

JavaScript from
Frontend to Backend

Learn full stack JavaScript development using
the MEVN stack with quick and easy steps

Eric Sarrion

BIRMINGHAM—MUMBAI

JavaScript from Frontend to Backend
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly
by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Associate Group Product Manager: Pavan Ramchandani
Publishing Product Manager: Jane D’souza
Senior Editor: Mark D’souza
Content Development Editor: Debolina Acharyya
Technical Editor: Shubham Sharma
Copy Editor: Safis Editing
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Vijay Kamble
Marketing Coordinater: Marylou De Mello, Anamika Singh

First published: August 2022

Production reference: 2090822

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80107-031-7

www.packt.com

http://www.packt.com

Contributors

About the author
Eric Sarrion is a trainer, a developer, and an independent consultant. He has been
involved in all kinds of IT projects for over 30 years. He is also a long-time author
in web development technologies and is renowned for the clarity of his explanations
and examples.

About the reviewer
Presently, Kailash Ramanathan works at Uber as a Senior Software Engineer. Since
2009, he has built several lean and powerful web-based applications using contemporary
frameworks. Now, he enjoys working with Vue & React. When not at work, he enjoys
music & a good-natured banter with friends and family.

First, I thank my parents for their incessant and unconditional support
for every enterprise I undertake. Second, I thank God for this life &

surrounding it with beautiful people I know - near and dear. Third, I thank
my mentors & authors who I have read and learned from. And, to you who

are reading these words and have chosen to know more and go beyond.

Gabriel Bieules is an engineer with 18 years of experience in building software
applications. He worked in various industries like telecommunication, eDiscovery,
and the web. He got exposed to multiple programming languages, but his expertise
is mostly around Java and JavaScript.

Table of Contents

Preface

Part 1: JavaScript Syntax

1
Exploring the Core Concepts of JavaScript

Technical requirements� 4
Types of variables used
in JavaScript� 5
Numerical values� 5
Boolean values� 6
Character strings� 6
Arrays� 6
Objects� 7

Running a JavaScript program� 8
Running a JavaScript program
in a browser� 8
Running a JavaScript program
on a Node.js server� 13
Differences between JavaScript code
written for the browser and the server� 14

Declaring variables in JavaScript� 15
Using the const keyword� 15
Using the var keyword� 17
Using the let keyword� 20
What if we don’t use var
or let to define a variable?� 22

What is an uninitialized
variable worth?� 23

Writing conditions for
conditional tests� 25
Forms of writing instructions� 25
Expressions used to write conditions� 27
Nested test suites� 29

Creating processing loops� 30
Loops with while()� 30
Loops with for()� 32

Using functions� 33
Function displaying the list of
the first 10 integers� 34
Function calculating the sum
of the first 10 integers� 38
Function calculating the sum
of the first N integers� 39

Summary� 40

vi Table of Contents

2
Exploring the Advanced Concepts of JavaScript

Technical requirements� 42
Classes and objects� 42
Defining a class� 42
Creating an object by using a class� 43
Creating an object without
using a class� 45
Adding properties to a class� 46
Adding methods to a class� 47
Changing an object’s property values� 49
Using the class constructor� 50
Merging one object with another� 53

Arrays� 55
Creating an array� 55
Accessing array elements� 57

Adding items to the array� 64
Deleting array elements� 66
Filtering elements in an array� 69

Character strings� 72
Creating a character string� 72
Accessing characters in a string� 75
Modifying a character string� 77
Using regular expressions� 78

Multitasking in JavaScript� 82
Using the setTimeout() function� 83
Using the setInterval() function� 86
Using the clearInterval() function� 87

Using promises� 89

Part 2: JavaScript on the Client-Side

3
Getting Started with Vue.js

Technical requirements� 96
Using Vue.js in an HTML page� 96
Creating our first Vue.js
application� 97
Using reactivity� 99
Creating our first component� 103
Inserting a component
in the application file� 104
Inserting a component
from an external file� 107

Adding methods
in components� 110

Defining methods
in the methods section� 111
Defining computed properties
in the computed section� 112

Using attributes
in components� 114
Using directives� 117
The v-if and v-else directives� 118
The v-show directive� 120
The v-for directive� 120
The v-model directive� 123

Summary� 126

Table of Contents vii

4
Advanced Concepts of Vue.js

Technical requirements� 128
Managing events� 128
Using the $event parameter� 130
Checking that the entered
value is less than 100� 130
Allowing only digits to be entered� 132

Assembling components� 134
Using $emit() to communicate
with a parent component� 136
Using props to communicate
 with children� 140

Using visual effects� 143

When the element appears� 144
When the element disappears� 151

Using a name for the effect� 154
Producing an effect
on several elements� 156
Examples of commonly
used effects� 157
The shrink effect� 157
The opacity effect� 159
The move-down effect� 160

Summary� 163

5
Managing a List with Vue.js

Technical requirements� 166
Displaying application screens� 166
Splitting the application
into components� 169
Adding an element to the list� 173
Using the <Element> component� 174
Changing the appearance
of the list using CSS code� 177

Removing an element
from the list� 178
Modifying an element
in the list� 183
Transforming the
element into an <input> element� 183
Exiting from the input field� 185
Giving focus to the input field� 188

Summary� 191

viii Table of Contents

Part 3: JavaScript on the Server-Side

6
Creating and Using Node.js Modules

Technical requirements� 196
Creating and using
our own modules� 196
Creating a module� 196
Using the node_modules directory� 198
Using the package.json file� 199
Adding functionalities to the module� 201

Using internal
Node.js modules� 206

Reading the contents of a file� 206
Displaying file contents as strings� 207
Using non-blocking file reading� 208

Using downloaded
modules with npm� 210
Using the npm command� 210
Using a downloaded
module with npm� 211

Summary� 214

7
Using Express with Node.js

Technical requirements� 216
Using the Node.js http module� 216
Installing the Express module� 219
The MVC pattern used
by Express� 222
Using routes with Express� 223
The initial content of the app.js file� 223

Different types of routes possible� 225
Analyzing routes defined
in the app.js file� 226
Adding a new route
in the app.js file� 229

Displaying views with Express� 231
Summary� 235

8
Using MongoDB with Node.js

Technical requirements� 238
Installing MongoDB � 238
Using the mongo utility� 239
Installing the mongoose module� 240

Connecting to the
MongoDB database� 241

Creating documents
in MongoDB� 243
Describing document structure
using schemas
and models� 243
Creating the document� 245

Table of Contents ix

Searching for documents
in MongoDB� 251
Writing search conditions� 252
Retrieving and displaying
the results� 253

Updating documents
in MongoDB� 258
Deleting documents
in MongoDB� 260
Summary� 262

9
Integrating Vue.js with Node.js

Technical requirements� 264
Displaying application screens� 264
Building the app with Express� 272
MongoDB database structure� 274
Installing the Axios library� 277
Inserting a new element
in the list� 280
Replacing the text and index
attributes with the element attribute� 280
Description of the Axios library
for communicating between
the client and the server� 285
Using Axios with a POST
type request (client side)� 286
POST type request processing
(server side)� 288
Verifying the correct operation
of the insertion in the database� 291

Displaying list elements� 292

Using Axios with a GET
type request (client side)� 292
GET type request processing
(server side)� 294

Modifying an element
in the list� 297
Using Axios with a PUT
type request (client side)� 297
PUT type request processing
(server side)� 300

Removing an element
 from the list� 302
Using Axios with a DELETE
type request (client side)� 302
DELETE type request
processing (server side)� 305

Summary� 308
Thanks� 308

Index

Other Books You May Enjoy

Preface
JavaScript is the most widely used programming language in the world. It has numerous
libraries and modules and a dizzying array of need-to-know topics. Picking a starting
point can be difficult. This concise, practical guide will get you up to speed in next to
no time.

Who this book is for
This book is for JavaScript developers looking to strengthen their core JavaScript concepts
and implement them in building full stack apps.

What this book covers
Chapter 1, Exploring the Core Concepts of JavaScript, is where you discover how to use
variables, conditions, and loops in JavaScript.

Chapter 2, Exploring the Advanced Concepts of JavaScript, is where you learn how to use
object-oriented programming in JavaScript.

Chapter 3, Getting Started withVue.js, is where you learn the basics of Vue.js, with
components and directives.

Chapter 4, Advanced Concepts of Vue.js, is where you explore in-depth Vue.js with
communication between components and visual effects.

Chapter 5, Managing a List with Vue.js, is where you learn how to build a full project
with Vue.js.

Chapter 6, Creating and Using Node.js Modules, is where you learn the basics of Node.js
programming with modules.

Chapter 7, Using Express with Node.js, is where you explore the main library used to build
Node.js applications.

xii Preface

Chapter 8, Using MongoDB with Node.js, is where you learn how to use the MongoDB
database with Node.js using the Mongoose module.

Chapter 9, Integrating Vue.js with Node.js, is where you learn how to build a full project
integrating Vue.js and Node.js.

To get the most out of this book
Prior knowledge of HTML and CSS is a must for this book.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book’s GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend.
If there’s an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in
this book. You can download it here: https://packt.link/xdibe

https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend
https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend
https://github.com/PacktPublishing/
https://packt.link/xdibe

Preface xiii

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: “So { lastname: "Clinton" } can also be written
{ "lastname": "Clinton" } by surrounding the lastname property with
single or double quotes.”

A block of code is set as follows:

var p = { lastname : "Clinton", firstname : "Bill" };

console.log("The person is", p);

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

class Person {

 firstname;

 lastname;

 age;

}

var p = new Person;

console.log(p);

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: “This
writing format is also called JavaScript Object Notation (JSON) format.”

Tips or Important Notes	
Appear like this.

xiv Preface

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata and fill in
the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share Your Thoughts
Once you’ve read JavaScript from Frontend to Backend, we’d love to hear your thoughts!
Please click here to go straight to the Amazon review page for this book and share
your feedback.

Your review is important to us and the tech community and will help us make sure
we’re delivering excellent quality content.

mailto:customercare@packtpub.com
https://www.packtpub.com/support/errata
mailto:copyright@packt.com
https://authors.packtpub.com
https://authors.packtpub.com
https://packt.link/QUTSC

Part 1:
JavaScript Syntax

This part explains the basics you need to know to use JavaScript on the client or on the
server. It explains the syntax and the main data types that can be used in JavaScript.

This section comprises the following chapters:

•	 Chapter 1, Exploring the Core Concepts of JavaScript

•	 Chapter 2, Exploring the Advanced Concepts of JavaScript

1
Exploring the

Core Concepts
of JavaScript

The JavaScript language was created (in the mid-1990s) to be executed in internet
browsers, in order to make websites more fluid. It was originally used to control what was
entered into input forms. For example, it was used to do the following:

•	 Allow the entry of numeric characters in a field – and only numeric ones. Other
characters, for example, letters, had to be rejected in this case. This made it possible,
thanks to the JavaScript language included in the browser, not to validate the entry
of the form and avoid sending data to the server, which would have indicated an
entry error in this case.

•	 Check that the mandatory fields of the form were all entered, by checking all the
fields before sending the form fields to the server.

4 Exploring the Core Concepts of JavaScript

These two examples (among many others) show that it is desirable to have a language that
checks the validity of the data entered by the user before sending this data to the server.
This avoids data transfers from the browser to the server, in the event that the data entered
is not correct. For more complex checks, such as checking that two people do not have
the same identifier, this can continue to be done on the server because it has access to all
existing identifiers.

The goal was, therefore, at the beginning of JavaScript, to have the browser check as many
things as possible and then transmit the information entered to the server in order to
process it.

For this, an internal browser language was created: the JavaScript language, whose name
contained a very popular word at the time – “Java” (even though the two languages Java
and JavaScript ​​had nothing to do with each other).

Over the years, developers have had the idea of ​​also associating it with the server side, to
use the same language on the client side and on the server side. This allowed the creation
of the Node.js server, which is widely used today.

Whether client-side or server-side, the JavaScript language uses a basic syntax that allows
you to write your own programs. This is what we are going to discover in this chapter.

In this chapter, we will cover the following topics:

•	 Types of variables used in JavaScript

•	 Running a JavaScript program

•	 Declaring variables in JavaScript

•	 Writing conditions for conditional tests

•	 Creating processing loops

•	 Using functions

Technical requirements
To develop in JavaScript, and write and then run the programs in this book, you will need
the following:

•	 A text editor for computer programs, for example, Notepad++, Sublime Text,
EditPlus, or Visual Studio.

•	 An internet browser, for example, Chrome, Firefox, Safari, or Edge.

Types of variables used in JavaScript 5

•	 A PHP server, for example, XAMPP or WampServer. The PHP server will be used
to execute JavaScript programs containing import statements in HTML pages
because these import statements only work on an HTTP server.

•	 A Node.js server: The Node.js server will be created through Node.js installation.
We will also install and use the MongoDB database to associate the Node.js server
with a database.

•	 You can find the code files for this chapter on GitHub at: https://github.com/
PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/
main/Chapter%201.zip.

Let’s now begin our discovery of JavaScript, by studying the different types of variables it
offers us.

Types of variables used in JavaScript
Like any language, JavaScript allows you to create variables that will be used to manipulate
data. JavaScript is a very simple language so, for example, data types are very basic.
We will thus have the following as the main data types:

•	 Numerical values

•	 Boolean values

•	 Character strings

•	 Arrays

•	 Objects

Let’s take a quick look at these different types of data.

Numerical values
Numerical values can be positive or negative and even in decimal form (for example,
0, -10, 10.45). All mathematical numbers called real numbers comprise numerical values
or data points.

https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/Chapter%201.zip
https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/Chapter%201.zip
https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/Chapter%201.zip

6 Exploring the Core Concepts of JavaScript

Boolean values
These are of course the two Boolean values—true or false—that are found in most
languages. These values are used to express conditions: if the condition is true, then
we perform a particular process, otherwise, we perform an alternative one. The result
of the condition is therefore a true or false value, which is symbolized by the two values
true and false.

We will see how to express conditions in the Writing conditions section, later in
this chapter.

Character strings
Character strings refer to values such as "a", "abc", or "Hello, how are you?".
An empty character string will be represented by "" (consecutive quotes with nothing
inside). Note that you can use double quotes (") or single quotes ('). Thus, the string
"abc" can also be written as 'abc' (with single quotes).

Arrays
Arrays, such as [10, "abc", -36], can contain values of any type, like here where
we have both numeric values and character strings. An empty array will be represented
by [], which means that it contains no value.

The values stored in an array are accessed by means of an index, varying from 0 (to access
the first element placed in the array) to the length of the array minus 1 (to access the last
element of the array). So, if the array [10, "abc", -36] is represented, for example,
by the variable tab, the following occurs:

•	 tab[0] will allow access to the first element of the array: 10.

•	 tab[1] will allow access to the second element of the array: "abc".

•	 tab[2] will allow access to the third and last element of the array: -36.

Note
Note that it is possible to add elements to an array, even if it is empty. So, if
we access index 3 of the previous array tab, we can write tab[3] =
"def". The array tab will therefore now be [10, "abc", -36,
"def"].

Types of variables used in JavaScript 7

Objects
Objects are similar to arrays. They are used to store arbitrary information, for example,
the values 43, "Clinton", and "Bill". But unlike arrays that use indexes, you must
specify a name to access each of these values. This name is called the key, which thus
allows access to the value it represents.

Let’s suppose that the previous value 43 is that of a person’s age, while "Clinton" is
their last name, and "Bill" is their first name. We would then write the object in the
following form: { age: 43, lastname: "Clinton", firstname: "Bill"
}. The definition of the object is done by means of braces, and what is indicated inside is
pairs of data of the form key: value separated by commas. This writing format is also
called JavaScript Object Notation (JSON) format.

So, if the previous object is associated with the variable person, we can access their age
by writing person["age"] (which will therefore be 43 here), but we can also write
person.age, which will also be 43. Similarly, we can also write person.lastname
or person["lastname"] and person.firstname or person["firstname"] to
access the person’s last name and first name, respectively.

The key is also called a property of the object. Thus, the age key is also called the age
property. We can choose any name for the key; you just have to indicate the key and then
use it under this name. So, if you specify age as a property in the person object, you
must use the term age in the expressions person.age or person["age"]; otherwise
it will not work.

Note that if you write person[age] instead of person["age"], JavaScript considers
age to be a variable with a previously defined value, which it is not here and therefore
cannot work in this case. You would have to set the age variable to have the value "age"
for this to work.

The elements of an array are ordered according to their index (starting from 0,
then 1, and so on), while the elements contained in an object are ordered according to
the keys indicated for each element. But even though the lastname key is listed in the
person object before the firstname key, this does not differentiate the object
{ age: 43, lastname: "Clinton", firstname: "Bill" } from the object
{ firstname: "Bill", lastname: "Clinton", age: 43 } because the
order in which keys are written to an object is irrelevant.

Finally, there are empty objects, such as those containing no key (therefore no value).
We write an empty object in the form { }, indicating nothing is inside. We can then add
one or more keys to an object, even if it is initially empty.

8 Exploring the Core Concepts of JavaScript

Now that we have seen the main variable types used in JavaScript, let’s see how to use
them to define variables in our programs.

Running a JavaScript program
JavaScript is a language that can be executed in a browser (Edge, Chrome, Firefox, Safari,
and so on) or on a server with Node.js installed. Let’s see how to write JavaScript programs
for these two types of configurations.

Running a JavaScript program in a browser
To run a JavaScript program in a browser, you must insert the JavaScript code into an
HTML file. This HTML file will then be displayed in the browser, which will cause the
execution of the JavaScript code included in the file.

JavaScript code can be specified in the HTML file in two different ways:

•	 The first way is to write it between the <script> and </script> tags, directly in
the HTML file. The <script> tag indicates the beginning of the JavaScript code,
while the </script> tag indicates the end of it. Anything written between these
two tags is considered JavaScript code.

•	 The second way is to write the JavaScript code in an external file and then include
this external file in the HTML file. The external file is included in the HTML file
by means of a <script> tag in which the src attribute is indicated, the value of
which is the name of the JavaScript file that will be included in the HTML page.

Let’s take a look at these two ways of writing the JavaScript code that will run in
the browser.

Writing JavaScript code between the <script> and </script> tags
A file with an .html extension is used; for example, the index.html file. This file is
a traditional HTML file, in which we have inserted the <script> and </script> tags,
as shown in the following code snippet:

index.html file

<html>

 <head>

 <meta charset="utf-8" />

 <script>

Running a JavaScript program 9

 alert("This is a warning message displayed by

 JavaScript");

 </script>

 </head>

 <body>

 </body>

</html>

We have inserted the <script> tag (and its ending </script>) in the <head> section
of the HTML page. The <meta> tag is used to indicate the encoding characters to use.
In the preceding code, we have used utf-8 so that accented characters can be
displayed correctly.

The JavaScript code inserted here is rudimentary. We use the alert() function, which
displays a dialog box on the browser screen, displaying the text of the message indicated in
the first parameter of the function.

To run this HTML file, simply move it (by dragging and dropping) from the file manager
to any browser; for example, Firefox. The following screen is then displayed:

Figure 1.1 – Displaying a message in the browser window

10 Exploring the Core Concepts of JavaScript

The JavaScript code present in the <script> tag ran when the HTML page was loaded.
The message indicated in the alert() function is therefore displayed. A click on the OK
button validates the message displayed and continues the execution of the JavaScript code.
As we can see, there is nothing more in the program; the program ends immediately by
displaying a blank page on the screen (because no HTML code is inserted into the page).

Writing JavaScript code to an external file
Rather than integrating the JavaScript code directly into the HTML file, we can put it in
an external file, then insert this file into our HTML file by indicating its name in the src
attribute of the <script> tag.

Let’s first write the file that will contain the JavaScript code. This file has the file extension
.js and will be named codejs.js, for example, and will be coded as follows:

codejs.js file (in the same directory as index.html)

alert("This is a warning message displayed by JavaScript");

The codejs.js file contains the JavaScript code that we had previously inserted between
the <script> and </script> tags.

The index.html file is modified to include the codejs.js file using the src attribute
of the <script> tag as follows:

index.html file

<html>

 <head>

 <meta charset="utf-8" />

 <script src="codejs.js"></script>

 </head>

 <body>

 </body>

</html>

Note
Notice the use of the <script> and </script> tags. They are contiguous
(that is, they have no spaces or newlines between them), which is necessary for
this code to work.

Running a JavaScript program 11

In the rest of our examples, we will mainly use the insertion of the JavaScript code
directly in the code of the HTML file, but the use of an external file would produce the
same results.

Let’s now explain another way to display messages, without blocking the program as
before with the alert(message) function.

Using the console.log() method instead of the alert() function
The alert() function used earlier displays a window on the HTML page, and the
JavaScript program hangs waiting for the user to click the OK button in the window.
Thus, the function requires the intervention of the user to continue the execution of
the program.

An alternative makes it possible to use a display without blocking the execution of the
program. This is the display in the console, using the console.log() method.

Note
The console.log() form of writing means that we use the log()
method, which is associated with the console object. This will be explained
in detail in the following chapter.

Let’s write the program again using the console.log() method instead of the
alert() function. The index.html file will be modified as follows:

index.html file using console.log() method

<html>

 <head>

 <meta charset="utf-8" />

 <script>

 // display a message in the console

 console.log("This is a warning message displayed by

 JavaScript");

 </script>

 </head>

 <body>

 </body>

</html>

12 Exploring the Core Concepts of JavaScript

Note
The use of comments in the JavaScript program requires placing // before
what needs to be commented out (on the same line). You can also comment out
several lines by enclosing them with /* at the beginning and */ at the end.

Let’s run this program by pressing the F5 key on the keyboard to refresh the window.
A white screen will appear, with no message.

Indeed, the message is only displayed in the console. The console is only visible if you
press the F12 key (and can be removed by pressing F12 again).

Note
You can go to the site https://balsamiq.com/support/faqs/
browserconsole/, which explains how to display the console in the event
that the F12 key is inoperative.

The following is what you will see when the console is displayed:

Figure 1.2 – Message displayed in the console

https://balsamiq.com/support/faqs/browserconsole/
https://balsamiq.com/support/faqs/browserconsole/

Running a JavaScript program 13

The message is displayed in the lower part of the browser window.

Now that we have learned how to run a JavaScript program in a browser, let’s move on to
learning how to run a JavaScript program on a Node.js server.

Running a JavaScript program on a Node.js server
To run a JavaScript program on a Node.js server, you must first install the Node.js server.
To install, simply go to https://nodejs.org/ and download and install the server.
Note that if you are using macOS, Node.js is already installed.

We can verify the correct installation of Node.js by just opening a shell and typing the
command node -h in it. Node.js is correctly installed if the command help appears
as follows:

Figure 1.3 – node -h command that displays help

Once Node.js is installed, it can run any JavaScript program you want. All you have to do
is create a file containing JavaScript code, for example, testnode.js. The contents of
this file will be executed by the server using the node testnode.js command.

https://nodejs.org/

14 Exploring the Core Concepts of JavaScript

Here is a very simple example of a JavaScript file that can be executed by Node.js:
It displays a message in the server console. The server console here represents the
command interpreter in which you type the command to execute the testnode.js file:

testnode.js file

console.log("This is a warning message displayed by
JavaScript");

Let’s type the command node testnode.js in the preceding terminal window.

Figure 1.4 – Running a Node.js program

We see that the message is displayed directly in the command interpreter.

In the previous examples, we have written JavaScript code that runs both on the client side
(the browser) and on the server side. The question that can be asked is: can the same code
run in exactly the same way on the client side and on the server side?

Differences between JavaScript code written for the
browser and the server
Although the two pieces of code are similar, we cannot say that they are the same, because
the issues to be managed are different in the two cases. Indeed, on the client side, we will
mainly want to manage the user interface with JavaScript, while on the server side, we will
rather want to manage files or databases. So, the libraries to use in these two cases will not
be the same.

On the other hand, we find in both cases the same basic language, which is the JavaScript
language that we will be describing now.

Declaring variables in JavaScript 15

Declaring variables in JavaScript
Variables of the types previously described under the Types of variables used in JavaScript
section, as we know, consist of numerical values, Boolean values, character strings, arrays,
and objects.

JavaScript is a weakly typed language, which means that you can change the type of
a variable at any time. For example, a numeric variable can be transformed into
a character string, or even become an array.

Of course, it is not advisable to make such voluntary changes in our programs, and it is
prudent to maintain the type of a variable throughout the program, for comprehension.
However, it is important to know that JavaScript allows changing variable types. A variant
of JavaScript called TypeScript provides more security by preventing these type changes
for variables.

Now let’s learn how to define a variable. We will do so using one of the following
keywords: const, var, or let.

Using the const keyword
The const keyword is used to define a variable whose value will be constant. Any
subsequent attempt to change the value will produce an error.

Let’s define the constant variable c1 having the value 12. Let’s try to modify the value by
assigning it a new value: an error will be displayed in the console:

Note
To say that we are defining a constant variable is an abuse of language.
We should rather say that we are defining a constant value.

Defining a constant value (index.html file)

<html>

 <head>

 <meta charset="utf-8" />

 <script>

 const c1 = 12;

 console.log(c1);

 c1 = 13; // attempt to modify the value of a

 // constant: error

16 Exploring the Core Concepts of JavaScript

 console.log(c1); // no display because an error

 // occurred above

 </script>

 </head>

 <body>

 </body>

</html>

After implementing the preceding code, we will also see the error displayed in the console
(if the console is not visible, it can be displayed by pressing the F12 key) of the browser
as follows:

Figure 1.5 – Error when modifying a constant value

Declaring variables in JavaScript 17

As we can see from the preceding figure, the first display of the constant c1 displays
the value 12, while the second display does not occur because an error occurred before
(while trying to change the value of a constant). Therefore, a value defined by the const
keyword should not be modified.

Using the var keyword
Another way to define a variable (whose value can be modified) is to use the var
keyword. Let’s see how using the following code example:

Definitions of several variables

<html>

 <head>

 <meta charset="utf-8" />

 <script>

 var a = 12;

 var b = 56;

 var c = a + b;

 var s1 = "My name is ";

 var firstname = "Bill";

 console.log("a + b = " + a + b);

 console.log("c = " + c);

 console.log(s1 + firstname);

 </script>

 </head>

 <body>

 </body>

</html>

We defined the variables a, b, s1, and firstname by preceding them with the keyword
var and assigning them a default value. The variable c corresponds to the addition of the
variables a and b.

18 Exploring the Core Concepts of JavaScript

Note
The name of a variable consists of alphanumeric characters but must start with
an alphabetic character. Lowercase and uppercase are important in writing
the variable name (variables’ names are case sensitive). Thus, the variable a is
different from the variable A.

The result of the previous program is displayed in the browser console (if it is not visible,
it must be displayed by pressing the F12 key):

Figure 1.6 – Using the var keyword

In the preceding figure, we can see a result that may seem surprising. Indeed, the direct
calculation of a + b produces the display of 1256 the first time, then 68 the second time.

Indeed, when we write console.log("a + b = " + a + b); the fact that
we’ve started to display characters by writing "a + b = " means that JavaScript will
interpret the rest of the display in the form of a character string; in particular, the values
a and b, which follow on the line. So, the values ​​a and b are no longer interpreted as
numeric values, but as the character strings 12 and 56. When these character strings are
connected by the + operator, this does not correspond to addition but to concatenation.

Declaring variables in JavaScript 19

Conversely, the calculation of the variable c does not involve character strings,
so the result of a + b here is equal to the sum of the values ​​of the variables a and b,
therefore 68.

Note that the same program can be run on the Node.js server. To do so, we would write
it in our testnode.js file as follows:

testnode.js file

var a = 12;

var b = 56;

var c = a + b;

var s1 = "My name is ";

var firstname = "Bill";

console.log("a + b = " + a + b);

console.log("c = " + c);

console.log(s1 + firstname);

We can then execute the preceding code with the node testnode.js command. The
result displayed under Node.js is similar to that displayed in the browser console:

Figure 1.7 – Running the program under Node.js

We learned about the const and var keywords for defining variables; all that remains is
for us to learn how to use the let keyword.

20 Exploring the Core Concepts of JavaScript

Using the let keyword
To understand the use of the let keyword and see the difference from the var keyword,
we must use braces in our programs. Braces are used to create program blocks in which
instructions are inserted, in particular after the conditional if and else instructions
(which we will see in the Writing conditions section).

Let’s write a simple if(true) condition that is always true: the code included in the
braces following the condition is therefore always executed:

index.html file including a condition

<html>

 <head>

 <meta charset="utf-8" />

 <script>

 var a = 12;

 if (true) { // always executed (because always true)

 var b = 56;

 let c = 89;

 console.log("In the brace:");

 console.log("a = " + a);

 console.log("b = " + b);

 console.log("c = " + c);

 }

 console.log("After the brace:");

 console.log("a = " + a);

 console.log("b = " + b);

 console.log("c = " + c);

 </script>

 </head>

 <body>

 </body>

</html>

Declaring variables in JavaScript 21

In the preceding code, we have defined the variable a outside of any braces. This variable
will therefore be accessible everywhere (in and out of braces) as soon as it is defined.

The variables b and c are defined within braces following the condition. Variable b is
defined using var, while variable c is defined using the let keyword. The difference
between the two variables is visible as soon as you exit the block of braces. Indeed, the
variable c (defined by let) is no longer known outside the block of braces where it is
defined, unlike the variable b (defined by var), which is accessible even outside.

This can be checked by running the program in the browser as follows:

Figure 1.8 – The variable c defined by let is inaccessible outside the block where it is defined

22 Exploring the Core Concepts of JavaScript

Note that the same program gives a similar result on the Node.js server, as can be seen in
the following screen: the variable c defined by let in a block becomes unknown outside
the block.

Figure 1.9 – The same results on the Node.js server

As we can see in the preceding screen, the variable c, defined by let in a block, becomes
unknown outside the block.

What if we don’t use var or let to define a variable?
It is possible not to use the var or let keywords to define a variable. We can simply write
the variable’s name followed by its value (separated by the sign =). Let’s see how using the
following example:

Creating variables without specifying var or let

a = 12;

b = 56;

console.log("a = " + a); // displays the value 12

console.log("b = " + b); // displays the value 56

In the preceding example, where the variables are initialized without being preceded
by var or let, these variables are global variables. As soon as they are initialized, they
become accessible everywhere else in the program. This will become apparent when
we study the functions in the Using functions section of this chapter.

Declaring variables in JavaScript 23

Note
It is strongly advised to use as few global variables as possible in the
programs, as this complicates the design and debugging of the programs that
contain them.

What is an uninitialized variable worth?
Each of the preceding variables was declared by initializing its value, with the = sign,
which is the assignment sign. Let’s see what happens if we don’t assign any value to the
variable, but just declare it using var or let as follows:

Declaration of variables without initialization

<html>

 <head>

 <meta charset="utf-8" />

 <script>

 var a;

 let b;

 console.log("a = " + a); // displays the value

 // undefined

 console.log("b = " + b); // displays the value

 // undefined

 </script>

 </head>

 <body>

 </body>

</html>

In the preceding code, we have defined two variables, a and b – one using var, the other
using let. Neither of the two variables has an initial value (that is, they’re not followed
by an = sign).

The result displayed in this case for these uninitialized variables is a JavaScript value called
undefined. This corresponds to the value of a variable that does not yet have a value.
The undefined value is an important keyword in the JavaScript language.

24 Exploring the Core Concepts of JavaScript

Note
The variables a and b are not initialized, and it is necessary to declare them
using var or let. Indeed, you cannot simply write a; or b; as this would
cause a runtime error.

Let’s run the preceding program in the browser and observe the results displayed in
the console:

Figure 1.10 – An uninitialized variable is undefined

Note
The undefined value is also associated with an uninitialized variable if
using server-side JavaScript with Node.js.

We now know how to define variables in JavaScript. To create useful JavaScript programs,
you have to write sequences of instructions. One of the most used instructions allows you
to write conditional tests with the if statement, which we will talk about next.

Writing conditions for conditional tests 25

Writing conditions for conditional tests
JavaScript obviously allows you to write conditions in programs. The condition is
expressed through the if (condition) statement:

•	 If the condition is true, the statement (or block in braces) that follows is executed.

•	 If the condition is false, the statement (or block) following the else keyword
(if present) will be executed.

Forms of writing instructions
We can use the following forms to express the conditions:

Forms of conditional expressions with if (condition)

// condition followed by a statement

if (condition) statement; // statement executed if condition
is true

// condition followed by a block

if (condition) {

 // block of statements executed if condition is true

 statement 1;

 statement 2;

 statement 3;

}

Forms of conditional expressions with if (condition) … else …

// condition followed by a statement

if (condition) statement 1; // statement 1 executed if

 // condition is true

else statement 2; // statement 2 executed if

 // condition is false

// condition followed by a block

if (condition) {

 // block of statements executed if condition is true

 statement 1;

26 Exploring the Core Concepts of JavaScript

 statement 2;

 statement 3;

}

else {

 // block of statements executed if condition is false

 statement 5;

 statement 6;

 statement 7;

}

Note
If the process to be executed includes several instructions, these instructions
are grouped together in a block surrounded by braces. A block can consist
of only one statement, even if, as in this case, the block is optional (no need
for braces).

Let’s write the following program in the testnode.js file, which we will execute using
the node testnode.js command in a command interpreter, as follows:

testnode.js file

var a = 12;

console.log("a = " + a);

if (a == 12) console.log("a is 12");

else console.log("a is not 12");

In the preceding code, the condition is expressed in the form a == 12. Indeed, it is
customary to test the equality between two values by means of the sign = repeated twice
successively (hence ==).

Note
We use == for equality, != for difference, > or >= to check superiority,
and < or <= to check inferiority.

Writing conditions for conditional tests 27

In the preceding code, since the variable a is 12, the following result can be seen:

Figure 1.11 – Using conditional tests

If we assign the value 13 to the variable a, the else part of the statement will
be executed:

Figure 1.12 – Running the else part of the test

We have seen how to execute one part of the code or another depending on a condition.
Let’s now study how to write more complex conditions than those written previously.

Expressions used to write conditions
The condition written previously is a simple test of equality between two values. But the
test to write can sometimes be more complex. The goal is to have the final result of the
condition, which is true or false, which will then make it possible for the system to
decide the next course of action.

28 Exploring the Core Concepts of JavaScript

The condition is written in Boolean form with the OR keyword (written as ||) or with
the AND keyword (written as &&). Parentheses between the different conditions may be
necessary to express the final condition as follows:

Condition expressed with “or”

var a = 13;

var b = 56;

console.log("a = " + a);

console.log("b = " + b);

if (a == 12 || b > 50) console.log("condition a == 12 || b > 50
is true");

else console.log("condition a == 12 || b > 50 is false");

In the preceding code, since the variable b is greater than 50, the condition is true, as
seen in Figure 1.13.

Note
In an OR condition, it suffices that one of the conditions is true for the final
condition to be true.

In an AND condition, all the conditions must be true for the final condition
to be true.

Figure 1.13 – Condition with or

By default, the condition expressed in if(condition) is compared with the value
true. We can sometimes prefer to compare with the value false. In this case, it suffices
to precede the condition with the sign !, which corresponds to a negation of the
following condition.

Writing conditions for conditional tests 29

It is sometimes necessary to chain several tests in a row, depending on the results of the
previous tests. We then have a succession of tests, called cascade tests.

Nested test suites
It is possible to chain tests in the processes to be performed. Here is an example:

Test nesting

var a = 13;

var b = 56;

console.log("a = " + a);

console.log("b = " + b);

if (a == 12) console.log("condition a == 12 is true");

else {

 console.log("condition a == 12 is false");

 if (b > 50) console.log("condition b > 50 is true");

 else console.log("condition b > 50 is false");

}

The else part is composed of several statements and is grouped in a block surrounded
by braces:

Figure 1.14 – Test nesting

We learned about writing conditions in JavaScript programs. We are now going to learn
how to write processing loops, which make it possible to write the instructions in the
program only once. These instructions can, however, be executed as many times
as necessary.

30 Exploring the Core Concepts of JavaScript

Creating processing loops
It is sometimes necessary to repeat an instruction (or a block of instructions) several
times. Rather than writing it several times in the program, we put it in a processing loop.
These instructions will be repeated as many times as necessary.

Two types of processing loops are possible in JavaScript:

•	 Loops with the while() statement

•	 Loops with the for() statement

Let’s take a look at these two types of loops.

Loops with while()
The while(condition) instruction allows you to repeat the instruction (or the block
of instructions) that follows. As long as the condition is true, the statement (or block) is
executed. It stops when the condition becomes false.

Using this while() statement, let’s display the numbers from 0 to 5:

Displaying numbers from 0 to 5

var i = 0;

while (i <= 5) {

 console.log("i = " + i);

 i++;

}

The preceding console.log() instruction is written only once in the program, but as
it is inserted in a loop (while() instruction), it will be repeated as many times as the
condition is true.

The variable i allows you to manage the condition in the loop. The variable i is
incremented by 1 (by i++) at each pass through the loop, and we stop when the value 5
is exceeded:

Creating processing loops 31

Figure 1.15 – Displaying numbers from 0 to 5

We can verify that this program works in a similar way on the client side, that is to say in
a web browser, as follows:

Displaying digits 0–5 in a browser console

<html>

 <head>

 <meta charset="utf-8" />

 <script>

 var i = 0;

 while (i <= 5) {

 console.log("i = " + i);

 i++;

 }

 </script>

 </head>

 <body>

 </body>

</html>

32 Exploring the Core Concepts of JavaScript

The result is displayed similarly in the browser console:

Figure 1.16 – Displaying numbers from 0 to 5 in the browser console

Loops with for()
Another widely used form of loop is one with a for() statement. It simplifies the writing
of the previous loop by reducing the number of instructions to write.

Let’s write the same program as before to display the numbers from 0 to 5 using a for()
statement instead of the while() statement:

for (var i=0; i <= 5; i++) console.log("i = " + i);

As we can see in the preceding code, a single line replaces several lines as in the
previous instance.

The for() statement has three parts, separated by a ;:

•	 The first corresponds to the initialization instruction. Here, it is the declaration of
the variable i initialized to 0 (which is the beginning of the loop).

•	 The second corresponds to the condition: as long as this condition is true, the
statement (or the block that follows) is executed. Here, the condition corresponds to
the fact that the variable i has not exceeded the final value 5.

Using functions 33

•	 The third corresponds to an instruction executed after each pass through the
loop. Here, we increment the variable i by 1. This ensures that at some point, the
condition will be false, in order to exit the loop.

Let’s verify that it works identically to the while() statement:

Figure 1.17 – Loop with the for() statement

In this section, we learned how to write sequences of statements that will be executed
multiple times, using the while() and for() statements. Now let’s look at how to group
statements together, using what are called functions.

Using functions
A function is used to give a name to a block of instructions so that it can be used in
different places in the program. In general, in a function, we group a set of instructions
that are used to carry out a particular task, for example:

•	 Display the list of the first 10 integers.

•	 Calculate the sum of the first 10 numbers (from 0 to 9).

•	 Calculate the sum of the first N numbers (from 0 to N-1). In this case, N would
be a parameter of the function because it can change with each call (or use) of
the function.

34 Exploring the Core Concepts of JavaScript

The functions described above are very simple but show that the role of functions is to
encapsulate any process by summarizing in one sentence what is expected of this process.
The name given to the function symbolizes the action expected in return, which allows
the developer to easily understand the sequence of instructions (including for an external
developer who has not participated in the development). Let’s discuss the three functions
we listed one by one.

Function displaying the list of the first 10 integers
Let’s write the first function, which displays the list of the first 10 integers. We will call this
function display_10_first_integers(). The name must be as explicit as possible
because a JavaScript program is composed of many functions whose names must be
unique in the program (if two function names are the same, only the last one is taken into
account because it overwrites the former).

A function is defined using the keyword function, followed by the name of the
function, followed by parentheses. Then, we indicate in the braces that follow the
instructions that make up the function. It is this instruction block that will be executed
each time the function is called in the program.

Let’s write the function display_10_first_integers(), which displays the first
10 integers:

Display first 10 integers with a function (testnode.js file)

function display_10_first_integers() {

 for (var i=0; i <= 10; i++) console.log("i = " + i);

}

The function is defined using the function keyword, followed by the function name
and parentheses.

The function statements are grouped in the block that follows between the braces. We find
as instructions the previous for() loop, but it could also be the while() loop, which
works in the same way.

Using functions 35

Let’s run this program assuming it’s included in the testnode.js file:

Figure 1.18 – Using a function to display numbers from 1 to 10

As we can see in the preceding figure, the screen remains blank as no display is registered
in the console.

Indeed, we have simply defined the function, but we must also use it, that is, call it in our
program. You can call it as many times as you want – this is the purpose of functions:
we should be able to call (or use) them at any time. But it must be done at least once;
otherwise, it is useless, as seen in the preceding figure.

Let’s add the function call following the function definition:

Definition and call of the function

// function definition

function display_10_first_integers() {

 for (var i=0; i <= 10; i++) console.log("i = " + i);

}

// function call

display_10_first_integers();

36 Exploring the Core Concepts of JavaScript

The result of the preceding code can be seen in the following figure:

Figure 1.19 – Call of the display_10_first_integers() function

Interestingly, the function can be called in several places of the program. Let’s see how in
the following example:

Successive calls to the display_10_first_integers() function

// function definition

function display_10_first_integers() {

 for (var i=0; i <= 10; i++) console.log("i = " + i);

}

// function call

console.log("*** 1st call *** ");

display_10_first_integers();

console.log("*** 2nd call *** ");

display_10_first_integers();

console.log("*** 3rd call *** ");

display_10_first_integers();

Using functions 37

In the preceding code, the function is called three times in succession, which displays the
list of the first 10 integers as many times. The order of the calls is indicated before each list
as follows:

Figure 1.20 – Successive calls to the display_10_first_integers() function

38 Exploring the Core Concepts of JavaScript

Function calculating the sum of the first 10 integers
We now want to create a function that calculates the sum of the first 10 integers, that is,
1+2+3+4+5+6+7+8+9+10. The result is 55. This will allow us to show how a function
can return a result to the outside (that is, to the program that uses it). Here, the function
should return 55.

Let’s call the function add_10_first_integers(). This can be written as follows:

Function that adds the first 10 integers

// function definition

function add_10_first_integers() {

 var total = 0;

 for (var i = 0; i <= 10; i++) total += i;

 return total;

}

// function call

var total = add_10_first_integers();

console.log("Total = " + total);

We define the total variable in the function. This variable is a local variable to the
function because it is defined using the var or let keyword. This allows this total
variable to not be the same as the one defined outside the function, even if the names are
the same.

Note
If the total variable in the function was not defined using the var or let
keyword, it would create a so-called global variable that would be directly
accessible even outside the function. This is not good programming because
you want to use global variables as little as possible.

The function uses a for() loop to add the first 10 integers, then returns that total using
the return keyword. This keyword makes it possible to make accessible, outside the
function, the value of any variable, in our example, the total variable.

Using functions 39

Let’s run the previous program. We should see the following output:

Figure 1.21 – Calculation of the sum of the first 10 integers

Function calculating the sum of the first N integers
The previous function is not very useful because it always returns the same result. A more
useful function would be to calculate the sum of the first N integers, knowing that N can be
different each time the function is called.

N would in this case be a parameter of the function. Its value is indicated in parentheses
when using the function.

Let’s call the add_N_first_integers()function to calculate this sum. The N
parameter would be indicated in parentheses following the function name. A function
can use several parameters, and it suffices to indicate them in succession, separated by
a comma. In our example, a single parameter is enough.

Let’s write the add_N_first_integers(n)function and use that to calculate the sum
of the first 10, then 25, then 100 integers. The values 10, 25, and 100 will be used
as parameters during successive calls to the function and will replace the parameter
n indicated in the definition of the function:

Function that adds the first N integers

// function definition

function add_N_first_integers(n) {

 var total = 0;

 for (var i = 0; i <= n; i++) total += i;

 return total;

}

// calculation of the first 10 integers

var total_10 = add_N_first_integers(10);

40 Exploring the Core Concepts of JavaScript

console.log("Total of the first 10 integers = " + total_10);

// calculation of the first 25 integers

var total_25 = add_N_first_integers(25);

console.log("Total of the first 25 integers = " + total_25);

// calculation of the first 100 integers

var total_100 = add_N_first_integers(100);

console.log("Total of the first 100 integers = " + total_100);

The add_N_first_integers(n) function is very similar to the add_10_first_
integers() function written earlier. It uses the parameter n indicated between the
parentheses and does not loop from 0 to 10 as before, but from 0 to n. Depending on the
value of n that will be used when calling the function, the loop will thus be different, and
the result returned by the function as well.

When calling the function, it passes the parameters 10, 25, then 100 as desired. The
result is returned by the function’s total variable, and then used by the total_10,
total_25, and total_100 variables outside the function:

Figure 1.22 – Calculation of the sum of the first 10, then 25, then 100 integers

Summary
The basic features of JavaScript have been covered in this chapter: variables with different
types, conditional tests, loops, and functions. They are used on the client side and on the
server side.

In the next chapter, we’ll take a look at some more in-depth features of JavaScript, such as
object-oriented programming with JavaScript.

2
Exploring the

Advanced Concepts
of JavaScript

In this chapter, we will explore the advanced features of JavaScript, such as object-oriented
programming. We will also study two types of objects that are widely used in JavaScript:
arrays and strings. Finally, we will see how JavaScript allows you to trigger deferred
processing, using so-called callback functions.

In this chapter, we’ll be covering the following topics:

•	 Classes and objects

•	 Arrays

•	 Character strings

•	 Multitasking

•	 Using promises

All these topics are fundamental to building JavaScript applications. Let’s start now!

42 Exploring the Advanced Concepts of JavaScript

Technical requirements
You can find the code files for this chapter on GitHub at: https://github.com/
PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/
Chapter%202.zip.

Classes and objects
The notion of classes and objects is fundamental to programming languages. JavaScript
allows them to be used as well.

A class is used to represent any type of data. For example, people, customers, cars, and
so on. We can define a class to represent each of these types of elements, for example,
a Person class to represent people, a Client class to represent customers, and a Car
class to represent cars.

Note
Note that the class name traditionally begins with an uppercase letter.

An object, on the other hand, will be a particular element of a class (this element will
be also called an instance). For example, among all the people of the class Person, the
person identified by his name “Clinton” and his first name “Bill” represents a particular
object of the class Person. This object can be associated, for example, with the variable
p in the program. We can thus create variables to identify each object associated with
the class.

Defining a class
The question to ask yourself when creating a class is what actions you want to perform on
the type of data it represents.

For example, if we create the Person class, we should ask what characterizes a person
and what action can we perform on this class. We could, for example, say that the Person
class is characterized by the last name, first name, and age of the person. You can also add
an address, phone number, email, and so on.

https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/Chapter%202.zip
https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/Chapter%202.zip
https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/Chapter%202.zip

Classes and objects 43

As for the possible actions on people, we can imagine, for example, the action of getting
married to another person, the action of moving to another city, the action of changing
employers, and so on.

Note
Characteristics such as last name, first name, age, and so on are called
properties of the class, while actions such as getting married, moving, and so
on are called methods of the class. A class will therefore group together a set of
properties and a set of methods.

A JavaScript class is created using the keyword class followed by the name of the class,
followed by braces describing the content. For example, the Person class will be created
as follows:

Person class

class Person {

}

This definition of the Person class will not be very useful for now, because no properties
or methods are defined inside it. We will see later how to improve it.

Creating an object by using a class
Once the class is defined, we can create objects associated with this class. For this, we use
the keyword new followed by the name of the class. This creates a variable that represents
an object of that class:

Creating an object p of class Person

// define the Person class

class Person {

}

// create an object of class Person

var p = new Person; // object p of class Person

console.log(p);

44 Exploring the Advanced Concepts of JavaScript

This is what you will see:

Figure 2.1 – Creating a Person class object

The p object is displayed in the console. We are told that it is a Person class object
and that it is empty {}. The representation of an object in the form of braces is traditional
in JavaScript, as we saw in the Type of variables used in JavaScript section of the
previous chapter.

We can verify that it also works on the client side, in a browser. The HTML file is
as follows:

index.html file

<html>

 <head>

 <meta charset="utf-8" />

 <script>

 class Person {

 }

 var p = new Person;

 console.log(p);

 </script>

 </head>

 <body>

 </body>

</html>

Classes and objects 45

Figure 2.2 – Creating an object in the browser

We find the display of braces, which symbolizes the display of a JavaScript object.

Creating an object without using a class
It is possible to create an object without having created a class first. All you have to do is
use the notation with the braces { and }.

For example, we can write the following:

Creating an object using the braces notation

var p = { lastname : "Clinton", firstname : "Bill" };

console.log("The person is", p);

This will create the object p with the lastname and firstname properties. Note that
you can indicate the names of the properties by enclosing them in quotation marks,
or not. So { lastname: "Clinton" } can also be written { "lastname":
"Clinton" } by surrounding the lastname property with single or double quotes.

Now let’s see how to improve the Person class previously created by adding properties
and methods to it.

46 Exploring the Advanced Concepts of JavaScript

Adding properties to a class
A person has, in our example, a last name, a first name, and an age. We will create these
three properties for people of the Person class.

All you have to do is indicate each of these properties, by name, in the body of the
Person class. Above all, do not use the var or let keywords to define them:

Adding firstname, lastname, and age properties in Person class

class Person {

 firstname;

 lastname;

 age;

}

var p = new Person;

console.log(p);

Figure 2.3 – Creation of lastname, firstname, and age properties in the Person class

The Person class object p now has the properties added in the class. Any other object of
this class will also have them.

Note that the values of the added properties are undefined. This is normal because no
values have been specified for these properties in the p object or the Person class.

Let’s modify the Person class so that the properties have default values, rather
than undefined:

Classes and objects 47

Properties with default values

class Person {

 firstname = "";

 lastname = "";

 age = 0;

}

var p = new Person;

console.log(p);

Each property is initialized with its default value. The lastname and firstname
properties are initialized with an empty string "", while age is initialized by default to 0.

Figure 2.4 – Properties with default values

A class has properties, but also methods. Now let’s see how to add methods to a class.

Adding methods to a class
You can add methods to a class. Objects created from the class (with new) will be able to
use these methods directly.

For example, let’s create the display() method, which displays a line of text containing
the person’s first and last name. The instruction p.display() (assuming that p is
a Person class object) is used to display the last name and first name of the person
related to the object p:

Creating the display() method in the Person class

class Person {

 // class properties

 firstname = "";

48 Exploring the Advanced Concepts of JavaScript

 lastname = "";

 age = 0;

 // class methods

 display() {

 console.log("The person's lastname is = " +

 this.lastname +

 ", firstname = " + this.firstname);

 }

}

var p = new Person;

console.log("Variable p = ", p);

p.display(); // use of the display() method on the p object

The properties of the class are accessible in the methods of the class by prefixing
them with the keyword this. For example, this.lastname provides access to the
lastname property of the class.

The this keyword refers to the object itself that uses the display() method, so here,
the p object.

If you omit the this keyword and use the lastname property directly, you will get
a syntax error because the property is only accessible with the this keyword.

The output of the preceding code snippet is displayed here:

Figure 2.5 – Using the display() method

Classes and objects 49

The display() method displays firstname and lastname of the person associated
with the variable p, but since lastname and firstname have been initialized to an
empty string, no last name or first name is displayed. Let’s look at how to modify the value
of a property.

Changing an object’s property values
You can modify the value of the properties of an object by using these properties directly,
for example, p.lastname allows you to read or modify the value of the lastname
property for the object p:

Initialization of the lastname and firstname of the person

class Person {

 // class properties

 lastname = "";

 firstname = "";

 age = 0;

 // class methods

 display() {

 console.log(" The person's lastname = " + this.lastname +

 ", firstname = " + this.firstname);

 }

}

var p = new Person;

p.lastname = "Clinton"; // initialization of the lastname

 // property of the object p

p.firstname = "Bill"; // initialization of the firstname

 // property of the object p

console.log("Variable p = ", p);

p.display();

50 Exploring the Advanced Concepts of JavaScript

This is what you will see:

Figure 2.6 – The lastname and firstname properties are initialized

Once the object p has been created by the new operator, we initialize its lastname and
firstname properties to the values indicated. The age property is not modified here,
and will therefore remain equal to the value 0.

We modified the value of the lastname and firstname properties of the object
p created using p.lastname and p.firstname.

This modification of property values is done after the object p is created. It is possible to
do this modification during the very creation of the object, in the new instruction. This
requires defining a method called constructor(), which allows this initialization.

Using the class constructor
The constructor() method is called the constructor of the class. It is automatically
called during each new statement if the constructor() method exists in the class.
We define it in a class if we want to perform a specific process each time an object is
created in this class.

The constructor() method can have any number of parameters or none at all. The
parameters indicated here will be used to initialize the lastname and firstname
properties of the person:

Using a constructor for the Person class

class Person {

 // class properties

 lastname = "";

 firstname = "";

 age = 0;

Classes and objects 51

 // class methods

 constructor(lastname, firstname, age) {

 this.lastname = lastname;

 this.firstname = firstname;

 this.age = age;

 }

 display() {

 console.log(" The person's lastname = " + this.lastname +

 ", firstname = " + this.firstname);

 }

}

var p = new Person("Clinton", "Bill");

console.log("Variable p = ", p);

p.display();

The constructor() method is defined by giving it the three parameters lastname,
firstname, and age. They are transferred into the properties of the object by means of
this.lastname, this.firstname, and this.age.

Finally, the object p is now created by passing as parameters the values of lastname,
firstname, and age of the person created with new. Here, age is not specified in
parameters in the new instruction; it will therefore be an undefined value that will be
transmitted to the constructor.

Figure 2.7 – Using a constructor

52 Exploring the Advanced Concepts of JavaScript

We find the lastname and firstname properties initialized, but the age property is
now initialized to the value undefined instead of 0. To assign it another value, simply
pass an additional value when creating the object with new. This additional value will
represent the person’s age, for example:

Using age when creating Person class object

class Person {

 // class properties

 lastname = "";

 firstname = "";

 age = 0;

 // class methods

 constructor(lastname, firstname, age) {

 this.lastname = lastname;

 this.firstname = firstname;

 this.age = age;

 }

 display() {

 // the age of the person is also displayed

 console.log("The person's lastname = " + this.lastname +

 ", firstname = " + this.firstname +

 ", age = " + this.age);

 }

}

var p = new Person("Clinton", "Bill", 33); // age is now

 // transmitted

console.log("Variable p = ", p);

p.display();

Classes and objects 53

Figure 2.8 – The person’s age is now transmitted

We have seen how to create an object, by directly defining its properties and methods
using a class. However, we can also create an object from another object. Let’s see how
to do it.

Merging one object with another
There may be cases when you want to create a new object from an old object. Let’s see how
to do this.

If the object p contains a value, the statement var p2 = p does not create a new object
p2 distinct from the object p, but only a reference p2 that points to the same value as the
reference p. So any modification of the properties of the object p will also be visible in the
object p2 because both point to the same memory location.

This can be verified using the following example:

Modifying an object in memory

var p = { lastname : "Clinton", firstname : "Bill" };

console.log("p (before modification of p2) =", p);

 // p = { lastname : "Clinton", firstname : "Bill" }

var p2 = p;

p2.city = "Washington";

console.log("p (after modification of p2) =", p);

 // p = { lastname : "Clinton", firstname : "Bill",

 // city : "Washington"}

console.log("p2 =", p2);

54 Exploring the Advanced Concepts of JavaScript

 // p2 = { lastname : "Clinton", firstname : "Bill",

 // city : "Washington"}

Even if only the p2 object is modified, the p object is also modified because they are
memory references that point to the same location. If the contents of the memory location
are changed, both references see the same change.

To avoid this situation, it would not be necessary to write p2 = p, but rather to copy
the properties of the object p into those of the object p2, thus creating a new memory
location. For this, JavaScript offers the spread operator, used in the form …, which
allows it:

Using the spread operator ...

var p = { lastname : "Clinton", firstname : "Bill" }

console.log("p (before modification of p2) =", p);

var p2 = { ...p}; // copy the properties of object p into

 // object p2

p2.city = "Washington";

console.log("p (after modification of p2) =", p);

console.log("p2 =", p2);

The spread operator is used by surrounding the original object with braces { and }, and
preceding the object with the spread operator (for example, {...p}).

Figure 2.9 – Using the spread operator...

Object p is no longer modified when object p2 is modified.

Arrays 55

It is also possible to write it in shortened form:

Creating object p2 from object p, adding the city

// to avoid writing p2.city = "Washington"

var p2 = { ...p, city : "Washington" };

Now that we have looked at classes and objects and how to work with them, let’s take
a look at an important class object: the Array class.

Arrays
Arrays store a collection of data, ordered according to their index. The index is also called
the index of the array. It starts at 0 and scales up to the total number of elements in the
array, minus 1 (0 to n-1).

Let’s learn how to create an array first.

Creating an array
An array corresponds in JavaScript to an Array class object. We therefore create an array
using the new Array instruction.

However, since arrays are widely used in JavaScript programs, it is also possible to create
them using a bracket notation [and]. This is an easier way to use them without going
through the Array class.

Let’s take a detailed look at these two ways to create an array (with brackets and with the
Array class).

Creating an array using square brackets [and]
The easiest and fastest way to create an array is to use the bracket notation:

Creating an array using square brackets

var tab = ["Element 1", "Element 2", "Element 3", "Element 4",
"Element 5"];

console.log(tab);

56 Exploring the Advanced Concepts of JavaScript

The array begins with an opening square bracket [and ends with a closing square bracket
]. The elements of the array are separated by a comma. We have inserted elements here as
strings, but in fact, any type of element can be inserted into an array.

Figure 2.10 – Elements inserted into an array

Note that it is possible to create an empty array (without any elements). We write this as
[], without indicating any element inside the square brackets. It will then be possible to
add elements to this array.

Creating an array using the Array class
You can also use the Array class to create an array. The Array class includes
a constructor in which we indicate the list of array elements, each separated from the
next by a comma.

The same array as before can be created by the new Array statement by writing
the following:

Creating an array using new Array

var tab = new Array("Element 1", "Element 2", "Element 3",
"Element 4", "Element 5");

console.log(tab);

Figure 2.11 – Creation of the array using new Array

The array created is the same as before.

Arrays 57

To create an empty array, simply pass no parameters to the constructor by writing
the following:

Creating an empty array using new Array()

var tab = new Array(); // or new Array;

console.log(tab);

Figure 2.12 – Creating an empty array []

Now that we’ve seen how to create an array, let’s see how to access each of its elements.

Accessing array elements
In previous programs, we displayed the entire array, using the console.log(tab)
statement. It is possible to access each element of the array separately. Each element can be
accessed as follows:

•	 By its index

•	 With a for() loop

•	 With the forEach() method

Let’s take a look at each of these three ways.

Accessing an element by index
Let’s take the previous array of five elements, that is, tab = ["Element 1",
"Element 2", "Element 3", "Element 4", "Element 5"]:

•	 The first element can be accessed by its index 0, that is, tab[0].

•	 The next one, with index 1, will be accessed by tab[1].

•	 The last one, with index 4, will be accessed by tab[4].

58 Exploring the Advanced Concepts of JavaScript

This is how you will display each element:

Displaying each element of the array by its index

var tab = ["Element 1", "Element 2", "Element 3", "Element 4",
"Element 5"];

console.log("tab =", tab);

console.log("tab[0] =", tab[0]);

console.log("tab[1] =", tab[1]);

console.log("tab[2] =", tab[2]);

console.log("tab[3] =", tab[3]);

console.log("tab[4] =", tab[4]);

console.log("tab[5] =", tab[5]);

The result is displayed in the following figure:

Figure 2.13 – Displaying each element by its index

The array contains five elements, which means the indices go from 0 to 4. However, to
do a test, we also access the element with index 5. It is possible to access an index of an
element that does not exist in the array. The result in this case is the JavaScript value
undefined, which means that the value of this element has not yet been assigned.

Arrays 59

Note that it is possible with this access method to modify the value of an array element –
just give it a new value:

Modifying the value of the elements in indexes 2 and 3 of the array

var tab = ["Element 1", "Element 2", "Element 3", "Element 4",
"Element 5"];

console.log("Array before modification");

console.log("tab =", tab);

// modification of elements, index 2 and 3

tab[2] = "New element 3";

tab[3] = "New element 4";

console.log("Array after modification");

console.log("tab =", tab);

This is the result:

Figure 2.14 – Modifying array elements

Next, we will look at accessing an element with a for() or while() loop.

60 Exploring the Advanced Concepts of JavaScript

Accessing an element with a for() or while() loop
The for() and while() loops already studied in the previous chapter allow you to
browse all the elements of an array. The index of the loop starts at 0 (to access the first
element of the array, the one with index 0) and ends at the last index of the array.

To know this last index, JavaScript provides the length property in the Array class,
which allows us to know the total number of elements of an array. The last index will be
the one with the value length – 1:

Accessing array elements with a for() loop

var tab = ["Element 1", "Element 2", "Element 3", "Element 4",
"Element 5"];

console.log("tab =", tab);

console.log("Access to each element by a for() loop");

for (var i = 0; i < tab.length; i++) console.log("tab[" + i +
"]=", tab[i]);

Note that the end of the loop is written by testing the value i < tab.length. This is
equivalent to writing i <= tab.length – 1.

Figure 2.15 – Accessing array elements with a for() loop

Next, we will look at accessing an element with the forEach(callback) method.

Arrays 61

Accessing an element with the forEach(callback) method
The forEach(callback) method is a method defined by JavaScript on the Array
class. It is used to browse the elements of an array by transmitting each of the elements
of the array to a function passed as a parameter. The function indicated as a parameter
therefore has access to each element of the array (and to its index if necessary).

Callback Function
The principle of indicating a function in the parameters of a method is very
common in JavaScript. The function in the parameters is known as a callback
function, which means that the actual processing to be executed is that
indicated in the callback function.

We show here how to use a callback function indicated in parameters of the
forEach(callback) method.

We use the tab array of five elements seen previously, to which we apply the
forEach() method:

Accessing array elements using the forEach() method

var tab = ["Element 1", "Element 2", "Element 3", "Element 4",
"Element 5"];

console.log("tab =", tab);

console.log("Access to each element by the forEach() method");

tab.forEach(function(elem, i) {

 console.log("tab[" + i + "]=", elem);

});

We indicate a function as a parameter of the forEach() method. This so-called callback
function will be called automatically by JavaScript for each element of the tab array
(which uses the forEach() method).

62 Exploring the Advanced Concepts of JavaScript

The callback function takes as its first parameter the element of the array for which the
function is called (parameter elem), and its index (parameter i).

Figure 2.16 – Accessing array elements using the forEach() method

The result is the same as that obtained by the for() loop. However, there is a (small)
difference that we discover right away.

The difference between the for() loop and the forEach() method
The previous program did not show any difference between the for() loop and
forEach() method results to access array elements.

To show the difference between these two approaches, let’s introduce a new element in the
array, at index 10, knowing that the last index used during the creation of the array was 4.
We thus create a new element that is much further away than the current last element of
the array. How will the array react to this enlargement?

Addition of an element at index 10

// original array

var tab = ["Element 1", "Element 2", "Element 3", "Element 4",
"Element 5"];

// adding a new element in the array, at index 10

tab[10] = "Element 9";

console.log("tab =", tab);

// display the array with a for() loop

console.log("Access to each element by a for() loop");

for (var i = 0; i < tab.length; i++) console.log("tab[" + i +

Arrays 63

"]=", tab[i]);

// display the array by the forEach() method

console.log("Access to each element by the forEach() method");

tab.forEach(function(elem, i) {

 console.log("tab[" + i + "]=", elem);

});

We add an element to the array using tab[10] = "Element 9", then display the
contents of the array using the for() loop and then the forEach() method.

The result is displayed in the following figure:

Figure 2.17 – Adding an element at index 10 of the array

64 Exploring the Advanced Concepts of JavaScript

The display of the for() loop shows that the elements with indices 5 to 9 exist but are of
value undefined, because effectively, no values have been inserted for these indices of
the array. However, the indices 5 to 9 with their undefined values are displayed by the
for() loop.

Conversely, the forEach() method provides the callback function indicated in
parameters with only the array elements that have actually been affected in the array.
This therefore avoids the elements at indices 5 to 9, which have not been assigned in
the program.

We have seen how to create an array, then how to access each of its elements. Let’s look at
how to add new elements to the array.

Adding items to the array
Once the array has been created (empty or not), it is possible to add elements to it. We will
mainly use one of the two following techniques:

•	 Adding an element by its index in the array

•	 Adding an item using the push() method

Now let’s take a look at these two techniques.

Adding an element by index
This corresponds to the assignment tab[i] = value. We used it in the previous
section by writing tab[10] = "Element 9".

Note simply that if the index used is greater than the current number of elements in the
array, this enlarges the array by creating elements initialized to the value undefined.
And if the index used is less than the number of elements in the array, it modifies the
current value of the targeted element.

Adding an element using the push() method
The push() method is defined in the Array class. It allows you to add a new element to
an array without worrying about the insertion index because it automatically inserts the
element at the end of the array:

Inserting an element using the push() method

// original array

var tab = ["Element 1", "Element 2", "Element 3", "Element 4",

Arrays 65

"Element 5"];

// insert an element using the push() method

tab.push("Element 6");

console.log("tab =", tab);

// display the array with a for() loop

console.log("Access to each element by a for() loop");

for (var i = 0; i < tab.length; i++) console.log("tab[" + i +
"]=", tab[i]);

// display the array by the forEach() method

console.log("Access to each element by the forEach() method");

tab.forEach(function(elem, i) {

 console.log("tab[" + i + "]=", elem);

});

The instruction tab.push("Element 6") inserts this element at the end of the array.
The array is then displayed using the various methods seen previously.

Figure 2.18 – Adding an element using the push() method

66 Exploring the Advanced Concepts of JavaScript

We know how to add and modify elements in an array. All that remains is to know how to
delete elements from an array.

Deleting array elements
JavaScript allows us to delete array elements in two ways:

•	 Deleting the value of the element in the array, while retaining the element in the
array with an undefined value

•	 Removing the element itself from the array

Let’s examine these two possibilities now.

Deleting an element value (without deleting the element from
the array)
We use the delete keyword to delete the value of an element in an array. For example,
delete tab[0] deletes the value of the element with index 0 in the array tab, by
assigning it the value undefined. The element is not removed from the array, which still
has the same number of elements as before:

Deleting the value of the element with index 0

// original array

var tab = ["Element 1", "Element 2", "Element 3", "Element 4",
"Element 5"];

// delete the value of the element with index 0

delete tab[0];

console.log("tab =", tab);

// display the array with a for() loop

console.log("Access to each element by a for() loop");

for (var i = 0; i < tab.length; i++) console.log("tab[" + i +
"]=", tab[i]);

// display the array by the forEach() method

Arrays 67

console.log("Access to each element by the forEach() method");

tab.forEach(function(elem, i) {

 console.log("tab[" + i + "]=", elem);

});

Figure 2.19 – Deleting the value of the element with index 0

We see that the for() loop displays the undefined value of the element, while the
forEach() method no longer displays the element because its value has been deleted.

Note
Note that if instead of using delete tab[0], we use tab[0] =
undefined, the forEach() method displays the element at index 0 as the
first element of the array, because the value of the element has not actually been
deleted but rather assigned to a new value, which here is undefined.

Now let’s look at the second method for removing the element from the array.

68 Exploring the Advanced Concepts of JavaScript

Deleting an element from an array
Using the delete keyword does not delete the element from the array, which retains the
same number of elements.

The splice(begin, count) method defined in the Array class allows you to
physically remove the element from the array, which will therefore have at least one
element less after its use.

The splice(begin, count) method includes the begin and count parameters,
which allow you to indicate from which index you want to delete (begin parameter) the
elements and the number of consecutive elements you want to delete (count parameter).

So, to remove the element with index 0 from the array tab, just write tab.splice
(0, 1):

Removing element with index 0 in array with splice() method

// original array

var tab = ["Element 1", "Element 2", "Element 3", "Element 4",
"Element 5"];

// remove 1 element from index 0

tab.splice(0, 1);

console.log("tab =", tab);

// display the array with a for() loop

console.log("Access to each element by a for() loop");

for (var i = 0; i < tab.length; i++) console.log("tab[" + i +
"]=", tab[i]);

// display the array by the forEach() method

console.log("Access to each element by the forEach() method");

tab.forEach(function(elem, i) {

 console.log("tab[" + i + "]=", elem);

});

Arrays 69

This is what you will see:

Figure 2.20 – Deletion of element with index 0

We have seen how to add and delete elements in an array. Now let’s see how to extract
a new array from the elements present in the current array.

Filtering elements in an array
It is common to filter the elements of an array, for example, to keep only certain elements
or to return new ones. The Array class has two methods—filter(callback) and
map(callback)—that allow us to return a new array according to our conditions.

Using the filter(callback) method
The tab.filter(callback) method returns a new array while keeping only the
desired elements of the tab array.

The callback function of the form callback(element, index) is called for each
of the elements of the array tab. It must return true if we decide to keep the element;
otherwise, the element is excluded. A new array is returned as a result by the tab.
filter() method, but the original tab array is not modified (unless it is assigned in
return from the method, as in the following example).

70 Exploring the Advanced Concepts of JavaScript

Let’s use the filter() method to keep only the elements of the array whose index is
greater than or equal to 2:

Using the filter() method

// original array

var tab = ["Element 1", "Element 2", "Element 3", "Element 4",
"Element 5"];

console.log("initial tab =", tab);

// keep only items with index >= 2

tab = tab.filter(function(element, index) {

 if (index >= 2) return true; // keep this element

});

console.log("\nfinal tab =", tab);

If the callback function returns true, the element is kept; otherwise, it is excluded. The
callback function can also return false, or even return nothing, like here, and in this
case, the element is excluded:

Figure 2.21 – Using the filter() method

This brings us to the end of the filter() method.

Using the map(callback) method
The tab.map(callback) method is used to return a new array from the elements of
the initial tab array. Each element of the initial array is passed to the callback function of
the form callback(element, index), which must return for each element a new
element that will replace the original element.

Arrays 71

Let’s use the map(callback) method to return a new array in which all elements have
been capitalized:

Using the map() method

// original array

var tab = ["Element 1", "Element 2", "Element 3", "Element 4",
"Element 5"];

console.log("initial tab =", tab);

// capitalize all elements

tab = tab.map(function(element, index) {

 return element.toUpperCase();

});

console.log("\nfinal tab =", tab);

The toUpperCase() method is a method defined on the String class (following
screenshot), allowing you to capitalize the character string that uses the method.

The result is displayed in the following figure:

Figure 2.22 – Using the map() method

We have studied in this section the use of objects of the Array class. Another class of
objects is also widely used with JavaScript: character strings, which are represented by the
String class. Now let’s see how to use objects of the String class.

72 Exploring the Advanced Concepts of JavaScript

Character strings
Strings are widely used in programming languages. They are used to represent text entered
by a user or text that will be displayed to a user.

Creating a character string
A character string is represented by an object of class String. But since character strings
are widely used in JavaScript, the language allows them to be used by surrounding them
with double quotes " and " or single quotes ' and '. It is also possible, for certain
uses, to use backticks (reverse quotation marks ' and ').

Note
The string literal must in this case begin and end with the same type of quotes.

Now let’s see how to create a string using these various methods.

Creating a string literal using double or single quotes
The easiest way to create a string literal is to use the single or double quote notation:

Creating a string literal with double quotes

var s = "String 1";

console.log("s =", s);

Or, with single quotes:

Creating a string literal with single quotes

var s = 'String 1';

console.log("s =", s);

Character strings 73

In both cases, the character string displayed is the same.

Figure 2.23 – Creating a character string

Advantage of Having the Option to Use Single/Double Quotation Marks
The advantage of having the possibility of using single or double quotes is
visible if the string itself contains quotes. For example, if the string is "I'll
love JavaScript", using single quotes to create the string will produce
an error because the string will be assumed to end with the apostrophe in the
word I'll. In this case, you must use double quotes to avoid the error.

Creating a string literal using backticks
You can also use backticks. This is useful in special cases where you want to use the value
of variables in character strings in a simpler way.

For example, suppose you want to display a string that uses a person’s first and last name.
The last name and first name are in variables named lastname and firstname:

Concatenating strings and variables

var lastname = "Clinton";

var firstname = "Bill";

// old way of concatenating strings and variables

var s1 = "lastname is " + lastname + ", firstname is " +
firstname;

// new way of concatenating strings and variables

var s2 = `lastname is ${lastname}, firstname is ${firstname}`;

74 Exploring the Advanced Concepts of JavaScript

console.log("s1 =", s1);

console.log("s2 =", s2);

When using reverse quotes, the + symbol is no longer used to concatenate strings and
variables. Everything is written in a single string, and the variables are identified by the
“symbols” ${variable}.

What is written between the braces { and } can be a simple variable (like here), but also
a more complex JavaScript expression that can be calculated (for example, {a+b}).

We can see that the two result strings are identical.

Figure 2.24 – Sequence of character strings and variables creating a string using the String class

Finally, it is possible to use the String class to create the character string. The String
class has a constructor in which the string to be constructed is indicated as a parameter:

Using the String class

var s = new String("I'll love JavaScript");

console.log("s =", s);

The following figure displays the result:

Figure 2.25 – Using the String class

Character strings 75

The String class has properties and methods. For example, the length property lets
you know the number of characters in the string, and thus lets you compare, for example,
the length of two character strings.

Let’s use the length property to display the length of the two strings created using quotes
and the String class:

Using the length property of the String class

var s1 = new String("I'll love JavaScript");

var s2 = "I'll love JavaScript";

console.log("s1 =", s1);

console.log("s2 =", s2);

console.log("s1.length =", s1.length);

console.log("s2.length =", s2.length);

This is the result:

Figure 2.26 – Using the length property of the String class

Regardless of how the string is created, its length is the same (here, 20 characters).
We have seen how to create a character string, now let’s see how to access the characters
that compose it.

Accessing characters in a string
The String class defines methods for accessing characters in the string. These
are, in particular, the charAt(index) and slice(start, end) methods.
charAt(index) is used to retrieve the character located at the index indicated in the
string, starting from index 0. The maximum index is that associated with the value of
the length property, reduced by 1. slice(start, end) breaks the string into
a substring, by extracting the characters that go from the start index (included) to the
end index (excluded).

76 Exploring the Advanced Concepts of JavaScript

Using the charAt(index) method
Let’s use the charAt(index) method to display the characters of a string, one by one:

Displaying characters from a string

var s = "Hello";

console.log("s =", s);

for (var i = 0; i <s.length; i++) console.log(`s.charAt(${i}) =
${s.charAt(i)}`);

Notice the use of reverse quotes to display the result string.

The result is displayed in the following figure:

Figure 2.27 – Using the charAt() method

Now, let’s look at the slice(start, end) method.

Using the slice(start, end) method
The preceding charAt(index) method retrieves a single character from the string,
while the slice(start, end) method can retrieve several consecutive ones:

Note
Note that the slice(start, end) method does not modify the string on
which the method applies, but rather returns a new string. The original string is
not modified, allowing it to remain intact.

Character strings 77

Using slice() on the “Hello” string

var s = "Hello";

console.log("s =", s);

console.log(`s.slice(0,2) = ${s.slice(0,2)}`);

console.log(`s.slice(0,3) = ${s.slice(0,3)}`);

console.log(`s.slice(1,3) = ${s.slice(1,3)}`);

console.log(`s.slice(0,-1) = ${s.slice(0,-1)}`);

console.log(`s.slice(0,-2) = ${s.slice(0,-2)}`);

console.log(`s.slice(1,-2) = ${s.slice(1,-2)}`);

If the end index (second parameter) of the slice(start, end) method is negative, it
means counting starts from the end of the string (instead of the beginning if it is positive).

We then obtain the following result:

Figure 2.28 – Using the slice() method

Now that we have seen how to get the characters that make up the string, let’s look at how
to modify the string.

Modifying a character string
To modify a string, there is only one possibility: you have to construct a new one from it.
The original string cannot be changed directly.

For this, we will use the previous slice() and charAt() methods, which will make it
possible to extract parts of the original string, in order to build the resulting string.

78 Exploring the Advanced Concepts of JavaScript

But to search or modify parts of character strings, it is better to use regular expressions.
We study them below.

Using regular expressions
Regular expressions are related to strings. They are used to check whether a string has
a certain format (for example, the format of an email, of a telephone number, and so on),
or to replace the characters that are in this format with others.

For this, the String class has the match(regexp) method to check whether
a character string has a given format and the replace(regexp, str) method to
replace the part of the string in this format with the new string str.

In both methods, the regexp parameter corresponds to a regular expression, the
meaning of which we will study next.

Checking whether a string has a given format
The match(regexp) method is used to check whether the character string on which the
method is used is in the format indicated in regexp. The regexp parameter is called
a regular expression.

Regular Expressions
A regular expression is a sequence of characters surrounded by / and /, for
example, /abc/. The regular expression /abc/ means that we are looking
for the sequence of characters abc in the character string. If the string contains
the sequence abc, the match(/abc/) method returns this sequence of
characters as a result, otherwise it returns the value null.

A full description of regular expressions can be found at https://
developer.mozilla.org/fr/docs/Web/JavaScript/
Reference/Global_Objects/RegExp.

Here are some examples of regular expressions with the values returned when using the
match() method on the string "Hello":

Using match(regexp)

var s = "Hello";

console.log("s =", s);

https://developer.mozilla.org/fr/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/fr/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/fr/docs/Web/JavaScript/Reference/Global_Objects/RegExp

Character strings 79

// search for "Hel"

console.log(`s.match(/Hel/) = ${s.match(/Hel/)}`);

// search for "hel"

console.log(`s.match(/hel/) = ${s.match(/hel/)}`);

// search for "hel" ignoring upper/lower case

console.log(`s.match(/hel/i) = ${s.match(/hel/i)}`);

// search for H followed by a or b or e followed by l

console.log(`s.match(/H[abe]l/) = ${s.match(/H[abe]l/)}`);

// search for He followed by 0 or 1 a followed by l

console.log(`s.match(/Hea?l/) = ${s.match(/Hea?l/)}`);

// search for He followed by 0 (min) to 1 (max) followed by l

console.log(`s.match(/Hea{0,1}l/) = ${s.match(/Hea{0,1}l/)}`);

// search for He followed 1 (min) to 2 (max) followed by l

console.log(`s.match(/Hea{1,2}l/) = ${s.match(/Hea{1,2}l/)}`);

When the regular expression is found in the "Hello" string, the part of the string found
is returned by the match() method, otherwise it returns null.

The i sign at the end of the regular expression indicates that uppercase or lowercase
letters must be ignored.

The square brackets [and] around a series of letters mean that only one of these letters
is required.

The question mark ? means that the preceding character is optional (it can be present
or not).

The braces {min,max} mean that the preceding character must be present at least min
times and at most max times.

80 Exploring the Advanced Concepts of JavaScript

The result of the previous program is as follows:

Figure 2.29 – Using regular expressions

Note
Writing a regular expression can sometimes be complex to formulate. The site
https://regex101.com/ allows you to test the regular expressions
you want.

A regular expression can also modify parts of character strings, using the
replace() method.

Replacing a part of a string with a given format
The replace(regexp, str) method is used to replace the part of the string having
the format of the regular expression regexp with the string str. It returns a new string,
and the original one is not modified. If the format indicated by the regular expression is
not found, the original string is returned with no modifications.

Let’s take the regular expressions from the previous example and replace the string found
with the string “abc”, thanks to the regular expressions:

Using the replace() method

var s = "Hello";

console.log("s =", s);

https://regex101.com/

Character strings 81

// search for "Hel" and replace with "abc"

console.log(`s.replace(/Hel/, "abc") => ${s.replace(/Hel/,
"abc")}`);

// search for "hel" and replace with "abc"

console.log(`s.replace(/hel/, "abc") => ${s.replace(/hel/,
"abc")}`);

// search for hel ignoring upper/lower case and replacing with

// "abc"

console.log(`s.replace(/hel/i, "abc") => ${s.replace(/hel/i,
"abc")}`);

// search for H followed by a or b or e followed by l and

// replace with "abc"

console.log(`s.replace(/H[abe]l/, "abc") => ${s.replace(/H[abe]
l/, "abc")}`);

// search for He followed by 0 or 1 a followed by l and

// replaced by "abc"

console.log(`s.replace(/Hea?l/, "abc") => ${s.replace(/Hea?l/,

"abc")}`);

// search for He followed by 0 (min) to 1 (max) followed by l

// and replaced by "abc"

console.log(`s.replace(/Hea{0,1}l/, "abc") => ${s.replace(/
Hea{0,1}l/, "abc")}`);

// search for He followed by 1 (min) to 2 (max) followed by l

// and replaced by "abc"

console.log(`s.replace(/Hea{1,2}l/, "abc") => ${s.replace(/
Hea{1,2}l/, "abc")}`);

82 Exploring the Advanced Concepts of JavaScript

The output is shown here:

Figure 2.30 – Using the replace() method

All executions of previous programs were executed immediately. We are now going to
study how to perform deferred processing over time.

Multitasking in JavaScript
When you start coding in JavaScript, a question often comes up: is it possible to perform
several processes simultaneously (what is called multitasking in computing)? This would
be useful if a process to be executed will take a long time, so as not to block other equally
urgent processes.

JavaScript does not allow several processing operations to be carried out simultaneously.
On the other hand, it is possible not to block the program (both on the client side in the
browser, and on the server side with Node.js) by using the callback function (which
we have already talked about when studying the forEach()method in the Accessing
an element with the forEach(callback) method section).

Callback Function
A callback function corresponds to a processing function used as parameters of
a JavaScript method or function. The callback function will be executed at the
desired time by the method or function that uses it.

Multitasking in JavaScript 83

Node.js makes extensive use of this feature. For example, when reading a file, the
readFile(callback) method calls the callback function as a parameter when the file
has been read, which allows the program not to block the pending processing of the file to
be read.

JavaScript defines as standard two main functions that use this callback function concept:
the setTimeout() and setInterval() functions. Both these use a callback function
as a parameter. We’ll describe these two functions next.

Using the setTimeout() function
The setTimeout(callback, timeout) function is used to position a processing
function (the callback function) that will be executed when the time period expressed
by timeout (in milliseconds) has elapsed.

This allows you, for example, to perform processing after 5 seconds (that is, 5,000
milliseconds). You can execute other instructions while waiting for this delay, so the
program is not blocked during this time:

Processing instructions after a delay of 5 seconds

console.log("Before setTimeout()");

setTimeout(function() {

 console.log("In the callback function");

}, 5000); // 5000 milliseconds, or 5 seconds

console.log("After setTimeout()");

We display a message ("Before setTimeout()") in the console at the start of the
program. We program a delay of 5 seconds, after which a callback function is triggered,
which displays another message in the console ("In the callback function").
Finally, we end the program by displaying a new message ("After setTimeout()").

Let’s run this program with the node testnode.js command, for example. To test this
program in a browser, simply place the preceding JavaScript code between the <script>
and </script> tags of the index.html file.

84 Exploring the Advanced Concepts of JavaScript

The following screenshot shows the display after 1 second:

Figure 2.31 – Using setTimeout()

Note that the display message of the start and that of the end follow each other, even
though the 5-second time limit has not elapsed. This shows that the program is not
blocked, waiting for the timeout to expire.

The following screenshot shows the display after at least 5 seconds (when the delay used in
the setTimeout() method has elapsed).

Figure 2.32 – Display when the 5-second delay has elapsed

We see that when the 5-second delay has elapsed, the callback function registered in the
setTimeout() function is called automatically by the setTimeout() function.

Let’s improve the program by displaying the time when the messages are displayed. This
makes it possible to verify that the 5-second time limit is respected:

Displaying the time when messages are posted

console.log(time(), "Before setTimeout()");

setTimeout(function() {

 console.log(time(), "In the callback function");

}, 5000); // 5000 = 5 seconds

Multitasking in JavaScript 85

console.log(time(), "After setTimeout()");

function time() {

 // return time as HH:MM:SS

 var date = new Date();

 var hour = date.getHours();

 var min = date.getMinutes();

 var sec = date.getSeconds();

 if (hour < 10) hour = "0" + hour;

 if (min < 10) min = "0" + min;

 if (sec < 10) sec = "0" + sec;

 return "" + hour + ":" + min + ":" + sec + " ";

}

The time() function is used to generate a character string that contains the time in the
form HH:MM:SS. This time is displayed at the beginning of each message displayed in
the console.

The Date class used here is a JavaScript class that allows you to manage dates and to
extract hours, minutes, and seconds.

We now get the following:

Figure 2.33 – Displaying the time when messages are displayed in the console

We can clearly see that the callback function is executed at the end of the 5-second period
indicated in the parameter of the setTimeout() function.

86 Exploring the Advanced Concepts of JavaScript

Using the setInterval() function
The setInterval(callback, timeout) function is similar to the setTimeout()
function seen previously. But instead of executing the callback function only once at the
end of the delay (as the setTimeout() function does), the setInterval() function
executes the callback function repeatedly by setting a new delay at the end of it. The
callback function is therefore executed at regular intervals. The only way to stop this cycle
is to use the clearInterval() function.

The setInterval() function is very useful for running processes at regular intervals.

Let’s use the setInterval() function to display, every second, the value of a counter
initialized to 1. The counter is incremented every second:

Incrementing a counter every second

console.log(time(), "Start of timer");

var count = 1;

setInterval(function() {

 console.log(time(), `count = ${count}`);

 count++;

}, 1000); // 1000 = 1 second

function time() {

 // return time as HH:MM:SS

 var date = new Date();

 var hour = date.getHours();

 var min = date.getMinutes();

 var sec = date.getSeconds();

 if (hour < 10) hour = "0" + hour;

 if (min < 10) min = "0" + min;

 if (sec < 10) sec = "0" + sec;

 return "" + hour + ":" + min + ":" + sec + " ";

}

Multitasking in JavaScript 87

This is what you will see:

Figure 2.34 – Incrementing a counter every second

The counter increments every second, indefinitely. To stop this endless cycle, you have to
use a new JavaScript function, which is clearInterval().

Using the clearInterval() function
The clearInterval(timer) function is used to stop the cycle started during the
setInterval() instruction.

Note
Note that multiple timers can be started by multiple calls to the
setInterval() function. So the clearInterval(timer) function
must specify which timer it wants to stop: the timer parameter is used to
tell it.

To do this, the setInterval() function returns the timer parameter
that will be used when calling the clearInterval(timer) function.

88 Exploring the Advanced Concepts of JavaScript

Let’s use the clearInterval() function to stop the timer when the count counter has
reached the value 5:

Using the clearInterval() function to stop the timer

console.log(time(), "Start of timer");

var count = 1;

var timer = setInterval(function() {

 console.log(time(), `count = ${count}`);

 if (count == 5) {

 clearInterval(timer); // timer stop

 console.log(time(), "End of timer");

 } else count++;

}, 1000);

function time() {

 // return time as HH:MM:SS

 var date = new Date();

 var hour = date.getHours();

 var min = date.getMinutes();

 var sec = date.getSeconds();

 if (hour < 10) hour = "0" + hour;

 if (min < 10) min = "0" + min;

 if (sec < 10) sec = "0" + sec;

 return "" + hour + ":" + min + ":" + sec + " ";

}

The program of the callback function is modified: as soon as the counter reaches 5, the
timer is stopped. Otherwise, the counter is incremented by 1.

Using promises 89

Check that the count stops after 5 times:

Figure 2.35 – Timer stops after 5 counts

The callback function that is used in the setTimeout() or setInterval() functions
is included directly in the parameters of each function. JavaScript makes it easier to write
callback functions by using a new type of object called a promise.

Using promises
Promises are another way to use callback functions. Rather than integrating the callback
function into the method call (as a parameter), we use it as a parameter of the new
then(callback) method. This simplifies the reading of JavaScript code in case it
uses callback functions.

For an object to use the then(callback) method, it must be a Promise class object.
The Promise class is a class defined in JavaScript language.

The Promise Class
A Promise class object uses a callback function of the form
callback(resolve, reject) as a parameter of its constructor.

The resolve and reject parameters are functions, which will be called from the
promise’s callback:

•	 When the resolve() function is called, it triggers the then(callback) method.

•	 When the reject() function is called, it triggers the catch(callback) method.

90 Exploring the Advanced Concepts of JavaScript

The resolve() function must be called, otherwise the then(callback) method
cannot be executed. On the other hand, calling the reject() function is optional, and if
it is not used, the catch(callback) method will not be called (and therefore does not
have to be present in the program).

Thanks to the resolve and reject parameters, we therefore have the possibility of
executing the cases of success (with the then(callback) method) and the cases
of failure (with the catch(callback) method). This way of writing ensures more
readability of the JavaScript code.

To illustrate this, let’s take the example of the setTimeout(callback, timeout)
function seen previously. The callback function is included in the method call here, which
we want to avoid with promises. Let’s write the new wait(timeout) method that can
be used in the form wait(timeout).then(callback). The callback function is now
externalized from the wait() method.

The callback function registered in the then(callback) method will be called when
the timeout expires.

This form of writing is more readable than the previous one with setTimeout(),
because it thus shows the delay before a process is executed.

To achieve this, the wait(timeout) method must return a Promise object:

Creating the Promise object, then using the then() method

function time() {

 // return time as HH:MM:SS

 var date = new Date();

 var hour = date.getHours();

 var min = date.getMinutes();

 var sec = date.getSeconds();

 if (hour < 10) hour = "0" + hour;

 if (min < 10) min = "0" + min;

 if (sec < 10) sec = "0" + sec;

 return "" + hour + ":" + min + ":" + sec + " ";

}

function wait(sec) {

 return new Promise(function(resolve, reject) {

 setTimeout(function() {

Using promises 91

 resolve(sec); // triggers the then() method

 }, sec*1000);

 });

}

console.log(time(), "Start of timer");

wait(2).then(function(sec) {

 console.log(time(), `End of timer of ${sec} seconds`);

});

The wait() method returns a Promise object thanks to the return new
Promise() statement. In the callback(resolve, reject) function, we call the
resolve() function when we consider that the then() method can execute, here at the
end of the timeout.

It is possible to specify arguments for the resolve() and reject() methods.
These arguments will be used in the callback functions used in the then(callback)
or catch(callback) methods. For example, here, we call the resolve(sec) method,
which allows us to use the sec parameter in the callback function of the then() method.

Note
Notice that the reject() function is not used in our example because no
error cases can occur here. The resolve() function must, however, be
called; otherwise, the then() method will never be executed.

The time() function is used to display the times of each process to check that the
execution is correct.

Figure 2.36 – Using the then() method

This brings us to the end of the chapter.

92 Exploring the Advanced Concepts of JavaScript

Summary
In this chapter, we went through advanced concepts related to JavaScript.

We learned how to use classes and objects, particularly the Array and String classes.
We also saw how to delay the execution of instructions.

In the rest of the book, we will discover the use of the Vue.js JavaScript library associated
with the client side of application development.

We will see how the knowledge obtained here will allow us to use this language in aspects
of client-side and then server-side programming.

Part 2:
JavaScript on

the Client-Side

In this part, we discover the use of JavaScript in a browser (so-called client-side). We will
learn how to use the Vue.js library to build JavaScript apps on the client-side. We also
build a list management application (small but representative of the reality).

This section comprises the following chapters:

•	 Chapter 3, Getting Started with Vue.js

•	 Chapter 4, Advanced concepts of Vue.js

•	 Chapter 5, Managing a list with Vue.js

3
Getting Started

with Vue.js
The JavaScript world is constantly changing. In recent years, a new concept has emerged:
that of developing applications by creating components.

New JavaScript libraries for developing component-based apps have emerged, the main
ones being Angular, React, Svelte, and Vue.js. Among all these libraries, which are quite
similar to each other, we have chosen to present Vue.js to you because it is widely used
and quite simple to implement. The other libraries mentioned operate according to the
same principles.

Why Use Vue.js?
The main advantage of Vue.js is the possibility of developing an application
using components. We cut the web application into a set of components
(actually JavaScript files) and then assemble them to form the final application.
Vue.js can test each component independently of the others and can also reuse
them in other applications.

In this chapter, we will study how to build our first application with Vue.js, by creating and
using our first component.

96 Getting Started with Vue.js

In this chapter, we will cover the following main topics:

•	 Using Vue.js in an HTML page

•	 Creating our first Vue.js application

•	 Using reactivity

•	 Creating our first component

•	 Adding methods in components

•	 Using attributes in components

•	 Using directives

Technical requirements
You can find the code files for this chapter on GitHub at: https://github.com/
PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/
Chapter%203.zip.

Using Vue.js in an HTML page
To use Vue.js in an HTML page, simply insert the library file into it using
the <script> tag.

To check that Vue.js is correctly integrated into the page, let’s display the version number
of the library in the Vue.version variable:

Displaying Vue.js version number (index.html file)

<html>

 <head>

 <meta charset="utf-8" />

 <script src="https://unpkg.com/vue@next"></script>

 </head>

 <body>

 </body>

 <script>

 alert(`Vue.version = ${Vue.version}`);

https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/Chapter%203.zip
https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/Chapter%203.zip
https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/Chapter%203.zip

Creating our first Vue.js application 97

 </script>

</html>

If Vue.js is accessible in the page, the Vue object provides access to the version number in
its version property as we can see in the following figure:

Figure 3.1 – Displaying the Vue.js version number

Now that we have integrated Vue.js into our HTML page, let’s go about creating our
first application.

Creating our first Vue.js application
Once Vue.js has been inserted into the HTML page, you must define the HTML elements
of the page in which Vue.js will be used.

In general, you want to use Vue.js on the whole HTML page, but it is possible to use it
only on certain elements of the page as well. This would allow us, for example, to manage
an HTML page with jQuery, except for a particular <div> element, which would be
managed with Vue.js.

To illustrate this, let us create an HTML page with two <div> elements, only the first of
which will be managed by Vue.js:

98 Getting Started with Vue.js

Creating an HTML page partially managed by Vue.js

<html>

 <head>

 <meta charset="utf-8" />

 <script src="https://unpkg.com/vue@next"></script>

 </head>

 <body>

 <div id="app">First div</div>

 <div>The rest of the page is not managed by

 Vue.js</div>

 </body>

 <script>

 var app = Vue.createApp({

 template : "This div is managed with Vue.js"

 });

 // mount the Vue.js application on the <div> having the

 // id "app"

 var vm = app.mount("div#app");

</script>

</html>

In the preceding code, we have used the Vue.createApp(options) method
defined on the Vue object. The options object is used to set options for creating the
Vue.js application. One of the options of Vue.createApp(options) is the template
option, which allows us to define the view (that is to say the HTML display) that will be
displayed on the page, thanks to the call of the app.mount(element) method:

•	 The app object is the one obtained as a result of the Vue.createApp()
method call.

•	 The element parameter represents the HTML element on which Vue.js will act.

Using reactivity 99

Let’s run the previous program; we should see the following output:

Figure 3.2 – First Vue.js app

On the preceding screen, we can see the result of using Vue.js on the page. The content
of the first <div> is replaced by the template written in the options parameter of the
Vue.createApp(options) method. The second <div> is not transformed.

Thus, to manage an entire HTML page with Vue.js, just indicate in the <body> part of the
page a single <div> element, which will be the one on which Vue.js will be activated.

Now let’s see how to use an important concept of Vue.js, which is the correspondence
between the variables defined in the program and their display on the HTML page.
This concept is called reactivity.

Using reactivity
One of the objectives of Vue.js is to separate the management of the display (the view) and
that of the data (the model). This is the concept that is frequently found in what is called
the Model View Controller (MVC) model.

To illustrate, suppose we want to display a counter that increments from 0. A good
separation of view and model would be for the view to constantly display the value of the
counter, even if that value is changed elsewhere. This concept makes it possible not to
link the display with the management of the data displayed. For this, we use the reactivity
offered by Vue.js, by creating so-called reactive variables.

100 Getting Started with Vue.js

Reactive Variables
A variable will be said to be reactive if its modification in memory causes it to
be modified automatically wherever the variable is displayed.

Reactive variables are defined in the options object of the Vue.createApp(options)
method. For this, we add in the options object, and the definition of the data()
method, which will have to return an object containing the so-called reactive variables
of the application.

Let’s use a reactive variable named count in our Vue.js application:

Defining a count reactive variable

<html>

 <head>

 <meta charset="utf-8" />

 <script src="https://unpkg.com/vue@next"></script>

 </head>

 <body>

 <div id="app"></div>

 </body>

 <script>

 var app = Vue.createApp({

 template : "The counter is: {{count}}",

 data() {

 // return an object containing the reactive

 // variables

 return {

 count : 0

 }

 }

 });

 var vm = app.mount("div#app");

Using reactivity 101

</script>

</html>

In the preceding code, the count reactive variable is defined in the data() method,
which returns the { count : 0 } object containing the program’s reactive variable.
Other variables can be defined afterward.

This reactive variable can then be used in the template by means of the notation with
{{ and }}. This notation is used to indicate a JavaScript expression, such as the value
of a variable.

The definition of a so-called reactive variable makes it possible to link the display to the
value of the variable. As soon as the variable is modified, the display is also modified.
We can see the counter value in the following figure:

Figure 3.3 – Displaying a reactive variable

The counter remains positioned at its initial value: 0. Reactivity is only visible when the
variable is modified. The display will therefore be modified as soon as the count variable
is modified.

To do this, let’s increment the value of the variable every second as shown in the
following code:

Incrementing count variable every second

<html>

 <head>

 <meta charset="utf-8" />

 <script src="https://unpkg.com/vue@next"></script>

102 Getting Started with Vue.js

 </head>

 <body>

 <div id="app"></div>

 </body>

 <script>

 var app = Vue.createApp({

 template : "The counter is: {{count}}",

 data() {

 // return an object containing the reactive

 // variables

 return {

 count : 0

 }

 }

 });

 var vm = app.mount("div#app");

 setInterval(function() {

 vm.count += 1;

 }, 1000);

</script>

</html>

Using JavaScript’s setInterval() function, we increment the value of the count
variable every second. Vue.js provides access to the count variable using vm.count,
where vm is the object returned by the app.mount() method. Reactive variables become
properties of this vm object. In the preceding code, we can see the separation of view and
data processing, as advocated by the MVC pattern. The incrementation of the variable is
done outside the view, which would not have been possible with a library such as jQuery.

Creating our first component 103

We can see the incrementation and the automatic update of the display, thanks to the
reactivity offered by Vue.js, as evident in the following figure

Figure 3.4 – Incrementing a reactive variable

The previous program is very simple, but in reality, applications are of course more
complex. As such, it is necessary to break down an application into small pieces, which
will then be assembled. Now let’s learn how to write one of the small pieces of an
application, called a component.

Creating our first component
Let’s see how to use Vue.js to create our own components.

A Vue.js component will be similar to a new HTML element. It will be used in the form of
HTML tags to which new attributes can be associated if necessary. To use the component,
all you have to do is use the corresponding tag.

The components are therefore a means of enriching the HTML code by creating our
own tags.

How to Discover the Components to Use to Build Our Application
All you have to do is visually cut the HTML page you want to display into
the simplest possible elements (which will be the basic components of your
application), then group several elements together to form a component that
will group them, and so on until you have the main component, which will be
your complete application.

104 Getting Started with Vue.js

For example, if a list of elements is displayed on the HTML page, each element’s line of
the list corresponds to a basic component, while the global list that groups these different
components will be associated with another component. The set of all components of the
HTML page corresponds to the main component, often named <App> or <GlobalApp>.
Let’s see how to create and use the <counter> component corresponding to the previous
counter by first learning how to insert the component.

You can create the component directly into the HTML page or include it from an external
file. Let’s look at these two ways to do it.

Inserting a component in the application file
A component can simply be embedded in the main application Vue.js file. Just use the
app.component(name, options) method to create it as follows. The variable app
corresponds to the object returned by Vue.createApp():

Creating the <counter> component directly in the application

<html>

 <head>

 <meta charset="utf-8" />

 <script src="https://unpkg.com/vue@next"></script>

 </head>

 <body>

 <div id="app"></div>

 </body>

 <script>

 var app = Vue.createApp({

 template : "<counter />"

 });

 app.component("counter", {

 template : "The counter is: {{count}}",

 data() {

 return {

 count : 0

Creating our first component 105

 }

 }

 });

 var vm = app.mount("div#app");

</script>

</html>

In the preceding code, the variable app corresponds to the object returned by Vue.
createApp().

The app.component(name, options) method works on the same principle as
Vue.createApp(options):

•	 The name parameter corresponds to the name of the component, which will then be
used as tags in HTML templates.

•	 The options parameter is similar in both cases. There is the template section,
data, and so on.

The <counter> component can then be used in other templates, including the one
defined for the application. When you run the preceding code, you will see the
following screen:

Figure 3.5 – The <counter> component

As we can see in the preceding figure, for the moment, the counter remains at 0. To
increment the reactive variable count in the component, it is necessary to be able to write
the instruction of incrementation once the component is created. For this, Vue.js provides
internal methods allowing access to the life cycle of each component created.

106 Getting Started with Vue.js

One of the methods of a component’s life cycle is the created() method. It is called
when the component is created. You can use this method to write the increment of the
variable count every second, using the setInterval() function.

Let’s use the component’s created() method as follows:

Using the component’s created() method

<html>

 <head>

 <meta charset="utf-8" />

 <script src="https://unpkg.com/vue@next"></script>

 </head>

 <body>

 <div id="app"></div>

 </body>

 <script>

 var app = Vue.createApp({

 template : "<counter />"

 });

 app.component("counter", {

 template : "The counter is: {{count}}",

 data() {

 return {

 count : 0

 }

 },

 created() {

 setInterval(()=>{ // do not use the function()

 // form here,

 // otherwise the "this" object

 // would not be the same

 this.count++;

 }, 1000);

Creating our first component 107

 }

 });

 var vm = app.mount("div#app");

 </script>

</html>

In the preceding code, we have used the notation ()=> instead of function(). This
notation (called a lambda function) was introduced in the latest versions of JavaScript in
order to allow the value of this to be kept inside callback functions, which is necessary
here. If you replace the lambda function ()=> with the function() keyword, the
program won’t work, as the this value won’t be the same.

On running the preceding code, you will see the following output:

Figure 3.6 – Incrementing the counter in the component

Inserting a component from an external file
Rather than defining the component directly in the HTML page, it is preferable to
define it in an external file. The component can be used in the HTML page thanks to the
inclusion of the external file in the HTML page. For this, we use the concept of modules
provided by JavaScript.

The Advantage of Components Defined in an External File
The advantage of defining the component in an external file is to be able to
include this file in several different HTML pages, and therefore to use the
component in several different applications.

108 Getting Started with Vue.js

The <counter> component is defined in an external counter.js file as follows:

<counter> component definition (counter.js file)

const Counter = {

 data() {

 return {

 count: 0

 }

 },

 template : "The counter is: {{count}}",

 created() {

 setInterval(() => {

 this.count += 1;

 }, 1000)

 }

}

export default Counter;

The <counter> component is defined as an object, having template, data, and
created properties. Its definition is similar to the one shown previously in the app.
component() method.

The export default Counter instruction makes the component accessible in the
other files where this module is imported.

The <counter> component can now be integrated into the main file of our application.
We use the JavaScript import statement for this. The code will look as follows:

Importing the component into the program (index.html file)

<html>

 <head>

 <meta charset="utf-8" />

 <script src="https://unpkg.com/vue@next"></script>

 </head>

 <body>

Creating our first component 109

 <div id="app"></div>

 </body>

 <script type="module">

 import Counter from "./counter.js";

 var app = Vue.createApp({

 components : {

 Counter:Counter

 },

 template : "<counter />" // or "<Counter />"

 });

 var vm = app.mount("div#app");

 </script>

</html>

In the preceding code, to import the counter.js file and use the corresponding
component, the following takes place:

•	 The type="module" attribute is indicated in the <script> tag. This allows the
use of the import statement in the JavaScript statements of the <script> tag.

•	 We use the import statement to import the corresponding module.

•	 We declare the imported components in the new components section.
Components are declared as an object. The names of the properties in this object
correspond to the name used by the component in the templates (<counter>
or <Counter>), while the values correspond to the name of the imported
component (Counter).

110 Getting Started with Vue.js

Using HTTP Instead of the FILE Protocol
However, as we use the import of JavaScript modules, it is necessary to run our
application on an HTTP server, and no longer with a simple drag and drop as
before. Hence the use of the URL that begins with http://localhost.
If you need to know how to install an HTTP server, you can, for example,
use the documentation here: https://developer.mozilla.org/
en-US/docs/Learn/Common_questions/set_up_a_local_
testing_server.

In the following figure, we can see that creating a component directly in the HTML page
or in an external file produces the same result:

Figure 3.7 – Execution of the HTML file on an HTTP server (here, localhost)

The current component only has a simple reactive variable. It is possible, in a component,
to add methods to it that will be used in the component. Now let’s take a look at how to
do it.

Adding methods in components
We have seen how to create reactive variables in a component, using the data section of
the component. It is also possible to create methods in a component that can be used in
the component template.

There are two ways to add methods to a component:

•	 The first is to define the method in the methods section of the component.

•	 The second is to create a so-called computed property that will be defined in the
computed section of the component.

Let’s look at these two ways to do it.

https://developer.mozilla.org/en-US/docs/Learn/Common_questions/set_up_a_local_testing_server
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/set_up_a_local_testing_server
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/set_up_a_local_testing_server

Adding methods in components 111

Defining methods in the methods section
For each incrementation of the counter, it should be necessary to display the time at
which it occurs. A time() function would be very useful in the component, allowing us
to display the time in the form HH:MM:SS. This time() function will be defined in the
methods section of the component.

The <counter> component is modified to integrate the display of the time at the
beginning of the line. We can achieve all this using the following code:

<counter> component displaying time (counter.js file)

const Counter = {

 data() {

 return {

 count: 0

 }

 },

 template : `{{time()}} The counter is:

 {{count}}`,

 created() {

 setInterval(() => {

 this.count += 1;

 }, 1000)

 },

 methods : {

 time() {

 // return time as HH:MM:SS

 var date = new Date();

 var hour = date.getHours();

 var min = date.getMinutes();

 var sec = date.getSeconds();

 if (hour < 10) hour = "0" + hour;

 if (min < 10) min = "0" + min;

 if (sec < 10) sec = "0" + sec;

 return "" + hour + ":" + min + ":" + sec + " ";

 }

 }

112 Getting Started with Vue.js

}

export default Counter;

In the preceding code, the time() method is defined in the methods section and is then
directly used in the component template within the double braces {{ and }}.

A method defined in the methods section can use the other methods of this section
or the reactive variables of the data section by prefixing them with the this keyword.

The result is displayed in the following figure:

Figure 3.8 – Time display in the component

Vue.js allows you to define, in the form of methods, new variables that will be reactive.
They are called computed properties. Let’s see how to create and use them.

Defining computed properties in the computed section
A computed property is similar to a reactive variable. It is the result of the calculation
performed on one or more reactive variables, and it will also be reactive. Any modification
to one of the reactive variables associated with this computed property will cause it to be
modified immediately.

Let’s create a countX2 property that calculates double the count variable as follows:

Defining a computed property countX2 in the component (counter.js file)

const Counter = {

 data() {

 return {

 count: 0

Adding methods in components 113

 }

 },

 template : `{{time()}} The counter is:

 {{count}}, double is: {{countX2}}`,

 created() {

 setInterval(() => {

 this.count += 1;

 }, 1000)

 },

 methods : {

 time() {

 // return time as HH:MM:SS

 var date = new Date();

 var hour = date.getHours();

 var min = date.getMinutes();

 var sec = date.getSeconds();

 if (hour < 10) hour = "0" + hour;

 if (min < 10) min = "0" + min;

 if (sec < 10) sec = "0" + sec;

 return "" + hour + ":" + min + ":" + sec + " ";

 }

 },

 computed : {

 countX2() {

 return 2 * this.count;

 }

 }

}

export default Counter;

114 Getting Started with Vue.js

The output of the preceding code will look as follows:

Figure 3.9 – Using a computed property

In the preceding figure, we can see the modification of the count variable. Every second
leads to the automatic modification of the countX2 variable thanks to its definition in
the computed section.

We have seen how to define methods and reactive variables in a component. Now let’s see
how to pass parameters to a component, using the component’s attributes for this.

Using attributes in components
Attributes in a component allow it to pass parameters for its use. For example, we could
use in the <counter> component a start attribute indicating at what value we start
counting. If this attribute is not indicated, it is considered to be 0 (that is, counting starts
at 0 as in the preceding code example).

For a component to be able to employ attributes during its use, it suffices to indicate the
name of the attributes in the props section of the component. The component can access
the attribute value using the this keyword (for example, this.start to access the
start attribute in the component). We can see this in action in the following code:

Using the start attribute in the component (index.html file)

<html>

 <head>

 <meta charset="utf-8" />

 <script src="https://unpkg.com/vue@next"></script>

 </head>

Using attributes in components 115

 <body>

 <div id="app"></div>

 </body>

 <script type="module">

 import Counter from "./counter.js";

 var app = Vue.createApp({

 components : {

 Counter:Counter

 },

 template : "<counter start='10' />"

 });

 var vm = app.mount("div#app");

 </script>

</html>

In the following code, the attribute is passed when using the component, as is traditionally
done in HTML. The value of the attribute here will be a character string "10" and not
the value 10:

Setting the start attribute in the <counter> component (counter.js file)

const Counter = {

 data() {

 return {

 count : parseInt(this.start), // we initialize the

 // count to the value

 // of start

 }

 },

 template : `{{time()}} The counter is:

 {{count}}, double is: {{countX2}}`,

116 Getting Started with Vue.js

 created() {

 var timer = setInterval(() => {

 this.count += 1;

 }, 1000)

 },

 methods : {

 time() {

 // return time as HH:MM:SS

 var date = new Date();

 var hour = date.getHours();

 var min = date.getMinutes();

 var sec = date.getSeconds();

 if (hour < 10) hour = "0" + hour;

 if (min < 10) min = "0" + min;

 if (sec < 10) sec = "0" + sec;

 return "" + hour + ":" + min + ":" + sec + " ";

 }

 },

 computed : {

 countX2() {

 return 2 * this.count;

 }

 },

 props : [

 "start"

]

}

export default Counter;

In the preceding code, notice the use of the parseInt() function (defined as standard
in JavaScript) to retrieve the value of this.start in integer form. Indeed, the attributes
are transmitted in the form of character strings, hence the need to transform this.
start into an integer value.

Using directives 117

It is possible to avoid transforming the attribute value into an integer value. All you have
to do is indicate when using the attribute that you want to keep the JavaScript value and
not the character string. We prefix the name of the attribute with the character :, for
example, :start='10'. In this case, the value 10 will be transmitted and not the
string "10".

This makes it possible to be able to transmit in the attributes any types of values: numeric
values, character strings, arrays, or objects.

In the following figure we can see the counter has started from the value indicated in the
start attribute:

Figure 3.10 – Using the start attribute in the component

We have therefore seen how to create new attributes in a component. Vue.js has specific
attributes as standard, which can be used in all components. These specific attributes,
created by Vue.js, are called directives. We will study them now.

Using directives
Vue.js improves the writing of HTML code by offering to write its own components, as
we have seen in the preceding section. The framework also makes it easier to write basic
HTML code by adding new attributes to the HTML elements or to the components
created. These new attributes are called directives.

Note
Directives are used exclusively in HTML elements or created components, that
is, in the template section of components.

118 Getting Started with Vue.js

Their name begins with v-, so as not to be confused with other existing HTML attributes.
The main directives are v-if, v-else, v-show, v-for, and v-model. They will be
explained now.

The v-if and v-else directives
The v-if directive is used to specify a condition. If true, the HTML element (or
component) will be inserted into the HTML page. Otherwise, it will not be present.

Let’s use the v-if directive to indicate that we want to display the value of the counter
only for values less than or equal to 20. As soon as the value 20 is exceeded, the counter is
no longer displayed.

In the following snippet, we have only indicated the code of the template section of the
component, knowing that the rest is not modified:

Using the v-if directive

template : `

 {{time()}}

 <span v-if='count<=20'>The counter is: {{count}}

`,

Using backticks ' and ' to define the template avoids having to manage the concatenation
of character strings on several lines.

The element on which the v-if directive is applied will be included in the
HTML page only if the following condition is true: if count<=20. Beyond 20, only the
time will be displayed without the counter value.

As long as the counter is less than or equal to 20, it is displayed as follows:

Figure 3.11 – Display of the counter whose value is less than 20

Using directives 119

When the counter exceeds the value 20, it is no longer displayed:

Figure 3.12 – Display as soon as the counter exceeds the value 20

The v-else directive is used to indicate an alternative when the condition expressed in
v-if is false. The element on which the v-else directive is used will be inserted into
the HTML page if the condition expressed in v-if is false.

Let’s use the v-else directive to display another message when the counter exceeds the
value 20:

Using the v-else directive

template : `

 {{time()}}

 <span v-if='count<=20'>The counter is: {{count}}

 The counter has exceeded 20, it is:

 {{count}}

`,

When the counter exceeds the value 20, we now get the following:

Figure 3.13 – Counter having exceeded the value 20

120 Getting Started with Vue.js

The v-show directive
The v-show directive is similar to the v-if directive. A condition is given next. If the
condition is true, the element that uses the directive is displayed; otherwise, it is not.

The difference from the v-if directive is that the element, if not displayed, is only
hidden, but it is still inserted into the page. Whereas with the v-if directive, the element
is not inserted (if the condition is false).

The v-for directive
The v-for directive allows you to loop over a set of elements or over the properties of an
object. For each iteration of the loop, it inserts the HTML element on which the directive
is positioned.

Let us assume the <counter> component is a set of counters associated with the variable
counts, which is a JavaScript array. Each counter is, in our example, a character string
(for example, "Counter 1"), and we want to display the whole in the form of a list
(see the following code snippets).

Let’s look at the two possible forms of the v-for directive.

Using the directive v-for=”count in counts”
Let’s use the first form of the v-for directive. It allows access to each element of the array
indicated in the directive (in our example, the JavaScript counts array):

Displaying counters as a list (counter.js file)

const Counter = {

 data() {

 return {

 counts : ["Counter 1", "Counter 2", "Counter 3",

 "Counter 4", "Counter 5"]

 }

 },

 template : `

 <li v-for="count in counts">

 {{count}}

Using directives 121

 `,

}

export default Counter;

In the preceding code, we have positioned the v-for directive on the element that
we want to repeat (in this case, the element). The value associated with the v-for
directive is a character string of the form "count in counts", knowing that counts
is the variable on which we are iterating. The count variable thus corresponds to each of
the elements of the counts array:

Figure 3.14 – Using the v-for directive

Using the directive v-for=”(count, index) in counts”
A second form of the v-for directive gives access to each element of the array as before,
but also to its index (starting from 0):

Displaying counters and their index (counter.js file)

const Counter = {

 data() {

 return {

 counts : ["Counter 1", "Counter 2", "Counter 3",

 "Counter 4", "Counter 5"]

122 Getting Started with Vue.js

 }

 },

 template : `

 <li v-for="(count, index) in counts">

 Index {{index}} : {{count}}

 `,

}

export default Counter;

On running the preceding code, the following is displayed:

Figure 3.15 – Using index in the v-for directive

Using the key attribute with the v-for directive
The v-for directive can also be used to display large lists, for which reactivity must be
maintained. That is, changing the reactive variable specified in the v-for directive should
update the corresponding displayed list.

To perform the update as quickly as possible, Vue.js uses a special attribute (to be used
only for this specific case) named key. This attribute can be positioned after the v-for
directive. Its value must be unique for each item in the list. For example, the value of the
index being unique for each list element can be used as a value in the key attribute:

Using directives 123

Using the key attribute with the v-for directive

<li v-for="(count, index) in counts" :key="index">

In the preceding code, the value of the attribute is a JavaScript expression (the variable
index). We use :key and not just key; otherwise, the attribute would constantly have
the string "index" as its value (instead of the value of the variable index).

Of course, adding the key attribute does not produce any display changes, but the
performance will be visible on subsequent changes to the displayed list (it helps Vue.js to
keep track of the element and prevent unnecessary re-rendering).

The v-model directive
The v-model directive is used to manage form elements during an interaction (input in
a field, a click on a checkbox or radio button, the choice of an element in a list).

The v-model directive is used to immediately retrieve the result of input or selection in
a reactive variable without having to perform any particular processing. It’s the v-model
directive that performs this update (of the reactive variable) for us.

We use the v-model directive in the form v-model="varname", where varname is
the name of a reactive variable that will be updated on input or selection.

Let’s use the v-model directive in a form input field. To clearly see what happens
with or without its use, we display two input fields: one managed without v-model, the
other with:

Using the v-model directive in an input field (counter.js file)

const Counter = {

 data() {

 return {

 count : 10

 }

 },

 template : `

 Without v-model:

 <input type="text" :value="count" />

 count = {{count}}

 With v-model:

124 Getting Started with Vue.js

 <input type="text" v-model="count" />

 count = {{count}}

 `,

}

export default Counter;

Here are some notes on the preceding program:

•	 The first <input> field does not use v-model, but only uses the value attribute,
which will be updated based on the count variable.

•	 The second <input> field uses the v-model directive associated with the same
count variable.

•	 The value of the count variable is displayed after the two input fields.

When the program is launched, the value of the reactive variable count is transferred
to the value attribute of the first input field, as well as to the second. This produces the
initialization of the contents of the two input fields as seen here:

Figure 3.16 – Display when starting the program

Using directives 125

If we change the contents of the first input field (which is not used with v-model),
we will see something like this:

Figure 3.17 – Editing an input field without v-model

Note that modifying the input field (without v-model) has no effect on the reactive
variable associated with it.

Now let’s modify the contents of the second input field, managed by v-model:

Figure 3.18 – Editing an input field with v-model

We now see that the use of v-model causes the immediate modification of the reactive
variable to which it is associated, which then causes the modification of the value
attribute of the first input field (because it is linked to the reactive variable).

126 Getting Started with Vue.js

Summary
In this chapter, we have mainly studied how to create a component and methods
or attributes associated with it.

It is now necessary to study how to manage the actions of the user in a component,
then how to assemble the components to form an application.

4
Advanced Concepts

of Vue.js
In this chapter, we look at advanced uses of Vue.js. We will study the handling of events
in components, then the assembly of the various components in order to form a whole
Vue.js application.

Why is it important to know how to handle events in components?

A Vue.js component is often a set of HTML elements, like building blocks, such as
buttons, lists, and input fields. It is therefore essential to know how to manage the
interaction of these elements with the possible actions of the user, such as clicking on
a button, entering a value in an input field, or selecting an element from a list.

Similarly, why is it important to know how to assemble the components?

A web application brings together many elements, which in the end, will represent
the application as a whole. The principle of Vue.js is to break down an application into
components, then assemble them to form the complete application. We will have to learn
how to divide an application into components, then assemble them by allowing them,
for example, to share data.

We end this chapter by showing how we can easily produce visual effects on your pages
thanks to Vue.js.

128 Advanced Concepts of Vue.js

Here are the main topics we explain in the following pages:

•	 Managing events

•	 Assembling components

•	 Using visual effects

Technical requirements
You can find the code files for this chapter on GitHub at: https://github.com/
PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/
Chapter%204.zip.

Managing events
Now let’s see how to handle events with Vue.js. To do this, use the v-on directive,
followed by the character : and the name of the event to be handled. For example, if you
want to perform a particular process when a button is clicked, we will use the click
event on the button and we will write v-on:click to handle the click event. The value
of the directive (which follows the = sign) corresponds to the JavaScript expression to be
executed (either a statement or a function call).

Tip
Vue.js makes it easier to write v-on:click by writing @click more
simply. This rule is valid for all events.

In this example, we will implement a button that increments a reactive variable count
on each click. We will also define an incr() method in the methods section of the
component that increments the count variable:

Increment counter count (counter.js file)

const Counter = {

 data() {

 return {

 count : 0

 }

 },

 template : `

https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/Chapter%204.zip
https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/Chapter%204.zip
https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/Chapter%204.zip

Managing events 129

 <button @click="count++">Increment counter by

 count++</button>

 count = {{count}}

 <button @click="incr()">Increment counter by

 incr()</button>

 count = {{count}}

 `,

 methods : {

 incr() {

 this.count++;

 }

 }

}

export default Counter;

We have defined two buttons for which the value of @click is as follows:

•	 @click="count++" (first button)

•	 @click="incr()" (second button)

We thus show the equivalence of these forms of writing.

The counter is incremented by 1 with each click of the buttons.

Figure 4.1 – Button click management

130 Advanced Concepts of Vue.js

It is possible to write several method calls in a row during the processing to be performed
(separated by a comma or a semicolon). It is enough that these methods are defined in the
methods section of the component.

For example, @click="incr();incr()" allows the incr() method to be executed
twice each time the button is clicked.

We have explained here how to catch an event and handle it in a method defined in the
methods section of the component. Let’s go further by using the parameters transmitted
in the received event, for example, knowing which key on the keyboard was pressed.

Using the $event parameter
Vue.js provides access to the Event object associated with the event. This object can
then be used to get additional information about the event. The information is different
depending on the type of event:

•	 Mouse coordinates or buttons clicked on the mouse for a mouse-related event

•	 Keyboard key used, or the combination of keys pressed (Ctrl, Shift, Esc, and so on)
for a keyboard-related event

The Event object can be accessed from the $event variable. It can be passed as
a parameter to a processing method. This parameter will then be retrieved in the event
processing function.

Let’s see two examples of how to use this parameter when entering characters in an
edit control:

•	 By displaying an error message as soon as the numerical value entered equals
or exceeds the value 100

•	 By prohibiting the entry of characters other than numeric characters if the edit
control can only contain numbers (this is an improvement of the previous example)

Checking that the entered value is less than 100
Let’s use the $event parameter to check that the content of the counter input field is
less than 100. If so, the count variable is updated with the entered value; otherwise, an
error message is displayed.

To achieve this, we use the blur event on the input field, and in the processing of the
event, we retrieve the value of the input field. A reactive message variable is used to
display an error message, if necessary:

Using the $event parameter 131

Note
The blur event is triggered when leaving the input field, for example, by
clicking outside the input field.

Display an error message if the counter is greater than 100 (counter.js file)

const Counter = {

 data() {

 return {

 count : 0,

 message : ""

 }

 },

 template : `

 count (less than 100): <input type="text"

 :value="count" @blur="valid($event)" />

 count = {{count}}

 {{message}}

 `,

 methods : {

 valid(event) {

 this.message = ""; // reset of the error message

 // before each check

 if (event.target.value < 100) this.count =

 event.target.value;

 else this.message = "Error: count must be less than 100";

 }

 }

}

export default Counter;

The $event parameter is passed to the valid(event) processing function. The
event.target property provides direct access to the HTML element. Its value
property contains the value of the field.

132 Advanced Concepts of Vue.js

If you type a value less than 100 (here, 45), the counter is updated:

Figure 4.2 – Entering an authorized value

If you type a value greater than 100 (for example, 150), an error is displayed and the old
value of the counter (45) is restored.

Figure 4.3 – Entering a prohibited value

Then, we’ll look at another use of $event parameter-allowing only digits to be entered.

Allowing only digits to be entered
Another use of the $event parameter can be to only allow numbers to be entered into
the field. Other keyboard keys are prohibited (except the Backspace and Delete keys, the
right and left arrow keys, and the Tab key).

Using the $event parameter 133

For this, we use the keydown event, which is triggered each time a key on the keyboard
is pressed:

Disallow input of non-numeric characters (counter.js file)

const Counter = {

 data() {

 return {

 count : 0,

 message : ""

 }

 },

 template : `

 count (less than 100):

 <input type="text" :value="count" @blur="valid($event)"

 @keydown="verif($event)"/>

 count = {{count}}

 {{message}}

 `,

 methods : {

 valid(event) {

 this.message = ""; // reset of the error message

 // before each check

 if (event.target.value < 100) this.count = event.target.

 value;

 else this.message = "Error: count must be less than 100";

 },

 verif(event) {

 console.log(event.key); // display in the console

 // the value of the key

 // pressed

 if (event.key != "Backspace" && event.key != "Delete"

 &&

 event.key != "ArrowLeft" && event.key !=

 "ArrowRight" &&

 event.key != "Tab") {

134 Advanced Concepts of Vue.js

 // forbid the key if it is not numeric

 if (event.key < "0" || event.key > "9")

 event.preventDefault(); // forbidden key

 }

 }

 }

}

export default Counter;

The event used to filter the keys corresponds to keydown and gets activated when
pressing a key on the keyboard. We therefore indicate to process each key press using the
verif() method defined in the methods section.

Using event.key and event.preventDefault()
The event.key parameter contains the code of the key pressed. The key
code is between “0” and “9” for a numeric value. To prohibit the other keys,
we use the event.preventDefault() method (defined in JavaScript),
which indicates not to take into account the event, therefore the pressing of the
prohibited key.

We learned how to create a component in Chapter 3, Getting Started with Vue.js, and how
to manage events in it (at the beginning of this chapter). A full application is composed of
several components. Let’s now explain how to proceed to assemble several components to
form a complete application.

Assembling components
Vue.js divides an application into a set of components. These components are then
assembled to form the final application.

Let’s study an example of how to create components and then assemble the created
components. The goal is to use three counters (associated with three input fields) like the
one in the previous example, then display the total of these counters. The total updates,
as numbers are typed into each of the input fields.

Assembling components 135

We will create two components for this:

•	 The <counter> component is used to manage a counter.

•	 The <counters> component allows you to manage the three counters together
and display the total.

The index.html file will display the <counters> component in its template section:

index.html file

<html>

 <head>

 <meta charset="utf-8" />

 <script src="https://unpkg.com/vue@next"></script>

 </head>

 <body>

 <div id="app"></div>

 </body>

 <script type="module">

 import Counters from "./counters.js";

 var app = Vue.createApp({

 components : {

 Counters:Counters

 },

 template : `

 <counters />

 `,

 });

 var vm = app.mount("div#app");

136 Advanced Concepts of Vue.js

 </script>

</html>

The included counters.js file describes the <counters> component. It partly
repeats what has been explained in the previous sections, adding new concepts that
we’ll now describe.

These new concepts will explain how a parent component communicates with its
child components (thanks to attributes, called props) and how a child component
communicates with its parent component (thanks to events and the $emit() method).

These two concepts make it possible to assemble the components between them by
allowing them to communicate between a child component and a parent component.

Using $emit() to communicate with a parent
component
Let’s first look at the <counter> component file, which describes a counter associated
with an input field:

<counter> component (counter.js file)

const Counter = {

 data() {

 return {

 count : 0,

 old_value : 0

 }

 },

 template : `

 <input type="text" v-model="count"

 @keydown="verif($event)"

 @input="calcul()"

 @focus="focus()"

 @blur="blur()" />

 `,

 methods : {

 verif(event) {

Assembling components 137

 if (event.key != "Backspace" && event.key != "Delete" &&

 event.key != "ArrowLeft" && event.key !=

 "ArrowRight" &&

 event.key != "Tab") {

 // forbid the key if it is not numeric

 if (event.key < "0" || event.key > "9")

 event.preventDefault(); // key forbidden

 }

 this.old_value = event.target.value;

 },

 calcul() {

 this.$emit("sub", this.old_value || 0); // subtract

 // old value

 this.$emit("add", this.count || 0); // add new value

 },

 focus() {

 if (this.old_value == "0") this.count = "";

 },

 blur() {

 if (!parseInt(this.count)) {

 this.old_value = 0;

 this.count = 0;

 }

 }

 },

 emits : ["sub", "add"] // declare events emitted to

 // the parent

}

export default Counter;

138 Advanced Concepts of Vue.js

The <counter> component has been enriched with new methods, linked to new events
to be taken into account during input. Also, a new reactive variable, old_value, has
been created:

•	 The old_value variable contains the value that was entered in the field before
pressing the key on the keyboard.

•	 The count variable contains the value that was entered in the field after pressing
the key on the keyboard.

Why make this distinction? Because to calculate the total of all the counters, it will be
necessary, with each typed key, to remove the previous value from the field (before
pressing the key) and add the new value (after pressing the key).

Each keypress is handled by the input event, which here calls the calcul() method.
As the calculation associated with the total of the three counters is performed at the
higher level (in the <counters> component, which is the parent component), you
must indicate to this parent component the sum to subtract (old_value) and the
sum to add (count). This is done by sending "sub" and "add" events, using the
$emit(eventName, value) method.

About the $emit(eventName, value) Method
The $emit(eventName, value) method, executed from a component,
sends the eventName event to the parent component, which can process it
using the @eventName directive. The value parameter corresponds to the
value to be transmitted if necessary.

In addition, we indicate in the emits section of the component the list of events that this
component can emit to its parent.

This way of communicating between a child component (here, the <counter>
component) and its parent (here, the <counters> component), using events, is the one
recommended by Vue.js.

Now let’s see the description of the <counters> component, which encompasses the
three counters and the calculation of the total counters as you type in each one:

<counters> component (counters.js file)

import Counter from "./counter.js";

const Counters = {

 data() {

Assembling components 139

 return {

 total : 0

 }

 },

 components : {

 Counter:Counter

 },

 template : `

 Counter 1 : <counter @add="add($event)"

 @sub="sub($event)" />

 Counter 2 : <counter @add="add($event)"

 @sub="sub($event)" />

 Counter 3 : <counter @add="add($event)"

 @sub="sub($event)" />

 Total : {{total}}

 `,

 methods : {

 add(value) {

 this.total += parseInt(value);

 },

 sub(value) {

 this.total -= parseInt(value);

 }

 },

}

export default Counters;

The "add" and "sub" events emitted in the <counter> child component are processed
in the attributes of the <counter> component when used. The add(value) and
sub(value) processing methods are registered in the parent component, which allows
the value of the total to be changed each time a numeric key is pressed on the keyboard.

140 Advanced Concepts of Vue.js

As you type in the fields, Total updates:

Figure 4.4 – Calculation of the sum of the three counters

We have seen how to communicate from a component to its parent using events. Now let’s
look at how to communicate in the other direction, from a component to its child. For
this, we use attributes called props here.

Using props to communicate with children
We have seen that the communication of information from a child component to its
parent is done with events. Communication in the reverse direction, from parent to child,
is done through attributes called props. We have already seen the use of these attributes
in the previous chapter, in the Using attributes in components section.

In this example, we will improve the <counters> component so that we tell it
the number of counters we want to display. For this, we use the nb attribute in the
component. For example, we will write <counters nb="5" /> to display 5 counters
on the page. Each counter is displayed as in the previous form, namely Counter followed
by its index starting from 1 (see Figure 4.5).

First, we will modify the index.html file to write the <counters> component using
the nb attribute. Let’s modify the index.html file previously used:

Using <counters nb=”5” /> (index.html file)

<html>

 <head>

 <meta charset="utf-8" />

 <script src="https://unpkg.com/vue@next"></script>

Assembling components 141

 </head>

 <body>

 <div id="app"></div>

 </body>

 <script type="module">

 import Counters from "./counters.js";

 var app = Vue.createApp({

 components : {

 Counters:Counters

 },

 template : `

 <counters nb="5" />

 `,

 });

 var vm = app.mount("div#app");

 </script>

</html>

Now, we will modify the counters.js file to integrate the new "nb" props into
the component:

Integration of the nb props in the <counters> component (counters.js file)

import Counter from "./counter.js";

const Counters = {

 data() {

 return {

 total : 0

 }

142 Advanced Concepts of Vue.js

 },

 components : {

 Counter:Counter

 },

 props : ["nb"],

 computed : {

 NB() {

 var tab = [];

 for(var i = 0; i < this.nb; i++) tab.push(i+1);

 return tab;

 }

 },

 template : `

 <div v-for="i in NB">

 Counter {{i}} : <counter @add="add($event)"

 @sub="sub($event)" />

 </div>

 Total : {{total}}

 `,

 methods : {

 add(value) {

 this.total += parseInt(value);

 },

 sub(value) {

 this.total -= parseInt(value);

 }

 },

}

export default Counters;

The "nb" props are listed in the component’s props section. To display a list of counters,
use the v-for directive on a <div> element.

Using visual effects 143

How to Use the v-for Directive
For the value of the v-for directive, you must specify an array to browse. To
do this, we transform the value of the "nb" props into an array [1, 2, 3,
…, nb]. This is done using a computed property named NB, which returns
the desired array.

The number of counters indicated when using the <counters nb="5"> component is
now displayed.

Figure 4.5 – Displaying five counters

We end the study of the Vue.js components here, which come together to form
a full application.

Now, let’s examine an aspect of Vue.js that helps you produce visual effects, allowing, for
example, making HTML elements displayed on the HTML page appear or disappear using
a visual effect.

Using visual effects
Visual effects make it possible to make HTML pages more dynamic by bringing
visual animations to them. For example, to delete an item in a list, you can make it
gradually disappear using an opacity effect rather than deleting it directly without using
a visual effect.

144 Advanced Concepts of Vue.js

It is possible to use visual effects with Vue.js, in particular, to make elements appear
or disappear from the page. Visual effects that do not make HTML elements appear
or disappear from the page (for example, making an element move by clicking on it) are
also possible with Vue.js. You can refer to https://vuejs.org/guide/extras/
animation.html for more details on these types of animations. We do not explain
these effects here because the available documentation is clear enough to use them.

Going forward in this chapter, we will learn about the visual effects that are related to the
appearance or disappearance of one or more elements on the page.

The element we want to help appear or disappear (using the visual effect) must be inserted
in a component named <transition>. This component is used by Vue.js to produce
the effect.

Moreover, Vue.js uses the definition of CSS classes in which the CSS properties of the
effect are described. Simply define the contents of the CSS classes (described in the
following section), and Vue.js uses them at the appropriate times to achieve the effect.

The CSS classes used by Vue.js on an element depend on the state of the element: should it
appear or disappear? Depending on its state (visible or not), the CSS classes differ.

When the element appears
When the HTML element should appear, the names of the CSS classes used by
Vue.js begin with the character string "v-enter". The class name then contains the
suffix "-from" or "-to", which will be used to describe the CSS properties of the
element at the start of the effect (with "-from") or at the end of the effect (with "-to").

CSS classes used by Vue.js
So, we will have the following two CSS classes:

•	 v-enter-from: This CSS class describes the CSS properties at the start of the
element’s appear effect.

•	 v-enter-to: This CSS class describes the CSS properties at the end of the
element’s appear effect.

Note
Note that at the start of the appear effect, the element is not visible, but the
CSS properties described in the v-enter-from class are applied to it
immediately. If, for example, we enter the CSS opacity property equal to
1 in the CSS properties of the v-enter-from class, the element becomes
immediately visible as soon as the appearance effect starts.

https://vuejs.org/guide/extras/animation.html
https://vuejs.org/guide/extras/animation.html

Using visual effects 145

Since the v-enter-to class describes the CSS properties of the element at the end of the
effect, when the effect completes, Vue.js removes that CSS class from the element.

We thus see that the CSS classes v-enter-from and v-enter-to are used to describe
the CSS properties of an element during the effect but are no longer used afterward on the
element (i.e., outside the duration of the effect).

The appearance effect progresses the CSS properties described in v-enter-from to
those described in v-enter-to. For this, Vue.js uses the v-enter-active class,
which describes how each of the CSS properties evolves.

Example content of CSS classes
Let’s look at some sample content from each of the three CSS classes mentioned above,
v-enter-from, v-enter-to, and v-enter-active:

v-enter-from class example

.v-enter-from {

 opacity: 0;

 background-color:#FFCCCC;

}

Here, we indicate that the element will be invisible at the start of the effect (opacity:0)
and will have a background color (background-color:#FFCCCC):

v-enter-to class example

.v-enter-to {

 opacity: 0.5;

 background-color:black;

}

Here, we indicate that the element will be half visible at the end of the effect
(opacity:0.5) and will have a black background (background-color:black):

v-enter-active class example

.v-enter-active {

 transition: opacity 2s, background-color 2s;

}

146 Advanced Concepts of Vue.js

Here, we indicate that the CSS opacity and background-color properties must
evolve, each for two seconds. As all the specified CSS properties evolve for the same
amount of time, we can simplify the code by writing it in shortened form. Here’s how:

v-enter-active class example (simplified form)

.v-enter-active {

 transition: all 2s;

}

The all keyword overrides all specified CSS properties.

Using CSS classes
Now let’s show how to use these CSS classes in a program using a button that displays
a paragraph with effect. The role of the button will be to hide or display, alternatively,
a paragraph on which the effect will occur when the paragraph appears.

This shows how the v-enter-from, v-enter-to, and v-enter-active CSS classes
are used by Vue.js to produce an effect when an element appears on the page:

Use a button to produce the appearance effect (index.html file)

<html>

 <head>

 <meta charset="utf-8" />

 <script src="https://unpkg.com/vue@next"></script>

 <style type="text/css">

 .v-enter-from {

 opacity: 0;

 background-color:#FFCCCC;

 }

 .v-enter-to {

 opacity: 0.5;

 background-color:black;

 }

 .v-enter-active {

 transition: opacity 2s, background-color 2s;

 }

Using visual effects 147

 </style>

 </head>

 <body>

 <div id="app"></div>

 </body>

 <script>

 var app = Vue.createApp({

 data() {

 return {

 show: false // initially hidden

 }

 },

 template : `

 <button @click="show=!show">Produce the

 effect</button>

 <transition>

 <p v-if="show">

 Paragraph 1

 </p>

 </transition>

 `,

 });

 var vm = app.mount("div#app");

 </script>

</html>

148 Advanced Concepts of Vue.js

We have described the contents of the v-enter-from, v-enter-to, and v-enter-
active CSS classes, which will be used by Vue.js to produce the effect. Then we inserted
the Produce an effect button in the page so that when the button is clicked, the paragraph
on which the effect is set to occur will alternately be hidden or displayed. To do this, the
paragraph was inserted in an HTML <transition> element, thus allowing Vue.js to
know the element on which to apply the effect.

The paragraph is hidden at startup (because the reactive variable show is set to false).
Clicking the Produce the effect button changes the value of the show variable to true,
which starts the effect.

Note
The effect is started on the paragraph thanks to the <transition>
component, which includes the paragraph to be displayed. It is thanks to this
<transition> component that Vue.js knows the element on which to
produce the effect.

Notice that the effect lasts two seconds as indicated in the CSS transition property,
and when the effect is finished, the CSS classes are removed from the <p> element,
which then becomes a normal paragraph (without background color and with an opacity
of 1). So, you see that the paragraph has an opacity of 0.5 at the end of the effect (the
one indicated in v-enter-to), then suddenly changes to an opacity of 1 when the
v-enter-to class is removed by Vue.js at the end of the effect.

Note
It is therefore preferable to indicate in the v-enter-to class the CSS values
of the element when it no longer produces an effect, in order to make the effect
more harmonious.

Using visual effects 149

Let’s run the previous program. When the program is launched, the paragraph is hidden:

Figure 4.6 – The paragraph is hidden when the program is launched

After clicking the Produce the effect button, the paragraph begins to appear, according
to the CSS properties indicated in the v-enter-from, v-enter-to, and v-enter-
active classes.

Figure 4.7 – After clicking on the Produce the effect button, the paragraph appears progressively

150 Advanced Concepts of Vue.js

Just before the effect ends, the paragraph has the CSS properties set in the v-enter-to
class, so its background color is black, but with an opacity of 0.5, the background color
remains gray, and the paragraph text is not visible.

Figure 4.8 – Paragraph just before the end of the effect

At the end of the effect, the CSS classes are removed so that the paragraph appears in
a normal way, in black and without a background color.

Figure 4.9 – Paragraph at the end of the appear effect

Once the paragraph has appeared, clicking on the Produce the effect button makes it
disappear immediately (without producing any effect). This is due to the reactive variable
show being set to false when the button is clicked.

We have seen the different classes and stages when an element appears on the page. Now
let’s see what happens when an element disappears from the page. We will see that there
are many similarities between the appearance and disappearance of the element.

Using visual effects 151

When the element disappears
When the element should disappear, Vue.js uses CSS classes similar to the previous ones,
replacing the string "enter" with the string "leave".

CSS classes used by Vue.js
So, we will have the following two CSS classes:

•	 v-leave-from: This CSS class describes the CSS properties at the start of the
element’s disappearing effect.

•	 v-leave-to: This CSS class describes the CSS properties at the end of the
element’s disappearing effect.

The disappearing effect is going to be to progress the CSS properties described in
v-leave-from to those described in v-leave-to. After the effect is complete, the
v-leave-to class is removed from the element’s CSS classes.

To progress CSS properties between the values shown in these two classes, Vue.js uses the
v-leave-active CSS class, which describes the progression of CSS properties.

Example content of CSS classes
Let’s look at some example content from each of the three CSS classes mentioned above:
v-leave-from, v-leave-to, and v-leave-active:

v-leave-from class example

.v-leave-from {

 opacity: 1;

 background-color:#FFCCCC;

}

Here, we indicate that the element will be fully visible at the start of the effect
(opacity:1) and will have a background color (background-color:#FFCCCC):

v-leave-to class example

.v-leave-to {

 opacity: 0;

 background-color:black;

}

152 Advanced Concepts of Vue.js

Here, we indicate that the element will be invisible at the end of the effect (opacity:0)
and will have a black background color (background-color:black):

v-leave-active class example

.v-leave-active {

 transition: opacity 2s, background-color 2s;

}

Here, we indicate that the CSS opacity and background-color properties must
evolve, each for two seconds. As all the specified CSS properties evolve for the same
amount of time, you can simplify the code by writing it in shortened form:

v-leave-active class example

.v-leave-active {

 transition: all 2s;

}

The all keyword overrides all specified CSS properties.

Using CSS classes
Now let’s show how to use these CSS classes in a program, using a button that hides
a paragraph with an effect. It’s almost the same program as before, but here we produce
an effect when the paragraph disappears:

Using a button to produce the disappearing effect (index.html file)

<html>

 <head>

 <meta charset="utf-8" />

 <script src="https://unpkg.com/vue@next"></script>

 <style type="text/css">

 .v-leave-from {

 opacity: 1;

 background-color:#FFCCCC;

 }

 .v-leave-to {

Using visual effects 153

 opacity: 0;

 background-color:black;

 }

 .v-leave-active {

 transition: all 2s;

 }

 </style>

 </head>

 <body>

 <div id="app"></div>

 </body>

 <script>

 var app = Vue.createApp({

 data() {

 return {

 show: true // visible at start

 }

 },

 template : `

 <button @click="show=!show">Produce the effect</button>

 <transition>

 <p v-if="show">

 Paragraph 1

 </p>

 </transition>

 `,

 });

 var vm = app.mount("div#app");

 </script>

</html>

154 Advanced Concepts of Vue.js

The v-leave-from class is applied at the beginning of the effect. It indicates that the
element is visible (opacity at 1) and has a background color #FFCCCC (salmon).

The v-leave-to class indicates the values of CSS properties when the effect ends. The
paragraph becomes invisible (opacity at 0) and has a black background color. But as
the element becomes more and more invisible (opacity tends toward 0), the black
background color also becomes less and less visible.

If we write the enter and leave classes in the CSS part in the same program, with
each click on the button, we obtain an effect of appearing or disappearing for the
paragraph concerned.

The CSS classes used here have fixed names, regardless of the effect used. This does not
allow using multiple effects, as the visual effects would all use the same CSS class names.

For this, Vue.js allows you to give a name to each effect, and thus be able to use different
CSS class names.

Using a name for the effect
Classes of type "v-enter-xxx" or "v-leave-xxx" can be renamed to symbolize the
effect with which they are associated. We just need to replace the character string "v-"
with the name of the effect followed by "-".

For example, "v-enter-from" will be replaced by "fade-enter-from" to
give the name "fade" to the effect. We then add the name="fade" attribute to the
<transition> component, indicating <transition name="fade">.

This allows us to integrate several effects into our application, by defining the CSS classes
corresponding to each effect.

The previous program, integrating the effect named "fade" in the paragraph, is then
written as follows:

Fade effect (index.html file)

<html>

 <head>

 <meta charset="utf-8" />

 <script src="https://unpkg.com/vue@next"></script>

 <style type="text/css">

 .fade-leave-from {

Using a name for the effect 155

 opacity: 1;

 background-color:#FFCCCC;

 }

 .fade-leave-to {

 opacity: 0;

 background-color:black;

 }

 .fade-leave-active {

 transition: all 2s;

 }

 .fade-enter-from {

 opacity: 0;

 background-color:#FFCCCC;

 }

 .fade-enter-to {

 opacity: 1;

 background-color:black;

 }

 .fade-enter-active {

 transition: opacity 2s, background-color 2s;

 }

 </style>

 </head>

 <body>

 <div id="app"></div>

 </body>

 <script>

 var app = Vue.createApp({

 data() {

 return {

 show: true

 }

156 Advanced Concepts of Vue.js

 },

 template : `

 <button @click="show=!show">Produce the

 effect</button>

 <transition name="fade">

 <p v-if="show">

 Paragraph 1

 </p>

 </transition>

 `,

 });

 var vm = app.mount("div#app");

 </script>

</html>

The <transition> component can only have one element, which will be the
one on which the effect will occur. To include multiple elements, you must use the
<transition-group> component, which we explain below.

Producing an effect on several elements
The <transition> component can contain only one element. When the effect must be
applied to several elements, it is necessary to create several <transition> components
or group the elements in a <transition-group> component. In this example,
let’s look at using the <transition-group> component:

Using the <transition-group> component

<transition-group name="fade">

 <p v-if="show">

 Paragraph 1

 </p>

 <p v-if="show">

 Paragraph 2

Examples of commonly used effects 157

 </p>

</transition-group>

The elements on which the effect occurs (here, the two paragraphs) are grouped in
a <transition-group> element instead of the <transition> element that was
used previously when there was a single paragraph on which the effect was produced.

Now, we will take a look at how to write the CSS classes associated with some
classic effects.

Examples of commonly used effects
Below are some descriptions of effects. With a few lines of CSS code, you can easily
produce classic effects such as the shrinking/enlargement of a paragraph (shrink effect),
its gradual disappearance/appearance (opacity effect), and its vertical displacement
(ymove effect). You are free to choose the names given to these effects and symbolize
the effect produced.

The shrink effect
To use the shrink effect (here called "shrink"), we use the CSS font-size property.

At the beginning of the effect, the paragraph is of normal size:

Figure 4.10 – The paragraph is normal size at the beginning of the disappearing effect

158 Advanced Concepts of Vue.js

Once the effect has started following a click on the button, the paragraph decreases in size
until it disappears.

Figure 4.11 – The paragraph decreases in size until it disappears

Once the paragraph has disappeared, it can reappear after another click on the button.
The paragraph size will increase until it reaches its normal size:

CSS classes to handle shrink effect

.shrink-leave-from {

}

.shrink-leave-to {

 font-size: 0px;

}

.shrink-leave-active {

 transition: all 2s;

}

.shrink-enter-from {

 font-size: 0px;

}

.shrink-enter-to {

}

.shrink-enter-active {

 transition: all 2s;

}

Examples of commonly used effects 159

The CSS class shrink-leave-to indicates, for the disappearance effect, to go to a font
size of 0px, that is, a reduction to 0 of the font size for the paragraph, which makes the
paragraph invisible.

The shrink-enter-from CSS class tells the effect to start with a font size of 0px,
gradually growing to the normal paragraph size when visible.

If CSS properties are not indicated in a starting class (for example, the shrink-leave-
from class does not contain the font-size property), this means that the current value
of this CSS property is used in the element.

Similarly, if CSS properties are not indicated in an arrival class (for example, the shrink-
enter-to class does not contain the font-size property), this means that we are
progressing toward the value of this CSS property of the element when it will be visible at
the end of the effect.

The opacity effect
The effect named "fade" uses the CSS opacity property. This effect consists of varying
the CSS opacity property from 0 to 1 (to gradually make an element appear) or from
1 to 0 (to make it disappear).

Here is, for example, the effect of disappearance. The paragraph is disappearing with
an opacity that tends toward 0. When the opacity is at 0, the element will be completely
invisible on the screen.

Figure 4.12 – The paragraph has an opacity that decreases toward 0

160 Advanced Concepts of Vue.js

Once the paragraph is invisible, just click again on the Produce the effect button to make
it reappear gradually:

CSS classes to manage opacity

.fade-leave-from {

}

.fade-leave-to {

 opacity : 0;

}

.fade-leave-active {

 transition: all 0.5s;

}

.fade-enter-from {

 opacity : 0;

}

.fade-enter-to {

}

.fade-enter-active {

 transition: all 1s;

}

The fade-leave-to CSS class indicates to go to an opacity of 0. The current opacity
(of value 1) is the starting one. Since the initial value of the opacity is not defined in
fade-leave-from, it will use the value defined by the CSS of the element (i.e., 1).

Similarly, the fade-enter-from class indicates the current opacity at the start of the
element’s appearance effect. The destination value of the opacity does not need to be
specified as it will use the default value from the element CSS, that is, 1.

The move-down effect
To manage this effect (here, called "ymove"), we use the CSS properties transform
(set to translateY(100px)) and opacity (set to 0). This gradually moves the
element 100px horizontally downward, gradually decreasing its opacity to 0. The element
disappears as it moves down the page.

Examples of commonly used effects 161

For example, here is what is displayed when the element has started to slide down by
decreasing its opacity, which makes it less visible:

Figure 4.13 – The paragraph moves down the page by decreasing its opacity

As the effect continues, the paragraph moves down the page, until it reaches the distance
of 100 pixels specified in the effect. The closer you get to this distance, the more the
paragraph decreases in opacity, until it becomes invisible (opacity of 0).

Figure 4.14 – The paragraph becomes almost invisible toward the end of the effect

162 Advanced Concepts of Vue.js

Once the paragraph has disappeared, clicking on the Produce the effect button makes it
reappear gradually from the bottom of the screen:

CSS classes to handle moving down

.ymove-leave-from {

}

.ymove-leave-to {

 transform: translateY(100px);

 opacity : 0;

}

.ymove-leave-active {

 transition: all 0.5s;

}

.ymove-enter-from {

 transform: translateY(100px);

 opacity : 0;

}

.ymove-enter-to {

}

.ymove-enter-active {

 transition: all 0.5s;

}

The ymove-leave-to CSS class indicates the values of the CSS properties toward which
we want to vary the indicated CSS properties. The transform property can contain
the translateY(100px) value, indicating to perform a vertical translation (Y) of 100
pixels. Adding an opacity of 0 makes the element disappear by moving it vertically.

The ymove-enter-from CSS class allows you to indicate the values of CSS properties
at the beginning of the appearance effect. The element is located at 100 pixels vertical
distance, with an opacity of 0. The CSS properties will evolve to those specified in the
ymove-enter-to class, and if nothing is specified in this class, the CSS properties
usually used for an element (opacity of 1 and vertical distance of 0, i.e., the normal
location) are those toward which we will evolve during the appearance effect.

Summary 163

The CSS transform property is very useful for producing visual effects, for example,
rotation, enlargement, and displacement.

This brings us to the end of the chapter.

Summary
After learning how to handle events and act when an external event (e.g., a click) occurs,
we saw in this chapter how components created with Vue.js can be assembled to form
complete applications. We learned the following:

•	 To communicate from a component to its parent, we use events.

•	 To communicate from a component to its child, we use the attributes in the
component’s props section.

Finally, to produce visual effects, all you have to do is write the CSS classes managed
by Vue.js.

In the next chapter, we will see an example of an application that allows us to put into
practice the elements studied in the previous chapters.

5
Managing a List

with Vue.js
After going through the basic and advanced concepts of Vue.js, with this chapter,
let’s finish our study of the Vue.js library by building an application to manage a list
of elements.

Why make this type of application? Quite simply because it allows you to perform fairly
standard operations on the HTML elements of a page, such as inserting an element,
modifying it, and deleting it.

These are the basic operations that you need to know how to perform, for example, to
manage the elements in a database. In this chapter, we will learn how to perform these
operations on the elements displayed on the screen, and in the next part (where we study
Node.js and MongoDB), we will see how to simultaneously update a database.

Here are the topics covered in this chapter:

•	 Splitting the application into components

•	 Adding an element to the list

•	 Removing an element from the list

•	 Modifying an element in the list

166 Managing a List with Vue.js

But let’s start by discovering the screens of the application that we want to create
with Vue.js.

Technical requirements
You can find the code files for this chapter on GitHub at: https://github.com/
PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/
Chapter%205.zip.

Displaying application screens
As mentioned earlier, we’ll be building an application to manage a list of elements.
Before writing the source code of our application, let’s show the different screens of the
application by explaining their sequence.

Initially, the list is empty. The Add Element button allows, on each click, to insert a new
element in the list.

Figure 5.1 – Screen when launching the application

https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/Chapter%205.zip
https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/Chapter%205.zip
https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/Chapter%205.zip

Displaying application screens 167

Let’s click the Add Element button several times (here, three times):

Figure 5.2 – After three clicks on the Add Element button

Each element inserted has the index (starting from 1) of the element in the list. A Remove
button and a Modify button are inserted after the item in the list.

Let’s click on the Modify button on the second line. The item text is replaced by an input
field, in which the cursor flashes to allow editing.

Figure 5.3 – The second item in the list can be changed

168 Managing a List with Vue.js

Let’s modify the text in the input field, by typing New Element 2.

Figure 5.4 – Editing a list item

For the modification of the element to be reflected, you must leave the input field, by
clicking elsewhere on the page.

Figure 5.5 – Taking into account the modification of the element

Finally, to remove the first and third elements, click on their corresponding
Remove buttons.

Splitting the application into components 169

Figure 5.6 – After deleting the first and last element

We have administered here a list of elements on which we have performed basic
operations, namely, inserting a new element, modifying the element, and deleting it.

Using HTTP Protocol
This application uses a PHP server to work because the import of JavaScript
modules with the JavaScript import statement only works under the HTTP
protocol. We will see in the next part (Chapter 9, Integrating Vue.js with
Node.js) how to use a Node.js server to also make it work, by coupling it in
addition with a MongoDB database.

We have described the operation of the application, and the sequence of the various
windows. Now let’s see how to build this application with Vue.js. We first explain how the
application can be broken down into different components.

Splitting the application into components
When you create an application with Vue.js, you have to start by asking yourself what
components you will need to build it.

In our case, it would be the following:

•	 A <GlobalApp> component that groups the whole application. It is this
<GlobalApp> component that will be integrated into our index.html page.
It will display the Add Element button as well as the list of elements below.

•	 An <Element> component that displays a list element line, which will include the
element’s text, the Remove button, and the Modify button.

170 Managing a List with Vue.js

The list of elements will be associated with a reactive variable named elements, which
will be an array containing, for each element, the displayed text. This reactive variable will
be registered in the <GlobalApp> component. It will be modified when adding a new
element to the list or when deleting or modifying an element in the list.

So, the core files of our app are as follows:

•	 The index.html file, which is the main file

•	 The global-app.js file, which contains the <GlobalApp> component, and is
imported into the index.html file

•	 The element.js file, which describes an element of the displayed list (the
<Element> component), namely the text of the element, as well as the Remove
and Modify buttons

Here is the content of these files:

index.html file

<html>

 <head>

 <meta charset="utf-8" />

 <script src="https://unpkg.com/vue@next"></script>

 </head>

 <body>

 <div id="app"></div>

 </body>

 <script type="module">

 import GlobalApp from "./global-app.js";

 var app = Vue.createApp({

 components : {

 GlobalApp:GlobalApp

 },

Splitting the application into components 171

 template : "<GlobalApp />"

 });

 var vm = app.mount("div#app");

 </script>

</html>

The index.html file displays the <GlobalApp> component, which corresponds to the
main component of the application, which we’ll now describe:

<GlobalApp> component (global-app.js file)

import Element from "./element.js";

const GlobalApp = {

 data() {

 return {

 elements : []

 }

 },

 components : {

 Element:Element

 },

 template : `

 <button>Add Element</button>

 `,

}

export default GlobalApp;

We find the reactive variable elements, as well as the Add Element button and the
 list of elements, empty for the moment.

172 Managing a List with Vue.js

The <Element> component is described below. It is empty for the moment and will be
enriched in the following sections:

<Element> component (element.js file)

const Element = {

 data() {

 return {

 }

 },

 template : `

 `,

}

export default Element;

Using HTTP Protocol
As the JavaScript code comprises module import instructions, it is
necessary to use a web server accessible by HTTP to display the HTML page
corresponding to index.html. The file protocol would not work here.

Let’s display the result of this temporary code on the screen:

Figure 5.7 – Result displayed with our startup code

In Figure 5.7, we see the rendering of the <GlobalApp> component, which currently
only displays the Add Element button. Let’s see how to process a click on this button in
order to insert a new element in the list.

Adding an element to the list 173

Adding an element to the list
We will start with the functionality to add an item to the list. The global-app.js file
is modified to process a click on the Add Element button (this button is included in the
global-app.js file).

Let’s add the code that should be run when the Add Element button is clicked:

Taking into account the click on the Add Element button (global-app.js file)

import Element from "./element.js";

const GlobalApp = {

 data() {

 return {

 elements : []

 }

 },

 components : {

 Element:Element

 },

 template : `

 <button @click="add()">Add Element</button>

 <li v-for="(element, index) in elements"

 :key="index">{{element}}

 `,

 methods : {

 add() {

 var element = "Element " + (this.elements.length +

 1); // "Element X"

 this.elements.push(element);

 }

 }

}

export default GlobalApp;

174 Managing a List with Vue.js

A click on the Add Element button is handled by the click event, which calls the
add() method defined in the methods section. The add() method adds a new element
to the reactive variable elements.

The list of elements is updated in the component template. For the moment, we’ll use
the tag to define the list element to insert, but below, we will use the <Element>
component, which will integrate the Remove and Modify buttons.

Now let’s verify that our modification of the <GlobalApp> component works. To do this,
click several times on the Add Element button. List items are inserted with each click, as
seen in the following figure.

Figure 5.8 – Add Element button clicks

The element inserted here is an HTML element. But it is interesting to replace
the element with a Vue.js component because it allows using the philosophy of
Vue.js, which is the maximum use of components. Let’s name this new component
<Element>, which will replace the element..

Using the <Element> component
Next, let’s use the <Element> component, instead of the previous element.

The <GlobalApp> component is modified to integrate the <Element> component:

Using <Element> component in list (global-app.js file)

import Element from "./element.js";

const GlobalApp = {

 data() {

Adding an element to the list 175

 return {

 elements : []

 }

 },

 components : {

 Element:Element

 },

 template : `

 <button @click="add()">Add Element</button>

 <Element v-for="(element, index) in elements"

 :key="index" :text="element" />

 `,

 methods : {

 add() {

 var element = "Element " + (this.elements.length +

 1);

 this.elements.push(element);

 }

 }

}

export default GlobalApp;

The text to display in the list item is passed as an attribute (via props) to the <Element>
component, which will display it in its template. We use the text attribute (or any other
attribute name) for this.

The <Element> component is modified to consider the text attribute passed and
display the list element. The two buttons Remove and Modify are inserted after the text:

Using the text attribute and buttons (element.js file)

const Element = {

 data() {

 return {

 }

176 Managing a List with Vue.js

 },

 template : `

 {{text}}

 <button> Remove </button>

 <button> Modify </button>

 `,

 props : ["text"],

}

export default Element;

Let’s check that the result is equivalent to the previous one (with the addition of the
Remove and Modify buttons).

Figure 5.9 – Using the <Element> component in the list

Clicking on the Remove and Modify buttons in the list does not work yet but will soon,
in the following sections.

The Remove and Modify buttons are placed side by side, with no spacing. Let’s add some
CSS code to better lay them out on the screen.

Adding an element to the list 177

Changing the appearance of the list using CSS code
Before handling button clicks in the list, let’s use some CSS to display the list items in
a nicer way.

The CSS code is indicated directly in the index.html file:

Using CSS code to display the list (index.html file)

<html>

 <head>

 <meta charset="utf-8" />

 <script src="https://unpkg.com/vue@next"></script>

 <style type="text/css">

 li {

 margin-top:10px;

 }

 ul button {

 margin-left:10px;

 }

 </style>

 </head>

 <body>

 <div id="app"></div>

 </body>

 <script type="module">

 import GlobalApp from "./global-app.js";

 var app = Vue.createApp({

 components : {

 GlobalApp:GlobalApp

 },

 template : "<GlobalApp />"

178 Managing a List with Vue.js

 });

 var vm = app.mount("div#app");

 </script>

</html>

We can see that the appearance of the list is now more pleasant.

Figure 5.10 – List of elements improved with CSS code

The displayed list now has a look that suits us! We must now manage clicks on the
Remove and Modify buttons. Let’s start with the Remove button.

Removing an element from the list
Now let’s deal with a click on the Remove button for a list item. Removing an item from
the list will be done by removing the element from the reactive variable elements.

Note
Indeed, the variable elements being reactive, any modification of this
variable will lead to the re-display of the list.

Removing an element from the list 179

To do this, a click on the Remove button is managed by associating it with a process
during the click. We therefore call the remove() method defined in the <Element>
component on each click:

Taking into account the click on the Remove button (element.js file)

const Element = {

 data() {

 return {

 }

 },

 template : `

 {{text}}

 <button @click="remove()"> Remove </button>

 <button> Modify </button>

 `,

 props : ["text"],

 methods : {

 remove() {

 // process the click on the Remove button

 },

 },

}

export default Element;.

The process involved in clicking on the Remove button is discussed later in the chapter.

Note
To process the click on the Remove button, we must update the reactive
variable elements, but since this is located in the parent component
<GlobalApp>, we must send an event to this parent component to ask it to
remove the element in the variable elements.

180 Managing a List with Vue.js

To indicate the element to be deleted, it must be referenced by its index. For this,
we need to indicate the index of the element when creating the <Element> component.
We, therefore, create a new attribute (named "index") in this component. Thus the
remove() method sends a "remove" event to the <GlobalApp> parent component,
indicating in the parameters the index of the element to be removed from the list.

The <Element> component becomes as follows:

Handling the click on the Remove button (element.js file)

const Element = {

 data() {

 return {

 }

 },

 template : `

 {{text}}

 <button @click="remove()"> Remove </button>

 <button> Modify </button>

 `,

 props : ["text", "index"],

 methods : {

 remove() {

 // process the click on the Remove button

 this.$emit("remove", { index : this.index });

 },

 },

 emits : ["remove"]

}

export default Element;

Removing an element from the list 181

The <GlobalApp> component is modified to process the reception of the "remove"
event sent when clicking on the Remove button:

Handling the reception of the “remove” event (global-app.js file)

import Element from "./element.js";

const GlobalApp = {

 data() {

 return {

 elements : []

 }

 },

 components : {

 Element:Element

 },

 template : `

 <button @click="add()">Add Element</button>

 <Element v-for="(element, index) in elements"

 :key="index" :text="element"

 :index="index"

 @remove="remove($event)"

 />

 `,

 methods : {

 add() {

 var element = "Element " + (this.elements.length +

 1);

 this.elements.push(element);

 },

 remove(params) {

 var index = params.index;

 this.elements.splice(index, 1); // delete element in

 // array

 }

 }

182 Managing a List with Vue.js

}

export default GlobalApp;

We have indicated in the <Element> component the new attribute index, which will
allow knowing the index of the element in the list.

Let’s add three items to the list (see Figure 5.11), then click the Remove button for the item
on the second line (see Figure 5.12):

Figure 5.11 – Adding three elements to the list

Here’s what we will see after clicking the Remove button:

Figure 5.12 – Deleting item Element 2 from the list

Modifying an element in the list 183

By clicking on the Remove button, Element 2 has been removed from the list.
Let’s now see how to manage the modification of an element, following a click on the
Modify button.

Modifying an element in the list
Modifying a list element is done in several steps:

1.	 Following a click on the Modify button, we transform the text of the list element
(currently a element) into an HTML <input> element initialized with the
text of the element.

2.	 Then we manage the exit of the input field, by retrieving the value entered in the
field, then by replacing the input field with a element with the new content.

3.	 Finally, we improve the input by allowing the input control to automatically have
the focus after clicking on the Modify button.

Let’s see these different steps in depth.

Transforming the element into an <input>
element
The first step is to transform the element into an <input> element, which will
allow the text of the element to be modified. To do this, we will add a new reactive variable
(named "input") in the <Element> component. It indicates whether to display a text
as a element (if input is false) or whether to display an <input> input field
(if input is true). By default, the input variable is set to false (the text is displayed).
It will change to true when clicking on the Modify button:

Turning a element into an <input> element (element.js file)

const Element = {

 data() {

 return {

 input : false // display element text by default

 }

 },

 template : `

 {{text}}

184 Managing a List with Vue.js

 <input v-else type="text" :value="text" />

 <button @click="remove()"> Remove </button>

 <button @click="input=true"> Modify </button>

 `,

 props : ["text", "index"],

 methods : {

 remove() {

 // process the click on the Remove button

 this.$emit("remove", { index : this.index });

 },

 },

 emits : ["remove"]

}

export default Element;

Note
The v-if and v-else directives are used to display the text of the element
as a element or as an <input> element.

After inserting three items into the list, let’s edit the second item:

Figure 5.13 – Editing the second item in the list

We now need to show how to leave the input field and redisplay the text as a list element.

Modifying an element in the list 185

Exiting from the input field
Once the edit control has been modified, you must retrieve the value entered to display
it instead of the edit control. To do this, in the <Element> component, we use the blur
event, which indicates that we have left the input field.

During the processing of this event, the value of the input field is retrieved, which is
transmitted to the parent <GlobalApp> component by means of an event named
"modify", for example. The <GlobalApp> component modifies the element value in
the elements variable when processing the received modify event.

Note
The modification of a reactive variable located in a parent component must
be done by sending an event to the parent component, which will have to
process it.

Finally, the transformation of the input field into text is done by modifying the reactive
variable input defined in the <Element> component by positioning it again to false.

The <Element> component is modified as shown here:

Taking into account the output of the input field (element.js file)

const Element = {

 data() {

 return {

 input : false

 }

 },

 template : `

 {{text}}

 <input v-else type="text" :value="text"

 @blur="modify($event)" />

 <button @click="remove()"> Remove </button>

 <button @click="input=true"> Modify </button>

 `,

 props : ["text", "index"],

 methods : {

186 Managing a List with Vue.js

 remove() {

 // process the click on the Remove button

 this.$emit("remove", { index : this.index });

 },

 modify(event) {

 var value = event.target.value; // value entered

 // in the field

 this.input = false; // delete input field

 this.$emit("modify", { index : this.index, value :

 value }); // update element in list

 }

 },

 emits : ["remove", "modify"]

}

export default Element;

The <GlobalApp> component is also modified to process the reception of the
"modify" event and thus modify the list displayed:

Processing the modify event (global-app.js file)

import Element from "./element.js";

const GlobalApp = {

 data() {

 return {

 elements : []

 }

 },

 components : {

 Element:Element

 },

 template : `

Modifying an element in the list 187

 <button @click="add()">Add Element</button>

 <Element v-for="(element, index) in elements"

 :key="index" :text="element"

 :index="index"

 @remove="remove($event)" @modify="modify($event)"

 />

 `,

 methods : {

 add() {

 var element = "Element " + (this.elements.length +

 1);

 this.elements.push(element);

 },

 remove(params) {

 var index = params.index;

 this.elements.splice(index, 1);

 },

 modify(params) {

 var index = params.index;

 var value = params.value;

 this.elements[index] = value; // new element value

 }

 }

}

export default GlobalApp;

188 Managing a List with Vue.js

The following figure shows the result after editing the second list item.

Figure 5.14 – Editing a list item

A final improvement that we can make to our program is to give focus to the input field
directly after clicking on the Modify button. Let’s see how to proceed.

Giving focus to the input field
Giving focus to the input field requires using the focus() method, which is defined in
the Document Object Model (DOM). The DOM is an internal API (in the JavaScript
language) implemented in browsers.

Vue.js makes it possible to make a relationship between the components defined in
Vue.js and the HTML elements used by the DOM. For this, we use the ref attribute,
which makes it possible to make a correspondence between the two systems.

Note
This ref attribute can be used for each HTML element defined in our
component templates. But it should be used only for necessary cases, such as
here, to use the focus() method defined in the DOM, which otherwise
would be inaccessible.

Once the ref attribute has been positioned (here, on the <input> element allowing
input), all that remains is to use it to give focus to the input field. The question then is: in
which method of our component should we call the focus() method?

Modifying an element in the list 189

We must use a method in which we are sure that the input field is created. The template
written in the component must be transformed into HTML code and integrated into
the memory of the browser (in the DOM), which can then display it. So, we see that
a transformation process takes place, which takes some time to execute.

Vue.js has defined a number of methods that are called automatically when using
components. In the previous chapter, we saw a method called created(). There are
other methods, in particular, the mounted() and updated() methods.

Here are the specifics of these three methods:

•	 The created() method is called when creating the component. This is the first
method called.

•	 The mounted() method is called when the component is transformed into HTML
elements and integrated into the DOM. We can therefore have access, in this
method, to HTML elements with the DOM API.

•	 The updated() method is called when a modification is made in the component.
For example, when a element is replaced by an <input> element
following a click on the Modify button. Or when, conversely, the <input> element
turns back into a element (when leaving the input field).

We see that the updated() method is the method in which we can do the processing
giving focus to the input field. But as this method is called both when transforming into
an input field or simple text, it will be necessary to check that the <input> element
associated with the reference indicated in the ref attribute exists. Otherwise, an error
visible in the console will occur:

Giving focus to the input field as soon as it appears (element.js file)

const Element = {

 data() {

 return {

 input : false

 }

 },

 template : `

 {{text}}

 <input v-else type="text" :value="text"

 @blur="modify($event)" ref="refInput" />

190 Managing a List with Vue.js

 <button @click="remove()"> Remove </button>

 <button @click="input=true"> Modify </button>

 `,

 props : ["text", "index"],

 methods : {

 remove() {

 // process the click on the Remove button

 this.$emit("remove", { index : this.index });

 },

 modify(event) {

 var value = event.target.value;

 this.input = false;

 this.$emit("modify", { index : this.index, value :

 value });

 }

 },

 emits : ["remove", "modify"],

 updated() {

 // check that the ref="refInput" attribute exists, and

 // if so, give focus to the input field

 if (this.$refs.refInput) this.$refs.refInput.focus();

 }

}

export default Element;

When using the ref attribute in a template, Vue.js stores it in the component’s internal
$refs variable. We can therefore access the corresponding HTML element using
this.$refs.refInput if we wrote ref="refInput" in the component template.

Summary 191

Let’s check (see the following figure) that the edit control gets the focus directly when
clicking on the Modify button.

Figure 5.15 – The input field gets the focus directly

This brings us to the end of the chapter.

Summary
This chapter and the example discussed in it shows that it is very easy to manage the
elements of an HTML page interactively without leaving the page.

Here, we first decomposed the application into different components, then we assembled
them, making them communicate through events and props attributes. We have learned,
thanks to this complete example, how to manage a list of elements to carry out the main
operations, which are the insertion, the modification, and the deletion of an element.

In the next few chapters, we will see how to use Node.js to connect our application to
a MongoDB database and thus be able to store the elements of the list in a database.
We will begin by learning how to work with node.js modules in the next chapter.

Part 3:
JavaScript on the

Server-Side

This part is about using JavaScript in a Node.js server. It explains the use of modules such
as Express (to quickly create a Node. js-based web application using the MVC pattern)
and the MongoDB database.

We end our study by building an application on a single page (this principle is called
Single Page Application) which is written with Vue.js on the client-side, and with Node.
js, Express and MongoDB on the server-side. The purpose of this book is to enable you to
know how to make this type of application.

This section comprises the following chapters:

•	 Chapter 6, Creating and Using Node.js Modules

•	 Chapter 7, Using Express with Node.js

•	 Chapter 8, Using MongoDB with Node.js

•	 Chapter 9, Integrating Vue.js with Node.js

6
Creating and Using

Node.js Modules
Modules are at the heart of Node.js. They correspond to JavaScript files and can be used in
our applications. A program for the Node.js server will consist of a set of modules, that is,
JavaScript files.

There are three kinds of modules:

•	 Modules that we write ourselves for our applications.

•	 Modules internal to Node.js and usable directly.

•	 Modules that can be downloaded from the internet using a utility called npm (npm
stands for Node.js package manager). This npm utility is installed with Node.js itself.

In this chapter, we will learn how to create and use these different types of modules.

Regardless of the type of modules used, the require(moduleName) instruction (see
below) allows the module called moduleName to be included in the current file. The
functionalities of the module will then be accessible.

196 Creating and Using Node.js Modules

Here are the topics covered in this chapter:

•	 Using our own modules

•	 Using internal Node.js modules

•	 Using downloaded modules with npm

Let’s first see how to create and use our own modules with Node.js.

Technical requirements
You can find the code files for this chapter on GitHub at: https://github.com/
PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/
Chapter%206.zip.

Creating and using our own modules
In this example, we use two modules, each corresponding to a JavaScript file:

•	 The first module (here named test.js) will be the main file of our application,
the one we execute using the node test.js command in a command window.

•	 The second module (here named module1.js) will be the one we want to use in
our main test.js module. The module1.js module will then be enriched to
show how its functionalities are accessible outside the module (and will therefore
be used in the main test.js module).

Let’s go ahead and create these two modules.

Creating a module
Here is the content of the two files, module1.js and test.js:

module1.js file

console.log("module1.js is loaded");

https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/Chapter%206.zip
https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/Chapter%206.zip
https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/Chapter%206.zip

Creating and using our own modules 197

The module currently has a simple console.log() statement. The module will then
be enriched. The main module test.js is the following:

test.js file

var mod1 = require("./module1.js");

// or require("./module1") without specifying the .js extension

console.log("mod1 =", mod1);

Here, we use the require(moduleName)instruction, which allows us to load in
memory the moduleName module. Any use of the functionalities of the moduleName
module requires the require(moduleName)instruction beforehand.

The require(moduleName) instruction returns a reference to the module loaded in
memory. This reference is stored in a variable (here, mod1), which will then allow access
to the functionalities described in the module (here, none for the moment).

The test.js file is the main file that loads the other modules. It is therefore this test.js
file that is executed using the node test.js instruction in a command window.

Figure 6.1 – Using a module with require(module)

We can see here that the execution of the main test.js module invokes the call of
the require("./module1.js")instruction, which executes the content of the
module1.js file, hence the display text specified in the console.log() statement in
the module1.js module.

After loading module1.js, the mod1 variable is initialized and we will be able to access
functionalities that the module exports later on.

Before adding functionalities to the module1.js module, let’s see how to manage the
location of modules using the node_modules directory. The node_modules directory
is used by Node.js to locate modules for which it does not have a path. Using this
directory simplifies the writing of module names when loading them into memory
with the require(moduleName) instruction.

198 Creating and Using Node.js Modules

Using the node_modules directory
Note that the previous require(moduleName) statement requires indicating the
access path to the module, for example, "./" to indicate the current directory.

However, if the module is in the node_modules directory, it is not necessary to indicate
the path because we are sure that the module is inside the node_modules directory
(and moreover, it should not be specified). The node_modules directory can be in
the main application directory (called the local node_modules directory) or in
a dedicated directory created by Node.js (called the global node_modules directory: in
this case, it is automatically created during the installation of Node.js).

Note
If the module is not found in the node_modules directory (local or global)
and if the access path to the module is not indicated, an error occurs when
loading the module with the require(moduleName) instruction.

Now, we will create a node_modules directory in the current directory where the main
file, test.js, is located. Let’s transfer the module1.js file to this directory and use the
require("module1.js") statement without specifying the path to the module.
You can also write require("module1") without indicating the extension of the
JavaScript file:

Include module1 located in node_modules directory (test.js file)

var mod1 = require("module1.js"); // or require("module1")

console.log("mod1 =", mod1);

The module1.js file must be in the locally created node_modules directory, while the
test.js file remains in the current directory, as described here:

root/

|— node_modules/

│ |— module1.js

|— test.js

Creating and using our own modules 199

Figure 6.2 – The module is loaded from the node_modules directory

We can see that the module is indeed found by Node.js, because Node.js looks for it in the
node_modules directory, which was created in the current directory.

Now let’s see how to allow a module’s files to be grouped in a directory, using the
package.json file associated with the module.

Using the package.json file
The node_modules directory (whether located in the application directory or the
Node.js installation directory) can contain a lot of files and sometimes a module can
consist of many files and directories. It would be easier to associate a module with
a directory in the node_modules directory.

Let’s create the module1 directory inside the node_modules directory. The module1
directory contains the module1.js file but may also contain other files and directories
related to this module.

The file system is displayed here:

root/

|— node_modules/

| |— module1/

│ |— module1.js

|— test.js

Note
The moduleName indicated in the require(moduleName) statement
represents, in this case, the name of the directory that contains the module files.

200 Creating and Using Node.js Modules

But as it is necessary to know which file of the directory we must use first when loading
the module (as there can be many files in this directory), we indicate this correspondence
in the package.json file in the "main" key.

The package.json file is a text file in JSON format, located in the directory of each
Node.js module.

Now, we will create the package.json file in the module1 module directory and
indicate in this file the "main" key with the value "module1.js".

The file system is as follows:

root/

|— node_modules/

| |— module1/

│ |— module1.js

│ |— package.json

|— test.js

package.json file in the node_modules/module1 directory (package.json file)

{

 "main" : "module1.js"

}

We indicate in the "main" key that we must load the module1.js file during the
require("module1") instruction:

Including module1 located in node_modules/module1 directory (test.js file)

var mod1 = require("module1"); //"module1" is the directory name

console.log("mod1 =", mod1);

Note
Please note that the module name in the require("module1")
statement in this case is the name of the directory that contains the module in
the node_modules directory. So, we cannot write the instruction here in
the form require("module1.js"), which would cause an error.

Creating and using our own modules 201

We now visualize the execution of the test.js file:

Figure 6.3 – Module loaded with the package.json file

The "main" key in the package.json file is optional if the main module file is named
index.js. In all other cases, the "main" key must be indicated in package.json.

We know how to run a module, but for now, the module contains a simple console.
log() statement. Let’s see how to add features to the module and then use them.

Adding functionalities to the module
The newly created module1.js module is accessible but does not currently offer any
functionality. Let’s see how to add some.

Exporting multiple functions in the module
For example, let’s create the function add(a, b), which returns the sum of a and b:

add(a, b) function defined in module1.js (module1.js file)

console.log("module1 is loaded");

function add(a, b) {

 return a+b;

}

module.exports = {

 add : add // make the add() function accessible

 // outside the module

};

202 Creating and Using Node.js Modules

To export a function outside of a module (and make it accessible to users of the module),
you can just embed it in the module.exports object defined by Node.js in each
module. Each key defined in the module.exports object will be a function accessible
outside the module.

We can thus define several functions in the module that will be accessible thanks to the
module.exports object.

The usage of the add(a, b) function in the test.js file is as follows:

Using add() function in test.js file (test.js file)

var mod1 = require("module1");

console.log("mod1 =", mod1);

var total = mod1.add(2, 3); // call of the add() function

 // defined in module1

console.log("mod1.add(2, 3) = ", total); // displays 5

The following display is obtained:

Figure 6.4 – The add() function added to the module

Let’s add a second function in the module. For example, the function mult(a, b),
which returns a*b.

If we add the mult(a, b) function in the module, it is written as follows:

Adding the mult(a, b) function to the module (module1.js file)

console.log("module1 is loaded");

function add(a, b) {

Creating and using our own modules 203

 return a+b;

}

function mult(a, b) {

 return a*b;

}

module.exports = {

 add : add,

 mult : mult

}

Now, we will use the two functions add() and mult() in the test.js file. This verifies
that a module can provide several functionalities to other modules that use it:

Using the module’s add() and mult() functions (test.js file)

var mod1 = require("module1");

console.log("mod1 =", mod1);

var total = mod1.add(2, 3);

console.log("mod1.add(2, 3) = ", total); // 2 + 3 = 5

var total = mod1.mult(2, 3);

console.log("mod1.mult(2, 3) = ", total); // 2 * 3 = 6

The following display is obtained:

Figure 6.5 – Using the two functions of the module

Now let’s see how to improve the module concept by using a so-called main function in
the module.

204 Creating and Using Node.js Modules

Allowing a function to be the main function of the module
Often, the module wishes to make a function its main function (the other functions
defined in the module are secondary functions). This allows access to this main function in
a simplified form.

Suppose (as before) that module1 makes available the add(a, b)function and the
mult(a, b)function. We want the add() function to be the main function of the
module, which means that we can use it outside the module as mod1(2, 3) instead
of mod1.add(2, 3). The mult(a, b) function will remain accessible in the form
mod1.mult(2, 3).

Note
Note that only one function can be defined as the main function in a module.

In this case, just specify it in the module.exports object like so:

Making the add() function accessible as a main module function
(module1.js file)

console.log("module1 is loaded");

function add(a, b) {

 return a+b;

}

function mult(a, b) {

 return a*b;

}

// first define the main function

module.exports = add; // the add() function defined outside

 // the module, is made main

// then define the secondary functions

module.exports.mult = mult; // and the mult() function

 // becomes usable as well

Creating and using our own modules 205

Note
It is important to assign the values in this order in the module.exports
object (define the main function first, then the secondary functions). If you
make the assignment in the other direction (module.exports.mult
first, then module.exports), the assignment of module.exports last
will erase the value already positioned in module.exports.mult.

Also, we can no longer assign module.exports as an object, because that would
remove the previously assigned value if we wrote module.exports = { mult :
mult }.

We now use the module as follows:

Using the module1.js module that has a main function (test.js file)

var mod1 = require("module1");

console.log("mod1 =", mod1);

var total = mod1(2, 3); // instead of mod1.add(2, 3)

console.log("mod1(2, 3) = ", total);

var total = mod1.mult(2, 3);

console.log("mod1.mult(2, 3) = ", total);

The following display is obtained:

Figure 6.6 – Using the module with the main function

206 Creating and Using Node.js Modules

Note
Notice that instead of using the mod1 variable as an object, we now use it as
a function. In the call to mod1(a, b) causes the addition of a and b, so it
is preferable that the variable be named "add" rather than "mod1" in the
instruction require(moduleName).

We saw how to create and use our own module. Now let’s take a look at how to use
internal Node.js modules.

Using internal Node.js modules
Node.js already has internal modules. They can also be used with the
require(moduleName) instruction seen previously.

Let’s look at an example of an internal module. There is, for example, the "fs" module
in the Node.js system. The name "fs" is short for file system. This module allows you to
interact with the internal file system of Node.js.

Now, we will use the "fs" module to read the contents of a file.

Reading the contents of a file
Let’s use the "fs" module to read the file named file1.txt located in the current
directory (where the test.js file is located). Here are the contents of this file:

file1.txt file (in the directory where test.js is located)

This is the content

of the file file1.txt

located in

the current directory.

The program that uses the "fs" module and displays the contents of the file is as follows:

Reading and displaying the contents of the file (test.js file)

var fs = require("fs");

var data = fs.readFileSync("file1.txt");

console.log("File content:");

console.log(data);

Using internal Node.js modules 207

We use the readFileSync() method defined in the "fs" module. It returns the
contents of the file in the corresponding variable, which is then displayed.

Figure 6.7 – Displaying file contents using the “fs” module

The contents of the file are displayed but as hexadecimal characters. Next, let’s display the
contents of the file as strings.

Displaying file contents as strings
The contents of the file are displayed in the form of a buffer of bytes (see Figure 6.7).
Node.js makes it easy to manipulate byte streams. It is also possible to view the contents
of the file directly as strings by specifying the {encoding: "utf-8"} option in the
second parameter (options) of the readFileSync(name, options) method:

Displaying file contents as strings (test.js file)

var fs = require("fs");

var data = fs.readFileSync("file1.txt", { encoding : "utf-8"
});

console.log("File content:");

console.log(data);

208 Creating and Using Node.js Modules

The result is now displayed as strings (see the following figure):

Figure 6.8 – Displaying file contents as strings

The contents of the file are displayed. However, the program waits for the contents of the
file to be retrieved in order to display them. By using the readFile() method instead of
the readFileSync() method, it is possible to not block the program while waiting for
the file.

Using non-blocking file reading
If you observe the previous readFileSync() method, you will see that the contents of
the file are rendered in return for the method call. This means that the Node.js program is
blocked while the file is being read (even if only for a few milliseconds). Within our small
program, this is not noticeable, but in a case where the reading of the file is carried out by
thousands of simultaneous users (for example, on a server), this will slow down access to
the server.

For this, Node.js has provided, for all blocking features such as this one, a non-blocking
version of the method. Rather than returning the return result of the method (as before),
we use a callback function indicated as a parameter of the method. In the case of reading
the file, we will therefore use the readFile(name, options, callback) method,
also defined in the "fs" module. The result of reading the file will be passed as
a parameter in the callback function.

Let’s use the non-blocking form of reading the file, using the readFile() method
instead of the readFileSync() method:

Using readFile() method to read the file (test.js file)

var fs = require("fs");

console.log("File content:");

Using internal Node.js modules 209

fs.readFile("file1.txt", { encoding : "utf-8" },
function(error, data) {

 console.log(data);

});

console.log("The readFile() method was called");

Note
The callback function uses the error and data parameters (in that order),
which respectively correspond to a possible error message (null if none), and
to the contents of the file if the latter has been read. The options parameter
indicated as the second parameter of readFile() is similar to that of the
readFileSync(name, options) method.

The result is displayed here:

Figure 6.9 – Displaying file contents using the non-blocking readFile() method

We can check in the result displayed above that the readFile() method is really
non-blocking. Indeed, the text indicated following the call to the readFile() method
is displayed in the console even though the file has not yet been read and displayed, which
would have been impossible using the blocking method readFileSync().

Note
We can therefore see that the use of modules internal to Node.js is done very
simply by using the require(moduleName) instruction, and then by
calling methods on the object returned by this instruction.

We have seen how to create and use your own modules, and how to use internal
Node.js modules.

Now let’s see how to use modules available on the internet using the npm command.

210 Creating and Using Node.js Modules

Using downloaded modules with npm
In addition to the modules internal to Node.js, it is possible to import modules from the
internet using the npm utility provided with Node.js.

For this, the npm command is used (in a command interpreter) by indicating arguments
that allow you to perform the corresponding actions on the imported modules.

Using the npm command
Here are some common uses of the npm command:

•	 npm install moduleName: Installs the indicated module in the local node_
modules directory. The module will only be accessible for the current application
and not for other applications (unless it is installed again).

•	 npm install moduleName -g: Installs the specified module in the global
node_modules directory. The -g option allows you to indicate that this module
can be accessed by other applications because it is installed in the node_modules
directory of Node.js (globally).

•	 npm link moduleName: It is possible that a module installed globally
(with the -g option) is inaccessible (you get a module loading error during the
require(moduleName) statement). In this case, it is necessary to run the npm
link moduleName command.

•	 npm ll: Lists modules already present in the local node_modules directory.

•	 npm ll -g: Lists modules already present in the global node_modules directory.

•	 npm start: Starts the Node.js application according to the command indicated
in the "scripts" key, then the "start" key of the package.json file. For
example, if you specify "scripts": { "start": "node test.js" } in the
package.json file, you can type npm start instead of node test.js to run
the test.js file. It is common to use npm start to start a Node.js application.
This will be used to start an application under Express (see the next chapter).

Note
If you want to remove an npm-installed module, use the same commands as
before, specifying uninstall instead of install.

Using downloaded modules with npm 211

As an example, let’s create the following package.json file in the directory of the
test.js file:

package.json file (in the same directory as test.js)

{

 "scripts" : {

 "start" : "node test.js"

 }

}

Then use the npm start command to start the program:

Figure 6.10 – Starting the Node.js application with npm start

We can see that the npm start command thus makes it possible to execute the
test.js program. The npm start command is often used to start a Node.js program,
thanks to the mechanism explained above.

Now let’s see how to use modules written by other developers by downloading them
using npm.

Using a downloaded module with npm
Let’s look at an example of using npm. Here, we will use npm to install the module named
colors. It allows you to display colored text in the console.

212 Creating and Using Node.js Modules

Installing the colors module in the node_modules local directory
We use the command npm install colors. The result of the installation of the
"colors" module is displayed in the following figure.

Figure 6.11 – Installing the colors module with npm

Once the module has been installed by npm, you can see that the colors directory of the
module has inserted itself into the node_modules local directory of the application.

Using the features of the colors module
One of the ways to have an overview of the functionalities offered by a module is to
display the content of the object returned by the require(moduleName) instruction:

Displaying contents of colors object returned by require(“colors”) (test.js file)

var colors = require("colors");

console.log("colors = ", colors);

Using downloaded modules with npm 213

Figure 6.12 – Displaying contents of the colors module

For example, let’s use the last method listed in the module, namely the random()
method. It allows you to transform a character string into a string with random colors for
each character:

Using the random() method of the colors module (test.js file)

var colors = require("colors");

console.log(colors.random("First text in random colors"));

console.log(colors.random("Second text in random colors"));

Note
The random() method is used by prefixing its name with the name of the
variable returned by require("colors"), that is, with the name of
the module.

214 Creating and Using Node.js Modules

The display of the following figure is obtained, in which each character displayed is
a random color:

Figure 6.13 – Using the colors module

We have seen here the three types of modules used with Node.js:

•	 Modules written by ourselves, for our own needs

•	 Existing internal modules in Node.js, such as the fs module allowing access to the
internal file system of Node.js

•	 Modules downloadable using the npm command, such as the colors module
used above

All that remains is to use these different types of modules in our programs. We will
discuss that later on.

This brings us to the end of the chapter.

Summary
We have seen in this chapter how to create and use modules with Node.js, which are the
essential components of programs created with Node.js.

Whether the module is created by us, is an internal Node.js module, or is a module
downloaded with npm, its use is the same in all cases. We use the require(moduleName)
instruction and with the value returned in a variable, we access the functionality of
the module.

Next, we are going to study the Express module, which is one of the main modules used
with Node.js, allowing us to easily structure our applications according to the rules of the
MVC model, currently widely used.

7
Using Express

with Node.js
We saw in the previous chapter that a program for the Node.js server is an assembly of
different modules. Many modules have been created by Node.js developers, which can be
inserted into our programs using the npm utility (see Chapter 6, Creating and Using
Node.js Modules). One of these modules is called Express. It is one of the most used
modules with Node.js because it allows you to structure server programs according
to the Model View Controller (MVC) model.

In this chapter, we’ll study how to create a Node.js application while respecting the
characteristics of the MVC model by using the Express module.

Here are the topics we will cover:

•	 Using the Node.js http module

•	 Installing the Express module

•	 The MVC pattern used by Express

•	 Using routes with Express

•	 Displaying views with Express

216 Using Express with Node.js

Node.js integrates into its internal modules the possibility to create a web server using the
http module internal to Node.js. We first explain how to use this http module, and then
we will see the contribution that the external Express module makes to more easily create
a web application built according to the MVC model.

Technical requirements
You can find the code files for this chapter on GitHub at: https://github.com/
PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/
Chapter%207.zip.

Using the Node.js http module
The http module is an internal Node.js module. It is, therefore, directly accessible in
our programs using the require("http") instruction. With this module you can
create a web server based on the HTTP protocol and thus display web pages in an
internet browser.

For creating a web server based on HTTP, we use the http.
createServer(callback) method of the http module. The callback function
indicated as a parameter is of the form callback(req, res), in which req
corresponds to the request received, and res corresponds to the response to be sent to the
browser. Depending on the request received, the corresponding response will be sent.

Note
In the req parameter, there is, among other things, the URL of the request
received, thus making it possible to return, via the res parameter, the correct
response to the browser according to this request.

Let’s see in the following program how to use the createServer() method:

Creating a web server using the http module (test.js file)

var http = require("http");

var server = http.createServer(function(req, res) {

 // display the received request in the console

 console.log("Request received:", req.url);

https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/Chapter%207.zip
https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/Chapter%207.zip
https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/Chapter%207.zip

Using the Node.js http module 217

 // indicate that the response is HTML in utf-8

 res.setHeader("Content-type", "text/html; charset=utf-8");

 // we always send the same response, regardless of the

 // request received

 res.write("<h1>")

 res.write("Good morning all");

 res.write("</h1>");

 res.end();

});

// make the server listen on port 3000 (for example)

server.listen(3000);

console.log("\nThe server was started on port 3000\n");

console.log("You can make a request on:");

console.log("http://localhost:3000");

The createServer() method returns an object, here used through the variable named
server, on which we indicate to wait for requests coming from port 3000 (the one
indicated in the server.listen(port) method). This means that each time URLs
of the form http://localhost:3000 are accessed via the browser, the program
previously launched (with the node test.js command) will be activated and will
display the result in the browser.

Note
The use of the server.listen(port) method is mandatory because
it is not enough to create a server with the http.createServer()
method. This server must also be listening (with server.listen(port
)) to HTTP requests addressed to it by browsers connecting to this server
(here using a URL such as http://localhost:3000). Port 3000 is
used here, but another port number could be used (provided that this port is
not already used by another server, which would cause an access conflict to
know to which server the request on the port is addressed).

We send the response to the browser using res.write(string) instructions.
You must finish sending the response with the res.end() instruction, which means
that the browser has received all the elements to display (the server waits to receive the
res.end() instruction to display all the elements sent).

218 Using Express with Node.js

Note
The res.setHeader() method is used to set HTTP header
fields. Here, "Content-type" is set to the value "text/html;
charset=utf-8".

Let’s launch the previous program by typing the command node test.js. The program
displays a message, then waits for HTTP requests on port 3000:

Figure 7.1 – HTTP server waiting on port 3000

To test the program, display the URL beginning with http://localhost:3000
in a browser. When an HTTP request uses port 3000 (the port on which the server is
listening), the callback function indicated in the createServer(callback) method
is activated and then the response is sent to the browser.

Let’s type the URL http://localhost:3000 in the browser (see the following figure):

Figure 7.2 – Viewing URL http://localhost:3000 in the browser

Installing the Express module 219

Regardless of the URL specified in the browser (which uses port 3000), the display in the
browser remains the same. For the display to be different for different URLs, it must be
considered in the callback function by using the value of req.url, which contains the
URL typed and returns different strings according to the request received.

Using the Express module makes it easy to manage the different requests received and
display different results depending on the URL entered.

Installing the Express module
Since the Express module is installed using npm, we type the npm install express
command to install it.

.

Figure 7.3 – Installing the Express module with npm

The Express module is now installed.

Note
A utility related to Express is also useful for creating the architecture of our web
applications. This is the "express-generator" module (this module
was previously included with Express but is now separate from it, hence it’s
uploaded here).

220 Using Express with Node.js

Let’s also install the "express-generator" module using the npm install
express-generator -g command. We use the -g option so that the express
command defined in this module is accessible from any directory.

Figure 7.4 – Installing the “express-generator” module with npm

Note
You can verify that the installation is correct by typing the command
express -h. If the installation of the module is correct, help for the
express command is displayed in the window (otherwise an error
is displayed).

Once these two modules are installed, you can create a first web application based
on Express.

Installing the Express module 221

To do this, type the express apptest command to create the application named
apptest. You should see the following result:

Figure 7.5 – Creating the apptest application with Express

This command creates an apptest directory containing the basic files to run the
application. You must then type the three commands indicated at the end of the display:
cd apptest, npm install, and npm start.

Once these commands are typed, open a browser and display the URL http://
localhost:3000.

222 Using Express with Node.js

This is what you will see:

Figure 7.6 – Default app home page created with Express

If we look at the source files of the application created in the apptest directory, we see
the app.js and package.json files, as well as the bin, node_modules, public,
routes, and views directories. These directories are those that describe the MVC
architecture used by Express, which we explain below.

The MVC pattern used by Express
The MVC model is an application architecture model allowing an application to be broken
down into different parts: models, views, and the controller:

•	 Models correspond to the data manipulated by the application. In general, this is
data from databases. Node.js is closely tied to the MongoDB database, which is
explored in the next chapter.

•	 Views correspond to the visualization of data, for example, input forms and
displayed lists. Each display corresponds to a view that will be in the views
directory of the application.

•	 The controller allows navigation between the different views, depending on the data.
For this, we use routes (in fact, URLs) that indicate the processing to be performed.
The routes directory describes the routes used by the application (and the
processing performed for each of them).

Using routes with Express 223

We can therefore see that the MVC model makes it possible to separate the processing,
the display, and the data. This split is widely used in web projects and is the one proposed
by Express.

Let’s first look at how routing works in Express. This corresponds to the controller part of
the MVC model.

Using routes with Express
Routes indicate the processing to be performed based on the requested URL.
Compared to what we wrote when using the http module of Node.js with the
createServer(callback) method, this consists of writing the content of the
callback(req, res) function according to the req request received.

The routes are described in the app.js file, which is the main file created by Express.
Let’s examine its content.

The initial content of the app.js file
To understand how routes work in Express, open the app.js file located in the main
application directory, and you will see the content of this file, like this:

app.js file

var createError = require('http-errors');

var express = require('express');

var path = require('path');

var cookieParser = require('cookie-parser');

var logger = require('morgan');

var indexRouter = require('./routes/index');

var usersRouter = require('./routes/users');

var app = express();

// view engine setup

app.set('views', path.join(__dirname, 'views'));

app.set('view engine', 'jade');

app.use(logger('dev'));

224 Using Express with Node.js

app.use(express.json());

app.use(express.urlencoded({ extended: false }));

app.use(cookieParser());

app.use(express.static(path.join(__dirname, 'public')));

app.use('/', indexRouter);

app.use('/users', usersRouter);

// catch 404 and forward to error handler

app.use(function(req, res, next) {

 next(createError(404));

});

// error handler

app.use(function(err, req, res, next) {

 // set locals, only providing error in development

 res.locals.message = err.message;

 res.locals.error = req.app.get('env') === 'development' ?

 err : {};

 // render the error page

 res.status(err.status || 500);

 res.render('error');

});

module.exports = app;

This file describes how the application built with Express works. It uses the app variable,
which is the return from the express() function call and symbolizes the application.
On this app object, the use() method is used many times, which makes it possible to
add processing to be performed for each request received on the server.

For example, app.use(logger("dev")) triggers the logger() function for each
request received on the server. This is why the server console displays the URL that was
requested in the browser during each request to the server.

Using routes with Express 225

By having displayed in the browser the URLs http://localhost:3000 and
http://localhost:3000/users, we obtain the following in the server console.

Figure 7.7 – Display of URLs in the server console

Now, let’s look at the meaning of the lines displayed in the server console.

Different types of routes possible
In the previous figure, you’ll notice that the word GET is displayed in front of each URL:
GET /, GET /users.

The word GET means that the URL / or /users is accessed by an HTTP request of the
GET type. The GET type is the one used when the accessed URL is displayed in the address
bar of the browser, for example, when you type it directly or when you click on
a link on a page.

Note
Other types of HTTP requests exist. They make it possible not to display the
corresponding URL in the address bar of the browser, and thus to hide it
from users. For example, if the URL for deleting records from the database
was visible in the browser’s address bar, it would suffice to refresh the page to
continue deleting records from the database. Hence the interest in other types
of HTTP requests that allow the current URL to be hidden.

226 Using Express with Node.js

The other types of HTTP requests (in addition to GET) are mainly PUT, POST, and
DELETE type requests. These types of requests are used in programs to signify an action
to be performed on one or more pieces of data (called resources):

•	 GET means reading a resource.

•	 POST means creating a resource.

•	 PUT means updating a resource.

•	 DELETE means deleting a resource.

Although multiple types of HTTP requests exist, these are the main ones. They are used
to manipulate resources, allowing them to be created (POST), updated (PUT), deleted
(DELETE), and read (GET).

Note
A route is the association of an HTTP request with a URL. For example, the
GET /users route associates the /users URL with the HTTP GET
request, while the DELETE /users route associates the same /users
URL with the HTTP DELETE request. Although these routes use the same
URL, they are different routes because the HTTP requests are different.

Now that we’ve seen the different types of HTTP requests used, let’s look at how Express
uses them internally.

Analyzing routes defined in the app.js file
The app.use() method is also used to define new routes, that is, to define the
processing that will be performed for each new URL used (with the associated
request type).

The app.use(url, callback) method is used to define the processing to be
performed when the specified URL is activated. As the type of request is not indicated
here, all types of requests will activate the treatment indicated in the callback function.
To indicate the type of request, you must use methods similar to app.use(). These are
the app.get(), app.put(), app.post(), and app.delete() methods.

Using routes with Express 227

Note
The callback function of the form callback(req, res, next)
returns the response to the browser. The next() parameter corresponds to
a function to be called at the end of the callback if the processing must
continue in the next callback function (if the processing to be performed is
handled by multiple callback functions).

The routes already defined in app.js are / and /users, thus making it possible to
run the processes associated with these routes. These routes are examples to show how
to implement routes in the app.js file. The processing instructions are defined in the
indexRouter and usersRouter functions. These functions are the variables used
in return for the instructions require('./routes/index') and require('./
routes/users'). The processing of routes is therefore done here in the index.js
and users.js files defined in the routes directory.

Let’s open these two files and analyze their contents:

index.js file (routes directory)

var express = require('express');

var router = express.Router();

/* GET home page. */

router.get('/', function(req, res, next) {

 res.render('index', { title: 'Express' });

});

module.exports = router;

users.js file (routes directory)

var express = require('express');

var router = express.Router();

/* GET users listing. */

router.get('/', function(req, res, next) {

 res.send('respond with a resource');

228 Using Express with Node.js

});

module.exports = router;

Each of these files uses the router.get(url, callback) method, meaning that the
route is associated with the GET type request. The URL given is / (it will be concatenated
with the URL given in the app.js file), followed by the callback function of the form
callback(req, res, next). The next parameter corresponds to a function to call
if the processing must continue in the callback function that follows (if such a function
exists, which is not the case here).

The processing performed in each of the callback functions consists of sending the
response, which will be displayed in the browser. Here, we use the res.send() and
res.render() methods, which allow the response to be sent:

•	 The res.send() method is similar to res.end() (defined in the "http"
module of Node.js), but also allows you to indicate that you are using HTML and
utf-8 characters. Only one call to the res.send() method must be made in the
processing, otherwise, an error occurs.

•	 The res.render() method allows an external file (called a view) to be displayed.
Views are written in a special language that depends on the format of the view.
By default, the views used by Express are JADE files, but it is possible to use
other formats.

Here, the view displayed by the res.render() method corresponds to the index.
jade file located in the views directory. Its contents are as follows:

index.jade file (views directory)

extends layout

block content

 h1= title

 p Welcome to #{title}

This file is written using a particular syntax, called JADE. The file will be transformed
into HTML code by Express before being sent to the browser (which can only
interpret HTML).

Using routes with Express 229

Note
Express allows files associated with views to be written using a variety of
syntaxes. The most common are JADE and EJS.

We will explore the JADE syntax in the Displaying views with Express section in
this chapter.

Note that the app.js file allows you to configure the directory associated with the
views and the syntax used in the views. Here are the corresponding instructions from the
app.js file:

Configuring views (app.js file)

app.set('views', path.join(__dirname, 'views'));

app.set('view engine', 'jade');

We have described the routes already listed in the app.js file. Let’s see how to create new
routes in this file.

Adding a new route in the app.js file
Adding a new route in the app.js file can be done either by writing the processing directly
in the app.js file or by creating an external file that will be in the routes directory.

Warning
Any modification of the app.js file requires restarting the server by
performing the npm start command; otherwise, the modifications are not
taken into account.

Let’s look at these two ways to create a new route.

Adding route processing directly in the app.js file
Let’s add the /clients route activated following a GET type request. It displays the list
of clients. We use the app.get() method to define the route:

Add the GET /clients route

app.use('/', indexRouter);

app.use('/users', usersRouter);

230 Using Express with Node.js

app.get("/clients", function(req, res, next) {

 res.send("<h1>Client list</h1>");

});

The result is displayed in the following figure (Figure 7.8).

Creating an external file to define route processing
We use the same principle as that used for the GET / and GET /users routes defined
in the app.js file. We create the clients.js file in the routes directory, which
will be included in the app.js file by means of the statement clientsRouter =
require("./routes/clients). The route is defined in app.js with the statement
app.use("/clients", clientsRouter).

The clients.js file describing the processing performed on the route is as follows:

clients.js file (routes directory)

var express = require('express');

var router = express.Router();

router.get('/', function(req, res, next) {

 res.send("<h1>Client list</h1>");

});

module.exports = router;

In both cases, the result is the same, as seen in the following figure.

Figure 7.8 – Displaying the GET /clients route

Displaying views with Express 231

We studied the controller part of the MVC model using the route system defined in
Express. Now let’s see how Express allows us to manage the view part of the MVC model.

Displaying views with Express
A view is an external file used to describe the display that you want to view. Specific
syntaxes have been created to program the view, for example, JADE or EJS syntaxes.

The res.render(name, obj) method is used to display the name view using any
properties provided in the obj object. The view is a file defined in the views directory
using JADE syntax or another.

One of the features of Express is to allow you to create views using the desired syntax. The
JADE syntax is offered as standard by Express, but other syntax support libraries can be
added with npm.

The JADE syntax is, therefore, the one used by default in Express. It makes it possible
to replace HTML tags with their tag (for example <h1> simply becomes h1), and the
indentation of tags in the code makes it possible to specify their nesting. It is also no
longer necessary to close the tag previously opened because the indentation allows you
to see the nesting of the tags.

Note
Full JADE documentation can be found at https://jade-lang.com/.

Let’s use JADE to display the previous client list. We create the clients.jade view in
the views directory, and we indicate in clients.js that we display this view when
accessing the GET /clients route:

clients.js file (routes directory)

var express = require('express');

var router = express.Router();

router.get('/', function(req, res, next) {

 res.render("clients"); // display clients.jade view

 // (.jade extension is enabled by

 // default)

});

module.exports = router;

https://jade-lang.com/

232 Using Express with Node.js

Note that if you do not indicate the file extension of the view (for example, by writing
res.render("clients")), the extension used will be the one indicated in the
instruction app.set('view engine' , 'jade') from app.js.

If, on the other hand, you specify an extension to the view file, it will be the one used
to display the view even if it is different from the one configured in app.js. The view
clients.jade is as follows:

clients.jade file (views directory)

h1 Client list

ul

 li Bill Clinton

 li Barack Obama

 li Joe Biden

Notice the indentation of the tags. The ul tag is at the same level as the h1 tag, otherwise,
it would be seen as included in the h1 tag. The li tags are shifted to the right to show
their inclusion in the preceding ul tag. The offset must be at least one character. Because
of the offsets, we do not use a closing tag as in HTML.

Let’s restart the server with npm start because one of the routing files has been modified.

Note
Editing files associated with views does not require a server restart, unlike the
app.js file and files associated with routes (in the routes directory).

Once the server restarts, let’s display the URL http://localhost:3000 again:

Figure 7.9 – View displayed using JADE syntax

Displaying views with Express 233

The list of clients is, in this example, entered directly into the JADE view. It is better to
pass it as parameters using the second parameter of the res.render(name, obj)
method. The clients.js file then becomes the following:

clients.js file (routes directory)

var express = require('express');

var router = express.Router();

router.get('/', function(req, res, next) {

 res.render("clients", {

 clients : [

 { firstname : "Bill", lastname : "Clinton" },

 { firstname : "Barack", lastname : "Obama" },

 { firstname : "Joe", lastname : "Biden" },

]

 });

});

module.exports = router;

The obj parameter of the res.render("clients", obj) method is an object
containing the list of clients.

The clients.jade view uses this passed object as follows:

clients.jade file (views directory)

h1 Client list

ul

 li #{clients[0].lastname + " " + clients[0].firstname}

 li #{clients[1].lastname + " " + clients[1].firstname}

 li #{clients[2].lastname + " " + clients[2].firstname}

The obj object passed in parameters is used in the JADE view, by using its clients
property here.

234 Using Express with Node.js

JADE Syntax
JavaScript statements can be used in the JADE view by surrounding them
with #{ and }. Anything between these two markers will be considered
JavaScript code.

You can also use a syntax simplification allowed by JADE, by writing the = sign directly
after each li tag. This means that everything following on the line must be interpreted in
JavaScript. We can use this simplification of writing here.

Let’s write the clients.jade view as follows:

clients.jade file (views directory)

h1 Client list

ul

 li= clients[0].lastname + " " + clients[0].firstname

 li= clients[1].lastname + " " + clients[1].firstname

 li= clients[2].lastname + " " + clients[2].firstname

Rather than listing each element of the clients array in the view, you can also perform
a loop using the each statement of the JADE syntax to iterate over a JavaScript array.

The clients.jade view therefore becomes the following:

clients.jade file (views directory)

h1 Client list

ul

 each client in clients

 li= client.lastname + " " + client.firstname

Summary 235

The writing of the view is simplified, but you really have to take into account the
indentations of the lines otherwise the view will not be displayed.

Figure 7.10 – List of clients displayed by the each statement

We see in this example that the JADE syntax makes it easy to display lists of data in the
views of the application.

With this, we come to the end of this chapter.

Summary
The Express module makes it possible to structure your application efficiently by allowing
(thanks to the MVC model it uses) you to separate the management of routes, the views
displayed, and the management of data.

We have explained how to write the views of the application using the JADE syntax
provided by default by Express. Other syntaxes, for example, the EJS syntax, are also
available by downloading them via npm.

We have also seen the importance of the app.js file created by Express, and the use
of HTTP requests such as GET, POST, PUT, and DELETE. We will see in Chapter 9,
Integrating Vue.js with Node.js, the importance of these HTTP requests to build a MEVN
application (short for MongoDB, Express, Vue.js, Node.js) that manipulates the
MongoDB database.

Indeed, data management is often done using the MongoDB database, the use of which
we will explore in the next chapter.

8
Using MongoDB

with Node.js
MongoDB is the database traditionally associated with Node.js. It is a NoSQL type
database, which means that SQL will not be used to access the information it contains.

MongoDB is a document-oriented database in which we store so-called documents; that
is, a data structure of any type, such as information written on a sheet of paper (which is
then equivalent to a document). Several sheets of paper, thus corresponding to several
documents, form what is called a collection.

An example of a document is, for example, the first name, the last name, and the
address of a customer. Aggregated information from multiple customers would be called
a collection.

In this chapter, we’ll study how to use MongoDB in conjunction with Node.js in order to
store, read, delete, or update information in the database.

Inserting, searching, updating, or deleting data are the main actions that can be performed
in a database. Therefore, in this chapter, we’ll see how to perform these operations with
the MongoDB database.

238 Using MongoDB with Node.js

Here are the topics covered in this chapter:

•	 Installing MongoDB and the mongoose module

•	 Connecting to the MongoDB database

•	 Creating documents

•	 Searching documents

•	 Updating documents

•	 Deleting documents

Let’s start by installing MongoDB and the mongoose module, which will allow MongoDB
to be used in Node.js programs.

Technical requirements
You can find the code files for this chapter on GitHub at: https://github.com/
PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/
Chapter%208.zip.

Installing MongoDB
The MongoDB database is independent of Node.js, which requires installing it
separately. To do this, go to the site https://www.mongodb.com/docs/manual/
administration/install-community/. Download the version suitable for
your system.

Once MongoDB is installed, verify that the installation is correct by typing the mongo -h
command in a command interpreter. The mongo command is located in the Server/
x.x/bin directory of MongoDB, where x.x is the version number of MongoDB installed.

Note
At the time of writing, the mongo utility is available directly when installing
MongoDB. However, it is possible that this utility will soon be available
separately and called mongosh. In this case, download this utility from
https://www.mongodb.com/docs/mongodb-shell/
install/.

The mongo command will simply be replaced by the equivalent mongosh
command. Both commands work identically.

https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/Chapter%208.zip
https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/Chapter%208.zip
https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/Chapter%208.zip
https://www.mongodb.com/docs/manual/administration/install-community/
https://www.mongodb.com/docs/manual/administration/install-community/
https://www.mongodb.com/docs/mongodb-shell/install/
https://www.mongodb.com/docs/mongodb-shell/install/

Installing MongoDB 239

After installing MongoDB, we will look into the mongo (or mongosh) utility. The mongo
utility makes it easy to see the contents of database collections, without having to write
program lines. It is therefore useful for checking, for example, whether a document has
been correctly inserted into a collection, or that its deletion has been successful. Let’s see
how to use the mongo utility.

Using the mongo utility
The mongo utility enables you to easily view databases and the collections they contain.
The mongo utility is launched by simply typing the mongo command in a command
interpreter. The program then waits for database access commands, or the exit
command to exit.

Here is the list of the main commands available in the mongo utility:

•	 show dbs: This shows a list of existing databases. A database will be visible here
only if it contains at least one collection.

•	 db=connect("mydb_test"): This is to connect to the database mydb_test.
The db variable will then be used to access the database collections.

•	 show collections: This shows the collections of the connected database.
A collection will be present if it contains at least one document.

•	 db.clients.find(): This shows all documents in the clients collection.

•	 db.clients.find({name:"Clinton"}): This lists documents in the
clients collection whose name is Clinton.

•	 db.clients.find().sort({name:1}): This sorts documents in ascending
order of the name field. Use {name:-1} for descending sort.

•	 db.clients.count(): This counts the number of documents found in the
clients collection.

•	 db.clients.renameCollection("clients2"): This renames the
clients collection to clients2.

•	 db.clients.drop(): This drops the clients collection (all documents
are dropped).

•	 db.dropDatabase(): This drops the connected database (all collections
are removed).

Other commands exist, in particular, for inserting, updating, or deleting documents in
a collection. But since these actions are performed through the mongoose module instead,
we will describe them using the mongoose module.

240 Using MongoDB with Node.js

Installing the mongoose module
To establish the relationship between MongoDB and Node.js, several npm modules have
been created. The most widely used one currently is the mongoose module. It is installed
in the node_modules directory of the current directory by typing the npm install
mongoose command.

Figure 8.1 – Installing the mongoose module

Once mongoose has been downloaded by npm, we check whether it is accessible for our
programs. Let’s display the mongoose version for our programs. We write this snippet in
the file test.js:

Displaying mongoose version (test.js file)

var mongoose = require("mongoose");

console.log("mongoose version =", mongoose.version);

Let’s use the node test.js command to run the previous program:

Figure 8.2 – Checking that mongoose is accessible

Warning
If you get an error loading the mongoose module, it’s probably because you
installed it globally (with the -g option). In this case, just type the npm link
mongoose command in the terminal to get rid of the error.

Connecting to the MongoDB database 241

The mongoose module will allow us to use the MongoDB database to create documents,
search them, update them, or destroy them. These are the classic operations that can be
performed on a database.

But to be able to perform these operations, it is necessary to first connect to the database.

Connecting to the MongoDB database
All operations to access MongoDB require establishing a connection with it. Now let’s see
how to establish a connection with MongoDB.

The mongoose.connect(url) instruction connects the mongoose module
to the database specified in the url parameter. The url parameter is of the form
"mongodb://localhost/mydb_test" to connect to the mydb_test database on
the localhost server.

The database will actually be created (and visible with the execution of the show dbs
command of the mongo utility) when the first document is inserted into it:

Connecting to the mydb_test database (test.js file)

var mongoose = require("mongoose");

mongoose.connect("mongodb://localhost/mydb_test");

console.log("Connecting to mydb_test database in progress...");

Let’s run the previous program:

Figure 8.3 – Database connection

To know whether the connection to the database has actually been made, mongoose sends
the open event (if the connection was successful) or the error event (if the connection
fails) on the mongoose.connection object.

242 Using MongoDB with Node.js

Next, we will take these two events into account and integrate them into the previous
program. This is done using the on(event, callback) method defined on the
mongoose.connection object:

Note
The on(event, callback) method is used to process the reception
of the event and to associate it with the processing described in the
callback function.

Using open and error events on database connection (test.js file)

var mongoose = require("mongoose");

mongoose.connect("mongodb://localhost/mydb_test");

mongoose.connection.on("error", function() {

 console.log("mydb_test database connection error")

});

mongoose.connection.on("open", function() {

 console.log("Successful connection to mydb_test

 database");

});

console.log("Connecting to mydb_test database in progress...");

Let’s run the previous program:

Figure 8.4 – Successful connection to the database

We have seen how to connect to the database. We will therefore be able to create
documents in a collection of the database.

Creating documents in MongoDB 243

Creating documents in MongoDB
Once the database has been accessed, you can create documents in it.

A document will be inserted into a collection. A collection will therefore group
together a set of documents. The database will therefore be a set of collections,
each containing documents.

In order to be able to insert documents, mongoose asks us to describe the structure of
these documents. For this, we will use schemas and models.

Describing document structure using schemas
and models
To access the documents in the database, the documents must be described by means
of schemas and models.

Definitions
A schema allows you to define the structure of a document that is stored in
a collection. The structure is defined according to MongoDB data types.

A model is the representation of a schema as a JavaScript class. It links a schema
to a MongoDB collection.

Let’s look at how to create a schema and then a model.

Creating a schema
A schema defines the fields of a document using Node.js internal object classes. These are
the following classes:

•	 String: This defines a string of characters.

•	 Number: This defines a numeric field.

•	 Boolean: This defines a Boolean.

•	 Array: This defines an array.

•	 Buffer: This defines a buffer of bytes.

•	 Date: This defines a date.

•	 Object: This defines a JavaScript object.

244 Using MongoDB with Node.js

The mongoose.Schema(format) method is used to define the schema associated with
the document. The format parameter is a JavaScript object that associates each field in
the document with the type (in the above list) that represents it.

Let’s create the schema defining a client. A client is characterized by its lastname,
firstname, and address. All these fields are of type String:

Defining the schema associated with a client (test.js file)

var mongoose = require("mongoose");

mongoose.connect("mongodb://localhost/mydb_test");

var clientSchema = mongoose.Schema({

 lastname : String,

 firstname : String,

 address : String

});

Now let’s explain how to create a model from the schema.

Creating a model
The schema is then used to define the model associated with the document. The model
corresponds to a JavaScript class that will be used to create the documents in a collection.

The mongoose.model(collection, schema) method returns a JavaScript class
associated with the schema. This class is called a model.

Documents created with this class will be inserted into the specified collection. The
collection may not exist before inserting a document. A collection requires at least one
document within it.

Summary
A schema specifies the format of a document stored in a collection,
while a model is a JavaScript class used to create each such document.
We associate a document schema with a collection using the mongoose.
model(collection, schema) method call. This returns a JavaScript
class that can then be used to generate individual document instances.

Creating documents in MongoDB 245

Let’s create the Client class, which will create the clients that will be stored in the
clients collection. It is traditional to name the collection based on the name of the
model, in lowercase and in plural:

Creating the Client model from the schema (test.js file)

var mongoose = require("mongoose");

mongoose.connect("mongodb://localhost/mydb_test");

var clientSchema = mongoose.Schema({

 lastname : String,

 firstname : String,

 address : String

});

// creation of the Client class associated with the clients

// collection

var Client = mongoose.model("clients", clientSchema);

The Client class is now available to create the documents that will be inserted into the
clients collection.

Creating the document
There are two methods for creating the documents in a collection. These are the doc.
save(callback) instance method and the create(doc, callback) class method.
Let’s look at these two ways to create documents in a collection.

Let’s start by using the doc.save(callback) instance method.

Using the doc.save(callback) instance method
The client document is created in memory from the previously created class (by means of
var client = new Client()), then saved in the clients collection by means of
the client.save() method.

246 Using MongoDB with Node.js

The callback function allows processing when the document has finished being inserted
into the collection. This is especially useful if it is necessary to wait for the document to be
inserted into the database before continuing processing:

Using the save() instance method to save document (test.js file)

var mongoose = require("mongoose");

mongoose.connect("mongodb://localhost/mydb_test");

var clientSchema = mongoose.Schema({

 lastname : String,

 firstname : String,

 address : String

});

// creation of the Client class associated with the clients

// collection

var Client = mongoose.model("clients", clientSchema);

// create the document in memory

var c = new Client({lastname :"Clinton", firstname:"Bill",
address:"Washington"});

console.log("Before the save() statement");

// save the document in the database (clients collection)

c.save(function(err) {

 if (!err) console.log("The client is inserted into the

 collection");

});

console.log("After the save() statement");

The callback function takes the err parameter, which corresponds to a possible error
message (otherwise, it is null).

Creating documents in MongoDB 247

We get the following result:

Figure 8.5 – Using the doc.save() instance method

Using the traces displayed in the console, we can see that the message The client is
inserted into the collection is displayed after the other messages, which
means that inserting a document is not blocking other tasks (i.e., other tasks can be done
while waiting for insertion in the database).

The save() method can also be used as a Promise object (see Chapter 2, Exploring
the Advanced Concepts of JavaScript). For this, we use the then(callback) method
afterward, possibly followed by the catch(callback) method to process the cases of
error when calling the save() method.

In this case, we write the following:

Using the save() method as a Promise objet

c.save().then(function(doc) {

 console.log(doc);

 console.log("The client is inserted into the collection");

}).catch(function(err) {

 console.log(err); // display the error

});

Now let’s see the other method of creating a document with the create(doc,
callback) class method.

248 Using MongoDB with Node.js

Using the create(doc, callback) class method
A class method means that we can use the method without having instantiated an object,
unlike an instance method, which requires that the object of the class be created (with
c = new Client()).

To create the document associated with the client identified by {lastname:"Obama",
firstname:"Barack", address:"Washington"}, we would write the following:

Using the Client.create(doc, callback) class method to save document
(test.js file)

var mongoose = require("mongoose");

mongoose.connect("mongodb://localhost/mydb_test");

var clientSchema = mongoose.Schema({

 lastname : String,

 firstname : String,

 address : String

});

// creation of the Client class associated with the clients

// collection

var Client = mongoose.model("clients", clientSchema);

console.log("Before the create() statement");

// save the document in the database (clients collection)

Client.create({lastname:"Obama", firstname:"Barack",
address:"Washington"}, function(err, doc) {

 console.log("The client is inserted into the collection",

 doc);

});

console.log("After the create() statement");

Creating documents in MongoDB 249

The create(doc, callback) class method is used by prefixing it with the name of
the JavaScript class (here, the Client class).

The document to be saved is written in the form of a JavaScript object (JSON format) but
can also be an object instantiated with c = new Client().

The callback function of the form callback(err, doc) is executed at the end of
saving the document in the database. This callback function is useful if you want to
perform a process while being certain that the document has been saved in the collection.

Note
Note that the callback function callback(err, doc) of the
create(doc, callback) method has the two parameters err
and doc, which are the possible error and the document saved in the
database, respectively.

Let’s run the previous program:

Figure 8.6 – Using the Client.create() class method

250 Using MongoDB with Node.js

The saved document has the fields indicated in the format associated with the model
(here, the lastname, firstname, and address fields), but also the _id and __v
fields, added automatically by MongoDB:

•	 The _id field is a field used by MongoDB to give a unique identifier to each
document in a collection. It plays the role of a primary key.

•	 The __v field is a field added by mongoose, associated with the document version
number. We will not use it here.

As with the save() instance method, the create(doc) class method can be used
as a Promise object. For this, we do not use the callback parameter in
the create(doc) method and instead use the then(callback) and
catch(callback) methods following the create(doc) method call.

For example, we could also write the following:

Using create() method as a Promise object

Client.create({lastname:"Obama", firstname:"Barack",
address:"Washington"}).then(function(doc) {

 console.log("The client is inserted into the collection",

 doc);

});

In the previous examples, we have inserted two documents into the clients collection.
Let’s use the mongo utility to display the inserted documents and verify the documents
that are present in the collection.

Using the mongo utility to view inserted documents
To display the inserted documents, use the mongo utility and type the
following commands:

1.	 db=connect("mydb_test") to connect to the database
2.	 show collections to show the collections already present

Searching for documents in MongoDB 251

3.	 db.clients.find() to display documents from the clients collection

Figure 8.7 – Using the mongo utility to view documents

We thus check that the two documents of the clients collection are indeed present.

Let’s see how to search for them with mongoose module methods.

Searching for documents in MongoDB
Once the documents have been inserted into the collection, they can be searched for using
the find() class method.

Note
The find() method is a class method, which means that it is used by
prefixing it with the class name associated with the model, for example,
Client.find().

The find(conditions, callback) method is used to perform a search in the
collection associated with the model, then to retrieve the results of the search in the
callback function indicated as a parameter.

252 Using MongoDB with Node.js

Let’s take an in-depth look at the parameters:

•	 The conditions parameter is a JavaScript object used to specify search
conditions. If no condition is specified, do not indicate anything (or indicate an
empty object {}).

•	 The callback function is of the form callback(err, results) where err is
an error message (null otherwise) and results is an array containing the search
results (empty [] if none).

There is also the findOne(conditions, callback) class method, which allows
you, on the same principle, to find only the first document that satisfies the search. The
callback function is of the form callback(err, result) where result is the first
document found.

Note
The findOne(conditions, callback) method will be useful if you
are looking for a single document, for example, from its identifier _id.

You can also use the find(conditions) and findOne(conditions)
methods without specifying the callback function as a parameter. For this, we use the
then(callback) and catch(callback) methods to perform the processing on
the documents found or in the event of an error. We can also use the exec(callback)
method, as explained in the following section.

Let us now examine how to write the conditions parameter used in the two methods
find() and findOne().

Writing search conditions
In the conditions parameter, we indicate an object whose properties are the fields
of the documents in the collection, and the associated values are the values sought for
the field, of the form {field1:value1, field2:value2...}, for example,
{lastname:"Clinton", firstname:"Bill"}.

Other properties can be used as keywords to express conditions. They start with
the $ sign, such as: $or, $exists, $type, $where, $gt, and $lt.

Note
A list of possible keywords can be found here: https://docs.mongodb.
com/manual/reference/operator/query/.

https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/

Searching for documents in MongoDB 253

Here are some examples of conditions:

•	 { }: All documents in the collection. You can also write find(), which is
equivalent to find({}).

•	 { lastname: "Clinton" }: All documents whose lastname is Clinton.

•	 { lastname: "Clinton", firstname: "Bill" }: All documents whose
lastname is Clinton and first name is Bill.

•	 { $or: [{ lastname: "Clinton"}, { firstname: "Jimmy" }] }:
All documents whose lastname is Clinton or first name is Jimmy.

•	 { lastname: /obama/i }: All documents whose lastname contains the string
obama regardless of case (regular expression).

•	 { address: { $exists: true} }: All documents whose address field
exists, regardless of its type (String, Object, etc.).

•	 { address: { $exists: true, $type: 2 } }: All documents whose
address field exists, and which is of type 2 (String).

•	 {"address.city": "Washington" }: All documents containing the
address field that itself has a city field whose value is Washington.

•	 {lastname:{$type:2}, $where:"this.lastname.
match(/^Clinton|carter$/i)"}: All documents whose lastname is a string
(type = 2) and whose lastname begins with Clinton or ends with carter,
regardless of case. You must indicate that the lastname is a character string,
otherwise you may have an error with names that are not in this form.

•	 {lastname: { $gt: "J", $lt: "S" }}: All documents whose lastname is
greater than "J" and less than "S".

•	 {lastname: { $in:["Clinton", "Carter", "Obama"] }} : All
documents whose lastname is Clinton, Carter, or Obama.

Once the search conditions have been expressed, the results found must be retrieved and
displayed. Let’s see how to do it.

Retrieving and displaying the results
Whatever the condition expressed, the corresponding results can be retrieved in the
callback function associated with the find() method, of the form callback(err,
results). We will also see that it is possible to use the exec(callback) method to
retrieve the results.

Let’s look at these two ways to retrieve search results.

254 Using MongoDB with Node.js

Using the callback parameter of the find(conditions,
callback) method
Let’s find all clients whose lastname is Clinton or firstname is Barack. The result will
be displayed in the callback function:

Displaying clients whose lastname is “Clinton” or firstname is “Barack”
(test.js file)

var mongoose = require("mongoose");

mongoose.connect("mongodb://localhost/mydb_test");

var clientSchema = mongoose.Schema({

 lastname : String,

 firstname : String,

 address : String

});

// creation of the Client class associated with the clients

// collection

var Client = mongoose.model("clients", clientSchema);

Client.find({ $or : [{ lastname : "Clinton" }, { firstname :
"Barack"}] }, function(err, clients) {

 console.log(clients);

});

Searching for documents in MongoDB 255

We obtain the result shown in the following figure:

Figure 8.8 – Displaying search results with find(conditions, callback)

The callback function can be expressed in the find() method as before, or be specified
in the exec() method used after the find() method. Let us now examine this
second possibility.

Using the exec(callback) method
Another way to retrieve results is to use the exec(callback) method following the
find(conditions) method. The find(conditions) method is used here without
indicating a callback function in its parameters because the callback function is indicated
in the exec(callback) method.

256 Using MongoDB with Node.js

The advantage of this is that we can insert new methods between the find() method
and the exec() method. For example, if we want to add as additional conditions that the
lastname field must be equal to Clinton, we can write the following:

Adding as search conditions that lastname is “Clinton” (test.js file)

var mongoose = require("mongoose");

mongoose.connect("mongodb://localhost/mydb_test");

var clientSchema = mongoose.Schema({

 lastname : String,

 firstname : String,

 address : String

});

// creation of the Client class associated with the clients

// collection

var Client = mongoose.model("clients", clientSchema);

Client.find({ $or : [{ lastname : "Clinton" }, { firstname :
"Barack"}] })

.where("lastname")

.eq("Clinton")

.exec(function(err, clients) {

 console.log(clients);

});

Note
Methods such as where(field) and eq(value) can be chained after
the find() method. The execution of the search will be effective when
calling the exec() method. Other usage possibilities are described here:
https://mongoosejs.com/docs/api/query.html#query_
Query-where.

You can also use the exec(callback) method without specifying the callback function
as a parameter. For this, we use the then(callback) and catch(callback)
methods to perform the processing on the documents found or in the event of an error.

https://mongoosejs.com/docs/api/query.html#query_Query-where
https://mongoosejs.com/docs/api/query.html#query_Query-where

Searching for documents in MongoDB 257

We write the following for this:

Using exec() method as a Promise object

Client.find({ $or : [{ lastname : "Clinton" }, { firstname :
"Barack"}] })

.where("lastname")

.eq("Clinton")

.exec()

.then(function(clients) {

 console.log(clients); // display the clients

})

.catch(function(err) {

 console.log(err); // display the error

});

The result is displayed in the following figure.

Figure 8.9 – Using the exec(callback) method

We’ve learned how to create documents, then search for them. Now let’s look at how to
update them.

258 Using MongoDB with Node.js

Updating documents in MongoDB
It is possible to modify one or more documents of a collection. The updateOne() and
updateMany() class methods are used respectively to modify the first document found
or all of the documents found.

These two methods have similar parameters:

•	 updateMany(conditions, update, callback) indicates modifying the
data indicated in the update object on the documents specified by the indicated
conditions. The callback function of the form callback(err, response)
is called after the update.

•	 updateOne(conditions, update, callback) indicates modifying the
data indicated in the update object on the first document found by the indicated
conditions. The callback function of the form callback(err, response)
is called after the update.

•	 Only the conditions and update parameters are mandatory in the
two methods.

Warning
If the callback is not present in the method, you must use the then()
or exec() method afterward, otherwise the update is not done.

Let’s modify the address of Clinton, which will now be New York:

Using updateOne() to modify the address of “Clinton” (test.js file)

var mongoose = require("mongoose");

mongoose.connect("mongodb://localhost/mydb_test");

var clientSchema = mongoose.Schema({

 lastname : String,

 firstname : String,

 address : String

});

// creation of the Client class associated with the clients

// collection

Updating documents in MongoDB 259

var Client = mongoose.model("clients", clientSchema);

Client.updateOne({ lastname : "Clinton" }, { address : "New
York" }, function(err, response) {

 console.log("response =", response);

});

Here, we use the callback function to display the content of the response parameter
returned by the function. We get the following result:

Figure 8.10 – Updating a document

Note
The response.modifiedCount field indicates the number of
modified documents.

If you do not want to perform any processing at the end of the update, you can omit
the callback function, but in this case, you must use the then() or exec() method
afterward, otherwise, the update will not take place.

Let’s use the exec() method to perform the update:

Performing update using exec() method (test.js file)

var mongoose = require("mongoose");

mongoose.connect("mongodb://localhost/mydb_test");

var clientSchema = mongoose.Schema({

 lastname : String,

260 Using MongoDB with Node.js

 firstname : String,

 address : String

});

// creation of the Client class associated with the clients

// collection

var Client = mongoose.model("clients", clientSchema);

Client.updateOne({ lastname : "Clinton" },

 { address : "New York" })

.exec(); // exec() mandatory!

Once you know how to create, search for, and then modify documents, you just have to
know how to delete them. Let’s look at how to do it.

Deleting documents in MongoDB
Similar to updateOne() and updateMany(), there are the two class methods,
namely deleteOne(conditions, callback) and deleteMany(conditions,
callback) that allow you to delete the first document (deleteOne()) or all the
documents (deleteMany()) that satisfy the conditions expressed.

In addition, the instance method doc.remove(callback) also makes it possible to
delete the doc document when it is in memory.

Let’s remove Clinton from the collection by using the deleteOne() method, then
display the new contents of the collection:

Using deleteOne() to delete client “Clinton” (test.js file)

var mongoose = require("mongoose");

mongoose.connect("mongodb://localhost/mydb_test");

var clientSchema = mongoose.Schema({

 lastname : String,

 firstname : String,

 address : String

Deleting documents in MongoDB 261

});

// creation of the Client class associated with the clients

// collection

var Client = mongoose.model("clients", clientSchema);

Client.deleteOne({ lastname : "Clinton" }, function(err,
response) {

 console.log("After Clinton's removal");

 console.log("response = ", response);

 Client.find(function(err, clients) {

 console.log("clients = ", clients);

 });

});

In the same way as for the updateOne() and updateMany() methods, it is the
presence of the callback function that triggers the update of the database. If you do not
indicate a callback function, you must in this case use the then() or exec() method
following the deleteOne() or deleteMany() method.

The result is displayed in the following figure:

Figure 8.11 – Deleting the “Clinton” client with deleteOne()

262 Using MongoDB with Node.js

The response object returned in the callback of the deleteOne()
 (or deleteMany()) method indicates the deletedCount field, which contains the
number of documents deleted.

We have successively studied the four possible operations on documents in a MongoDB
database, namely inserting, searching, modifying, and deleting documents. And with this,
we come to the end of this chapter.

Summary
Data management with MongoDB is relatively easy, thanks to the use of external modules
such as mongoose. All possible actions on a database are easily achievable.

The mongo utility, available when installing MongoDB, makes it easy to view collections
and the documents they contain.

Using the MongoDB database is essential for building client-server applications and
maintaining user information.

All that’s left is to see how to interconnect a client side made with Vue.js and a server
side made with Node.js. We will see this in the following chapter. We will build a 100%
JavaScript application in order to show how simple and efficient it is.

9
Integrating Vue.js

with Node.js
In this chapter, we will learn how to integrate a Vue.js application into a Node.js server,
using Express to structure the server code (according to the MVC model) and MongoDB
to store the information.

For this, we will use the example of the list management application built in Chapter 5,
Managing a List with Vue.js. But here, the server used will be a Node.js server, and the list
items will be stored in the MongoDB database. This will allow them to be redisplayed later,
if necessary.

In the end, we will obtain a client-server application entirely made in JavaScript (both on
the client side and on the server side).

Here are the topics covered in this chapter:

•	 Displaying application screens

•	 Building the app with Express

•	 MongoDB database structure

•	 Installing the Axios library

•	 Inserting a new element in the list

264 Integrating Vue.js with Node.js

•	 Displaying list elements

•	 Modifying an element in the list

•	 Removing an element from the list

The application uses the same screens as those already used in Chapter 5, Managing a List
with Vue.js. We repeat them below to make them easier for you to understand.

Technical requirements
You can find the code files for this chapter on GitHub at: https://github.com/
PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/
Chapter%209.zip.

Displaying application screens
Here, we visualize the screens of the application, allowing the following:

•	 Displaying the already existing list (empty at first)

•	 Inserting a new element at the end of the list

•	 Modifying an element of the list

•	 Removing an item from the list

Note
The URL to access the list is http://localhost:3000. The server used
here is a Node.js server running with the Express module. The database used is
MongoDB.

https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/Chapter%209.zip
https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/Chapter%209.zip
https://github.com/PacktPublishing/JavaScript-from-Frontend-to-Backend/blob/main/Chapter%209.zip

Displaying application screens 265

Initially, the list is empty. Only the Add Element button is present on the page (see the
following figure):

Figure 9.1 – Empty item list

Clicking the Add Element button multiple times creates multiple rows with the text
Element X followed by Remove and Modify buttons (here, we clicked on the Add
Element button three times):

Figure 9.2 – Adding three items to the list

266 Integrating Vue.js with Node.js

Next, let’s modify the second element. An input field appears in place of the item text. Let’s
type New Element 2 in place of the text displayed in the input field:

Figure 9.3 – Editing the second item in the list

By clicking outside the input field, the input field disappears, and the text of the element
appears modified:

Figure 9.4 – Second list item changed

Displaying application screens 267

Finally, let’s remove the first and third items from the list:

Figure 9.5 – First and third list items removed

Now, when we refresh the previous window, we see that the list is re-displayed with New
Element 2, thus indicating that the modifications made are indeed stored in a database.
This was not the case when we made this application in Chapter 5, Managing a List with
Vue.js, with only Vue.js, because the elements of the list were not saved in a database:

Figure 9.6 – New list display: the list is preserved

To create this application, we will, of course, use the Vue.js program that we have already
written in Chapter 5, Managing a List with Vue.js. But it will have to be modified so that
this application works on a Node.js server with the Express module and that the data
displayed is stored in the MongoDB database.

268 Integrating Vue.js with Node.js

We’ll indicate here the files of the <GlobalApp> and <Element> components, written
previously, in Chapter 5, Managing a List with Vue.js, to explain the modifications that will
be made to them hereafter.

Here’s the <GlobalApp> component:

<GlobalApp> component (global-app.js file)

import Element from "./element.js";

const GlobalApp = {

 data() {

 return {

 elements : []

 }

 },

 components : {

 Element:Element

 },

 template : `

 <button @click="add()">Add Element</button>

 <Element v-for="(element, index) in elements"

 :key="index"

 :text="element" :index="index"

 @remove="remove($event)" @modify="modify($event)"

 />

 `,

 methods : {

 add() {

 var element = "Element " + (this.elements.length + 1);

 this.elements.push(element);

 },

 remove(params) {

 var index = params.index;

 this.elements.splice(index, 1);

Displaying application screens 269

 },

 modify(params) {

 var index = params.index;

 var value = params.value;

 this.elements[index] = value;

 }

 }

}

export default GlobalApp;

Here’s the <Element> component:

<Element> component (element.js file)

const Element = {

 data() {

 return {

 input : false

 }

 },

 template : `

 {{text}}

 <input v-else type="text" :value="text"

 @blur="modify($event)" ref="refInput" />

 <button @click="remove()"> Remove </button>

 <button @click="input=true"> Modify </button>

 `,

 props : ["text", "index"],

 methods : {

 remove() {

 // process the click on the Remove button

 this.$emit("remove", { index : this.index });

 },

270 Integrating Vue.js with Node.js

 modify(event) {

 var value = event.target.value;

 this.input = false;

 this.$emit("modify", { index : this.index, value :

 value });

 }

 },

 emits : ["remove", "modify"],

 updated() {

 // check that refInput exists, and if so, give focus to

 // the input field

 if (this.$refs.refInput) this.$refs.refInput.focus();

 }

}

export default Element;

The index.html file that allows you to include the <GlobalApp> component is
the following:

index.html file

<html>

 <head>

 <meta charset="utf-8" />

 <script src="https://unpkg.com/vue@next"></script>

 <style type="text/css">

 li {

 margin-top:10px;

 }

 ul button {

 margin-left:10px;

Displaying application screens 271

 }

 </style>

 </head>

 <body>

 <div id="app"></div>

 </body>

 <script type="module">

 import GlobalApp from "./global-app.js";

 var app = Vue.createApp({

 components : {

 GlobalApp:GlobalApp

 },

 template : "<GlobalApp />"

 });

 var vm = app.mount("div#app");

 </script>

</html>

To create this application, we start by creating the Node.js application, which will host
the JavaScript code written with Vue.js. To do this, the application is created using the
express command. The application will be named list (for example), so we will have
to type the express list command to create this application, as is explained in the
following section.

272 Integrating Vue.js with Node.js

Building the app with Express
Let’s start by creating the application with Express. To do this, type the express list
command, which creates the application named list. This application will be accessible using
the URL http://localhost:3000, as seen in Chapter 7, Using Express with Node.js.

Let’s type the express list command in the current directory:

Figure 9.7 – Creating the application list with Express

The server is started by typing the indicated commands, namely: cd list, npm
install, followed by npm start.

The application is started by typing the URL http://localhost:3000 in the browser.

We display the basic application created as standard by Express (see Figure 9.8).

If an error occurs while loading the Express modules, you can type the npm link
express command in order to locate the Express module within the application. And
if an error occurs while loading the mongoose module, you can type the npm link
mongoose command.

Building the app with Express 273

If all is okay, you obtain the following:

Figure 9.8 – Standard application created with Express

The goal now is to visualize our list management application, created with Vue.js. It
consists of three files:

•	 The index.html file, which is the file to view at startup

•	 The global-app.js file, which describes the main <GlobalApp> component of
the application

•	 The element.js file, which describes the <Element> component corresponding
to a displayed element line

The main directory of the Express application (the list directory) includes a public
subdirectory containing the images, javascripts, and stylesheets subdirectories.

Let’s drop the three files index.html, global-app.js, and element.js in the
public directory, directly under the root.

274 Integrating Vue.js with Node.js

Note
Modifying files in the public directory does not require a server restart. On
the other hand, modifying the app.js file of the Express application requires
restarting the server with npm start.

Let’s view the URL http://localhost:3000 again in the browser. The Vue.js
application we built in Chapter 5, Managing a List with Vue.js, will now appear. Button
clicks will also start working.

The only difference is that our Vue.js application runs on a Node.js server instead of
running on another application server like in Chapter 5, Managing a List with Vue.js.

Figure 9.9 – Application running on a Node.js server

However, if the page displayed is refreshed, the list previously displayed is deleted because
there is currently no persistence of the information displayed in the database.

We will now see how our application can interact with the Node.js server and the
MongoDB database.

MongoDB database structure
To build our application, we will have to perform data reads and updates on the server in
the database. For example, each click on the Add Element button should insert a new line
into the displayed HTML page but should also insert a new document into MongoDB’s
elements collection. Indeed, each document of the elements collection will represent
the text of the element displayed in the list on the screen.

MongoDB database structure 275

Note
To access the MongoDB database, you start by installing the mongoose
module (see the previous chapter), which allows you to manipulate database
documents in JavaScript.

To do this, type the npm install mongoose command (from the main
directory, list, of the Express application).

The elements collection will be the one that will store the list items in MongoDB.
A document in the elements collection will consist of its text associated with the text
property. Each document will also have the _id property, whose unique value is assigned
by MongoDB for each document inserted into the collection.

Note
The structure of the database is described using the listSchema schema,
which will be associated with the List model used to create the documents of
the elements collection.

Express’s app.js file is modified to include these definitions:

Adding List model to use MongoDB’s elements collection (app.js file)

var createError = require('http-errors');

var express = require('express');

var path = require('path');

var cookieParser = require('cookie-parser');

var logger = require('morgan');

var indexRouter = require('./routes/index');

var usersRouter = require('./routes/users');

var mongoose = require("mongoose");

mongoose.connect("mongodb://localhost/mydb_test"); // we

 // connect

 // to

 // mydb_test

var listSchema = mongoose.Schema({

 text : String // text associated with the list item

276 Integrating Vue.js with Node.js

});

// association of the List model with the elements collection

var List = mongoose.model("elements", listSchema);

var app = express();

// view engine setup

app.set('views', path.join(__dirname, 'views'));

app.set('view engine', 'jade');

app.use(logger('dev'));

app.use(express.json());

app.use(express.urlencoded({ extended: false }));

app.use(cookieParser());

app.use(express.static(path.join(__dirname, 'public')));

app.use('/', indexRouter);

app.use('/users', usersRouter);

// catch 404 and forward to error handler

app.use(function(req, res, next) {

 next(createError(404));

});

// error handler

app.use(function(err, req, res, next) {

 // set locals, only providing error in development

 res.locals.message = err.message;

 res.locals.error = req.app.get('env') === 'development' ?

 err : {};

 // render the error page

 res.status(err.status || 500);

 res.render('error');

Installing the Axios library 277

});

module.exports = app;

The app.js file will then be enriched to define the new routes that will update the
database. These routes will be created by using the app.use() method (as explained in
Chapter 7, Using Express with Node.js). The creation of these routes will be described in
the following sections.

Note
Thanks to the List model that we have created, we will have access to the
methods List.create(), List.find(), and so on for manipulating
documents in the elements collection of the MongoDB database.

To create interactions between the client (here, the browser) and the server (here, the
Node.js server) in order to update the database containing the list of elements, we use the
Axios JavaScript library here.

Installing the Axios library
We see that, for now, we can manipulate the list items displayed on the HTML page, but
we cannot yet update them in the database on the server.

For this, the Vue.js program must be able to communicate with the Node.js server. This is
possible using a JavaScript library such as Axios (see https://github.com/axios/
axios). All you have to do is include the library in the HTML page (here, it will be in the
index.html file) in order to be able to use its features.

Note
The Axios library is a library allowing communication between a browser and
a server using Ajax technology. This technology allows a browser and a server
to exchange information while remaining on the same HTML page, which is
what we want here. This is called a single-page application (SPA) (when the
application consists of a single HTML page).

Let’s include the Axios library in the index.html file (using the <script> tag), and
display the value of the axios.VERSION variable, which contains the version number
of the library. This verifies that the Axios library is accessible:

https://github.com/axios/axios
https://github.com/axios/axios

278 Integrating Vue.js with Node.js

Including Axios library and displaying version number (index.html file)

<html>

 <head>

 <meta charset="utf-8" />

 <script src="https://unpkg.com/vue@next"></script>

 <script src="https://unpkg.com/axios/dist/

 axios.min.js"></script>

 <style type="text/css">

 li {

 margin-top:10px;

 }

 ul button {

 margin-left:10px;

 }

 </style>

 </head>

 <body>

 <div id="app"></div>

 </body>

 <script type="module">

 console.log("axios.VERSION = " + axios.VERSION);

 // display Axios version number

 import GlobalApp from "./global-app.js";

 var app = Vue.createApp({

 components : {

 GlobalApp:GlobalApp

 },

 template : "<GlobalApp />"

Installing the Axios library 279

 });

 var vm = app.mount("div#app");

 </script>

</html>

We simply added in the index.html file the Axios library (using the <script> tag)
and the instruction to display the version number of the Axios library in the console,
which allows us to check that the Axios library is accessible afterward.

Let’s display the page again in the browser (with the URL http://localhost:3000).

We get a message in the console indicating the version number of Axios used (see the
following figure), thus showing that we have access to the functionalities of the
Axios library:

Figure 9.10 – Displaying the Axios version number

Now let’s see how to use Axios to interact with the server and update the
database documents.

The goal is, of course, to make maximum use of the Vue.js code that we have already
written by modifying it to use the Axios library and thus perform communication with
the Node.js server.

280 Integrating Vue.js with Node.js

Subsequently, we will therefore modify the following files (in addition to the index.
html file previously modified to include the Axios library):

•	 The global-app.js file, to make calls to the Axios library

•	 The element.js file, to adapt it to the structure of the database

•	 The app.js file (created by Express), to perform database queries

We have seen how to install and use Axios in our program. Now let’s see how to use it to
insert an element into the database.

Inserting a new element in the list
Let’s see how to store a new element in the list, following a click on the Add Element button.

The text associated with this element must be transmitted to the server, which will be
of the form Element X. We will see later how to modify this text after clicking on the
Modify button.

The add() method defined in the <GlobalApp> component is used to insert a new
element into the displayed list. It will be necessary to add instructions that use the Axios
library in order to also insert this new element in the MongoDB elements collection.

Before starting to use Axios, it is useful to slightly modify the JavaScript program written
with Vue.js. To do this, we will use a new attribute when creating the <Element>
component, replacing the text and index attributes with the element attribute.

Replacing the text and index attributes with the
element attribute
When creating an element, we currently use the element’s text and index, which are then
used in the <Element> component, to display it (with its text) or to modify or delete
it (with its index).

The use of the index to identify the element in the list displayed on the screen was relevant
before, but this is no longer the case if we want to modify or delete the element in the
database. This is because the documents of a MongoDB collection are not identified by
their index but rather by their identifier _id.

Inserting a new element in the list 281

Rather than passing the text and index parameters in the <Element> component,
we simplify by passing only the element parameter, which is a { text, _id }
object. The element.text field allows you to retrieve the text to be displayed, while the
element._id field allows you to access the unique identifier of the element (such as the
index, which was unique for each element).

We modify the global-app.js and element.js files to take this into account.

These files are modified below but will be modified again to take into account the
connection with the database:

global-app.js file

import Element from "./element.js";

const GlobalApp = {

 data() {

 return {

 elements : [] // array of object { text, _id }

 // (_id = document id in MongoDB)

 }

 },

 components : {

 Element:Element

 },

 template : `

 <button @click="add()">Add Element</button>

 <Element v-for="(element, index) in elements"

 :key="index" :element="element"

 @remove="remove($event)" @modify="modify($event)"

 />

 `,

 methods : {

 add() {

 var text = "Element " + (this.elements.length + 1);

 this.elements.push({text:text,

 _id:this.elements.length});

282 Integrating Vue.js with Node.js

 // to modify to retrieve the real

 // _id provided by MongoDB

 },

 remove(params) {

 var id = params.id;

 // remove the element with this id from the elements

 // array

 this.elements = this.elements.filter(

 function(element) {

 if (element._id == id) return false;

 else return true;

 });

 },

 modify(params) {

 var id = params.id;

 var value = params.value;

 // modify the text of the element with this id in the

 // elements array

 this.elements = this.elements.map(function(element) {

 if (element._id == id) {

 element.text = value;

 return element;

 }

 else return element;

 });

 }

 }

}

export default GlobalApp;

The following remarks can be made about the preceding code:

•	 The reactive elements variable now becomes an array of { text, _id }
objects. To do this, we write in the add() method the instruction this.
elements.push({text:text, _id:this.elements.length})
by inserting an object of the form {text, _id} into the elements array.

Inserting a new element in the list 283

•	 The value of the _id property is temporary here: in fact, you must then retrieve
the identifier provided by MongoDB when the document has been saved in
the database.

•	 Each <Element> component is constructed (in the template) by passing it an
element attribute that represents a { text, _id } object.

•	 The remove() method must remove from the list the element having the passed
identifier. To do this, we use the JavaScript filter() method to keep all the
elements except the one with this identifier.

•	 Similarly, the modify() method must modify the value of the element of the list
having this identifier. We use the JavaScript map() method to return a new array of
elements, for which the element with this identifier has its value modified.

The element.js file becomes the following:

element.js file

const Element = {

 data() {

 return {

 input : false

 }

 },

 template : `

 {{element.text}}

 <input v-else type="text" :value="element.text"

 @blur="modify($event)"

 ref="refInput" />

 <button @click="remove()"> Remove </button>

 <button @click="input=true"> Modify </button>

 `,

 props : ["element"],

 methods : {

 remove() {

 // process the click on the Remove button

 this.$emit("remove", { id : this.element._id });

284 Integrating Vue.js with Node.js

 },

 modify(event) {

 var value = event.target.value;

 this.input = false;

 this.$emit("modify", { id : this.element._id, value :

 value });

 }

 },

 emits : ["remove", "modify"],

 updated() {

 // check that refInput exists, and if so, give focus to

 // the input field

 if (this.$refs.refInput) this.$refs.refInput.focus();

 }

}

export default Element;

As the attribute transmitted for the creation of the <Element> component is named
element and corresponds to an object { text, _id }, we use element.text
and element._id to display the text and use the identifier of the element (instead of
the index).

You can check that the program still works, even if the connection with the server for
insertion into the database has not yet been made.

Note
We have modified the code of the Vue.js program in order to adapt it to the use
of the MongoDB database.

Let’s now explain how the Axios library will allow the client and the server to
communicate with each other, in order to update the MongoDB database.

Inserting a new element in the list 285

Description of the Axios library for communicating
between the client and the server
Now let’s use Axios to insert the element into the database.

Axios offers four main methods for communicating between the browser and the server,
with the JavaScript language. The server we are using here is a Node.js server, but Axios
allows you to interact with any type of server. The four methods are those related to the
types of HTTP requests one can make: GET, POST, PUT, and DELETE:

•	 axios.get(url, options): This allows you to perform a GET type request.

•	 axios.post(url, options): This allows you to perform a POST type request.

•	 axios.put(url, options): This allows you to perform a PUT type request.

•	 axios.delete(url, options): This allows you to perform a DELETE
type request.

The options parameter allows you to specify additional parameters that will allow
the server to perform its processing. For example, in the case of our application, we will
indicate in this parameter the text of the list element that we want to store in the database.

Note
All these methods return a Promise object, which then allows
you to continue with the then(callback) method. The
callback(response) function is used to retrieve and analyze the
server’s response following the request being made.

Promise objects were studied at the end of Chapter 2, Exploring the
Advanced Concepts of JavaScript.

In each case, we will have to process the Axios request sent on the client side (in the
global-app.js file associated with the <GlobalApp> component), then take it
into account on the server side (in the app.js file, which receives the queries issued
by Axios).

Now let’s see how the POST request will allow us to insert elements into the database.

286 Integrating Vue.js with Node.js

Using Axios with a POST type request (client side)
Now let’s see how to use the axios.post() method to insert a new element into the
elements collection, following the creation of a new element in the list.

Note
We are using the POST request here to insert the item, but other types of
requests would work the same. However, using the POST request makes
sense here because it follows the official recommendations for using
REpresentational State Transfer (REST) requests.

Although only a few lines are added to each file, the full code is shown below each time,
so you can see where the changes are located:

Adding a new element in the database, client side (global-app.js file)

import Element from "./element.js";

const GlobalApp = {

 data() {

 return {

 elements : [] // array of object { text, _id }

 // (_id = document id in MongoDB)

 }

 },

 components : {

 Element:Element

 },

 template : `

 <button @click="add()">Add Element</button>

 <Element v-for="(element, index) in elements"

 :key="index" :element="element"

 @remove="remove($event)" @modify="modify($event)"

 />

 `,

 methods : {

 add() {

Inserting a new element in the list 287

 var text = "Element " + (this.elements.length + 1);

 axios.post("/list", {text:text}) // pass object

 // {text:text} to

 // server

 .then((response) => {

 this.elements.push({text:text,

 _id:response.data.id});

 });

 },

 remove(params) {

 var id = params.id;

 // remove the element with this id from the elements

 // array

 this.elements = this.elements.filter(

 function(element) {

 if (element._id == id) return false;

 else return true;

 });

 },

 modify(params) {

 var id = params.id;

 var value = params.value;

 // modify the text of the element with this id in the

 // elements array

 this.elements = this.elements.map(function(element) {

 if (element._id == id) {

 element.text = value;

 return element;

 }

 else return element;

 });

 }

 }

}

export default GlobalApp;

288 Integrating Vue.js with Node.js

The axios.post("/list", {text:text}) method activates the /list URL on
the server, using a POST type request. The text parameter is passed to the server so that
it stores it in the elements collection.

In return for the call to the server, the latter returns a response object containing in
data.id the identifier of the document created in MongoDB. This identifier and the
element text are then stored in the elements array. Because the elements array is
a reactive variable of Vue.js, its update causes the list to be re-displayed in the browser.

Note
Notice how the callback function is written in the then(callback)
method. We use the form with => (that is without using the function
keyword) in order to preserve the value of this in the callback function. If
you use the function keyword instead, the value of this is undefined
and you can no longer access the elements variable through this.
elements, which will cause an error.

The POST request was issued by the client (the browser), so it must now be processed by
the server to insert a new element into the collection. Let’s study how to proceed.

POST type request processing (server side)
Now let’s see how the server handles the receipt of the POST request. It must create
a new document in the elements collection of the database. The server’s app.js file is
modified to take into account the POST request on the /list URL:

Adding a new element in the database, server side (app.js file)

var createError = require('http-errors');

var express = require('express');

var path = require('path');

var cookieParser = require('cookie-parser');

var logger = require('morgan');

var indexRouter = require('./routes/index');

var usersRouter = require('./routes/users');

var mongoose = require("mongoose");

Inserting a new element in the list 289

mongoose.connect("mongodb://localhost/mydb_test");

var listSchema = mongoose.Schema({

 text : String

});

var List = mongoose.model("elements", listSchema);

var app = express();

// view engine setup

app.set('views', path.join(__dirname, 'views'));

app.set('view engine', 'jade');

app.use(logger('dev'));

app.use(express.json());

app.use(express.urlencoded({ extended: false }));

app.use(cookieParser());

app.use(express.static(path.join(__dirname, 'public')));

app.use('/', indexRouter);

app.use('/users', usersRouter);

// creating a new element in the list

app.post("/list", function(req, res) {

 var text = req.body.text;

 List.create({text:text}, function(err, doc) {

 res.json({id:doc._id}); // send the MongoDB identifier

 // in the response

 });

});

// catch 404 and forward to error handler

app.use(function(req, res, next) {

 next(createError(404));

290 Integrating Vue.js with Node.js

});

// error handler

app.use(function(err, req, res, next) {

 // set locals, only providing error in development

 res.locals.message = err.message;

 res.locals.error = req.app.get('env') === 'development' ?

 err : {};

 // render the error page

 res.status(err.status || 500);

 res.render('error');

});

module.exports = app;

The app.post("/list", callback) method is used to receive and process the
request to insert the new element into the elements collection.

The text sent in the Axios text parameter is received on the server in the req.body.
text variable. The update of the elements collection is performed by the List.
create() class method, to which we pass the text parameter. In the callback function
associated with the create() method, we retrieve the identifier of the document created
in doc._id.

We return this identifier in the response sent to the browser as a JSON object { id :
doc._id }. We use the res.json() method for this. This server return is processed
in the then(callback) method when calling the axios.post() method previously
seen (the global-app.js file).

If you run the preceding program, you’ll see that the lines containing Element X are
inserted one under the other on the page. But nothing says that the database has been
updated. Let’s verify the correct insertion using the tools available in MongoDB.

Inserting a new element in the list 291

Verifying the correct operation of the insertion in
the database
To verify the insertion in the database, just use the mongo utility, then type the
command db.elements.find() to see the inserted documents displayed (assuming
we have already connected the mydb_test database with the db=connect("mydb_
test") command).

Assuming that three list items have been inserted, we get the following:

Figure 9.11 – Using the mongo utility to view the contents of the elements collection

The next step is to retrieve the information stored in the database to display the items
in the list. The list should be viewed when the page is displayed at the start and will be
updated as insertions, modifications, or deletions are made.

292 Integrating Vue.js with Node.js

Displaying list elements
In this section, we deal with the first display of the page. Insertion has been seen
previously, and modification and deletion are covered in the following sections.

Note
To display the list when the application starts, you must use the created()
method or the mounted() method of the component, which are called in
each Vue.js component when the component is created.

To retrieve the list of elements, we are going to use an HTTP GET request.

Using Axios with a GET type request (client side)
Here, we are going to make a GET type request with the /list URL to the server. The
axios.get("/list") instruction is used to perform this request. We can use this
instruction in the created() or mounted() method. Here, we choose to use it in the
created() method:

Retrieving list of items, client side (global-app.js file)

import Element from "./element.js";

const GlobalApp = {

 data() {

 return {

 elements : [] // array of object { text, _id }

 // (_id = document id in MongoDB)

 }

 },

 components : {

 Element:Element

 },

 template : `

 <button @click="add()">Add Element</button>

 <Element v-for="(element, index) in elements"

 :key="index" :element="element"

 @remove="remove($event)" @modify="modify($event)"

 />

Displaying list elements 293

 `,

 methods : {

 add() {

 var text = "Element " + (this.elements.length + 1);

 axios.post("/list", {text:text})

 .then((response) => {

 console.log(this.elements);

 this.elements.push({text:text,

 _id:response.data.id});

 });

 },

 remove(params) {

 var id = params.id;

 // remove the element with this id from the elements

 // array

 this.elements = this.elements.filter(

 function(element) {

 if (element._id == id) return false;

 else return true;

 });

 },

 modify(params) {

 var id = params.id;

 var value = params.value;

 // modify the text of the element with this id in the

 // elements array

 this.elements = this.elements.map(function(element) {

 if (element._id == id) {

 element.text = value;

 return element;

 }

 else return element;

 });

 }

 },

294 Integrating Vue.js with Node.js

 created() {

 axios.get("/list")

 .then((response) => {

 this.elements = response.data.elements.map(

 function(element) {

 return {_id : element._id, text : element.text }

 });

 });

 }

}

export default GlobalApp;

The axios.get("/list") method makes the request to the server, then processes the
response received in the then(callback) method. As before, the received response
object contains the data property, which contains the response returned by the server
(the elements field – see below).

As the server sends all the document fields of the elements collection, we filter the list
received by the map() method in order to keep only the _id and text fields (we thus
remove the __v field associated with the version number, which is unnecessary here).

Now let’s see how to process the GET request on the Node.js server side.

GET type request processing (server side)
The GET /list request is received by the Node.js server through the
app.get("/list") method defined in the app.js file. The processing will consist
of reading the content of the elements collection and returning it in JSON form to the
browser in the elements property. Each item in the returned collection has _id, text,
and __v (for the version number of the document) fields:

Retrieving list of items, server side (app.js file)

var createError = require('http-errors');

var express = require('express');

var path = require('path');

var cookieParser = require('cookie-parser');

var logger = require('morgan');

Displaying list elements 295

var indexRouter = require('./routes/index');

var usersRouter = require('./routes/users');

var mongoose = require("mongoose");

mongoose.connect("mongodb://localhost/mydb_test");

var listSchema = mongoose.Schema({

 text : String

});

var List = mongoose.model("elements", listSchema);

var app = express();

// view engine setup

app.set('views', path.join(__dirname, 'views'));

app.set('view engine', 'jade');

app.use(logger('dev'));

app.use(express.json());

app.use(express.urlencoded({ extended: false }));

app.use(cookieParser());

app.use(express.static(path.join(__dirname, 'public')));

app.use('/', indexRouter);

app.use('/users', usersRouter);

// creating a new element in the list

app.post("/list", function(req, res) {

 var text = req.body.text;

 console.log(text);

 List.create({text:text}, function(err, doc) {

 res.json({id:doc._id});

 });

});

296 Integrating Vue.js with Node.js

// retrieving list of elements

app.get("/list", function(req, res) {

 List.find(function(err, elements) {

 res.json({elements:elements});

 });

});

// catch 404 and forward to error handler

app.use(function(req, res, next) {

 next(createError(404));

});

// error handler

app.use(function(err, req, res, next) {

 // set locals, only providing error in development

 res.locals.message = err.message;

 res.locals.error = req.app.get('env') === 'development' ?

 err : {};

 // render the error page

 res.status(err.status || 500);

 res.render('error');

});

module.exports = app;

The elements collection is read using the List.find() class method. We return the
{ elements : elements } object in response to the browser, the use of which
we saw earlier.

Modifying an element in the list 297

The list of items is now displayed each time the application is started. Just restart
the server with npm start, then re-display the URL of the page, http://
localhost:3000.

Figure 9.12 – The list of elements is displayed when the application starts

We have seen how to insert an element and retrieve the list of elements. Next, let’s see how
to modify an element in the list.

Modifying an element in the list
Here we show how to modify an element of the list, keeping this modification in the
database. A PUT type request will be used for this.

Using Axios with a PUT type request (client side)
The axios.put("/list", options) method is used to perform a PUT type request
to the server. We transmit to the server in the options parameter the new text of the
modified element and its identifier in the database. The identifier and the new text will
allow the item to be updated on the server:

Modifying an element, client side (global-app.js file)

import Element from "./element.js";

const GlobalApp = {

298 Integrating Vue.js with Node.js

 data() {

 return {

 elements : [] // array of object { text, _id }

 // (_id = document id in MongoDB)

 }

 },

 components : {

 Element:Element

 },

 template : `

 <button @click="add()">Add Element</button>

 <Element v-for="(element, index) in elements"

 :key="index" :element="element"

 @remove="remove($event)" @modify="modify($event)"

 />

 `,

 methods : {

 add() {

 var text = "Element " + (this.elements.length + 1);

 axios.post("/list", {text:text})

 .then((response) => {

 console.log(this.elements);

 this.elements.push({text:text,

 _id:response.data.id});

 });

 },

 remove(params) {

 var id = params.id;

 // remove the element with this id from the elements

 // array

 this.elements = this.elements.filter(

 function(element) {

 if (element._id == id) return false;

 else return true;

Modifying an element in the list 299

 });

 },

 modify(params) {

 var id = params.id;

 var value = params.value;

 // modify the text of the element with this id in the

 // elements array

 this.elements = this.elements.map(function(element) {

 if (element._id == id) {

 element.text = value;

 return element;

 }

 else return element;

 });

 // modify the text of the element having this

 // identifier

 axios.put("/list", {text:value, id:id});

 }

 },

 created() {

 axios.get("/list")

 .then((response) => {

 this.elements = response.data.elements.map(

 function(element) {

 return {_id : element._id, text : element.text }

 });

 });

 }

}

export default GlobalApp;

The then(callback) method should not be used here because the server does not
return any information for the browser.

Let’s now see the management of the PUT request on the server side.

300 Integrating Vue.js with Node.js

PUT type request processing (server side)
The server processes the PUT /list request in the app.js file. The processing consists
of carrying out an update of the document of the collection having this identifier, with the
text received from the browser:

Modifying an element, server side (app.js file)

var createError = require('http-errors');

var express = require('express');

var path = require('path');

var cookieParser = require('cookie-parser');

var logger = require('morgan');

var indexRouter = require('./routes/index');

var usersRouter = require('./routes/users');

var mongoose = require("mongoose");

mongoose.connect("mongodb://localhost/mydb_test");

var listSchema = mongoose.Schema({

 text : String

});

var List = mongoose.model("elements", listSchema);

var app = express();

// view engine setup

app.set('views', path.join(__dirname, 'views'));

app.set('view engine', 'jade');

app.use(logger('dev'));

app.use(express.json());

app.use(express.urlencoded({ extended: false }));

app.use(cookieParser());

app.use(express.static(path.join(__dirname, 'public')));

Modifying an element in the list 301

app.use('/', indexRouter);

app.use('/users', usersRouter);

// creating a new element in the list

app.post("/list", function(req, res) {

 var text = req.body.text;

 console.log(text);

 List.create({text:text}, function(err, doc) {

 res.json({id:doc._id});

 });

});

// retrieving list of elements

app.get("/list", function(req, res) {

 List.find(function(err, elements) {

 res.json({elements:elements});

 });

});

// modifying an element in the list

app.put("/list", function(req, res) {

 var id = req.body.id;

 var text = req.body.text;

 List.updateOne({_id:id}, {text:text}).exec();

 // don't forget exec()!

 res.send(); // close the connection to the browser

});

// catch 404 and forward to error handler

app.use(function(req, res, next) {

 next(createError(404));

});

// error handler

app.use(function(err, req, res, next) {

 // set locals, only providing error in development

302 Integrating Vue.js with Node.js

 res.locals.message = err.message;

 res.locals.error = req.app.get('env') === 'development' ?

 err : {};

 // render the error page

 res.status(err.status || 500);

 res.render('error');

});

module.exports = app;

The text and the identifier are retrieved from the server in the req.body.text and
req.body.id variables. The document with this identifier is updated in the database
with the new text. The List.updateOne() class method allows this document to be
modified, but since it does not use a callback function afterward, the exec() method
must be used afterward for the update to be carried out in the database.

Also notice the res.send() instruction at the end of the processing. It closes the
connection between the browser and the server. If the connection is not closed, the
browser waits for the server’s response, which would never come if the server sends
nothing back to the browser.

Let’s finish by explaining how to remove an item from the list.

Removing an element from the list
Finally, we will learn how to remove an element from the list. A DELETE type request will
be used for this.

Using Axios with a DELETE type request (client side)
The axios.delete("/list", options) method is used to trigger a DELETE type
request on the server. The options parameter must indicate the identifier of the element
to be deleted from the collection.

However, unlike the previous axios.get(), axios.put(), and axios.post()
calls, the axios.delete("/list", options) call requires that the options
parameter be written in the data property (thus written as { data : options }).
If you don’t follow this convention, it won’t work.

Removing an element from the list 303

Here are the instructions for performing a DELETE request with the Axios library:

Deleting an element, client side (global-app.js file)

import Element from "./element.js";

const GlobalApp = {

 data() {

 return {

 elements : [] // array of object { text, _id }

 // (_id = document id in MongoDB)

 }

 },

 components : {

 Element:Element

 },

 template : `

 <button @click="add()">Add Element</button>

 <Element v-for="(element, index) in elements"

 :key="index" :element="element"

 @remove="remove($event)" @modify="modify($event)"

 />

 `,

 methods : {

 add() {

 var text = "Element " + (this.elements.length + 1);

 axios.post("/list", {text:text})

 .then((response) => {

 console.log(this.elements);

 this.elements.push({text:text,

 _id:response.data.id});

 });

 },

 remove(params) {

 var id = params.id;

 // remove the element with this id from the elements

304 Integrating Vue.js with Node.js

 // array

 this.elements = this.elements.filter(

 function(element) {

 if (element._id == id) return false;

 else return true;

 });

 axios.delete("/list", { data : {id:id} });

 // the options must be written in the data

 // property

 },

 modify(params) {

 var id = params.id;

 var value = params.value;

 // modify the text of the element with this id in the

 // elements array

 this.elements = this.elements.map(function(element) {

 if (element._id == id) {

 element.text = value;

 return element;

 }

 else return element;

 });

 axios.put("/list", {text:value, id:id});

 // modify the text of the element having this

 // identifier

 }

 },

 created() {

 axios.get("/list")

 .then((response) => {

 this.elements = response.data.elements.map(

 function(element) {

 return {_id : element._id, text : element.text }

 });

 });

 }

Removing an element from the list 305

}

export default GlobalApp;

As mentioned before, we use the options parameter of the axios.delete(/list",
options) method in the form { data : options } so that the options are correctly
passed by the DELETE method.

Let’s now examine the processing performed by the server when receiving the
DELETE request.

DELETE type request processing (server side)
The server receives the DELETE /list request using the app.delete("/list,
callback) method. The callback function uses the identifier passed in the request to
delete the corresponding document from the elements collection:

Deleting an element, server side (app.js file)

var createError = require('http-errors');

var express = require('express');

var path = require('path');

var cookieParser = require('cookie-parser');

var logger = require('morgan');

var indexRouter = require('./routes/index');

var usersRouter = require('./routes/users');

var mongoose = require("mongoose");

mongoose.connect("mongodb://localhost/mydb_test");

var listSchema = mongoose.Schema({

 text : String

});

var List = mongoose.model("elements", listSchema);

var app = express();

306 Integrating Vue.js with Node.js

// view engine setup

app.set('views', path.join(__dirname, 'views'));

app.set('view engine', 'jade');

app.use(logger('dev'));

app.use(express.json());

app.use(express.urlencoded({ extended: false }));

app.use(cookieParser());

app.use(express.static(path.join(__dirname, 'public')));

app.use('/', indexRouter);

app.use('/users', usersRouter);

// creating a new element in the list

app.post("/list", function(req, res) {

 var text = req.body.text;

 console.log(text);

 List.create({text:text}, function(err, doc) {

 res.json({id:doc._id});

 });

});

// retrieving list of elements

app.get("/list", function(req, res) {

 List.find(function(err, elements) {

 res.json({elements:elements});

 });

});

// modifying an element in the list

app.put("/list", function(req, res) {

 var id = req.body.id;

 var text = req.body.text;

 List.updateOne({_id:id}, {text:text}).exec();

 res.send(); // close the connection to the browser

Removing an element from the list 307

});

// remove an element from the list

app.delete("/list", function(req, res) {

 var id = req.body.id;

 console.log(req.body.id);

 List.deleteOne({_id:id}).exec(); // don't forget exec()!

 res.send(); // close the connection to the browser

});

// catch 404 and forward to error handler

app.use(function(req, res, next) {

 next(createError(404));

});

// error handler

app.use(function(err, req, res, next) {

 // set locals, only providing error in development

 res.locals.message = err.message;

 res.locals.error = req.app.get('env') === 'development' ?

 err : {};

 // render the error page

 res.status(err.status || 500);

 res.render('error');

});

module.exports = app;

The List.deleteOne({_id:id}) method is used to delete the document having
this identifier in the collection. As we do not use a callback function in the List.
deleteOne() method, we call the exec() method so that the deletion is performed in
the database.

308 Integrating Vue.js with Node.js

Also, notice the res.send() instruction at the end of the processing. It closes the
connection between the browser and the server. If the connection is not closed, the
browser waits for the server’s response, which would never come if the server sends
nothing back to the browser. In this case, you would see unexpected results by clicking
several times on the Delete buttons in the list and reloading the list.

We have seen how to use MongoDB to insert, modify, and delete elements in a list, using
a library such as Axios, allowing communication between the JavaScript code of the
browser and the JavaScript code written for the server. And now, this brings us to the
end of this chapter and the book.

Summary
Through this complete example, we have seen how to use JavaScript on both the client
side (here, with Vue.js) and the server side (with Node.js and MongoDB).

The use of a single language to carry out all development simplifies learning and ensures
great consistency throughout the application.

In addition, tools such as Vue.js, allowing the creation of reusable components, and
modules such as Express and mongoose based on the MVC model, make it possible
to properly architect JavaScript code, both on the client side and on the server side.

We also saw how the Axios library made it possible to communicate between the client
and the server.

You now have everything you need to create reliable, robust, and well-structured client
and server applications entirely in JavaScript.

Thanks
Thank you, dear reader, for purchasing and reading this book. It was written for the sole
purpose of helping and guiding you. We hope it has been of great help to you.

If so, we ask you for a very small but extremely important contribution – to make our
book knownto others by means at your disposal, in the hope that it can keep helping
people like you. Thanks very much!

Index

Symbols
<Element> component

using 174-176
<input> element

 element, transforming
into 183, 184

<script> tag
and </script> tag, JavaScript code

writing between 8-10
 element

transforming, into <input>
element 183, 184

$emit()
using, to communicate with

parent component 136-140
$event parameter

used, for checking entered value
is less than 100 130-132

used, for entering only digits 132-134
using 130

A
Ajax technology 277
alert() function

versus console.log() method 11-13

app.js file
defined routes, analyzing 226-229
initial content 223-225
route, adding 229
route, processing directly 229

application
splitting, into components 169-172

application components
$emit(), using to communicate with

parent component 136, 138-140
assembling 134, 136
props, using to communicate with

child component 140-143
application screens

displaying 166-169, 264-271
array

about 55
creating 55
creating, with Array class 56
creating, with square brackets

[and] 55, 56
elements, adding by index 64
elements, adding with push()

method 64-66
elements, deleting from 68, 69
elements, filtering 69

310 Index

elements, filtering with
filter(callback) method 69, 70

elements, filtering with
map(callback) method 70, 71

items, adding 64
Array class

used, for creating array 56, 57
array elements

accessing 57
accessing, by index 57-59
accessing, with forEach(callback)

method 61, 62
accessing, with for() or while() loop 60
deleting 66
value, deleting 66, 67

arrays 6
attributes

using, in component 114, 115, 117
Axios JavaScript library

installing 277, 279
reference link 277

C
callback function 61
callback parameter, of find(conditions,

callback) method
using 254, 255

cascade tests 29
characters

accessing, in string 75
character string

given format, checking 78-80
modifying 77
part, replacing with given format 80, 82

character strings 6
about 72
creating 72

literal, creating with backticks 73-75
literal, creating with double or

single quotes 72, 73
charAt(index) method

using 76
child component

props, using to communicate
with 140-143

class
about 42
constructor() method, using 50, 51, 53
defining 42, 43
methods 43
methods, adding 47-49
properties 43
properties, adding 46, 47
used, for creating object 43-45

classic effects, examples
about 157
move-down effect 160-163
opacity effect 159, 160
shrink effect 157-159

clearInterval() function
using 87-89

collection
about 237, 243

colors module
features, using 212-214
installing, in node_modules

local directory 212
component

attributes, using 114-117
computed properties, defining in

computed section 112, 114
creating 103, 104
inserting, from external file 107-110
inserting, in application file 104-107
methods, adding 110

Index 311

methods, defining in methods
section 111, 112

computed properties
about 112
defining, in computed section 112, 114

computed section
computed properties, defining 112, 114

conditional tests
writing conditions 25

console.log() method
versus alert() function 11-13

constructor() method
using 50, 51, 53

created() method 189
create(doc, callback) class method

using 248-250
CSS class names

using, for effect 154, 156
CSS code

used, for changing appearance
of list 177, 178

D
directives

about 117
using 117
v-else directive 118, 119
v-for directive 120
v-if directive 118, 119
v-model directive 123-125
v-show directive 120

doc.save(callback) instance method
using 245-247

Document Object Model (DOM) 188
documents

about 237, 243
creating 245

creating, in MongoDB 243
deleting, in MongoDB 260-262
searching, in MongoDB 251, 252
updating, in MongoDB 258-260

downloaded modules
using, with npm command 210, 211

E
effect

CSS class names, using 154, 156
producing, on several elements 156

EJS 229
element

adding, to list 173, 174
deleting, from array 68, 69
filtering, in array 69
modifying, in list 183
removing, from list 178-183
value, deleting 66, 67

events
managing 128-130

exec(callback) method
using 255, 256

Express 210
MVC pattern 222
routes, using 223
views, displaying 231-235

Express module 264
installing 219-222
used, for creating Vue.js

application 272-274

F
file contents

displaying, as strings 207, 208
reading 206, 207

312 Index

filter(callback) method
using 69, 70

forEach(callback) method
used, for accessing element 61, 62

forEach() method
versus for() loop 62-64

for() loop
used, for accessing element 60
versus forEach() method 62-64

for() statement
processing loops, creating with 30, 32

functions
for calculating the sum of first

10 integers 38, 39
for displaying the list of the

first 10 integers 34-37
used, for calculating the sum of

first N integers 39, 40
using 33

H
HTML page

Vue.js, using 96, 97
HTTP Protocol

using 169

I
input field

exiting from 185, 186, 188
focus, giving to 188, 189-191

inserted documents
viewing, with mongo utility 250, 251

instance 42
internal Node.js modules

file contents, displaying as
strings 207, 208

file contents, reading 206, 207
non-blocking file reading,

using 208, 209
using 206

J
JADE 228, 229
JavaScript

multitasking 82
variables, declaring 15
variable types 5

JavaScript code
specifying, in HTML file 8
writing, between <script> and

</script> tags 8-10
writing, to external file 10, 11

JavaScript code written
for browswer, versus for server 14

JavaScript Object Notation (JSON) 7
JavaScript program

running, in browser 8
running, on Node.js server 13

L
lambda function 107
list

appearance, changing with
CSS code 177, 178

element, adding 173, 174
element, modifying 183
element, removing 178-183

list element, displaying
about 292
Axios, using with GET type

request 292, 294
GET type request, processing 294, 297

Index 313

list element, insertion
about 280
Axios library, communicating

between client and server 285
Axios, using with POST type

request 286, 288
correct operation, verifying

in database 291
POST type request, processing 288, 290
text and index attributes, replacing with

element attribute 280, 282, 284
list element, modifying

about 297
Axios, using with PUT type

request 297, 299
PUT type request, processing 300, 302

list element, removing
about 302
Axios, using with DELETE

type request 302, 305
DELETE type request,

processing 305, 308

M
map(callback) method

using 70, 71
methods

defining, in methods section 111
methods section

methods, defining 111, 112
model

about 243
creating 244, 245

Model View Controller (MVC) model 99
modules

about 196
creating 197

functionality, adding 201
multiple functions, exporting 201-203
so-called main function, using 205, 206

MongoDB
about 237, 264
documents, creating 243
documents, deleting 260-262
documents, searching 251, 252
documents, updating 258-260
installing 238, 239

MongoDB Community Edition
installation link 238

MongoDB database
connecting to 241, 242

MongoDB database structure 274, 277
mongoose module

installing 240, 241
mongosh

installation link 238
mongo utility

about 238
commands 239
using 239
using, to view inserted

documents 250, 251
mounted() method 189
move-down effect 160-163
multitasking, JavaScript

about 82, 83
clearInterval() function, using 87, 89
setInterval() function, using 86, 87
setTimeout() function, using 83-85

MVC pattern
in Express 222, 223

MVC pattern, in Express
controller 222
models 222
views 222

314 Index

N
Node.js http module

using 216, 217, 219
Node.js server

JavaScript program, running 13, 14
node_modules directory

using 198, 199
node_modules local directory

colors module, installing 212
non-blocking file reading

using 208, 209
npm command

downloaded modules, using
with 210, 211

using 210, 211
numerical values

about 5
Boolean values 6

O
object

about 42
creating, with class 43-45
creating, without using class 45
merging, with another object 53-55
property values, modifying 49, 50

objects 7
opacity effect 159, 160

P
package.json file

using 199-201
parent component

$emit(), using to communicate
with 136-140

Person class 43
processing loops

creating 30
using, with for() statement 32, 33
using, with while() statement 30, 32

promises
using 89-91

props
using, to communicate with

child component 140-143
push() method

used, for adding element 64-66

Q
Query and Projection Operators

installation link 252

R
reactive variables 99, 101, 103
reactivity

using 99
regular expressions

reference link 78
using 78

REpresentational State Transfer
(REST) 286

resources 226
route processing

defining, with external file 230, 231
routes

analyzing, in app.js file 226-228
types 225, 226

routes, using with Express
about 223
app.js file, initial content 223-225

Index 315

routes, analyzing in app.js file 226-228
routes types 225, 226

S
schema

about 243
creating 243, 244

search conditions
writing 252, 253

setInterval() function
using 86, 87

setTimeout() function
using 83-85

shrink effect 157-159
single-page application (SPA) 277
slice(start, end) method

using 76, 77
square brackets [and]

used, for creating array 55, 56
string

characters, accessing 75
characters, accessing with

charAt(index) method 76
characters, accessing with slice(start,

end) method 76, 77
string literal

creating, with backticks 73-75
creating, with double or

single quotes 72, 73

U
updated() method 189

V
variable declaration, JavaScript

about 15
const keyword, using 15-17
let keyword, using 20-22
uninitialized variable 23, 24
var keyword, using 17-19

variable types, JavaScript
arrays 6
Boolean values 6
character strings 6
numerical values 5
objects 7

v-else directive 118, 119
v-for directive

about 120
count in counts, using 120, 121
(count, index) in counts, using 121, 122
key attribute, using 122, 123

views
displaying, in Express 231-235

v-if directive 118, 119
visual effects

for element appearance 144
for element disappearance 151
using 143

visual effects, for element appearance
CSS classes, example content 145, 146
CSS classes, used by Vue.js 144
CSS classes, using 146, 149, 150

visual effects, for element disappearance
CSS classes, example content 151, 152
CSS classes, used by Vue.js 151
CSS classes, using 152, 154

v-model directive 123-125
v-show directive 120

316 Index

Vue.js
using, in HTML page 96, 97

Vue.js application
creating 97, 99
creating, with Express module 272-274

W
while() loop

used, for accessing element 60
while() statement

processing loops, creating with 32, 33
writing conditions, conditional tests

about 25
expressions, using 27-29
forms 25-27
nested test suites 29

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

https://Packt.com

https://packt.com
mailto:customercare@packtpub.com
https://www.packt.com

318 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Real-World Next.js

Michele Riva

ISBN: 978-1-80107-349-3

•	 Get up to speed with Next.js essentials and learn how to build apps quickly

•	 Understand how to create scalable Next.js architectures

•	 Write unit tests and integration tests in your Next.js application

•	 Discover the powerful routing system and Next.js’ built-in components

•	 Design and build modern architectures with Next.js using GraphCMS
or any headless CMS

https://www.packtpub.com/product/real-world-next-js/9781801073493?_ga=2.111415620.171353042.1655976065-178114784.1602593722

Other Books You May Enjoy 319

JavaScript from Beginner to Professional

Laurence Svekis , Maaike van Putten , Rob Percival

ISBN: 978-1-80056-252-3

•	 Use logic statements to make decisions within your code

•	 Save time with JavaScript loops by avoiding writing the same code repeatedly

•	 Use JavaScript functions and methods to selectively execute code

•	 Connect to HTML5 elements and bring your own web pages to life with
interactive content

•	 Make your search patterns more effective with regular expressions

https://www.packtpub.com/product/javascript-from-beginner-to-professional/9781800562523?_ga=2.122427467.171353042.1655976065-178114784.1602593722

320

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

https://authors.packtpub.com
https://authors.packtpub.com

 321

Hi,

I am Eric Sarrion, author of JavaScript from Frontend to Backend. I really hope you
enjoyed reading this book and found it useful for increasing your productivity and
efficiency in JavaScript.

It would really help me (and other potential readers!) if you could leave a review on
Amazon sharing your thoughts on JavaScript from Frontend to Backend.

Go to the link below to leave your review:

https://packt.link/QUTSC

Your review will help us to understand what’s worked well in this book, and what could be
improved upon for future editions, so it really is appreciated.

Best Wishes,

Eric Sarrion

https://packt.link/QUTSC

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Part 1:
JavaScript Syntax
	Chapter 1: Exploring the
Core Concepts
of JavaScript
	Technical requirements
	Types of variables used in JavaScript
	Numerical values
	Boolean values
	Character strings
	Arrays
	Objects

	Running a JavaScript program
	Running a JavaScript program in a browser
	Running a JavaScript program on a Node.js server
	Differences between JavaScript code written for the browser and the server

	Declaring variables in JavaScript
	Using the const keyword
	Using the var keyword
	Using the let keyword
	What if we don't use var or let to define a variable?
	What is an uninitialized variable worth?

	Writing conditions for conditional tests
	Forms of writing instructions
	Expressions used to write conditions
	Nested test suites

	Creating processing loops
	Loops with while()
	Loops with for()

	Using functions
	Function displaying the list of the first 10 integers
	Function calculating the sum of the first 10 integers
	Function calculating the sum of the first N integers

	Summary

	Chapter 2: Exploring the Advanced Concepts of JavaScript
	Technical requirements
	Classes and objects
	Defining a class
	Creating an object by using a class
	Creating an object without using a class
	Adding properties to a class
	Adding methods to a class
	Changing an object's property values
	Using the class constructor
	Merging one object with another

	Arrays
	Creating an array
	Accessing array elements
	Adding items to the array
	Deleting array elements
	Filtering elements in an array

	Character strings
	Creating a character string
	Accessing characters in a string
	Modifying a character string
	Using regular expressions

	Multitasking in JavaScript
	Using the setTimeout() function
	Using the setInterval() function
	Using the clearInterval() function

	Using promises

	Part 2:
JavaScript on
the Client-Side
	Chapter 3: Getting Started
with Vue.js
	Technical requirements
	Using Vue.js in an HTML page
	Creating our first Vue.js application
	Using reactivity
	Creating our first component
	Inserting a component in the application file
	Inserting a component from an external file

	Adding methods in components
	Defining methods in the methods section
	Defining computed properties in the computed section

	Using attributes in components
	Using directives
	The v-if and v-else directives
	The v-show directive
	The v-for directive
	The v-model directive

	Summary

	Chapter 4: Advanced Concepts of Vue.js
	Technical requirements
	Managing events
	Using the $event parameter
	Checking that the entered value is less than 100
	Allowing only digits to be entered

	Assembling components
	Using $emit() to communicate with a parent component
	Using props to communicate with children

	Using visual effects
	When the element appears
	When the element disappears

	Using a name for the effect
	Producing an effect on several elements
	Examples of commonly used effects
	The shrink effect
	The opacity effect
	The move-down effect

	Summary

	Chapter 5: Managing a List
with Vue.js
	Technical requirements
	Displaying application screens
	Splitting the application into components
	Adding an element to the list
	Using the <Element> component
	Changing the appearance of the list using CSS code

	Removing an element from the list
	Modifying an element in the list
	Transforming the element into an <input> element
	Exiting from the input field
	Giving focus to the input field

	Summary

	Part 3:
JavaScript on the Server-Side
	Chapter 6: Creating and Using Node.js Modules
	Technical requirements
	Creating and using our own modules
	Creating a module
	Using the node_modules directory
	Using the package.json file
	Adding functionalities to the module

	Using internal Node.js modules
	Reading the contents of a file
	Displaying file contents as strings
	Using non-blocking file reading

	Using downloaded modules with npm
	Using the npm command
	Using a downloaded module with npm

	Summary

	Chapter 7: Using Express
with Node.js
	Technical requirements
	Using the Node.js http module
	Installing the Express module
	The MVC pattern used by Express
	Using routes with Express
	The initial content of the app.js file
	Different types of routes possible
	Analyzing routes defined in the app.js file
	Adding a new route in the app.js file

	Displaying views with Express
	Summary

	Chapter 8: Using MongoDB
with Node.js
	Technical requirements
	Installing MongoDB
	Using the mongo utility
	Installing the mongoose module

	Connecting to the MongoDB database
	Creating documents in MongoDB
	Describing document structure using schemas
and models
	Creating the document

	Searching for documents in MongoDB
	Writing search conditions
	Retrieving and displaying the results

	Updating documents in MongoDB
	Deleting documents in MongoDB
	Summary

	Chapter 9: Integrating Vue.js with Node.js
	Technical requirements
	Displaying application screens
	Building the app with Express
	MongoDB database structure
	Installing the Axios library
	Inserting a new element in the list
	Replacing the text and index attributes with the element attribute
	Description of the Axios library for communicating between the client and the server
	Using Axios with a POST type request (client side)
	POST type request processing (server side)
	Verifying the correct operation of the insertion in
the database

	Displaying list elements
	Using Axios with a GET type request (client side)
	GET type request processing (server side)

	Modifying an element in the list
	Using Axios with a PUT type request (client side)
	PUT type request processing (server side)

	Removing an element from the list
	Using Axios with a DELETE type request (client side)
	DELETE type request processing (server side)

	Summary
	Thanks

	Index
	Other Books You May Enjoy

