several
others.

Destroying Data
It’s true. All good things must come to an end. By writing this, I’m referring both
to this book’s content and to the information in this chapter’s AccountDatabase.
db file.

To get rid of the database table you create in Listing 17-1, run the code in
Listing 17-4.

LISTING 17-4: Arrivederci, Database Table

package com.example.accounts;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

public class DropTable {

 public static void main(String[] args) {

 final String CONNECTION = "jdbc:sqlite:AccountDatabase.db";

(continued)

460 PART 4 Smart Java Techniques

17.indd 460 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

 try (Connection conn = DriverManager.getConnection(CONNECTION);

 Statement statement = conn.createStatement()) {

 statement.executeUpdate("drop table ACCOUNTS");

 System.out.println("ACCOUNTS table dropped.");

 } catch (SQLException e) {

 System.out.println(e.getMessage());

 }

 }

}

When you run this code, you wipe the slate clean. Your AccountDatabase.db file
no longer contains an ACCOUNTS table. So, if you want to run Listing 17-1 again
(perhaps with a change or two), you can.

Who knows? You may even create a table to store your favorite Java For Dummies
jokes.

Naturally, I have some things for you to try:

HIGH ROLLERS ONLY

Rerun the code in Listing 17-3. This time, use the following string in the execute-
Query call:

"select * from ACCOUNTS where BALANCE > 30"

WATCH YOUR PRIMARY KEY

Run the AddData program (from Listing 17-2) two times in a row without modify-
ing any of the program’s code. What error messages do you see? Why?

NOT TOO TAXING

Create a table containing three columns: an item name, a price, and a tax rate.
Store data in several rows of the table.

Retrieve the data from the table and display a row of output for each row in the
table. Each row of output contains the item name followed by the price with tax
added. For example, if an item’s price is $10 and the item’s tax rate is 0.05 (mean-
ing 5 percent), the item’s output row contains the number $10.50.

LISTING 17-4: (continued)

CHAPTER 17 Using Java Database Connectivity 461

17.indd 461 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

On the last line of the program’s output, display the total of all items’ tax-added
prices.

One Step Beyond
If you want to work with databases, JDBC is a good place to start. But for industrial-
strength projects, JDBC may not be enough. For big databases, you need high-
level tools.

Think about a Java class named Account. The code looks something like this:

public class Account {

 String name;

 String address;

 double balance;

}

An instance of the Account class is like a row of this chapter’s ACCOUNTS table. So,
you can run software that automatically creates a row for each instance in your
code. With this software, you don’t have to worry about updating a database.
Instead, you create classes and objects the way you do in any other Java program.
The software inserts data and performs queries on your behalf.

Products like Hibernate, TopLink, JPA (Java Persistence API), and MyBatis are
called object-relational mapping (ORM) frameworks because they synchronize data
between Java objects and database relations. For many professional programmers,
ORM is the way to go.

17.indd 462 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

5
Part5.indd 463	 Trim	size:	7.375	in	× 9.25 in February 22, 2022 9:00 PM

The Part of Tens

IN THIS PART . . .

Explore the best resources for Java on the web.

Read the Dear Barry advice column.

Part5.indd 464	 Trim	size:	7.375	in	× 9.25 in February 22, 2022 9:00 PM

CHAPTER 18 Ten Packs of Java Websites 465

18.indd 465 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

Chapter 18
 Ten Packs of Java
Websites

 B efore starting this chapter, I paused to count the number of tabs I had open
in my web browser. I counted 64 tabs. What about you? Are you a taba-
holic too?

 This Book’s Website
 For all matters related to the technical content of this book, visit http://
javafordummies.allmycode.com . And don ’ t forget: If you have questions about
anything you read in this book, send email to me at JavaForDummies@allmycode.
com , post a question on www.facebook.com/allmycode , or tweet to the Burd with
 @allmycode .

 For Business Issues Related to This Book
 For example, to ask, “How can I purchase 100 more copies of Java For Dummies ?”
visit www.dummies.com .

 IN THIS CHAPTER

» Checking out this book’s website

» Finding resources from Oracle

» Reading more about Java

466 PART 5 The Part of Tens

18.indd 466 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

Download the Java Development Kit
Get the open source version of Java at https://adoptium.net. For Oracle’s
official version of Java, visit www.oracle.com/java/technologies.

Your Grandparents’ Java Download Site
People who want to run Java programs but don’t have to write Java programs
should visit www.java.com.

The Horse’s Mouth
Check the official Java API documentation at https://docs.oracle.com/en/
java/javase/17/docs/api. And, to settle any argument about the way the
language behaves, read the rigorous Java language specification at https://docs.
oracle.com/javase/specs.

Join Java User Groups
I happen to share leadership roles in the New York JavaSIG (www.javasig.com)
and the Garden State Java User Group (www.gsjug.org). Both groups have regular
online meetings and in-person meetings. Come join us!

Find the Latest News about Java
Bookmark https://foojay.io/, https://dev.java and https://community.
oracle.com/community/java.

Find News, Reviews, and Sample Code
For articles by the experts, visit InfoQ at www.infoq.com and TheServerSide at
www.theserverside.com. You can always find good reading at these two sites.

CHAPTER 18 Ten Packs of Java Websites 467

18.indd 467 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

Got a Technical Question about Anything?
If you’re stuck and need help, search for answers and post questions at Stack
Overflow (http://stackoverflow.com).

You can also post questions at Coderanch — “A friendly place for programming
greenhorns” (https://coderanch.com). For questions specific to Java, visit
https://coderanch.com/f/33/java.

Become Involved in the Future of Java
The Java Community Process (JCP) “. . . is the mechanism for developing standard
technical specifications for Java technology. Anyone can register . . . and
participate in reviewing and providing feedback for the Java Specification
Requests (JSRs).” For more info about JCP membership, visit www.jcp.org/en/
participation/membership_ind.

18.indd 468 Trim size: 7.375 in × 9.25 in February 22, 2022 8:52 PM

CHAPTER 19 Ten Bits of Advice for New Software Developers 469

19.indd 469 Trim size: 7.375 in × 9.25 in February 22, 2022 8:51 PM

Chapter 19
 Ten Bits of Advice
for New Software
Developers

 I enjoy hearing from the people who read my books. “Nice job!” one reader says.
Another reader asks, “Can I run your book ’ s examples on older versions of
Java?” Yet another posts this comment: “You ’ re Barry Burd. Does that mean

you ’ re related to Larry Bird?”

 In all the questions I receive from readers, one popular theme is “What to do
next?” More specifi cally, people ask me what else to learn, what else to read, how
to get practice writing software, how to fi nd work, and other questions of that
kind. I ’ m fl attered to be asked, but I ’ m reluctant to think of myself as an authority
on such matters. No two people give you the same answers to these questions, and
if you ask enough people, you ’ re sure to fi nd disagreement.

 This chapter contains ten pieces of advice based on questions I ’ ve received from
readers. But remember that, in addition to these ten hints for living and learning,
I have one additional, overriding piece of advice:

 Think critically about the advice you receive. When in doubt, trust your intuition.

 IN THIS CHAPTER

» What to learn

» How to learn more

» What to do when you ’ re looking for
a job

» Other free advice

470 PART 5 The Part of Tens

19.indd 470 Trim size: 7.375 in × 9.25 in February 22, 2022 8:51 PM

Collect opinions. Talk to people about the issues. Try things and, if they work
(or even if they don’t work but they show some promise), keep doing them. If they
show no promise, try other things. Sharing is important, too. Don’t forget to
share.

How Long Does It Take to Learn Java?
The answer depends on you — on your goals, on your existing knowledge, on your
capacity to think logically, on the amount of spare time you have, and on your
interest in the subject.

The more excited you are about computer programming, the quicker you learn.
The more ambitious your goals, the longer it takes to achieve them.

There’s no such thing as “knowing all about Java.” No matter how much you
know, you always have more to learn. I’ve written several Java books and, as far
as I’m concerned, I’ve barely scratched the surface.

Which of Your Books Should I Read?
Funny you should ask! I’ve written several books, including these three (all from
Wiley):

 » Beginning Programming with Java For Dummies

 » Java For Dummies

 » Java Programming for Android Developers For Dummies

Each book starts from scratch, so you don’t need to know anything about app
development to read any of these books. But each book covers (roughly) twice as
much material as the previous book in the list. For example, Java For Dummies goes
twice as fast and covers twice as much material as Beginning Programming with
Java For Dummies. Which book you read depends on your level of comfort with
technical subjects. If you’re in doubt about where to start, find some sample pages
from any of these books to help you determine which book is best for you.

CHAPTER 19 Ten Bits of Advice for New Software Developers 471

19.indd 471 Trim size: 7.375 in × 9.25 in February 22, 2022 8:51 PM

Are Books Other than Yours
Good for Learning Java and
Android Development?

Yes. I’d love to recommend some, but I’m not conscientious enough to carefully
read and review other peoples’ books.

Which Computer Programming
Language(s) Should I Learn?

The answer depends on your goals. If you plan to write code for a living, the
answer depends on the job opportunities where you live. The TIOBE Programming
Community Index (www.tiobe.com/index.php/content/paperinfo/tpci) pro-
vides monthly ratings for popular programming languages. But the TIOBE Index
might not apply specifically to your situation. In June 2021, the Haskell language
ranked only 47th among the languages used around the world. But maybe there’s
a hotbed of Haskell programming in the town where you live.

Do you want to write applications for large enterprises? Then Java is a must-have
language. Do you want to write code for the iPhone? You probably want to learn
Swift. Do you want to create web pages? Learn HTML, CSS, and JavaScript.

Which Skills Other than Computer
Coding Should I Learn?

Sorry to disappoint you, but you’re asking someone who has an axe to grind. I’m
a college professor. I believe that no learning, no matter how impractical it might
seem to be, is ever wasted.

If you insist on a more definitive answer, go learn a little about databases. Data-
base work isn’t necessarily coding, but it’s important stuff. Also, read as much as
you can about software engineering — the study of techniques for the effective
design and maintenance of computer code. Don’t be afraid of math, either (because
learning math stretches your logical-thinking muscles). And, whenever you can,
hone your communication skills. The better you communicate, the more valuable
your work is to other people.

472 PART 5 The Part of Tens

19.indd 472 Trim size: 7.375 in × 9.25 in February 22, 2022 8:51 PM

How Should I Continue My Learning
as a Software Developer?

Practice, practice, practice. Take the examples you find in my book (or anywhere
else) and think of ways to change the code. Add an option here or a button there.

Find out what happens when you try to improve the code. If it works, think of
another way to make a change. If it doesn’t work, search the documentation for a
solution to your problem. If the documentation doesn’t help (and often, docu-
mentation doesn’t help), search the web for answers to your problem. Post ques-
tions at an online forum. If you don’t find an answer, put aside the problem for a
while and let it incubate in your mind.

You don’t learn programming by only reading about it — you have to scrape some
knuckles while writing code and seeking solutions. Only after trying, failing, and
trying again can you appreciate the work involved in developing computer
software.

How Else Should I Continue My Learning
as a Developer?

How did you know that I have a second suggestion? I recommend finding like-
minded people where you live and getting together with them regularly. These
days, you can find tech user groups in almost every corner of the globe. Find a Java
user group that meets in your area and attend the group’s meetings frequently. If
you’re a novice, you might not understand much of the discussion, but you’ll be
exposed to the issues that concern today’s Java developers.

Look for more tech groups and attend their meetings. Find meetings about other
programming languages, other technologies, and other topics that aren’t solely
about technology. Meet people face-to-face and find out which topics will be in
next year’s books.

To complement those face-to-face meetings, search the web for screen-to-screen
meetings. You can find free online technical sessions almost any day of the year.

CHAPTER 19 Ten Bits of Advice for New Software Developers 473

19.indd 473 Trim size: 7.375 in × 9.25 in February 22, 2022 8:51 PM

How Can I Land a Job Developing
Software?

Do all the things you’d normally do when you look for a job, but don’t forget my
answer to the previous question. User groups are fantastic places for networking.

Go to meetings and be a good listener. Don’t think about selling yourself. Be
patient and enjoy the ride. I landed a great consulting opportunity only after sev-
eral years of attending one group’s meetings. In the meantime, I learned a lot
about software (and quite a bit about dealing with other people).

I Still Don’t Know What to Do with My Life
That’s not a question. But it’s okay anyway.

Everyone has to make ends meet. If you manage to put food on your table, the next
step is to find out what you love to do. I’ve spent a lifetime teaching college stu-
dents, writing books, and developing computer code — and I love doing all of it.
(Well, I love most of it. I detest grading papers, and I dislike proofreading my own
work.)

Fortunately, I can make money teaching, writing, and developing. I could make
more money working 9-to-5 for a big company, managing a software team, or
creating the next big start-up, but I don’t like doing those things. My life has been
enriched because I do what I like doing, whether I’m working or not.

My advice is, find the best match of the things you like to do and the things that
help you earn a living. Compromise, if you must, but be honest with yourself about
the things that make you happy. (Of course, these things shouldn’t make other
people unhappy.)

Finally, be specific about your likes and dislikes. For example, saying, “I’d like to
be rich” isn’t specific at all. Saying, “I’d like to create a great game” is more spe-
cific, but you can do better. Saying, “I like to design game software, but I need a
partner who can do the marketing for me” is quite specific, and makes quite a tidy
set of goals.

474 PART 5 The Part of Tens

19.indd 474 Trim size: 7.375 in × 9.25 in February 22, 2022 8:51 PM

If I Have Other Questions,
How Can I Contact You?

Send email to javafordummies@allmycode.com. Follow me on Facebook
(/allmycode) or Twitter (@allmycode). Visit my ugly-but-informative website:
www.allmycode.com. Attach two tin cans to a very long string. Put a note in an old
pneumatic tube. Train a carrier pigeon to fly to my office. Hire a chimpanzee to . . .

Index.indd 475	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:57	PM

Index 475

Symbols
*	(asterisk),	85,	115
&&	(and)	operator,	115
{}	(curly	braces),	105,	138
--	(decrement	operator),	89–93
++	(increment	operator),	89–93
!=	(is	not	equal	to)	operator,	110
=	(equal)	sign,	104
<	(is	less	than)	operator,	110
<=	(is	less	than	or	equal	to)	operator,	110
==	(is	equal	to)	operator,	110
>	(is	greater	than)	operator,	110
>=	(is	greater	than	or	equal	to)	

operator,	110
!	(not)	operator,	115
||	(or)	operator,	115,	120
@Override	annotation,	227–228,	417
|	(pipe	symbol),	371–372
/	(slash),	85
“““	(three	double	quotes),	114–115
_	(underscores)
about,	184
in	numeric	literals,	59

A
abstract	classes,	420–427
abstract	methods,	419,	427–429
access
about,	385
access	modifiers,	386

access	modifiers	for	Java	classes,	
408–410

classes	and	members,	386–387
default,	for	members,	396–402
for	default	members	within	packages,	

400–402
modules,	410
private,	for	members,	387–396
protected,	for	members,	402–407
public,	for	members,	387–396

access	modifiers
about,	386
for	Java	classes,	408–410

accessor	methods,	188,	190
Account	class,	159–161,	165,	171,	179,	

186,	196,	461
accounts,	that	display	themselves,	

170–172
actionPerformed	methods,	436–450
add	method,	257,	327
addActionListener	method,	437,	438
adding	comments	to	code,	49–53
and	(&&)	operator,	115
annotation,	227–228
anonymous	inner	classes,	449
API	(application	programming	interface),	

34–35
API	Specification,	34–35
application	programming	interface	(API),	

34–35
applying	operators,	84–95

Index

476 Java For Dummies

Index.indd 476	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:57	PM

args	array,	321–322
array	initializer,	302–304
ArrayList	class,	325–328,	335
arrays
about,	295–298
arguing	with	code,	318–322
array	initializers,	302–304
booking	hotel	guests,	299–301
checking	vacancies,	306–308
closing	files,	309–311
conditional	operator,	317–318
creating,	298–299
defined,	296
enhancing	numbers,	316–317
limitations	of,	324–325
for	loops,	304–306
of	objects,	311–318
Room	class,	313–316
tab	stops,	301–302
writing	to	files,	308–309

ArtFrame	class,	390–392,	394–396
ASCII,	75
assignment	operators,	93–95
assignment	statements,	60
asterisk	(*),	85,	115
ATMController	program,	168

B
Barrie,	J.M.,	31
Beginning Programming with Java For

Dummies	(Burd),	470
BigDecimal	class,	182
BinaryOperator,	341
Blanchard,	Hollis,	28

blocks
about,	151–153
defined,	105
using	in	JShell,	108–109

blueprint,	15,	16
Boldyshev,	Konstantin,	27
boolean	type,	74,	76–77
braces,	45–48
break	statement,	131
Bright,	Herbert,	355
Burd,	Barry	(author)

Beginning Programming with Java For
Dummies,	470

contact	information	for,	4,	474
Java For Dummies,	8th	Edition,	24,	25,	

27,	470
Java Programming for Android Developers

For Dummies,	470
byte	type,	74

C
C	programming	language,	10
C++	programming	language,	11,	14
calculate	method,	193,	194
calculating	interest,	173–180
careers,	in	software	development,	473
case-sensitivity,	in	Java,	39
catch	clause,	360–362,	364–372
changing
code,	348–351
payments	for	some	employees,	225–231

char	type,	73–76
character	types,	74
characters

Index.indd 477	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:57	PM

Index 477

comparing,	109–110
reading	single,	149

Cheat	Sheet	(website),	4
cheating	enum	type	and	switches,	240
classes
about,	15,	18–19
abstract,	420–427
access	modifiers	for	Java,	408–410
Account,	159–161,	165,	171,	179,	186,	

196,	461
ArrayList,	325–328,	335
ArtFrame,	390–392,	394–396
BigDecimal,	182
within	classes,	446–449
collections,	325–336
DecimalFormat,	263,	316–317
defining,	158–159,	262–270
defining	methods	within,	169–173
DisplayThePlaces,	224
DoPayroll,	205
Drawing,	390–392,	396–402,	403
DrawingWide,	396,	398–400,	403,	404
DrawingWideBB,	401,	403,	405
DriverManager,	455
DummiesFrame,	73,	191–193,	255
Employee,	201,	202–206,	218–220
FullTimeEmployee,	218–221,	221–223,	

224–225,	250–252
GameFrame,	435,	438,	446–449
GetGoing,	281–282
graphical	user	interface	(GUI),	190–197
HashMap,	335
HashSet,	335
inner,	446–449
Integer,	321,	331–333
Java,	38–40

from	Java	API,	256–257
JButton,	257
JFrame,	80,	83
JTextField,	434
LinkedList,	335
MakeChange,	87
members	and,	386–387
MyActionListener,	446–449
NumberFormatException,	357,	360–361,	

362,	371–372
Organization,	180,	225
packages	and,	402–407
PartTimeEmployee,	221–231
PartTimeWithOver,	226–227
PlaceToLive,	215,	230
Player,	262–272
PlayerPlus,	270–276
PriorityQueue,	335
programs	and,	167
public,	167–169
Queue,	335
Room,	313–316
RuntimeException,	377–378
Sale,	337,	338
Scanner,	100–101,	209,	300
ShowFrame,	397,	401
ShowFrameWideBB,	404–405
SimpleFrame,	255–256
Stack,	335
String,	75,	79,	149,	411
Swing,	394
Temperature,	234–254
TemperatureNice,	246–247,	249
UseAccount,	165,	168,	179–180,	186
using	methods	from,	

228–231

478 Java For Dummies

Index.indd 478	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:57	PM

close()	method,	101
closing	files,	309–311
COBOL,	10
code.	See also	reuse	of	code
adding	comments	to,	49–53
arguing	with,	318–322
modifying,	348–351
reusing	existing,	199–231
troubleshooting,	372–380
using	comments	to	experiment	with,	

53–54
code	listings
abstract	classes,	421,	422,	423,	424,	

425–426
Account	class,	159,	171,	196
Account	objects,	164–165
accounts	that	display	themselves,	

170–171
amountInAccount,	61–62
an	account	that	calculates	interest,	174
array	initializer,	302
arrays	of	objects,	312
ArtFrame	class,	394
assignment	operators,	94
calculating	interest,	174–175
calling	accessor	methods,	187–188
catch	clause,	365–366
changing	ShowFrame	code,	397,	401
checking	passwords,	111–112
checking	username	and	password,	116
checking	vacant	rooms,	306–307
classes	within	classes,	446–447,	448
closing	resources,	382
collections,	326

comments,	50
compilers,	24,	25–26
counting	boxes,	356–357,	359
creating	a	team	batting	average,	271
creating	databases	and	tables,	452–453
creating	exceptions,	362
curly	braces	for	Java	classes,	46
curly	braces	for	Java	methods,	46
declaring	interfaces,	413,	414
default	constructor,	250,	251
defining	frames,	254–255
destroying	data,	459–460
displaying	frames,	255,	265,	391
displaying	local	currency,	441–443
Drawing	class,	392
drawing	wide	ovals,	401,	404
DrawingWide	class,	396
DummiesFrame	example,	191
employees,	200–201
exceptions,	365
fake	code,	219–220
fields	with	default	access,	398
FileNotFoundException,	376
filling	arrays	with	values,	300–301
FullTimeEmployee	class,	218–221
functional	programming,	346
generating	files	of	numbers,	320
guessing	game,	106–107,	195,	432–433
hiding	fields,	187
if	statements,	98–99
implementing	interfaces,	415,	416–417
improving	interfaces,	417–418
inserting	data,	456
int	type,	65

Index.indd 479	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:57	PM

Index 479

iterating	collections,	334
for	loop,	140,	304
making	change,	86
making	queries,	457–458
method	call,	41
method	declaration,	41
nested	if	statements,	122
not	writing	payroll	checks,	372–373
number	accuracy,	181
out.println,	128
PartTimeEmployee	class,	221
passing	objects	to	methods,	291
passing	parameters	by	reference,	291
passing	parameters	by	value,	288
for	Pentium	processor,	28
Player	class,	262
for	PowerPC	processor,	28
protected	fields,	402–403
repeating	guessing	game,	136–137
returning	objects	from	methods,	293
returning	results,	290
Room	class,	314
Sale	class,	337,	338
simple	calculator,	194
simple	Java	program,	37
static,	274
subclass	of	Drawing	class,	396
switch	statement,	126,	130–131
switch	statement	with	fall-through,	132
Temperature	class,	236–237
TemperatureNice	class,	246–247,	249
TempScale	type,	235
testing	code,	228–229

try-catch	statement,	374–375
unabridged	“Al’s	All	Wet”	Song,	142–143
using	boolean	type,	76
using	char	type,	74–75
using	custom	exceptions,	362–363
using	Player	class,	264
using	reference	types,	78
using	subclasses,	222,	226
using	Temperature	class,	

238–239
using	two	files,	380–381
using	variables,	58
variables,	280,	281,	283,	284
while	statement/loop,	147
writing	constructor	code,	241
writing	payroll	checks,	202

Coderanch,	467
collections
about,	323,	335–336
ArrayList	class,	325–328
classes,	325–336
generics,	328–330
hasNext	method,	333
limitations	of	arrays,	324–325
next	method,	333–335
primitive	types,	331–333
reference	types,	331–333

combining	declarations,	
67–69

comments
about,	49
adding	to	code,	49–53
experimenting	with,	53–54

480 Java For Dummies

Index.indd 480	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:57	PM

common	names,	34–35
comparison	operators
asterisk	wildcard	character	(*),	115
comparing	numbers/characters,	

109–110
comparing	objects,	110–113
text	blocks,	114–115
var	keyword,	113–114

compilers,	24–27
Computer	(magazine),	356
Computer	Folklore	

newsgroup,	356
computer	programming	

languages
about,	33–34
braces,	45–48
C,	10
C++,	11,	14
COBOL,	10
comments,	49–54
common	names,	34–35
defined,	9
FORTRAN,	10,	13–14,	336,	355
grammar,	34–35
instructing	computers,	43–45
Java	class,	38–40
Java	code,	37–38
Java	method,	40–41
main	method,	41–43
object-oriented,	13
recommended,	471
words	in	Java	programs,	35–37

concatenating,	85
conditional	operator,	

317–318

conditions
creating,	109–121
in	parentheses,	119–121

conditionToBeTested	condition,	317
constructors
creating,	254–258
default,	250–254
defined,	234,	237
defining,	234–245
for	subclasses,	248–249

Consumer,	341
continued	education,	472
controlling	keystrokes	from	keyboards,	

99–102
counting	loops,	139–145
creating
arrays,	298–299
conditions,	109–121
constructors,	254–258
databases	and	tables,	452–455
frames,	394–396
objects,	163–166
subclass	of	Temperature	class,	245–254
subclasses,	218–221
Temperature	class,	234–245
values,	84–95

Cross	Reference	icon,	3
curly	braces	({}),	105,	138
cutCheck	method,	201,	381,	383

D
data
destroying,	459–461
putting	to	tables,	456–457

Index.indd 481	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:57	PM

Index 481

reading	from	files,	208–212
retrieving,	457–459
storing	in	files,	207–208

database	connectivity
about,	451–452,	461
connecting	and	disconnecting,	455
creating	databases	and	tables,	452–455
destroying	data,	459–461
putting	data	into	tables,	456–457
retrieving	data,	457–459
SQL	commands,	454–455

database	driver,	453
database	tables
creating,	452–455
destroying	data,	459–461
putting	data	into,	456–457
retrieving	data,	457–459

databases,	creating,	452–455
decimal	number	types,	74
decimal	points
about,	63–64,	101
numbers	without,	65–67

DecimalFormat	class,	263,	316–317
decision-making	statements
about,	97–98
comparison	operators,	109–121
if	statements,	98–108
logical	operators,	109–121
nesting	if	statements,	121–123
switch	expression,	127–130
switch	statement,	124–127,	130–134
using	blocks	in	JShell,	108–109

declarations,	combining,	67–69
declaring

public	classes,	167–169
two	interfaces,	413–415
variables,	163–166

decrement	operator	(--),	89–93
default	access
about,	160
for	members,	396–402

default	constructor,	250–254
default	method,	419
defining
classes,	158–159,	262–270
constructors,	234–245
frames,	254–255
methods	within	classes,	169–173
subclasses,	216–221

destroying	data,	459–461
Diaconis,	Persi
“The	Search	for	Randomness,”	102

disk	files
about,	207
cleanliness,	215
finding	files,	212
naming	a	file	location,	212–213
reading	data	from	files,	208–212
reading	one	line	at	a	time,	213–215
storing	data	in	files,	207–208

diskScanner,	212,	318,	383
display	method,	172–173,	247,	250,	341,	

413,	415,	418
Displayable	interface,	414,	

415,	416
displaying
frames,	255,	265
values,	65

482 Java For Dummies

Index.indd 482	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:57	PM

displayMe	method,	418
DisplayThePlaces	class,	224
DoPayroll	class,	205
dot	notation,	159,	276
double	type,	62,	73,	80
Drawing	class,	390–392,	396–402,	403
drawing	on	frames,	390–392
DrawingWide	class,	396,	398–400,	

403,	404
DrawingWideBB	class,	401,	403,	405
DriverManager	class,	455
drop-down	list,	444
DummiesFrame	class,	73,	191–193,	255

E
Eclipse,	22,	453
else	statement,	105,	106–108
Employee	class,	201,	202–206,	218–220
employees
about,	200–201
cutting	checks,	206
full-time	vs.	part-time,	216–221
using	Employee	class,	202–206

end-of-line	comments,	51
enum	type,	235–236,	240
equal	sign	(=),	104
equals	method,	111–113
equalsIgnoreCase	method,	113
escape	sequence,	301–302
event	handling,	events	and,	435–436
events
event	handling	and,	435–436
responding	to,	440–446

evidence.exists()	method,	150
exception	handling,	357
executeQuery,	458
expressions,	statements	and,	91–92

F
factorial,	144
fall-through,	with	switch	statement,	

131–134
fields
inaccessibility	of,	188–189
of	objects,	167

FileNotFoundException,	212,	266,	373,	
375–377,	381,	383

files
closing,	309–311
finding,	212
handling,	150–151
naming	locations	for,	212–213
reading	data	from,	208–212
storing	data	in,	207–208
writing	to,	308–309

filter	method,	343,	344,	348
final	keyword,	244
finding	files,	212
findPaymentAmount	method,	223,	225,	

228,	229
float	type,	74
FlowLayout,	256
following	threads,	436–437
for	statement/loop
about,	139–141
anatomy	of,	141–142

Index.indd 483	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:57	PM

Index 483

arrays	and,	304–306
experiments	and	challenges	with,	

144–145
format	method,	308,	317
format	string,	182
FORTRAN,	10,	13–14,	336,	355
frames
creating,	394–396
defined,	82
defining,	254–255
displaying,	255,	265
drawing	on,	390–392

Free	On-line	Dictionary	of	Computing,	356
ftEmployee.findPaymentAmount

method,	223
FullTimeEmployee	class,	218–221,	

221–223,	224–225,	250–252
fully	qualified	name,	163
Function,	341
functional	programming
about,	336–339
interpretation	of	streams,	342–348
lambda	expressions,	339–342
method	references,	351–353
modifying	code,	348–351

G
GameFrame	class,	435,	438,	446–449
Garden	State	Java	User	Group,	466
generating
arrays,	298–299
conditions,	109–121
constructors,	254–258

databases	and	tables,	452–455
frames,	394–396
objects,	163–166
subclass	of	Temperature	class,	245–254
subclasses,	218–221
Temperature	class,	234–245
values,	84–95

generics,	328–330
getAddress	method,	189
getAverageString	method,	263,	273
getConnection	method,	455
getCurrencyInstance	method,	316
GetGoing	class,	281–282
getInterest	method,	175,	176–177,	

178–180
getName	method,	188–189
getNumber	method,	247
getScale	method,	247
getter	method,	188–189
Gosling,	James	(programmer),	14,	329
grammar,	34–35
graphical	user	interface	(GUI)
about,	72–73
classes,	190–197

GridLayout,	267,	275
grouping	separators,	206

H
Harvard	Mark	II	computer,	355
HashMap	class,	335
HashSet	class,	335
hasNext	method,	333

484 Java For Dummies

Index.indd 484	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:57	PM

header,	for	display	method,	172–173
hooks,	in	software,	217
Hopper,	Grace	(programmer),	10

I
icons,	explained,	3–4
IDE	(integrated	development	

environment)
about,	162
commonly	used,	453
directory	structure	and,	393
installing,	22
warnings,	257–258

identifiers,	36
IEEE,	356
if	statement
about,	98–99,	103–104
controlling	keystrokes	from	keyboards,	

99–102
curly	braces	and,	105
else,	106–108
equal	(=)	sign	and,	104
indenting,	105–106
nesting,	121–123
using	blocks	in	JShell,	108–109

if/else,	105–106
imperative	programming,	336
implementing	interfaces,	415–417
implements	keyword,	416
import	declarations,	82–84,	88,	100
increment	operator	(++),	89–93
indenting,	105–106
InfoQ,	466

initializing
about,	87–88
static,	272–273
variables,	67–69,	166–167

inner	classes,	446–449
InputMismatchException,	266
installing
integrated	development	environment	

(IDE),	22
Java	Development	Kit	(JDK),	21–22

int	type,	65,	73,	74,	80,	331–333
Integer	class,	321,	331–333
integrated	development	environment	(IDE)
about,	162
commonly	used,	453
directory	structure	and,	393
installing,	22
warnings,	257–258

Intellij	IDEA
about,	22,	453
JShell	Console,	70

interest,	calculating,	173–180
interface.	See	Java	interface
intermediate	method,	348
Internet	resources
Cheat	Sheet,	4
Coderanch,	467
Computer	(magazine),	356
Computer	Folklore	newsgroup,	356
Eclipse,	22
Free	On-line	Dictionary	of	

Computing,	356
Garden	State	Java	User	Group,	466

Index.indd 485	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:57	PM

Index 485

IEEE,	356
InfoQ,	466
Intellij	IDEA,	22
Java,	466
Java	17,	35
Java	API	documentation,	466
Java	Bytecode	Editor,	27
Java	Community	Process	(JCP),	35,	467
Java	Development	Kit	(JDK),	466
Java	Language	Specification,	405
JavaFX,	432
Linux	Assembly	HOWTO	document,	27
NetBeans,	22
New	York	JavaSIG,	466
PowerPC	Assembly,	28
recommended,	465–467
Sqlite	driver,	453
Stack	Overflow,	467
TheServerSide,	466
for	this	book,	38,	47,	72,	193,	202,	212,	

252,	465
TIOBE	Programming	Community	

Index,	471
user	groups,	466
Visual	Studio	Code	(VS	Code),	22

inventory
about,	356–360
catch	clause,	360–362,	364–371
creating	exceptions,	362–364
NumberFormatException,	371–372
OutOfRangeException,	371–372

IOException,	268–269
is	equal	to	(==)	operator,	110
is	greater	than	(>)	operator,	110
is	less	than	(<)	operator,	110

is	less	than	or	equal	to	(<=)	operator,	110
is	not	equal	to	(!=)	operator,	110
ItemListener	interface,	444–445

J
JAR	file,	194
Java.	See also specific topics
about,	7–8
case-sensitivity	in,	39
history	of,	10–12
learning,	470
reasons	for	using,	9–10
uses	for,	8–9
website,	466

Java	17,	35
Java	API
about,	161
classes,	256–257
documentation	for,	466
methods,	256–257

Java	Bytecode	Editor,	27
Java	bytecode	instructions,	26
Java	class,	38–40
Java	Community	Process	(JCP),	35,	467
Java	Database	Connectivity,	455
Java	Development	Kit	(JDK)
about,	23–24,	466
installing,	21–22

Java For Dummies,	8th	Edition	(Burd),	24,	
25,	27,	470

Java	interface
about,	412–413,	417–420
declaring	two,	413–415
implementing,	415–417

486 Java For Dummies

Index.indd 486	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:57	PM

Java	Language	Specification,	34–35,	405
Java	method,	40–41
Java Programming for Android Developers

For Dummies	(Burd),	470
Java	Specification	Requests	(JSRs),	467
Java	virtual	machine	(JVM),	27–31
Javadoc	comments,	51–53
JavaFX,	432
JButton	class,	257
JComboBox,	444
JCP	(Java	Community	Process),	35,	467
JDBC,	461
JDK	(Java	Development	Kit)
about,	23–24,	466
installing,	21–22

JFrame	class,	80,	83
JLabel,	266
JOptionPane,	117–118
JShell
about,	69–72,	87
using	blocks	in,	108–109

JSRs	(Java	Specification	Requests),	467
JTextField	class,	434
JVM	(Java	virtual	machine),	27–31

K
keyboard.next(),	117
keyboards,	controlling	keystrokes	from,	

99–102
KeyListener	interface,	445
keystrokes,	controlling	from	keyboards,	

99–102
keywords,	36

L
lambda	expressions,	339–342
learning	Java,	470
LinkedList	class,	335
Linux	Assembly	HOWTO	document,	27
Lisp,	336
listings,	code
abstract	classes,	421,	422,	423,	424,	

425–426
Account	class,	159,	171,	196
Account	objects,	164–165
accounts	that	display	themselves,	

170–171
amountInAccount,	61–62
an	account	that	calculates	interest,	174
array	initializer,	302
arrays	of	objects,	312
ArtFrame	class,	394
assignment	operators,	94
calculating	interest,	174–175
calling	accessor	methods,	187–188
catch	clause,	365–366
changing	ShowFrame	code,	397,	401
checking	passwords,	111–112
checking	username	and	password,	116
checking	vacant	rooms,	306–307
classes	within	classes,	446–447,	448
closing	resources,	382
collections,	326
comments,	50
compilers,	24,	25–26
counting	boxes,	356–357,	359
creating	a	team	batting	average,	271

Index.indd 487	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:57	PM

Index 487

creating	databases	and	tables,	452–453
creating	exceptions,	362
curly	braces	for	Java	classes,	46
curly	braces	for	Java	methods,	46
declaring	interfaces,	413,	414
default	constructor,	250,	251
defining	frames,	254–255
destroying	data,	459–460
displaying	frames,	255,	265,	391
displaying	local	currency,	441–443
Drawing	class,	392
drawing	wide	ovals,	401,	404
DrawingWide	class,	396
DummiesFrame	example,	191
employees,	200–201
exceptions,	365
fake	code,	219–220
fields	with	default	access,	398
FileNotFoundException,	376
filling	arrays	with	values,	300–301
FullTimeEmployee	class,	218–221
functional	programming,	346
generating	files	of	numbers,	320
guessing	game,	106–107,	195,	432–433
hiding	fields,	187
if	statements,	98–99
implementing	interfaces,	415,	416–417
improving	interfaces,	417–418
inserting	data,	456
int	type,	65
iterating	collections,	334
for	loop,	140,	304
making	change,	86
making	queries,	457–458

method	call,	41
method	declaration,	41
nested	if	statements,	122
not	writing	payroll	checks,	372–373
number	accuracy,	181
out.println,	128
PartTimeEmployee	class,	221
passing	objects	to	methods,	291
passing	parameters	by	reference,	291
passing	parameters	by	value,	288
for	Pentium	processor,	28
Player	class,	262
for	PowerPC	processor,	28
protected	fields,	402–403
repeating	guessing	game,	136–137
returning	objects	from	methods,	293
returning	results,	290
Room	class,	314
Sale	class,	337,	338
simple	calculator,	194
simple	Java	program,	37
static,	274
subclass	of	Drawing	class,	396
switch	statement,	126,	130–131
switch	statement	with	fall-through,	132
Temperature	class,	236–237
TemperatureNice	class,	246–247,	249
TempScale	type,	235
testing	code,	228–229
try-catch	statement,	374–375
unabridged	“Al’s	All	Wet”	Song,	142–143
using	boolean	type,	76
using	char	type,	74–75
using	custom	exceptions,	362–363

488 Java For Dummies

Index.indd 488	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:57	PM

listings,	code	(continued)
using	Player	class,	264
using	reference	types,	78
using	subclasses,	222,	226
using	Temperature	class,	238–239
using	two	files,	380–381
using	variables,	58
variables,	280,	281,	283,	284
while	statement/loop,	147
writing	constructor	code,	241
writing	payroll	checks,	202

logical	operators
about,	115–118
conditions	in	parentheses,	119–121
null,	118–119

logical	types,	74
long	type,	74
long-term	support	(LTS)	release,	11
loops
about,	135
blocks,	151–153
counting,	139–145
file	handling,	150–151
reading	single	characters,	149
root	folder,	148–149
for	statement,	139–145
while	statement/loop,	136–139,	145–148

LTS	(long-term	support)	release,	11

M
Macintosh	Terminal	tab,	302
main	method,	41–43,	81,	161,	175,	205,	

212,	215,	268,	275,	276,	281–282,	318,	
377,	436

MakeChange	class,	87
managing	keystrokes	from	keyboards,	

99–102
map	method,	344,	348
matching	types,	223
MaximumIntegerDigit,	273
McCarthy,	John	(programmer),	336
method	body,	41
method	call,	41
method	declaration,	41
method	header,	41
method	references,	351–353
method-local	variable,	282
methods
abstract,	427–429
actionPerformed,	436–450
add,	257,	327
addActionListener,	437,	438
calculate,	193,	194
close(),	101
cutCheck,	201,	381,	383
default,	419
defining	within	classes,	169–173
display,	172–173,	247,	250,	341,	413,	

415,	418
displayMe,	418
equals,	111–113
equalsIgnoreCase,	113
evidence.exists(),	150
filter,	343,	344,	348
findPaymentAmount,	223,	225,	228,	229
format,	308,	317
ftEmployee.findPaymentAmount,	223
getAddress,	189

Index.indd 489	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:57	PM

Index 489

getAverageString,	263,	273
getConnection,	455
getCurrencyInstance,	316
getInterest,	175,	176–177,	178–180
getName,	188–189
getNumber,	247
getScale,	247
hasNext,	333
Java,	40–41
from	Java	API,	256–257
main,	41–43,	81,	161,	175,	205,	212,	215,	

268,	275,	276,	281–282,	318,	377,	436
map,	344,	348
mouseEntered,	445–446
mouseExited,	445–446
next,	333–335
nextLine,	213–215
paint,	392,	395
parseInt,	321
passing	values	to,	176–178
payOneEmployee,	205,	211–212,	213–215
print,	308–309
printf,	182–184,	206,	243,	308–309
println,	105
printStackTrace,	360–361
PrintStream(),	102,	169–170,	308–309
Random(),	102–103
reduce,	344,	347,	349
returning	objects	from,	292–294
sending	values	to/from,	173–180
setDefaultCloseOperation,	256–257
setLayout,	256,	267–268
setName,	188–189,	190
setResultText,	445

setSize,	257
setter,	188–189
setTitle,	256
setVisible,	257
stream,	344,	346,	348
summarize,	414
System.in,	100–101
System.out,	100
System.out.print,	64
System.out.println,	43–45,	102
terminal,	348
toUpperCase,	75
using	from	classes/subclasses,	228–231
virtual,	230–231

modifying
code,	348–351
payments	for	some	employees,	

225–231
modules,	410
mouseEntered	method,	445–446
mouseExited	method,	445–446
MouseListener	interface,	445
multitasking
about,	431–432
defining	classes	inside	classes,	

446–449
responding	to	events,	440–446
two	or	more	calls,	432–440

MyActionListener	class,	446–449

N
names
common,	34–35
of	variables,	59

490 Java For Dummies

Index.indd 490	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:57	PM

naming
file	locations,	212–213
packages,	392–394

nesting	if	statements,	121–123
NetBeans,	22
new Account(),	165–166
new Scanner(),	309
New	York	JavaSIG,	466
next	method,	333–335
nextBoolean(),	101
nextDouble(),	101,	215
nextInt(),	101
nextLine	method,	213–215
NoClassDefFoundError,	393–394
NoSQL	database,	454
not	(!)	operator,	115
null,	118–119
NumberFormatException	class,	357,	

360–361,	362,	371–372
numbers
accuracy	of,	180–185
comparing,	109–110
formats	for,	64–65
whole,	67
without	decimal	points,	65–67

NumberTooLargeException,	366–371

O
object-oriented	languages,	13
object-oriented	programming	(OOP)
about,	12–13,	157
accessor	methods,	190
accounts	that	display	themselves,	

170–172

advantages	of,	15–18
classes,	15,	18–19
creating	objects,	163–166
declaring	public	classes,	167–169
declaring	variables,	163–166
defining	classes,	158–169
defining	methods	within	classes,	169–173
display	method	header,	172–173
FORTRAN,	13–14
graphical	user	interface	(GUI)	application,	

190–197
inaccessible	fields,	188–189
initializing	variables,	166–167
object-oriented	languages,	13
objects,	15,	18–19
packages,	161–163
passing	values	to	methods,	176–178
programs	and	classes,	167
returning	values	from	getInterest

method,	178–180
salami	scam,	180–185
sending	values	to/from	methods,	

173–180
simplicity	of	programming,	185–188
using	object	fields,	167

object-relational	mapping	(ORM),	461
objects
about,	15,	18–19,	233–234
arrays	of,	311–318
comparing,	110–113
creating,	163–166
creating	constructors,	254–258
creating	subclass	of	Temperature	class,	

245–254
creating	Temperature	class,	234–245

Index.indd 491	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:57	PM

Index 491

defining	constructors,	234–245
fields	of,	167
returning	from	methods,	292–294

Online	icon,	4
OOP	(object-oriented	programming)
about,	12–13,	157
accessor	methods,	190
accounts	that	display	themselves,	

170–172
advantages	of,	15–18
classes,	15,	18–19
creating	objects,	163–166
declaring	public	classes,	167–169
declaring	variables,	163–166
defining	classes,	158–169
defining	methods	within	classes,	169–173
display	method	header,	172–173
FORTRAN,	13–14
graphical	user	interface	(GUI)	application,	

190–197
inaccessible	fields,	188–189
initializing	variables,	166–167
object-oriented	languages,	13
objects,	15,	18–19
packages,	161–163
passing	values	to	methods,	176–178
programs	and	classes,	167
returning	values	from	getInterest

method,	178–180
salami	scam,	180–185
sending	values	to/from	methods,	

173–180
simplicity	of	programming,	185–188
using	object	fields,	167

operators,	applying,	84–95
or	(||)	operator,	115,	120
Oracle	Corporation,	11,	432
Organization	class,	180,	225
ORM	(object-relational	mapping),	461
OutOfRangeException,	363,	371–372,	

377–378
out.println,	128
@Override	annotation,	227–228,	417

P
pack,	267
packages
about,	161–163
accessing	default	members	within,	

400–402
classes	and,	402–407
naming,	392–394
subclasses	and,	402–404

paint	method,	392,	395
parameters/parameter	lists
about,	173
in catch	clauses,	360–362
passing,	287–294
passing	by	reference,	290–292

parentheses,	conditions	in,	119–121
parseInt	method,	321
PartTimeEmployee	class,	221–231
PartTimeWithOver	class,	226–227
passing
parameters,	287–294
parameters	by	reference,	290–292
values	to	methods,	176–178

492 Java For Dummies

Index.indd 492	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:57	PM

payOneEmployee	method,	205,	211–212,	
213–215

pipe	symbol	(|),	371–372
PlaceToLive	class,	215,	230
placing	variables,	280–283
Player	class,	262–272
Player.getName,	277
PlayerPlus	class,	270–276
plus	sign,	84
postdecrement,	91
PowerPC	Assembly,	28
predecrement,	91
Predicate,	341
preparing	for	Java,	21–23
primitive	types
about,	73,	331–333,	411
char,	73–76

print	method,	308–309
printf	method,	182–184,	206,	243,	

308–309
println	method,	105
printStackTrace	method,	360–361
PrintStream()	method,	102,	169–170,	

308–309
PriorityQueue	class,	335
private,	188
private	access,	for	members,	387–396
private	classes,	access	modifiers	for,	

409–410
private	keyword,	387–396
program	arguments,	321–322
programming
functional,	336–353
imperative,	336
simplicity	of,	185–188

programming	languages
about,	33–34
braces,	45–48
C,	10
C++,	11,	14
COBOL,	10
comments,	49–54
common	names,	34–35
defined,	9
FORTRAN,	10,	13–14,	

336,	355
grammar,	34–35
instructing	computers,	43–45
Java	class,	38–40
Java	code,	37–38
Java	method,	40–41
main	method,	41–43
object-oriented,	13
recommended,	471
words	in	Java	programs,	35–37

programs,	classes	and,	167
protected,	402–403
protected	access,	for	members,	

402–407
public	access,	for	members,	

387–396
public	classes
access	modifiers	for,	408
declaring,	167–169

public	keyword,	387–396

Q
queries,	making,	457–458
Queue	class,	335

Index.indd 493	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:57	PM

Index 493

R
Random()	method,	102–103
randomness,	creating,	102–103
randomNumber,	104–105
Read	Evaluate	Print	Loop	(REPL),	70
reading
data	from	files,	208–212
one	line	at	a	time,	213–215
single	characters,	149

reduce	method,	344,	347,	349
reference,	passing	parameters	by,	

290–292
reference	types
about,	78–81,	331–333,	411
types	of,	411–412

relational	database,	454
remainder	operator,	85
Remember	icon,	3
REPL	(Read	Evaluate	Print	Loop),	70
resources,	Internet
Cheat	Sheet,	4
Coderanch,	467
Computer	(magazine),	356
Computer	Folklore	newsgroup,	356
Eclipse,	22
Free	On-line	Dictionary	of	

Computing,	356
Garden	State	Java	User	Group,	466
IEEE,	356
InfoQ,	466
Intellij	IDEA,	22
Java,	466

Java	17,	35
Java	API	documentation,	466
Java	Bytecode	Editor,	27
Java	Community	Process	(JCP),	35,	467
Java	Development	Kit	(JDK),	466
Java	Language	Specification,	405
JavaFX,	432
Linux	Assembly	HOWTO	

document,	27
NetBeans,	22
New	York	JavaSIG,	466
PowerPC	Assembly,	28
recommended,	465–467
Sqlite	driver,	453
Stack	Overflow,	467
TheServerSide,	466
for	this	book,	38,	47,	72,	193,	202,	212,	

252,	465
TIOBE	Programming	Community	

Index,	471
user	groups,	466
Visual	Studio	Code	(VS	Code),	22

resources,	recommended,	470
responding,	to	events,	440–446
retrieving	data,	457–459
return	statement,	178–179
return	type,	173
returning
objects	from	methods,	

292–294
results,	290
value	from	getInterest	method,	

178–180

494 Java For Dummies

Index.indd 494	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:57	PM

reuse	of	code
about,	199–200
changing	payments	for	some	employees,	

225–231
defining	subclasses,	216–221
disk	files,	207–215
employees,	200–206
using	subclasses,	221–225

Ritchie,	Dennis	(programmer),	10
Room	class,	313–316
root	folder,	148–149
runtime	exception,	364
RuntimeException	class,	377–378

S
Sale	class,	337,	338
Scanner	class,	100–101,	209,	300
“The	Search	for	Randomness”	(Persi),	102
semicolons,	in	JShell,	71
sending	values	to/from	methods,	173–180
setDefaultCloseOperation	method,	

256–257
setLayout	method,	256,	267–268
setName	method,	188–189,	190
setResultText	method,	445
setSize	method,	257
setter	method,	188–189
setTitle	method,	256
setVisible	method,	257
short	type,	74
ShowFrame	class,	397,	401
ShowFrameWideBB	class,	404–405
showing

frames,	255,	265
values,	65

side	effect,	341
simple	types.	See	primitive	types
SimpleFrame	class,	255–256
SIMULA,	14
slash	(/),	85
Smalltalk,	14
software
compilers,	24–27
developing,	31–32
hooks	in,	217
Java	Development	Kit	(JDK),	23–24
Java	virtual	machine	(JVM),	27–31
preparing	for	Java,	21–23

software	engineering,	471
Spirit	robotic	rover,	11
SQL	(Structured	Query	Language)	

commands,	454–455
Sqlite	driver,	453–454
Stack	class,	335
Stack	Overflow,	467
statements.	See also if	statement
assignment,	60
break,	131
else,	105,	106–108
expressions	and,	91–92
return,	178–179
super(),	248
switch,	124–127,	130–134
try,	360,	380–383
try-catch,	360,	361,	374–375
while,	136–139,	145–148

Index.indd 495	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:57	PM

Index 495

statements,	decision-making
about,	97–98
comparison	operators,	109–121
if	statements,	98–108
logical	operators,	109–121
nesting	if	statements,	121–123
switch	expression,	127–130
switch	statement,	124–127,	130–134
using	blocks	in	JShell,	108–109

static	keyword
about,	270–279,	311
in	import	declarations,	100

storing	data	in	files,	207–208
stream	method,	344,	346,	348
streams
about,	323
interpretation	of,	342–348
limitations	of	arrays,	324–325

String	class,	75,	79,	149,	411
Stroustrup,	Bjarne	(programmer),	11,	14
Structured	Query	Language	(SQL)	

commands,	454–455
subclasses
constructors	for,	248–249
creating	for	Temperature	class,	245–254
defining,	216–221
packages	and,	402–404
using,	221–225
using	methods	from,	228–231

Summarizable	interface,	415,	416
summarize	method,	414
Sun	Microsystems,	11
super()	statement,	248

superclass,	17
supertasker,	431
Swing	class,	394
Swing	framework,	432
switch	expression,	127–130
switch	statement,	124–127,	130–134
switches,	cheating,	240
switching	to	default	access,	398–400
System.in	method,	100–101
System.out	method,	100
System.out.print	method,	64
System.out.println	method,	43–45,	102

T
tab	stops,	301–302
tables
creating,	452–455
destroying	data,	459–461
putting	data	into,	456–457
retrieving	data,	457–459

Technical	Stuff	icon,	4
Temperature	class
creating,	234–245
creating	subclass	for,	245–254

TemperatureNice	class,	246–247,	249
TempScale	type,	235
terminal	method,	348
text	blocks,	114–115
text-based	program,	72–73
TheServerSide,	466
this	keyword,	437–438
threads,	following,	436–437
three	double	quotes	(“““),	114–115

496 Java For Dummies

Index.indd 496	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:57	PM

throws	clause,	269
TIOBE	Programming	Community	

Index,	471
Tip	icon,	3
Tolstoy,	Leo	(author),	33
toUpperCase	method,	75
traditional	comments,	50–51
troubleshooting
about,	355–356
code	not	working,	372–380
inventory,	356–372
try	statement,	380–383

Try	It	Out	icon,	4
try	statement,	360,	380–383
try-catch	statement,	360,	361,	374–375
try-with-resources,	455
types
double,	62,	73,	80
enum,	235–236,	240
float,	74
int,	65,	73,	74,	80,	331–333
long,	74
matching,	223
reference,	78–81,	331–333,	411–412
return,	173
short,	74
TempScale,	235

types,	matching,	223

U
underscores	(_)
about,	184
in	numeric	literals,	59

UseAccount	class,	165,	168,	179–180,	186
user	groups,	466

V
values
creating	new,	84–95
displaying,	65
passing	parameters	by,	288–289
passing	to	methods,	176–178
returning	from	getInterest	method,	

178–180
sending	to/from	methods,	173–180
of	variables,	61–62

var	keyword,	113–114
variables
about,	57–59,	279–280
absence	of,	349–350
applying	operators,	84–95
assignment	operators,	93–95
assignment	statements,	60
combining	declarations,	67–69
decimal	points,	63–64
declaring,	62,	163–166
decrement	operators,	89–93
expressions,	91–92
graphical	user	interface	(GUI),	72–73
import	declarations,	82–84,	88
increment	operators,	89–93
initializing,	67–69,	87–88,	166–167
JShell,	69–72
lines	and,	64–65
numbers	without	decimal	points,	65–67
placing,	280–283

Index.indd 497	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:57	PM

Index 497

primitive	types,	73–77
reference	types,	78–82
returning	results,	290
statements,	91–92
telling	where	to	go,	283–287
text-based	programs,	72–73
types	of	values,	61–62
whole	numbers,	67

virtual	methods,	230–231
Visual	Studio	Code	(VS	Code),	22

W
Warning	icon,	3
warnings	(IDE),	257–258
websites
Cheat	Sheet,	4
Coderanch,	467
Computer	(magazine),	356
Computer	Folklore	newsgroup,	356
Eclipse,	22
Free	On-line	Dictionary	of	

Computing,	356
Garden	State	Java	User	Group,	466
IEEE,	356
InfoQ,	466
Intellij	IDEA,	22
Java,	466
Java	17,	35

Java	API	documentation,	466
Java	Bytecode	Editor,	27
Java	Community	Process	(JCP),	35,	467
Java	Development	Kit	(JDK),	466
Java	Language	Specification,	405
JavaFX,	432
Linux	Assembly	HOWTO	document,	27
NetBeans,	22
New	York	JavaSIG,	466
PowerPC	Assembly,	28
recommended,	465–467
Sqlite	driver,	453
Stack	Overflow,	467
TheServerSide,	466
for	this	book,	38,	47,	72,	193,	202,	212,	

252,	465
TIOBE	Programming	Community	

Index,	471
user	groups,	466
Visual	Studio	Code	(VS	Code),	22

while	statement/loop
about,	136–139
using,	145–148

whole	numbers,	67,	74
window,	256
Windows	command	prompt,	302
words,	in	Java	programs,	35–37
writing	to	files,	308–309

Index.indd 498	 Trim	size:	7.375	in	×	9.25	in	 February	22,	2022	8:57	PM

Bother.indd 499 Trim size: 7.375 in × 9.25 in February 22, 2022 8:51 PM

About the Author
Barry Burd received a master’s degree in computer science at Rutgers University
and a PhD in mathematics at the University of Illinois. As a teaching assistant in
Champaign–Urbana, Illinois, he was elected five times to the university-wide List
of Teachers Ranked as Excellent by Their Students.

Since 1980, Dr. Burd has been a professor in the department of mathematics and
computer science at Drew University in Madison, New Jersey. He has spoken at
conferences in the United States, Europe, Australia, and Asia, and in 2020, he was
honored to be named a Java Champion. He is the author of many articles and
books, including Beginning Programming with Java For Dummies, Java Programming
For Android Developers For Dummies, and Flutter For Dummies, all from Wiley.

Dr. Burd lives in Madison, New Jersey, with his wife of n years, where n > 40. In
his spare time, he enjoys being a workaholic.

Dedication

Author’s Acknowledgments
I heartily and sincerely thank Paul Levesque, for his work on so many of my books
in this series.

Thanks also to Kelsey Baird, for her hard work and support in so many ways.

Thanks to Chad Darby and Becky Whitney, for their efforts in editing this book.

Thanks to the staff at Wiley Publishing for helping to bring this book to
bookshelves.

Thanks to Frank Greco and the leaders of the New York JavaSIG: Jeanne Boyarsky,
Sai Sharan Donthi, Rodrigo Graciano, Chandra Guntur, Vinay Karle, Justin Lee,
Lily Luo, and Neha Sardana. Thanks to Michael Redlich and the leaders of the
“Garden State Java User Group” Chandra (again), Caitlin Mahoney, Scott Selikoff,
Neha (again), and Paul Syers. Thanks to my colleagues, the faculty members in
the mathematics and computer science department at Drew University: Sarah
Abramowitz, Chris Apelian, Seth Harris, Emily Hill, Steve Kass, Diane Liporace, Yi
Lu, Ziyuan Meng, Ellie Small, and even that maniac Steve Surace. Finally, a special
thanks to Richard Bonacci, Cameron McKenzie, Scott Stoll, and Gaisi Takeuti for
their long-term help and support.

Publisher’s Acknowledgments

Acquisitions Editor: Kelsey Baird

Senior Project Editor: Paul Levesque

Copy Editor: Becky Whitney

Tech Editor: Chad Darby

Production Editor: Saikarthick Kumarasamy

Cover Image: © kowalskichal/Shutterstock

Bother.indd 500 Trim size: 7.375 in × 9.25 in February 22, 2022 8:51 PM

